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SYNCPSIS

The manufacture of composites reinfqrced with strong, stiff fibres
is now a well established practice. The use of glass fibres allowed
the theory developed for plywood and similar materisls to be used
directly as it was assumed that glass fibres were elastically isotropic.
Carbon fibres are now used in increasing quantities and the same theory
is often used to calculate the mechanical behaviour of carbon composites.
It is now known that carbon fibre is highly anisotrepic and thus may
preclude the use of conventional theory suited to isotropic fibres.
This thesis is a study of the effects of fibre anisotrcpy on the elastic
properties of composites.

The introduction covers the development of cafbon fibres leading to
the production of anisotropic fibres,with particular interest_in the
attempts to calculate the properties of the fibres.The question of the
isotropy or otherwise of glass fibres is considered,and it is concluded
that glass fibres are isotropic.

The proﬂerties of composite constituents are determined and used to
calculate the properties of unidirectional composites. The properties
of the unidirectional composites are measured, compared with the
calculated values, and used to predict the properties of laminated
composites.The calculated and experimental values of the laminate
properties are compared.It is concluded that the properties of laminates
may be predicted reasonably accurately from the unidirectional composite
properties,but only some of the unidirectional composite properties

can be predicted with reasonable accuracy from the constituent properties.



NOTATICN

Component of matrix [A] defined by equation 3.35
domponent of matrix [H] defined by equation %.36
Component of matrix [C] defined by equation 3.2

D. . Component of matrix [D] defined by equation 3.38
Component of matrix [Af]defined by equation 3,42
Bij Component of matrix [B']defined by equation 3,42
ng Component of matrix [C']defined by equation 3.42

ﬁ;j Component of matrix [D’]defined by equation 3%,42
ﬁgj Component of matrix [h*]defined by equation 3.43
B:j Component of matrix EB{]defined by equation 3.43
0T5 Component of matrix [b{]defined by equation 3.43
n’fj
C Constant in equation 20 table 6

Component of matrix [D*] defined by equation 3.43

E,. Young's modulus of a unidirectional composite in direction 1

11
( longitudinal modulus )

E.. Young's modulus of a unidirectional composite in direction 2

22

( transvérse modulus )

E. Young's modulus of an isotropic fibre

f

Epq

Ef2 Transverse Young's modulus of an anisotropic fibre

Em Young's modulus of the matrix

Axial Young's modulus of an anisotropic fibre

Ex Young's modulus of a composite in direction X
Ey Young's modulus of a composite in direction Y

G. Shear modulus of an isotropic fibre

f

G,, Axial shear modulus of an anisotropic fibre

1
GféhTransverse shear modulus of an anisotropic fibre

Gqs Shear modulus of a unidirectional composite in the 1-2 plane
Gosz

Gm Shear modulus of the matrix

Shear modulus of a unidirectional composite in the 2-3 plane

ny Shear modulus of a composite in the X-Y plane



K Constant in equation 3 table 6

Kr Bulk modulus of a fibre

Km Pulk modulus of the matrix

K23 Transverse plane strain btulk modulus of a unidirectional composite
L1 Invariant property of a composite

L2 Invariant property of a cemposite

Mx Bending resultant in direction X defined by equation 3.28

My Bending resultant in direction Y defined by equation 3.28

Mxy Twisting resultant in direction X-Y defined by equation 3.28

N, Normal stress resultant in direction X defined by equation 3,27

Ny Normal stress resultant in direction Y defined by equation 3.27

ny Shear stress resultant in direction X-Y defined by equaticn 3.27
Qij Component of matrix [Q] defined by 3.13

Ri Component of matrix [ﬁ] defined by 3.15

J
Sij Component of compliance matrix [o]

U Airy stress function defined by equations 3.50-3.52
Ui Elastic properties of a composite defined by 3.45

V. Fibre volume fraction of a composite

f
Vm Matrix volume fraction of a composite
Viy Shear stress in the X-Y plane
vyz Shear stress in the Y-Z plane
sz Shear stress in the X-Z plane
X Cartesian coordinate direction
Y Cartesian coordinate direction
Z Cartesian coordinate direction

a Constant in equation 1 appendix D

b Constant in equation 1 appendix D

Q

Constant in equation 1 appendix D

L)

Subscript to denote fibre

[rs

Subscript to denote direction

Subscript to denote directicn
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k Subscript to denote direction

1 Subscript to denote direction

kx Lamina curvature in the X direction

ky Lamina curvature in the Y direction

kxy Lamina curvature in the X-=Y direction

u Lamina displacement in direction X

v Lamina displacement in direction Y

w Lamina displacement in direction Z

x Distance along X axis

Y Distance along Y axis

z Distance along Z axis

..
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Constants in equation 34 table 6

EiEngineering shear strain component

€ij Normal strain component

n Reinforcement factor

la Poisson's ratio of an isotropic fibre

v\ Poisson's ratio

Yy, ¥ajor
]ﬁzMinor
v,,_ Major
)&,Minor

1&3Major

Poisson's ratio
Poisson's ratio
Poisson's ratio
Poisson's ratio

Poisson's ratio

of matrix

of anisotropic fibre
of anisotropic fibre
of a unidirectional composite in the 1-2 plane
of a unidirectional composite in the 1-2 plane

of a composite in the X-Y plane

P Constant in equation 34 table 6

(ﬁ; Normal stress component

—Clj Shear stress component



1 _INTRODUCTION

1.1 Carbon

The element carbon has two basically different structures, that of
diamond and graphite. Diamond has a face centred cubic structure with the
atoms 1.54 A apart. Pure graphite has a layered structure (figure 1 ),
each layer being composed of carbon atoms arranged in a regular hexagonal
network. The spacing of the atoms in the layers or planes is 1.42 £° and
the spacing between planes is 3.40 A. In the diamond structure all the
.carbon-carbon bonds are covalent giving a hard, strong material. In the
layers of graphite each carbon atom is surrounded by_three carbon atoms
thus. :>"‘ The Sigma bond between the carﬁon atoms are sp2 hybrid bonds
with inter-bond angles of 120°. Each carbon atom uses three electrons for
these bonds. The fourth electron is an unhybridised p orbital. Theée
" electrons are delocalised and form a cloud above and below the Sigma btonds,
thus giving pi bonding in addition to Sigma bonding, hence the internuclear
distance in graphite (1.415 A ) is shorter than that of diamond. The
electrons are able to move throughout all the branches of the network
resembling the electirons in a metallic structure in this respect, tut in
two dimensions only. The layers are 3.3539+ 0.0001 ﬁ'apart, held together
by weak Van der Waal's forces. The layers are stacked in an ABARE sequence
(figure 1 ), but Van der Waal's forces make it fairly easy to shift the
layer planes with respect to each other. 'Bulk carbon' is generally
considered to be 'amorphous' and is formed from small graphite crystallites
randomly arranged. A typical Eulk carbcn nas a strength of 5 MFa, a
modulus of 10 GPa, density of 2200kg'/m3 and is isetropic unless some
preferred orientation is imposed by the manufacturing process.

Using a D.C. arc, Bacon (1) produced 'graphite' whiskers with

diameters of a fraction of a micron to greater than 5 microns with
recoverable lengths up to 30mm, The whiskers appeared to be.in the form

of concentric tubes in a scroll-like manner. The modulus was estimated

to be at least 700 GPa and the strength about 200MPa. The electrical

-



resistivity of the whiskers was 650SLmm compared with 4005lmm for a single
crystal of graphite in the basal plane direction. Eartherly cﬁlculated the
theoretical modulus of graphite in the basal plane to be 1000GPa - 20%.,
Examination of the whiskers by X-ray diffraction suggested that thg a-axis
of the graphite érystallites were parallel to the whisker axis, and that
the c-axis was perpendicular to the axis. This early experiment clearly
demonstrated the potential of carbon as a strucutural material.

Brenner (2) modified the Von Polyani model (3) of the sodium chloride
structure to calculate the theoretical strength of perfect whiskers. Taking
into account the theoretical shear strength necessary to initiate plastic
flow, Brenner showed that the maximum tensile strength lay in the range
3/100 to 17/100 of the modulus. The average value of 1/10 of the modulus
is normally quoted as the theoretical strength of materizals, giving a
" value of about 100 GPa for the basal plane of graphite.

1.2 Carbon Fibres

The terms carbon fibre and graphite fibre are not clearly defined,
although Bacon(4) suggested that carbon should refer to a fibre heat-
treated to 12?5—1773°K with a composition of 80-95% carbon, and graphite
should refer to fibres heat-treated to temperatures in excess of 177§°K
with a compositicn of at least 99% carbon. As graphite is a particular
form of the element carbon,;in this thesis the term carbon will be applied
to any fibre heat-treated above 1273,

Carbon fibres and fabrics have been made for several years by
carbonising various forms of cellulose ( cotton for carbon fabric, bamboo
for early electric light filaments ), but all have a low strength and
modulus. Carbon fibres made explicitly for reinforcement purposes are
normally made from viscose cellulose fibre ( Rayon ) in the United States
of America and from polyacrylonitrile ( PAN ) fibre in the United Kingdom,

In 1964 Phillips, Watt and Johnson (5,6) started to develop carbon
fibres with propérties approaching those of graphite whiskers. The
dramatic increase in the fibre modulus and strength was the result of
stretching the fibre during processing thus tending to vreferentially
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align the carbon structure.The directional structure of Grafil A type
fibre is clearly shown in figure 2. In recent years in an effort to reduce
the high cost gf carbon fibrejattempts to use other materials as a base
(precursor) have been made with varying degrees of success., Kumura and
Jenkins (7) produced glassy carbon fibres from phenolic resin witﬁ a
maximum modulus of 69GPa. Hawthorne and Baker (8) used pitch as a precursor
and produced fibres with strengths up to 2.6 GPa and moduli up to 440 GFa.
The process of converting the precursor to carbon fibre takes place
in stages under closely controlled steps which vary according to the type
of precursor and manufacturer. Watt and Johnson (9) have proposed that the
conversion of PAN to carbon fibre takes place in a manner similar to the

following decomposition path.

\%H{ C \\CH C
—— § —
b, 75N
CH CH N
{i + hesh Qi + fugther
CH— Cyy ? CH—C heat — Carbon
/ under tension / \
C%i C%{. /f
CH—C CH=~C
R P
Chain molecule of PAN Ladder polymer- more stable

structure.
Figure 3 Decomposition of FAN fibre.
By keeping the fibres under tension, shrinkage is prevented and the carbon
molecules tend to 'straighten out'. The active C-N groups cause the chain
molecules to form aggregates calles fibrils. Further heating and controlled
oxidation leads to oxygen bonds between molecular chains, Since the C-N
groups can be orientated at different angles several molecular chains can
be tied together by oxygen bonding. Oxygen. links in three dimensions can
produce a fairly rigid structure and prevent the chains from bending and

distorting on further heating.

‘Bacon and Tang (10) proposed a mechenism for the conversion of

cellulose fibre into carbon fibre through various stages. By use of X-ray
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diffraction and electron microscopy technigues and by measuring the
physical changes which take place in the carbonisation process, Bacon and
Tang showed a structural similarity between cellulcse molecular orientation
and preferred orientation of the carbon fibre.The shrinkage in the fibre
length which takes place with carbonisation decreased with increasing
cellulose molecular orientation and Bacon and Tang suggested that the
building of the carbon chain structure probably begins along the paths

of the original cellulose structure, thus preserving a 'replica' of the
original fibre structure.” The idea of longitudinal and transverse poly-
merisation was introduced to account for the dimensional changes in the
fibre. Longitudinal polymerisation of the cellulose to carbon leads to a
reduction of 8.3%% for perfect molecular orientation, whereas with
transverse polymerisation the carbonised fibres would be only 48% of the

length of the original fibre. See figure 4.
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The final properties of the carbon fibre depend on (a) the precursor,
(b) the precursor treatment, (c) the maximum heat treatment temperature,
(d) the percentage elongation during heat treatment.

Consider (a) first, thé type of precursor used. The highest published
values of fibre modulus and strength for stress graphitised carbon fibres
.(that the author is aware of) are those for fibres made from a PAN
precursor-by RAE. ( Watt and Johnson (15) modulus 690 GPa).The difference
in carbon fibre moduli produced from various precursors is a.reflection
of the orientation of the molecules rather than being a special property
of the precursor. Any process which increases the perfection and alignment
of the carbon structure in the carbon fibre may be'expected to increase
the modulus in the direction of the fibre axis.

Some types of precursors lend themselves to stretching more réadily
" than others and can thus achieve a higher degree of orientation. Rayon
and PAN fibre are both made by drawing through a die or bushing and possess
some preferred orientation before the carbonisation process starts, but
many are completely amorphoug. e.g. pitch. Moreton (11) has shown that
carbon fibre made from PAN fibre which had been stretched ir glycerol at
423 :!? prior to heat treatment, has a higher modulus and strength than PAN
fibres stretched in steam by the same amount. The increases recorded were
1.32 to 1.71 GPa for the stirength and 427 to 455 GPa for the modulus.
Exgmination of the PAN fibres stretched in steam showed evidence of pores,
possibly due entrapped water, (12) which could cause a weakening of the
fibres.

The heat treatment process which converts the base material to
carbon controls the amount of fgraphitisation' that occurs in the fibre,
although other factors such as the type of atmosphere alsco have an effect.
Moreton, Watt and Johnson (13) found the relationship between maximum heat
treatment temperature, strength and modulus for PAN based (ﬁAE) fibres to
be as shown in figure 5. The strength of carbon fibre apparently reaches
a peak value with a heat treatment temperature of about 1873°K «This
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Figure 5 Effect of heat treatment temperature.

discovery results in two types of carbon produced commercially, 'high

. modulus' or type 1 and 'high strength' or type 2. The reason for the

decrease in strength of fibres heat trezted to temperatures higher

than 1873°K is thought to be due to the growth of 'pure' three dimensional

graphite crystallites which have weak bonding with the rest of the structure,
The percentage elongation produced during the stretching and heat

treatment of a fibre can have a dramatic affect on the modulus and

strength., Hawthorne (14) produced glassy carbon fibres with a modulus of

40 GPa and strength of 1.75 GPa by heat treating asphalt pitch at 1273°K,

X-ray diffraction showed the fibres to have no preferred orientation and

were probalbly amorphous with Le=10 % and La=17 A. After subjecting the

fibres to stress graphitisation the modulus increased to 440 GPa and the

strength to 2,60 GPa. In a further study Hawthorne (14) examined the effect

of elongation on carbon fibres from several precursors. Although from

different sources many of the properties were the same after similar

treatments. The effect of elongation on orientation,.Young'g modulus,

shear modulus aﬁa electrical resistivity are shown in figures 6,7,8,9.

The relationship between Young's modulus and eloﬁgation had a limited

amount of scatter and the results of the shear modulus relationship had

considerable scatter, but an overall trend was demonstrated.
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Allen, Cooper and Meyer (16) demonstrated that it is possible to affect
the modulus and strength of a carbon fibre by introducing other elements
into the graphite lattice. By heating carbon fibres in a Boron doped
crucibtle the modulus of RAE carbon fibres were increased from 410 to 550 GPa;
No boron carbide was detected and it was estimated that only about 1 atom
in 10000 was displaced by the boron.No explanation for the phenomena was
given, but it is well known that the modulus of reactor grade graphite
increases after neutron radiation due to the pinning of dislocations.,
( Kelly 17).It is thought that the distortion of the carbon lattice by the

boron atoms could have a similar effect.
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The modulus and strength of any materialare ultimately limited by the
strength of the interatomic bonds. The theoretical strengths and moduli of
many materials have been established and found to be in excess of experi-
mental values by factors of up to 1000. The experimental values found by
testing bulk materials do not reflect the strength of the interatomic
bonds of the material so much as the weakness of the material due to
various types of 'faults' such as intercrystalline boundaries. Carton fibre
has a structure far closer to a'perfecf structure than most haterials
used for engineering purposes.

The structure of perfect graphite is shown in figure 1 , and in 2
perfect carbon fibre the planes would be continuous:“eorrectly stacked
and perfectly aligned with the fibre axis. The bond energy of carbon atoms
in the basal plane is estimated to be 600 kJ/g atom and the interfaﬁial
" bond energy between planes is estimated to be 5.1 kJ/g atom. Hence the
perfect carbon fibre would be stiff and_strong.in two directions parallel
to the graphite planes and weak and 'soft' in the direction normal to the
planes.

The structure of carbon fibre is responsiﬁle for all the physical
properties and is a centre of considerable study. Electron microscopy
ﬁnd X-ray diffraction have provided most of the information on the inner
structure of fibres , and by taking into account the macro-properties of
the fibre,attempts have been made to provide a model structure which
satisfies all the experimental observations.

Bacon(18) provided an experimental X-ray technique for measuring
the degree of preferred orientation in reactor graphites in which the
width of the 002 line was measured at varying angles with a microdensib-
meter. When the intensity of the reflected beam is plotted against the
angle ¢ , a Gaussian shaped curve is formed. Half the width at half the
peak height of the graph is taken as a measurement of the a@erage preferred
orientation angle. Ruland (19) adopted a similar principle to Bacon for
measuring the prefefred orientation in carbon fibres. He measured the

rreferred orientation in terms of a factor q , where g=1 signifies
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perfect orientation of the planes parallel to the fibre axis, g=-1
signifies perfect orientation of the planes normal to the axis, and q=0
signifies completely random orientation. Other information available from
X-ray and electron microscopy is La, the average size of the hexagonal
plane of the graphite crystallites, Lec, the depth or stacking height of the
crystallites and information on the size, shape and internal surface area
of any pores in the fibres., La and Lc can be calculated from line broaden-
ing using the Sherrer equation L=KM/B Cos ©. The sudden change in density
at the interface of a pore/solid causes diffuse scattering of X-rays which
can yield information on the diameter and }ength of_pores.Direct observation
of ihdividual features with an electron microscope has provided further
information and confirmation of some of the data obtained by X-ray work.
Ruland (19) studied the structural changes during the carbonisétion
" of cellulose fibre ( Fortisan 36 ) and found that the preferred orientation
of the cellulose structure was almost completely destroyed beiween 513-553 °K.
From 553°K to 1173% a small but significant orientation existed. An
increase in the preferred orientation started at about 1273°K and continued
gradually to higher temperatures, and under special conditions could exceed
tﬁe original orientation. (See figure 10).A direct relationship between
the preferred orientation in the rayon and carbon fibres was not found,
and in fact ''highly orientated fibres as starting materials did not
necessarily produce well orientated carbon fibres'', Further work by
Ruland (20) revealed periodic density fluctuations of small angle scatter-
ing along the fibre. This was thought to be due to differences in the
decomposition process resulting in domains of amorphous and crystalline
material. This inhomogeneity was found to persist in carbonised fibres.
The recovefy of the preferred orientation at about 1273°K also resulted
in the formation of needle-like pores about 10-30 A in diameter with lengths
in excess of 200 4.
Pores are not uncommon in textile fibres, and using X-ray diffraction

techniques, Statton (21) demonstrated the existence of microvoids in
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PAN fibres by diffuse scattering patterns., Discrete scattering patterns
also indicated the existence of a long periodic order commonly found in
drawn fibres. Sharp and Burnay(22) examined defects in carbon fibres heat
treated up to 28?5°K and observed elongated cavities in the surface up to
pm in diameter, some containing inclusions, which suggested that the
defects were formed by a gouging action during processing.,

Watt,Phillips and Johnson (6) examined RAE PAN based fibrs and
concluded that they were of a polycrystalline nature with a preferred
orientation of the c-axis of the graphite crystallites normal to the fibre
axis, The degree of orientation was calculated from the half width of the

002 line and plotted against the average fibre modulus. ( Figure 11).
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Figure 10 Crientation/temperature Figure 11 Orientation/modulus

for Fortisan 36 fibre, for RAE carbon fibre.

Bacon and Schalamon (23) examined rayon based fibres and found a

similar relationship between orientation and modulus. Watt et al also
studied the relationship between Young's modulus and strength,(figure 12)

electrical conductivity and density and found similar results to Hawthorne.
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It is interesting to note that the apparently linear relationship between
modulus and strength is not in agreement with the results of Moreton, Watt
and Johnson (figure 5), but is in agreement with the results of Johnson,
Marjoram and Rose for the case of stress graphitised fibres. Johnson,
Marjoram and Rose (24) studied the effect of stretching PAN based carbon
fibres at high temperatures.( Stress graphitisation ) Although there was
considerable scatter in the results it appears that stiress graﬁhitisation
( up to 307 stretch ) produces an increase in the modulus, strength and
orientation, See figures 13 and 14. _

Johnson and Watt (25) examined RAE fibres heat treated at 2773°K
with a modulus of 410 GPa , and found a fibre structure congisting of
long narrow units parallel to the fibre axis with a width of about 100‘1.
X-ray analysis showed a high degree of preferred orientation with the
planes parallel to the axis., The crystallites appeared to be turbostratic
with Lc at least 12 layers thick and La in the range 60-120°A. Sections
from fibres heat treated to 1273°K ruptured while being cut to reveal a
net-like structure. Fibrils in the network were about 800-1000 % across
and ran the full length of the section. La in this structure was about 30 ‘A.
It was concluded that the modulus of the fibre was controlled by the
orientation and the strength by interfibrillar bending. For a further
check on the size of the crystallites the thermal conductivity of the fibre
was calculated from the Debye equation,K:épcvl. The mean free path,l,of the
electrons was assumed to be equal to 100 1, the width of the fibril. The
calculated value ,0.0596 Wi'K-Wwas in reasonable agreement with the
experimental value calculated from a composite bar.

Johnson and Tyson (26) studied ‘the intimate structure of a fibre
carbonised at 1273 X then graphitised at 2923 %(. From the 002 reflections
and the fact that there were no h k 1 reflections observed with l> 0
they concluded that the fibre had a turbostratic structure with the c-axis
normal to the fibre axis. The interlayer spacing was estimated to be 3.42 i,

Lc approximately 60-70 1,and La about 70 1. They presented a mecdel of the

carbon fibre structure shown in figure 15, in which crystallites with basal
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plane dimensions of about 60%60 A and stacking heights of about 60 A are
positioned such that the basal planes are parallel to the fibre axis within
+ 8. To help confirm the conclusions drawn from the X-ray data a section
of the precursor was stained with phosphotungstic acid and examined with
an electroﬁ microscope. It showed fibrils about 75 i wide and longitudinal
sections of the carbonised fibre gave the impression of a fibrillar system
with crystalline regions parallel to the axis separated by voids to give
intercr&stalline repeats of about 50-100 A. Extinction bands gave a measure
of the crystalline width which was about 65 'A. They concluded that the
extinction bands were caused by sub-grain boundarieshwith predominating
twist components. In a later study Johnson and Tyson (27) used low angle
X-ray diffraction to evaluate lp, Forod's distaﬁce of heterogeneity, and
Sv, the internal surface area of carbon fibres. Good correlation between
" low angle parameters and fibre strength were reported, but with a discon-
tinuity at 2173°K . The discontinuity was related to a change from a highly
cross-linked structure with many small pores and crystallites to a graphite
structure with fewer cross-links, lower internal surface area and larger
pores and crystallites. The results showed a sudden increase in lp and Lec
with a decrease in Sv, but with little change in the strength or modulus.
It was concluded that in stress graphitised fibres the pores were more
uniform and had less sharp boundaries than in non-stress graphitised fibres.
Ruland (28) made a comprehensive study of rayon based carbon fibres
and proposed a 'wrinkled ribbon' model for the structure of the fibre.
The basic unit of the model is a ribbon-like structure (figure 16 ) about
60 A wide and thousands of angstroms long, made up from the hexagonal
rings of the basal planes. The ribbons contain 'holes' where numbers of
carbon atoms are missing:; there is no correlation between the general
direction of the borders and the direction of the a-axis of the hexagonal
rings. Numbers of the ribbons run parallel to form microfibrils, (Figure 17)
with a preferred orientation parallel to the axis, The microfibrils are

'wrinkled' with voids between them, typically 200-300 A long and 10-~-20 ‘:1

wide. Dark field micrographs revealed light and dark domains which were
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atiribuied to Moire effects from the superposition of two microfibrils
with layer planes in the reflection position for 002 but tilted with respect
to each other., Measurement of the angle between the layers confirmed this
observation. The variation in spacings of the Moirg patterns along a given
microfibril was taken to indicate smoothly curved regions in the model
_ with no sharp tilt boundaries. Dark field pictures of the 103 reflection
indicated small areas of regular stacking (ABABAE) but only for 3-7 layers
with lengths of about 100-400 A. Ruland considered this observation in
keeping with the 'wrinkled ribbon' model in that it would only be possible
to maintain the correct stacking sequence in the straight sections of the
fibrils, In wide angle scattering the variation of the 002 line with angle
for both PAN and.rayon based fibres indicated a correlation between size
and/or perfection of the stacking of the layers and the orientation of the
layer normals with respect to the fibre axis. As the width of the first
.interface maximum is more sensitive to variations in the size of the
scattering domains than to variations in the perfection, these results are
incorporated in the model as shown in figure 18. The branched microfibrilar
structure with sharp ended pores is somewhat similar to the branched
structures in textile fibres.

Ruland's results of La and Lc are shown in table 1. The increase
in La /L¢ with preferred orientation for a given type of fibre was
interpreted as an increase of the average length of the ribbons straighten-

ed out by thermal or mechanical means.

Fibre tyve La Le q H.T.Temp.
Type 1 (PAN based) 119 A 64 & | 0.902 2973 K*
Type 2 (PAN based) 35 A 34 & | 0.787 1523 x°
Rayon based 59 & 50 & | 0.230 3073 X°
" 81 A 54 X | 0.820 | 3073 &°
" 91 & 65 A | 0.980 3173 §° 2
" 130 } 65 & | 0.982 3173 &°

Table 1 Ruland's X-ray results.
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The stereochemical reactions of Bacon (10) and Watt (9) implied a
preferred orientation of the a-axis of the hexagonal lattice,but Ruland
found no evidence to support this supposition. Low angle scattering due
" to voids was essentially the same for fibres made from PAN or rayon, and
was similar to that found in textile fibreé. It was shown that the angular
distribution of voids and graphitellayers was almost identical, proving
that the voids are parallel to the layer planes. In type 1 PAN based fibre
75% of the voids were within 12° of thg fibre axis, but in type 2 only
about 257 are within 12°. The length of voids increased at an increasing
rate with heat treatment temperature and was independent of the base
material. The microporosity also increased with heat treatment temperature
but was also dependent on chemical and mechanical treatment. A plot of the
aferage distance between voids and the stacking height showed that the -
voids increased in width as the fibril stacking height increased. Variations
in the intensity of the reflections from the values predicted by Porod's
iaw at wide angles were thought to be due to density fluctuations in the
parallel stacking of the layers. Ruland suggested that the small angle
scattering reported by Johnson and Tyson (27 ) as amorphous carbon was
probably due to this effect. Increasing the heat treaiment temperature
generally reduced density fluctuations while mechanical streiching tended
to increase them. Using the ribbon model, Ruland suggested that an
increase in heat treatment temperature caused the atoms at the edges of
the ribbons to diffuse and 'smooth out' the ribbon, whereas stretching
caused the ribbons to move parallel to each other and disturb the smoothing

process, See figure 19.
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1.3« Theoretical calculation of the fibre modulus

Hill (29) showed theoretically that the upper and lower boﬁnds of

the modulus of a multicrystalline anisotropic material were given by
models where homogeneous strain and homogeneous stress were assumed |
respectively., Ward (30) developed expressions for calculating the optical
birefringence and moduli of an idealized semicrystalline polymer in terms
of molecular orientation. For the case of uniform stress the elastic
properties of the polymer were found in terms of the orientation parameters
and compliance constants ( Sij‘) of a single transversely isotropic unit ;
for the case of uniform strain the elastic properties were found in terms
of the stiffness constants (cij').

Price (31) derived expressions to express the Young's modulus of an
aggregate of hexagonal crystallites while taking into account the pfeferred

" orientation of the sample. For the uniform strain model he derived that

the modulus in direction 0Z is given by:-

2n ji
A5 L i E($)I(F0)Sm g AFLO
oz -Jtl j:yi 'I(gz'e) SQ\E‘ dﬁydﬁa

Q
where¢= angle between c-axis of crystallites and direction 0Z

(See appendix A )

© = other coordinate angle ( polar coordinates )
1(#,0) = density of crystallites in direction (#,®)

E(gﬂ) = modulus of single crystal at angle ¢ to c-axis

Note E (&)= /(s,, Sl + 533 Cotg+ (251345u0) Ca' P Sm &)

Sij= elastic compliances of crystallites

For the uniform stiress model he derived:-
ach ) :
e d
_i} 5° Exﬁ) I(EJ;GX’SMmQr Efafe

LR 1m0 sapapde

Price used elastic constant values supplied by Spence (32) and experimental

1/Eoz=

orientation values for cylindrically symmetric and completely anisotropic
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pyrolytic graphites to calculate the moduli of the graphite. The resulis
were in best agreement with the experimental values when the constant

stress model was assumed, but all the calculated values were too large.

The values of the compliances used were as follows: 811=1.11*15?'
0.04%10, WU TIET o S a %
= ! »* ==r e = " S = * 3 hy
522 .04%10, 513 2.5%10, S33 33 v Su4 135%¥10 units Pa All +25%

Goggin# and Reynolds (33%) noted that Price's treatment for the case of
the uniform strain model was incorrect. In order to calculate the elastic
pfoperties of the graphite assuming uniform strain it is first necessary

.!' from the basic ecrystalline

to calculate the general stiffness components cig

stiffnesses Cij' then invert the Cij‘ matrix to obtain the elastic
compliances from which the graphite properties may be deduced. Ruland (34)
made a similar observation on Ward's treatment of the uniform strain case.
Coggin and Reynolds used the same relationship for the uniform stress
model as Price but they assumed transverse isotropy ( which eliminates
dependence on © ). Experimental/theoretical comparisons for the values of
S419 5331 Sq3» S, and S, of Pile Grade A reactor graphite showed that
the theoretical values were much lower than the experimental wvalues. The
main reasons for the discrepancy were thought to lie with the effects of
porosity, cracks and possibly inaccurate values of the crystalline constants.
Brydges, Badami,Joiner and Jones (35) calculated the values of the
elastic compliances of type 1 carbon fibre from X-ray data using the
uniform stress and strain models with Goggin and Reynolds relationships
ana elastic constant values of pyrolytic graphite supplied by Spence
(private communication ). The limits of the two models were very wide and
the experimental values of Young's modulus for both the type 1 fibre and
EE experimental high modulus fibre %ere just above the lower (uniform stress)
limit., See figure 20.The experimental value of the shear modulus was also
_just above the lower limit. They concluded that the results indicated that
'ihe modulus of the fibre can be quantitatively accounted for by the
assumption of a fibre composed of orientated distributed crystallites

with the elastic constants of perfect graphite crystals.
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Ruland (34) investigated the application of the uniform stress and
strain models to the case of anisotropic carbon fibres. The structure of
the carbon fibres was assumed to be in the form of crystallites composed of
turbostratically stacked graphite layers about 5-10 layers high ,separated
by needle-~like pores, but with no information regarding any cfoss-links.
The uniform stress model assumes that the stacks of layers are strongly"
linked in the longitu&inal direction and weakly in the transverse direction
and that a stress applied in the longitudinal direction affects all stacks
uniformly regardless of orientation. Ruland argues that this model is
reasonable to a point, but" it is difficult to assume that the transmission
of stresses between two consecutive stacks of layers which are tilted with
respect to each other can be at a non-zero angle to the layer planes".

In the uniform strain model strong lateral (transverse ) bonds between
individual crystallites are assumed so that the neighbouring crystallites
have identical dimensional changes in the direction of the applied force.
Although this assumption seems unreasonable in view of the nature of the
graphite structure, the model cannot be excluded because of a lack of
information on any cross-links. Ruland proposed that the 'elastic unwrink-
ling' model is a closer approximation to the 'true' carton fibre structure
than either the uniform stress or uniform strain model. In the unwrinkling
model the graphite layers are assumed to be linked together to form long
wrinkled ribbons along the fibre axis. Applied stress in the longitudinal
direction causes the ribbons to 'unwrinkle' and increase the preferred
orientation of individual layers. The surrounding envir%ﬁent of the layers
produces resistance to tilting of the layers and the components of stress
cause elongation of the layer planes. The resultant longitudinal Young's

modulus is given by:-

S55= 1/B,= 35w +m3 R . o)
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See appendix A

jﬁ): Angular distribution of layer normals

The elastic constant k (same dimensions as S,,) takes into account the

11
resistance of the envirc?nent but has no physical basis and is derived
from equationé 4 or 5 using experimental data.

The unwrinkling model has the advantage over the models in that it
more closely represents the real situation (as seen by Ruland ) and is
considerably more simple. However, the elastic constant k is difficult to
interpret physically and the model does not provide any means of calculating
the fibre modulus from single crystal data.

Ruland determined the distribution of layer normals g(ﬂ), from X-rayv
. techniques and calculated the orientation parameters from the Fourier
- coefficient, Pn for 9 carbon fibree with different degfees of preferred
orientation. The porosity of the fibres was determined from the difference
between macroscopic density and X-ray density (calculated from the layer
spacings )jand the modulus of the fibres corrected by Ec= f:_c E.
where E= observed modulus [

Px = X-ray density

P

The theoretical fibre moduli were calculated from the orientation

macrodensity

parameters and the values of 511,3 and S, which were assumed to be

i 33
-11 -2
those of a single graphite crystallite; S11$.985*10, S13=~0.63*10,

535=27.S*10_l‘units Fa' from a private communication from Blackslee,

The variation of shear modulus with g for the uniform stress and uniform
strain models is shown in figure 21. Also shown in figure 21 is the
calculated value of k which is based on the linear relationship of equaticn
1. Assuming a linear relationship Ruland obtained the relationship between
shear modulus and q by a least squarés method, equations 4 and 5. Figure 22

is a plot of the experimental and theoretical values of Young's modulus

calculated from the unwrinkling model using the average value of k from
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figure 21. Also shown are the theoretical values predicted by the uniferm
stress and strain models. The results in figure 22 do not indicate which

model is closest to reality but clearly demonstrate the large increase in
the modulus for |qﬂ70.9.

The values of 844 obtained for the uniform strain model are in the
range of values so far observed for a moderately to highly imperfect
graphite structure. The values of 844 from the uniform stress model are
considerably less but this could be due to a stiffening effect of transverse
cross-links. The fact that both series of 844 with increasing preferred
orientation is explained by Ruland as a change in the manner of trans-
mission of stress between individual particles but with no apparent effect

on layer size or stacking height.



1.4 Discussion on carbon fibregl

The relationship between plastic straining and the mechanical proper-
ties of carbon fibres during or before the carbonising process has been
clearly demonstrated with experimental results published. Further invest-
igations with X-ray diffraction and election microscopy have shown that
various degrees of preferred orientation are induced in the structure of
the fibres by plastic straining and that some of the physical properties
of the fibre are related to the degree of preferred orientation . The
relationship between some properties an& orientation are less obvious
(consider figure 14 ) and are probably also influenced by other-details of
the fibre microstructure.The microstructure of the fibre at any one time
depends on the type of precursor, percentage of plastic straining and the
heat treatment temperature , and hence it is not easy to define any general
structure for "carbon fibre".

It is apparent that the structure of a fibre changes considerably

.as it is converted from a low modulus textile fibre to a high modulus
carbon fibre. A successful model for carbon fibres must be capable of
explaining the properties at each stage of the process. Two models have
been proposed for the structure of carbon fibre of similar modulus but of
different origin. Ruland's 'wrinkled ribbon' model is based on a rayon
based fibre and Johnson and Tyson's model on a PAN based fibre. The two
models differ mainly in the length of unbroken graphite layers and the
shape and position of voids . It is tempting to assume that Johnson and
Tyson's model is the result of stretiching Ruland's model sufficently to
break the ribbons into shorter lengths but not to fracture the fibre as a
whole. Intrinsically one would expect fibres with a Ruland structure to be
stronger and have a higher electrical and thermal conductivity than fibres
with a Johnson and Tyson structure, but comparative figures are not given.
Neither model provides any information about the fibre struciure perpen-
dicular to the fibre axis. Rulénd suggested that although it is premature

to form any definite ideas on a model for transverse structure, there is
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evidence for short range order in the packing of adajcent stacks of ribbons
in the sense that there is a higher probability for the lateral ribhon
boundaries to be in contact with the same, than with the surface of the
graphite layer plane. The same argument could equally well apply to the
Johnson and Tyson model,and taken to the limit would result in a flat sided
fibre whose axis of symmelry was perpendicular to the fibre axis. The
evidence that Ruland bases his assertion on is from the probability of the
occurence of Moire patterns in 002 dark field microscopy and some optical
anisotropy reported by Butler and Diefendorf (36)3 This type of packing
would result in rectangular section voids bounded on opposite sides by
ribbon surfaces and lateral ribbons respectively for the Ruland model.

(see figure 19).The case for a Johson and Tyson model would be similar but
more complicated.

Drydges et al calculated theoretical limits of Young'é?g “gscarvon
fibre given by the Reuss and Voigt models using the graphite crystal
constants of Spence and experimental orientation data for a type 1 fibre.

A similar calculation for a high modulus experimental fibre was carried
out using simulated orientation data based on the type 1 fibre results.

Both results are shown in table 2 and in figure 20.

Experimental modulus Orientation Theoretical moduli
Reuss Voigt

Fibre 1 385 GPa (% o 189 GPa | 985 GPa

Fibre 2 736 GPa 6.4° 281 GPa | 1000 GPa

Table 2 Orientation/modulus results of Brydges et al.

The average experimental results of Hawthorne, Pacon and Schalamon and

~ Watt et al, are shown in figure 20 for comparative purposes, It should be
noted that the graphs shown only represent the best fit curves for
gxperimental results which showed a considerable scatter. If we assume
that the experimental errors are approximately equal for each case,it

appears that as the orientation of the crystallites decrease (and also

the modulus) the spread between the various results also tends to decrease.
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This is to be expected with an exponential type of relationship as
?ariations in the orientation of fibres with a low degree of orientation
will have a small effect on the modulus. All the experimental results lie
within the bounds of the Reuss and Voigt limits as expected, and generally
the Reuss model offers a closer approximation to the experimental values
than the Voigt model.

Ruland corrected his experimental values of the fibre moduli for
Qﬁrosity (analogous with. fibre volume fraction in a composite) and plotted
a relationship between modulus and orientation (q) with very little scatter
(figure 22) and with a maximum 'fibre modulus' of 870 GFa for g=0.98.

It is only possible to compare Ruland's q factor with the 'half-width at
half peak height' measure of orientation at q=1 (perfect orientation) and
q=0 (random orientation) because they represent measures of different
gquantities.

According to Ruland's results there was very little difference in
the predicted fibre modulus values whether the uniform stress, uniform
strain or unwrinkling model was assumed. No explanation can be found for
the similarity of the results.

The elastic constants of a single graphite crystal which are the
basis of all the theoretical predictions for the fibre modulus vary some-
what depending on which set of figures you take. The values quoted by

Spence and Bowman and Krumhansl are shown in table 3.

Elastic constant Spence 1961 Spence revised| Bowman &
Krumhansl
it -1
812 -0-04 s _0r16 " ==
513 -2.5 . -0.3%3 " 2%
— .2 " 2 . "
833 33 _ T.4 w
s 435 . 250 " ks
44 q - a4 L 4 -1
Cyq 1160%10 Nm 1130%10° Nm\ 1130%10 Nm
C12 290 " 180 " 282 n
C1 109 n 15 " "
3 —-—
Cys 46.6 e - EALs ) el a8 ta
044 0,23 n 4.4 2.3

Table 3 Elasic constants of a graphite crystal
SH5



Spence's, earlier figures were used by Price and Goggin and Reynolds to
calculate the elastic constants of various types of pyrolytiec graphite .
Spence later revised his results and PBrydges et al and Ruland used the new
figufes in their calculation, If it is assumed that the values of the
elastic compliances ofla gingle graphite crystal derived by Spence and
Bowman and Krumhansle are of the correct order of magnitude, then the
majority of the experimental work carried out to date on experimental/
theoretical comparisons of carbon fibre elastic constants suggest that a
uniform stress model givés the better . description of the longitudinal
elastic properties of a carbon fibre. The exception to this observation is
the work of Goggin and Reynolds on Pile Grade A reactor graphite, where
the experimental values lay outside the theoretical limits. However this
type of graphite is far removed from the aligned stiructures encountered in
carbon fibres, and there are many faults in reactor graphites to account
for the apparent disagreement. The structure of carbon fibre as pictured
by Ruland would tend to suggest comparison with a fibre reinforced compesite
where the fibres are replaced by the microfibrils. However if the fibrils
are assumed to be wrinkled normally, under stress the ribbons will straighi-
en out and not necessarily be equally stressed. If a fibre structure based
on the Johnson and Tyson model is assumed there is no continuity of
structure and the individual crystallites are not likely to be strained
equally. Hence unless there is a structure in carbon fibres which is
analogous to the straight,continuous fibres of a unidirectional composite
there is no basis for assuming that the fibre behaviour can be predicted
using a Voigt model.

In attempting to produce fibres with greater strengths and moduli
in the longitudinal direction , little attention has been paid to the
properties in other directions. This is partially due to the fact that it
is difficult to measure the f;bre properties in any direction not parallel
to the fibre axis with any accuracy due to the small non-circular cross-

section, Some measurements of the torsional modulus of sﬂéle fibres have
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been reported by Hawthorne and Brydges. Hawthorne's results (figure 8 )
were typical in that the scatter was large,but an overall decrease in the
torsional modulus with increasing crystallite orientation was indicated.
Brydges et al compared the theoretical and experimental values of torsional

modulus for type 1 fibre, and found btest agreement with the lower limit.

Experimental Young's Experimental Shear Reuss shear Voigt shean
(Torsional )
Modulus Modulus Modulus fodulus
385 GPa 24.1 GPa 8.27.GPa 226 GPa

Table 4 Experimental/theoretical shear modulus values

Ruland calculated the value of fitre shear modulus on the basis of
uniform stress and strain models using experimental values of q. The results
were fairly scattered but Ruland assumed a linear relationship in both
. cases and showed that the fibre torsional modulus increased with an increase
in orientation. No experimental measurementsof shear ﬁodulus were made but
a comparison of Ruland's predicted values of shear modulus based on the
constant stress model agrees reasonably well with Brydges' experimental
value for type 1 carbon fibre. The shear modulus value of a fibre with a
Young's modulus of 385 GPa from Hawthorne's results is about 12 GFa.
Unfortunately there has been very little data published on the experimental
values of the torional modulus of carbon fibres, but one would expect the
torsional modulus of a fibre to decrease as the longitudinal orientation
increaséd, as Hawthorne's results show. Ruland has suggested that the
explaﬂkion for the increase in shear modulus with orientation predicted
from his results may be due to a change in the transmission of siress
between individual crystallites.

As far as the author is aware no-one has yet made any direct
measurement of the fibre transverse modulus or major Foisson's ratio and
little attention has been given to the theoretical values of the same.

The small diameter of the fibre makes  any experimental work very difficult

and the unknown 'cross-links' in the microstructure make any theoreticalwork

open to challenge. The value of the transverse modulus and Poisson's ratio
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should lie between the limits set by the Reuss and Voigt models whatever
the details of the structure.As it is difficult/impossible to measure
the transverse modulus and Poisson's ratio directly, they can be eslimated
from tﬁe properties of a composite, if the relationships between composite
and composite component properties are known to bte accurate.

The theoretical values of the transverse modulus and Poisson's ratios

of a single crystal are given by 1/833, 812/811 and S respectively.

13/553
using Spence's data the following values are obtained:- transverse modulus
=%6.5 GPa, major Foisson's.ratio=0.163, minor Poisson's ratio=0.012. It
should be noted that although the transverse modulus of the graphite crystal
is theoretically 36 GFa, it is possible for a graphite fibre to have -
transverse modulus of less than 36 GFa due to the porosity of the fibre
structure. The porosity would similarly affect the Poisson's ratios,
tending to increase the major Poisson's ratic and reduce the minor Poisson's
ratio.

To sum up, the structure of carbon fibre has been partially described
by Ruland and Johnson and Tyson but without sufficent detail to use &as a
base for theoretical calculations of the fibre properties. Theoretical
predictions of the fibre properties based on the elastic properties of a
single graphite crystal have produced very wide bounds. Only the longitudinal
modulus has been studied experimentally to any extent and comparison with
the theoretical values suggests that a uniform stress model gives a Closer
approximation than a uniform strain model. The shear and transverse
moduli and the Poisson's ratio are probably affecﬂh to a far greater
extent than the longitudinal modulus by cross-links in the fibre structure

and may be difficult to relate to the orientation alone,
—



1.5. Glass fibres

In 1924 Griffith (37) first demonstrated that the strengtﬁ of g‘le;ss in
the form of a very thin fibre could exceed the strength of bulk glass by a
factor of up to 20.

The theoretical sirength of glass is 7.57 @Pa when caleulated as 1/10
of the modulus, but the strength of bulk glass is about 0.172 @Pa due to
the formation of microcracks. (37)

The strength of freshly drawn glass fibre (virgin fibre) can te reduced
by a factor of 2 by mechanical handling and exposure to the envin&nent.
This is due to defects or damage in the surface of the glass in the form
of cracks or etch pits. However the elastic properties of the fibres are
similar to those of the bulk glass and dre not affected by mechanical hand-
ling or the envir&ﬁent to any degree.
' There are many formulations of glass giving some variation in proper-
ties, but E (electrical) glass originally developed for electrical insulation
purposes is the type of glass mosti commonly used for reinforcement purposes.
Other glasses used for reinforcement are A (alkali) glass and S (high
strength ) glass. The composition of E glass varies slightly but is within

the following limits.(39)

Silicon dioxide 52-569. by weight
Aluminium oxide 12-16% ”
Calcium oxide 16-25% "
Magnesium oxide 0-67 "
Boron oxide ; 8-1%% "
Sodium and potassium oxide 0-3% "
Ferric oxide 0.05-0,4% T.u
Titanium oxide 0~0,4% "
Iron 0-0.5% "

Glass fibres are produced by re-melting glass 'marbles' in a

temperature controlled bushing and drawing the glass through orifices of

1-3mm diameter at a high rate, causing the fibre diameter to be reduced tc
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about 12Mm. The drawn fibres are coated with a size to prevent inter-fitre

abrasion and wound into a cheese.This method of production results in an

ature in 0.1 second.)

Volume
=

Mo M e~ 'T’:'

Temperature

Figure 23 Cooling curve for glass fibre

The normal cooling curve for bulk glass is ARCD (figure 23), but because
of the rapid cooling, the fibre cooling curve is modified to ABD'. Hence
although chemically the bulk glass and virgin fibre are of the same comp-
osition,physically they have different structures. Typical physical

differences of bulk and fibrous glass are shown in table 5.

Property Units Fibre Pulk
Density ken > | 2540430 | 2580430
Strength (virgin) @ 293 X° GPa 3,64 0.172
Young's modulus ; GPa 75.8 84.5
Torsional modulus GPa 32.0 55
Refractive index - 1.548 1552
Thermal conductivity WK | 1.04 .44
Thermal coefficient e 4.9*155 5.05*15
of expansion

Table 5 Glass bulk and fibre properties.
The important features of the retention of the 'open' structure in
the fibre resulting from the rapid cooling is a decrease in density,

modulus,; refractive index, specific heat and thermal conductivity. The
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structure differs from the equilibrium structure of bulk glass both in
interatomic spacing ( lower density ) and in atomic arrangement (stabilized
expanded structure)c However by rehezting the fitre above about 900 ypfnr

1 hour (less at a higher temperature ) the structure reverts to normale
this process being referred to as thermal compaction,

Otto (40) measured the fractional change in fibre length with thermal
compaction and found it to be approximately % of the change in density and
hence concluded that the thermal compaction effect is isotropic.

Griffith (37) found that the fibré strength increased with decreasing
diameter of fibre and proposed that at the surface of the fibre the mosi
stable orientation of the molecules is that in which their maxima of
molecular attraction lie along the surface. This would lead to a similar
effect in the next molecular layer but the effect decreasing with distance.
This {empered layer hypothesis would give the fibre anisotropic properties.

Bartenev and Izmailova (41) worked with specially made alumino- |
borosilicate glass fibres and found that the strength/diameter relationship
was only very slight for virgin fibres but more pronounced on industrial
grade fibres. (Figure 24) On testing numerous fibres they produced the
graph shown in figure 25. The explanation of the results incorporates the
concept of a fibre with an orientated outer layer and an 'inner core'.
Associated with these three 'components' are three strengths.(?% is the
strength of the outer layer,cré is the strength of the inner core and
0*1 is the strength of the of the fibre containing macrocracks., By etching
the fibres for various times the fibre strength was improved. This was
assumed to be due to the removal of an outer damaged layer, which they
estimated to be about 100 4 thick, |

Metcalfe and Schmidtz (42) found a strength/length relationsnip with
a sudden decrease in strength at about 100mm. The results were interpreted
in terms of 3 types of flaws,A,B,C, but without reference to a gquenched
surface layer. Type A are severe surface flaws generated during handling

and occuring on average every 20mm and controiling fibre afrength below
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3.3 GPa. Type B are rounded surface flaws ( possibly etch pits ) about
0.1mm apart and controlling the strength in the range 4.8-3.3 GPa. Type C
flaws occur in sections about 164“to 163mm and control strengths above

4.8 GPa. Type C flaws were thought to be due te internal structural defects
arising from ionic heterogeneity.

Cameron (43%) showed that by refining glass at f?23 K or above, it
was possible to ohtaih fibres with strengths of 3.8 GPa with only a 2%
variation. Although some fibres contained long thin bubbles they did not
appear to act as stress raisers.

In most investigations of the strength/diameter relationship of
fibres, the production of smaller diameter fibres necessitated an increase
in the bushing temperature. Otto (44) used a lime alumina borosilicate
glass (used for textiles) and varied the fibre diameter by using different
sizes of orifice and by varying the winding speed but keeping the bushing
temperature constant. The fibres produced did not show any clear relation-
ship between aiameter and strength. A further study of strength variation
with bushing temperature for constant diameter fibres produced the resuliis
shown in figure 26. Thomas (45) carried out a similar investigation and
confirmed that no strength/diameter relationship could be detected for
fibres with diameters between Sum to 1gum.

Warren(46) studied the structure of glass using information from
the laws of chemistry, X-ray diffraction data, physical properties and
by comparison with other glass-like materials, The X-ray diffraction show-
ed the predominant bonding to be tetrahedral in silicate glasses.
Secondary structures such as those which change with annealing do not
show up in X-ray diffraction. Warren's model of the two dimensional
structure of glass is shown in figure 27 and shows no orientation effects,
Work on vitreous silicatelfibres ( NaQO MgO 58102) by Stratton and Hoffman
(47) with X-ray diffraction showed only diffuse scattering which was
interpreted as evidence of voids.

The small diameter of glass fibres used in composites ( 12mm)

makes it difficult to make any direct measurement of the physical properti==
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in any direction other than parallel to the fibre exis or even to measure
the diameter accurately. Brannan (48) partially overcame this difficulty

in his measurement of the Poisson's ratio of glass fibres by measuring

the torsional modulus and flexural modulus. The torsional modulus was
measured by use of a torsional pendulum and the flexural modulus by three
point bending, on the same sample of fibre. The two moduli are given by the

following formulae:-

Torsional modulus, G:%l@ Flexural mf.)duh:ts,Ez%E‘“%_‘;1 4{@
where L=length of fibre F=applied }qad
I=moment of inertia l=span
T=period of oscillation § =deflection at centre
d=fibre diameter "d=fibre diameter

Brannan argued that for any material to be considered .isotropic its
Poisson's ratio must lie between O and 0,5. If the glass fibre is assumed

to be isotropic,the Poisson's ratio,)@_is related to the two moduli by

Y <E_ -1

2G

The major source of error in any direct measurement of the two moduli is
the measurement of the fibre diameter. Brannan combined equations 1.6 and
1.7 to derive an expression for the Poisson's ratio which did not include
the diameter of the fibre. The average value of Poisson's ratio was
0.18 4+0.02., After the fibres had been heat treated at 783 f for 2% hours
(sufficient to anneal out any preferred orientation ), a drop in strength
of about 507 was recorded, but no significant change in Poisson's ratio
was detected.

Thomas (45) suggested that surface devitrification could reduce
the strength of a glass fibre on heating.

Kroenke (49) calculated the value of Poisson's ratic from a
measurement of tensile and torsional moduli and obtained a value of

0.34 + 0.07, but the calculations called for an accurate measurement of

the fibre diameter with a microscope, and thus the accuracy is uncertain.
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In 1966 De¥Wys (50) published the results of an examination of spod-
umene fibres,(Li Al Si206) with a transmission electrgh microscope, and
claimed that a chain structure up to 1000 3 long exifled. In an attempt
to create inorganic fibres with an improved modulus, Kroenke produced
spodumene fibres which he subjected to an isotropy test (51,52) based on
measuring the tensile and torsional sirengths. This test proved negative
and X-ray diffraction measurement did not show up any features which could

be attributed to fibre anisotropy, although flaws and crystallites were

detected.

1.6 Discussion on glass fibres

From the evidence published it is evident that the strength of glass
fibre is probably controlled by the surface condition and by production
parameters. The existence of a surface layer or aligned arrangement of
atoms on or hear the surface has not been proved. The lack of any definite
structure demonstrated by X-ray diffraction, and the similarity in the
modulus of the fibre with that of bulk glass and the value of Yoisson's
ratio of the fibres would strongly suggest that glass fibres are isotropic.
For the purpose of calculating ihe properties of composites made from glass

fibres, it will be assumed that glass fibre is isotropic. F
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1.7 Boron fibre

Boron fibres are produced by the vapour plating of a tungsten wire
O0.5mm in diameter. The finished boron fibres have diameters of about 4mm,
strength of 2.75 GPa, tensile modulus of 414 GPa and a torsional modulus of
168 GPa. From the method of manufacturing it is obvious that the fibre is
not homogeneous and optical examination of the cross-section revezls -
growth cones and radial cracks ( due to built in stress). Calculation of
Poisson's ratio from the tensile and torsional moduli gives a wvalue of 0.23,
which is typical for an isotropic solid. X-ray diffraction shows diffuse
rings corresponding to d-spacings of 4.4, 2.5 and 1.4 i which Galasso et al
(53) interpreted as an amorphous structuré. Otte and Lipsitt (54) examined
crushed boroh fibre with an electron microscope and found that selected
areas showed diffuse rings which could be indexad as face centred cubic.
When samples were heated in the electron beam until the diffuse rings
disappeared a pattern of spots remained. This could be interpreted in teims
of a layer structure with extensive faults in stacking sequence.They
concluded that boron fibres exhibited features characteristic of layer
type structures, and many of the observed X-ray results could be interpreted
as stacking faults. The 'amorphous boron can be regarded as heavily faulted
f.c.c. which when heated re-crystallises to rhombohedral form, annealing
out faults,

Despite the uncertainty oflﬁhe boron fibre structure, it is
normally assumed to be isotrépic when calculating the properties of

composite structures made from boron fibres.

1.8 Kevlar fibre TRDA9

DuPont have recently marketed a new type of fibre for reinforce-
ment purposes. Full details of the chemical composition and structure of
the fibre have not been disclosed by the manufacturer, but it is based
on an aromatic polyamide. The properties of the fibre are as follows:-
Tensile modu1u3'12?.5 GPa, tensile strength 2.65 GPa, maximum elongation 27

specific gravity 1.45.
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Iﬁ is not known whether the fibre is isotropie or anisotropic,but
the high modulus and strength combined with a relatively low elongation
suggest that the fibre has been subject to considerable stretchiﬁg during
processing and probably has a highly aligned structure.

If the fibre proves to be a success it is anticipated that other
organic fibres with similar properties will become available in the future.
To obtain the high longitudinal properties required it is almost inevitable

that highly aligned, highly anisotropic structures of the fibres will be

used,

1.9 Whiskers

Whiskers are the next step from orientated fibres towards 'perfect!'
materials with fully realised strength and modulus. The whiskers are
necessarily anisotropic as the are nearly perfect crystals. To calculate
the properties of a composite containing aligned whiskers the number of
élastic constants of the whiskers that will be required will depend on
the symmetry of the whisker structure, but the situation could be more

complicated than for carbon fibre.



1.10 Fibre/matrix interface

In the prediction of glass reinforced composite properties from the
knowledge of the separate properties of the fibre and matrix it is normally
assumed that there is a good bond between the fibre and matrix with no
interfacial layer. The production of glass fibre necessitates the use of
a size to prevent fibre/fibre abrasion. If the glass is to be used for
reinforcement purposes the size is somtimes combined with a coupling agent
(compatible size) to improve the bond between the fibre and matrix. Alternsti-
ively the size is removed and replaced by a coupling agent., Various

compounds are used depending on the matrix and enviromental considerations,

but it has been shown that the effectiveness of the coupling agent depends
on bow the fibres are cleaned and the method of application.[Eakins (55)1
The optimum thickness of the coupling agent is 1 or 2 monolayers, although
in practice it is found that sufficient coupling agent for several mono-
layers gives the highest composite strength due to the uneven coating. The
main purpose of the coupling agent is to increase the strength of a composite
particularly the wet strength. In the case of composites stressed in a
direction normal to the fibres, fibre debonding is one of the principal
causes of failure,Hence at low strains the coupling agent and interfacial
bond may not affect the composite transverse modulus but at high strains
the interfacizl bond will play a major role in limiting the maximum trans-
verse stirain.

Carbon fibres are sometimes coated with a size or they can be surface
treated, usually by a controlled oxidation. This resulis in a 'roughened!'
surface which enables the matrix to 'key in' and also possibly form a
chemical link which gives a stronger fibre/matrix bond,Published photographs
of fractures in composites with and without treated fibres\plearly show
that there is 1ittle fibre pull-oul with treated fibres. Even before
treatment carbon fibres have a fluted appearance (figure 2) which may help
in providing a strong bond. Generally rayon based fibres have coarsor

fluting than Pan based fibres, but this is probably dependent on the

precursor.
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The same argument regarding interfacial bond/composite transverse
modulus relationship applies to carbon fibres as much as glass, although
generally there is a better bond between carbon and the matrix than glass
and the matrix. The surface treatment of carbon fibres increases the inter~
laminar shear strength considerably, but as far as the author is aware no
data has been published which shows that an improved fibre/matrix bond

affects the elastic properties of the composite.



1.11 Isotropic and anisotrepic fibres

We have seen that carbon fibre has a highly aligned structure approach-
ing that of graphite which gives it anisotropic properties, although
accurate measurement: of the transverse properties presents certain physical
difficulties., In glass fibres there has been no real evidence of any
alignment of the structure so that they may be assumed to be isotropic,
although again it is difficult to measure the transverse propefties to
provide absolute confirmation. An indirect method of assessing the transverse
properties of the fibres is from measurement of the mechanical properties
of composites made from the fibres. In order to evalﬁé%é the fibre propert-
ies from the composite properties the relationships linking the two must be
understood. Section 2 is a study of the attempts to calculate the elastic
properties of a unidirectional fibre reinforced composite from the know-

ledge of the properties of the composite constituents.
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2 THE FROPERTIES OF UNIDIRECTIONAL COMYCSITES

2.1 The relationship between component and composite properties

In order to predict the properties and behavicur of a multilayered
structure laminated from single sheets of orthotropic material,it is
neccessary to have knowledge of (a) the forces applied to the structure,
(b)‘the constraints on the structure, (c) the geometry of the structure,

(@) the properties of the single sheet of orthotropic material. This section
is.concerned only with (d), the properties of a single sheet of orthotropic
material.,

The sheets of orthotropic material considered in this study consist
of a thin layer of matrix material reinforced with unidirectional continuous
fibres.Further details on the theory of unidirectional composites are given
in section3, where it is shown that the stiffness of an orthotropic lamina
can be characterized by four independent parameters:-
E11 The composite modulus parallel to the fibre direction.
ﬁ The composite modulus normal to the fibre direction.

22

G12 The shear modulus in the plane of the lamina.

LL2 The Poisson's ratio defined as transverse strain/longitudinal strain
- and is also known as the Major Poisson's ratio.

A fifth parameter DE1 sometimes referred to as the Minor Foisson's ratio

is related to E, ., E,, and V,, vy V, =(V,,*E,,)/E,,

In order to derive any relationships between fibre and matrix properties
and the properties of the unidirectional reinforced lamina , it is
neéessary to make certain assumptions and simplifications,They are as
follows:-

1) The fibres are linearly elastic and homogeneous.

2) The matrix is linearly elastic and homogeneous.

3) The fibres and matrix are void free.

4) There is complete bonding between fibre and matrix with no transition

region at the interface.
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5) The lamina is macroscopically homogeneous, linearly elastic and

orthotropic.

6) The fibres are regularly spaced, straight and aligned.

7) The lamina is initially in a stress-free condition.

Although these assumptions apparently apply considerable restrictions

and are not likely to be all met, deviations from them result in varying

degrees of 'inaccuracy' in the predicted resultis. Some of the more likely

sources of error connected with each assumption are listed below.

Assumption
1

Comment d@nd possible sources of error

It is generally accepted that glass,carbon and boren fibres
are linearly elastic up to at least half their maximum
étrain, and usually to fracture at room temperature.

At higher temperatures the modulus is reduced in all the
fibres but they are still reasonably linearly elastic.

At temperatures near the transition point of glass,marked
plasticity is observed in glass fibre, but as this sort

of temperature would be sufficient to destroy moat resin
matrices it is only of academic interest.

Neither carbon or boron fibres are microscopically
homogeneous but can be considered as such on a macroscopic
scale.

The properties of the resin matrix can vary from a soft
Plastiéﬁy deforming material to a hard elastic material.
Most resin matrices are linearly elastic at room temperature
up to a limiting strain, but tend to undergo plastic
deformation before failure., However the maximum strain
reached in a composite can be limited by the fibre and the
non-linear elastic or plastic strain level of the matrix

may not be reached. Hence whether assumption 2 is justified

. or not depends on the relative properties of the metrix

and fibre, temperature and geometry of the composite,
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Any voids present in the fibres (as in carbon) are taken
into account by the measured value of fibre modulus.For
most resin/fibre composites it is possible to make a
substantially void free lamina (according to density .
measurements), although some composites can have long
thin voids between fibres. If this is the case there is not
only a reduction of cross-sectional area but a stress
concentration , and often an unbonded fibre. hence it is
essential to use void-free lamina for experimental
comparison with theoretical work,
The bond strength in a composite depends on the type of
fibre and matrix and fibre surface treatment. In some
composites with a thermoplastic matrix the bond is iittle
better than 2 f{rictional bond relying.on the high shrinkage
of the matrix phase change,vwhereas in a composite made
from an epoxy resin with treated carbon fibre the bond
strength approaches the tensile strength of the matrix.
The use of coupling agerts on glass fibres has improved
the bond strength of glass fibre composites but their
mode of action and the possibility of an interfacial
region is uncertain,
The degree of homogeneity of a composite is very dependent
upon the method of mamufacture. For most fibre/resin
composites it is possible to produce reasonable homogeneity
but 'bunching'of fibres can occur at low fibre volume
fractions unless care is taken.If a unidirectional composiie
made with isotropic or orthotropic fibres is homogeneous,
then it will also be orthotropic.

The linearity or otherwise of a composite depends on
the fibre and matrix properties and the angle between:ithe
fibres and the applied stress. Most composites made with

continuoug fibres are linearly elastic over at least part
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of the stress/strain response when stressed in the fibre
direction, but not necessarily at other angles,

6 Most carbon and glass fibre composites have a random array
of fibres which become slightly more uniform at higher fibre
volume fractions. Poron fibres, being much larger can be
arranged in a specified geometric pattern if required.The
sﬂéightness and alignment of the fibres is ag;;h dependent
on the method of manufacture and can be controlled for boron
fibres but not carbon or glass. If a composite is made from
roving there are bound to be some non-straight fibres and
misalignment where the fibres cross each other. The degree
of both can be controlled to a limited extent by the size
of the roving used, the smaller sizes being slightly better.

7 ' In producing any type of composite the matrix undergoes a
phase change from a liquid to a solid with which there is
normally an associated shrinkage. In addition to this,if a
hot curing resin is involved there is the thermal expansion
and contraction of the resin and fibre to be considered. In
practice the effect of the shrinkage from hoth cazuses is
reduced by the fact that until the resin has cured there
is no bond between fibre and matrix. Any strain that is
'built in' to the composite due differential thermal
expansions is often reduced over a period of time due to
stress relaxation in the resin.

Throughout the past ten years of so there has been a continuous output
of micromechanical theories for predicting the physical properties of
unidirectional fibrous composites. Two major areas of work have been on the
strength and stiffness of composites while thermal expansion and conduc-
tivity have also attracted some attention. The complexity of the models
used and the mathematics involved has tended to increase with time from

simple netiing thecry tc complicated statistical relationships. In simplif-



ing the theory it has sometimes been necessary to make assumptions which
are not justified in reality ,with the result that many of the predicted
results do not agree with experimental ones. To overcome these problems
some investigators have ‘introduced 'correction factors' or even imaginary
structural features.

Some of the relationships published are reviewed here and experimentzl
evidence quoted where'applicable and available.The sources from which the
relationships are derived can be broadly classified as follows; netting
analysis, mechanics of materials, self consistent models, variational,
exact(within the context of classical elasticity), statistical, discrete

elements and semi-empirical methods.
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2.2 Methods of predicting the properties of a unidirectional composite

Many different approaches have been used in attempts to provide a method
of calculating the properties ( mechanical, electrical and thermal) of
composites made from a variety of materials with varying geometries. In this
section,only methods which are related to the calculation of the elastic
properties of the composite will be mentioned.

Netting analysis

Methods of predicting composite properties based on netting analysis
techniques assume that the fibre and matrix are free to act independently,
that is the bond between the fibre and matrix is non-existant. For the
longitudinal case (parallel to the fibre) the fibre is assumed to provide
the entire composite stiffness ,and in the transverse direction (normal to
the fibres) the matrix is assumed to provide the entire composite stiffness.
In the early days of glass/polyester composites before the use of coupling
agents, this assumption may have been near the truth under some conditions,
but generally it cannot be assumed that the fibre and matrix act indepen-
dently.In the longitudinal case if the fibre is much stiffer than the matrix
as is the normal situation, then the majority of the stress is carried by
the fibres and the assumption of a good or bad bond makes little difference
to the modulus.

Mechanice of materials

The mechanics of materials is the next step from netting analysis and
can provide simple relationships for predicting the composite properties
which are in reasonable agreement with experimental values. The geometry
of the composites is simplified to a specific geometry (square, rectangular
or hexagonal arrays of fibres) and the composite stress-strain response
expressed in terms of siress-strain response of the constituents. This
method provides solutions based on the classical Voigt and Reuss models

(see sketch)which are generally known as 'rule of mixture equations'.
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Voigt or uniform strain model Reuss or uniform stress model

(used for longitudinal response) (used for transverse response)
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In this approach the phase geometry of the composite is approximated
to a basic element which is subjected to applied stresses. The simplified
strain fields which result from the loading are used to determine the
elastic constants. This method of calculating the elastic constants has
been used by several authors but the basic elements chosen and the
associated assumptions vary from case to case.

Exact methods

This method involves an assumption of a model for the composite in
whiéh the fibres are arranged in an exact periodic array. The periodicity
of the arrangements enables the system to be expressed in terms of a series.
The elastic fields thus derived are then used to obtain expressions for
the elastic constants.

Yariational methods

Bounds for the elastic properties of the composite are determined from
consideration of the internal energy. The miniﬁum potential energy provides
the basis for the upper bound and the minimum complementary energy provides
the lower bound. Depending on the property being considered and the
assumptions made, the bounds may be far apart, close,or coincide.

Semi-empirical methods

As a more immediately practically applicable solution, semi-empirical
methods are frequently used to 'predict' composite propertles. The main
argument in defence of this approach is that the assumptions and simplif-

ications which are required even in the most rigorous theories are not
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necessary with an empirical approach,

Discrete elements

Discrete element methods which are frequently used to study the stress-
strain behaviour of large scale structures have been employed on a micro-

scale to predict the elastic behaviour of composites. Poth regular and

random fibre arrays have been assumed in different approaches. In common
with exact methods the resulting complexity of the solutions necessitates
the use of a digital computer.

Other methods

In an attempt to account more accurately for fhe true arrangement of
fibres rather than assume a definite pattern, statistical methods have been
employed. The composite is assumed to be homogeneous but have elastic prop-
erties which vary throughout its volume, This is expressed mathematiclly
as a series of partial differential equations with variable ccefficients.
The elastic fields are given in terms of an average value (derived from.
the rule of mixtures) and a varying term so that the field equations are
satisfied by the dervied fluctuations. These equations are then multiplied
by the variation in the elastic constants and the statistical average taken,
from which the expressions for the composite constanis are derived. As it
is necessary to include all statistical moments in statistical averaging

the process involved is extremely complicated and leads to computational

problems,
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2.3 Survey of predictions of elastic properties of unidirectional comnosites

Methods based on the mechanics of materials

Ekvall (56) used a model with a square array of fibres and assumed a

plane stress state to derive equations for E11, E??’ G1, and The
L &

12°
expression for E,, was the rule of mixtures with a modified value of the

matrix modulus Em' given by Em/(1-27£0 to account for the restraint imposed

on the matrix by the fibre. The predicted values of E22 and G12 were in

poor agreement with experimental wvalues, although the modified value of the
matrix modulus increased the value of E22 to bring it closer to the experi-

mental values,

Greszczuk (57) used the same model as Fkvall and derived similar
equations but included the strain concentration effects of voids in the
matrix. The theoretical predictions were in reasonable agreement with the
experimental resulis. Later work extended the theory to derive equations

for the coefficients of thermal expansion.

Shaffer (58) used a model with a hexagonal array of fibres to derive
equations for E11and E22 . The eguation for E11was the standard law of

mixtures,and the equation for E22 based on the inverse law of mixtures

is only applicable for volume fractions up to 68% when the fibres start

to intermesh. The theoretical values of E_ ., were lower than experimental

22

falues.

Rabinovich (59) used a model consisting of two plates in parallel,
one representing an orthotropic fibre ,the other a-highly elastic metrix.
This resulted in a modified law of mixtures relationship for E11. E22 and

G,,o In later work the model was changed to two plates in series and the

12

new expressions for the elastic constants included the inverse law of

-

mixtures for G12. As neither the first or second equation for h12 predicted

results which agreed with experimental values, Rabinovich took the geometric

avérage of the two equations as the relationship for calculating G1?.

Abolinish (60) assumed a square array of fibres with the extra
condition that the Poisson's ratio effect normal to the fibres under
longitudinal loading is ignored. Only his equation for E,, was unique tut
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no comparison was made with experimental work, although it compares
favourably with the values predicted by the lower limit of Hashin and
Rosen's work,(61)

Nosarev (62) modified the normal assumptions that fibres are repulare
ly spaced and aligned to assuming that a) the fibres were curved in one
plane only,b) the fibre diameters are small compared with their curvaturse,
c) the character of the misalignment is uniform over the extent of the
composite and symmetric with respect to the longitudinal axié. The composite
was replaced by a fictitious medium consisting of homogeneous layers
containing aligned fibres. The elastic constants of the layered medium were
then calculated and taken as the properties of the‘éﬁmposite. Reasonzhle

agreement between theoretical and experimental results were claimed.

Self consistent models

Hill ( 63) used a method to derive expressions for the composite
elastic constants based on earlier work by Hershey (64) for the elastic
properties of an isotropic aggrégate of anisotropic crystals. His model
fulfilled the normal assumptions with the exception of number 6, in that
the model consisted of a single fibre embedded in a unbounded homogeneous
medium which is macroscopically indistinguishable from the compesite. 4
uniform force at infinity induced a uniform strain in the fibre. The
elastic constants were calculated from the strain field. The expressions
derived by this method gave reasonable values at low fibre volume fractions
but became unreliable at higher volume fractions. ]

Kilchinsgki(65) modified a model originally used by Frohlich and Sach
(66) for predicting the viscosity of a Newtonian fluid containing a
dispersion of equal elastic spheres. Kilchinski's model consisted of three
conceatric cylinders, the outer one being unbounded and having the prop-
erties of the composite. The middle cylinder had the properties of the
matrix and the innermost cylinder the properties of the fibfe. The cylinder
radii were such that the cross-sectional areas of the fibre and mairix
cylinders were in the same ratio as the fibre and matrix volume fractions.

Homogeneous stresses at infinity produced sirains in the cylinders and tke
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strain fields were used to determine the elastic constants. Further to this
Kilchinski imposed an additional restriction by assuming that the fibres
were arranged in a regular hexagonal array. The outer radius of the matrix
cylinder was governed by the requirement that the cross-sectional area of
the basic hexagon and matrix cylingr be the same. llis equations for E11,
1)12and G4p were the same as those derived by Hashin and Rosen(61).

Whitney and Riley (67) used a model consisting of a single fibre
surrounded by a matrix cylinder of finite radius. Airy stress fun&tions
were applied to both fibre and matrix with the boundary conditions requir-
ing continuity of displacement and stress at the fibre interface. The
stresses in the cylinders were found for various surface loadings and the
results used in an energy balance. Fxpressions for E11, E22 and‘U12 were
derived and compared with experimental values for a boron/epoxy composite.
The caﬁﬁlated values for E22 were slightly higher than the experimental
values and the shear modulus was lower. than the experimental wvalues,

For the case of transversely isotropic fibre Whitney (68) concluded that
the present expressions for E11 and,lﬁz (law of mixtures) were not affected
by fibre anisotropy,but expressions for 612 and E22 required modifications,
in that the values of the fibre longitudinal shear and Young's modulus
should be replaced by the transverse modulus. Whitney (69) adjusted his

own theory to 2llow for anisotropic fibres and showed that only E22 is
affected by the use of transversely isotropic fibres, and the expression
for Gqo is the same as for iscotropic fibres.,

Variational mefhcds

Paul (70) derived upper and lower bounds for a macroscopically
isotropic material (E11=E22=E) constructed from isotropic linearly elastic
paricles embedded in an isotropic linearly elastic matrix. He demonstrated
that the upper bound for the Young's modulus is given by the law of mixtures
for the case of a transveréely isotropic material-under plane strain cond-
itions when the Poisson's ratios of the two phases are equal. The lower
bound was given gy the inverse law of mixtures and hence for typical fitre/

resin composites the bounds are widely spaced at intermediate values of
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fibre folume fraction,

Hashin and Rosen (61) considered models with both hexagonal and
random arrays but assumed transverse isoiropy in the composite. A hexagenal
prism containing one fibre and a cylinder containing many fibres were the
two models considered for the two arrays respectively. Using the princirle
of minimum potential energy and minimum complementary.energy, bounds for
all five elastic constants were derived. For G12 with a random array the
bounds coincide but comparison with experimental data showed poor correlaiion
The work was extended (71) to obtain bounds on the bulk moduli of material
with arbitrary phase geometry but no comparison was made with experimental
work.

Hill (72) derived upper and lower bounds for tfansversely isotropic
material and showed by rigorous mathematical arguments that the rule of
mixtures is the lower bound for E11 and that the bounds presented were the
best possible that can be obtained without taking the detailed phase geomeiry
into account.

Exact methods

IFilshtiﬂBkii (73) originally developed a method involving a set of
infinte algebraic equations for predicting the moduli of a plate. weakened
by a doubly periodic array of equal circular holes. He later extended the
method to the calculation of elastic moduli of a plate containing a pericdic
array of circular elastié inclusions,

Van Fo Fy (74) applied Filshtinskii's analysig té the case of an
unbounded matrix containing a doubly pericdic array of circular fibres and
mathematically expressed the problem as a set of infinite series,The resuli-
ing elastic boundary value problem was solved using complex variable
techniques and the elastic moduli derived by averaging the elastic fields.
As the series expressions were difficult to use,Van Fo Fy developed
approximate ones which he.claims were accurate to within 10% of the exact
ones. Equations for predicting the moduli of a matrix reinforced with

hollow fibres were also derived.

Chen and Cheng (75) used a basic triangular unit in a hexagonal arravy
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of fibres. Using an infinite series solulion of the differential equations
they satisfied the boundary conditions at both the fibre/matrix interface
and the sides of ithe triangular unit by a medified least square method.
They. later modified the work to include ihe case of transversely isotropic
fibres. Comparison with Whitney's work for anisotropic fibres showed that
the shear moduli were very similar.

Adams and Doner (76) adopted a doubly periodic array and used a finite
difference technique to calculate the shear and transverse moduli of a
unidirectional composite. Figures given were not compared with experimentzl
work but demonstrated that a square array should give a higher modulus than
a hexagonal array at higher volume fractions.

Sendeckyj developed an exact analytical solution for the longitudinal
shear modulus in a fibre reinforced composite which %akes account of
" random spacing, random variations of the fibre radii and variations in
shear moduli from fibre to fibre. The infinite series involved are

simplified for the case of a regular array with fibres of identical moduli
and comparison with the work of Chen(75) showed good agreement.

Semi-empirical methods

Tsai's approach (78) to the prediction of elastic properties of a
unidirectional composite could be considered to be semi-empirical because

T t
there is no analytical method of allocating values to the factors K and C
&

The range of K is given as 0.9 to 1.0 for composites with a reasonable
alignment, but values of K can only be determined by extrapolation from

experimental values of the modulus. The contiguitly factor which has a
value of O to 1 is involved with.laz, E,, and G,, and can have a large

" effect on the predicted values. The value of C will be partially dependent

=

on the fibre volume fraction but no attempt has been made to correiate the
two. When C=0 (corresponding to isolated fibres) Tsai's relationships for
\q2and Gyp ave reduced to ones very similar to those obtained by Hashin

and Rosen,

Bishop(79) developed the netting analysis approach by the addition

T See pages S2 andS3 Jor exvlanation  _4q



of imaginary transverse fibre to account for the transverse modvlus of =2
composite. The properties of the imaginary fibres are selected such that
the theoretical and experimental results agree. In this way any eifect of
voidé, fibre/matrix bonding etc are taken into account,

Halpin and Tsai (80) showed that Hill's self-consistent model could
be reduced to approximate forms incorporating a factof, zeta, which is s
'‘measure of reinforcement and depends on the boundary conditions'. The
value of zeta is determined by comparison of the appropriate equations
with numerical micromechanics solutions employing formal elasticity theoxry
or by extrapolation from experimental results. The value of zeta is not
necessarily the same for G12and E22 for the same set of conditions.

Discrete elementis

Foye (81) used a discrete element technigue for the prediction of
E22, Gqos \}12-and))23 of a fibrous composite, The elements employed were
triangular in shape and constant strain was assumed, The cross-sectional
area of the fibre and the type of array pattern was varied and the resultis
for circular fibres in a square array agree reasonably well with those of
Ekvall,.

Adams and Tsai introduced the idea of a randomisation factor in an
attempt to give a more realistic fibre distribution. In calculating the
value of the transverse modulus the cross-section of the composite was
divided into a number of elements, a random distribution of which contained
fibres and the remainder only matrix material. Several random patterns
(from a random number generator) were used,and the transverse modulus
calculated by a finite element technique assuming plane strain conditions.
Results indicated that using the randomisatiocn technique, a hexagonal array
gave results closer to experimental values than a randomised square. This
is directly contrary to evidence produced by a number of other non-

randomized analyses.,
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2.4 Discussion on the prediction of unidirectional composite properties

Notation

A list of the expressions developed by various authors for the predictic
_of the elastic properlies of a wnidirectiona) composite is shown in table &
It is unfortunate that there is no standard notation used in the form-
ulation of equations related to the analyses of composite materials so
in many cases the formulae are not reproduced in the ocriginal form or
notation in which they were published, but they bave not been altered

mathematically. The four basic elastic prOperties‘E11, B and\)12

22! G12
of a thin lamina will be dicussed separately.

The longitudinal Young's modulus E

“11

The longitudinal modulus is normally measured as a tensile or flexural
modulus because it is usually simpler than measurement of the compressive
modulus., In a unidirect;onal composite the longitudinal modulus is dependent
on the fibre modulus to a very large degree (see figure 28)and hence
Qhether the compressive and tensile moduli are equal at low strains will
depend principally on the fibre properties. At higher strains the
possibility of fibre buckling occurring under compressive loads will
depend on the composite phase geometry, fitre volume fraction, interfacial
bonding and matrix properties.At high strains under tension some of the
fibres may break(depending on the relative maximum strains of fibre and
matrix) and the composite will no longer consist of continucus fibres,
Eégsing the composite modulus to decrease. The theories contained in this
thesis were not designed to predict the stress~strain behaviour of a
composite near the limit of maximum strain ,although it is assumed that the
fibre and matrix are linearly elastic with equal tensile and compressive
moduli,

The bounds on E,. without taking the fibre and matrix geometry

“11

into account are given by Hill as:—~
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If the matrix and fibre Poisson's ratios are identical the bounds coincide
and the formulation is simplified to the rule of mixtures relationship.

Even if there is a small difference between the two Poisson's ratios the
law of mixtures still gives a very good approximation because the difference
in the roisson's ratios is raised to the power 2 in the equation.See table 7
and figure 29 .The rule of mixtures derived from simple mechanics of
materials is now generally accepted as giving good agreement with experi-
mental data provided that the fibre alignment is good. Ekvall's modification
to the matrix modulus only has any appreciable affect at low fibre volume
fractions or when the fibre and matrix moduli are s}yilar in magnitude.
Tsai's K factor to account for the non~aligﬁment or non-straight fibres
should not be necessary if the assumptions regarding the composite construc-
tion are kept, but in most composites there is a degree of imperfe;tion

" and the value of X could be linked to the type of production technigue usei.
A strictly more correct procedure would be to treat a 'unidirectional'
composite as a three dimensional + @ composite (see section 3 ) where @ is
the average angle between the fibre and composite axis, or to utilize

Cook's work.

Cook (79) calculated the reduction in composite modulus due to
non-perfect alignment of fibres in terms of a factor K and the angular
scatter. K is given by K=(Vf*Ef)/(Vm*Em)., For the case of glass or carhon
fibre composites with a fibre volume fraction of 60%, a scatter of 5°in
the direction of the fibre will reduce the longitudinal modulus by about
4%.

For the case of a composite made from transversely isotropic fitres
such as carbon, Rabinovich derived a modified form of the rule of mixiures
equation. Similarly Whitney modified his equations to take account of the
anisotropy of some fibres. However when the yelevant data is used with
either of the anisotropic equations it can be seen the assumption of fibre

anisotropy makes very little difference. See tables 25-32,



The major Foisson's ratio\}12

For an orthotropic composite there are three Poisson's ratios (see
section 3 ) whether the composite is made from isotropic or orthotropic
fibres. In most cases where a thin fibre reinforced plate is considered the

Poisson's ratio concerned with strains normal to the plate surface,\} or
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\)31? is disregarded. Of the other two Foisson's ratios 1/12 is the most
commonly quoted and known as the major Poisson's ratio.

Hill calculated the bounds on1J12 to be
V)V) ViVt Ol Vg Wy (6 = i) ) VY Y)Yy VY um-u@g Vm{f 4 dem)

Vm VA 4L e M o

Ky " K G Hp * T ™
These bounds are expressed in similar terms to the bounds for the modulus
E11 but are not as close as the modulus bounds because the term CV%?*)? )
.is not raised to the power 2, The upper found of Hill's expression was
also derived by Kilchinski, Whitney, Hashin and Rosen énd Van Fo Fy as the
expression for\112. In the bounds for E11 the much simpler law of mixtures
was the result of assuming that the Poisson's ratios of the fibre and
matrix were the same. In order to reduce the bounds on\J12 to a law of
mixtures the bulk moduli of the fibre and matrix would have to be equal,
As they are functions of the Young's moduli this is not likely to happen
in practice. However when suitable figures zre substituted into the
equations for the bounds ,the bounds are very close and approximate ito the
law of mixtures.See table 8 and figure 30,

The mechanics of materizls approach to the prediction aflﬁz results
in the rule of mixtures, and this is given by Ekvall, Rabinovich,Abolinsh
and Halpin and Tsai despite different initial assumptions. Tsai's express-
ion fbr“v12 is made up of two parts, one part assuming that the fibres
are in contact with each other (contiguous case)and the other part assuming
that the fibres are isolated. The real composite will lie somewhere
between the two cases and the coefficient of proportionality C is referred

to as the contiguity factor.When C=0 Tsai's expression is very similar

to Hill's upper bound, although the definition of X in terms of other
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elastic constants is different. Hill defines K as the bulk modulus and is
given by X=E/(2(1-y-2Y")) whereas Tsai does not call K the bulk modulus
and defines it as K=E/(2(1-Y)). The two values of X do not vary much

with the result that”v12 is similar for the two cases.

Whitney's equation for the Poisson's ratio of a composite made with
transversely isotropic fibre is similar to his equation for isotropic
fibres, and the difference in )§2 for the isotropic and anisotropic case is
small,

The transverse Young's modulus 322

The transverse modulus of a composite is defined as the transverse
stress divided by the transverse strain, The transverse strain is depend
ent on the fibre array and hence in any calculation of 322 the fibre
array must be specified, The normal 'array' in a real composite is random
" unless specially made,but tends towards a hexagonal array at very high
fibre volume fractions. In many of the theories published for the
prediction of E22 both square and hexagonal arrays have been assumed in
turn and it is usually found that the square array gives better agreement
with experimental results. The exception to this is Tsai's randomisation
technique. However the array generated by this method is not genuinely
random and the procedure is semi-empirical in nature.

Hashin and Rosen exﬁressed E22 an ﬁérms of K25 and G23, the bulk
and shear moduli respectively, governing planesirain deformation in the
2-% plane, Bounds were established for he*agonal fibre arrays but for

is given by —

a random array the bounds on K. coincide and K2

23 3

= Km*Kf+Gm{ Vm*Km+VE*KT)
Vm*K L+ VE*¥Km4Cm

K

23

The bounds on G23 require the solution of a system of eight simultaneous
equations representing the boundary conditions. In a later publication

Rosen found that the upper bound of G,, provided reasonable agreement

23

with experimental results and a simplified expression for G2 was given,

3
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- | 3 = L'"}'} ’l * :{[J"l (r"l“‘\
Vhitney JL& Riley found Eos in terms of ng and 123 but when re-

arranged is the same expression as that of Hashin and Rosen. However in
place of the complicated relationship for G25, Whitney and Riley assumed
v23= V,}V{- AV VmIn a lat er publication Whitney derived the same
relationship for a composite with orthotropic fibres. When Whitney and
Riley's isotropic fibre expression was compared with experimental work
the values predicted were higher than the experimental ones for a boron
composite, and Hashin and Rosen's predictions were too low.

The mechanics of materials approach has produced a number of .
variations in expressions for calculating the value of E22. The simplest
expression, the inverse law of mixtures, was given as a first attempt by
Schaffer who later modified it to suit an assumed hexagonal array with a
maximum fibre volume fraction of 68 %. (The fibres in an assumed hexagonal
. array start to intermesh at a fibre volume fraction of 68 %). Most of
the expressions based on the inverse law of mixtures tend to produce
values of E22 whiéh are lower than the experimental values, but the
modified versions of Rabinﬁvich and Ekvall give values thait are closer
to the experimental ones.

Tsai's congtiguity factor C can change the value of E., by a

22
_factor of up to 2, so it is difficult to make any comparison with other
predictions or experimental data without first deciding upon a value for
C. Similarly the equation of Hashin and Rosen incorporates a reinforce-
ment factor, zeta. It has been suggested that zéta=2 gives reasonable

" agreement between the predicted and experimental values so this value is

used in table 9. Also see figure 33. .

Longitudinal shear modulus G

12
For a transversely isotropic er orthotropic fibre reinforced
composite there are two shear moduli, the longitudinal shear modulus G12

or G and the transverse shear modulus 023 or 632. In the case of thin

13
=50



plates G23 is not considered to be of much importance from an engineering

point of view and few attempts have been made to derive expressions for G, ..
=

L% )

Hashin and Rosen established bounds for both G12 and 325 for hexagonal
arrays and found that for a random array the bounds for G1200incide but

not for G The same expression for G1? was also derived by Abolinish,

23°

Kilchinski, Van Fo, Fy and Whitney.Tsai's expression for G,, again incorp-

12
orate s & contiguity factor C, which when zero makes Tsai's expression the

same a;tﬁgghjn and Rosen. Similarly in the Halpin-Tsai expression for 812

substitution of zeta=1 gives an expression identical with that of Hashin

and Rosen., The Hashin and Rosen expression generates values that are

lower than the experimental ones, particularly at higher volume fractions,

As an improvement to the Helpin-Tsai expression Hewitt and de Malherbe (84)

suggested that a completely empirical value of 1+40V¥?for zeta gives

better agreement between theory and experiment.Seé table 10 and figure %2,
The final expression for G12 preéented by Rabinovich based on the

geometric mean of his two previous expressions could be considered to be

almost empirical ,but gives better agreement with experimental results.

The modified equations of Whitney and Rabinovich for predicting the
properties of composites made from orthotropic fibres are shown plotted in
figures 35-38., Cnly the transverse modulus and the shear modulus are affected
by the assumption of anisotropic fibres. The equations give similar prediciicns

for anisotropic fibres, but Rabinovich's figures are very much higher when

the expressions are used for isotropic fibres.
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2.5 Theoretical values of composite elastic jroperties

Table 6 contains all the relationships used in generating the data

AL

shown in tables 7-10 and in figures 29-32, To generate the data,constituent
properties representing those used in an average glass fivre/epoxy resin
composite were employed. They are as follows: Fibre modulus=75.8 GPa,
fibre Poisson's ratio= 0.21, matrix modulus= 3.32 GRa:and matrix Yoisson's
ratio=0.37.The fibre and matrix were assumed to be isotropic, and it is
assumed that G=E/2(1+ V).In addition to plotting the normal property/
fibre volume fraction relationships,thé.effect of varying the constituent
properties is shown in tables 11-24 and figures 39-49 . The composite
properties displayed are based on an assumed fibre volume fraction of
50% with a void content of zero. The constituent properties used were those
above and the shear moduli were zssumed to be a function of the Young's
modulus and ?nissoﬁ's ratio for both the fibre and the matrix.

The comparison of composite properties calculated on the basis of
fhe assumption of fibre isotropy and anisotropy is shown in figures 35-38
The fibre and matrix properties assumed for the graphs is as follows:-
Fibre longitudinal modulus (Ef1) =200 GPa, fibre major Foisson's ratio
(vﬁ):o.;s, matrix modulus=3.32 GPa and matrix Poissen's ratio=0.3T.
Four values were used for the fibre transverse modulus (E.,) and the
transverse fibre Poisson's ratio (1%2) calculated from Ef1/Ef2=1,10,20,40
and V) 0;=Bey Wy »

Eeq



3 COMFOSITE THEORY

3.1 Notation

The theory of the elastic behaviour of anisotropic materials presented
here is a condensed version of the elastic theory which specifically applies
to the types of considered in this thesis.Unfortunately there is no
universally accepted system of notation and some confusion can result when
comparing references. In compiling this sectiion the main scurces of reference
were Lekhnitskii (85),Calcote(86) and Ashton(87).The notation used does not
follow any one author entirely but the system is clearly stated to avoid
any confusion.

3.2 The elastic behaviour of anisotropic materials

The relationship between stress and strain for any material which is
considered to behave elastically can be expressed using Hooke's law. For
anisotropic materials the arithmetic expressions are normally wfitten in
matrix form for convenience and Hooke's law is expres-sed as O'ﬁ'r(,’jmgf“
where OTI are the stress components, Ekt, are the sirain compone;nts

C’ij KL are the stiffness components. Since stress and strain are
second order 'tensors the stiffness matrix is a fourth order tensor with 81
components. However by consideration of the strain energy it can be shown
that a completely anisotropic material with no axes of symmetry has only
21 different elements in the stiffness matrix. Hooke's law may also be
written in terms of the strains using the compliance matrix jjx¢ where

€157 Sijke Okt
In this thesis in order to simplify the mathematical expressions the
subscripts will be modified according to the following rules:-
11 becomes 1, 22 becomes 2, 33 becomes 3, 12 becomes 4, 23 becomes 5 and
13 ﬁecomes 6.

Hence for the stresses we have:-

o5, = O, T %= e

O;_.L: Ty Normal stresses Oz = 0% = Ty Sheaxr stres=ses
- 0‘. = -

Cf;; 3 CHE "O; o tis
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and for the strains we have:-

€& 2¢8,,° Eu=
&;;‘E}‘ Normal strains Z-E:."; s Eg;“ (Y_r.j Shear strains
£33 ¢ ZE’;J £ 8¢ g‘-")

The factor 2 is introduced for the shear strains because 81;) 8|3, glL
are engineering shear strains which have twice the value of tensorial
shear strains.

The full stiffness matrix for a completely anisotropic material ( in

retracted form) is then:- -

o] e GGy Cy o Cix S 7 £
Y Cn Cu Gy CGu S €2 €y
03 Cis € Cx Cre Gy Cig €5

Tiz " Ciy Cae Csy C-'wr Cus Che Bz 5.1
Tayl [Cis Cas Css Cus Css Ss¢ 323
Tis Lf:lc Ce Coe Cy¢ Cs Ca | | Jus |

The stiffness matrix is symmetric with 21 different elements.

3.3 Fibre reinforced plastic

A matrix reinforced with equally spaced, continuous, straight fibres
has three mutually orthogonal axes of symmetry and is generally referred to
as an orthotropic material. The stiffness matrix for such a material is

simplified considerably and has only 9 different elements.

Torl P wiSCintn . O o o r €, E
ol [C Cue G 0 [ €2
o, Cix Cunn C33 ¢ 0 ) &s
EalTil o & 06 Cuw © o I i
T3 0 o S o Css O %3
R _t‘i o o s 0 o S _313__

For the case of a thin plate of fibre reinforced plastic with the fibres
in the plane of the plate (and parallel to one edge) the stresses normal to

the plate can usually be assumed to be negligible in comparison with the

in-plane forces.



*®
'I/Material axes. Plate axes.

Assume 0'3 s Tay = [,s = 0. 'rom equation 3.2 we see that 3’1333:3'-'0 and
8 c,,:-(tﬁ.ﬂ&ﬁu]""s E_S je a function of €, and €rand not independent,it
is not necessary to include it in the matrix equation. The elastic stii‘fneés
equation for a thin orthotropic material with its natural axes 1,2 parallel
to the plate axes X,Y is then given by:-

o-l| Ctl Ctt O E.I,
Tyl 2|Cer Can Q }|Er
Tal o o Culllin 3.3

Similarly the equation can be expressed in terms of elastic compliances as:-

€ S S o ([T
Ex|z|Sn Su © ||02 3.4
I'H'L (o] 0 Se|{Tn

Thus we see thatCiJ and 5-‘3are related by the following expressionsi-

Cu :i‘_— Cus S Cus S C“.e.._l_
Su 51»'5|t Su 5“'51: Su 53-'&"5;: Ses

3.5

3,4 Relationship between matrix elements and engineering elastic constants

It has been shown that the elastic behaviour of a thin orthotropic
plate can be expressed in terms of four independent constants s,.ls.,,,su and S1e
or Cu € C3q and Cgq. The relationship between these elements and the
normal engineering constants can be found by consideration of the definit-
jons of Young's modulus, shear modulus and Poisson's ratio.Mathematically
_fﬁése definitions may be expressed as:-
Longitudinal Young's modulus E11= O"/i'
Tr.emsverse Young's modulus E22= a;./f_,.
In-plane shear modulus Gyp= tn/ﬁn.

Major Poisson's ratio v12= - E'-/f‘

Minor Poisson's ratio Vi' - - EI/E
L
&0



Rased on these definitions we see that:-

Cu = En C‘L;: Exr CILSE}IE'L = 66 = G‘pl, 3.6
l"'yu,v“ [~ MLVB (=YL vll
Si = L Savs L Sz =V Sess L a
Eu Eay E” (rez 3o
As }é'."- :Y.Ez' there are only four independenti engineering constants required
" . E

for the characterisation of a thin orthotropic material,

3.4 Thin orthotropic materials

Consider the case of a thin anistropic material where diréction 3

is perpendicular to the plane, equation 3,1 is simplified to:-
Ox Cu € Cigl |Ex
0‘3 elCn Cxv Cig 5\3 s
Txy| [Cto Cis Cus 3»3 2

The subscripts have been changed to x and y tc show that the stresses

and strains are not necessarily parallel to any natural axes of the plate
and thus represent the general case. When the elastic properties of a thin
orthotropic material are considered in any direction no;c parallel to the
natural axes, the orthotropic material behaves with the characteristics
of an anisotropic material., Thus it is possible to derive expressions for
the elastic properties of an orthotropic composite at any angle in terms
of Cij and the angle @ .

3.5 Elastic properties of a thin orthotropic lamina at an angle@ to the

natural axes »
A

7 ™ Natural (material) axes
T 7
4
/e // 9} ’
!
/// - ¥~ Lamina axes

i / A
/ i

/ /31
L. LS Ny

“ —_ In order to determine the elastic properties in directions octher than

parallel and perpendicular to the natural axes of an orthotropic lamina,it
is necessary to transpose the siresses and strains according to the rules
for second order tensors. i.e.-rijn Qin\ﬂ.jeTuLwhere Qi and &jeare direction

cosines. The strains are transposed according to:-

& Ex
ol

¥,



and the stresses as:-

U" 0-:"
(2 rT] o =
L - }
’ T t)t.\j
where [- rl-]“-: Cn'® Sant© L5680
WO (Rt® =~13m@ Wb i

=50nBl08 Suwd (plo=-5a0

e : " :
Sustitution for the strains &, 4 €. and JiLand the stresses 7,067 and Ci

from equations 3.9 and 3,10 into equation 3.3 yields

ETB '-O-x.-‘ Cao Ca O 5..;‘.
G-.j St GO [T] E.n)
JL_-C&j_ O O ¢ U.\.:)
5 - N

Soofoy s [T [e1LT]] €y
J:C"'.)_ 1 S

512
Hence the matrix represented by [Tl-tcl [T] is the required stiffness
matrix relating the stresses and strains of the X,Y coordinates.The elements
of this matrix are often denoted by a dash tc signify that they are
functions ofC;jand the angle @ .However it is easy to overlook the dash, or
it may be accidentally omitted,so in this thesis [Q]:[T]-[l_c.] [1]-

From equations 3,11 and 3.12 we have:-
Qu=Ca ('@ + 2012 $nt@(n'® ¢ Can 3O + 1 Ch6 90 ('O
Q= Cu S0 + Gin (v @ +(0t0) vCrr Sn0(nl@ = 4 (4 S Gt

Qiez Co -0 (0 s Ca(Si20Lo0 =50Un’d)~Car$in BLrO +2Un (S5O W0 -5:3C='D)
Q223 Cu Sd® +2CaSWOH0 +Caile @ T k(¢ $n10C0'0 3.13
Q26 Co Sn36U0 + Cra(6O G0 - SSJ0CR)-C 11 S BCR*0+2 (¢ (510G 0 ~ s J6Cs0)
Qe = Cir SmtDCn™® = 2L 5~ OGste Cr19%t 0 + (¢ (5B ("0 - L5 etn's)

The relationship between the angular stresses and strains in terms of the

—

compliances is given by:-

€x Ra R ‘{ Ry | |Tx
Ej - R'l R‘;\ '{ &1L 6-3 3-14
'{ 3;3 Rie Rac 2 Res -Ca.j
where [R]-‘-‘ [T]"[bj[“l’] 2,15
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In a similar menner to that used for the stiffness matrices [C,J]
[Qiﬂ' it can be shown that the following relationships hold:-

Rz Sulw'©+ 251 5:30¢nt0 1515040 * 5S¢ S oletd

Rins Sy S0 + $ 1. St +(00) + 21 5,200 ~ Sg‘SQ"GCmZG

Rit o LSn Son® @ ¢ L4 Sl S 0@ -5 000 ) ~ 4.5 215-70Co@+ 2 5¢( (50 0C0-5-8 (&)

Rigs S Snl® + 25 50206ntd + 5:1(n %@ +5( 5.0 3416
Rap= &5y, S«f(_-.,e-ws,;(g_; 87,76~ 5: J;.{_g,"-"} b Sy B0 ‘1-02,‘;;,‘{:-' (o ;.‘ac.oa)

Ree = & 5n St BCA'E =85 (S OGTO) 44, 51,5 m8C'® + Sy (SO (.»‘*e-zs;.‘e o)

From equations 3,7 and%.16 the relationships between the basic
engineering constants of the orthotropic material Eny Bng G, Vipand Vi
and general lamina engineering constants F_:., E'.')" G-xJ)Y»Jand vaxﬂre as

follows:-

L. Cavd (L - 20 $.26L20 4 4O
Bx ™ Eu+ G’u ) %ﬁ

..El." 1?9 ( z.v.;) 51D 4 C‘ﬁ-:?

TR T ( L:jﬁs - lIEy:)SQ“FZQ

GJl-n (a En £aL 3,17
o _E' 'L(”v“ S LS8
Ex Y E.u Eaq T

In addition to these relationships two commonly used others are

for the 'cross coefficients' m,l and m.. These are defined as follows:

2
"'l..:"’_E_I'_L El Mz -_;_" &2
T T

m, and m, are related to the basic engineering constants by

o T s:'nze[vll. <+ é‘ - Eu Cn"e(i*'z-v'u " ___E__u ]
Eun 26‘!1 E‘h, it
_ e 18
AT SV'“G[_V'”-&' Er - s-«e(u 2V 4En -_t:-__:')]

e E"“' Gn n (ATEY

The importance of m, and m, is that they relate the normal sirain S; to the

shear stress rn,or conversely the normal stress¥; to the shear strain !n. .
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z. 6 Theory of multilayered plates

Relationship of strain, curvature and dispacement

Consider a thin layer where the X and Y axes lie in the plane of the

plate and the Z axis is normal to the plate.

o
> ¥
P
a\?"‘
W ’ N
7 & : W i

el T
e i = =kl
From the classical theory of elasticity the strains in the X,Y and Z

directions for small deflections are given by:-

£, = QU gz Qv Eg=w 3.19

da o b

where u,v and w are the displacements in the X,Y and Z directions
respectively.If the plate is subject to bending in the X-Z plane the
strain at any point.in the material can be expressed in terms of the
displacement in the Z direction (w) and the dispiacement of the midplane
(MoVe ). The displacement of the line AB in the X direction is and the
line is assumed to remain perpendicular to the midplane ( Kirchoff-Love
hypothesis,this is equivalent to effectively ignoring the effect of
shearing deformations K,L&and Hu,) . The displacement of point P an the line
AB is Mpand is given by M,—-}'e{ where Ais the angle between the line AB
and its previous direction, and 39 is the distance of point P in the 2

- direction. For small angles measured in radians we can assume that

ke Temod = S o, and hence &= W
0%

Mp =z Mo=FpRk = Mo- }p%.-_-‘: 3.20

Similarly it can be shown that V= Vo-3 3,21

ow
9
~Substituting forMof equation 3.20 andVof equation 3.21 into equation 3.19
i IR
Exz g_:;-o - 3%11 3,22
& gx -~ g 0w 3.23
9 Ty

The shear strain in the X-Y plane is defined from the theory of elasticity

we obtain

(for small deflections) as H""& = du ¢ Qv

Ff) I
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abka- a%o *()‘U'g b 2 t)t z

A
Jeh
'3 ().L éx,{)'-'\ :
Equations 3.22,3.23 and 3.24 can be written in matrix form as
E:L s i &3‘. - -‘s L
= P - - Det)
ey = [&5.] +3 |Ay| ole=[ed s[4

3:.% e ﬁ-”va ‘k'-'j

] .
where & JEJ ! ‘éxaqre the mid-plane strains and *’t‘i‘kj!‘k} are the curvatures.

€, = Juo €= 2% fg = Q%o ¢ Vo
Ix 20 A Vo Ix
b = J .- Ju xys - 20"
T Ox
Substituting into equa'blon 55 1?1.e have for a single layer
o_sg Q“ Q|1 Q &S E: Qt. Q "n QI(, j’kz
0“..3 2 |Qi Qua Que &3“ +3 Qv Qu Qe &'J 3.26

Ty Qe Qe R Xu; Qs Que QVeée Elnj

where Q,aare the general elastic constants for the single layer.

3,7 Forces acting on an elemental portion of a laminate

;?'

-
-

%]/

/ /u* . ‘V‘ﬁ

Vx3 tote Nxy> Nyx

The forces acting on an elemental portion of a lamina may be separated into
three main types,Normal forces O;.ld'sld"}Shear i‘orces’(;m‘[\‘.‘}ﬁpnd Bending
couples “"!”m“"j' In addition there may be a pre.sure acting on the
surface of the plate.As the stresses in a multilayered laminate vary from

layer to layer, it is convenient to introduce a system of siress resulianis

and moment resultants which when applied to the geometric mid-plane produce

b5



4

a8 _system which is statically equivalent to the original. The stress resuli-
ants have units of force per length ;-:Jnd the moment resultants have units of
moment per unit length. The stresses in the Z direction are considered to

be negligible compared with the in-plane siresses and are thus disregarded.

The remaining resultants are defined as follows:-

h Stress resultapts : &]‘u’[orr:r—.n't r.res;ultané.q
Na :.F‘ d; N v M- L(]"" LAz M 0 A

..Su B g j_h_c‘_';\ 43 ) Sty i;’—:.% ¥
3 5 € 5,27 = R R 3,28
N;t..ba‘S'} t&‘]d,} Ay ML-J:‘ !’C—":’j a—‘ly .

::l;;, =>: o i :x. gbL X . J3

or y = oy | & 3.29 3 P Y lg 3.30
No. gk A My J-B| T

By combining equations 3,26,%,29 and 3.30 we can express the siress

resultants and moment resultants in terms of the mid-plane strains and

curvatures.
by
N Qy Qa Qe ||&° Qy, Q & fx
N‘) - Qn Gar Qu ﬁbu + @ Qu O liry }OL} 5,31
Nx-a £ Q,; Qlt Qe !x.; Qie Ql&. Qs _'Lu -
-
» (-]
Ma. Qy Qn Qo € Qy Qo Qirgl| by
M'3 - Qun D Q¢ f.; % +{Qn Ru @y lj 5‘ Ol} 3,32
M)ma Q:‘ Q'Lb Q‘ 613 Qlﬁ th Q(\G Lx.
%
1

3.8 Multilayered laminate analysis

"o 4
;l ] t p
Mid-plane (reference plane)
) l

y

L)

w N -

S

If we have a multilayered plate of n layers of different properties and
—

different thicknesses as the most general case, the siress resultants can

be determined by summing over all the individual layers.

N'-l. n Rk Tx
Nac Gl gL & K

where k is the subscript identifying each layer.
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Hence

h
Ny o \ Qy Q. @ {éks] Q. Qn &'{'-‘[
Nyl = é Qn ®un V| (&Y -. C.}.é-*- Q. Qu @y Y 13 d‘&
Nkﬂ h=t Qe Qg QG{::E. g;‘z_l TS Qg &{.&q‘ |_-E\:-

hd
If the elastic properties of each layer do not wvary throughout its thickness

[
oo
£
13

e

|

Qj) are not functions of z. As[f ‘}md L& ]refer to the midplane there are

also not functions of z or k. Hence equation 3.33 may be writien as
N:K. Hu Hll QIL E:\.o Bft B'L ﬁ]h I—th
N‘S = |An Au Ayl (€] + |0 Bn Bare 4"‘_‘} W[M}:[ngo}"[élg‘] S
N:;n A, A A¢ K;,; Bre B B¢c i,.:) Yk

where

g 2 % @ig), Chi- hy,,)
i 42 (@i (Ri- by,

Equation 3.34 is of great importance in general laminate plate theory as
it shows that there is a link between mid-plane stress resultants , normal
and shear strains and curvature. Similarly the moment resultants of the
multilayered plate can be expressed by summing the product of the stress

vector and distance z over the thickness of the plate.

-MJ&.. m }u* Ay Qin Q| [&x° Qv Qn Qg

My Iz Z Q. Qu Q¢ E:—,i 3+[Q Qv Quef Ry é" d}

LM"'\Q. b h‘L., Qg Que Qee a"-‘a Qi Qe Qse "w.-a

As Qf )[E']and[&] are not functions of z we can write

Mx] (8. 8o 6] [T [P« On O] [Rx

M‘J = By B2 B2 E'JO +| Da Dav Dag *!'-\j 3437
[Mxy]  [81 a6 8eef |47 Die Due Deef |hucy

" M) =[61[]«D]ILK]

. where

(61 £ & Cay), Chi-he,)
L)=% 3 (Qui(Ri-Ri) Yy

Equation 3,37 is also of great importance in understanding the mechanical

1

behaviour of laminated materials »as it shows that for the general case
there is a relationship between the moment resultant and.mid-plane strains

end -curvature. Equations 3,34 and 3,37 can be combined to form the joint

laminate constitutive equation.
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For convenience equation 3%.3%9 is somelimes partially inverted to give
: b7 A
&% _ [a%: 87 N]
———) - - - .- - ,t ok : )
M 0 *&\J 3,40
or completely inverted to give
R i r
£° A8 1N
S Nl S se=y - h
P i

were | AF [A¥)- 167 [0* ][]
(83L& ] [v*"]
[c]:-[0*"TLc™] 5o
[p']<[0""] b

¢ [ (A . |
[8*]--[a"][8] 5,43

[c*¥]=[8][a"")
[D*% = p]-[8 J[a"1L8]

3.9 Bending-extensional coupling

The inter-dependence of the stress resultant with the mid-plane
strains and curvatures has been shown by equation 3%.34. If we consider
the normal stress resultant Nxwe have:-

Nx = Qu€, + Anﬁ; t A x;‘; + 8, ‘Lx. t6, 13 + Bagl:ﬁ
Here the normal stress resultant in the X direction is developed by the
mid-plane normal strains in the X and Y directions, E:and E,.;, the mid-
plane shear strain U:uand the three curvatures hm 'LJ and &"’j' In order to
eiiminate the dependence of the normal stress on the curvatures it is

necessary for B, =B =0. Bijare functions of Qij and the distance z

P10 e

(see equation 3,36) and hence cannot be zero unless 2z=0. However as Bij

are_an even function of z it is possible to construct a laminate with

identical layers equally spaced either side of the mid-plane so that .

the laminate Bijterms cancel each other out.If Bij is zero the stress
couples will only be dependent on the plate curvatures ( equation 3.37).
This type of laminate is termed a balanced or symmetric laminate and is

one of the most common classes of laminate used.The reason for its common.
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usage in fibre reinforced composites is that the resin shrinkage during
cure can give rise to stresses in a laminate which if not balanced out
can cause warping.

To produce a laminate in which the normal stresses are not functions

of the in-plane shear strains it is necessary to reduce A16 and A, to

26
Zero. A16 and A26 are functions of Q16 and Q26 which are in turn functions
of C,14Cq5sCpp and Cgq (equation 3.13 ). Hence for angles of®=0"or 90°
A16 and Ay¢ are zero. As A, and Ayg are odd functions of Sin®and Cos &
they have equal and opposite values for equal and opposite angles of (5 35
Thus in a laminate composed of equal numbers of laminae with egual and
opposite angles,(and of the same thickness) the Aig and Ac will cancel
out and the laminate will behave as an orthotropic material,

.Al‘thongh Dig and D?G are also odd functions of Sin®and Cos© they
do not cancel out in a symmetric laminate because they are alsc functions
of {he thickness to the power three.

3.10 Invariant properties éf composite materials

In the early days of fibre reinforced composites, manufacturers of
fibres and composites tended to only quote the longitudinal properties
when comparing their products with others, thus giving‘a misleading
impression. Tsai and Fagano (87) in%réduced the concept of the invariant
properties of composite materials to provide a more realistic assessment
of the overall material properties for comparison with others and design
purposes.

The transformation of the stiffness matrix [Qij] for an orthogonal

composite is given in terms of Un by:

Q, = U, + U (2o +UsCook®

Qu: Uy = Vslolkd

Qe Ui - Uilnld * V3lanto s
Qq: Us - UiCoke

Qo= ~h Us Sa20 -~ UsSimbe

Q6: ~4 U, 520 +U; Sua kO

—
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where

U': '& (BC“ 4 3(1; 1"2(.!?- ""I-C“)
‘L' C<Cu -Cie)
- ‘é(Cq *Cu“zcu"#(“)
=3 (Cu +Car Q-4 )
Usg- % (Cu tlin "zctz't(a-Cg(,)

From the above equations the invariant properties L, and L

1 2
by L,z CutCut2ln .Other invariants can be given
in terms of L, and L, as:-

1 2

3445

are defined

and LL: C(s"ch.

U; = Jg(s!-i +‘f‘1.1,)
Ua= i(Ll“ﬁLx)
Us= (Lt kL)

3,11 Equations of equilibrium of a thin plate

3.46

The conditions for equilibrium of a thin laminated plate are the

same as those for a thin homogeneous plate and can be stated mathematically

%ux + WNxy -0

as follows :-

3,47
bN'a + éa'\!M 0 3.48
e . 1% Mes o P - (xy) 3.49

where N , N, N are the stress resultants, M_, M_, M__ are the moment
> SRl METP 5 T Wi o XY

resultants and q(x,y) is the transverse loading.
The first two equations are satisfied by a function U, an Airy stress

function, defined by

L - tU _'.'-C)IU
Nj:%—g‘- 3,50 N:r%;; 3.51 N"‘U 3‘;'53 3452

Substituting equations 3.50-3,52 into equation 3,40 we have :-

- N 211 11207 - % Apicpe | Sy e
IMJ(- le l.* Cle g—%‘;" D, D;f le = %—3‘
» % X i & %
TJ = C: ok %{"' D, Dbu D: i ";{:1 3.53
PLdide o0 ol b
el e R ] ‘f-_ Bt LD!{. D¢ DGG_ 1313-3\:”

If these expressions for the momeni resultants are now substituted into
equation 3.49 we obtain the first of the differential equations governing

laminated plates.
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Equation?’.54is .a fourth order partial differential equation in terms of

3.54

two unknowns, and thus cannot be solved without a further equation. The
other equation is the compatibility equation for thin plates which is
derived from the consideration of the normal and shear strains. The mid-
plane strains are defined by:
)
0. Ju® o %o Y = g_tilo rg_tf‘g
tx "g_-i, & Y *57 dy x

and the compatability equation is as follows.

%€ 4 %€y, Dixy . Pus AR
_ruz. OJ(-L : _BD:, i 2—73" '1' JZI_Q:J 3455

Expressing the strains in terms of the Airy stress function U and substitut-

ing into equation 3,40 we have:

- - - - — -| [ -
¥ * dtw
’-E,: Q;;t Q,f Afb %1\5,1. B.* Gn_ Bl[, e
3 Ly
£ [7[p¥ Al Ak = |+ [on 6% 8L ~%gz 3.56
™ * ¥ || oore
4o ] |oE il Pﬁ’ilmm o7 85 8% ][5,

Substituting this equation into the compatibility equation we obiain

the second governing differential equation for 1am1nated plates.

Q% 4 b % Ot 4 % 3
An u 7-%\,&%55)*(?.&;;"&66)00 - 25 gxi ¢ A %_U 6, :_’q

~(a-8D . - (W63 28¢) G- (0-3DLY - 8 *g_w
Theoretically it is now possible to solve the equations for the stress

function U and the deflection w, but in practice only certain special
cases have been solved.
Symmetric laminates which do not exhibit extensional-bending coupling

because Bij=0 can be solved for, If Bij=o' then[B]:[c]s0 and [D‘]: [D].

Substitution of this information into equation %.57 yields :-

.‘auu A %0 * - %ty * ¥y _ o
A| _____“...lAIS %}*@B“_‘fn“) J—-J : 28“ J;,!-éj + AQ-._ _Lw.. 0] 3,58

which is the same as the equation which governs a homogeneous plate, which

obeys the following constitutive law!
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Applying the same simplifications regarding symmetrical laminates to

equation 3,54 we obtain the differential equation governing the bending

behaviour:
Da O + 4D Lw 4 2(0n "‘?-DGL)C) Wy 4Dt """- ) 2.8
ot 03 0y Ox™ dyt b 115 ;39 i ?CJ'J) 3500

This equation is also identical to the one governing homogeneous plates,

which also obeys the constitutive law following.

Ox Do D Dy | |&x

i ¥
To F- b Daui D f i€y 3,61
tx5 Die bre D¢ J'.w.ﬁ

If the laminate is also orthotropic, then A16= A26= 0 and the plane

Al: %?_U "'@An.*lq a—;‘_':)-a + Au%y (o) 5.6

and the bending equation becomes:

Dn AL "'(an_'* DG(‘) 1.() 2 +Dug_ (j/(z"j) 3.63

As these Equations are essentially similar to those for isoiropic material

stress equation becomes:

they can be solved by similar techniques.



4 EXPERIMENTAL WORK

4.1 Materials

Four resin systems and iwo types of fibre were used in the making
of the composites. A brief description will be given of each.

Polyester resin

Crystic D351 polyester resin manufactured by Scott Bader Company Limited
was used for the majority of the work concerned with polyester. The resin
consists of 86% (by weight) of a high molecular weight isophthalic
unsaturated polyester and 14% of di-allyl phthalate monomer. The resin
is the product of a condensation reaction between orthophthalic anhydride
and propylene glycol.

Normally polyester resins use styrene as the cross-linking monomer in
a 231 ratio producing a highly volatile resin system with a consistency of
thin syrup. Crystic D351 is solid at room temperature and is therefore
normzlly sold as a 757 solids solution in acetone. This particular polyester
systém was selected because it can be used in a high temperature curing
preimpregnating systems unlike the majority of polyestier resins.

The gel time of the resin with 17 benzoyl peroxide as a catalyst was
about 1-2 minutes at 400‘K,comp1ete curing taking about 1 hour. No propert-
ies of the cured resin were supplied by the manufacturer.

A few test pieces were made using Crystic 272 .which is another
isophthalic polyester resin manufactured by Scott Bader. This resin uses
styrene as the monomer and hence has a low viscosity at room temperature
(3.5 poise).Methyl ethyl ketone peroxide was used as the catalyst (2%)
with cobalt naﬁ&hanate as the accelerator (2%) to provide a room temperature
cﬁre.

The properties claimed by the manufacturer ares- tensile strength

62 MPa, tensile modulus 3.9 GPa, tensile elongation 2+3%%,specific gravity 121,

Epoxy resins

For initial investtgations on this work some composites were made

from Scotchply 1002 prepreg material. Scotchply 1002 is procduced by the



Minnesota, Mining and Manufacturing Company Limited and consists of a
sheet of unidirectional E glass fibres impregnated with a hot curing B
staged epoxy resin of high viscosity. The prepreg material contains 36/
resin by weight and is 0.27mm thick.The type of epoxy and curing agent are
unfortunately unknown but the quoted shelf life at room temperature is

6 mbnths. Gel time was about 4 minutes at 43C OK, and 2 hours at 44001{ were
allowed for curing.

The properties quoted by the manufacturer for a cured composite are
as follows:- tensile strength 1+10 GPa, tensile modulus 39.3 GPa, flexural
strength 1.14 GPa, flexural modulus 36.5 GPa,specific gravity 1.80.

No fibre volume fraction was given,

For most of the work carried out with epoxy resin Shell Epikote DX210
was used. It has an epoxy equivalent of 388 and was used with Shell Epikure
BF3-4OO, a boron trifluoride monoethylamine complex., At room temperature
the resin is almost solid (viscosity 19 poise) and is normally sold as
DX 210 B~90 which is an 80% solids solution in methyl ethyl ketone. It was
used to produce a prepreg material in a similar way to Crystic D351 and
was cured at 440 oK for 4 hours.

The manufacturers quote the following properties for the cured resin:-
tensile strength 53.2 MPa, elongation 3%,flexural strength 93,8 MPa,
flexural modulus 2.78 GPa, specific gravity 1.21.

Glass fibre

The glass fibre used in this work was E type glass roving manufactured
by Fibreglass Limited and sold under the name Equerove.Fibres coated with
two types of coupling agent were used, one with an epoxy compatible comp-
ound and one with a polyester compatible compound. The actuzl coupling
agghts are not disclosed by the manufacturer, but are thought to be silane
based. Equerove roving is made commercially for fibre winding processes
and is untwisted and equi-tensioned so that there is no catenary between

the strands which make up the roving. The fibre is supplied in the form

of a cheese on a tubular former, The properties claimed by the manufacturer
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are as follows:-tensile strength 3,774 newly drawn),tensile modulus 76 Gra,
specific gfavity - 2,56, fibre diameter 12 m,

The carbon fibre used was manufactured by Courtaulds Limited and sold
under the name Grafil. Most of ihe carbon fibre work was carried out with
Grafil A, but a few test pieces were also made with Grafil HM. Eoth types
of fibre are manufactured from Courtaulds polyacrylonitrile fibre ( Courtelle)
and were supplied in a non surface treated form. Some of the Grafil A type
fibres were made into a unidirectional prepreg sheet by the manufacturers

using Shell Epikote DX210/Shell Epikure BF, 400 resin system,

3
The properties claimed for the fibres are as follows:-
Grafil A Grafil HM
Mean U.T.S. 2.64 GPa 2.55 Gj:a
Tensile modulus 175-200 GPa 310-345 GPa
Specific gravity 1.80 1.87
—



4,2 Preparation of test pieces

Resin samples

The high viscosity of resin systems used in the production of prepreg
sheet makesit difficult to cast a satisfactory sheet of resin without trap-
ping any tubbles of air or solvent. Epikote DX210 is sufficiently viscous at
room temperature to prevent pouring from a container. At 393°K the resin
is much less viscous and can be poured reasonably easily . To cast a sheet
of resin, the mould (consisting of 2 glass plates separated by metal spacers)
and a bezker of resin were pre-heated to 393°K in an air circulating oven,
The powdered curing agent was added and stirred rapidly to dissolve and
disperse it uniformly. The resin was then poured slowly into the mould
allowing most of the entrapped air to escape, before curing the resin for
4 hours,

The main problem associated with the hot casting of resin is the short
gel time. At 400°K the mixed DX210 resin has a gel time of about 5 minutes,
which is just sufficient to mix the resin,pour it into the mould and allow
any entrapped air bubbles to rise to the surface.As the sheets were cast
vertically the top surface was easily removed when cured.

Crystic D351 is completely unpourable at room temperature and it is
necessary to heat it to about 393°K before it is possible to pour it.
Unfortunately after adding the catalyst (benzoyl peroxide and di-allyl
phthalate 1311) the gel time is only about 2 minutes at 393’K,and insufficient
time is available to remove the entrapped air. To overcome this problem a
different approach was used.

The resin and di-allyl phthalate were mixed together with an egual
weight of acetone at 523°K and allowed to cool before adding the catalyst.
Th;‘acetone was removed after mixing was complete by allowing most of the
acetone to evaporate and removing the remainder by use of a vacuum oven at
303% and 60mm of mercury. When this was completed the resin was cooled to
258.K in a deep freeze and ground into a powder and stored in a desiceator
to prevent condensation. When at room temperature the powdered resin was

slowly shaken into the preheated mould %o allow the powder to melt without
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enclosing any air.None of the D351 resin samples made were entirely void-free
but with the benefit of experignce the latter ones had 2 reduced porosity.

The Scotchply prepreg material used at the begining of the experimental
work to develop manufacturing techniques was made with an unidentified epoxy
resin, All attempts to (a) identify the resin system,(b)obtain a sample
of resin from the ménufacturers, or (c¢) obtain data on the resin properties,
were not successful., However by moulding a large composite plaie it was
possible to collect sufficent resin squeezed out of the mould to produce
a sample about 130x20x5mm, Although this method of casting a resin sample
is far from perfect it was the cnly course open.

Crystic 272 presented no problems in casting a sheet sample as it

is a low visceosity low temperature curing system.

Manufacture of preimpregnated fibre sheet.(prepreg)

The number of techniques available to make multiangled, many layered
composites are few in number. Of the most common two, fibre winding and
prepregging the latter is by far the simpler as regards experimental
apparatus. It was decided at an early stage to use prepreg materials because
of the limited equipment available,the freedom of design and the high
quality of composites possible.Some early investigations with Scotchply
prepreg were: carried out to study mould design and general experimental
technique. It became apparent that the fibre volume fraction of composites
made from Scotchply were very limited by the fixed resin content and the
high viscosity of the resin., It was possible to make a low fibre volume
fraction sample by adding extra resin from other prepreg ,but the resnlts
were not really satisfactory. To overcome this problem and to have complete
freedom in choice of materials a machine was constructed to make prepreg
sheet in small quantities. See figures 50 & 51.

The fibre was pulled through a bath of resin diluted with acetone or
methyl ethyl ketone and wouﬁd on to a drum covered with Tygadure (PIFE
coated glass cloth from Fothergill and Harvey).Excess resin was removed

by the spring loaded rollers immediately after the resin bath. An adjustable

automatic tensioning device was incorporated to keep the fibre tension
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constant so that the resin pick-up did not vary and also to prevent the
uncontrolled unwinding of the glass fibre spool should the roving break or
get jammed.The resin bath was easily accessible for changing the resin and
cleaniﬁg the machine.Immediately before Being wound on to the drum the
impregnated fibres were spread horizontally to a width of 2-3mm by a FIFE
roller to reduce the thickness of the prepreg sheet.The drum was electrically
driven and was geared to the traverse mechanism so that there was a conétant
ratio between the two drives fo keep the thickness of the prepreg constant.
A complete traverse of the drum took about 10-15 minutes and produced a
sheet of prepreg about 1 metre square. After 3 hours most of the solvent in
the resin had evaporated and the prepreg was cut normal to the fibre direction
and removed from the drum. The prepreg initially had some curvature, but
if left for a day tended to flatten under its own weight without buckling
the fibres. ;

By varying the dilution of the resin with solvent and the pressure
of the resin wipers, it was possible to produce prepreg sheet with resin
volume fractions from 85 to 10%, although the system had an optimum perform-
ance with a resin volume fré&ion of 30 to 50¢. .

The prepreg made with Crystic D 351 and acetone was less tacky

at room temperature than those with Epikote DX210 and methyl ethyl ketone.
Before cutting up the prepreg sheets they were heated in an air circulating
oven at 353'K for ten minutes to remove any residual solvent and B stage
the resin.

Early attempts at making prepreg sheet from Grafil A fibre failed due
to the difficulty in unwinding the fibre from the cardboard tubes on which
it was supplied without snagging or breaking. However with the newer type
of ;acking consisting of loose coils of fibre inside a plastic drum,the
machine produced satisfactory prepreg.A typical glass fibre prepreg and
composite are shown in figures 52 and 53 respectively.

Moulding the composites

Two moulds of similar design but different size were used for making
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samples.(figure 54) Both moulds used metal spacers to control the thickness
of the samples, and both could be used as wet lay up moulds if the end pieces
were removed.

For making samples from prepreg,the required number of sheets of prepreg
(of known fibre' volume fraction) were stacked in.the mould and consolidated
by hand pressure before being removed as é prepreg block. Both halves of
the mould were sprayed with release agent and preheated to the required
temperature cn the platte ns of the hot press ( 40tonnes Daniels) before
the prepreg block ﬁas placed in the mould. The resin was left to gel for
the requisitetime during which the pressure was applied gently and released
a few times before finally closing the mould, The final pressure was not
critical as the mould had fixed stops but was about 8000 Pa.The composite
was cured for 1 hour in the press before it was removed (still in the mould)
and post-cured in a preheated oven., The composite was removed from the mould
when cool.

A few samples were made by the wet lay-up of fibres wrapped round an
open frame. The frame was made in two halves held together by bolts. After
the fibre had been wound round the frame it was possible to increase the
tension in the fibres by forcing the two halves apart by use of the bolts,
The frame was laid round the mould so that the fibres ran through the mould,
Crystic 272 + catalyst and accelerztor was poured on to the fibres and
spread manually before closing the 1id and applying pressure in the cold
press to close the 1id to the stops. The samples made by the wet lay-up
were generally inferior to the prepreg made samples due to inhomogeneity of
the fibre distribution,

To produce samples with varying degrees of fibre/matrix bond strength,
aoﬁ; glass fibre samples were made using the fibre with a pelyester
compatibtle size with Epikote DX210 and fibres with the epoxy compatible
size were used with Crystic D351. Some samples were also made with glass
fibre which had been partially coated with silicone grease which reduced

the transverse strength considerably.
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Cutting and machining of the compositie samples

Unidirectional composite mailerials can be fairly easily damaged by
unsuitable machining techniqes so consideratle care was taken in the cutting
of the samples. A circular saw fitted with & diamond impregnated blade
was used for cutting up the moulded plates.As no water cooling/lubricant
was used the samples were cut slowly to avoid overheating, especially at
90'to the fibre direction. The specimens used for tensile and bending tests
were ground on a surface grinder to ensure that the edges were accurately
parallel .After grinding, the samples were washed and stored in a desiccator
As a check on the effect of the water/oil emulsion used in grinding on the
composites, one composite plate was cut into 8 strips, 4 of which were wet
ground and the other 4 sand papered dry. On testing the samples no
significant difference in the moduli (transverse) or strength was detected
80 all other samples were wet ground,

Mechanical testing of fibres, matrices and composites.

It has been proposed in section 2 that the elastic properties of a
unidirectional fibre reinforced composite are functions of the fibre and
matrix moduli and Poisson's ratio and of relative proportions and geometry
The methods available to measure the required elastic properties are
numerous but tend to give slightly different values under diferent con=-
ditions for properties which are normally assumed to be constant,For
example, the Young's modulus of a matrix or fibre may not be the same
under tensile and compressive loading.This is due to inherent properties
cf the material, inaccuracies and assumptions in the test procedures,and
corrections which may be applied to alleviate some of them.,An additional
large source of error concerned with the testing of composite materials
is that of structural variations. In the simplest case of a'unidirection-
ally'fibre reinforced composite, it is possible to have a fixed ratio of
fibre and matrix but to change the composite properties by the internal
arrangement of the fibres. The more complicated composites are open te

numerous variations and unless the description of the composite (and test)
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is complete confusion can arise. One of the most common cases is that of
an "angle ply composite" where it is not made clear whether the stacking
gsequence is symmetric or anti-symmetric about the cenire plane,

Thus the need for test procedures which messure the property under
specific conditions can be fully appreciated. As this thesis is concerned
with the prediction of composite properties from the properties of the
components, the tests used have been chosen because (a), they measure the
required property, and (b) because the component properties are measured
under the same or similar conditiona that they experience in a composite.
The compressive properties of composites are not easy to carry out accurstely
without special apraratus sc they have not been measured. However in
addition to the tests necessary to obtain the required data some other
tests were carried out for the purpose of comparing experimental techniques.

Selection of tests S

Ideally for the fibres we would like to know éhe transverse and
longitudinal moduli, two shear moduli and three Poisson's ratios. In
practice we can only measure the longitudinal properties. There is little
choice in the broad manner in which this is done, although there are
differences in the way the same‘ohjective-may be achieved. Single and
multiple fibre tensile tests,and single fibre torsional pendulum and three
point bend tests were used.

For the resins and composites it was decided to use simple tensile
tests to establish the Young's moduli and Poisson's ratio and to also
carry out three and four point flexural tesis. The measurement of the
shear modulus was the most difficult and several methods were considered.
The methods considered are listed below.

1) Filament wound tube loaded in torsion. ---Samples difficult and costly
to make. Would require separate specimen for iest.

2) Douglas ring test. (83);—— Too costly to make specimens. Separate
specinen for test. Only apprlicable to O degree specimens.

3) Cross-sandwich beam sample with aluminium honeycomb core locaded in

tension. ~--Very expensive test piece. Separate test piece required.
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4) Sample approximately 200mm square loaded in shear by complicated
-clamp and pulley system., —---Large expensive test pieces, expensive
complicated apparatus.
5) + 45o strip test piece loaded in tension with strain gauges.---limited
to + 45°samp1es.
6) Torsional pendulum using rectangular cross-section strip sample.--—~
Require long sample to give reasonable results, Care required when using
-+0 samples.
7) Plate twisting test.—--requires fairly large test piece.
After some consideration it was decided that the plate twist test was most
suitable as it was reasonably easy to carry out ,used the same type of sample
for the tensile and bending tests, could give other information on the
test piece and used moderately priced test pieces.
Further details of the test are given in appendix D.
Fibre properties
Although glass fibres are isotropic and carbon fibres are anisotropic

the tests carried out were the same in both cases because it was only
possible to measure the longitudinal properties due to the small fibre
diameters.

A single fibre 400mm long was stretched across a rectangular annulus
made of stiff paper 350mm long and bonded to each end with Durofix. Cne
end of the rectangle was attatched to the lower side of the crosshead of
an Instron universal testing machine, the other.end to a 500 g weight
standing on the pan of a top pan balance and the annulus cut either side.
The load on the fibre was calculated from the reading on the balance, the
fibre elongation was calculated from the cross head movement afier correct-
ions had been made for the movement of the balance pan. This unorthodox
- load measuring system was used because no suitable load cells were available.
Although the test worked sa{isfactorily the results indicated a large

variation in fibre strength and a smaller variation in fibre modulus (worse

for carbon). This is partly due to the nature of brittle materials and
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partly due to the estimate of the fibre diameter by means of optical exam-
ination of a polished cross-section of the fibre set in resin. Single fibre
tests are alsoc open to the eriticism that in aelecting‘a fibre from a tow
one tends to pick the 'best looking'fibres.In an effort to gain a truer
average value of the fibre tensile properties a fibre tow test was tried,

One end of a 400mm long tow was bonded to tapered,etched aluminium tab
with epoxy resin and the tow pulled through a folded tissue to remove any
broken or loose fibres. The other end of the tow was then bonded to another
aluminium tab and the tow loaded in tension at 1mm/min on the Instron,
The cross-section of the tow was calculated from the weight and density,
but the strengths recorded were lower than expected due to nen-uvniform siress
in the individual fibres in the tow causing some fibres to break before
others.This situation was improved by impregnating the fibres with a soclution
of DX210 resin in methyl ethyl ketone.The excess resin was removed by pull-
ing the tow through 1lightly pinched rollers. This also had the effect of
removing most of the broken fibres and siraightening the rest, thus helping
{o create a uniform stress situation.The two ends of the impregnated tow
were laid on iwo hot prepared tabs. The hot tabs caused the resin to cure
locally and bond on to the tabs and create a transition region from fully
cured resin on the tabs to fully uncured resin on the tow,In this way the
stress concentration at the tab/tow joint is reduced and tow failure at
this poiﬁt is less likely,although the gauge length is less accurate.
However the uncertainty in the gauge length is only about + 0.5% on a length
of 400mm,

Thé fibre tow test was also tried with the resin on the tow
fully cured aiong the whole length, to compare the results with the uncured
tow,"
A load versus extension graph was pletied for each test and ihe

modulus calculated from the straight portion after corrections had been
made for the compliance of the tabs and grips.

It was not possible to carry out meaningful torsional tests on a
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fibre tow so only single fibre tests were carried out.

A single fibre about 200mm long was extracted from a tow and a piece
of aluminium wire with a Vee cut in the centre was bonded to the fibre about
20mm from one end so that the fibre passed through the Vee. The wire was
1mm in diameter and 10mm long and was trimmed with a razor blade so that
it was balanced about the fibre. The other end of the fibre was glued to the
apex of large'Vee cut in a cardboard disc 80mm in diameter,and the fibre
lowered into a measuring cylindef so that the cardboard disc rested on top
of the cylinder, The measuriné cylinder was used to support the fibre and
to protect it from draughts. Any electrostatic force between the cylinder
and 'fibre was cylindrically symmetrical to the fibre and had no effect on
the torsional oscillation. By twisting the disc it was possible to seti up
a twisting motion in the fibre without any swinging motion. A period of
approximately 5 seconds was obtained by adjusting the length of the alumin-
ium wire.The periods of oscillation for several different lengths of fibre
were measured for each fitre. |

To examine the effect of tension on the fibre due to the weight of
the aluminium wire, several tests were carried?ﬁsing different lengths of
;ire.The length of the fibre wag adjus£ed to keep the period approximately
equal,

A three point loading test was used for bending single fibres. Two
vertical razor blades were used as the outer loading points and pieces of
bent fuse wire as the combined third loading point and load. The whole
tapparatus' was placed in a glass tank to protect it from draughts and
the deflection of the fibre measured with a travelling microscope. Several
different lengths of wire were used with each fibre. The weights of the
wires were measured to four decimal places on an electronic balance.

In the single fibre tests the same fibre was measured on all three
tests, the order of tests being, torsion,tension and bend.A section of each
fibre tested was mounted in resin, polished and examined optically to

estimate the diameter. The magnification used was X1000 and this was
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checked against a known calibration,but the main error lay in deciding
where the edge of the fibre was, as it was not very sharp.

The specific gravity of the fibres wes mezsured in the standard
manner using a specific gravity bottle. Reduced pressure was used to help
remove any trapped air bubbles.

Resin properties

The available 3 and 4 point flexural rigs had guide pins which suffer-
ed from varying degrees of friction, and thus made the resin flexural tests
unreliable because of the small loads involved. To overcome this defect a
new rig was made which had a larger span ,no friction and a built-in trans-
ducer to measure deflection.(figure 61)Four point bending was chosen rather
than three point because the stress pattern is better defined, the shear
stress being zero between the inner loading poirts. Some three point bend-
ing test were also carried out for comparison with other published data.

The test pieces were cut from a 5mm thick cast sheet of resin and
measured 20x150mm, For four point loading an inner span of TOmm and an
outer span of 140mm was used with a loading speed of 1mm per minute.The
load was measured from the load cell and the deflection from the transducer;
both were recorded continuously on a Bryans X-Y plotter. Several tests were
carried out on each sample, increasing the lcad range each time until half
the estimated maximum stress had been reached.The compliance of the rig
was measured by using a 15x15mm cross-section steél bar in place of a test
piece. A similar test procedure was used with the three point tests except
that the deflection was measured from the cross-head movement rather than
use the transducer.

A test piece measuring 105x105mm was cut ffom the cast sheet and
wa;mioaded in torsion by using the plate twisting rig shown in figures 62&63.
The plate twisting apparatus has 3 fixed loading points and 1 moviﬁg point,
These are so arranged that when the moving point is pulled upwards with a

force P,a force of P/2 is applied upwards to the two opposite corners of

the plate and downwards in the other two corners, This results in an
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overall twisting moment heing applied to the plate, similar to the cross-
sandwich beam tests used for composgite materials. The loading points (12mm
diameter steel balls) are arranged to form a 100mm square allowing a 2.5mm
overhang of the test-piece.To position the test-piece accurately in the rig
each was marked out with the position of the loading points(figure 53) and
adjusted using the retractable indicators.The deflection of the plate with
respect to the base plate was measured by means of a LVDT transducer mounted
in a block clamped to the base plate . The iransducer block could be
fixéd anywhere on the plate éithin a 35mm radius of the centre, but was
normally fixed at the centre.Before the actual test was started the
test piéce was loaded to the maximum required load and unloaded to take up
any 'slack' in the system. Loading was carried out at imm per minute by
lowering the cross~head. Load and deflection were recorded continuously on
the X-Y plotter for both increasing and decreasing loads. The maximum load
was governed by the deflection of the sample which did not exceed one
quarter of the plate thickness. No attempts to bresk the test piece
by torsional loading were made.

As a check on this test, many tests were carried out on a glass
glate using different positions of the transducer. Two sirain gauges were
also bonded to the plate to measure surface strains.

The compliance of the rig was measured using a 6émm thick steel plate.

To compare the values obtained from the plate twisting test with
results from a more conventional test,some tests were carried out on a
torsional péndulum using the samples used in the bend tests. The tofsional
pendulum apparatus is shown in figure 58. The torsional modulus of the
sample is given by G* Glt-TI‘(IﬂIs)LJx/Bt’ﬁL where.Ix is as shown in the
diagram, Ig 1s the total moment of inertia without the weight, L is the
sample length betweeen clamps, j is the frequency,b is the sample width,

t is the sample thickness and g4 is a shape factor. In order to eliminate

the unknown factors in the calculation of the torsional modulus of the
sample several different values of were used for each test piece and
a grapvh of I,‘,/Jz was plotted,
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For tenszile testing the test pieces used in the flexural tests were
waisted down in the centire to a width of 10mm over a length of 50mm and
aluminium tabs were bonded to the ends, Strain gauges were bonded on to
measuré the transverse strain and a clamp-on transducer was used to measure
the longitudinal strain, because of the high strain to failure anticipated .
The samples were held in self tightening jaws on the Instron (figure 60 )
and loaded to half the estimated maximum stress to take up any play in
_the system.The tests were carriéd out at a loading rate of 1mm per minute
and both the longitudinal and £ransverse strain were recorded continuously
against load on two X-Y plotters. Figure 61 shows an overall view of the
apparatﬁs.The samples were loaded and unloaded several times increasing
the maximum load each time until fracture occured.

Specific gravity

The specific gravity of the resin samples was determined using pieces

of crushed resin in a specific gravity bottle in the standard manner,

Composite properties

Two moulds were used for producing composites, both of the plunger
type with sides 20mm deep, using spacers to control the sample thickness.
fhé larger mould made samples 300x150x2mm and was wsed mainly for making
off-anglé test pieces. The smaller mould made samples 130x13(x2mm and was
used for the majority of the time in view of economy of material.The 130
x130mm mouldings were cut up as shown in figure 59. The 105x105mm sample
was used on the plate twisting rig, the two strip samples were used for
bending, tensile and torsional pendulum tests and the 15x15mm sample was

used for specific gravity and volume fraction measurements.

Volume fraction and specific gravity
.The specific gravity and fibre volume fraction of every sample made
was measured to make sure that thefe were no voids in the test pieces.
On some early composites the entire plate was cut up to measure the variation

of specific gravity and volume fraction.

A 15%x15mm specimen was cut from the composite so that the edges were
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at least 4mm from the edges of the 'as moulded' composite.The specimens were
weighed in air and suspended in iso-propyl alcohol to determine the specific
gravity.The alcohol was used because it had better wettiﬁg properties than
water. The weight of the wire used to suspend the specimen and the effects
of suface tension were taken into account jn calculating the specific
gravity.

To remove the resin from the glass fibre composites the specimen was
heated in a furnace at 900°K until a constant weight was achieved (about 2
hours). The carbon fibre specimens were treated by the 'acid digestion'
method using concentrated sulphuric acid and hydrogen peroxide. After
removal of the resin the fibres were washed and dried to constant weight.
The amount of fibre weight lost during both types of resin oxidation was
measured by using virgin fibre in place of the composite specimens. The
volume. fractions of the specimens were calculated from the composite,fibre
and resin densities with the follewing assumptions.

a) composite mass = fibre mass + resin mass,

b) composite volume = fibre volume + resin volume + void volume,

c) resin density measured from cast resin is the same as resin density in
a cbmposite.

Mechanical tests

The types of mechanical tests used for the composites were the same
as those used for the resin samples, but before measuring the composite

properties various parameters of the test techniques were investigated.

The parameters of interest were the loading speed, span-to-depth ratio and
span-to-width ratio.

Both three and four point flexural tests were used to measure the
coﬁposite properties, the maximum deflection for most samples being limited
to the thickness of the sample, but for transverse unidirectional samples
the maximum was only 50 ofhthe sample thickness.

Some of the flexural samples were also tested on the torsional pendulum

apparatus in the same manner as the resin samples, but most were too short

to give reliable results.
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The plate twisting tests were carried out in the same manner as for
the resin samples but more measurements were made on each sample. On all
the samples the central deflection versus load was recorded normally and
then the plate was turned horizontally through 9d’and re-tested, On some
of the plates,measurements were also made after turning the plate over.

In addition to these tests the deflection was also recorded at points
other than the centre on certain plates, as the results show.

The tensile tests.were carried out under the same conditions as the
resin samples, again using thé transducer to measure the longitudinal strain
to failure. Cn the unidirectional samples with the fibres running parallel
to the length; failure of the sample was usually initiated in the tab region
due to stress concentration effects and the compressive stiress imposed by
the grips. It was found that by reducing the central 80mm to a width of
8mm and having a gentle taper to the tabs on a specimen 300mm long that
failure in the central section could be achieved with a reasonable degree
of success,This was generally easier to achieve on composites with an epoxy
matrix. However the majority of the test pieces were too short to reduce
the central portion and‘leave sufficient length for tapering and for the
tabs, éo with the exception of a few samples the tensile test pieces
had parailel sides. On the iQ test pieces most of them failed by inter-
laminar pull out so the problem of a reduced section did not arise, Nost
unidirectioﬁ?transverse composites failed at the tabs , but it is difficult
to reduce the section without creating transverse cracks ,so again most
samples were left with parallel sides.Figures 62 and 6% show a series of
+ © glass and carbon fibre tensile test pieces.

As an indication of the fibre/matrix bond strength and general
'qﬁ;lity' of the composite some short beam three point bend interlaminar
shear tests were carried out in a specially made jig.

Some early tests were made on unidrectional composite plates in a
manner devised by Hearmon (84) for testing plywocd.As the test required
largé samples, was not particularly easy to carry out and produced

unreliable reslts ,the test was dropped. Fuller details are in appendix D,
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5.1 Fibre properties

Single fibre tests

5 _RESULTS

¥ibre lype|Torsional]l Tensile|Tensile [Flexural| Poisson's|Measured|Number
modulus | modulus|strength|moduvlus |ratio diameter|of tests
(GFPa) (Gra) | (GPa) (Gra) (am)
Glass 16-53 62-88 10.83-.41142-126 |0.15=.27 |10=16 10
Grafil A 9-47 123-290 |0.77-.35|33-250 |0.11-8.6 | 6-12 10
Grafil HM | 3-61 237-%87 [0.61-.17|83-420 |0.17-21 6=11 10

The diameter of the fibre was based on measurement of a x 1000 photo-

graph of a fibre cross-section, The torsional modulus was measured by

a torsional pendulum and is given by

dh

where 1, = fidre length
I = moment of inertia
d = fibre diameter
Pr=

period of oscillation

1286 L I

T'I.

The flexural modulus was measured from a three point loading test and is

given by 4 P ii

3

B avx

where 1, =

d

X

]

span

fibre diameter

central deflection

Poisson's ratio v&is calculated on the assumption that the fibre are

isotropic and

Hence

is given by

3. %
=P1T i

192W 1, x

Fibre tow tests

Dry fibre test

E
5 1

G

Fibre type | Maximum stress|Maximum strain|Modulus Number of tests
Glass 0.76+ 0.35 GPa|1.10+ 0.40 & |69+ 3 GPa 10
Crafil A |0.41+ 0.20 0.23+ 0,11 ¢ |175+21 10
Grafil H M |0.39+ 0.19 0.13+ 0.07 % |295+34 10
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Impregnated tow test ( uncured )

Fibre type| Maximum stress|lMaximum strain| Modulus Number of tests
Glass 1.8440.19 GPa |2,4340.25 % 75.841,1 GPqg 10

Grafil A |1.06+0.42 0.5740.23 % 18745.4 10

Grafil HM | 1.07+0.41 0.3340.12 9. 32748.3 10
Impregnated tow test ( cured )

Fibre type| Maximum stress|Naximum strain]Modulus Number of tests
Glass 1.9940.16 GPa | 2.6340.19 % | 75.640.9 GP4 10

Grafil A |1.7340.33 0.9240,18 ¢ 19746.3 10

Grafil HM [1.57+0.19 0.4740.18 ¢, 33548, 1 : 10

Specific gravity

Fibre type Specific gravity
Glass 2.5440.01
Grafil A 1.7940.01
Grafil HM - 1.87+40,01

Using the average fibre modulus values from the cured tow test, the
cross-sectional area of the fibres in the singlé fibre tests were
calculated and used to re-calculate the values of the torsional moduli
of the single fibres. The results are shown in the following table.

Re-calculated single fibre torsional moduli

Fibre type|Torsional modulus

Glass 33.143.3 GPa

Grafil A | 14.345.8

Grafil HM | 11.145.2

Effect of tension on the torsional modulus

Glass fibre Grafil A

Mass of wire 0.0434g0.0740£]0.0988g | 0.0434g]0,0740g10,0988¢g

Length of fibre| 320mm |[178mm |156mn 198mm [126mm  [83mm

Torsional mod. | 30.3GPa| 28.7GPa|32.6GPa | 17.7GPa|19.2GPa |16.9GPa

Fibre weight loss during volume fraction assessment

Glass 0.9 %

Carbon 1.2 %




5.2 Resin properties

Three point flexure tests (Average values of 10 tests )

Span=140mm

Resin system Maximum Maximum | Modulus Repeatability
deflection stress

Scotchply 1002 Smm 27.2 MPa | 2.38 GPa + 3
giiiﬁ;g g;?;go Smm 20.8 MPa | 2.77 GPa + %
Crystic D351 5mm 26.1 MPa | 3.43% GPa + 4%
Crystic 272 Smm 23.7 MPa | 3.54 GPa %
Special resin Too soft t¢ test

Aluminium Amm 18.5 MPa | 64.7 GPa + 1%

Four point flexure tests ( Average values of 10 tests ) Inner span=70mm

Resin system Maximuam Maximum | Modulus Repeatability
deflection| stress

Scotchply 1002 Smm 44.3 MPa | 2.52 GPa + &

Epikote DX210

Epikure TF,400 Juin 335 MPe | 2,85.6P8 * 2

Crystic D351 Smm 40.7 ¥Pa | 3.51 GPa + 3

Crystic 272 3mm 43,3 MPa | 3.68 GFa + 2

Special resin Too soft tp test

Aluminium 2mm 2746 liPa | 67.1 GPa + 1%

Tensile tests Average values of 10 tests )

Resin system Maximum Maximum [ Modulus | Poisson's Repeatability
stress strain ratio

Scotchply 1002{ 39.7 MPa | 1.24 % 2.65 GPa | 0.354 + 4

Epikote DX210 - o A ’

Crystic D351 42.5 MPa | 1.27 % 3,65 GFa | 0.352 + 3%

Crystic 272 51.0 ¥Pa | 1.82 % 2,72 GPa | 0.346 45

Special resin 26.7 ¥Pa | 6.41 ¢ 1.02 GPa | 0.331 + 1%

Aluminium 200 MPa 0.3 % 67.5 GPa Y. 40,57




Torsional tests

Plate twisting test

Resin system Modulvs Repeatability
Epikote DX210/Epikure BI', 400 1.01 GPa + 5¢
Crystic D351 1.47 GPa + 57

| Crystic 272 1.39 GPa + %,
Special resin Too soft to} test
AMluminium test piece 28.6 GPa +1.5
Torsional pendulum (average of ten tests)
Resin system Modulus Repeatability
Scotchply 1002 1.05 GPa + 4%
Epikote DX210/Epikure BF§4OO 1.13 GPa + &
Crystic D351 1.32 GPa 7%
Crystic 272 1.27 GPa + 79
Special resin Too soft to|test
Aluminium test piece 27.2 + 3

Specific gravity

Resin system Specific gravity
Scotchply 1002 120
Epikote DX210/Epikure EF34OO 1,21
Crystic D351 1.31
Crystic 272 "~ 121
Special resin 1.26
Ash content

Scotchply 1002 0.8 ¢
Epikote DX210/Epikure EF3400 0.9 %
Crystic D351 0.6 ¥
Crystic 272 0.5 %
Special resin 0.5 ¢
Repeatability

The repeatability was determined by re-measurement of the modulus at

approximately 3 monthly inté&als over a period of a year,
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5.3 Test variables (Unidirectional samples )

Three point flexure

Glass/Epikote DX210 composite

Span to depth ratio|Flexural modulusj |Loading speed} Flexural modulus

69.2 37.5 GPa 30 mm/min 46,9 GPa
65.7 44.3 60 45.0

56.3 42.8 120 43.6

46,9 43.6 300 43.6

37.6 4341 600 42.9

28.2 40.1

18.8 41.6

Three point flexure

Grafil A/Epikote DX210 composite

Span to depth ratio|Flexural modulus ‘Loading speed|Flexural modulus
67.3 131.5 GPa 30mm/min 140.0 GPa
5T«T 135.1 60 131.5
48.1 131.7 120 128.8
3845 128.9 300 128.9
28,2 123.4 600 128.9
19.2 101.4
Three point flexure 3
Span = 140mm Flexural modulus
Span to width ratio Grafil composite | Glass composité
35 140.8 GPa 44.1 GPa
17.5 135.5 43.8
11.61 129.7 43.5
8.75 127.8 43.7
7.00 128.4 43.4
5.83 128.1 43.4

Four point flexure (inner to outer span constant at 1:2 )

Inner span to

Glass composite

Inner span to

Carbon composite

depth ratio flex., modulus depth ratio flex, modulus
25.9 46.3% GPa 23.8 138.6 GPa
36.3 45.7 33,3 139,2
51.8 45.1 47.6 136.4




Torsional pendulum

BEffect of sample length

Sample length Unidirectional glass + 45°symmetric &lass
composite. Shear modulus composite, Shear modulus
80mm 4.53 GPa 15.3 GPa
100 4.49 16.1
120 4.51. 16.3%
140 4.50 ' 16.5

* For discussion regarding torsion and shear see appendix E

Plate twisting test.

I! 0 Strain gauges--registered no sirain.

Deflection measuring| Glass plate Grafil composite plate
position. torsional modulus. =130iTorsienal modulus
1 : 33.7 GPa 22.2 GPa
2 3345 22.1
5 33.0 22.7
4 33.3 22.2

5.4 Composite results

Volume fraction variation

The sketch below shows the variation in fibre volume fraction in a-1%20x
130x2mm unidirectional glass fibre composite plate which was considered

to be of average quality.

058 [0+59 | 059 | 060 [0-62
059 |0+60 | 0+60 | 061 |0+63
059 {059 | 061 |0-62 |0:63
060 | 0+60 | 063 | 0+63 |0+62
057 J0+58 | 0-57 | 0+63 |0-62




Effect of fibre pre-lension on composite vroperties

The tension in the fibres wound round the frame was judged by the

amount the two halves of the frazme were forced apart.

Distance between 2|Fibre volume| Longitudinal| Transverse|l Shear
halves of frame fraction modulus modulus modulus
Omm 0.42 31.1 GPe 10.2 GPa | 4.7 GPa
1.7 0.44 32.3 9.9 4.7
2.6 0.43% 518 9.8 4.5
3.8 0.46 33.6 10.5 4.9
Effect of reduced bonding between fibre and matrix

The reduction in the bond was caused by silicon grease applied to the

fibres and was estimated from the composite interlaminar shear strength.

Interlaminar shear | Fibre volume|Longitudinal| Transversel|Shear
strength fraction modulus modulus modulus
76 MPa 0.58 42.9 GFa 15.7 GPa 6.3 GPa
52 0.60 434 14.5 571
47 0.61 42.1 14.6 4.1
23 0.57  |[39.7 11.4 1.9

The followiﬁg two samples used epoxy resin with glass fibre coated in

a polyester compatible size, and polyester resin with glass fibres coated

in an epoxy compatible size,

59 MPa (Epoxy 0.59 43,2 GPa 13.7 GPa 5.9 GPa

resin)
33 (FPolyester 0.57 41.7 10.4 225
resin)
Comparison of three and four point flexural tests and tensile tests
Test piece Flex, modulus | Flex. modulus| Tensile
three point four point modulus

Crystic D3%51/glass 0 vf=o.61 42,7 GPa 45.3 GPa 44,1 GPa
Crystic D351/glass 90 Vf=0.61 17.1 GP 17.8 16.5
Crystic D351/glass+45 Ve=0.59 [ 18.5 20,6 112
Epikote DX210/Grafil 0 vf=0.62 119.8 125.7 121.3
Epikote DX210/Grafil 90 vf=0.62 7.6 7.9 7.8
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Effect of low modulus matrix on composite properties

Material: Special resin/glass fibre unidirectional composite

Special resin: Crystic 272/Crystic 182 2:1

Fibre volume| Longitudinal |Transverse |Shear modulus
fraction modulus modulus
0.27 18.8 GPa 4.2 GPa Too soft to
measure
0.48 32.4 6.7 Too soft to
measure
0.62 41.3 9.1 1.8 GPa

Longitudinal and transverse moduli measured in tension.
L]

Effect of wvoids on composite properties

Material: Crystic D351/glass fibre unidirectional composite

Void volume |Fibre volume | Longitudinal | Transverse | Shear
fraction fraction modulus modulus modulus
0.0008 0.43 31.3 GPa | 10.2 GPa 4.8 GPa
0.021 0.41 30.7 9.9 4.6

0.037 0.44 31.0 10.2 4.4 >
0.066 0.45 32,0 9.8 4.1

0.12 .| 0.43 3143 7.8 3.2

0.18 0.41 30.9 53 1.8

Longitudinal and transverse moduli measured in tension.

5.5 Graphical results

The majority of the experimental results are shown in graphical form in
figures 72-103 and the resultis are not given in tabular form. There were
many more glass fibre composites made and tested than carbon fibre compo-
sites because of the cost of the carbon fibre.The 'bunching' effect of
some of the results is due to the method of making the composites from
prepreg material; to vary the volume fraction a number of sheets of
prepreg were added or subtracted, thus tending to vary in steps.

The longitudinal and transverse moduli an& the Poisson's ratios were
all measured in tension unless otherwise stated. The shear moduli were

measured on the plate twisting rig unless otherwise stated. The fibre

volume fractions were measured by the methods previously mentioned, and
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in no case did the calculated void volume fraction exceed 1%,

Grafil HM samples

Only two composiies were made using Grafil HM fibre., The results are

shown below.

Composite type:Unidirecticnal Epikote DX210/Epikure BF3400 GrafilHM
Fibre volume Longitudinal Transverse | Shear [Poisson's ratio
fraction modulus modulus modulus

0.66 208 GPa 6.3 GPa 3.9 GPa 0,31

0.3%8 121 GPa 4.1 GPa 3.1 GPa 0.33
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6 DISCUSSION OF RESULTS AND CONCLUSIONS

6.1 Fibre results

The variation in the initial results of the single fibre tests make
the figures useful only as a guide to the correct values. The principle
cause of the variation is thought to be errors involved in measuring the
fibre cross-section on the microscope, but with any brittle material there
is always some spread in the results,

‘The dry tow test allowed the fibre tow cross-sectional area to te
computed more accurately by measuring the weight, length and density.
However there (s always a number of broken fibres in a tow despite
efforts made toc remove them,and these will contribute to the weight but
not the strength or stiffness. Apart from the broken fibres not all the
continuous fibres are under the same initial tension so that at any one
_time different fibres are under different stresses.The effect on the
measured modulus will be greatest at low strains where some fibres are
not stressed at all, and high strains where some fibres may have already
broken,Fortunately the modulus is normally measured between these two
extremes,

Both the single fibre and dry tow test suffer from premature fibre
failure initiated by the stress concentration where the fibres are borded
to the tab. The wet tow test overcomes this problem to a large extent.

Impregnating the tow with resin enabled broken fibres to be removed
more easily without damaging other fibres and to align the continuous
fibres so that constant strain conditions were more likely under loading,
This is reflected in the reaﬁlts where the maximum stress and strains
reached were far in excess of those for the dry test, but the increase
iﬁmmodulus is less.This is to be expected because the modulus is calculated
from the slope of the stress/strain curve over the central portion where
most of the fibres will be contributing in either a wet or dry test.

The cured impregnated tow test has some of the advantages and some cf

the disadvantages of the previous tests,in that the fibres are more equally
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strained but are more likely to fail at the tab bond than the wet tow
test.‘The main difference between this and other tests is the ability

of the fibres to transmit stress from broken fibre to other fibres via

the matrix, thus behaving like a composite., The strength values calenlated
from this test (after taking the resin strength into account) are notice-
ably higher for the carbon fibre,and less so for the glass fibre. This
indicates that generally in a glass tow there are far fewer broken fibres
than in a carbon tow.The moduli were also inghtly higher, particﬁlarly
for the high modulus carbon,

The measured vaiues of the moduli are in reasonable agreement with
the manufacturer's figures but the strengths are slightly lower;

The specific gravity results were very consistent and in good agree;
ment with thelmanufacturer's figures.

The justification for re-calculating the torsional moduli of the single
‘fibres on the assumption that the tensile modulvs ¢«f any one type.of-
fibre is constant could be called into doubt, licwever in defence of the
move it must ée said that fhe re-calculated value probably represents a
good average, and the propérties of the composites in which we are inter-
ested depend on the average filre properties.For glass fibre with a
Poisson's ratio of 0.2 (from literature) and a Young's modulus of 76 GPa
the theoretical shear modulus is 31.6 GPa which is in gﬁod agreement
with.the experimental value, The experimentzl values for the carbon
fibres cannot be compared in this manner_because of the fibre anisotropy.

The effect of tension in the fibre during the torsional pendulum
measurements is assumed to be zero from the results obtained.

The fibre weight loss during fibre volume fraction measurements is
small compared with the variation of fibre volume fraction found in the .
average compdsite.However if not taken into account it can lead to the
phenomeng of negative voids,

6.2 Resin results

The maximum stress values quoted in the flexural results are the
maximum stress levels reached during testing and not the failure stress
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values; the maximum stresses in the tensile tests are failure stresses
and the maximum strains are the strains up to the maximum stress levels.
The repeatability of the tests is worst for the tensile tests and the
only reason that can be thought of i; that the complexity of the strain
measuring equipment may lead to slight errors, althougﬁ the equipment
was calibrated each time it was used,

Generally the modulus values from the three point flexural test were
the lowest because the deflectionsdue to shear stresses are not taken
into account in simple bending theory. The flexural modulus of DX210 resin
is in good agreement with the manufacturer's figure for flexural
modulus , but the tensile properties were less than those quoted. The
tensile properties of Crystic 272 were also slightly less than the
manufacturer's figures.

All the shear modulus results form the plate twisting test are higher
than those calculated from the tensile results. The shear modulus of the
aluminium ssample measured on the rig is 28.6 GPa compared with a
quoted value of 27.2 GPa. Greszezuk (88)states that the plate twisting
test generally gives slightly higher values of shear modulus than other
tests.For the calculations based on the matrix shear modulus the plate
- values are used.

6.3 Calulated fibre values

Following the method of Goggin and Reynolds the Reuss and Voigt
limits of the fibre properties were calculated for Grafil A and M
using assumed orientation values of 12 and 8 respectively.(average

values figure 20 )

E B G
1 o f
Reuss Voigt Reuss Voigt teuss Voigst
Grafil A 121 GPa 947 GFa | 5.5 GPa 63 GPa | 11.7 GPa| 92 GPa

Grafil HM 177 GPa 963 GPa | 5.1 GPa 57 GPa 9.5 GPa| 85 GPa

If the Reuss values are considered to be closest to the real fibre

properties, the above may be taken as a guide only,
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6.4 Conclusions on attempts to predict composite properties (section 2 )

This is a brief summary of the information contained in tables 6-32
and figures 29-48,

From table 7 it cén be seen that only Tsai's expression (no 3) with
its X factor differs to any degree from the law of mixtures and tables
11-14 show the reason why. The longitudinal modulus E11 ;s a function
of the fibre volume fraction and tﬁe two constituent moduli only ,This
simple relationship should also apply to composites made with anisotropic
fibres according to Habinovich's and Whi?ney's work. (Tables 25-32)

Fipure 30 and table 8 give the predicted values of Poisson's ratio.
Hill's expression for the upper and lower bounds gives almost exactly
the same values as those of Tsai for C=0 and C=1.Expression 11 is the
odd one out in the sense that it predicts an increasing value for the
composite Poisson's ratio with increasing fibre volume fraction, but_for
ceriain values of]ﬁzuul )%\,‘kpan be negative. It is believed that there
is an error in the equation.Figures 40-42 and tables 15-18 show that
once the fibre modulus is over an intitial value of approximately 40 GPa
and the matrix modulus is greazter than 2 GFa then.ngis almost a linear
function of]ﬁ and J,, in a law of mixtures relatiﬁnship.

Whitney suggests that for composites made with anistropic fibres the
composite Poisson's ratio is also given by the law of mixtures j
Rabinovich has a modified version in which the composite Foisson's ratio
is reduced for highly anisotropic fibres.(See tables 25-32)

The predicted values of the transverse composite. modulus are shown
in figure %1 and table 9. Frﬁﬁ figures 44-47 and tables 19-22 it is
clear that most theories treat the transverse modulus as a function of

oﬁly Ef,Rmand v but derive considerably differing wvalues for E

£ 22"
Only by comparing the results with experimental values is it possible to
tell which of the predictions is most correct.

The variation of the transverse modulus of a composile made with

anisotropic fibres is shown in figures 35 and 35 and tables 25-32, The
values generated are similar and are highly dependent on the transverse
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fibre modulus.

The variation of the composite shear modulus with fibre volume fraction
is shown in figure 32 and table 10. There is some disagreement in the
value of the shear modulus but all the theories assume that it is only
a function of Gf'Gm and Vf, where the relationship with Vf is almost
linear jf Gr is greater than 20 GPa (expressions 27 & 28 excepted).

The shear modulus of a composite.made with anisotropic fibres as
predicted by Whitney and Rabinovich in shown in figure 37 and 38 and
tables 25-32.In both cases the fibre shear modulus is the predominating

factor.

6.5 Investigation of test variables

On both the glass and carbon samples ihe apparent modulus increases
with span to depth ratio but levels off with a ratio of 40:1 or more.
All the three point flexural testt that were carried out had a minimum
span to depth ratio of 48:1, The moduli of both types of sample also
decrease with loading speed. Normally the tests were carried out with a
loading speed of 1mm/minute.

Except at very narrow widths, the width to depth ratio has little
apparent effect on the measired modulus over the range considered here.

When using a torsional pendulum to determine the shear modulus the

length of the sample has little or no effect if the ihe sample is a
unidirectional one, but does affect the measured modulus when using
off-angle composites. This is due to the chznge in the relative
directions of the the strain and fibre as the length is changed, so
if a very long sample was use& there would be little change in modnlus
for a small change in length, The maximum szmple length on the available
aﬁﬁaratus was limited to 140 mm so the technique was pnly used to compare
results with those from the plate test.

The resultis of the élass plete {isotropic) and the i30° Grafil
plate from calculating the torsional modulnus by measuring the deflections

at various points agree well with the theory (appendix E). The strain

gauges alsoc registered no strain as expected.
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The variation of fibre volume fraction in a typical composite plate
shows that the volume fraction quoted for any one sample may only be
considered to have an accuracy of about +5 ¢,

6.6 Composite resulis

The attempts to pre~stress the fibres during the production of a
compositg test piece were rather crude tut did actually stress thé fibre
(by an unknown amount).The results obiained were inconclusive and it is
assumed that a low value of pre-stress may help t;)straighten the fibres
but has no effect on the elastic groperties. At higher stress levels
it’is thought that using pre-stressed fibres would help to stop the
matrix failing under tensile loads in a method analogous to that used in
pre-stressed concrete beams.

The table comparing three point and four point flexural tests with
tensile tesis clearly shows the tremendous difference in modulus for
a + O composite measured in tension and flexure. The difference: in the
measured moduli of the unidirectional samples is considerably less and
is due to theleffect of shear siress in the composite. The longitudinal
to shear modulus ratio for a Ofsample is high and thus the effect of
ignoring the deflection due to shear stress is greater than for a 90o
sample where the difference is much less.The difference in apparent
moduli for angle ply composites measured in tension and flexure is due
~to the Bij andeij matrices explained in section 3,

The composites made with the 'special' low modulus, high elongation
resin demonstrate that the resin properties control the transverse and
shear properties of the compoéite but have little effect on the long-
itudinal properties.

Normally every effort is made to produce coﬁposites without any
voids,but the results spggest that a relatively low void content has
little effect on tﬁe composite properties. At larger void contents
the reduction in the shear and transverse moduli increases rapidly.

The bonding between the fibre and matrix (as indicated by the inter-
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laminar shear strength) has an effect on the transverse and shear moduli
in the sense that they are reduced by weak bonding.It is difficult to
control the bonding in a controlled manner so that it is not known how
sensitive the elastic properties are to the bond strength.

Unidirectional composite results

The experimental variation of longitudinal modulus, transverse modulus,
shear modulus and major Poisson's ratio are shown in figures 72-87.The
longitudinal modulus of all four systems considered is a linear function
of the fibre volume fraction. On extrapolating the graphs the tensile
moéﬁlua of glass varies from 72 to 74 GPa, the tensile modulus of Grafil &
ig 188 GPa, and the tensile moduli of the resins wvary from 1,5-3.0 GPa.
The scale of the Y axis makes it difficul£ to determine the resin moduli
from the graph. Comparing these resulté with the fibre experimentzl
results,the glass and Grafil moduli are about 57 lower than the tow test
results.The theoretical values of the coﬁposite moduli based on the law
of mixtures and using the experimental data is shown on each graph. All
the experimental traces are below the theoretical ones but are within the
'lower limit' set by Tsai's K factor = 0.9.The reasons why the traces do
not agree exactly are thought to lie partly in the testing and measuring
techniques (some points are above the theoretical maximum ), and partly
in non-perfect composites.

To measure the alignment of fibres in composites some stretches of
glass fibre were sprayed with paint as the prepreg was being mede. The
angular spread of the fibres were measured in the prepreg and found to
almost zero, and in a commosité where the spread was estimated at + 2
although accurate measurement was difficult.The longitudinal modulus
is related to the fibre modulus by Cos B, so + 2 would reduce the
modulus by about 2%.The other main error in the composites is the
possible variation of the fibre volume fraction, which can be as much

as %',

The, scatter in the results of the Poisson's ratio is greater ihan
in the longitudinal modulus results, possibly because the Poisson's ratio
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depends on measuring iwo strains without error, but again the relation-
ship is a linear one for the glass fibre composites.The relationship

for the Grafil composites is possibly also linear but the scatter makes

it uncertain.The extrapolated values for the Poisson's ratio of glass

vary from 0.208 to 0.22,and for the resins as follows:- Crystic D351, 0,31,
Scotchply,0.32 and Epikote,DX210 0,348,1If this value of Toisson's ratio

for Epikote is used as one end of a straight'best fit' line drawn

through the Grafil composite results, the extrapolated value for the
Pbissyn's ratio of Grafil A is 0.36. The experimental value of the Poisson's
ratio of glags fibre is between 0,15-0,27 and the values found by Brannan
and Kroenke (section 1) are between 0.18 and 0.34., Using an average
experimental value of 0,21 and the experimental value for the tensile
modulus of 75.8,the calculated value of tﬁe fibre shear modulus is 3%31.3%2GTa
and this value is in good agreement with the re-calculated fibre shear
modulus.Using 0.21 as the glass Foisson's ratio and experimental values

for the resin Poisson's ratios,the 'theoretical " values are shown

on the graphs.The theoretical and experimental values for Epikote/glass
agree well,.but the theoretical values for Crystic D351 and Scotchply

are both higher than the experimental values at low fibre volume fraction.

The extrapoléted Poisson's ratio value for Grafil A of 0.36 agrees
with the generally accepted level for carbon fibre, but there is no
other experimental confirmation.

Figures 74,78 and 82 show the experimental relationships between
composite transverse modulud and fibre volume fraction for three different
resin systems with glass fibre.All the graphs have a similarlshape but
the modulus values of the Scotchply system are lower than the other two
afmiow fibre volume fractions.In section 6.4 it was concluded that most
theoretical approaches to predicting the transverse modulus have assumed
that the transverse modulus is a function of the fibre and matrix Young's
moduli and the fibre volume fraction. If this is the case,then the

differences in the values of the transverse moduli of the three composite
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resin systems should be a function only of the resin properties as the
other two variables are common., However by comparing the modulus values
of the graphs at common fibre volume fractions it is apparent that either
the hypothesis is wrong or that a complicated relationship is involved,

From a study of tables 19-22 and figures 9,19 and 20 several express—
ions were selected as being the most likely to fit the experimental
results,Substituting the experimental values in for the constituent
properties it was concluded that expression 17 gave the best fit,bﬁf in
all cases the theoretical values were lower ihan experimental ones at
high volume fractions. The theoretical values based on expression 17 are
shown for each system,

Figure 86 shows the relationship between transverse mecdulus and
fibre volume fraction for Epikote/Grafil composites, but due to the
scatter in the results the relationship has been interpreted simply as
a linear one because there is no real justification for doing anything
else.If the linear relationship is extrapolated the fibre shear modulus
is 12 GPa aﬁd the matrix shear modulus is -0.5 GPa.Working on the
assumption that expression 17 provides the best overazll agreement between
theory and experiment it is found that the best fit is obtained when
the fibre modulus = 23 GPa.However‘because the values of fibre modulus
and matrix modulus are much closer the differences between the various
expressions are reduced. A plot of the values from expression 17 with
Ep =2% GPa is shown in figure 86.

Rabinovich and Whitney's expressions for the transverse modulus
generate much higher values than the experimental values when
e,

The experimental results of the shear moduli of the three glass

composite systems are shown in figure 75,79 and 83.By reasoning in a

similar manner to that employed for the transverse modulus it is

concluded that expression 30 gives the best overall fit between theory

and experiment.Using the experimental values for the constituent
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properties the theoretical values according to expression 30 with zeta=02.5
are shown for the three systems. The agreement at higher fibre volume
fractions is again not very good.

In figure 87 the experimental results of shear modulus of the CGrafil
composites are sho;n with a. theoreticel plot based on expression 30 with
zeta = 2.5 and Efz23 GPa. The values predicted by both Whitney and
Rabinovich are much lower than the experimental wvalues.

We have seen that the longitudinal modulus and Poisson's ratio cf
. composites made from either isotropic or anisctropic fibres can be
predicted reasonably well from the law of mixtures equations. The relation-
ship beiween transverse and shear moduli of the composite and the
composite consiituent properties is not so well understood. Ap expresaion
which allows the composite transverse modulus to be predicted approx-
imately from the constituent properties has been used in conjunction
with the carbon fibre composite,and it was found that an assumed fibre
modulus of approximately 23 GPa gave reasonable agreement between theory
and experiment,

The situation is even more open for the composite shear modulus
The values of the composite shear modulus are approximately given by
expression 30 where zeta = 2,5.Using the same expression for a composite
made from anisotropic fibres (fibre shear modulus calculated from fibre
transverse modulus) the theoretical values are greater than the experi-
mental ones.

.One of the reasons why there is a difference between experimental
and theoretical values is that the composites do not conform exactly to
the assumptions of section 2. For example,the spread of fibres at low
fiﬁie volume fractions tends to be inhommogeneous. Figure 64 siows a
'typical area in a low fibre volume fraction sample and figure 65 shows
how it is possible to get resin rich layers between the layers of the
original yprepreg due to incorrect manufacture. Figures 66 and67 show

areas of high volume fraction glass and carbon composites respectively.
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The pzacking in both is tending towards hexagonal and the dispersal of
fibre is more hommohgeneocus. A close up of a carbon fibre composite is
shown in figure 68 wheré it can be seen that the fibres aren't perfectly
round and vary in siZe quite considerably compared with glass.

We have seen how the anisotropy of carbon fitre has a major influence
on the transverse aﬁd shear properties of a unidirectional composite
especially at high fibre volume fractions.The next area of study is the
effect of the unidirectional composite properties on angular properties..

There are two basic typesof angular composites; a unidirectional
composite stressed at an angle to the fibre direction, and a multilayered
laminate. The experimental and theoretical values of the off-angle
properties of a unidirectional composite are shown in figure 89. Thesze
results show the effect of the Bij and Dij(mentioned in section 3)where
it ea2n be seen that the constraints of the testing procedure have had
‘a major influnce on the properties measured between 0°and 900. It was
also shown in section % that the elastic response of a symmetrical
laminate is easier to deal with both in theory and practice.

Figure 69 shows a section of a typical balanced or symmetric laminate.
The thick section is the centre section. It is often assumed that there
must be a resin rich layer between each ply of a laminate, although
figure 69 shows that this is not necessarily the case.

Figure 90 shows the typical stiress-strain curves for the tensile
tests on a series of +Qlaminates. Note that only a small portion of
the total is.linear and elastic.The results from the torsional pendulum
and piate twisting test are compared in figures 91 and 92. The difference
between the results for the unidirectional samples is relatively small,
bﬁ% gets considerably larger for angles between Ooand 90.due to the
interaction between the Bij and Dij and the constraints of the test
technique. A similar effect is illustrated in figure 93 for the tensile
and four point flexure of a series of + @ samples. The theoretical

values shown are calculated using the experimental data from the uni-
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directional composiltes, and the theory shown in section 3.

Figures 93-101 are the experimental and theoretical results for three
series of + ©laminates made from two different resin systems and two
types of fibre, one of them being anisotropic. Although the theoretical
results do not agree exactly Qith the experimental ones,the error is
approximately equal for all three types of laminate., It can then be said
that the anisotropy of the carbon fibre does not invalidate the use of
conventional laminate theory, at least for use with the.type of laminate
. used here. However the use of highly anisotropic fibre can produce some
unusual effects such as a Foisson's ratio greater than 1 for a :_30o
laminate. (This particular propgrty could be very helpful in removing a
filement wound article from the mgndrel.) The experimental and theoret-
ical results for modulus E_ at 90°t0 modulus Ex are a mirror image of the

<3
A # i Poisson' i is gi =( ) -
B, results. The minor Poisson's ratlo'))yx }s given by })yx £{Y B )/.x

Xy ¥y

The maximum stress and strain at failure variations with angle ©
are shown in figures 102 and 103 respectively. The maximum stress cufve
has a very similar shape to that of Ex for the system shown but this
neeé-not be ‘the case.The sample used was a glass/epoxy one which had a
reasonable interlaminar shear strength,but the failure of the samples
between angles of 10°and Td’were all due to interlaminar tensile failure.
The Ous;mple failed by tensile fibre fracture and the samples between '?0‘>
and 90rby a combination of interlaminar tensile failure and iransverse
fracture, Figure 71 shows the fractured end of a + ?Oosample.lf a +B
sample with a greater interlaminar tensile strength was tested in a
similar manner,the maximum stress curve would probably not bte the same
as the one shown.

The failure strain is Qefined here as the strain up to initial
failure of the composite. The large sirains recorded are the result of
the type of'sliding'failuré of the iaminate.Even after failure the
composite is still capable of carrying a stress and'strains' of greater
than 109 canlbe recorded for total separation of the two parts of a

sample, )
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6.7 Final conclusions

Although the measurement, and even calculation of the basic properties
of the composite constituents was not entirely satisfactory, sufficient
information was obtained to show that some properties of a unidirectional
composite may be calculated reasonably accurately. In particular the long-
itudinal modulus can be calculated for composites made from isotropic or
anisotropic fibres from a knowledge of the fibre longitudinal modulus,
matrix modulus and fibre volume fraction.The major Poisson's ratio of a
composite may also be calculated with reasonable accuracy for fibre
volume f;actions greater than 209) and possibly over the whole range
for composites made from isotropic fibre. It may also be possible to
calculate the major composite Poisson's £étio for composites made from
anisotropic fiﬁres, but until an accurate measurement of the fibre
Poisson's ratio is made we will not have certain proof,

The c&mposite transverse modulus can be calculated reasonably
accurately for low to medium fibre volume fraction composites made from
isotropic fibrgs but becomes less reliable at higher volume fractions.

As the transverse modulus of carbon fibre is not known accurately no:
attempts can be made to calculate the composite properties, but working
in reverse usiné the expressions used for isotropic fibres a value of
the fibre modulus méy be obtained.

The sheaf modulus of composites made from isotropic fibres is in a
similar position to that of the transverse modulus, in that it can be
calculated reasonably well for low to medium fibre volume fractions
but the disagreement with experimental Ggiues‘increases at higher volume
fractions.By using the value of the carbton fibre {transverse modulus
determined from measurement of the camﬁosite transverse modulus it
;s possible to calculate the shear modulus of a composite made from
carbon fibre. However ine fesults generated in this manner do not agree
very well with the calculated values based on the shear modulus of the

fibre determined from torsional pendulum measurements.,
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The situation regarding the calculation of unidirectional composite
properties is thus only partly satisfactory, but until the transverse
-properties of anisotropic fibres are known more accurately any improve-
ment will be difficult.

The present theory used for calculating the properties of laminates
appears to be satisfactory for composites made fromrféotropic and
anisotropic fibres.

Regarding the experimental techniques employed for the practical
work it has been found that the procedure for producing composites
gives great freedom of choice of material while producing composites of
reasonable quality of a variety of geometries. The types of tests used
are fairly standard apart from the plate twisting type. This test is not
entirely satisfactory in that it produces slightly higher results than
others,but overall represents a good compromise between reasonable resulis
and reasonable cbst. In combination with the tensile tests (and flexural
if required ) sufficient information may be acquiréd for assessment of

new materials or to calculate the properties of a complicated structure,

\
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RECOMMENDATIONS FOR FURTHER WORK

- There two main areas where further knowledge would be of help.
Firstly in obtaining more accurate values for the transverse and shear
properties of anisotropic fibres either by direct/indirect measurement
or by calculation.Secondly an improvement in calculating the transverse

and shear properties of unidirectional composites is required.
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Table 6 Expressions for predicting the elastic properties of composites

Longitudinal Young's modulus

Author Expression
Abolinish h
Halpin/Tsai

Hashin/Rosen(approximate)
Rabinovich(isotropic) ? Ea = Ej— VJ ‘*E‘n Vim
Paul (upper bound) l

Van Fo Fy

Whitney(approximate) J

Ekvall En= EJ{Vi+ Em Viw
where E...: = Ew/( ;.-1);:)

Tsai - Euws k(E4V+ Eom Vi)

Hashin/Rosen

Euz E‘J VJ + EonVm t e ( ’l{; 'Vh)z Vj Vi

Hill(lower bound)

¥ V
Kilchinski: Ri.... + \f(!; + -(lt-*
Whitney(isotropic)
where Keva= Em/(?-( |- th-lv-a:))

_kaggi/(y_(l-w—)_V;‘))

Hill(upper ﬁound) Enz Eé V: + EwVa. h(.yJ "v"“)i VJ Vim

.\ﬂ -+ A
‘ kw k) G
Major Poisson's ratio
Abolinish
Ekvall
Halpin/Tsai vlt.= V, V’ + Vi Ve

Rabinovich(isotropic)

~114-

Numbexr



Author Expression Number

Hashin/Rosen
" Hill(lower bound) | V= IJ‘JVJ VR (VJ-V“\)V Vi (R';,\' }I('a)
7
Kilchinski {l;‘ 2 ?ﬁ *(J;..\
Whitney(isotropic) g Koy, = Em/()_(;..yh -2Var ))
= E)/ 01-V) -1L%)
Hil1(uppexr bound) ), ¢ ViV v"‘v"“"'(va"v"") VJV"“(*H*_%%) A
V"‘ + V) 4--"'
Tsai
Vi (1-C) k) Vg (Lhomb 1) V3 Hom Vi (263 # Gon) Vi
| K (LhmtGm) = GamVan( K] = Kpm) (c=0) 9

+C k{2034 61 )Vim + Ky Vp( 2kmt ¢))V3 (€ 21)10
K§(Lhmst(f) +Cf Vam ( Km=KY)

where  Kjs EVQ(-Yy) @0 Ke® Em/(2 (1-Vw)

Van Fo Fy . Ve V=L V3 (V) V) (1= Vo) Gmm 11
Transverse Young's modulus @-VEe} = Vanlm
Shaffer (first) Ear= EJ Em/(E..,“Vj + 51 V.,,,) 12
Shaffer (second) Ez,.: Em[i"("‘Ex/Eé)ﬁ)-aw‘f‘ﬁ,&- Vi)

' | = 0-22L7(V} (I~ Em/E)) =
Rabinovich(isotropic)  Ea.= E} E.,MKE“V} +EAVa(1-70)) 14
Ekvall | E: E) E«L/(E'm'\/a +E}Vm(l—vhl)) 15

Ew = E'h/("' Z.V-r:)

Hashin/Rosen } E.inl Kz Gaa
1 17
Whitney k“ 4 Gy (H- L s Vi ) .
where Eu

Kyy: k-.“kp-cm(vh K +Vj.k4,)
Van k3 + Vi K + Gm
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Author Expression Number

Abolinish Evy= EmE} ( EwVo+ E4AVY) i 18
(EvwVin +EJV3)(EaVi+ E }Vo)-(EpWa-E M)g)‘\/j Vi

Yan F6 B L o« (-0 [2C4-Gm ~ V(G- Gm) ] i
B B [V~ VimGm V)4 Vo G |

Tsai E.r® 2(1 “'va"!'('lﬂ-vm) Vm)[(l"()_}g(lxh'f‘(m)"ﬁm(ﬁﬂ = ) Viea
(LKentGw) F2(Jeg= Ko ) Vi

e k&(mm@)ﬂg(hm-&nvﬁ] (Cc=0yo
(2 Kant 4 ) =2 (K= ) Vo (C=2i

vhere Ki= BiA2(i-mp) B0 Hawe EmA1-vm)
Halpin/Tsai (g {)?
23 )22
(G=p2

EaazEw[E3() £ Vi) + Eman 5 ]
E}Van+ Em({+V))

vhere €= reinforcement factor

Longitudinal shear modulus

Ekvall G-n_g C G.MI 24
G (FR) + R
where R= 4 (1) and ¢:J L S ede
w Gy (1= bom
* Rabinovich(isotropic) y ¢ 3 Sﬂe(‘ ﬁ)
Gy s GI:G'M o5
G}Vw\'* G'nv}
Abolinish

-—

" Hashin/Rosen(random array)

| G Gra LG4 1#V)) 4 Gom Vi ] 26

Kilchinski 5t o
-+ I+V
Van ¥o Fy J et ( k d)
E;hitngy( isotropic) )
R:abinovich( mean) 27
Grz G4/amVy j 1+l
GpVmV 11D
- where CL- V'MG'M 1 ‘):: vi GH\
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Author Expression

e Gz (O Gm L6464 G Vi
ZGM'*(GJ "“\mm} J Vm
+ € &f (614 5m) <G ~Gon) Vo
(q + Gn) + ‘(G-j-fm)\/'m

Halpin/Tsai

Grrs Gm[ ComVmt Ui+ V)]
G Vit G (4 V1)

Hashin/Rosen (hexagonal array)

upper bound C'r: = Gm (O'q°7 M(,. g 0‘0‘]3)

lower bound G.!: = Gwm
: ’ 0-907 4 0.093
Me

Me= G(i 1-103V))+(1= 1103 V4) G
G (I=t1o3 Vg)+ (14 1123V} ) Gm

wvhere

Other relationships

Number

—(C=1) 28

(§= +) 29

(= 2)30

_Hashin/Rosen Gas = G Lt + ﬁ....Vg}(HPVg ) 3V4’Vm B-m] 33

(=V(+pV5') =3 V) Vi o

G o
where D{:(@i\-‘ E.?l\) 3 ﬁ=(m r’: (ﬁh C%..BJ)

- (c%..'l ) (l-r 9 8)
TR TGyt VGt Vem Gm y 34
Boye Vi Vi¥p 4V Voo [14 Vanr O E--\)/E-r] 55

L= V& +m VO Ev
Hashin/Rosen 36

sk Exn _]
Va 1(6—13)
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Relationships invelving anisotropic fibres

Author Expression Numbexr
Whitney Enz E)V) ¢ EmVim+ 20V~ Vau)* Vi VY
LiVemt LowVj 4 |4 Vo 31

vhere Lj:E-vafg,‘)%:} and L,,:[;-v...-lv.:]

Rabinovich
Ews EJVi(1-UaVa) 4 Esda(1-N04) 38
1= Vi,V 1= Yl
Whitney ( F 1;) ( V*) '
Vins Vaos Z(Vm=3)(1- V22 V4 39

(Vambf ¢ VjLms l+Va)Eun
wvhere LJ:[I "VJ-;'?.(EJ‘; VJ:' Lons ,-Vm- 2)}.::
Rabinovich ) Efr ) ] [ ]
E} V}'Uj:,( 1= YVt ) > Emvmvh(?- y}lvﬂ“) 40
E (1Y) F Em( 300

Vs

Whitney

E17—= z k‘-3( l - v:_;)E'h
En+ bkuVid

41

where kzl = (HJ,""G‘N) k“\ 1‘(’1_.!" kh}y-ﬂ,\\? and vl 3~ vgzv} + v‘hnv'“'\

Ky 4Gwm) ~(K) K )V Ky= ELElx g
1 6o) SN Yy ] L~ VjOEH-2ERY) |

" Rabinovich

EI.:_= Ell [EJ1V4(|"V~:)+ EMVM('“V,' v’t)]
Ell\/](l-Vu})T E wa Vau (1= Valvjx) 42

Rabinovich

G'n_-‘- Gj VJ + G-MV..M | 43
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Table 7 Longitudinal Young's modulus/fibre volume fraction

Numbers at the top of the columns refer to expressions in table 6.

-1 1'9..

Ve 1 2 3 4 5
9 3.326 4.571 2.993 34320 3.320
0.2 17.816 18.825 16.047 17854 | 17.997
0.4 52.512 33,062 | 29.084 32.3%9 32.503%
0.6 | 46.808 | 47.319 | 42.138 | 46.833 | 46.954 Units GPa
0.8 | 61.304 61.558 | 55.177 | 61.320 | 61.383
1.0 | 75.800 | 75.800 | 68.221 75.800 | T75.800
Table 8 Major Poisson's ratio/fibre volume fraction
Ve 6 7 8 9 10 11
0 0.370 0,370 0.370 0.370 0.370 0.370
0.2 0.338 0.33%2 0.282 0.333 0.2?9 0.372
0.4 0.306 0.298 0.248 0.298 0.246 0.374
0.6 0.274 0.266 0.223 0.267 0.236 0.377 i
; 0.8 0.242 0.237 0.218 0.237 0.217 0.380
1.0 |.0.210] ©0.2101 ©0.210{ ©0.210] 0.210 | 0.385
Table 9 MTransverse Young'grmodulus/fibre volume fraction
Vf 12 5 14 15 17
0 e 2 3.32 5.85 5.30 et
g2 | et 4.32 4.75 6.51 | 7.85
0.4 5e 5B 5.85 6.20 8.44 10.96
Units GPa
0.6 T.79 8.28 8.94 11.99 | 16.47
0.8 14.13 1195 15.99 20.70 28.79
1.0 | 75.80 - 75.80 75.80 | 79.50



Table 9 continued

Ve 18 20 21 22 2%
0 %.32 3.32 3,32 3,32 3,32 2,
N

02 4,61 4.47 7.51 447 5.44

0.4 6.10 6.34 13.87 6.%0 8.72

Units GPa

0.6 8.84 9.81 2%.65 9.69 14.44

0.8 15.87 18.47 40.75 18,15 26,93

1.0 75.80 75.80 75.80 75.80 75.80

Table 10 Shear modulus/fibre volume fraction
Units GPa

Ve 25 26 27 28 29 30 31 72
0 1.21 1.21 1.21 1.21 1.99 P 1.21 1,24
0.2 1.49 1.76 3.30 1.50 1.63 1.99 ;N 1.75
0.4 1.97 2.63 513 1.97 2.31 %,2% 22 2.52
0.6 2.86 4.24 T.46 2.87 3,58 5,40 4.69 3.89
0.8 5.25 8.13 11.57 5.27 6.80 10.30 71.51 | 11,51
1.0 31,32 31,32 31,32 | 31.32 21,32 31.32 |-27.21 | 20.51

Tables 11-14 Variation of longitudinal modulus with constiiuent properties

Table 11 Variation of E, . with fibre modulus, Fpe
E, 1 2 3 4 5
0 1.66 2.29 1.49 1.66 1.666
20 11.66 12.29 10.49 11.66 11.667
40 21.66 22.29 19.49 21.66 21.667
60 31.66 32.29 28.49 31.66 31.6€8
80 41,66 42.29 37.49 41,66 51.669

~120-
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Table 12 Variation of E

with matrix modulusL_Em. /

11
E_ 1 2 3 e
0 37.950 | 37.887 | 34.113| 37.930 | 37.93%0
1 38.365 | 38.582 | 34.557| 38.358 | 38.364
2 38.907 | 39.209 | 35.012| 38.907 | 38.910 Units GFa
5 39.472 | 39.894 | 35.458 | 39.474 | 39.469
4 39.950 | 40.664 | 35.912 | 39.950 | 39.950
Table 13 Variation of E,, with fibre Poisson's ratio,)}f.
V., 4 5
0 | 39.720 | 41.903
0.1 39.654 | 41.009
0.2 39.593 | 40.052 Units GPs
0.3 39.556 | 39.644
0.4 39.561 | 39.576
Table 14 Variation of E,,-with matrix Poisson's ratio, vm
\{n “ 2 4 5
0 39.554 | 39.608 | 40.312
0.1 39.586 | 39.567 | 39.767
0.2 39.701 | 39.561 | 39.704 vt
0.3 39.925. | 39.560 | 39.623
0.4 40.344. | 39.558 | 39.563

Tables 15-18 Variation of Major Poisson's ratio with constituent properties-

Table 15 Variation of Lhz with fibre modulus, Ef

E, 7 8 9 10

0 0.290 | 0.290 | 0.369 | 0.0
20 0.265 0.284 0.284 0.264
40 0.246 | 0.282 | 0.283 | 0.249
60 0.237 | 0.281 | 0.282 | 0.240
80 0.232 | 0.281 | 0.282 | 0.235

-121=
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Takle 16 Variation of V., with matrix modulus, F .

Units GPa

E 7 8 95 | 10
0 0.210 | 0.210 | 0.0 | 0.210
1 0.220 | 0.267 | 0.283 | 0.220
2 0.228 | 0.277 | o0.284 | 0.277
3 0.235 | 0.281 | 0.284 | 0.233
4 0.241 | 0.28% | 0.284 | 0.239
Table 17_Variation of U, with fibre Foisson's ratio W
Vs 6 7 8 9 10
0 0.185 | 0.067 | 0.166 | 0.167 | 0.057
0.1 | 0.235 | 0.148 | 0.221 | 0.222 | 0.142
0.2 | 0.285 | 0.229 | 0.276 | 0.277 | 0.277
0.3 | 0.335 | 0.311 | 0.331 | 0.332 | 0.311
0.4 0.385 0.395 0.3%87 0.386 0.395

Table 18 Variation

of U, with matrix Poisson's ratio, )V

Vo 46 7 8 9 -1 4D

0 0.105 | 0.193 | 0.138 | 0.0 0.186
0.1 0.155 | 0.200 | 0.170 | 0.164 | 0.197
0.2 0.205 | 0.213 | 0.207 | 0.206 | 0.209
0.3 0.255 | 0.220 | 0.248 | 0.249 | 0.223
0.4 0.305 | 0.250 | 0.301 | 0.296 | 0 242

Tables 19-22 Variation of transverse modulus with constituent properties.

Units GPa

Units GFa

Table 19 Variation of Ezzgijh fibre mgﬁglusjEf- Units GPa
Ep 12 13 14 15 {% 18
0 0 o2 *E; 6"" 1.109
20 5.694 | 6.012 | 6.455 | 8.371 | 9.823 | 6.214
40 6.137 6.602 7.024 9.353 ' 11.558 6£.866 1
60 6.291 6.815 T.232 9738 l 12.295 Tt 13 1
80 6.365 | 6.9%8 | 7.346 | 9.9%2 |12.704 | 7.258 |




Table 19 continued.

N L %

By 20 21 22 23
0 0.592 | © 0.é§5MAmﬂ?:§;;ﬂ
20 6.537 T.469 6.438 7.859
40 T304 | 11252 o T1.236 | 9.775 Units GPa
60 7.623 | 14.883 | 7.556 | 10.689
80 7.785 | 18.478 | 7.728 | 11.226
Table 20 Variation of Egzwith matrix moduIUs,Em. Units GPa
E_ 12 13 EEITE N
0 0 0 0 0 P Foa
1 1.974 | 2.201 | 2.282 | 3,126 | 4.362 | 2,272
2 3.897 4.335 4.489 6.126 8.473 4.459
3 5.772 6.235 6.64T 9.007 | 12.350 6.562
4 T.574 8.228 8.735 | 11.110 | 16,010 8.601vq
Table 20 Variation of E,,with metrix modulus, F, (continued)
E_ 20 21 22 23
0 0 13.453 | O ‘0
1 | .2.456 | 14.889 | 2.442 | 3.777
2 4.810 | 16.299 | 4.774 | 7.161 Units GPa
3 7.060 | 17.681 | 7.005 | 10.216
4 9.230 | 17.949 9.141 | 12.994
Table 21 Variation of Egzwith fibre Foisson's ratio, Ve
W 17 18 20 21
0 8.381 6.374 6.996 | 20.707
0.1 8.518 | 6.378 | 7.051 | 19.926
0.2 9.090 | 6.502 | T7.327 | 19.148 Bhite Gra
0.3 10.715 6.760 T.495 | 18.532
0.4 15.937 | 7.185 | 7.921 | 17.961
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Table 22 Variation of_ﬁz?qigb matrix Poisson's ratio‘}}m \

Vo 17 18 | 20 | 21
0 10,332 ?.556 9.040 | 20.105
0.1 10.330 | T.251 8.277 | 19.167
0.2 10.327 | 7.227 | 7.802| 18.208 Units GPa
0.3 10.29% | 17.204 | 7.320| 17.216
0.4 10.254 7.180 6.829 | 16.196

Tables 2%,24 Variation of shear modulus with constituent properties.

Table 23 Variation of G, with fibre modulus, E.. Units GPa
Ep 25 26 27 28 7 A _‘wvfj____m”??_j
0 0 0.403 | © 0 0.302 | 0.484 | 1.005 | -1.009 |
_20 2,111 | 2,645 | 3.155| 3.780 | 2.408 | 2.998 | 3.470 3.105?
40 2.210 | 3.049 | 4.463 | 6.560 | 2.677 | 3.673 | 3.674 | 3.244
60 2.307 | 3.218 | 5.478 | 9.322 | 2.783 | 3.985 | 3.750 | 3.297 |
80 2.335 3.311 6.314 | 12.083 | 2.839 | 4.166 | 3.789 _§:§iij
Table 24 Variation of G,, with matrix modulus,B . Units GPa
E_ 25 26 27 28 29 jvav#ﬂm'ﬁiﬁm_—umgg_W
0 0 0 0 10.439 | © 0 0 5
1 0.722 | 1.062 | 3.285 |10.763 | 0.894 | 1.388 | 1.139 | 1.000
2 1.425 | 2.060 | 4.770 |11.084 | 1.749 | 2.642 | 2.187 | 1.949
3 2.116 3.008 | 5.757 |11.402 2:576° 1 35:19% 3,202 [ 2.855
4 2.790 | 3.924 | 6.577 |11.718 | 3.369 | 4.847 | 4.139 3.?2_:»;
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The predicted values are based on expressions 37, 39, 41 and 26 in table 4.

Table 25 Variation of Eqqs_Bopy Gq, and §12 with fibre volume fraction

EfT/sz =1 (fibre assumed isotropic)
|

Ve Eq1q Vo Es Gq2
0 Be a2 -k L0370 3.401 1.21
0.2 42,656 0.371 T.199 1,909

. 8. 04' 1.2 ®
0.4 1.992 372 | 10.207 | 2.753 L
0.6 121.328 0.373 | 15.953 | 4.562
0.8 160.664 0.374 | 30.057 9.511

1.0 200 0.375 | 198.734 74:669

?

new " : : s
Table 26 Variation of E11z_§52,_§12 and V,, with fibre volume fraction

12

Ef1/Er2 = 10

L By V2 oo Gy2

0 3,32 0.370 ;:401 1.21

0.2 42.656 0.371 | 6.963 1,617

0.4 81.992 0.372 | 9.051 2.187

Units CPa

0.6 121.328 0.373 | 11.608 3.047

0.8 160,664 0.374 | 15.091 4.489

1.0 200 0.375 | 20.014 7.409 |
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Table 27 Variation Of_E11;_E221,§12 andfv12with fidvre volume fraction

177 i

Ve Eyq Vio Y Cio
0 3,32 0.370 | 3.401| 1.21
0.2 42,656 | 0.370 | 6.286| 1.483
0.4 81.992 | 0.372| 7.255| 1.826
0.6 121.328 0.375 8.134 2,268
0.8 160,664 0.374 9.047 2.862
1.0 | 200 0.375 | 9.979| 3.700

Units GPa

Table 28 Variation of Ey4s B,y G, and ), with fibre volume fraction

o g

¥ B V1o o2 G2

0 3.32 0.370 3.395 1.21
0.2 | 42.65 | 0.3711| 5.910| 1.315
0.4 | 81.992 | 0.372 | 5.419| 1.431
0.6 ?21-328 0.373 5.298 1.557
0.8 160.664 0.374 5+ 154 1,696
1.0 | 200 0.375 | 5.000 | 1.850

Units GPa

Rabinovich's predicted composite properties assuming anisotrepic fibres

The predicted values are based on expressions. 38,40,42 and 43 in table 6.

Table 29 Variation of E,,, Eyss Gy, and bq2with fibre volume fraction.

¥r Eiq Viz a2 G12

0 3,32 0.370 | 3.32 1.21
0.2 41,206 | 0.371 | 41.206 | 15.782
0.4 81,305 0.372 | 81,305 | 20.354 |
0.6 |121.328 | 0.373 l121.328 | 44.926
0.8 1161.665 0.374 161.665 | 59.498
1.0 |201.702 Rad1o jeo1 702 f 740710

-126~
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Table 30 Variation of E11&“§22L_g4q and \A?with fibre volume fraction.

Ve Eq4 V12 Bog . %2
0 3432 043570 | 3:32 1.21Wﬁ‘4
0.2 41.206 | 0.312 | 6.978 | 2.456
0.4 81.30% | 0.305 [10.285 | 3.689
0.6 121.328 0.304 113,498 4.924
0.8 161.665 0.303 [16.630 6.168
1.0 | 201,702 | 0.302 [20.00 | 7.407

Table 31 Variation of PR PP P

dl

Units GPa

E = 10
£1/Eq,

and U12with fibre volume fraction.

g B4 L €12
0 3.32 0.370 | 3.32( | 1.21
0.2 41,206 0.362 | 5.011 | 1,708
0.4 81.305 0.357 | 6.271 | 2,206
0.6 121.3%28 0.354 1 T.517 | 2.704
0.8 161.665 0.352 | 8.759 | 3.202
1.0 | 201.702 0.363 | 10,00 | 3,700

Units GPa

Bocre %20
f1/ﬁf2

Table 32 Variation of E,., E,,, G4, and )Gz with fibre volume fraction.

e Eyq Vio Ep2 C12
0 3,32 0.570 | 3.32 | 1.21
0.2 | 41.206 | 0.365| 4.035| 1.338
0.4 | 81.305 | 0.361 | 4.288 | 1.466
0.6 [121.328 | 0.357 | 4.522 | 1.594
0.8 |[161.665 | 0.353 | 4.765 | 1.722
1.0 [201.702 | 0.350 | 5.00 | 1.850 ]
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Figure 19 Schematic representation of two parallel ribtons

with irregular edges.

Figure 20 Carbon fibre orientation/modulus
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Figure 52 Glass fibre/polyester resin prepreg.

o



Wi et ST

Figure 54 large composite mould.
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igure 55 Three and four point flexural rig with built-in transducer.
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—_ Counter balance system
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Adjustable weights

Sample
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Figure 58 Torsional pendulum
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Figure 59 Cdtting pattern of 130x130mm composite plate
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Figure 60 Tensile test sample with strain gauges.

Figure 61 (Cverall view of test equipment.
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Figure 64 Inhommogeneous glass . Figure 65 Inter-ply resin rich
fibre distribution., X 30 area in carbon composite. X 120

Figure 66 High volume fraction Figure 67 High volume fraction

packing in glass composite. X 250 packing in carbon composite. X 250
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Figure 68 Carbon fibre composite. Figure 69 Symmetric +8glass
X 800 composite, X 25

Figure 70 Region tetween two Figure 71 Fracture surface of

lamina on +Bcomposite, X 250 I_—_I:_ 70 carbon composite, X 25
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Figure 73 Longitudinal Poisson's ratio/fibre volume
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Appendix A Measurement of preferred orientation in multicrystalline materia:

The variation in intensity of the refracted beam

/ with angle @ is recorded using a counter (Ruland)

or by a photographic and microdensiometer technique

) (Bacon). Aplot of intensity against angle gives a

/ Gaussian shaped response,.The sharpness of the peak

is an indication of the preferred orientation.Half

the width at half the peak height is often taken

as a measure of the average orientation of the

crystallites,

Z In 2 multicrystalline graphite with no preferred
orientation, the numbexr of crystallites with their

¢ axes within the solid angle defined by ¢; ﬁ'*“(g
and @, 8449 is proportional to L(&%F)SBdfdonere
1@) is the intensity form the X-ray data, In the
case of carbon fibres, if they are considered to

be cylindrically symmetrical about the fibre axis

(2 axis in diagram), the expression can e simp -
(& 7

lified to I(ﬁ’)s%ﬁdﬂas it is no longer a function
of © .

Ruland developed this idea and introduced further sophistications teo
account for line broadening due to crystallite size.His notation differs
from that of Bacon so brief details are given.

Ruland representedstd}the intensity distribution factor as an infinite

. (5] -at
seriesgpn(:nzmﬁ and showed that 3(53 ’—‘—t—-— Poiszon kernel)
It 4~ 242

except for very highly orientated cases.This has a maximumat@ :allfor

positive q and d:(l_»_u;’)lr for negative g with integral width of the maximum

Z ' 2
F and maximum to minimum ratio (_SL" il D_L
! =lo1) (=141

The degree of orientation is measured by Ruland in terms of q ,where:-

q=0 represents no orientation or randcm orientation.

—
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g=+1 represents perfect orientation ati ﬁ’ Q

q=-1 represents perfect orientation at = II:..

§9(@)s:0ds

The function !5 (ﬁ)&kﬁ'd;’f ig designated as RE_ by Ruland and can be

1)

@ GPm P ol I ]_ (1=
expressed as 2 0-tndY(Amend) _é(, =l r[ “"VJ"‘ : ‘yi .Z.Z,(, ]
ii‘g(ﬁ)is developed into a Fourier series.

For q91 it is shown that R = |/Len(t/1-9)

: . 5 )
Similarly the function (ﬁ(ﬂ)&? ﬁdﬁ is designated as Qz and can be
§9(d) S~ 40 -
expressed as '% |20FA é Pn

S et )@l (8- 6}/ 55 1 =lem®
AT A (=9p*
oy _;_GE%) ] L.;{W(‘p)“? sz(q,"

Appendix B The theoretical basis of the calculated elsstic properties of

orientated carbon fibres.

The basic unit graphite crystal has hexagonal symmetry and has only
5 independent elastic constants, Su ,Ssuslg.,s:” al?d-s“lp resulting in tihe
compliance matrix shown below. (For comparison with anisotropic compesites
see appendix C)
EREe T
S Sy Sy 0
Si3  Su S’ O

o 00 10
s Jt = Y o YR
|

(v} 0 © Sy
(o) o (o) o Sk - O 3
0 0 (V] (o) o 1(5 M <5 ‘)..I

The directions of the axes 1,2,3 are shown in the sketch,the c-axis is the
axis of symmetry.

The compliaﬁces 5:_1 of the crystallites in a direction defined by e,ﬁ
(polar coords) with reference to the natural crystallite aves are given by:~
5337 SuSn*d + 5330w + LUPG SISy + Sy Lo’ St

S13 2 Si Coo™ P SintPSitB + 533 50t (U 5int@ v S12 St B (o'®
<S4, G So3gp 20 + S13 (D 45 1BSL20 - 20l $i1T53n26)

Suuz 250 (Coa' 4 25imD SO L0 ) = 8 513 Sk fB (0 @553D = 2S1a( 1~ Sunr)
#5533 58 (10520 + Siy{ S hSibE SiAD (D)



!
However due to the hexagonal symmetry ,the compliances Sﬁ are independent
of angle ® and are simplified by replacing the functions of © by their

average values.

S 2 5 (304203 43)#3(3Cap el 45030 +30 Sute S (57661 +50%)
S35 = SuSwtB+S533Cor'® + (1513 +54,) St (o'l ;
= (oG -2(P 41) + S0l *50 (Sén‘ﬁﬁcf}ﬂ!d(a?ﬁ)*%’g:ﬁ e%.w( Sl F-515)
Si3z SSWBLR) ¢3S SIS o+ D) 4 PSR ) -SSP
St = Su(L S B 45) = Si2 S D= o 513 S + 1533k
* ('t Sty =2 520 B+ o™ )

The elastic properties of a carbon fibre composed of graphite crystallites
are calculated by summing the weighted elastic constants from 0°to 90..

The weighting factor,J(#)is found by measuring the crystallite orientation.

Reuss model or uniform stress model

Yor this model the stress in the individual crystallites is assumed to
be uniform and equal to the macroscopic stress of the fibre. The modulus

of the fibre in the ]ongltudlnal direction is given by

%
'"Lq)ffﬁ)su.ﬁf,(.d
LIS S
h .
where F.faf”)' 5u : 5us~.¥g+ Syl v (2 5,,,5“)5“.,2 (4

d =5, (25,2545, ( T8) SoTHUE 1(Su" /.5,3.-53,-5.,,,)5 “1(0) SO PP
Ey 33 £ ‘i-————-—'—'—-—'—-‘ I(a)h¢dj jog,rcp) s“‘bd¢

For the case of an isotropic material (fibre properties independent of¢))

.'

Hence

the integrals f Smﬂﬁdlﬁ can easily be evaluated by reduction formilae
TR N TN W TS
& segdy 3 L‘ segdg

%n a similar manner the other elastic properties can evaluated, and
usipg the notation of Goggin and Reynolds we have:-

Sz Su-(25- 15.3-3,,‘,)% +3 (5,.»15,_,1.5;,-5*,)%.:‘

§,L: Sint (503 -5.;)% + 'ﬂ‘( Su+dy; - 15, -s“)%‘;-

§,, : Sust4(Sn 4533"5:1.-35;3-5“)%3 - 1(u+533 -zsn-suq)lff*

§ku" '5“"(35""'25'13"511"45'5 55-"")1" < (250 125 .M'VU“)%’;

where  [m= j I(ss‘)s\..l‘a’atﬁf nzl, 3,5,
T4~ |



Yoigt model or uniform gtrain model

The stiffness constants Cij of the basic graphite crystallite are related
I
to the general stiffness constantsClyby expressions similar to those for

the compliance constants.Similarly the stiffness constants _C_-,; of the

Jl
carbon fibre can be express in terms of_c_i.l and the correct weighting factor.

€.8. Qi =Cu-~ (Cu-Cc;-‘lC“) .IJ:J f.s (Cn -2¢3+C33 = LC%)_IZ'_;
i )

] ' I, g |
The Cijtare inverted to obtain the Si) by the normal manner. §_ {1 [Q ]a.ob

"
The elastic constants for the case of uniform strain can be expressed
: /
in terms of Si,) .As the expressions are quite complicated a computer is

normally required for the inversion process.
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Appendix D Plate bending and torsion tests

The two tests described here were originally concieved in this form
by Hearmon (89) for the testing of plywood.
The solution to the differential equations of an anisotropic plate

under combined uniform bending and twisting moments is given by Lekhnitskii
(85) asi-  Kws 6Mx (Ryx't Ray'tRigy)
+6 Hn ( p\n)ﬁ”‘l &L'Uj“‘i‘ ﬂ‘lﬁ 31.3)
<6 MR +Raee Ry D
-r&n+bﬁ+¢
where h=plate thickness ; w=deflection in the Z direction ; Mx’ My=bending
moments ; Mxyztwisting moment ; a,b,c =constants dependent on the frame
of reference; Rij is'defined by equation 3,15,

Rending Y
A 7 B

The sample used by Hearmon is shown in the skeich. At points A it was
supported by steel balls, and at points B it was loaded by weighis.

The deflections along lines 1,2,3,4 were measured with a dial gauge held
in a clamp which stood on the plate.If x=y=0 at the supporting 'foot' of
the clamp (w=0), then a=b=c=0 also.Thus for the bejding moment Mx only

we have:-

h,kl:' CMJL( Ru x-l*al:!ﬂt +P\!6x3) 2

By substituting values for h, x,y and measuring Mx and w on lines 1.2,3%,4

the values of R and R16 can be calculated.

11'R42
‘If the plate is a unidirectionally fibre reinforced one with the fibres
parallel to the long side,then R11= 811, R12= 812 ’R16= S16=0' Using 2
\
second plate with the fibres transverseythe values of 822; 812 may be found.
The deflections meazsured are fairly small, and in calculating the
value of Poisson's ratio (- S,,/ S,,) small errors in any measurement

cause a large error in the answer. This problem and the large size of the
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test pieces are the principal reasons why the method was not used.
Torsion
Timoshenko (91) showed that loads of P acting on a square plate as shown

will produce a torsional moment Mxy per unit length along the sides equal to P/2.

Substituting Mxy=P/2 into equaticn D1 we have :-~

h’m: 3PJ(R|‘11+R16\3‘4 Rgaxﬁ)‘f ll".l-'f'Ln L 0

If the deflection iz measured such that x=y=o when w=o0 then a=b=c=0.
By measuring the loads and deflections along lines 1,2,3 and 4 it is possible

to calulate R16' R26’ R66'

In practice the test was carried out as follows(after Tsai (90)) :-

as shown above, Thus substituting in eguation D3 W=0 at x""'% ) ‘J’+£
ey A 5, kﬁ& )j-'&

we obtain hw= 3P [(1 -.j, 6"'(‘3 -'1 )R‘-('i'(x’—x 4‘4;'( 4 )Q“] x"gr ) j -t-E
T

By measuring the deflection at different positions on the plate various

-

relationships involving 316’ R26' R66 can be derived. Most of measurementis

were made at the centre of the plate (x=y=0). Thus ve have:-

i'}%%‘l =2 P\l‘ + st 1'{{66 2 -&

T 2 - < -— - - = ) =
Note that if the angle of the fibre =0 : R16* H?S_ 0 R66" 566
=45 = 2( 822*31 2) )
o [ =)
=135~ R= 2( 544-8,,)
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Appendix E Torsion and shear in a unidirectional composite

Pure shear as defined in elasticity theory is shown on a two dimensional
scale in the sketch, where the engineering stirain is given by ﬁ;? The shear
modulus in this case is defined as G"‘Q: -C..ﬁj B

If the sketch represents a unidirecti;;al composite plate with the fibres
parallel to one edge, then the sheér deformation has the effect of creating
a shear stress between the fibre and the matrix along the length of the fibre.
This mode of shearing in a composite is referred to as in-plane shear znd

L}

is a function of the iﬁ-plane shear modulus G12.
If the fibres ran normal to the plane of the plate, i.e. out of the paper,

the shear stress between fibre and matrix would be very small and most of

the stress would be used in distorting the metrix.This mode of shearing is

termed transvérse shear and is a function of the transverse shear modulus

925. Thus in a homogenéous orthotiropic composite there are two shear moduli

whether the fibres are isotropic or cylindrically isotropic.

Flate twisting test

P
0

Timoshenko has shown that by applying a torque of P to the corners of a
square plate,a moment Mxy is produced along the sides of the plate. The
moment deforms the plate in the manner shown in the sketch, where it can be

seen that there is a shear stress induced between the fibres and the matrix

along the length of the fibre.
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Torsional pendulum

The torsional pendulum is similar to the plate twisting test in the type
of deflection, but is treated differently because of the sample shape and
the manner of loading.

On.a circular sample in torsion the sections normal to the axis remain
plane, but for othe; cross-sections warping can occur. However for long
samples with a small deflection the torque of the pendulum can induce
reasonably predictable shear stresses and strains and can thus be used to
measure the shear or torsional modulus.

In neither of these tests is there any attempt of the fibre to rotate in
the matrix and the strain in the composite ie shear strain parallel to the
fibres. The two methods are used for measuring the shear modulus of a variety
of materials because they are fairly easy to use, but should only be used
at low strains, and in the case of non-circular sections in the pendulum,

a correction factor for the sample shape must be used.
In this thesis the expressions torsional modulus and shear modulus
ha;e been taken to be identical although in a general sense thié is not

correct.
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