
5 The TAP Approa
h to Intensive andExtensive Conne
tivity SystemsYoshiyuki Kabashima and David SaadThe Thouless-Anderson-Palmer (TAP) approa
h was originally de-veloped for analysing the Sherrington-Kirkpatri
k model in the studyof spin glass models and has been employed sin
e then mainly inthe 
ontext of extensively 
onne
ted systems whereby ea
h dynami-
al variable intera
ts weakly with the others. Re
ently, we extendedthis method for handling general intensively 
onne
ted systems whereea
h variable has only O(1) 
onne
tions 
hara
terised by strong 
ou-plings. However, the new formulation looks quite di�erent with re-spe
t to existing analyses and it is only natural to question whetherit a
tually reprodu
es known results for systems of extensive 
onne
-tivity. In this 
hapter, we apply our formulation of the TAP approa
hto an extensively 
onne
ted system, the Hop�eld asso
iative memorymodel, showing that it produ
es identi
al results to those obtainedby the 
onventional formulation.1 Introdu
tionThe Bayesian approa
h has been su

essfully and eÆ
iently employed in variousinferen
e problems, espe
ially in 
ases where the data set provided is small withrespe
t to the number of parameters to be determined. Some of the more su

essfulappli
ations have been in the areas of neural networks [11; 22℄, image restoration[13; 21℄, error 
orre
ting 
odes [29; 32; 20; 12; 6; 7; 8; 9; 16; 34℄ et
. Thereis growing interest in these methods within the physi
s 
ommunity, leading tothe formation of links between the Bayesian approa
h and methods that havedeveloped independently in the various sub-dis
iplines, and in parti
ular in the�eld of statisti
al physi
s [4℄,A major diÆ
ulty asso
iated with the appli
ation of Bayesian methods is thehuge 
omputational 
ost when the number of dynami
al variables is large. Sin
eexa
t 
omputation be
omes pra
ti
ally infeasible in su
h 
ases, it is inevitable toresort to approximations. One of the most 
ommonly used approximation methodsis the Monte Carlo sampling te
hnique, in whi
h the true posterior distributionis approximated by a sampling pro
edure generated by the appropriate sto
hasti
pro
ess. However, the ne
essary sample size may also prove problemati
 renderingthe method impra
ti
al. The quest for more eÆ
ient approximations, whi
h arepra
ti
able in a broad range of s
enarios, is now an important resear
h a variety ofresear
h �elds.The family of mean �eld approximations (MFA) represent one of the mostpromising approa
hes. The spirit of the MFA is simple; to approximate a trueintra
table distribution with a tra
table one, whi
h is fa
torizable with respe
t to
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dynami
al variables. Sin
e the fa
torized model 
an usually be 
al
ulated quiteeasily, mostly by a deterministi
 algorithm, the required 
omputation is usuallysigni�
antly less than that of sampling te
hniques. Mean �eld approa
hes have beendeveloped within the physi
s 
ommunity and in
lude a large number of variations,depending on the obje
tives of the 
al
ulation and the properties of the systemexamined. As the similarity between Bayesian statisti
s and statisti
al physi
s hasbeen identi�ed [10; 35℄, and the bene�ts of using MFA methods has been widelyre
ognized, they have been employed in a variety of inferen
e problems formulatedwithin the Bayesian framework. One of the most popular and well known approa
his the Thouless-Anderson-Palmer (TAP) approximation [33℄, whi
h will be the fo
usof the 
urrent 
hapter.The TAP approa
h has been originated in the physi
s 
ommunity as a re�ne-ment of the mean �eld approximation in analyzing a spe
i�
 type of disorderedsystems, where dynami
al variables are intera
ting with ea
h other via randomlypredetermined (quen
hed) 
ouplings. In 
ontrast to the repli
a method [15℄, themain approa
h for analysing disordered systems where one obtains expressions forthe typi
al ma
ros
opi
 properties averaged over the quen
hed randomness, theTAP approa
h enables one to 
ompute thermal averages of the dynami
al variablesfor a given realization of the randomness.Originally, the TAP approa
h was introdu
ed for studying the Sherrington-Kirkpatri
k (SK) model [30℄ of spin glass; numerous experiments validated theresults obtained by this approa
h, showing that it reprodu
es results predi
tedby the repli
a method, whi
h are 
onsidered exa
t in the thermodynami
 limit[18℄. Later on, the TAP approa
h was employed in other problems of a similarnature, su
h as the analysis of the Hop�eld model [15; 17℄, the per
eptron 
apa
ity
al
ulation [14℄ et
, where it again showed 
onsisten
y with the predi
tions obtainedby the repli
a method.These studies point to the potential use of the TAP approa
h as a pra
ti
alalgorithm whi
h provides exa
t thermal averages of quantities depending on thedynami
al variables in general disordered systems; this 
an be 
arried out inin pra
ti
al time s
ales in spite of the fa
t that the averaging itself might be
omputationally hard. It is somewhat surprising that the potential of the TAPapproa
h had not been fully appre
iated until 1996 when Opper and Winther [23℄employed it as a learning algorithm for determining the per
eptron weights, in itsrole as a Bayesian 
lassi�er. Using the TAP approa
h as an eÆ
ient algorithmwithin the Bayesian approa
h methods is highly promising and has been drawingmu
h attention in re
ent years.Histori
ally, the TAP approa
h has been developed mainly in the 
ontext ofextensively 
onne
ted systems where ea
h dynami
al variable intera
ts weakly withall the others. Re
ently, we extended this method to handle general intensively
onne
ted systems where ea
h variable has only O(1) 
onne
tions 
hara
terizedby strong 
ouplings [6℄. However, the relation between the new formulation andthe existing analyses (for extensively 
onne
ted systems) is un
lear; and raisesa question about its ability to reprodu
e known results obtained for systems ofextensive 
onne
tivity. The aim of the 
urrent arti
le is to bridge the two approa
hes
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and to answer this question.For this purpose, we will apply the new formulation to the Hop�eld modelof asso
iative memory, a non-trivial example of an extensively 
onne
ted system,showing that it reprodu
es the known results obtained from 
onventional methodsin the limit of extensive 
onne
tivity. This implies that the new approa
h providesa more general framework that 
overs both intensively and extensively 
onne
tedsystems.This 
hapter is organized as follows: In the next se
tion, we introdu
e the generalframework of the problem 
onsidered. In se
tion 3, we provide a general formulationof the TAP approa
h, whi
h 
an be used for both intensively and extensively
onne
ted systems. In this formulation, we derive self-
onsistent equations betweenauxiliary distributions; the derivation is based on a tree approximation, whi
h is
onsidered as a generalization of the 
onventional 
avity method [15℄. It is also shownthat the same equations 
an be derived from a variational prin
iple with respe
tto a 
ertain fun
tional. In se
tion 4, the new formulation is applied to investigatethe Hop�eld model of asso
iative memory. We 
ompare the results obtained usingseveral methods, and dis
uss the 
onditions under whi
h the TAP approa
h providesa good approximation. The �nal se
tion is devoted to summarising the results andfor suggesting future resear
h dire
tions.2 The general frameworkThe approa
h presented is appli
able to a variety of systems in
luding variablesof both binary and 
ontinuous representations. However, for simpli
ity and trans-paren
y, we will restri
t the analysis presented here to systems 
omprising N Isingspins Si=1;:::;N 2 [�1;+1℄. We represent the Hamiltonian of this system byH(SjD) = h0(S) + PX�=1h(Sjd�); (1)whereD = fd�=1;:::;P g are the predetermined (or quen
hed, �xed) random variableswhose 
orrelations are supposed to be suÆ
iently weak. Within the statisti
alphysi
s framework, this representation of the Hamiltonian leads to the followingBoltzmann distributionPB(SjD; �) = e��H(SjD)Z(D; �) (2)where Z(D; �) = TrSe��H(SjD) is termed the partition fun
tion. Then, ourproblem may be de�ned as the 
omputation of the averagesml = TrS Sl PB(SjD; �); (l = 1; : : : ; N); (3)in pra
ti
al time s
ales.Many problems 
onsidered in statisti
al physi
s of disordered systems arerepresented in this form by 
hoosing a spe
i�
 expression for the Hamiltonian. For
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example, the SK model is obtained by setting the elements of the Hamiltonian (1) toh0(S) = �h NXl=1 Si; h(SjJhiji) = �JhijiSiSj ; (4)where h; J > 0 and the 
omponents of J are taken from a normal distribution ofzero mean and J2=N varian
e, Jhiji � N (0; J2=N). The Hop�eld model, whi
h willbe at the fo
us of the 
urrent analysis, 
orresponds to the 
aseh0(S) = �h NXl=1 �0i Si; h(Sj��) = �12 ��� � SpN �2 (5)where h > 0 is a positive �eld and ��=0;:::;P are un
orrelated binary randompatterns generated a

ording to distribution P(��i = �1) = 1=2, 8i. Noti
e thatthe Hamiltonian of the Hop�eld model seemingly be
omes similar to that of theSK model by �rst de�ning the 
ouplings as Jhiji = (1=N)PP�=1 ��i ��j (1� Æij) andthen taking the gauge transformation �0i Si ! Si, Jhiji�0i �0j ! Jhiji. However, theassumption about the weak 
orrelations among the quen
hed variables d�, whi
hare the 
ouplings Jhiji in the SK model and the patterns �� in the Hop�eld model,prevents us from moving freely between the two models, as it should obey therestri
tion of the Hamiltonian de
omposition (1).Although we have presented the model within the framework of statisti
alphysi
s and used the 
orresponding terminology, the same framework is appli
ableto a wide range of more general models in the framework of Bayesian statisti
s.Considering general statisti
al models of the formP0(S) � e��h0(S); P(djS) � e��h(Sjd); (6)one 
an easily link the Boltzmann distribution (2) to posterior distribution of theparameter S having observed the data set DPB(SjD; �) = e��h0(S)QP�=1 e��h(Sjd�)Z(D; �) = P0(S)QP�=1 P(d�jS)P(D) ; (7)where P(D) = TrSP0(S)QP�=1 P(d�jS).One might feel that the Ising spin assumption on the parameter S is rather ar-ti�
ial within the framework of Bayesian statisti
s. However, one 
an �nd exampleswhi
h naturally satisfy this assumption, for instan
e in the area of error-
orre
ting
odes. It has been shown [31; 32; 7; 8℄, that the de
oding problem in a family oferror-
orre
ting 
odes, termed low-density parity 
he
k 
odes [3; 12℄, may be formu-lated in the 
urrent framework by settingh0(S) = �F� NXl=1 Sl; h(SjJ�) = �J�Si�;1 : : : Si�;K ; (8)where the additive �eld F represents prior knowledge about the possibly sparsemessage and J� is a 
oupling indi
ator used in examining the parity 
he
k
onditions among the 
onne
ted message bits Si�;1 ; : : : ; Si�;K , represented byIsing spins. As is shown in [32℄, the optimal parameter � is determined by the
hannel noise, taking the value of Nishimori's temperature [19℄ whi
h be
omes
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� = (1=2) ln(P(+1j+ 1)=P(+1j � 1)) for the binary symmetri
 
hannel. In the next
hapter we will show how the TAP approa
h may be employed as a de
oding al-gorithm in this s
enario and will analyse its performan
e and its relation to the
ommonly used Belief Propagation (BP) algorithm [2℄.3 The TAP approa
hWe now introdu
e a general formulation of the TAP approa
h to the system
hara
terized by a Hamiltonian of the form (1). Conventionally, there have beenthree approa
hes for deriving the same self-
onsistent equations known as the TAPequations. The �rst approa
h is the 
avity method [33; 15℄. This is based on a
orre
tion of the naive MFA by subtra
ting the self-indu
ed �eld, referred to as theOnsager's rea
tion term, in a set of self-
onsistent equations. The se
ond approa
his Plefka's expansion [28℄, whi
h �rst evaluates the free energy using a Taylorexpansion with respe
t to random 
ouplings, and then derives the TAP equationsfrom a variational 
ondition imposed on the approximated free energy. The �nal oneis the Parisi-Potters's heuristi
s [26; 24℄, whi
h is another strategy to evaluate thefree energy, based on a strong assumption that the 
ontribution from the Onsager'srea
tion �eld in the free energy is independent of the prior employed.The formulation that we will introdu
e below 
an be 
onsidered as a gener-alization of the 
avity method [6℄. However, the strategy used in our approa
h isnot based on re�ning the result obtained by the naive MFA, i.e., by evaluatingOnsager's rea
tion terms via an expansion with respe
t to the small 
ouplings; thisstrategy 
annot be extended to intensively 
onne
ted systems as the in
uen
e ofea
h 
oupling is signi�
ant and its removal 
annot be regarded as a 
orre
tion.Instead, we introdu
e auxiliary distributions to eliminate the self-indu
ed �elds,assuming a lo
al tree-like stru
ture representing the intera
tion at ea
h spin site;we then determine the distributions in a self-
onsistent way by iteratively solvingthe equations obtained.Cavity methodGiven a Hamiltonian of the form (1), we start our formulation by assigning aBoltzmann weight to ea
h quen
hed variable (or data) d�=1;:::;P ase��h(Sjd�): (9)The remaining term will be restri
ted to the 
ase of a fa
torizable priore��h0(S) = ePNl=1 FlSl ; (10)as is appropriate in many of the relevant 
ases.Furthermore, we assume the following three properties for the obje
tive system;these are required for 
onstru
ting a valid MFA.1. The Boltzmann distribution (2) 
an be approximated by a fa
torizable distribu-tion with respe
t to dynami
al variables Sl=1;:::;N .2. The in
uen
e of the data set D on a spe
i�
 site Sl is also fa
torizable with
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Sk � P(Skjfd� 6=�g)

we� (d�jSl; fd� 6=�g)d� SlFigure 5.1The tree-like ar
hite
ture assumed lo
ally at ea
h spin site. White 
ir
les represent thedynami
al variables Sl while bla
k 
ir
les stand for the quen
hed variables d�. It shouldbe emphasized that this ar
hite
ture does not represent the a
tual 
onne
tivity butthe de
omposition of the Hamiltonian in the right hand side of Eq.(1), following theweak 
orrelation assumption on the quen
hed variables d�=1;:::;P . Dynami
al variablesfSk 6=lg whi
h are 
onne
ted to di�erent quen
hed variables are 
onsidered as 
omponentsof di�erent systems.respe
t to the quen
hed variables d�=1;:::;P .3. The se
ondary 
ontribution of a single variable Sl or d�, other than the oneestimated dire
tly, is small and 
an be isolated. Therefore, at ea
h spin Sl, we
an assume a tree-like ar
hite
ture, depi
ted in Fig.5.1 des
ribing the in
uen
e ofneighboring spins on a parti
ular site.These assumptions are used to provide the TAP equationswe� (d� j Sl; fd� 6=�g)= TrfSk 6=lg e��h(Sjd�) Yk 6=lP(Skj fd� 6=�g);P(Slj fd� 6=�g)= a�l eFlSl Y�2M(l)�we� (d� j Sl; fd� 6=�g) ; (11)where a�l is a normalization fa
tor.Noti
e that the �rst equation evaluates the average in
uen
e of the newly addedelement d� to Sl when Sk 6=l obeys a posterior distribution determined by the \leave-one-out" data set fd� 6=�g. This represents the e�e
tive �eld we� (d� j Sl; fd� 6=�g)produ
ed by the data d�, in whi
h the self-indu
ed 
ontribution from Sl andd� is eliminated by assuming the tree-like des
ription for ea
h intera
tion; this
orresponds to the 
avity �eld in the 
onventional TAP approa
h [15℄. In addition,note that the se
ond equation is similar to the Bayes formula. This indi
ates thatthe sta
k of the 
avity �elds determines the posterior distribution P(Slj fd� 6=�g) onthe basis of the leave-one-out data set fd� 6=�g. The variables we� (d� j Sl; fd� 6=�g)or P(Slj fd� 6=�g) do not dire
tly 
orrespond to the true posterior distributionalthough they fa
ilitate the formulation of equations (11), thus providing a 
losedset of self-
onsistent whi
h 
an be solved iteratively. By taking the full set of the
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avity �elds, determined self-
onsistently by (11), into a

ount, one 
an 
omputethe approximated marginal posteriorPB(SljD) = aleFlSl Y�2M(l)we� (d� j Sl; fd� 6=�g) ; (12)where al is a normalization 
onstant.The di�eren
e between the physi
al distribution PB(SljD) and the auxiliaryone P(Slj fd� 6=�g) 
orresponds to Onsager's rea
tion �eld. This 
an be evaluatedas a small 
orre
tion to the self-
onsistent equations of the physi
al distributions,expanded with respe
t to the small 
ouplings, in the 
onventional TAP approa
h forextensively 
onne
ted systems [33; 15℄. However, this di�eren
e be
omes of O(1) inintensively 
onne
ted systems, whi
h 
annot be regarded as a small perturbation,unlike the 
ase of extensively 
onne
ted systems. It is therefore diÆ
ult to derivethe TAP equations (11) dire
tly with respe
t to the physi
al distributions PB(SljD)in the 
ase of intensively 
onne
ted systems.It has been known for several 
ases [6℄ that similar equations to (11) 
an bederived within the framework of belief propagation, whi
h is another 
onvenientmathemati
al tool for 
al
ulating high dimensional distributions developed in the�eld of graphi
al models [27; 12; 2℄. A
tually, the argument used to derive theself-
onsistent equations (11), assuming lo
al tree-like stru
tures (Fig.5.1), is verysimilar in the TAP and BP frameworks. However, it should be emphasized thatunlike in the BP approa
h, the tree stru
ture in the TAP framework does notne
essarily represent the a
tual 
onne
tion ar
hite
ture but is determined throughthe weak 
orrelation assumption with respe
t to the quen
hed variables d�=1;:::;P .In this sense, the approximation used in the BP framework may be more similarto the Bethe approximation [1℄ whi
h is a naive tree approximation based on thea
tual 
onne
tivity.Variational prin
ipleSome of the other MFAs 
an also be derived from a variational extremization withrespe
t to a 
ertain fun
tional, identi�ed as the free energy [25℄. The existen
e of anexpression for the free energy is useful for studying the 
onvergen
e properties andthe performan
e of MFAs by analyzing the lands
ape of the free energy withoutdire
tly dealing with the dynami
s.Our TAP equation (11) 
an also be derived from a variational extremization ofsome 
ost fun
tion that we will identify as the free energy. One 
an easily verifythat Eqs.(11) extremize a fun
tional (TAP free energy) of the formF�fPg; fwe�g� = � PX�=1 ln"TrS e��h(Sjd�) NYl=1P(Slj fd� 6=�g)#+ Xl;� ln" XSl=�1we� (d� j Sl; fd� 6=�g)P(Slj fd� 6=�g)#
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� NXl=1 ln" XSl=�1 eFlSl PY�=1we� (d� j Sl; fd� 6=�g)# : (13)In other 
ases, the value of the free energy is linked to the distan
e betweenthe true distribution and the mean �eld one [25; 5℄. Therefore, it 
an be used as ameasure for evaluating the a

ura
y of the approximation. We have not identi�ed,so far, some distan
e whi
h is linked to the TAP free energy (13); therefore, it
urrently 
annot be linked to some performan
e measure of the approximationprovided. This makes the motive for the extremization un
lear.To gain insight into the meaning of the TAP free energy extremization wepresent an alternative derivation of the 
oupled equations, based on the identityÆ �S; bS� = extf�(�);b�(�)g( �(S)b�(bS)TrS0 �(S0)b�(S0)) ; (14)where Æ �S; bS� represents the Krone
ker tensor over all the ve
tors elements andextremization is taken over the full spa
e of fun
tions with respe
t to S and bSunder appropriate normalization 
onstraints. Using this identity, 
al
ulating thelogarithm of partition fun
tion Z(D; �) = TrSePNl=1 FlSlQP�=1 e��h(Sjd�) 
an beformulated as a variational problem� lnZ(D; �) = extf�g;fb�g(� PX�=1 ln �TrS e��h(Sjd�)��(S)�+ PX�=1 ln �TrS ��(S)b��(S)�� ln"TrS ePNl=1 FlSl PY�=1 b��(S)#) : (15)Fun
tional extremization with respe
t to S and bS leads to the solutions��(S) / ePNl=1 FlSl Y� 6=� e��h(Sjd�); b�� / e��h(Sjd�): (16)Namely, one 
an re
onstru
t true posterior distribution asPB(SjD) = ePNl=1 FlSlQP�=1 b��(S)TrS0 ePNl=1 FlS0lQP�=1 b��(S0) ; (17)after determining b��=1;:::;P from eq. (15).The 
urrent variational formulation is still general and la
ks an importantingredient of our formulation: the fa
torized dependen
e of b��(S) on the spinvariables Sl=1;:::;P . Restri
ting the test fun
tions to those of a fa
torizable formone obtains the TAP equations (11)��(S) = NYl=1P(Slj fd� 6=�g); b��(S) = NYl=1we� (d� j Sl; fd� 6=�g) ; (18)as well as the TAP free energy (13).An important question is to identify the 
hara
teristi
s of the fun
tions whi
h
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are su

essfully approximated by the 
urrent method. In the 
ase of extensively
onne
ted systems, it has been shown that the TAP approa
h provides reasonableresults when the 
orrelations among d�=1;:::;P as well as those of Sl=1;:::;N aresuÆ
iently small [14℄. However, it is still un
lear what are the ne
essary 
onditionsin the 
ase of intensively 
onne
ted systems. Interestingly, one 
an show that TAPfree energy reprodu
es the expression obtained from the repli
a method in thethermodynami
s limit, whi
h is 
onsidered as exa
t, in the 
ases of intensively
onne
ted random network [16; 34℄.4 Example - the Hop�eld modelIn 
ontrast to the 
onventional approa
h our formulation (11) 
an be applied toboth intensively and extensively 
onne
ted systems. However, the new formulationappears to be quite di�erent with respe
t to the existing analyses. Here we applythe new formulation to the Hop�eld model of asso
iative memory, showing that itreprodu
es the existing results.The reason for the 
hoi
e of the Hop�eld model is twofold. First, it is relativelysimple to analyse, and se
ond, it provides an instru
tive example showing theimportan
e of the Hamiltonian de
omposition (1), in this formulation, followingthe weak 
orrelation assumption on the quen
hed variables d�=1;:::;P . As is alreadymentioned, the Hop�eld model has a similar ar
hite
ture, in terms of 
onne
tivity,to that of the SK model. However, it will be shown later that di�erent statisti
alproperties of the quen
hed variables yield di�erent solutions to the TAP equations.Deriving the TAP equations { the new formulationConsider a Hop�eld network in whi
h P + 1 random patterns �P = f�0; : : : ; �P g,independently generated with probability P(��i = �1) = 1=2, are stored. For sim-pli
ity, we only 
onsider the system with no external �elds, where the Hamiltonianbe
omesH(Sj�P ) = PX�=0h(Sj��); (19)and h(Sj��) is given as Eq.(5).To pro
eed further, we have to spe
ify a phase to fo
us on, for instan
e,the retrieval phase with respe
t to the pattern �0, whi
h is 
hara
terized by the
onditions�0 �mN � O(1) ; ���1 �mN � O(N�1=2) ; (20)where the ve
tor m represents the expe
tation value of the dynami
al variables.Sin
e this phase strongly depends on �0, we have to deal with the 
ontributionof this pattern separately from the others. For this purpose, it is 
onvenient toassign a latent variable � for �0 and rewrite the Boltzmann distribution asPB(Sj�P ) = e��H(Sj�P )Z(�P ; �)
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= Z d�PB(�j�P )PB(Sj�P ; �); (21)wherePB ��j�P � = s N2�� e�N�22� � �(�P ; �; �)Z(�P ; �) ;PB �Sj�P ; �� = e��P��1 h(Sj��)+�PNl=1 �0l Sl�(�P ; �; �) ; (22)andZ(�P ; �) = TrS e��H(Sj�P );�(�P ; �; �) = TrS e��P��1 h(Sj��)+�PNl=1 �0l Sl : (23)For 
al
ulating Boltzmann distribution (21), we �rst employ the TAP approa
hto evaluate PB(Sj�P ; �). Then, the latent variable � 
an be determined by thesaddle point method from PB(�j�P ).For Ising spin systems, it is 
onvenient to introdu
e parameterizations of theformwe� ��� j Sl;n�� 6=�o�/ 12 (1 + bm�lSl) ;P(Sljn�� 6=�o)= 12 (1 +m�lSl) : (24)To pro
eed with the 
al
ulation of the TAP equation (11) we note that sin
e allpatterns �� 6=� are un
orrelated with the pattern ��, so are the dynami
al variablesSl whi
h are drawn from the probability distribution P(Sljf�� 6=�g); so that ea
hvariable Sl is un
orrelated with ��l . This implies that following property for theoverlaps1pN Xk 6=l ��kSk � N 0� 1pN Xk 6=l ��km�k ; 1� q�l1A ; (25)whereN (mean; varian
e) represents the normal distribution and q�l = 1N Pk 6=lm2�k;this results dire
tly from the 
entral limit theorem and holds for large N val-ues and as long as the 
onditional probability of the variables Sk is of the formP(Skjf�� 6=�g). Employing the property (25) in Eq.(11) one 
an derive the TAPequation for PB(Sj�P ; �) in the 
urrent systembm�l = �N(1� �(1� q�l))Xk 6=l ��l ��km�k ;m�l = tanh0���0l + X� 6=�;0 tanh�1 bm�l1A ; (26)where � = 1; 2; : : : ; P is the pattern index and l = 1; 2; : : : ; N is the site index.Solving these equations enables one to 
ompute (approximately), the averages mlml = TrS Sl PB(Sj�P ; �) = tanh ��0l + PX�=1 tanh�1 bm�l! ; (27)
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for all sites l = 1; 2; : : : ; N .Comparison to known resultsEqs. (26) have been derived using our formulation to the TAP approa
h, and appearto be quite di�erent from the known result [15; 17℄, whi
h determines the physi
alaverages ml dire
tly.However, one 
an show that Eqs.(26) provide the known results in the ther-modynami
 limit where N;P ! 1 with keeping � = P=N �nite. Noti
e that thes
aling assumption bm�l � O(N�1=2) implies that the auxiliary variables m�l, bm�land q�l 
an be represented using only the physi
al averages ml in this limit,q�l = 1N Xk 6=l m2�k ' q � 1N Xl=1 m2l ;m̂�l ' �N NXk=1 ��l ��kmk � �mlN(1� �(1� q)) ; (28)m�l ' ml � (1�m2l )m̂�l :In addition, the saddle point equation for �, (1=N)� lnPB(�j�P )=�� = 0, providesthe 
ondition� = �N NXl=1 �0lml; (29)whi
h is also determined using only physi
al averages ml. Substituting relations(28) and (29) into Eqs.(26), we �nally obtain the known TAP equations for theHop�eld modelml = tanh0��Xk 6=l Jlkmk � ��2(1� q)1� �(1� q)ml1A ; (30)where Jlk =PP�=0 ��l ��k , as given in [15; 17℄.Method 
omparisonTo investigate the a

ura
y of the solutions provided by the TAP equations whenapplied to the Hop�eld model, we have numeri
ally evaluated the overlap M =(PNl=1 �0l ml)=N by solving Eq.(30) for systems of size N = 10000 storing P = 500patterns (� = 0:05) with varying temperature T from 0:4 to 0:54.For 
omparison, we evaluated the same quantity using three other di�erentmethods:1. Naive MFA - in this 
ase the physi
al averages ml are represented asml = tanh0��Xk 6=l Jlkmk1A ; (31)disregarding Onsager's rea
tion terms.
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62 Yoshiyuki Kabashima and David Saad(a) (b)fSk 6=lg �� Sl Sk Jlk SlFigure 5.2The lo
al tree-like ar
hite
ture assumed at ea
h spin site in the TAP approa
h to (a)the Hop�eld model and (b) the SK model.2. TAP equations for the SK model [33℄ - whi
h are of the formml = tanh0��Xk 6=l Jlkmk �Xk 6=l �2J2lk(1�m2k)ml1A ; (32)and are derived under an assumption that 
ouplings Jkl are un
orrelated with oneanother. In the 
urrent 
ontext, this implies that Onsager's rea
tion is eliminatedina

urately by employing the lo
al tree approximation depi
ted in Fig.5.2 (b),while the 
orre
t TAP approa
h (30) is derived by assuming the more appropriatetree ar
hite
ture shown in Fig.5.2 (a).3. The repli
a method - whi
h under the repli
a symmetry ansatz provides exa
tresults in the thermodynami
 limit N !1 (the AT stability is not broken in thisphase for the parameter region 
onsidered � = 0:05).Data obtained from 100 experiments by solving Eqs.(30), (31) and (32) itera-tively, together with the solution obtained from the repli
a symmetri
 theory, areshown in Fig.5.3. In solving the equations iteratively we set the initial state to �0in order to verify that the solution obtained is within the 
orre
t phase. Typi
allyO(10) iterations were suÆ
ient for 
onvergen
e in most 
ases, whi
h implies that anapproximate 
al
ulation 
an be performed in O(N2) time steps while O(2N ) 
om-putation is ne
essary for exa
t 
al
ulation (ex
ept in the vi
inity of the spinodalpoint T ' 0:54).From Fig.5.3, it is 
lear that the naive MFA yields the largest overlap overall the temperature range 
onsidered. This is be
ause of the Onsager's rea
tion�elds, whi
h are not 
ompensated for in this 
ase, and stabilize the retrieval state.This e�e
t be
omes stronger for higher temperatures as the rea
tion �elds areproportional to thermal 
u
tuations. Compared to the naive MFA result, the SK'sTAP equations provides smaller overlaps due to the lo
al suppression of the rea
tionterm assuming the tree-like ar
hite
ture at ea
h spin as shown in Fig. 5.2(b).However, the tree ar
hite
ture used is not appropriate for the 
urrent systemresulting in some residual 
ontribution from the rea
tion terms.Finally, we present the result of the 
orre
t TAP approa
h, whi
h 
an also bederived from our formulation of the problem. Of 
ourse, this approa
h is also no
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Figure 5.3The overlap M = (PNl=1 �0lml)=N 
al
ulated from several methods for a system of sizeN = 10000 storing P = 500 examples (� = 0:05). Ea
h marker (�: the naive MFA, �:the TAP solution to the SK model, +: using the 
orre
t TAP equation) indi
ates theaverage over 100 experiments. Error bars have been added only for the 
orre
t TAP datafor 
larity, the error bars are similar for the other 
ases. The dotted 
urve represents therepli
a symmetri
 solution, whi
h is 
onsidered exa
t in this 
ase for N !1.more than an approximation for any �nite system. However, the data in Fig. 5.3indi
ates that the solutions obtained by iterating Eq.(30) are highly similar to thepredi
tions by the repli
a method, per
eived to be exa
t for N !1, even for �nitesystems of N = 10000. This implies that one 
an 
onstru
t an eÆ
ient algorithmfor 
omputing averages (for a spe
i�
 phase) that runs in polynomial time (in thelimit N ! 1) using the TAP approa
h, as 
laimed in [23℄. At the same time, theresults obtained from the TAP equations derived for the SK model suggest that the
orre
t prior knowledge about the underlying statisti
al stru
ture (in the quen
hedvariables) is important for making full use of the remarkable properties of the TAPapproa
h.5 SummaryIn summary, we have des
ribed a formulation of the TAP approa
h, whi
h 
anbe used for intensively 
onne
ted systems, based on the 
avity method. The givenformulation appears to be quite di�erent from the 
onventional one, derived inthe 
ase of extensively 
onne
ted systems. However, we have demonstrated thatthe known result 
an be reprodu
ed from our formulation in the limit of extensive
onne
tivity by examining the Hop�eld model of asso
iative memory. This impliesthat our new formulation provides a more general s
heme 
overing both intensively
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and extensive 
onne
ted systems. In addition, we have showed via numeri
alexperiments, that the 
orre
t prior knowledge about the underlying statisti
alstru
ture in the quen
hed variables, representing the observed data in many 
asesof Bayesian statisti
s, is important for obtaining high quality approximation usingthe TAP approa
h.Future dire
tions of the 
urrent resear
h in
lude an alternative derivation ofour formulation based on the methods of Plefka [28℄ and of Parisi-Potters [26; 24℄as well as how the treatment of phases with repli
a symmetry breaking [15℄ in the
urrent approa
h; both tasks are are interesting and 
hallenging.A
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