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SYNCPSIS 

The manufacture of composites reinforced with strong, stiff fibres 

is now a well established practice. The use of glass fibres allowed 

the theory developed for plywood and similar materials to be used 

directly as it was assumed that glass fibres were elastically isotropic. 

Carbon fibres are now used in increasing quantities and the same theory 

is often used to calculate the mechanical behaviour of carbon composites. 

It is now known that carbon fibre is highly anisotropic and thus may 

preclude the use of conventional theory suited to isotropic fibres. 

This thesis is a study of the effects of fibre anisotropy on the elastic 

properties of composites. 

The introduction covers the development of carbon fibres leading to 

the production of anisotropic fibres,with particular interest in the 

attempts to calculate the properties of the fibres.The question of the 

isotropy or otherwise of glass fibres is considered,and it is concluded 

that glass fibres are isotropic. 

The nrorertics of composite constituents are determined and used to 

calculate the properties of unidirectional composites, The properties 

of the unidirectional composites are measured, compared with the 

calculated values, and used to predict the properties of laminated 

composites.The calculated and experimental values of the laminate 

properties are compared.It is concluded that the properties of laminates 

may be predicted reasonably accurately from the unidirectional composite 

properties, but only some of the unidirectional composite properties 

can be predicted with reasonable accuracy from the constituent properties.



NOTATION 

A. . Component of matrix fa] defined by equation 3.35 

Conponent of matrix (3) defined by equation 3.36 

Component of matrix [c] defined by equation 3.2 

Component of matrix {>] defined by equation 3.38 

Component of matrix [a’] defined by equation 3.42 

Component of matrix {s‘] defined by equation 3.42 

Component of matrix {c’] defined by equation 3.42 

D,. Component of matrix ['] defined by equation 3.42 

af Component of matrix [a*}aerinea by equation 3.43 

p*. Component of matrix Pi]aerinea by equation 3.43 

c* Component of matrix [c*]aerinea by equation 3.43 

Component of matrix (3) defined by equation 3.43 

C Constant in equation 20 table 6 

E,, Young's modulus of a unidirectional composite in direction 1 
41 

( longitudinal modulus ) 

Boo Young's modulus of a unidirectional composite in direction 2 

( transvérse modulus ) 

E, Young's modulus of an isotropic fibre 
ic 

Bry 
Epo Transverse Young's modulus of an anisotropic fibre 

Ea Young's modulus of the matrix 

Axial Young's modulus of an anisotropic fibre 

E Young's modulus of a composite in direction X 

By Young's modulus of a composite in direction Y 

G, Shear modulus of an isotropic fibre 
. 

G,, Axial shear modulus of an anisotropic fibre 
£1 

Cp Transverse shear modulus of an anisotropic fibre 

Gi Shear modulus of a unidirectional composite in the 1-2 plane 

Gaz 

Gs Shear modulus of the matrix 

Shear modulus of a unidirectional composite in the 2-3 plane 

oe Shear modulus of a composite in the X-Y plane



K Constant in equation 3 table 6 

Ky Bulk modulus of a fibre 

K, Pulk modulus of the matrix 

Ko Transverse plane strain bulk modulus of a unidirectional composite 

L, Invariant property of a composite 

Ly Invariant property of a composite 

My Bending resultant in direction X defined by equation 3.28 

My Bending resultant in direction Y defined by equation 3.28 

My Twisting resultant in direction X-Y defined by equation 3,28 

‘ae Normal stress resultant in direction X defined by equation 3.27 

_ Normal stress resultant in direction Y defined by equation 3.27 

Nyy Shear stress resultant in direction X-Y defined by equation 3.27 

Qi5 Component of matrix [a] defined by 3.13 

R; Component of matrix {r] defined by 3.15 
J 

835 Component of compliance matrix (s] 

U Airy stress function defined by equations 3.50-3.52 

Uy Elastic properties of a composite defined by 3.45 

V, Fibre volume fraction of a composite 
e 

ae Matrix volume fraction of a composite 

Vy. Shear stress in the X-Y plane 

Vyo Shear stress in the Y-Z plane 

Ve Shear stress in the X-Z plane 

X Cartesian coordinate direction 

Y Cartesian coordinate direction 

Z Cartesian coordinate direction 

a Constant in equation 1 appendix D 

Constant in equation 1 appendix D o 
° Constant in equation 1 appendix D 

f Subscript to denote fibre 

i Subscript to denote direction 

Jj Subscript to denote direction



k Subscript to denote direction 

1 Subscript to denote direction 

Kk Lamina curvature in the X direction 

k, Lamina curvature in the Y direction 

Ky Lamina curvature in the X-Y direction 

u Lamina displacement in direction X 

v Lamina displacement in direction Y 

w Lamina displacement in direction Z 

x Distance along X axis 

y Distance along Y axis 

z Distance along Z axis 

4 

bal 
Constants in equation 34 table 6 

Py 
3 

Bi Engineering shear strain component 

Ej} Normal strain component 

c Reinforcement factor 

Yy Poisson's ratio of an isotropic fibre 

ve Poisson's ratio 

Vy, Major 

Ya Minor 

Va, Major 

Y,, Minor 

Vy Major 

Poisson's ratio 

Poisson's ratio 

Poisson's ratio 

Poisson's ratio 

Poisson's ratio 

of matrix 

of anisotropic fibre 

of anisotropic fibre 

of a unidirectional composite in the 1-2 plane 

of a unidirectional composite in the 1-2 plane 

of a composite in the X-Y plane 

constant in equation 34 table 6 

OF Normal stress component 

Q Shear stress component



1.1 Carbon 

The element carbon has two basically different structures, that of 

diamond and graphite. Diamond has a face centred cubic structure with the 

atoms 1.54 & apart. Pure graphite has a layered structure (figure 1 ), 

each layer being composed of carbon atoms arranged in a regular hexagonal 

network. The spacing of the atoms in the layers or planes is 1.42 # and 

the spacing between planes is 3.40 #. In the diamond structure all the 

carbon-carbon bonds are covalent giving a hard, strong material. In the 

layers of graphite each carbon atom is surrounded by three carbon atoms 

thus. \ The Sigma bond between the carbon atoms are ae hybrid bonds 

with inter-bond angles of 120°. Each carbon atom uses three electrons for 

these bonds. The fourth electron is an unhybridised p orbital. Whee 

“ electrons are delocalised and form a cloud above and below the Sigma bonds, 

thus giving pi bonding in addition to Sigma bonding, hence the internuclear 

distance in graphite (1.415 a) is shorter than that of diamond. The 

electrons are able to move throughout all the branches of the network 

resembling the electrons in a metallic structure in this respect, but in 

two dimensions only. The layers are 3.3539+ 0.0001 K apart, held together 

by weak Van der Waal's forces. The layers are stacked in an ABAB sequence 

(figure 1 ), but Van der Waal's forces make it fairly easy to shift the 

layer planes with respect to each other. 'Bulk carbon' is generally 

considered to be 'amorphous' and is formed from small graphite crystallites 

randomly arranged. A typical bulk carbcn has a strength of 5 MPa, a 

modulus of 10 GPa, density of 2200kg/m? and is isotropic unless some 

preferred orientation is imposed by the manufacturing process. 

Using a D.C. arc, Bacon (1) produced 'graphite' whiskers with 

diameters of a fraction of a micron to greater than 5 microns with 

recoverable lengths up to 30mm, The whiskers appeared to be in the form 

of concentric tubes in a scroll-like manner. The modulus was estimated 

to be at least 700 GPa and the strength about 200MPa. The electrical 
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resistivity of the whiskers was 650Simm compared with 400Slmm for a single 

erystal of graphite in the basal plane direction. Eartherly calculated the 

theoretical modulus of graphite in the basal plane to be 1000GPa SF 20%. 

Examination of the whiskers by X-ray diffraction suggested that the a-axis 

of the graphite crystallites were parallel to the whisker axis, and that 

the c-axis was perpendicular to the axis. This early experiment clearly 

demonstrated the potential of carbon as a strucutural material. 

Brenner (2) modified the Von Polyani model (3) of the sodium chloride 

structure to calculate the theoretical strength of perfect whiskers. Taking 

into account the theoretical shear strength necessary to initiate plastic 

flow, Brenner showed that the maximum tensile strength lay in the range 

3/100 to 17/100 of the modulus. The average value of 1/10 of the nodulus 

is normally quoted as the theoretical strength of materials, giving a 

: value of about 100 GPa for the basal plane of graphite. 

1.2 Carbon Fibres 

The terms carbon fibre and graphite fibre are not clearly defined, 

although Bacon(4) suggested that carbon should refer to a fibre heat- 

treated to 1273-1773 K with a composition of 80-95% carbon, and graphite 

should refer to fibres heat-treated to temperatures in excess of 1773 °K 

with a composition of at least 99% carbon. As graphite is a particular 

form of the element carbon,in this thesis the term carbon will be applied 

to any fibre heat-treated above 1273. 

Carbon fibres and fabrics have been made for several years by 

earbonising various forms of cellulose ( cotton for carbon fabric, bamboo 

for early electric light filaments ), but all have a low strength and 

modulus. Carbon fibres made explicitly for reinforcement purposes are 

normally made from viscose cellulose fibre ( Rayon ) in the United States 

of America and from polyacrylonitrile ( PAN ) fibre in the United Kingdom. 

In 1964 Phillips, Watt and Johnson (5,6) started to develop carbon 

fibres with nipenties approaching those of graphite whiskers. The 

dramatic increase in the fibre modulus and strength was the result of 

stretching the fibre during processing thus tending to preferentially 
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align the carbon structure.The directional structure of Grafil A type 

fibre is clearly shown in figure 2. In recent years in an effort to reduce 

the high cast of carbon fibre;attempts to use other materials as a base 

(precursor) have been made with varying degrees of success. Kumura and 

Jenkins (7) produced glassy carbon fibres from phenolic resin with a 

maximum modulus of 69GPa. Hawthorne and Baker (8) used pitch as a precursor 

and produced fibres with strengths up to 2.6 GPa and moduli up to 440 GPa. 

The process of converting the precursor to carbon fibre takes place 

in stages under closely controlled steps which vary according to the type 

of precursor and manufacturer. Watt and Johnson (9) have proposed that the 

conversion of PAN to carbon fibre takes place in a manner similar to the 

following decomposition path. 

Now ¢; Nox c — Ca — 

= AN 
CH, CH, N 

o Ghent < + further 

CH— Cy, —————- cH—c heat —> Carton 
'N : 

Ve under tension 7 \ 
ae ee N 

CH—C, CHC. 
Ce 7S 

Chain molecule of PAN Ladder polymer- more stable 

structure. 

Figure 3 Decomposition of PAN fibre. 

By keeping the fibres under tension, shrinkage is prevented and the carbon 

molecules tend to ‘straighten out'. The active C-N groups cause the chain 

molecules to form aggregates calles fibrils. Further heating and controlled 

oxidation leads to oxygen bonds between molecular chains. Since the C-N 

groups can be orientated at different angles several molecular chains can 

be tied together by oxygen bonding. Oxygen. links in three dimensions can 

produce a fairly rigid structure and prevent the chains from bending and 

distorting on further heating. 

‘Bacon and Tang (10) proposed a tiechanism for the conversion of 

cellulose fibre into carbon fibre through various stages. By use of X-ray 
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diffraction and electron microscopy techniques and by measuring the 

physical changes which take place in the carbonisation process, Bacon and 

Tang showed a structural similarity between cellulose molecular orientation 

and preferred orientation of the carbon fibre.The shrinkage in the fibre 

length which takes place with carbonisation decreased with increasing 

cellulose molecular orientation and Bacon and Tang suggested that the 

building of the carbon chain structure probably begins along the paths 

of the original cellulose structure, thus preserving a 'replica' of the 

original fibre structure. The idea of longitudinal and transverse poly- 

merisation was introduced to account for the dimensional changes in the 

fibre. Longitudinal polymerisation of the cellulose to carbon leads to a 

reduction of 8.3% for perfect molecular orientation, whereas with 

transverse polymerisation the carbonised fibres would be only 48% of the 

length of the original fibre. See figure 4. 

Longitudinel polymerisation 

e Carbon atoms 

en atoms 

   



The final properties of the carbon fibre depend on (a) the precursor, 

(v) the precursor treatment, (c) the maximum heat treatment temperature, 

(a) the percentage elongation during heat treatment. 

Consider (a) first, the type of precursor used. The highest published 

values of fibre modulus and strength for stress graphitised carbon fibres 

(that the author is aware of) are those for fibres made from a PAN 

precursor. by RAE. ( Watt and Johnson (15) modulus 690 GPa).The difference 

in carbon fibre moduli produced from various precursors is a Reflection 

of the orientation of the molecules rather than being a special property 

of the precursor. Any process which increases the perfection and alignment 

of the carbon structure in the carbon fibre may be Sa to increase 

the modulus in the direction of the fibre axis. 

Some types of precursors lend themselves to stretching more readily 

* than others and can thus achieve a higher degree of orientation. Rayon 

and PAN fibre are both made by drawing through a die or bushing and possess 

some preferred orientation before the carbonisation process starts, but 

many are completely amorphous. e.g. pitch. Moreton (11) has shown that 

carbon fibre made from PAN fibre which had been stretched in glycerol at 

423 a prior to heat treatment, has a higher modulus and strength than PAN 

fibres stretched in steam by the same amount. The increases recorded were 

1.32 to 1.71 GPa for the strength and 427 to 455 GPa for the modulus. 

Examination of the PAN fibres stretched in steam showed evidence of pores, 

possibly due entrapped water, (12) which could cause a weakening of the 

fibres. 

The heat treatment process which converts the base material to 

carbon controls the amount of 'graphitisation' that occurs in the fibre, 

although other factors such as the type of atmosphere also have an effect. 

Moreton, Watt and Johnson (13) found the relationship between maximum heat 

treatment temperature, strength and modulus for PAN based (nan) fibres to 

be as shown in figure 5. The strength of carbon fibre apparently reaches 

a peak value with a heat treatment temperature of about 1873°K «This 
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Figure 5 Effect of heat treatment temperature. 

discovery results in two types of carbon produced commercially, "high 

g modulus' or type 1 and 'high strength' or type 2. The reason for the 

decrease in strength of fibres heat treated to temperatures higher 

than 1873 °K is thought to be due to the growth of 'pure' three dimensional 

graphite crystallites which have weak bonding with the rest of the structure. 

The percentage elongation produced during the stretching and heat 

treatment of a fibre can have a dramatic affect on the modulus and 

strength. Hawthorne (14) produced glassy carbon fibres with a modulus of 

40 GPa and strength of 1.75 GPa by heat treating asphalt pitch at 1273°K, 

X-ray diffraction showed the fibres to have no preferred orientation and 

were probalbly amorphous with Lc=10 ‘A and La=17 A. After subjecting the 

fibres to stress graphitisation the modulus increased to 440 GPa and the 

strength to 2.60 GPa. In a further study Hawthorne (14) examined the effect 

of elongation on carbon fibres from several precursors. Although from 

different sources many of the properties were the same after similar 

treatments. The effect. of elongation on orientation,. Young's modulus, 

shear modulus andl electrical resistivity are shown in figures 6,7,8,9. 

The relationship between Young's modulus and elongation had a limited 

amount of scatter and the results of the shear modulus relationship had 

considerable scatter, but an overall trend was demonstrated. 
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Allen, Cooper and Meyer (16) demonstrated that it is possible to affect 
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the modulus and strength of a carbon fibre by introducing other elements 

into the graphite lattice. By heating carbon fibres in a Boron doped 

erucible the modulus of RAE carbon fibres were increased from 410 to 550 GPa. 

No boron carbide was detected and it was estimated that only about 1 atom 

in 10000 was displaced by the boron.No explanation for the phenomena was 

given, but it is well known that the modulus of reactor ie graphite 

increases after neutron radiation due to the pinning of dislocations. 

( Kelly 17), It is thought that the distortion of the carbon lattice by the 

boron atoms could have a similar effect. 

 



The modulus and strength of any materialare ultimately limited by the 

strength of the interatomic bonds. The theoretical strengths and moduli of 

many materials have been established and found to be in excess of experi- 

mental values by factors of up to 1000. The experimental values found by 

testing bulk materials do not reflect the strength of the interatomic 

bonds of the material so much as the weakness of the material due to 

various types of 'faults' such as intercrystalline boundaries. Carbon fibre 

has a structure far closer to a’perfect’ structure than most materials 

used for engineering purposes. 

The structure of perfect graphite is shown in figure 1 , and in a 

perfect carbon fibre the planes would be nities correctly stacked 

and perfectly aligned with the fibre axis. The bond energy of carbon atoms 

in the basal plane is estimated to be 600 kJ/g atom and the interfacial 

* bond energy between planes is estimated to be 5.1 kJ/g atom. Hence the 

perfect carbon fibre would be stiff and strong in two directions parallel 

+o the graphite planes and weak and 'soft' in the direction normal to the 

planes. 

The structure of carbon fibre is responsible for all the physical 

properties and is a centre of considerable study. Electron microscopy 

and X-ray diffraction have provided most of the information on the inner 

structure of fibres , and by taking into account the macro-properties of 

the fibre,attempts have been made to provide a model structure which 

satisfies all the experimental observations. 

Bacon(18) provided an experimental X-ray technique for measuring 

the degree of preferred orientation in reactor graphites in which the 
. 

width of the 002 line was measured at varying angles with a microdensié- 

meter. When the intensity of the reflected beam is plotted against the 

angle g » a Gaussian shaped curve is formed. Half the width at half the 

peak height of the graph is taken as a measurement of the pyerace preferred 

orientation angle. Ruland (19) adopted a similar principle to Bacon for 

measuring the preferred orientation in carbon fibres. He measured the 

preferred orientation in terms of a factor q , where q=1 signifies 
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perfect orientation of the planes parallel to the fibre axis, q=-1 

signifies perfect orientation of the planes normal to the axis, and q=0 

signifies completely random orientation. Other information available from 

X-ray and electron microscopy is La, the average size of the hexagonal 

plane of the graphite crystallites, Lc, the depth or stacking height of the 

erystallites and information on the size, shape and internal surface area 

of any pores in the fibres. La and Le can be calculated from line broaden- 

ing using the Sherrer equation L=K>/B Cos @. The sudden change in density 

at the interface of a pore/solid causes diffuse scattering of X-rays which 

can yield information on the diameter and length of pores.Direct observation 

of individual features with an electron microscope has provided further 

information and confirmation of some of the data obtained by X-ray work. 

Ruland (19) studied the structural changes during the eatoniaation 

“of cellulose fibre ( Fortisan 36 ) and found that the preferred orientation 

of the cellulose structure was almost completely destroyed between 513-553 ne 

From 553°K to 1173°K a small but significant orientation existed. An 

increase in the preferred orientation started at about 1273 °K and continued 

gradually to higher temperatures, and under special conditions could exceed 

the original orientation. (See figure 10).A direct relationship between 

the preferred orientation in the rayon and carbon fibres was not found, 

and in fact ''highly orientated fibres as starting materials did not 

necessarily produce well orientated carbon fibres''. Further work by 

Ruland (20) revealed periodic density fluctuations of small angle scatter- 

ing along the fibre. This was thought to be due to differences in the 

decomposition process resulting in domains of amorphous and crystalline 

material. This inhomogeneity was found to persist in carbonised fibres. 

The eccateey of the preferred orientation at about 1273°K also resulted 

in the formation of needle-like pores about 10-30 °A in diameter with lengths 

in excess of 200 4. 

Pores are not uncommon in textile fibres, and using X-ray diffraction 

techniques, Statton (21) demonstrated the existence of microvoids in 
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PAN fibres by diffuse scattering patterns. Discrete scattering patterns 

also indicated the existence of a long periodic order commonly found in 

drawn fibres. Sharp and Burnay(22) examined defects in carbon fibres heat 

treated up to 2873 °K and observed elongated cavities in the surface up to 

3pm in diameter, some containing inclusions, which suggested that the 

defects were formed by a gouging action during processing. 

Watt,Phillips and Johnson (6) examined RAE PAN based fibrs and 

concluded that they were of a polycrystalline nature with a preferred 

orientation of the c-axis of the graphite crystallites normal to the fibre 

axis. The degree of orientation was calculated from the half width of the 

002 line and plotted against the average fibre modulus. ( Figure 11). 

  

   

+ ° 

   
Watt et al 
Bacon & Schalamon        ° o 

   

    

Hawthorne 

° a 
° eS
 

ot 
a 
oO tt 
Pp 
3 ~ 
g 
3 

Pal 
4 
°o 

° eo   Lene ae 
1000 2000 

Temnerature 

200 

Yeung's modulus(GPa) 
   

    
Figure 10 Orientation/temperature Figure 11 Orientation/modulus 

for Fortisan 36 fibre. for RAE carbon fibre. 

Bacon and Schalamon (23) examined rayon based fibres and found a 

similar relationship between orientation and modulus. Watt et al also 

studied the relationship between Young's modulus and strength,(figure 12) 

electrical conductivity and density and found similar results to Hawthorne. 
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It is interesting to note that the apparently linear relationship between 

modulus and strength is not in agreement with the results of Moreton, Watt 

and Johnson (figure 5), but is in agreement with the results of Johnson, 

Marjoram and Rose for the case of stress graphitised fibres. Johnson, 

Marjoram and Rose (24) studied the effect of stretching PAN based carbon 

fibres at high temperatures.( Stress graphitisation ) Although there was 

considerable scatter in the results it appears that stress graphitisation 

( up to 30% stretch ) produces an increase in the modulus, strength and 

orientation. See figures 13 and 14. 

Johnson and Watt (25) examined RAE fibres heat treated at 2773°K 

with a modulus of 410 GPa , and found a fibre structure consisting of 

long narrow units parallel to the fibre axis with a width of about 100 SAS 

X-ray analysis showed a high degree of preferred orientation with the 

planes parallel to the axis. The crystallites appeared to be turbostratic 

with Le at least 12 layers thick and La in the range 60-120°A. Sections 

from fibres heat treated to 1273°K ruptured while being cut to reveal a 

net-like structure. Fibrils in the network were about 800-1000 across 

and ran the full length of the section. La in this structure was about 30 “A. 

It was concluded that the modulus of the fibre was controlled by the 

orientation and the strength by interfibrillar bonding. For a further 

check on the size of the crystallites the thermal conductivity of the fibre 

was calculated from the Debye equation, K=4pevl. The mean free path,l,of the 

electrons was assumed to be equal to 100 Ae the width of the fibril. The 

calculated value ,0.0596 Wm'K"Was in reasonable agreement with the 

experimental value calculated from a composite bar. 

Johnson and Tyson (26) studied ‘the intimate structure of a fibre 

carbonised at 1273 then graphitised at 2923 x. From the 002 reflections 

and the fact that there were no h k 1 reflections observed with > 0 

they concluded that the fibre had a turbostratic structure with the c-axis 

normal to the fibre axis. The interlayer spacing was estimated to be 3.42 4, 

Le approximately 60-70 a and La about 70 he They presented a model of the 

carbon fibre structure shown in figure 15, in which crystallites with basal 
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plane dimensions of about 60x60 i and stacking heights of about 60 ‘ are 

positioned such that the basal planes are parallel to the fibre axis within 

a 8. To help confirm the conclusions drawn from the X-ray data a section 

of the precursor was stained with phosphotungstic acid and examined with 

an electron microscope. It showed fibrils about 75 h wide and longitudinal 

sections of the carbonised fibre gave the impression of a fibrillar system 

with crystalline regions parallel to the axis separated by voids to give 

intercrystalline repeats of about 50-100 Me Extinction bands gave a measure 

of the crystalline width which was about 65 he They concluded that the 

extinction bands were caused by sub-grain boundaries with predominating 

twist components. In a later study Johnson and Tyson (27) used low angle 

X-ray diffraction to evaluate lp, Porod's aistense of heterogeneity, and 

Sv, the internal surface area of carbon fibres. Good correlation between 

“low angle parameters and fibre strength were reported, but with a discon- 

tinuity at 2173 °K . The discontinuity was related to a change from a highly 

cross-linked structure with many small pores and crystallites to a graphite 

structure with fewer cross-links, lower internal surface area and larger 

pores and crystallites. The results showed a sudden increase in lp and Le 

with a decrease in Sv, but with little change in the strength or modulus. 

It was concluded that in stress graphitised fibres the pores were more 

uniform and had less sharp boundaries than in non-stress graphitised fibres. 

Ruland (28) made a comprehensive study of rayon based carbon fibres 

and proposed a ‘wrinkled ribbon' model for the structure of the fibre. 

The basic unit of the model is a ribbon-like structure (figure 16 ) about 

60 h wide and thousands of angstroms long, made up from the hexagonal 

rings of the basal planes. The ribbons contain 'holes' where numbers of 

carbon atoms are missing: there is no correlation between the general 

direction of the borders and the direction of the a-axis of the hexagonal 

rings. Numbers of the ribbons run parallel to form microfibrils, (Figure 17) 

with a preferred orientation parallel to the axis. The microfibrils are 

‘wrinkled’ with voids between them, typically 200-300 a long and 10-20 4a 

wide. Dark field micrographs revealed light and dark domains which were 
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attributed to Moire effects from the superposition of two microfibrils 

with layer planes in the reflection position for 002 but tilted with respect 

to each other. Measurement of the angle between the layers confirmed this 

observation. The variation in spacings of the Moire patterns along a given 

microfibril was taken to indicate smoothly curved regions in the model 

with no sharp tilt boundaries. Dark field pictures of the 103 reflection 

indicated small areas of regular stacking (ABABAB) but only for 3-7 layers 

with lengths of about 100-400 A. Ruland considered this observation in 

keeping with the ‘wrinkled ribbon' model in that it would only be possible 

to maintain the correct stacking sequence in the straight sections of the 

fibrils. In wide angle scattering the variation of the 002 line with angle 

for both PAN and rayon based fibres indicated a correlation between size 

and/or perfection of the stacking of the layers and the orientation of the 

layer normals with respect to the fibre axis. As the width of the first 

-interface maximum is more sensitive to variations in the size of the 

scattering domains than to variations in the perfection, these results are 

incorporated in the model as shown in figure 18. The branched microfibrilar 

structure with sharp ended pores is somewhat similar to the branched 

structures in textile fibres. 

Ruland's results of La and Le are shown in table 1. The increase 

in La /Lq with preferred orientation for a given type of fibre was 

interpreted as an increase of the average length of the ribbons straighten- 

ed out by thermal or mechanical means. 

  

  

  

Fibre type La Le q H.T.Temp. 

Type 1 (PAN based) 119 A 64 A | 0.902 2973 K" 

Type 2 (PAN based) 35h 34 A | 0.787 1523 K° 

Rayon based 59 & 50 A | 0.230 3073 K° 

" era 54 4 | 0.820 | 3073 x° 

" 91k 65 A | 0.980 3173 K° : 

" 130 & 65 & | 0.982 3173 K°             

Table 1 Ruland's X-ray results. 
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The stereochemical reactions of Bacon (10) and Watt (9) implied a 

preferred orientation of the a-axis’ of the hexagonal lattice, but Ruland 

found no evidence to support this supposition. Low angle scattering due 

to voids was essentially the same for fibres made from PAN or rayon, and 

was similar to that found in textile fibres. It was shown that the angular 

distribution of voids and graphite layers was almost identical, proving 

that the voids are parallel to the layer planes. In type 1 PAN based fibre 

75% of the voids were within 12° of the fibre axis, but in type 2 only 

about 25% are within 12°, The length of voids increased at an increasing 

rate with heat treatment temperature and was independent of the base 

material. The microporosity also increased with heat treatment temperature 

but was also dependent on chemical and mechanical treatment. A plot of the 

average distance between voids and the stacking height showed that the 

voids increased in width as the fibril stacking height increased. Variations 

in the intensity of the reflections from the values predicted by Porod's 

law at wide angles were thought to be due to density fluctuations in the 

parallel stacking of the layers. Ruland suggested that the small angle 

scattering reported by Johnson and Tyson (27 ) as amorphous carbon was 

probably due to this effect. Increasing the heat treatment temperature 

generally reduced density fluctuations while mechanical stretching tended 

to increase them. Using the ribbon model, Ruland suggested that an 

increase in heat treatment temperature caused the atoms at the edges of 

the ribbons to diffuse and 'smooth out' the ribbon, whereas stretching 

caused the ribbons to move parallel to each other and disturb the smoothing 

process. See figure 19. 
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1.3. Theoretical calculation of the fibre modulus 

Hill (29) showed theoretically that the upper and lower bounds of 

the modulus of a milticrystalline anisotropic material were given by 

models where homogeneous strain. and homogeneous stress were assumed 

respectively. Ward (30) developed expressions for calculating the optical 

birefringence and moduli of an idealized semicrystalline polymer in terms 

of molecular orientation. For the case of uniform stress the elastic 

properties of the polymer were found in terms of the seichtetion parameters 

and compliance constants ( 83,5") of a single transversely isotropic unit ; 

for the case of uniform strain the elastic properties were found in terms 

of the stiffness constants (¢35')- 

Price (31) derived expressions to express the Young's modulus of an 

aggregate of hexagonal crystallites while taking into account the omeremed 

* orientation of the sample. For the uniform strain model he derived that 

the modulus in direction 0Z is given by:- 

(See appendix A ) 

2 a 

_. £ Lewmrmas.vasac 
‘oz ap {% I(B, 0) Sag dgde 

where B= angle between c-axis of crystallites and direction 02 

© = other coordinate angle ( polar coordinates ) 

IGG.) = density of crystallites in direction (g,e) 

E(d) = modulus of single crystal at angle to c-axis 

note E(B)= VW 5y Sab + San Cet S+ (2519 Huu) Cot DS) 

S5> elastic compliances of crystallites 

For the uniform stress model he derived:- 

24 Koay 

5 jm I(g,0) Sagagd
e 

Price used elastic constant values supplied by Spence (32) and experimental 

orientation values for cylindrically symmetric and completely anisotropic 
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pyrolytic graphites to calculate the moduli of the graphite. The results 

were in best agreement with the experimental values when the constant 

stress model was assumed, but all the calculated values were too large. 

The values of the compliances used were as follows; 8,421611*10;- 

0.04*10. Ge Ba cae ae a ig = 25 =33. 5 =435% : ; Spp=-0-04*10, S,,=-2.5*10, S55: 33 1 S,,=435"10 units Pa All 4257 

Gogging and Reynolds (33) noted that Price's treatment for the case of 

the uniform strain model was incorrect. In order to calculate the elastic 

properties of the graphite assuming uniform strain it is first necessary 

to calculate the general stiffness components ory from the basic crystalline 

stiffnesses Cis then invert the ee matrix to obtain the elastic 

compliances from which the graphite properties may be deduced. Ruland (34) 

made a similar observation on Ward's treatment of the uniform strain case. 

Goggin and Reynolds used the same relationship for the uniform stress 

model as Price but they assumed transverse isotropy ( which eliminates 

dependence on @). Experimental/theoretical comparisons for the values of 

By4> S339 543) S 4 and S44 of Pile Grade A reactor graphite showed that 

the theoretical values were much lower than the experimental values. The 

main reasons for the discrepancy were thought to lie with the effects of 

porosity, cracks and possibly inaccurate values of the crystalline constants. 

Brydges, Badami,Joiner and Jones (35) calculated the values of the 

elastic compliances of type 1 carbon fibre from X-ray data using the 

uniform stress and strain models with Goggin and Reynolds relationships 

ana elastic constant values of pyrolytic graphite supplied by Spence 

(private communication ). The limits of the two models were very wide and 

the experimental values of Young's modulus for both the type 1 fibre and 

an experimental high modulus fibre a just above the lower (uniform stress) 

limit. See figure 20.The experimental value of the shear modulus was also 

just above the lower limit. They concluded that the results indicated that 

the modulus of the fibre can be quantitatively accounted for by the 

assumption of a fibre composed of orientated distributed crystallites 

with the elastic constants of perfect graphite crystals. 
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Ruland (34) investigated the application of the uniform stress and 

strain models to the case of anisotropic carbon fibres. The structure of 

the carbon fibres was assumed to be in the form of crystallites composed of 

turbostratically stacked graphite layers about 5-10 layers high ,separated 

by needle-like pores, but with no information regarding any cross-links. 

The uniform stress model assumes that the stacks of layers are strongly 

linked in the longitudinal direction and weakly in the transverse direction 

and that a stress applied in the longitudinal direction affects all stacks 

uniformly regardless of orientation. Ruland argues that this model is 

reasonable to a point, but" it is difficult to assume that the transmission 

of stresses between two consecutive stacks of layers which are tilted with 

respect to each other can be at a non-zero angle to the layer planes". 

In the uniform strain model strong lateral (transverse ) bonds between 

individual crystallites are assumed so that the neighbouring crystallites 

have identical dimensional changes in the direction of the applied force. 

Although this assumption seems unreasonable in view of the nature of the 

graphite structure, the model cannot be excluded because of a lack of 

information on any cross-links. Ruland proposed that the 'elastic unwrink- 

ling' model is a closer approximation to the 'true' carbon fibre structure 

than either the uniform stress or uniform strain model. In the unwrinkling 

model the graphite layers are assumed to be linked together to form long 

wrinkled ribbons along the fibre axis. Applied stress in the longitudinal 

direction causes the ribbons to 'unwrinkle' and increase the preferred 

orientation of individual layers. The surrounding envirgnent of the layers 

produces resistance to tilting of the layers and the components of stress 

cause elongation of the layer planes. The resultant longitudinal Young's 

modulus is given by:- 

S55= 1/B,> Su tmyhk @ 

‘ es 
£4 and Mare given by Ly= Sy (a4 = Ty 4 @ 

5 Sag A a8 4 orth Cy) 
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See appendix A 

f 2) = Angular distribution of layer normals 

The elastic constant k (same dimensions as S,,) takes into account the 
11 

resistance of the envirdhent but has no physical basis and is derived 

from equations 4 or 5 using experimental data. 

The unwrinkling model has the advantage over the models in that it 

more closely represents the real situation (as seen by Ruland ) and is 

considerably more simple. However, the elastic constant k is difficult to 

interpret physically and the model does not provide any means of calculating 

the fibre modulus from single crystal data. 

Ruland determined the distribution of layer normals ef), from X-ray 

. techniques and calculated the orientation parameters from the Fourier 

coefficient, Pn for 9 carbon fibres with different degrees of preferred 

orientation. The porosity of the fibres was determined from the difference 

between macroscopic density and X-ray density (calculated from the layer 

spacings ),and the modulus of the fibres corrected by Ec= & E. 

where = observed modulus Frm 

Pax. 

Pan 

The theoretical fibre moduli were calculated from the orientation 

X-ray density 

macrodensity 

parameters and the values of S. ws and 55 pe naacl were assumed to be 
13 

those of a single graphite crystallite; tte .985*10, 18 45-0.65810,~ 

$5,527,810 “units Fa’ from a private communication from Blackslee. 

The variation of shear modulus with q for the uniform stress and uniform 

strain models is shown in figure 21. Also shown in figure 21 is the 

calculated value of k which is based on the linear relationship of equation 

1. Assuming a linear relationship Ruland obtained the relationship between 

shear modulus and q by a least squares method, equations 4 and 5. Figure 22 

is a plot of the experimental and theoretical values of Young's modulus 

calculated from the unwrinkling model using the average value of k from 
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figure 21. Also shown are the theoretical values predicted by the uniform 

stress and strain models. The results in figure 22 do not indicate which 

model is closest to reality but clearly demonstrate the large increase in 

the modulus for | al?o.9. 

The values of S44 obtained for the uniform strain model are in the 

range of values so far observed for a moderately to highly imperfect 

graphite structure. The values of S44 from the uniform stress model are 

considerably less but this could be due to a stiffening effect of transverse 

cross-links. The fact that both series of Sag with increasing preferred 

orientation is explained by Ruland as a change in the manner of trans- 

mission of stress between individual particles but with no apparent effect 

on layer size or stacking height. 

=19-



1.4 Discussion on carbon fibres 

The relationship between plastic straining and the mechanical proper- 

ties of carbon fibres during or before the carbonising process has been 

clearly demonstrated with experimental results published. Further invest- 

igations with X-ray diffraction and electron microscopy have shown that 

various degrees of preferred orientation are induced in the structure of 

the fibres by plastic straining and that some of the physical properties 

of the fibre are related to the degree of preferred orientation . The 

relationship between some properties and orientation are less obvious. 

(consider figure 14 ) and are probably also influenced by other details of 

the fibre microstructure.The microstructure of the fibre at any one time 

depends on the type of precursor, percentage of plastic straining and the 

heat treatment temperature , and hence it is not easy to define any general 

structure for "carbon fibre". 

It is apparent that the structure of a fibre changes considerably 

as it is converted from a low modulus textile fibre to a high modulus 

carbon fibre. A successful model con carbon fibres must be capable of 

explaining the properties at each stage of the process. Two models have 

been proposed for the structure of carbon fibre of similar modulus but of 

different origin. Ruland's ‘wrinkled ribbon' model is based on a rayon 

based fibre and Johnson and Tyson's model on a PAN based fibre. The two 

models differ mainly in the length of unbroken graphite layers and the 

shape and position of voids . It is tempting to assume that Johnson and 

Tyson's model is the result of stretching Ruland's model sufficently to 

break the ribbons into shorter lengths but not to fracture the fibre as a 

whole. Intrinsically one would expect fibres with a Ruland structure to be 

stronger and have a higher electrical and thermal conductivity than fibres 

with. a Johnson and Tyson structure, but comparative figures are not given. 

Neither model provides any information about the fibre structure perpen- 

dicular to the fibre axis. Ruland suggested that although it is premature 

to form any definite ideas on a model for transverse structure, there is 
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evidence for short range order in the packing of adajcent stacks of 

in the sense that there is a higher probability for the lateral ribbon 

boundaries to be in contact with the same, than with the surface of the 

graphite layer plane. The same argument could equally well apply to the 

Johnson and Tyson model,and taken to the limit would result in a flat sided 

fibre whose axis of symmetry was perpendicular to the fibre axis. The 

evidence that Ruland bases his assertion on is from the probability of the 

occurence of Moire patterns in 002 dark field microscopy and some optical 

anisotropy reported by Butler and Diefendorf (36). This type of packing 

would result in rectangular section voids bounded on opposite sides by 

ribbon surfaces and lateral ribbons respectively for the Ruland model. 

  

(see figure 19).The case for a Johson and Tyson model would be sit 

more complicated. 

* ae pe 
brydges et al calculated theoretical limits of Young's/of a carbon 

fibre given by the Reuss and Voigt models using the graphite crystal 

constants of Spence and experimental orientation data for a type 1 fibre. 

A similar calculation for a high modulus experimental fibre was carried 

out using simulated orientation data based on the type 1 fibre results. 

Both results are shown in table 2 and in figure 20. 

  

  

  

  

Experimental modulus Orientation Theoretical moduli 

Reuss Voigt 

Fibre 1 385 GPa TeT 189 GPa 985 GPa 

Fibre 2 736 GPa 6.4° 281 GPa 1000 GPa           
  

Table 2  Orientation/modulus results of Brydges et al. 

The average experimental results of Hawthorne, Pacon and Schalamon and 

~ Watt et al, are shown in figure 20 for comparative purposes. It should be 

noted that the graphs shown only represent the best fit curves for 

experimental results which showed a considerable scatter. If we assume 

that the experimental errors are approximately equal for each case,it 

appears that as the orientation of the crystallites decrease (and also 

the modulus) the spread between the various results also tends to decrease. 
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This is to be expected with an exponential type of relationship as 

variations in the orientation of fibres with a low degree of orientation 

will have a small effect on the modulus. All the experimental results lie 

within the bounds of the Reuss and Voigt limits as expected, and generally 

the Reuss model offers a closer approximation to the experimental values 

than the Voigt model. 

Ruland corrected his experimental values of the fibre moduli for 

parosity (analogous with. fibre volume fraction in a composite) and plotted 

a relationship between modulus and orientation (q) with very little scatter 

(figure 22) and with a maximum ‘fibre modulus' of 870 GPa for q=0.98. 

It is only possible to compare Ruland's q factor with the ‘half-width at 

half peak height' measure of orientation at q=1 (perfect orientation) and 

q=0 (random orientation) because they represent measures of different 

quantities. 

According to Ruland's results there was very little difference in 

the predicted fibre modulus values whether the uniform stress, uniform 

strain or unwrinkling model was assumed. No explanation can be found for 

the similarity of the results. 

The elastic constants of a single graphite crystal which are the 

basis of all the theoretical predictions for the fibre modulus vary some- 

what depending on which set of figures you take. The values quoted by 

Spence and Bowman and Krumhansl are shown in table 3. 
  

  

Elastic constant Spence 1961 Spence revised| Eowman & 
Krumhansl 

ca 4.118101 8 0.98*10 nN 7 
S15 0.04" “0.16 0 a 
S45 -2.5 ws -0.33 =" oe 

= Bs 5.28 27.4. ae 3 

544 435 i 250 ue = 

on 1160%10" nev® | 1130*10" mt | 1150*10'Nn® 
Cp 290 " 180 " 282" 

ce 109 " 15 " oeeratt 
C5, 46.6 36.5% 218." 
Cy, 0.23" 4.4 2.3"             

Table 3 Elasic constants of a graphite crystal 
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Spence's. earlier figures were used by Price and Goggin and Reynolds to 

calculate the elastic constants of various types of pyrolytic graphite . 

Spence later revised his results and Brydges et al and Ruland used the new 

figures in their calculation. If it is assumed that the values of the 

elastic compliances of a single graphite crystal derived by Spence and 

Bowman and Krumhansle are of the correct order of magnitude, then the 

majority of the experimental work carried out to date on experimental/ 

theoretical comparisons of carbon fibre elastic constants suggest that a 

uniform stress model gives the better . description of the longitudinal 

elastic properties of a carbon fibre. The exception to this observation is 

the work of Goggin and Reynolds on Pile Grade A reactor graphite, where 

the experimental values lay outside the theoretical limits. However this 

type of graphite is far removed from the aligned structures encountered in 

carbon fibres, and there are many faults in reactor graphites to account 

for the apparent disagreement. The structure of carbon fibre as pictured 

by Ruland would tend to suggest comparison with a fibre reinforced composite 

where the fibres are replaced by the microfibrils. However if the fibrils 

are assumed to be wrinkled normally, under stress the ribbons will straighi- 

en out and not necessarily be equally stressed. If a fibre structure based 

on the Johnson and Tyson model is assumed there is no continuity of 

structure and the individual crystallites are not likely to be strained 

equally. Hence unless there is a structure in carbon fibres which is 

analogous to the straight,continuous fibres of a unidirectional composite 

there is no basis for assuming that the fibre behaviour can be predicted 

using a Voigt model. 

In attempting to produce fibres with greater strengths and moduli 

in the longitudinal direction , little attention has been paid to the 

properties in other directions. This is partially due to the fact that it 

is difficult to measure the fibre properties in any direction not parallel 

to the fibre axis with any accuracy due to the small non-circular cross- 

section. Some measurements of the torsional modulus of sigle fibres have 
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been reported by Hawthorne and Brydges. Hawthorne's results (figure 8 ) 

were typical in that the scatter was large,but an overall decrease in the 

torsional modulus with increasing crystallite orientation was indicated. 

Brydges et al compared the theoretical and experimental values of torsional 

modulus for type 1 fibre, and found best agreement with the lower limit. 

  

  

  

[Experimental Young's Experimental Shear Reuss shear Voigt shear} 
(Torsional ) 

Modulus Modulus Modulus fodulus 

385 GPa 24.1 GPa 8.27.GPa 226 GPa           

Table 4 Experimental/theoretical shear modulus values 

Ruland calculated the value: of fitre shear modulus on the basis of 

uniform stress and strain models using experimental values of q. The results 

were fairly scattered but Ruland assumed a linear relationship in both 

, cases and showed that the fibre torsional modulus increased with an increase 

in orientation. No experimental measurementsof shear modulus were made but 

a@ comparison of Ruland's predicted values of shear modulus based on the 

constant stress model agrees reasonably well with Brydges' experimental 

value for type 1 carbon fibre. The shear modulus value of a fibre with a 

Young's modulus of 385 GPa from Hawthorne's results is about 12 GPa. 

Unfortunately there has been very little data published on the experimental 

values of the torional modulus of carbon fibres, but one would expect the 

torsional modulus of a fibre to decrease as the longitudinal orientation 

increased, as Hawthorne's results show. Ruland has suggested that the 

explantion for the increase in shear modulus with orientation predicted 

from his results may be due to a change in the transmission of stress 

between individual crystallites. 

As far as the author is aware no-one has yet made any direct 

measurement of the fibre transverse modulus or major Poisson's ratio and 

little attention has been given to the theoretical values of the same. 

The small diameter of the fibre makes’ any experimental work very difficuit 

and the unknown 'cross-links' in the microstructure make any theoretical work. 

open to challenge. The value of the transverse modulus and Poisson's ratio 
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and Voigt models whatever 

  

should lie between the limits set by the Reus 

  

the details of the structure.As it is difficult/impossible to measure 

       the transverse modulus and Po on's ratio directly, they can be es ed 

from the properties of a composite, if the relationships between composite 

and composite component properties are known to be accurate. 

The theoretical values of the transverse modulus and Poisson's ratios 

and S of a single crystal are given by 1/S respectively. 35° 12/511 and 13/855 
using Spence's data the following values are obtained:- transverse modulus 

=36.5 GPa, major Pai csontarpatio0. 165; minor Poisson's ratio=0.012. It 

should be noted that although the transverse modulus of the graphite crystal 

is theoretically 36 GPa, it is possible for a graphite fibre to have 

transverse modulus of less than 36 GPa due to the porosity of the fibre 

structure. The porosity would similarly affect the Poisson's ratios, 

tending to increase the major Poisson's ratio and reduce the minor Poisson's 

ratio. 

fo sum up, the structure of carbon fibre has been partially described 

by Ruland and Johnson and Tyson tut without sufficent detail to use as a 

base for theoretical calculations of the fibre properties. Theoretical 

predictions of the fibre properties based on the elastic properties of a 

single graphite crystal have produced very wide bounds. Only the longitudinal 

modulus has been studied experimentally to any extent and comparison with 

the theoretical values suggests that a uniform stress model gives a Closer 

approximation than a uniform strain model. The shear and transverse 

moduli and the Poisson's ratio are probably affeo fa to a far greater 

extent than the longitudinal modulus by cross-links in the fibre structure 

and may be difficult to relate to the orientation alone, 
a 
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1.5. Glass fibres 

In 1924 Griffith (37) first demonstrated that the strength of glass in 

the form of a very thin fibre could exceed the strength of bulk glass by a 

factor of up to 20. 

The theoretical strength of glass is 7.57 GPa when caleulated 2s 1/10 

of the modulus, but the strength of bulk glass is about 0.172 GPa due to 

the formation of microcracks. (37) 

The strength of freshly drawn glass fibre (virgin fibre) can be reduced 

by a factor of 2 by mechanical handling and exposure to the envirgrent. 

This is due to defects or damage in the surface of the glass in the form 

of cracks or etch pits. However the elastic properties of the fibres are 

similar to those of the bulk glass and are not affected by mechanical hand~ 

ling or the enviropient to any degree. 

? There are many formulations of glass giving some variation in proper~ 

ties, but E (electrical) glass originally developed for electrical insulation 

purposes is the type of glass most commonly used for reinforcement purposes. 

Other glasses used for reinforcement are A (alkali) glass and S$ (high 

strength ) glass. The composition of E glass varies slightly but is within 

the following limits. (39) 

Silicon dioxide 52-56% by weight 

Aluminium oxide 12-16% 

Calcium oxide 16-25% * 

Magnesium oxide 0-6% i 

Boron oxide . 8-13% " 

Sodium and potassium oxide 0-36 x 

Ferric oxide 0.05-0.4% .. 

Titanium oxide 0~0.4% " 

Iron 0-0.54 us 

Glass fibres are produced by re-melting glass 'marbles' in a 

temperature controlled bushing and drawing the glass through orifices of 

1-3mm diameter at a high rate, causing the fibre diameter to be reduced to 
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about 124m. The drawn fibres are coated with a size to prevent inter-fibre 

abrasion and wound into a cheese.This method of production results in 2n 

extremely fast cooling rate of the glass. (Typically 1373 K’ to room t 

  

ature in 0.1 second.) 

  
V
o
l
u
m
e
      

Pemperature       

Figure 23 Cooling curve for glass fibre 

The normal cooling curve for bulk glass is ABCD (figure 23), but because 

of the rapid cooling, the fibre cooling curve is modified to ABD'. Hence 

although chemically the bulk glass and virgin fibre are of the same comp- 

osition, physically they have different structures. Typical physical 

differences of bulk and fibrous glass are shown in table Si. 
  

  

          

Property Units Fibre Bulk 

Density ken? 2540430 2580430 

Strength (virgin) @ 293 K° GPa 3.64 0.172 

Young's modulus 3 GPa 75.8 84.5 

Torsional modulus GPa 32.0 Bee 

Refractive index - 1.548 46552 

Thermal conductivity wk” | 1.04 114 

Thermal coefficient x 4.9%10° 5.05410" 
of expansion 
  

Table 5 Glass bulk and fibre properties. 

The important features of the retention of the ‘open' structure in 

the fibre resulting from the rapid cooling is a decrease in density, 

modulus, refractive index, specific heat and thermal conductivity. The 
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    structure differs from the equilibrium structure of bulk ¢ both in 

interatomic spacing ( lower density ) and in atomic arrangement (stabilized 
° 

2 about 900 K for 

  

expanded structure). However by rehe 2 the fibre abo 

  

1 hour (less at a higher temperature ) the structure reverts to normal— 

this process being referred to as thermal compaction, 

Otto (40) measured the fractional change in fibre length with thermal 

compaction and found it to be approximately 4 of the change in density and 

hence concluded that the thermal compaction effect is isotropic. 

Griffith (37) found that the fibre strength increased with decreasing 

diameter of fibre and proposed that at the surface of the fibre the most 

stable orientation of the molecules is that in which their maxima of 

molecular attraction lie along the surface. This would lead to a similar 

effect in the next molecular layer but the effect decreasing with distance. 

This tempered layer hypothesis would give the fibre anisotropic properties. 

Bartenev and Izmailova (41) worked with specially made alumino~ 

borosilicate glass fibres and found that the strength/diameter relationship 

was only very slight for virgin fibres but more pronounced on industrial 

grade fibres. (Figure 24) On testing numerous fibres they produced the 

graph shown in figure 25. The explanation of the results incorporates the 

concept of a fibre with an orientated outer layer and an ‘inner core'. 

Associated with these three 'components' are three strengths. 07, is the 

strength of the outer layer, a is the strength of the inner core and 

or, is the strength of the of the fibre containing macrocracks. By etching 

the fibres for various times the fibre strength was improved. This was 

assumed to be due to the removal of an outer damaged layer, which they 

estimated to be about 100 4 thick. * 

Metcalfe and Schmidtz (42) found a strength/length relationship with 

a sudden decrease in strength at about 100mm. The results were interpreted 

in terms of 3 types of flaws,A,B,C, but without reference to a quenched 

surface layer. Type A are severe surface flaws generated during handling 

and occuring on average every 20mm and controlling fibre strength below 

-28-



3.3 GPa. Type B are rounded surface flaws ( possibly etch pits ) about 

0.1mm apart end controlling the strength in the range 4.8-3.3 GPa. Type C 

flaws occur in sections about 10° "to 10°mn and contro] strengths above 

4.8 GPa. Type C flaws were thought to be due to internal structural defects 

arising from ionic heterogeneity. 

Cameron (43) showed that by refining glass at 1723 K or above, it 

was possible to obtain fibres with strengths of 3.8 GPa with only a 2% 

variation, Although some fibres contained long thin bubbles they did not 

appear to act as stress raisers. 

In most investigations of the strength/diameter relationship of 

fibres, the production of smaller diameter fibres necessitated an increase 

in the bushing temperature. Otto (44) used a lime alumina borosilicate 

glass (used for textiles) and varied the fibre diameter by using different 

sizes of orifice and by varying the winding speed but keeping the bushing 

temperature constant. The fibres produced did not show any clear relation- 

ship between fianeter and strength. A further study of strength variation 

with bushing temperature for constant diameter fibres produced the results 

shown in figure 26. Thomas (45) carried out a similar investigation and 

confirmed that no strength/diameter relationship could be detected for 

fibres with diameters between Sym to 15um. 

Warren(46) studied the structure of glass using information from 

the laws of chemistry, X-ray diffraction data, physical properties and 

by comparison with other glass-like materials. The X-ray diffraction show- 

ed the predominant bonding to be tetrahedral in silicate glasses. 

Secondary structures such as those which change with annealing do not 

show up in X-ray diffraction. Warren's model of the two dimensional 

structure of glass is shown in figure 27 and shows no orientation effects, 

Work on vitreous silicate fibres ( Nan0 MgO 38105) by Stratton and Hoffman 

(47) with X-ray diffraction showed only diffuse scattering which was 

interpreted as evidence of voids. 

The small diameter of glass fibres used in composites ( 12m) 

  

makes it difficult to make any direct measurement of the physical propert 
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in any direction other than parallel to the fibre exis or even to measure 

the diameter accurately. Brannan (48) partially overcame this difficulty 

in his measurement of the Poisson's ratio of glass fibres by measuring 

the torsional modulus and flexural modulus. The torsional modulus was 

measured by use of a torsional pendulum and the flexural modulus by three 

point bending, on the same sample of fibre. The two moduli are given by the 

following formulae:- 

Torsional modulus, ee Flexural — SE 

where L=length of fibre F=applied load 

I=moment of inertia l=span 

T=period of oscillation & =deflection at centre 

d=fibre diameter ‘d=fibre diameter 

i Brannan argued that for any material to be considered isotropic its 

Poisson's ratio must lie between 0 and 0.5. If the glass fibre is assumed 

to be isotropic, the Poisson's ratio, Yj is related to the two moduli by 

V-n-1 
2G 

The major source of error in any direct measurement of the two moduli is 

the measurement of the fibre diameter. Brannan combined equations 1.6 and 

1.7 to derive an expression for the Poisson's ratio which did not include 

the diameter of the fibre. The average value of Poisson's ratio was 

0.18 40.02. After the fibres had been heat treated at 783 x for 24 hours 

(sufficient to anneal out any preferred orientation ), @ drop in strength 

of about 50% was recorded, but no significant change in Poisson's ratio 

was detected. 

Thomas (45) suggested that surface devitrification could reduce 

the strength of a glass fibre on heating. 

Kroenke (49) calculated the value of Poisson's ratio from a 

measurement of tensile and torsional moduli and obtained a value of 

0.34 + 0.07, but the calculations called for an accurate measurement of 

the fibre diameter with a microscope, and thus the accuracy is uncertain. 
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In 1966 DeWys (50) published the results of an examination of spod- 

umene fibres,(Li Al $i,0¢) with a transmission electron microscope, and 

claimed that a chain structure up to 1000 4 long exizted. In an attempt 

to create inorganic fibres with an improved modulus, Kroenke produced 

spodumene fibres which he subjected to an isotropy test (51,52) based on 

measuring the tensile and torsional strengths. This test proved negative 

and X-ray diffraction measurement did not show up any features which covld 

be attributed to fibre anisotropy, although flaws and crystallites were 

detected. 

1.6 Discussion on glass fibres 

From the evidence published it is evident that the strength of glass 

fibre is probably controlled by the surface condition and by production 

parameters. The existence of a surface layer or aligned arrangement of 

atoms on or neat the surface has not been proved. The lack of any definite 

structure demonstrated by X-ray diffraction, and the similarity in the 

modulus of the fibre with that of bulk glass and the value of Poisson's 

ratio of the fibres would strongly suggest that glass fibres are isotropic. 

For the purpose of calculating the properties of composites made from glass 

fibres, it will be assumed that glass fibre is isotropic. i 
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1.7__Boron fibre 

Boron fibres are produced by the vapour plating of a tungsten wire 

0.5mm in diameter. The finished boron fibres have diameters of about 4mm, 

strength of 2.75 GPa, tensile modulus of 414 GPa and a torsional modulus of 

168 GPa. From the method of manufacturing it is obvious that the fibre is 

not homogeneous and optical examination of the cross-section reveals 

exowth cones and radial cracks ( due to built in stress). Calculation of 

Poisson's ratio from the tensile and torsional moduli gives a value of 0.23, 

which is typical for an isotropic solid. X-ray diffraction shows diffuse 

rings corresponding to d-spacings of 4.4, 2.5 and 1.4 a which Galasso et al 

(53) interpreted as an amorphous structure. Otte and Lipsitt (54) examined 

erushed boroh fibre with an electron microscope and found that selected 

areas showed diffuse rings which could be indexeé as face centred cubic. 

When samples were heated in the electron beam until the diffuse rings 

disappeared a pattern of spots remained. This could be interpreted in terms 

of a layer structure with extensive faults in stacking sequence. They 

concluded that boron fibres exhibited features characteristic of layer 

type structures, and many of the observed X-ray results could be interpreted 

as stacking faults. The ‘amorphous boron can be regarded as heavily faulted 

f£.c.c. which when heated re-crystallises to rhombohedral form, annealing 

out faults. 

Despite the uncertainty of the boron fibre structure, it is 

normally assumed to be isotropic when calculating the properties of 

composite structures made from boron fibres. 

1.8 Kevlar fibre PRDAQ 

DuPont have recently marketed a new type of fibre for reinforce- 

ment purposes. Full details of the chemical composition and structure of 

the fibre have not been disclosed by the manufacturer, but it is based 

on an aromatic polyamide. The properties of the fibre are as follows:- 

Tensile maa lues 127.5 GPa, tensile strength 2.65 GPa, maximum elongation 27 

specific gravity 1.45. 
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It is not known whether the fibre is isotropic or anisotropic, but 

the high modulus and strength combined with a relatively low elongation 

suggest that the fibre has been subject to considerable stretching during 

processing and probably has a highly aligned structure. 

If the fibre proves to be a success it is anticipated that other 

organic fibres with similar properties will become available in the future. 

To obtain the high longitudinal properties required it is almost inevitable 

that highly aligned, highly anisotropic structures of the fibres will be 

used. 

1.9 Whiskers 

Whiskers are the next step from orientated fibres towards ‘perfect! 

materials with fully realised strength and modulus. The whiskers are 

necessarily anisotropic as the are nearly perfect crystals. To calculate 

the properties of a composite containing aligned whiskers the number of 

elastic constants of the whiskers that will be required will depend on 

the symmetry of the whisker structure, but the situation could be more 

complicated than for carbon fibre. 
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4.10 ___Fibre/matrix interface 
In the prediction of glass reinforced composite properties from the 

knowledge of the separate properties of the fibre and matrix it is normally 

assumed that there is a good bond between the fibre and matrix with no 

interfacial layer. The production of glass fibre necessitates the use of 

a size to prevent fibre/fibre abrasion. If the glass is to be used for 

reinforcement purposes the size is somtimes combined with a coupling agent 

(compatible size) to improve the bond between the fibre and matrix. Alternat- 

ively the size is removed and replaced by a coupling agent. Various 

compounds are used depending on the matrix and enviromental considerations, 

but it has been shown that the effectiveness of the coupling agent depends 

on how the fibres are cleaned and the method of application. [Hakins (55)] 

The optimum thickness of the coupling agent is 1 or 2 monolayers, although 

in practice it is found that sufficient coupling agent for several mono- 

layers gives the highest composite strength due to the uneven coating. The 

main purpose of the coupling agent is to increase the strength of a composite 

particularly the wet strength. In the case of composites stressed in a 

direction normal to the fibres, fibre debonding is one of the principal 

causes of failure.Hence at low strains the coupling agent and interfacial 

bond may not affect the composite transverse modulus but at high strains 

the interfacial bond will play a major role in limiting the maximum trans- 

verse strain, 

Carbon fibres are sometimes coated with a size or they can be surface 

treated, usually by a controlled oxidation. This results in a 'roughened' 

surface which enables the matrix to 'key in' and also possibly form a 

chemical link which gives a stronger fibre/matrix bond.Published photographs 

of fractures in composites with and without treated fibres clearly show 

that there is little fibre pull-out with treated fibres. Even before 

treatment carbon fibres have a fluted appearance (figure 2) which may help 

in providing a strong bond. Generally rayon based fibres have coarsor 

fluting than Pan based fibres, but this is probably dependent on the 

precursor. 
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The same argument regarding interfacial bond/composite transverse 

modulus relationship applies to carbon fibres as much as glass, although 

generally there is a better bond between carbon and the matrix than glass 

and the matrix. The surface treatment of carbon fibres increases the inter- 

laminar shear strength considerably, but as far as the author is aware no 

data has been published which shows that an improved fibre/matrix bond 

affects the elastic properties of the composite.



1.11 Isotropic and anisotropic fibres 

We have seen that carbon fibre has a highly aligned structure approach- 

ing that of graphite which gives it anisotropic properties, although 

accurate measurement: of the transverse properties presents certain physical 

difficulties. In glass fibres there has been no real evidence of any 

alignment of the structure so that they may be assumed to be isotropic, 

although again it is difficult to measure the transverse properties to 

provide absolute confirmation. An indirect method of assessing the transverse 

properties of the fibres is from measurement of the mechanical properties 

of composites made from the fibres. In order to evaluate the fibre propert~ 

ies from the composite properties the relationships linking the two must be 

understood. Section 2 is a study of the attempts to calculate the elastic 

properties of a unidirectional fibre reinforced composite from the know- 

ledge of the properties of the composite constituents. 
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2 THE PROPERTIES OF UNIDIRECTIONAL COMPOSITES 
  

2.1 The relationship between component and composite properties 

In order to predict the properties and behaviour of a multilayered 

structure laminated from single sheets of orthotropic material,it is 

neccessary to have knowledge of (a) the forces applied to the structure, 

(v) the constraints on the structure, (c) the geometry of the structure, 

(4) the properties of the single sheet of orthotropic material. This section 

Be concerned! only with (a), the properties of a single sheet of orthotropic 

material. 

The sheets of orthotropic material considered in this study consist 

of a thin layer of matrix material reinforced with unidirectional continuous 

fibres.Further details on the theory of unidirectional composites are given 

in section3, where it is shown that the stiffness of an orthotropic lamina 

can be characterized by four independent parameters :- 

Ey4 The composite modulus parallel to the fibre direction. 

E, The composite modulus normal to the fibre direction. 
22 

Gio The shear modulus in the plane of the lamina. 

V5 The Poisson's ratio defined as transverse strain/longitudinal strain 

+ and is also known as the Major Poisson's ratio. 

A fifth parameter Vie sometimes referred to as the Minor Poisson's ratio 

is related to B,4) By and Vi, ty Vp,-(V,,*B59)/B44 

In order to derive any relationships between fibre and matrix properties 

and the properties of the unidirectional reinforced lamina , it is 

necessary to make certain assumptions and simplifications.They are as 

follows:- 

1) The fibres are linearly elastic and homogeneous. 

2) The matrix is linearly elastic and homogeneous. 

3) The fibres and matrix are void free. 

4) There is complete bonding between fibre and matrix with no transition 

region at the interface.



5) The lamina is macroscopically homogeneous, linearly elastic and 

orthotropic. 

6) The fibres are regularly spaced, straight and aligned. 

7) The lamina is initially in a stress-free condition. 

Although these assumptions apparently apply considerable restrictions 

and are not likely to be all met, deviations from them result in varying 

degrees of ‘inaccuracy' in the predicted results. Some of the more likely 

sources of error connected with each assumption are listed below. 

Assumption 

d 

Comment dnd possible sources of error 

It is generally accepted that glass,carbon and boren fibres 

are linearly elastic up to at least half their maximum 

strain, and usually to fracture at room temperature. 

At higher temperatures the modulus is reduced in all the 

fibres but they are still reasonably linearly elastic. 

At temperatures near the transition point of glass,marked 

plasticity is observed in glass fibre, but as this sort 

of temperature would be sufficient to destroy most resin 

matrices it is only of academic interest. 

Neither carbon or boron fibres are microscopically 

homogeneous but can be considered as such on a macroscopic 

scale. 

The properties of the resin matrix can vary from a soft 

plastigly deforming material to a hard elastic material. 

Most resin matrices are linearly elastic at room temperature 

up to a limiting strain, but tend to undergo plastic 

deformation before failure. However the maximum strain 

reached in a composite can be limited by the fibre and the 

non-linear elastic or plastic strain level of the matrix 

may not be reached. Hence whether assumption 2 is justified 

. or not depends on the relative properties of the matrix 

and fibre, temperature and geometry of the composite, 
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Any voids present in the fibres (as in carbon) are taken 

into account by the measured value of fibre modulus.For 

most resin/fibre composites it is possible to make a 

substantially void free lamina (according to density . 

measurements), although some composites can have long 

thin voids between fibres. If this is the case there is not 

only a reduction of cross-sectional area but a stress 

concentration , and often an unbonded fibre. bones it is 

essential to use void-free lamina for experimental 

comparison with theoretical work. 

The bond strength in a composite depends on the type of 

fibre and matrix and fibre surface treatment. In some 

composites with a thermoplastic matrix the bond is Little 

better than a frictional bond relying.on the high shrink 

  

of the matrix phase change, whereas in a composite made 

from an epoxy resin with treated carbon fibre the bond 

strength approaches the tensile strength of the matrix. 

The use of coupling agerts on glass fibres has improved 

the bond strength of glass fibre composites but their 

mode of action and the possibility of an interfacial 

region is uncertain. 

The degree of homogeneity of a composite is very dependent 

upon the method of manufacture. For most fibre/resin 

composites it is possible to produce reasonable homogeneity 

but 'bunching'of fibres can occur at low fibre volume 

fractions unless care is taken.If a unidirectional competi 

made with isotropic or orthotropic fibres is homogeneous, 

then it will also be orthotropic. 

The linearity or otherwise of a composites depends on 

the fibre and matrix properties and the angle between; -the 

fibres and the applied stress. Most composites made with 

continuous fibres are linearly elastic over at least part



of the stress/strain response when stressed in the fibre 

direction, but not necessarily at other angles. 

6 Most carbon and glass fibre composites have a random array 

of fibres which become slightly more uniform at higher fibre 

volume fractions. Boron fibres, being much larger can be 

arranged in a specified geometric pattern if required.The 

staightness and alignment of the fibres is 5 dependent 

on the method of manufacture and can be controlled for boron 

fibres but not carbon or glass. If a composite is made from 

roving there are bound to be some non-straight fibres and 

misalignment where the fibres cross each other. The degree 

of both can be controlled to a limited extent by the size 

of the roving used, the smaller sizes being slightly better. 

7 b In producing any type of composite the matrix undergoes a 

phase change from a liquid to a solid with which there is 

normally an associated shrinkage. In addition to this,if a 

hot curing resin is involved there is the thermal expansion 

and contraction of the resin and fibre to be considered. In 

practice the effect of the shrinkage from hath causes is 

reduced ty the fact that until the resin has cured there 

is no bond between fibre and matrix. Any strain that is 

"built in’ to the composite due differential thermal 

expansions is often reduced over a period of time due to 

stress relaxation in the resin, 

Throughout the past ten years of so there has been a continuous output 

of micromechanical theories for predicting the physical properties of 

unidirectional fibrous composites, Two major areas of work have been on the 

strength and stiffness of composites while thermal expansion and conduc“ 

tivity have also attracted some attention. The complexity of the models 

used and the mathematics involved has tended to increase with time from 

simple netting theory te complicated statistical relationships. In simplif-



ing the theory it has sometimes been necessary to make assumptions which 

are not justified in reality ,with the result that many of the predicted 

results do not agree with experimental ones. To overcome these problems 

some investigators have introduced 'correction factors' or even imaginary 

structural features. 

Some of the relationships published are reviewed here and experimental 

evidence quoted where applicable and available.The sources from which the 

relationships are derived can be broadly classified as follows; netting 

analysis, mechanics of materials, self consistent models, variational, 

exact(within the context of classical elasticity), statistical, discrete 

elements and semi-empirical methods. 
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2.2 Methods of predicting the properties of a unidirectional composite 

Many different approaches have been used in attempts to provide a method 

of calculating the properties ( mechanical, electrical and thermal) of 

composites made from a variety of materials with varying geometries. In this 

section, only methods which are related to the calculation of the elastic 

properties of the composite will be mentioned. 

Netting analysis 

Methods of predicting composite properties based on netting analysis 

techniques assume that the fibre and matrix are free to act independently, 

that is the bond between the fibre and matrix is non-existant. For the 

longitudinal case (parallel to the fibre) the fibre is assumed to provide 

the entire composite stiffness ,and in the transverse direction (normal to 

the fibres) the matrix is assumed to provide the entire composite stiffness. 

In the early days of glass/polyester composites before the use of coupling 

agents, this assumption may have been near the truth under some conditions, 

but generally it cannot be assumed that the fibre and matrix act indepen- 

dently.In the longitudinal case if the fibre is much stiffer than the matrix 

as is the normal situation, then the majority of the stress is carried by 

the fibres and the assumption of a good or bad bond makes little difference 

to the modulus. 

Mechanics of materials 

The mechanics of materials is the next step from netting analysis and 

can provide simple relationships for predicting the composite properties 

which are in reasonable agreement with experimental values. The geometry 

of the composites is simplified to a specific geometry (square, rectangular 

or hexagonal arrays of fibres) and the composite stress-strain response 

expressed in terms of stress-strain response of the constituents. This 

method provides solutions based on the classical Voigt and Reuss models 

(see sketch) which are generally known as 'rule of mixture equations'. 
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Voigt or uniform strain model Reuss or uniform stress model 

(used for longitudinal response) (used for transverse response) 
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Self consistent model 

In this approach the phase geometry of the composite is approximated 

to a basic element which is subjected to applied stresses. The simplified 

strain fields which result from the loading are used to determine the 

elastic constants. This method of calculating the elastic constants has 

been used by several authors but the basic elements chosen and the 

associated assumptions vary from case to case. 

Exact methods 

This method involves an assumption of a model for the composite in 

which the fibres are arranged in an exact periodic array. The periodicity 

of the arrangements enables the system to be expressed in terms of a series. 

The elastic fields thus derived are then used to obtain expressions for 

the elastic constants. 

Variational methods 
  

Bounds for the elastic properties of the composite are determined from 

consideration of the internal energy. The minimum potential energy provides 

the basis for the upper bound and the minimum complementary energy provides 

the lower bound. Depending on the property being considered and the 

assumptions made, the bounds may be far apart, close,or coincide. 

Semi-empirical methods 

As a more immediately practically applicable solution, semi-empirical 

methods are frequently used to 'predict' composite properties. The main 

argument in aatenée of this approach is that the assumptions and simplif- 

ications which are required even in the most rigorous theories are not 
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necessary with an empirical approach. 

Discrete elements 

Discrete element methods which are frequently used to study the stress- 

strain behaviour of large scale structures have been employed on a micro- 

scale to predict the elastic behaviour of composites. Foth regular and 

random fibre arrays have been assumed in different approaches. In common 

with exact methods the resulting complexity of the solutions necessitates 

the use of a digital computer. 

Other methods 

In an attempt to account more accurately for the true arrangement of 

fibres rather than assume a definite pattern, statistical methods have been 

employed. The composite is assumed to be homogeneous but have elastic prop- 

erties which vary throughout its volume, This is expressed mathematiclly 

as a series of partial differential equations with variable coefficients. 

The elastic fields are given in terms of an average value (derived from 

the rule of mixtures) and a varying term so that the field equations are 

satisfied by the dervied fluctuations. These equations are then multiplied 

by the variation in the elastic constants and the statistical average taken, 

from which the expressions for the composite constants are derived. As it 

is necessary to include all statistical moments in statistical averaging 

the process involved is extremely complicated and leads to computational 

problems. 
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2.3 Survey of predictions of elastic properties of unidirectional composites 

Methods based on the mechanics of materials 
  

Ekvall (56) used a model with a square array of fibres and assumed 3 

plane stress state to derive equations for Ey Egos Cro and 12° The 

expression fou Ey, was the rule of mixtures with a modified value of the 

matrix modulus Em' given by pn/(1-2%) to account for the restraint imposed 

on the matrix by the fibre. The predicted values of B50 and Gio were in 

poor agreement with experimental values, although the modified value of the 

matrix modulus increased the value of Ego to bring it closer to the experi- 

mental values. 

Greszezuk (57) used the same model as Fkvall and derived similar 

equations but included the strain concentration effects of voids in the 

matrix. The theoretical predictions were in reasonable agreement with the 

experimental results. Later work extended the theory to derive equations 

for the coefficients of thermal expansion. 

Shaffer (58) used a model with a hexagonal array of fibres to derive 

equations for Ey 4and Ego « The equation for BE, 4was the standard lew of 

mixtures,and the equation for Ego based on the inverse law of mixtures 

is only applicable for volume fractions up to 68% when the fibres start 

to intermesh. The theoretical values of Eo were lower than experimental 

values. 

Rabinovich (59) used a model consisting of two plates in parallel, 

one representing an orthotropic fibre ,the other a highly elastic matrix. 

This resulted in a modified law of mixtures relationship for Ey? Boo and 

G,,- In later work the model was changed to two plates in series and the 
12 

new expressions for the elastic constants included the inverse law of 

mixtures for Gio- As neither the first or second equation for S40 predicted 

results which agreed with experimental values, Rabinovich took the geometric 

average of the two equations as the relationship for caleulating Gyoe 

Abolinish (60) assumed a square array of fibres with the extra 

condition that the Poisson's ratio effect normal to the fibres under 

longitudinal loading is ignored. Only his equation for F, 
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no comparison was made with experimental work, although it compares 

favourably with the values predicted by the lower limit of Hashin and 

Rosen's work. (61) 

Nosarev (62) modified the normal assumptions that fibres are reg: 

  

ly spaced and aligned to assuming that a) the fibres were curved in one 

plane only,b) the fibre diameters are small compared with their curvature Te, 

c) the character of the misalignment is uniform over the extent of the 

   composite and symmetric with respect to the longitudinal axis. The composi 

was replaced by a fictitious medium consisting of homogeneous layers « 

containing aligned fibres. The elastic constants of the layered medium were 

then calculated and taken as the properties of the composites Reasonable 

agreement between theoretical and experimental results were claimed. 

Self consistent models 

Hill ( 63) used a method to derive expressions for the composite 

elastic constants based on earlier work by Hershey (64) for the elastic 

properties of an isotropic aggregate of anisotropic crystals. His model 

fulfilled the normal assumptions with the exception of number 6, in that 

the model consisted of a single fibre embedded in a unbounded homogenecus 

medium which is macroscopically indistinguishable from the compesite. A 

uniform force at infinity induced a uniform strain in the fibre. The 

elastic constants were calculated from the strain field. The expressions 

derived by this method gave reasonable values at low fibre volume fractions 

but became unreliable at higher volume fractions. H 

Kilchinski(65) modified a model originally used by Frohlich and Sach 

(66) for predicting the viscosity of a Newtonian fluid containing a 

dispersion of equal elastic spheres. Kilchinski's model consisted of three 

conceatric cylinders, the outer one being unbounded and having the prop- 

erties of the composite. The middle cylinder had the properties of the 

  

matrix and the innermost cylinder the properties of the fibre. The cyli 

radii were such that the cross-sectional areas of the fibre and matrix 

cylinders were in the same ratio as the fibre and matrix volume fractions. 

Homogeneous stresses at infinity produced strains in the cylinders and the 
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strain fields were used to determine the elastic constants. Further to this 

Kilchinski imposed an additional restriction by assuming that the fibres 

were arranged in a regular hexagonal array. The outer radius of the matrix 

cylinder was governed by the requirement that the cross-sectional area of 

the basic hexagon and matrix cylirgr be the same. Ilis equations for By 

V,oana Gio were the same as those derived by Hashin and Rosen(61). 

Whitney and Riley (67) used a model consisting of a single fibre 

surrounded by a matrix cylinder of finite radius. Airy stress functions 

were applied to both fibre and matrix with the boundary conditions requir- 

ing continuity of displacement and stress at the fibre interface. The 

stresses in the cylinders were found for various surface loadings and the 

results used in an energy balance. Fxpressions for E. and Vio were 
412 Boe 

derived and compared with experimental values for a boron/epoxy composite. 

The calfulated values for Ego were slightly higher than the experimental 

values and the shear modulus was lower. than the experimental values, 

For the case of transversely isotropic fibre Whitney (68) concluded that 

the present expressions for Byy and Vo (law of mixtures) were not affected 

by fibre anisotropy, but expressions for Gio and Eno required modifications, 

in that the values of the fibre longitudinal shear and Young's modulus 

should be replaced by the transverse modulus. Whitney (69) adjusted his 

own theory to allow for anisotropic fibres and showed that only EQ is 

affected by the use of transversely isotropic fibres, and the expression 

for G40 is the same as for isotropic fibres. 

Variational methods 

Paul (70) derived upper and lower bounds for a macroscopically 

isotropic material (B, 4=By9=B) constructed from isotropic linearly elastic 

paricles embedded in an isotropic linearly elastic matrix. He demonstrated 

that the upper’ bound for the Young's modulus is given by the law of mixtures 

for the case of a transversely isotropic materi cuimndes plane strain cond- 

itions when the Poisson's ratiosof the two phases are equal. The lower 

bound was given s the inverse law of mixtures and hence for typical fibre/ 

resin composites the bounds are widely spaced at intermediate values of 
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fibre volume fraction. 

Hashin and Rosen (61) considered models with both hexagonal and 

random arrays but assumed transverse isotropy in the composite, A hexagonal 

prism containing one fibre and a cylinder containing many fibres were the 

two models considered for the two arrays respectively. Using the principle 

of minimum potential energy and minimum complementary energy, bounds for 

all five elastic constants were derived. For Gro with a random array the 

bounds coincide but comparison with experimental data showed poor correlation 

The work was extended (71) to obtain bounds on the bulk moduli of material 

with arbitrary phase geometry but no comparison was made with experimental 

work. 

Hill (72) derived upper and lower bounds for transversely isotropic 

material and showed by rigorous mathematical arguments that the rule of 

mixtures is the lower bound for Ey, and that the bounds presented were the 

best possible that can be obtained without taking the detailed phase geomet 

  

into account. 

Exact methods 

Eantiaeis) (73) originally developed a method involving a set of 

infinite algebraic equations for predicting the moduli of a plate. weakened 

by a doubly periodic array of equal circular holes. He later extended the 

method to the calculation of elastic moduli of a plate containing a periodic 

array of circular elastic inclusions. 

Van Fo Fy (74) applied Filshtinskii's atelysial to the case of an 

unbounded matrix containing a doubly periodic array of circular fibres and 

mathematically expressed the problem as a set of infinite series.The result- 

ing elastic boundary value problem was solved using complex variable 

techniques and the elastic moduli derived by averaging the elastic fields. 

4s the series expressions were difficult to use,Van Fo Fy developed 

approximate ones which he elaine were accurate to within 10% of the exact 

ones. Equations for predicting the moduli of a matrix reinforced with 

hollow fibres were also derived. 

Chen and Cheng (75) used a basic triangular unit in a hexagonal array 
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of fibres. Using en infinite series solution of the differential equations 

they satisfied the boundary conditions at both the fibre/matrix interface 

and the sides of the triangular unit by a modified least square method. 

They. later modified the work to include the case of transversely isotropic 

fibres. Comparison with Whitney's work for anisotropic fibres showed that 

the shear moduli were very similar, 

Adams and Doner (76) adopted a doubly periodic array and used a finite 

difference technique to calculate the shear and transverse moduli of a 

unidirectional composite. Figures given were not compared with experimental 

work but demonstrated that a square array should give a higher modulus than 

a hexagonal array at higher volume fractions. 

Sendeckyj developed an exact analytical solution for the longitudinal 

shear modulus in a fibre reinforced composite which takes account of 

” random spacing, random variations of the fibre radii and variations in 

shear moduli from fibre to fibre. The infinite series involved are 

simplified for the case of a regular array with fibres of identical moduli 

and comparison with the work of Chen(75) showed good agreement. 

Semi-empirical methods 

Tsai's approach (78) to the prediction of elastic properties of a 

unidirectional composite could be considered to be semi-empirical because 

there a no analytical method of allocating values to the factors K’ and ct 

The eee of K is given as 0.9 to 1.0 for composites with a reasonable 

alignment, but values of K can only be determined by extrapolation from 

experimental values of thoeagdniass The contiguity factor which has a 

value of 0 to 1 is involved with Vio Boo and Gio and can have a large 

effect on the predicted values. The value of C will be partially dependent 

a the fibre volume fraction but no attempt has been made to correlate the 

two. When C=0 (corresponding to isolated fibres) Tsai's relationships for 

V, sand Gyo are reduced to ones very similar to those Sitainea by Hashin 

and Rosen, 

Bishop(79) developed the netting analysis approach by the addition 

T See pages $2 andS3 Jor explanation — _ jo.



of imaginary transverse fibre to account for the transverse modulus of 2 

composite. The properties of the imaginary fibres are selected such that 

the theoretical and experimental results agree. In this way any effect of 

voids, fibre/matrix bonding etc are taken into account, 

Halpin and Tsai (80) showed that Hill's self-consistent model could 

be reduced to approximate forms incorporating a factor, zeta, which is s 

‘measure of reinforcement and depends on the boundary conditions', The 

value of zeta is determined by comparison of the appropriate equations 

with numerical micromechanies solutions employing formal elasticity theory 

or by extrapolation from experimental results. The value of zeta is not 

necessarily the same for G4 and E50 for the same set of conditions. 

Discrete elements 

Foye (81) used a discrete element technique for the prediction of 

Ego» Gio» Vv 42: and Vox of a fibrous composite, The elements employed were 

triangular in shape and constant strain was assumed. The cross-sectional 

area of the fibre and the type of array pattern was varied and the results 

for circular fibres in a square array agree reasonably well with those of 

Ekvalle 

Adams and Tsai introduced the idea of a randomisation factor in an 

attempt to give a more realistic fibre distribution. In calculating the 

value of the transverse modulus the cross-section of the composite was 

divided into a number of elements, a random distribution of which contained 

fibres and the remainder only matrix material. Several random patterns 

(from a random number generator) were used,and the transverse modulus 

calculated by a finite element technique assuming plane strain conditions. 

Results indicated that using the randomisation technique, a hexagorial array 

gave results closer to experimental values than a randomised square. This 

is directly contrary to evidence produced by a number of other non- 

randomized analyses. 
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2.4 Discussion on the prediction of unidirectional composite properties 

Notation 

A list of the expressions developed by various authors for the prediction 

_of the elastic properties of a unidirectional composite is shown in table 6 

It is unfortunate that there is no standard notation used in the form~ 

ulation of equations related to the analyses of composite materials so 

in many cases the formilae are not reproduced in the original form or 

notation in which they were published, but they have not been altered 

mathematically. The four basic elastic properties E44? Bz, and V0 22" S49 

of a thin lamina will be dicussed separately. 

The longitudinal Young's modulus, B44 

The longitudinal modulus is normally measured as a tensile or flexural 

modulus because it is usually simpler than measurement of the compressive 

modulus. In a unidirectional composite the longitudinal modulus is dependent 

on the fibre modulus to a very large degree (see figure 28)and hence 

whether the compressive and tensile moduli are equal at low strains will 

depend principally on the fibre properties. At higher strains the | 

possibility of fibre buckling occurring under compressive loads will 

depend on the composite phase geometry, fibre volume fraction, interfacial 

bonding and matrix properties.At high strains under tension some of the 

fibres may Pesee (depend ine on the relative maximum strains of fibre and 

matrix) and the composite will no longer consist of continuous fibres, 

pausing the composite modulus to decrease. The theories contained in this 

thesis were not designed to predict the stress-strain behaviour of a 

composite near the limit of maximum strain ,although it is assumed that the 

fibre and matrix are linearly elastic with equal tensile and compressive 

moduli, 

The bounds on E,, without taking the fibre and matrix geometry 
V1 

into account are given by Hill as:~ 

ELVJt Em Vn + eC Yy-Yon) VY Vin Ey) E]Vpbnnt (Vt~ Yon) Vf Vin 
cE M3 

Ken” “9 Kno ca «2 
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If the matrix and fibre Poisson's ratios are identical the bounds coincide 

and the formulation is simplified to the rule of mixtures relationship. 

Even if there is a small difference between the two Poisson's ratios the 

law of mixtures still gives a very good approximation because the difference 

in the Poisson's ratios is raised to the power 2 in the equation.See table 7 

and figure 29.The rule of mixtures derived from simple mechanics of 

materials is now generally accepted as giving good agreement with experi- 

mental data provided that the fibre alignment is good. Hkvall's modification 

to the matrix modulus only has any appreciable affect at low fibre volume 

fractions or when the fibre and matrix moduli are similar in magnitude. 

Tsai's K factor to account for the non-alignment or non-straight fibres 

should not be necessary if the assumptions regarding the composite construc 

tion are kept, but in most composites there is a degree of pratedobion 

“and the value of K could be linked to the type of production technique used. 

A strictly more correct procedure would be to treat a ‘unidirectional' 

composite as a three dimensional + @ composite (see section 3 ) where @ is 

the average angle between the fibre and composite axis, or to utilize 

Cook's work. 

Cook (79) calculated the reduction in composite modulus due to 

non-perfect alignment of fibres in terms of a factor K and the angular 

scatter. K is given by K=(Vf*Ef)/(Vm*Em). For the case of glass or carbon 

fibre composites with a fibre volume fraction of 60%, a scatter of 5°in 

the direction of the fibre will reduce the longitudinal modulus by about 

Me 
For the case of a composite made from transversely isotropic fitres 

such as carbon, Rabinovich derived a modified form of the rule of mixtures 

equation. Similarly Whitney modified his equations to take account of the 

anisotropy of some fibres. However when the relevant data is used with 

either of the anisotropic equations it can be seen the assumption of fibre 

anisotropy makes very little difference. See tables 25-32.



The major Poisson's ratio Man 

For an orthotropic composite there are three Poisson's ratios (see 

section 3 ) whether the composite is made from isotropic or orthotropic 

fibres. In most cases where a thin fibre reinforced plate is considered the 

Poisson's ratio concerned with strains normal to the plate surface, Vi, or 
23 

Visas is disregarded. Of the other two Poisson's ratios Ue is the most 

commonly quoted and known as the major Poisson's ratio. 

Hill calculated the bounds on V,, to be 

YyVj *VoaVon + YorcV4 Wan CH = Hrs) Y Vid YjVy # Vat Yn= 4) Vay Hem) 
Von VA gb Vow VE 4 
Ky Re Gt HG * Kew tem 

These bounds are expressed in similar terms to the bounds for the modulus 

Bay but are not as close as the modulus bounds because the term (Ym- Yy) 

.is not raised to the power 2, The upper bound of Hill's expression was 

also derived by Kilchinski, Whitney, Hashin and Rosen and Van Fo Fy as the 

expression for Vio In the bounds for E,, the much simpler law of mixtures 
ue) 

was the result of assuming that the Poisson's ratios of the fibre and 

matrix were the same. In order to reduce the bounds Vi. to a law of 

mixtures the bulk moduli of the fibre and matrix would have to be equal. 

As they are functions of the Young's moduli this is not likely to happen 

in practice. However when suitable figures are substituted into the 

equations for the bounds ,the bounds are very close and approximate to the 

law of mixtures.See table 8 and figure 30. 

The mechanics of materials approach to the prediction of Vso results 

in the rule of mixtures, and this is given by Ekvall, Rabinovich,Abolinsh 

and Halpin and Tsai despite different initial assumptions. Tsai's express-— 

ion for ),5 is made up of two parts, one part assuming that the fibres 

are in contact with each other (contiguous case)and the other part assuming 

that the fibres are isolated. The real composite will lie sotmewhere 

between the two cases and the coefficient of proportionality C is referred 

to as the contiguity factor.When G=0 Tsai's expression is very similar 

to Hill's upper bound, although the definition of K in terms of other 
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elastic constants is different. Hill defines K as the bulk modulus and is 

given by K=E/(2(1-y-2y")) whereas Tsai does not call K the bulk modulus 

and defines it as K=8/(2(1-))). The two values of K do not vary much 

with the result that V2 is similar for the two cases. 

Whitney's equation for the Poisson's ratio of a composite made with 

transversely isotropic fibre is similar to his equation for isotropic 

fibres, and the difference in V5 for the isotropic and anisotropic case is 

small, 

The transverse Young's modulus Boo 

The transverse modulus of a composite is defined as the transverse 

stress divided by the transverse strain. The transverse strain is depend. 

ent on the fibre array and hence in any calculation of E,, the fibre 
22 

array must be specified. The normal ‘array' in a real composite is random 

“unless specially made,but tends towards a hexagonal array at very high 

fibre volume fractions. In many of the theories published for the © 

prediction of Epo both square and hexagonal arrays have been assumed in 

turn and it is usually found that the square array gives better agreement 

with experimental results. The exception to this is Tsai's randomisation 

technique. However the array generated by this method is not genuinely 

random and the procedure is semi-empirical in nature. 

Hashin and Rosen expressed By in'terms of K,, and G,., the bulk 
2 25 2D 

and shear moduli respectively, governing planestrain deformation in the 

2-3 plane. Bounds were established for hexagonal fibre arrays but for 

a random array the bounds on K,,coincide and Ky is given by:—~ 
23 

K. 237 m*KF+Gm( Vm*KmtVE*XKL 

Vm*Kf+VE*Km+Gm 

3 

The bounds on Gos require the solution of a system of eight simultaneous 

equations representing the boundary conditions. In a later publication 

Rosen found that the upper bound of G,, provided reasonable agreement 
23 

with experimental results and a simplified expression for Gy was given. 
2 
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Whitney da Riley found E> in te: of Kos 

é 3 

  

        
a Ups but when re- 

arranged is the same expression as that of Hashin and Rosen. However in 

place of the complicated relationship for Coz Whitney and Riley assumed 

Vis Vy Vy +VenVonIn a latex publication Whitney derived the same 

relationship for a composite with orthotropic fibres. When Whitney and 

Riley's isotropic fibre expression was compared with experimental work 

the values predicted were higher than the experimental ones for a boron 

composite, and Hashin and Rosen's predictions were too low. 

The mechanics of materials approach has produced a number of 

variations in expressions for calculating the value of Egot The simplest 

expression, the inverse law of mixtures, was given as a first attempt by 

Schaffer who later modified it to suit an assumed hexagonal array with a 

maximum fibre volume fraction of 68 %. (The fibres in an assumed hexagonal 

:array start to intermesh at a fibre volume fraction of 68 %). Most of 

the expressions based on the inverse law of mixtures tend to produce 

values of Boo which are lower than the experimental values, but the 

modified versions of Rabinovich and Ekvall give values that are closer 

to the experimental ones. 

Tsai's congtiguity factor C can change the value of E,, by a 
22 

factor of up to 2, so it is difficult to make any comparison with other 

predictions or experimental data without first deciding upon a value for 

C. Similarly the equation of Hashin and Rosen incorporates a reinforce- 

ment factor, zeta. It has been suggested that zeta=2 gives reasonable 

"agreement between the predicted and experimental values so this value is 

used in table 9.Also see figure 33. 

Longitudinal shear modulus G45 

For a transversely isotropic er orthotropic fibre reinforced 

composite there are two shear moduli, the longitudinal shear modulus Gio 

or G,, and the transverse shear modulus Gog or Gp° In the case of thin 13 
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plates G,, is not considered to be of much importance from an engines 
25 

point of view and few attempts have been made to derive expressions for G 
23 

  

Hashin and Rosen established bounds for 

  

arrays and found that for a random array the bounds for G, ,coincide but 

not for G,,. The same expression for Gio was also derived by Abolinish, 
23 

Kilchinski, Van Fo, Fy and Whitney.Tsai's expression for G,, again incorp- 
12 

oratese contiguity factor C, which when zero makes Tsai's expression the 

that of 
same aSfHashin and Rosen. Similarly in the Halpin-Tsai expression for S45 

1 

substitution of zeta=1 gives an expression identical with that of Hashin 

and Rosen. The Hashin and Rosen expression generates-values that are 

lower than the experimental ones, particularly at higher volume fractions, 

As an improvement to the Halpin-Tsai expression Hewitt and de Malherbe (84) 

10 
suggested that a completely empirical value of 1+40Vf for zeta gives 

  

better agreement between theory and experiment.See table 10 and figure 

The final expression for Gio tenented by Rabinovich based on the 

geometric mean of his two previous expressions could be considered to be 

almost empirical ,but gives better agreement with experimental results. 

The modified equations of Whitney and Rabinovich for predicting the 

properties of composites made from orthotropic fibres are shown plotted in 

figures 35-38. Only the transverse modulus and the shear modulus are affected 

by the assumption of anisotropic fibres. The equations give similar predictions 

for anisotropic fibres, but Rabinovich's figures are very much higher when 

the expressions are used for isotropic fibres. 
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2.5 Theoretical values of composite elastic properties 

Table 6 contains all the relationships used in generating the data 

   shown in tables 7-10 and in figures 29-32, Yo generate the data,constituent   

  

properties representing those used in an average glass fibre/epoxy resin 

composite were employed. They are as follows: Fibre modulus=75.8 GPa, 

fibre Poisson's ratio= 0.21, matrix modulus= 3.32 GRa: and matrix Foisson's 

ratio=0.37.The fibre and matrix were assumed to be isotropic, and it is 

assumed that G=B/2(1+¥).In addition to plotting the normal property/ 

fibre volume fraction relationships, the effect of varying the constituent 

properties is shown in tables 11-24 and figures 59-49 . The composite 

properties displayed are based on an assumed fibre volume fraction of 

50% with a void content of zero. The constituent properties used were those 

above and the shear moduli were assumed to be a function of the Young's 

modulus and Poisson's ratio for both the fibre and the matrix. 

The comparison of composite properties calculated on the basis of 

the assumption of fibre isotropy and anisotropy is shown in figures 55-38 . 

The fibre and matrix properties assumed for the graphs is as follows:~ 

Fibre longitudinal modulus (B,,) =200 GPa, fibre major Poisson's ratio 

(V,4)=0-35» matrix modulus=3.32 GPa and matrix Poisson's ratio=0.37. 

Four values were used for the fibre transverse modulus (Epo) and the 

transverse fibre Poisson's ratio ) calculated from Braye, 1 0100148 

and VepBpo*Voy* 
Eel 
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3 COMPOSITE THEORY 

3.1 Notation 

The theory of the elastic behaviour of anisotropic materials presented 

here is a condensed version of the elastic theory which specifically applies 

to the types of considered in this thesis.Unfortunately there is no 

universally accepted system of notation and some confusion can result when 

comparing references. In compiling this section the main sources of reference 

were Lekhnitskii (85),Calcote(86) and Ashton(87).The notation used does not 

follow any one author entirely but the system is clearly stated to avoid 

any confusion. 

3.2 The elastic behaviour of anisotropic materials 

The relationship between stress and strain for any material which is 

considered to behave elastically can be expressed using Hooke's law. For 

anisotropic materials the arithmetic expressions are normally written in 

matrix form for convenience and Hooke's law is expressed as OFF = Cijyct See 

where Oy} are the stress components, Exe are the strain componente 

Cij KL are the stiffness components. Since stress and strain are 

second order tensors the stiffness matrix is a fourth order tensor with 81 

components. However by consideration of the strain energy it can be shown 

that a completely anisotropic material with no axes of symmetry has only 

21 different elements in the stiffness matrix. Hooke's law may also be 

written in terms of the strains using the compliance matrix Sijne where 

Eig= Sijne ee 
In this thesis in order to simplify the mathematical expressions the 

subscripts will be modified according to the following rules:- 

11 becomes 1, 22 becomes 2, 33 becomes 3, 12 becomes 4, 23 becomes 5 and 

13 becomes 6. 

Hence for the stresses we have:— 

roa OR Fe Te 
OR,= oy Normal stresses O73 = O§ = Ta3 Shear stresses 

= OF = Ta? OF =O: Us 
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and for the strains we have:- 

E,2°€: 26,7 f= hy 

Exreky Normal strains 2£,; ® E5225 Shear strains 

£5325 26; a€¢: 3) 

The factor 2 is introduced for the shear strains because te; , 315 ; rie 

are engineering shear strains which have twice the value of tensorial 

shear strains. 

The full stiffness matrix for a completely anisotropic material ( in 

retracted form) is then:- ° 

oat Cie GireGs Gy Cx Se c 

Or Cae a1 Gag Gan Gis CC €e 

oO Ciy Cea Cay Cou Css Coe €, 

Cal my chee Caw Cry Sos Cae] | de 3.1 

T23] [Cis Caos Css Cas Css Coe $23 

Tis) alle eee Gre Che Cr Cu Js 

The stiffness matrix is symmetric with 21 different elements. 

3.3 Fibre reinforced plastic 

A matrix reinforced with equally spaced, continuous, straight fibres 

has three mutually orthogonal axes of symmetry and is peneely referred to 

as an orthotropic material. The stiffness matrix for such a material is 

simplified considerably and has only 9 different elements. 

oT Cyl Cine: 6 ° ° g 

O27 Cis, (Can Gey ° ° 6 €. 

és 9 

tn 0 Oi OF Gy ° ° Une 

Tis|im| lO" OesOn 10 Css 0 bis 
ee Cs ° 6 O20 o Ce 33 

v3 Ciy Ces C33 5 

For the case of a thin plate of fibre reinforced plastic with the fibres 

in the plane of the plate (and parallel to one edge) the stresses normal to 

the plate can usually be assumed to be negligible in comparison with the 

in-plane forces.



Pr 

  

x 

Material axes. Plate axes. 

Assume O3 = Try = U, =O. From equation 3.2 we see that ¥23233 29 ana 

és C327 (€,6 TE Gs)45 €5 is a function of €, and Exand not independent, it 

is not necessary to include it in the matrix equation. The elastic stiffness 

equation for a thin orthotropic material with its natural axes 1,2 parallel 

to the plate axes X,Y is then given by:- 

oan Ci Ca 6 TE, 
Or) =1Cer Cre O [Er 

Tir 0 oO Cull bn 3.3 

Similarly the equation can be expressed in terms of elastic compliances as:- 

€, Sn Su 0 [I 

Ex je [Sn Sa 0 |/O2 304 

lin 0 0 Sul[Tx 

Thus we see thatCjj and Sijare related by the following expressions:- 

Cy = Sat Cuz _Su Cus Sue Cee ole 

er sism=eys SAOUIIT Sy Sie Ses = 

3.4 Relationship between matrix elements and engineering elastic constants 

It has been shown that the elastic behaviour of a thin orthotropic 

plate can be expressed in terms of four independent constants Suy Sn Sra and Srp 

or ee Ca Car and Cre. The relationship between these elements and the 

normal engineering constants can be found by consideration of the definit- 

ions of Young's modulus, shear modulus and Poisson's ratio.Mathematically 

these definitions may be expressed as:- 

Longitudinal Young's modulus E44 cy 

Transverse Young's modulus Eno o1/e, 

In-plane shear modulus G,5= ty, 

Major Poisson's ratio Vio - ff, 

Minor Poisson's ratio V5 = = ey 
4 
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Based on these definitions we see that:- 

  

    
Cnc Eu Cap2 Est Cie Vi bn Cue G, 

Vis Vay [~ Us Voe (+ Yew Ver - as 

S;, 2 L Sard Sinz -Van Scos e 
Eu Ex Ey Grr 3-1 

As Yr Yt there are only four independent engineering constants required 

for the characterisation of a thin orthotropic material. 

3.4 Thin orthotropic materials 

Consider the case of a thin anistropic material where diréction 3 

is perpendicular to the plane, equation 3.1 is simplified to:- 

on Cu Ca Cre] [Ex 

Oy pe]Cir Cur Cre] fey = 
Txy} [Cu Crs Coe Bay a2 

The subscripts have been changed to x and y to show that the stresses 

and strains are not necessarily parallel to any natural axes of the plate 

and thus represent the general case. When the elastic properties of a thin 

orthotropic material are considered in any direction not parallel to the 

natural axes, the orthotropic material behaves with the characteristics 

of an anisotropic material. Thus it is possible to derive expressions for 

the elastic properties of an orthotropic composite at any angle in terms 

of Cij and the angle @. 

3.5 Elastic properties of a thin orthotropic lamina at an angle@to the 

natural axes ™ 1 

t Z — Natural (material) axes 
  

    
LL ROG Y 7 

V// \e7, ’ 
, 
ie Af — Y~ Lamina axes 

    
Z 

eae A ha 

~~ In order to determine the elastic properties in directions other than 

  

parallel and perpendicular to the natural axes of an orthotropic lamina,it 

is necessary to transpose the stresses and strains according to the rules 

for: second order tensors. ise. Tije intjglaewhere Qix and Gjeare direction 

cosines. The strains are transposed according to:- 

é& [7 Ex 
é 

pay ] HY 3.9



and the stresses as:- 
oO; or 

oO. |= [7] Ore 3.10 
Les 2 

Ti Ty 

where Col. CrtO Sint 1Sine@ tO 

Sato CatQ® -LIno CO 3.14 
TSHOL0G SiLKin® CrtO~ Sin'® 

Subtitution for the strains &,,€. and Uyana the stresses 0,49) and Cn 

from equations 3.9 and 3.10 into equation 3.3 yields 

(is Ose c [Ce Cio ce 
Oy |= [Cn Cr’ O [rT] by 
Try O Oe, Afay 

OR = ga 

pre Tigo (rl Leet} <5 
=o £ ay 

3.12 

Hence the matrix represented by [ry fe] LT] is the required stiffness 

matrix relating the stresses and strains of the X,Y coordinates.The elements 

of this matrix are often denoted by a dash to signify that they are 

functions of Cjj and the angle @.However it is easy to overlook the dash, or 

it may be accidentally omitted,so in this thesis iol: Critel i 

From equations 3.11 and 3.12 we have:- 

Quz Cn CoO +2UCi2 SntOn"O #Crr Sat t C66 LO LO 

Qire Cu SOO + Cra (Sin *O + GotQ) + Car Sin Cnt ~ Le Cog SOG 

Qigz Cr SrO GO + Ci2(Sn OC ~$nO Gn) —CarSe O60 + 2G (SiO WO-5i,86°9) 

Qare Cu Sot #2 C2 SHOGSO +Cr¥O F &Ce¢ S78 CoO 3413 

0262 Cu SPOLOO + Cr2(S.B GeO = K2OC)=Cr1SHOCH'O +2 Coe (SHOGHFO ~ SEC2e) 

QiGe Cu SHRED = UCiASNOGHO + Car HfOsd + G6 (Sait pLa'O ~USHOLo'S ) 

The relationship between the angular stresses and strains in terms of the 
ars 

compliances is given by:- 

€x Rn Ri 4 ky ox 

fy Ps] An Rar 4 Rul |Ky 3.14 

iday] [Rie Bre 2 bes} [Lay 

where (R] = ETI fs 30] 3.15 
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In a similar manner to that used for the stiffness matrices [cig] 

{ai} it can be shown that the following relationships hold:- 

Rye SulotO + L512 S22OGHO TSarSnt * Seg GO 

Rina Sn Se2OCRO + Six(SintOrGeo%O) + 521 5.n2OG0*O ~ $6 Sn'OCe'O 

Rive bSu SnOCO + 4 Srl So POG -$-OWIQ) ~ 45 21$-2OG0O +2 566(50H0G0-S-8 C’e) 

Rete Sa Fert r VS ASNOGS + S11 G4O tS SVOG"S 3.16 

Rage G5 Sarisl+ h Sea(S1 607 O~ $20G06) ~ 45,2 SBS + 2 yse(K,A070 7SAOWO) 

Rog? 4 Su Sob O CO ~8S Co tOGIO) 4S SPOCin"O + Suy (SiO LatO-25.f@ CoO) 

From equations3.7 and4.16 the relationships between the basic 

engineering constants of the orthotropic material En, Brag Gry Vin and Vi, 

and general lamina engineering constants Ex, Ey» Gy y Yay ond Vyxare as 

follows :- 

2 CatO (ob — 2%) Sete 4 oto 
Bur ER 7 Gra 2) eu e = 

Bios Soy st? Ba: 29 Cnt 8 “9 e5? (ds. f Bye) saa + @le 

Le (G20 4 (12% 4 ee)” 
Gry” (ary Bn Er 35.17 

“Yay, Yur 2 Yee Z leyn + Ee suite 

Eu * En “Ew Ex Cn 

In addition to these relationships two commonly used others are 

for the ‘cross coefficients' my and m,. These are defined as follows: 
2 

maiz ~ En & Wn: ~ Eu & 

Ty Ta 

nm, and m, are related to the basic engineering constants by 

ant S20 Yn + Eu ~ Ey - Cnto(i+2 Vas Ep ~Eu | 
Ew 26 En Gr 

. 3.18 
mez SmOf vit Er _ Ens sHto( H+ 2 4 En -&)] 

— Ew fen ‘Ex Gn 

The importance of n, and m, is that they relate the normal strain & to the 

shear stress Tr, or conversely the normal stress% to the shear strain te . 
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3.6 Theory of mitilayered pla’ 

  

Relationship of strain, curvature and disy 

Consider a thin layer where the X and Y axes lie in the plane of the 

plate and the Z axis is normal to the plate. 

  

  

  
  

  é 

  

; z DK as 
7 

From the classical theory of elasticity the strains in the X,Y and 2 

directions for small deflections are given by:- 

é,= du tye Qy Eye Q 3.19 
ox ry 0 

where u,v and w are the displacements in the X,Y and Z directions 

respectively.If the plate is subject to bending in the X-% plane the 

strain at any point.in the material can be expressed in terms of the 

displacement in the Z direction (w) and the ideplaccaant of the midplane 

(d&oVe). The displacement of the line AB in the X direction is and the 

line is assumed to remain perpendicular to the midplane ( Kirchoff-Love 

hypothesis, this is equivalent to effectively ignoring the effect of 

shearing deformations Yagana bay): The displacement of point P an the line 

AB is Mpand is given by Mon-2ed where gis the angle between the line AB 

and its previous direction, and 3e is the distance of point P in the Z 

direction. For small angles measured in radians we can assume that 

ole Tends Sono , and hence OF ow 
Ox 

Merz Mo-FpeX = Mo- 3042 Boe 

Similarly it can be shown that Wes Vo- 298 3.21 

“Substituting forMof equation 3.20 andVof equation 3.21 into equation 3.19 

Ex gee - 3a 3.22 

é= * a5} i 3.25 

The shear strain in the X-Y plane is defined from the theory of elasticity 

we obtain 

(for small deflections) as Ixy ee de * ov 
a x 
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*. Yay 2 due +o - 250k Be 24. 
oy dxd4 

Equations 3.22,3.23 a 35.24 can be written in matrix form as 

  

Ex £2 hx ce 
= jeg} +3 [Ay oe]: feb [4] 

Beal | LOG ” 
where €,° 7 gs % are the mid-plane strains and Ax hy hy are the curvatures. 

2 dis ey dv Yaeg = qe +e 

se en hoe, 
hn. 2- fe a s % 

Substituting into es 5s oo. have for a single layer 

Oe QO, Ar Qis eS Qy Qu ie ke 

Oy fe [Ar Qui Qu Ep [+ 3/Qa Qrr Qe Ky 3.26 

Tay] [Ore Are Qoe] [day Qe Ree Qe hoy 

where Qjjare the general elastic constants for the single layer. 

3.7 Forces acting on an elemental portion of a laminate 

as mt 
  

  

    
  

  

    
  

    note Nay? Nyx { 

  

The forces acting on an elemental portion of a lamina may be separated into 

three main types,Normal forces 95.05% Shear forces ley Cy, Gpnd Bending 

couples Mx, My May In addition there may be a pre:sure acting on the 

surface of the plate.As the stresses in a multilayered laminate vary from 

layer to layer, it is convenient to introduce a system of stress resultants 

and moment resultants which when applied to the geometric mid-plane produce 
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a system which is statically equivalent to the original. The stress result- 

ants have units of force per length and the moment resulta     ts have units of 

moment per unit length. The stresses in the Z d 

  

ection are considered to 

be negligible compared with the in-plane stresses and are thus disre, 

  

The remaining resultants are defined as follows:- 

  

  h Stress resultapts Moment resultants 

Ne: e dy Nu. L Me C* ae ae AEE 

forty Mor {oy ay my onaly Mor {Pop x4y 
e ‘ a 27 jo * 28 Nay=4 Cady a Mage) sonata 3. 

~¥ . % 
No pa Ls Ax > - - 

or |Ny |= | ‘low | dy 3.29 Myo |= oy 1G 3.30 
Nxsyl [Cx Mx} 2-B[ Cx 

By combining equations 3,26,3.29 and 3.30 we can express the stress 

resultants and moment resultants in terms of the mid-plane strains and 

curvatures. 

hy. 
Now Qq Qn Ae fa? Q, ara dy] fe 

ee Qn Gar Que [ley + Ar Qu Sy fThy Bids 3.31 
Nxy Z \ae Qa Gee | [x5 Qig Qe 6s] | hx 

“ty, 

Me ° 

M,. Qy Qn Qi] |x Qn Qu Vee] ke 

My = | Jian On Gulley 1% +1@n Qn Gre] by |3'}43 a 

Mry Qs A Vey Ly Qe Bre Bed} he 

3.8 Multilayered laminate analysis 

  

  

    

  

eens f 
€ 

2 me Mid-plane (reference plane) 

g hy Uhs 
hy 

  

If we have a miltilayered plate of n layers of different properties and 
on 

different thicknesses as the most general case, the stress resultants can 

be determined by summing over all the individual layers, 

h. 
Nx nm 4 Tx 

Ny |= é vy dy 

‘Nac. js Tx 
A Nha 

where k is the subscript identifying each layer. 
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Hence Tm / Man On Glen] [Qu Qn ae] [he 
Ny : Qn Ga Syl fey? ] gt [Qn Aa Oe} | hy g]dy 3-53 

Nxg Ast hi Qe Qrg dee Y3 Qie Ars Qe) Use 

    If the elastic properties of each do not vary throu 

Qj} are not functions of 2. Asf€ Spna ih Jreter +o the midplane there are 

also not functions of z or k. Hence equation 3. a ay be written as 

Nox An An An} [&. Be ba af 

Ny = JAn Au Aul [ey] + Ba Ba ri or NEA ISR] ae 

Noy! JA Are Ac ¥ns Bie Bi Bee. oak 

w eu
 

oO
 

where 

Aij= z (ij), Che hy) 

Bide (au M,) 
Equation 3.34 is of great importance in general laminate plate theory as 

w ww
 a 

it shows that there is a link between mid-plane stress resultants , normal 

and shear strains and curvature. Similarly the moment resultants of the 

multilayered plate can be expressed by summing the product of the stress 

vector and distance z over the thickness of the plate. 

Mx] a hy Qy Ger Qe] [E” Qn Qu Qe 

My & a Qn Qa Qu &y 3 +12 nm Ora Qu fey 3 dy 

Max} hy \ LO Qre Vee by Qu Qre Roo} [hoy 

As Qij jfé"Jena[h] are not functions of z we can write 

Ma Bu Ba bu] [&* De Dn Dic] [he 
My = [Bn Ba bel JEP] +] Da Du Duy Ay 3.37 

Mxy Bip Bre 860) by Dip Ore Doo hay 

(m] =fe fe] +DI]L4) 
where: - m 

el-26, Cig), Chg~ A) 

fb) = 32, CORR RA) 3.36 

Equation 3,37 is also of great importance in understanding the mechanical 

behaviour of laminated materials ,as it shows that for the general case 

there is a relationship between the moment resultant and mid-plane strains 

and curvature. Equations 3,34 and 3,37 can be combined to form the joint 

laminate constitutive equation. 

EA : 
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For convenience equati 

E_ [ati $ 
M| |[c*iO 

partially inverted to give    

3.40 

or completely inverted to give 

€*|_ [a'' | N we |e fenztes | 

A le 1D JIM 3.41 

were [ak [a*}-[0"A fo} [¢] 
[e'\=[e*] [o*"] 
fe ]:-fo*-" 1 Lc") 5.42 

{p'] =[D°"] Ee 
een) fa] 

[e*]=-[a"][8] 3.43 
Le*]= [ejla") 
ty = fo ]-(8 Ila" IL8] 

3.9 Bending-extensional coupling 

The inter-dependence of the stress resultant with the mid-plane 

strains and curvatures has been shown by equation 3.34. If we consider 

the normal stress resultant Nxwe have:- 

Noct Au€s + An€y + Au Say tude #8 dy + Bicdag 
Here the normal stress resultant in the X direction is developed by the 

mid-plane normal strains in the X and Y directions, Sand gS; the mid- 

plane shear strain Bayer the three curvatures Le; hy and Aug. In order to 

eliminate the dependence of the normal stress on the curvatures it is 

necessary for B. =By o= By g=0- Sepa functions of 55 and the distance z 
11 

(see equation 3.36) and hence cannot be zero unless z=0. However as a5 

are_an even function of z it is possible to construct a laminate with 

identical layers equally spaced either side of the mid-plane so that 

the laminate ee cancel each other out.If Bi; is zero the stress 

couples will only be dependent on the plate curvatures ( equation 3.37). 

This type of laminate is termed a balanced or symmetric laminate and is 

one of the most common classes of laminate used.The reason for its common 
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usage in fibre reinforced composites is that the resin shrinkage during 

cure can give rise to stresses in a laminate which if not balanced out 

can cause warping. 

To produce a laminate in which the normal stresses are not functions 

of the in-plane shear strains it is necessary to reduce Aye and Ang to 

zero. Aye and Ang are functions of Q6 and 256 which are in turn functions 

of C4 41C491Co0 and Ce¢ (equation 3.13 ). Hence for angles of @ =0°or 90° 

Ade and Ang are zero. As Ay and Ang are odd functions of Sin@and Cos ©@ 

they have equal and opposite values for equal and opposite angles of (S)6 

Thus in a laminate composed of equal numbers of laminae with equal and 

opposite angles,(and of the same thickness) the Aye and Ang will cancel 

ovt and the laminate will behave as an orthotropic material. 

Although Di¢ and D6 are also odd functions of Sin®@and Cos© they 

do not cancel out in a symmetric laminate because they are also functions 

of tie thickness to the power three. 

3.10 Invariant properties of composite materials 

In the early days of fibre reinforced composites, manufacturers of 

fibres and composites tended to only quote the longitudinal properties 

when comparing their products with others, thus givinee. misleading 

impression. Tsai and Pagano (87) duivhoanced the concept of the invariant 

properties of composite materials to provide a more realistic assessment 

of the overall material properties for comparison with others and design 

purposes. 

The transformation of the stiffness matrix fa; 5] for an orthogonal 

composite is given in terms of oe by: 

O, = Uy + UriCa2o + Us Cor 46 

Qnz Uy ~ VsCokd 

Que Ur - UrCn20 + U;3Co%O Sra 

Qy: Us - U;Coke 

Qies ~k Us Sn20 - U3 Sinbhe 

Qrg: ~4 Uz Snto +U3 Smbo 

~ 
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where U,= z (31h 4 3G F 2G thCee) 

Unes Cc Car) 

Us> RCCu tar -2na~ 4g, ) 3045 

Use 4 Cn tCrrt 8Cn- 4c, ) 

Use & (Cu tre -2Cir +4 Cog ) 

From the above equations the invariant properties L, and Ly are defined 

vy £2 Cu tCut2Cn ana lee Cog~Cn Other invariants can be given 

in terms of L, and Ly ast- 

U= e(3L, +622) 
Ur= $(L1 ~&L2) 3.46 
Us= Cat 4L.) 

3.11 Equations of equilibrium of a thin plate 

The conditions for equilibrium of a thin laminated plate are the 

same as those for a thin homogeneous plate and can be stated mathematically 

as follows :- 

Nay = 
Quix ¢ aie ac 3.47 
ONy + Nay 
ay Tee 3.48 

Mx . 7 tM My. - a(x, eee 
where Ny Ny» Nyy are the stress resultants, Mys My My are the moment 

resultants and q(x,y) is the transverse loading. 

The first two equations are satisfied by a function U, an Airy stress 

function, defined by 

os a ee Se 
a 3.50 Ng? 2o, 3.51 Nay= ey 3.52 

  

dxdy 

Substituting equations 5.50-3.52 into equation 3.40 we have :- 

x * * C 
Mal [Gi eeCig mR Dae De Die ae 

* e ck se 
iy le Cat Cag] SM | 4 [DE at Dag oe 3.53 
Mal [Cor Coe Chclhate| = [ok oo Decl |-zate 4 61 62 ba 1% ng Veo es, 

If these expressions for the moment resultants are now substituted into 

equation 3-49 we obtain the first of the differential equations governing 

laminated plates. 
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“ xy 
ct at (2c8-Ge Yaar 4ct=1¢;% x ne ds e +(2Cg~ cf) we +cf or 

x 4 ° 3.54 
~De ~ -4 mad, ~2(det208, dy, Hohe ~ dng -4x9) 

Equation}.54is a fourth order partial differential equation in terms of 

two unknowns, and thus cannot be solved without a further equation. The 

other equation is the compatibility equation for thin plates which is 

derived from the consideration of the normal and shear strains. The mid- 

plane strains are defined by: 

° 

ee eet ar Bee 
and the compatability equation is as follows. 

OES 4 ores Sines PK 
By Ot e aay * Sxcdyt 7 oxy 3.55 

Expressing the strains in terms of the Airy stress function U and substitut- 

ing into equation 3.40 we have: 

. ihe pha ate 
£2) Af Ae Ai ih BY Bn Bu | oe 

hoy 

ey Fiat Ad At a + Ba Bi Bic at 3.56 

atu * kw 

Go] at ok MYLES | Lee 6k 8 |] 253 

Substituting this equation into the compatibility equation we obtain 

the second governing differential equation for deninete? plates. 

& KU by Oe % JtY 4 a 
Aa yy - anes S38 + (wnb+ag a> tai Oo %) + A,* s 8, = 

05 QA DRE — (Ot tGat- 28E IFS 2 (HE GES, - ats. 0 
Theoretically it is now possible to solve the equations for the stress 

function U and the deflection w, but in practice only certain special 

cases have been solved. 

Symmetric laminates which do not exhibit extensional-bending coupling 

4570? then[ Jeo ana P*]= 

Substitution of this information into equation 3.57 yields :- 

ANY rad. tateni) a HOAs $3, € At Eve O° 
Oe ; 

because ee can be solved for, If B 

  

x 

which is the same as the equation which governs a homogeneous plate, which 

obeys the following constitutive law: 

xe 7 Ay An Aig! [Ex 

vy FR An Arn Azg 

Try Are Aro Prée tay oe 
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Applying the same simplifications regarding symmetrical laminates to 

equation 3,54 we obtain the differential equation governing the bending 

behaviour: 

Du MW Dy MY 4 UWOn+DE)IY 4 HO get LOE aia. 4) 306 
out Pacis : dvds” ee ge yeu) 3200 

This equation is also identical to the one governing homogeneous plates, 

which also obeys the constitutive law following. 

Ox Da Dd na Di & 

as 
oT, F 5 Dr Dar Du] [Ey a 

Toy Die Deo Dey Brug 

If the laminate is also orthotropic, then Aag= Agg= OQ and the plane 

Ai yy seadend) r+ aty = 2 3.62 
and the bending equation becomes: 

Dag +(Dat De dt dy +Due fee yay) : 3.63 

As these equations are essentially similar to those for isotropic material 

stress equation becomes: 

they can be solved by similar techniques.



  

4.1 Materials 

Four resin systems and two types of fibre were used in the making 

of the composites. A brief description will be given of each, 

Polyester resin 

Crystic D351 polyester resin manufactured by Scott Bader Company Limited 

was used for the majority of the work concerned with polyester. The resin 

consists of 86% (by weight) of a high molecular weight isophthalic 

unsaturated polyester and 14% of di-allyl phthalate monomer. The resin 

is the product of a condensation reaction between orthophthalic anhydride 

and propylene glycol. 

Normally polyester resins use styrene as the cross-linking monomer in 

a 2:1 ratio producing a highly volatile resin system with a consistency of 

thin syrup. Crystic D351 is solid at room temperature and is therefore 

normally sold as a 75% solids solution in acetone. This particular polyester 

system was selected because it can be used in a high temperature curing 

preimpregnating systems unlike the majority of polyester resins. 

The gel time of the resin with 1% benzoyl peroxide as a catalyst was 

about 1-2 minutes at 400 °k, complete curing taking about 1 hour. No propert- 

ies of the cured resin were supplied by the manufacturer. 

A few test pieces were made using Crystic 272 .which is another 

isophthalic polyester resin manufactured by Scott Bader. This resin uses 

styrene as the monomer and hence has a low viscosity at room temperature 

(3.5 poise).Methyl ethyl ketone peroxide was used as the catalyst (2%) 

with cobalt napthanate as the accelerator (2%) to provide a room temperature 

cure. 

The properties claimed by the manufacturer are:- tensile strength 

62 MPa, tensile modulus 3.9 GPa, tensile elongation 2°3%,specific gravity 1°21. 

Epoxy resins 

For initial investigations on this work some composites were made 

from Scotchply 1002 prepreg material. Scotchply 1002 is produced by the



Minnesota, Mining and Manufacturing Company Limited and consists of a 

sheet of unidirectional BE glass fibres impregnated with a hot curing B 

staged epoxy resin of high viscosity. The prepreg material contains 36% 

resin by weight and is 0.27mm thick.The type of epoxy and curing agent are 

unfortunately unknown but the quoted shelf life at room temperature is 

6 months. Gel time was about 4 minutes at 430 Br and 2 hours at 440° were 

allowed for curing. 

The properties quoted by the manufacturer for a cured composite are 

as follows:- tensile strength 1°10 GPa, tensile modulus 39.3 GPa, flexural 

strength 1.14 GPa, flexural modulus 36.5 GPa,specific gravity 1.80. 

No fibre volume fraction was given. 

For most of the work carried out with epoxy resin Shell Epikote DX210 

was used. It has an epoxy equivalent of 388 and was used with Shell Epikure 

BE,-400, a boron trifluoride monoethylamine complex, At room temperature 

the resin is almost solid (viscosity 19 poise) and is normally sold as 

DX 210 B-90 which is an 80% solids solution in methyl ethyl ketone. It was 

used to produce a prepreg material in a similar way to Crystic D351 and 

was cured at 440 & for 4 hours. 

The manufacturers quote the following properties for the cured resin:- 

tensile strength 53.2 MPa, elongation 3%,flexural strength 93.8 MPa, 

flexural modulus 2.78 GPa, specific gravity 1.21. 

Glass fibre 

The glass fibre used in this work was E type glass roving manufactured 

by Fibreglass Limited and sold under the name Equerove.Fibres coated with 

two types of coupling agent were used, one with an epoxy compatible comp- 

ound and one with a polyester compatible compound. The actual coupling 

agents are not disclosed by the manufacturer, but are thought to be silane 

based. Equerove roving is made commercially for fibre winding processes 

and is untwisted and equi-tensioned so that there is no catenary between 

the strands which make up the roving. The fibre is supplied in the form 

of a cheese on a tubular former. The properties claimed by the manufacturer 
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are as follows:-tensile strength3.7¢pdnewly drawn), tensile modulus 76 GPa, 

specific gravity - 2.56, fibre diameter 12 m. 

The carbon fibre used was manufactured by Courtaulds Limited and sold 

under the name Grafil. Most of the carbon fibre work wes carried out with 

Grafil A, but a few test pieces were also made with Grafil HM» Both types 

of fibre are manufactured from Courtaulds polyacrylonitrile fibre ( Courtelle) 

and were supplied in a non surface treated form. Some of the Grafil A type 

fibres were made into a unidirectional prepreg sheet by the manufacturers 

using Shell Epikote DX210/Shell Epikure BF,400 resin system. 
g 

The properties claimed for the fibres are as follows:-— 

Grafil A Grafil HN 

Minimum U.T.S. 2.3 GPa 2.10 GPa 

Mean U.T.S. 2.64 GPa 2.35 GFa 

Tensile modulus 175-200 GPa 310-345 GPa 

Specific gravity 1.80 1.87 
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4.2 Preparation of test pieces 

Resin samples 

The high viscosity of resin systems used in the production of prepreg 

sheet makesit difficult to cast a satisfactory sheet of resin without trap- 

ping any bubbles of air or solvent. Epikote DX210 is sufficiently viscous at 

room temperature to prevent pouring from a container. At 393 °K the resin 

is much less viscous and can be poured reasonably easily . To cast a sheet 

of meen the mould (consisting of 2 glass plates separated by metal spacers) 

and a beaker of resin were pre-heated to 393°K in an air circulating oven. 

The powdered curing agent was added and stirred rapidly to dissolve and 

disperse it uniformly. The resin was then poured slowly into the mould 

allowing most of the entrapped air to escape, before curing the resin for 

4 hours, 

The main problem associated with the hot casting of resin is the short 

gel time. At 400°K the mixed DX210 resin has a gel time of about 5 minutes, 

which is just sufficient to mix the resin,pour it into the mould and allow 

any entrapped air bubbles to rise to the surface.As the sheets were cast 

vertically the top surface was easily removed when cured. 

Crystic D351 is completely unpourable at room temperature and it is 

necessary to heat it to about 393 °K before it is possible to pour it. 

Unfortunately after adding the catalyst (benzoyl peroxide and di-allyl 

phthalate 1:1) the gel time is only about 2 minutes at 393 "x,and insufficient 

time is available to remove the entrapped air. To overcome this problem a 

different approach was used. 

The resin and di-allyl phthalate were mixed together with an equal 

weight of acetone at 323 °K and allowed to cool before adding the catalyst. 

The acetone was removed after mixing was complete by allowing most of the 

acetone to evaporate and removing the remainder by use of a vacuum oven at 

303% and 60mm of mercury. When this was completed the resin was cooled to 

258 °K in a deep freeze and ground into a powder and stored in a desiceator 

to prevent condensation. When at room temperature the powdered resin was 

slowly shaken into the preheated mould to allow the powder’ to melt without 
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enclosing any air.None of the D351 resin samples made were entirely void-free 

but with the benefit of experience the latter ones had a reduced porosity. 

The Scotchply prepreg material used at the begining of the experimental 

work to develop manufacturing techniques was made with an unidentified epoxy 

resin. All attempts to (a) identify the resin system,(b)obtain a sample 

of resin from the manufacturers, or (c) obtain data on the resin properties, 

were not successful. However by moulding a large composite plate it was 

possible to collect sufficent resin squeezed out of the mould to produce 

a sample about 130x20x5mm. Although this method of casting a resin sample 

is far from perfect it was the only course open. 

Crystic 272 presented no problems in casting a sheet sample as it 

is a low viscosity low temperature curing system. 

Manufacture of preimpregnated fibre sheet. (prepreg) 
  

The number of techniques available to make multiangled, many layered 

composites are few in number. Of the most common two, fibre winding and 

prepregging the latter is by far the simpler as regards experimental 

apparatus. It was decided at an early stage to use prepreg materials because 

of the limited equipment available,the freedom of design and the high 

quality of composites possible.Some early investigations with Scotchply 

prepreg were: carried out to study mould design and general experimental 

technique. It became apparent that the fibre volume fraction of composites 

made from Scotchply were very limited by the fixed resin content and the 

high viscosity of the resin. It was possible to make a low fibre volume 

fraction sample by adding extra resin from other prepreg ,but the results 

were not really satisfactory. To overcome this problem and to have complete 

freedom in choice of materials a machine was constructed to make prepreg 

sheet in small quantities. See figures 50 & 51. 

The fibre was pulled through a bath of resin diluted with acetone or 

methyl ethyl ketone and wound on to a drum covered with Tygadure (PIFE 

coated glass cloth from Fothergill and Harvey).Excess resin was removed 

by the spring loaded rollers immediately after the resin bath. An adjustable 

automatic tensioning device was ineorporated to keep the fibre tension 
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constant so that the resin pick-up did not vary and also to prevent the 

uncontrolled unwinding of the glass fibre spool should the roving break or 

get jammed.The resin bath was easily accessible for changing the resin and 

cleaning the machine.Immediately before being wound on to the drum the 

impregnated fibres were spread horizontally to a, width of 2-3mm by a FIFE 

roller to reduce the thickness of the prepreg sheet.The drum was electrically 

driven and was geared to the traverse mechanism so that there was a eonstant 

ratio between the two drives to keep the thickness of the prepreg constant. 

A complete traverse of the drum took about 10-15 minutes and produced a 

sheet of prepreg about 1 metre square. After 3 hours most of the solvent in 

the resin had evaporated and the prepreg was cut normal to the fibre direction 

and removed from the drum. The prepreg initially had some curvature, but 

if left for a day tended to flatten under its own weight without buckling 

the fibres. 

By varying the dilution of the resin with solvent and the pressure 

of the resin wipers, it was possible to produce prepreg sheet with resin 

volume fractions from 85 to 10%, although the system had an optimum perform- 

ance with a resin volume frajtion of 30 to 50”. 

The prepreg made with Crystic D 351 and acetone was less tacky 

at room temperature than those with Epikote DX210 and methyl ethyl ketone. 

Before cutting up the prepreg sheets they were heated in an air circulating 

oven at 353 K for ten minutes to remove any residual solvent and B stage 

the resin. 

Early attempts at making prepreg sheet from Grafil A fibre failed due 

to the difficulty in unwinding the fibre from the cardboard tubes on which 

it was supplied without snagging or breaking. However with the newer type 

of Re ckitie consisting of loose coils of fibre inside a plastic drum, the 

machine produced satisfactory prepreg.A typical glass fibre prepreg and 

composite are shown in figures 52 and 53 respectively. 

Moulding the composites 

Two moulds of similar design but different size were used for making 
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samples.(figure 54) Both moulds used metal spacers to control the thickness 

of the samples, and both could be used as wet lay up moulds if the end pieces 

were removed. 

Por making samples from prepreg,the required number of sheets of prepreg 

(of known fibre volume fraction) were stacked in the mould and consolidated 

by hand pressure before being removed as a prepreg block. Both halves of 

the mould were sprayed with release agent and preheated to the required 

temperature on the platte ns of the hot press ( 40tonnes Daniels) before 

the prepreg block was placed in the mould. The resin was left to gel for 

the requisitetime during which the pressure was applied gently and released 

a few times before finally closing the mould. The final pressure was not 

critical as the mould had fixed stops but was about 8000 Pa.The composite 

was cured for 1 hour in the press before it was removed (still in the mould) 

and post-cured in a preheated oven. The composite was removed from the mould 

when cool. 

A few samples were made by the wet lay-up of fibres wrapped round an 

open frame. The frame was made in two halves held together by bolts. After 

the fibre had been wound round the frame it was possible to increase the 

tension in the fibres by forcing the two halves apart by use of the bolts. 

The frame was laid round the mould so that the fibres ran through the mould. 

Crystic 272 + catalyst and accelerator was poured on to the fibres and 

spread manually before closing the lid and applying pressure in the cold 

press to close the lid to the stops. The samples made by the wet lay-up 

were generally inferior to the prepreg made samples due to inhomogeneity of 

the fibre distritution, 

To produce samples with varying degrees of fibre/matrix bond strength, 

sone glass fibre samples were made using the fibre with a polyester 

compatible size with Epikote DX210 and fibres with the epoxy compatible 

size were used with Crystic D351. Some samples were also made with glass 

fibre which had been partially coated with silicone grease which reduced 

the transverse strength considerably. 
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Cutting and machining of the composite samples   

Unidirectional composite materials can be fairly easily damaged’ by 

unsuitable machining techniqes so considerable care was taken in the eutting 

of the samples. A circular saw fitted with a diamond impregnated blade 

was used for cutting up the moulded plates.As no water cooling/lubricant 

was used the samples were cut slowly to avoid overheating, especially at 

90° to the fibre direction. The specimens used for tensile and bending tests 

were ground on a surface grinder to ensure that the edges were accurately 

parallel.After grinding, the samples were washed and stored in a desiccator 

As a check on the effect of the water/oil. emulsion used in grinding on the 

composites, one composite plate was cut into 8 strips, 4 of which were wet 

ground and the other 4 sand papered dry. On testing the samples no 

significant difference in the moduli (transverse) or strength was detected 

80 all other samples were wet ground. 

Mechanical testing of fibres, matrices and composites. 
  

It has been proposed in section 2 that the elastic properties of a 

unidirectional fibre reinforced composite are functions of the fibre and 

matrix moduli and Poisson's ratio and of relative proportions and geometry 

The methods available to measure the required elastic properties are 

numerous but tend to give slightly different values under diferent con» 

ditions for properties which are normally assumed to be constant.For 

example, the Young's modulus of a matrix or fibre may not be the same 

under tensile and compressive loading.This is due to inherent properties 

ef the material, inaccuracies and assumptions in the test procedures,and 

corrections which may be applied to alleviate some of them.An additional 

large source of error concerned with the testing of composite materials 

is that of structural variations. In the simplest case of a'unidirection- 

ally'fibre reinforced composite, it is possible to have a fixed ratio of 

fibre and matrix but to change the composite properties by the internal 

arrangement of the fibres. The more complicated composites are open to 

numerous variations and unless the description of the composite (and test) 
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is complete confusion can arise. One of the most common cases is that of 

an “angle ply composite" where it is not made clear whether the stacking 

sequence is symmetric or anti-symmetric about the centre plane. 

Thus the need for test procedures which measure the property under 

specific conditions can be fully appreciated. As this thesis is concerned 

with the prediction of composite properties from the properties of the 

components, the tests used have been chosen because (a), they measure the 

required property, and (b) because the component properties are measured 

under the same or similar conditions that they experience in a composite. 

The compressive properties of composites aré not easy to carry out accurately 

without special apparatus so they have not been measured. However in 

addition to the tests necessary to obtain the required data some other 

tests were carried out for the purpose of comparing experimental techniques. 

Selection of tests = 

Ideally for the fibres we would like to know the transverse and 

longitudinal moduli, two shear moduli and three Poisson's ratios. In 

practice we can only measure the longitudinal properties. There is little 

choice in the broad manner in which this is done, although there are 

differences in the way the same ieujactive smay be achieved. Single and 

multiple fibre tensile tests,and single fibre torsional pendulum and three 

point bend tests were used. 

For the resins and composites it was decided to use simple tensile 

tests to establish the Young's moduli and Poisson's ratio and to also 

carry out three and four point flexural tests. The measurement of the 

shear modulus was the most difficult and several methods were considered. 

The methods considered are listed below. 

1) “Filament wound tube loaded in torsion. ---Samples difficult and costly 

to make. Would require separate specimen for test. 

2) Douglas ring test. (83)--- Too costly to make specimens. Separate 

specimen for test. Only applicable to 0 degree specimens. 

3) Cross-sendwich beam sample with aluminium honeycomb core loaded in 

tension. ---Very expensive test piece. Separate test piece required. 
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4) Sample approximately 200mm square loaded in shear by complicated 

-clamp and pulley system. ---Large expensive test pieces, expensive 

complicated apparatus. 

5) + 45° strip test piece loaded in tension with strain gauges.---limited 

to + 45° samples. 

6) Torsional pendulum using rectangular cross-section strip sample.--- 

Require long sample to give reasonable results. Care required when using 

-+9 samples. 

7) Plate twisting test.—--requires fairly large test piece. 

After some consideration it was decided that the plate twist test was most 

suitable as it was reasonably easy to carry out ,used the same type of sample 

for the tensile and bending tests, could give other information on the 

test piece and used moderately priced test pieces. 

Further details of the test are given in appendix D. 

  

erties 

Although glass fibres are isotropic and carbon fibres are anisotropic 

the tests carried out were the same in both cases because it was only 

possible to measure the longitudinal properties due to the small fibre 

diameters. 

A single fibre 400mm long was stretched across a rectangular annulus 

made of stiff paper 350mm long and bonded to each end with Durofix. One 

end of the rectangle was attatched to the lower side of the crosshead of 

an Instron universal testing machine, the other end to a 500 g weight 

standing on the pan of a top pan balance. and the annulus cut either side. 

The load on the fibre was calculated from the reading on the balance, the 

fibre elongation was calculated from the cross head movement after correct- 

ions had been made for the movement of the balance pan. This unorthodox 

~-load measuring system was used because no suitable load cells were available. 

Although the test worked satisfactorily the results indicated a large 

variation in fibre strength and a smaller variation in fibre modulus (worse 

for carbon). This is partly due to the nature of brittle materials and 
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partly due to the estimate of the fibre diameter by means of optical exam- 

ination of a polished cross-section of the fibre set in resin. Single fibre 

tests are also open to the criticism that in selecting ‘a fibre from a tow 

one tends to pick the ‘best looking'fibres.In an effort to gain a truer 

average value of the fibre tensile properties a fibre tow test was tried, 

One end of a 400mm long tow was bonded to tapered,etched aluminium tab 

with epoxy resin and the tow pulled through a folded tissue to remove any 

broken or loose fibres. The other end of the tow was then bonded to another 

aluminium tab and the tow loaded in tension at 1mm/min on the Instron. 

The cross-section of the tow was calculated from the weight and density, 

but the strengths recorded were lower than expected due to non-uniform stress 

in the individual fibres in the tow causing some fibres to break before 

others.This situation was improved by impregnating the fibres with a solution 

of DX210 resin in methyl ethyl ketone.The excess resin was removed by pull- 

ing the tow through lightly pinched rollers. This also had the effect of 

removing most of the broken fibres and straightening the rest, thus helping 

to create a uniform stress situation.The two ends of the impregnated tow 

were laid on two hot prepared tabs. The hot tabs caused the resin to cure 

locally and bond on to the tabs and create a transition region from fully 

cured resin on the tabs to fully uncured resin on the tow.In this way the 

stress concentration at the tab/tow joint is reduced and tow failure at 

this point is less likely,although the gauge length is less accurate. 

However the uncertainty in the gauge length is only about + 0.5% on a length 

of 400mm, 

The fibre tow test was also tried with the resin on the tow 

fully cured along the whole length, to compare the results with the uncured: 

tow. 

A load versus extension graph was pletted for each test and the 

modulus calculated from the straight portion after corrections had been 

made for the compliance of the tabs and grips. 

It was not possible to carry out meaningful torsional tests on a 
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fibre tow so only single fibre tests were carried out, 

A single fibre about 200mm long was extracted from a tow and a piece 

of aluminium wire with a Vee cut in the centre was bonded to the fibre about 

20mm from one end so that the fibre passed through the Vee. The wire was 

4mm in diameter and 10mm long and was trimmed with a razor blade so that 

it was balanced about the fibre. The other end of the fibre was glued to the 

apex of large Yee cut in a cardboard disc 80mm in diameter,and the fibre 

lowered into a measuring cylinder so that the cardboard dise rested on top 

of the cylinder. The measuring cylinder was used to support the fibre and 

to protect it from draughts. Any electrostatic force between the cylinder 

and ‘fibre was cylindrically symmetrical to the fibre and had no effect on 

the torsional oscillation. By twisting the disc it was possible to set up 

a twisting motion in the fibre without any swinging motion. A period of 

approximately 5 seconds was obtained by adjusting the length of the alumin- 

ium wire.The periods of oscillation for several different lengths of fibre 

were measured for each fibre. 

To examine the effect of tension on the fibre due to the weight of 

the aluminiuh wire, several tests were carriedpusing different lengths of 

ipecthe length of the fibre Be adjusted to keep the period approximately 

equal, 

A three point loading test was used for bending single fibres. Two 

vertical razor blades were used as the outer loading points and pieces of 

bent fuse wire as the combined third loading point and load. The whole 

‘apparatus’ was placed in a glass tank to protect it from draughts and 

the deflection of the fibre measured with a travelling microscope. Several 

different lengths of wire were used with each fibre. The weights of the 

wires were measured to four decimal places on an electronic balance. 

In the single fibre tests the same fibre was measured on all three 

tests, the order of tests being, torsion,tension and bend.A section of each 

fibre tested was mounted in resin, polished and examined optically to 

estimate the diameter. The magnification used was X1000 and this was 
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checked against a known calibration,but the main error lay in deciding 

where the edge of the fibre was, as it was not very sharp. 

  The specific gravity of the fibres was mezsured in the standard 

manner using a specific gravity bottle. Reduced pressure was used to help 

remove any trapped air bubbles. 

Resin properties 

The available 3 and 4 point flexural rigs had guide ine which suffer- 

ed from varying degrees of friction, and thus made the resin flexural tests 

unreliable because of the small loads involved. To overcome this defect a 

new rig was made which had a larger span ,no friction and a built-in trans- 

ducer to measure deflection.(figure 61)Four point bending was chosen rather 

than three point because the stress pattern is better defined, the shear 

stress being zero between the inner loading points. Some three point bend- 

ing test were also carried out for comparison with other published Gata. 

The test pieces were cut from a 5mm thick cast sheet of resin and 

measured 20x150mm. For four point loading an inner span of 7Omm and an 

outer span of 140mm was used with a loading speed of imm per minute.The 

load was measured from the load cell and the deflection from the transducer; 

both were recorded continuously on a Bryans X-Y plotter. Several tests were 

carried out on each sample, increasing the load range each time until half 

the estimated maximum stress had been reached.The compliance of the rig 

was measured by using a 15x15mm cross-section steel bar in place of a test 

piece. A similar test procedure was used with the three point tests except 

that the deflection was measured from the cross-head movement rather than 

use the transducer, 

A test piece measuring 105x105mm was cut from the cast sheet and 

eee osied in torsion by using the plate twisting rig shown in figures 62%63. 

The plate twisting apparatus has 3 fixed loading points and 1 moving point. 

These are so arranged that when the moving point is pulled upwards with a 

force P,a force of P/2 is applied upwards to the two opposite corners of 

the plate and downwards in the other two corners, This results in an 
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overall twisting moment being applied to the plate, similar to the cross- 

sandwich beam tests used for composite materials. The loading points (12mm 

diameter steel balls) are arranged to form a 100mm square allowing a 2.5mm 

overhang of the test-piece.To position the test-piece accurately in the rig 

each was marked out with the position of the loading points(figure 53) and 

adjusted using the retractable indicators.The deflection of the plate with 

respect to the base plate was measured by means of a LVDT transducer mounted 

in a block clamped to the base plate . The transducer block could be 

fixed anywhere on the plate within a 35mm radius of the centre, but was 

normally fixed at the centre.Before the actual test was started the 

test piece was loaded to the maximum required load and unloaded to take up 

any 'slack' in the system. Loading was carried out at imm per minute by 

lowering the cross-head. Load and deflection were recorded continuously on 

the X-Y plotter for both increasing and decreasing loads. The maximum load 

was governed by the deflection of the sample which did not exceed one 
' 

quarter of the plate thickness. No attempts to breek the test piece 

by torsional loading were made. 

As a check on this test, many tests were carried out on a glass 

plete using different positions of the transducer. Two strain gauges were 

also bonded to the plate to measure surface strains. 

The compliance of the rig was measured using a 6mm thick steel plate. 

To compare the values obtained from the plate twisting test with 

results from a more conventional test,some tests were carried out ona 

torsional pendulum using the samples used in the bend tests. The torsional 

pendulum apparatus is shown in figure 58. The torsional modulus of the 

sample is given by G* 6h? (taAT Lg / bE ae where.Ix is as shown in the 

eee i is the total moment of inertia without the weight, L is the 

sample length betweeen clamps, d is the frequency, b is the sample width, 

t is the sample thickness and 4A is a shape factor. In order to eliminate 

the unknown factors in the calculation of the torsional modulus of the 

sample several different values of were used for each test piece and 

a graph of ee was plotted, 
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For tensile testing the test pieces used in the flexural tests were 

waisted down in the centre to a width of 10mm over a length of 50mm and 

aluminium tabs were bonded to the ends, Strain gauges were bonded on to 

measure the transverse strain and a clamp-on transducer was used to measure 

the longitudinal strain, because of the high strain to failure anticipated . 

The samples were held in self tightening jaws on the Instron (figure 60 ) 

and loaded to half the estimated maximum stress to take up any play in 

the system.The tests were carried out at a loading rate of 1mm per minute 

and both the longitudinal and taueverse strain were recorded continuously 

against load on two X-Y plotters. Figure 61 shows an overall view of the 

apparatus. The samples were loaded and unloaded several times increasing 

the maximum load each time until fracture occured. 

Specific gravity 

The specific gravity of the resin samples was determined using pieces 

of crushed resin in a specific gravity bottle in the standard manner. 

Composite properties 

Two moulds were used for producing composites, both of the plunger 

type with sides 20mm deep, using spacers to control the sample thickness. 

the larger mould made samples 300x150x2mm and was used. mainly for making 

Birecase test pieces. The smaller mould made samples 130x130x2mm and was 

used for the majority of the time in view of economy of material.The 130 

x130mm mouldings were cut up as shown in figure 59. The 105x105mm sample 

was used on the plate twisting rig, the two strip samples were used for 

bending, tensile and torsional pendulum tests and the 15x15mm sample was 

used for specific gravity and volume fraction measurements. 

Volume fraction and specific gravity 

The specific gravity and fibre volume fraction of every sample made 

was measured to make sure that there were no voids in the test pieces. 

On some early composites the entire plate was cut up to measure the variation 

of specific gravity and volume fraction. 

A 15x15mm specimen was cut from the composite so that the edges were 

es



at least 4mm from the edges of the 'as moulded' composite.The specimens were 

weighed in air and suspended in iso-propyl alcohol to determine the specific 

gravity.The alcohol was used because it had better wetting properties than 

water. The weight of the wire used to suspend the specimen and the effects 

of suface tension were taken into account in calculating the specific 

gravity. 

To remove the resin from the glass fibre composites the specimen was 

heated in a furnace at 900 °K until a constant weight was achieved (about 2 

hours). The carbon fibre specimens were treated by the ‘acid digestion’ 

method using concentrated sulphuric acid and hydrogen peroxide. After 

removal of the resin the fibres were washed and dried to constant weight. 

The amount of fibre weight lost during both types of resin oxidation was 

measured by using virgin fibre in place of the composite specimens. The 

volume. fractions of the specimens were calculated from the composite, fibre 

and resin densities with the following assumptions. 

a) composite mass = fibre mass + resin mass. 

b) composite volume = fibre volume + resin volume + void volume. 

c) resin density measured from cast resin is the same as resin density in 

a composite. 

Mechanical tests 

The types of mechanical tests used for the composites were the same 

as those used for the resin samples, but before measuring the composite 

properties various parameters of the test techniques were investigated. 

The parameters of interest were the loading speed, span-to-depth ratio and 

span-to-width ratio. 

Both three and four point flexural tests were used to measure the 

composite properties, the maximum deflection for most samples being limited 

to the thickness of the sample, but for transverse unidirectional samples 

the maximum was only 50% of the sample thickness. 

Some of the flexural samples were also tested on the torsional pendulum 

apparatus in the same manner as the resin samples, but most were too short 

to give reliable results. 
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The plate twisting tests were carried out in the same manner as for 

the resin samples but more measurements were made on each sample. On all 

the samples the central deflection versus load was recorded normally and 

then the plate was turned horizontally through 90 and re-tested. On some 

of the plates,measurements were also made after turning the plate over. 

In addition to these tests the deflection was also recorded at points 

other than the centre on certain plates, as the results show. 

The tensile tests were carried out under the same conditions as the 

resin samples, again using the transducer to measure the longitudinal strain 

to failure. On the unidirectional samples with the fibres running parallel 

to the length, failure of the sample was usually initiated in the tab region 

due to stress concentration effects and the compressive stress imposed by 

the grips- It was found that by reducing the central 80mm to a width of 

8mm and having a gentle taper to the tabs on a specimen 300mm long that 

failure in the central section could be achieved with a reasonable degree 

of success,This was generally easier to achieve on composites with an epoxy 

matrix. However the majority of the test pieces were too short to reduce 

the central portion and leave sufficient length for tapering and for the 

tabs, so with the exception of a few samples the tensile test pieces 

had parallel sides. On the +Qtest pieces most of them failed by inter- 

laminar pull out so the problem of a reduced section did not arise. Most 

tilidivection! tranaverse composites failed at the tabs , but it is difficult 

to reduce the section without creating transverse cracks ,so again most 

samples were left with parallel sides.Figures 62 and 63 show a series of 

+ © glass and carbon fibre tensile test pieces. 

As an indication of the fibre/matrix bond strength and general 

auatity? of the composite some short beam three point bend interlaminar 

shear tests were carried out in a specially made jig. 

Some early tests were made on unidrectional composite plates in a 

manner devised by Hearmon (84) for testing plywood.As the test required 

large samples, was not particularly easy to carry out and produced 

unreliable reslts ,the test was dropped. Fuller details are in appendix DB. 
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5 RESULUS 

5.1 Fibre properties 

Single fibre tests 
  

  

  

  

Fibre type}Torsional| Tensile|Tensile | Flexural) Poisson's} Measured] Number 

modulus | modulus}strength| modulus | ratio diameter|of tests 
(GPa) (GPa) | (GPa) (GPa) (an) 

Glass 16-53 62-88 0.83-.41/42-126 |0.15-.27 | 10-16 10 

Grafil A 9-47 123-290 10.77-.35|33-250 |0.11-8.6 | 6-12 10 

Grafil HM | 3-61 237-387 |0.61~.17|83-420 |0.17-21 6-11 410                 

The diameter of the fibre was based on measurement of a x 1000 photo- 

graph of a fibre cross-section. The torsional modulus was measured by 

a torsional pendulum and is given by 

where 1,= fibre lengt 

I = moment of i 

ad fibre diame 

T = period of o 

a® 

h 

nertia 

ter 

scillation 

1287 1. T 
pe 

The flexural modulus was measured from a three point loading test and is 

given by 4 P Tt 

37) a* x 
where 1,= 

ad 

x w 

span 

fibre diameter 

central deflection 

Poisson's ratio Yy is calculated on the assumption that the fibre are 

isotropic and is given by 

Hence =P 5 i gee 

4927E 1, x 

Fibre tow tests 

Dry fibre test 

E 

Bian 

  

    

  

  

  

eae eee 

Fibre type | Maximum stress |Maximum strain|Modulus Number of tests 

Glass 0.764 0.35 GPa]1.10+ 0.40 % [694 3 GPa 10 

Grafil A 0.414 0.20 0.23+ 0.11% 4175421 10 

Grafil H M ] 0.39% 0.19 0.134 0.07 % (295234 10 =|           
  

=90= 

 



Impregnated tow test (uncured _) 
  

  

  

  

Fibre type] Maximum stress} Maximum strain] Modulus Number of tests 

Glass 1,8440.19 GPa | 2,4340.25 % 75.941.1 GPal 10 

Grafil A | 1.0610.42 0.5740.23 % 18745.4 10 

Grafil HM | 1.07+0.41 0.3340.12 % 32748.3 10 
  

Impregnated tow test ( cured 
  

    Fibre type] Maximum stress] Maximum strain| Modulus Number of tests 
  

  

  

Glass 1.9940.16 GPa | 2.6340.19 % 75-640.9 GPa 10 

Grafil A | 1.7340.33 09240018 % | 19746.3 10 

Grafil HM |1.5710.19 0.4740.18 % 33548.1 40           
Specific gravity 
  

  

  

      Fibre type] Specific gravity 

Glass 2.5440.01 

Grafil A 1.7940.01 

Grafil HM + 1.8740.01     

Using the average fibre modulus values from the cured tow test, the 

eross-sectional area of the fibres in the single fibre tests were 

calculated and used to re-calculate the values of the torsional moduli 

of the single fibres. The results are shown in the following table. 

Re-calculated single fibre torsional moduli 

  

Fibre type|Torsional modulus 
  

Glass 33.143.3 GPa 
  

Grafil A | 14.345.8 
        Grafil HM 11.145.2 
  

Effect of tension on the torsional modulus 
  

Glass fibre Grafil A 
  

Mass of wire 0.04342] 0.0740g]0.0988¢ |} 0.04342|0.0740g}0.0988¢ 
  

Length of fibre} 320mm [178mm [156mn 198mm [126mm [83mm 
            Torsional mod. | 30.3GPa] 28.7GPa]32.6GPa| 17.7GPa|19.2GPa |16.9GPa       
Fibre weight loss during volume fraction assessment 
  

  

Glass 0.9 % 
    Carbon 1.24%       =91=



5.2 Resin properties 

Three point flexure tests (Average values of 10 tests ) Span=140mm 
  

  

  

  

  

  

  

Resin system Maximun Maximum | Modulus Repeatability 
deflection stress 

Scotchply 1002 5mm 27.2 MPa | 2.38 GPa + 3 

Zpikure 2400 mn 20.8 MPa | 2.77 GPa 4% 

Crystic D351 5mm 26.1 MPa | 3.43 GPa + 4% 

Crystic 272 5mm 23.7 MPa | 3.54 GPa + 3% 

Special resin Too soft to test 

Aluminium 4mm 18.5 MPa | 64.7 GPa + % 
  

Four point flexure tests ( Average values of 10 tests ) Inner span=70mm 
  

  

  

  

  

  

            

  

  

  

  

  

  

    
Resin system Maximum Maximum | Modulus Repeatability 

deflection] stress 
Scotchply 1002 3mm 44.3 MPa | 2.52 GPa + oF 

Epikote DX210 
Bpikure PF,400 am oO eer + 
Crystic D351 3mm 40.7 MPa | 3.51 GPa + 36 

Crystic 272 3mm 43.3 MPa | 3.68 GPa + 

Special resin Too soft to test 

Aluminium 2mm 27.6 MPa | 67.1 GPa + 1% 

Tensile tests ( Average values of 10 tests ) 

Resin system Maximum Maximum | Modulus | Poisson's/Repeatability 

stress strain ratio 

Scotchply 1002] 39.7 MPa | 1.24 % 2.65 GPa} 0.354 + 40 

Epikote DX210 of i 4 
Bpikure EF.,400 435.3 MPa | 2.13 % 2.77 GPa} 0.349 +4 

Crystic D351 42.5 Mea | 1.27 % 3.65 GPa} 0-352 + 

Crystic 272 51.0 MPa | 1.82 % 3.72 GPa| 0.346 + 4% 

Special resin 26.7 MPa | 6.41 4% 1.02 GPa] 0.331 +7 

Aluminium 200 MPa 0.3% 67.5 GPa ae 10.5%             
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Ss 

  

Torsional te 
  

Plate twisting test 

  

  

  

  

  

  

Resin system Modulus Repeatability 

Epikote DX210/Hpikure BY 400 1.01 GPa + 5% 

Crystic D351 1.47 GPa + 

Crystic 272 1.39 GPa + af 

Special resin Too soft to} test 

Aluminium test piece 28.6 GPa #105 
  

Torsional pendulum (average of ten tests) 

  

  

  

  

  

  

        
Resin system Modulus Repeatability 

Scotchply 1002 1.05 GPa + 4h 

Epikote DX210/Epikure Br,,400 1.13 GPa +&@% 

Crystic D351 1.32 GPa +7 

Crystic 272 1.27 GPa + 71F 

Special resin Too soft to| test 

Aluminium test piece 2t.2 + 3% 
  

  

Specific gravit 
  

  

  

  

  

  

Resin system Specific gravity 

Scotchply 1002 1.20 

Epikote DX210/pikure E400 1.21 

Crystic D351 1.31 

Crystic 272 a 1224 

Special resin 1.26     

Ash content 
  

  

  

  

    Scotchply 1002 0.8 % 

Epikote DX210/Epikure BE 400 0.9% 

Crystic D351 0.6 % 

Crystic 272 0.5% 

Special resin 0.5%       

Repeatability 

The repeatability was determined by re-measurement of the modulus at 

approximately 3 monthly intevals over a period of a year. 
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5-3 Test variables (Unidirectional samples ) 

Glass/Epikote DX210 composite Three point flexure 
  

  

  

  

  

        

  

Span to depth ratio|¥lexural modulus} |Loading speed} Flexural modulus 

69.2 37.5 GPa 30 mm/min 46.9 GPa 

65.7 44.3 60 45.0 

56.3 42.8 120 43.6 

46.9 43.6 300 43.6 

37.6 43.1 600 42.9 

28.2 40.1 

18.8 41.6 
  

Three point flexure Grafil A/Epikote DX210 composite 
  

  

  

  

  

                  

  

  

  

  

  

  

  

          

  

  

  

    

Span to depth ratio] Flexural modulus | Loading speed}|Flexural modulus 

67.3 131.5 GPa 30mm/min 140.0 GPa 

57.7 135.1 60 131.5 

48.1 131.7 120 128.8 

38.5 128.9 300 128.9 

28.2 123.4 600 128.9 

19.2 101.4 

Three point flexure ‘ 

Span = 140mm Flexural modulus 

Span to width ratio Grafil composite | Glass ore 

35 140.8 GPa 44.1 GPa 

1765 135.5 43.8 

11.61 129.7 43.5 

8.75 127.8 43.7 

7.00 128.4 43.4 

5.83 428.1 43.4 

Four point flexure (inner to outer span constant at 1:2 ) 

Inner span to Glass composite Inner span to | Carbon composite 
depth ratio flex. modulus depth ratio flex. modulus 

25.9 46.3 GPa 23.8 138.6 GPa 

36.3 45.7 33-3 139.2 

51.8 45.1 47.6 136.4         
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Torsional pendulum ig 

Effect of sample length 
  

  

  

  

      

Sample length Unidirectional glass + 45° symmetric glass =| 

composite. Shear modulus composite. Shear modulus 

80mm 4.53 GPa 15.3 GPa 

100 4.49 16.1 

120 4.51. 16.3 

140 4.50 16.5       

* For discussion regarding torsion and shear see appendix E 

Plate twisting test. 

® Strain gauges--registered no strain. 

  

  

  

  

        

Deflection measuring} Glass plate Grafil composite plate 

position. torsional modulus. =430- Torsional modulus 

1 ‘ 33.7 GPa 22.2 GPa 

2 33.5 22.1 

3 33.0 22.7 

4 33.3 22.2     

5.4 Composite results 

Volume fraction variation 

The sketch below shows the variation in fibre volume fraction in a-130x 

130x2mm unidirectional glass fibre composite plate which was considered 

to be of average quality. 

  

  

0-58 | 0-59 | 0+59 | 0-60 

0+59 | 0-60 | 0-60 | 0-61 

0+59 10-59 | 0+61 | 0-62 
0+60 | 0+60 | 0-63 | 0+63 

0°57 | 0-58 | 0-57 | 0°63 
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Effect of fibre pre-tension on composite properties 
  

The tension in the fibres wound round the frame was judged by the 

amount the two halves of the frame were forced apart. 

  

  

  

  

                

Distance between 2}Fibre volume] Longiiudinail Transverse| Shear 

halves of frame fraction modulus modulus modulus 

Omm 0.42 31.1 GPa 10.2 GPa | 4.7 GPa 

167 0.44 52.5 9-9 4.7 

2.6 0.43 31.8 9.8 4.5 

3.8 0.46 33.6 10.5 4.9 

Effect of reduced bonding between fibre and matrix 
  

The reduction in the bond was caused by silicon grease applied to the 

fibres and was estimated from the composite interlaminar shear strength. 

  

  

  

  

    

Interlaminar shear | Fibre volume] Longitudinal] Transverse] Shear 
strength fraction modulus modulus modulus 

76 MPa 0.58 42.9 GPa 15.7 GPa 6.3 GPa 

52 0.60 43.4 14.5 5.7 

47 0.61 42.1 14.6 4.1 

23 0.57 39.7 11.4 1.9             

The following two samples used epoxy resin with glass fibre coated in 

a polyester compatible size, and polyester resin with glass fibres coated 
- 

in an epoxy compatible size. 
  

  

          
  

  

  

  

  

  

      

59 MPa (Epoxy 0.59 43.2 GPa 13.7 GPa 5.9 GPa 
resin) 

33 (Polyester 0.57 41.7 10.4 2.6 
resin) 

Comparison of three and four point flexural tests and tensile tests 

Test piece Flex, modulus | Flex. modulus} Tensile 
three point four point modulus 

Crystic D351/glass 0 V,=0.61 42.7 GPa 45.3 GPa 44.1 GPa 

Crystic D351/glass 90 Vp=0.61 17.1 GP 17.8 16.5 

Crystic D351/glass+45 V_=0.59 18.5 20.6 11.2 

Epikote DX210/Grafil 0 V,=0.62 19.8 1256 421.5 

Epikote DX210/Grafil 90 V,=0.62 7.6 7.9 7.8         
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Effect of low modvlus matrix on composite properties 

Material: Special resin/glass fibre unidirectional composite 

Special resin: Crystic 272/Crystic 182 2:1 
  

  

  

  

Fibre volume] Longitudinal | Transverse |Shear modulus 

fraction modulus modulus 

0.27 18.8 GPa 4.2 GPa Too soft to 
measure 

0.48 32.4 6.7 Too soft to 
measure 

0.62 41.3 9.1 1.8 GPa             
Longitudinal and transverse moduli measured in tension, 

‘ 

Effect of voids on composite properties 
  

Material: Crystic D351/glass fibre unidirectional composite 

  

  

  

  

  

  

    

Void volume | Fibre volume | Longitudinal | Transverse | Shear 

fraction fraction modulus modulus modulus 

0.0008 0.43" 31.3 GPa | 10.2 GPa 4.8 GPa| 

0.021 0.41 30.7 9.9 4.6 

0.037 0.44 31.0 10.2 4.4 = 

0.066 0.45 32.0 9.8 4.1 

0.12 .| 0.43 31.3 7.8 Bee 

0.18 0.41 30.9 5.3 1.8             

Longitudinal and transverse moduli measured in tension. 

5.5 Graphical results 

The majority of the experimental results ere shown in graphical form in 

figures 72-103 and the results are not given in tabular form. There were 

many more glass fibre composites made and tested than carbon fibre compo~ 

sites because of the cost of the carbon fibre.The 'bunching' effect of 

some of the results is due to the method of making the composites from 

prepreg material; to vary the volume fraction a number of sheets of 

prepreg were added or subtracted, thus tending to vary in steps. 

The longitudinal and transverse moduli and the Poisson's ratios were 

all measured in tension unless otherwise stated. The shear moduli were 

measured on the plate twisting rig unless otherwise stated. The fibre 

volume fractions were measured by the methods previously mentioned, and 
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in no case did the calculated void volume fraction exceed 1%, 

Grafil HM samples 

Only two composites were made using Grafil HM fibre. The results are 

shown below. 

  

  

  

  

Composite type:Unidirectional Epikote DX210/Epikure BEG GrafilHi 

Fibre volume Longitudinal Transverse | Shear Poisson's ratio 

fraction modulus modulus modulus 

0.66 208 GPa 6.3 GPa 3.9 GPa 0.31 

0.38 121 GPa 4.1 GPa 3.1 GPa 0.33             
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6 DISCUSSION OF RESULTS AND CONCLUSIONS 

6.1 Fibre results 

The variation in the initial results of the single fibre tests make 

the figures useful only as a guide to the correct values. The principle 

cause of the variation is thought to be errors involved in measuring the 

fibre cross-section on the microscope, but with any brittle material there 

is always some spread in the results. 

The dry tow test allowed the fibre tow cross-sectional area to be 

computed more accurately by measuring the weight, length and density. 

However there is always a number of broken fibres in a tow despite 

efforts made to remove them,and these will contribute to the weight but 

not the strength or stiffness. Apart from the broken fibres not all the 

continuous fibres are under the same initial tension so that at any one 

time different fibres are under different stresses.The effect on the 

measured modulus will be greatest at low strains where some fibres are 

not stressed at all. and high strains where some fibres may have already 

broken.Fortunately the modulus is normally measured between these two 

extremes, 

Both the single fibre and dry tow test suffer from premature fibre 

failure initiated by the stress concentration where the fibres are bonded 

to the tab. The wet tow test overcomes this problem to a large extent. 

Impregnating the tow with resin enabled broken fibres to be removed 

more easily without damaging other fibres and to align the continuous 

fibres so that constant strain conditions were more likely under loading. 

This is reflected in the sats where the maximum stress and strains 

reached were far in excess of those for the dry test, but the increase 

in modulus is less.This is to be expected because the modulus is calculated 

from the slope of the stress/strain curve over the central portion where 

most of the fibres will be contributing in either a wet or dry test. 

The cured impregnated tow test has some of the advantages and some of 

the disadvantages of the previous tests,in that the fibres are more equally 
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strained but are more likely to fail at the tab bond than the wet tow 

test. The main difference between this and other tests is the ability 

of the fibres to transmit stress from broken fibre to other fibres via 

the matrix, thus behaving like a composite. The strength values calculated 

from this test (after taking the resin strength into account) are notice- 

ably higher for the carbon fibre,and less so for the glass fibre. This 

indicates that generally in a glass tow there are far fewer broken fibres 

than in a carbon tow.The moduli were also slightly higher, particularly 

for the high modulus carbon, 

The measured wanes of the moduli are in reasonable agreement with 

the manufacturer's figures tut the strengths are slightly lower. 

The specific gravity results were very consistent and in good agree- 

ment with the manufacturer's figures. 

The justification for re-calculating the torsional moduli of the single 

Peares on the assumption that the tensile modulvs of any one type of 

fibre is constant could be called into doubt. However in defence of the 

move it must ie said that the re-calculated value probably represents a 

good average, and the rroperties of the composites in which we are inter- 

ested depend on the average fibre properties.For glass fibre with a 

Poisson's ratio of 0.2 (from literature) and a Young's modulus of 76 GPa 

the theoretical shear modulus is 31.6 GPa which is in good agreement 

with the experimental value. The experimental values for the carbon 

fibres cannot be compared in this manner because of the fibre anisotropy. 

The effect of tension in the fibre during the torsional pendulum 

measurements is assumed to be zero from the results obtained. 

The fibre weight loss during fibre volume fraction measurements is 

small compared with the variation of fibre volume fraction found in the 

average composite.However if not taken into account it can lead to the 

phenomena of negative voids, ; 

6.2 Resin results 

The maximum stress values quoted in the flexural results are the 

maximum stress levels reached during testing and not the failure stress 
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values; the maximum stresses in the tensile tests are failure stresses 

and the maximum strains are the strains up to the maximum stress levels, 

The repeatability of the tests is worst for the tensile tests and the 

only reason that can be thought of i that the complexity of the strain 

measuring equipment may lead to slight errors, eithouen the equipment 

was calibrated each time it was used. 

Generally the modulus values from the three point flexural test were 

the lowest because the deflectionsdue to shear stresses are not taken 

into account in simple bending theory. The flexural modulus of DX210 resin 

is in good agreement with the manufacturer's figure for flexural 

modulus , but the tensile properties were less than those quoted. The 

tensile properties of Crystic 272 were also slightly less than the 

manufacturer's figures. 

All the shear modulus results form the plate twisting test are higher 

than those calculated from the tensile results. The shear modulus of the 

aluminium ssample'measured on the rig is 28.6 GPa compared with a 

quoted value of 27.2 GPa. Greszezuk (88)states that the plate twisting 

test generally gives slightly higher values of shear modulus than other 

tests.For the calculations based on the matrix shear modulus the plate 

values are used. 

6.3 Calulated fibre values 

Following the method of Goggin and Reynolds the Reuss and Voigt 

limits of the fibre properties were calculated for Grafil A and HM 

using assumed orientation values of 12 and 8 respectively. (average 

values figure 70 ) 
  

  

  

  

E E Gr 
£1 f2 

Revss Voigt Reuss Voigt Reuss Voigt ] 

Grafil A 121 GPa 947 GPa | 5.5 GPa 63 GPa | 11.7 GPa] 92 GPa 
  

Grafil HM 177 GPa 963 GPa | 5.1 GPa 57 GPa 9.5 GPa| 85 GPa                 

If the Reuss values are considered to be closest to the real fibre 

properties, the above may be taken as a guide only. 
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6.4 Conclusions on attempts to predict composite properties (section 2 ) 

This is a brief summary of the information contained in tables 6-32 

and figures 29-48, 

From table 7 it ean be seen that only Tsai's expression (no 3) with 

its K factor differs to any degree from the law of mixtures and tablés 

11-14 show the reason why. The longitudinal modulus By is a function 

of the fibre volume fraction and the two constituent moduli only .This 

simple relationship should also apply to composites made with anisotropic 

fibres according to Rabinovich's and Whitney's work. (Tables 25-32) 

Figure 30 and table 8 give the predicted values of Poisson's ratio. 

Hill's expression for the upper and lower bounds gives almost exactly 

the same values as those of Tsai for C=0 and C=1.Expression 11 is the 

odd one out in the sense that it predicts an increasing value for the 

composite Poisson's ratio with increasing fibre volume fraction, but for 

certain values of Vy and Vn Year be negative. It is believed that there 

is an error in the equation.Figures 40-42 and tables 15-18 show that 

once the fibre modulus is over an intitial value of approximately 40 GPa 

and the matrix modulus is greater than 2 GPa then Vis almost a linear 

function of Vy and, in a law of mixtures relationship. 

Whitney suggests that for composites made with anistropie fibres the 

composite Poisson's ratio is also given by the law of mixtures 3 

Rabinovich has a modified version in which the composite Foisson's ratio 

is reduced for highly anisotropic fibres.(See tables 25-32) 

The predicted values of the transverse composite. modulus are shown 

in figure 31 and table 9. Foon figures 44-47 and tables 19-22 it is 

clear that most theories treat the transverse modulus as a function of 

only Bor F and Vas but derive considerably differing values for E, 
io 22° 

Only by comparing the results with experimental values is it possible to 

tell which of the predictions is most correct. 

The variation of the transverse modulus of a composite made with 

anisotropic fibres is shown in figures 35 and 36 and tables 25-32. The 

values generated are similar and are highly dependent on the transverse 
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fibre modulus. 

The variation of the composite shear modulus with fibre volume fraction 

is shown in figure 32 and table 10. There is some disagreement in the 

value of the shear modulus but all the theories assume that it is only 

a function of GerG and V,, where the relationship with Ve is almost 
£ 

linear if G, is greater than 20 GPa (expressions 27 & 28 excepted). 
fe 

The shear modulus of a composite. made with anisotropic fibres as 

predicted by Whitney and Rabinovich in shown in figure 37 and 38 and 

tables 25-32.In both cases the fibre shear modulus is the predominating 

factor. 

6.5 Investigation of test variables 

Qn both the glass and carbon samples the apparent modulus increases 

with span to depth ratio but levels off with a ratio of 40:1 or more. 

All the three point flexural testt that were carried out had a minimum 

span to depth ratio of 48:1, The moduli of both types of sample also 

decrease with loading speed. Normally the tests were carried out with a 

loading speed of 1mm/minute. 

Except at very narrow widths, the width to depth ratio has little 

apparent effect on the measured modulus over the range considered here. 

When using a torsional pendulum to determine the shear modulus the 

length of the sample has little or no effect if the the sample is a 

unidirectional one, but does affect the measured modulus when using 

off-angle composites. This is due to the chenge in the relative 

directions of the the strain and fibre as the length is changed, so 

if a very long sample was used there would be little change in modulus 

for a small change in length. The maximum sample length on the available 

apparatus was limited to 140 mm so the technique was only used to compare 

results with those from the plate test. 

The resulis of the plese plete (isotropic) and the 430° Grafil 

plate from calculating the torsional modulus by measuring the deflections 

at various points agree well with the theory (appendix E). The strain 

gauges also registered no strain as expected. 
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The variation of fibre volume fraction in a typical composite plate 

shows that the volume fraction quoted for any one sample may only be 

considered to have an accuracy of about +5 %. 

6.6 Composite results 

The attempts to pre-stress the fibres during the production of a 

composite test piece were rather crude but did actually stress the fibre 

(by an unknown amount).The results obtained were inconclusive and it is 

assumed that a low value of pre-stress may help ‘e. straighten the fibres 

but has no effect on the elastic properties. At higher stress levels 

it is thought that using pre-stressed fibres would help to stop the 

matrix failing under tensile loads in a method analogous to that used in 

pre-stressed concrete beams. 

The table comparing three point and four point flexural tests with 

tensile tests clearly shows the tremendous difference in modulus for 

at 8 composite measured in tension and flexure. The difference: in the 

measured moduli of the unidirectional samples is considerably less and 

is due to the effect of shear stress in the composite. The longitudinal 

to shear modulus ratio for a o sample is high and thus the effect of 

ignoring the deflection due to shear stress is greater than for a go” 

sample where the difference is much less.The difference in apparent 

moduli for angle ply composites measured in tension and flexure is due 

to the a5 and Dis matrices explained in section 3. 

The composites made with the 'special' low modulus, high elongation 

resin demonstrate that the resin properties control the transverse and 

shear properties of the eonpoette but have little effect on the long- 

itudinal properties. 

Normally every effort is made to produce composites without any 

voids,but the results suggest that a relatively low void content has 

little effect on the composite properties. At larger void contents 

the reduction in the shear and transverse moduli increases rapidly. 

The. bonding between the fibre and matrix (as indicated by the inter- 
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laminar shear strength) has an effect on the transverse and shear moduli 

in the sense that they are reduced by weak bonding.It is difficult to 

control the bonding in a controlled manner so that it is not known how 

sensitive the elastic properties are to the bond strength. 

Unidirectional composite results 

The experimental variation of longitudinel modulus, transverse modulus, 

shear modulus and major Poisson's ratio are shown in figures 72-87.The 

longitudinal modulus of all four systems considered is a linear function 

of the fibre volume fraction. On extrapolating the graphs the tensile 

Ponds of glass varies from 72 to 74 GPa, the tensile modulus of Grafil A 

is 188 GPa, and the tensile moduli of the resins vary from 1.5-3.0 GPa. 

The scale of the Y axis makes it difficult to determine the resin moduli 

from the graph. Comparing these results with the fibre experimental 

results,the glass and Grafil moduli are about 5% lower than the tow test 

results.The theoretical values of the composite moduli based on the law 

of mixtures and using the experimental data is shown on each graph. All 

the experimental traces are below the theoretical ones but are within the 

"lower limit' set by Tsai's K factor = 0.9.The reasons why the traces do 

not agree exactly are thought to lie partly in the testing and measuring 

techniques (some points are above the theoretical maximum ), and partly 

in non-perfect composites. 

To measure the alignment of fibres in composites some stretches of 

glass fibre were sprayed with paint as the prepreg was being made. The 

angular spread of the fibres were measured in the prepreg and found to 

almost zero, and in a composite where the spread was estimated at + oF 

although accurate measurement was difficult.The longitudinal modulus 

is related to the fibre modulus by Cos @, so + 2° would reduce the 

modulus by about 27.The other main error in the composites is the 

possible variation of the fibre volume fraction, which can be as much 

as 5. 

The, scatter in the results of the Poisson's ratio is greater than 

in the longitudinal modulus results, possibly because the Poisson's ratio 
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depends on measuring two strains without error, but again the relation- 

ship is a linear one for the glass fibre composites.The relationship 

for the Grafil composites is possibly also linear tut the scatter makes 

it uncertain.The extrapolated values for the Poisson's ratio of glass 

vary from 0.208 to 0.22,and for the resins as follows:- Crystic D351, 0.31, 

Scotchply,0.32 and Epikote,DX210 0.348.If this value of Poisson's ratio 

for Epikote is used as one end of a straight'best fit' line dram 

through the Grafil composite results, the extrapolated value for the 

Poisson's ratio of Grafil A is 0.36. The experimental value of the Poisson's 

ratio of glass fibre is between 0.15-0.27 and the values found by Brannan 

and Kroenke (section 1) are between 0.18 and 0.34. Using an average 

experimental value of 0.21 and the experimental value for the tensile 

modulus of 75.8,the calculated value of the fibre shear modulus is 31.32GTa 

and this value is in good agreement with the re-calculated fibre shear 

modulus.Using 0.21 as the glass Poisson's ratio and experimental values 

for the resin Poisson's ratios,the ‘theoretical ' values are shown 

on the graphs.The theoretical and experimental values for Epikote/glass 

agree well,-but the theoretical values for Crystic D351 and Scotchply 

are both higher than the experimental values at low fibre volume fraction. 

The extrapolated Poisson's ratio value for Grafil A of 0.36 agrees 

with the generally accepted level for carbon fibre, but there is no 

other experimental confirmation. 

Figures 74,78 and 82 show the experimental relationships between 

composite transverse modulus and fibre volume fraction for three different 

resin systems with glass fibre.All the graphs have a similar shape but 

the modulus values of the Scotchply system are lower than the other two 

at low fibre volume fractions.In section 6.4 it was concluded that most 

theoretical approaches to predicting the transverse modulus have assumed 

that the transverse modulus is a function of the fibre and matrix Young's 

moduli and the fibre volume fraction. If this is the case,then the 

differences in the values of the transverse moduli of the three composite 
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resin systems should be a function only of the resin properties as the 

other two variables are common, However by comparing the modulus values 

of the graphs at common fibre volume fractions it is apparent that either 

the hypothesis is wrong or that a complicated relationship is involved. 

From a study of tables 19-22 and figures 9,19 and 20 several express- 

ions were selected as being the most likely to fit the experimental 

results,Substituting the experimental values in for the constituent 

properties it was concluded that expression 17 gave the best fit, but on 

all cases the theoretical values were lower than experimental ones at 

high volume fractions. The theoretical values based on expression 17 are 

shown for each system, 

Figure 86 shows the relationship between transverse modulus and 

fibre volume fraction for Epikote/Grafil composites, but due to the 

scatter in the results the relationship has been interpreted simply as 

a linear one because there is no real justification for doing anything 

else.If the linear relationship is extrapolated the fibre shear modulus 

is 12 GPa aa the matrix shear modulus is -0.5 GPa.Working on the 

assumption that expression 17 provides the best overall agreement between 

theory and experiment it is found that the best fit is obtained when 

the fibre modulus = 23 GPa.However because the values of fibre modulus 

and matrix modulus are much closer the differences between the various 

expressions are reduced. a plot of the values from expression 17 with 

Ep =23 GPa is shown in figure 86. 

Rabinovich and Whitney's expressions for the transverse modulus 

generate much higher values than the experimental values when 

POU E eo = 

The experimental results of the shear moduli of the three glass 

composite systems are shown in figure 75,79 and 83.By reasoning in a 

similar manner to that employed for the transverse modulus it is 

concluded that expression 30 gives the best overall fit between theory 

and experiment.Using the experimental values for the constituent 
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properties the theoretical values according to expression 30 with zeta=2.5 

are shown for the three systems, The agreement at higher fibre volume 

fractions is again not very good. 

In figure 87 the.experimental results of shear modulus of the Grafil 

composites are sae with a. theoretical plot based on expression 30 with 

zeta = 2.5 and Be=23 GPa. The values predicted by both Whitney and 

Rabinovich are much lower than the experimental values. 

We have seen that the longitudinal modulus and Poisson's ratio cf 

- composites made from either isotropic or anisotropic fibres can be 

predicted reasonably well from the law of mixtures equations. The relation- 

ship between transverse and shear moduli of the composite and the 

composite constituent properties is not so well understood. An expression 

which allows the composite transverse modulus to be predicted approx—~ 

imately from the constituent properties has been used in conjunction 

with the carbon fibre composite,and it was found that an assumed fibre 

modulus of approximately 23 GPa gave reasonable agreement between theory 

and experiment, 

The situation is even more open for the composite shear modulus 4 

The values of the composite shear modulus are approximately given by 

expression 30 where zeta = 2.5.Using the same expression for a composite 

made from anisotropic fibres (fibre shear modulus calculated from fibre 

tyansverse modulus) the theoretical values are greater than the experi- 

mental ones. 

One of the reasons why there is a difference between experimental 

and theoretical values is that the composites do not conform exactly to 

the assumptions of section 2. For example,the spread of fibres at low 

fibre volume fractions tends to be inhommogeneous. Figure 64 shows a 

typical area in a low fibre volume fraction sample and figure 65 shows 

how it is possible to get resin rich layers between the layers of the 

original prepreg due to incorrect manufacture. Figures 66 and67 show 

areas of high volume fraction glass and carbon composites respectively. 
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The packing in both is tending towards hexagonal and the dispersal of 

fibre is more hommohgeneous. A close up of a carbon fibre composite is 

shown in figure 68 where it can be seen that the fibres aren't perfectly 

round and vary in size quite considerably compared with glass. 

We have seen how the anisotropy of carbon fibre has a major influence 

on the transverse and shear properties of a unidirectional composite 

especially at high fibre volume fractions.The next area of study is the 

effect of the unidirectional composite properties on angular properties. 

There are two basic typesof angular composites; a unidirectional 

composite stressed at an angle to the fibre direction, and a miltilayered 

laminate. The experimental and theoretical values of the off-angle 

properties of a unidirectional composite are shown in figure 89. These 

resuits show the effect of the Bi; and »; ; (mentioned in section 3)where 

it can be seen that the constraints of the testing procedure have had 

-a major influnce on the properties measured between o°ana 90°. It wes” 

also shown in section 3% that the elastic response of a symmetrical 

laminate is easier to deal with both in theory and practice. 

Figure 69 shows a section of a typical balanced or symmetric laminate. 

The thick section is the centre section. It is often assumed that there 

must be a resin rich layer between each ply of a laminate, although 

figure 69 shows that this is not necessarily the case. 

Figure 90 shows the typical stress-strain curves for the tensile 

tests on a series of +Qlaminates. Note that only a small portion of 

the total is linear and elastic.The results from the torsional pendulum 

and miata twisting test are compared in figures 91 and 92. The difference 

between the results for the unidirectional samples is relatively small, 

at gets considerably larger for angles between o°and 90° due to the 

interaction between the Bs; and ae and the constraints of the test 

technique. A similar effect is illustrated in figure 93 for the tensile 

and four point flexure of a series of + 6 samples. The theoretical 

values shown are calculated using the experimental data from the uni- 
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directional composites, and the theory shown in section 3, 

Figures 93-101 are the experimental and theoretical results for three 

series of + @ laminates made from two different resin systems and two 

types of fibre, one of them being anisotropic. Although the theoretical 

results do not agree exactly with the experimental ones,the error is 

approximately equal for all three types of laminate. It can then be said 

that the anisotropy of the carbon fibre does not invalidate the use of 

conventional laminate theory, at least for use with the type of laminate 

. used here. However the use of highly anisotropic fibre can produce some 

unusual effects such as a Poisson's ratio greater than 1 for a + 30° 

laminate. (This particular property could be very helpful in removing a 

filament wound article from the mandrel. ) The experimental and theoret- 

ical results for modulus B, at 90° to modulus E, are a mirror image of the 
y 

é , i Poisson! i is gi =(} Be B, results, The minor Poisson's ratio vee is given by Ue (YB )/8,, 
xy 

The maximum stress and strain at failure variations with angle @ 

are shown in figures 102 and 103 respectively. The maximum stress Aas 

has a very similar shape to that of E, for the system shown but this 

yea not be‘the case.The sample used was a glass/epoxy one which had a 

reasonable interlaminar shear strength,but the failure of the samples 

between angles of 10° ana 1 were all due to interlaminar tensile failure. 

The Cane failed by tensile fibre fracture and the samples between 10° 

and 90° by a combination of interlaminar tensile failure and transverse 

fracture. Figure 71 shows the fractured end of a ee 70°sample.If aid 

sample with a greater interlaminar tensile strength was tested in a 

similar manner,the maximum stress curve would probably not be the same 

as the one shown. 

The failure strain is defined here as the strain up to initial 

failure of the composite. The large strains recorded are the result of 

the type of'sliding'failure of the laminate.Even after failure the 

composite is still capable of carrying a stress and'strains' of greater 

than 107% can be recorded for total separation of the two parts of a 

sample, x 

-110-



6.7 Final conclusions 

Although the measurement, and even calculation of the basic properties 

of the composite constituents was not entirely satisfactory, sufficient 

information was obtained to show that some properties of a unidirectional 

composite may be calculated reasonably accurately. In particular the long- 

itudinal modulus can be calculated for composites made from isotropic or 

anisotropic fibres from a knowledge of the fibre longitudinal modulus, 

matrix modulus and fibre volume fraction.The major Poisson's ratio of a 

composite may also be calculated with reasonable accuracy for fibre 

volume fractions greater than 2075 and possibly over the whole range 

for composites made from isotropic fibre. It may also be possible to 

calculate the major composite Poisson's ee for composites made from 

anisotropic fines but until an accurate measurement of the fibre 

Poisson's ratio ‘ig made we will not have certain proof, 

The conpeeite transverse modulus can be calculated reasonably 

accurately for low’to medium fibre volume fraction, composites made from 

isotropic fibres but becomes less reliable at higher volume fractions. 

As the transverse modulus of carbon fibre is not known accurately no: 

attempts can be made to calculate the composite properties, but working 

in reverse using the expressions used for isotropic fibres a value of 

the fibre modulus may be obtained. 

The aiean modulus of composites made from isotropic fibres is in a 

similar position to that of the transverse modulus, in that it can be 

calculated reasonably well for low to medium fibre volume fractions 

but the disagreement with experimental values increases at higher volume 

fractions, By using the value of the carbon fibre transverse modulus 

determined from measurement of the composite transverse modulus it 

is possible to calculate the shear modulus of a composite made from 

carbon fibre. However the results generated in this manner do not agree 

very well with the calculated values based on the shear modulus of the 

fibre determined from torsional pendulum measurements, 
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The situation regarding the calculation of unidirectional composite 

properties is thus only partly satisfactory, but until the transverse 

properties of anisotropic fibres are known more accurately any improve- 

ment will be difficult. 

The present theory used for calculating the properties of laminates 

appears to be satisfactory for composites made Promaeovroris and 

anisotropic fibres. 

Regarding the experimental techniques employed for the practical 

work it has been found that the procedure for producing composites 

gives great freedom of choice of material while producing composites of 

reasonable quality of a variety of geometries. The types of tests used 

are fairly standard apart from the plate twisting type. This test is not 

entirely satisfactory in that it produces slightly higher results than 

others, but overall represents a good compromise between reasonable results 

and reasonable cost. In combination with the tensile tests (and flexural 

if required ) sufficient information may be acquired for assessment of 

new materials or to calculate the properties of a complicated structure. 

\ 
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RECOMMENDATY!     FOR FURTHER WORK 

There two main areas where further knowledge would be of help. 

Firstly in obtaining more accurate values for the transverse and shear 

properties of anisotropic fibres either by direct/indirect measurement 

or by calculation.Secondly an improvement in calculating the transverse 

and shear properties of unidirectional composites is required. 
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Table 6 Expressions for predicting the elastic properties of composites 

Longitudinal Young's modulus 

Author Expression 

Abolinish 

Hal pin/Tsai 

Hashin/Rosen( approximate} 

Rabinovich( isotropic) B= & 2 V4 +E Vin 

Paul(upper bound) 

Van Fo Fy 

Whitney(approximate) 

Ekvall En= Eq Vy + Ean 

where Fum= Em/(1-1Vee ) 

Tsai Ene k(E} V4 + Em Var) 

Hashin/Rosen i 

Hill(lower bound) Enz EQV) + EaVom * 1 (Vy -Van)” Vj Vom 

” Kilehinski- t * e S 4. 

Whitney( isotropic) 

where Kea? Enn/(2( I> Vin = 1. Vere )) 

ky Eq /(201-Yy- 244) 

Hill(upper bound) En: Ej Vy + EanVint LO, = Von)" 7) Von 

My 4 Y= ad 
™ Kum ky Gy 
Major Poisson's ratio 

Abolinish 

Ekvall 

Halpin/Tsai Vir = yy Vy + Va, Vin 

Rabinovich( isotropic), 
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Author Expression Number 

Hashin/Rosen 

" Hill(lower bound) { Vig= VyVy 4 Vin + (¥)-Van) Vy Vin hea i) 

Kilchinski : , i. i. = : 

Whitney( isotropic) anere Bm? Em/(2.(1~Yn- ZV) 

Ky = E/ (21- Y) -2¥f)) 

Hill(upper bound) y,, = VyVyA Vou Vee +(¥j- Vin) Vy Vm fem? 2) 8 

Vm vy yt 
Ky” Kew GH 

Mas (-c) ky Vy Dime) V3 4 Keen Van (2.63 ++ Gon) Van 

Kj (LiintGm) ~ Gana K) = Ken) (c=0) 9 
© Ken Val 2hy 4G] Vint YC Zkimt PVE — CC * 1) 10 

KC 2Mm+G4) +} Vom (Km k4) 

where Ks EY/(2(1-Yy) 24 Kom Em/(2 (I- Vn) 

Tsai 

Van Fo Fy Vags Von LeV4 (4 Vor) (1g) rm 11 

Transverse Young's modulus G-MAle 7 VosGus 

Shaffer (first) Eart EJEm/(EnVj + Ey Vm) 42 

Shaffer (second) lenses Em [ 1-(1-Ex/e4) 0-8-0750 - V4) 

; ; [= O-82U7[Vh (I~ Emyes) 13 

Rabinovich(isotropic) Fait E} Em/EmnvV} +E 4Vom(1- Vt) 14 

Ekvall E ar: Ee} Em /(Em Vj +E}Vin(1-Vaw)) 15) 

Ew = E~/(i-2),) 

Hashin/Rosen Eee konGe 
{ be 17 

Whitney ke +Ga3 (1+ kL kis Ya ) - 

where Eu 

Kage Kank) + Gon (Vin Ko +V4. 4) 

Vom ky + Vi Kon + Gm 
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Author 

Abolinish 

Van Fo Fy 

Tsai 

Expression Number 

Ea .> EmE} ( EmVnt E4V4) 18 
  

(ErVn, 4E4V})( Em] + EB Vy n- (Ep Ew) We 

ree Cs ee) Ph om ~ W4(Gj-Gm) ] 
Eu “Em LO-V)a~ VonGrm VAC} + Von Gon | 

ot I55(2hem ton) Con KJ = HV 
(2. Kom +Grm) #2 }- ~Km) Van 

+c k CAC Hm=K4) Vom (Ceopo 
ae ree GG- =1)21 

mere KY EAA 2(1-g)) 9 Kme Em /(2(1-Ym)) 
Halpin/Tsai 

Esaz Em LEY (1 40 Vy) +E mn § ] fe 
E} Vint Em(C+V4) 

where C= reinforcement factor 

Longitudinal shear modulus 

Ekvall GnzGyon 24 

G(ER) +O AS 
where R= 4 (t-Yer) and g: fis Sn 48 

T ae 

* Rabinovich( isotropic) 
> F * Sae(i- &) 

Girt EL Grn 
ss 

Gh Von + GuV} 

Abolinish 

* Hashin/Rosen(random array) 

Gi* Gm LO4( It V}) + Gn Vw | 26 
Kilchinski a 

y. a [Vm + Gen( 14 V4) 

Whitney( isotropic) 

BeeinoeionCuean) 27 

Giz 64/Gnvy [isd 
GEV Ut b 

“where d= Varn Gon and b: V4 Gm 

VE G} Van G4, 
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Author Expression 

peat Gin= (OG LAG} Gon) Vim 
Lom + (64 - wm} Vow 

+C GJ oe Gn) (GC) Gun) Vin 
(G4 + Gu) + (ej Gen) Vir 

Halpin/Tsai 

Cire Gm SGmVent lle CV4)] 
GVmt Gm (C4 VA) 

Hashin/Rosen (hexagonal array) 

upper bound Gale Gn (0 ‘407 M, +0: 043) 

lower bound Cu = Gea 

O-407 4 0-043 
Me 

ie ales (1+ 1:103V4)+ (I= (1034) Gem 

@ (1-103 Vj) + (14 1103V)) Gn 

Other relationships 

Number 

~(C=1) 28 

(C= +) 29 

(C= 2) 30 

_ Hashin/Rosen Gs aC! Clase C (ot + Bem VAI PV oy -3V4Vex Bon | 33 

TV ete 3} Vm Bow 
G 

where o:(E44 Bmw) Rt Ao) ts (Bu~ & 84) 

(4-1) (+ 96) 
Van Fo Fy Gas - Vy + Vim Gm Gm 34 

ESO . Vaurz V4 Vy + Vow Von 1+ Von Wir a! 35 

= Vk Vad/E 
Hashin/Rosen 36 

mele. 
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Relationships involving anisotropic fibres 

Author Expression Number 
artes * eee 

Whitney Ent Ef, Vj ¢ ExnVant2(Vj,~ Von) Van Vf 
Lp MVon-t LonV] 14 Yon a 

where Lj=f-Yja- ¢ | and Las [ie 
Rabinovich 

Eue Ed, V4 C1-Ye Vu) 7 Ew NVan( I~ !-Ww,) 38 
Vey, x 

Whitney cc J b) oe ) 

Vrs Vans ZV YyrCt- Vad VP 39 
(Vent + Vg Lee Lint 14 Vin) Emm 

where Lys fi -Vj.- (Eh) Me] Ele ea 

Rabinovich 

Vier El Ve¥an (t= Yon ) + EmmVan Vin(t~ V4 Vr) io 

E4aVy(1-Yat) t EmVanlie Yr) 
Whitney 

Eis: Dk t- Vas)En 

En + Wha Mie 

where ka, 2 (Kp tGm) ken tC KY Kon Yoon VI and Vaa= Vy,V} + Van Vin 

Ka 46m) ~(K) “KdV, Kys EE 
Ge) TE INN : LB-YygEh-ZERI. | 

Eze En [Ep Ylrved)+ EmVm (1 Yp Yjx)] 
EJ} YQ Vs) + Ean Vow (t= Vue Vj) Ae 

41 

" Rabinovich 

Rabinovich 

Give G4 Vj + GmVin 43 
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Table 7 Longitudinal Young's modulus/fibre volume fraction 

Numbers at the top of the columns refer to expressions in table 6. 
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Ve 4 2 3 4 3 5. 

9 2 30526 4.571 2.993 3.320 3.320 

0.2 | 17.816 | 18.825 | 16.047 | 17.854] 17.997 

064 | 32.312] 33.062 | 29.084 | 32.339 | 32.503 

0.6 | 46,808 | 47.319 | 42.138 | 46.833 | 46.954 Units GPa 

0.8 | 61.304 | 61.558 | 55.177 | 61.320 | 61.383 

1.0 | 75.800 | 75.800 68.221 75-800 | 75.800 

Table 8 Major Poisson's ratio/fibre volume fraction 

Vp 6 7 8 9 10 At 

0 0.370 0.370 0-370 0.370 0.370 0.370 

0.2 0.338 0.332 0.282 0.333 0.279 0.372 

0.4 0.306 0.298 0.248 0.298 0.246 0.374 

0.6 0.274 0.266 0.229 0.267 0.236 0.377 ee 

, [0-8 0.242 0.237 0.218 0.237 0.217 0.380 

1.0 0.210 0.210 0.210 0.210 0.210 0.385 

Table 9 Transverse Young's _modulus/fibre volume fraction 

Vp v2 AD 14 15 il 

0 3.32 3.32 3.85 5.30 5.87 

0.2 | 4.11 4.32 | 4.75 | 6.51 | 7.85 

0.4 5.38 5.85 6.20 8.44 | 10.96 
Units GPa 

0.6 alo) 8.28 8.94 11.99 | 16.47 

0.8 | 14.13 11.93 15.99 20.70 | 28.79 

1.0 | 75.80 - 75.80 75-80 | 79.50



Table 9 continued 
  

  

            
  

  

  

                  

    

Vp 18 20 21 22 23 

0 3.32 Bode | 5252 3.52 3.32 ~ 
a 

0.2 4.61 4.47 7.51 4.47 5.44 

0.4 6.10 6.34 13.87 6.30 8.72 

Units GPa 
0.6 8.84 9.81 | 23.65 9.69 | 14.44 

0.8 15.87 18.47 40.75 18.15 26.93 

1.0 75.80 75-80 75.80 75.80 75.80 

Table 10 Shear modulus/fibre volume fraction 
Units GPa 

ci 
Ve 25 26 27 28 29 30 34 32 | 

0 1.21 41,21 1.21 1.21 1.21 1.21 1.21 1.24 

0.2 1.49 1.76 3.30 1.50 1.63 1.99 4.77 41.75 

0.4 1.97 2.63 5.15 1.97 2.31 3.23 2.72 2.52 

0.6 2.86 4.24 7.46 2.87 3.58 5-40 4.69 | 3.89 

0.8 5.25 8.13 11.57 5.27 6.80 10.30 71.51 11.31 

1.0 31.52 31.52 31.32 | 31.32 31.32 31.32 | -27.21 | 20.51 
  

Tables 11-14 Var: 

Table 11 Variat ion of E with fibre modulus, F 
  

  

                

14 ge 

Ep q 2 3 4 5 

0 1.66 2.29 1.49 1.66 1.666 

20 11.66 12.29 10.49 11.66 11.667 

40 21.66 22.29 19.49 21.66 21.667 

60 31.66 32.29 28.49 | 31.66 31.668 

80 41.66 42.29 _| 31-49 41,66 51.669 | 
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Units GPa 

iation of longitudinal modulus with constituent properties



fable 12 Variation of K,, with matrix modulus, Es / 
  

  

  
  

    

41 _ = 

E, 1 2 ea Oe 5 

0 37.950 | 37.887} 34.113] 37.930 | 37.930 

41 38.365 38.582 34.557 38.358 | 38.464 

2 38.907 | 39.209] 35.012] 38.907 | 38.910 Units GPa 

3 39.472 | 39.894 | 35.458) 39.474 | 39.469 

4 39.950 | 40.664} 35.912] 39.950 | 39.950 
bs Sa 
  

fable 13 Variation of Ey with fibre Poisson's ratio, Y. 

  

Vv, 4 5 
  

0 39.720 | 41.903 

0.1 39.654 | 41.009 

02 39.593 | 40.052 Units GPa 

0.3 39.556 | 39.644 

0.4 39.561 | 39.576 
  

Table 14 Variation of By with matrix Poisson's ratio, Va 1 

  

V,, eee 4 5 

0 39.554 | 39.608 | 40.312 

0.1 39.586 | 39.567 | 39.767 

0.2 39.701 39.561 39.704 

0.3 39.925. | 39.560 | 39.623 

0.4 40.344. | 39.558 | 39.563 

  

Units GPa 

  

Tables 15-18 Variation of Major Poisson's ratio with constituent properties 

Table 15 Variation of V., with fibre modulus, Ep 

  

              

Ep 7 eS i 9 40 

0 0.290 | 0.290 | 0.369 | 0.0 

20 0.265 0.284 0.284 0.264 

‘40 0.246 | 0.282 | 0.283 | 0.249 
Units GFa 

60 0.237 0.281 0.282 0.240 

80 0.232 | 0.281 0.282 | 0.235 
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Table 16 Variation of Vio with matrix modulus, F,,+ 
  

  

    
Units GPa 

    

  

  

  

        
  

  

  

  

: == 
5, 7 8 9 10 

lo. 0.210 | 0.210 0.0 “0.210 

1 0.220 0.267 | 0.283 | 0.220 

2 0.228 | 0.277 | 0.284 | 0.277 

3 0.235 | 0.281 0.284 | 0.233 

4 0.241 0.283 | 0.284 | 0.239 

fable 17 Variation ofl, with fibre Poisson's ratio,V . 

Ve 6 7 ahs 9 10 

0 0.185 | 0.067 Nis 662 | 0.167 0.057 

0.1 0.235 | 0.148 | 0.221 | 0.222 | 0.142 

0.2 0.285; | 0.2297 | 0.276 || 0.277) | 0.277 

0.3 0.335 | 0.311 | 0.331 | 0.332 | 0.311 

0.4 0.385 | 0.395 | 0.387 | 0.386 | 0.395 

Table 18 Variation of V1, with 

Vode o 1 8 9 10 

0 0.105 | 0.193 | 0.138 | 0.0 0.186 

0.1 0.155 | 0.200 | 0.170 | 0.164 | 0.197 

0.2 0.205 | 0.213 | 0.207 0.209 | 

Gr5 0.255 | 0.220 | 0.248 0.223 

0.4 0.305 | 0.250 | 0.301 © 242             
  

  

  

f 

Units GPa 

  

Units GPa 

Tables 19-22 Variation of transverse modulus with constituent properties. 

  

  

  

Table 19 Variation of E,owith fibre | modulus 1» Units GPa 

zy | 12 wou | 45 17 3 | 
0 0 3.32 | 0. o 1.109 | 0 

20 5.694 | 6.012 9.823 | 6.214 

40 6.137 | 6.602 [114558 | 6.866 | 

60 6.291 | 6.815 | 42.295 | 7.113 

80 6.365 | 6.938 12.704 | 7.258 | 
0 Rye a                  



fable 19 continued. 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

          

Be 20 21 eo leeese S| 

0 0.592 | 0 0.830 | 1.238 | 

20 6.537 | 7.469 | 6.438 | 7.859 

40 7.314 11.252 7.236 9.775 Units GPa 

60 7.623 14,883 7.556 10.689 

80 7.185 | 18.478 | 7.728 | 11.226 

Table 20 Variation of Bpgwith matrix modulus, E, - Units GPa 

zB, 12 3 14 «| 15 7 ieee | 
° 0 0 bn il co=- 10 | eogmeero es | 

1 1.974 | 2.201 | 2.282 | 3.126 | 4.362 | 2.272 | 

2 3.897 | 4.335 | 4.489 | 6.126 | 8.473 4.459 | 

5 Sekre 6.235 6.647 9.007 | 12.350 6.562 

4 | 7-574 | 8.228 | 8.735 | 11.110 | 16,010 8.601 | 

Mable 20 Variation of Hy with matrix modulus, E,, (continued) 

EB, 20 24 22 23 

0 0 13.453 | 0 “o 

4 12.456 | 14.889 | 2.442 | 3.777 

2 4.810 | 16.299 | 4.774 | 7.164 ee 

3 | 7.060 | 17.681 | 7.005 | 10.216 

4 9.230 | 17.949 | 9.141 | 12.994 | 

Table 21 Variation of E,owith fibre Poisson's ratior Yr 

ve 17 18 20 24 

0 8.381 6.374 6.996 | 20.707 

0.1 8.518 | 6.378 | 7.051 | 19.926 

0.2 9.090 | 6.502 | 7.327 | 19.148 neon 

0.3 10.715 | 6.760 | 7.493 | 18.532 

0.4 15.937 | 7.185 | 7.921 | 17.961   
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Table 22 Variation of §, 
  

with matrix Poisson's ratio UV, \ 
  

  

        

22 

Da 47 18 | 2 | 21 

0 10.332 1.216 9.040 20.405 | 

0.4 10.330 T6251 8.277 | 19.167 

0.2 10.327 | 7.227 | 7.802| 18.208 Units GPa 

0.3 10.293 | 7.204 | 7.320} 17.216 

0.4 10.254 7.180 6.829 | 16.196 
    

Tables 23,24 Variation of shear modulus with constituent properties. 

  

  

  

  

  

  

    

  

  

                  

Table 23 Variation of G,.vith fibre modulus, Bee Units GPa 

Ep 25 26 Gp) 408 eles a ae 1 e 3e 

0 0 0.403 | 0 0 0.302 | 0.484 | 1.005 | - 1.009 | 

-20 2.111 | 2.645 | 3.155] 3.780 | 2.408 | 2.998 | 3.470 | 3.103 | 

40 2.210 | 3.049 | 4.463} 6.560 | 2.677 | 3.673 | 3.674 3.244 

60 2.307 | 3.218 | 5.478 | 9.322 | 2.783 | 3.985 | 3.750 | 

80 2.335 | 3.311 | 6.314 | 12.083 | 2.839 | 4.166 | 3.789 

Table 24 Variation of Gio with matrix moi Units GPa 

E, 25 26 27 28 29 ee 

0 0 0 0 10.439 | © 0 0 0 

1 0.722 | 1.062 | 3.285 |10.763 | 0.894 | 1.388 1.139 | 4.000 

2 4.425 | 2.060 | 4.770 |11.084 | 1.749 | 2.642 | 2.787 | 1.949 

3 2.116 | 3.008 | 5.757 panel? 2.576 | 3.793 | 3.202 | 2.855 

4 2.790 | 3.924 | 6.577 [11.718 3.369 | 4-847 | 4.139 | 3.125   
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Whitney's predicted composite properties assuming anisotropic fibres\ 

The predicted values are based on expressions 37, 39, 41.and 26 in table 6. 

fable 25 Variation of E442 Boos Gyo and Vio with fibre volume fraction 

E =1 (fibre assumed isotropic) f1/Bpp / 

  

  

  

            

ue Bay Vio aoe 

9 Fede a ees 10 3.401 1.21 

0.2 i 42.656 0.371 7.199 1.909 

0.4 81.992 9.372 | 10.207 2.753 Units GPa 

0.6 121.328 0.373 | 15-953 4.562 

0.8 160.664 | 0.374} 30.057 | 9.511 

| 1.0 200 | _0+375 | 198-754 | 74.069 
  

  

} ae - 7 , Ses 
Table 26 Variation of E442 2o0» G45 and ve with fibre volume fraction 

  

  

          

Be4/B50 = 10 

Vp Ey Vie Boo S42 

0 3.32 0.370 3.401 4621 

0.2 42.656 0.371 6.963 1.617 

0.4 61.992 | 0.372 | 9.051 2.187 
| Units GPa 

0.6 121.528 | 0.373 | 11.608 3.047 

0.8 160.664 0.374 | 15.091 4.489 

1.0 200 0.375 | 20.014 | 7.409 |     
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Table 27 Variation of B, 1 2Eoo fy and Y, owi th fibre volume fraction 

  

  

Oaanuas 

Baja #020 
£1/Bpo 

\ ihe By Vio | Pop “2 
0 3.32 | 0.3701 3.401] 1.21 

0.2 42.656 | 0.370] 6.286] 1.483 

0.4 1.992 0.572} 37.2551 1.826 
Units GPa 

0.6 121.328 | 0.373 8.134 2.268 

0.8 160.664 0.374 9.047 2.862         1,0 200 0.375 | 9-979| 3.700 
    

Table 28 Variation of B44s_Boo+Gyo and y, with fibre volume fraction 

  

E,. =40 
£1/Bpo 

he By Vie Boo G49 
  

0 3.32 0.370 5.395 1.21 

0.2 42.656 0.371 5.910 1.315 

0.4 81.992 0.372 5419 1.431 
Units GPa 

0.6 121.328 0.373 5.298 1.557 

0.8 160.664 0.374 5.154 1.696     1.0 200 0.375 5-000 | 1,850 |         
  

Rabinovich's predicted composite properties assuming anisotropic fibres 

The predicted values are based on expressions, 38,40,42 and 43 in table 6. 

  

Table 29 Variation of By42Bo9rGi9 and VY, with fibre volume fraction. 

  

  

Vp Bay Vio Boo S40 

0 3.32 | 0.370 | 3.32 | 1.21 
Units GPa 

0.2 | 41.206 | 0.371 | 41.206 | 15.782 

0.4 81.30! 0.372 | 81.30 30.354 | = 
a oOo ea erie, 

0.6 | 421.328 0.373 121.328 | 44.926 

0.8 | 161.665 0.374 |161.665 | 59-498             1.0 [201.702 0.375 |201.702 | 74.071 
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Table 30 Variation of By42Boo., Gao and Y, owith fibre volume fraction. 

Ve Ey4 V2 2 

ioe: 3.32 0.370 | 3.32 1.21 
Units GPa 

0.2 41.206 0.312 | 6.978 2.456 

0.4 81.305 | 0.305 |10.285 | 3.689 E =10 £1/Byy 

0.6 121.328 | 0.504 113.498 | 4.924 

0.8 | 161.665 | 0.303 16.630 | 6.168 

1.0 | 201.702 | 0.302 |20.00 7.407 

  

  

Ne Bay 

0 3.32 

0.2 | 41.206 

0.4 | 81.305 

0.6 | 121.328 

0.8 | 161.665 

1.0 | 201.702 

Vie 

| 0.370 
0.362 

0.357 

0.354 

0.352 

0.363 

  
Boo S19 

Besa 24 

5.011 | 1.708 

6.271 | 2.206 

7.517 | 2.704 

8.759 | 3.202 

10.00 | 3.700 
  

  

E. Vi2 E, G. 
            

£. an 22 | ae 12 

oO 3.32 0.370 3.32 1.21 

0.2 41.206 0.365 4.035 | 1.338 

0.4 81.305 0.361 4.288 | 1.466 

0.6 | 121.328 0.357 4.522 | 1.594 

0.8 | 161.665 0.353 4.765: | 4.722 

; 1.0 | 201.702 | 0. S20 el Deo See 
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Table 31 Variation of B442Fo918i9 and V, with fibre volume fraction. 

Units GPa 

Baan 20 
£1/8,, 

Table 32 Variation of By 42Fo91Gyy and V5 with fibre volume fraction. 

Units GPa 

E = 40 £1/Bp,
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Figure 13 Modulus/orientation. 
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Figure 14 Stxrength/orientation 

  
  

      

          
    

        
          

by 

Johnson  



  
  

  

  
  

  
      

) 

€ ¢ 

a 

Ne} = 

oe 

Zi 

1 
Pe 

2 
o 
~ 
3 
£0 
Boa G fo 
a & o 
g 
® £ 

c 

- 

eS © 
oa 

© = 
9 

g 
o 

cad Q 
3 oe 

> 
s be 
o A



  

R
E
L
 

SO
Es
 

oO
 

Sx
 

<S
 

[SS 

S
N
 

BE
R 

Schematic plan view of fibril. 

Pr
as

 
S
K
N
 

  

Figure 19 Schematic representation of two parallel ribbons 

with irregular edges. 

Figure 20 Carbon fibre orientation/modulus 
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| Uniform stress model 

miform strain model 
2Unwrinkling model 

  
Figure 22 Modulus as a function of orientation q. 

  Fibre diameter 

  

Figure 24 Strength/fibre- diameter for glass fibres. 
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Figure 26 Effect of bushing temperature. 

  Figure 27 
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Figure 28 Stress in a glass fibre 
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See table 7 

  

    
    

Figure 29 Longitudinal modulus/fibre volume fraction. 
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See table 10 
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Figure 36 Rabinovich's transverse modulus for anisotropic f. 
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Figure 38 Rabinovich's shear modulus for anisotropic fibres. 
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Figure 52 Glass fibre/polyester resin prepreg. 

 
 

polyester resin composite. ef s fibr Glas: Figure 53 
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Figure 54 Large composite mould. é ipo 

  Figure 55 Three and four point flexural rig with built-in transducer. 
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Figure 59 Cutting pattern of 130x130mm composite plate 
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Figure 60 Tensile test sample with strain ga 

    Figure 61 Overall view of test 
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Figure 64 Inhommogeneous glass - Figure 65 Inter~ply resin rich 

fibre distribution. X 30 area in carbon composite. X 120 

  

Figure 66 High volume fraction Figure 67 High volume fraction 

packing in glass composite. X 250 packing in carbon composite. X 250 
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Figure 68 Carbon fibre composite. Figure 69 Symmetric +@¢lass 

X 800 composite. X 25 

   Figure 71 Fracture surface of 

lamina on +@composite. X 250 4+ 70 carbon composite. X 25 
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        Figure 75 Shear modulus/fibre volume fraction 
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Figure 77 Longitudinal
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Appendix A Measurement of preferred orientation in milticrystalline materia! 

The variation in intensity of the refracted beam 

with angle % is recorded using a counter (Ruland) 

or by a photographic and microdensiometer technique 

(Bacon). Aplot of intensity against angle gives a 

Gaussian shaped response.The sharpness of the peak 

  

is an indication of the preferred orientation.Half 

the width at half the peak height is often taken 

as a measure of the average orientation of the 

erystallites. 

z In a multicrystalline graphite with no preferred 

orientation, the number of crystallites with their 

c axes within the solid angle defined by g, Beds 

and®, 6+d9 is proportional to [00 F)SngdFdanore 

1@) is the intensity forn the X-ray data. In the 

case of carbon fibres, if they are considered to 

be cylindrically symmetrical about the fibre axis 

  

(Z axis in diagram), the’ expression can be simp -   lified to T(B)Sn842 as it is no longer a function 

of ©. 

Ruland developed this idea and introduced further sophistications to 

account for line broadening due to crystallite size.His notation differs 

from that of Bacon so brief details are given. 

Ruland represented g(@)the intensity distribution factor as an infinite 

corioag iCntngs and showed that g(”) rer ry ae 

except for very highly orientated cases.This has a maximumat@e*]for 

Poisson kernel) 

positive q and Peat for negative q with integral width of the maximum 
2b 

and maximum to minimum ratio Iti D 
41) (=ly) 

The degree of orientation is measured by Ruland in terms of q ,where:- 

q=0 represents no orientation or random orientation. 

= 
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g=+1 represents perfect orientation at =o 

q=-1 represents perfect orientation at Oz L 

(4(Bs:.2hdd 
The function $5 TLE is designated as R_ by Ruland and can be 

2 
expressed as 2 ae ace (obs =hent) ox, Pomel: “Le | 

itg(P)is developed into a Fourier series. 

For q}1 it is shown that ae Vib oy( 4-4) 

Similarly the function 9(9) SFA is designated as Qz and can be 
$9 (9) S~2 

expressed as 20P-n 

ie Clo ton )(4- oe) CLS> ere) Jeu Hlem* 

a fie i-y)* 
a [3 GY | Retna)? ei 

Appendix B The theoretical basis of the calculated elastic properties of 

orientated carbon fibres. 

The basic unit graphite crystal has hexagonal symmetry and has only 

5 independent elastic constants, Sn 19127513533 ands gy resulting in the 

compliance matrix shown below. (For comparison with anisotropic compesites 

see appendix C) 

Sn Sia Sy =O 

Sn Sig 4 Sg) 0 

Si3 $3 S33, 0 

O
2
0
 
5
0
-
7
0
 

e
2
0
0
 (
0
 

° ° ° Say 

° Ov O70 Sum 0 3 

° ° ° ° © 2U5y-Sn) 

The directions of the axes 1,2,3 are shown in the sketch,the c-axis is the 

axis of symmetry. 

The compliances sh of the crystallites in a direction defined by ©,¢ 

(polar coords) with reference to the natural crystallite axes are given by:- 

5332 Sy Sint Z + S53 Ceot St LPOS2 W513 + S uy Cod Sunt 

Sig = Su CooP Sint BSic® + $3358 dB SkO + S12 Sint bas 

~Sqy CPW Sin SotO + Siz (CodS +SintWSe2O = Lh GS Sit Sin7O) 

Says 25 (CodP 4 2S5in'B SitO LO) - 8513 Simb Ce0*9 5529 = 25:2( 1- Sent) 

+4 S33 Sen "B Go7OSerO + Sey ( Sr7W~ hE Sor CoS) 

me 
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However due to the hexagonal symmetry ,the compliances si are independent 

of angle © and are simplified by replacing the functions of © by their 

average values, % 

Sy 5E (3Gonb + 1C2f 43) -90 (G3 Set +5524) +3fu Sather Seu 952560" #5.,34) 

S33 2 Sy Sint B+S33Coo'S + (15:3 +Syy) Sa S Cod 

Snt Bont - ~2CEH 41) + Sinton" «S09 (Sens SCAB CSB) +2 SelB tS St BCG Sid) 

  

Sige $t(satbedd) + S2S.29 S2(Sin MD tal +8) + BSB ) SSO 

Siu? Sul L208 CGSB) ~ S12 Scn'B~ be Sig SoOGAD #25935 Seat 
+ See (Cutts Sin89 -2 Sn Bin St oh) 

The elastic properties of a carbon fibre composed of graphite erystallites 

are calculated by summing the weighted elastic constants from 0°to 90°. 

The weighting factor,I(@)is found by measuring the crystallite orientation, 

Reuss model or uniform stress model 

For this model the stress in the individual crystallites is assumed to 

be uniform and equal to the macroscopic stress of the fibre. The modulus 

of the fire in the longitudinal direction is given ty 
Lg SFT SGdo 
F, I) sae 

a, Fue = S395 Su Wate SrsCeet Ot (2515 # Sey) Si Ot 
I(d) Kor PAP La Sspt(25n-A5yt,.) SBSH ylS0-2ig tS 5) fort) SiG 

a ast 3733, oe T(¢)Spad LeTCP) Sno 49 

For the case of an isotropic material (fibre properties independent off) 

   

Hence     

n 
the integrals ¢ Sees Gg can ae be evaluated by reduction formlae 

io, MeL Stade Ls 58d0 | 2 2 = ) 

Rsagdy 3 sagas 8 
In a similar manner the other elastic properties can evaluated, and 

using the notation of Goggin and Reynolds we have:- 

Siz So-4 (25u- 2513-904) B +4 (5u-25,5 +595 “ss 

Sn? Sat (Si Sa) #4( Sut 855 255 ~See)de 

Si? S04 4(Su #553 ¢Sin~ 3519-Sua)P - $5u+533 tS csea) TS 

Sues be no rae 5 S)D - (25 tu #2533 ws -250)d5 

where [m= Sriarsteag nt, 3, 5, 
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Voigt model or uniform st 

The stiffness constants Cry of the basic graphite crystallite are related 
' 

to the general stiffness constantsClj by expressions similar to those for 

  

the compliance constants.Similarly the stiffness constants Cis of the 

UF 

carbon fibre can be express in terms of Cis and the correct weighting factor. 

CB Cz Cu = (Cn Cig-2 Cay) b +3 (<u ~ 2613433 = Mca, Es 
4 ’ 

t aS $ ve . 
The Cijrare inverted to obtain the $ij by the normal manner. Sie [<i ] ads 

i 

The elastic constants for the case of uniform strain can be eepeeaeed 

1 
in terms of Sij «As the expressions are quite complicated a computer is 

normally required for the inversion process. 
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Appendix D Plate bending and torsion tests 

The two tests described here were originally concieved in this form 

by Hearmon (89) for the testing of plywood. 

The solution to the differential equations of an anisotropic plate 

under combined uniform bending and twisting moments is given by Lekhnitskii 

(85) asz- Wwe GMa (Rn%t Ra yt Ri.*4) 

+6 My ( Rots Rarytt Rag xy) 

6 Muy ( Rit +Rrey’t Ruy) D1 

+ artby te 

where h=plate thickness ; w=deflection in the Z direction ; Mis gees 

moments 3 Mp twisting moment 3; a,b,c =constants dependent on the frame 

of reference; Ri, is'defined by equation 3.15, 

Rending y 
  

  

            
The sample used by Hearmon is shown in the sketch. At points A it was 

supported by steel balls, and at points B it was loaded by weights. 

The deflections along lines 1,2,3,4 were measured with a dial gauge held 

in a clamp which stood on the plate.If x=y=0 at the supporting 'foot' of 

the clamp (w=0), then a= 

  

=0 also.Thus for the bending moment My, only 

we have:- 
hPw = 6Mx( Ru x + Qi + Rix) D2 

By substituting values for h, x,y and measuring M. and w on lines 1,2,3,4 

the values of RyRy and Rig can be calculated. 

“If the plate is a unidirectionally fibre reinforced one with the fibres 

parallel to the long side,then R S44? Ri5= Si 9B = $4670. Using 2 115 em 
\ 

second plate with the fibres transverse,the values of Soo» S45 may be found. 

The deflections measured are fairly small, and in calculating the 

value of Poisson's ratio (- S45/ 8,4) small errors in any measurement 

cause a large error in the answer. ‘This problem and the large size of the 

-176~



test pieces are the principal reasons why the method was not used. 

Torsion 

Timoshenko (91) showed that loads of P acting on a square plate as show 

will produce a torsional moment M. 7 per unit length along the sides equal to P/2. 

  

Substituting MyrP/2 into equation D1 we have :- 

fow= BP (RyxttRacy*+ Rigay)t do tby tc D3 

If the deflection is measured such that x=y=o when w=o then a=b=c=0. 

By measuring the loads and deflections along lines 1,2,3 and 4 it is possible 

to calulate Rags Rog» Ree: 

In practice the test was carried out as follows(after Tsai (90)):- 

pal     

Two fixed loading points , one pre-set point and one moving point were used 

as shown above. Thus substituting in equation D3 W#0 at rth d yrs, 

Fhe rye-k 

Xe-d , 42 4d 
L cs 

e 

we obtain hws 3P [org autlye)uctlay- Arye £ Ag] 

By measuring the deflection at different positions on the plate various 

relationships involving Rugs Rogs Ree can be derived. Most of measurements 

were made at the centre of the plate (x=y=0). Thus we have:- 

GW Rut Rig tec 2 R 
x ; a ; Ee, i a \ . 
Note that if the angle of the fibre =0 Rage Rog= 0 Reg= S66 

=45 R= 2( Sop-e40) , 

° Ss 

#135 Be 2 855-845)



Appendix E Torsion and shear in a unidirectional composite 

  

Pure shear as defined in elasticity theory is shown on a two dimensional 

scale in the sketch, where the engineering strain is given by bay The shear 

modulus in this case is defined as x= Gey . 

If the sketch represents a aniaieeoticne’ composite plate with the fibres 

parallel to one edge, then the shear deformation has the effect of creating 

a shear stress between the fibre and the matrix along the length of the fibre. 

This mode of shearing in a composite is referred to as in-plane shear and 
. 

is a function of the in-plane shear modulus Grae 

If the fibres ran normal to the plane of the plate, i.e. out of the paper, 

the shear stress between fibre and matrix would be very small and most of 

the stress would be used in distorting the matrix.This mode of shearing is 

termed transverse shear and is a function of the transverse shear modulus 

a3: Thus in a homogeneous orthotropic composite there are two shear moduli 

whether the fibres are isotropic or cylindrically isotropic. 

Plate twisting test 

P 

4 

    

Timoshenko has shown that by applying a torque of P to the corners of a 

Square plate,a moment a is produced along the sides of the plate. The 

moment deforms the plate in the manner shown in the sketch, where it can be 

seen that there is a shear stress induced between the fibres and the matrix 

along the length of the fibre. 
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fPorsional pendulum 

The torsional pendulum is similar to the plate twisting test in the type 

of deflection, but is treated differently because of the sample shape and 

the manner of loading. | 

On a circular sample in torsion the sections normal to the axis remain 

plane, but for other cross-sections warping can occur. However for long 

samples with a small deflection the torque of the pendulum can induce 

reasonably predictable shear stresses and strains and can thus be used to 

measure the shear or torsional modulus. 

In neither of these tests is there any attempt of the fibre to rotate in 

the matrix and the strain in the composite is shear strain parallel to the 

fibres. The two methods are used for measuring the shear modulus of a variety 

of materials because they are fairly easy to use, but should only be used 

at low strains, and in the case of non-circular sections in the pendulum, 

a correction factor for the sample shape must be used. 

In this thesis the expressions torsional modulus and shear modulus 

Mave been taken to be identical although in a general sense enig is not 

correct. 
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