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Summary

Particulate solids are complex systems, comprising of dis-
crete particles, which can incorporate many redundancies.
The interactions between the particles are complex and have
been the subject of many theoretical and experimental

investigations. Investigations of particulate material have
been- restricted by the lack of quantitative information on
the mechanisms occurring within an assembly. Laboratory

experimentation is limited as information on the internal
behaviour can only be inferred from measurements on the
assembly boundary, or the use of intrusive measuring devi=-
ces. In addition comparisons between test data are uncertain
due to the difficulty in reproducing exact replicas of
physical systems. An alternative is to numerically simulate

particulate behaviour. Numerical simulation provides infor-
mation on every particle and hence the micro-mechanical
behaviour within an assembly, and can replicate desired
systems.

To use a computer program to numerically simulate material
behaviour accurately it is necessary to incorporate reali-

stic interaction laws. This research programme, which used
the finite difference simulation program ’BALL’, developed
by Cundall (1971), was primarily concerned with replacing

the linear spring force-displacement laws by the more
realistic interaction laws of Hertz (1882) and Mindlin and
Deresiewicz (1953).

Verification of the new contact force-displacement laws was
achieved by simulating a quasi-static oblique contact and
single particle oblique impact. Applications of the program
to the simulation of large assemblies of particles are
provided, and the problems in undertaking quasi-static shear
tests along with the results from two successful shear tests
are described.
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1. Introduction.

The inveétigation of particulate assemblies is well estab-
lished, and many empirical, theoretical and statistical
analyses of assemblies have been performed. However, due to
the complex nature of the interaction of each pﬁrticle
affecting the behaviour of the assembly as a whole, no
entirely satisfactory constitutive relationships have been
established. It is difficult to verify any préposed consti-
tutive relationships for aspects of gquasi-static behaviour
by laboratory experimentation. This is due to internal
stresses being inferred from boundary measurements. The
ideal laboratory apparatus to determine or verify constitu-
tive relationships would require non-intrusive measuring
devices which could measure contact stresses, coﬁtact for-
ces, movements and rotations of each particle within an
assembly. In an attempt to achieve this many model materials
have been developed, such as assemblies of optically sensi-
tive particles and the use of X-ray photography. De Josselin
de Jong and Verruijt (1969) used optically sensitive discs
and measured contact forces and displacements, though the
analysis was time consuming. Difficulties resulted in trans-
lating the results of these experiments to a continuum
model. Average stresses and strains were determined in an
attempt to relate to the continuum but these do not
represent all the discrete characteristics of the material
behaviour. It is felt by many researchers that numerical
simulation may hold the key to the solution of these
problems.

Numerical simulation of particulate systems is a wide and
rapidly expanding field. Since the 1950’s molecular dynamic
simulations have been reported, some of which are reviewed
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in Chapter 2. Solid particle simulation is a much more
recent development and differs from molecular dynamic simu-
lation in that solid particle collisions involve non-
recoverable energy losses. There are two main approaches to
solid particle system simulation; the *hard’ and ’soft’
particle approach. The hard particle system uses instantan-
eous contacts and coefficients of restitution to represent
rebound velocities and angles. Ideal applications are thus
dilute systems of rapidly flowing particles where contacts
can be justifiably assumed to be instantaneous. The soft
particle models use a finite contact duration and force-
displacement laws. This more flexible approach means that
any system from rapid flow to quasi-static assemblies can be
modelled, although the computational requirements can be
massive. This restriction is rapidly being overcome as
computers become more powerful and cheaper to purchase.

The pioneering work of Cundall (1971) in the use of the soft
particle model has been developed by numerous researchers.
However, most of the published work to date has been
restricted to the investigation of discs and the wuse of
linear spring force-displacement interaction laws with Cou-
lomb type friction. It is only with the adoption of the most
realistic interaction laws possible that the simulation and
understanding of natural phenomena can be achieved. This
research programme was the first to investigate the soft
particle simulation of the quasi—étatic shear deformation of
spheres, using the normal force-displacement relationship of
Hertz (1882) and the tangential force-displacement laws of
Mindlin and Deresiewicz (1953).

The sign convention employed in the simulation program 1is
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such that tensile normal stresses and clockwise shear
stresses are taken as positive. However, for ease of
pictorial representation in this thesis compressive normal
stresses are taken as positive. S.I. wunits have been
introduced into the program and the simulation is restricted
to the elastic deformation of topographically smooth

spheres.

1.1 Order of presentation.

The work which has been undertaken is covered in the
following chapters. In Chapter 2 a litergture review i;
presented which illustrates the evolution of numerical
simulation to date. The contact mechanics theories employed
in the simulation are given in Chapter 3, whilst Chapter 4
is concerned with the adaptation of the theory into the
computer program, along with other «coding alterations.
Chapter 5 presents results of the validation tests for the
new coding and Chapter 6 deals with the simulation of large
particle systems. Finally Chapter 7 gives a summary of the
thesis and conclusions drawn from the research programme. A
brealkdown of these chapters is given below.

Chapter 2 describes the historical development of computer
simulation starting with the simulations of the 1950’s which
employed the modified Monte-Carlo integration method. The
development of the field‘of molecular dynamics is traced and
some of the numerous applications mentioned. Solid particle
system simulation 1is introduced and the two main methods
using ’'hard’ or ’soft’ particles are reviewed. Development
of solid ’soft’ particle simulation by Cundall is traced and
Cundall’s papers are reviewed, as are the papers produced by

other researchers whose simulation programs were based on
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Cundall’s program BALL.

Chapter 3 1is concerned with the ;ew contact mechanics
algorithﬁs coded in the simulation. The normal force-
displacement equations for a Hertzian contact are given and
the effect of oblique loading is discussed. The tangential
force-displacement equations for loading, unloading and
reloading for a constant normal force are then developed.
The effect of increasing and decreasing the normal force on
the loading, unloading and reloading behaviour of a oblique
contact is detailed and the equations of Mindlin and
Deresiewicz (1953) for these cases are derived. Finally a
general solution 1is presented which encompasses all the
cases investigated. .

Chapter 4 details the changes to the coding of the simula-
tion program. The historical development of the program BALL
is first considered; and then the development of the program
at Aston prior to this research programme. The bulk of the
chapter illustrates the implementation of the contact mecha-
nics equations. Alterations conce?ned with particle genera-
tion and the implications of considering the particles as
spheres are discussed. The new approach to the selection of
an appropriate time step to advance the evolutiqn of the
system and the introduction of a new strain control facility
ltermed ’the continuum strain rate tensor’ is then covered.
Modifications and additions to analysis routines are detai-
led, and finally alterations to graphics facilities are
explained.

Chapter 5 is concerned with the validation of the contact
mechanics equations detailed in Chapters 3 and 4. Two series
of tests are illustrated. The first simulates gquasi-static
oblique loading to re-produce the forge—displacement rela-
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tionships defined by Mindlin and Deresiewicz (1953). The
second reproduces the impact of a particle against a wall
for various angles of incidence. Following the quasi-static

tests the equations defined by Hertz (1882) for normal

impact are given. Oblique impact is then considered and the
analysis presented by Maw et al (1976), which used the laws
of Mindlin and Deresiewicz (1953), 1is outlined. Maw’s

observations are reported and the results of his oblique
impact tests are presented. The oblique impact tests produ-
ced by the simulation program are then detailed. These tests
successfully reproduce all the observations noted by Maw and
give further information on the mechanics of single particle
oblique impact.

Chapter 6 pfesents the results of the simulations of large
assemblies of particles. Two undergraduate research projects
are briefly mentioned which represent very different appli-
cations of the program. The first is the flow of particles
from wedge shaped hoppers and the second is the pluvial
deposition of a bed of particles. Some instability problems
were encountered with the pluvial deposition tests, which
were overcome. The remainder of the chapter deals with the
gquasi-static deformation of large assemblies of particles.
Problems encountered in both the isotropic and constant
volume shear stage are discussed and resolved. The results
of two test simulations, on a ﬁniform and graded assembly,
are presented and compared with the 1000 disc assembly
reported by Barnes (1985).

Finally, Chapter 7 summarises and draws conclusions from the

work done during the research programme.
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2 Review of Computer Simulation

2.1 Introduction

The first computer simulation of particle systems employea
the modified Monte-Carlo integration method in which par-
ticle movements were random so that only average positions
were meaningful. These simulations using artificial particle
movements gave way to molecular dynamic simulations which
used the <classical Newtonian or equivalent Lagrangian or
Hamiltonian equations of motion. The forces applied to
particles were calculated from the influences of their
neighbours. The particles then moved under a constant force
for a short time interval and then a new force was
calculated etc. |

A specialised case of these simulations was the hard sphere
model, This allows. the segquence of events in a multi-bodied
system to be described by a series of two bodied collisions.
Thus, in a finite system, there will never be more than'two
particles whose velocities are changing. A time step was
used for these molecular dynamic simulations which was the
time increment necessary for the next collision to occur.
The alteration of the equilibrium equations of motion to
satisfy desirable macroscopic constraints led to the new
field of non-equilibrium molecular dynamics. Many varied
applications followed. Three different particle pypes were
used in these simulations; hard spheres, soft spheres and
Lennard-Jones particles.

Essentially the main difference between molecular dynamics
and solid particle system simulation is that molecular
interactions conserve energy, whilst solid particle colli-
sions involve energy losses which can not be recovered as
vibrational kinetic energy of the particles. There are two
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approaches to Sélid particle simulation: the hard sphere and
the soft sghere approach. Hard sphere models are based on
trajectory changes resulting from instantaneous collisions
due to the transference of linear and angular momentum. Soft
sphere models generate particle movements from inter-par-
ticle force laws and their collisions have a finite duration
during which the constantly changing trajectories are conti-
nuously updated. Each model has an ideal type of applica-
tion. The hard sphere particle simulations are ideally
suited to long simulations of dilute systems with few
collisions or where collisﬁons can be justifiably assumed to
be instantaneous. Soft particle models are much more flex-
ible and, with the use of a small fixed time step, they are
ideally suited for dense and even static simulations.

The use of coefficients of restitution is attractive because
of the simpliciﬁy of determining a suitable wvalue for
correlation with experimental and theoretical data. However,
this 1is not the most satisfactory approach. The use of a
coefficient of restiﬁution to -empirically match analytical
or eXxperimental results means that +the model is only
applicable to the particular case studied and does not lead
to a true understanding of the physical mechanisms. A better
approach is the adoption in the simulation of inter-particle
force-displacement laws. The more realistic the interaction
laws the more chance of simulating and understanding natural

phenomena.

2.2 Molecular dynamics simulations

2.2.1 Origins

One of the earliest papers published on computer simulation

19



was by Metropolis et al (1953). They used the modified
Monte-Carlo integration method, considered two-body forces
and assumed tha£ the potentiél field of a molecule was
strictly spherical. Two and three dimensional analyses were
undertaken for the Lennard-Jones potential but not presen-
ted, though a two dimensional rigid sphgre system was
discussed. Periodic boundaries were employed which enabled a
large assembly to be modelled by a smaller representative
element that repeats itself throughout the hypothetically
infinite space. If a particie leaves one side of a periodic
boundary it re-enters on the opposite side with the same
angular and linear momentum it left with. Thus by simulating
a relatively small number of particles, conclusions on the
behaviour of a large assembly can be drawn. The rigid sphere
model with 56 and 224 particles -was used to obtain values of
pressure for a given volume and temperature. They success-
fully correlated their results to the free volume equation
of state and to a four term viral coefficient expansion.

In 1959 a paper was published by Alder and Wainwright which
illustrates the progress in the field of molecular simula-
tion since Metropolis et al. The essential difference
between this paper and earlier publications is that a
dvnamic calculation was now being used as oppcsed to the
modified Monte-Carlo method. The modified Monte-Carlo method
generates artificial particle movements such that only the
average positions are meaningful. Therefore only equilibrium
properties can be calculated. However, the dynamic calcula-
tion, which was originally developed to study relaxation
phenomena, can also be used for the study of transport
properties.,

The method used by Alder and Wainwright (1959) calculated
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the force on each particle due to the influence of its
neighbours. The trajectories were then traced by allowing
the particles to move under a constant force for a short
time interval. Then a new force was calculated to apply for
the next time interval and so on. Thus rotations and -
anisotropic potentials etc, couid be handled. The accuracy
of calculation was dependent on the time interval.

The hard sphere potential was a special case. This interac-
tion potential allowed the sequence of events in a many
bodied system to be described by a series of two-bodied
collisions. Hence, in a finite system there were never more
than two particles at a time whose velocities were changing.
It was therefore ©possible +to create a more realistic
potential using perturbation techniques which also enabled
different cases to be studied. During the simulation,
pressure, collision rate, and potential energy were calcula-
ted to determine the equilibrium state of the assembly.

The major processing was done by storing 'the assembly
information on tape and, with a cathode ray tube and a
camera, a trace was recorded of the moving particles. The
results were presented as pictorial traces of the particle
system for 32 hard spheres in the solid phase, in the liquid
phase, and with free boundaries; plus a 108 particle system
with periodic boundaries in the liquid-vapour region. The
results obtained were compared with the results from analy-
tical theory for the same assemblies.

Generally, in these hard sphere simulations, the molecules
were given equal initial kinetic energies with random
velocity directions and face centred cubic lattice posi-

tions. The <collision time was then calculated for all
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particles, based on the velocity vectors of each potential
(the collisions may be attractive or repulsive) and the time
for the first particle collision to occur was then used as
' thé time increment. The system was then advanced to this
'time’ and, to increase calculation speed, a collision list
was formed for which all.trajectories were projected so as
to order the list of particles according to their individual
times fg“collision. This list was continuously updated as
the system evolved. With this method the time step is
variable and is always the time increment necessary for the
next collision to occﬁr.

The main developments in simulation techniques over this
period were the use of d&namic éalculations, a time step
based on projected collisions, and the use of computer
graphics as a method of displaying results. The limitations
of both the Monte-Carlo and molecular dynamic calculations,
when compared with real 1low temggra@ure systems, were
essentially due to the small number of particles that could
be handled due to the computer memory/speed restrictions of
the day. Statistically, samples were not large enough to
correlate exactly with analytical solutions, even though
periodic boundaries were used. Also, a long range potential
could not be simulated, and an average potential was used.
The application was restricted to simple real systems and to
those for which perturbation theory from classiéal equations
was adequate. Alder and Wainwright (1959) prophetically
predicted that with new large memory computers, larger
systems of @particles could be used with an internal grid
system, incorporating a method such that only adjacent

particles need be checked for collisions.
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2.2.2 Applications

In the 1960’s many particle plasma one dimensional simula-
tions based on classical kinetic theory were initiated. This
presaged applications of simulations to the solution of the
many collision-less plasma problems. Hockney and Buneman
(1963) developed a fast solver for Poisson’s equation, which
enabled economical two dimensional electrostatic simulations
to be performed. 1In the next several years plasma simula-
tions in two and three dimensions were advanced, including
theories for the effects of spatial grids and application to
instabilities and transport in fusion plasma.

Erginsoy et al (1964) interpreted radiation damage in
crystals caused by energetic elastic collisions. Rahman
(1964) studied the structure of model fluids wusing a
continuous potential similar to those of Erginsoy et al
(1964). Phase changes, gas-liquid and solid—liqﬁid, have
been investigated, and considerable work has been devoted to
the artificial stabilization of ’glassy’ phases by .’compres-
sor’ experiments. In these latter investigations the hard
sphere diameter was gradually increased with time. These
controls were the first instances of deliberate alteration
of the equilibrium equations of motion to satisfy desirable
macroscopic constraints; the first ’non-equilibrium molecu-
lar dynamics’.

Another approach to phase equilibria was to examine systems
large enough for two or three phases to co-exist, Cape and
Woodcock (1980). The first &ense fluid simulations in which
temperature was constrained as a boundary condition were
reported by Ashurst (1974). Calculations using a constant
pressure tensor, energy, enthalpy, strain rate and heat-flux
vectors, were not developed until the early 1980’s., These
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developments began with a simulation of bulk velocity,
Hoover et al (1980a), (1980b)' and the formulation of
’constant pressure’ molecular dynamics, Andersen (1980).
Shear flow simulations ﬁt constant temperature and constant
energy were reported by Zwanzig (1981).

Simulation of viscous shear flows was undertaken by Ciccotti
et al .(1979), and Gosling et al (1973) used an externq&h
force to drive a sinusoidal shear flow. Ashurst and Hoover
(1972) used reservoir regions, with constraints imposed on
average velocities and temperatures, to drive the shear flow
from the boundaries. Evans (1979) developeg periodic defor-
mation schemes constrained to a constant temperature or
energy.

A number of couette flow simulations have been undertaken
using hard spheres, Lennard-Jones particles, soft sphere
mixtures, and polyatomic models of methane and chlorine; see
Naitoh and Ono (1979), Heyes et al (1980), Evans and Hgnley
(1979), Evans (1979) and Hanley and Evans (1982) respecti-
vely. The results and calculations from some of these flows
have been summarized by Evans (1981) and Hanley and Evans
(1982). Quantitative studies, for both pure fluids and
mixtures, have been carried out by Hanley and Evans (1980),

(1981) and Hess and Hanley (1982). The flow of heat has also

- -~

been simulated by Ashurst (1974) using reservoirs maintained
at constant temperapure.

Electrical conductivity is one of the simplest applications
of linear response theory. By applying a small electrical
field and comparing two neighbouring trajectories Ciccotti
and Jacucci (1975) measured the conductivity of a Lennard-

Jones particle, and Pollock and Alder (1980) and Watts
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(1981) determined the dielectric constant for di-polar
Lennard-Jones particles by non-equilibrium simulations.

In tﬁe simulation of solid phenomena, defects of various
kinds have been studied. The defect generating simulations
started by Erginsoy et al (1964) employ <collisions of
reasonably perfect crystals with incoming high energy par-
ticles. Voids in crystals, leading to stress concentration
and fracture, have been the object of mostly two dimensional
investigations, Hoover (1986c). He investigated the steady
propagation of cracks at the speed of sound; increasing
crack velocity with increasing stress, crack inertia, and
crack surface irregularity. Hoover (1986b) also investigated
flow and plasticity of solids, such as metals, under high
strain rates using non-equilibrium molecular dynamics. Hoo~-
ver (1986a) presented work carried out by Wilkins at the
Lawrence Livermore National Laboratory on the dynamic com-
paction of powders; this simulates the combination of
explosive forming and high temperature sintering using a few

thousand particles.

2.3 Solid particle system simulation

Solid particle system simulation is a relatively recent
development. There are two approaches to modelling solid
particle systems which use different methods to approximate
inter-particle interactions. Rigid particle models are based
on trajectory changes resulting from instantaneous colli-
sions due to the transference of linear and angular momentum
between particles. Thé specified interaction parameters used
in these simulations are the coefficients of friction,
restitution, and angular restitution. Soft particle models

generate particle movements from an inter-particle force-
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displacement law. This 1is based on relative ©positions,
velocities, and spins‘of the particles.

The soft particle simulations require a finite contact
duration during which the interaction force constantly
varies with displacement. The contact force is represented
by particle overlap which ' is within the elastic 1limit. The
time step is usually fixed and of a very small duration an&
thus requires a considerable number of calculation cyclés
for simulations of dilute systems with few <collisions. One
of the major advantages of the soft particle approach for
the simulation of solid particle assemblies, is that all
configurations, even static assemblies of particles with
.continuous contacts, can be simulated. The rigid particle
simulations can only attempt to handle such continuous
contacts by the use of complex constraints on the resulting
trajectories, Lotstedt and Dahlquist (1977).

A good example of rigid particle simulations is provided by
Campbell and Brennen (1982), (1985) who describe the simula-
tion of rapid chute flows using rigid inelastic discs and
periodic boundaries, with an infinite coefficient of fric-
tion between particles. Coefficients of restitution were
used and two types of collision were adopted to simulate
particle/particle and particle/wall interactions. The former
collision type -employs the condition of =zero relative
tangential velocity of the contact points upon departure of
the collision. The latter sets the relative velocity of the
centre of the particle to zero on departure whilst leaving
the rotational speed unchanged. A similar rigid particle
model of inelastic discs, but using a finite coefficient of
friction, has been developed by Hawkins (1983).

Werner and Haff (1985) and Haff and Werner (1985) report
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work on a rigid particle simulation of spherical particles
confined in a three dimensional box. The system inelasticity
is simulated by a coefficient of restitution, spin is
neglected, and energy is supplied to the system by the use
of ’hot’ walls. The "hot’ wall behaves such that if a slow
parsticle collides with a wall it le;ves with a larger
velocity, or a fast particle leaves with a slower velocity.
The simulation was of only 27 particles, and was started
using initial velocity distributions. Haff and Werner (1985)
describe the adaptation of their simulation program to use
concurrent processing in order to enable simulations of more
particles and calculation cycles.‘ They also adapted their
program to the soft particle model for continuous contacts
for two dimensional ©particles. Three applications were
presented; the impact process in saltatian, mechanical
sorting by size, and transpopt down slopes. A two dimensio-
nal study of Elocian saltation was also reported by Werner
and Haff (1986).

Solid particle simulations using soft particle interaction
laws originated with the work of Cundall (1971) who devele-
ped a program to model the large scale progressive failure
of systems of discrete rectangular blocks. The blocks were
considered to be rigid but inter-connected by parallel
linear springs and dashpots. Interface friction was also
incorporated. |

Application of the program to rock slope stability was
presented by Cundall (1974) together with a simple example
of the same simulation technique applied to a triangular
pile of discs which was collapsed by reducing inter-particle

friction. Further developments of the program to simulate
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the quasi-static shear deformation of large assemblies of
discs were reported in detail by Strack and Cundall (1978),
Cundall and Strack (1979a), and the essential features of
the method were described by Cundall and Strack (1979b).
Cundall and Strack (1979a),(1979b) also qualitatively wvali-
dated the program by simulating experiments analogous to
laboratory tests performed on photoelastic disc assemblies
by De Josselin de Jong and Verruijt (1969) and Oda and
Konishi (1974).

Further applications of the program to the quasi-static
shear deformation of disc assemblies was reported by Cundall
et al (1982) and Cundall and Strack (1983). The first of
these two papers discussed alternative boundar§ control
techniques and the definition of stress and strain in
particulate assemblies. Microscopic mechanisms observed 1in
previous simulations were listed and the behaviour at 1large
strains was also reported. The second paper considered the
structural stability of particle assemblies gnd showed how
the ensemble average stress tensor may be partitioned into
different contributions due to normal forces, tangential
forces, structure, and variation in normal forces at differ-
ent contacts. The relevance of each partition was discussed.
Cundall (1988) reports a three dimensional version of his
program BALL. A periodic cell was employed as a parallelepi-
ped with numerical connection between opposite faces, and
the system was treated as a continuum. A servo control for
constant mean stress tests was introduced that adjusted the
strain rate of the periodic cell. The normal force-displace-
ment relationship was adapted such that either the linear
spring-dashpot system could be used, as per Cundall and
Strack (1979a), or a Hertzian contact could be modelled. Fecr

28



the version using the Hertzian normal force-displacement
relationship, the tangential force-displacement relationship
was represented by the initial stiffness of the System, as
defined by Mindlin (1949). The simulations were compared
with the experiments of Ishibashi and Chen (1988) and the
theoretical predictions provided by Jenkins (1988). A Hinary
system of particles was used,‘ and for these quasi-static
shear tests mass proportional viscous damping was employed.
All the following reviewed research work has been carried
out using modified versions of the two dimensional program
BALL.

A visco-elastic, frictional, inter-particle force model has
been used by Walton (1983). Walton (1984) simulated inclined
plane flows of two dimensional discs and polygonal parti-
cles. In Walton’s (1984) simuiation particles are described
by two dimensional arﬂitrary polygonal soft particles. . All
contacts are modelled as corner interactions (point on side)
and linear springs provide the elastic normal force at
points of contact. Damping is velocity dependent at contact
points and simulates energy absorption due to normal
impacts. Tangential sliding 1is resisted by Coulomb type
friction, i.e. a small but finite shear displacement with a
linearly increasing shear force is allowed before initiation
of any sliding friction.

Babic (1988) wused uniform circular discs, with linear
springs and dashpots for normal and tangential contacts
employing a Coulomb type friction law. Once verified against
the results of Cundall and Strack (1979a) three types of
flow simulations were produced, hopper, couette and channel.

Periodic boundaries were employed for these flow simulations
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and it was possible to introduce ’rough’ walls by fixing

'half particles’ to the walls at specified intervals. The
particular application Babic (1988) was concerned with was
thevflow of packed ice down rivers.

Petrakis et al (1988)‘adapted BALL to use a general solution
to the Hertz-Mindlin contact problem. This was achieved by
describing the non-linear force-displacement relationship at
the particle contacts by a plasticity theory incorporating
kinematic hardening. Results from various simulations were
correlated to existing analytical and numerical solutions
and to experiments performed on large +triaxial cubical
specimens. Periodic boundaries were employed to enable the
simulation of large assemblies. Stability problems were
encountered and it was reported that, to simulate guasi-
static shear deformation, after one time sStep when strain
was applied to the assembly, it was necessary to cycle the
system with =zero strain rate until the sum of the out of
balance forces and moments were approximately equal to zero.
Thus a very large number of cycles was needed to produce a
test. Particle rotations were not permitted in any simula-
tion reported. Results from the isotropic and anisotropic
compression of 497 identical spheres were given. Also
results from a binary system of 531 particles which were
isotropically compressed and then loaded wunder biaxial
compression, were reported.

Bathurst and Rothenburg (1988) employed a 1linear force-
displacement law for normal and tangential contacts with
Coulomb type friction. Two dimensional, random, isotropic
assemblies of discs were generated tor the tests. It was
proposed that the contact orientation could be usefully
approximated by a fourth order truncated Fourier series. The
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calculation of the average stress tensor was presented and a
relationship between the average contact force and the
strain tensor illustrated, having ignored particle rotation.
A stress-strain relationship was then obtained by developing
equations for the average normal and tangential contact
forces combined with the expressions derived for the normal
and tangential inter-particle disPIacemeﬁt components. The
resulting expression for the average contact force vector
was then introduced into the equation for the average stress
tensor to obtain the stress-strain relationship.

It was observed that the dynamic nature of the system was
such that static equilibrium could only be maintained if
loading rates at the boundary were kept low enough such that
the inertial forces were a fraction of the contact forces.
It was also reported that to diésipate-the kinetic energy of
the system ’'mass proportional’ damping was used, without
which static equilibrium could not be achieved.

Coding had been introduced into the program such that it was
possible to modify the average coordination number of the
assembly by searching out near contacts or deleting selected
contacts in a random manner. This was equivalent to introdu-
cing small distortions in Aisc geometry such that inter-
particle contacts could be creatgd or lost whilst maintain-
ing coincidence of contact normals with the lines joining
disc centres. Results were presented relating the measured
values of Poisson’s ratio to the average coordination number
and the tangential to normal contact stiffness ratio emplo-
yed. An investigation of the effect of coordination number
on particle rotations and the stability of an assembly was

performed using an assembly of 1000 discs. It was noted that
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when wusing assemblies with -an average coordination number
less than 3 the number of particles in unstable configura-
tions was great enough to prevent the entire assembly from
approaching static equilibrium within a reasonable nuﬁber of
calculation cycles. qu assemblies with average coofdination
numbers close to 3 the average particle rotations were large
reflecting the freedom afforded inter-particle deformations
by the low system density. Conversely as the maximum average
coordination number of 6 was approached the average particle
rotations reduced to near zero as the particles were
effectively restrained.

Ting et al (1989) used assemblies composed of discs and
reproduced a number of ’standard’ geotechnical tests to
validate the program and obtain material aggregate proper-
ties. The forée-displacement relationship used was a simple
linear spring and dashpét system with Coulomb type friction.
These tests comprised of one dimensional compression, simple
shear and triaxial tests. Around.500 particles were used and
particle rotations were suppressed to model deformable discs
under load. For the triaxial tests verticél boundaries were
controlled by simulating a confining membrane of finite
flexibility. Erratic, 1low values of deviator stress were
reported which were considered to be due to the' limitations
of two dimensional tests. However, upon inhibiting particle
rotation values which were more consistent with results from
s0il laboratory tests were obtained.

Ting et al (1989) also demonstrated the application of the
program to full-scale geotechnical problems by simulating a
bearing capacity test. Centrifuge scaling laws were employed
t0o ensure stress similitude between the simulated model test
and the hypothetical full-scale problem.
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Cundall’s program was first used at Aston by Blackburn
(1983) who restricted the applications to regular arrays of
discs. Barnes (1985) extended the Aston version of the
program to simulate the quasi-static shear deformation of
large assemblies of different sized discs. This work was
reported in a series of papers, Thornton and Barnes (1986a),
(1986b), aﬁd Thornton (1987a), (1987b).

The first two papers were concerned with internal anisotro-
pies related to contact and force  distributions within
particle assemblies, and stress partitioning, similar to
that of Cundall and Strack (1983). Thornton and Barnes
(1986b) also presented results from both a constant mean
stress test and a constant volume test performed on the same
initial sample configuration. It was shown that, for the two
test simulations performed, the evolution.of the angle of
internal shearing resistance and the evolution of the
induced structural anisotropy were both unique.

Thornton (1987a) reported a series of tests on a small 50
disc assembly in which the coefficient of intér-particle
friction was varied from zero to 0.8. The results showed
that, for this small assembly, larger inter-particle fric-
tion coefficients lead to higher strengths ‘and stiffer
assemblies. The volume change behaviour, however, was not
affected. by the angle of inter-particle friction provided
that some inter-particle friction did exist.

Thornton (1987b) presented results from loading, unloading
and reloading the same 1000 disc assembly reported by
Thornton and Barnes (1986b). Internal anisotropies and
energy dissipation were discussed; and implications for soil

plasticity theories were also considered. Thornton and
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Randall (1988) reported the incorporation of +the Hertzian
normal force-displacement relationship, and the laws of
Mindlin and Deresiewicz (1953) to calculate the tangential
force. This enabled the use of real units in the ©program
such that it was possible to quantify particle velocities,
forces, contact stresses etc. Two simulations were illu-
strated, one was the impact of a particle on a column of 10
identical particles, and the evolution of the force trans-
mission through the assembly was studied. The other was the
impact of a particle on a bed of 700 spheres of six
different sizes, where the dynamic force transmission and

particle velocity distributions were illustrated.
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3.Contact Mechanics

Contact mechanics originated with Hertz (1882).who conside-
red the case in which the forces were normal between two
frictionless elastic contacting solids. Since 1950 work has
been initiated 1into other areas of contact mechanics to
study the effects of tangential a;d torsional loading.
Applications have been extended to inelastic bodies by
incorporating theories of prlasticity and viscoelasticity. A
comprehensive treatment of all tHese aspects of modern
contact mechanics theory is provided by Johnson (1985). 1In
computer simulations of solid pﬁrticle systems it is ©pos-
sible to adopt any interaction law. However, the present
research project 1is restricted to. topologically smooth,
elastic spheres incorporating inter-particle friction. It is
therefore necessary to model the normal and tangential
stiffnesses at the inter-particle contacts using the laws

defined by Hertz (1882) and Mindlin (1949).

3.1 Normal contact stiffness

For two contacting spheres of radii Ri(i=1,2), the Hertzian

normal pressure distribution acting over the small circular

—_

area, radius a, is illustrated in fig 3.la and is expressed
as
p(r) = po[l-(r/a)2]l/2 0<r<a (3.1)

This leads to normal displacements over the contact area

ur (r) = (7po(1-vi?)/4Eia)(2a2-r?2) (3.2)
where Ei and vi are Young’s modulus and Poisson’s ratio for
each sphere, and (3.2) satisfies the following boundary
condition for the surface of the contact area

ui(r) + uz(r) = o - (1/2R*)r? (3.3)
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where

1/R* = 1/R1 + 1/Re | (3.4)
and a is the relative approach of the centroids of the two
spheres in contact.

Substitution of (3.2) into (3.3) for i=1,2 leads to

(Tpo /4aE* )(2a2-r2) = o - (1/2R*)r2, (3.5)
where
1/E* = (1-v12)/E1 + (1-v22)/Ez2. (3.6)

Substituting r=0 into (3.5), the relative approach of the
centroids of the spheres is

& = Tpoa/2E¥ - (3.7)
and the radius of the contact area is obtained from (3.5)
and (3.7) with r=a to give

a = @WpoR* /2E*. (3.8)

The total normal load is defined as

N = Jap(r)2nrdr = 2poTa?/3 (3.9)
0

which may be substituted into (3.7) and (3.8) to give

a3 = 3NR* /4E* (3.10)
and a3 = 9NZ /16R*E*?2 (3.11)
noting that

o = a2 /R* (3.12)
For computer implementation the normal stiffness needs to be
defined. Hence, from (3.11) and (3.12)

N = (4E*(R*0@3)1/2)/3 (3.13)
from which the stiffness is defined as '
dN/da = 2E* (R*a)l/2 (3.14)
or from (3.12)

dN/da = 2E*a. (3.15)

When a contact is first created (3.15) cannot be used as
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a=0. It is, therefore, necessary to use (3.13) with N=AN,
and o=Ax., The normal force displacement re}ationship given

by (3.13) is illustrated in fig 3.1b.

3.2 The effect of oblique .loading.

Mindlin (1949) demonstrated that for two elastic spheres in
contact wunder a constant normal force N, the effect of
applying a tangential force (T<WN) is to cause a small
relative tangential motion, termed ’slip’, over part of the
contact area. Over the remaining part no such relative
movement occurs and the surfaces are said to ’adhere’ or
’stick’. The application of a tangential force initiates the
formation of an annulus of slip which, upon increasing the

tangential force, progresses radially inward until, when

T=pN, +the adhered area of contact is zero and rigid body
sliding occurs. If before this state is reached the system

is allowed to unload tangentially an annulus of counter-slip
(slip in the opposite direction to the slip developed_during
the previous tangential loading) progresses radially inward
from the perimeter of the contact area. The energy needed to
produce the annulus of counter-slip is twice that needed to
form the original slip annulus since the counter-slip has to
cancel the original slip and progress slip in Phe opposité
direction. Once the counter-slip annulus has progressed
radially inward as far as the original slip annulus tLen the
loading history of the previous loading direction is erased.
The contact area merely comprises of an area of stick in
the centre and the rest an annulus of slip, in the opposite
sense to the original.

If the annulus of counter-slip did not fully progress to the

same extent as the original slip annulus, and the tangential
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loading 1is once more reversed, an annulus of slip in the
original direction would progress‘radially inward. This slip
annulus would also require twice the energy of formation of
the virgin annulus due to_the‘cancelling and reveréal of the
counter-slip annulus. Once the re-slip annulus has progres-
sed inward as far as the counter-slip, the system will
appear as though no counter-slip had ever been initiated,
and any further tangential loading, in the original direc-
tion, will progress as before by radially decreasing the
central remaining area of stick. -

It may be noted that the theoretical tangential traction for
no slip rises to an infinite value at the periphery of the
contact aréa. In a real cohesionless system an infinite
traction is impossible and thus ’micro slip’ must occur at
the contact edge which reduces the traction at the periphery
of the contact to zero. Further points to be noted are that
in the computer simulation it is necessary to consider
tangential displacement rather thap tangential force as the
criterion for loading, unloading and reloading. This 1is
because it is possible, as explained in section 3.5.2, for
an increase in tangential force although the contact under-
goes an overall negative tangential displacement.

The effect of particle rotation on the distribution of
tangential traction was considered by Johnson (1982) and is
illustrated in fig 3.3. The traction distribution for rigid
body sliding is given by curve po. For a value of T<pN, with
no relative spin of the particles, the resultant traction
distribution 1is illustrated by curve A’, This symmetrical
distribution is the resultant of curve Lo and curve A.
However, if there is a relative spin between the contacting
particles the no-slip region is no longer centrally located
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and curve: A is displacea towards the leading edge of the
contact. For the extreme case, when one particle is rolling
over the other, the resultant traction distribution is given
by curve B’ which is the resultant of curve po and curve B,

Figure 3.3 demonstrates that relative spin does not affect
the area under the resultant traction distribution. Hence,
the magnitude of the tangential force is unaffected by
relative spin and is defined by the theoretical treatment of
Mindlin and Deresiewicz (1953). A consequence of the asym-
metric traction distribution is that a small moment is
applied to the particle. This moment is extremely small
(a<<R)® and is neglected in the computer simulation program

although particle spins are permitted.

3.2.1 Tangential loading.

For the limiting condition of T=pN the distribution of the
tangential traction is given by

q(r) = (npe/a)(a2-rz)t/z, 0<r<a (3.16)
For T<uh, the corresponding traction distribution is obtai-
ned by superimposing on (3.16) a negative traction over the
adhered portion of radius b(<a).

a(r) = -(ppe/a)(b2-r2)1/2, 0<r<b t (3.17)
Hence the distribution of tangential traction over the total
contact area, shown in fig 3.2, is

q = (Wpo/a)(a2-r2)t/2 b<r<a (3.18)
g= (Upo/a)[(a?2-r2)1/2 - (b2-r2)t/2]. 0<r<b (3.19)
From the corresponding displacements, see Johnson (1985).
Mindlin (1949) showed that the relative tangential displace-

ment of the two spheres is

& = (3PN/16G*a)(1-b2/a?) ' (3.20)
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where
1/G* = (2-v1)/G1 + (2-vz2)/Gz (3.21)

The magnitude of the tangential force is defined as

b
T = J;nqrdr + JZﬂqrdr. (3.22)
b o
Thus

from which

b/a = (1-T/uN)1/3, (3.24)
Thus the tangential force displacement law from (3.20) and
(3.24) is

d = (3uN/16G*a)[1-(1-T/pN)2/3] (3.25)
from which the incremental stiffness is

AT/Ad = 8G*a(1-T/uN)1/3, (3.26)
From_ (3.25) and (3.26) the initial stiffness is

(AT/A8)r=0 = 8G*a (3:27)
and the tangential displaéement to cause sliding 6* is

0* = 3uN/16G*a. (3.28)

3.2.2 Tangential unloading.

To wunload fully the two contacting spheres it is necessary
to decrease the tangential force to its maximum previous
value in the opposite loading direction, the counter-slip
annulus has then fully penetrated and countered the original
annulus of slip. Therefore the equations for the tangential

tractions due to unloading are twice that of the loading

case.
g = =2(ppela)la®-r2 )Ll c<r<a (3.29)
q = -2(upe/a)[(a2-r2)1/2 - (c2-r2)1/2], r<c (3.30)

Where c is the radius to which the counter-slip annulus has

penetrated.
Hence the resultant tractions, i.e. the sum of the original
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loading and the unloading tangential tractions, are

a = -(ppo/a)(a2-r2z)l/2 c<r<a (3.31)
q = -(ppo/a)[(a2-r2)l/2 - 2(c2-r2)l/2] b<r<c (3.32)
qa = -(ppo/a)[(a2-r2)1/2 - 2(c2-r2)1/2 4+ (b2-r2)l/2] r<b

(3.33)
The tangential force is equal to the integral of gq over the

limits 27 and a to cover the contact surface.

2y
T = J Jaqrdrde. (3.34)

Substituting for g
T = (uN/a3)(a3-b3) - (2uN/a3)(ad-c3) (3.35)
but (pN/a3)(ad3-b3) = T*, _ (3.36)

where T* is the value of T from which unloading commenced.

Hence
T = T* - (2uN/a3)(ad-c3) (3.37)
and ¢ = a[l-(T*-T)/2uN]11/3, | (3.38)

The relative tangential displacement & is given by
& = (3puN/16G*a)(2c2 /a2 - b2 /a2 - 1) (3.39) .
or, using (3.38) -

& = (3uN/16G*a)[2(1-(T*-T)/2uN)2/3 - (1-T*/uN)2/3 - 1]
(3.40)

Hence the incremental stiffness for unloading is

[

AT/A8 = 8G*a[1-(T*-T)/2uN]1/3, (3.41)
The load displacement curve for a decreasing tangential
force 1is shown in fig 3.4. If unloading is initiated from
point B on the loading curve OA, then unloading occurs along
BCD. The traction distribution at point C, when the tangen-
tial force 1is zero, 1is given in fig 3.5. Counter-slip
progresses radially inwards until point D in fig 3.4 when
T=-T* and c=b. The traction distribution at this point is a

mirror image of that existing when T=T*, and any further
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decreases in T follows the virgin loading curve ODE in fig
3.4, If an oscillation of tangential force occurs between
*+T* with a constant normal force, this leads to the closed

hysteresis loop shown in fig 3.4.

3.2.3 Tangential reloading.

Reloading from the point C in fig 3.6, when T=0, will
initiate an annulus of slip in the original loading direc-
tion at the perimeter of the contact area which will
propagate inwards cancelling and countering the counter-
‘slip. This re-slip progresses radially inward over an
annulus d<r<a as shown in fig 3.7. The distribution of
tangential traction during reloading is

(2upo /a)(a2-r2 )i/2 d<r<a (3.42)

q

(2upo/a)[(a2-r2)i/2 - (d2-r2)i/2], r<d (3.43)

|

Superimposing the above on the traction distribution at the

start of reloading, given by (3.31) (3.32) and (3.33), we

obtain

g = (kpo/a)(a2-r2)1/2 d<r<a (3.44)

q = (Mpo/a)l(a2-r2)1/2 - 2(d2-r2)1/2] c<r<d (3.45)

q = (Lpo/a)[(a2-r2)t/2 4+ 2(c2-r2)1/2 - 2(d2-r2)1/2] b<r<c

(3.46)

q = (Mpo/a)[(a2-r2)1/2 - (b2-r2)1/2 4 2(c2_r2)i12
-2(d2-r2)1/2] r<b (3.47)

Upon integration the tangential force is

T = UN(1-b3/a3).- 2uN(1-c3/a3) + 2pN(1-d3/ald) (3.48)

from which

d = a[1-(T-T**)/2uN]1/3, (3.49)

where T** is the tangential force from which reloading is

initiated. Thus
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A’ - traction distribution for T for no relative spin of particles, where T < uN,
B’ - traction distribution for identical T value for extreme limit of relative spin.

Tangential
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Fig 3.3 The effect of particle spin on the tangential traction distribution.
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Fig. 3.4 Tangential force-displacement relationship.
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Fig. 3.5 Tangential traction distribution corresponding to point C in Fig. 3.4.
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Fig. 3.6 Tangential force-displacement behaviour illustrating loading,
unloading and reloading.
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& = (3uN/16G*a)[l - b2/a?2 + 2c?2/a?2 - 2d%/a?]. (3.50)
Substitﬁting (3.24),(3.38) and (3.49) and differentiating
leads to the incremental equation for the stiffness.

AT/AS = 8G*a[l - (T-T**)/2uN]t/3, (3.51)
The load displacement relationship for reloading is shown in
fig 3.6. When the tangential force reaches its previous
maximum value, T=T*, re-slip has now fully countered the
counter-slip and d=c. At this point the traction distribu-
tion is that shown in fig 3.2. Consequently, further
increases in T follow the virgin loading curve and the
memory of the unload-reload cycle has been completely

erased.

3.3 Tangential contact stiffnesses, AN=0.

It follows from the previous sections that, for the normal
force constant cases, the tangential stiffness can be

defined by one equation with appropriate substitutions, i.e.

AT/AS = 8G*al, ) (3.52)
where
0 = (1-T/pN)1/3 (3.53)

for the loading case,

8 = [1-(T*-T)/2uN]1/3 (3.54)
for the unloading case, and

@ = [1-(T-T**)/2pN]t/3 (3.55)
for the reloading cage.

For a contact which undergoes decreasing tangential oscilla-
tions many tangential force reversals will occur, and due to
the decreasing nature of these reversals, no reversal will
exceed the previous maximum or minimum tangential force.
Thus the tangential force/displacement curves are described
by a series of nested loops. It is impossible to foretell
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how many of these reversals any contact may undergo, and to
maintain the full history of the contact all reversal points
would have to be stored. Since this would increase memory
requirements drastically and reduce processing speed, an
approximation has been introduced for the computer .simula—
tion. Only the first two reversal points are stored. Any
further reversals within these two limits are treated as

non-linear elastic, as indicated in fig 3.8.

3.4 Effect of increasing normal force.

The previous section established the dependency of the
limiting value of the tangential force on the normal force.
As a consequence there exists an infinite set of geometri-
cally similar force-displacement curves, each corresponding
to a different value of N. A theoretical investigation of
the behaviour of elastic spheres in contact under varying
obligque forces was presented by Mindlin and Deresiewicz
(1953). Several loading histories involving variations of
both normal and tangential forces were examined from which
general procedural rules were identified. The procedure is
to update the normal force and contacf area radius followed

by calculating AT using the new values of N and a.

3.4.1 Tangential loading.

For the case of normal force and tangential force increa-
sing, the increasing normal force results in an increase in
the contact area.‘ If AT=pAN the central area of stick will
not decrease as the increase in tangential force is suffi-
cient to enable penetration of slip into the new outer
annulus of the contact area only. If AT>pAN then not only is

the new outer annulus fully penetrated but the inner annulus
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of stick is decreased, thus progressing the system to
failure. For AT<UAN the increase in tangential force is not
sufficient to penetrate the new outer annulus of stick and
thus the contact area forms four annuli, a central area of
stick, surrounded by an annulus of high traction (which was
an annulus of slip with the previous lower normal force),
surrounded by a stick annulus with an annulus of slip on the
outside. Thus progression of the slip annulus into the
central annulus of stick can not occur wuntil any outer
annuli of high traction, have first been loaded to form
annuli of slip in the current loading direction and any
outer annuli of stick have been penetrated.

Figure 3.9 shows two typical loading curves corresponding
to a normal force of N and (N+AN). Consider an initial state
(T,N) given by point A in fig.3.9. The corresponding
tangential traction distribution q over the contact area of
radius a 1is shown in fig.3.10. If, in the next time
increment, both N and T increase then the solution depends

upon the ratio AT/AN.

Consider the case AT = |LAN. The increase in normal force
will result in a larger contact area of radius a1, defined
by

a13 = 3(N+AN) R*/4E*. (3.56)

If T is now increased this will initiate slip at r=ai1. The

increment in tangential traction Agq is given by

Aq = (p(po + Apo)/a1)(a1?2 - r2)l/2 c1<= r<= a1 (3.57)

Aq = (L(po + Apo)/a1r)[(a1?2 - r2)1/2- (c12 - r2)1/2] o<=r<=ci
(3.58)

It follows from (3.24) that

c13 = a13 [1 - AT/iL(N +AN)] (3.59)

49



40 N + AN

Tangential
Force / N]n

uaN}

Tangential displacement / pm 10
Fig. 3.9 Tangential force-displacement behaviour.

4
Tangential
Traction AT = pAN

/ GPa
/S
— ‘
q (loading)
q (increment) /,/<\\
c1=a
0 b Radial distance / im 1=2 g, 10

Fig. 3.10 Tangential traction distribution.
50



and from (3.10) and (3.56)

a3 (N +AN) = a13N, (3.60)
thus | ’

c13 = a3 (uN + pPAN - AT)/uUN. (3.61)
It is clear from (3.61) Fhat if AT = WAN then c1 = a and

hence, combining (3.57) and (3.58) with (3.18) and (3.19),

the resultant traction gr is

ar = (w(po + Apo)/ai)(ar2 - pr2)i/2 b<= r<= a1 (3.62)
gr = (L(po + Apo)/ai)[(a1?2 - rz)t/2- (b2 -r2)1/2] o<= r<=b

(3.63)
The tractions g, Ag and qr, defined above, are illustrated

in fig 3.10 from which it can be seen that there has been no
further penetration of +the stick region, and that the
resultant tangential traction distribution is exactly the
same as would have been obtained by applying a tangential
force (T+uAN) with the normal force constant at (N+AN). This
corresponds to point B in fig 3.9.

Since the normal force and contact area are increased prior
to increasing T to T + AT, the load displacement curve AB is
identical to the curve OB’ shown in fig 3.9. It therefore
follows from (3.26) that the incremental stiffness is

AT/AS = 8G*ai (3.64)
Hence, considering AN and AT to be small, the displacement
increment necessary to move from A to B in fig 3.9 is given
by

A81 = (1/8G*a1 )uAN. (3.65)
If AT>WAN then there will be an additional displacement
increment Ad2 necessary to advance along the curve corres-
ponding to the new value of N (to point C for example in fig

3.9). This displacement increment is defined by modifying
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and from (3.10) and (3.56)

a3 (N +AN) = a13N, (3.60)
thus | ’

c13 = a3 (uN + AN - AT)/uN,. (3.61)
It is clear from (3.61) ;hat if AT = PAN then c1 = a and

hence, combining (3.57) and (3.58) with (3.18) and (3.19),

the resultant traction gr 1is

qr (L({po + Apo)/ai)(a1?2 - r2)l/2 b<= r<= a1 (3.62)

QR (L(po + Apo)/a1)[(a1?2 - rz)1/2- (b2 -r2)1/2] o<K= r<= b
(3.63)
The tractions g, Agq and gqr, defined above, are illustrated
in fig 3.10 from which it can be seen that there has been no
further penetration of the stick region, and that the
resultant tangential traction distribution is exactly the
same as would have been obtained by applying a tangential
force (T+wAN) with the normal force constant at (N+AN). This
corresponds to point B in fig 3.9.
Since the normal force and contact area are increased prior
to increasing T to T + AT, the load displacement curve AB is
identical to the curve OB’ shown in fig 3.9. It therefore
follows from (3.26) that the incremental stiffness is
AT/Ad = 8G*ai (3.64)
Hence, considering AN and AT to be small, the displacement

increment necessary to move from A to B in fig 3.9 is given

Ad1 = (1/8G*a1 )uAN. (3.65)
If AT>WAN then there will be an additional displacement
increment Ad2 necessary to advance along the curve corres-
ponding to the new value of N (to point C for example in fig

3.9). This displacement increment is defined by modifying
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(3.26) to give
A2 = (1/8G*a1r) [1-(T + pAN)/w(N + AN)]-1/3 (AT - pAN) (3.66)
Hence, for AT>= PAN the total displacement increment is

AS = (1/8G*ai1) {pAN + (AT - pAN)[1-(T + pAN)/n(N + AN)]-1/3}

(3.67)
Rearranging to obtain the tangential force increﬁent
AT = 8G*a QA6 + PAN(1-0) (3.68)
where
6 = [1- (T + pAN)/pN]1/3 (3.69)

and the values of a and N hdve been updated.’

For the case of AT>pUAN in terms of the traction diagrams for
the increment of ATz, where AT2=AT-pAN slip is now initiated
not from the periphery of contact, as this is already under
the influence of slip, but from point ¢, the limit of the
stick annulus. Fig 3.11 illustrates Aqi for AT = pAN and Aq2
for ATz with gr the resultant traction.

If AT<pHAN it follows from (3.61) that ci1>a and the initial,
incremental and resultant tangential tractions are as shown
in fig 3.12. It also follows from (3.64) that A < Ad1 and
is therefore insufficient to reach point B in fig 3.9. This
leads to a problem in that the new state (T,0) does not lie
on the curve corresponding to the new value of N. This
situation could be repeated a number of times before the
next increment in T is sufficient to bring the state (T,9)
onto the appropriate curve.

The case of ATK udﬁ has been considered analytically by
Szalwinski (1985). However, for computer implementation it
is considered sufficient to use the following incremental
approach. If AT<pAN then the incremental stiffness is given
by

AT/AS = 8G*a (3.70)
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using the new value of a. This equation is then used for

subsequent time increments until the condition

AT >= PZAN (3+T1)
is reached. When (3.71) is true the new state falls on the
corresponding normal force constant curve and (3.68) is

used.

3.4.2 Tangential unloading.

Upon tangential load reversal the annulus of counter-slip

when progressing radially inwards will first encounter the

outer annulus of stick, caused by the increase in normal
force, which it will have to penetrate. If the tangential
force decrement is large enough (>w]|AN|), it will also have

to penetrate and counter the inner énnulus of high traction.
Thus with increasing contact area there is always an annulus
of stick on the outside of the contact area that any
tangential loading will have to penetrate before it can
reach the previous high traction annuli or stick annuli to
either counter or extend slip inwards.

Consider a history in which a normal force N is applied and
then, keeping N constant, a monotonically increasing tangen-
tial displacement is applied until T = T*, after which the
tangential displacement is reversed and the tangential force
reduces to T<T*, given by point A on the curve OT*A in
fig.3.13. The traction g, in fig 3.14, acting over the area
of radius a corrésponds to point A in fig 3.13.

If, during the next time increment, there is a further
reduction in tangential displacement plus an increase in
normal force the solution once more depends on the ratio
|AT|/|AN|. For the case |AT| = W|AN| it follows from the

arguments presented in Section 3.4.1 that the incremental
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traction Agq and the resultant traction gr are as shown 1in
fig 3.14. Similarly the new state is given by point B on the
unloading curve corresponding to N+AN, as sﬁown in fig 3.13.
Hence the displacement increment necessary to move from A to
B is

Ab1 = -(1/8G*a)pAN (3.72)
It also follows from section 3.4.1 that for |AT|>W|AN| the
additional displacement increment necessary to advance along
the unloading curve corresponding to N+AN, point C in fig

3.13, is obtained by modifying (3.41) to give

A82 = (1/8G*a)[1-(T*-T+2LAN)/2uN]-1/3 (AT+1AN) (3.73)
and hence, for |AT|>=uw|AN|, the total displacement increment
is

A8 = (1/8G*a){-pAN+(AT+pAN)[1-(T*-T+2pAN)/2uN]-1/3} (3.74)
where a and‘N are the updated values.

Therefore, by rearranging (3.74), we obtain

AT=8G*a8AS-1AN(1-0) ' (3.75)
where

0=[1-(T*-T+2WAN)/2uN]1/3, (3.76)
The case of |AT|<iL|AN| for unloading results in the same

problems as for loading and is dealt with in a similar
manner. If |AT|<p|AN| then the incremental stiffness is
given by (3.70) until the following condition is satisfied

S]AT|>=pS|AN]| ‘ (3.77)

2.4.3 Tancential reloading.

Figure 3.15 shows two force displacement curves correspon-

ding to constant normal forces of N and N+AN. The figure

illustrates how the corresponding unload-reload cycles
'‘nest' within each other. If the current state is given by
point A then, from the arguments presented in the previous
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two sections, if AN>O then the solution for AT depends on

the ratio AT/AN. The procedure is similar to the case for
initial loading. For AT>=pAN the total tangential displace-
ment is

A8 = Ad1+Ad2 (3.78)
where Ad:1 is given by (3.65) and Adz is obtained by
modifying (3.51)

Ad2=(1/8G*a)[1-(T-T**+2nAN)/2uN]-1/3 (AT-1LAN) (3.79)
where T** ?s defined in fig 3.8. Hence

A8=(1/8G*a) {I-U.;\N-l-(ﬁT—uAN)[l-(T—T** +2PAN)/2uN]-1/3} (3.80)

which may be rearranged to give

AT=8G*aBA8+uAN(1-0) (3.81)
where -
B=[1-(T-T**+2pAN)/2uN]-1/3, (3.82)

For AT<ILAN as in-the loading case, (3.70) is used until the

condition given by (3.71) is reached.

3.5 Effect of decreasing normal force.

If the normal force decreases the contact area decreases.
However, before the contact area can be reduced it 1is
necessary to relocate the slip annulus. Mindlin and Deresie-
wicz (1953) suggested the following procedure- i) freeze the
contact area of radius a, 1ii) free the annulus ai1<r<a of
tangential traction, 1iii) unfreeze the contact area. It is
important to note that in the remainder of this section AN
is implicitly negative and is not taken to be an absolute

value as in the paper by Mindlin and Deresiewicz (1953).

3.5.1 Tangential loading.

Figure 3.16 illustrates two typical loading curves , corres-
ponding to a normal force of N and (N+AN). For an initial
state (T,N), described by point A in fig 3.16, the corres-

57



ponding tangential traction distribution q over the contact
area of radius a, where the anﬁulus of slip has penetrated
to ¢, 1s illustrated in fig 3.17. The decrease in normal
force results in a decrease in contact area to a1, defined
by eéuation (3.56), illustrated by qri. The traction Aq:
present over the annulus ai<r<a must be removed before a
reduction in the contact area to ai can occur, this is
achieved by redistributing the traction Aqi over the area

0<c thus reducing the central annulus of stick.

Aqi -(upo/a)(az2-rz)l/2 a1 <=r<=a {(3.:83)

-(wpo/a)((a2-r2)1/2 - (a12-rz)1l/2], 0<=r<=ai1 (3.84)

Aqi
Where the redistributed traction penetrates +the remaining
area of stick r<c to point c1 , fig 3.17, where

c13 = a13 (1-T/RL(N+AN)) | (3.85)
and the traction Aqi is distributed in the form Ag2z over the

remaining contact area where

Aqz = (pL(po+Apo)/c)(c2-rzjl/2 c1<=r<=c _ (3.86)
Aqz = (n(po+Apo)/c)[(c2-r2)1/2 - (c12-r2)1/2] O<=r<=cr

(3.87)
Where |Aqi| = |Aqz|

The traction distribution is now represented by gr2 in fig

3.17 where
qrz = (p(po+Apo)/a1)(ar2-r2)l/2 ci1<=r<=aj - (3.88)
qr2z = (U(po+dpo)/a1)[(a12-r2)1/2 - (c12-r2)1/2] Q<=r<=c1

(3.89)
This distribution corresponds to point C in fig 3.16. If T
is increased this will initiate slip at r=ci1 where ci1 is the
point at which the slip annulus has reached due tq the.
distribution of the tangential traction over the smaller

contact area. Slip will thus penetrate to point b on fig
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3.17 where the traction increment is

n

Aq3 (L(po+Apo )/c1)(c12-r2)1/2 b<=r<=ci . (3.90)

Aqs (L(po+Apo )/c1)[(c12-r2)1/2 - (b2-r2)l/2] . 0<=r<=b
(3.91)
where b 1is defined by equation (3.61). The resultant

traction is

(L(po+Apo ) /a1 )(ar~r)l/2 b<=r<=ai (3.92) .

grR3

qr 3 (W(po+Apo)/a1)[(a12-r2)1/2 - (b2-r2)1/2] 0<=r<=b
(3.93)
The tractioné q, Agq1, gqr1, Agqz, gr2, Ag3 and gqr2, as defined
above, are shown in fig 3.17. From which it can be seen that
when the normal force decreases it is necessary to redistri-
bute the existing traction over the smaller contact area,
and as such even if there was no increase in tangential
force it can be seen that the slip annulus has further
penetrated the contact area and thus progressed the contact
towards rigid body sliding. The resultant traction distribu-
tion 1is exactly the same as would have been obtained by
applying a tangential force (T+AT) with the normal force
constant at (N+AN), corresponding to point D in fig 3.16.
As with previous sections, for small AT and AN the displace-
ment increment necessary to move from A to B in fig 3.16 is
given by equation (3.65). The situation of |TI<uiﬁNl' which
can occur on normal force increasing can not occur with
.normal force decreasing. This is due to the removal and
redistribution of traction over the reduced contact area
which causes a displacement increment that brings the state
to point C in fig 3.16. An increase in tangential force
would cause a dispLadement as defined by equation (3.66),
leading to, for example, point D in fig 3.16. The total
displacement increment is thus given by equation (3.67).
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Hence, the tangential force increment and definition of 0
are defined by equations (3.68) and (3.69), remembering that

AN is implicitly negative.

3.5.2 Tangential unloading.

Consider a load;ng history corresponding to the curve OT*A
shown in fig. 3.18. If, during the next time step, thefe is
a further decrease in tangential force accompanied .by a
decrease in normal force then it follows from the arguments
rresented in sections 3.5.1 that the load-displacement
behaviour will follow the hypothetical curve ABCD. Allowing
for the implied negative value of AN, it follows from the
previous sections that equations (3.72), (3.73) and (3.74)
apply, and that the increment in tangential force and 8 ére

defined by (3.75) and (3.76) respectively.

3.5.3 Tangential relocading.

Figure 3.19 illustrates two force displacement curves for
two constant normal forces of N and N+AN. The initial state
is represented by point A, and for no increment of AT, upon
reduction of normal force the resultant state is defined by
point C. It follows from section 3.5.1 and section 3.4.3
that the tangential displacement between point A and point D
is defined by equation (3.80) and thus the increment 1in
tangential force and 6 by equation (3.81) and (3.82)

respectively.

3.6 General Solution.

From the previous sections in this chapter it can be seen

that one general equation can be wused for all cases.
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Comparing (3.68), (3.75) and (3.81) it is clear that we may
use the following equation .

AT = 8G*afAS * PAN(1-6) (3.94)
which when AN is zero reduces to the general solution for
constant normal force, equation (3.52). ‘

The parameter 8 is defined by the appropriate loading case
and the sign of the second term is negative for unloading

only, thus

0 = [(1-(T+pAN))/uN]r/3 loading (3.95)
0 = [(1-(T*<T+2uAN))/2uN]1/3 unloading (3.96)
0 = [(1-(T-T**+2UWAN) ) /2uN]L/3 reloading (3.97)
6 = 1.0 for AN>0 and AT<pAN (3.98)

In addition, as described in section 3.3, 1load reversals,
when T**<T<T*, are treated as non-linear elastic using

(3.94) and (3.97). .
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4, Development of the computer program BALL.

4.1 Historical development of BALL.

Cundall (1971) described a simulation program for modelling
large-scale movements of blocky rock systems. There were two
basic versions of the‘program, one which modelled a section
through an assembly of cylinders and the other which
modelled a section through an assembly of rectangular
blocks. In this early version of the disc program all discs
had identical dimensions and properties. Simulation of
movements of the discs was advanced using a small fixed time
step which was limited to a fraction of the critical time
step for numerical stability which in turn was based upon
the mass and equivalent stiffness of the discs. The calcula-
tion cycle was divided into two parts. In the first part the
forces at every contact were updated from the displacement
and rotation increments of the two particles in contact. A
linear spring and dashpot force-displacement law was then
employed for the shear and normal directions with sliding
being governed by a Coulomb type friction law. The contact
force was then resolved into the global coordinate compon-
ents and summed for each particle. The second part of the
cycle took the force and moment sums for each particle and
with Newton’s second law of motion derived the acceler-
ations which upon integration gave velocities and displace-
ment increments and on further integration gave the new
positions and rotations. Two types of boundary control were
bossible, strain control (velocity fixed), and stress con-
trol (fixed applied force).

Cundall (1976) incorporated a number of modifications to
reduce processing time. The introduction of a distance
around each particle (TOL) was developed such that if
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adjacent particles have a distance less than TOL between
them, although the particles themselves are not already in
contact, the system is considered as a potential contact. If
a potential contact is determined a space in the contact
list is made available, and if particles are separating the
contact 1is only deleted when the distance between them is
greater than TOL. Thus only when a ﬁarticle moves more than
TOL/2 is a search for new contacts necessary. The particle
coordinates are stored in two parts, the sum of which gives
the coordinate. The second part is always less then TOL/2V2
and is the cumulated movement of the particle. When the
cumulated movement exceeds TOL/2v2, in terms of the cumula-
ted x or y coordinate, a search for potential contacts is
undertaken and the cumulated value zeroed after being added
to the first part of the cobrdinaté.

The processing time was further reduced in the search for
contacts by dividing the system into a grid of boxes and
mapping particles into the boxes and remapping them as they
moved. Thus potential contacts could be detected without
scanning the whole assembly. The boxes are squares of size
DEL and the maximum radius of a particle is restricted to
<(DEL/2)+4TOL. Thus the maximum number of boxes in which a
particle can have entries ;s four. In the search for a
potential contact it is only necessary to interrogate
particles with common box entries. A linked list technique
was also introduced whereby data was stored at random and
linked by pointers. Terms could be added or deleted from the
lists extremely rapidly and memory was automatically alloca-
ted to new contacts and recovered from old. Cundall (1978)

reported the addition of new commands to facilitate creation
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and deletion of particles and the introduction of kinemati-

cally controlled walls. The facility was added to input
different particle And wall properties and dimensions. Also,
if required during a test, it was possible to change
properties and dimensions of particles, the boundary control
and the time step of the program. Zeroing of velocities,
introduction of gravity and a print facility to obtain the
full details of particles, walls, types, contacts and
boundary particles etc, were also introduced.

Two of the most useful additions were analysis routines to
calculate the average stress ana strain tensors for a
specified circular region within the assembly. A further
boundary control facility was also added which permitted
either strain or stress to be applied over a specified
number of cycles, thus allowing a gradual application of
stress or strain. Further alterations which had been
recently added were detailed in an appendix to Cundall
(1978). These included a porosity calculation within a given
radius, pictorial representatiﬁn of force polygons, particle
rotations and fabric plots. Cundall and Strack (1983)
partitioned the stress tensor into its fabric, normal
variation and shear components which were calculated and
printed out.

A  boundary servo control was also introduced which, upon
choosing an appropriate gain parameter, enabled a desired
stress path to be followed by constantly adjusting the

appropriate components of the boundary strain tensor.

4.2 Program BALL at Aston.

Cundall’s program BALL was used and enhanced by Barnes

(1985). Further plotting options and analysis routines were
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introduced. Barnes (1985) introduced two analysis routines

both of which require a given internal radius. One subrou-
tine 1is primarily concerned with calculating the stress
tensor for a sub-assembly and partitioning it into its
normal, shear, normal variation and fabric components. This
differs from the subroutine developed by Cundall and - Strack
in that it prartitions the tensor into its four components
where each partition is calculated independently, including
the total, which thus gives a check on the calculations.
Also the stress tensor is calculated as an average of the
individual stress tensors for each particle in the sub-
assembly. The other analysis subroutine is concerned with
statistical information and calculates the second and fourth
order structural anisotropy tensors for the assembly, refer
to section 4.6 for more detail. The total number of contacts
and sliding contacts within the sub-assembly are also given.
Barnes (1985) also introduced a subroutine to determine the
total and dissipated energy in the assembly. The plotting
routines that were available as single plots or to superim-
pose on others at this time were; discs (with the option of
the disc number in the centre), grid of boxes, boundary,
contact forces and particle velocities. Also the following
plots were available in comparison to a reference state;
rotation vectors, cumulative sliding displacement, rotation
directions and a representation of the equivalent space
lattice of the system illustratinglthe current state and the

changes that have occurred since the reference state.

4,3 Particle-particle interaction laws.

To enable the simulation to successfully predict the inter-
nal mechanisms and forces of a real system of particles it
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was necessary to introduce realistic contact laws. Hence the
linear force-displacement laws were replaced by the non-
linear normal force-displacement law of Hertz (1882) and the
non-linear history dependant tangential force-displacement
laws of Mindlin and Deresiewicz (1953).

The subroutine FORD which incorporates the force-displace-
ment laws for normal and tangential particle interactions
has therefore been extensively rewritten. Originally the

following linear force-displacement laws were employed

AN

An(STIFN) (4.1)

AT As(STIFS) (4.2)

where STIFN and STIFS were directly input into the program
and represented the normal and shear stiffnesses, AN and AT .
were the normal and tangential force increments, and An and
As were the normal and shear displacement increments.

Normal and tangential contact damping was of the form

Nt N + AN(B/2.FRAC) ' (4.3)

Tt

T + AT(B/2.FRAC) (4.4)

where FRAC was the desired fraction of the <critical time
step and B was the required damping factor. The theory
governing the new force-displacement laws has been covered
in Chapter 3. The following section will explain the logic
of the coding and highlight any other alterations mnecessary

for the implementation of the new force-displacement laws.

4.3.1 The logic of subroutine FORD.

If the contact is between a particle and a wall, a
previously set flag is read as true and sends the program to
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a section which calculates the normal and. shear displace-
ments based on the particle and wall movements. The equiva-
lent radius and mass for the contact is set to that of the
particle., The program then enters the coaing at the E*
calculation. '

For particle-particle contacis the particles are tested as
to whether theyﬁ&fe still in contact or merely a potential
contact. This 1is achieved by determining whether the
distance between the two ﬁarticle centres is less than the
sum of +their radii. For two particles 1in contact the
direction cosines of the contact normal vector are calcula-
ted. The program then calculates the . following relative
properties for the contact,

equivalent radius:

R* = (R1.R2)/(R1+R2) (4.5)

equivalent mass:

M* = (M1.M2)/(M1+M2) - (4.6)
equivalent Young’s modulus:
E* = (E1.E2)/(E1(1-v22)+ E2(1-v12)) (4.7)

where Vv is the Poisson’s ratio. (Note this is the re-entry
position for particle/wall contact).

Finaliy, the relative shear modulus is defined by

G* = (G1*.G2*)/(G1*+Gz*) (4.8)
where

Gi* = E1/(2(1+v1).(2-v1)) (4.9)
Gz*¥ = Ez2/(2(1+4v2).(2-vz2)) (4.10)

The Hertzian contact law is then used to determine the

normal force increment.

For no previous normal force (thus no radius of contact)

AN = 4[E*(R*.An3)1/2}/3 (4.11)
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For a previous normal force

AN = 2.An.E*¥.a (4.12)
where a is the radius of the contact area.

The normal force is updated and a test performed to check
whether the particles are still in contact after the 1last
normal force increment or decrement. If s6, then the normal
force damping contribution is added. If not, then the
contact data is set to zero and the subroutine ends. The
contact is not necessarily deleted as, although there is no
normal force between the particles concerned, the gap
between the particles may be very small and the particles
likely to come into contact again. Only if the gap between
the particles exceeds a specified value (TOL) is the contact

deleted. The new normal force damping calculations are,

Total Normal force = Updated Normal force + Dx’

Where D = B.Dcrit and Derit = 2(M*¥*.2.E*.a)l/2, and 2.E*.a is
the normal stiffness.

Thus,

Nt = N + (2.B(M*.2.E*¥.a)1/2),(An/AL) (4.13)
where At is the time step.

The radius of contact is then calculated as

a = (3.N.R*/4 ,E*)1/3 (4.14)
The minimum coefficient of friction of the two particles 1in
contact is taken as the controlling friction coefficient. If
the contact is frictionless then the program moves to the
updating of the tangential force where the tangential force
contributions are necessarily zero, otherwise the direction
of loading is determined. It is necessary to move to the

updating of the tangential force if the tangential force
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contribution 1is zero because various other parameters may
need updating. This is due to changes in the normal force,
the implications of which will be described later in this
section.

A test 1is performed to determine whether there 1is a
tangential displacement. For no tangential displacement the
subroutine also moves to the updating of the tangential
force with the £angential force increment set to zero.

It is important to determine the current direction of
tapgential loading. This is stored under CDF which is -1 for
a negative 1loading direction and +1 for a positive. The
loading direction is based upon the program’s sign conven-
tion of tensile normal stresses and clockwise shear stresses
acting on a boundea area being positive.

For virgin loading CDF=+1 for T>0. For unloading or reloa-
ding the sign of CDF corresponds to the sign of T*¥ which is
the tangential force from which wunloading commenced. The
program then calculates the tangential force increment using
the value of 0 determined by the function THETA which also
sets an unloading flag UFL, (see section 4.3.2).

The increment in tangential force is expressed by

AT = CDF(0(8.G*.a.As.CDF - p.AN.UFL)+ W.AN.UFL) (4}15)

which compares with (3.94) after re-arrangement. -~
Once the tangential force increment is calculated the new
value of DD is determined.

To explain the use of the parameter DD it is necessary to
refer to the end of section 3.4.1, which describes the case
of normal force increasing when AT<PAN., This 1illustrates
that for this case As<Asi1i and the system would fail to meet
point B in fig 3.9, but would be on the line between A and
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B where the equation for the line AB is defined by (3.70).
This equation for the incremental’stiffness is used until
(3.71) is true. To apply this to the coding of the program
it is necessary to calculate the critical ﬁalue of As (Asc)
which is necessary for the system to reach the appropriate

point on a normal force constant curve. From equation (3.65)
Asc = W.AN/(8.G*.a) (4.16)

The difference between this value and the actual As is
termed DD and needs to be found and stored. For successive
cycles of AT<pPAN the value DD will cumulate as the system
grows farther from its point on an appropriate normal force
constant curve. Then if for the following cycles AT>WAN the
svstem will approach its appropriate point on a normal force
constant curve and thus DD would need to be reduced. Only
when DD 1is found to be <=0, and thus the condition
prescribed by equation (3.71) met, will equation (3.68) be
used. Hence, for each cycle if AT<pPAN DD is given by (4.17).
If AT>uAN and DD has a cumulated value (4.17) is also used

to decrease the value of DD as Asc < As.

DD = DD + (Asc - As.CDF) (4.17)
For the case of N decreasing AT is always greater than pAN

and thus DD is defined by (4.18).

DD = DD + Asc (4.18)
The syvstem 1is then tested for load reversals. If the
tangential displacement increment multiplied by the loading
direction is negative, and T* and T** do not have values,
then unloading must have been initiated and T* is set to the

old wvalue of T. Also, if the tangential displacement
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increment multiplied by the loading direction 1is positive

and T* has a value but T** dﬁes not, then reloading must
have been initiated and T** is set to the oid value of T.

The tangential force is then updated by adding-the calcula-
ted increment. The contact is examined for sliding. If T >
UN the contact is sliding, T is reset to UN, and the sliding
displacement 1is accumulated. Optional tangential contact

damping is available of the form,

Te = T + 2.3(M*.|AT/As]|).As/At (4.19)
However, du; to the dissipative nature of the tangential
contact laws it 1is anticipated that further tangential
energy dissipation will not be necessary.

It is important to determine whether the system is at the
point of initiation of unloading or reloading when N is
varying. This is because if the system has not just started
unloading or reloading and T* and T** have values (i.e. T*
will have a wvalue only if the system has previously
unloaded, T** will have a value only if the system has
previously reloaded) they need to be updated by (AN. Refer
to fig 3.13 which illustrates that for increasing values of

N, T* is increased and thus T** decreased by LAN.

T* = T* + CDF.pL.AN . (4.20)
T** = T** - CDF.pAN (4.21)
Finaliy, it is necessary to check for the re-establishment

of virgin loading or unloading, as with virgin loading the
previous history of the contact has been erased and thus T*
and T** are re-set to zero. Similarly with unloading any
reloading history of the contact has been erased and thus

T** is set to zero.
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Having - updated the normal and tangential contact informa-
tion, the contributions of the contact forces to the out of
balance_ force and moment of the two particles are then
calculated in terms of the global coordinate system and
added to the force sums fop each particle. The subroutine

then ends.

4.3.2 The logic of function THETA.

In function THETA the critical tangential displacement (Asc)
is initially determined. This is the tangential displacement
necessary for the system to reach its equivalent point on a
normal force constant curve, equation (4.16).

The function is then divided into four sections; setting a
flag THE1l for normal force increasing, decreasing and
constant, and then reading the flag to use the appropriate
equation for 6. For all unloading cases an unloading flag
UFL is set to‘—l. Otherwise it is set to +1.

For the cases of normal force decreasing or constant, a
series- of conditional statements are used to determine
whether the system is loading, unloading, relocading or re-
unloading. Reloading is identified if the tangential displa-
cement multiplied by the loading direction is increasing but
the absolute value of the tangential force is less than the
absolute value of T*. For this case THEl is set to 3. If the
reloading criterion is fglse and the tangential displacement
multiplied by the loading direction is increasing, then THE1
is set to 1 indicating wvirgin loéding. Re-unloading 1is
identified if the preceding criteria have not been met, the
tangential force multiplied by the loading direction 1is
greater than T** multiplied by the loading direction, and
T** is not zero. For this case THEl is set to 3. Unloading
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is determined if all the other criteria were not met and
then THEl1l is set to 2.

However, for the reasons given in section 3.4, each case for
normal force increasing has two possibilities in terms of
tangential displacement: As<> QL.Asc + DD where DD 1is the
cumulative amount +the system has f;llen short of 1its
equivalent point on a normal force constant curve. All cases
are dealt with in the same way as the previous paragraph,
unless As< PL.Asc + DD in which case THEl is set to 4.

Finally, for the various values of THEl, 8 is calculated:

THE1=1 @ = (1-(T.CDF + pAN)/(pn.N))1/3 (4.22)
THE1=2 8 = (1-(T*.CDF - T.CDF + 2.WL.AN)/(2.pn.N))1/3 |
(4.23)
THE1=3 8 = (1-(T.CDF - T**.CDF + 2.lL.AN)/(2.pn.N))1/3
(4.24)
THE1=4 6 =1 (4.25)

corresponding to (3.95)-(3.98) respectively.

The value of 6 is then passed to the subroutine FORD.

4.4 System initialisation.

The program was originally limited to a maximum of 5
particle types and a maximum particle size of 10 units. The
number of possible particle sizes has now beén increased to
50. This enables less discontinuous particle size distribu-
ticns to be adopted.

When a new simulation test is initiated certain parameters
are used for checking particle movements and for graphics
which are fixed by the program. These parameters are now

automatically scaled to the maximum particle size. This was

necessary for the introduction of S.I. wunits and enables

76



particle sizes to be changed by orders of magnitude.

Particles were previously considered as cylinders or discs
of wunit length. The parti;les are now considered to Dbe
spheres whose centroids all lie in the same plane. For the
purpose of calculating sample volumes and for calculating or
applying the overall stress tensor, the dimension normal to
the plane 1is taken to be the average sphere diameter.
Young’s modulus and Poisson’s ratio for each particle type
are now input as properties instead of the normal and shear
stiffness previously specified. '

The particle CREATE command has been altered so that an
initial velocity (x velocity, y velocity and angular. velo-
city) can be specified. This is particularly useful for
impact experiments.

One of the problems in preparing an assembly had always been
that the initial assembly as generated 5ad a high porosity.
This meant that when a Boundary was generated and strain
controlled, and when forces had propagated through the
assembly from the boundary, a considerable reduction .in fhe
overall assembly diameter occurred. The particles that were
fixed on the boundary when the assembly was generated are
now fixed on a much smaller boundary perimeter. This
reduction in the assembly perimeter had the effect of
compressing the boundary particles such that large overlaps,
and thus forces, were unrealistically generated between

them. With an assembly in this state it was then very
difficult to switch between a strain controlled and a stress
controlled boundary. Unless the applied stress was consider-
ably higher than the boundary stresses, the high unrepresen-
tative boundsry forces would cause the particles to be
ejected. To reduce these effects by generating a denser
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initial assembly, the program was re-coded so that if all
the required particles of a certain size could not be fitted
into the aésembly, instead of stopping as was previously the
case, the program would now move on to the next smaller
particle size and attempt to geherate all those. This new
method of generation produces a much more dense assembly
than the ©previous method, and thus not only reduces the
effect of the locked in high boundary forces, but also
requires much less compression to achieve a desired isotro-

pic stress level.

4.5 Experimental procedures.

4.5.1 Time step considerations

Previously the time step for the program was based upon the
critical time step for numerical stability, equal +to the

minimum of

Ate = 2(M/STIFN)1/2 (4.26)
or
Ate = 2(M/STIFS)1/2 (4.27)

where STIFN and STIFS were input directly into the program.
The time step was then set to the specified fraction of the

critical time step.

At = Atc.FRAC ' (4.28)
However, to simulate the behaviour of real material the time
step used in the calculation cycle should be based on real
force transmission speeds. In three dimensional elastic
bodies energy is transferred through the body by dilational
(pressure) waves, which are material element volume fluctua-
tions without shear deformation, distortional (shear) waves,
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in which the material elements distort without a change in
volume, and surface waves. The speed of the dilational wave

is given as

c1 = (2(1-v)G/(1-2.v)p)L/z2 ' (4.29)
and the distortional wave speed is

c2 = (G/p)l/2 : (4.30)
In addition Rayleigh waves are propagated along the surface

of a body with a velocity

c3 = a.c2 = a(G/p)l/z (4.31)

Where a is the root of the equation

(2-02)4 = 16(1-a?2)(1l-a2c22/c12) | . (4.32)
The speed of the surface waves is just slightly 1less than
that of the distortion waves. The pressure waves account for
7%, the shear waves for 26% and the surface waves for 67% of
the radiated energy. Also pressure and shear waves decay
with distance to a much greater degree than surface waves.
For these reasons the time step is now based on the Rayleigh
wave speed for the average particle diameter of the
assembly. Thus, the program having calculated the average
radius and shear modulus for the assembly and having used a
linear approximation to (4.30), the equatien for the Ray-
leigh wave speed for the assembly is rearranged to give the

time step required,

At = ((®2.R%2.p/G)1/2)/a (4.33)
where
¢ = (0.1631v + 0.876605) (4.34)

A multiple of this time step can be used by issuing the

command FRAC x where x is the multiple of the Rayleigh wave
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speed required. By wusing a smaller time step a greater

degree of accuracy is obtained but more cycles are necessary
to achieve desired movements. A larger time step can be used
for disperse systems to enable large movements in small
numbers of cycles. Cundall (1971) shows that for a simple
mass-spring system +the +time step should not exceed the
critical time step, 2Y(M/K). However, for a non-linear
system K varies and thus the critical time step constantly
alters for each particle in the assembly. Hence, to deter-
mine the critical time step for a particle the stiffness K,
which is the effective stiffness of the particle, needs to
be calculated 1in terms of the-current force and velocity

increment.

K = ASF/Ax (4.35)
where
Ax = [(VxZ + Vy2)l/2]At ' (4.36)

where Vx and Vy are the current velocity components.

Thus the critical time step is

Ate = 2(M.Ax/ASF)1/2 ' (4.37)
for each particle.

In subroutine MOTION, which is the subroutine that computes
new velocities and displacements for eaéh particle given the
forces and moments acting upon it, an array-SUMFOLD (no. of

particles) is used to determine AZIF, as

AZF = ZFnew - ZFo1la4 (4.38)
where
(:Fnew)z = (ZFx )2 + {:Fy)z (4.39)

The ratio of the actual time step to the critical time step

is

FRACC = At/Atc (4.40)
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If fRACC is greater than 0.3 it has been found ihat the time
step for dense assemblies with many.contacts can be too
large, and unrealistic particle overlaps can occur in one
time step which can thus create large out of balance forces,
and as a result numerical instability. The program warns the
user if the maximum value of FRACC for any cycle 1is over
0.3. Thus the command FRAC x can be issued to reduce the

time step, where x<1.

4.5.2 Strain control

Cundall (1988) reports the development of a three dimensio-
nél version of BALL, which is reviewed towards the end of
section 2.3, In this simulation periodic boundaries are
" employed and thus the definition of a boundary from-which a
stress or strain tensor is applied 1is not applicable.
Cundall (1988) treats the centres of the particles as points
in a continuum and defines a continuum strain rate tensor
which prescribes the particle movements, further movements
resulting from the interactions between particles are trea-
ted as perturbations on the continuum behaviour. Cundall

(1988) achieves this by the use of the following equations

Aui = Aui + eijxjAt . (4.41)
where

Aui is the displacement increment

éij is the continuum strain rate tensor

xj is the particle coordinate

At is the time step.

The relative approach velocity is increased by

.(rel) (real) . (diff)
ui = ui - eij Zj (4.42)
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where

s(rel)
ui is the relative approach velocity of the two spheres

+(real)
ui is the relative ’real’ velocities obtained from par-

ticle interactions

éij is the continuum strain rate tensor

(diff)

Zj is the vector joining particle centres.

For the two dimensional particle simulation reported in this
thesis a similar tensor to Cundall’s has been employed. 1In
conjunction with the continuum strain rate tensor it was
necessary' to define a boundary strain rate tensor of equal
magnitude. If this was not used the assembly would break up
due to ©perturbations caused by interactions within the
assembly. Two alterations were necessary to the program to
incorporate the tensor, the first being in subroutine FORD
which is the subroutine which calculates the normal and
tangential force increments and the second in subroutine
MOTION which C&lculétes the new velocities and displacements

for each particle. The following two equations were added to

both these subroutines

X = X 4 é11.x + c12.%5 (4.43)
& = ; + ézz.y + ézx.x - (4.44)
where é and y.are the relative velocities of the particles
in FORD and are the velocity components of the particle
under considération in MOTION, In FORD x and §F are the
distances between the particle centres but in MOTION they
are taken to be the particle coordinates.

The continuum strain rate tensor is defined by

Cij (iaj=l)2)°
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4.6 Analysis routines.

A large amount of additional information is now available to
the user. The radius of the contact area, the average normal
and shear contact stresses, and the contact radius divided
by the radius of the smaller of the'two contacting parti-
cles. These are all now printed out when t.ae PRINT CONTACTS
command is given. The normalﬁigd shear stress information is
particularly useful in gauging the maximum, minimum, average
and distribution of contact stresses-for a given applied
stress, Thornton and Randall (1988). If the material yield
stress 1is known the areas of the assembly for which the
Hertzian contact laws are not strictly relevant . can be
identified. The contact radius divided by the minimum
particle radius for that contact can be used to determine
whether the contact has exceeded 7% overlap. This is another
indication of whether the assembly has been loaded to such
an extent that the Hertzian laws employed are no longer
valid. One further new parameter that is calculated is the
contribution of each particle type to the total number of
contacts., With this facility it is possible +to determine
whether for particular loading cases it is the smallest
particles that ére generally redundant of whether the
redundancy iqhevenly spread across the particle sizes. It is
anticipated that this may become of greater use for assemb-
lies with extreme gradings, with the largest particle many
times larger than the smallest.

A new subroutine has been intrcduced called AVERAGES which,
when eight particle or contact parameters are passed to it,
returns the maximum, minimum and average values of the

parameters which are then printed out. For particles the
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eight parameters are, the contact angle, x velocity, vy

velocity, angular velocity, x force, y force and moment. For
contacts, the parameters are the normal force, shear force,
contact ‘angle, radius of contact, normal contact stress,
tangential contact stress, and the radius oflcontact divided
by the minimum particle radius for that particular contact.
Also two further commands have been introduced, PRINT
AVERAGES and PRINT ALL. Issuing the PRINT AVERAGES command
will ensure that every time thereafter when a PRINT BALLS or
PRINT CONTACTS command is given only the max, min and
average information will be printed out. The PRINT ALL
command cancels a previously issued PRINT AVERAGES command.

In the calculations and statistics subroutine CAST, the
structural anisotropy tensor for the assembly is calculated.
To describe the structure of the assembly satisfactorily the
closeness of ﬁacking and directional distribution of parti-
cles must be accounted for. This was achieved by Oda et al
(1982) who described the microstructure of an assembly of
particles by a second order ’fabric’ tensor, which can be

expressed as:

Fij = Fig .®ij (i,j=1,2) (4.45)
The program BALL calculates and prints out the two compon-
ents of the fabric tensor where

Fik = (2MR/V) (4.46)

and 2M is the total number of contacts occupying a volume V,
R is the average disc radius. The structural anisotropy 1is
defined by the tensor

bi; = <ninj> (i,3=1,2 (4.47)
where ni define the contact normal vectors.

In the program BALL ®ij is calculated in the following way

84



M

Gij = (l/Mzgninj (i!j=1,2) ’ (4.48)

1

where

ni = Ax/D ' (4.49)
nz = Ay/D _ (4.50)
D = (Ax2+Ay2)1/2 (4.51)

where Ax and Ay are horizontal and veriical distances
between the centres of two contacting particles. In addition
the structural anisotropy tensor is printed out weighted to
the normal and tangential force.

The major and minor principal values and angles are also
calculated for the second order structural anisotropy ten-
sors.

With reference to fig 4.1,

®1 (®11 + d22)/2 + [((Pr2+P21)2 + (P11-022)2)1/2]/2 (4.52)
Oz = (®11 + ®22)/2 - [((P12+D21)2 + (Pr1-®22)2)1/2]/2 (4.53)
8 = 0.5.arctan [(®12+%21)/(P11-D22)] (4.54)

All input and output parameters are now given in SI units.

Fig. 4.1 Mohr's circle illustrating the second order structural anisotropy tensor.
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4,7 Graphics facilities.

Minor alterations have been made to the plotting routines
due to the different sizes of particles that are now used.
Scaling, velocity vectors and particle number position
offsets are now based on the maximum particle size. With
the command PLOT X, where X is a real numbér, a picture can
be enlarged or reduced. Also it is now possible to select
different colours for each plotting option. The SELECT
commahd now expects a number between 1 and 10 after each

plotting option number. The numbers represent the following

colours,
1- black
2- red

3- orange

4- yellow
5- green
6= cyan
7- blue

8- violet

9- brown

10- white.
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5. Program validation tests.

5.1 Introduction.

It is essential to test the validity of the modifications to
the program undertaken in this research project. Many of the
alterations were relatively simple to check. For example the
introduction of a time step based on the Rayleigh wave speed
merely required hand calculations to determine the correct
time step for a number of cases, including some extremes.
These cases were then used in the program and the same time
steps were obtained. However, before using the program +to
simulate a large assembly of particles, simple tests had to
be performed to verify the new inter-particle force laws
described in chapter 3, and codea as described in cbaptér_4.

Two simple series of tests were performed to wvalidate the

program under gquasi-static and dynamic conditions., .

5.2 Quasi-static oblique loading tests.

Two identical spheres were created with the following
properties: R=10 mm, p=0.3, p=7.8 Mg/m3, E=210 GPa, Vv=0.3.
Kinematically controlled frictionless walls, with the same
elastic properties as the particles, were used to achieve
the desired relative displacement of the spheres. The
initial configuration of the system is shown in-fig 5.1. For
the first test two equal and opposing vert}cal vglocities

were applied to both sets of walls to compress the two

spheres and thus establish a normal force between them. Fig

5.2 illustrates the normal force-displacement curve obtained
with theoretical predictions wusing (3.13) superimposed
giving excellent agreement.

The vertical wall velocities were then zeroed and horizontal

velocities specified to develop a relative tangential dis-
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Fig 5.1 Quasi-static contact validation tests.
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Fig. 5.2 Hertzian force-displacement relationship.
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placement between the gpheres to produce tangential loading,
unloading and reloading behaviour. During this stage the
normal contact force remained essentially canstant. The
results from some of these simulations are illustrated in
fig 5.3 with the theoretical values calculated wusing the
equaéions of Mindlin and Deresiewicz (1953) for a constant
normal force of 88N. Excellent agreement between theory and
simulation can be seen.

With the same initial configuration as in fig 5.1 a number
of other tests were undertaken for more complex loadiﬂg
histories. Tangential loading, unloading, reloading anq re-
unloading were all performed for both increasing and decrea-
sing.normal'force. These simulations produced complex load-
displacement curves which could not be easily verified from
the theory in chapter 3 due to the tracing of the 1loading
history. However the correct operation of the program was
checked by print#ng out the dominant loading direction, and

the loading case which was currently being used along with

the decisions this was based upon.

5.3 Dvnamic impact.

For an explicit validation of the new force-displacement
laws, 1involving complex 1loading histories and a varying
normal force, a series of single particle impact tests were
performed. This also checked the program’s ability to handle
dynamic problems. The simulations were restricted to elastic
impact. Permanent contact deformation and energy dissipation

due to particle deformation were ignored.

5.3.1 Normal impact.

The <classical elastic impact theory was initiated by Hertz
(1882) and follows from his static theory of -elastic
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contact, section 3.1. Elastic wave motion was ignored in his
analysis and the total mass of each body was.assumed to be

moving at any instant with thé velocity of its centre of

mass. Hertz (1882) considered a co~-linear impact for two
elastic spheres with masses mi1 and mz, and velocities wy1
and vNz acting normal to their contact. During impact their

centres approach by a displacement a, their felative velo-
city being
vN2 - vN1 = da/dt. (5.1)

The normal force between them is

N = midvyi/dt = -m2dvy2/dt { Bv2)
thus

-N/m* = d(vsz-vN1)/dt = d?a/dt? (5.3)
where

1/m* = 1/my + 1/m2 (5.4)

The relationship between N and a is assumed to be the same

as for a static elastic contact

N = (4/3)R*¥1/2E*q@3/2 = RKa3/2 (6.5)
and hence
m*d?2o/dt?2 = -Kad/?2 (5.6)

Integrating (5.6) with respect to « gives

1/2[Vn2-(da/dt)2] = 2/5(K/m*)a5/2 ’ (5.7)
where
Vv = (vN2 - VvN1)t=0 (5.8)

is the approach velocity.

At the point of maximum compression o*, da/dt = 0 and thus
o = (5m*Vn2/4K)2/5 = (15m*Vn2 /16R*1/2E*)2/5 (5.9)
Subspituting o* in (5.5) gives the maximum normal force
further’® integration of (5.7) gives the compression-time
curve
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t = a*/Van(oc/a*)/[1—(a/a*)5f2]112 (5.10)

Deresiewicz (1968) evaluated this integral and produced the
force-time curve in fig 5.4. After the time for maximum
compression (t*) the spheres once again rebound. The total-

impact time Te is therefore

1

2t* = 20*/VNJ' d(a/o*)/[1-(a/a*)5/2]1/2 L.l
0

Te

Te 2.94a* /Vy = 2.87(m*%2 /R¥*E*2Vy)1/5 (5.12)

This analysis is only applicable for elastic contacts with a

circular contact area.

5.3.2 Oblique impact.

Maw et al (1976) presented two solutions for the oblique
impact of an elastic sphere on a half space. Hertzian impact
theory was used for normal force/velocity components, and
the area of contact was assumed to be divided into areas of
stick or slip. It was also assumed that the coefficient of
friction was constant in an area of slip and that friction
was the only source of energy dissipation. To enable a
solution for the boundary values for the taﬁgential trac-
tions and displacements the contact area was arbitrarily
split into a set of concentric annuli.

Previous elementary approaches neglected the elastic displa-
cements of the solids, which would distinguish two condi-
tions, that of sliding and rolling. The elastic displace-
ments associated with impact are generally small compared
with the dimensions of the solids. However, they can produce
possibilities which cannot be accommodated within the ele-
mentary theories. This is because work done in producing
tangential displacements is stored as elastic strain energy
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which is recoverable. Also, as described by Mindlin (1949),

the tangential displacement 1s not constant across the
contact’ area but is split into areas of slip and stick.
During impact the normal force varies, and thus the loading
situations of varying normal force investigated by Minalin
and Deresiewicz (1953) are applicable.

Maw et al (1976) describe their exact solution, which used
the laws of Mindlin and Deresiewicz (1953), and which
advanced through the period of impact in small discrete time
increments. This exact solution from initial known values of
normal and tangential velocity found the displacements in a
time step and these thus defined the boundary conditions of
the instantaneous contact. The changes - in velocity compon-
ents during the time increment were then found from the
contact forces having used momentum considerations.

Maw et al (1976) stated that the previous history of the
system only influences the instantaneous behaviour of the
contact in so far as it determines the locked in tangential
displacements in the areas of stick. Hence for their simple
rigid body theory they represent the distribution of tangen-
tial displacements by a series of functions, and thus the
system was no longer dependent upon the storage of the
loading history. Maw et al (1976) compared the results of
using their exact and simple rigid body methods and reported
close agreement in cases to which both can be applied.

Maw et al (1976) defined the traction distribution such that
the total traction in the direction of the tangential motion

at a radius r is
n

al(r) = zqi(l—nzrzfaziz)“” (5.13)

i=]
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where j is the smallest integer greater than nr/a, n is the

nﬁmber of concentric annuli across the contact area and a is
the maximum radius of the contact area. This series is based
upon the work of‘Mindlin (1949) and gives an analytical
expression for tangential displacements and includes the
exact solution for the condition of sliding.

An equation for determining the n coefficients gi can Dbe
obtained for each of the n annuli. In areas of slip " the
tangential traction q(r) = #tpp(r) where p(r) is the 1local
normal contact pressure, To facilitate this a provisional
division 1into stick and slip regions 1is assumed, the
appropriate equations were solved and the solution tested to
check the initial assumption. 1In regions of stick the
tangential traction is below the limit at.which slip occurs,
whereas within slip regions the relative incremental displa-
cement must be in the correct sense for +the assumed
frictional traction. If these tests fail in any region the
assumption 1is changed and a new solution 1is obtained.
Convergence was reported as rapid.

Maw et al (1976) showed that the resultant trajectory of the
sphere after impact was dependant on two non-dimensional
parameters. The first of these, related to the radius of
gvration of the sphere, is,

X = (1-v)(1+1/KZ2)/(2-Vv) (5.14)
where K = (I/MR2)1/2, Note for a solid sphere K2 = 2/5.

The other is the local non-dimensional tangential velocity:

the ’local’ tangential velocity being the velocity of the

contact.
v = (2(1-v)/n(2-v))(Vr/Vn) (5.15)
where Vyx is the normal velocity, Vr is the corresponding
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tangential velocity and

Vr/Vy = tan 0O ' (5.16)
where 8 is the angle of incidence. - ‘
Fig 5.5 illustrates the variation in tangential and normal
forces during a cycle at various values of yi produced by
Maw et al (1976).  The value of ¥ was fixed at 1.4412
corresponding to a homogeneous solid sphere with v=0.3. The
forces were plotted such that T and N coincide when T=pN.
For small angles of incidence the tangential force can be
seen to reverse shortly after the point of maximum penetra-
tion. At the mid-point of the cycle the local tangential
velocity is opposite in direction to that at incidence. The
tangential oscillation is reduced in the cases when T = -uN
and the direction of sliding 1s opposite to the relative
tangential velocity at incidence. During the final stage of
impact the surface of the half space moves in the same
direction "as the local incident tangential velocity of the
sphere, and at a greater speed than the sphere itself, which
has been retarded. For larger angles of impact the 1initial
period of sliding delays the start of the tangential force
oscillation but the same general type of behaviour occurs.
Maw et al (1981) made the following observations. When yi1 <=
1 the surfaces initially stick and new contact annuli are
formed, free of tangential traction, until just before
maximum compression when slip is initiated. Once the mid
point of the impact is passed the contact area reduces and
the tanéential elastic recovery of the system causes an
annulus of slip to spread inwards, until a point is reached
when the system <can no longer support the tangential
traction, the stick annulus being fully penetrated, and
rigid body sliding occurs. At this point the value PN has
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been reached by the tangential force.

For 1 < y1 < (4x-1) the impact initially occurs in sliding,
hence the tangential traction is everywhere Wyo. Friction
decreases the relative velocity of the objects to =zero at
which instant the contact annulus is stuck throughout. ‘The
subsequent behaviour of the contact then during rebound is
the same as for yi<l. As yi1 is increased the sliding/stick
transition occurs later in the cycle. Finally if w1 >= (4yx-
1) sliding occurs throughout the entire impact and hence the
tangential displacement does not reverse.

If y1i = 1.2 is taken as a typical case where the contact 1is
initiated in sliding which is dpposed by the friction force.
At about a quarter of the cycle time the G criterion is no
longer satisfied and the surfaces are thus sticking, but the
system continues to deform in the original slip direction.
The oscillation then follows a normal pattern until near the
end of the cycle, when the elastic recovery of the defor-
mable surfaces is in the éame direction as the movement of
the particle, but at a greater speed. Thus sliding in the
opposite sense to the original is initiated and persists for
the remainder of the impact.

The non-dimensional local angle of reflection plotted
against the corresponding éngle of incidence produced by Maw
et al (1976), fig 5.6, illustrates the regimes discussed
above. For ~values of wi1<l V{2 is positive, slip occurring
during the impact. For values of 1<vi<4x-1 yz2 is negative
and the impact occurs initially in the sliding condition,
and when y>4y -1 sliding persists throughout the impact.

Maw et al (1981) report a series of experiments undertaken

to validate the analyses presented by Maw et al (1976).
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Fig 5.5 Nondimensional tangential force plotted against nondimensional
time for different angles of incidence for a sphere, Maw (1976).

Aston University

lustration removed for copyright restrictions

Fig 5.6 Nondimensional local angle of reflection against
that of incidence for a sphere, Maw (1976).
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Measurements were made of the angles of incidence and

reflection of a disk impacting a fixed block. A disk shaped
puck was propelled over an air bed towards a clamped block
of an identical material. A heavy launching device, incorpo-
rating a pendulum, provided a means of producing repeatable
initial conditions. Stroboscopic photography was used to
measure impact and rebound angles and velocities. Three
pucks were used, two of steel with a matching impact block
and a third of rubber again with a matching impact block.
Values of Vv were obtained from the material specifications
and L from simple impact experiments. With the steel pucks
the experimental values of yz for the partial-stick impacts
were lower than predicted. This means that the elastic
energy stored in the material was either less than expected
or not recovered to the Qnticipated extent. The theoretical
value for the coefficient of restitution of 1.0 was reduced
to 0.93 giving an indication of the extent to‘ which the
material behaved according to the assumptions used in the
theory. For the rubber puck the coefficient of restitution
was 0.86 which was not considered low enough to transgress
the assumptions seriously.

The paper presented by Maw et al (1976) was restricted to a
study of the analytical behaviour of the oblique impact of
spheres, whereas the paper produced by Maw et al (1981) was
concerned with the analytical and experimental behaviour of
oblique impacts of discs. Fig 5.6 illustrates vi against w2
for spheres and fig 5.7 illustrates the same relationship
for discs. Comparing these two graphs, the main difference
arises for small angles of incidence where positive values
of 2 are obtained for wi<l in the case of spheres whereas

this feature is not apparent for discs.
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Rigid body theory outlined in the beginning of this section
agrees with the more exact theory for wi1>=4y% but ‘predicts
y2=0 for wi<4y. lThe exact theory predicts elastic recovery
of the surface which leads to negative 1lccal angles of
reflection. Also, sliding occurs throughout the cycle at
lower wvalues of yi1 than those predicted by the rigid body
theory since the tangential elastic fecovery of the surfaces
can maintain relative motion even when the sphere has been

brought to rést.

5.4 Obligque impact tests.

Maw et -al (1978) predicted that for oblique impacts the
angles of reflection and rebound velocities would not be
those obtained from the simple ’rigid body’ theory. Thus in
imitating éhe experiments of Maw et al (1976), having
incorporated the laws of Mindlin and Deresiewicz_(IQSé) and
Hertz (1882) which were used by Maw in his ’exact’ theory,
and by defining a particle with the same non-dimensioconal
parameters and contact friction as Maw, we should anticipate
similar results from our simulations.

Maw et _al (1976) published values of Vv=0.28, w=0.12 and
%=1.4412 for his simulations using a spherical particle,
thus a sphere was defined with v=0.28, p=7800 kg/m3, E=210
GPa and R=lmm giving a value for ¥ of 1.465. A series of
obligue impact tests were then simulated, refer to fig 5.8.
The impact velocity of v=0.4m/s was chosen such that, for
the time step used, between thirty and forty points were
obtuained for the contact duration. The particle was genera-

ted with the desired velocity close to the wall in a gravity

free svstem so that few cycles were necessary to initiate

99



Aston University

Nlustration removed for copyright restrictions

Fig 5.7 Nondimensional local angle of reflection against
that of incidence for a disc, Maw (1981).

Fig. 5.8 Oblique impact.
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the impact. Fig 5.9 illustrates T/pUNmax against t/Tc for
various angles of impact which can be directly compared with
the resul£s published 'by Maw et al (1976) in fig 5.5;
excellent agreement can be noted. All the trends reported by
Maw are present. For small angles of incidence (wyi1<1) the
contact 1is initiated in stick. After maximum compression,
annuli of slip begin to spread inwards over the contact area
as a result of the re-distribution of traction over the
shrinking contact area. Once the normal force decreases to a
certain wvalue, this value being dependent on the angle of
impact, slip occurs over the whole of the remaining contact
area and the contact undergoes rigid body sliding. The
smaller the angle of impact the later this occurs until thé
asymptote of normal impact is reached.

In the second regime (1<y1<4%x-1) the contact is initiated in
sliding which 1is eventually countered by the frictional
force. Tangential force reversal then occurs. The stored
elastic energy of the system is now released in the same
direction as the particle movement but at a greater speed,
and once again sliding 1is initiated until the end of
contact. The larger the angle of incidence the later the
tangential force oscillation occurs, until finally the third
regime occurs (4y-1<y1) where the entire duration of contact
is dominated by rigid body sliding.

In fig 5.10 the plot of local angle of reflection against
tlhhat of incidence is illustrated. Again, directly comparing
this with the results of Maw et al (1976) shown in fig 5.6
illustrates excellent agreement. For wi<1l (6<9°), sliding
only occurs at the end of impact and positive wvalues of w2
are obtained indicating no overall reversal in the tangen-
tial velocity. The results produced by Maw et al (1976) in
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fig 5.6 using spheres illustrate this, however those produ-

ced by Maw et al (1981)‘in fig 5.7 wusing discs do not
illustrate this phenomenon. This indicates that although the‘
program BALL can only simulate two dimensional assemblies of
particles the particles are treated as spheres and not discs
and do successfully illustrate the behaviour of impacting
spheres., For 1<yi1<4x-1, which are the impacts initiated and
Eérminated in rigid body sliding, the local tangential
velocity componént is reversed and the point on the pheri-
prhery of the sphere, which on impact is at the centre of the
contact, aftér impact has a negative angle of reflection
thus ’bouncing back’ toward the direction of impact. Howe-
ver, the angle of reflecgion of -the sphere measured from the
centre of the particle is positive and so the negative angle
of refleétion of the contact area is produced by spin. For
impacts occurring within the third regime where wvi>4y%-1
(6>=40° ), because no rolling_occurs and thus no tangential
force reversal since sliding occurs throughout the impact,
positive values of Y2 are once again obiained illustrating
no overall local tangential velocity reversal.

As an alternative to fig 5.9 the variation of tangential and
normal forces during an impact are shown in figs 5.11 to
5.13, for typical examples of the three regimes of_behaviour
indicated in fig 5.10. Figure 5.11 illustrates the variation
of tangential with normal force for an'angle of 1incidence
(=4°. The figure clearly shows that rigid body sliding only
occurs at the end of the impact. The tangential force can be
seen to decrease well before the normal force reaches a
maximum and soon after the normal force starts to decrease
the tangential force direction reverses. For an impact angle
of 20° fig 5.12 shows that rigid body sliding occurs from
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the start of the impact until the normal force has almost
reached its maximum vqlue. At this point the tangential
"force 1is a maximum. Rigid body sliding then stops' as the
tangential force reduces., The normal force then reduces and
the téngential force continues to reduce and then réverses
in direction until it reaches a maximum value. At this point
rigid body sliding is resumed and continues until the end of
.the impact. The Ehird regime of behaviour is illusz}ated in
fig 6.13 for 6=40°. The figure clearly shows that rigid body
sliding occurs throughout the duration of the impact.

For a given impact velocity the effect of increasing the
angle of impact 0 on the normal force-displacement behaviour
is to reduce the maximum normal force and displacement due
to the reduction in the normal velocity component. The
tangential force-displacement behaviour of the contact ié,
however, much more complex, as shown in figs 5.14-5.16.

The tangential force-displacement behaviour for 6=4° is
illustrated in fig 5.14. It can be seen that, although no
rigid body sliding occurred as the normal force was increa-
sing, the work done during tangential loading was not fully
1recovered when the tangential force reduced to zero. This is
due to slip dissipating energy as it spreads radially inward
over the contact area. Similarly, after the tangential force
Jdirection has reversed slip results‘in irrecoverable defor-
mation. However, close to cessation of the contact, due to
re-distribution of the remaining traction, sliding finally
occurs causing further irrecoverable deformation and a small
net negative tangential displacement results. It is intere-
sting to note that fig 5.14 indicates that, if no rigid body
sliding occurred, the overall displacement would have been
fully recovered even though energy had been dissipated by
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slip during the impact.

The behaviour of the intermediate region is illustrated in
fig 5.15 for an impact angle of 20°, As the contact |is
initiated in rigid body sliding, which persists until the
normal force has almost reached its maximum,. irrecoverable
strain energy is dissipated during this loading period. The
tangential force reduces to zero and builds wup in the
negative loading direction which, wupon reaching a maximum,
initiates rigid body sliding once more in the opposite
direction to the original. This causes further irrecoverable
strain energy until the impact ends. It may be noted that,
since the gradient of the curve indicates the sign of the
tangential velocity, fig 5.15 confirms that the angle of
reflection of the area on the sphere that forms the contact
area 1is such that its position ’'bounces back’ towards the
direction of impact. This was also reported by Maw (1976),
The behaviour for the third regime is typified by fig 5.16
which shows the tangential-force displacement curve for
0=40°. For this case rigid body sliding occurs throughout
the impact and fig 5.16 <clearly shows no recoverable
deformation.

Figure 5.17 shows the coefficient of restitution, calculated
from the resultant particle velocities before and after
contact, plotted against impact angle. The coefficient of
restitution is equal to 1.0 for impact angles of 0 and 90°.
Figure 5.17 indicates that for the properties used in the
simulation the minimum coefficient of restitution occurs at
an obliquity bf 50°. This corresponds to a value of w1
approximately equal to (4x-1) which is the boundary between
impacts during which tangential force reversals occur due to
sticking and impacts during which sliding occurs throughcut.
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During an impact, the initial kinetic energy of the sphere
is converted into three components of work done by the
contact forces. The work done by the normal force is in the
form of elastic strain energy which is fully recovered at
‘ the end of the impact. Work done by the tangential force is
not fully recovered. Most of the energy dissipation is due
to sliding but a small amount of energy loss occurs due to
micro slip. In addition to the work done directly by the
normal and tangential forces, the tangential force also
produces a moment which results in the third component of
work done in rotating the sphere.

For small angles of impact almost all the rotational and
tangential work done is recovered, except for the tangential
work done at the end of the impact when rigid body sliding
occurs and thus more energy is dissipated. In addition, more
rotational energy is expended due to the-higher tangential
force. When the obliquity is large enough to induce sliding
throughout the impact duration then T=pN and, since the
normal force component decreases with increasing contact
obliquity, the los; in kinetic energy decreases. Hence the
coefficient of restitution increases until the limiting
value of unity is reached at 6=90° when the normal force 1is
Zero,

In chapter 2 rigid particle simulations were reviewed which
employ coefficients of restitution to simulate particle
interaction laws, Campbell and Brennen (1982), (1985}). The
use of coefficients of restitution for particle simulations
is appealing as it enables the adoption of coefficients
obtained from experimental data. However, the implications
of the work of Maw et al (1981) and the tests reported 1in
this chapter show that for oblique impacts using a fixed,
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coefficient of restitution and calculating rebound angles
from particle spin and impact angle is incorrect. In such
simulations not only is the magnitude of the resultant
velocity vector incorrect, but also its direction. Thus to -
accurately model the.behaviour of oblique impacts in rigid
particle simulations, functions must be introduced to repre-
sent rebound angles and velocities.

The oblique impact tests presented in this chapter give an
average coefficient of restitution of 0.936 as compared to
0.93 over a similar range of impact angles which was
reported by Maw et al (1981) as the average coefficient of
restitution for the experiments using steel pucks.

It is concluded that the excellent agreement between the
analytical and experimental results of Maw et al (1976),
(1981) validate the program coding for dynamic impacts. It
is worth noting that all the various loading and unloading
cases for N increasing and N decreasing occurred in these

'simple’ impact tests.
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6. Applications to large systems of particles.

6.1 Introduction.

s

Having validated the ©program for gquasi-static particle
interactions and single particle oblique iﬁpacts, three test
series were performed on large systems of particles in order
to assess the performance of the program under conditions of
rapid flow, arrested flow, and quasi-static deformation. The
first two test series were carried out as final year
undergraduate research projects and will only be briefly
reported in sections 6.2 and 6.3. The third test series was
performed as part of this research programme and will be

covered in detail in the remainder of this chapter.

6.2 Hopper flow.

Platts (1989) simulated the flow of a monodisperse system of
approximately 500 particles through wedge shaped hoppers
with half angles of 45, 30 and 15°; and orifice widths of 5,
10 and 14mm. The spheres were of radius R=0.3mm and density
p=2.65Mg/m3, with elastic properties E=70Gpa, v=0.25 and the
coefficient of inter-particle friction pn=0.35., All the
hopper walls had the following éroperties: E=210Gpa, v=0.3,
p=7.8Mg/m3, p=0.15.

The particles were randomly generated above the hopper wedge
(fig 6.1la) and then‘subjected to a gravity field. Under the
influence of gravity the particles fell to the bottom of the
Liopper (fig 6.1b). Flow was initiated by removing the
horizontal wall at the orifice and is illustrated by the
velocity vectors on the particles in fig 6.1c. The system
was then cycled until all the particles had discharged from
the hopper (fig 6.1d).

The simulations illustrated three regimes of particle flow.
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Fig 6.1 Particles during hopper flow.
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The initial acceleration stage, which then reaches a con-

stant discharge rate which is maintained until the remaining
particles are no longer sufficient to provide the required
head for constant discharge, and the final flow stage where
prarticles roll down the inclined hopper walls. It was also
demonstratied that increasing the half;angle reduced the
constant discharge rate and that there was a reduction in
the time elapsed until constant discharge was achieved.
Increasing the orifice width increased the discharge rate,
although it did not seem to affect the duration of the
initial acceleration stage.

The flow patterns observed in the simulations are illu-
strated in fig 6.2 by the velocity vectors of the particles.
Eor small half-angles the flow of particles was radial with
all particles flowing to the virtual apex of the inclined
walls. For larger half-angles more complex flow behaviour
was ‘observed. Adjacent to the hopper walls slow moving =zones
of material were noted, whereas immediately above the hopper
orifice a region of rapid particle motion occurred as
particles fell from the hopper. This region was fed by the
zone of particles immediately above.

For the hopper simulations it was necessary to add the
facility to separately specify the contact damping for
particle-wall contacts. This was in order to account for
énergy losses due to the ’'massive’ nature of the walls in
comparison to the particle size. With this modification the
program performed well and it was concluded that although a
relatively small number of particles was used, the results
gave good agreement with the phenomena reported for 'real
hopﬁer flows. Information on stress, strain and wall pres-
sure distributions could not be made, due to the small
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numbers of particles, but these initial tests indicate that

simulations wusing many thousands of particles would be a

useful futqre application.

6.3 Pluvial deposition.

Another application of the progrém is the simulation of the
deposition of an assembly of particles into a container.
Webster (1989) investigated the deposition of three differ-
ent assemblies of approximately 500 particles. To simulate
pluvial deposition the desired particle sizes and distribu-
tion were generated in a rectangular area. A gravity field
was applied and the particles then fell as a rain into a
previously defined container. As a consequence particle-
particle and particle-wall interactions occurred and some of
the phenomena reported by otherlresearchers, such.as arch
formation and collapse at the corners of the container, were
observed. During the deposition phase the time step was
based on the Rayleigh wave speed. However, once the system
approached equilibrium as the particles began to settle, the
‘time step was too large and apparent numerical instabilities
occurred which were avoided by reducing the time step.
Figure 6.3 illustrates a pluvially deposited bed of parti-

cles.

6.4 Isotropic compression.

Most of the previous research on computer simulated experi-
ments using.the methodology of Cundall and Strack (1879) has
been concerned with the gquasi-static shear deformation of
large assemblies of particles. However, it is first of all
necessary to simulate the sample preparation stage. Ini-

tially particles are generated randomly within a prescribed
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area and in such a way that there are no initial contacts.

The system of particles is then subjected to a simulated

compression stage in order to create a compact assembly that

can be subsequently sheared.

6.4.1 Choosing a boundary control.

The original method of particle generation produced assemb-
lies of around 55% porosity. Compressioﬁ was achieved by
applying a strain controlled boundary to the assembly until
the desired isotropic stress state was reached. At this
stage the assembly would typically have a porosity of around
15%. ‘

One drawback of using a strain controlled boundarv is that
due to the large amount of compaction required to reduce the
porosity from 55% to 16% the overall assembly size decreased
considerably. As the boundary is initially fixed at genera-
tion, and any particle that more than half crosses the
boundary is thqn incorporated into it, once the assembly
reaches 15% porosity there are so many ' boundary particles
that the overlaps between them are orders of -magnitude
larger than those occurring within the assembly. The ccnse-
guent large inter-boundary particle forces can affect the
behaviour of particles adjacent to the boundary, and this is
one of the reasons that the regions used for analysis are
always well within the boundary and away from these effects.
A further drawback of compacting the assembly with a strain
controlled boundary is that once compacted, and with the
high locked-in inter-boundary particle forces, changing to a
stress controlled boundary for a constant mean stress test
means that the stress applied must be sufficient to -retain

the high forces on the boundary, otherwise particles will be
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ejected. Thus the applied stress must be much higher than

the 1isotropic stress inside the assembly and hence will
cause further compression.

Another consideration is the shape of the assembly after
isotropic compression. With strain control the boundary
1emains circular. With a stress controlled boundary the
boundary does not remain perfectly circular but beccmes
uneven in shape. This is due to a fixed force being applied
to all boundary particles. Once contacts .occur between
boundary and internal particles resistance to the applied
force will occur. The magnitude of the resistance to the
applied boundary force will depend on the structure of the
assembly in the region of the boundary particle wunder
consideration. Thus as the assembly is not homogeneous some
boundary particles will move farther in the applied force
direction than others and an uneven boundary shape will
result: This unevenness, especially when a strain controlled
boundary is subsequently used, causes local shear instabili-
ties close to the boundary.

Ideally the assembly at the end of the isotropic compression
stage should be at the selected mean stress and have a
circular boundary and as few high inter-boundary particle

overlaps as possible, . .

6.4.2 Preliminary tests.

Preliminary tests were carried out prior to the successful
implementation and validation of the tangential force-
displacement laws of Mindlin and Deresiewicz (1953). 1In
these tests the normal Hertzian force-displacement law was
used, together with a linear approximation developed by
Mindlin (1949) for the tangential force-displacement law
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based on the initial stiffness of the contact.

In order to avoid particle congestion around the boundary,
section 6.4.1, an alternative technique was adopted. The
method used was to apply a centripetal gravity field to the
system. Thus all the particles would travel together towards
the centre. The centripetal gravity field was set up and the
system cycled so that the compact assembly developed from
the centre. Zero contact friction was employed as this
stopped the build up of any oblique forces and thus enabled
the assembly to more easily achieve 1its densest packing
state, as reported by Barnes (1985). The use of the
centripetal gravity field resulted in large forces in the
centre of the assembly which decreased in magnitude as they
radiated to the boundary, fig 6.4. Calculation cycles were
continued until all particles had come into contact. A
boundary was then defined, the gravity field was removed,
damping was introduqed, contact friction was added and the
system was cycled to equilibrium. The density of the
resultant assembly is illustrated by the porosity variation
through the assembly in fig 6.5, This shows that the
assembly was not uniformly dense, being denser in the centre
of the assembly.

A boundary stress tensor was then prescribed to enable the
assembly to reach an isotropic stress of 100kPa. The system
was cycled until a quasi-equilibrium state was reached. The
contact forcé distribution at this point is shown in fig
6.6. A quasi-equilibrium state was assumed when the out of
balance forces in the assembly were an order of magnitude
less than the éontact forces.

The assembly was then subjected to an increasing deviator
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stress with the mean stress held constant. Figures 6.7 and
6.8 illustrate the variation in the mobilized angle of shear
resistance (sin ®) and the volumetric strain ﬁlotted against
the deviator strain. Three different circular regions of
radii 100, 150 and 200mm were used for analysis. These
represent 15, 34 and 62% of the total number of particles in
the assembly respectively. The effect of the centripetal
compaction on the behaviour of the assembly is best illu-
strated by fig 6.8. This shows that the volumetric strain,
as measured inside the largest radius, indicates that the
assembly wundergoes initial contraction, which once the
system reaches a value of around 0.5% deviator strain then
begins to expand. This expansion continued until the end of
the test. In contrast, the smallest region expanded from the
start of shear. This is because the central region was so
dense that expansion was necessary for the particles to
accommodate the shear deformation, a phenomena well documen-
ted in the shearing of dense granular media. Although the
evolution of sin ® illustrated in fig 6.7 shows reasonable
close agreement for the three regions it is clear from fig
6.8 that the centripetal compaction did not lead to uniform
volumetric strain behaviour due to the density wvariation.
The centripetal compaction option was ther?fore not subse-
gquently used in the research programme.

ITn order to prepare a dense assembly of particles more effi-
ciently the particle generation algorithm was re-coded, as
described in section 4.4, This produced a much more dense
assembly on generation and using this technique in conjunc-
tion with increasing the number of small particles resulted
in an assembly with very few large voids, as shown in fig
6.9, At the same time as these new methods were introduced
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the program was rercoded to use the equations of Mindlin and
Deresiewicz (1953), a time step based on the Rayleigh wave
speed, and the adoption of S.I. wunits, as described 1in
Chapter 4.

Once the new assembly had been generated, to achieve the
desired isotropic stress the boundary was then subjected to
an isotropic strain rate tensor. However, instabilities
occurred. The mechanism that caused these instabilities was
that, as force chains developed through +the assembly, a
particle would be caught in the chain and the particle, due
to the buckling of the chain as the assembly was compressed
and the lack of lateral restraint from adjacent particles,
would be ejected at a high velocity. The particle would then
impact other particles which, if not sufficiently laterally
restrained, would also start to move at high velocity
impacting other particles thus causing the effect to ’'snow-
ball’. For a particle moving at a high velocity,‘ given its
elastic properties and the momentum of the particle, the
impact force (représented by particle overlap) and duration
of the contact can be calculated. However, if the time step
for the simulation is too large the simulation will cause
the particle to travel too far in one time step such that
the inter-particle overlap generated is larger than that
which would occur from momentum considerations. This in
effect adds energy to the system and the resultant moméntum
of the particles after impact would be laréer than Dbefore.
This further compounds the instability of the assembly and
chaos ensues. These instabilities occurred with assemblies
with various gradings although as the max/min particle size
ratio was increased the instabilities occurred more fre-
quently. For assemblies with a more uniform grading lateral
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restraint is more readily available.

It was anticipated that these instabilities could only occur
when there was a lack of lateral restraint in the system
i.e. a relatively unloaded system. Thus for a system with an
essentially uniform grading, once the desired mean stress of
around 100kPa has been .chieved, it was not anticipéted that
these problems would occur. However, it ﬁas not possible to

achieve the desired mean stress without this phenomena

occurring, even when very small boundary strain rates were
applied.
6.4.3 Isotropic compression of uniform and graded

assemblies.

In an attempp to achieve the goals detailed in section 6.4.2
‘and to avoid the instabilities which occurred with previous
assemblies, a new form of assembly control was developed
which was termed the continuum coding, section 4.5.2. In
addition it was decided that, as the current simulation
program can not fully handle plastic deformation, for
contac£s which approach the initiation of plastic yield it
was necessary to suppress the contact development. This was
achieved by determining the overlap for each contact and if
the overlap was greater than 7% of the diameter of the
smallest particle in contact, the value of the contact
damping was éet to the critical value._ The number of +times
this was done during a period of cycling was then printed
out as a warning to the user that the system was not
operating in the elastic range.

Two tests were initiated using the new coding. In both

assemblies the barticle properties were identical, E=70Gpa,
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v=0.25, wu=0.3, p=2.65Mg/m3. For both tests 10% contact

damping was used. The particle size distributions are given
below and the assemblies, as generated, are illustrated in

figS 6.10—6|110

"Uniform’ assembly ’Graded’ assembly
Particle Number of Particle Number of
radius mm particles radius mm particles

0.6 ' 70 0.92 - 30
0.59 80 0.76 138
0.58 100 0.61 172
0.57 100 0.46 230
BieDB 120 0.31 30
Q+55 120 ‘ . L
0,54 26 600
0.53 11
0.52 11
0+51 7

645

The first assembly had 645 particles with tén different
particlg sizes, and a max/min particle size ratio of 1.2,
hence simulating a polydisperse but very uniforﬁly graded
assembly. The second assembly had 600 particles with five
different particle sizes with a max/min particle size ratio
of approximately 3, such that the sizes and proportions of
each were the same as those used by Barnes (1985) in his
1000 disc assembly. This is so comparison can be more easily
drawn between the behaviour reported by Barnes (1985) and
the current tests.

RBoth assemblies were isotropically compressed, with zero
inter-particle friction, to épproximately 100kPa wusing a
strain controlled boundary with a corresponding continuum
strain rate tensor. Once a value close to the desired
isotropic stress had been attained both strain rate tensors
were set to zero and the system c¢ycled wuntil a quasi-
equilibrium state was reached. This state was characterised

by out of balance forces an order of magnitude 1less than
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Fig 6.10 Uniform assembly as generated.

Fig 6.11 Graded assembly as generated

130



contact forces and extremely small velocities. Inter-par-
ticle friction of 0.3 was then added and the system cycled
and checked for continuation of quasi-equilibrium. The
assemblies in this state are illustrated in figs 6.12 and
6.13. Figure 6.14 shows the 1000 disc assembly of Barnes
(1985) for comparison.

For an applied isotropic stress of approximately 100kPa the
maximum and average contact force for the uniform and graded
assemblies are: 0.53N, ©0.143N, O0.59N and 0.123N respecti-
vely. No quantitative comparison can be drawn with the 1000
disc assembly since Barnes (1985) used linear springs to
model the particle interactions. The average coordination
number was 3.15 for the uniform and 3.57 for the graded
assembly. The difference is due to the large particles in
the graded assembly which can easily accommodate five to six
" contacts. Comparing the distribution of contact forces in
fig 6.13 to the 1000 disc test, illustrated in fig 6.14,
similarities can be noted. The force chains are randomly
distributéd'and form curves, generally without abrupt chan-
ges in direction. In contrast the force distribution for the
uniform assembly, shown in fig 6.12, 1is dominated by
straight chains with sudden direction changes. The domina-
tion of the straight force chains in assem?lies of uniform
particles was also reported by Petrakis et al (1988),
reviewed 1in section 2.3. Due to the existence of zones of
regular packing the alignment of particles in the wuniform
assembly enables the 'transmission of forces in roughly
straight chains, whereas the graded assembly can be seen to
have very few particles whose centroids lie on a straight
line.

Figures 6.15-6.17 illustrate the distribution of contact
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Fig 6.12 Contact force distribution for uniform assembly in quasi-equilibrium.

Fig 6.13 Contact force distribution for graded assembly in quasi-equilibriurn.
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Fig 6.14 Contact force distribution for 1000 disc assembly in quasi-equilibrium
Barnes (1985).
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Fig 6.17 Distribution of contact normal vectors and contact normal vectors
weighted to the normal force for 1000 disc assembly in quasi-
equilibrium, Barnes (1985).
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normal vectors and contact normal vectors weighted to the
normal force for +the uniform, graded and 1000 disc
assemblies. All these figures give a fair approximation to a
circular distributién indicating no significant structural
anisotropy. The most notable difference between the figﬁres
is that the distribution for the uniform assembly is less
smooth, which is an indication that certain force orienta-
tions are preferred. This is a result of the linear force
chains with sudden direction changes exhibited in fig 6.12.
The distribution of contact force obliquities for the
uniform, graded and 1000 disc assemblies are illustrated in
figs 6.18-6.20. These figures indicate how the structure of
the assembly has altered since adding friction. Sliding
contacts are indicated in the histograms by values at *1 and
in the scatter diagram by points occurring at the maximum
obliquity. These figures show that for all assemblies hardly
any contacts are sliding, but greater force obliquities
occur within the uniform assembly.

It had been noted that, once the wuniform and graded
assemblies had achieved the desired mean stress and were
cyecled wuntil their out of balance to contact force ratios
were less than 10% after which friction was added and figs
6.18-6.19 were produced, the graded assembly was closer to
gquasi-equilibrium. This was demonstrated by a more wuniform
velocity distribution and a lower out of balance to contact
force ratio. Thus the wider distribution of force obliqui-
ties could be due to the uniform assembly not being 1in as
stable a configuration as the graded assembly when friction
was added. The distribution of force obliquities from the
1000 disc test in fig 6.20 illustrate more force obliquities
than the graded assembly, fig 6.19. This wou}d indicate that
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Fig 6.20 Distribution of contact force obliquities for 1000 disc assembly
in quasi-equilibrium, Barnes (1983).
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the graded assembly was closer to quasi-equilibrium when

friction was added and the system cycled. This may be due to
the greater number of cycles used to allow +the graded
assembly to reach quasi-equilibrium than wused by Barnes

(1985) in the 1000 disc test.

6.5 Quasi-static shear deformation.

6.5.1 Preliminary tests.

Once the desired mean stress had been achieved for both the
uniform and graded assemblies by the use of +the continuum
tensor to overcome assembly instabilities, it appeared
logical that the same control technique would be necessary
for the simulation of the shear deformation stage. However,
this was'not the case.

Using equal boundary strain rate and continuum strain rate
tensors bo£h the uniform and graded assemblies were subjec-
ted to constant volume shear deformation. However, in both
simulations instabilities occurred, similar to those exper-
ienced during the unsuccessful attempts at isotropic com-
pression. A simulation ;as performed wusing the uniform
assembly and 10% of the time step based on the Rayleigh wave
speed. This managed to suppress the build up of unrealisti-
cally high dynamic inter-particle forces But did not prevent
large particle velocities occurring. Redu&ing the strain
rate merely delayved the seemingly inevitable development of
high velocities within the assembly. The particle interac-
{ions were effectively transient dynamic collisions similar
to interactions in rapid flow simulations but ’trapped’
within the constrained boundary. Consequently it was not
possible to generate a significant deviator stress, as

indicated by the evolution of sin ® given in fig 6.21,
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whereas the isotropic stress increased by an order of
magnitude due to the dynamic inter-particle forces.

When wusing the continuum tensor the velocity of each
particle consists of two parts: a fixed velocity component
dependant on the value of the imposed strain rate tensor,
and a perturbation velocity resulting from out of balance
forces acting on the particle generated from particle
interactions. The perturbation velocities accumulated over
successive time steps to such an extent that they became
orders of magnitude larger than the imposed fixed veloci-
ties., It was decided that numerical instability had occurred
and that it was necessary to re-introduce mass proportional
damping, developed by Cundall (1971), into the velocity
algorithms in subroutine MOTION. This would have the effect
of suppressing the deveiopment of the perturbation veloci-
ties. ‘

Mass proportional damping is controlled by the parameter
CON1 employed in subroutine MOTION. When CON1 equals 1.0
then no damping is applied. For a CONl1 value of 0.0 then the
perturbation velocities are completely damped out and the
particle moves under the influence of the fixed imposed
velocity only. A series of tests were performed to appraise
the effect of mass proportional damping‘ on the shear
behaviour of the assembly. It was found that when CON1 was
less than 0.5 the out of balance force tended to be between
50-75% of the contact force. For CON1 values between 0.2 and
0.8 the ratio of the perturbation velocities to the fixed
imposed velocities reduced from just under 20% at 0.5%
applied deviator strain to just over 5% at 2% strain. Higher
values of CON1 allowed the perturbation velocities to
accumulate such that they were continually greater than the
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Fig 6.21 Evolution of sin @ for constant volume test, uniform
assembly, no mass proportional damping, FRAC=0.1.
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fixed velocities imposed by the continuum strain rate
tensor. The effect of the parameter CON1 on the evolution of
sin "® and the isotropic stress is illustrated in fig 6.22
for wvalues of CON1 equal to 6.99 and 0.8. The most
significant effect of varying'CONl was on the isotropic
stress evolution. The sensitivity of the isotropic Stresg to
the amount of mass proportional damping usqd is clearly seen
from the rapid increase in isotropic stress obtained for
CON1 equal to 0.25, also shown in fig 6.22. From fig 6.22
and the comments above it is clear that a satisfactory
simulation had not been possible. The out of balance to
contact force ratios obtained were too high for the assemb-
lies to be considered in quasi-equilibrium. In an attempt to
overcome this lower strain rates were applied.

Thornton and Barnes (1986b) report results from a constant
voluﬁe shear test on a dense assembly of discs in which it
was observed +that there was no significant decrease in
isotropic stress at the start of the shear stage. Since the
areal porosity of the uniform, graded and dense assemblies
were comparable, and exeessive damping was not desirable, it
was decided that a value of CON1 equal to 0.75 would be used
for the slow strain rate test. Figure 6.23 illustrates this
test which used a strain rate of 1% deviator strain applied
over one million calculation cycles. Even with such a slow
strain rate the test could not be considered to be in gquasi-
equilibrium as the out of balance to contact force ratio
rapidly reached approximately 60% at 0.1% applied strain,
which was then maintained around that level.

As a result of the extensive investigation reported in this
section it was concluded that, although the continuum strain
rate tensor in conjunction with the boundary strain rate
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CON1=0.75, graded assembly.
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tensor could be used to successfully compress an assembly to

a desired mean stress, this combination cannot be used for
simulations of shear deformation. This is due to the
constrained boundary being unable to accommodate the addi-
tional perturbation velocities which result from particle
interactions. |

Cundall (1988) reports the use of a continuum strain rate
tensor used in the control of shear deformation in his three
dimensional version of BALL. However, periodic boundaries
are employed which do not create the absolute fixed con-
straint that occurs due to the boundary control wused for
circular two dimensional particle éystems in program BALL.
The following section presents two constant volume shear
tests 1in which quasi-egquilibrium conditions were success-

fully maintained by using a strain controlled boundary only.

6.5.2 Quasi-static shear deformation of uniform and graded

assemblies.

Both constant volume shear tests were performed using a
boundary strain control which applied 1% deviator strain in
two million cycles, 10% of the time step based on the
Rayleigh wave speed, 10% contact damping and a wvalue for
inter-particle friction of 0.3. A CON1l value of 0.99 was
adopted, a value which was shown to have little effect on
the isotropic stress, section 6.5.1. The average porosity of
the graded and uniform assemblies was 14% and 16% respecti-
vely. Throughout the tests the assemblies were «close to
egquilibrium since the out of balance to contact force ratios
were always less than 0.5%.

The evolution of sin ® and the isotropic stress for both
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tests are illustrated in figs 6.24-6.25. Two analysis
regions were used which represent 87 and 64% of the graded
assembly and 70 and 40% of the uniform assembly. For the
graded assembly both analysis regions can be seen to give
excellent agreement with one another indicating a homogen-
eous response within the assembly. Results from the uniform
assembly give slightly more scatter but ‘'still give good
agreement. This slight scafter is due to the smaller
analysis regions used. The sin ® curves in fig 6.24 show the
graded assembly to be extremely stiff, the system having
reached its maximum sin ® value of around 0.36 by 0.05%
deviator strain. The uniform assembly is not quite so stiff
and reaches its maximum sin ® value of approximately 0.3
Just after 0.1% deviator strain.

The tangential force contribut%on to the deviator stress can
be seen to be small, in the order of 14% for the graded and
15% for the uniform assembly. This can be compared to the
sin @ evolution from the 1000 disc test of Barnes (1985),
fig 6.26, which reached approximately 0.46 at 3% deviator
strain and still appeared to be increasing slightly. Also a
higher tangential force contribution to the deviator stress
was obtained of around 18%. Both the uniform and graded-
assemblies are much stiffer than the 1000 .disc assembly.
This is due to the Hertzian normal contact interaction law.
The isotropic stress curves in fig 6.25 illustrate a smooth
build up of isotropic stress for both the uniform and graded
assemblies. The corresponding stress paths are shown in fig
6.27. The evolution of isotropic stress and the stress path
is similar to the results of the constant volume test
reported by Thornton and Barnes (1986b).

For both assemblies, the percentage of sliding contacts
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Fig 6.26 Evolution of sin ¢ for constant mean stress test on 1000 disc
assembly, Barnes (1985).
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illustrated in fig 6.28 reaches a maximum at approximately
the same deviator strain as the tangential force
contribution to sin ® and, as reported by Barnes (1985) for
the 1000 disc test, never more than 25% of contac£s are
sliding at any one time.

The degree of structural anisotropy induced may be defined
by the parameter f=01-02, Thornton (1987a), where ®1 and 02
are the principal components of the structural anisotrdpy
tensor ®ij, section 4.6. The evolution of induced structural
anisotropy is shown in fig 6.29. It can be seen that, for
both assemblies of spheres, the .structural anisotropy
increases at a relativély uniform rate until a maximum 1is
reached at around 0.1% strain. The degree of structural
anisotropy then remains essentially constant.

Barnes (1985i also observed that the structural anisotropy
evolved gradually atlan essentially uniform rate for the
1000 disc assembly. However, the simulation was terminated
with sin ® still slowly increasing. Comparing figs 6.24 and
6.29 it can be seen that the degree of structural anisotropy
reaches its maximum value once the maximﬁm sin ® value has
been attained. For the 1000 disc assembly, Barnes (1985)
obtained a maximum degree of aﬂisotropy of around 0.15. The
difference between this value and the two sphere assemblies
may be attributed to the non-linear Hertzian contact inter-
action law.

Barnes (1985) observed a continuous decrease in the average
coordination number during loading. For the graded assembly
fig 6.30 shows a similar decrease in average coordination
number but illustrates that once sin ® has reached its
maximum value, the average coordination .number remains
essentially constant. However, for the graded assembly, due
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to the regular packing, the number of contacts and therefore

the average coordination number was little effected during
the test.

The pictorial representation of the assembly at the start of
the ‘shea£ test was illustrated in section 6.4.3. The
velocity distribution for the graded assembly is shown in
fig 6.31 after 0.005% deviator strain had been applied.
These velocities are extremely small, the maximum being in
the order of 1E-Tm/s. However, fig 6.31 gives an excellent
representation of the movements of particles during shear
deformation of the assembly.

The distribution of contact forces throughout the graded and
uniform assemblies are shown in figs 6.32 and 6.33 for an
applied deviator strain of 0.1%, when the sin ® value was
around its maximum. This can be compared with fig 6.34 which
is the distribution of the contact forces for the 1000 disc
test of Barnes (1985) at 3% deviator strain when the
assembly was élose to attaining its maximum sin ® value. for
all assemblies the major force chains can be seen -to be
orientated in the direction of compression.

Figure 6.35 represents the structure of the graded assembly
by lines joining the centres of contacting particles for the
same stage of the test as that illustrated in fig 6.32. The
dashed grey lines represent contacts that have been broken,
and the dark thick lines indicate new contacts that have
occurred since the start of shear deformation. This clearly
indicates that the majority of contacts which are brokeﬁ
during shear are in the direction of extension, which was
also .shown by the uniform assembly and 1000 disc assembly
reported by Barnes (1985).

The distribution of contact normal vectors and contact
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normal vectors weighted to the normal force for the graded
and uniform assemblies for an applied deviator strain of
0.015% are shown in fig 6.36 and 6.37. The distribution of
the contact normal vectors indicate that little élteration
in the structure of the assembly has occurred since the
start of shear, figs 6.15 and 6.16. This observation is
supported by the evolution of the structural anisotropy
given in fig 6.29 which shows little change at this imposed
deviator strain. However, the contact normal vectors weigh-
ted to the normal force show that the forces in the
direction of extension have fallen, whilst those in the
direction of compression have risen. With further increase
in strain the distribution of weighted contact normal
vectors becomes more pronounced in its bias toward the
direction of compression.

The distribution of the contact normal vectors for sliding
contacts for both assemblies are given in figs 6.38 and 6.389
for 0.005% deviator strain. The distribution indicates that
most sliding contacts are oblique contacts and that few
contacts are sliding in the principal direction of exten-
sion. Once the assembly has reached 0.2% deviator strain the
structural anisotropy has reached a maximum and it is
obseried that the distribution of the contact normal vectors
of the sliding contacts does illustrate significant numbers
of particles sliding in the principal direction of exten-
sion, figs 6.40 and 6.41.

The distribution of mean normal contact stresses for both
the uniform and graded assemblies at 0, 0.1 and 0.2%
deviator strain are illustrated in figs 6.42 and 6.43. These
show that at the start of shear the distribution of mean

normal contact stress approximates a normal distribution.
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Fig 6.42 Histogram of the distribution of normal mean contact stress for

graded assembly at 0%, 0.1% and 0.2% deviator strain.
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Fig 6.43 Histogram of the distribution of normal mean contact stress for
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Both assemblies have the same range of stress variation and
similar numbers of contacts, but the uniform assembly has
slightly 1less contacts in the mid range of the histogram.
Also the wuniform assembly exhibits a large number of
confacts with mean normal contact stresses, and therefore
contact forces, - close to the average. This is due to the
localised zones of regular packing reported earlier in this
section. With both assemblies as the deviator strain is
applied the spread of the distributions increases with a
small 1increase in the average mean normal contact stress.
With the exception of contacts carrying very small normal
forces the distribution remains essentially normal.

The two constant volume shear tests reported in this section
exhibit very similar behaviour. The difference the grading '
had on the behaviour of the two assemblies was characterised
by the establishment of the linear force chains produced by
regular packed zones in the uniform assembly.

The consequence of incorporating the force-displacement laws
of Hertz (1882) and Mindlin and Deresiewicz (1953) was that
the two assemblies were very stiff. Both reached their
maximum sin ® values before 0.2% applied deviator strain,
whereas the 1000 disc test reported by Barnes (1985) had not
gquite reached its maximum sin ® by 3% strain. This differ-
ence is primarily due to the introduction of the non-linear
Hertzian normal force-displacement law. Due to the small
contribution to sin ® by the tangential force it can be
concluded that in the simulation of gquasi-static shear
deformation the implementation of the tangential force-

displacement laws of Mindlin and Deresiewicz (1953) has

little ‘effect.
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7. Summary and Conclusions.

The work presented in this thesis is concerned with the
computer simulation of two dimensional systems of smooth
elastic spheres employing contact friction. The objective of
the research programme was to inéorporate contact mechanics
based algorithms into the computer simulation program BALL
in order tp more realistically model particle interactions,
to validate these new algorithms, and to apply the amended
program to simulate the behaviour of large systems of
particles.

The force-displacement laws of Hertz (1882) and Mindlin and
Deresiewicz (1953) are covered in Chapter 3. It was shown
that all possible tangential force-displacement 1loading
situations can be modelled by one general expression,
equation 3.94, with appropriate substitutions for 1lcading,
unloading or reloading tangentially.

Chapter 4 describes in detail the logic of the new coding
necessary to .implement the contact mechahics interaction
laws. Many other alterations and additions to the computer
rrogram are also explained. Of these the most significant
are the automatic scaling of certain fixed parameters to a
function of the maximum particle size and the introduction
of S.I. wunits. This enables a wide range o} problems to be
simulated with particle sizes varying byw orders of
magnitude.

In order to validate the contact mechanics algorithms simple
quasi-static and dynamic tests were simulated, which are
described in Chapter 5. Results from simulations of single
particle oblique impact showed excellent agreement with 'thé

theoretical and experimental work of Maw et al (1976)
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(1981). Consequently it can be concluded that the program is
capable of producing quantitatively reglistic information
when applied to préblems involving large systems of parti-
cles.

Applications of the program to the simulation of large
systems of ©particles are reported in Chapter 6. Results
obtained from simulations of hopper flow and pluvially
deposited packed beds demonstrated the satisfactory perfor-
mance of the program. Further research on hopper flow
simulations, using several thousand particles, could be a
rewarding area for future applications of the program.

In Chapter 6 a detailed discussion of different methods of
isotropic compression of circular assemblies is given. It
was shown that the successful compression of an assembly
could only be achieved by the joint use of the continuum
strain rate tensor and a compatible boundary strain rate
tensor. However, when using the same control in attempting
to shear the assemblies .instabilities occurred. These insta-
bilities were suppressed with the introduction of mass
proportional damping, developed by Cundall (1971). An inve-
stigation into the optimum value of mass proportional
damping for the suppression of assembly instabilities was
then undertaken. As a result it was concluded that although
the continuum strain rate and boundary strain rate tensors
could control the shear stage, provided sufficient mass
proportional damping was used to suppress assembls instabi-
lities, such high out of balance to contact force ratios
occurred that the assembly could not be considered to be
rlose to equilibrium. The shear control was then simplified
to the boundary strain rate tensor only and the quasi-static
shear deformation of two assemblies was simulated.
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From the successful constant volume shear tests reported in
section 6.5.2, performed on uniform and graded assemblies of -
particles, the effect of the addition of contact mechanics
algorithms into the simulation was demonstrated. It was
shown that the Hertzian normal force-displacement léw resul-
ted in a very stiff assembly when compared with a similar
simulation wusing linear spring force-displacement laws,
reported by Barnes (1985). The maximum sin ® values were
less than the maximum sin ® value obtained by Barnes (1985),
this may be a consequence of the slightly higher porosity of
the assemblies used in the new tests. However, implementa-
tion of the tangential force-displacement laws of Mindlin
and Deresiewicz (1953) had little effect on the shear
deformation of the assembly, as the percentage of sliding
contacts and the tangential force contribution to sin ® were
similar to the values obtained from the test employing
linear springs, Barnes (1985).

The adaptation of thé program BALL to simulate particles
with sizes from microns to metres, the addition of real
units, and the incorporation of dynamic contact mechanics
algorithms make the simulation program ideally suited to
problems associated with process engineering, such as rapid
shear flow. For these dynamic simulations the effect of the
incorporation of the force-displacement laws of Mindlin and
Deresiewicz (1953) would have a much more significant
advantage over linear spring force-displacement laws.

As a result of the incorporation of contact mechanics
algorithms into the simulation program, validation of the
coding and the "successful simulation of dynamic flow,

arrested flow and quasi-static shear deformation of large
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assemblies of particles, all the objectives of the research

programme have been fulfilled.
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