
5 The TAP Approah to Intensive andExtensive Connetivity SystemsYoshiyuki Kabashima and David SaadThe Thouless-Anderson-Palmer (TAP) approah was originally de-veloped for analysing the Sherrington-Kirkpatrik model in the studyof spin glass models and has been employed sine then mainly inthe ontext of extensively onneted systems whereby eah dynami-al variable interats weakly with the others. Reently, we extendedthis method for handling general intensively onneted systems whereeah variable has only O(1) onnetions haraterised by strong ou-plings. However, the new formulation looks quite di�erent with re-spet to existing analyses and it is only natural to question whetherit atually reprodues known results for systems of extensive onne-tivity. In this hapter, we apply our formulation of the TAP approahto an extensively onneted system, the Hop�eld assoiative memorymodel, showing that it produes idential results to those obtainedby the onventional formulation.1 IntrodutionThe Bayesian approah has been suessfully and eÆiently employed in variousinferene problems, espeially in ases where the data set provided is small withrespet to the number of parameters to be determined. Some of the more suessfulappliations have been in the areas of neural networks [11; 22℄, image restoration[13; 21℄, error orreting odes [29; 32; 20; 12; 6; 7; 8; 9; 16; 34℄ et. Thereis growing interest in these methods within the physis ommunity, leading tothe formation of links between the Bayesian approah and methods that havedeveloped independently in the various sub-disiplines, and in partiular in the�eld of statistial physis [4℄,A major diÆulty assoiated with the appliation of Bayesian methods is thehuge omputational ost when the number of dynamial variables is large. Sineexat omputation beomes pratially infeasible in suh ases, it is inevitable toresort to approximations. One of the most ommonly used approximation methodsis the Monte Carlo sampling tehnique, in whih the true posterior distributionis approximated by a sampling proedure generated by the appropriate stohastiproess. However, the neessary sample size may also prove problemati renderingthe method impratial. The quest for more eÆient approximations, whih arepratiable in a broad range of senarios, is now an important researh a variety ofresearh �elds.The family of mean �eld approximations (MFA) represent one of the mostpromising approahes. The spirit of the MFA is simple; to approximate a trueintratable distribution with a tratable one, whih is fatorizable with respet to
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52 Yoshiyuki Kabashima and David Saad
dynamial variables. Sine the fatorized model an usually be alulated quiteeasily, mostly by a deterministi algorithm, the required omputation is usuallysigni�antly less than that of sampling tehniques. Mean �eld approahes have beendeveloped within the physis ommunity and inlude a large number of variations,depending on the objetives of the alulation and the properties of the systemexamined. As the similarity between Bayesian statistis and statistial physis hasbeen identi�ed [10; 35℄, and the bene�ts of using MFA methods has been widelyreognized, they have been employed in a variety of inferene problems formulatedwithin the Bayesian framework. One of the most popular and well known approahis the Thouless-Anderson-Palmer (TAP) approximation [33℄, whih will be the fousof the urrent hapter.The TAP approah has been originated in the physis ommunity as a re�ne-ment of the mean �eld approximation in analyzing a spei� type of disorderedsystems, where dynamial variables are interating with eah other via randomlypredetermined (quenhed) ouplings. In ontrast to the replia method [15℄, themain approah for analysing disordered systems where one obtains expressions forthe typial marosopi properties averaged over the quenhed randomness, theTAP approah enables one to ompute thermal averages of the dynamial variablesfor a given realization of the randomness.Originally, the TAP approah was introdued for studying the Sherrington-Kirkpatrik (SK) model [30℄ of spin glass; numerous experiments validated theresults obtained by this approah, showing that it reprodues results preditedby the replia method, whih are onsidered exat in the thermodynami limit[18℄. Later on, the TAP approah was employed in other problems of a similarnature, suh as the analysis of the Hop�eld model [15; 17℄, the pereptron apaityalulation [14℄ et, where it again showed onsisteny with the preditions obtainedby the replia method.These studies point to the potential use of the TAP approah as a pratialalgorithm whih provides exat thermal averages of quantities depending on thedynamial variables in general disordered systems; this an be arried out inin pratial time sales in spite of the fat that the averaging itself might beomputationally hard. It is somewhat surprising that the potential of the TAPapproah had not been fully appreiated until 1996 when Opper and Winther [23℄employed it as a learning algorithm for determining the pereptron weights, in itsrole as a Bayesian lassi�er. Using the TAP approah as an eÆient algorithmwithin the Bayesian approah methods is highly promising and has been drawingmuh attention in reent years.Historially, the TAP approah has been developed mainly in the ontext ofextensively onneted systems where eah dynamial variable interats weakly withall the others. Reently, we extended this method to handle general intensivelyonneted systems where eah variable has only O(1) onnetions haraterizedby strong ouplings [6℄. However, the relation between the new formulation andthe existing analyses (for extensively onneted systems) is unlear; and raisesa question about its ability to reprodue known results obtained for systems ofextensive onnetivity. The aim of the urrent artile is to bridge the two approahes
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The TAP approah to intensive/extensive systems 53
and to answer this question.For this purpose, we will apply the new formulation to the Hop�eld modelof assoiative memory, a non-trivial example of an extensively onneted system,showing that it reprodues the known results obtained from onventional methodsin the limit of extensive onnetivity. This implies that the new approah providesa more general framework that overs both intensively and extensively onnetedsystems.This hapter is organized as follows: In the next setion, we introdue the generalframework of the problem onsidered. In setion 3, we provide a general formulationof the TAP approah, whih an be used for both intensively and extensivelyonneted systems. In this formulation, we derive self-onsistent equations betweenauxiliary distributions; the derivation is based on a tree approximation, whih isonsidered as a generalization of the onventional avity method [15℄. It is also shownthat the same equations an be derived from a variational priniple with respetto a ertain funtional. In setion 4, the new formulation is applied to investigatethe Hop�eld model of assoiative memory. We ompare the results obtained usingseveral methods, and disuss the onditions under whih the TAP approah providesa good approximation. The �nal setion is devoted to summarising the results andfor suggesting future researh diretions.2 The general frameworkThe approah presented is appliable to a variety of systems inluding variablesof both binary and ontinuous representations. However, for simpliity and trans-pareny, we will restrit the analysis presented here to systems omprising N Isingspins Si=1;:::;N 2 [�1;+1℄. We represent the Hamiltonian of this system byH(SjD) = h0(S) + PX�=1h(Sjd�); (1)whereD = fd�=1;:::;P g are the predetermined (or quenhed, �xed) random variableswhose orrelations are supposed to be suÆiently weak. Within the statistialphysis framework, this representation of the Hamiltonian leads to the followingBoltzmann distributionPB(SjD; �) = e��H(SjD)Z(D; �) (2)where Z(D; �) = TrSe��H(SjD) is termed the partition funtion. Then, ourproblem may be de�ned as the omputation of the averagesml = TrS Sl PB(SjD; �); (l = 1; : : : ; N); (3)in pratial time sales.Many problems onsidered in statistial physis of disordered systems arerepresented in this form by hoosing a spei� expression for the Hamiltonian. For
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54 Yoshiyuki Kabashima and David Saad
example, the SK model is obtained by setting the elements of the Hamiltonian (1) toh0(S) = �h NXl=1 Si; h(SjJhiji) = �JhijiSiSj ; (4)where h; J > 0 and the omponents of J are taken from a normal distribution ofzero mean and J2=N variane, Jhiji � N (0; J2=N). The Hop�eld model, whih willbe at the fous of the urrent analysis, orresponds to the aseh0(S) = �h NXl=1 �0i Si; h(Sj��) = �12 ��� � SpN �2 (5)where h > 0 is a positive �eld and ��=0;:::;P are unorrelated binary randompatterns generated aording to distribution P(��i = �1) = 1=2, 8i. Notie thatthe Hamiltonian of the Hop�eld model seemingly beomes similar to that of theSK model by �rst de�ning the ouplings as Jhiji = (1=N)PP�=1 ��i ��j (1� Æij) andthen taking the gauge transformation �0i Si ! Si, Jhiji�0i �0j ! Jhiji. However, theassumption about the weak orrelations among the quenhed variables d�, whihare the ouplings Jhiji in the SK model and the patterns �� in the Hop�eld model,prevents us from moving freely between the two models, as it should obey therestrition of the Hamiltonian deomposition (1).Although we have presented the model within the framework of statistialphysis and used the orresponding terminology, the same framework is appliableto a wide range of more general models in the framework of Bayesian statistis.Considering general statistial models of the formP0(S) � e��h0(S); P(djS) � e��h(Sjd); (6)one an easily link the Boltzmann distribution (2) to posterior distribution of theparameter S having observed the data set DPB(SjD; �) = e��h0(S)QP�=1 e��h(Sjd�)Z(D; �) = P0(S)QP�=1 P(d�jS)P(D) ; (7)where P(D) = TrSP0(S)QP�=1 P(d�jS).One might feel that the Ising spin assumption on the parameter S is rather ar-ti�ial within the framework of Bayesian statistis. However, one an �nd exampleswhih naturally satisfy this assumption, for instane in the area of error-orretingodes. It has been shown [31; 32; 7; 8℄, that the deoding problem in a family oferror-orreting odes, termed low-density parity hek odes [3; 12℄, may be formu-lated in the urrent framework by settingh0(S) = �F� NXl=1 Sl; h(SjJ�) = �J�Si�;1 : : : Si�;K ; (8)where the additive �eld F represents prior knowledge about the possibly sparsemessage and J� is a oupling indiator used in examining the parity hekonditions among the onneted message bits Si�;1 ; : : : ; Si�;K , represented byIsing spins. As is shown in [32℄, the optimal parameter � is determined by thehannel noise, taking the value of Nishimori's temperature [19℄ whih beomes
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The TAP approah to intensive/extensive systems 55
� = (1=2) ln(P(+1j+ 1)=P(+1j � 1)) for the binary symmetri hannel. In the nexthapter we will show how the TAP approah may be employed as a deoding al-gorithm in this senario and will analyse its performane and its relation to theommonly used Belief Propagation (BP) algorithm [2℄.3 The TAP approahWe now introdue a general formulation of the TAP approah to the systemharaterized by a Hamiltonian of the form (1). Conventionally, there have beenthree approahes for deriving the same self-onsistent equations known as the TAPequations. The �rst approah is the avity method [33; 15℄. This is based on aorretion of the naive MFA by subtrating the self-indued �eld, referred to as theOnsager's reation term, in a set of self-onsistent equations. The seond approahis Plefka's expansion [28℄, whih �rst evaluates the free energy using a Taylorexpansion with respet to random ouplings, and then derives the TAP equationsfrom a variational ondition imposed on the approximated free energy. The �nal oneis the Parisi-Potters's heuristis [26; 24℄, whih is another strategy to evaluate thefree energy, based on a strong assumption that the ontribution from the Onsager'sreation �eld in the free energy is independent of the prior employed.The formulation that we will introdue below an be onsidered as a gener-alization of the avity method [6℄. However, the strategy used in our approah isnot based on re�ning the result obtained by the naive MFA, i.e., by evaluatingOnsager's reation terms via an expansion with respet to the small ouplings; thisstrategy annot be extended to intensively onneted systems as the inuene ofeah oupling is signi�ant and its removal annot be regarded as a orretion.Instead, we introdue auxiliary distributions to eliminate the self-indued �elds,assuming a loal tree-like struture representing the interation at eah spin site;we then determine the distributions in a self-onsistent way by iteratively solvingthe equations obtained.Cavity methodGiven a Hamiltonian of the form (1), we start our formulation by assigning aBoltzmann weight to eah quenhed variable (or data) d�=1;:::;P ase��h(Sjd�): (9)The remaining term will be restrited to the ase of a fatorizable priore��h0(S) = ePNl=1 FlSl ; (10)as is appropriate in many of the relevant ases.Furthermore, we assume the following three properties for the objetive system;these are required for onstruting a valid MFA.1. The Boltzmann distribution (2) an be approximated by a fatorizable distribu-tion with respet to dynamial variables Sl=1;:::;N .2. The inuene of the data set D on a spei� site Sl is also fatorizable with
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56 Yoshiyuki Kabashima and David Saad
Sk � P(Skjfd� 6=�g)

we� (d�jSl; fd� 6=�g)d� SlFigure 5.1The tree-like arhiteture assumed loally at eah spin site. White irles represent thedynamial variables Sl while blak irles stand for the quenhed variables d�. It shouldbe emphasized that this arhiteture does not represent the atual onnetivity butthe deomposition of the Hamiltonian in the right hand side of Eq.(1), following theweak orrelation assumption on the quenhed variables d�=1;:::;P . Dynamial variablesfSk 6=lg whih are onneted to di�erent quenhed variables are onsidered as omponentsof di�erent systems.respet to the quenhed variables d�=1;:::;P .3. The seondary ontribution of a single variable Sl or d�, other than the oneestimated diretly, is small and an be isolated. Therefore, at eah spin Sl, wean assume a tree-like arhiteture, depited in Fig.5.1 desribing the inuene ofneighboring spins on a partiular site.These assumptions are used to provide the TAP equationswe� (d� j Sl; fd� 6=�g)= TrfSk 6=lg e��h(Sjd�) Yk 6=lP(Skj fd� 6=�g);P(Slj fd� 6=�g)= a�l eFlSl Y�2M(l)�we� (d� j Sl; fd� 6=�g) ; (11)where a�l is a normalization fator.Notie that the �rst equation evaluates the average inuene of the newly addedelement d� to Sl when Sk 6=l obeys a posterior distribution determined by the \leave-one-out" data set fd� 6=�g. This represents the e�etive �eld we� (d� j Sl; fd� 6=�g)produed by the data d�, in whih the self-indued ontribution from Sl andd� is eliminated by assuming the tree-like desription for eah interation; thisorresponds to the avity �eld in the onventional TAP approah [15℄. In addition,note that the seond equation is similar to the Bayes formula. This indiates thatthe stak of the avity �elds determines the posterior distribution P(Slj fd� 6=�g) onthe basis of the leave-one-out data set fd� 6=�g. The variables we� (d� j Sl; fd� 6=�g)or P(Slj fd� 6=�g) do not diretly orrespond to the true posterior distributionalthough they failitate the formulation of equations (11), thus providing a losedset of self-onsistent whih an be solved iteratively. By taking the full set of the
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The TAP approah to intensive/extensive systems 57
avity �elds, determined self-onsistently by (11), into aount, one an omputethe approximated marginal posteriorPB(SljD) = aleFlSl Y�2M(l)we� (d� j Sl; fd� 6=�g) ; (12)where al is a normalization onstant.The di�erene between the physial distribution PB(SljD) and the auxiliaryone P(Slj fd� 6=�g) orresponds to Onsager's reation �eld. This an be evaluatedas a small orretion to the self-onsistent equations of the physial distributions,expanded with respet to the small ouplings, in the onventional TAP approah forextensively onneted systems [33; 15℄. However, this di�erene beomes of O(1) inintensively onneted systems, whih annot be regarded as a small perturbation,unlike the ase of extensively onneted systems. It is therefore diÆult to derivethe TAP equations (11) diretly with respet to the physial distributions PB(SljD)in the ase of intensively onneted systems.It has been known for several ases [6℄ that similar equations to (11) an bederived within the framework of belief propagation, whih is another onvenientmathematial tool for alulating high dimensional distributions developed in the�eld of graphial models [27; 12; 2℄. Atually, the argument used to derive theself-onsistent equations (11), assuming loal tree-like strutures (Fig.5.1), is verysimilar in the TAP and BP frameworks. However, it should be emphasized thatunlike in the BP approah, the tree struture in the TAP framework does notneessarily represent the atual onnetion arhiteture but is determined throughthe weak orrelation assumption with respet to the quenhed variables d�=1;:::;P .In this sense, the approximation used in the BP framework may be more similarto the Bethe approximation [1℄ whih is a naive tree approximation based on theatual onnetivity.Variational prinipleSome of the other MFAs an also be derived from a variational extremization withrespet to a ertain funtional, identi�ed as the free energy [25℄. The existene of anexpression for the free energy is useful for studying the onvergene properties andthe performane of MFAs by analyzing the landsape of the free energy withoutdiretly dealing with the dynamis.Our TAP equation (11) an also be derived from a variational extremization ofsome ost funtion that we will identify as the free energy. One an easily verifythat Eqs.(11) extremize a funtional (TAP free energy) of the formF�fPg; fwe�g� = � PX�=1 ln"TrS e��h(Sjd�) NYl=1P(Slj fd� 6=�g)#+ Xl;� ln" XSl=�1we� (d� j Sl; fd� 6=�g)P(Slj fd� 6=�g)#
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58 Yoshiyuki Kabashima and David Saad
� NXl=1 ln" XSl=�1 eFlSl PY�=1we� (d� j Sl; fd� 6=�g)# : (13)In other ases, the value of the free energy is linked to the distane betweenthe true distribution and the mean �eld one [25; 5℄. Therefore, it an be used as ameasure for evaluating the auray of the approximation. We have not identi�ed,so far, some distane whih is linked to the TAP free energy (13); therefore, iturrently annot be linked to some performane measure of the approximationprovided. This makes the motive for the extremization unlear.To gain insight into the meaning of the TAP free energy extremization wepresent an alternative derivation of the oupled equations, based on the identityÆ �S; bS� = extf�(�);b�(�)g( �(S)b�(bS)TrS0 �(S0)b�(S0)) ; (14)where Æ �S; bS� represents the Kroneker tensor over all the vetors elements andextremization is taken over the full spae of funtions with respet to S and bSunder appropriate normalization onstraints. Using this identity, alulating thelogarithm of partition funtion Z(D; �) = TrSePNl=1 FlSlQP�=1 e��h(Sjd�) an beformulated as a variational problem� lnZ(D; �) = extf�g;fb�g(� PX�=1 ln �TrS e��h(Sjd�)��(S)�+ PX�=1 ln �TrS ��(S)b��(S)�� ln"TrS ePNl=1 FlSl PY�=1 b��(S)#) : (15)Funtional extremization with respet to S and bS leads to the solutions��(S) / ePNl=1 FlSl Y� 6=� e��h(Sjd�); b�� / e��h(Sjd�): (16)Namely, one an reonstrut true posterior distribution asPB(SjD) = ePNl=1 FlSlQP�=1 b��(S)TrS0 ePNl=1 FlS0lQP�=1 b��(S0) ; (17)after determining b��=1;:::;P from eq. (15).The urrent variational formulation is still general and laks an importantingredient of our formulation: the fatorized dependene of b��(S) on the spinvariables Sl=1;:::;P . Restriting the test funtions to those of a fatorizable formone obtains the TAP equations (11)��(S) = NYl=1P(Slj fd� 6=�g); b��(S) = NYl=1we� (d� j Sl; fd� 6=�g) ; (18)as well as the TAP free energy (13).An important question is to identify the harateristis of the funtions whih

MIT Press Neur7XA/2001/03/02:17:13 Page 58



The TAP approah to intensive/extensive systems 59
are suessfully approximated by the urrent method. In the ase of extensivelyonneted systems, it has been shown that the TAP approah provides reasonableresults when the orrelations among d�=1;:::;P as well as those of Sl=1;:::;N aresuÆiently small [14℄. However, it is still unlear what are the neessary onditionsin the ase of intensively onneted systems. Interestingly, one an show that TAPfree energy reprodues the expression obtained from the replia method in thethermodynamis limit, whih is onsidered as exat, in the ases of intensivelyonneted random network [16; 34℄.4 Example - the Hop�eld modelIn ontrast to the onventional approah our formulation (11) an be applied toboth intensively and extensively onneted systems. However, the new formulationappears to be quite di�erent with respet to the existing analyses. Here we applythe new formulation to the Hop�eld model of assoiative memory, showing that itreprodues the existing results.The reason for the hoie of the Hop�eld model is twofold. First, it is relativelysimple to analyse, and seond, it provides an instrutive example showing theimportane of the Hamiltonian deomposition (1), in this formulation, followingthe weak orrelation assumption on the quenhed variables d�=1;:::;P . As is alreadymentioned, the Hop�eld model has a similar arhiteture, in terms of onnetivity,to that of the SK model. However, it will be shown later that di�erent statistialproperties of the quenhed variables yield di�erent solutions to the TAP equations.Deriving the TAP equations { the new formulationConsider a Hop�eld network in whih P + 1 random patterns �P = f�0; : : : ; �P g,independently generated with probability P(��i = �1) = 1=2, are stored. For sim-pliity, we only onsider the system with no external �elds, where the HamiltonianbeomesH(Sj�P ) = PX�=0h(Sj��); (19)and h(Sj��) is given as Eq.(5).To proeed further, we have to speify a phase to fous on, for instane,the retrieval phase with respet to the pattern �0, whih is haraterized by theonditions�0 �mN � O(1) ; ���1 �mN � O(N�1=2) ; (20)where the vetor m represents the expetation value of the dynamial variables.Sine this phase strongly depends on �0, we have to deal with the ontributionof this pattern separately from the others. For this purpose, it is onvenient toassign a latent variable � for �0 and rewrite the Boltzmann distribution asPB(Sj�P ) = e��H(Sj�P )Z(�P ; �)
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= Z d�PB(�j�P )PB(Sj�P ; �); (21)wherePB ��j�P � = s N2�� e�N�22� � �(�P ; �; �)Z(�P ; �) ;PB �Sj�P ; �� = e��P��1 h(Sj��)+�PNl=1 �0l Sl�(�P ; �; �) ; (22)andZ(�P ; �) = TrS e��H(Sj�P );�(�P ; �; �) = TrS e��P��1 h(Sj��)+�PNl=1 �0l Sl : (23)For alulating Boltzmann distribution (21), we �rst employ the TAP approahto evaluate PB(Sj�P ; �). Then, the latent variable � an be determined by thesaddle point method from PB(�j�P ).For Ising spin systems, it is onvenient to introdue parameterizations of theformwe� ��� j Sl;n�� 6=�o�/ 12 (1 + bm�lSl) ;P(Sljn�� 6=�o)= 12 (1 +m�lSl) : (24)To proeed with the alulation of the TAP equation (11) we note that sine allpatterns �� 6=� are unorrelated with the pattern ��, so are the dynamial variablesSl whih are drawn from the probability distribution P(Sljf�� 6=�g); so that eahvariable Sl is unorrelated with ��l . This implies that following property for theoverlaps1pN Xk 6=l ��kSk � N 0� 1pN Xk 6=l ��km�k ; 1� q�l1A ; (25)whereN (mean; variane) represents the normal distribution and q�l = 1N Pk 6=lm2�k;this results diretly from the entral limit theorem and holds for large N val-ues and as long as the onditional probability of the variables Sk is of the formP(Skjf�� 6=�g). Employing the property (25) in Eq.(11) one an derive the TAPequation for PB(Sj�P ; �) in the urrent systembm�l = �N(1� �(1� q�l))Xk 6=l ��l ��km�k ;m�l = tanh0���0l + X� 6=�;0 tanh�1 bm�l1A ; (26)where � = 1; 2; : : : ; P is the pattern index and l = 1; 2; : : : ; N is the site index.Solving these equations enables one to ompute (approximately), the averages mlml = TrS Sl PB(Sj�P ; �) = tanh ��0l + PX�=1 tanh�1 bm�l! ; (27)
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The TAP approah to intensive/extensive systems 61
for all sites l = 1; 2; : : : ; N .Comparison to known resultsEqs. (26) have been derived using our formulation to the TAP approah, and appearto be quite di�erent from the known result [15; 17℄, whih determines the physialaverages ml diretly.However, one an show that Eqs.(26) provide the known results in the ther-modynami limit where N;P ! 1 with keeping � = P=N �nite. Notie that thesaling assumption bm�l � O(N�1=2) implies that the auxiliary variables m�l, bm�land q�l an be represented using only the physial averages ml in this limit,q�l = 1N Xk 6=l m2�k ' q � 1N Xl=1 m2l ;m̂�l ' �N NXk=1 ��l ��kmk � �mlN(1� �(1� q)) ; (28)m�l ' ml � (1�m2l )m̂�l :In addition, the saddle point equation for �, (1=N)� lnPB(�j�P )=�� = 0, providesthe ondition� = �N NXl=1 �0lml; (29)whih is also determined using only physial averages ml. Substituting relations(28) and (29) into Eqs.(26), we �nally obtain the known TAP equations for theHop�eld modelml = tanh0��Xk 6=l Jlkmk � ��2(1� q)1� �(1� q)ml1A ; (30)where Jlk =PP�=0 ��l ��k , as given in [15; 17℄.Method omparisonTo investigate the auray of the solutions provided by the TAP equations whenapplied to the Hop�eld model, we have numerially evaluated the overlap M =(PNl=1 �0l ml)=N by solving Eq.(30) for systems of size N = 10000 storing P = 500patterns (� = 0:05) with varying temperature T from 0:4 to 0:54.For omparison, we evaluated the same quantity using three other di�erentmethods:1. Naive MFA - in this ase the physial averages ml are represented asml = tanh0��Xk 6=l Jlkmk1A ; (31)disregarding Onsager's reation terms.
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62 Yoshiyuki Kabashima and David Saad(a) (b)fSk 6=lg �� Sl Sk Jlk SlFigure 5.2The loal tree-like arhiteture assumed at eah spin site in the TAP approah to (a)the Hop�eld model and (b) the SK model.2. TAP equations for the SK model [33℄ - whih are of the formml = tanh0��Xk 6=l Jlkmk �Xk 6=l �2J2lk(1�m2k)ml1A ; (32)and are derived under an assumption that ouplings Jkl are unorrelated with oneanother. In the urrent ontext, this implies that Onsager's reation is eliminatedinaurately by employing the loal tree approximation depited in Fig.5.2 (b),while the orret TAP approah (30) is derived by assuming the more appropriatetree arhiteture shown in Fig.5.2 (a).3. The replia method - whih under the replia symmetry ansatz provides exatresults in the thermodynami limit N !1 (the AT stability is not broken in thisphase for the parameter region onsidered � = 0:05).Data obtained from 100 experiments by solving Eqs.(30), (31) and (32) itera-tively, together with the solution obtained from the replia symmetri theory, areshown in Fig.5.3. In solving the equations iteratively we set the initial state to �0in order to verify that the solution obtained is within the orret phase. TypiallyO(10) iterations were suÆient for onvergene in most ases, whih implies that anapproximate alulation an be performed in O(N2) time steps while O(2N ) om-putation is neessary for exat alulation (exept in the viinity of the spinodalpoint T ' 0:54).From Fig.5.3, it is lear that the naive MFA yields the largest overlap overall the temperature range onsidered. This is beause of the Onsager's reation�elds, whih are not ompensated for in this ase, and stabilize the retrieval state.This e�et beomes stronger for higher temperatures as the reation �elds areproportional to thermal utuations. Compared to the naive MFA result, the SK'sTAP equations provides smaller overlaps due to the loal suppression of the reationterm assuming the tree-like arhiteture at eah spin as shown in Fig. 5.2(b).However, the tree arhiteture used is not appropriate for the urrent systemresulting in some residual ontribution from the reation terms.Finally, we present the result of the orret TAP approah, whih an also bederived from our formulation of the problem. Of ourse, this approah is also no
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Figure 5.3The overlap M = (PNl=1 �0lml)=N alulated from several methods for a system of sizeN = 10000 storing P = 500 examples (� = 0:05). Eah marker (�: the naive MFA, �:the TAP solution to the SK model, +: using the orret TAP equation) indiates theaverage over 100 experiments. Error bars have been added only for the orret TAP datafor larity, the error bars are similar for the other ases. The dotted urve represents thereplia symmetri solution, whih is onsidered exat in this ase for N !1.more than an approximation for any �nite system. However, the data in Fig. 5.3indiates that the solutions obtained by iterating Eq.(30) are highly similar to thepreditions by the replia method, pereived to be exat for N !1, even for �nitesystems of N = 10000. This implies that one an onstrut an eÆient algorithmfor omputing averages (for a spei� phase) that runs in polynomial time (in thelimit N ! 1) using the TAP approah, as laimed in [23℄. At the same time, theresults obtained from the TAP equations derived for the SK model suggest that theorret prior knowledge about the underlying statistial struture (in the quenhedvariables) is important for making full use of the remarkable properties of the TAPapproah.5 SummaryIn summary, we have desribed a formulation of the TAP approah, whih anbe used for intensively onneted systems, based on the avity method. The givenformulation appears to be quite di�erent from the onventional one, derived inthe ase of extensively onneted systems. However, we have demonstrated thatthe known result an be reprodued from our formulation in the limit of extensiveonnetivity by examining the Hop�eld model of assoiative memory. This impliesthat our new formulation provides a more general sheme overing both intensively
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