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5 The TAP Approach to Intensive and
Extensive Connectivity Systems

Yoshiyuki Kabashima and David Saad

The Thouless-Anderson-Palmer (TAP) approach was originally de-
veloped for analysing the Sherrington-Kirkpatrick model in the study
of spin glass models and has been employed since then mainly in
the context of extensively connected systems whereby each dynami-
cal variable interacts weakly with the others. Recently, we extended
this method for handling general intensively connected systems where
each variable has only O(1) connections characterised by strong cou-
plings. However, the new formulation looks quite different with re-
spect to existing analyses and it is only natural to question whether
it actually reproduces known results for systems of extensive connec-
tivity. In this chapter, we apply our formulation of the TAP approach
to an extensively connected system, the Hopfield associative memory
model, showing that it produces identical results to those obtained
by the conventional formulation.

1 Introduction

The Bayesian approach has been successfully and efficiently employed in various
inference problems, especially in cases where the data set provided is small with
respect to the number of parameters to be determined. Some of the more successful
applications have been in the areas of neural networks [11; 22], image restoration
[13; 21], error correcting codes [29; 32; 20; 12; 6; 7; 8; 9; 16; 34] etc. There
is growing interest in these methods within the physics community, leading to
the formation of links between the Bayesian approach and methods that have
developed independently in the various sub-disciplines, and in particular in the
field of statistical physics [4],

A major difficulty associated with the application of Bayesian methods is the
huge computational cost when the number of dynamical variables is large. Since
exact computation becomes practically infeasible in such cases, it is inevitable to
resort to approximations. One of the most commonly used approximation methods
is the Monte Carlo sampling technique, in which the true posterior distribution
is approximated by a sampling procedure generated by the appropriate stochastic
process. However, the necessary sample size may also prove problematic rendering
the method impractical. The quest for more efficient approximations, which are
practicable in a broad range of scenarios, is now an important research a variety of
research fields.

The family of mean field approximations (MFA) represent one of the most
promising approaches. The spirit of the MFA is simple; to approximate a true
intractable distribution with a tractable one, which is factorizable with respect to
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dynamical variables. Since the factorized model can usually be calculated quite
easily, mostly by a deterministic algorithm, the required computation is usually
significantly less than that of sampling techniques. Mean field approaches have been
developed within the physics community and include a large number of variations,
depending on the objectives of the calculation and the properties of the system
examined. As the similarity between Bayesian statistics and statistical physics has
been identified [10; 35], and the benefits of using MFA methods has been widely
recognized, they have been employed in a variety of inference problems formulated
within the Bayesian framework. One of the most popular and well known approach
is the Thouless-Anderson-Palmer (TAP) approximation [33], which will be the focus
of the current chapter.

The TAP approach has been originated in the physics community as a refine-
ment of the mean field approximation in analyzing a specific type of disordered
systems, where dynamical variables are interacting with each other via randomly
predetermined (quenched) couplings. In contrast to the replica method [15], the
main approach for analysing disordered systems where one obtains expressions for
the typical macroscopic properties averaged over the quenched randomness, the
TAP approach enables one to compute thermal averages of the dynamical variables
for a given realization of the randomness.

Originally, the TAP approach was introduced for studying the Sherrington-
Kirkpatrick (SK) model [30] of spin glass; numerous experiments validated the
results obtained by this approach, showing that it reproduces results predicted
by the replica method, which are considered exact in the thermodynamic limit
[18]. Later on, the TAP approach was employed in other problems of a similar
nature, such as the analysis of the Hopfield model [15; 17], the perceptron capacity
calculation [14] etc, where it again showed consistency with the predictions obtained
by the replica method.

These studies point to the potential use of the TAP approach as a practical
algorithm which provides exact thermal averages of quantities depending on the
dynamical variables in general disordered systems; this can be carried out in
in practical time scales in spite of the fact that the averaging itself might be
computationally hard. It is somewhat surprising that the potential of the TAP
approach had not been fully appreciated until 1996 when Opper and Winther [23]
employed it as a learning algorithm for determining the perceptron weights, in its
role as a Bayesian classifier. Using the TAP approach as an efficient algorithm
within the Bayesian approach methods is highly promising and has been drawing
much attention in recent years.

Historically, the TAP approach has been developed mainly in the context of
extensively connected systems where each dynamical variable interacts weakly with
all the others. Recently, we extended this method to handle general intensively
connected systems where each variable has only O(1) connections characterized
by strong couplings [6]. However, the relation between the new formulation and
the existing analyses (for extensively connected systems) is unclear; and raises
a question about its ability to reproduce known results obtained for systems of
extensive connectivity. The aim of the current article is to bridge the two approaches
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and to answer this question.

For this purpose, we will apply the new formulation to the Hopfield model
of associative memory, a non-trivial example of an extensively connected system,
showing that it reproduces the known results obtained from conventional methods
in the limit of extensive connectivity. This implies that the new approach provides
a more general framework that covers both intensively and extensively connected
systems.

This chapter is organized as follows: In the next section, we introduce the general
framework of the problem considered. In section 3, we provide a general formulation
of the TAP approach, which can be used for both intensively and extensively
connected systems. In this formulation, we derive self-consistent equations between
auxiliary distributions; the derivation is based on a tree approximation, which is
considered as a generalization of the conventional cavity method [15]. It is also shown
that the same equations can be derived from a variational principle with respect
to a certain functional. In section 4, the new formulation is applied to investigate
the Hopfield model of associative memory. We compare the results obtained using
several methods, and discuss the conditions under which the TAP approach provides
a good approximation. The final section is devoted to summarising the results and
for suggesting future research directions.

2 The general framework

The approach presented is applicable to a variety of systems including variables
of both binary and continuous representations. However, for simplicity and trans-
parency, we will restrict the analysis presented here to systems comprising N Ising
spins Si=1,....n € [—1,+1]. We represent the Hamiltonian of this system by
P

H(SID) = ho(S) + ) h(S|d,), (1)

p=1
where D = {d,=1,.. p} are the predetermined (or quenched, fixed) random variables
whose correlations are supposed to be sufficiently weak. Within the statistical
physics framework, this representation of the Hamiltonian leads to the following
Boltzmann distribution

e BH(SID)

Pr(S|D,B) = “ZD.5) (2)

where Z(D,f) = TrSe_BH(S‘D) is termed the partition function. Then, our
problem may be defined as the computation of the averages

ml:TSr Sl PB(S|D,B)/ (l:]-a,N)a (3)
in practical time scales.

Many problems considered in statistical physics of disordered systems are
represented in this form by choosing a specific expression for the Hamiltonian. For
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example, the SK model is obtained by setting the elements of the Hamiltonian (1) to
= _hZS h(S[Jijy) = = J (i) SiS;, (4)

where h,.J > 0 and the components of .J are taken from a normal distribution of
zero mean and J? /N variance, J;;y ~ N(0,.J?/N). The Hopfield model, which will
be at the focus of the current analysis, corresponds to the case

:—hZfO o h(S|en) = 2(5%5)2 5)

P

where h > 0 is a positive field and £€"=% " are uncorrelated binary random
patterns generated according to distribution P(£¥ = +1) = 1/2, Vi. Notice that
the Hamiltonian of the Hopfield model seemingly becomes similar to that of the
SK model by first defining the couplings as Ji;;y = (1/N) 25:1 §'&5 (1 - 6i5) and
then taking the gauge transformation &'S; — Si, Jii;y €€} — Jiij). However, the
assumption about the weak correlations among the quenched variables d,,, which
are the couplings J;;) in the SK model and the patterns £ in the Hopﬁeld model,
prevents us from moving freely between the two models, as it should obey the
restriction of the Hamiltonian decomposition (1).

Although we have presented the model within the framework of statistical
physics and used the corresponding terminology, the same framework is applicable
to a wide range of more general models in the framework of Bayesian statistics.
Considering general statistical models of the form

Po(S) ~ e S P(d|S) ~ e HSID), (6)
one can easily link the Boltzmann distribution (2) to posterior distribution of the

parameter S having observed the data set D

e B SITIE e nSidn) Py (S) [TV, P(d,|S)

n=

Z(D, B) N P(D)

Pp(SID,p) = (7)
where P(D) = TrgPo(S) [1,_, P(d,lS).

One might feel that the Ising spin assumption on the parameter S is rather ar-
tificial within the framework of Bayesian statistics. However, one can find examples
which naturally satisfy this assumption, for instance in the area of error-correcting
codes. Tt has been shown [31; 32; 7; 8], that the decoding problem in a family of
error-correcting codes, termed low-density parity check codes [3; 12], may be formu-
lated in the current framework by setting

Zsl, WS|Ju) = =TS,y Sy s (8)

where the addltlve field F' represents prior knowledge about the possibly sparse
message and J, is a coupling indicator used in examining the parity check
conditions among the connected message bits S;,,,...,S;, ,, represented by
Ising spins. As is shown in [32], the optimal parameter § is determined by the
channel noise, taking the value of Nishimori’s temperature [19] which becomes
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B =(1/2)In(P(+1]| + 1)/P(+1| — 1)) for the binary symmetric channel. In the next
chapter we will show how the TAP approach may be employed as a decoding al-
gorithm in this scenario and will analyse its performance and its relation to the
commonly used Belief Propagation (BP) algorithm [2].

3 The TAP approach

We now introduce a general formulation of the TAP approach to the system
characterized by a Hamiltonian of the form (1). Conventionally, there have been
three approaches for deriving the same self-consistent equations known as the TAP
equations. The first approach is the cavity method [33; 15]. This is based on a
correction of the naive MFA by subtracting the self-induced field, referred to as the
Onsager’s reaction term, in a set of self-consistent equations. The second approach
is Plefka’s expansion [28], which first evaluates the free energy using a Taylor
expansion with respect to random couplings, and then derives the TAP equations
from a variational condition imposed on the approximated free energy. The final one
is the Parisi-Potters’s heuristics [26; 24], which is another strategy to evaluate the
free energy, based on a strong assumption that the contribution from the Onsager’s
reaction field in the free energy is independent of the prior employed.

The formulation that we will introduce below can be considered as a gener-
alization of the cavity method [6]. However, the strategy used in our approach is
not based on refining the result obtained by the naive MFA, i.e., by evaluating
Onsager’s reaction terms via an expansion with respect to the small couplings; this
strategy cannot be extended to intensively connected systems as the influence of
each coupling is significant and its removal cannot be regarded as a correction.
Instead, we introduce auxiliary distributions to eliminate the self-induced fields,
assuming a local tree-like structure representing the interaction at each spin site;
we then determine the distributions in a self-consistent way by iteratively solving
the equations obtained.

Cavity method

Given a Hamiltonian of the form (1), we start our formulation by assigning a
Boltzmann weight to each quenched variable (or data) d,—1,... p as

e Bh(Sld,). (9)

The remaining term will be restricted to the case of a factorizable prior
e—BhO(S) — 62?;1 FlSl’ (10)

as is appropriate in many of the relevant cases.
Furthermore, we assume the following three properties for the objective system;
these are required for constructing a valid MFA.

1. The Boltzmann distribution (2) can be approximated by a factorizable distribu-
tion with respect to dynamical variables S;—i .. n.

2. The influence of the data set D on a specific site S; is also factorizable with
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Sk~ P(Skl{dvzu})

Weff (dﬂ ‘Slz {dV7é#})
S

Figure 5.1

The tree-like architecture assumed locally at each spin site. White circles represent the
dynamical variables .S; while black circles stand for the quenched variables dj,. It should
be emphasized that this architecture does not represent the actual connectivity but
the decomposition of the Hamiltonian in the right hand side of Eq.(1), following the
weak correlation assumption on the quenched variables d,—1 ... p. Dynamical variables

{Sks1} which are connected to different quenched variables are considered as components
of different systems.

respect to the quenched variables d,—: ... p.

3. The secondary contribution of a single variable S; or d,,, other than the one
estimated directly, is small and can be isolated. Therefore, at each spin S;, we
can assume a tree-like architecture, depicted in Fig.5.1 describing the influence of
neighboring spins on a particular site.

These assumptions are used to provide the TAP equations

weff(du | Si,{dv2u}) = STr e_Bh(S‘d”) HP(Sk‘ {dvzn}),
{Sk1} kotl

PSHduru ) =au 5 [ weg (dy | St {doss}), (11)
veM(l)u
where a,; is a normalization factor.

Notice that the first equation evaluates the average influence of the newly added
element d,, to S; when Sj;»; obeys a posterior distribution determined by the “leave-
one-out” data set {d,,}. This represents the effective field wag (d, | S, {dv2.})
produced by the data d,, in which the self-induced contribution from S; and
d, is eliminated by assuming the tree-like description for each interaction; this
corresponds to the cavity field in the conventional TAP approach [15]. In addition,
note that the second equation is similar to the Bayes formula. This indicates that
the stack of the cavity fields determines the posterior distribution P(S;| {d,,}) on
the basis of the leave-one-out data set {d,-, }. The variables wug (d, | Si,{dv2.})
or P(Si|{dv+,}) do not directly correspond to the true posterior distribution
although they facilitate the formulation of equations (11), thus providing a closed
set of self-consistent which can be solved iteratively. By taking the full set of the
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cavity fields, determined self-consistently by (11), into account, one can compute
the approximated marginal posterior

PB(SI‘D) = aleFlSl H Weaff (du | Sl: {dV;éu})a (12)
REM(I)

where q; is a normalization constant.

The difference between the physical distribution Pg(S;|D) and the auxiliary
one P(S)| {dvx,}) corresponds to Onsager’s reaction field. This can be evaluated
as a small correction to the self-consistent equations of the physical distributions,
expanded with respect to the small couplings, in the conventional TAP approach for
extensively connected systems [33; 15]. However, this difference becomes of O(1) in
intensively connected systems, which cannot be regarded as a small perturbation,
unlike the case of extensively connected systems. It is therefore difficult to derive
the TAP equations (11) directly with respect to the physical distributions Pg(S;|D)
in the case of intensively connected systems.

It has been known for several cases [6] that similar equations to (11) can be
derived within the framework of belief propagation, which is another convenient
mathematical tool for calculating high dimensional distributions developed in the
field of graphical models [27; 12; 2]. Actually, the argument used to derive the
self-consistent equations (11), assuming local tree-like structures (Fig.5.1), is very
similar in the TAP and BP frameworks. However, it should be emphasized that
unlike in the BP approach, the tree structure in the TAP framework does not
necessarily represent the actual connection architecture but is determined through
the weak correlation assumption with respect to the quenched variables d,— ... p.
In this sense, the approximation used in the BP framework may be more similar
to the Bethe approximation [1] which is a naive tree approximation based on the
actual connectivity.

Variational principle

Some of the other MFAs can also be derived from a variational extremization with
respect to a certain functional, identified as the free energy [25]. The existence of an
expression for the free energy is useful for studying the convergence properties and
the performance of MFAs by analyzing the landscape of the free energy without
directly dealing with the dynamics.

Our TAP equation (11) can also be derived from a variational extremization of
some cost function that we will identify as the free energy. One can easily verify
that Eqs.(11) extremize a functional (TAP free energy) of the form

N
TSrefﬁh(S‘du) H'P(Sl‘ {duiu})‘|
=1

F| (P} fwo)| = - Z;ln

+ Y In l > wep(dy | Sla{dV¢u})P(Sl|{dV¢u})]
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N P
- In | > e T weg (du | Sy {durn}) | - (13)
=1 Si=+1 p=1

In other cases, the value of the free energy is linked to the distance between
the true distribution and the mean field one [25; 5]. Therefore, it can be used as a
measure for evaluating the accuracy of the approximation. We have not identified,
so far, some distance which is linked to the TAP free energy (13); therefore, it
currently cannot be linked to some performance measure of the approximation
provided. This makes the motive for the extremization unclear.

To gain insight into the meaning of the TAP free energy extremization we
present, an alternative derivation of the coupled equations, based on the identity

- S)A(S
5 (s, s) S QG (14)
{p()0)} | Trgr p(S")p(S")
where § (S , ,§) represents the Kronecker tensor over all the vectors elements and

extremization is taken over the full space of functions with respect to S and S
under appropriate normalization constraints. Using this identity, calculating the
logarithm of partition function Z(D, ) = TrSeZ{Ll s Hfj:l e=8h(S1dw) can be
formulated as a variational problem

P
—InZ(D,B) = ext {—Zln {ifgre_ﬁh(Sd“)pu(S)}
1

{r}{P}
}. (15

Functional extremization with respect to S and S leads to the solutions

pu(S) ox eXita Fisi II e BrSId) 5 o e BR(SId), (16)
vFER
Namely, one can reconstruct true posterior distribution as

e 15 T u(S)
Trg eXi% PS[ID (8"

after determining p,—1,.. p from eq. (15).
The current variational formulation is still general and lacks an important

P
4-;m@mmmﬂ

In

P
’]érerL Fi S, H ﬁu(s)

p=1

Pu(SID) = (17)

ingredient of our formulation: the factorized dependence of p,(S) on the spin
variables S;—1 . p. Restricting the test functions to those of a factorizable form
one obtains the TAP equations (11)

N N
pu(S) = [T P(SiH{duzi}).  Pu(S) =[] wegt (dy | St {duzu}) (18)
=1 =1

as well as the TAP free energy (13).
An important question is to identify the characteristics of the functions which
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are successfully approximated by the current method. In the case of extensively
connected systems, it has been shown that the TAP approach provides reasonable
results when the correlations among d,=:,... p as well as those of S;= .~ are
sufficiently small [14]. However, it is still unclear what are the necessary conditions
in the case of intensively connected systems. Interestingly, one can show that TAP
free energy reproduces the expression obtained from the replica method in the
thermodynamics limit, which is considered as exact, in the cases of intensively
connected random network [16; 34].

4 Example - the Hopfield model

In contrast to the conventional approach our formulation (11) can be applied to
both intensively and extensively connected systems. However, the new formulation
appears to be quite different with respect to the existing analyses. Here we apply
the new formulation to the Hopfield model of associative memory, showing that it
reproduces the existing results.

The reason for the choice of the Hopfield model is twofold. First, it is relatively
simple to analyse, and second, it provides an instructive example showing the
importance of the Hamiltonian decomposition (1), in this formulation, following
the weak correlation assumption on the quenched variables d,=; ... p. As is already
mentioned, the Hopfield model has a similar architecture, in terms of connectivity,
to that of the SK model. However, it will be shown later that different statistical
properties of the quenched variables yield different solutions to the TAP equations.

Deriving the TAP equations — the new formulation

Consider a Hopfield network in which P + 1 random patterns ¢¥ = {£°,... ,£P},
independently generated with probability P (¢! = £1) = 1/2, are stored. For sim-
plicity, we only consider the system with no external fields, where the Hamiltonian

becomes
P

H(SIE™) =D h(SIEn), (19)
n=0
and h(S[€") is given as Eq.(5).
To proceed further, we have to specify a phase to focus on, for instance,
the retrieval phase with respect to the pattern &°, which is characterized by the

conditions
0. u21
S o, ST o, (20)

where the vector m represents the expectation value of the dynamical variables.
Since this phase strongly depends on ¢Y, we have to deal with the contribution
of this pattern separately from the others. For this purpose, it is convenient to
assign a latent variable ¢ for ¢% and rewrite the Boltzmann distribution as
e—BH(S|E7)

P —
PaSIED = ey



MIT Press Neur7XA/2001/03/02:17:13 Page 60

60 Yoshiyuki Kabashima and David Saad
= [ d6PatolePa(SIE. 0). (21)
where
N _nxe 274,58
P e RS 2 PR S L
Po L) = \amge " X Z@m)
b o Bz h(SIEM)+6 L, &5
P (SIE7, = — , 22
7 (SIE7.9) =(E7. 9, 5) >
and
2P, 6, 8) = Tre P MSIEN+e XL &ls1 (23)

S
For calculating Boltzmann distribution (21), we first employ the TAP approach
to evaluate Pp(S[¢F, ¢). Then, the latent variable ¢ can be determined by the
saddle point method from Pg(¢[¢F).
For Ising spin systems, it is convenient to introduce parameterizations of the
form

v 1 .
Wafr (SM ‘ Sla {é. 7é‘u}) X 5 (1 + mHlSl) )
v 1
P(Si{&7"}) =5 (1+mus). (24)
To proceed with the calculation of the TAP equation (11) we note that since all
patterns £”7* are uncorrelated with the pattern £“, so are the dynamical variables

S; which are drawn from the probability distribution P(S;[{£"7*}); so that each
variable S; is uncorrelated with ¢'. This implies that following property for the

overlaps
1 I 1 I
ﬁzngkNN ﬁzgkmuk: l_qu ) (25)
k1 k#l

where NV (mean, variance) represents the normal distribution and ¢,; = % Zk# mik;
this results directly from the central limit theorem and holds for large N val-
ues and as long as the conditional probability of the variables Sy is of the form
P(Sk|{€"7"}). Employing the property (25) in Eq.(11) one can derive the TAP
equation for Pg(S|¢F, ¢) in the current system

~ B iy
am § Emuks
! N(l—ﬂ(l—quz))gl R
myu = tanh | ¢ + Z tanh 7, |, (26)
v#u,0

where u = 1,2,..., P is the pattern index and [ = 1,2,..., N is the site index.
Solving these equations enables one to compute (approximately), the averages m,

P
mi=Tr 5 Pu(SIE",0) = tanh <¢§? +3 tanh™! mul> , (27)

p=1
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for all sites [ =1,2,...,N.

Comparison to known results

Egs. (26) have been derived using our formulation to the TAP approach, and appear
to be quite different from the known result [15; 17], which determines the physical
averages m; directly.

However, one can show that Eqs.(26) provide the known results in the ther-
modynamic limit where N, P — oo with keeping « = P/N finite. Notice that the
scaling assumption 7, ~ O(N~'/2) implies that the auxiliary variables m,;,
and ¢, can be represented using only the physical averages m; in this limit,

]' 2 — ]' 2
o= Emha= 1w,
k#£l 1=1
B & By
g o~ =Y rmy - —t 28
I DI E L (e =) 2%)
My ml—(l—mf)mul.

In addition, the saddle point equation for ¢, (1/N)d1InPg(¢|cF)/0¢ = 0, provides
the condition

g &
¢=x E &m, (29)
=1

which is also determined using only physical averages m;. Substituting relations
(28) and (29) into Eqs.(26), we finally obtain the known TAP equations for the
Hopfield model

af?(1-q)

g™ .

m; = tanh | Z Jiemy —
k£l

where Jj, = 25:0 ey, as given in [15; 17].
Method comparison

To investigate the accuracy of the solutions provided by the TAP equations when
applied to the Hopfield model, we have numerically evaluated the overlap M =
(Zl]\il &'my) /N by solving Eq.(30) for systems of size N = 10000 storing P = 500
patterns (o = 0.05) with varying temperature T' from 0.4 to 0.54.

For comparison, we evaluated the same quantity using three other different
methods:
1. Naive MFA - in this case the physical averages m; are represented as

my = tanh | 3 Z Jiemyg |, (31)
kAl

disregarding Onsager’s reaction terms.
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(a) (b)
S
Jik
S

Figure 5.2
The local tree-like architecture assumed at each spin site in the TAP approach to (a)
the Hopfield model and (b) the SK model.

2. TAP equations for the SK model [33] - which are of the form

my; = tanh | 3 Z Jipmy — Z BQJZQk(l — mi)ml , (32)
kL kL

and are derived under an assumption that couplings .Ji; are uncorrelated with one
another. In the current context, this implies that Onsager’s reaction is eliminated
inaccurately by employing the local tree approximation depicted in Fig.5.2 (b),
while the correct TAP approach (30) is derived by assuming the more appropriate
tree architecture shown in Fig.5.2 (a).

3. The replica method - which under the replica symmetry ansatz provides exact
results in the thermodynamic limit N — oo (the AT stability is not broken in this
phase for the parameter region considered o = 0.05).

Data obtained from 100 experiments by solving Eqs.(30), (31) and (32) itera-
tively, together with the solution obtained from the replica symmetric theory, are
shown in Fig.5.3. In solving the equations iteratively we set the initial state to &0
in order to verify that the solution obtained is within the correct phase. Typically
0O(10) iterations were sufficient for convergence in most cases, which implies that an
approximate calculation can be performed in O(N?) time steps while O(2) com-
putation is necessary for exact calculation (except in the vicinity of the spinodal
point T ~ 0.54).

From Fig.5.3, it is clear that the naive MFA yields the largest overlap over
all the temperature range considered. This is because of the Onsager’s reaction
fields, which are not compensated for in this case, and stabilize the retrieval state.
This effect becomes stronger for higher temperatures as the reaction fields are
proportional to thermal fluctuations. Compared to the naive MFA result, the SK’s
TAP equations provides smaller overlaps due to the local suppression of the reaction
term assuming the tree-like architecture at each spin as shown in Fig. 5.2(b).
However, the tree architecture used is not appropriate for the current system
resulting in some residual contribution from the reaction terms.

Finally, we present the result of the correct TAP approach, which can also be
derived from our formulation of the problem. Of course, this approach is also no
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Figure 5.3

The overlap M = (3%, €m;)/N calculated from several methods for a system of size

N = 10000 storing P = 500 examples (o = 0.05). Each marker (x: the naive MFA, x:
the TAP solution to the SK model, +: using the correct TAP equation) indicates the
average over 100 experiments. Error bars have been added only for the correct TAP data
for clarity, the error bars are similar for the other cases. The dotted curve represents the
replica symmetric solution, which is considered exact in this case for N — oco.

more than an approximation for any finite system. However, the data in Fig. 5.3
indicates that the solutions obtained by iterating Eq.(30) are highly similar to the
predictions by the replica method, perceived to be exact for N — oo, even for finite
systems of N = 10000. This implies that one can construct an efficient algorithm
for computing averages (for a specific phase) that runs in polynomial time (in the
limit N — oo) using the TAP approach, as claimed in [23]. At the same time, the
results obtained from the TAP equations derived for the SK model suggest that the
correct prior knowledge about the underlying statistical structure (in the quenched
variables) is important for making full use of the remarkable properties of the TAP
approach.

5 Summary

In summary, we have described a formulation of the TAP approach, which can
be used for intensively connected systems, based on the cavity method. The given
formulation appears to be quite different from the conventional one, derived in
the case of extensively connected systems. However, we have demonstrated that
the known result can be reproduced from our formulation in the limit of extensive
connectivity by examining the Hopfield model of associative memory. This implies
that our new formulation provides a more general scheme covering both intensively
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and extensive connected systems. In addition, we have showed via numerical
experiments, that the correct prior knowledge about the underlying statistical
structure in the quenched variables, representing the observed data in many cases
of Bayesian statistics, is important for obtaining high quality approximation using
the TAP approach.

Future directions of the current research include an alternative derivation of
our formulation based on the methods of Plefka [28] and of Parisi-Potters [26; 24]
as well as how the treatment of phases with replica symmetry breaking [15] in the
current approach; both tasks are are interesting and challenging.
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