Some pages of this thesis may have been removed for copyright restrictions.
If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown policy and contact the service immediately (openaccess@aston.ac.uk)

The Rechanics of Creep Crack Cronth in a hamox flloy

Ey leil Trigweli - Subrittea for the Degree of Phi. - Cotober ispe

Sumnaxy
Hagnox $A L E C$ has been used for a stucy of creep creck propagation, A number of variables have been considered such as speciner geometry, notch root rajius, material thickness, creep prestrain and stress level. The work has covered the material behaving under two values of the creep exponent, $n=3.5$ and $n=7$, accorainn to the stress level.

As well as observing initiation times and crack growin rates, scribea grias have beer used to examine the near crack tip strain ieven and cistributions. It was shown that estimations of COL fror: noter fiani opening car give misleading incications of materiai benaviour and that a more informative method was to moritor displacements in the material surrounding the crack tip. Strons evidence was found for crack acivarice being aisplacement controlied, however it was show that the OUN approach should be considered geometry dependart. The sumation of $\varepsilon_{y x}$ and $\varepsilon_{y y}$ provicied tine most successfui cescription of crack aivance asi it producec a single value that describec propacation in ail the cases consiàered.

The strain distributions indicate that σ was relate to distance from a point ahead of the crack tip by the exponert - (I/nti) and that $\sigma_{x x}$ is proportional to $\sigma_{y y}$. The constraint stresses arising ir the xX DET and Cli specimens ${ }^{\text {yy }}$ were evaluated.

Initiation time was found to be principaily affected by the stress level but was mocifiec by the constraints arising from specimen geometry. Crack growth was found not to obey either the empinical K or σ_{n} relationships but was reviewed in context of the observed stranett behaviour.

Key worcis

Hagnox fi80, Creep Crack Growth, Strain Distribution, Displacement Cortrol
CEAPTEP I I
GEDEFAL IITFODUCRIOR
1.1 Huclear feactors 2
1.2 This nork 3
CHAPTEE 2 42.1 Development of hagnox ALEC
2.2 Creep Properties of hagrox Ai80 64
2.3 Micro Aspects of Creep Fracture YGrain Boundary Sliding
Diffusion 10
2.3 .1 Formation of kicro Defects 10
2.3.1.2 Triple Point Cracking 21
2.3.1.2 Cavitation 13
2.3 .2 Cavity Growth Ie
2.3 .3 Cavity Iinking 30
2.3 .4 Ketallographic Techriques 33
2.4 Mechanical Aspects of Creep Fracture 34
2.4 .1 Effect of Notches 34
Conventions 36
2.4 .2 Stress Fields Preceding Cracks 37
2.4 .3 Ambient Temperature Fracture Kechanics 4
2.4.3.1 Stress Intensity Factor Approach 45
2.4.3.2 Crack Opening Displacement Approach 47
2.4.3.3 J-Integral Approach 48
2.4 .4 Hacroscopic Creep Crack Growth 40
2.4.4.I Stress Intensity Approach 50
2.4.4. $\overline{2}$ lett Section Stress Approach 51
2.4.4.3 J-Integral Approach 51
2.4 .4 .4 Displacement Approaches 53

2.4 .4 .5	$\overline{\mathrm{res}}$ ¢rence Stress Approach	54
2.4 .5	Appiication of Fracture Criteria to Creep Conditions	54
2.5	Summary witr Eespect to tinis hork	50
CHAPTEF 3	EPPRTEMTAI PFOCEUUFE	69
3.1	Crack Growtr Testing	69
3.1 .1	Production and Fecording of Grids	71
3.1 .2	Crack Length Monitoring	72
3.1 .3	Experimental Desionn	73
3.2	Smooth Bar Creep Testine	74
3.3	Netallography	75
CHEPTEP 4	FESUTS	77
4.1	Emooth Ser Oreep Tests	77
4.7 .1	Assessmerit of Creep Exponent Values	77
4.1 .2	Assessment of Extent of Primary Creep	77
4.1 .3	Quantitative lietallonraphy of SME Specinens	78
4.2	Notched Specimen Tests	80
4.2 .1	General Observations	81
4.2 .2	Ferchod Specimen Tests - Measurements relatine to time	83
4.2 .2 .1	Crack Initiation Times	83
4.2 .2 .2	Crack Iength Versus Time Data	88
4.2 .3	Grid Analysis	8
4.2 .3 .1	Hajor Strair Observations	100
	Maximum value of $\varepsilon_{y Y}$	101
	I-point Strain	102
	Value of $\varepsilon_{X X}$ at Location of hax. $\varepsilon_{y y}$	102
	Equivaient gtrair at jocation of liax. Eyy	203
	Summation of $\varepsilon_{x x}$ and $\varepsilon_{y y}$	103

Deviation Irom Iormai Poisson Contractior 104
Crack Operine Dispiacement 103
Effect of Test Variables on hajor Strair Cbservations 113
Stress Ievel 113
Test Specimen Thickness 113
Creep Pre-strair 21?
Notch Roct Faċius 214
Starter Notch Length II5
4.2 .3 .2 Strain Erofile Analysis 215
Initiation IIE
Growth IIC
Anaiysis of $\sigma_{x x}$ Stress Disiribution 127
4.2 .4 Notchec Tensile Specimer Netallography $12 c$
CHAPTER 5 DISCUSEICH 232
5.1 Considerations with Fespect to Specimen Geometry 232
5.2 Criteria Controlling Crack Advance 235
5.3 Stress Distributions Preceding Creep Cracks 142
5.4 Crack Initiation 246
5.5 Crack Growth Behaviour 150
5.6 Metaliographic Observations 150
5.7 Summery of Crack Growth 162
CHAPTER. 6 COMCIUSICNE 169
ACEMOMLDGDENTS 172

1. GENERAL INTRODUCTION:

Practure mechanics allows the calculation of sefe working stresses in components and structures at ambient temperatures which contain cracks. It would be cf considerajie benefit to the desien engineer and to the plant engineer if these concepts couid be applied to the operation of industrial plant at elevated temperatures. Under these 'creep' concitions a defect will almost always grow. The prediction of the growth rate of a crack like defect is a vital factor in the safe anc economic operation of high temperature plant. The reliable knowledge that a small crack will not grow to critical size for fast fracture before the next scheduled maintenance period could save vast expense in unnecessary shut downs of inigh temperature plant.

This work is intended as a stucy of some of the factors winch may influence creep crack growth predictions. The material uncer stuày is a nuclear reactor canning material, Nagnox AL 80 . A brief review of the reactor systems in use of this country for power generation is given below as reference to the inaustrial application of Magnox ALEC.

1.1 Nuclear Feactors

The nuclear reactor is already playing an important role in easing demand on fossil fuel supplies by using an economic alternative fuel and unlike oil and coal, nuclear fuel has little practical use other than for energy production.

The principles of all types of nuclear power station are basically the same. Electrical power is produced by a steam turbine driven generator. The steam is produced in a heat-exchanger, by heat taken from the reactor vessel by a transfer gas or liquia.

In the reactor vessel the fuel is bombarded with themal neutrons causing it to decay into fission products releasing enerey plus more thermal neutrons, which sustain the neutron flux givire a chain reaction. The thermal neutrons released are travelinne too fast for efficient continuity of the reaction in a thermal reactor, so a moderator is used to slow down the neutrons. The thermal energy is removed by the cooling medium which in some reactors doubles as the moderator. In a fast reactor using plutonium fuel the fuel is sufficiently concentrated for the reactior to be maintained without = 三 a moderator. There are numerous variations or these themes (see Table 1.1).

The development of the nuclear programme in this country has led to a logical progression through three main reactor types. Firstly, the early Magnox type thermal reactor (fig. l.l) fueled with uranium. This is being superseded by the Advanced Gas cooled Feactor (AGR). The AGR uses enriched uraniun oxide fuel and has a higher operating temperature, giving more efficient generation than the Nagnox Reactor. Thiraly, there are plans to introduce Fast Breeder Feactors using Plutonium fuel (fig. l.2). These reactors should enable cheaper power generation than any other system, making use of the piutonium produced from the thermal reactors. The fueling arrangement of the Fast Breeder Feactor is such that more fissile material is produce than consumed. A fourth reactor type, the Light water neactor, is under consideration as a cheaper, less technologically demanding alternative to the AGR. However, decisions with regards the introcuctior. of this reactor type are at present deferred.

CHAPACTELISTICS OF MAJOTi REACTOF TYPLS						TABLE. 1.1	
FEACTOR	Magnox	AGR	Candu	LWR	SGHWR	HTR	Fast Breeder
Country of Origin	Britian/ France	Britian	Canada	USA	Eritain	Several	UK/USA
Fuel	Metal Natural	$\begin{aligned} & \text { Oxide } \\ & 2 \% \\ & \text { enriched } \end{aligned}$	Oxide Natural	$\begin{aligned} & \text { Oxide } \\ & 3-4 \% \\ & \text { enriched } \end{aligned}$	$\begin{aligned} & \text { Oxide } \\ & 2-3 \% \\ & \text { enriched } \end{aligned}$	Carbide 10% enriched	Flutonium
Cladding	Magnox	Stainless Steel	$\begin{aligned} & \text { Zirc- } \\ & \quad \text { aloy } \end{aligned}$	Zircaloy	$\begin{aligned} & \text { Zirc- } \\ & \quad \text { aloy } \end{aligned}$	SiliconCarbide	stainless steel
Moderator	Graphite	Graphite	Heavy Water	water	Heavy Water.	Graphite	None
Conlant	CO_{2}	CO_{2}	Heavy Water	Water	Water	Helium	Sodium
steam Cycle Efficiency	31\%	42\%	30\%	32%	32\%	39\%	44

Magnox Thermal Reactor - Graphite Moderated (UK)

FIG. 1.1

Fast Reactors - Sodium Cooled

1.2 This Work

The development work involved in these reactor programmes has been on an immense scale with many components reguiring resistance to an environment of a completely unprecedenteà nature. This work hàs been restricted to one material deveioped specifically for use as a fuel containing medium in the Nagnox reactor, hagnox AI80. The more modern reactor systems utilising enriched fuels usually use a stainless steel for fuel cladiding such as AISI 316. However, the extensive amount of existing data on Magnox fil80 sugeested its particuiar suitability to a study of the stress and strain profiles preceeding defects growing under creep conditions. Knorieage of the nature of these profiles will be essential to the uncerstanding of how creep crack growth rates may be predicted.

2. LITERETUPE SURVEY

2.1 Development of Kagnox AL. 80

A canning material must perform the following functions:

1) Retain the fuel and fissior proaucts
2) Prevent oxication of the fuel by the coolant (less important in the $A G R$ where enriched oxide fuel is used.

It must also conform to the following requirements:
a) Present a low cross section to thermal neutrons (again less important with the more advancea reactors using enrichea fuels).
b) Be resistant to corrosion in the cooline medium, incluading not forming low melting point constitu nts with particles carried in the coolant. It must also be resistant to corrosion in the cooling pond.

In the Magnox reactor operating conditions are such that can temperatures of around $460^{\circ} \mathrm{C}$ can be experiencec, with carbon dioxice pressures of up to $2.5 \mathrm{Nm}^{-2^{6}}$. Under these conditions, uranium when irradiated for long periods can undergo severe swelling due to evolution of gaseous fission products (such as iodine). It can also exhibit 'ratcheting' a form of cistortion due to a growth along the [010] axis and contraction along the [100] axis of its orthorhombic crystal structure. ${ }^{4}$

Nost creep applications require resistance to deformation. with a canning material it is more important that the can deforms with the fuel rather than cavitates or cracks which could result in fission product leakage into the coolant. The fuel cans are finned for better heat extraction and although mechanical strengti is basically a secondary consideration some level of strength is requireà to ensure
the heat transfer surfaces are reasonabiy resistant to deformation. Of the materials with a sufficiently low cross section to neutrons, beryilium is too brittie and aluminium reacts with uranium even at quite low temperatures. This left a magnesiun based alloy as the most obvious possibility. This choice also had the advantage of good thermal conductivity and a low aensity. This enabled the effective cooling surface of the can to be much increased by finning at a very small weight penalty. ${ }^{4}$

The development of Magnox Ais0, formerly Alz was performea by the United Kingdom Energy Authority and Magnesium Electron ita. Primarily attention was paiò to preventing oxidation in moist air and CO_{2} leading to an alloy of:

$$
\mathrm{K} \mathrm{E}+1 \% \mathrm{Al}+0.01 \% \mathrm{Ee}+0.05 \% \mathrm{Ca}
$$

Named MAGnesium Non OXidising. It proved difficult to obtain satisfactory welas with this alloy and it aiso proved more difficult to pressure shrink the can onto the fuel than envisaged. These problems were overcome by eliminating the calcium and aecreasing the aluminium to give a final specification:

$$
\begin{gathered}
\text { Al } \quad 0.7-0.9 \mathrm{wt} \mathrm{\%} \\
\text { Be } \quad 0.002-0.03 \mathrm{wt} \% \\
\text { other metals } 0.039 \mathrm{wt} \% \\
\mathrm{Mg} \text { Balance }
\end{gathered}
$$

This alloy is basically single phase. However, a very smail volume of Al-5\%Be second phase hardering particles may form with higher Beryllium levels. The solubility of Beryilium in magnesium is around $0.005 \%_{i}^{\text {.' }}$

Under pile conáitions the oxidation resistance and fire resistiance of pure magnesium were shown to be adequate. This should apply to any
magnesiur alloy with a high enough meltirg poirt.

The main problems with Magnox ki 80 were confined to low creep 6: cuctility arounc $200^{\circ} \mathrm{C}$ (see fig. 2.1); anc̀ a prorouncé tenciency for grain growth around $400^{\circ} \mathrm{C}$. These limitations a o have practical sienificance. Cans near the gas irlet ports can be in the temperature range of this ductility trough. Shuffing cans from hot to cold regions and vice versa is desirable to obtain uniform burn up. However the cans from a hot zone may have undergone severe grain growth. This would present a serious possibility of leakage cue to inter-granular cracking if they were ther cooled to an operating temperature where the creep auctility was at a minimum. The shuffling of Magnox fuel cans can hence only be carries out on a limited scale.

Some use has been made of Mg. Zirconium cased alloys. These alloys are fine grained and resistant to grain growth but on the whole, the sufficientily corrosion resistant alloys did not reach or maintain the same level of strength as ALEO under service conaitions. Also the diffusion of plutonium through the $Z x$. ailoy into the cocling gas is much greater than with AI80 as the AI alloy can form an AI/Plutonium intermetalic. Fig. 2.2 shows a typical Magnox fuel element.

2.2 Creep Properties of Magnox AI. 80

The use of Nagnox AL8C under conditions that were previously
unexperienced resulted in a very full investigatior programme. The results of many workers have been conàensea and analysed by Harris \& Jones. ${ }^{12}$

COMPONENTS OFA TYPICAL MAGNOX
FUEL ELEMENT

It was found that the creep behaviour of ALEO could be described by three basic equations depenaing upon the Ievel of stress. This is possibie because for many metals and alloys the activation energy for seconảary creep is temperature incependant above approximately haif the absolute melting point $\left(0.5_{\mathrm{m}}^{\mathrm{C}_{\mathrm{K}} \mathrm{K}}\right.$). This corresponds to a temperature of around $185^{\circ} \mathrm{C}$ for Magnox ALSO. It was fourd that the secondary creep behaviour could be expressed as follows: Stresses above $15.5 \mathrm{mim}^{-2}$,

$$
\dot{\varepsilon}=26.0 \times \dot{\alpha}^{-0.5} \times \sigma^{7.0} \times \exp (-32000 / \mathrm{RT})
$$

Stresses between $0.55-15.5 \mathrm{Nm}^{-2}$

$$
\dot{\varepsilon}=27.4 \times 10^{4} \times \dot{\alpha}^{-0 . \varepsilon} \times \sigma^{3.5} \times \exp (-32000 / R T)
$$

Stresses below $0.55 \mathrm{Mm}^{-2}$

$$
\begin{aligned}
& \dot{\varepsilon}=84.3 \times 10^{5} \times \dot{a}^{-2.0} \times \sigma \times \mathrm{T} \times \exp (-j 2000 / \mathrm{RT}) \\
& \text { Where } \dot{E}=\text { secondary creep rate in } \mathrm{Hr}^{-1} \\
& \dot{\alpha}=\text { mean grain diameter in } \mathrm{mm} \\
& \sigma=\text { stress in } \mathrm{MNm}^{-2} \\
& \overline{\mathrm{~K}}=\text { gas constant }=1.98 \text { cals. } \mathrm{mol}^{-1} \mathrm{deg}^{-1} \\
& \mathrm{~T}=\text { temperature in }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

All three of these equations are of the Norton Law type, that is secondary creep behaviour can be described by the generalised form:

$$
\dot{\varepsilon}=A \sigma^{n}
$$

Where $A \& n$ are constants
The importance of the structural feature, that is grain size, in equ. $2.1 \& 2 . \bar{z}$ is thought to be due to the greater number of high angle boundaries in finer grained material. This will allow more rapid sliding, enhanced boundary diffusion, and migration. ${ }^{16}$

At the low stress range the exponent of approximately unity and increased sensitivity to grain size suggests a directional diffusional creep mecharism (i.e. Herring Nabarro type mechanismi). It has been shown that a threshold stress exists for diffusion creep in mary metals and alloys below which it kill not occur. For hannox aile this stress will correspond to less than $C .1 M_{M m} \mathrm{~m}^{-2}$ above $400^{\circ} \mathrm{C}$. The effect of second phase particles has been shown to inhibit diffusion creep and the presence of such particles could raise this 522
threshold stress significantly.

The higher stress ranges, that is above $0.55 \mathrm{mnm}^{-2}$, will be controlied by slip creep mechanisms. Both stress depenàancies in this slip creep $122=$ regime exhibit the same activation energy for creep, sugeesting a similarity in the rate controlling mechanism, At the intermeaiate stress range the stress exponent is lower than for pure magnesium, 3.5 as opposed to 5.0. Such a reduction in exponent is not uncommon in solid solution alloys and is probably due to the action of micromechanisms, such as solute drag, becoming the rate controlling factor. The absence of any accurate energy data on the diffusion of Al in NE has prevented precise definition of the micro mechanism operative 25 in $A L B C$.

The increase in exponent above a certain stress is also common in metals and alloys. It has been suggested that at the high stress levels behaviour could be better described by:

$$
\dot{\dot{\varepsilon}}=A \cdot \exp (B \sigma)
$$

Where $A \& E$ are constants
However, any improvement in describing the creep rate of Magnox
AIEC is slight, especially in view of the scatter in the accumulated
data, and an expression of this form is less convenient in use.

The stress at which this deviation from the low exponent value occurs has been observed over several materiais to be roughiy proportional to the elastic moculus. The exact reason for the cieviation appears uncertain. It has been proposed that it is due to an increase in the number of vacancies at stresses above the transition. These will aid climb and diffusion thus assisting both conventional and micro-creep mechanisms.

2.3 Micro Aspects of Creep Fracture

There are two fundamental factors which cause creep deformation to differ from normal plastic behaviour. They are grain boundary slicing and diffusion. Both will be seen to be integral components in the models describing behaviour leading to creep fracture.

Grain Boundary Sliding

The concept of the equicohesive temperature has iong been generally established. At low temperatures grain bouncaries are stronger thar the grains due to lack of conservative dislocation motion within the boundary. As the temperature rises the strength of both falls, but the strength of the doundary falls faster. This leads to a point where the strengths of the boundaries and the grains are equal. This point is called the equiconesive temperature T_{E} (fig. 2.3). Below T_{E} fracture is usually transgranular. Above T_{E} the fracture tends to become intergranular with a corresponding fall in ductility due to the failure stress being too low to cause any extensive deformation of the grains!

The modern concept of a grain boundary is that the two adjacent crystals maintain their specific spacing right up to a mono-atomic separation layer'. On the application of a sliding shear a nett flow is induced causing sliding. This is a themally activated event and thus the equicohesive temperature hill be strain rate dependant. It can be described by the following equation: ${ }^{2}$:

$$
\begin{aligned}
\theta & =T\left(C_{l}-\log \dot{\delta}\right) \\
\text { Where } \theta & =\text { equicohesive point } \\
\dot{\delta} & =\text { strain rate (shear) } \\
C_{l} & =\text { constant }
\end{aligned}
$$

Diffusion

This is aiso a thermally activated event and will hence become more predominant at high temperatures. Diffusion rates can be described by a classical Arrnerius equation:

$$
\begin{aligned}
D= & D_{0} \exp (-Q / \mathrm{kT}) \\
\text { Where } \quad D & =\text { Diffusion coefficient } \\
D_{0} & =\text { Correlation factor } \\
Q & =\text { Activation energy } \\
\mathrm{KT} & =\text { Absolute temp. } \times \text { Boltzmanns Const. }
\end{aligned}
$$

This indicates a strong rate dependance on temperature

2.3.1 Formation of Micro-Defects

The formation of voids under creep conaitions was first observec by Jenkins. However, their effect in limiting creep life was realised later by Greenwood.

Since this time much work has been done in studying creep cavitation. Two basic types of cavity have been identified. Firstly, weàge shaped cavities or cracks situated on grain bouncary triple points, in
the same manrier as the classic Zorner weàze Crack. Seconcíy, rounded shaped voids situated in the grain bounary. These are usually refferreci to as w (weáge) and r (rouncied̀) cavities respectively.

It has been suggested that in fact w type cavities are no different from r cavities and are simply where a cavity has grown to neet a 31
triple point. Stiegler has made fractographic stuciies of cavities in tungsten and suggestec that all cavities are initially polyheàral and change their shape according to the conditions of stress and temperature. Whilst it is very difficult to determine experimentally if a w crack actually nucleated at a triple point the work by Mclean does suggest the operation of two mechanisms. Examination of several high temperature alloys showed a predominarice of k cracks at high stresses and low temperatures and r cavities at lower stresses and higher temperatures.

Stace y^{33} working on Nagnox AL8O has reported cracking below $150^{\circ} \mathrm{C}$ 34
and cavita tion above. Heal using a much faster strain rate of 112% hr^{-1} on Hagnesium determined a similar transition between 175 to $225^{\circ} \mathrm{C}$. Hence there is considerable support for the existence of two distinct cavity morphologies.

2.3.2.1 Triple Point Cracking

Zener's initial theory stated that if slip along an interface was hela up by an obstacle a stress concentration couid buila up, sufficient to initiate a crack. Eborall and Chang d Grant appliea this concept to grain bounċary triple points. Chane $\hat{\&}$ Grant propose the three classic ways a tripie point crack can form. (rig. 2.4) Seru \& Grant pointed out sliding on a grain boundary need not produce a triple point crack if a

FIG 2.4
plastic folà car occur instead.

The originai fracture criterion vas drawn up by Griffith, basea on the energy balance between, that reouirec to produce a nex suriace against the stored elastic energy lost as a crack foms. The following equation was proposeá:

$$
\sigma_{f} \geq \sqrt{\frac{E x}{C x}}
$$

Where:
$\sigma_{\hat{E}}=$ stress for crackine
Z = Elastic moalulus
$\gamma=$ Surface energy
c $=$ Crack Iength/2 for a totaily embeacied crack

This implies a critical stress for fracture exists for a giver crack leneth and vice versa. The equation only consiàers the elastic effects of the applied stress. Stroh extenaed the work of Griffith to take account of the presence of dislocation pile-ups in a $\dot{\alpha} \in f=r m e d ~ m e t a l . ~$ He drew up a fracture nucleation criteria as follows:

$$
\tau_{f} \geqslant \sqrt{\frac{12 \gamma, \mu}{R(1-v / I}}
$$

where:

```
\mu = shear modulus
I = iength of sliaing interface
\tau
```

As this relationship is incepencant of the nature of the sliàing interface it is possible to calculate an approximate value of the stress concentration at the end of a high angle boundary, necessary to nucleate a crack. Complete accuracy is not possible with this approach as no account is taker for energy dissipatea as plastic work. Mciear ${ }^{40}$ applied the stroh equation to a single dislocation pile-up
model and found reasonable āgreemert with practical results. Application of equation 2.9 produced a value of μ about 0.3 of that expected. Stroh later amenảed his initial equation to:

$$
\tau_{f} \geqslant \sqrt{\frac{2 \pi \mu}{\varepsilon(I-v) I}}
$$

$$
\text { where } v=\text { poissons ratio }
$$

Stroh stated that these equations will describe the fracture of a material giving a relationship betweer fracture stress and the inverse souare of the grain diameter. (The sliding interface can represent the slip band length for the orittle cleavage case or the sliaing grain boundary length for the creep situation, both of these will be directly proportional on average to the length to the grair diameter). Such a relationship was established by Hauser Landon \& Dorr ${ }^{42}$ for a magnesium 2% AL Alloy below $130^{\circ} \mathrm{C}$. Smith \& Earncy examined a double pile-up model applicable to the Chang \& Grant triple point crack type B in Fig. 2.4. They derived the following equation for nucleation:

$$
\tau=\sqrt{\frac{2 \gamma \mu}{n(1-v) L}}
$$

This equation would reduce the level of Mciear's calculated stress results as it predicts nucleation at much lower stresses. Such a recuction would have improved the agreement between hiciean's calculated and practical results. The discrepancy had previousiy been attributed to segregated impurities.

2.3.1.2 Cavitation

This form of creep failure was recognised by creenwood et al. Small cavities were observei to form along grain boundaries, grow and coalesce. These cavities were not necessarily associated with triple
points and were found mainly along grain boundaries perpendicular to the princifel stress axis. This type of cavity was found by liciean 3^{2} to favour higher temperatures and lower stress levels than the triple point cracks. It has concluded that a different process to triple point cracking was operating and it was called cavitation.

Early theories for the formation of r cavities were based on concepts of vacancies, produced by plastic deformation, condensing out on aiscontinuities, usually grain boundaries. It is now generaily accepted that cavity nucleation is heterogenous. Grain boundary particles or ledges seem the most likely sites for nucleation but direct evidence is not particularly forthcoming. It is impossible to tell if a cavity nucleated at a particle or simply grew to meet it. Host theories advanced involve grain boundary $\angle 55046$ sliding causing separation at a particle or a ledge, as shown in Fig. 2.5. In fact grain boundary sliding must produce cavities at such points when ever plastic flow or diffusion is insufficient to 47 prevent decohesion. Chen \& Machlin worked on copper bi-crystals and showed that some grain boundary sliding was necessary for cavity formation. Application of a shear stress along the boundary gave cavities, a tensile stress perpendicular to the boundary did not. Application of a combined stress produced many cavities.

48
Baluffi and Seigle derived a critical nucleation condition for cavitation. In a simplified form, if a void radius r, in a material under a uniform stress σ, receives a vacancy from the boundary its surface energy increases by an amount $\Delta \gamma$ given by:

$$
\Delta x=\frac{2 \gamma 0^{3}}{r}
$$

where $y_{3}=$ surface enerธy/unit area
$b^{3}=$ atomic volume

NUCLEATION OF VOIDS BY GRAIN BOUNDARY SLIDING

The emission of a vacancy from the boundary is equivalent to the plating out of an atom on the boundary. This means a force or ${ }^{2}$ is moved through a distance b. If this work aone exceeds the increase in surface energy cavity growith will be energeticaily favourable:

$$
\sigma b^{2} \cdot b \geqslant \frac{2 r r^{3}}{r}
$$

$$
\sigma \geq \frac{z \gamma}{r}
$$

Hence, a critical size of cavity nucleus, for a given stress level, must form before stable cavity growth can commence. It can be seer: from this equation that a stress concentration wili reauce this critical radius.

49
Rai has pointed out that deformation inauced decohesion is not the only mechanism for heterogenous cavity nucleation. He showed that thermodyamic considerations indicate the triple interface between a grain boundary anci a non-coherent particle presents the lowest activation energy for nucleation by a vacancy cluster mechanism. Under such a mechanism, grain boundary sliding woula only assist cavitation by providing a stress concentration at the particle interface. A minimur stress wouid be required for nucleation ana there would be an incubation perioc whilst the critical size of vacancy cluster was accumulated by àiffusion. Incubation periocs anc̀ minimur stresses for cavitation have been observea. 50

51

Smith \& Barnby considered the situation where a particle in the grain boundary could hold up sliding. The shear stresses acting on the particle may reach such a level as to fracture it, and hence form a cavity nuclei.

Fleck, Taplin \& Beevers used the IK. V transmission electron microscope (TEM) to study cavities at early stages of growth in a copper alloy. The cavities observed were all associated with particles. They observed nucleation to be associated with a critical Erain bouncery sli̇ing cisplacement. This sugeested the importance of a stress concentration build-up at the particles curing or before the nucleation process.

52
Weaver pointed out that impurity particles or precipitate coula form effective obstacles to grain boundary sliding. If particles were to act in cavity nucleation the cistributior must be such as to enable sufficient stress builamp for nucleation and yet take the loaj off the triple points. If the particles stop grain boundary siiding effectively, cavitation will be delayed. This is supported by odservations in Type 316 stainless steel that show the effect of precipitate on cavity nucleation to be principally concerned with restricting grain boundary sliding and development of stress concentrations, provicing heterogeneous nucleation sites was a secondary effect.

Cotirell' suggested that non-wetting precipitate would form easy nucleation sites for cavities forming by grain boundary sliciing around particles. It was pointed out that aluminium which adneres particularly well to its oxiae coes not cavitate during creep. Following from this 54
argument Eborall suggested that the reason that titanium does not cavitate was because it dissolves its oxides ana similar compounàs.

At weakly coherent particles it has been shown that if the precipitate has a higher melting point than the matrix, diffusional flow around the
particle will be inhibitec. This is aue to there beirg littie co-cperative movement between the atoms of the precipitate and those of the matrix, which is necessary to enable such a boundary to act as a source or sink for vacancies. This will inhibit tencencies for a cavity formed by grain bounarary siicing around a particle to sinter and hence aid the formation of a stable nucleus. This will not appiy if the particle is completely non-coherent.

44
Harris proposed that the mechanism of particle/matrix interface shearing by a grain boundary slicing incuced stress concentration could account for all cavitation observed in Magnox ALEO. Electron metallography revealed sufficient second phase particles to support this proposal.

30
Greenwood et al observed that cavity spacing increased as temperature increased and was approximately equal to the slip band spacing. Slip processes can produce grain boundary leages. Davies \& williams ${ }^{56}$ produced a model for cavity nucleation in which secondary siip systems form small grain boundary ledges which are opened up into cavities by sliding. See Fig. 2.6. Using the IM.V TEN to study copper Johanneson \& Tholsen showed cavities in very early stages of formation to be associated with grain boundary obstacles such as kiniks and triple points. They proposed that the stress concentration at such points couid be as high as 10^{3}.

Harris ${ }^{44}$ considered nucleation at ledge type sites in Hagnox Aiso unlikely as grain boundary diffusion rates are of a magnitude that would mean grain bouncary sliding rates would have to be unrealistically high ($1 \mathrm{~m} / \mathrm{Hr}$) to prevent sintering. He favourea erain boundary separetion at particies. liowever the electron microscopy

FIG. 2.6
stuajy of Presiand and Hutcrinsor of cavities in pure magnesium deformed at $300^{\circ} \mathrm{C}$ showed that the majority of cavities were in no way associated with particles. They consiaered the intersection of grain boundaries with sub-grain boundaries to be the most common nucieation sites. See Fig. 2.7

2.3.2 Gavity Growth

Original theories of cavity growth . Were based on vacancy diffusion. Later mechanisms dependant upor deformation were advanced. Nany relationships correlating cavity size, population, etc. with time related parameters have been drawn up. Table 2.1 includes some of these.

Cottrell ' reviewed four of what he considered the most important possibilities by which a cavity could grow:
i) By spreading along the boundary like a cleavage crack through the breaking of atomic bonds by the concentrated stress at its end.
ii) By changing in volume through elastic deformation, as a resuit of changes in the applied stress or in the length of the cavity.
iii) By spreading along the boundary at constant volume (apart from elastic deformation) through the migration of atoms, mairly by surface diffusion from the sides of cavities to the ends.
iv) By spreading along the boundary, with changing volume, through the removal of atoms from the ends by atomic migration along the boundary or into the grains.

OF CAVITIES AT
BOUNDARIES DUE
SLIDING
FORMATION
GUFB GRAIN
TO

WORKE'R	Matierial	RELATIONSUIP FOUH	COMPENTS
Greenwood ${ }^{58}$	Model	Cavity Vol \sim (time x creep stress)	Applies to stages $1 \& 11$ of creep independant of shape of creep curve Assumed growth rate constant. Probably valid for widely spaced cavities.
Ratcliffe \& Greenwors ${ }^{53}$	Magnesium	Creep strain \& No, of cavities linearly related (approx)	
Fa.tcliffe \& Greenwood ${ }^{59}$	Nagnesium	Density change otime ${ }^{2.5}$	Exponent higher than expected for vacancy condensation at constant number of cavities. Must have continuous nucleation.
Price ${ }^{\text {kn }}$	Oxygen free Gilver	Creep strain \& Mo. of cavities linearly related (approx)	
$\begin{aligned} & \text { Intrater \& } \\ & \text { Machl in } \end{aligned}$	Coppex Bicrystals	Near linear relationship between cavity conc. \& grain bound.ary sliding	
$\begin{aligned} & \text { Eoettner \& } \\ & \text { Fovertson } \end{aligned}$	Copper	$\text { Cavity vol. } \alpha \text { time } 1.5$	
$\text { Gittins }{ }^{6^{3}}$	Oxygen free Copper	Cavity No. α-time ${ }^{0.5}$	Considered in reasonable agreement with Boettner is Robertson
$\begin{aligned} & \text { 0]iver \& } \\ & \text { Cirifalco } \end{aligned}$	Silver	No. of cavities is constant	
$\begin{aligned} & \text { Greenuood) } \\ & \text { Woodford })^{6,5} \end{aligned}$	From Gittins	Linear relationship between No. of cavities \& creep strajin	For both stages 1 \& 11 of creep

WORKEP	MATEFIAL	FiELATIONSHIP FOUMD	COMMENTS
$\begin{aligned} & \text { Iyson \& } \\ & \text { Nictean } \end{aligned}$	Nimonic 80A	No. of cavities linearly increased with strain up to 75% of creep life	Considered useful in assessing remaining creep life.
Evans \& Waddington ${ }^{67}$	Fointed out onl.y cavities 7., pm observed in metal lography	Possible linear relationship between No. of observable cavities \& creep strain, provided cavities followed a log. normal size distribution and grew at uniform rate	Continuous nucleation not proven for optical microscopy studies (electron nucleation) microscope studies have shown continuous
Davies, Davies \& Wilshire ${ }^{68}$	Nickel + Cobalt	Fupture life x creep rate $=$ const .	Telationship independant of colalt content, which affected stress for a given creep rate. Fupture life \& hence cavity growth independant of stress, by llull kimmer model. contradicting diffusion control growth
Needham Wheatley \& Greenwood ${ }^{63}$	Magnesium \& Copper	Densjuty change $\cdots(\text { E.t. } \sigma)^{3}$ for $\mathrm{Cu} \& \mathrm{Mig}$ $\left.\alpha^{(E . t . \sigma}\right)^{1.5}$ for Mg at later stages of test	Similar results suggested detailed structural features unimportant although eavities are often structually related.

Fode (ii) is of Iittie interest as any contribution to crack growth by this mechänism will be small. However, it will occur in conjunction with changes in crack length by the other mecharisms. The remaining mechenisms may de considered in the context of the Griffith equation (equ. 2. ε).

Mode (iv) enables a small cavity to grow, ever if beiow the critical crack length as determined by the Griffith equation. This mechanism allows the applied load to do more work than is possible by just elastic deformation alone. The Griffith equation is besed on only the stored elastic energy beine available to procuce a rew surface. Mode (i) The Griffith criteria is not a sufficient condition for crack growth to occur by this mode as it requires the crack tip to remain sharp. Some sharpness will be maintained at high tenperature despite surfact diffusion, but whether it would be sufficiert for crack propagation is uncertain. This mode would resuit in fast fracture rates untypical of a creep situation. Mode (iii) The Griffith criterion is always a sufficient criterion for crack growth by this mode. This is because the atomic bonds at the crack tip are overcome by thermal aggitation and hence a sharp crack tip is not required.

The observation of preferential cavity cistribution along grain boundaries at 90° to the tensile stress axis and the tenàencg for cavities to elongate aiong these boundaries are strong eviàence of a $=0>0$ diffusion growth mechanism. (i.e Node iv) Such a mechanism could be describec by the classic Herring-Mabarro mociel.

4871
Baluffi \& Siegle considered the thermodynamic concitions for void growth by diffusion. They founc a critical stress σ^{*} above which
a cavity of racius r will grow by accepting vacancies from the grain boundary, as follows:

$$
\begin{aligned}
& \sigma^{*}=\frac{2 \gamma}{r \cdot 0^{2} e} \quad \text { where } \epsilon=\operatorname{argle} \text { between the } \\
& \text { boundary normal and the tensile } \\
& \text { stress axis. }
\end{aligned}
$$

This treatment inäicates a strong orientation dependance for cavity growth. As \in moves from 0° to 60° the stress factor will increase by 4 times. This can hence explain the observations of cavities lying preferentially on boundaries at 90° to the stress axis.

Many attempts have been made to estimate cavity growth rates based on vacancy diffusion models. A classic work performed by Hull \& Rimmer ${ }^{\text {T2 }}$ took the difference in chemical potential of a vacancy at a void surface and midway between voids as the driving force for diffusion. They derived the following equation for void growth rate:

$$
\frac{\partial r}{\dot{\alpha} t}=\frac{D g \cdot z \cdot \sigma \cdot \Omega}{2 \mathrm{kT} \cdot \mathrm{~s} \cdot \underline{r}}
$$

$$
\text { Where: } \begin{aligned}
D g & =\text { grain boundary diffusion } \\
z & =\text { valency rate } \\
\Omega & =\text { volume of a vacancy } \\
\mathrm{kT} & =\text { Boltamans constant } X \\
& \text { Absclute temperature } \\
s & =\text { Average spacing between } \\
& \text { vidis } \\
r= & \text { cavity radius }
\end{aligned}
$$

The basic Hull Rimmer equation has since been refined by many workers to take account of several factors not considered in the original analysis. However, the relevance of exact calculation of cavity growth rates to this work suggests that these modifications do not warrant detailed examination. The most significant point of interest from these analyses based entirely upon diffusional growth is that the growth rate shoulo be directly proportional to the stress.

The Hull Rimmer model was based on a constant number of voias, but the experimental results of Ratcliffe a Greenwooć ináicated continuous nucleation. This concept of continuous nucleation was supported by other workers who observed cavity number / time or cavity number / strain relationships, see Table 2.1. With the acceptance of the importance of grain boundary sliding in nucleation anc the acivent of TEN techniques continuous nucleation has become generally accepted.

Some observations show cavitation to give stronger connections with strain or strain rate than with time. This is not what woula be expected if diffusion was the controlling mechanism. Work by Davies, 68
Davies \& kilshire on a range of nickel-cobalt alloys showed that for a given creep rate the fracture strain was independant of cobalt content. Additions of cobalt to the nickel increased the creep resistance and hence the stress required to produce a given creep rate. This meant that the failure strain and hence time to fail at a given strain rate were independant of stress. This is not consistent with the Hull Rimmer model even through fracture occurred by growth and linkage of voids. They suggested that under these conditions cavity growth was dpendant upon other plastic deformation mechanisms, such as grain boundary sliding or dislocation motion.

It is a common observation that strain to failure is relatively insensitive to quite large changes in test conditions. Also for a large number of materials the product of strain rate and time to failure is a constant. These observations seem to contradict a vacancy control model. A general questioning of diffusional controlled growth has resulted from these discrepancies, leading to development of an alternative approach based on deformation controlled growth.

Williams experimentally determined crack growth rates in a single phase Al $20 \% \mathrm{Zn}$ alloy as a function of stress and the angle between the crack plane and the tensile stress axis. For crack Erowth normal to the stress axis, the crack Erowth rate was found to be proportional to the opening rate of the widest part of the crack. This in turn was observed to have a 1:I correlation with the grain boundary sliding vector parallel to the wedge opening. The crack growth was controlled by metallurgical features ahead of the crack tip. If these features restricted the plastic zone then instability would result and the crack would link off to another triple point crack. Observations of a similar nature were also made by soderberg.

59
Ratcliffe \& Greenwood observed that application of hycrostatic pressure equal in magnitude to the applied stress eliminated cavitation in pure magnesium. Hydrostatic pressure will affect the movement of vacancies but not dislocations. They considered that deformation growth was hence unproven.

76

 Waddington \& Willians also studied the effect of hydrostatic pressure, using similar material to Williams. They observed that application of pressure reduced the crack growth rate and increased the rupture life and stability. They consioered this was due to a reduction in the normal stresses at the crack tip. They considered the fact that cracks occurred at all in pressurised specimens as evidence of a deformation controlled process.7
Needham \& Greenwood examined the effect of hydrostatic pressure on cavitation in copper at $500^{\circ} \mathrm{C}$. They found that the application of this pressure affected the creep rate to a much greater extent than expected.

The change in creep rate was found to be reversible with changes in pressure, irrespective of the previous history of pressurisation. It was hence considered that the reauction in creep rate dia not arise by the suppression of cavity gronth. It was thought possible that the reduction in grain boundary slicing may account for the reduction in creep rate. Fiatcliffe \& Greenwood had not considered the effect of pressure on grain boundary sliding, this could provide an alternative explanation for their failure to observe cavity growth in pressurised specimens.

Diffusion controlled growth does not easily account for McLean's ${ }^{78}$ observation that small alloying additions can radically affect cavity growth rates. These additions shoula have littie effect on the diffusion rates but can have a marked effect on mecharical properties and the nature of the grain boundaries. However, it has been proposed that second phase particles in the grain boundary may inhibit 5579
diffusional cavity growth. If the diffusional properties of the particle and the boundary differ then back stresses may be generated around the particles inhibiting cavity growth.

Davies \& Dutton ${ }^{80}$ performed a series of experiments on Cu-15\% AI at $400^{\circ} \mathrm{C}$ in which the stress direction was changed. The material was stressed to tertiary creep in the orientation shown in Fig. 2.8a. During this stressing Erain boundary sliaing occurred. A cube of the material was then cut out and tested in compression as shown in Fig. 2.8i. They found that many cavities closed and much of the density loss was recovered. A second cube was cut from the original block and compressed at 90° to the original axis, which was equivalent to the initial tensile condition. Fig. 2.8c. Cavity

C

FIG. 2.8

A

Erowth in this block was observed to continue. They concluded that only grain boundary slidin天 was contributine to cavity growth and that ciffusion processes were unimportant.

This work was criticised by Taplin \& Gifkin on the srounds that void closure could have occumrea by sintering and not grain bounảary sliding on reversed stressing. Gittins considered the void closure could have occurred by plastic deformation on compression. He stressed copper well into the tertiary creep stage up to a point where some voià linking hà̀ occurreà. On reversed stressing at room temperature some density loss was recovered. As minimal grain boundary sliding will occur at ambient temperature a sinterine mechanism for void closure was proposed.

Davies \& Villiams ${ }^{82}$ repeated the Davies Dutton test using copper and obtained similar results to the original work. They also performed the compression tests at room temperature with material containing isolated voids. Essentially, no shrinkage was observed inciicating that the voids were not readily closed by a sintering mechanism. They suggested that the density recovery observed by Gittins could be attributed to the partial closure of the very large cavities where several voids had coalesced and not the sintering of isolated cavities.

Davies \& Williams proposed a model for cavity formation based on dislocation motion and grain boundary sliaing as showr in Fig. 2.6. In this model slip dislocations enter the boundary and form jogs which are opened into cavities by sliaing. This model can account for a relationship between cavity size and creep strain. Ishida

83
\& Mclean proposed a similar model in which a dislocation moves along its gliae-plane until it is stopped by a boundary. Under the action of the applied stress the dislocation continues to move by a combination of gide and ciimi, emitting vacancies due to nonconservative motion. The cavity can thus open out despite \bar{a} tendency for it to sinter.

84
Hancock proposed that void growth under creep conditions could be described by the NClintock model more normally appiied to ductile plastic conditions. The McClintock model is a mathematical approach which shows that pre-existing voids can elongate in the direction of the tensile axis and increase in volume by the action of the tensile and radial stresses.

Hancock showed this approach to be applicaiole to hole Erowth when the ratio of stress over strain rate is low, as is often seen during tertiary creep. It was also considered important in regions of localised high strain rates such as at locations of grain Doundary sliding.

Unlike the diffusion growth mociels, the predicted growth rate by this approach does not decrease with cavity size (equ. 2.16 and 2.17). It was shown that for a linear viscous solid the growth rate can be expressed as:

$$
\begin{aligned}
\frac{d R}{d t}=R-\left(\frac{3 \gamma}{Z O}\right) \quad & \text { with a through thickness siress } \\
& \sigma_{z Z}=0
\end{aligned}
$$

$$
\text { Where } R=\text { (length }+ \text { width of cavity } / 2)
$$

The cavity will shrink due to surface tension producing a hoop strain if:

$$
\sigma<\frac{3 x}{2 \mathrm{~F}}
$$

Above this value growth rates show a non-linear correlation with stress.

NoLean, Dyson a Taplint
Mean, Dyson \& Taplin considered that this mechanism will be unimportant at engineerirg strain rates but could arise unoer fast laboratory tests particularly at low temperatures, or at crack tips where high stress and strain rates can occur.

The orientation of creep cavities to the tensile stress axis (TSA) has been used to attempt to distinguish between diffusion or deformation controlleà growth.

The following angles to the TSA shoula be obtained for respective mechanisms:

Diffusion	90 Degrees
Shear	45
Chang \& Grant	
type a	70
type b	90
type c	45
Hancock/McLintock	0

Hence this approach cannot definitely discriminate between diffusion or deformation processes unless the angular distribution observed is very small. Lower ranged stresses have been observed to cause the distribution of cavities to peak at around 90° to the TSA rather than 45° for higher stresses. This follows from the earlier discussion on the stress dependance of the formation or either r or w type cavities.

The effect of grain size on cavitation has been studied. Rama Rao 88
et al founc for Cr-Ni stainless steel there was a shift in the
cavity distribution from 90° to 45° to the tensile stress axis as grain size has decreased. This suggested the importarice of grain boundary sliding in establisning the controlling mecnanisms for nucieation and growth. However, for a Cr-Mn-r steel the dictribution remainec constant at around G_{0}°. They consiáered this behaviour to be due to the operation of a precipitate/mairix interface nucleation as the precipitate was the common factor of all the specimens of this steel.

$$
45
$$

Fleck, Beever \& Taplin founc for copper alloys that smaller grain size, increasing the effect of grain boundary slicing, resulted in an increased volume of cavitation.

Cittins ${ }^{\epsilon j}$ working on copper reported that the number of cavities ooservea followed the same time dependance as grain boundary sliding, but once nucleated grew at a constant rate. This was interpreted as indicating a dependance of nucleation on grain boundary sliding but growth being entirely diffusion controlled.

Good \& Nix introduced regular size and spaced bubbles of water vapour into silver creep specimens. They considered these to act as pre-existing cavities. For cavities around lum in size the activation energy for creep failure was found to be in very close agreement with the activation energy for free surface diffusion. They hence considered a diffusion type cavity growth model appropriate. For larger cavities, around l2um diameter, under similar test conditions, the stress and temperature dependance of rupture were icentical to those of creep. From this observation they suggested that the final stages of cavity Erowth consisted of plastic tearing between cavities. In both cases SEr examination of the fracture surfaces showed cavitation to have beer
exclusively from the pre-existing sites. The presence of the water vapour bubbles severely reducea creep ductility. They also commented that observations by other wori 9091 I μ ri ciameter suggested that cavity growth may de creep controllea. For these very small cavities capillary action will be so strong a stress concentration will be essential for grouth.

92
Cane examined cavitation in alpha iron at $700^{\circ} \mathrm{C}$. It was observed that the strain rate contribution of grain boundary sliding and cavitation followed the same stress depenaance. This indicatec that the factors controlling deformation and cavitation are related. It was also ooserved that by pre-straining the test pieces to increase the flow stress reduced both creep strain and cavitation for the same test time, temperature, anci stress. This is inconsistent with the Hull Rimmer model. However, the largest cavities formed on boundaries at 0° to the tensile stress axis which supports a diffusion mechanism. Cane proposed that dislocations entering grain boundaries maintain their Burgers vectors and during grain boundary sliding, deformation occurs by a mixture of climb and slip. During this non-conservative motion vacancies are produced depenaant upon the deformation. At very low stresses, below the regime of slip creep the classic Herring 1920 Nabarro vacancy production process would be expected to predominate.

The works by Gooi \& Nix and that by Cane are clear indications that it is rapidily becoming accepted that the mechanism of cavity growth cannot be adequately described by only a vacancy diffusion or only a deformation process. Cavity nucleation must also be considered devoid of a single mechanism. The possibility of transitions from one mechanism to another or inter-play between mechanism must clearly de considered.

Such a transition between diffusional growth and $\dot{\alpha} \in \tilde{\dot{A}}$ ormation growth is a feature of a model proposed by Eeere and speight. They consiciered diffusional void growth in a material where the grains were undergoing slip creep as opposea to the huil finmer model in which the grains were behaving in an elastic manner and the creep deformation was principally diffusional. Because the grains are deformed by dislocation creep the need for the atom plating/ vacancy source distribution to be spread evenly across the boundary no longer applies. Hence, shorter aiffusion paths are possible allowing faster cavity growth. At low stresses the situation was considered similar to the Hull Rimmer model because the amount of slip creep is low. As the stress increases the proportion of slip creep increases reducing the radius around the cavity from which diffusional contributions of vacancies to the cavity car operate. In the limit of high stresses, cavity growth was considered to become identical to Hancock's nor-diffusive cavity growth in a plastic body.

The importance of grain boundary sliding in nucleation seems easy to accept, even if it only serves to provide a stress concentration rather than actually be responsible for decohesion. The arguments over the relative importance of diffusion and other deformation mechanisms to cavity growth must be viewed in context of the creep situation. Creep testing can cover a very wide range of temperatures, even in terms of fractions of $T_{m p}$. The stresses used car also cover a wide range. Both diffusion rates and grain boundary slicing rates are temperature dependant. They are also stress dependant, diffusional processes having a stress àepenàncy exponent of unity 94 and grain boundary sliding a higher value. Diffusional cavity growth can utilise a very high proportion of the work done by the applied
load. Fience, growth of this kinc is possible at very low levels of stress provided nucleation can occur. Sliding mechanisms would be expected to increase in importance at higher stresses and strain rates. 4. change in the relative importance of these parameters with test conditions is possible for a single material. This must be even more likely to occur when considering the many different materials that have been studied in the works reviewed here.

2.3.3 Cavity Linking

So far the mechanisms for cavity nucleation and growth have been considered but not the actual processes by which cavities link up to exhibit creep crack growth. In practice it has been observec that at least two $\dot{C i s t i n c t}$ failure mocies may occur:
i) Void growth then acracking mode of Iinkage similar to a Griffith cracking type process.
ii) Voids continue to grow and final fracture is by an internal necking mechanism or a ductile tearing process. The fracture process is considered to arise from the formation of intense shear bands between neighbouring cavities, which eventually exceed the work hardening capacity of the materiai. This type of failure mode is known as the void-sheet mechanism.

A preference for the void-sheet mechanism has been observed in ductile materials, such as magnox and copper, and also with finer grain sizes. For example, Morris examined the effect of grain size on the creep failure of 316 stainless steel and found voic sheet fractures below 25um from r type cavities. At larger grain sizes, Ereater densities of larger cracks were observed, formine from w type cavities and
failures only occurred after some crack growth. Similar observations have been made by Cocks $\hat{\alpha}$ Taplin 9 S ad also Fleck et ai. Momris measured the uncavitate $\dot{\alpha}$ cross section area and hence Cāicuiate nett section stress acting. For the larger grain size specimens (Ereater than 25 pui) the nett section stress $\dot{a} i \dot{c}$ rot correlate with the occurrence of fracture. However, a jongest crack length at fracture. versa stress criteria was observed with the larger grain sizes. suggesting a Griffith type mecharisn. It was consicered that the Griffith equation was modifiec under creep conaitions by reiaxation of the crack tip stresses. In 316 it was proposed that this relaxation was controlled by the size and aistribution of the carbicie network.

99

Soderberg observeá a relationship between Iongest crack length and fracture in 200r-351i Stainless Steel at $700^{\circ} \mathrm{C}$ as follows:

$$
\sigma \cdot c^{\mathrm{b}}=\text { constant }
$$

$$
\text { where } \begin{aligned}
\sigma & =\text { applied stress } \\
c & =\text { crack length }
\end{aligned}
$$

It was found that $b=0.55$ which is in close agreement with the value of 0.5 expected by a Criffith criterion. The stresses used in this work were relatively high, giving rupture times of 3.5 to 535 hours, proucing a weage type cracking mechanism.

The void sheet mechanism probably occurs in ductile and fine grained materials because in such cases the increase in nett section stress with cavity growth causes the creep strength of the material to be exceeded before a crack in excess of the critical size can form. This is expecially likely where creep relaxation is easy as this will increase the critical crack length.

Mckahor: susgested fracture could be classified as stress controlled or strain controllec. It was suegested by Knott that fracture classification coulà be between cracking processes ana rupture processes. Unforturately it has been shown that these classifications are not symonymous in that rupture car be either stress or strain controlied, as cancracking. $10210 \equiv$ controlled, as can cracking.

104105
Johnson examinea the effect of biaxial stress on creep fracture and founc it was possible to classify materiais into two types of behaviour.

1) The function describing fracture was a function of the Von Mises equivalent stress $\bar{\sigma}$ and fracture is considered to be controlled by the magrituae of the octahearal shear stress. These materials normally exhibited orly a single crack with little or no subsiciary cracking. Tertiary creep in these materials could be described by:

$$
\dot{\varepsilon}_{i j}^{t}=A(\bar{\sigma})^{n-1} \cdot \sigma_{i j}^{\prime} f^{\prime}(t)
$$

Naterials shown to exhibit this type of behaviour, at least within certäin temperature ranges, include 0.2% carbon steel, magnesium and some aluminium alloys.
2) The function describing fracture was a function of the princigs $[$ tensile stress σ_{1}. These materials exiibited grain boundary cracking which accumulated auring tertiary creep. Tertiary creep in these materials could be described by:

$$
\dot{E}_{i j}^{t}=A^{\prime} f\left(\sigma_{1}\right) \sigma_{i j}^{\prime} \exp \cdot E^{\prime f}\left(\sigma_{1}\right) t
$$

Materials following this type of behaviour at least within certain temperature ranges include No. steel, copper and Nimonic 75 .

It was noted that depencance on σ_{1} did not correlate with the degree of intereranular fracture or with tensile ductility, Unfortunately there appears to be little knowledge as to the micro mechanism that determine which stress system will characterise failure. The actior of octahedral shear stresses in the void sheet mecharism and the principal stress in a Griffith type case seem logical correlations. However, this is not consistent with high ductility tending to procuce void sheet failures and the absence of such a ductility correlation with the controlling stress function. This serves to illustrate the complications of material benaviour under multi-axial stress states.

2.3.4 Metallographic Technioues

Optical microscopy is seriousiy limited in the informatior it can supply relating to cavities. Resolution is limitea to around lum. Detailec information regarding shape and crystallographic orientation is not available.

Conventional use of the Transmission Electron Nicroscope (TEN) requires production of thin films, often far less than lum thick. Any cavity must be very small to be contained within the foil. A shadowgraph technique was developed by Taplin \& Barker in wich nontransparent foils were examined (similar to a conventional radiograpnic techrique). However, even in these thick films one side of a cavity would probably be exposed to the polisining solution which could have caused enlargement and distortion. Cocks $\&$ Tapi in later showed that when using this technique a small change in beam angle could result in a severe change in cavity appearance, for example, an equiaxea cavity could change in appearance to look elongated with a sharp corner. This technique cannot supply information regaraing the
structural features of the adjacent grains. The use of the lw.V TEl has proved to have considerable scope in overcoming many of these difficulties.

Electron fractography using the Scanning Electron ricroscope (SEN) has proved a useful technique for examining cavity shape, size and 56106107
distribution. If a material is brittle at low temperatures it can be broken open after creep testing and examinea. This technique allows easy sample preparation with little chance of seriously deforming the cavity features. However, again the technique is unabie to detect features of the crystal structure or orientation.

2.4 Mechanical Aspects of Creep Fracture

2.4.1 Effect of Notches

The first indication of any effect of notches under creep conditions came from the failure of boiler flange bolts, in the threads or at abrupt changes in section. These failures were considerably premature when compared with smooth bar data. It was found that these failures could not be predicted from smooth bar or short term notched tensile tests. 108

An increasing amount of creep Iupture work has followed from the early investigations into these failures, pi之marily on notched round bar . specimens. The effect of the notch on the creep life was expressed as the ratio of time to failure of the notched bar over the time to failure of a smooth bar of the same nett section area. If this ratio exceedea a value of one notch strengtherirg was considered to have occurred and notch weakening with a value of less than one.

The results of studies of the notch phenomena are conficting, some tests showing a weakenịg effect others a strengthening effect. During these early works the effects of most of the possible variables
 ductility, grain size, precipitate;. However, it was about 20 years after the original investigation before the phenomena started to really be rationalised.

It was recognised that the principal effect of a notch on creep Iife was any change that it may cause in the time to initiate a crack, rather than in the time taken for this crack to propagate across the section. Hori by Taira \& Chtani, described in detail later, showed that for the circumferentially notched bar geometry under creep conditions the maximum value of the axial stress moved to a point some distance from the notch root. It nad already been observed that in many cases failure started by formation of micro cracks ahead of the notch that then linked back onto the notch tip. Taira \& Ohtani also shored that the value of the equivalent stress (as given by the von Mises criterion equ. 2.22; was lower than the nominal stress at notch もiz。

$$
\bar{\sigma}=\frac{1}{2}\left(\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right) 0.5
$$

This could result in delaying the formation of cracks at the notch tip and hence increase the time to rupture. Where complete relaxation is not possible either due to innibition by precipitate or inadequate ductility there will be a tendency for notch weakening.

115119
Hayhurst et al extended this approach and proposed that the tendency for notch weakening with sharper rotches is because the strain required
for the relayed state to be reached is greater and hence there is a more chance that the ductility of the materiai will be exceeced before this state car be attained. They also consicered the stress systems controlling final fracture as outlined in section 2.3 .3 , that is either octahecral shear stress or maximum principal stress. They considered that weakening will be promoted where the peak stresses have the same multi-axial character as the multi-axial stress rupture 120
criterion of the material.

This again illustrates the complexity of rupture under muiti-axial stress states under creep conditions such as those that may arise with the presence of a notch or crack.

Convertions

The convention of co-oriinates shown in Fig. 2.9 is the systen used throughout. Three basic types of stress state are generally considered.

1) Plane stress where the stress $\sigma_{z z}$ is equal to zero.
2) Plane strain where the strain $\varepsilon_{z Z}$ is equal to zero.
3) Anti-plane strain from displacements only in the z direction of the body.

In addition to these three stress states there are also three modes of loading considered.

Mode I Normal tensile loaning
Mode II Shear or sliding loading
Mode III Loading to produce displacements that are skewed around the crack plane normel.

Each of these loading modes corresponds to a basic type of stress field in the vicinity of the crack tip. It is conventional to subscript fracture mecharics parameters with the appropriate loading moce number i.e. $K_{I}, K_{\text {II }} \mathbb{K}_{\text {III }}$ for moces I, II, III respectively.

2.4.2 Stress Fielas Preceding Cracks
 Irwin ${ }^{12!}$ developed work by Westergaard ${ }^{122}$

infinite boay infinite body undergoing extension of a slit crack lengthla. Under plane stress conditions the resulting formulae are of the general form:

$$
\begin{aligned}
\sigma_{i j}= & \frac{\sigma_{m a}}{\sqrt{(2 m j}} \quad \cdot f_{i j}(\theta) \\
\text { where } \sigma= & \text { appiled stress }
\end{aligned}
$$

In moce I loading for $\sigma_{X X} \quad \hat{f}_{i j}(\theta)=\cos \frac{\theta}{\frac{1}{2}}\left(1-\operatorname{Sin} \frac{\epsilon}{2} \cdot \sin \frac{3 E}{2}\right) 2.24$

$$
\begin{aligned}
& \sigma_{y y} \quad f_{i j}(\epsilon)=\cos \frac{\theta}{\hat{2}}\left(1+\operatorname{Sin} \frac{\epsilon}{2} \cdot \sin \frac{3 \epsilon}{2}\right) 2.25 \\
& \sigma_{x y} \quad f_{i j}(\epsilon)=\cos \frac{\epsilon}{2}\left(\sin \frac{\epsilon}{2} \cdot \cos \frac{3 \theta}{\frac{2}{2}}\right) 2.26
\end{aligned}
$$

Commonly $\sigma \sqrt{n a}$ is represented by K which is referred to as the stress intensity factor. This is an important parameter in fracture mechanics.

$$
\begin{aligned}
& \sigma_{i j}= \frac{k}{(2 m)^{0.5}} \quad \cdot f_{i j}(e) \quad 2.27 \\
& \text { where } K=\sigma \sqrt{m a}
\end{aligned}
$$

This represents the stress distribution that mill exist under Linear Elastic conditions. Plastic on creep behaviour will lesult in redistribution of these stress profiles. Solution of the stress profile preceding a crack after creep relaxation has been attempted by several approaches.

Fice \& Rosengren ${ }^{123}$ applied the J integral (this paraneter is aescribed in more detail in section $2.4 \cdot 3.3$) to a circular path radius r. The J

Integral is a path independant line integral.

$$
J=\int_{\text {where }} \quad \begin{aligned}
\left(\ddot{H}(e) d y-T \cdot \frac{d u}{d x}\right. & \\
r & =\text { line path } \\
T & =\text { traction vector } \\
M(e, & =\text { energy aensity } \\
u & =\text { aisplacement } \\
s & =\text { arc length }
\end{aligned}
$$

By choosing a circuiar path racius r it was shown

$$
\frac{I}{r}=\int_{-\tau}\left(W\left(e(r \theta) \cos \theta-T(r \theta) \frac{\dot{\alpha} u}{\dot{\dot{\alpha}}} .(r \theta)\right) d e \quad 2.29\right.
$$

Each of the terms in the integrand has the dimensions of stress x strain. The integrand must exhibit a singularity at the crack tip which at least on an anguiar average depends inversely on the distance from the crack tip. It seems reasonable to concluae that:

$$
\sigma_{i j} \cdot \varepsilon_{i j}=\frac{f(\epsilon)}{r} \text { as } r \rightarrow 0
$$

That is, the strain energy follows a I / r dependance from the crack tip. It should be noted however, that although this reiationship has been shown to be applicable in many cases, rigorous proof of its general applicability has not been possible. If plastic behaviour of the form described by equ. 2.32. can be assumed:

$$
\varepsilon=A \sigma^{n}
$$

Then from equ. 2.30 it follows that:

$$
\begin{array}{cl}
\sigma . \sigma^{n} \propto \frac{J}{r} & 2.38 \\
\sigma^{n+1} \propto \frac{I}{r} & 2.33 \\
\text { i.e. } \sigma \propto\left(\frac{r^{-}}{J}\right)^{-(I / n+I)} & 2.34 \\
\text { anà } E \propto\left(\frac{r}{J}\right)^{-(n / n+I)} & 2.35
\end{array}
$$

124125
Earnby has attempted to predict the steady state stress distribution ahead of a creep crack by use of the Hoff analogy. This analogy provides a means of solving creep problems by analogy to the nonlinear elastic situation. Hoff proposed that the stress distribution in a body undergoing deformation by a non-linear creep law will be the same as that in a non-linear perfectly elastic body following the time derivative of the creep law. The non-linear elastic strains will be numerically equal to the creep strain rate and can hence be used to represent creep strain rate behaviour, i.e.:

$$
\begin{aligned}
& \dot{\varepsilon}=A 0^{n} \text { for the creep situation is replaced by } \\
& \varepsilon=A 0^{n_{1}} \text { for the ron-linear elastic solution }
\end{aligned}
$$

The analogy is considered valid provided the creep strains are large 124 compared to any linear elastic strains in the body. In Earnby's initial model relaxation was considered to occur by replacement of elastic strain by creep strain. That is, relaxation down the line AB in Fig. 2.10 fon-dimensionelising stress and strain by dividing the stress by a reference stress σ_{0} such that:

$$
\sigma^{\prime}=\left(\sigma / \sigma_{0}\right)=\varepsilon^{\prime}=\left(\varepsilon / \varepsilon_{0}\right)
$$

The initial elastic solution as given by equ. 2.27 becomes:

$$
\sigma^{\prime}=\frac{\alpha}{\sigma_{0}(2 r r)} \quad \theta=0 \quad 2.37
$$

From equ. 2.36

$$
\varepsilon^{\prime}=\frac{x}{\sigma_{0}(2 n r)}
$$

Using, the analogy to a non-linear elastic material and converting from elastic strain to creep strain where :

$$
\begin{aligned}
& \dot{\varepsilon}^{\prime}=\left(\dot{\varepsilon} / \dot{\varepsilon}_{0}\right)=\left(\sigma / \sigma_{0}\right)^{n}=\sigma^{n}
\end{aligned}
$$

By applying the equilibrium criterion

$$
\begin{aligned}
\text { Applied Load }= & E \cdot \int_{0}^{W-a} \sigma \cdot d x \\
& \text { where } E=\begin{array}{c}
\text { breacth of section } \\
\text { (i.e. z àirection measurenent) }
\end{array}
\end{aligned}
$$

$$
2.40
$$

To maintain equilibrium it was found necessary to replace F in equ. 2.31 with a function K^{\prime} which resultea in the solution: $\sigma_{S S}=\sigma_{\text {Eross }} \frac{(2 n-1)}{2 n \sigma_{0}} \cdot(w-a)^{-(2 n-I) / 2 n} \cdot(w)^{(2 n-I) / 2 n} \cdot(x / w)^{-(I / 2 n)}$

$$
2.41
$$

The dependance on x, however, remains unchanged.

For the situation of $n=1$ the stress distribution has the same dependance on x as for LEFN conditions.

$$
\sigma_{5 S} \propto \frac{1}{x}^{(1 / 2 n)}
$$

assuming

$$
\varepsilon=A \sigma^{n} \text { (non-linear elastic) }
$$

$$
\varepsilon_{S S} \propto \frac{1}{x}^{(1 / 2 n)^{n}}=\frac{1}{x}^{(1 / 2)}
$$

$$
2.43
$$

However; consjdering the strain energy

$$
\sigma_{S S} \cdot \varepsilon_{S S}=\frac{1}{x}(1 / 2 n) \cdot \frac{1}{\frac{1}{x}}(1 / 2)
$$

This is not consistent with the Rice \& Rosengrer proposal of a $1 / x$ dependance on strain energy except at $n=1$.

Whilst Barnby considered relaxation at constant strain may be possibie under a rapià creep transient, it was considered desirable to try and reconcile the approach with the result of Rice \& Rosengren for the general case $n \neq 1$. To this en $\bar{\alpha}$ Darnby and Kichclsor proposed that relaxation followed the Neuber ruif rather than occurred at constant strain. The Neuber ruie states that the product of the stress and strain concentrations at a point ahead of a notch is a
constant. This is equivalent to relaxation comr the hyperdola AC in Fig. 2.11.

$$
E_{P} \cdot \sigma_{p}=Q_{p}^{2}
$$

$$
\text { Where } \begin{aligned}
\varepsilon_{p} & =\text { strain concentration at point } p \\
\sigma_{p} & =\text { stress concentration at point } p
\end{aligned}
$$

The leuber rule can be maintained by equating the elastic strain energy to the creep strain energy.

$$
\sigma_{E} \cdot E_{E}=\sigma_{S S} \cdot \varepsilon_{S S}
$$

If $\varepsilon_{E}=\sigma_{E} / E$ then appiying the hoff analogy:

$$
\frac{K}{\sqrt{(2 \mathrm{mx})} \cdot \frac{\mathrm{K}}{A_{(2 \mathrm{mx})}} \quad=\sigma_{S S} \cdot A \sigma_{S S}^{\mathrm{I}_{\mathrm{i}}} \quad 2.47}
$$

Thus

This depencance on x is compatible with the Fice \& Rosengren strain energy dependance:

$$
\sigma_{S S} \cdot \varepsilon_{S S} \propto \frac{1}{x}^{(1 / 1+n)} \cdot \frac{1}{x}(n / 1+n)=\frac{1}{x}
$$

Experimental work by Barnby \& Nicholson on AISI 316 stainless steel between $650^{\circ} \mathrm{C}$ to $750^{\circ} \mathrm{C}$ (with n varying from 7 to 9.5) showea the stress profile preceding a crack was closer to the:

$$
\sigma_{s s} \alpha x-(1 / 1+n)
$$

than

$$
\sigma_{s s} \alpha x^{-(1 / 2 n)}
$$

As expected in the near tip region where high stresses are precicted behaviour deviated from these cistributions to produce a flat plateau region as shown in Fig. 2.11.

It is of interest to note that both of these distributions revert back to the Linear Elastic dependance of x for the case of $n=1$.

The hoff analogue can also be appliec to the J irtegral and the C^{*} 2 2 parameter (C^{*} is aiscussed in section 2.4.4.3, it is pasically the J function in which strain and displacement have been repiacea with their respective rate functions;. The equations describing the Cistribution of stress anci strair under flastic concitions 2.34 and 2.35 can be replaced for the creep situation by:

$$
\begin{aligned}
& \sigma \propto\left(\frac{r}{C^{*}}\right)^{-(1 / n+1)} \\
& \dot{\varepsilon} \propto\left(\frac{r}{C^{*}}\right)^{-(n / n+1)}
\end{aligned}
$$

That is, stress and strain rate have the same dependance on r as from the analysis by Barnby.

129
Vitek utilised a computer simulation technique for preaicting the time dependant fomation of a 'plastic zone' aheac of a crack. The local stress was based on a function of distance from the crack tip and time. Dislocation densities anc time dependant changes to these densities were then predicted and used to estimate the level of the stress.

The simulation was found to produce stress profiles extremely similar to those derived from the Bilby cottrell swinden model for the instantaneous formation of a plastic zone. A region of constant or near constant stress ahead of the crack was observed as in the BCS model. This region was found to extend with time and the magnitude decreased, approaching a flat line at a stress level equal to the nett section stress, see Fig. 2.12. It was consiáred that the time dependant formation a plastic zone coula be described by the BCS model if the stress is represented by an apparent friction stress that is both time and stress dependant.

FIG.2.12

This model is for a stationary crack not for one urdergoing steacy state growtin. Unlike the modeis of Earriby a licholson this model predicts the total removal of the effect of the stress concentration at the notch tip by relaxatior. Whisist the concept of a plastic zone in material behaving totally in a viscous manner has conceptual difficulties, a region of uniform stress at the crack tip was observed by Barnby \& Nicholson. This work by Vitek may enable a quantification of this observed effect.

Solution of the stress profiles aheac of cracks by numerical techniques, such as finite element analysis, is certain to increase with the advent of computers and with the increasing dexterity of engineers 117 in their use. Taira \& Ohtani have performea such an analysis for the circumerentially notched round bar geometry using the 'Displacement' or 'Direct Stiffness' finite element analysis method. Creep by Nortons law was then applied, based on the elastic stresses over a small time interval. The changesin the elastic strains were then used to recalculate the stresses by Hookes law to produce a new stress distribution. This process was then repeated for successive time intervals and finally yielded steady state stress and strain profiles. The important factors emerging from this work are that the maximum relaxed value of σ_{y} is some distance in from the crack tip and that the equivalent stress is at a maximuri at the crack tip, but because of the constraints of the notches it is at a level lower than the nominal stress. See Fig. 2.13.

Unfortunately the dependance of the steady state stress on x for these profiles was not evaluated in the form of a function of the distance x, neither was the strain energy depenaance on x. It is thus

not possible to compare this approach with the results of Barnby \& Richolson or Rice \& Rosengren.

2.4.3 Ambient Temperature Fracture Mechanics

The original energy balance approach to fracture was proposec by Griffith. It was based on the elastic strain energy lost on cracking balancing the energy required to produce two new surfaces. The following relationship was drawn up:

This predicts a critical stress to propagate a crack of a given size or a critical maximum defect size for a given stress level. Although the Griffith criterion has been subsequently modified the concept of these inter-related criticals is still applicable.

The work of Griffith is only applicable where there are no nonlinear effects prior to fracture. This prevents accurate application to most engineering situations.

Irwin and Orowan modified the Griffith approach to accommodate limited plastic deformation prior to failure. The 2γ surface energy term was replaced by γ_{p} so the energy balance was now between elastic energy stored and the energy required to aco a critical amount of
plastic work, necessary to cause crack growth. This γ_{p} term was found to exceed $\gamma_{\text {surface }}$ by around three oriers of magnitude and hence γ^{\prime} surface can be negiectea.

It was considered by both Irwin and Orowan that provided this plastic work was confined to a small region compared to both the crack length and the body then the elastic energy release would still be represented sufificiently accurately by elastic analysis.

Irwin considered that fracture could be characterised by the strain energy release rate. This can be interpreted as a force G :

$$
G=\frac{\partial U}{\overline{\mathrm{~d}} \mathrm{a}}
$$

G represents the irreversible energy loss/unit area of newly created surface area. There will be a critical value, G_{c} to initiate crack propagation.

2.4.3.1 Stress Intensity Factor Approach

The basis of Iinear Elastic Fracture Mechanics (LHFH) is that the stress field̉ aheà̉ of a sharp crack can be characterised by a single parameter K the ctress interisity (equ. 2.27). Irwin showed that the crack extension force could be related to K :

$$
\begin{aligned}
& G=\frac{l+b}{c \mu} \cdot K^{2} \\
& \text { Where } b=3-4 \text { for plane strain } \\
& \qquad \begin{array}{c}
b=\frac{3-\eta}{1+1} \quad \text { for plane stress } \\
\mu=\text { shear moulus }
\end{array}
\end{aligned}
$$

Hence if fracture can be characterised by a critical value of G, it car: also be characterised by a critical value of K. This is to be expected as the analysis is based on Linear blastic concitiors so that K will not oniy describe the elastic stress fiela but also the elastic strains and the strair environment. This means that K will aiso describe the strain energy aensity on which G is based.

For an infinite plate in uniform tension:

$$
\mathrm{K}_{\mathrm{I}}=\sigma \sqrt{\mathrm{ma}}
$$

It should be noted K bears the same stress and crack leneth dependance as the original Criffith criterion Usually a geometric correction has to be made to relate K to specific geometric conditions

$$
K=Y \cdot \sigma \sqrt{\bar{a}}
$$

where $Y=$ Constant or a function of a/w, depencing on the geometry under consideration, which converts the situation to the case of an infinite plate.

The critical value of k for fracture will depend upon the stress conditions developed in the specimen. Plane strain concitions representing the minimum resistance to fracture and hence results in a minimum value of K for fracture. For mode I opening the plane strain value of K for fracture is referred to as the K_{IC} vaiue. The westergaard equations predict an increase to an infinitely high level of stress as the crack tip is approached. This is obviously impossible and in a normal material plasticity will occur at the
crack tip to give a plastic zone radius r_{y}, with a recistribution of the crack tip stresses as shown in Fie. 2.14. The value of r_{y} can be caiculate $\dot{\alpha}$ by setting the σ_{y} componert of the stress equal to yield stress.

$$
\begin{align*}
\sigma_{y s} & =\frac{\mathrm{K}}{(2 \pi)}<.5 \\
r_{y} & =\frac{1}{2 \pi} \cdot\left(\frac{\mathrm{~K}}{\sigma_{y s}}\right)^{2} \quad \text { plane stress }
\end{align*}
$$

Irwin ${ }^{1}$ considered that for plane strain the increase in tensile strength for plastic yield due to the elastic constraint would raise the yield strength by $\times 3$ hence the plastic zone size is reduced accorcingly:

$$
r_{y}=\frac{1}{6 \pi} \cdot\left(\frac{K}{\sigma_{y s}}\right)^{2} \quad \text { plane strain } \quad 2.62
$$

It was suggested that the effect of a smell plastic zone corresponded to an apparent increase in crack length by an increment r_{y}.

$$
K=Y \sigma \sqrt{2+r_{y}}
$$

This plastic zone correction is only valia for small plastic zones containeà rithin the stressed ligament, however it enables INFI: criteria to be applied to cases of limited yielding.

2.4.3.2 Crack Cpenirg Dispiacement

13 proposed that the amount the crack faces displace at the crack tip prior to fracture could be used as a failure criterion. That is, there will be a critical Crack Opening Displacement (COD crit) to initiate crack propagation.

This approach can be viewed in the context of the Dugiale Strip 14. This model accommodates the occurence of crack tip Yield model. This model accommodates the occurence on crack tip plasticity in a basically elastically loaded body and hence con is an

indication of the plastic work dore. The crack tip is partly restrained from opening by a stress which for purposes of the fracture model is usually equated to the yield stress. It is then possible to show by use of the Dugdele analysis:

$$
\begin{aligned}
& \hat{u}=\sigma_{y s} \cdot \dot{a} \quad \text { (approximately) } \\
& \text { Where } \dot{d}=C O D
\end{aligned}
$$

This approach is hence analogous to the energy balance criteria. Irwiri ${ }^{137}$ noted that this linear relationship between G and a will apply even when the ligament net section is approaching general yiela.

142
Cottrell considered the possibility that the COD should be composed of the product of a critical strain ε_{c} and gauge iength. It was considered that as the strain wouid act over the notch root diameter $2 p$, this would approximate to the gauge length:

$$
d_{\text {crit }}=2 p \cdot \varepsilon_{c}
$$

Under conditions where large plastic strains can occur it was suggested that an equilibrium notch root radius will exist, blunt notches will sharpen to this value and sharp notches blunt to it. Such an approach was found applicable in analysing fractures in a $1000 \mathrm{MNm}^{-2}$ steel.

2.4.3.3 J. Integral

This is a method of characterising the crack tip stress/strain fields by use of a path independant line integral. It is the path independance that is the key to this methoc. This enables the conditions at the crack tip to be characterised by integrating along a path remote from the complications in the stress strain fielós near the crack tip.
j can be considered to represent the potential energy difference between two identically loadec bodies, differing in crack lengtn by a small amount da:

$$
\begin{align*}
& J=-\frac{1}{E} \cdot \frac{d U}{d a} \\
& \text { Where } U=\text { displacement vector } \\
& E=\text { thickness }
\end{align*}
$$

This is represented in Fig. 2.15. The shaded area corresponds to $d U=$ J.E.da. For Linear elastic behaviour the \bar{j} integral is identical to G and hence $a J_{\text {crit }}$ criteria, related to K_{c} is possibie:

$$
J_{I C}=G_{I C}=\frac{\left(I-i^{2}\right) K_{I C}^{2}}{\bar{E}} \text { for plane strain } \quad 2.67
$$

The J integral is valid however for both linear elastic and elasticplastic materials provided the non-elastic behaviour can be treated by deformation theory of plasticity. Thus J can be used to extend fracture mechanics concepts from LEFM into the elastic-plastic regime for many materials.

2.4.4 Nacroscopic Creep Crack Growth

The derivation of fracture mechanics approach applicable to creep situations would be of much use to operators of high temperature plant. It would enable the preaiction of defect growth rates in components of complex shape and enable more efficient, safe operation of such piant with the elimination of unnecessary dom-time periods for repair of substantially sub-critical defects. The fracture mechanics parameters described above (K, J and $C C D$) are basically for the prediction of fast fracture. Successful correlations of crack growth with fracture toughness parameters had been observed curing fatigue testing. This prompted attempts to examine the possibility of obtaining similar

INTERPRETATION OF J INTEGRAL
FIG. 2.15
correlations under creep concitions. Several approaches have been attempted as outlined below and some of the earier correiations obtained are Iisted in Table 2.2.

2.4.4.2 Stress Intersity Epproach

Correlations of creep crack growth with the K parameter were observed 14. 146 by Popps \& Coles and Siverns \& Frice in 1970 and this type of correlation has since attracted much attention:

$$
\frac{d a}{d t}=E K^{m}
$$

$$
\text { where } \begin{aligned}
\frac{d \bar{a}}{d t} & =\text { crack growth rate } \\
D & =\text { constant } \\
m & =\text { constant }
\end{aligned}
$$

Various stuàies using this approach are listed in Table z.2. For a K parameter to apply it woula seem a prerequisite that the etress profile preceeding the creep crack foilowed a linear elastic distribution despite creep relaxation. However good correlations of crack growth with K seem fairly comnon. Fen workers used more than one specimen geometry and hence varied the geometrical compliance function. Where this precaution has been neglected the general applicability of K must be considered unproven. James ciid find good correlation of K with growth rates in Centre Cracked Plate and Compact Tension specimens indicating valioity in this case.

158
Nicholson \& Formby found that a K approach was unsatisfactory for
 verse K correlation. Similarly, both Gooch anc Bain found the exponent m to be geometry dependant. Keneyon et al ${ }^{152}$ reportec a K correlation for constant K specimens but all the data dic not fall on a single curve and nence like the work of Nicholson \& Formby

Ellison \& $\text { Walton }{ }^{153}$	$\begin{aligned} & \text { JCr Mo V } \\ & \text { Iorm. \& Temp } \end{aligned}$	0.46	SEN	IK	$\mathrm{da} / \mathrm{dt}=\mathrm{A} \times \mathrm{t}^{0.08} \times \mathrm{K}^{7.16}$
Haigh ${ }^{154}$	$\begin{array}{lll} \text { 1Cr } & \mathrm{MO} & \mathrm{~V} \\ \frac{1}{2} \mathrm{Cr} & \mathrm{MO} & \mathrm{~V} \end{array}$	0.45	WOL	(10)	$d a / d t=A \times(d d / d t)^{0.0}$
Moate ${ }^{155}$	$\frac{1}{7} \mathrm{Cr} \mathrm{MO} \mathrm{V}$	0.16	SEN CCP WOI,	$\begin{gathered} \text { Equ. } \sigma \\ \text { Bqu. } \sigma \\ \mathrm{K} \end{gathered}$	$\begin{aligned} & \mathrm{da} / \mathrm{dt}=\mathrm{A} \times \sigma^{7.4} \\ & \mathrm{da} / \mathrm{dt}=\mathrm{A} \times \mathrm{t}^{0.5} \times \mathrm{K}^{3.24} \end{aligned}$
$\begin{gathered} \text { Pilkington } \\ \text { et } 0.1 . \end{gathered}$	$\frac{1}{2} \mathrm{Cr}$ Mo V	0.45	SEM	K	$\mathrm{da} / \mathrm{dt} \mathrm{~K}^{m} \text { but also d } \mathrm{K}^{\mathrm{m}}$
Webster ${ }^{15}$	$\frac{1}{2} \mathrm{Cr} \mathrm{MoV}$	0.46	pouble Cant. beam	C^{*}	da/dt $=\Lambda \times 6 *^{m}$ where $m=1$ or ($n / n+1$)
Nicholson is Formby	$\frac{1}{3} \mathrm{Cr} \mathrm{Mov}$	0.59	SEN CH	σ nett	da./dt exp. approx. $=$ creep exp.
Koterazawa ${ }^{159}$	304 Stainless Steol	0.54	Gir. HB Lem	K	$\mathrm{da} / \mathrm{dt}$ exp. $=7.7$
$\begin{gathered} \text { Harper } 8 \\ \text { Bllison } \end{gathered}$	ICTr Mo V	0.46	$\begin{aligned} & \text { SBN } \\ & \text { C'IS } \end{aligned}$	C^{*}	da/da exp. a proox. $=1$
$\begin{array}{r} \text { Iardes \& } 162 \\ \text { Pestey } \end{array}$	viscalloy		CTW CCE	C^{*}	$=1$.
Gadananda of Shahiasian	Inconc] 71.8	$\begin{aligned} & 0.44 \\ & 0.56 \end{aligned}$	CTS	0^{*}	$=1$

must be considered to cispute K control.

2.4.4.2 1ett Sectior. Stress Approach
 117

Taira \& Ontani obtained a correlation of growth rates with trie rett section stress of the form:

$$
\frac{\frac{d}{d t}}{d t}=A \cdot \sigma^{\tilde{y}}
$$

Where $A \& P=$ constants
On failure to obtain a valié K correlation Nicholson \& Foxmby founc that the crack growth rates for both specimen geometries correlated with a single nett section stress expression of the above type. They found the constant p to approximately equal n in the and creep law and considered this could appiy generally. However, this is not totally consistent with the results Taira \& Ohtani.

151
Neate \& Siverns had obtained. K correlations for SEl specimens of two different widths but Dimelfi \& Nix incicated that for one material reasonable correlation with $\sigma_{\text {nett }}$ couid also be obtaineá. Correlations with both $\sigma_{\text {nect }}$ and K also applied to the arialysis by Harrison \& Samaon of the work by Erothers. It is likely that this illustrates the curve fitting ability of a Log/LOg plot rather than has physical significance.

2.4.4.3 J Integral Approach

For application to the creep regime an extension of the J integral is more generally used than J itself. This extension is usually referrec. to a C^{*} but in some cases J is usec instead. This paraneter is obtained by employing a non Iinear elastic/creep analogue, so replacing the strains and displacements in the J function by strain rates and displacement rates. acharacterises the stress/strain fielas
around the crack tip and represents the energy leak rate durirg crack growth. Similarly C^{*} characterises the stress/strairi rate fielas around the crack tip, but is not necessarily equal to the rate differential of J and hence C^{*} camot immediately be related to the energy leakage associated with crack grouth. This is basically because the analogue is mathematical, not physical. 128

$$
\begin{array}{ll}
J=\frac{d U}{d a} & \text { (unit thickness) } \\
C^{*}=-\frac{d U^{*}}{d a} & \text { Where } U=\text { Potential energy } \\
& \text { but } U^{*} \neq d U / \alpha t
\end{array}
$$

However, U^{*} is related to the power input at the load points, so it can be shown that C^{*} may be considered as the rate of change of creep energy dissipation rate with crack length. This can only be related to the energy releases rate with crack growth if stress reaistribution effects are negligible.

C* has found reasonable support in several later works. One major disadvantage, is that the parameter is not easy to evaluate. C^{*} has been found to give correlations of growth rate for two specimen. geometries. This was not possible using either K or $\sigma_{\text {nett }}^{6 \lambda}$. Harper and Ellison aiso found this parameter to describe crack gronth rates for two different geometries but only after the effects of stress redistribution had become negligible. Correlations with this parameter usually show approximate direct proportionaity:

$$
\frac{d a}{d t}=A C^{*}
$$

Where $A=$ constant
However, kikbin, Webster and Turner consicered the correlation coula be of the form:

$$
\frac{\mathrm{d} a}{d t}=A C^{*}(n / n+1)
$$

As the exponent ($n / n+1$) will approximately equal unity this coula not definitely be established.

2.4.4.4 Eisplacement Aporoaches

The possibility that crack growth rates were controlled by local
displacements at the crack tip was proposed by Wells \& NcPride. They considered the accumulation of strain to be a specific feature of creep fracture. $C O D$ has showr fair success in characterising crack initiation. under creep conditions this is not immeaiately consistent with the operation of a $K, \sigma_{\text {nett }}$ or C^{*} parameter. Correlations with. crack growth have been attempted. Equations of the following type 103154
have been proposeć:

$$
\frac{\dot{\alpha} \bar{a}}{\dot{d t}}=E \frac{\dot{\alpha} \dot{\alpha}}{\dot{d t}}^{p}
$$

$$
p=0.8 \rightarrow 1.0
$$

$$
\text { or } \frac{d a}{d a^{2}}=E^{\prime}
$$

Where $E \& B^{\prime}=$ constants
$d \quad=$ displacement
These relationships have been proposed to support aisplacement control of crack growth. However, this does not appear to follow at first sight as the crack appears to be growing into increasingly more ductile material. Under such relationships crack extension controlled by displacemerts at the crack tip is only possible if the ceformation zone at the crack tip is increasing in size. This would be expected from simply analogue to IEFM plastic zone size consideration. Also the effect will be amplified by viscous flow of material into the deformation zone as the stress level increases. In these analyses di/dt represents the rate of opering along a line tinrough the crack tip. It is assumed that displacement occurs entirely at the crack tip, not
in the material either side of tip. A critical strain criterion would appear to be a simple solution to the problem of increasing deformation zone size as these increases coulc be accommodated by increasing the gauge leneth over winch the strain acts:

$$
C O D=\varepsilon_{\text {crit }} \cdot \mathrm{h}
$$

$$
\text { Where } \varepsilon_{\text {crit }}=\text { critical strain }
$$

$$
h \quad=\text { gauge length(variable) }
$$

Such an approach was supportec by Floreen \& Kane from work on tensile and torsion loading. however, the critical strain approach has been criticisec aue to its inability to exhibit geometric size effects.

Nichoison ${ }^{172}$ considered that even when crack growth following a $\sigma_{\text {nett }}$ correlation the crack growth was ultimately controllea by the crack tip displacements.

2.4.4.5 Reference Stress Approach

This approach compares creep deformation in a complex geometry with deformation in a standard geometry and relates the two by an arithmetic function. The relevance of this approach is basically Iimited to situations of extreme ductility leading to total plastic collapse of the load supporting ligament. It has more validity in predicting rupture times of sections rather than crack growth rates. ${ }^{173} 176$

2.4.5 ADolication of Fracture Criteria to Creep Conaitions

The observation of crack growth correlations with the various fracture mechanics parameters have led to attempts to rationalise the results into generalised conaitions.

The application of a K parameter requires that the stress conditions in the specimen are approximately of an Lepr type distribution. The obvious case where tris may occur is under conciitions where the creep strains are unable to relax the elastic stresses significantly prion to crack Erowth. Tinis woula require an extremely creep brittle material. However, \mathcal{H} control has been reported ir materials that exhibit reasonaile auctility 144:50 who observed a $\sigma_{\text {nett }}$ correlation, showed that the relaxation of stresses in their material under creep conditions occurrec extremely rapialy.

Neate añ̀ Siverns consiōereả K control could result with auctile materials under conditions of constraint and low applied stress. At high stresses they coservea that for a ductile $\frac{1}{2}$ Cr $\frac{1}{\bar{c}} \mathrm{Ho} \frac{1}{4} \mathrm{~V}$ steel correlations with K were geometry dependant. At low stresses this geometry dependance was less noticable. They consiciered that under conditions of low stress and constraint the deformation becomes localised near the crack tip. When this occurs they considerea the effective plastic zone size to be comparable with that allowed for by IEFN. However, unless creep relaxation is prevented it is difficult to see how the K parameter can provide a vaiid description of the crack tip stresses and displacements on this basis alone. The proposal by Neate ane Siverns is contrary to the conclusion of Dikelfi 165 d lix who reviewed work on creep crack growth and found that low values of stress tencied to produce $\sigma_{\text {nett }}$ correlations.

159
Koterazawa considered geometries that localise the stress intensity to the crack tip to favour K control. Under dynamic crack frowth these geonetries would require stress relaxation to occur more rapialy if

LEFN conditions were not to appiy. Koterazawa consièered the c^{*} resuits from Landes \& Begley bend test specimens. These values were reflottec using an effective stress parameter to compensate for the stress concentration preceeding the crack far into the specimen ligament, where relaxation couid occur. It was founc that the behaviour of these specimens could be characterised by a Keffective parameter. Gooch observed K correiations in SENT tension and SEN benc specimens. (although the K index was slightly higher for the later geometry). On breaking open specimens at $-196^{\circ} \mathrm{C}$ that had undergone some creep crack growth the cryogenic fractures were transgranular. This inciicated that the grair boundaries had not been substantially weakened away from the crack tip and that grain boundary damage for these geometries is concentrated in this region.

124125177

Barnby has shown that an LEFM type stress distribution can occur as a special case under totally non-elastic conditions. Using an elastic analogy by Hoff, it was shown that for a creep exponent of n equal to I in the 2 no creep law this case will arise. (see section 2.4.2). It was proposed that for values of n below around $5, \mathrm{~K}$ control: will apply. For values of in excess of 5 the stress distribution will be relaxed down to form which has little resemblance to an LEFH profile and will result in $\sigma_{\text {nett }}$ providing a more valid description of crack growth.

Williams \& Price ${ }^{178}$ also considered the time dependant stress distribution around a crack tip. Their conclusions were similar to those of Barnoy, that is, K control would arise at low vaiues of the exponent.

As the value of the exponent rises the relaxed stress distribution will progressively approach that aescribed by perfect plasticity. They considered that unàer such conditions use of a reference stress approach was applicable. In a geometry devoia of a bencing moment this will be equivalent to the nett section stress.

DiMelfi \& Nix pointed out that the theories of Barnby and of Williams \& Price do not explain. the observation of a K control by Koterazawa in a material of high n vaiue. These theories also fail to explain the variation of behaviour of a material under slightiy different conditions observed by Iikilfi \& Kix when comparing the results of other workers.

One difficulty in accepting the C^{*} parameter is in visualising its physical significance, although a parameter based on non-inear behaviour clearly warrants examination for use in the creep regime. It has been shown C^{*} will be consistent with K for brittle conditions and with $\sigma_{\text {nett }}$ for ductile conditions and high values of $n^{i 69}$. A. parameter that accurately characterises the crack tip stress field under creep conditions would clearly be useful especially between the extremes of applicability proposed for K and $\sigma_{\text {nett }}$. However, C^{*} can only characterise the stress fielá under steady state conaitions. Any creep energy consumed in relaxation of stresses not directly affecting crack growth will result in over estimation of C^{*}. The C^{*} parameter relies on steady state conditions and therefore its significance is likely to be through its stress characterisation. Althouซh it has been shown that through $C^{* *}$:

$$
\frac{d a}{d t} \propto \dot{E}_{\text {crack }} \text { tip }
$$

C^{*} does not account theoretically for the energy expendeci in an increasing volune of $\dot{\alpha}$ eformation zone as the cack erows. Hence, ar apparent increasing correlation with strain rates and crack iength nill appear in the same way as COD is seer to increase with crack length. This means the characterisation of the strain rate fieid may not always be completely valiā.

179
Gooch, Haigh \& King considerea crack growth characteristics to be a function of both metallurgical (i.e. microstructure, and geometric (i.e. dimensional) factors. They considered a diagramatical representation of creep crack behaviour, see Fig. 2.16. This diagram suggested that LEFM conditions only apply where relaxation of the elastic stresses by creep is avoidec. The use of a reference stress approach is considered desirable where extensive creep deformation occurs at the notch tip. Where plastic deformation as opposed to creep deformation tends to occur they considered the general yield criteria may find a level of applicability.

181

Vitek proposed a dependance of crack growth on K based on diffusional crack growth, consistent with observed processes of aamage growth discussed earlier in section 2.3.2. In this model the crack grows by the diffusion of atoms from the crack tip. These plate out on the boundaries along the crack plane causing a stress recistribution. The mechanism proposed is analogous to the diffusional growth of r type cavities. The analysis is for a brittle material as plasticity at the crack tip which could also redistribute stress is ignored, as is the possibility of interaction between plastic tearing anà diffusional crack growth. Under this model crack growth was found to be dependant upon K. whilst accepting this model to be an extreme

APPLICABILITY OF FRACTURE
MECHANICS PARAMETERS RELATIVE TO DUCTILITY CONSTRAINTS.
simplification Vitek considered that diffusional growth of cracks may well be a possible mechanism. Betallographic observations have shown crack paths. following grain bouncaries perpericicuiar to the tensile stress axis and where bounaxies were orientated at a jow angle to the tensile axis crack path tenaded to become aiscortinuous. This behaviour was considered similar to the growth of r type voics. Comparison with growth rates in a brittle Cr-ko-V steel were made. The resuits inajicated that the main crack was too wide to enable predictions made by this analysis to agree with observea behaviour but the microcracks observed in front of the mair crack were of the correct order.

The concept of diffusional crack growth was supported by Sacionanda $\&$ Shahiniari. By observation of the effect of temperature on crack: growth rate for a given value of K they considered it to be a balance between diffusion of point defects contributing to crack growth and deformation processes causing retardation and even crack arrest due to blunting effects. This retariation occurrea at the higher temperatures where deformation processes were faster than the crack growth processes. A minimum value of K for crack growth was observed as was predicted from Vitex's analysis. The activation energy.for crack growth was approximately that expected for grain boundery diffusion.

181
Vitek reviewed the growth correlations with K for more ductile materials and comnentec on observations of 2 high exponent for lon vaiues of K and vice versa. It was consiaered that this is more consistent with crack growth ariven by plastic processes. The extent
of diffusion processes ir these ceses is uncertair. Plasticity Will interact with àiffusion as aislocations may act as sinks for point cefects influencing the vacancy flux in the flastically cieformed region.

Another theory to account for the observation of iEft and $\sigma_{n \in t}$ control was drawn up by Dikelfi \& Nix basea on void distribution in the region anead of the crack. It was assumed that cavities grew by power law creep in the elastic stress field. A stress dependance of crack velocity is aerived through the elastic stress intensity factor.

$$
\begin{equation*}
\frac{\bar{a} a}{\dot{d} t}=B K^{r} \tag{2.68}
\end{equation*}
$$

The cavity spacine appears to be an importart factor in the constant B. At large intercavity spacings corresponding to less severe creep damage the derived equation predicts very low values of the crack velocity. Under such conditions it was proposed that another stress depenaance becomes operative based entirely on $\sigma_{n e t t}$. Uncer this theory K control is observed at high stress levels and with smaII inter-voia spacing, $\sigma_{n e t t}$ control is observed at low stresses where the inter-void spacing is large. The heavy reliance on the IFFW stress distribution in this theory without taking account of relaxation must cast some doubt on its applicability. However the importance of cavitation in creep fracture is well acceptec for mary materials so an approach that considers this phenomenon has much in its favour.

The consideration of damage caused by creep leads to a very major criticism of all $\mathrm{K} \sigma_{\text {nett }}$ or J type approaches to creep crack erowth predictions. These approaches imply that at any stage of crack growin, a given value of the parameter in question will result iri a

Given crack growth rate. Under creep concitions a material will be accumulating damage. In section 2.3.1 this darage was shown to start at a very early stage in the creep life. Fience, it is likely that during crack growth the crack will be moving through increasingly more pre-ämaged anà thus less crack resistart material. This is supported by observations that even in a brittle material Erowth rate has been shown to depend on starting stress. Grovith rates for a given K being faster for a lower starting stress. Layering of crack growth rate data verse K or $\sigma_{n e t t}$ is a common observation in many of these studies.

It has been ooserved by many workers that creep crack growth only

starts after a definite incubation peri@. However, it has beer shown that isolated crack growth and cavitation close to the crack tip can start very rapidly but there is a protracted period before a single complete crack forms across the thickness. This rapid formation of isolated cracks may be due to machining or pre-fatigue damage acting in conjunction with a high unrelaxed stress concentration in the early stages of a test. An apparent incubation perioa is always observed before steady crack growth occurs. This suggests the need to accumulate a damage zone prior to the onset of stable cracking.

As the importance of creep damage to the fracture process is well accepted it seems desirable to formulate an approach in which full account is taken of the phenomenon of accumulating damage. Displacement approaches are the most obvious manner in which this can be accommodated.

It is a common observation that the exponent in the K control and
$\sigma_{\text {nett }}$ control laws are often approximately equal to the exponent in the second creep iaw. This suggests a similar stress dependance for crack growth as for straightforware creep dispiacement. 144
Bain observed the crack growth exponent for K and $\sigma_{n \in t}$ to be geometry dependant in centrifugally cast Hik 40 . In this material crack growth was thought to be influenced by oxication of interdendritic carbides. In such cases geometric factors affecting crack opening will influence the growth rate. But where crack growth is controlled entirely by tip cispiacements the concept of related stress dependancies of crack growth and creep displacements seems consistent.

Vitek ${ }^{i z}$ worked from the Eilby, Cottrell, Swinden model for the formation of a plastic zone ir order to extend to the model to the time dependant case. Supported by experimental results it was concluded that $C O D$ concepts are good criteria to predict the onset of crack growth. Vitek also compared $C O D$ and J criteria from the theoretical view point and found that J was more applicable to fast fracture. It was considered that $C O D$ was the better parameter to apply to a situation of cumulative damage as in creep.

The work by Vitek using a time dependant Dugaiale strip yiela model for initiation anà a similar approach for growth by Heaton ana Chan have been unified and extended by Ewing. A critical COD criteria is employed for both initiation and growth. A critical strain criteria was rejected on the basis of its inability to accommodate size effects. Despite the tendency of experimental results, reportea in the literature, not to support a constant COD, (see section 2.4.4.4), this approach may be valià here.

The analysis is based on a small scale deformation mociel. If the effect of increasing deformation zone size in practice is the cause of increasing COD whilst in fact a citical sirain type concept is operative, the use of a critical COD in the model is analagous as the wicth of the deformation zone is assumed constant.

$$
\begin{equation*}
\text { i.t. } \quad C O D=h \cdot \varepsilon_{\text {crit }} \tag{2.75}
\end{equation*}
$$

in the analysis $h=$ constant
in practise $\quad n=$ increases
Both this model and a similar approach by Riecel preaict that under certain conditions initiation time and crack growth rate can be predicted by K. Both predict:

$$
\begin{array}{ll}
\frac{d a}{\partial t}=A K^{2 n-2} & 2.77 \\
t_{i}=A^{\prime} K^{-2 n} & 2.78
\end{array}
$$

The initiation relationship is based on accumulation of strain at a point with the plastic zone stationary. The growth law is based on the accumulation of strain at a point as the crack tip moves towaras that point. This inaicates K may at least be applicable for describing local crack growth under conditions of accumuiating strain, but for values of r greater than 3 the exponent in the growth lan will be greater than in the creep law. It should be noted that these predictions are for local correlations of growth rate with K . Unless crack propagation is at a constant velocity the growth rate will depend not only on the value of K but on the prior history of \tilde{K}.

For Iow stresses Ewing preaicted a change to depenciarce on $\sigma_{n e t t}$ Riedel predicted change to $\sigma_{n e t t}$ control wher relaxation and redistribution of stress anc strain is more likely. That is, wher small scale yielding breaks dowr. on this basis K control is again.
favoured by high initial k values and also by increasiñ geometrical features (i.e. size). For initiation to occur uncer conaitions of small scale yielaire the following inecuanity must be satisfiea.

$$
\dot{a}>4(\overline{0} \cdot E / K)^{2}
$$

$$
\begin{aligned}
\text { Where } \dot{0}= & \text { eitree } 0.5 \text { the remaining } \\
& \text { Iisament Iengtr or } 0.5 \text { the } \\
& \text { crack length which ever is } \\
& \text { smailer. } \\
\Phi= & \text { critical cod }
\end{aligned}
$$

Whether C^{*} allows for accumulating camace is not straightiorwarci. 157
Webster used the formula:

$$
C^{*}=\frac{\lambda}{\bar{E}} \cdot \frac{F}{n+1} \cdot \frac{\dot{Q} \dot{Q}}{\dot{\alpha}}
$$

$$
\text { Where } \dot{\Delta}=\frac{\text { Load point displacement }}{\text { rate }}
$$

$\dot{d} \dot{\Delta} / \mathrm{da}$ can be calculated from non-linear bean theory. This approach takes no account of deformation whead of the crack and is hence only applicable where this is small relative to the total deformation seen at the load points and no account is made for material degradation. These limitations restrict the applicability of this method under usual creep conditions.

Other methods calculate C^{*} from measurements of $P, a / w$, anci Δ during the test. Some indication or material degradation may hence be incorporated in the $\Delta / 1$ oad measurements. However, it is difficult to see how on this basis the effect of the damage can be separateć, thus enabling reliable preciictive calculations. It is interesting to note that Harper ana Ellison reported layering of results at low growth rates where relaxation and damage spread is more likely. One point in fatrour of C^{*} in the respect of damage accumulation is that it has been shown that this parameter may have some degree
of applicability in preaicting the propagation of a damage front The cianage frort concept was orifinally proposec by aiachenov or a phenomenological mechanics type basis. Fupture occurs wher the Camage parameter increases from its virgin conaitior of zero to the exhausted state of unity. The spread of a damage front has been considerec by Shiro kubo et $a l$, they found the damage rate \dot{f} to be described by:

$$
\begin{aligned}
& \dot{\Gamma}=\frac{C^{*}}{r}(\mathrm{c} / n+1) \\
& n= \text { lortons law exponent } \\
& b= \text { exponent relating rupture life } \\
& \text { to stress }
\end{aligned}
$$

It was found that crack Erowtin behaviour could be expressed as a function of C^{*} only when $(b / n+1)>I$ (i.e. $b>n+1$). when $(b / n+I)<1$ the crack grohth rate is dependant upon the amount of prior crack growth as well as C^{*}. This is because for values of $b>n+1$ the accumulating damage is saturated to a constant steady state value, uneffected by the previous stress/strain history. Under such conditions crack growth will be determined solely by the crack tip stress/strain rate fielas, characteriseá by C^{*}. However, when $0<n+1$ (which they considerec may be the general case in metals), the damage value rather than saturating at a steady state approaches to unity and hence crack growth is dependant upon prior history.

The extent of any accumulated damage effect will depend on many factors. The nature of the stress/strain profiles prececing the crack will determine the extent of the damage in the ligament prior to the arrival of the crack tip. The effect of these profiles will depend on the mechanisms by which damage occurs as diffusion and slicing mechanisms have different stress depenciancies.

The actual nature of these stress/strain profiles are clearly important. The determination of the nature of these profiles will be of essential importance in reviewing creep fracture from a damage accumulation view point.

2.5 Summary with respect to this work

The essential features of the formation and growth of micro defects appear to be fairly well identified. The behaviour of micro defects has been described by theories with sound basis and for which there is substantial experimental support. Although no single approach can explain all the observed behaviour this is to be expected as the creep environment is a situation where the exact behaviour may aepend on the bailance of temperature and stress.

Magnox AL80 is a material where at low stresses creep deformation can become diffusion controlled with the characteristic creep exponent value for this type of behaviour of $n=1$. Under these conditions any cavitation must be predominantly by diffusion as this is the only mechanism operating to any extent. As diffusional growith of cavities is an extremely efficient means of utilising the work done in deformation for cavitation, the process has credence at these low stresses. Nucleation of cavities under these low stresses with minimal slioing would not be easy. However, Kirkendiall voicis are observed to form in aiffusion experiments with zero applied stress.

At higher stresses the importance of sliàing on the cavitation process is likely to increase for all metals and alloys. The action of Erain boundary sliding in assisting cavity nucleation is easy to accept. In some cases growth entirely by deformation processes may apply.

This may be the case for the formation of weage cracks in some materials. Where cavitation is ertirely deformation cortrolled it would be expected to be strongly related to strain. The possible existence of an intermeüiate range carnot be dismissed out of hand and such an approachsappear to be gairing support. In the intermediate range, sliding will probably control nucleation and hence cavity number would be expected to be related to strain. The effect of diffusion on growth would not be easily identified from cavity density stuadies due to continuous nucleation and aiso plasticity interacting with diffusion modifying the kinetics, Cavity morphology would probably give the best incication as to the operation of both deformation and diffusion processes. In this work the stresses will be above those associated with pureiy aiffusional creep for Magno AL80 so sliaing would be expected to be influencing cavitation. The presence of a notch has been seen to give rise to a stress concentration and an intensification of shear. The material is ductile ane around the notch tip intense plastic behaviour is probable. This could inhibit diffusion processes in the near tip region. The void sheet cavity linkage mechanism has been associated with Magnox. It hence seems probable that deformation and shear processes are likely to have more influence on macroscopic crack growth than diffusion. However, in the region away from the immediate crack tip region the intermediate behaviour o \hat{i} deformation controlled nucleation with deformation/ciffusior gronth is not rulec out.

For the growth of macroscopic defects the current situation is very indefinite. Fost theoretical considerations are attempts at justifying empirical relationships. Very few of the theoretical proposals concerring creep crack grow'th take much account of the
micro processes that occur curing creep and may well play ar integral role in the control of crack advance.

It appears that preaictior of creep crack growth will require the knowledge of at least the following points:

1) The mechanism or criteria controlling crack acivance.
2) The nature of the stress distribution preceding a creep crack. The mechanism controlling crack acivance is likely to be related to stress or displacement. A knowlecige of the stress aistribution ahead of the crack tip will enable estimation of the rate at which the criteria controlling crack advance will be satisfiec.
3) The effect of geometry on (1) and (2) above. This will be essential if crack growth rate predictions are to be macie for service components from laboratory test specimens.

The following work is a study of the growth of racro cracks and has concentrated on the points (1) to (3) above. This seemed the best way to progress towards a sound understanding of how creep crack growth rates may be reliably precictec. The material used was hagnox $A \perp E 0$, a nuclear reactor canning material. This is a ductile material for which creep crack growth is not normally an associated problem. However, it was considered that the high ductility of the material would facilitate the study of strain distributions ahead of crack tips which could lead to ar insight to these points outined above.

3. EPERIERITAL PHOCEDURE

AIl the experimental work has been performed on lagnox ELEC sheet of either $1.6,3.2$ or 6.4 mm thickness. The material was of analysis as shown in Table 3.1. With the exception of one test the material was used in the as-supplied condition with a mean grain size of 0.04 mm for the 1.6 mm thick sheet and 0.0 ormin for the 3.2 ane 6.4 min material.

3.1 Crack Growth Testing

These tests were performed to examine two distinct aspects. Firstly, to examine the strains in the region of the crack tip and the distribution of strain with distance from the crack tif. Secondily, to examine the crack extension rates under creep conditions.

The majority of the work has considered two kasic specimen geometries, the Double Edge Notched geometry (DEN) and the Centre lotched geometry (CN). A third geometry has also been considered to a lesser extent, the Single Edge Notched geometry (SER). The test specimen geometries were basec on the standard fracture toughness test piece designs as described in ASTM 4i0. For the first two tests the specimen profile used was as indicated by the dotted outline in Fig. 3.1. This specimen profile proved unsatisfactory as for total crack length, a, to width, w, ratios a / w of up to around $0.45 \mathrm{a} / \mathrm{w}$ fracture occurrea through the pinholes. The modified design shown by the solid outline in Fig. 3.1 was hence adopted for subsequent tests. This enablec an a/w ratio of around 0.33 to be used as the starting notch length due to the reauced pin-hole loading.

The notches were produced by spark machining using a thin copper foil. The resulting notches were typically 0.4 mm wide with a root radius of

TAELE UF CESTCAL RHAYYE.

Eindri	$\%$
Aluminiur	0.77
Eeryilium	0.004
Iron	0.006
Silicon	0.06
Manganese	6.003
Zinc	0.008
Calciuni	0.01
Magnesium	Ealance

Table 3.1

DIMENSIONSINMM.
around $C .2 \mathrm{~mm}$. Thuce specimers were testeà using very large râíius, semi-circular notch roots. These rotches were aiso procuced by spari machining. Attempts at mociafying the tips of nomal spark machined notches by hot fatigue cracking at $300^{\circ} \mathrm{C}$ using à mear loa and amptitude of 400 l were made for two specimens.

The early work was performed on a Derison $T^{4}+\mathcal{E}$ creep testing machine. This machine was grossly over capacity with a lever amm ratio of $44 \cdot \mathrm{E}: 1$ However at that time it was the orly machine availabie. The last 21 tests were performed on a lOKN ESH creep testing machine with a $10: 1$ lever arm ratio. This rig had a ported furnace through which continuous observation of the notched region of the specimen was possible. Temperature monitoring of the specimen surface was also performed through this port. Along the central 60 mm the 3 zone furnace control was adequate to ensure that no two points varied in temperature by more than $5^{\circ} \mathrm{C}$ and the overall temperature was maintained at $300^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$. The load was applied to the specimen by means of the automatic lever arm levelling mechanism. Specimen grips were of a pir loading design and machined from a nickel free tool steel to avoid any interaction between the specimen and the grip material. Specimen identifications for these tests are prefixed Ts.

Specimens that were creep pre-strained prior to notching were cooled from pre-straining under load, and then reneated uncer load after the notches had been cut. Normally the load was only applied after the specimen temperature was observed to have stabilised at $300^{\circ} \mathrm{C}$ for a perioc of at least l hour. The cooling and re-heating intervals for the pre-strained specimens were fairly short, that is around 0.75 nours. The furnace was of a counter balanced vertically split and hinged
variety and at $300^{\circ} \mathrm{C}$ coulà safely be opened and raised̀ clear of the specimen to allow fast cooling and pre-heated before lowering for rapid re-heating. Timing for these pre-strained specimens was the total time that the specimer was uncer load above $280^{\circ} \mathrm{C}$.

3.1.1 Production and Fecoraing of Crias

In order to examine the strain field ahead of the notches it was necessary to produce ageid on the specimens that could be photographed before and during creep testing.

Trials were made using a photo-resist material commercially available for the production of electronic printed circuit boaris. A negative for contact printing onto the specimen was producing by photographicaily reaucing a perforated card template illuminated from beninć. This produced an array of dots spaced at 0.5 mm intervais. Initial tests indicated that the photo-resist was sufficiently temperature stable to be used directly as the position markers. On longer term tests however, the resist proved unstable and faded. Etching up the grid pattern was considered but discounted as the contrast obtained would be insufficient in view of the surface defomation encountered under test conditions. The photographic method was lejected in favour using a scribed grid of 0.5 mm spaced lines produced with a verrier height gauge.

The grias were reconiec photographically using a $35 \pi n$ single lens reflex camera with a 135 mm focal length lens and 175 mm tube extension. This system produced a magnification of approximately $x 6$ when the $35 m$ film negative was enlarged to the stanäà photographic half plate size. The speciner: could be photographed ir:-situ in the furnace through
the observation port. The selection of a 275 mm tuve estersion length was a deliberate compronise betweer optimiur ragnificatior, ciepth of focus and adequate working distance to allon photography of the specimer through the furnace port. The specimen was illuminatea with a quartz halogen light source with fiber-optic Iight guices. See Fig. 3.2a and 3.2b. Focussing of the canera system was by moving the entire camera and lens systeri towaras or away from the specimen by means of a screw feed table. The lens aistance ájustment was always left on a constant settire (maximur) to minimise variation in the nagnification betweer photographs. Where possible, all the photographs pertaining to a particular specimen were processed and printed as a single batch. This was aiso to avoid variation in the magnification between photographs.

It has attempted to analyse the gria ciisplacements using a àigitising computer. However, it was found that this metho was in fact less convenient than simply making measurements with a ruler and only of compatible or even inferior accuracy. The principal difficulty with the computer system was that the digitising sight coula not de moved easily over short distances and so could not be positionea accurately over the points. The actual methoc usec for analyising exid displacements anc estimations of the accuracy of the nethod are ¿iscussed in conjunction with the resuits.

3.1.2 Crack Ienetr Nonitoring

The monitoring of crack length was originally by means of the D.C. potential drop technioue. This was however later abandoneà completely for several reasons. The accuracy of the P.D. technique for this application was considered suspect in viek of the degree of ductility and hence change in probe spacing that occurred during each test.

It proved impossible to calibrate to an adequate degree of accuracy for these changes in the distance between the probe wiree. Also the high conductivity of Magnox AIEO combined with a large specimen size required a high current for a reasonable potential drop across the crack. oxide formation in combination with this large current resulted in resistance heating at the pin-holes. This caused general temperature instability and a tendency for pin-hole failures.

With the advent of the ESH creep rig with a ported furnace it was decided to rely on optical monitoring of the crack. Although this method proved open to a degree of personal interpretation, estimation of the surface position of the crack tip to within 0.75 mm was consistently repeatable from the photographs taken. This represents a better degree of accuracy than was possible using the potential drop technique on such a ductile material.

3.1.3 Experimental Design

A Iatin square or orthogonal type of design was applied to the study of the variables considered where ever possible. The blocks were usually of four specimens or six specimens but with some specimens occurring in several blocks, for instance:
i) effect of stress $1 e v e l$

DEN low stress, CN low stress, SEN low stress, DEN high stress, CN high stress, SEN high stress. (2.11 3.2mm thick).
or
DEN low stress, CN Iow stress, DEN intemmediate stress, CN " intermediate stress, DEN high stress, CN high stress (a11 3.2 mm thick).
ii) effect of thickness

DEN thin, CN thin, DEN intermediate, CH intermediate, DEN thick, CN thick

$$
(211 \text { low stress) }
$$

Similarly with notch root radius and pre-strain. The technique for analysising iatin square experiments statistically was not considered to offer any advantage in processing the results. However, use of an orthogonal type design ensured that the maximum chance of detecting significant trends arising from a number of variables was obtained from the minimum number of specimens. This was considered especially important for a project such as this which involved the need for a series of long term tests to be performed in a finite time period and with Iimited resources available.

3.2 Smooth Bar Creep Testing

These tests were performed to provide supporting information for the notched, crack growth test specimens. Three factors were considered of interest:
i) Verification of the values of the creep exponent operative in the stress regimes considered.
ii) To provide an indication of the extent of the primary creep regime.
iii) To provide metallographic specimens for a quantitative assess ment of the extent of cavitation as a function of strain.

The specimens used in these tests were of the design shown in Fig. 3.3 These tests were performed on a Denison 747 creep ris with a thyristor controlled furnace. Temperature control was normally better than $\pm 3^{\circ} \mathrm{C}$ on $300^{\circ} \mathrm{C}$ with a variation along the specimen lensth controlled

DIMENSIONS IN MM.

SMOOTH BAR TEST SPECIMEN DESIGN

to less than $3^{\circ} \mathrm{C}$. Elongation was reconded by moritoring the lever arm aisplacement with either a-dial-qauge or with a trarsaucer aepending upon the test duration. Although rot as accurate as the use of extensometers, this method was consiòered aiequate ir view of the comparatively undemancing aims of these tests. The greatest disadvantage in not using extensometers was that no indication of primary extension occurring immediately on loading could be obtained by simply monitoring the lever anmi displacement. All the tests were performed under approximate constant stress conditions. The constant stress was mairtained by adjusting the scale par weight at frequert intervals to off-set the reauction in area, calculated from the elongation on a constant volume basis. Specimer iaentification for these tests were prefixed SME.

3.3 Ketallography

Basic metallography was performed to examine grain size, the regions preceding crack tips and similar general points of interest. Specimens were prepared by conventional mechanical polishing techniques, but avoiding excessive pressure, to a Ium diamond paste firisn. The surface was then etched in saturated oxalic acia solution (aqueous) and then repolished with lym diamond paste then an Alumina based metallurgical polishing meoiumbefore rewetching with oxalic acid solution. Where specimens were requirea for ountitative metallographic examination all the specimens were first esserbled and mounted together in a single mount of a cola setting medum. This cnsured that during preparation each specimen in the bount received as near as possible the same treatment. Where cavitation was to be examined an inferior quality of finish was of ten accerted rather thar prolonging the preparation treatment and possibly distorting ow
enlarging the cavities in such a soft and ductile matrix. often a small piece of untested material was mounted with a creep tested sample so that ary tendency to form eton pits could be noted to avoia confusing these with true creep cavities.

The scanning electron microscope has been used to exarine fracture surfaces as well as metailographic specimens of the region surrounding creep crack tips.
A. quartitative metallographic stuay of the exterit of cavitation seen in the smooth bar creep specimens was made. The analysis was made from photographs using a Joyce Loebl hagiscan Inage Analyising Computer system programmed in Basic Ianguage to give average cavity number, length, height and area measurements for a given fielá.
4. RESUITS

4.1 Smooth Ear Oreed Tests

These tests were perfornee to proviáe supporting infomation for the rutchec tensile tests. Threefactors were of particuiar interest
i) to checr the values of the creep exponent operative for the stress levels encountered in the notched tensile tests. ii; to assess the extent of primary creep áeformation. iii) obtain an incication of the relationship betweer creep damage ana uni-axial creep strair $\varepsilon_{y y}$.

4.1.1 Assessment of the Creet Exponent Values

The seconcary creep rates are shown in Taile 4.1 From metailographic evamination of SHEJ anc 15 it has observec the grair size ná increased by a factor of about*z during creep testing. The creep rates showr for these two specimens have been corrected by the application of the grain size dependance on creep rate given in equation 2.2. This equation preaicts that for this stress regime the creep rate is proportional to $d^{-0 . \varepsilon}$. The creep exponents were evaluated as the gracient from linear regression analysis of log. $\dot{\varepsilon}$ versus log. stress Separate regression analysis were performea for stresses below $15.5 \mathrm{~mm}^{-2}$ and stresses above this value, emponents of 3.60 ana 7.1 were obtained respectively. These agree well with the commonly reported values for Hagnox A 80 of 3.5 wher forme concitions of stress.

4.1.2 Assessment of the Ertent of Prinary Creen

A measure of the strain arising from primary creep defomation and the duration of the primary interval for these specimens are also shown ir Tabie 4.I. The duration of the primary creep interval is

CTEDSE Hk^{-2}	SMENC.	TOAL STRAIN $\%$	STEAIT bate Er^{-1}	ERIHEY conmati. 公 (taprx	TIE FGE PRIffix. Ers. (Apprx	comzis
5	$\begin{array}{r} 2 \\ 13 \\ 14 \end{array}$	$\begin{aligned} & 33 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.19 \times 10^{-4} \\ & 1.56 \times 10^{-4} \\ & 1.76 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 50 \end{aligned}$	
ϵ	6		3.26×10^{-4}	0.5	50	
7.5	$\begin{gathered} 3 \\ 15 \\ 16 \\ 17 \end{gathered}$	11 10 34	$\begin{aligned} & 7.41 \times 10^{-4} \\ & 8.18 \times 10^{-4} \\ & 7.60 \times 10^{-4} \\ & 9.24 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.79 \end{aligned}$	50 20 20 20	Strain rate correctea for Er growth Furnace failure Eximary contr. too smail to recorá.
20	$\begin{gathered} 9 \\ 12 \end{gathered}$	$\begin{gathered} 33 \\ 7 \end{gathered}$	$\left\lvert\, \begin{aligned} & 3.8 \times 10^{-2} \\ & 5.2 \times 10^{-2} \end{aligned}\right.$	$\begin{aligned} & 3: 0 \\ & 2.8 \end{aligned}$	0.2	
30	IC 11	$\begin{aligned} & 56 \\ & 17 \end{aligned}$	7.5×10^{-1} 8.5×10^{-1}	6	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	

TAEAE 4.1
the time before secondary creep becane established. The contribution to strain from primary creep shown in Table 4.1 is not the total strain accumulated curing the primary creex irterval. The contribution fror primary creep shown represerts the strair above triat which koula be expected had seconäry creep started imméiately. If the line of creep strain versus time for secondary creep is extrapolated back to $t=0$ the primary contribution is given by the value of the intercept with the strain axis. This is shown schematically in Fig. 4.l. This will be less than the total strain accumulated curing the primary period. The contribution from primary creep evaluated here has more pertinence to considerations of steady state áformation than the total primary creep strain as the important factor is the deviation from the steady state.

Only very small primary strain contributions were observed at the low stress range (5 to $7.5 \mathrm{Nm}^{-2}$). This contribution was observed to increase with stress, to around 4% strain in the range of 20 to $30 \mathrm{Nm}^{-2}$. The variation in the primary creep contribution across this stress level was about 3%.

4.1.3 Quantitative ketailography of Smooth Bar Creep Specimens

A. limited quantitative metallographic exmination was made on some of the smooth bar specimens. The extent of the cavitation presemt ves observed to be both stress and strain aependant. The difference in cavitation between a high stress and low stress specinen deformed to similar exterts was apparent to the naked eye for fairy higin stakins. The high stress specimens showed noticably less damage thar their low stress counterparts. The damage was in the form of grain boundary cavities elongated at 90° to the tensile axis, as shown by Fig. 4.2 . The results of the quantitative metallograpinic examination aro show

$\times 100$

$$
\begin{aligned}
& \text { QREE } \because 4 A G E \text { IN A SMOSTY BAE } \\
& \text { GEEEP SFECIMEN (SMS \&) }
\end{aligned}
$$

in Fig. 4.3. The damage has been expressec as ar estimate of the effective loss of ligament computed as follows:

Consiocr a square section of side II on a specimer. bithin this frame there is an average cavity density for the specimen in question. There are \mathbb{I} cavities of average length i anci average height $:$. (Iength beine perpendicular to the tensile stress axis and height parailel).

It was considered that fracture wouid occur alone a patn tinrough adj jacent voiàs. For a voiá to be instrumental in reaucing the load bearing capacity of the ligament it would have to be contained within a bana of finite wiath from the mean crack path. Eased on an 187 approach by Widgery \& Knott the width of this band has been set to 6 times the average cavity height. See Fig. 4.4

As a fraction of the frame height this fracture path bañ represents

$$
\frac{6 H}{F I}
$$

Assuming an even distribution of voios in the strif. The number of voids in the strip equals $\frac{\text { GEF }}{\text { FI }}$

Assuming all the voids in the strip contribute to the recuction in the load bearing capacity of the ligament, then multiplying by the average length of a void L, gives the total effective length of cavity in the strip. This can be expressea as a fraction by aiviaing by the frame length

$$
\begin{aligned}
& \text { Fractional loss } \\
& \text { of Iigament }=
\end{aligned} \frac{6 i n I}{\mathrm{FI}^{2}}
$$

$$
4.1
$$

Joining experimental points of the same stress levei in Fig. 4.3
with straight lines produced the following indications of the effective loss of ligament for a 20% strain.

WHTHE क

EFFECTIVEILOSS OF LIGAMENT DUE TO CREER OAVITATION.V.STRATN (FROM SME TESTS)

BAND CONTAINS CAVITIES OF
AVERAGE LENGTH. AND NUMBER
BASED ON MEASUREMENTS FOR
cheand mentire FRAME
butstues extel spocts.

EVALUATION OF LOSS OF LIGAMENT DUE TO CAVITATION

Stress Mm^{-2}
5
7.5
greater than 20
\%Loss
13
6
2.5

This analysis only considerea fairly large cavities, that is greater than $3 u m$, hence these figures will not include all the ligament damage but there was very little evidence of small isolated cavities. Also the factor 6 is only an estimate and the assumption that all cavities in the fracture band contrioute to fracture is probably unrealistic. However these figures do illustrate an appreciable difference in the extent of cavitation with stress for a given level of strain. The reduction in the effective ligament due to cavitation at a strain of around 20 o will be substantially less for specimens in the stress range where $n=7$ than where $n=3.5$. But the difference in the effect on strain rate will be less noticable.

4.2 Notched Specimen Tests

Previous workers have attempted to define cracking in a precise manner in order to distinguish the process from other modes of material failure. In this work any instance where material separation through the complete thickness has occurred in a progressive manner away from the notch tip region was considered to constitute crack growth. Where a crack has formed under creep conditions it is considered to constitute a creep crack. Fracture normally showed a greater resemblance to a ductile tearing process than what might classically be defined as a cracking process.

Details of the notched specimen test program are shom in Table 4.2 .

TS MC.	GEOETRY	$\begin{aligned} & \text { NOMTHAL } \\ & \text { STARTING }-2 \text {) } \\ & \text { STRESS (MMM } \end{aligned}$	COMMEMTS
1	DE:	15	
2	DET	30	
3	DEN	10	Not stopped before fracture
4	DER	10	Notches sharpened by hot-fatigus Fesults not considered in detall
5	DET	10	Not stoppec before fracture
6	Cl	13	Photographic records inadequate quality for analysis.
7	DET	10	
8	Cl	10	
9	DET	10	
10	CN	5	Pin-hole failure
11	DEN	5	
12	DEA	- 20	
13	CN	20	ura
24	DEE	20	lotch root radii $=3 \mathrm{~mm}$
15	DEM	20	Notch root radii $=2 \mathrm{~mm}$
16	CN	5	
17	SEN	5	
18	DEA	20	Creep pre-strained prior to notching(srid quality poor)
19	DEN	5	Creep pre-strained prior to notching
20	DEN	20	Notches sharpened by hot fatigue Results not consiered in detail
21	DEN		Large Grain Size-Causec very bad orange peel, gric analysis not very accurate
22	DER	$5 \times \mathrm{c}$	
23	DEN	5	I. 6 mm thick sheet
24	SEN	20	
25	DEN	+20	Very high starting a/n (0.65)
26	CH	20 max	Creep pre-strained prior to notching
$\frac{27}{28}$	SEIF	20	Notch root radius - 3ma
28	CN	5	6. 4 mm thick sheet
29	DEIS	5	7.6mm thiek sheet

4.2.1 Gereral Observations

The most immediately apparert aifecrerce in behavioum betweer the
 in the location of the maximun contraction in the - -cirection. This maximur contraction occumed along the plane of the notch for the CN geometry, but was displaced some distance in the Y-direction above and below the notch plane for the DEN case. Fig. 4.5 shows an exampie of a deformed Ch anc lek specimen. For crack gronth in the DEli specimens the crack remaired fairly straight, growing roughly alcng the specimen centre line an . The CN specimens showed iritially straight crack growith alone the centre line M, followed by a tendency for the final fracture path to rur along the 45° shear Emas. This trerid cari be observed in Fig. 4.5.

All three specimen geometries underwent a definite perio of time under creep conditions before a complete through thickness crack was cobserved at the notch tip. This period is hereinafter referred to as the initiation time. In the thicker sections tested some eviecnce of tunnelling was observec prion to the formation of a through thickness crack. Crack growth started by the fomation of a small nick in the notch tip (see Fig. 4.6). There was then a period of slow crack growth. This was followed in the men am on geometries by rapia collapse of the renaining ligament. Visuan observations of this collapse phenomenon suggested that this event could not be classed̉ as crack gronth as in many câses fàlure across the ligament was virtually simuitaneous and not by progressive gronth of the cracks.

> COMPARISION OF LATERAL
> CONTRACTION FOR CN AND DEN GEOMETRIES

Fost fracture examination of the fracture surfaces showe bourciaries between light and̀ heavier oxiàatior. These boundaries were considered to represent the approvimate positions of the crack fronts at the onset of lisament coliapse. Hovever this estination will be Iess reliabie for the higher stress tests. The ligament collapse stresses could be calculated on the besis of these crack front positions. These collapse stresses have been grouped according to the starting stress level and are shom in Fig. 4.7. (Etarting nett section stresses of $5 \mathrm{~mm} \mathrm{~m}^{-2}=10 \mathrm{w}, 10 \mathrm{Mm} \mathrm{m}^{-2}=$ intermediate, $20 \mathrm{~mm}^{-2}=$ high). AIso shown in Fig. 4.7 are the UTE levels for magnox $A D 80$ at $30 C^{\circ} \mathrm{C}$ at various strain rates (taken from referencell) As can be seen from this figure the ligament collapse stress was dependant upon the initial starting stress. If the starting etress was low ther the collapse stress would also tenc to be low. For the $20 \mathrm{~min}^{-2}$ starting stress level the average ligament collapse stress approximately comesponded to the hot tensile strength of the material (measurea at a strain rate of $1000 \% \mathrm{Hr}^{-1}$).

The average ligament collapse loacis corresponded to a / w values of $0.72,0.59,0.60 \mathrm{a} / \mathrm{w}$ for the Iow, Intermeaiate and high stress ievels respectively. This phenomenon of ligament collapse made it extremely difficult to obtain photographic recorcis of cracks between $0.6 \mathrm{z} / \mathrm{w}$ and final fracture for these geometries.

Iigament collapse was not observec with the SEl geometry even at a / w values in excess of 0.8 . For the high stress sifi cases crack growth increasea to a high rate but material separation was still of a definitely progressive nature away from the notch tip.

> NETT SECTION STRESS
> FOR LIGAMENT COLLAPSE

4.2 .2 Notched Speciner Sests - Heasuremeris Selatire to jime

In this sectior the resuits of the observations of crack initiation time and the craci Length versus time stuaides fron the notched tencile tests will be presenteć.

4.2.2.1 Crack Iritiatior Times

Crack initiation time was taken as the first observable occurrence of a complete through section crack. The exact time when a complete through section crack formedं was estimated by a coribination of visual examination and 'back extrapolation' of the crack length/time plots for each case. The estimateà accuracy of these preaicticns, basec or the range of the first and last possibie instance for initiation was approximately $\pm 0.25 \mathrm{Hrs}$ for the high stress tests anc $\pm 25 \mathrm{Hrs}$ for the 10w stress tests. As can be seen these wucuacies are far from ideal. In the analysis of the crack Iength versus time observations the critical factor was the estimate of the tine when the crack length equalled C. $35 \mathrm{a} / \mathrm{w}$. This could normaily be estimatea with much greater accuracy than initiation, see Fig. 4.8.

Despite the experimental inaccuracies, initiation times were considered to warrant inspection. From examination of the initiation times it seemed probable that the times were influenced by both the stress Ievel and geometrical features. Correlations of the type $t_{i} \propto K^{-m}$ 175183 had been proposed in the literature. As K is a function of both siress and geometry, correlations of iritiation time with K seemed a logical starting point. innear regression analysis of log. t_{i} versus log. K were attempteí, also regressions of log.t. $\mathrm{t}_{\dot{j}}$ versus log. $\sigma_{\text {nett }}$ were made. The initiation times had to be divided into two groups according to the n value operative. Snecimens for winich the startins

COMPARISICN OF THE ACCURACY OF PREDICTING TIMES TC INITIATION AND TO ©. 35A/W
nett section stress was beion $15.5 \mathrm{~mm}^{-2}$ were treated as one group with $n=3.5$ and specimens with a startirg nett sectior stress above this value were treated as another group with $n=7$. In practice the starting stress for all specimens was either appreciably above or appreciably beion $25.50 \mathrm{mi}^{-2}$, which is the threshola stress level for the stress depenänt change in n from 3.5 to 7 . This unfortunately limited the range of the independant variable in each case, but especially for the $n=7$ group. Pre-strained specimens were excluded from all initiation time regression analyses. kil initiation times are listed in Table 4.3. For both n values better comrelations with $\sigma_{\text {nett }}$ were obtained than with K as is shown below, the regression coefficient r is also shown:

$$
\begin{array}{lll}
n=3.5 & \\
t_{i}=105.8 K^{-0.02 n} & r=0.87 & 4.2 \\
t_{i}=217500 \sigma_{\text {nett }}^{-1 . c 35 n} & r=0.06 & 4.3 \\
n=7 & \\
t_{i}=2.58 K^{-0.063 n} & r=0.46 & 4.4 \\
t_{i}=33 \times 10^{5} \sigma_{n e t t}^{-0.67 n} & r=0.74 & 4.5
\end{array}
$$

Where t_{i} is in Frs

$$
\begin{aligned}
& \mathrm{K} " " \mathrm{MNm}^{-3 / 2} \\
& \sigma_{\text {nett }} " \mathrm{Mim}^{-2}
\end{aligned}
$$

Despite the better correlation with $\sigma_{\text {nett }}$ than with K it was still considered that geometry was important in crack initiation time. In order to investigate this possibility the geometric and the stress factors in the K expression were separated.

$$
\begin{aligned}
& K=\sigma . f(a) \quad \text { Where the } f(a) \text { is given by } \\
& \text { a vaiue } Y \text { which incorporates } \\
& \text { a correction for firite } \\
& \text { geometry }
\end{aligned}
$$

INTIATIU, ALE THOUGH FALURE TIEE

SPECITES numed	$t_{\text {i }}$	STAPTMG K	STAETLMG $\sigma_{\text {nett }}$	n	$t_{\text {fail }}$
1	5.5	1.97	15.6	7.0	/
2	C. 25	3.89	30.0	7.0	/
5	40.0	1.2	20.38	3.5	67.0
6	25.0	2.47	13.24	3.5	30.6
7	40.0	1.19	10.33	3.5	EI.6
ε	32.0	1.12	10.39	3.5	72.0
9	40.0	1.19	10.39	3.5	56.1
11	700	0.509	5.27	3.5	1
12	3.0	2.49	21.8ε	7.0	4.33
13	1.85	2.19	20.19	7.0	4.35
15	2.75		20.45	7.0	5.12
16	525	0.506	5.35	3.5	2045.4
17	275	1.30	5.75	3.5	629.8
22	775	0.597	5.38	3.5	2421.4
23	337	0.61	5.29	3.5	1007.0
24	0.6	5.37	20.46	7.0	5.7
25	10	2.87	29.75	7.0	20.3
27	4.5		29.66	7.6	7.0
2ε	625	0.624	5.7	3.5	1248.0
29	500	0.629	5.7 c	3.5	729.4

For unit thickness and width

$$
\begin{align*}
& K=\sigma_{\text {gross }} \cdot Y \\
& K^{n}=\sigma_{g r o s s}^{n} \cdot Y^{n}
\end{align*}
$$

Multiple regression analysis was performed on the following basis:

$$
\begin{align*}
& \log \cdot t_{i}=\log \cdot A+B_{1} \log \cdot Y^{n}+B_{2} \log \cdot \sigma_{\text {nett }}^{n} \quad 4.8 \\
& \text { i.e. } \quad t_{i}=A \cdot Y^{B_{1} n} \cdot \sigma_{\text {nett }}^{E_{1} n} \\
& 4.9 \\
& \text { and } \quad \log \cdot t_{i}=\log \cdot A+E_{1} \log \cdot Y^{n}+E_{2} \log \cdot \sigma_{\text {gross }}^{n} \quad 4.10 \\
& \text { i.e. } \quad t_{i}=A \cdot Y^{E_{1} n} \cdot \sigma_{\text {Eross }}^{E_{2} n}
\end{align*}
$$

$$
\begin{gathered}
\text { Where } A, B_{1} \text { and } E_{2} \text { are constants } \\
\sigma_{g r o s s} \text { is in } \mathrm{Hm}^{-2}
\end{gathered}
$$

The regressions were made using $\sigma_{\text {gross }}$ in place of $\sigma_{\text {nett }}$ because K is based on $\sigma_{\text {gross }}$ and not $\sigma_{\text {nett }}$.

If B_{1} approximately equalled zero in these regression analyses then initiation would be purely stress controlled. If E_{I} is found to approximately equal B_{2} then this constitutes evidence that initiation is strongly dependant upon the value of K operating. Again the two levels of r presented a problem as the constant ' A ' would probably only be constant for a single value of n. The exponent n could not be introduced as a separate variable as it would not be independant of the stress term. This meant that regression analysis to show the individual effects of stress and geometry on initiation time had to be confined to a single n value. However to demonstrate better the effect of geometry, regression across both n values was performed
but in this case the stress term dependance will also be compensating for the change that the n values shoula have made on the constant A. The results are as follows:

For 211 cases of $n=3.5$ (i.e. Iow anà intermec̉iate stress tests)

$$
\begin{array}{rlrl}
t_{i} & =2.3 \times 10^{5}-0.22 n \cdot \sigma_{n e t t}^{-1.06 n} & r=0.97 & 4.12 \\
\text { or } \quad & t_{i} & =7.8 \times 10^{4} Y^{-0.27 n} \cdot \sigma_{\text {gross }}^{-1.15 n} & r=0.09
\end{array}
$$

For all cases of $n=7$ (i.e. high stress tests only)
These analyses include two large notch root radius specimens forwhich $Y=0.07$ was used̀, corresponding to what was considered a suitabiy low value of K .

$$
\begin{array}{lll}
t_{i}=2.1 \times 10^{6} \epsilon_{Y}-0.02 n & \sigma_{n \in t t}^{-0.66 n} & r=0.93 \\
t_{i}=1.2 \times 10^{4} Y^{-0.06 n} \cdot \sigma_{\text {gross }}^{-0.533 n} & r=0.75 & 4.15
\end{array}
$$

Analysis across the two n values
Only the low and high stress regime results have been considered so that the stress term and the creep exponent will correlate almost exactiy, and excluding the large notch root radius specimens.

$$
t_{i}=3500 Y^{-0.165 n} \cdot \sigma_{n e t t}^{-0.34 n} \quad r=0.71 \quad 4.16
$$

The significance of the factors in the regression analyses can be estimated from T test values computed from $B /($ est. standari deviation of E). The T values obtained for the geometric and stress terms are as follows:

	Tfor Y term	Tfor stress term
from equation 4.12	1.69	12.4
4.13	3.34	20.8
4.14	0.68	2.5
4.15	2.19	3.5
4.16	1.32	11.2

For equation 4.14 and 4.15 the signiricance of the stress tem is less than for the other cases because the variation in stress for these cases is slight. Also at $n=$? the emors in predicting the initiation time represent a greater percentage of the average time for this event with this group of specimens than for the specimen where $n=3.5$. Excluaing equation 4.14 and 4.15 the load factor is highly significant in all cases. By comparison with standard T-tables on a one sided basis (that is, increasing Y can only decrease initiation time, the possibility that it might increase initiation time is not considered to exist) the geometric factor in the equations using $\sigma_{n \in t t}$ will just about find significance at the lo\% level. That is, the variation observed in initiation time with change in Y could have occurred purely by chance I time in 10 . For the regressions using $\sigma_{\text {gross }}$ values in place of $\sigma_{\text {nett }}$ values higher significance was observed for the geometric factor. For equation 4.13 for $n=3.5$ the variation in initiation time with change in the Y function could only have occurred by chance 1 time in 200 (i.e. 0.5% significance). For equation 4.15 for $n=7$ the significance was lower than for the corresponding $n=3.5$ case but significance of the Y term was still around 4 times better than for the correlations with $\sigma_{\text {nett. That }}$ is for equation 4.15 the variation in initiation time with y could have occurred purely by chance slightly more often than 1 time in 40 (i.e. around 2.5% significance).

In all cases the exponent for Y was considerably less than the exponent for the stress term. This means that initiation time is not described by k. The predominant factor affecting initiation time is the stress. Geometry described by the Y function has been seen to have some eifect on initiation time, but to a lesser degree than woula be expected if K was controlling the initiation evert.

Specimen thickness was also observed to affect initiation time. This is of particuiar interest as this is not compensated for by K. Increasing specimer thickness was observea to increase initiation time. This effect can be seen from Table 4.4 which shows specimens grouped as corresponding DEN and Cly specimens. It can also be seen from Table 4.4 that in all but one of these groups shown the centre notch specimen initiated faster thar the DN specimen and in three of the comparisons the starting K was lower for the $C l l$ case. This suggests that the Y function is not an adequate description of the effect of geometrical variation on initiation time.

4.2.2.2 Crack Iength Versus Time Data

It was not. feasible to take sufficient photographs of each specimen to produce a reliable plot of crack growth rate versus crack length. For such a plot to be accurate a very precise plot of crack length versus time would be required first. A method of examining the crack growth data was required which would avoid the errors involved in deriving growth rates from the crack length time data. This was done by taking theoretical predictions of crack growth rate and converting them to crack length versus time functions. This enabled the experimental crack length tine data to be directly compared with the theoretical predictions.

Correlations between crack growth rate and either K or $\sigma_{\text {nett }}$ have been proposed, principally on an empirical basis as follows:

$$
\begin{align*}
& \frac{\dot{\alpha} a}{d t}=A K^{\mathrm{m}} \\
& \frac{\dot{d} a}{d t}=B \sigma_{\text {nett }}^{\mathrm{d}}
\end{align*}
$$

It has aiso been proposed that may approximately equal n, the exponent in horton's law. It seems reasonable that m and n should be related if crack growth is displacement controlled. From equations 4.17 and 4.18 it follows that for crack growth between a_{1} and a_{2} :

$$
\begin{array}{ll}
t=\int_{a_{2}}^{a_{1}} \frac{1}{A K^{m}} \cdot d \hat{a} & 4.19 \\
\text { or } & t=\int_{a_{2}}^{a_{1}} \frac{1}{B \sigma_{\text {nett }}^{m}} \cdot d \hat{a}
\end{array}
$$ can be expressed as functions of the crack length a. Using the expression of K for an infinite plate and using $m=n$:

$$
\begin{align*}
& t=\int_{a_{2}}^{a_{1}} \frac{1}{A^{\prime} a^{(n / 2)}} \cdot d a \\
& t=\int_{a_{2}}^{a_{1}} \frac{(1-a)^{n}}{E^{\prime}} \cdot d a
\end{align*}
$$

or

Where A^{\prime} and E^{\prime} are functions of the applied load.

These integrals were solved to give theoretical relationships between crack length and time for each of the crack growth laws. The analyses were confinea to between 0.35 and $0.7 \mathrm{a} / \mathrm{w}$. The limits were set to eliminate effects from crack initiation or ligament collapse. However it became apparent that tertiary effects were operative below $0.7 \mathrm{a} / \mathrm{w}$.

These limits also kept the analysis within the rommal range of the K-calibration of the specimer geometries considered.

For both of the $\sigma_{n e t t}^{n}$ and K_{n}^{n} growth relationships consicered the time interval for growth between 0.35 to $0.7 \mathrm{a} / \mathrm{k}$ was set to 100 units anci graphs of crack length versus time were constructed on the basis of equations 4.21 and 4.22. The time scale for each experimental crack length time plot was nomalised so that the time for crack growth between 0.35 and $0.7 \mathrm{a} / \mathrm{w}$ represented 100 units and could hence be directiy compared with the theoretically derived curves for $\sigma_{\text {nett }}$ and K control.

As for the study of initiation time the specimens were divided into two groups depending upon n value (section 4.2.2.1). Specimens from the intermediate stress range were not considered as a change in the exponent level could occur within the crack growth range considered. The results are shown in the figure 4.9 for the cases of $n=3.5$ and figure 4.90 for cases of $n=7$.

The effect of finite geometry on the K-control curve was estimated using K-caiibration tables. Fĩ. 4.10 shows the percentage increase in K for each geometry from the value at $0.35 \mathrm{a} / \mathrm{w}$ as the crack length increases. The corresponding percentage increases are also shown for $K_{\text {infinite }}$ and $\sigma_{\text {rett }}$. If k control is applying the crack growth will be described by equation 4.17. The exponent m will be a material constant for thet temperature, at least over the stress range for which the creep exponent n is constant. The essential factor of these predictive approaches is that the exponent m shoula not be geometry dependant. Either k or $\sigma_{n e t t}$ should provide a totally adequate description of geometry if either of these approaches are valiò. This means that regardless of the value of n,

PERCENTAGE INCREASE IN K AND
NETT SECTION STRESS WITH CRACK LENGTH. FROM VALUES FOR 0.33A~W
under K control the geometry which shows the greatest percentage change in K over an interval of crack growth shouid show the most change in crack growth rate. Conversely, the geonetry showing the least change in crack erowth rate would be expected to show the least change in K. Eehaviour other than this would dispute that crack growth is controlled entirely by the value of K . The tendency for large changes in K to cause large changes in growth rate will increase as the exponent m increases.

The Iines of percentage increase in K for the DEK anc CN geometries fail betweer those of $\sigma_{\text {nett }}$ and $K_{\text {infinite }}$ inaícating that K control for these specimens would produce a change in crack growth rate with crack Iength between that predicted by $\sigma_{\text {nett }}$ and $\mathrm{K}_{\text {infinite }}$. The SEN geometry showed the greatest percentage change in K and under K contrcl would hence be expected to show the greatest change in crack growth rate.

Under a straightforward $\sigma_{\text {nett }}$ relationship all the specimens should show identical behaviour. However, a bending moment is present with the SEN geometry due to its asymmetric design but a proportion of this moment is relaxed by rotation of the specimen around the loading pins. The magnitude of the bending moment increases with increasing crack length. From plane beam theory, ignoring the effect of stress concentrations arising from the notch, the fibre stress at the crack tip will increase more for the SEN geonetry than for the other two with crack growth. Hence, under $\sigma_{\text {nett }}$ control the SEN geometry would be expected to show a similar or greater change in growth rate than the other two geometries over the same interval of crack growth.

It can be seer from the Fig. 4.9 that for $n=3.5$ only one specimen produced a crack length versus time curve resembling those derived from equation 4.21 and 4.22 , and this was the EDi specimeri TSIT. As aiscussed above, true K control behaviour for this geometry would be expected to show the maximun change in growth rate not the least as shown here. This observation tends to discount the operation of a K or $\sigma_{\text {nett }}$ control law under any single value of the exponent m and not just for $m=n$. This is because even hith allowance for geometry dependance of K and the effect of the bencing moment present with the SEf geometry, the data from all the specimens would not fall on a single line.

For $n=7$ agreement with the predictive theories is better, but again the SEN geometry (TS24 \& 27), even with a very large notch root radius, produced the most uniform crack growth rate of the specimens that had not been pre-strained. This again disputes that the crack growth behaviour over this a/w interval could be described by either the K or $\sigma_{\text {nett }}$ crack growth law using a single value of m.

The possibility that the exponent m should equal $(2 n-2)$ rather than 175183
n has been proposed but there seems littie point in investigating the use of such values of m as it has already been shown that neither the K nor the $\sigma_{\text {nett }}$ growth law will describe crack growth for all the geometries for a single value of m.

It was decided to consider the effect of accumulating damage on the theoretical relationships. To modify the K law to accommodate degradation of the ligament would have required detailed knowleage of the manner in which this damage is distributed across the ligament.

Details of the strain distribution across the various specimen geometries was available from this work, However, the results of the Quantitative metallographic examination of the smooth bar test specimens (section 4.1.3) had inàicated that the relationship between damage and strain is dependant upon the level of the stress. The basis of the $\sigma_{\text {nett }}$ approach is such that it may be considered that the damage is uniformly distributed across the ligament. This means that the damage can be incorporated as an adiitional increment of crack length, that is, crack growth between $0.35+D_{1}$ to $0.7+D_{2} \mathrm{a} / \mathrm{w}$ is normalised into 100 time units with the initial damage vaiue increasing to D_{2} by a function of a / w. The function relating D_{1} and D_{2} used was simply a linear one. The main disadvantage of this method was that the percentage loss of ligament through damage incorporated in the growth law accumulates at a very high rate with increasing a / w unless D_{1} and D_{2} are set close together.

The application of a range of damage allowances are shown in Fig. 4.11a and 4.1Ib. Minor corrections to the theoretical $\sigma_{\text {nett }}$ curve improved the general agreement between the theoretical and experimental results for the CN and DEIV specimens with $\mathrm{n}=7$. However when applied to the case for $n=3.5$ a massive final damage correction proved necessary in onder to bring about general agreement with the experimental results of the DEN and Ch specimens.

The observations with regards ligament collapse made in section 4.2.1 suggested that this phenomenon may have been infiuencing crack growth rate at high a / w values. Examination of the experimental results and theoretical predicted crack length time distributions

showed that even by reducing the growth interval to between 0.35 and $0.55 \mathrm{a} / \mathrm{w}$ would not lead to crack growth being aescribed by either K or $\sigma_{\text {nett }}$ control, based on a single wilue of the exponent for all the geometries for either the case of $n=3.5$ or $n=7$. The basic differences in the trends of crack growth benaviour observed over the interval of 0.35 to $0.7 \mathrm{a} / \mathrm{w}$ would still be observed over the shorter interval of 0.35 to $0.5 \mathrm{a} / \mathrm{w}$.

Sone observations with regards crack growth behaviour were made as follows. The pre-strained specimens, in particular TSIS and 26 showed less change in growth rate than was normal for specimens of their respective geometries. Thinner specimens were observed to show Iess change in growth rate than their thicker counterparts, compare TS 23 and 29 (both 1.66 mm thick) with Ts 22 and 28 (both 6.4 mm thick) Fig. 4.9.

4.2.3 Grid Analysis

Grid displacements in both the X-direction and Y-direction have been analysed. The displacements in the Y-direction, ${ }_{y y y}$, were analysed over a standardi interval of the first 6 lines between I and $4 m m$ either siode of the $X X$ centre inne. Measurements of the aistarce between lines of corresponding interval either side of the X centre line were made from photographs of the specimens taker auring testing. See Fig. 4.12a. This neant that the calculatec aisplacement would be an average for the corresponding points above and below the crack plane. This was considered desirable in order to reduce the effect of inaccuracy in measurement and to accommodate any minor deviation of the crack tip from the $X X$ centre line. The $\dot{a} i s p l a c e m e n t \dot{a}_{y y}$ for each point was caiculated by dividing the measurement of the distance

MEASUREMENT OF GRID LINES FOR THE ASSESMENT OF DISPLACEMENT
between the two corresponding points by the magnification of the photograjn, then subtracting the equivalent distance measured from the photographs of the unstrained specimen also diviaed by the relevant magnification. The resuit of this subtraction was then civided by two to compensate for the measurements heving been made across two quančrants, i.e.:

$$
\dot{a}_{y y}=\left(\frac{\text { measurement }}{\operatorname{mag}_{t=t_{1}}} t_{1}-\frac{\text { measurement }}{t=t_{0}} \operatorname{ma}_{t=t_{0}}\right) / \hat{2}
$$

$$
4.23
$$

Wherever possible the magnifications $m a \varepsilon_{t=t_{0}}$ and $m a \varepsilon_{t=t_{l}}$ would be the same.
 measurements from the YY centre line of the specimen for the and DEN geometries. This line was used as it could be considered to be free of lateral displacement in these geometries. For the sell case measurements were made from the first line in from the specimen edge remote from the notch tip. For all geometries, measurements for corresponding points above and below the $X X$ centre line were averaged to improve accuracy. See Fig. 4.12b. Measurements were not made along the $X X$ centre line as deformation near the crack tip usually obliterated the grid markings. Where strains are quoted they have been calculated from displacement between 1 and 1.5 mm from the $X X$ centre line. As for the case of the displacements $a_{y y}$ the values of $d_{y x}$ were calculated by dividing by the magnification and then subtracting the relevant distance of the points in question from the reference line before deformation.

$$
d_{x y}=\frac{\text { measurement } I_{t=t}}{2 \operatorname{ma} \varepsilon_{t=t_{1}}}+\text { measurement } t_{t=t_{1}}-\frac{\text { measurement }_{t=t_{0}}}{\operatorname{mag}_{t=t_{0}}}
$$

Ensineering extensional strain $e_{i i}$ is equivalent to the gradient of displacement $\dot{a}_{i i}$ with distance in the i-cirection. The displacements $\dot{a}_{x x}$ and $\dot{d}_{y y}$ were usea to caiculate values of $\varepsilon_{x x}$ and $\varepsilon_{y y}$ on this basis.

It was found that ${ }_{\mathrm{d}}^{\mathrm{y}} \mathrm{y}$ increased in a linear manner with Y - distance from the X centre line, for example see Fig. 4.13. The degree of linearity was particularly good within the confines of the 45° shear bands but the gradient of a straight line, fitted by a least squares method to displacement versus distance measurements, within the limits of I to 4 mm either side of the $X X$ centre Iine indicated earlier, was considered a good description of uniform strain at all points across the ligament. With the exception of the near tip region, the linear regression of displacement versus distance produced negligible intercept vaiue. That is, the product of the regression gradient and distance form the $X X$ centre line to a pointy iescribed approximately all the displacement that had occurred over this distance. This means that provided the degree of linearity is acceptable then it can be considered that a uniform strain exists along the line of measurement, across the $X X$ centre line.

Near the crack tip or notch tip a definite displacement additional to the uniform strain was observed in the form of an intercept value in the regression analysis. When approaching the crack tip along the $X X$ centre line the last point through which displacenent analysis showed a negligible non-uniform contribution, that is less than 0.08 mm was referred to as the D-point (deviant). The general trend of the displacement $d_{y y}$ versus Y-distance is shown schematically for various positions across the ligament in Fig. 4.14a. The trends in

the variation of uniform strair ana intercept value are shown ir Fig. 4.14 b .

The strain distributions from all tests for which analysis of the $\varepsilon_{y y}$ strains has been performed are shown in Fig. 4.15, the key to these figures is show in Fig.4.15a. The basic shape of these profiles for the Cli and DBN geometries are similar however the strain $\varepsilon_{y y}$ for the SER specimens is observed to decay to a particularly Iow value remote from the crack tip.

The separation of the D-point from the crack tip has beer shown ir relation to the crack tip position in Fig. 4.16. For the CN and DEN cases together the average of this distance is $7.8 m$ (stanamed error of the mean 0.18) with little evidence of stress depenâance. There was a slight tendency for the value to rise during the early stages of the initiation period. With the SER geometry the average was iower, 0.98 (standam error of the mean of 0.35). A tendency for the D-point to be close to the crack tip in the very late stages of crack growth were observed.

Each $\varepsilon_{y y}$ strain value is based on 6 aisplacement measurements. Measurements were estimated to the nearest 0.25 mm and the error on each ruler measurement shouid be less than 0.5 mm in each case. For a typical photograph magnification of $x 6$ an error in measurement of 0.5 mm over 2 quadrants would result in an error in assessing each distance of 0.04 mm , the magnitude of these distances will be between l and 6 mm . The measurements for the underormed state are basec on the average of 5 measurements for each line spacins, so assuming the scribe lines are parallel this will introauce an error less than 0.01 mn in
KEY TO FIGS． 4.15
POINTS PLOTTED AS PHOTOGRAPHIC SEQUENCE NUMBER
point ringed is d－point for sequence
3
2^{0}
DISTANCE FROM \＆YY（mm）

NIHYIS ヨ9YLNJJCJd
ENG. STRAINCYY).V.X-DISTANCE
FROM CENTRE LINE YY FOR TS 7

ENG. STRATN YY).V X-DISTANCE
FROM CENTRE LINE YY FOR IS 9

NIHELS コSHINZOYJd
ENG. STRAINKYY.V.X-DISTANCE
FROM CENTRE LINE YY FOR ISIO

 -

5
4

$$
\frac{6}{8} \frac{6}{10}
$$

NivyIS -avingurad

ENG. STRAIN $Y Y$ Y.V. X-DISTANCE FROM CENTRE LINE YY FOR TS15

NIHCIS J5YINGJYGd

ENG. STRAINKYY』V. X-DISTANCE
FROM SPECIMEN EDGE FOR TS 17

NIWUS J9YNNJJきd
ENG. STRAIN YY).V.X-DISTANEE
FROM CENIRE LINE YY FOR TS18
PRE-STRAIN

$$
\begin{aligned}
& \text { ल) } \\
& \text { distance from clemm) }
\end{aligned}
$$

ENG. STRAIN (Y) .V. X-DISTANCE
FROM CENTRE LJNE Yy FOR TS25
-

ENG. STRAIN Y YY.V. X-DISTANCE
FROM CENTRE LINE YY FOR TS26
ENG. STRAIN (YY).V.X-DISTANCE
FROM SPECIMEN EDGE FOR TS27

F16. 4.15 .27
10

CENTER LO R TOR CENTRE LINE
ENS, STRAINKYY. V. X-DISTANCE
FROM CENTRE LINE YY FOR TS 29

NI YUIS $39 \forall$ NヨJdgd
the displacement measurements. For a 15% strain the aisplacements will be betweer 0.15 mm to 0.52 mm . Magnification differences between photographs will introduce errons so attempts were maae to minimise these wherever possible. A constant error in the magnificatior: of ail the photographs will not effect the graaient of displacement so these could be tolerated to a greater extent but where still kept to a minimun where possible. The worst errors will occur when by statistical chance the dispIacement error eitner accumuates or decreases with distance. If a Iine over which 250° strain ham occurred hai errors in measurement increasing linearly Irom - $0.04 m$ at the $X X$ centre Iine to +0.04 mm at 3.5 mm either side of the centre Iine, then a strain of approximately 77% woula be obtained from the regression araiysis. This inaicates that the majority of all the strain values (i.e. more than gow) shoula be well within in of the indicated percentage as the more normal tendency woula de for a rancom aistribution of the measurement errors. On the other extreme, if all the measurements were either over-estimated or underestimatec by 0.04 mm then the non-uniform contribution to the displacement (intercept value) would appear to be cnanged by $0.04 m n$ accordingly.

The gracient of $\dot{a} x$ with distance was devoid of any linear region of the nature observed in the analysis of the $\varepsilon_{y y}$ strain values. The displacements used were calculated from the average of 2 measurements. Fairiy extensive plots of \dot{c}, versus $\dot{a} i s t a n c e ~ w e r e ~ p r e p a r e d, ~$ especially in the resion betweer the I-point and the crack tip, which assisted in shonine up ary particulariy urreliabie measuremerts. However the analysis of the $\varepsilon_{\text {wi }}$ strains cannot be consiaered of compatible accuracy to the ε y vaiues eacr $C=$ which was based or E
measurements specific to that value. Also the $\varepsilon_{X X}$ vaiues were smaller than their Y-direction counterparts making them ever more suseptible to errors from measurement.

The effect of vertical distance from the M centre line on the ε_{x} values has been observed throughout, but in particular in the earlier tests. The variation o $\varepsilon_{i \alpha x}$ with increasing Y-distance from this centre ine has defied exact quantification, possibly due partly to the inherent inaccuracy. Scans of $\dot{a}_{x x}$ across the ligament in the X -direction for increasing distances above the $\mathrm{X} X$ centre line were made. These showed an overall decrease in displacement for the Cl geometry and over the range of distance from the $X X$ centre line considered, an increase for $D E[$ specimens. This is consistent with the observation in section 4.2 .1 with regaris the position of the region of maximum lateral contraction as shown in Fig. 4.5.

When comparing plots of displacement versus distance produced from measurement scans at different distances above and below the $X X$ centre line the following was observed. The plots for a specimen were basically similar in appearance and would approximately superimpose if moved together in a horizontal direction by a distance roughly equal to the vertical separation of the scans. The plot from a measurement scan made further from the $X X$ centre line would require to be displaced back towards the crack tip in order for it to superimpose with a plot from a scan nearer the $X X$ centre line. This effect and the general shape of $d_{X X}$ versus distance plots are shown schenatically for the DEN and CN specimens in Fig. 4.17. The features of the profiles are also smoothed or averaged slightly as the distance from the X . centre line increases, but this is only really significant where very large changes in the gradient of displacement occur, such as at the

SCHEMATIC REPRESENIATION OF
HORIZONTAL DISPLACEMENT.V.
DISTANCE FROM YY-CENTRE LINE
F19.4.17
notch tip durine crack initiation.

There were two basic reasons why the $\varepsilon_{y z}$ anc $E_{y y}$ strain distributions were determined. Firstly in onder to gain evidence as to the parameters controlling crack advance by examining for critical strain or COD criteria and secondly in an attempt to evaluate the nature of the distribution of stress with increasing distance from the crack tip under creep conditions. These observations are reported under the headings of liajor Strain Observations and Strain Profile Analysis respectively.

4.2.3.1 Major Strain Cbservations

Slow crack growth is consistent with the advance of the crack tip being controlled by the attainment of a critical strain or displacement, or with the attainment of a critical amount of damage which would probably be related to strain. To examine this possibility of crack growth being controlled by such a criterion the following true strain measurements, or parameters derived from true strain measurements have been plotted against the instantaneous position of the crack tip:
i) Maximum value of $\varepsilon_{y y}$ for each position of the crack tip examined.
ii) D-point strain " " " " " " iii) $\varepsilon_{x x}$ at the location of maximum $\varepsilon_{y y}$
iv) Equivalent strain at the location of maximum $\varepsilon_{y y}$
v) Arithmetic sum of $\varepsilon_{y y}$ and $\varepsilon_{x x}$ from i and iii above
vi) An indication of the deviation from normal Poisson contraction strain
vii) COD (equivalent) At the crack tip and at the position of maximum $\varepsilon_{y y}$ from (i) above.

These are shown in Fig. 4.IEa to $4.18 g$ respectively. Considering each in turn.

Heximum value of $\varepsilon_{\text {, }}$ for each position of the crack tip These values are the meximum values of $\varepsilon_{y y}$ ooserved for each examination of a specimen strain profile. One value is shown for each determination of the strain distribution across a specimen ligament. The maximum value of $\varepsilon_{y y}$ for a given strain distribution would normally occur a short cistance ahead of the crack tip, or in the later stages of crack growth, very close to the crack tip. These values of $\varepsilon_{y y}$ only represent the uniform strain component of the total displacement and do not include the non-uniform displacement represented by the intercept component observed in the near tip region.

Comparing the maximum values of $\varepsilon_{y y}$ obtained for the different geometries, and the variation in these values with crack growth it can be seen that this quantity is geometry dependant. The CN and SEN geometries exhibited greater tensile ductility than the DEN specimens. The general trend of behaviour is shown schematically in Fig. 4.19.

Strong support was observed for the existence of a critical strain criterion for a particular geometry once growth was well established, that is,after about $0.42 \mathrm{a} / \mathrm{w}$. During earlier stages of crack growth lower values of maximum $\varepsilon_{y y}$ were observed. Typically the DEN geometry stabilised at value of $\varepsilon_{y y}$ around 20 to 25% and the other two geometries around 40%
$\underset{\sim}{n}$
$\infty \quad \cong \quad \cong$
POINTS INDICATED BY SPECIMEN NUMBER

$(M-\forall)^{\circ} \wedge^{\prime}(\lambda \lambda) N I \forall \forall 1 S^{\circ} X \forall W$
$E 1$
N
N
Σ
17

NIかもIS $\exists 9 \forall \perp N \exists \partial J \exists j$

NIGyIS $\exists 9 \forall 1 N \exists 3 \forall \exists d$

돈

R8:

SCHEMATIC REPRESENTATION
OF GEOMETRY DEPENDANCE
OF STRAIN $Y Y) V A L U E S ~$
CN\&SEN

D-Point Strain for each position of the crack tip

The value of the strain at the D-Point (the last point when approaching the crack tip to exhibit a negligible non-uniform strain contribution) was typically only a few percent lower than maximum value of $\varepsilon_{y y}$ during growth and in the very early stages of the initiation period approximately coinciaent with the $\varepsilon_{y y}$ value. The characteristics of the D-point strain with crack length and geometry consequently closely resemble those of the maximum $E_{y y}$ values. This means that the schematic Fig. 4.19 will also describe the variation in D-point strain.

Values of $\varepsilon_{x x}$ at the location of maximium $\varepsilon_{y y}$

These strains were evaluated at a distance of between 1 and 1.5 mm either side of the specimen $X X$ centre line. This was necessary because deformation in the near tip region was normally too intense to permit the grid markings to be distinguished. Increasing the vertical distance above or below the $X X$ centre line was observed to shift the displacement profile to a similar extent horizontally. Using this observation the gradient of displacement $d_{x x}$ was evaluated between the locations of maximum $\varepsilon_{y y}$ ara the D-point in order to compensate for not evaluating the strain along the $X X$ centre line.

As expected from visual examination of the deformed specimens these strain values proved highly geometry dependant. The Dell geometry produced only small values of $\varepsilon_{x x}$ with the Cir geometry tending to proouce much larger values. The SEl geometry was less consistent than the other two showing some ouite moderate $\varepsilon_{j x}$ strains and some very large strain values, particularly at higher a / w values. The basic trend of large strains with $C N$ and SElN specimens and small strains with LEN specimens was basically maintained, especially at higher a/w values.
$\frac{\text { Equivalent strain at the location of maximum } \varepsilon}{y y}$
The equivalent strain was calculated from the following equation;

$$
\bar{\varepsilon}=\left(\frac{2}{y}\left(\varepsilon_{x}-\varepsilon_{y}\right)^{2}+\frac{2}{9}\left(\varepsilon_{y}-\varepsilon_{z}\right)^{2}+\frac{2}{\zeta}\left(\varepsilon_{z}-\varepsilon_{x}\right)^{2}\right)^{0.5}
$$

The values of $\varepsilon_{y y}$ and $\varepsilon_{i x}$ used were those already considered. The values of $\varepsilon_{z z}$ were calculated on the basis of constant volume.

$$
\begin{align*}
& \varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}=0 \\
& \varepsilon_{x}+\varepsilon_{\mathrm{y}}=-\varepsilon_{\mathrm{z}}
\end{align*}
$$

Whilst appreciating that constant volume in unlikely to $b \in$ a totally valid assumption any deviation due to effects such as grain boundary cavitation should be small and elastic dilatation will be negligible. For this approach, only those sequences after which initiation was considered to have occurred were includeci. The results still show the geometry dependance indicated by Fig: 4.19, that is the Den specimens tended to produce substantially smaller strains (around 24%) than the other two geometries (around 40%). The equivalent strain approach showed approximately the same difference in the level of strain between the geometries as the maximum $E_{y y}$ approach. However, the equivalent strain values were generally greater than the maximum $\varepsilon_{y y}$ values by up to an additional 3% and there is some evidence of the DEN specimens showing a more consistent tendency for such an increase compared with the CN geometry: This would be consistent with the DEN geometry showing a greater degree of lateral constraint than the Cli geonietry.

Summation of maximum ε yy with the corresponding value of ε for each
position of the crack tip
In this case the arithmetic sum of maximum $\varepsilon_{y y}$ and correspond $\varepsilon_{x x}$ values were plotted against the instantaneous position of the crack
tip. Again only sequences after crack initiation had occurred were included in the analysis. At constant volume this summation wili equal -1. times the through thickness $s \operatorname{train} \varepsilon_{z Z}$. This approach proved the most successful of all those considered so far ir bringing the results of $2 l l$ three geometries into a single common band. That is, this parameter was the least geometry dependant of all those considered so far.

Behaviour for the $C N$ and DElr geometries could basically be described as follows. Initiation occurred at a fairly low value of trirough thickness strain (computed for the position of maximum $\varepsilon_{y y}$, just ahead of the notch tip). As crack growth continued the through thickness strain corresponding to the instantaneous position of maximum $\varepsilon_{y y}$ increased to around $20 \% \pm 5$ after a fairly short increment of crack growth and then stabilised around this value. It is possible that a small decrease in this strain value may occur in the very final stages of fracture but evidence at high a/w values is sparse due to ligament collapse.

Not all the results of the SEN geometry fell within the scatter band of the results of the other two geometries. This deviation was more pronounced at a / w values between 0.6 and $C .7$. However the results of the SEN geometry fell on both sides of the scatter band for the DEN and CN specimens, indicating that this geometry does not radically differ in behaviour to the other two with respect of this parameter.

Deviation from normal Poisson contraction

Under conditions of uniaxial tension from a stress $\sigma_{y y}$, an isotropic material at constant volume woula be expected to produce equal strains
in the X and Z direction, both equal to -0.5 times the strain $\varepsilon_{y y}$. Deviation from this behaviour indicates that a constraint exists in either the X or Z direction or in both directions but of differing magnitucies. It has been observed that the CN and DEN geometries exhibit very different $\varepsilon_{x x}$ behaviour. This inäicates differing degrees of lateral constraint. Consider the deviation from Poisson behaviour in the contraction in the X-direction, assuming constant volume and plane stress conditions:

The contractional strain $\varepsilon_{x x}$ under normal uni-axial
conditions would be given by,

$$
\varepsilon_{x x}=-0.5 \varepsilon_{y y}
$$

Therefore the deviation will be given by,

$$
\varepsilon_{x x}-\left(-0.5 \varepsilon_{y y}\right)
$$

As a fraction of $\varepsilon_{y y}$ the deviation P_{d} will be given by,

$$
p_{d}=\left(\varepsilon_{x x}+\varepsilon_{y y}\right) / \varepsilon_{y y}
$$

If the deviation P_{d} given by equation 4.28 is positive then a constraint to contraction in the X-direction exists. A value of P_{d} equals 0.5 indicates that $\varepsilon_{X X}$ is zero so contraction in the width direction is fully constrained. A value of zero indicates no constraint to lateral contraction or that the stresses opposing contraction are equal in the X and Z-directions. A negative value of P_{α} will arise if $\varepsilon_{X X}$ is greater than that expected from Poisson contraction. This would imply that the resistance to through thickness contraction is greater than the resistance to width contraction and the conditions are not those of plane stress.

This parameter P_{d} has been evaluated using the values of maximum $\varepsilon_{y y}$ and the corresponding values of $\varepsilon_{x x}$ considered above. The results are shown in Fig. 4.78f. The results show an expected geometry
dependance, the Cfi geometry (both n values but eccluding pre-strained specimens) gave an average value of the F_{d} deviation factor of +0.12 (standard error of mean 0.02) and for the DEK geometry under the same restrictions, an average fractional deviation of 0.29 (standard error of mean 0.01). The SEN geometry produced an intermediate value for the average $P_{\dot{d}}$ value of 0.26 (standard error of mean 0.04). With the $D E N$ and $C N$ geometries there was no definitely detectable change in the value of the deviation parameter with increasing a/w. With the SEN geometry there was some evidence to suggest that a decrease in width constraint occurred with crack growth, this would not have been unexpected for this geometry. Unfortunately the number of SEN specimens tested was too few to definitely confirm whether or not a trend really does exist.

Fractional deviation values less than zero indicates that the resistance to thickness contraction is greater than any resistance to width contraction. These particular instances may be indicative of inaccuracy but it was noticed that all the pre-strained specimens, particularly the high stress cases, showed a greater tendency for width contraction than thickness contraction during pre-straining. That is, without notches complicating strain behaviour. This was confirmed by both measurements from the grids and from measurements of the specimens with a micrometer after pre-straining.

The fractional deviation from normal Poisson behaviour $P_{\dot{d}}$ was used to estimate the constraint stress $\sigma_{x x}$ operative in the Cli and DEN specimens. This was done by use of the Hencky equations for plasticity. Under steady state creep conditions for each single instance of time the creep and plasticity laws can be shown to be analogous:

$\varepsilon=A \cdot \sigma^{n}$	Flasticity	4.29
$\dot{\varepsilon}=A \sigma^{n}$	Creep	-4.30
$\varepsilon=A . \sigma^{n}$	Creep	4.31

Hence the creep and plasticity laws are analogous if:

$$
A^{\prime}=A t
$$

This approach is similar in result to application of the Hof \tilde{f} analogue in which a creep situation under steady state conditions can be show to be analogous to the non-linear elastic solution.

The assumption of steačy state conditions is considered in éetail in section 4.2.3.2. The validation of this assumption was particularly important in this section for the analysis of the variation of strain with distance from the crack tip.

For the CN and DEN geometries the fractional deviation from Poisson behaviour was observed to remain approximately constant throughout a test. This indicated that the applied tensile stress and the constraint stress (or stresses) remained in an approximately fixed proportion duxing initiation and growth. This observation enabled direct application of the plasticity equations to the creep case. Creep strain is given by the sumnation of a function of the stress for each instance of time, whilst the strain under plastic conditions is basically governed by the maximum level of stress attained.

$$
\begin{array}{ll}
\varepsilon_{\text {creep }}=\int_{0}^{t} A \sigma^{n} \cdot d t & 4.33 \\
\varepsilon_{\text {plastic }}=A \cdot \sigma_{\max }^{n} & 4.34
\end{array}
$$

The problem of strain accumulation is hence considerably simplified if the ratio of the stresses under biaxial loading can be considered constant.

The Hencky equations assume the material to be homogeneous and isotropic so that the axis of principal stress and strain coincide. This should be reasonably true for the material over which the strains were measured but some cavitation may have been present. Proportional loading is also a requirement for the application of the Hencky equations. On the basis of the observation of approximately fixed proportionality between $\varepsilon_{x x}$ and $\varepsilon_{y y}$ for a given specimen, it was assumed that this requirement was satisfied.

$$
\text { Let } \alpha=\frac{\sigma_{2}}{\sigma_{1}} \text { and } \beta=\frac{\sigma_{3}}{\sigma_{1}}
$$

Then

$$
\begin{aligned}
& \varepsilon_{1}=\left(\frac{\sigma_{1}}{\Gamma}\right)^{1 / n^{\prime}}\left(\alpha^{2}-\beta^{2}-\alpha \beta-\alpha-\beta+1\right)^{\left(1-n^{\prime}\right) / 2 n^{\prime}}\left(1-\frac{\alpha}{2}-\frac{\beta}{2}\right) 4.35 \\
& \varepsilon_{2}=\left(\frac{\sigma_{1}}{c}\right)^{1 / n^{\prime}}\left(\alpha^{2}+\beta^{2}-\alpha \beta-\alpha-\beta+1\right)^{\left(1-n^{\prime}\right) / 2 n^{\prime}}\left(\alpha-\frac{\beta}{2}-\frac{1}{2}\right) 4.36 \\
& \varepsilon_{3}=\left(\frac{\sigma_{1}}{c}\right)^{\frac{1}{n}}\left(\alpha^{2}+\beta^{2}-\alpha \beta-\alpha-\beta+1\right)^{\left(1-n^{\prime}\right) / 2 r^{\prime}}\left(\beta-\frac{\alpha}{2}-\frac{1}{2}\right) 4.37
\end{aligned}
$$

Let R equal the ratio of $\varepsilon_{y y} / \varepsilon_{x x} \quad$ i.e $\varepsilon_{y y}=R \varepsilon_{x x} \quad \begin{aligned} & \text { Where } n^{\prime}=l / n \\ & c=\sigma / n^{n^{\prime}}\end{aligned} \quad 4.3 \varepsilon$ Thus

$$
R\left(\alpha-\frac{\beta}{2}-\frac{1}{2}\right)=\left(1-\frac{\alpha}{2}-\frac{\beta}{2}\right)
$$

Assuming plane stress conditions $\beta=0$

$$
\begin{array}{ll}
R(\alpha-0.5)=\left(1-\frac{\alpha}{2}\right) & 4.40 \\
\alpha=(1+R / 2) /(R+0.5) & 4.41
\end{array}
$$

Now consider the P_{α} value of 0.12 for the $C N$ geometry and 0.293 for the DEN geometry. For unit strain in the Y-direction these deviations correspond to values of $E_{x x}$ as follows:

$$
\begin{aligned}
& \varepsilon_{x X}=-0.5+0.12=-0.38 \text { for the } C N \text { case } \\
& \varepsilon_{x x}=-0.5+0.293=-0.207 \text { for the } D E N \text { case }
\end{aligned}
$$

These correspond to R values of -2.63 and -4.83 respectively. Substitution in equation 4.41 produced the following values of α for the CFI case 0.148 and for the DEN case 0.327 . The SEN case has not been considered because it is expected that the degree of constraint may change significantly with crack growth for this geometry. The α values calculated correspond to:

$$
\begin{aligned}
& \sigma_{y y}=6.75 \sigma_{x x} \text { for the CN case } \\
& \sigma_{y y}=3.06 \sigma_{x x} \text { for the DEN case }
\end{aligned}
$$

That is, if the use of the Hencky equations is permissible under the conditions considered, the DEN geometry produces a constraint to lateral contraction at the point where maximum $\varepsilon_{y y}$ is observed over twice that observed in the CN geometry and equal to almost one third of the applied tensile stress at this point. Introducing a small through thickness constraint such that $\beta=0.05$, then using the same values of R in equation 4.39 :

$$
\begin{aligned}
& \sigma_{y y}=5.26 \sigma_{x x} \text { for the CN case } \\
& \sigma_{y y}=2.75 \sigma_{x x} \text { for the DEN case }
\end{aligned}
$$

That is, the DEN geometry still shows around twice the lateral constraint seen with the CN case.

Crack Opening Displacement

It has been shown from the grid analysis that displacements near the crack tip, that is closer than the D-point, result from the combination of a uniform strain $\varepsilon_{y y}$ and a non-uniform displacement I. The total displacement d along any vertical line across the $X \times$ centre line is givenby:

$$
\mathrm{d}=I+H E_{y y} \quad 4.42
$$

The exact position at which the $C O D$ should be evaluated is open to some debate. The crack tip is initially the most obvious location. However, at this location the material is being observec in its final stage of a necking process and observations at this position would be unlikely to proviè much insight into the controlling criteria for crack advance. The D-point marks the location of the onset of the non-uniform contribution which appears to arise from localised necking. The onset of this non-uniform contribution to displacement could be considered to represent the onset of the final failure process. The D-point is hence another position at which evaluation of the $C O D$ should be considered. A third possibility is the position at which $\varepsilon_{y y}$ reaches its maximum value. The position of maximum $\varepsilon_{\text {yy }}$ is roughly midway between the crack tip and the D-point. The summation of $\varepsilon_{y y}$ and $\varepsilon_{x x}$ at this point has already been shown to represent a good criterion for the crack advance in all three geometries. Also failure criteria for sheet forming under biaxial tension have shown that the onset of failure is started by the formation of a groove, but ultimate failure is controlled by the strain in the bulk sheet after the initial formation of this groove. Hence the use of the position of maximum $\varepsilon_{y y}$ for evaluating the $C O D$ has some justification.

Moving from the D-point to the position of maximum $\varepsilon_{y y}$ and on to the crack tip the contribution of the non-uniform deformation to the COD value will be increasing in importance.

It is unlikely that all the displacement described by equation 4.42 for any one of these three locations could be described as the true COD as some of the displacement may occur outside the region bounded by the flanks. However, it seems reasonable to propose that the
true COD may show some degree of proportionality to a quantity evaluated on this basis. Evaluations based on equation 4.42 shall be referred to as equivalent $C O D$ values. The main problem with this approach is in specifying the length of the gauge length H. For equivaient $C O D$ values at the D-point the gauge length is unimportant provided that it may be considered constant during crack growth. If H is constant then the equivalent $C O D$ is simply proportional to the D-point strain as the value of I is zero. This means the COD will be strongly geometry dependant as shown in Fig. 4.18b and schematically in Fig. 4.19. As the non-uniform displacement is only observed near the crack tip, this region can be considered similar to a plastic zone under LEFM conditions. If this zone can be considered circular then the non-uniform contribution can be considered to occur over a distance equal to the distarice of the crack tip from the D-point. It would seem logical to adopt this length for the gauge length H for equivalent $C O D$ evaluations at both the crack tip and region of maximun $\varepsilon_{y y}$. For the $C N$ and DEll specimens this distance was found to be approximately equal to 2 mm . Equivalent COD values using a gauge length of 2 mm are shown in Fig. $4.1 \mathrm{Eg}(\mathrm{i})$ for the crack tip position and Fig. 4.18 g (ii) for the position of maximum $E_{y y}$. Only cases for which initiation was considered to have occurred have been included.

Approaching the crack tip from the D-point the non-uniform displacement contribution to the equivalent $C O S$ becomes progressively more dominant and there is a marked decline in the geometry dependance of the COD values obtained. However even at the crack tip there was some evidence of slightly larger displacements with the Cli specimens. The basic trends of the equivalent COD evaluations made at the crack tip and ai the position of maximum Eyy were similar.

As with the plots of maximum $\varepsilon_{y y}$ and D-point strain etc. there was evidence of an initial increase in equivalent $C O D$ over the first $0.05 \mathrm{a} / \mathrm{w}$ of crack growth. Arter this initial increase there was little further change in the equivalent cod values.

Although comparatively geometry independant the equivalent $C O D$ based on crack tip measurements is not considered a good criterion on which to assess crack advance. It appears that the geometry independance of this equivalent COD value at this position is due to the geometry independance of the necking phenomenon masking a geometry dependant uniform strain. This uniform strain will be the more useful description of the imminence of failure. Numerical techniques for predicting crack growth on the basis of stress and strain computations will be more able to deal with a critical uniform strain than a displacement arising from local necking.

It is interesting to note that the equivalent COD values at the crack tip, typically somewhat less than 1 mm , are in fact smaller than initiation COD values estimated from measuring the opening of the notch flanks. These estimates are listed in Table 4.5 and were made by measuring the notch flank opening from photographs. This technique proved to open to a degree of personal interpretation and the results are only considered suitable for comparison with the equivalent COD values. For some specimens estimations of the $C O D$ values during growth were made by projecting the lines of the notch flanks forward to the position of the instantaneous crack tip and measuring the separation. Examples of the COD estimations made in this manner for a DEN and CN specimen are shom in Fig. 4.20. For both geometries the estimated $C O D$ increases with crack length to an unrealistically high figure. The difference in the COD behaviour during growth (FROH: HOTCH FLALK OPENING)

SPECIMEli NUMBER	COD (mm)
7	1.7
ε	2.6
9	2.5
11	2.0
12	2.2
13	2.5
16	1.5
17	1.0
18	1.3
19	1.0
22	1.4
23	1.6
24	2.0
25	2.2
26	1.2
28	
29	

EXAMPLES OF COD VALUES ASSESED FROM NOTCH MOUTH OPENING
depending on whether the evaluation of the $C O D$ is made by the notcin flank projection method or by an equivalent COD approach is discussed in section 5.2 .

Effect of test variables on major strain observation

The effect of basic specimen geometry (DEN, CN or SEN) has already been considered in the analysis of the major strain observations. The effect of some other variables will now be summarised. These variables include

```
stress level
thickness
creep pre-strain
notch root radius
starter notch length
```


Stress Level

There is little evidence to suggest that the level of the applied starting stress caused any significant effect on the magnituaje of the strains observed. No changes correlating with starting stress level were detected in the equivalent COD values. This was also basically true of the values of the deviation from normal Poissor behaviour. However, it was noticed that the high stress pre-strained specimens $T s 18$ and 26 could account for a large proportion of the negative values for this parameter.

Test Specimen Thickness

The maximum values of $\varepsilon_{y y}$ obtained for a DEN and CN specimen from each of the three thicknesses of sheet used are shown in Fig. 4.21. No definite trend with thickness could be identified from this figure. This is also basically true for the corresponding values of $\varepsilon_{x x}$ but

trends with this parameter appear less easy to identify. The results of the 1.6 mm specimens and the 6.2 mm specimens all fall in the general scatter band of results for the summation of $\varepsilon_{y y}$ and $\varepsilon_{x x}$. A trend for the thicker specimens to show a lower deviation from normal Poisson contraction than their thinner counterparts could exist. The significance of the observation is doubtful as the variation in P_{d} is not sufficient to cause the results of these specimens to deviate from the general band of scatter. The equivalent $C O D$ is the only parameter considered that is not calculated entirely from $\varepsilon_{y y}$, $\varepsilon_{x x}$ or both. The equivalent COD values were free from any detectable correlation with thickness once crack growth was established but the equivalent $C O D$ values at the crack tip for the thicker specimens TS22 and 28 were lower than average during the very early stages of growth.

Creep Pre-Strain

These specimens would be expected to show a deviation from the normal $E_{x x}$ behaviour for their respective geometries due to the lack of constraint from the notches during pre-straining. This was particularly noticable for TS26 which was of the CN geometry and extensively pre-strained (14.3%). The results of the summation of the maximum value of $\varepsilon_{y y}$ and the corresponding value of $\varepsilon_{x x}$ for these specimens fell close to the results for the specimens that had not been pre-strained. This would not be the case if only that strain accumulated af'ter pre-straining was considered.

Notch Root Radius

The principal effect of increasing notch root radius appeared to be a reduction in the lateral constraint during initiation and in the
first stages of crack growth, but the eifect appeared to become fairly insignificant after a short length of crack is established. The reduction in lateral constraint was apparent from the three specimens with very large root radii all showing larger value of $\varepsilon_{x X}$ and smaller values of $F_{\dot{\alpha}}$ than was typical for their respective geometries. However, on the basis of the sum of the $\varepsilon_{y y}$ and $\varepsilon_{x x}$ strains the behaviour of these specimens was consistent with that shown by the other specimens.

Starter Notch Length

One specimen TS25 was tested with starter notch lengths corresponding to $0.65 \mathrm{a} / \mathrm{w}$ as opposed to around $0.33 \mathrm{a} / \mathrm{w}$. During initiation this specimen exhibited an above average deviation from normal Poisson behaviour. As crack growth became established in this specimen all the strain parameter values and the equivalent $C O D$ values were observed to approach those typical for the DEll geometry. Unfortunately ligament collapse occurred in this specimen after only a short interval of crack growth.

4.2.3.2 Strain Profile Analysis

In order to preaict the rate of acivance of a creep crack in a material
it will be necessary to know the criteria controlling crack advance and also the nature of the stress distribution ahead of the crack tip. This will enable an estimate to be made of the rate at which the criteria controiling crack advance are satisfiec̃.

Functions predicting the variation of stress with distance from the tip of a creep crack have been proposed as follows (see Section 2.4.2)

$$
\begin{array}{ll}
\sigma \alpha x^{-(1 / 2 n)} & 4.43 \\
\sigma \alpha x^{-(1 / n+1)} & 4.44
\end{array}
$$

From liortons law it can be seen that these relationships correspond to:

$$
\begin{array}{ll}
\dot{\varepsilon} \propto x^{-(n / 2 n)} & 4.45 \\
\dot{\varepsilon} \propto x^{-(n / n+1)} & 4.46
\end{array}
$$

It was decided to compare the strain behaviour of $\varepsilon_{y y}$ observed in practice with that preaicted from these relationships. The strain distributions considered were those profiles of strain versus distance derived from the analysis of the specimen grids. Only that part of the experimental profile further from the crack tip than the D-point was considered suitable for analysis. This excluded the immediate near tip region and also ensured that the uniform strain could describe all the creep deformation observec at each point considered. During the very early stages of a test the D-point would tend to be close to the position of maximum $\varepsilon_{y y}$. In such cases the analysis only included that part of the strain profile for which there was a continued increase in the rate of change of strain with ¿istance, approaching the crack tip.

Usually only a section of profile covering a distance of 6 mm was analysed. Theoretical analyses of problems of a similar type have been considered to apply for a distance \dot{d}, approximately equal to either one half of the crack length or one half of the remaining ligament length, which ever is shorter. The minimum value of a seen during a test between 0.33 and $0.7 \mathrm{a} / \mathrm{w}$ equals 6.8 mm for the SEN case and 3.4 mm for the DEN and Cll geometries. Hence for the latter two cases 6 mm exceeds the minimum value of \dot{a}, but it was considered necessary to use a section of profile around this length in order to obtain a representative impression of the strain distribution. Experimental strain profiles for high a/w values, where compliance with this
requirement is likely to be more important aue to edge effects or interacting stress profile effects, are in the minority for both the DEN and Cll cases.

The theories proposing stress distribution of the type to be consiaered require the material to be aeforming under steady state conditions. It has been assumed that this is the case at all times in this work. This assumption of steady state was made on the basis of two observations. Firstly, the distribution of the difference in strain between sequential strain profiles were plotted out against distance from the specimen YY centre line. These strain difference values were then nomalised so that the mid-range value for each profile was the same. It was then observed that for a given specimen these profiles were all of a similar shape. By moving the profiles in a horizontal direction (along the distance axis) all but the profiles from very high a/w values would approximately superimpose. Examples from sample specimens are shown in Fig. 4.22. As can be seen the superimposition would not be perfect but is considered a reasonable indication of steady state deformation, especially when account is taken for the fact that each strain difference profile covers different intervals of crack growth and time. Also this approach is compounding the errors of two experimental profiles in each case. If an error of say, +2 on the percentage strain distibution was carried over to the strain diference distribution it would represent a considerably larger fractional error here than with the original strain distribution. Consideration of these factors has in fact necessitated a rather indirect means of analysing the strain profiles observed during growth.

The second observation supporting the general assumption of steady state deformation is from the results of the smooth bar creep tests shown in Table 4.1. The results of these tests indicated that the interval over which the primary creep regime was observed represented less than 20% of the typical notched rupture test initiation time for the respective starting stress levels. Also the contribution to the creep deformation resulting from the primary regime, additional to the strain that would have been accumulated if deformation was entirely of the type seen during the seconaary regime, was small. This contribution was less than 1% for a starting stress of $5 \mathrm{MKm}^{-2}$ and around 4% for a starting stress of $20 \mathrm{Nim}^{-2}$. In addition, the variation in the contribution from the primary creep regime over the stress gradient expected would be compatible with, or less than, the experinental error.

Elastic strains have been neglected throughout. The Young's modulus of Magnox AI80 at the test temperature of $300^{\circ} \mathrm{C}$ is given as approximately $35 \mathrm{GMm}^{-2}$. Hence, even a stress of $35 \mathrm{MNm}^{-2}$, close to the short term UTS of the material at this temperature, would produce an elastic strain of only about 0.1%.

The analysis of the experimental strain profiles was split into two parts, i) initiation ii) during growth, the latter between 0.35 and $0.7 \mathrm{a} / \mathrm{w}$ as it was considered doubtful that near steady state conditions could prevail at higher values of crack length and crack growth rate.

Initiation

In elastic-plastic fracture mechanics the presence of a plastic zone displaces the origin of the $\sigma_{y y}$ stress distribution from the crack
tip to the mid point of the plastic zone. As the presence of a non-uniform deformation zone has been observed for all specimens, in all sequences, it was considered probable that such a displacement may occur here as well. This means that it cannot be assumed that the position of $x=0$ for the stress distribution is located at the crack tip.

During initiation it can be considered that the stress distribution will be stationary and hence the function describing strain rate will also describe strain. To compensate for the uncertainty in the position corresponding to $\mathrm{x}=0$ for the stress and strain rate distributions, the strain dependance on distance was evaluated for a range of positions of $x=0$, see Fig. 4.23. Regression analysis of log. Eversus log. distance from the present position of $\mathrm{x}=0$ were performed. The positions of $x=0$ were recorded for which correlations were obtained corresponding to the following:

$$
\begin{array}{ll}
\varepsilon \propto x^{-(1 / 2)} & 4.47 \\
\varepsilon \propto x^{-(n / n+1)} & 4.48
\end{array}
$$

The results are shown in Table 4.6 and can be summarised as follows. Normally good correlations were obtained with both strain dependancies on x. (i.e. regression coefficients better than 0.96 absolute). The position of $x=0$ for the correlation for the exponent equal to -(1/2). Equation 4.47, averaged 1.78 mm from the crack tip (standari error of the mean 0.28$)$. The correlations for the $-(n / n+1)$ exponent and equation 4.48 , averaged 0.97 mm from the crack tip (standarci error of the mean 0.21).

Growth

Analysis of the strain distributions observed auring crack gronth

SCHEMATIC REPRESENTATION OF ASSESSMENT OF STRAIN DISTRIBUTION

SPEC.	SEQU.	DISTAKCE DF PO $\varepsilon \alpha_{x^{-(n / 2 n)}}$	AD OF NCTCh TIP $\varepsilon \propto x^{-(n / n+I)}$
c	2	2.4	1.14
10	2 L	0.6	0.24
10	2R	1.82	0.9
11	2	1.2	0.4
12	2	0.86	/
12	3-2	/	1.26
13	2	2.22	0.72
13	3	1.4	/
13	3-2	1.8	/
14	2 R	2.4	0.
14	2L	2.2	0.24
15	2	0.63	/
16	2	2.26	0.26
16	3	2.8	0.4
16	3-2	2.52	0.
17	3-2	2.64	1.24
17	4	1	2.64
17	5	/	3.2
17	5-4	/	3.2
19	3-PS	1.66	0.
22	3	0.5	/
22	3-2	/	0.75
23	2	0.75	/
24	2	/	1.7
25	3	1.25	0.3
25	4	0.3	/
25	3-2	1.5	0.25
26	3-PS	2.0	1.5
27	2	4.2	1.9
28	2	2.0	0.

TABLE. 4.6
was less simple thar for curing initiation. The creep crack growth tests were conducted under constant load conditions ard hence the nett section stress increased as the crack grew. Alsc; ω as the crack tip movec, the position corresponaing to $\mathrm{x}=0$ for the stress ¿iztribution would also advance. Fence, at ary stace aurire crack growth the strain profile observed had accumulated according to a range of positions for $x=0$. Arising from this, direct regression analysis of strain profiles observed during growth would not give a true incication of the instantaneous strain rate ciependance upon àistance. Subtracting consecutive strain profiles was not consiàered a feasible method of overcoming this problem. For there to be sufficient strain $\dot{\text { cifference }}$ between the profiles for accurate analysis a fairly substantial time interval would have to elapse, with an associated increase in crack length and change in position of $x=0$. Also as mentioned in the verification of steady state conditions earlier, the subtraction of sequential strain distributions would compound the errors of both the profiles under consideration.

The simplest way in which to determine whether the observed strain distributions resembled those expected from a stress distribution of the type shown in either equation 4.43 or 4.44 was to compare experimental strain profiles with profiles derived theoretically for these two stress distributions.

Theoretical strain profiles were computed by the method shown schematically in Fig. 4.24. A profile representing the typical accumulation of strain just after crack initiation was reouired. Father than using a theoretically derived profile for this purpose it was considered preferable to average several suitable experimental
strain profiles. This should ensure that the theoretically derived accumulation of strain with crack growth startec from as realistic iriitiation strain distribution as possibie. The following profiles were used to construct this composite starting profile:

specimen	sequence
8	2
12	3
13	3
22	3
23	384
28	3

These profiles were all beyond initiation and were between 0.34 and $0.36 \mathrm{a} / \mathrm{w}$. The composite profile resulting from averaging the above profiles is shown in Fig. 4.25. It is considered that this profile is fairly typical of that which would be observed with either a CN or a DEN specimen at $0.35 \mathrm{a} / \mathrm{w}$ from either exponent level. This profile was not typical of that expected for the SEN geometry. For this geometry experimental profiles from TS17 and 24 were used according to the creep exponent level ($n=3.5$ for TSI7 and $n=7$ for TS24).

An equation relating crack length to time was required. Felationships predicting crack growth rate from the nett section stress were used to derive crack length/time relationships in the same manner as in section 4.2.2.2. The values of the exponent used in the crack growth law were the same as applied for lortons law and the following damage corrections were included:

SEM g	$\mathrm{n}=3.5$	no damage correctio
CN \& DEF:	$n=3.5$	$0.29 \mathrm{a} / \mathrm{w}$ equivalent damage at $0.7 \mathrm{a} / \mathrm{w}$ (none at $0.35 \mathrm{a} / \mathrm{w})$
CF: \& DET	$\mathrm{n}=7$	0.1 a.w equivalent damage at 0.7 a.w (none at $0.35 \mathrm{a} . \mathrm{w}$)

These relationships were used only because experimental results indicated that they gave a reasonable representation of experimental behaviour.
low consider the actual process of numerical integration by which the theoretical accumulated strain profiles were produced. For the SEN case the ligament considered represented the entire specimen width. For the DEN and CN geometries the ligament considered in the theoretical analysis represented only half of the specimen width, from an edge to the YY centre line. The theoretical ligament was divided into 45 points, that is, each spaced at 0.5 mm for the DEN and CN geometries and at 1 mm intervals for the SEN geometry.

The crack growth from 0.35 to $0.7 \mathrm{a} / \mathrm{w}$ was originally performed in 100 steps but for cases of $n=7$ substantial growth was occurring for each time interval at the high a/w values. It was decided to reduce the step size from unity to 0.25 (400 steps) to overcome this problem. This step size was standardised upon despite the observation that the larger step size caused only minor differences in the strain profiles produced, and then only for large values of a/w.

Initially the strain integration was performed with the position of $x=0$ for the stress distribution at the calculated location of the crack tip for that instance of time. For each step in time, stress
values were calculated for each point across the ligament from a distance corresponding to lmm imnediately ahead of the position of $x=0$. This was done using both the equations predicting the distribution of stress with aistance from the crack tip, i.e.

$$
\begin{align*}
& \sigma \propto x^{-(I / 2 n)} \tag{4.43}\\
& \sigma \propto x^{-(l / n+1)} \tag{4.44}
\end{align*}
$$

where $x=0$ at the crack tip

These stress values were then scaled so that their sum across the ligament for each of the stress distributions was equal to a constant. Neglecting the 1 mm region ahead of the $\mathrm{x}=0$ position this simulated constant load conditions. Using the scalea stress values, and Norton's law, the strain accumulated for that time step at each point was calculated and summed to that already accumulated there. The constant in Norton's Law was set so that the value of the accumulated strain at 2 points from the position of $x=0$ was typical of the D-point strains seen in practice. The crack length corresponding to the next step in time was then calculated and the entire process repeated. This continued until a crack length of $0.7 \mathrm{a} / \mathrm{w}$ was obtained.

The entire operation was repeated with the position of $x=0$ for the stress distributions displaced ahead of the crack tip by lmm. Examples of the strain profiles resulting from these numerical integrations for which the position of $\mathrm{x}=0$ was displaced by 1 mm from the crack tip are shown in Fig. 4.26.

A criterion was required on which to compare the theoretical and experimental accumulated strain profiles. The need to produce the theoretical profiles arose because during growth the strain at a point

EXAMPLES OF STRAIN PROFILES OBTAINED FROM NUMERICAL INTERGRATION (N=3.5)

> EXAMPLES OF STRAIN PROFILES
> OBTAINED FROM NUMERICAL
> INTERGRATION ($N=7$)

FIG.4.26b
along the $X X$ centre line is accumulating at an ever decreasing distance from the instantaneous crack tip. Hence if the stress distribution is given by:

$$
\sigma=A x^{-p}
$$

Then the distribution of strain from the crack tip will not be giver. by:

$$
E=A^{\prime} x^{-p n}
$$

but by

$$
\varepsilon=A^{\prime \prime} \int_{0}^{t} x^{-p n} \cdot d t \underbrace{}_{\text {where } x=f(t)}
$$

The numerical integration has been an evaluation of equation 4.50. To compare these integrations with the experimental strain accumulation profiles it was required that both the theoretical and experimental strain distributions were expressed in the form of equation 4.49. Regression analyses of log.accumulated strain against log.distance from a point $x_{l}=0$ were made on the theoretical profiles using a range of positions of $x_{l}=0$ for each crack length. The technique used to do this was the same as for evaluating the experimental profiles during initiation. Only a section of profile was considered for each crack length. The section of each profile started two points ahead of that corresponding to $x=0$ for the stress distribution at that crack length. The interval covered corresponded to 6.5 mm for the $D E N$ and CN geometries and Emm for the SEN case. An exponent of -0.5 correlating distance and strain was selected on a purely arbitory basis such that:

$$
\varepsilon \times x_{1}^{-0.5}
$$

Given the correct location for $x_{1}=0$ it was found that a correlation of this type would represent a reasonable description of the general shape of all the sections of the accumulated strain profiles under consiceration. Correlation coefficient values of better than 0.98
absolute were obtained with the theoretical profiles in all cases. It was decided to use the position of $x_{1}=0$ that was reguirea to obtain an exponent of -0.5 from these regression analyses of the accumalated strain cistributions as the criterion for comparing the theoretical and experimental strain profiles.

The approach proposed for comparing theoretical and experimental results may seem somewhat indirect. However, the approach has the advantage of being less susceptible to experimental errors than comparing the regressior correlations obtained at say the crack tip or mid-way between the crack tip and the D-point.

Regression analysis was performed over sections of the experimental strain profiles of around 6min ingth. The position of $x_{1}=0$ required to produce a correlation between strain and distance through an exponent of -0.5 as in equation 4.51 was recoried for each profile. For prestrained specimens, only that strain accunalated after pre-straining was considered in the profile analysis.

The effect of changes to the starter profile used in the computation of the theoretical strain profiles was considered. The numerical integration was repeated using two starter profiles for which each point in the original starter profile had beem multiplied by, in the first case 0.7 and in the second case 1.3 . These changes to the magnitude of the original starter profile resulted in negligible change in position of $x_{i}=0$ for the correlation used for comparison.

For the analyses for which $n=3.5$ the maximum value of the stress observed at any point along any section of strair profile considered in regression analysis was less than $14 M M^{-2}$. Stresses approaching this value were only observed at higher values of a / w. The creep exponent

$G \cdot \varepsilon=u$
for Magnox AL80 is considered to increase from $n=3.5$ to $n=7$ at around a stress level of $15.5 \mathrm{~mm}^{-2}$. It is appreciated that the transition to the higher exponent level is likely to occur over a range of stress level. However, on the basis of the observations with regaras the predicted stress level and the absence of many experimental profiles at high a/w values, it is considereà unlikely that the transition in the level of the creep exponent will adversely effect the comparison of the theoretical and experimental strain profiles for the low stress specimens. The starting stress for the high stress specimens was $20 \mathrm{Nm}^{-2}$ and hence always above the transition thresholo. The strain profiles for specimens from the intermediate stress regime were not included in the analysis. This was because of the proximity of the starting nett section stress ($10 M \mathrm{~m}^{-2}$) for these specimens to the exponent transition level.

The comparisons between the theoretical and experimental profiles are shown in Fig. 4.27 on the basis of the position of $x_{1}=0$ in order to produce a correlation of the type shown in equation 4.51. The position of $x_{1}=0$ is described differently for each geometry. For the DEN case it is the distance from the specimen edge to the position $x_{1}=0$ and for the $C N$ case it is the distance from the specimen $Y Y$ centre line. Although differing in definition these represent equivalent measurements for the two geometries relative to the notch. The SEll case. is shown as half the distance from the notch mouth to the position $x_{1}=0$. This is also equivalent to the definition used for the other geometries.

Considerable scatter is observed with the experimental results. The: results with $\mathrm{x}=0$ for the theoretical stress distributions located at
the crack tip are shown in Fig. 4.27 a and b . There is reasonable agreement with both the $x^{-(1 / n+1)}$ and $x^{-(1 / 2 n)}$ stress distributions but the former shows the overall better fit with the experimental points. Displacing $x=0$ for the stress distributions Imm ahead of the crack tip for the $D E N$ and $C N$ specimens improved the general agreement between the theoretical and experimental points for both stress distributions. However, the $\mathrm{x}^{-(1 / n+1)}$ type stress distribution still gave the better agreement with the experimental results. The improved agreement between experimental and theoretical results using a displaced position of $x=0$ indicated the validity of such a correction. For the SEN geometry it appeared that the best agreement between experiment and theory would be obtained with the position of $x=0$ for the $\mathrm{x}^{-(1 / n+1)}$ stress distribution displaced less than 1 mm . The large notch diameter specimens TSI5 and 27 appear to warrant a larger correction in the $\mathrm{x}=0$ position than the other specimens.

There is some evidence to suggest that for the $D E N$ and $C N$ specimens at high a / w values the strain accumulation ceases to be consistent with the operation of either the theoretical stress distributions considered. This is supported by visual observation of some high a/w cases in Fig. 4.15. Although this cannot be considered conclusive this would not be entirely unexpected at high crack lengths due to the possibility of severe material degradation leading to tertiary creep deformation. Also with the DEN geometry there is the possibility of interaction of the stress profiles from the two crack fronts.

Analysis of the $\sigma_{x x}$ Stress Distribution
The distribution of the stress $\sigma_{x X}$ was examined via the $\varepsilon_{X X}$ strain distributions. It has alreacy been observed that the values of the
$\varepsilon_{x x}$ strains were more susceptible to inaccuracy than the corresponding $\varepsilon_{y y}$ values. From consiaeration of the accuracy of the $\varepsilon_{x x}$ values it was not considered realistic to attempt to compare these strain distributions with theoretically derived profiles as was done for the $E_{y y}$ profiles. Instead it was considered preferable to compare the distributions of $\sigma_{y y}$ and $\sigma_{x x}$ by comparing the distributions of $\varepsilon_{y y}$ and $\varepsilon_{x x}$. A measure of the $\sigma_{x x}$ constraint stress can be obtained from the deviation from the normal Poisson contraction in the X-direction expected for uniaxial tension. This deviation F_{d} was calculated as in section 4.2.3.1 from equation 4.28. Constraint in the X -direction is indicated by a positive value.

The deviation from normal poisson behaviour is an indication of the ratio between the stress time integrals in the A and y-directions. If the deviation was found to be constant alone corresponding sections of $\varepsilon_{y y}$ and $\varepsilon_{x x}$ aistributions it would indicate that $\sigma_{x x}$ is proportional to $\sigma_{y y}$ for this region and hence both $\sigma_{x x}$ and $\sigma_{y y}$ follow the same dependance on distance, assuming piane stress conditions.

As discussed earlier the $\varepsilon_{X X}$ strain profiles were evaluated from displacements made along lines between 1 and 1.5 mm either side of the W centre line. To simulate the strain distribution expected aiong the $X X$ centre line $1 m m$ was subtracted from the distance of each point from the crack tio. This displaced the strain profile back towaras the crack tip by approximately the distance that the strains were assessed above and below the $X X$ centre line. The deviation from normal poisson behaviour P_{d} was then evaluated for points along each pair of $\varepsilon_{x x}$ and $\varepsilon_{y y}$ profiles. The results from specimens where reasonable distributions of $\varepsilon_{x x}$ coula be obtained are shown in Fig. 4.28 As expected, due to the inaccuracy of the $\varepsilon_{X X}$ determinations the results

$\exists コ N \exists \cap O J S$	
NヨWIJヨdS	
$\wedge \exists Y$	○ค ○○\＆

showed a degree of inconsistency. However, there is reasonable support for the suggestion that the deviation from nomal foisson behaviour is constant for a particular pair of $E_{z x}$ and $\varepsilon_{y y}$ ciistributions, and hence $\sigma_{X x}$ is proportional to $\sigma_{\text {Jy }}$. The DEI geometry shows a higher level of σ_{i} than the CN case, the average values of the deviation corresponding approximately to 0.4 and 0.2 respectively. Frora equation 4.41 these deviations from normal Poisson behaviour correspond to stresses of $0.42 \sigma_{y y}$ and $0.23 \sigma_{y y}$ for the $D E N$ and $C F$ geometries respectively, assuming plane stress conditions.

There is no real evidence from the DEN and $C l i$ crack length increases the deviation from Poisson behaviour changes significantly. However, the SEli geometry showed a simjlar or greater deviation from Poisson behaviour compared with the DEV geometry at short crack lengths but this constraint was observed to decay as the crack length increased.

4.2.4 Notchec Tensile Specimen Metallography

Notched tensile specimens showing various degrees of crack growth have been examined both optically and by means of the SEM. As observed with the smooth bar creep tests cavitation was more pronounced at the low stress regime. For all stress regimes damage was observed to be at a concentrated level in the near tip region. However, it was normally observed to continue to some extent right across the ligament. Damage was observed in the form of cavitation principally along grain boundaries perpendicular to the tensile stress axis. Many of the cavities were associated with boundaries between more than two grains Fig. 4.29. However, the length of these cavities was such that it was difficult to determine if these multiple grain junctions
represented the initiation site of the cavity. Indications of grain deformation in the form of slip lines were visible in some areas particularly with the high stress regime specimens, see Fig. 4. 30.

There was some evidence with the Cli and SEK geometries that although the cavities were preferentially orientated along boundaries roughly perpendicular to the tensile stress axis, they were observed in greater numbers along the slip bands radiating at 45° from the crack tip. This effect is visible in Fig. 4.31 which shows a Cly crack tip (low stress, $5 \mathrm{MNm}^{-2}$) at low magnification. Fig. 4.32 a shows a field 4 mm in front of this crack tip on a line along the notch plane ($X X$ centre line). Fig. 4.32 b shows a field 4 mm above the previous field in the Y-direction, that is at 45° to the crack tip. As can be seen from comparing Figs. $4.32 a$ and b the demage is marginally more extensive away from the centre line. A similar observation was made when considering the corresponding field at 45° to the crack tip on the other side of the centre line.

Fig. 4.33 a and b show fields along a vertical line 3 mm from the crack tip of a DEN specimen. Fig. 4.33a shows the field on the line x and Fig. 4.33 b represents those fields at 45° to the crack tip. The difference in the extent of the damage is less pronounced in this case than for the CN example. Fig. 4.34 shows a low magnification photograph of the crack tip of the DEN specimen.

Examination of fracture surfaces showed high ductility and evidence of cavitation. The failure mode was considered to be the void-sheet mechanism with ductile tearing between cavities taking a path that may have been at least in part trans-granular. The fracture surfaces

131

of the low stress regime specimens took on a slightly coarser appearance than those from the high stress regine. Evidence of the presence of cavitation was clearly visible. Figure 4.35 shows a typical fracture surface viewed from two angles.

EVIDENCE DF CRYSTAL DEFORMATION

ロ
45° $\boxminus A$

$$
\begin{aligned}
& \text { CAVITATION IN A CN SPECIMEN } \\
& \text { AHEAD DE THE CRACK TIP ON AND } \\
& \text { ABOVE THE CENTRE LINE } X X
\end{aligned}
$$

NEAR CRACK TIP REGION

TYPICAL FRACTURE SURFACE (LOW STRESS)
5. DISCUSSION

The ductile behaviour of fagnox al80 resulted in fracture showing more resemblance to a ductile tearing process than to a cracking process in the conventional sense. This must cast some question on the validity of the work to the general problem of crack growth. However it was shown in sections 2.33 and 2.45 that the parameters describing fracture cannot always be predicted on the basis of ductility and that correlation with the various growth laws were observed for a range of ductilities. This suggests that the concepts examined in this study may find some level of applicability in less ductile situations. The high ductility of Magnox AI8O ensured adequate opportunity for creep relaxation prior to the onset of creep crack growth. This has enabled information to be obtained as to the nature of the steady state stress distribution resulting from creep relaxation. The high ductility has also facilitated the study of the strains and displacements in the near crack tip region.

5.1 Considerations with Respect to Specimen Geometry

Throughout this study it has become apparent that there are 3 basic factors concerning the differences in specimen geometry which must be considered when reviewing the experimental resuits of the notched tensile tests.

These are:
i) The differences in the K-calibration curves for the different geometries. Combined with these differences, allowance must also be made for the presence of a bending moment opening the crack mouth with the SEN geometry.
ii) The difference in the slip line field patterns
iii) The difference in the lateral constraint in the form of for the three geometries.
i) The K-calibration compliance curves for the three geometries are shown in Fig. 5.1. As can be seen from this figure, over the range 0.35 to $0.7 \mathrm{a} / \mathrm{w}$ the CN and Den specimens have very similar K-calibrations. This means that the variation in K with crack length for these specimens will be very similar. The variation in $\sigma_{\text {nett }}$ with crack growth is of course identical for these specimens. The SEN geometry has much higher values for the K-calibration than the DEM or CN and as shown in section 4.2.2.2 the SEN K-calibration shows the greatest percentage increase as the crack length increases. Also the SEN geometry has the acaitional complication of a bending moment. The magnitude of the bending moment is proportional to the perpenaicular distance of the loading poirts to the neutral axis and will hence become progressively more significart as the crack length increases. However the tendercy of the specimen to rotate around the pins will cause the moment to relax.
ii) Despite the similarity in K-compliance for the DEN and CN: geometries the slip line field patterns for the two geometries vary considerably, as is shown in Fig. 5.z. The slip lines for the DEn case are focused back towards the crack plane, but with the Cll geometry they simply fan out at 45° from the crack tip. The pattern expected for the SEl. case is similar to that for the CN case.
iii) The variation in the lateral constraint became apparent from the experimental work. Provided that the assumptions macie with respect to the application of the Hencky equations are valia, then remote fro: the near tip region $\sigma_{X X}$ for the CN geonetry was $* 0.55$ the $\sigma_{X X}$ value for the LEl, geometry. In the location of the marimum value of $\varepsilon_{y y}$ the difference in the two geometries was *C. 45 , the DEW again giving

the higher constraint. For both geometries the constraint stress $\sigma_{\mathrm{X}:}$ was lower in the near tip region. This decrease was not entirely unexpectec cue to the presence or a region of non-uniform deformation in the near tip region. The evaluation of $\varepsilon_{y y}$ is such that the value obtained only represents the uniform strain aric excludes any non-uriform displacement. This is not the case with the $\varepsilon_{X X}$ strains and these may be increased in value due to unstable behaviour near the crack tip. This means that in the near tip region the ratio of $\varepsilon_{x x}$ to $\varepsilon_{y y}$ may be higher aue to the inclusion of strain from the non-uniform aisplacement in $\varepsilon_{x x}$ but not in $\varepsilon_{y y}$. For analysis in the ligament beyond the D-point this discrepancy will not arise as there is no non-uniform displacement.

A decrease in the constraint would also be expected from ink considerations. A decrease in $\sigma_{x x}$ is predicted near the crack tip due to the presence of a traction free surface.

The observation of a higher constraint stress with the DEF geometry than the CN case is quite rational. The CF geometry will not develop a high constraint stress as the edges of the specimen are free from traction and can deform towards the crack tips in response to longtitucinal displacement. With the DEN specimen the relatively low stressed material constituting the notch flanks will tend to inhibit lateral contraction on the plane of the notches. This constraint will be balanced by the presence of a notch on each side of the specimen, which in effect will pull outwarois against each other.
geometry as the crack length increases as there is a greater area of low stressed notch and crack flank. An increase ir constraint has not apparent. It seems likely that this teriency for increase was offset by the notch flank rotating outwaris arome the crack tip which would reduce their efficiency in constrainire leteral contraction. This is also consistent with the observation of a high P_{c} value for the long notch specimen $T S 25$, during the eariy stages of initiation but a tendency for this value to decrease with notch opening.

Evaluation of the $\sigma_{Z X}$ constraint values for the SEN geometry was not attempted because it was felt that the constraint with this geometry was likely to be prone to change. Initially the comination of very long notches and an expanse of ligament remote from the crack could lead to a corstrained condition. As crack growth became extensive the tendency for the notch free surface to deform towards the crack tip would increase as the length of ligament separating them decreased. The bending moment increasing in magnitude with crack length may also assist in reducing the constraint at high crack lengths. The bending moment will certainly promote an opening rotation of the crack flanks which will reduce constraint. Consideration of the differences in K, slip line patterns and constraints will influence much of the discussion to follow.

5.2 The Criteria Controlling Crack Advance

The possibility that creep crack growth was controlled by local displacements was originally proposed by Wells \& Nicbride and this proposal has since received much attention. In a situation of cumulative damage such as in the creep regime this approach clearly
has good grounds for examination. In this work it has been found more advantageous to consider the total displacement contributing to fracture in terms of a strain acting uniformly over a gauge length, plus an additional displacement that is concentrated at the αX centre line, that is on the line of the notch plane. The observation of fracture proceeding at a constant value of $\varepsilon_{y y}$ for a particular geometry is a clear indication of the fracture process being strain or displacement controlled. COD evaluations were mage at three locations. In the first case, at the I -point, only a uniform strain component was present and so the $C O D$ and strain were directly proportional. The COD's evaluated at either the crack tip or the position of maximum strain $\varepsilon_{y y}$ were not directly related to the uniform strain at these points as they also included a non-uniform component to the total displacement. It is felt that the inclusion of the non-uriform displacement detracts from the usefulness of the analysis and that to consider only the uniform strain contribution is a realistic approach. The non-uniform displacement arises from localised necking down of the material. Once this necking phenomenon starts, the material will lose, its load bearing capacity in the same way as the load drops in a tensile test once the UTS is exceeded. The equivalent $C O D$ evaluated at the crack tip was seen to be fairly independant of geometry but this was only considered to be the case because the necking phenomenon was masking a geometry dependant uniform strain. When this uniform strain reached a limiting value uniform material deformation gave way to instability. For purposes of theoretically describing crack advance the uniform strain measurement is by far the most useful. Finite element computations of stress and strain distributions will be modelling the build up of this uniform strain and the fact that final through fracture
includes a geometry independant contribution to aisplacement through a necking phenomenon is of little interest. The inpontant factor for successful prediction of creep crack growth rates will be the criterion which represents the limiting capacity of the material for uniform behaviour. Beyond this limitine criterion the material will either crack or neck down and then tear.

The values of $\varepsilon_{y y}$ were geometry dependant, due to the difference in constraint. The most successful way in which to balance the effect of the constraint was not by use of an equivalent strair approach as was anticipated but simply by the summation of $\varepsilon_{y y}$ and $E_{X X}$ which at constant volume will equal the $-I_{*} E_{z Z}$. This is in fact, a common empirical criterior for sheet forming under bi-axial tension. With the sheet forming case the material is strained to an extent where upon a groove is observed to form. Marciniak showed that through failure of the material in the groove occurs when the material of the bulk sheet reaches a limiting value of the summation of $\varepsilon_{\mathrm{xx}}$ and $\varepsilon_{\mathrm{yy}}$. This is very similar to the case here, where a region of localised necking is observed immediately in front of the crack tip. This region tears through in correlation with the bulk material either side of the necked region reaching a limiting strain. Failure controlled by a critical thickness strain can be represented in terms of the relative values of $\varepsilon_{x x}$ and $\varepsilon_{y y}$ by the failure diagram shown in Fig. 5.3. The summation of $\varepsilon_{x x}$ and $\varepsilon_{y y}$ was performed for the values at the point of the maximum vaiue of $\varepsilon_{y y}$. From observations of the strains considered it could reasonably be expected that the sunmation of the D-point strain $E_{y y}$ and the strain $E_{x x}$ at the D-point would also produce a critical strain summation value, capable of describine crack advance.

Failure map of critical strain SUMMATION CRITERION

The observation that even the pre-strained specimens failed at 2pproximately the same summation of $\varepsilon_{y y}$ and $\varepsilon_{x x}$ is further support of strain controlleà fracture. It appears that strain accumuiatec̀ during pre-strain contributes to that requirec for failure under crack growth.

The large notch specimens are a further indication of the effect of lateral constraint on the failure strain. The principal effect of the large notch root radii appears to be to reduce the extent of the Iateral constraint in the near tip region bounded by the projection of the lines from the notch flank. The constraint typical of the specimen type reappeared with the establishment of normal crack flanks. This would be expecied when the crack flanks as opposed to the notch flanks become the principal constraining i:ifluence.

The absence of any detectable trend between the strain and the stress level was not unexpected. Magnox AL8O is noted for its constant elongation to failure over a very wide range of stress around the temperature range used. Fig. 5.4 shows a plot of elongation to failure versus stress for AL80," this plot indicates that over the stress range considered an increase in ductility of around 4% would be expected for uniaxial tension. This is less than the scatter band width for all the strain parameters considered so it is not really surprising that any effect has been well masked, especially as high stress specimens are in the minority.

As already discussed reservations are held with respect to the usefulness of the equivalent $C O D$ values which are computed from measurements taken close to the crack tip so that they include a

GRAIN SIZE $=0.2 \mathrm{~mm}$.

FAILURE ELONGATION.V.TIME TO RUPTURE FOR MAGNOX AL80.
contribution from material instability. However, it is considered that the equivalent COD approach provides a more valid description of the control of crack growth than estimates of the COD from the 103154173 notch flank opening approaches favoured by other workers. The equivalent $C O D$ method gives an indication of the displacement at the instantaneous crack tip. The projection from the notch fiank produces a progressively larger value of the COD as the crack grows.

Visual examination of failed specimens showed pronounced thinning just ahead of the notch tip, extending above and below the $X \mathrm{X}$. centre line to some distance. This thinning proàuced a gentle hollow in the specimen surface just ahead of the crack tip. This indicates that material flow from behind the notch flanks was contributing to the COD seen by measuring the notch flank displacement. This effect will be progressive with time and because of this, growth will occur with apparently increasing COD values using the flank displacement method. Strain is occurring over the entire uncracked ligament but strain in the low stressed notch flanks is far less significant. This results in an increased volume of material flowing into the region bounded by the lines of projection of the notch flanks and the COD is being assessed effectively over a progressively larger gauge length. Further deformation in any of this increasing volume will contribute to the COD observed. This effect is indicated by the curved nature of the fracture surface of a failed DEN specimen, see Fig. 5.5 Failure has been showr to occur at approximately constant strain so this curviture can only arise from progressive flow of material remote from the $X X$-centre line.

EAILED SEN SPECIMEN
limited, except possibly during initiation where the material under examination is that immediately adjacent to the notch tip. These measurements during growth will be geometry dependant accoraing to whether the notch flanks rotate on opening as with the edge notched geometries or open in a roughly parallel manner as with the embedaed crack of the CN case. It is considered doubtfur that correlations obtained with this parameter are even evidence of displacement controiled growth. This is because the growth rate will be aictating the stress/time integral and hence the extent of creep flow contributing to the apparent increase in CCD. Correlations between notch mouth opening and crack growth rate are to be expected regardiless of whether a stress or displacement parameter is controlling fracture. Analysis of actual aisplacements in the materian near the crack tip is considered to provide the best indication of crack advance being displacement controlled. Unfortunately such analyses are not without disadvantage as at present they are labour intensive and not amenabie to continuous monitoring.

Another problem with the equivalent $C O D$ approach is in setting the value of the operative gauge length. For the estimations of the initiation $C O D$ from the notch flank opening, it appears that the gauge length equal to the average distance of the \bar{D}-point from the crack tip was an under-estimate and that displacement in material even further away is contributing to the COD. This illustrates the very severe error in Haighs assumption of all the COD displacement occurring along the crack plane. Cottrelz's approach of the COD gauge length equalling twice the notch root radius is also inadequate under creep concitions where extensive material flow can occur in some cases.

Theoretical approaches based on crack growth followine a constant crack tip displacement typically only consider the uniform strain contribution, and use an equation for the COD of the type 175183

$$
\mathrm{COD}=\mathrm{HE}
$$

The $\operatorname{strain} \varepsilon$ is usually $\varepsilon_{y y}$ or this could de taken as $\bar{\varepsilon}$, the equivalert strair. In either case, in this work these have been shown to be geometry dependant. However provided the gauge length H is constant these theoretical predictions should provide a valid description of crack growth in a single geometry provided the other assumptions made in the analyses are valid.

The initial tendency for the major strain measurements to show an increase in ductility over the first $0.05 \mathrm{a} / \mathrm{w}$ to $0.07 \mathrm{a} / \mathrm{w}$ (1.1-1.6 mm for DEF: and CN) of crack growth is considered to be due to the crack moving out of the influence of the relatively undeformed notch flanks. Material ahead of that immediately adjacent to the notch flanks can undergo a thickness strain with little constraint. As the crack grows, material ahead of this thinned region can progressively thin down to the same extent with little difficulty. However, the material innediately adjacent to the notch tip, the first material through which the crack will pass is constrained from through thickness contraction by the notch flanks so an overall reduction in ductility is expected in this region, see Fig. 5.6. Following this line of reasoning the large notch root radii specimens would be expected to show initiation at a through thickness strain close to that observed during gronth. This is because the wide spacing of the notch flanks would reduce their effectiveness in constraining through thickness contraction. It can be seen from the summation of $\varepsilon_{x x}$ and $\varepsilon_{y y}$ (Fig. 4.19e) that points for the large notch root raoiii specimens TS15 and 27 occur on the top edge of

SECTION THROUGH XX \mathcal{G}

FROGRESION OF THROUGH
THICKNESS STRAIN
IN NEAR TIP REGION
mid-range of the scatter band at higher a / w values.

Having shown that crack advance is controiled by the attainment of critical strain logically the next step will be examine the factors that will control how fast this strain is obtained. This will be controlled by the nature of the stress distribution existing ahead of the crack tip.

5.3 Stress Distribution Preceding Creep Cracks

The results of the strain analysis show that the stress distribution $\sigma_{y y}$ observed ahead of a creep crackcanbedescribed by the expression

$$
\sigma \propto x_{1}^{-(1 / n+1)}
$$

Where x_{l} is the distance from some point ahead of the crack tip

This is analogous to the results of the theoretical analysis by Barnby \& Nicholson but with the addition of a displacement to the position of the point $x=0$ for the theoretical distributions, moving this point to a Iittle ahead of the crack tip. It is considereà that this equation provides a reasonable description of the operative stress distribution for most of the creep life but not in the final stages of crack growth.

The need to displace the position of $x=0$ for the theoretical distributions away from the crack tip was not unexpected. A similar displacement to the stress distributions is required in LaFl fracture mechanics to compensate for the presence of a plastic zone.

During initiation the position of $x=0$ for a stress distribution of the
type $x^{-(1 / n+1)}$ was observed to be roughly half way between the crack tip and the D-point. Consider the situation for crack growth. Fig. 4.16 shows the distance between the crack tip and the I-point for the notched tensile specimens at various crack lengtins. The average of this distance for the DEN and $C N$ specimens together is 1.88 mm and for the SEN specimens it is 0.98 mm . Half these respective distances would correspond to sensible estimates of the suitable displacement of the theoretical stress distributions from the crack tip. That is, 1 min for the $D E N$ and $C N$ specimens and 0.5 mm for the SEll specimens.

It would appear that the region between the crack tip and the D-point may function in redistributing the near tip stresses in a similar manner as the plastic zone under LEFM conditions. One fundamental difference does exist between the D-point region and a conventional plastic zone. That is, the plastic zone is strongly dependant in size upon the level of the applied stress, but the extent of the D-region, does not appear to be significant affected by the stress level. Even an increase in stress level by a factor of $x 4$ failed to cause a consistently observable change in the size of the D-region. This suggests that the D-region is more of a geometrical effect than a stress effect. It is possible the D-region is principally where non-uniform behaviour occurs to accommodate the opening of the crack flanks. It will be related to the materials capacity for uniform strain and the ability for local through thickness contraction to accommodate the concentration of deformation in the near tip region bounded by the notch flanks.

These results are basically compatible with the experimental results

125
of Barnby \& liicholson who also found it necessary to displace the position of $x=0$ for a $x^{-(1 / n+1)}$ type stress distribution away from the crack tip in order to obtain agreement with experimental results. Although they recognised the importance of such a displacement they were unable to correlate its magnitude with any observed characteristic. Ficholson ${ }^{172}$ considered the displacement to be strain rate depenaiant and attempted to define the displacement by use of a stress function. This is not consistent with the observations here. Nicholson worked on stainless steels such as AISI 316. It is possible that with these less ductile materials the near tip zone may respond to the stress level in a manner more similar to a conventional plastic zone rather than to the geometrical considerations proposed here for the D-zone in an extremely ductile case, where the response of the entire ligament is already plastic.

It was observed that the stress $\sigma_{x x}$ remained approximately proportional to $\sigma_{y y}$ over the region of the strain profiles considerec. This also was not totally unexpected. The $\sigma_{y y}$ gradient along the X-direction produced a gradient of strain $\varepsilon_{y y}$. Greater flow in the y-direction being associated with the larger values of $\sigma_{y y}$. Under constant volume conditions this strain $E_{y y}$ must be accompanied by contractions in the other two directions. The requirement for X -direction flow or strain $\varepsilon_{\mathrm{Xx}}$ will hence follow a similar gradient in the x -airection as $\varepsilon_{y y}$. The lateral flow of material near the crack tip will be constrained by the material progressively further from the crack tip. This will result in a gradient of $\sigma_{x x}$ of a similar nature to that describine the variation in $\sigma_{\text {yy }}$ with distance in the z -direction. The magnitucie of the constraining stress gradient will be geometry dependant for the reasons discussed earlier in section 5.1.

Some decrease in σ_{Xx} was reported in the region close to the D -point. A similar decline is observed under IEFM conditions as the $\sigma_{X X}$ value decays to zero at the traction free surface of the crack tip. The stress $\sigma_{v X}$ must decay to zero at a traction free surface so under creep conditions where flow is possible a decline in the $\sigma_{x x}$ constraint in the near tip region would not be unexpected.

The observation of proportionality between $\sigma_{x x}$ and $\sigma_{y y}$ means that if plane stress conditions can be assumed ($\sigma_{Z Z}=0$) then the equivalent stress follows the same dependance on distance as was proposed for $\sigma_{y y}$. Consider the equivalent stress given by:

$$
\bar{\sigma}=\frac{1}{\sqrt{2}}\left(\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right) 0.5
$$

of $\sigma_{3}=0$ and $\sigma_{2}=\hat{H} \sigma_{1}$ then:

$$
\begin{align*}
& \bar{\sigma}=\frac{1}{2}\left(\left(\sigma_{1}-M \sigma_{1}\right)^{2}+\left(M \sigma_{1}\right)^{2}+\left(-\sigma_{1}\right)^{2}\right)^{0.5} \\
& \bar{\sigma}=\sigma_{I}\left(I-M+H^{2}\right)^{0.5}
\end{align*}
$$

As it has been shown that for each specific case is a constant for the stress distribution along the X centre line, if:

$$
\sigma_{y y} \propto x^{-(1 / n+1)} \text { then } \bar{\sigma} \alpha x^{-(1 / n+1)}
$$

5.4 Crack Initiation

It has been proposed on the basis of a critical COD approach that crack initiation time shouid correlate with K^{-m}. This was not found to be a good description of crack initiation in this study. The regression analysis showed the principal factor controlling crack initiation to be the nett section stress although the importance of specimen geometry is accepted. Regressing initiation time against either just K or just $\sigma_{\text {nett }}$ gave better correlations with $\sigma_{\text {nett }}$. From approaches splitting the K function into stress and geometrical features, the stress feature was always the more significant factor both from the basis of a larger exponent value and from the T tests. Use of correlations with the stress term related to $\sigma_{\text {gross }}$ rather than $\sigma_{\text {nett }}$ improved the significance of geometry term. This is because $\sigma_{\text {nett }}$ takes account of the principal geometry feature, the crack length and nence $\sigma_{\text {nett }}$ and the Y function are not totally indepenäant.

The most probable reason for failure of the theoretical predictions is that they rely on small scale yielding. In practice the near tip deformation was extensive, and probably modified the near tip stress distribution to a greater extent than allowed for in theory.

For a given crack length around $0.35 \mathrm{a} / \mathrm{w}$ the DEN geometry will have a marginally higher K value than a $C N$ specimen for the same nett section stress. The observation of the tendency for a DElV specimen to initiate in a longer time than a CN specimen under similar conditions tends to reflect the importance of the difference in lateral constraint present with the two geometries. The kigher constraint with the DEN specimen will slow down the accumulation of strain anc could effect initiation.

Increasing the constraint, for instance increasing starter notch length, wouid be expected to increase initiation time further as was oobserved̃ with TS25.

The consideration of the constraints can be applied to the examination of the variation in initiation time with specimen thickness. One explanation as to the tendency of the thinner sheet to initiate first is that the l. Grm material has a significant finergrain size than the others. From Equ. 2.2 this would be expected to result in a faster creep rate which lead to faster initiation. However, this is not the only consideration. For these specimens no significant trends concerning the maximum values of $\varepsilon_{y y}$ or the corresponding values of $\varepsilon_{x x}$ could be determined corresponäing to specimen thickness. There was inconclusive evidence of a possible trend for the deviation from normal Poisson behaviour to be smaller with the thicker specimens. This would not be unexpected. It is considered that this effect is not due to a decrease in the lateral constraint $\sigma_{x x}$ but to an increase in the through thickness constraint $\sigma_{Z Z}$. An increase in the through thickness stress would reduce the effect of the lateral stress in preventing contraction in the \check{x}-direction. Based on observations of $\varepsilon_{x x}$ and $\varepsilon_{y y}$ there would be an apparent decline in $\sigma_{x x}$ if the increase in $\sigma_{z Z}$ was not taken into account. Increasing specimen thickness would be expected to increase through thickness contraint particularly in the vicinity of the notch. This is due to the increase in the area of the low stressed notch flanks in the plane of the notch. As this low stressed area increases in size with specimen thickness the constraint to thickness contraction in the area immediately adjacent to the notch flank is bounc to increase
see Fig. 5.7. As stresses are acting in the \AA and Y-directions this thickness constraint would give rise to a hydrostatic stress component and would hence reduce the rate of accumulation of strain $\varepsilon_{y y}$. As failure in all the specimens was successfully characterised by the summation of $\varepsilon_{y y}$ and $\varepsilon_{x x}$, this hydrostatic component would be expected to delay initiation. One point emerging from this is that the damage leading to failure is more strongly correlated with strain than with a hydrostatic stress component. If the hydrostatic stress was the primary factor controlling damage accumulation leading to fracture, then the thicker specimens would be expected to initiate first and at a lower value of the strain summation.

The factor controlling initiation would appear to be the constraints to the accumulation of strain, in particular $\varepsilon_{y y}$ as $\varepsilon_{y y}$ will dictate the total level of strain in the other directions. To describe initiation an approach will be required that will take account of the variation in constraint due to geometry. An approach at correlating initiation times whilst considering the $\sigma_{x X}$ constraints observed was attempted by using the equivalent stress. Using the values of $\sigma_{x x}$ $=0.33 \sigma_{\text {yY }}$ for the DEN specimens and $0.15 \sigma_{\text {yy }}$ for the CN specimens and by substitution in the equation 5.3 the following relationships were obtained:

$$
\begin{align*}
& \bar{\sigma}=0.883 \sigma_{\text {nett }} \text { for } \mathrm{DEN} \\
& \bar{\sigma}=0.93 \sigma_{\text {nett }} \text { for } \mathrm{Cl}
\end{align*}
$$

The stress concentration at the crack tip was ignore $\dot{\alpha}$ on the basis o $\hat{\bar{x}}$ that the near tip stress redistribution woulc probably ensure that it was of a similar level for both geometries especially as the K values would be similar anyway.

Fron these values the followirg regression was obtained for $r_{1}=3.5$

$$
t_{i}=2.1 \mathrm{x} 10^{5}--3.77 \quad r=0.57
$$

This is a better correlation than with either just $\sigma_{n \in t t}$ or just K and predicts the initiation time for DEN specimens to be approximately 20\% greater than for cle specimens of the same nett section stress, which is compatible with experimental results. It is interesting to note that the stress exponent in equation 5.7 is very close to the ereep exponent n. This again would tend to inàicate strain control of the initiation event, as initiation time and the accumulation of strain have the same stress ajepenance. The SII geometry has not been included in this $\bar{\sigma}$ analysis because of the uncertainty in the level of the stress arising from the bending moment. Any stress contribution due to bending will raise the level of σ_{y} and hence aiso the equivalent stress and result in faster initiation as is ouserved with this geometry. The level of lateral constraint present with the SEN geometry is also uncertain. It is probable that some effect of the much higher K value associated with this geometry will be at least in part responsible for the reduced initiation time seen with these specimens. This suggests that the most complete aescription of initiation may be derived from an expression of the type:

$$
t_{i}=A Y^{B_{1} n} \bar{\sigma}^{E_{2} n}
$$

The residual importance of K is supported by the initiation times of the large notch root radii specimens. These specimens showed comparatively long initiation times for their geometries. The low value of constraint stresses $\sigma_{X x}$ and $\sigma_{z z}$ would be expectec̀ to result in fairly fast initiation time but the initially low K value associated with these notches has obviously reauced the level of the equivalent stress in the rear tip region.

For $0.33 \mathrm{a} / \mathrm{w}$ and the same nett section stress the K value for a SAH specimen is over twice that of a DEIN specimer. Assuming similar degrees of lateral constraint (i.e. same ratio of $\dot{\sigma}_{x X} / \sigma_{y y}$) arice that the ratio of the near tip stresses are the same as for the K values (from equation 2.27). Equations 5.7 estimates the difference in initiation time as follows:

$$
t_{i(S E N i}=0.05 t_{i(D E N)}
$$

In practice

$$
t_{i(S E N)}=0.18 t_{i(D E R)} \quad \text { approx }
$$

Hence the redistribution of stress under creep conditions must reduce the difference in Iocal stress refiected through K . This is consistent with the low exponent values for the Y -function in the regression equations $4.12-4.16$ (these exponent values were around - 0.9 for $n=3.5$ anà arounci-0.3 for $n=7$).

5.5 Crack Growth Behaviour

The results of the crack growth work show that neither
or

$$
\begin{aligned}
& \frac{d a}{d t}=A K^{m} \\
& \frac{d a}{d t}=B \sigma_{\text {nett }}^{m}
\end{aligned}
$$

will provide a universal description of creep crack growth behaviour in Magnox AI80, regardless of the value of m selected, even when considering results for a single value of the creep exponent n. From examination of the results it woula appear to be possible to correlate individual specimens with one or both of these growth laws by manipulation of the exponent, but such correlations would be distinctly local, that is, specific to that specimen ano not a description of the behaviour of other specimens.

The process of crack advance has been shown to be strain or displacement controlled. This suggests that it would not be unrealistic to expect
crack growth to show a similar depencance on stress as is shown by normal creep deformation. This means that the exponent for the stress function in any law describing crack growth would be expected to be related to or equal to the creep exponent. Arising from this consideration the K approach or the $\sigma_{\text {nett }}$ approach could ${ }^{\text {not }}$ be expectea to constitute more than approzimations of the observed behaviour. This is because the results indicate that the stress distribution preceding the crack tip is only defined by K for values of $m=1$ and by $\sigma_{\text {nett }}$ for values of $m=$ infinity. Despite this observation correlations with both K and $\sigma_{\text {nett }}$ have been reported by several workers.

A point which should be emphasised first is that the method used here to compare crack growth behaviour is basically comparing the change in growth rate with change in crack length rather, than comparing the relationship of growth rate with crack length i.e.

$$
\begin{array}{lll}
\frac{d a^{2}}{d^{2} t} & \text { versus a or } t & 5.9 \\
\frac{d a}{d t} & \text { versus a or } t & 5.10
\end{array}
$$ The increase of $\sigma_{n e t t}$ and of the finite geometry K functions for the DEN and CN with increasing crack length are very similar as can be seen from Fig. 4.9. This provides a possible explanation why good simultaneous correlations with both $\sigma_{\text {nett }}$ and $K_{\text {finite }}$ are not uncommon.

The strain analysis section of this work has clearly shown the existence of a steady state stress distribution ahead of the creep crack tip. It has also shown that a significant accumulation of strain far in advance of the near crack tip region can occur particularly for the DEN and CN geometries. Crack advance has been shown to be
strain controlled. The accumulation of strain ahead of the crack tip must influence the rate of crack advance in that as the time increases the crack tip will be growing into progressively more pre-damaged material. The effect of accumulating damage is endorsed by the creep pre-strained specimens. The results of the pre-strain tests showed that strain accumulated in the material prior to the arrival of the crack tip is contributory to the total required for fracture. The failure to take account of accumulating strain is a major weakness of most of the theoretical approaches to predicting creep crack growth rates.

The inclusion of a damage allowance to the theoretical $\sigma_{\text {nett }}$ distributions was seen to improve agreement with experimental results. The level of the damage correction necessary to enable approximate agreement between the theoretical and experimental resuits was not consistent with the predicted level of the loss of ligament observed due to cavitation. The loss of ligament due to cavitation was estimated on the basis of the stress and strain levels from the quantitative metallographic results of the smooth bar creep tests. This suggests that damage should be considered in terms of the exhaustion of strain capacity rather than simply the loss of load bearing ligament.

With higher exponent values there will be a tendency for a pronounced accumulation of strain in the near tip region, declining rapidly to an asymptotic level. Lower creep exponent values will show a more gradual decline in the level of strain from the concentrated level near the crack tip, (compare Figs. $4.26 a$ and b). The more gradual decline in strain level with lower creep exponert values means that
on a strain exhaustion basis the lower exponent crack growth results would be expected to require a greater damage correction than their high exponent courterparts. This is because the effect of oamage accumulation well anead of the near tip region will be more pronounced. for the low exponent case.

The type of damage correction applied here is not particularly appropriate for compensating for camage in the form of strain exhaustion. For allowirg for loss of ligament due to cavitation the correction was valid apart from ignoring the fact that damage ciose to the crack tip will have the most influence on crack growth rate. On a loss of ligament basis the correction represented the same extent of damage at both exponent levels which is not the case if it is correcting for strain exhaustion. A damage correction in the form of adaitional crack length at $n=7$ will be equivalent to a greater amount of strain exhaustion damage than with $n=3.5$. This is because the extra crack length represents adaitional nett section stress and at a high value of the creep exponent a change in stress has considerably more effect on strain and strain rate than the same change at a low exponent. For instance, say for a small finite distance, strain accumulation has reduced the amount of further strain required for fracture over this interval by half. This can be expected to approximately halve the time taken for the crack tip to cross this interval. This could be compensated for in the $\sigma_{\text {nett }}$ growth law by doubling the strain rate arising from the applied stress TO double the strain rate at $n=7$ the stress must be increased by $* 1.10$ and at $n=3.5$ by $* 1.22$. Deterioration in the form of strain exhaustion does however excuse the tendency of the damage correction method to make the increase in damage with crack growth very pronounced.

In general it would be expected that correlations with the theoretical crack growth relationships would have exponent values slightly higher than the creep exponent values. This will accomodate the greater charge in growth rate due to camage accumulation than is predicted theoretically without considering this phenomenon. For reasons already discussed this effect will decrease as the creep exponent increases.

The occurrence of ligament collapse close to $0.7 \mathrm{a} / \mathrm{w}$ was unfortunate in that it limited the extent over which crack growth could be observed. However it does represent the extreme limit of damage accumulation. It seems probable that tertiary effects are almost certain to be responsible for some of the acceleration in growth rate observeà leading to ligament collapse. The onset of tertiary benaviour is supported by the deviation of the strain accumulation at high a/w values from that predicted by the theoretical stress distribution. This suggests that a breakdown in steady state conditions may be occ:urring at high a / w values. Also the strain level at the edge of a Ch specimen at around $0.7 \mathrm{a} / \mathrm{w}$ would be around 30%. The CN geometry is that most resemblant of a smooth bar specimen in respect to the lateral constraint stresses. A strain of around 30% in a smoothi!bar specimen would suggest that tertiary behaviour could be expected. In aadition, the high stress specimens will be approaching the UTS of the material for uniaxial tension around $0.7 \mathrm{a} / \mathrm{w}$. The biaxial stressing will elevate the UTS to some extent but the onset of unstable behaviour would be impending.

It was observed that reducing the crack growth interval in order to eliminate the effects of ligament collapse as much as possible dia
not dispel certain trends in crack growth behaviour, such as:
i) The tendency for the SEN geometry to show very little change in crack rate
ii) The effect of creep pre-strain to reduce the change in growth rate
iii) The effect of increasing specimen thickness to increase the change in growth rate.

Consider the tendency for the SEN geometry to exhibit a much more even growth rate than the other geometries. A similar tendency has 164
been observed by Bain in HK 40 over a range of temperatures. There are two factors which may contribute to this effect i) the ability of the SEN geometry to confine the strain remote from the crack tip to a low value ii) the tendency for this geometry to exhibit shorter crack initiation times compared with the DEN and Cri cases.

Unfortunately the number of SEN specimens tested was rather limited but both of the factors above are consistent with the observed crack growth behaviour.

The ability of the SEN geometry to confine strain accumulation and hence damage close to the crack tip will mean that the crack will be continually growing into material of a more uniform condition than for the other two geometries, for the same change in a / w. Damage accumulation prior to the arrival of the crack tip has been shown to contribute to crack growth and so this effect must reduce the tendency for the SEl crack to accelerate.

Also the SEN geometry tends to initiate a through thickness crack in
a shorter time than the other geometries. This rapid initiation would allow a greater interval for growth before tertiary effects started to cause a significant increase in growth rate.

Consider the large notch root radius SEA specimen TS27. This specimen will have a very low K value prior to initiation. This specimen showed a very long initiation period and a change in crack growth rate with crack length that was greater than for the conventional SEN specimen but still less than was seen with the DEK and $C N$ specimens. This suggests that both the strain distribution and the in'itiation periods are important.

Another point to consider is the 'real time' interval between initiation and failure. These time intervals will be inversely proportional to the average crack growth rate. These times are shown in Table 4.5. The SEN specimens for $n=3.5$ showed an overall faster growth rate than the $D E N$ and $C N$ equivalents, but for $n=7$ the reverse is true even to the extent of offsetting any reduction in crack initiation time so that the total time to fracture was in fact longer. The stress intensity factor is more likely to be influential under a low creep exponent value. This follows from the stress following an $x^{-1(1 / n+1)}$ type distribution and hence resembling the K distribution more at low exponent values and $\sigma_{\text {nett }}$ more at high values. This can explain the tendency for the SEN geometry to show rapid crack growth at $n=3.5$ as the high K value for this geometry may still be partially effective. The tendency for slower than average crack growth for the SEN geometry at $n=7$ is not explained by consideration of the difference in K values for different geometries. This slower than average crack growth is most likely to be due to
the tendency of this geometry not to cause extensive strain accumulation and hence creep damage other than in the near tip region. It should be remembered that the SEli crack has to cross twice the length of ligament compared to one crack of a DEN anc Ch specimen for the same a / w change.

Consider the observations with regards the effect of specimen thickness on crack growth behaviour. Thicker specimens were observec to show more change in crack growth rate than their thinner courterparis. From Table 4.4 it is seen that thinner specimens initiated faster and the growth interval leading to final fracture is also reduced. A short initia.tion time and rapid growth would tenc to recuce the chance of tertiary effects in the ligament causing a substantial increase in the crack growth rate curing the final stages. This is consistent with the thin specimens showing least change in cract. growth rate. If increasing the thickness resultea in a uniform thickness constraint across the ligament there should be no change in the normalised growth rate. That is, the true growth rate will be slower for thick specimens but the normalised time representations of crack growth should be identical. This would be the case if the only effect of thickness constraint was due to the grain size variation. However thicker specimens showed a distinct tendency for greater a.cceleration in crack growth rate at high a / w values. This suggests that ligament damage effects are inhibited differently and less severely than the accumulation of strain at the crack tip. The accumulation of strain in the ligament will be inhibited in the thicker specimens by the larger grain size which will reauce the creep rate. The accumulation of strain at the crack tip will be affected by grain size but it will also be affected by any change in through
thickness constraint due to the notch flanks. This through thickness constraint is bound to increase with specimen thickness, but the effect will only be apparent in the near tip region, (as discussed in section 5.4 with respect to crack initiation).

The pre-strainea specimens tended to show less change in growth rate than was normal for their respective geometries. The effect of creep pre-strain would be to give the ligament a uniform distribution of damage. When a stress gracient is superimposed onto this evenly damaged ligament crack initiation would be expected to occur fairly rapidiy. As the crack would then be growing through evenly damaged material the rate of growth would be expected to be fairly rapia and also even as there would be reduced opportunity for further significant strain accumulation far ahead of the crack tip. This argument is consistent with the short initiation time (after prestraining) and short growth time interval seen for TSI, for which $\mathrm{n}=3.5$. However the evidence is not so immediately convincing for $n=7$. For the high stress regime pre-strained specimens the initiation and growth intervais appeared relatively unaffected by the pre-straining treatment. Inadequate allowance for the time to re-establish a temperature approaching $300^{\circ} \mathrm{Cafter}$ pre-straining may be responsible for an over-estimate in the initiation time after pre-straining. For the high stress regime tests the initiation interval is short so that an error or even 0.25 hours in this estimate could be significant when comparing the initiation times of pre-strained specimens and corresponding specimens without this treatment. However, the principal reason for the apparent lack of change in initiation time or crack growth interval after pre-straining is consiaered to be because of the level of the applied load after pre-straining. After pre-straining
the load applied was such that the nett section stress was the typical starting stress used for that exponent level (i.e. $5 \mathrm{~mm}^{-2}$ or $20 \mathrm{Hm}^{-2}$). For instance for TS26 a load of 3380% was used instead of 40001 had the specimen not been pre-strained. This ensured that both the specimens without pre-strain and those with pre-strain started notch rupture testing with a similar nett section stress (approximately $20 \mathrm{Nim}^{-2}$). As fracture is strain controlled both the pre-strained specimen and the specimen without pre-strain would continue to deform until a similar failure strain is reached. To reach this point the specimen without pre-strain will have to ajeform to a greater extent, with greater changes to the cross section area, as the pre-strained specimen is already strained to a significant fraction of the failure strain. The specimen without pre-strain will hence be under a greater nett section stress at the time of initiation. At $n=7$ the affect of this anomaly will be very pronounced as the high value of the creep exponent will mean that a small change in the stress will cause a very noticable effect on the strain rate.

5.6 Metallographic Observations

Creep damage in the form of cavitation was a common observation. The cavities in the smooth bar tests were observed to lie on grain boundaries perpendicular to the stress axis and resembled those predicted as forming through a vacancy condensation process.

With the notched specimens, the observation of cavitation to favour the shear bands at 45° to the crack tip for the $C N$ and SEll specimens and the tendency for the final fracture path of these geometries to run up the shear bands suggests that cavitation may be influenced by
the slip line fielos. However, cavitation was still observed to favour grain boundaries normal to the principle stress axis. The observation that a hydrostatic stress component arising from specimen thickness dia not reduce the critical value of the sumnation of $\varepsilon_{y y}$ and $\varepsilon_{x x}$ supports the need of displacement in order to produce creep damage leading to failure.

Where cavities were observed they usually occupied a large proportion of the boundary on which they were situated and consequently often included a multiple grain bouncary. Examples such as Fig. 4. 29 tend to suggest that grain boundary decohesion in the form of wedge cracking may be responsible for some of the cavitation but this would not explain the distinct tendency for cavities to orientate at around 90° to the tensile axis. A weage cracking mechanism would be expected to produce cavities orientated at $90^{\circ}, 70^{\circ}$ and 45° to a principal tensile axis. The observation of cavities to orientate predominantly at around 90° to the tensile axis suggests that diffusion processes are influencing growth. Deformation nucleation processes are consistent with the lack of observation of many small isolated cavities. In a ductile material such as this flow around small grain boundary obstacles will reduce the probability of decohesion at these points due to grain boundary sliding. It seems very probable that cavitation is influenced by both deformation and diffusion processes.

The observation of less cavitation in the higher stress specimens is considered to be due to deformation at this stress range being less dependant upon grain boundary sliding. This cannot be supported by any measurements of the relative fractions of grain boundary strain contributions and grain deformetion contributions. However this
possibility is supported by the observation of a Ereater evidence of grain deformation with the high stress specimens in the form of higher slip band densities.

It is considered that the as supplied material has a fairiy strong grain orientation texture. During prestraining a noticable tendency for lateral contraction as opposed to through thickness contraction was observed in the pre-strain specimens, especially at the higher stress level. The pre-strain specimens TSIE and 26 represent the majority of the values of P_{α} less than zero. Whilst it is considered that in some cases value of $\mathrm{P}_{\dot{\alpha}}$ less than zero could be indicative of error this is not the case for these pre-strained specimens. The effect was more noticable at the higher exponent, probably because the contribution of grain deformation to the total was greater and because there was less chance of the texture being lost by a prolonged time at $300^{\circ} \mathrm{C}$.

A given level of cavitation at a high exponent value will have a greater effect on strain rate than for a low exponent. The cavitation represents a loss in load bearing ligament and hence an increase in stress on the remaining ligament. From Norton's law this increase in stress will have a much greater effect on strain rate at high exponent values. This can account for the materials tolerance of higher levels of cavitation at the lower stress levels.

The fracture mechanism appeared to be ductile tearing between the creep cavities. This is again consistent with the importance of shear deformation. The mechanism appears to be basically the void
sheet mechanism. However it is inconclusive whether or not the intercavity tearing was entirely transgranular or mixeà transgranular and inter-granular. This type of failure has been observed in several materials under creep conditions, particularly where reasonable ductility exists including AISI 316. Tinis emphasises the probability that many of the observations made in this work on Ai 80 may be applicable to more common engineering materials.

5.7 Summary of Creep Crack Growth Behaviour

Very briefly the following observations summarise creep crack growth in Magnox AL80. The advance of the crack tip is controlled by the attainment of strain. A critical value of the summation of $\varepsilon_{y y}$ and $\varepsilon_{x x}$ proved to be a good criterion for describing crack growth in all the geometries and the variations on the geometries considered. The influence of stress on crack growth is through its effect on the rate at which strain is accumulated. This is true not only for $\sigma_{y y}$ but also for the constraint stresses $\sigma_{x x}$ and $\sigma_{z Z}$. The stress varies with distance from just ahead of the crack tip as $x^{-(1 / n+1)}$. There is extensive stress redistribution of stress in the near tip region. This inhibits K from providing a description of crack initiation time. To describe crack advance the effect of strain accumulated prior to the arrival of the near crack tip region must be considered. Cavitation features in the fracture process. The formation of this cavitation is certainly dependant at least in part on deformation processes but the allied importance of diffusion processes is suggested.

5.7.1 Theoretical Prediction of Creep Crack Growth

Having experimentally examined the criteria controling creep crack advance a brief attempt can be made to assemble these in a theoretical
approach for predicting creep crack growth rates. The following observations have been employed, failure occurs at a critical strain and the stress distribution preceding the creep crack is given by $\sigma_{y} \alpha x^{-(1 / n+1)}$. Also $\sigma_{x x}$ is proportional to $\sigma_{y y}$ for a particular geometry and so in this approach the stress is considered to be the equivalent stress $\bar{\sigma}$. The failure strain is correspondingly set at 40\% (20% through thickness strain under uniaxial conditions) but in fact the magnitude of the failure strain used in this approach will have no effect on the shape of a crack length/normalised time distribution.

Let initiation be characterised by the point one unit of distance ahead of the crack tip reaching the failure strain. At initiation the stress distribution can be considered stationary so the strain profile will be given by:

$$
\varepsilon_{y y}=40 x^{-(n / n+1)}
$$

This is show in Fig. 5.8. The crack tip will reach point $x=x_{1}$ when the strain at the point x_{1} has risen from its value at initiation to the failure value. The time for this to occur will be given by:

$$
t=\frac{\varepsilon_{f a i l}-\varepsilon_{x_{1} t_{i}}}{\text { Average } \dot{\varepsilon}_{x=x_{l}}}
$$

Where $E_{x_{1} t_{i}}=$ strain at point (initiation)
Average $\dot{E}=$ average strain rate at $x=x_{1}$ between $t=t_{i}$ and $t=t$

The strain rate $\dot{\varepsilon}$ at the point $x_{1} x_{1}$ will increase as the crack tip advances towards the point $x=x_{1}$. Mathematical solution of this

STRAIN DISTRIBUTION AT
TIME OF INITIATION
problem was not forthcoming so a numerical solution was adopted, using the following method:

1) Determine the strain at each point across the ligament at initiation using $\varepsilon=40 x^{-(n / n+1)}$
2) Calculate the stress at each point across the ligament ahead of the crack tip from $\sigma=A X^{-(1 / n+1)}$. The stress for each point from $x=1$ is summed across the ligament in order to determine the constant A from $A=I /$ (sum of stresses for each point). This corresponds to constant load conditions.
3) Apply Norton's law to each point for unit time so that $\varepsilon_{x_{l}}=B \sigma_{x_{l}}^{n}$ and add this strain to that already accumulated at the point.
4) Test to establish how many points across the ligament have accumulated strain values in excess of the failure strain. The last point having an accumulated strain level above 40% corresponds to the position of the crack tip. The position of $x=0$ is moved accordingly.
5) Return to 2 and repeat until the crack tip has crossed the ligament.

The process was also repeated with the failure event being based on the points $x=5,10,15$ and 20 reaching the failure strain. This was to make some allowance for the deviation of the near tip region from the theoretical stress distribution. In these cases the summation of the stress across the ligament was performed from half way between the point $x=0$ and the failure strain point to the end of the Iigament ($\mathrm{x}=100$).

The most striking observation of this approach is that it produces a plot of crack length versus normalised time almost identical to that
predicted for constant load over the same growth interval from:

$$
\frac{d a}{d t}=A \sigma_{\text {nett }}^{n}
$$

(See Fig. 5.9). This was true for both n values and regardiless of the value of the failure strain selected. Tinis is especially of interest as the strain accumulation approach uses a steady state stress concentration. Moving the position of x at which the failure criteria must be satisfied had only a minor effect on the resulting relationship between time and crack length. It is considered that these minor changes arise due to the changes in the nett section stress resulting from summing the stresses over a marginally shorter interval and not due to any changes in the strain behaviour. Modifying the starting strain distribution to incluce uniform pre-strain across the ligament did produce a minor decrease in the change of growth rate observed, consistent with experimental results.

This theoretical model fails to predict the same increase in growth rate that was observed with the experimental specimens. It is considered that this is due to the theoretical approach describing deformation purely by Norton's law and hence not accommodating any tertiary effects. At high a/w values in practice it is probable that a substantial portion of the ligament was exhibiting tertiary behaviour. This is consistent with the agreement between theory and practice being poorer for $\mathrm{n}=3.5$ as for this exponent level the change between secondary and tertiary deformation is more pronounced then for $n=7$.

The similarity in crack growth behaviour predicted from $\sigma_{n e t t}$ and strain accumulation does provide an explanation for correlations

with $\sigma_{n e t t}^{n}$ especially for materials that fracture with little tertiary behaviour. The reason for this similarity is worth considering The crack length versus time plot for $\sigma_{\text {nett }}$ control is derived from:

$$
t=\int_{a_{1}}^{a_{2}} \frac{1}{0_{\text {nett }}^{n}} \cdot \dot{\alpha} a
$$

A dominant feature of the accumalating strain model is:

$$
\int_{a_{1}}^{a_{2}} \frac{1}{\dot{\varepsilon}_{\mathrm{x}_{1}}} \cdot \dot{\alpha} a
$$

Strain rate \dot{E} would correlate to $\sigma_{\text {nett }}^{n}$ so a link between the approaches can be seen here. However this argument ignores an important point. As the crack grows the point x_{l} lies at an ever decreasing distance from the crack tip. This means that its position along the stress concentration varies and hence the ratio of the stress at x_{1} to $\sigma_{\text {nett }}$ will also vary. The extent of this variation will derence or the original distance of point x_{1} from the crack tip. It appears from the analysis that the difference in the level of strain accumulation required at different points across the ligament at t_{i} offsets this effect. Unfortunately this has not been mathematically verified. It should be noted however that with the strain accumulation approach, crack growth rate for a given value of $\sigma_{\text {nett }}$ will be dependant to some extent on the amount of prior crack growth. This dependance on prior crack growth is not predicted by the empirical growth law based on $\sigma_{\text {nett }}^{n}$. This means that the $\sigma_{\text {nett }}$ law may not be predictive of growth rates from other starting crack lengths and stresses.

The strain accumulation approach to crack growth prediction layed out here is an over simplification. However the approach is based on theoretically proposed criteria which have been experimentally
verified by this work. This is a definite deviation from the empirical application of parameters such as $\sigma_{\text {nett }}$ or K with possible explanations as to their applicability being proposed later.

Nost of the attempts to predict creep crack growth rates have failed in their inability to relate results from one geometry to different geometries. The finite element approaches are the most successful in this respect. ${ }^{190}$ However even these tend only to prove predictive in a retrospectivemanner when some of the parameters can be set on the basis of observed behaviour. The finite element techniques calculate stress distributions within a finite body. These are then related to growth rates through empirical relationships, or alternatively, strains resulting from these stress distributions can then be calculated and crack growth can then be predicted on the basis of a critical failure strain. This work has illustrated the importance of taking account of the constraint stresses and it is in this capacity that the finite element technique has an advantage over most other methods. This work has provided details of the strain behaviour during crack growth which may provide a first step towards understanding how the failure parameters may be set accurately for finite element predictions of crack growth. For materials where creep failure is strain controlled prediction of creep crack growth will ultimately be performed using refined versions of the simple approach used here. The stress system may be calculated on the basis of a finite element approach but crack advance will be determined by assessing the strain accumulated, possibly using more complete descriptions of strain rate than Norton's law. The knowledge of how failure strain varies with multiaxial stress will be of very vital importance to the success of these approaches with real geometries. The apparent applicability of an established sheet forming criterion
for biaxial tension (critical buik sheet thickness strain) for Magnox AIEC is encouraging as it is very easy to apply. Verification as to whether or not this approach is applicable to more common engineering materials under biaxial creep conaitions would be useful. Also a fuller examination of the effect of tertiary stress states is important. Use of Magnox AI8O for such a study would not be totally unrealistic as although this knowledge for ALEO does not represent an immediate service requirement, the good ductility of the material enables easy study of the effect of the stress system on ductility.

6. CONCLUSIONS

1. The advance of a creep crack in Magnox AL80 at $300^{\circ} \mathrm{C}$ is controlled by the attainment of a critical strain. Failure of specimens of 3 different geometries was characterised by the same value of the summation of $\varepsilon_{y y}$ and $\varepsilon_{x x}$ at the location of the maximum value of $\varepsilon_{y y}$.
2. Strain accumulated prior to the arrival of the crack tip is contributory to the accumulation of the critical failure strain. This factor must be considered when predicting creep crack growth rates in materials where crack advance is strain controlled.
3. Assessing the $C O D$ from the notch flank opening can be misleading and may indicate different growth behaviour for edge cracks compared to embedded cracks. Naterial a considerable distance either side of the plane of the notch contributes to the COD seen between the notch flanks. Measurements of the strains in this material will provide the best description of the criterion controlling crack advance. The equivalent $C O D$ evaluated at the crack tip was found to be basically independant of geometry and relatively constant during growth. However the geometry independance arises by virtue of a dominance of the contribution to total displacement from material instability. It is hence not a good indication of the criterion controlling crack adivance. If the COD is evaluated at the D-point which marks the onset of material instability the $C O D$ will be geometry dependiant.
4. The parameter K was not a good description of the time taken to produce a through thickness crack. This is due to the extensive
near tip deformation reaistributing the stress in this region. The principal factor controlling initiation appears to be the nett section stress, however geometry does have some influence. Allowing for the difference in lateral constraint between the DEN and CN specimens by use of an equivaient stress approach described the difference in initiation time for these geometries seen in practice.
5. A stress distribution of the form $\sigma \chi_{y} x^{-(I / n+1)}$ gives a fair description of that deduced from experimental measurements of strain distributions, both during initiation and growth. An allowance for near-tip behaviour is required, which appears to approximate to displacing the position of $x=0$ by half the distance between the crack tip and the D-point (the point at which non-uniform near tip displacement is first observed). This correction is analogous to the displacement of the point $x=0$ to the centre of the plastic zone for the stress distributions under LEFM conditions.
6. From strain measurements it was ceduced that $\sigma_{Y X}$ follows the same stress distribution as $\sigma_{y y}$ except in the region close to the crack tip. The ratio of $\sigma_{x x}$ to $\sigma_{y y}$ is geometry dependant. DEN specimens produce around twice the lateral constraint seen for a CN specimen. As $\sigma_{x x}$ and $\sigma_{y y}$ are proportional, under plane stress conditions the equivalent stress distribution will also follow an $\mathrm{x}^{-(1 / n+1)}$ type distribution.
7. The principal effect of increasing notch root radius appears to be to reduce the lateral constraint stress $\sigma_{x x}$ during initiation and the early stages of crack growth.
ε. Neither the nett section stress nor K provide a valid description of crack advance in Nagnox AIEO. From consideration of the stress distribution ahead of a creep crack neither of these approaches coula constitute more than approximations unless the creep exponent $n=1$ for K control or infinity for $\sigma_{\text {nett }}$ control. Bven then they would be failing to accommodate accumulating damage.
8. Failure of the material was by the void sheet mechanism. Deformation processes are important in cavity initiation but the allied importance of diffusion is not discountea. Estimations of creep damage should not be based on the extent of cavitation but on the extent of accumulated strain.

ACKNOWLEDGEMERTS

Appreciation is expressed to the Project Supervisor Professor J.T. Barnby for his guidance throughout the project. Thanks are also expressed to the external supervisors Dr. F.E. Jones at Berkeley Nuclear Laboratories and Dr. R.D. Fiicholson now at Marchwood Engineering Laboratories, for their much valued advice and for the supply of the test material plus use of E.K.I. facilities.

REFFEFETCES

1. A.H. Cottrell, ISI SpeciaI Report 70 London 1961
2. Royal Commission Report on Environmental Pollution, 6th report HiSC September 1976
3. Nuclear Power Reactors UKAEA Publication
4. E.F. Emley, Principles of Kg . Tech. Pergamon Presss 1966
5. G.F. Hines, V.J. Hadaress \& R.E. Jones, Proc. Inf. Conf. Fhys. Met of Feactor Fuel Elementis Sept. 1973
6. Calder Hall Symposium, J. Brit. liucl. Eng. Conf. 2057,2,2
7. Eritish Patent 776649
E. E.F. Emley, J. Erit. Kuch. Eng. Conf. 2,1957,254
8. F.A.U. Huããle \& I. Wyatt ibid 2,1957,110
9. I. Grainger \& A.E. NcIntosh ibid 2,1957,121
10. Magnox Data Sheet 16 Nuclear Eng. 1961
11. J.E. Harris \& F.B. Jones, Berkeley Nuclear Labs. Feport. RD/E/R. 144 unpub.
12. J.E. Harris \& R.B. Jones \& G.V. Greenwood, CEGE Report, R.D./E/TI72
13. J.E. Dorn, J. Mech. Phys. Solids 3,1954, 85
14. C.M. Sellars \& A.G. Quarrel, J.I.M. 90, 1961-62,329
15. O.D. Sherby Acta Met. 10,1962,135
16. R.N. Fhines, NPL Symp. Creep \& Fracture of Fetals at Figh Temps. HMSO 1954,47
17. E.R. Parker \& J. Washburn ASM 1956 Creep \& Recovery P. 227
18. C. Herring, J.APPL. Phy. 21,1950,437
19. F.R.N. Nabarro Feport on Conf. Strength of Solids Eristol 1048
20. I.G. Crossland \& R.B. Jones, Fiet. Sci. J. 6,1972,162
21. B. Burton, Met. Sci. J. 5,1971,11
22. A.T. Churchman, Proc. 3rd. Int. Conf. Peaceful uses of atomic energy United Nations 1964,156
23. J. Weertman, Trans. AIME 218,1960,207
24. R.E. Jones, Berkeley Nuclear labs, Private Communications 2978
25. J.K. Greenwood, D.R. Filler \& J.W. Suiter, Acta Met. 2,1954,250
26. C.H.K. Jenkins, J. Inst. Het. 70, 1944,57
27. J.F. Greenwood, JISI, 171,1952,380
28. C. Zener, Fracturing of Metals ASM Clevelana , 1948
29. J.N. Greenwood, D.F. Killer \& J. W. Suiter, Acta liet. 2,1954,250
30. J.O. Stiegler \& K. Farrell, BTM Lon. \& E.E. HicCoy Trans. HiSh
$60,1967,454$
31. D. NcLean, J. Inst. Het. 85,1956-7,468
32. R.D. Stacey, Metallurgia 58,1958,125
33. T.J. Heal, Froc. Int. Conf. Peaceful Uses of Atomic Energy United liations 5,1955,208
34. F. Eborall, Proc. Symp. Creep \& Fracture of Netals at High Temps Tedidington, 2954
35. H.C. Chang \& N.J. Grant, Trans. AIPE 206,1956,544
36. I.S. Servi \& N.J. Grant, Trans. Met. Soc. AIME 191, 1951,909
37. A.A. Griffith, Phil. Trans. Roy. Soc. A221,1921,163
38. A.K. Stroh, Proc. Roy. Soc. A223, 1954, 404
39. D. McLean, Grain Boundaries in Ketals. Oxford Univ. Press 1957
40. A.N. Stroh, Advances in Physics 6,1957,418
41. F.E. Hauser, P.R. Landon, J.E. Dorn AIIE, Trans. 206, 1956,589
42. E. Smith: \& J.T. Barnby, Met. Sci. J. 1,1967,56
43. J.E. Harris, Trans. Met. Soc. AIME 233,1965,1509
44. R.G. Fleck, D.M.R. Taplin, C.J. Beevers, Het. Sci. J. 9,1975,49
45. T. Johannesen \& A. Tholen, Met. Sci. J. 6,1972,189
46. C.W. Chen, E.S. Machlin, Acta Met. 4,1956,655
47. R.W. Baluffi \& I.I. Seigle, Acta Met. 3.1955,170
48. R. Raj, Acta Net. 26,1978,995
49. R.G. Fleck, D.M.R. Taplin, C.J. Beevers, Acta Met. 23,1975,415
50. E. Smith \& J.T. Parnby, Met. Sci. J. 1,1967,1

52 C.W. Weaver, J. Inst. Met. 88,1959-60,296
53. D.G. Morris D.R. Harries Het. Sci. J 12, 1978, 532
54. R. Eborall, ISI Symp. Structural Processes in Creep, London 1961
55. J.E. Harris Met.Sci. J. 12,1978, 321
56. P.K. Davies \& K.R. Williams, Met. Sci. J. 3,1969,48
57. A.E.E. Presland \& F.I. Hutchinson, J.Inst. Net. 92,1963-64,264
58. G.F. Greenwood, Phil. Kag. 19,1969,423
59. F.T. Fatcliffe \& G.W. Greenwooc, Phil. liag. 12,1965,59
60. C.E. Price, Acta. Met $14,1966,1781$
61. J. Intrater \& E.S. Miachiin Acta. Met 7,1959, 140
62. F.C. Boettner \& W.D. Robertson, Trans. AIME 221,1961,613
63. A. Gittins, Met. Sci. J. 1,1967,214
64. P.R. Oliver, L.A. Girifalco Acta. Het. 3,1955,605
65. D.A. Woodford, Kiet. Sci. J. 3,1969, 234
66. E.F. Dyson \& D. McLean het. Sci. J. $8,1974,261$
67. H.E. Evans, J.S. Wadaington, Phil. Mag. $20,1969,1075$
68. C.K.L. Davies, P.W. Davies, B. Wilshire, Phil. Mag. 18,1968,197
69. N.G. Needham, J.E. Wheatley \& G.W. Greenwood, Acta Net. 23,1975, 23

7C. C.H.K. Jenkins, Symp. Creep Fracture of lietals at High Temps. Tedaington, 1954
71. R.W. Baluffi \& L.L. Siegle, Acta Met 5,1957,449
72. D. Hull \& D.E. Pimmer Phil Mag. 4,1959,673
73. D.M.R. Taplin, I.J. Barker Acta Met. 14,1966,1527
74. J.A. Williams, Phil. Nag. 15,1967,1289
75. R. Soderberg, Proc. 2nd. Inf. Conf. on Fracture, Brighton 1969
76. J.S. Waddington \& J.A. Williams, Acta Met 15, 1967,1563
77. N.G. Needham \& G.W. Greenwood, Met. Sci. J. 9, 1975, 258
78. D. McLean, J.Australian Inst. Net. 8,1963,45
79. I.G. Crossland, J.E. Harris Met. Sci. J I3,1979,55
80. F.V. Davies, R. Dutton Acta Met. 14,1966,1138
81. D.M.R. Taplin \& R.C. Gifkin, Acta Met. 15, 1967, 650
82. P.W. Davies, K.R. Williams, Met. Sci. J. 3,1969,220
83. Y. Ishida \& D. McLean, Met. Sci. J. 1,1967,171
84. J. Hancock, Met. Sci. J. 10,1976,319
85. F.A. MCOfintoch, Trans. ASKE series E 35,1968,363
86. D. McLean, E.F. Dyson \& D.M.R. Taplin, Fracture 77, Waterloo Canada.

E7. J.A. Williams 1975 Proc. Conf. The Fechanics \& Physics of Fracture, Cambridge

عє. F. Rama Rao, V.V.P. Kutunba Rac, H.C. Pandey, JISI 2II,1973,801
89. S. Goods \& V.D. Nix Acta Net. 26,2978,739\&753

OO. D.N. Katlock \& K.D. Nix J. Nuc. Wat. 56,1975,145
Cl. K. Brlich, H. Bohn \& C. Wassiler ASTM STP 480,1971,495
92. B.J. Cane Ket. sci.J. 12,1978,102
93. W. Beere \& M.V. Speight Met. Sci. J 12,1978,172
d4. R.S. Gates, Mat. Sci. Eng. 27,1977,115
95. F.A. McLintock ASH Seminar on Ductility 1967
96. T.j. Heal, Proc. Int. Conf. Peaceful Uses of Atomic Energy Unitea Nations 5,1959,208
97. D.G. Morris, Met. Sci. J. 12,1978,19
¢ع. G.J. Cocks \& D. P.R. Taplin, Metallurgia 75,1967,229
99. R. Soderberg, Met.Sci. J. G,1975,275
100. C.J. McKahon, Fracture 77, Int. conf. Waterloo, Canada
101. J.F. Knott, ibid
102. S. Goods \& W.D. Mix,ibid
103. C.L. Jones \& R. Pilkington, ibid
104. A.E. Johnson, Recent Progress in Applied Mech. (ed. Eroberg)
105. A.E. Johnson \& J. Henderson, Complex stress creep relaxation of metallic alloys, HPSO Edinburgh 1962.
106. R. Sumerling \& E.D. Hyam, The Metallurgy of Beryllium, Inst. of Metals Monograph 28,1961
107. A.I. Wingrove \& D.M.R. Taplin, J. liat. Sci.4,1969,789
108. W.F. Prown \& G. Sachs, NACA, Tech. Note 2433,1957
100.
M.J. Hanjoine, J. Easic Eng 84,1962,220
110. Fi.J. Manjoine, Proc. Int. Conf. on Creep, London 1963
111. R.IF. Goldhoff, ibid
112. H.R. Voorhees, J.W. Freeman, J.A. Herzog, J. Basic Ēng. 84,1962,207
113. D.K. Hanik, H.R. Voorhees, J. Basic Eng. 84,1962,233
114. E.A. Davies, K.J. Manjoine, ASTM Tech. Pub. 128,1952
115. W.F. Erown, M.H. Jones \& D.F. ivewman ibic.
116. F. Garofalo Proc. ASTM 1959.957
117. S. Táira $\hat{\alpha}$ F. Ohtani Proc. Conf. Creep \& Fatigue in elevated temp. application, Philacielphia, 1973.
 Dept. 75-2, April 1975.
119. D.R. Hayhurst, J.T. Henderson, Univ of Leicester, Eng. Dept. Rep. 76-3, May 1976
120. D.R. Hayhurst, F.A. Leckie Proc. Royal Soc. A360, 1978,243
121. G.R. Irwin, Trans. ASNE J. App. Mech. 24,1957, 361
122. H.M. Westergaara, App. Nech. 61,1939, A49
123. J.F. Rice \& G.F. Rosengren, J. Mech. Phy. of Solids $16,1968,1$
124. J.T. Barmby, Eng. Frac. Kech. 6,1974,627
125. J.T. Barnby \& F.D. Ficholson, J. Mat. Sci. 12,1977,2009
126. N.J. Hoff, Q. Appl. Hat. 12,1954,49
127. H. Nieuber, Trans. ASFE 1961, 544
128. K.P. Harper, E.G. Ellison J. Strain Analysis 12,1977,167
129. V. Vitek, Int. J. Frac. 3,1977,39
130. B.A. BiIby, A.H. Cottrell \& K.H. Swinden, Froc. Roy. Soc. A272 1963,304
131. G.F. Irwin, Fracturing of hietals, ASM Cleveland IM 4
132. E. Orowan, Progress in Physics, 12,1949,185
133. E. Orowan, Weld. J. Res. Supp. 20,1955,157S
134. F.F. Irwin \& J.A. Kies ibid 17,1952,95S
135. G.R. Irwin J. App. Mech. $24,1957,361$
136. G.R. Irwin 9th Int. Congr. App. Mech. Erussels 1057
137. G.R. Irwin Eng. Frac. Net. 1,1968
138. G.R. Irwin, Sagamore Ordance Mat. Conf. 1961
139. A.A. Wells, Crack Propagation Symp. Cranfield 1961,210
140. D.S. Dugdale, M. Fech. Phys. Solids $8,1960,100$
141. F.M. Eurdekin \& D.E.W. Stone, J. Strain Analysis 1,1966,145
142. A.A. Cottrell, Proc. Roy. soc. A285,1965,10
143. I.R. Fice, J.Appl. Hec. Trans. ABHE. 35,1968, 379
144. P. Price \& F. Frdogan, J. Easic Eng. E5,1963,528
145. H.G. Popps \& A. Coles, Proc. U.S. Air Force Conf. Fatigue \& Fracture, 1970,71
146. N.J. Siverns \& A.T. Price, lature, 22E, 1970,760
147. C.E. Harrison \& G.N. Sandor, Eng. Frac. Hech. 3,1971,403
148. L.A. James, Int. J. Frac. Kech. E, 1972,347

149 K. Robson, Int. Conf. on Creep Resistance in Steels, Dusseldorf 1972
150. D.V. Thornton, G.E.C. (Whetstone) Fep. CMI 1072-1E
151. G.J. Feate \& M.J. Siverns, Int. conf. on Creep \& Fatigue in Rlevated Temp. Apps. Philadelphia 1973
152. J.L. Kenyon, G.A. Webster, J.C. Radon \& C.E. Turner, ibid
153. E.G. Ellison \& D. Walton, ibid
154. J.R. Haigh, Mat. Eng. Sci. 20,1975, $213 \& 225$
155. G.J. Neate, C.E.G.E. Report. SSD Kia/R.12/74
156. R. Pilkington, P. Hutchïnson \& C.I. Jones, Ket. Sci. J. 8,1974,237
157. G.A. Webster, Proc. Conf. Mech. Phy. of Fracture, Cambridge 1975
158. R.D. Nicholson \& C.L. Formby, Int. J. Frac. 11,1975,595
159. R. Koterazawa, Int. J. Frac. 11, 1975,1060
160. E.G. Ellison \& M.P. Harper, J. Strain Anal. 13,1978, 35
161. K. Sadananda \& P. Shaninian, Met. Trans. A8, 1977,439
162. J.D. Landes \& J.A. Begley, ASTM STP 590,1976
163. D.J. Gooch, Nat. Sci. Eng. 29,1977,227
164. M.D.M. Bain, Thesis, Aston 1979
165. R.J. Dimelfi \& W.D. Nix, Int. J. Frac. 13,1977,214
166. K.M. Nikbin, G.A. Webster, Proc. Joint Meeting, Prediction of Life of High Temp. Components London 1975
167. C.E. Turner, G.A. Webster, Int. J. Frac. 10,1974,455
168. J.D. Landes, J.A. Begley, ASTNi, Spec. Tech. Fun. 5601974
169. K.M. Nikbin, G.A. Webster, C.E. Turner Fracture 77 Int. Conf. Waterloo, Canada 1977
170. K.M. Nikbin, G.A. Webster, C.E. Turner ASTM STP 601
171. A.A. Wells, F.H. NoBride, Can met. Quart. 61967,347
172. R.D. Nicholson, PhD. thesis (Aston) 1975
173. D.J. Gooch Mat. Sci. Eng. 27,1975,57
174. S. Floreen, R.H. Kene Met. Trans 7 A 2976,2157
175. D.J.F. Ewing Int. J. Frac. 14,1978, 101
176. D.R. Hayhurst, F.A. Leckie, C.J. Morrison J. Appl. Mech. Trans. ASIE Series E 42,1975,613
177. J.T. Barnby, Eng. Frac. Mech. 7,1975,299
178. J.A. Williams, A.T. Price, Trans, ASME (H) 971975,214
179. D.J. Gooch, J.R. Haigh, E.L. King, Met. Sci. J. 11, 1977,545
180. H.P. Van Leeuwen Eng. Frac. Fech 9,1977,951
181. V. Vitek, Acta Met. 26,1978,1345
182. V. Vitek Nat. Sci. Eng. 27,1977,209
183. H. Riedel, Mat Sci. Eng. $30,1977,187$
184. L.M. Kachanov, Problems of continium liechanics, Soc. for Industrial \& Applied Maths. Philadelphia, 1961
185. Shiro Kubo, Kitosugo Ohji and Keiji Ogura, Eng. Frac. Kech. 11,1979,315
186. D.M. Gilbey \& S. Pearson, R.A.E. (Farnborough) Tech. Report. 66402, 1966
187. D.G. Widgery \& J.F. Knott, Fet. Sci. J, 12,1978, δ
188. J.H. Faupel, Engineering Design, Page 375, Wiley 1964
189. Z. Marciniak, Aspects of Material Formability, MacMasters Univ.
190. W. Laidler, Thesis, University of Aston 1978

