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SUMMARY
Subhi Okdeh

A Thesis submitted to the Unlver31ty of
Aston in Birminghan

For the Degree of Doctor of'Philééépﬁyi;

1980

The aim of the work presented in thls the51s is to produce a
direct method to design structures subject to deflection constr-
aints at the working loads. - The work carried out can be divided
into four main parts. In the first part, a direct design procedure
for plane steel frames subjected to sway limitations is proposed.
The stiffness equations are modified so that the sway in each
storey is equal to some specified values. The modified equations
are then solved by iteration to calculate the cross-sectional pro-
perties of the columns as well as the other joint dlsplacementso
The beam sections are selected initially and then altered in an
effort to reduce the total material cost of the frame. A linear
extrapolation technique is used to reduce this cost, In this
design, stability functions are used so that the effect of axial
loads in the members are taken into consideration. The final
reduced cost design is checked for strength requlrements and the
members are altered accordingly. =

In the second part, the design method ;s appgled to the
design of reinforced concrete frames in which the sway in the
columns play an active part in the design criteria. The second -
moment of area of each column is obtained by solving the modified ~
stiffness equations and then used to calculate the minimum column
depth required. Again the frame has to be checked for all the
ultimate limit state load cases.

In the third part, the method is generallsed to design pin-
jointed space frames for deflection limitations. 1In these the
member areas are calculated so that the deflection at a spec1f1ed
joint is equal to its specified value.

In the final part, the Lagrange multiplier technique is
employed to obtain an optimum design for plane rigidly jointed -
steel frames. The iteration technique is used here to solve the
modified stiffness equations as well as derivative equations
obtained in accordance to the requirements of the optimisation
method.

Key words: SWAY FRAMES STEEL  CONCRETE SPACE FRAMES OPTIMUM'
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CHAPTER ONE

HISTORICAL REVIEW AND SCOPE OF THE PRESENT WORK

1.1 INTRODUCTION

In multistorey buildings the wind load is usually resisted
either by a stiff core or by specially designed bracing frames,

In such structures the frames may be designed to resist vertical

loads only. However, such construction may, in some cases, be

found undesirable in order to satisfy other functional require-
ments of the building, In these cases the transverse frames are
designed as plane sway frames and the horizontal forces are taken-
by rigid frame action.

There is a wide range of possibilities open to the designer by
which the member properties of the frame can be obtained. This
depends on the design criteria imposed, Fundamentally, the object
of the design is to find the most economical structure consistent
with the safety and serviceability requirements, Thus, the design
of sway frames often includes the following:-

1 Safety - based on the ultimate strength of the structure
(strength requirements)

2) Serviceability - the deflection of the-structure should not
adversely affect the appearance of the structure (deflection
requirements)

3) In addition the cost of the structure may be as small as
possible.

Methods of designing a sway frame may be classified into three
categories, In the first category the strength requirements are
considered to be of overriding importance. In the second type both

the strength and deflection requirements are considered to be




important; and in the third, the optimum design is aimed-at and
in which it is possible to satisfy all the design criteria simul-
taneously. Thus,in this chapter the design methods are reviewed

according to the above classification.

1.2 DESIGN METHODS FOR STRENGTH REQUIREMENTS

1.2,1 Early Design Methods for Multistorey Frames

The first detailed investigation into the design of multi-
storey bullding frames was carried out by the Steel Structure
Research Committee (SSRC) from 1929 to 1936, Before this period,
the accepted method of design for frames braced against wind was
that now known as 'simple design' (Allwood, et al, 1961), In this
method the beam-column connections are considered to be pinned.
Thus, the beams are assumed to be simply supported. The columns
are designed for axial load, as well as for the end moments caused’
by the beam reactions acting at an assumed eccentricity with respect
to the column axis, The design is based on linear elastic behaviour
of the structural material., Sections are chosen so that the maxi-
mum stresses in a member do not exceed certain permissible values.

An extension of this method to the design of rigidly-jointed
sway frames, in which there is no wind-bracing, is explained in the
Steel Designers Manual by Allwood, et al (1972). The internal forces
in the members due to vertical loading are calculated as above.
Those due to wind loading are found by making the frame statieally
determinate. This is done by assuming points of contraflexure at
both the mid-height of the columns, and the mid-span of the beams.
At this stage of design connections are taken to be rigid. The
total internal-member forces are then obtained by superposition.,

The Steel Designers Manual gives three simple design methods,




all of which use the aboye assumption. The most cémménly‘uSedf*~
of the three methods is the portal method which QSSumes that
each bay acts as a simple portal and the total horizontai load is
divided between the bays in proportion to the spans of the bay;-

The final report of the Steel Structures Research Committee
and the work by Baker (1954) showed that practical joints made of
rivets or high tensile black bolts do not act as being pinned under
the effect of vertical loading, The rigidity of the joints pro-
duces restraining moments at the ends of a beam reducing the
maximum design moments by some 17% to 25%, and causing large end
moments in the columns, They have also shown that all the columns
in a frame do not necessarily bend in double-curvature under wind
loading, particularly in frames with weak beams. This clearly
means that the assumption of a hinge at the mid-height of a column
is not always true. However, the safety of the above methods pro-
bably arises from a judicious choice of numerical values for per-
missible stresses, eccentricities, etc.

It has long been realised that if the individual members of
a frame are designed according to the requirement to satisfy the
allowable stresses, then the multistorey frame has a greater load-
carrying capacity than permitted by the elastic design method.
This has led to the application of rigid-plastic theory in struc-

tures, which enables the design of a frame to be based on its over-

all ultimate strength.

1,2.2 Rigid-Plastic Design Method

This was first developed in Cambridge by Baker, Horne, and
Heyman (1956). One assumption made in the analysis of structures

by the plastic theory is that the strains and deformations in the




structure, at the limit of PrOPQrtionality, are‘small,comparedfto
those at the onset of strain hardening;.’The theory therefore
neglects the elastic strains and deformations. Tt assumes that
the structure remains undeformed until suddenly a number of fully
plastic hinges develop at discrete sections in the structure which
converts it into a collapsing mechanism., At the begining of
collapse (the instant when the structure is just converted into a
mechanism with the formation of the last hinge) the structure is
isostatic and, the bending moments throughout the structure can be
calculated by using the static equilibrium of forces alone,

The assumption of negligible deflections in the pre-collapse-
state is generally applicable in frames braced against sidesway
and in very few cases of low-rise sway frames where the effect of
wind load is very small. In general the horizontal deflections in
sway frames are of major importance and can not be neglected.
They cause rapid deterioration of the overall stiffness of a frame;
In fact, Wood (1958) shows that it is possible for a frame to lose
all its stiffness, and therefore collapse, before the occurrance
of a full mechanism. This results in the frame collapsing at a
load factor less than the plastic failure load. He has shown that
in a four-storey one-bay frame, after the formation of only two
hinges, the modified critical load of the remaining parts of the
frame is less than half of the original load., Furthermore, the
hinges formed did not correspond to those of the rigid-plastic
mechanism either in their position or in the load levels at which
these hinges formed. Thus, the overall effect of instability in
multi-storey sway frames is significant. For this reason, in
recent years several methods have been proposed to include the

instability of the frame into the rigid-plastic design.




1.2.3 Plastic ’Desig’n ‘Methods “for F:cames Instabllity

Heyman (1960), proposed an approach to the ultimate load
design of multi-storey sway frames by assuming a system of plastic
hinges which involved collapse in both beam and columns. Hinge
moments of the beam and columns are calculated with the factored
load. Heyman suggests the use of the beam hinge moments calcu-
lated to design the beams according to full plastic moment values.
For the columns, because of the possibility of instability effects,
Heyman proposed that the columns should be designed to remain
elastic under the combined action of the hinge moments and axial
forces. As a safeguard against instability it was suggested that
a frame should be elastic at the working load without allowing
excessive sway deflections. A method was given for the estimation
of these deflections which made no allowance for the reduced frame
stiffness due to instability,

Heyman's design method has the advantage of directness and
simplicity. Frame instability is not considered, but there is a
degree of conservatism in the design procedure introduced by the
elastic design of the columns. No suggestion was made as to what
action should be taken if the deflections were not satisfactory.

Holmes and Gandhi (1965) proposed a design method in which an
allowance was made for instability. This was restricted to regular
rectangular frames in which collapse was assumed to occur by beamn,

combined and sway mechanisms in the upper, middle and lower regions

respectively., An initial design, obtained by considering this

pattern of hinges, was modified to allow for:

i) akial load effects, considering the reduction of column stiff-

nesses due to compressive axial forces by using the 'stability




functions' m, n and ;.

ii) the reduction of beam stiffnesses, due. to the formation of |
plastic hinges; and

iii) points of contraflexure not occurring at the mid-height of
columns,

The design procedure was repeated until two successive designs
were identical,

More recently Holmes and Sinclair-Jones (1970) have used the
same principle and developed a more accurate method for modifying
the initial design, and also for dealing with boundary regions of
the frame, such as the top most storey, the bottom storey and the-
external columns.

All the above methods reviewed in this section made use of
an assumed pattern of hinges, which might not correspond to that

which would form in préctice° In fact, Majid and Anderson (1968),
|

gL
and Anderson (1969) show'that the assumed pattern of hinges was

unrealistic and far from the actual behaviour of the frame at
collapse. Furthermore, there can be no certainty of either the
safety or the economy of a design obtained by such methods,

The above methods did not design for deflection although some

of them pointed to the significance of excessive deflection in
tall frames.

1.2.3.1 Ultimate-Load Design of Multi-storey Sway Frames

An empirical expression for the actual failure load of a frame

Af is given by Merchant (1954) as:

1/az = 1/a, + 172, (1.1

~
I

where » and A_ are the elastic critical load and plastic failure
1 . D




load respectively,’ Approkimate,methods for,c31Culating“Zc are
given by WOOd‘(1974), Horne (1975), Bolton (1976); Moy (1976;),’
Williams (1977) and Williams (1979); A rapid calcﬁlation of X
for use in equation (1,1) is given by Neal and Symonds (1952);

The B/20 Draft Specification (1977) permits the use of
equation (l.1) within certain limits. These are:

i) If the ratio of AC/Ap > 10, then A_. is limited to A

f

ii) if AC/AP < 4, then the above equation cannot be used and
a full non-linear elastic-plastic analysis is necessary.
The reason is that for this category of frames equation (1l.1) will
give higher values of kf than those given by accurate elastic-
plastic analysis,

The first condition is stated above in general applicable to
braced frames. A method for designing a braced frame for ultimate
load is given by the Joint Committee's second report (1971), In
this method it was assumed that it is sufficiently accurate for
design purposes to consider only that limited part of the frame to
which the member is directly connected., The limited frames for a
beam and a column design are shown in Figures 1.1 and 1.2, in
which the neighbouring members are assumed to be fixed., However,

this design method 1is approximate and it is only applicable to non-

sway frames.

For sway frames, when AC/AP does not exceed the limits imposed

by the above conditions, equation (1.1) can be used to calculate

Kfo This involves the calculation of Xco Wood (1974) uses a

substitute frame based on the work of Grinter (1937). Figure 1.3b

shows the substitute frame used by Wood for the original frame

shown in Figure l.3a.
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The stiffness Ky of a.beaﬁ in thefsubstitute.frame at any
level is given by Kb =3 Zkb, where kb~is.I/L,for a beam in thé
real frame, I is the second moment of ared, and L is the span of
the real beam. The stiffness of the column of a Grinter frame
at any storey level is the sum of the stiffness of the columns
in the real frame. As the wind and vertical loads on the frame
increase, the rotational stiffness of each joint in the substitute
frame decreases gradually., Frame instability is said to have
taken place when the rotational stiffness of one of the joints of
the substitute frame becomes zero or negative. The load factor at
this stage is the elastic critical load.

Williams (1977) modified the substitute frame of figure 1.3b
to obtain a close lower bound on Aes which is supposed to produce
a safe design by equation (1.1). More recently, Williams (1979)
presents a unified, exact treatment of the substitute frames which
was used by Wood to approximate unbraced multi-storey frames. The
method is only exact for the substitute frame and can be used to

calculate the exact sway deflection for this frame

—0 O )

Subassemblages

&

Interior

O

Exterior

FIGURE 1.4 FRAME SUBASSEMBLAGES IN MOY'S METHOD OF DESIGN




Moy (1976a) proposed a method for calculating X_ when the
frame is subjected to vertical loads only. ‘In this method points*
of inflection are considered to develop at the mid-lengths of the
members, With such an idealization, a storey is assumed to consist
of a series of subassemblages composed of two columns and of one
or two restraining beams (Figure 1.4) depending upon whether the
subassemblage is an exterior or an interior one. The concept
upon which the method was based is that the stability of a whole
frame is a function of storey stiffnesses. As the gravity loads
increase, the storey stiffnesses decrease gradually, Frame
instability is said to have taken place when one storey stiffness-
becomes zero or negative. Moy accounts for the sudden change in
the storey stiffness, when a plastic hinge forms in a member. This
was reflected by a sharp drop in the storey stiffness. However,
his method ignores the wind loads on unbraced frames, which have
a major effect on the frame instability,

In all the above methods reviewed in this section the frame
is idealized employing mathematical models to depict the character—.
istics and behaviour of the real structure. These models may not
accurately represent the real structure. All the methods calculate
AC, but the design using equation (1.1) also involves the calcu-
lation of rigid-plastic failure load Apu Finding the right mechanism
for a large multistorey frame is a complex operation. Moreover,
the design using this equation may still involve a large amount of
iterative calculations to obtain a safe design.

A solution obtained by using the Merchant-Rankine formula
not satisfy the specified limitations on the

(equation 1.1) may

horizontal deflections. Even when the facility for calculating these

deflections exists, as in the method by Williams (1979), no



recommendations are made to improye the ‘design if the deflections
are found to be egccessive° Furthermore, the final design obtained
by any of these methods may not be the most economical one;

These methods were intended to provide the engineer with a
manual design method or an easy method to program on a desk or
pocket calculator., However, the lack of accuracy in these methods
and the rapid development of digital computers after 1956 made -
it possible to carry out more accurate analysis of a frame,

All the above methods are in no way design methods, This is
because they select the cross section of the members and spend a
great deal of time to carry out the "Analysis'' of the frame.
Another weakness of these methods is that they do not design the
frames to satisfy the deflection (or sway) requirements. Once an
analysis shows that the deflection in a frame is excessive, the

above methods do not suggest methods for reducing it,

1.2.4 Computer Methods of Design

The matrix methods of structural analysis were first used by
Livesley (1956), who developed methods to analyse elastic frames
with or without considering the instability effects due to axial
forces in the members. This method was developed by, amongst
others, Livesley (1959), and Jennings and Majid (1965), who prepared
programs which can be used to trace the actual load deflection
behaviour of a frame up to collapse.

Livesley, Jemnings and Majid, used the matrix displacement
method of structural analysis in the above programs. In this

method. the unknown joint displacements are obtained by solving the
4 >

matrix equation

(1.2)

j =
]

=

j o<



where L 1s the external load yector, K is the oyerall stiffness
matirk, and X is the yector of joint diSplacements; ‘Member férces
are Fhen calculated using these joint displacements; Livesley
(1956) introduced the effect of axial loads into the above

equations by using stability '¢ functions' to modify the member
stiffnesses., Iterative calculation is necessary as the axial forces
in the members, required to calculate the stability functions, are
unknown initially,

The elastic-plastic analysis program proposed by Jennings
and Majid led Horne and Majid (1966) to suggest a method for the
design by computer, of sway frames under proportional loading. A.
satisfactory structure was obtained by repeated cycles of elastic-
plastic anélysis and redesign.

The design criteria which were adopted permitted collapse to
occur only when a minimum load factor was exceeded., To satisfy
these criteria, restrictions were placed upon the formation of
plastic hinges in the beam and the columns., These restrictions
were: |
1) No plastic hinge should develop in a beam below the load

factor of unity, and the frame should be entirely elastic

under the working load.
2) Under combined vertical and wind loading, no plastic hinge
should develop in a column below a specified permissible

load factor.

The method required that each proposed design 1is subjected to an

accurate analysis. As a result, points of weakness and overstress

are revealed, and can be removed. The final design satisfies the

above design criteria, with efficient distribution of material

throughout the frame.




However, because>of the large storage required for the"ovefall
stiffness matrix in all the above'methods; Jennings (1966) develéped
a compact method for the storage and solution of the stiffness
equations, |

This technique was used by Majid and Anderson (1968) to
develop an efficient method for linear and non-linear elastic-plastic
design., The criteria used are those adopted by Horne and Majid;
stated above.

The elastic~plastic design method is based on very realistic
design criteria. However, the provision for the hinges not to form
in columns below a permissible load factor, and in beams below the
working load does not prevent excessive deflections in the frame.

In fact, the frames designed by Majid and Anderson showed that the
sway deflection of the frames were excessive, although the frames
themselves had a reasonable reserve of strength.

For example, for a fifteen storey frame the sway deflection
ratio for the top storey at working load was 1/91., This is more
than three times that required by the B/20 Draft. Furthermore,
the elastic-plastic method is yet another method of repeated
analysis in which the members are modified because an analysis

reveals that such modificatlons aré necessaryo

1.2,5 Design of Reinforced Concrete Frames

Until recently two methods have been in general use for the

design of structural concrete members: the permissible stress method

and the load factor method. These have sometimes been used as

alternatives and sometimes used in combinatlomn,

The permissible stress method was used in England prior to

1957, for all reinforced concrete members. In the subsequent



Code of Practice (Cp 114,

1957) it was retained as an alterﬁafiﬁ§ “
to the load factor method for flexure; with and without compréssion,
and remained the basis of design for shear and bond;

In the permissible stress method, the moments and forces
acting on a structure were calculated from the actual values of
the applied loads, but the limiting permissible stresses in the con-
crete and the reinforcement were restricted to only a fraction of
their true strengths, in order to provide an adequate safety factor.
For example, in CP 114 (1957), the permissible tensile stress in
steel reinforcement was normally the yield stress divided by the
factor 1.8, while the permissible compressive stress for concrete
in bending was the cube strength divided by the factor 3. The
method assumed a linear stress-strain relationship and a constant
modular ratio of steel to concrete.

The permissible stress method models the behaviour of a section
under service loads fairly well, but it gives an unsatisfactory
indication of condition as failure approaches, This is because the
assumption of a linear relationship between stress and strain in
the concrete no longer remains true, and thus the distribution of
stress in the concrete differs from that under service load.

The load-factor method of design was introduced into CP 114 to
overcome this disadvantage. Theoretically, this method involves
the analysis of sections at failure, the actual strength of a section
being related to the actual load causing failure, with the latter
being determined by tfactoring' the design load. The 1957 code for
reinforced concrete (1967 reprint) permitted the use of this method

with a central load factor of 1.8 However, in order to allow for

the fact that there is a greater variation in the strength of

concrete than in the strength of steel, it was specified that in




calculating the strength, the cuhe strength of S shou1d first

be reduced to the ratio of 1;8/30 This brings the load factor
method into line with the alternative permissible stress method,

In the above two methods only failure has so far been con-
sidered, A member was designed to have an ultimate resistance lar-.::
ger © than the applied load. However, it has been noticed that
serviceability, no less than safety, is a requirement in structural
design. This led to the concept of a limit state design used in
the present Code of Practice CP 110:1972,

Many text books have been published to eiplain the principles
of this method (Reynolds and Steedman, 1974), (Allen, 1977),
(Bennett, 1973), (MacGinley, 1978) (Astill and Martin, 1975).
With this method, the design of each individual member or section
of a member must satisfy two separate criteria: the ultimate limit-
state, which ensures that the probability of failure is acceptably
low, and the limit-state of serviceability, which ensures satis-
factory behaviour under service (i.e. working) loads. The prin-
ciple criteria relating to serviceability are the prevention of
excessive deflection, excessive cracking and excessive vibration,

Although CP 110 outlines serviceability limit-state calculations
to ensure the avoidance of excessive cracking or deflection, a full
analysis of every section was considered to be time consuming.
For this reason the new code specified certain limits relating to
bar spacing, span over depth ratio, slenderness, etc., and if
these criteria are not exceeded, more detailed calculation was con-
sidered to be unnecessary. AS it stands the code does not impose
any limit on sway deflection of frames. The only limit is that the

depth of the cross section of a concrete column should not be less

i £ i ight.
than (He/SO), where H_ 1S the effective storey heig



1.2,6 Design of Pin-Jointed Space Frames

Pin-jointed space frames are a good solution to the pfoblem of
spanning large areas without intermediéte supports; Their relative
lightness combined with relatively high stiffness makes them attrac-
tive as an alternative to beam or grillage systems.

It appears that the design of a safe and serviceable space
truss 1s considered to be a straightforward process, which requires
a standard linear analysis followed by member sizing. Thus, research
into the design of pin-jointed space frames can be classified into:

i) Research into the carrying capacity of the whole structure.,
ii) Research into the behaviour of structural elements,

Little attention seems to have been given to investigation
into the behaviour of the complete space frame. However, very
recently (Schmidt, et al, 1980) carried out full scale tests on
9.60 m space trusses. The tests showed that premature collapse of
the complete truss was obtained, below that predicted by a conven-
tional elastic analysis. This was due to two factors:

a) The significant magnitude (about 9% yield values) of the
initial member forces due to the fabrication of the joints
and the members of the truss, and not attributable'to the
weight of the structure itself.

b) The reduced collapse load of a compression member below its
average peak load obtained from the element tests.

Therefore, Schmidt's tests showed that a design based on con-
venticnal elastic analysis, modified by a load factor, may possess
a smaller margin of safety at collapse than its commonly supposed.
Schmidt's paper show that the mid-span deflection of the truss was
somewhat greater than the limit of span/360 specified by the B/20

draft for maximum allowable deflection at working load.



Schmidt did not suggest the design of the space frame for

deflection limitation, Their proposals to modlfy the Conven-
tional elastic analysis to match the test results were to make two
é modifications to the analysis: _

i) A set of initial lack of fit and assembly forces should

be added to the externally applied load before the

ot

analysis is carried out.

ii) The carrying capacity of compression members should be

R

reduced by some 20% from the theortical value

Although these modifications improved the analysis considerably,

F

it is impossible to estimate the initial forces in the members

without actual measurements., This is because, the initial forces

% depend on the fabricatiop and erection procedures. Thus, Schmidt's

analysis cannot Be carried out before actually building the truss.
The design of pin-jointed space-frame elements in tension or

in compression is outlined in B/20 draft. To reduce the effect of

buckling of the &ompression elements, smaller compression stresses

are used. Design stresses are given in Table (6.2.2) of B/20

draft for different values of the Robertson constant and slender-

ness ratio.

1.3 DESIGN TO DEFLECTION REQUIREMENTS

The tendency for deflection criteria to dominate the design is
necessarily increased by the introduction of more refined design
methods, and the introduction of higher-strength steels, High-
vield steel provides the frame with more strength than mild steel,
and with less expense. Needham (1977) has demonst?ated that steel
Grade 50 is more economical to use than (mild steel) Grade 43,
However, deflection becomes more critical when a higher grade steel

1s used.



In the design of concrete elements, when the permissible stress
design was being used with traditional conservative design methods;
problems due to eXcessive deflection were practically unknown!
However, cracking in service has recently become more common! This
is due to the use of the limit state design which, because of a more
effective use of the concrete compression zone, have resulted in
shallow members, More significant, is the introduction of high-~
strength materials with their correspondingly higher service stresses.,
For example, in British practice, there has been a progressive
increase in permissible stresses with a consequent reduction in
overall safety factors. For a concrete having a mean cube strength
of 40 N/mm2 at 28 days, the maximum permissible stresses according

to the British codes were as follows (Clarke, 1974):

Date Maximum permissible stresses
CP114:1957 10 N/mm2
CP114:1965 12,2 N/mm2
Draft CP110:1969 13.66 N/mm2
CP110:1972 18 N/mm2

(This figure is for ultimate design stress)

This increase in stress together with a reduction in flexural
rigidity (EI) due to cracking, with no corresponding increase in
modulus of elasticity, results in higher deflections, since deflec-
tion in concrete is directly proportional to stress and inversely
proportional to flexural rigidity,

Figure 1.5 curve (a) shows how the margin of safety (defined as

ultimate stress-working stress
working stress

) for steel reinforcement in tension
has reduced successively over the years (Rowe, et al, 1965) and
(Clarke, 1974). Curve (b) of Figure 1.5 represents the same

information for concrete in bending.,
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From what has been said aboye one could conclude that the

need for design for deflection requirement has become essential;
However, up to now few methods ekist for such a design;

Stevens (1960) suggested that the real basis for the design
of sway frames should be the prevention of unacceptable deformations
under the working loads. A design to satisfy such a criterion
was obtained by selecting a curvature pattern that would produce
specified deformations, and was compatible with a bending moment
distribution in equilibrium with the external loads. Sections
were then selected by using moment-curvature charts,

No direct allowance was, however, made for instability. A
further defect of the method was that initial assumptions of
relative flexural rigidities had to be made for statically indet-
erminate frames,

A second design method due to Stevens was based upon the
collapse state. Maximum overload deformations were specified
and used in formulating virtual work equations corresponding to
collapse mechanisms in the deformation frame. Member sections were
then selected, and the resulting design analysed by approximate
methods. If it was found that the specified deformations were
exceeded, then a further cycle of design and analysis was necess-
ary.

Although in this method the effect of the specified deflections
was included in the virtual work equations, instability effects
were ignored, and premature collapse could therefore occur.

Moy (1974 and 1976b) proposed a method for sway frames in
which an initial design with adequate strength but inadequate stiff-
ness was corrected to satisfy permissible limits on horizontal

deflections. The frame was divided into subassemblages on the basis



of the portal method. These subassemblages were shown earlier in
this chapter in Figure 1.4, for exterior and interior bays;
E&pressions for the storey stiffnesses were obtained in térms of
the member second moments of area of the storey; and in terms of
the permissible sway deflections at working load. Two assumptions
were made:

1) The vertical loads were assumed to have a negligible

effect on horizontal deflection,

ii) A point of contraflexure was taken to exist under hori-
zontal loading at the mid-height of each column (eicept
in the bottom storey), and at the mid-span of each beam,
Thus, the frame was made statically determinate above
the bottom storey, and each storey was considered in
isolation,

The method is based on hand calculation but it requires a pre-
liminary design and repeated calculation to arrive at a feasible
solution.,

More recently Anderson and Islam (1979), and Islam (1978)
suggested a method for the design of multi-storey frames to sway
deflection limitations. The assumptions used are those adopted by
Moy, stated above. Expressions relating the sway deflection over
a storey height to the second moment of area of the corresponding
column and surrounding beam were derived. These expressions were

linked to a cost function to obtain an economical solution, A

typical internal subassemblage for an intermediate storey in Anderson

and Islam's method is shown in Figure 1.6, The complete frame is
shown in Figure 1.7. The expression for the second moment of area

of an internal column in this subassemblage was given as:
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where A 17 97 2 ceees 9, , are the cost factors of the upper beams,
3 3 ,m

q2,1’ q2,2, soooy qz,m are the cost factors of the lower beams, agd‘

q3 1’ q3 s ersese s q3 el are the cost factors of the columns. In

equation (1,3), P2 is the total horizontal shear in the columns

of the storey under consideration, while P1 and P3 are those in

the storey above and below respectively. The quantities £ 2

12 72

23, ccoos Qm are the bay widths, where m is the number of bays.

L(:zl * 8, + 23 + oioeo * Qm) is the total width of the frame. A

is the horizontal deflection of the storey. h2 is the height of

the storey under consideration, while h1 and hS are those for the
storey above and below respectively. E 1is Young's modulus of

elasticity. 13 5 refers to the second moment of area of the first
3

left internal column, The expression for the second moment of area
of the second left bay beam in the storey under consideration was
given by:

o (P hy + P,hy) hy2l Iy e
1,2 _ 3 ’
24BAL Ty ) = (1 + 2,) P, h3

when the values of 13 5 and 11 , were calculated from equation
s E

(1.3) and (1.5) the second moment of area for the remaining columns



and beams in the storey under consideration were calculated by

proportion using the following two expressions respectively

3,1 73,2 _ 73,30 _ 3,m+l
Q‘l 21 + 22 - ) . T - o-ooo=—T——- (106)
2 3 m
I 2 I
1’1 = 1’2 = 1’3 = —E.]_'-’_n.l_. (1 7)
22 22 22 ©c0o0o00 = 2’ a
1 2 3 m

Equation (1.3), (1.5), (1.6) and (1.7) were repeated for each
storey,

The values of the cost factors were given in table 2,1 and
2.2 of Islam's thesis for universal column and beam sections. To
obtain a quick conservative design, Andefsdn and Islam have shown
that the values of the cost factors can be taken as being equal
to one. In fact, their design of the 6 storey, 4-bay fixed base
frame shows no change in weight when the real values of the cost
factors were used.

Anderson and Islam derived similar expressions to those given
by equation (1.3) and (1.5) to deal with the boundary regions of
the frame, such as the top-most storey, the bottom storey and the
external columns. However, they suggested that a quick design could
be obtained if the design of the top storey was considered as the
storey below it, and the design of the bottom storey was taken as
the one above it.

In equation (1.3) Anderson and Islam took the sway of each
storey 4 as being equal to the maximum allowable deflection of
hi/soo, where hi is the height of the storey under consideration,
However, such a ratio is difficult to be maintained for the ground

floor columns. because these are connected to the foundations and
s



therefore deflect less than the others,

The methodsof Moy and Anderson and Islam are approkimate; as
hinges were assumed in the mid-length of each member to avoid con-
sidering the frame design in its entirety, and in order to separate
it into storey slices. Furthermore, the vertical loads have a
considerable effect on the sway especially in non-symmetrical

frames. Thus, the effect cannot be ignored.

1.4 OPTIMUM DESIGN

There are two types of optimisation: the classical type (which
uses calculus), and the programming type.

The first type is efficient only when it deals with equality.
constraints, One method of this type is the Lagrange multiplier
technique (Hadley, 1970 edn). For instance, it is required to
optimise the function

Z= f(xl,x . xn) = f(x) (1.8)

2,

subjected to m equality constraints:

gi(xl,xz, coaoy xn) = bi’ 1=1, ..., M (1.9)

The procedure is first to convert each of the equations (1.9) to
the form:

Gi = Ai[bi~gi(x)], i=l, coo , M (1.10)
where the new variable Ay is known as the Lagrange multipler. The
constraints Gi are than added to the objective function Z to form

m
F(x, A) = f(x) + igl Ai[bi-gi(x)} (1.11)

Here F(x,A) is called Lagrangilan function. The difference between

F(x,A) and f(x) is that F(x,}) has more variables than f(x) and the
> - : .

turning points of F(x,}) also include those of f(x). The turning

point for the unconstrained function F(x,2) is found by setting to



zero the partial derivatiyes of F(X,A) with respect to each of the

e Varlables xj, j=1, coey T and ;\i’ i=1, so0oy Mo Thus

oF 3f m A Bgi .

Bx; ~ Bx “if Mt d=1 ..., (1.12)
J

3F _ '

ST; =b, - g (x)=0, i=l, .... ,m (1.13)

An advantage of Lagrange's method, from a practical point of
view, is that the optimum solution can be obtained with relatively
simple numerical techniques., However, the method is only useful
when the constraints are equalities,

The programming methods, are often more efficient than the
classical type. This is because they can deal with inequalities
and with relatively large probelms. For these reasons, these
methods are often used to design rigidly jointed framed structures.
The principles of some of these methods are given in some of the
recently published text books (Majid, 1972), (Majid 1974), and
(Gallagher and Zienkiewicz, 1973).

Both the rigid-plastic and the elastic design method can
be used to formulate the optimisation problems. The former method,
however restricts the design constraints to cover strength require-
ments only and cannot deal with deflection constraints,

In the elastic design method, the design criteria used are
that the stresses in the members and the deflections at the joint
6f a structure should not exceed certain permissible values. It
then becomes necessary to express the deflections and the stresses
in the structure in terms of the design variables. This can be

carried out by employing either of two matrix methods,
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In the case of the matrix displacement method the design
problem becomes one of finding the sectional properties of the
member so that three constraints are satisfied; These are the
stiffness equalities and the deflection and the stress inequalities.

An alternative formulation uses the matrix force method. to
find the same member properties while satisfying the compatibility
constraints which are equalities, as well as the deflection and
the stress inequalities.,

Whichever method is employed the optimum design of a frame
is a non-linear problem even if the instability effects due to
the presence of high axial forces in the members are ignored. In -
this case, the linear programming techniques cannot be directly used
to solve such problems. Several non-linear programming methods
are available to overcome this difficulty but these may lead to
complications and increase the computer time when designing large
frames. Linear programming methods may, however, be used in the
solution of non-linear problems by using an iterative procedure.
Each iteration consists of a small linearised step of the problem.
Different methods of solving a non-linear problem by such linearis-
ation and iteration, e.g. the cutting plane method, the piecewise
linearisation method etc, have been discussed in detail by Majid
(1974).

Saka (1975) presented a general computer program for the
automatic optimum design of realistic, rigidly jointed multi-storey
frames. A non-linear programming algorithm was proposed for the
minimum weight design of structures in which the joint displacements
and stress constraints were included as design variables. The
design problemvwas formulated using the matrix displacements

method. The problem was then linearised using the cutting plane
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method, and the optimum design was obtained using the simplex

method,

Although; this method achieved a design in which all the
design criteria were satisfied, it was not applicable to large
frames, as it was essentially a procedure requiring eitensive stor-
age space and consumed a considerable amount of computer time., These
difficulties can be overcome, however, by making use of the backing

store of a computer (Al-Pasha 1981-82).

1.5 SCOPE OF PRESENT WORK

The design of multistorey sway frames with realistic wind
loading can be governed by the limitations specified by the codes
on the permissible horizontal sway of each storey. These are now
specified in terms of the storey-heights at the specified unfactored
loads (B/20 Draft Specification). It has also been recommended that
at a load factor of unity the frame should remain elastic in con-
sideration of both strength and serviceability of structure,

(Majid and Anderson (1968),(Moy, 1976) and(Majid, Stojanovski and
Saka, 1980).

In general a rational approach to designing sway frame for
deflection limitations is not adopted in existing methods, practiced
in industry. Furthermore, economy in design is sacrificed in
order to obtain a fast manual procedure which is either restricted
in its application or inaccurate in its approach.

Many of the recent proposals for improved methods of design
(Moy) and (Anderson and Islam 1979) have been based upon assumed
rather than actual behaviour. For example, the assumptions of

hinges at the mid-point of each member, and the neglect of the

vertical loads on the frame etc are proposed to simplify the design

methods. Accurate design methods for deflection limitation has not



been generally available,

The work presented in this thesis began with an attempt to
find an accurate direct design method to limiting horizontal
deflections at the unfactored loads. Chapter 2 presents a method
for the design of plane rigidly-jointed multistorey steel sway
frames to withstand specified values of sway deflections. Using
these values, the overall stiffness equations L = K X are modified
and then solved by iteration not to calculate deflections but to
calculate the unknown cross-sectional properties of the columns.
Thus the method proposed is that of design as opposed to that of
an analysis, Simple linear extrapolation is then proposed to
progressively reduce the cost of the material of the frame.

Chapter 3 gives suitable criteria to cover both the strength
and the deflection requirements in sway frames. Using stability
functions, the axial loads effects are catered for and a refined,
more accurate design is obtained. The procedure is then computer-
ized, and an explanation of the computer programming is given in
detail in Chapter 4.

Chapter 5 contains the examples solved by this program. The
effect of the axial force and a comparison of the results with
other methods are pointed out in this chapter.

In Chapter 6 the design procedure is applied to the design of
rigidly-jointed multistorey reinforced concrete sway frames.

The depth of each column and beam in the frame is calculated first,
to withstand specified sway in the columns. The reinforcement of
the columns and of the beams are then calculated so that fhe strength
requirements are aiso satisfied.

The method of Chapter 2 can be used to design pin-jointed

space frames, for deflection limitation, by formulating the problem



in terms of the unknown cross-sectional areas. This is done in
Chapter 7 where a computer program for this purpose is also
presented;

In Chapter 2 an approximate extrapolation technique is used
to change the beam sections in an attempt to reduce the material
cost of the frame, In Chapter 8 the results of Chapter 2 are then
used in conjunction with the method of Lagrange multipliers in
order to obtain an optimum solution for the design problem, This
new extended method is also iterative. The computer program for the

optimisation method is also given in this chapter.
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“CHAPTER THO
DESIGN OF STEEL FRAMES

2,1 INTRODUCTION

The design of a rigidly jointed sway frames requires that the
overall stiffness equations L = KX must be satisfied while, in
addition, the stresses and the sway in each member are within upper
bounds specified by some limit state design code., In the case of
sway frames, it has been found (Anderson, 1969 and Majid and Anderson,
1968) that the Qeflection or sway requirements are more severe than
the stress requirements., For this reason it is possible to satisfy
the sway requirements first. If the sway in each column is equated
to its upper bound, then the solution of L = KX becomes easier. In
this chapter it is assumed that the sway in each member is known and
the equations L = KX are solved to calculate the cross sectional
properties of the columns. An iterative method is suggested to solve
these equations., This chapter only deals with the design of two
dimensional rectangular steel sway frames.

For a general joint in a sway frame, expressions are obtained
to calculate the deflections in terms of those at the neighbouring
joints as.well as the second moment of area of the connecting members.
The value of the horizontal sway at each storey-level is first
specified, and the sway equations are used to evaluate the unknown
sectional properties of the columns. The stiffness equations for
each joint are solved by an iterative technique. This produces
values for the other deflections in the joint as well as the second
moment of area of the columns. The beam sections are selected by a
preliminary method such as that suggested by (Islam, 1978, and

Anderson and Islam 1979). These are then altered in an effort to



reduce the total material cost of the frame.

Simple linear extrapolation is used to find the cost of each
storey. The beam which produces the least cost is used in the nekt
round of an iteration process, which is repeated until no further
reduction in material cost of the frame can be gained, As the
iteration process continues, the beam sections, the column sections
as well as the ratio between the external and the internal columns

all change.

2.2 CONTRIBUTIONS OF A MEMBER TO THE OVERALL STIFFNESS MATRIX

The contributions of a member to the overall stiffness matrix

[K] of a frame is:-

First end Second end
A B -C -A -B -C
First end B F ~T -B -F ~T
-C -T e c T £
K= que--ou-Dcuuonouauouuo:oeoooov.ntta.onoooonon (201)
-A -B c A B C
Second end | -~B -F T : B F T
-C T £ C T e
l.e,
S5 ISP
K = (2.2)
1 1 Ky

where
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P . (2.3)
e = 4EI/L
f = 2EI/L
a = EA/L
b = 12EI/L3
d = -6EI/L?

In equation (2.3), E is the Young's modulus of elasticity, I is
the second moment of area for the member, L is the length of that
member, Rp and mp are the direction cosines for the longitudinal P
axis of the member, and A is the member area.

For rectangular skeletal frames it is convenient to simplify
the K matrix and construct separate matrices for beams and columns.
It is assumed that the direction of the P axis for a beam 1is from
left to right, while that for a column is vertically downwards. The
sign convention adopted for forces and displacements is in accordance
with the right hand screw rule, and is shown for a horizontal and
a vertical member in Figure 2.1,

For a beam, the stiffness equations are simplified to become:
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First end Second end

Hi a 0 0 .o-a 0 0 X.
first .

V. 0 b -d 0 ~-b -d Y.
1 end 1
M 0 -d e 0 d f T.
i i

= ---o-ueoaanoao:oouauooonoouo-oo E (234)
H. -a 0 0 a 0 0 X.
J second J
V. 0 -b d - 0 b d Y.
J end | J
MJ 0 -d f + 0 d e rj
T - - .

where L = {H. V. M. .... H. V. M.} is the load matrix, and {X} =
- i i i3]

{xi yi T Xj yj rj} is the joint displacement vector, Similarly for

a column:
First end Second end
fo— A —1 — —-‘
b 0 -d -b 0 -d Xy
Firstd
0 a 0 0 -a 0 yi
end
~d 0 e d 0 f TS
L = lacocenoneasoncessooossoscocasocoss : (2.5)
-b 0 d b 0 d X.
Second! J
0 -a 0 0 a 0 y.
end J
-d 0 f d 0 e rj

If the axial stiffness (EA/L) of a member is neglected, equations
(2,4) are simplified further by removing the first and the fourth
columns and rows from the stiffness matrix. Equations (2.5) are
also simplified by removing the second and the fifth columns and
rows of K. In this manner, the contributions for a beam and a
column, to the stiffness matrix become the same. This is provided

that the sign convention and the direction of the axes of the members

are kept as specified. Thus the contributions of a member to



{L} = K {X} becomes:

37

First end Second end_
First Vi b ~-d : -b -d (beam)
end M, -d e . d f
Second Vj -b d b d
end Mj -d f d e
Notice that suffixes i and j refer to the ends of the member,
First end Second end
First H. b -d . -b -d X.
i . i{ (column)
end M. -d e - d £ T,
i . i
= onuooucooeoo:cooooo..oooooa - (297)
Second Hj -b d - b d xj
end M. -d £ . d e T.
J : J

2,3 MEMBER AND JOINT SPECIFICATION

In this thesis, only orthogonal frames with horizontal beams
and vertical columns are considered. This simplifies the numbering
of the joints and the members and, thus the data preparation can be
reduced to a minimum. In Figure 2.2 a frame is shown with joints
and members numbered. Joints in the beams are numbered first. This
is done starting at the left end of the top storey. The numbers are
consecutive and are from left to right. The columns joints are then
numbered in the same way. A member is given the same number as the
joint at its first end, which is specified by the tail of an arrow
placed on the member. This arrow also specifies the positive dire-
ction of the longitudinal P axis of the member. Thus on the second

floor, left bay of the frame shown in Figure 2,2, the beam connecting
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the two columns carries a load along its span, This is at joint 4,
The joint to the left of this is numbered 13. In our numbering. ]

system, the beam to the left of joint 4 is beam B because joint

13
13 is at the first end of this beam. The beam to the right of joint

4 is beam B4 because joint 4 is at its first end. The left side

outer column at the second storey is C,, because joint 13 is at its
2

1

first end. All supports are numbered as zeroes.

2.4 STIFFNESS EQUATIONS FOR A GENERAL JOINT IN THE FRAME

A column joint is at the end of a column while a beam joint
lies somewhere along a beam. Figure 2.3 shows a general beam which
may be carrying a load at joint j and other loads at i or k. Alter-
natively, i or k may be joints at the head of columns on either end
of the beam. In our specification, joint i is to the left of j,
and k is to its right. The beam joining i to j is beam Bi with its
second moment of area IBi° The beam to the right of j joining j to
k 1s beam Bj with its second moment of area IBja For any column
joint, there are six possible configurations. These are shown in
Figure 2.4, Of these, type 6 is the general case where two columns
and two beams meet. This type is also shown in Figure 2.5 where
joint j is shown together with its neighbouring joints. The second
moments of area for the members connected to j are also specified
in this figure. All the other types 1 to 5 can be obtained from

this configuration. For this reason joint type 6 is used to derive

the relevant equations for the design of a column.

2.4,1 Stiffness Equations for a Beam Joint

The relationship between the external loads L and the vectori-
ally equivalent joint displacements X, in terms of the system coor-

dinates XY, is expressed by the equation
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L=kX (2.8)
This is used to evaluate the deflections X, thus
X=xtL (2.9

For a beam joint j, the vector X is {xj, yj, rj}° Here Xj is the
horizontal displacement; yj is the vertical displacement; and rj is
the rotation of the joint. If the axial stiffness (EA/L) in a beam
is neglected, the displacement vector becomes §_='{yj, rj}, thus

two equations are needed for defining yj and rjq These are obtained
from the contribution of the beams Bi and Bj connected to joint j,

(Figure 2.3), The stiffness coefficients of beam Bj are:

b. = 12EI_./L3.
j BJ/ Bj
. = -6EI_./LZ.
dJ BJ/ BJ
(2.10)
. = 4EI_./L_.
% B/ Bj
f. = 2EI_./L_.
J BJ/ Bj

where LBj is the length of the beam., Similarly for Bi the stiffness

coefficients are:

3
b. = 1251Bi/LBi

2
d. = —6EIBi/LBi

(2,11)
e, = 4EIB.1/LBi

£ = 2EIBi/LBi

where L_. is the length of B..
Bi i

2.4.1.1 The Vertical Deflection vy ;

The vertical deflection yj for a joint in a beam is obtained
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from the stiffness equations as follows:
i) ‘The contributions of the beam Bj to the vertical deflec-
tion of joint j, which is at its first end, are calcu-

lated from the first row of equations (2.6), thus

<
1}

b.y. - d.r. - b. - d.r 2.12
JYJ i Jyk ( )

jk

Rearrange:

<
i

V. +d.r. + b, + d.T b. 2,12a
( J i3] Jyk J k)/ J ( )

ii) The contributions of the beam Bi to joint j, which is
at its second end of the beam, are calculated from the

third row of equations (2.6), thus

0= —biyi + diri + biyj + dirj | (2.13)

The vertical load is considered to be acting at end j
of qu This is why in equation (2.13), the left hand
side is zero indicating that no load is acting at the
second end of Bi° Rearranging equation (2.13) for yj

gives:

YJ = (+blyl - diri - dirj)/bi (20138-)

iii) Adding the contributions of Bi and Bj’ given by equations

(2.12a) and (2.13a) results in the following equation for

v. = (V, + djrj + bjyk + dirk +

-

(2.14)
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2,4.1.,2 The Rotation rj

Similarly the rotation rj for a beam joint is obtained as follows:

i) The second row of equations (2.6) gives the contributions

of the beam Bj to the rotation of joint j as:

M. = -d.y. + e.T. + djyk + f.r

~J i’ iTJ ik (2.15)

Thus r. = (M. +d.y. - d.y. - f.r,)/e. 2.15a)
j ( j JyJ Jyk J k)/ J ( )

ii) The fourth row of equations (2.6) gives the contributions

of beam Bi as:

0 = diyi + firi + diyj + eirj (2.16)

or rj = (+ diyi - firi ~ diyj)/ei (2.16a)
It should be noted that Mj is taken into account when
considering the contributions of Bju As a result, in

equation (2.16) and (2.16a), Mj is not reconsidered.
iii) The rotation of joint j is obtained by adding equations

(2.15a) and (2.16a). This gives:

r. = (M. + d.y. - d. - f.r
j ( j 377 Jyk ik
(2.17)

+ diyi - firi - diyj)/(ej + ei)

2.4,2 Stiffness Equations for a Column Joint

The displacements vector for a ceclumn joint, is similar to that
of a beam, except that the axial deformation of the column must be
considered. Thus, three equations are needed to find xj, yj and

rja These equations are obtained from the contributions of the beams

Bj and Bi’ and the columns Cj and Cm which are connected to joint j,



see Figure 2,5. The column Cj which connects joint j to n is

defined by the joint number j at its first end., Its second moment

of area is chn Members Bi’ Bj and Cm are defined similarly by

the joint at their first end. The second moments of area of these

members are IBi’ IBj and ICm”

The member stiffness coefficients a, b, d, f and e defined in
equations (2.3) are found for each member connected to joint j. For

column C. these coefficients are b .., d.., e.. and £.., while for
J (9 R O R O Cj

column Cm they are b d and meo These coefficients for

cn’ “cm’ Ccm

the beams Bi and Bj have been given by equations (2.10) and (2.11).

The axial stiffness for column Cj is:

.= . . 2,
aCJ EACJ/LCJ (2.18)

where ch is the area of the column while the axial stiffness for

the column Cm is:

= |+ 2°
aCm EACm/LCm (2.19)

2.4.2,1 The Horizontal Deflection Xj

The expression for Xj (the horizontal displacement of joint j)
is obtained from the stiffness equations as follows:
i) The contributions of the column Cj to the sway are taken

from the first row of equations (2.7), which is

H =b..x. -d..r. -b_.x -d..r 2,18
J Cl ClJ Cln Cin ( )

Thus Xj = (Hj + derj + ijXn + dcjrn)/bCj (2,18a)

ii) For column Cm, joint j is at its second end, so its con-
tributions to the horizontal deflection xj are obtained

from the third row of equations (2.7), which gives:



0 = -mexm + derm + mexj + derj (2,19)
and thus:
X50% OobeXn = denTn < denT) P (2.19a)

iii) There are no contributions from the beams to the
horizontal deflection xj at j because the axial stiff-

ness of these is ignored.

iv) The total deflection xj at j is thus obtained by adding

equations (2.18a) and (2.19a). Hence

x. = (H. +d..r. + b .x +d..r

j ( j Ci™j Cl'mn Cln o
(2.20)

)

¥ meXm - derm h derj)/(ij " me

2.4,2,2 The Vertical Deflection yj

The vertical displacement of joint j is obtained from the con-

tributions of all the members connected to it as follows:

i) The contributions of the beams Bi and Bj to yj are given
in equations (2.12a) and (2.13a) for a beam joint, These

remain the same for a column joint,

ii) The contributions of a column Cj to the vertical deflection
Y are obtained by considering the axial deformation of
that column. This is given by the second row of equations

(2,5). Thus

O =a,y. - a..y (2.21)

That 1is y. = a..y /a.. (2.21a)

iii) Joint j is at the second end of column Cma Thus the

contribution of this column to the vertical deflection



iv)

at j is given by the fifth row of equations (2.5), thus:

0 = (2,22)

“Bemm T on’3

or (2.223)

Y5 = 2oy n/ 2cm
The total value of yj is then obtained by adding equations

(2,12a), (2.13a), (2.21a) and (2.22a) to give:

yj = (Vj + djrj + bjyk + djrk + biyi - diri - dirj

(2.23)

*agsyy 3/ (by by +ags +ag)

Notice that the external load applied at a joint is only
considered once with the contribution of any member
connected to that joint. In the case of yj, the external
load at j was considered when yj for the beam Bj was

derived,

2.4.2.3 The Rotation rj

The rotation rj of a column joint j is obtained as follows:

i)

ii)

iii)

The contributions of the beams Bi and Bj to rj are
already derived and are given by equations (2.15a) and

(2.,16a).

The contributions of columns Cj to rj are obtained from
the second row of equations (2.7). Joint j is at the

first end of this column., Thus:

0 = -dcjxj * ey deXn + ijrn (2.24)

i.e. rj = (+dcjxj - dcjxn - fcjrn)/ecj (2.24a)

Joint j is at the second end of column Cm@; Hence the

fourth row of equations (2.7) gives the contribution of



iv)

this member to rju Thus:

0= -d + f +d x. +e.r (2,25)

Cm'm Cm'm Cm™j Cmj

i.e, r. = (+ dexm - f (2.25a)

j an’m Yo’/ %cm
Adding equations (2.15a), (2.16a), (2.24a) and (2.25a)

together, gives the final rotation of joint j as:

T My gy s dpn s Byme ndyyy - iy - dyyy

dexj - dcjxn - ijrn + dexm - merm - dexj/

RPN
(ej te. + eCj + eCm) (2.26)

Equations (2.20), (2.23) and (2.26) express the joint
displacements for a member with configuration 6. Figure
2.4 shows this configuration, which is that of a general
case, To obtain similar equations for configurations 1
to 5, terms contributed by the missing members should be
omitted. E.g. for configuration 3, terms contributed by

column Cm to all three equations should be omitted.

In the orthodox stiffness method of analysis, to cal-

culate the sway of a complete storey, one adds the rows

and the columns in the stiffness matrix corresponding to

Xj for all the joints in the storey. Thus equation (2,20),
which calculates the sway of a column joint, can be extended
to calculate the sway of a complete storey by adding up

the terms in the equation to include all the joints in

the storey. The numerator SNj of equation (2,20) is

(2.27)



while the denominator is:

SD; = bes * b (2.28)

The sway Xes for the complete storey, is thus:
j=Jdg j=Jg

SN./ SD. (2.29)

= T
X = .
J J—Jl ]

Z
s J=J1

where Jl is the first joint on the far left of the storey
under consideration, and JS is the joint on the far right

of the storey.

2,4,3 Design Equations for a Column

If the sway of a storey X, or of a column Xj is specified, then
equations (2.20) and (2.29) can be used to find the second moment

of area of the column., To do this the stiffness coefficients for

column Cj are written as factors of ICj’ thus:
.= 12E/L3.
ijl E/LCJ
- 2
del 6E/LCj
(2.30)
.. = 4E/L ..
°cj1 /Les
L= 2 .
fle E/LCJ
Equation (2.20) is rearranged to calculate ch instead of x.. This
glves:
ICj B (Hj B meXj * DepXn ~ dentn
(2,31)
- Aot/ (Peg1%y ~ degn®y T bci1*n ™ 4ey1%n)

Figure (2.6) shows an intermediate storey of height h in a frame of
non-uniform bay width. The simple 'portal method" of design assumes

that the horizontal shear at any level is divided between the bays



in proportion to their relative width (Allwood, et al, 1966),

(Anderson and Islam 1979), Hence, for the columns,

= ceeenes =T (2.32)

where nb is the number of bays. The ratio IZ/Il is referred to

as the internal to external column ratio, and it is denoted by p.
For the first column joint in the storey (that is the one on the
immediate left) Py is equal to 1., Hence for the rest of the joints
of the columns p is defined as:

Using equations (2.32):

pp = 1.0, py = (Ly + L))/Lys oy = (Ly + L)/Ly,

sesoey PoT Lnb/L1 (2.34)

If the sway of the complete storey is specified, then equation
(2.29) can be rearranged to calculate Il’ in terms of the sway Xes
and the ratios pj° The second moments of area for the remaining
columns in the storey are then calculated from equation (2.33).

It should be stressed that the ratios p for the second moment
of area of internal and external column has to be specified before
the above equations are used for the design of the columns. How-
ever, it should be stressed that the poatal method described above

is not a necessary part of the design method. The poatal method



is only used to begin with to specify some initial ratios. Later,

as the design of the frame proceeds, the value of p changes con-

tinuously so that the final design has the most economic value of

o for each storey.

" "Left Column Il

1)

ii)

In the design procedure the contributions of each column
in the storey to Il should be found first. These are
calculated from equation (2.31), which is rewritten in

terms of pj and Il' Thus, the contributions of columns

C. to I, are:
] 1

I1 = (Hj - meXj + mexm - derm - derj)/
(2.35)
(o5 Oeji%y = 9175 = Py~ i)
Terms of equation (2.35) are added for all the columns

in the storey. The numerator of equation (2.35) is SN3

given by:

! - - A o
SNj (Hj mexj + mexm derCm derj) (2.36)
while the denominator is SD}

' = XL - L T. - . - . 2,
SDj pj (bCJlXJ dCJlrJ bCJlxn delrn) (2.37)
Il is thus given by:

j:'JS j=JS
I. = .2 SN!/.Z SD! 2,38
1 3= J/J=J1 J (2.38)
Where Jl and Js are as given before in equation (2.29).



2.4.4 An Example on the Derivation of the Stiffrneéss Equations

The above equations are best explained by deriving them for
a single-storey single-bay frame, shown in Figure 2.7. To keep the
problem as simple as possible the axial deflection of the columns
is disregarded at this stage. The stiffness equation L = K X for

the frame in Figure 2.7 are:
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- (2.39)
where Ty Tp and r. are the rotations of joints B, F and C respec-

tively, x 1s the horizontal sway, and Ve is the vertical sway of

joint F. The second moment of area for the column and beam are I

1
and Izu
For the beam joint F, equation (2.14), or the third row of
equation (2.39), gives:
6EI2 6EI2
P + — rB - —————5- rC
2 2
12EI2 . 12EI2

(L/2)3 (/23



while equation (2.17) or the fourth row of equation (2.39) gives

2ET ST
0 "EIZ .\.EI2
BN B e
r, L/2 L/2 (2.41)
,4EIZ _A4EIé
T2 12
For the columm joint B, the sway x can be obtained from equation
(2.29), or from the first row of equation (2.39); thus
6E1 . .6EI.
Q + 1 r_ o+ 1 T
h2 B h2 - c
X = (2.42)
IF
12EI1 1~EIl
+
h3 h3

If, x is specified (e.g. x = h/300) I1 can be obtained from equatioﬁ

(2.42), thus

_ . o
b2k LES S, SE (2.43)
h3 h3 2 B 2 C

I

Application of equation (2.38) gives the same result,

The rotation Ty is found from equation (2.26), which is the

same as the second row of the stiffness matrix. Both give:

6EI 6EI 2EI
1 2
0 + X + r - - rF
h? (L/2)? L/2
r, = (2.44)
4EI1 4EI2
+
h L/2
similarly the rotation To is given by:
6EI 6EI 2EI
0+ — L2 y - 2 4 (2.45)
i /2 Foopp F .
r =
C
4EI1 4EI2

'
JRESEOISIE E VU

h L/2



2.5 'PRELIMINARY BEAM SECTIONS

In the design process the beam sections should be selected to
satisfy the stress constraints. First of all, a lower bound is
obtained for a beam by considering the vertical load on it and
deriving the equation of beam mechanism. In most cases, the section
obtained in this manner is not adequate for resisting the side-sway
except for the top one or two storeys, Nevertheless, no beam section
is allowed to be reduced below that obtained by beam mechanisma
Under wind-loads, preliminary beam sections could be obtained to
resist the sway deflection by a method due to Anderson and Islam
1979) as described in Chapter 1. In some cases, sections obtained
in this way are found to be totally unsatisfactory. However,
Anderson and Islam's approach can still be utilized provided that,
in this preliminary calculation, the allowable sway is severely
restricted for the time being., It has been found that equations
given by Anderson and Islam underestimate the beam sections con-
siderably.

Another method, which could be used to select an initial
section for a beam, is to use the simple design methods of The
Steel Designers' Manual (Allwood, et al, 1972). 1In these methods
a point of contraflexure is taken to exist at the midheight of each
column and at the midlength of each beam. In most cases, sections
selected by this method to satisfy strength requirements are found
to be unsatisfactory for resisting the sway deflection. However,
for a preliminary trial, these sections can be magnified by a cer-
tain factor and obtain an upper bound for each beam. This factor
might change from the beams at fhe top storey to those at the bottom
and it can have any value between 1.5 and 2 at the top and 3 to 5

at the bottom, depending on the height of the frame.



INERATIVE TECHNIQUE

The modified stiffness equations given for a general joint
section (2.4.1, 2.4.2 and 2.4.3) are applied to each joint of the
frame to obtain a sufficient number of equations for the evaluation
of the joint displacement and the column second moments of area.
This is provided that sections have already been selected for the
beams.

Although these equations are non-linear, an iterative tech-
nique, which is a significant part of this thesis, proved to be a
powerful method for solving them. This technique starts by assuming
estimated values for the unknowns which, in the absence of a better
value, may be taken as zero or one., A second revised estimate
may then be found using the modified stiffness equations one at a
time, The current value of a variable, at each stage of the iter-
ation is used as soon as it is available to calculate a new value
for the next variable in the iteration chain,

It must be emphasised here, that only an unknown related to
the leading diagonal element of the stiffness matrix is calculated
from each equation. The obvious reason is that the coefficients
of the leading diagonal element is much larger than the others
(Lennox, et al, 1974, Cohen, et al, 1973). This prevents divergence
and also accelerates the convergence of the process.

2.7 AN EXAMPLE ON THE SOLUTION OF THE MODIFIED STIFFNESS EQUATIONS

The solution method is best explained by applying it to the

single bay frame dealt with in section 2.4.4. Assuming Ty T T. T

T = 0, Yp = -1, x/h = 1/360, and 12 is calculated from the beam

mechanism, which gives I2 = 21345 x 10% mm"*. Equation (2.40) gives



Vg = =11.92 mm. For the rest of this cycle, this new value of
Y 1s used for the calculation of all the other variables. Equation
(2.41) gives: rp = 0.0, and equation (2;43) gives the first value
for the column section as I1 = 3106 x 10" mm“: With these new values

for Yps» Tp and Il’ equation (2.44) gives Ty = -0,00395, Thus To
is calculated from equation (2.45) as 0.00267. This procedure is
repeated until all the variables converge to stable results. To

test this convergence, a tolerance is introduced, and a variable

is said to have become stable if its:

l new value - old value

v value | < The tolerance

Table 2,1 shows the results of the iteration process, with a tol-
erance of 0,01, It can be noticed that 13 iterations are needed
to converge to the final design values, which include the second

moments of area.

2.8 AN OUTLINE OF DESIGN PROCEDURE

At this stage it is useful to give an outline of the design

procedure. This consists of the following steps.

Step 1 -~ Select an initial set of beam sections by the beam
mechanism method under vertical loads.

Step 2 - Specify the horizontal deflection at each storey level

Step 3 - Define the ratio of the second moments of area of an
internal and an external column. Any ratio is acceptable
but it was decided to start with the ratios calculated
above in section 2.4.3.

Step 4 - Assume the second moment of area of each column, the

deflection and the rotation of all the joints. Infea-

sible values such as I =1 mm“, y =1 and r = 0.0 are



Step 5

Step 6

Step 7

Step 8

sufficient for the purpose of starting the iteration .

prqcess;

Using the modified stiffness equations given above;
calculate the deflections of the beam joints;

Using these values of deflections calculate the first
unknown sectional property I. of one of the column.

C

Using this value of IC calculate the vertical deflection
and the rotation of that column joint;

Continue with iteration until a new value is obtained for
each unknown and all the modified stiffness equations

for all the joints are used

Repeat steps 5, 6 and 7 until convergence is achieved.

At this stage one design cycle is completed and a set

of sections become’ available for columns,. All the joint
deflections and rotations also become available., Notice
that the beam sections and the horizontal deflection of
the joints are specified but the other unknowns are cal-
culated. The column sections and the joint deflections
calculated fully satisfy the stiffness equations and

the design obtained is feasible and most structures
designed in this manner are ready to be constructed.
However, the design process continues for the following
reasons:

a - To include the effect of axial forces in the columns.

b - To achieve economy by altering the ratios between
internal and external columns,

c - To achieve economy by repeating the operation with



Step 9 -

Step 10 -

Step 11 -

Step 12 -

Step 13 -

tep 14 -

a different set of beam sections. This is provided no

beam section is‘reduced below those given by the beam
mechanism,

d - To check that while deflection and sway requirements
are satisfied, the stress (plastic hinge moments) are

satisfactory in all the members.

Modify the stiffness equations by including stability
functions, see later,

Alter some of the beam sections if this is economical,
see later.

Repeat the iteration process, i.e., steps, 5, 6 and 7
until convergence is obtained once again, Notice that
when entering the iteration this time; the current
values of column sections and joint rotations are emp-
loyed. These values are more realistic than the initial
infeasible (I = 1, y = -1 and r = Q) values. For this
reason the second round of iteration converges very
quickly.

Alter the ratio between the internal and external col-
umns, if this is economical, see later.

Repeat the iteration, i.e. steps 5, 6 and 7 until con-
vergence is achieved. Once again the iteration is
initiated with current available values and convergence
is very fast,

Repeat steps 9 to 13 until no economy is achieved either
for altering the beam sections or for altering the

ratios of internal to external columns. At the end of



Step 15 -

this step the frame stability is satisfied and the

deflections and sectional properties calculated fully
satisfy the stiffness equations.

Check the stress requirements in the frame. This is
done by:

a - checking that the plastic modulus of the beams

under combined vertical and wind loads are satisfactory,
With the unit load factor A = 1 no plastic hinge should
develop in any beam and the entire frame must be elastic
under such a load factor. See details 1ater;

b -~ Checking that under factored loads; A > 1 (say

A = 1.29 as in the recent codes), no hinge developsin

any column., See details later,

If the plastic modulus of all the sections are satisfactory,

which is often the case, the design process is complete., If not,

select new beam and column sections for the members and repeat

steps 5, 6 and 7, Notice that if I, of the columns are known the

C

iteration at this stage calculates the horizontal joint deflections

instead.

Thus during each round of iteration either column sections

are unknown and calculated with given specified values of the hori-

zontal storey deflection or these deflections are calculated using

column sections selected to satisfy strength requirements.

It is evident that the values of the horizontal deflection at

each storey can be specified in more than one way. In the following

sections a method is proposed for this purpose so that the recent

suggestions made by the British Standard documents are satisfied.

2.9 GENERAL EQUATION FOR THE SWAY DEFLECTION CONSTRAINTS

The draft of the British Standards Institution B/20 document

77/13908 DC restricts the differential deflection between the two



ends of any column to not more than a constant value, This constant

may be taken as aH = H/300; where H is the length of the column,
Excessive differential deflection causes cracks in the walls,
éracks in the cladding and may also damage windows: If the sway
in each storey is the maximum of H/300 then the deflection profile
of a multistorey frame is a straight line such as OA in Figure
2.,8. In practical frames, the sway in the lower columns is less
than those in more flexible upper columns and thus a linear profile
cannot take place, It is therefore necessary to derive a non-
linear deflection profile for the frame which represents the defor-
mation of the frame more realistically. Measuring x from the top-
of the frame, let the deflection y at a distance x from the top be

given by the deflection function,

- 3 n
y = a) +a, x+ a3 X+ ay X *agX (2,46)
where ays a5 as, a4 and ag are constants and must satisfy the

boundary conditions at the top and the bottom of the frame and n
is a variable which for economic reasons should be numerically as
high as possible, As n increases, the frame becomes more flexible
and the non-linear profile of the frame approaches the linear

upper bound OA, The constants a, to ag are found as follows;

1 - Since in a practical frame each floor is required to be
stiffer than or as stiff as the floor above, it follows that
the sway in each storey must not be more than the sway in the
-storey above, In this thesis-it is proposed that a sway. of
H/300 should be allowed only in the top storeys. Thus the
slope of the deflection profile, curve OB in Figure 2.8, is

made equal to ¢ i.e. when x = 0 dy/dx = a.



Now.

_ 2 ‘n-1
dy/dx = a, + 2a3 X + 3a4 X+ nag x

and when x = 0, dy/dx = o

I
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I
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2 - The top end of the frame is free and considering the whole
frame as a single element, the bending moment at this free

end will be zero., Thus when x = 0 dzy/d;c2 = 0, Now:

2 2 _ _ n-2
d4y/dx“ = 2a3 + 6a4x + n(n-1) acX

and when x = 0 d%y/dx? = 0

w
1

At the free end, at the top of the frame, the shear force is
also equal to zero., Thus when X =0 d3y/d%3 = 0 and thus

a, = 0.

4 - Because of the fixed end condition at the ground level, we have

when x = L, y = 0,0, Thus equation @.46) gives:

0.0 =a, + al + aSLn (2.47)

where L is the total height of the frame.

5 - Furthermore, for the condition of fixity at the base, when

x = L, dy/dx = 0.0, This leads to

0,0 = a + naSLn—1 (2,48)
Solving equations (2.47), and (2.48) gives the value of a,
and ac as:
n-1
a, = - al (—>) (2.49)




a s~ —9 (2.,50)

Equation (2.46) now becomes:

: <+ K ka3 Cked
y = - L(kiS) [ﬁw 3 T(Iff L *4)] (2.51)

where n = k + 4. As k tends to infinity, equation (2;51) tends
to the ultimate straight line deflection, OA in Figure 2.8. In
practice, k is taken as large as possible. Provided that ik+4
does not lead to an exponential overflow., During the‘calculation
of the deflection for each storey using equation (2.51). The
value of k at which the overflow occurs changes from one frame
to another. For each frame therefore the value of k is taken
as a number which is smaller than that which causes an eﬁponential
overflow. Equation (2.51) ensures that the sway in each storey
will be less than the sway in the storey above and this sway
reaches H/300 only at the top floor. For a large value of k, the
profile OB is nearly parallel to OA except for the bottom part of
OB.

In the special case, where m storeys of the frame are of equal

height h, equation (2.51) can be written in terms of the storey

level r Figure 2.8. This gives:

k+4
_ ah (m-1) _ _k+3 _ (k+3) _k+4
Yo © ° m(k+3) " k+4 n (m-1) + (k+4) n ] (2.52)

where Y. is the sway of the storey at level r.

2.10 UNIVERSAL BEAM AND COLUMN SECTIONS USED IN THE DESIGN

In multi-storey steel frames it is normal practice to use the



ayailable rolled sections unless, in special cases, built—up.v
sections are found to be more economical. The éomputer program
written for the design of sway frames selects universal column
sections for column members, and universal beam sections for beam
members. Because of local instability problems, certain sections,
depending on the grade of the steel used are not suitable;(Horne,
1964) and are not included in the final selection. For mild steel
(grade 43) and high yield steel grade (50) the universal column
and beam sections (BCSA, CONSTRADO, 1971) are reorganized in the
order of their cost. The high yield steel (grade 55) is not used,
because of the high probability of local buckling, Furthermore,
in multi-storey work, Grade 50 is frequently the most economic
(Needham, 1977). Expensive sections are omitted from the list,
The prices of the universal column sections and beam sections are
taken from the price list of steel sections (British Steel Cor-
poration, 1977). A section is considered ekpensive if there 1is
another less costly section with an equal or larger second moment
of area., The sections with the minimum price-inertia ratio are
selected. Tables 2.2 and 2.3 show the economical beam and column
sections respectively, for mild steel grade 43; and Tables 2.4 and
2.5 are for high yield steel grade 50.

For high-rise multi-storey frames, universal sections are not
adequate., For this reason a few built-up sections are added. These
are fabricated from the largest universal section with two rein-
forced steel plates.

To satisfy the deflection requirements the beam sections (cal-~
culated in section 2.5) are selected from the list before designing
the column sections. Thus the discrete available beam sections are

made full use of during the process of satisfying the deflection

requirements.



20,11 ALTERING THE BEAM SECTIONS

The selected beam sections (Section 2;5) do not necessarily
result in the most economic design for the complete frame; For
this reason, a linear extrapolation is used to alter the beam sec-
tions in an effort to reduce the cost of the frame; To apply
this extrapolation, two preliminary designs are needed, and initi-
ally two sets of beam sections must be provided for these two
designs. The beam sections selected in Section (2.5) upgraded by
one provide the first set of beams. The second set of beam sec-
tions are provided by those obtained in Section (2;5); The
iteration technique is entered with the first set of beams to obt-
ain the sectional properties of the column; deflections and
rotations, so producing the first cycle in the design process,

For the second design the iteration technique is entered again with
the second set of beams. The cost of the material for the frame

in the first and second cycles is found, and used in an extra-
polation process to reduce cost. In this process IB1 and ICl are

the second moment of area for the beam and the column in a given

storey for the first cycle. 2 and IC2 are those for the second

IB
cycle, If IBB is smaller than IB2 by one section, then Figure

2.9 shows that the second moment of area IC3 for the column section

is given by:
(Tes = T/ (e = Tend = Upy - T30/ (g = Tp2) (2.33)

I =1 + (I

3 = 1o 2 = Tep) (Tgy - Ipg)/ Uy = Igo)

Similarly, this equation can also be used if the beam section for

each storey is upgraded by one section to find the expected column

section,

(2.54)
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It must be emphasised that the extrapolation is introduced to
avoid solving the modified stiffness equations when the beam section
is increased or decreased, The value obtained for the second
moment of area of a column is approkimate and is used only for
costing purposes, However, it was found that the value of the
second moment of area for a column obtained using equation (2.54)
is very near the value obtained by solving the modified stiffness
equations.,

The approximate cost of the material at each storey (that is
the cost of the beam and the columns supporting it) is calculated

by extrapolation for the following:

1 =~ for the first design cycle;

2 - for the second design cycle;

3 - for the case when the beam is downgraded by one section;
4 - for the case when the beam is upgraded by one section,

The beam section which gives the lowest cost is chosen for the
third design cycle. This process is continued for each storey
until successive design cycles will show that a decrease or an
increase in any beam section would not lead to a cheaper design of
the frame.

To avoid reverse column taper, a check is made in each design
cycle to ensure that each column section is less than or equal to
the column below it. If a current design cycle results in reverse
column taper in a given storey, the beam section of the previous

cycle is adopted, and no reduction on this beam size is allowed.

2.11.1 Example on Reducing Beam Sections

The four storey single bay frame shown in Figure 2,10a is
designed as an ekampleq This frame has been designed by (Majid,

1972) using the elastic plastic design method for sway frames.



This showed that the sway‘deflection of the frame was somewhat
ekcessive° This is in spite of the fact that the frame itself
had a reasonable reserve of strength over and above that required
by (BS 449,1969), The result of this design is summarized in
Figure 2.10b which shows the second moment of area for each member
after selecting sections from the list of rolled sections, and
in Figure 2,10c which shows the order of the formation of hinges
under combined loading, It can be seen that collapse takes place
at a load factor of 1.49, which is above an adopted permissible
value of 1.4, However, the maximum deflection for this design is
53.8 mm which is more than allowable. This frame is used here for
an extensive investigation into the design method proposed in this
thesis. Although the reduction in the cost of the material is con-
sidered in the actual computer program; a reduction in weight is
used for this example to compare the results with those given by
an optimum design program based on weight optimisation (Saka, 1975).
The axial force effect and the axial stiffness are not considered.
in this example for similar reasons.

Application of equation 2,52 for various values of k is
shown in Figure 2.11. The value of k just before an overflow
occurred was 56; the deflection profile for this value of k is used
to specify the horizontal deflection at each beam level., It can be
seen in Figure 2,11 that for k = 56 the non-linear and the linear
profile are nearly the same. Any difference between the adopted

deflections and those obtained by the straight line are in the

bottom storeys.

i) First Design cycle (Figure 2.12)

The second moment of area of the beam sections for the first



design cycle are found as follows:
1) The second moment of area for the sections given by
beam mechanism are found with a load factor of
1,75. This gives I = 21345 cm?.
2)  The values obtained in (1) above are multipliedAby
a magnification factor. This factor can take any
value between 1,5 and 2, In this eiample this
factor is taken equal to 1,75 for all beams (i.e.
1,75 x 21345 = 37354),
3) Select sections from the universal beam sections
this gives I = 40414 cm4o
4) The sections obtained in (3) above are upgraded
by one section which gives I = 55779 cm4
These values of I are used in the iteration using the modified
stiffness equations. The result is summarized in Figure 2.12,
The second moment of area for the beams (chosen from the list)

is shown on the top of each beam, The calculated and the selected

second moments of area for the columns are shown next to the columns,

ii) Second Design Cycle (Figure 2.13 and 2.14)

The second moment of area of the beam sections for this design
cycle are those of the first cycle downgraded by one section (i.e.
I = 40414 cm4)° The result of the dteration using the modified
stiffness equations is shown in Figure 2.13. This shows that
columns number 9 and 10 have a section larger than that of columns
11 and 12 in the bottom storey. For this reason this design is
unacceptable. To improve it, beam 3 was increased to the next lar-
ger size in the table with I = 55779 cm4o The iteration gives

columns 9 and 10 again larger than the columns below. Therefore,



beam 3 is increased once more to the next larger size which has

I

]

4 .
75549 cm . Figure 2,14 shows the results with beam 3 having

4
I = 75549 cm and all other beams having I = 40414 cm4° This

I

modified design replaces the one in Figure 2.13. It can be seen
that the design in Figure 2,14 is lighter than the design in Figure
2.12. That in Figure 2.14 is used to start the ektrapolation for

the third design cycle.

iii) Third Design Cycle (Figure 2.15)

To obtain the second moments of area for the beam sections
the procedure of section 2.11is applied., Each beam section (except
beam 3) is upgraded and downgraded by one section and the weight
of each storey is found with the column sections obtained from
equation 2,54, In this equation IBl and ICl are those of Figure

2,12, while I_., and I, are taken from Figure 2.14. The beam

B2 c2
which gives the least weight in each storey is used in the iter-
ation, The result is shown in Figure 2;15; The design of the
top storey is altered to avoid beam mechanism collapse, due to the
formation of hinges at the top ends of the columns; The top columns
are given the same sections as the columns below, and .the beam is

designed to satisfy strength requirements. This gives I = 25464

cm4, no further reduction on this beam section is possible.

vi) Fourth Design Cycle (Figures 2.16 and 2.17)

Further reduction on the beam sections of the third cycle
gives the design shown in Figure 2.16. This is unacceptable, bec-
ause the I values for columns 9 and 10 are larger than those for
columns 11 and 12. To avoid reverse column taper the I value for
beam 4 in the fourth design cycle is kept as it is in the third,

The fourth design cycle is shown in Figure 2,17,



v) Fifth Design Cycle- (_Pigu‘e‘-‘é.;vlé-).

This is the final design cycle, the result is shown in Figure

2,18, No further reduction in beam sections could be made, The
reason is that any reduction in the bottom two beams will result
in reverse taper column, while any change in the top two beams
will violate the strength requirements for vertical load.

Figure 2,19 shows the result obtained by Saka (1975), using

an optimisation method. The second moments of area for the beam
sections obtained by Saka are shown above each beam, while the

available second moment of area for the sections selected from

the list is given below the beam. To calculate the weight of the
frame the length L of each member is multiplied by the second
moment of area I, and by the mass per unit length m;

The sums LIL and ZImL are calculated. It was found that ZIL

. . R 13 5
for the final design proposed in this thesis is 1.9032 x 10 ° m s

while for the optimum design is 1.8835 X 1013 mmso The percentage
difference being 1.03%. However, using the list of available
sections for both designs it was found that the total mass for the
author's final design was 5349;0 kg which is less than that for the
optimum design (5497.3 kg) by 2.77%. This difference is solely
due to the discrete nature of the beam sections available. The
computer time needed to complete the design by the present method
was 1/20 of that needed for the optimum design. The storage
needed was 1/10 of that needed by the optimum design.

Finally, to summarize the design cycles given in Figure 2,12

to 2,18 a graph is drawn for the total mass of each design cycle

in Figure 2.21. This shows the reduction in mass in each step.

The increase in the total mass in the third design cycle is due

to0 the increase in the top column sections to avoid the formation




of plastic hinges at the top ends of these columns.

2,12° SELECTING THE * INTERNAL 'TO "EXTERNAL "'COLUMNS - RATIO

Equation (2.34) gives the ratio of the second moments of area
of the internal and external columns as might be obtained using a
simple design method. This ratio is not the most economical one,
A procedure to obtain a more economical distribution of inertia
between internal and external columns is now considered.

In the first two preliminary design cycles; equation 2,34
gives the ratio between the internal and the eiternal second mo-
ment of area of the columns. After calculating the columns iner-
tia and then selecting a section for each column from the list,
the selected sections will have a ratio different from the one
obtained from equation 2.34. The new ratio between the selected
sections might be more economical to use., Therefore, a new design
is examined for cost, the design having the same set of beams,
but with the new ratio. The flow diagram shown in Figure 2,21
summarizes the procedure for economy in selecting beam section, and

internal to external column ratio,
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FIGURE 2.7: SINGLE-STOREY SINGLE-BAY FRAME
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UB sections Sg?giezofgﬁt Azlig Price £ per m

914 x X 3

o gégmm ;?ites 1911319 996.7 185.54
914 x 419 x 388

4 2 - 40 m plates 1480449 829,1 156.00

X X Z

e gégmm ;?ites 1082870 661,5 126,45
914 x 419 x 388 717325 493.9 86.91
914 x 419 x 343 623866 4369 76.83
914 x 305 x 289 503781 368.5 64,30
915 x 305 x 253 435796 322.5 56.29
914 X 305 x 224 375111 284,9 49.84
914 x 305 x 201 324715 256.1 44,72
838 x 292 x 194 278833 246.9 42.68
838 x 292 x 176 254412 223.8 38.72
762 x 267 x 173 204747 220,2 37.80
762 x 267 x 147 168535 187.8 32,12
686 x 254 x 140 135972 178.4 30,59
686 x 254 x 125 117700 159, 4 27.31
610 x 229 x 113 87260 144,3 24,46
610 x 229 x 101 75549 129.0 21.87
533 x 210 x 92 55225 117,6 19,64
533 x 210 x 82 47363 104,3 17,51
457 x 191 x 82 37039 104,3 16,56
457 x 191 x 74 33324 94,9 14.95
457 x 191 x 67 29337 85,4 13,53
457 x 152 x 60 25464 75.9 12.93
457 x 152 x 52 21345 66.5 11.21
406 x 178 x 54 18576 68.3 10,99
406 x 140 x 46 15603 58.9 9.98
406 x 140 x 39 12408 49.3 8.46
356 x 127 x 33 8167 41,7 7.26
305 x 102 x 28 5415 36.3 6.22
305 x 102 x 25 4381 31.4 5.55
254 x 102 x 22 2863 28,4 4.86

TABLE 2.2

UNIVERSAL BEAM SECTIONS FOR GRADE 43 STEEL




UC sections SE;OZSeZQ?EEt ﬁ;%a Price £ per m
fsg ) ggﬁm; gfites 639385 1316,9 241,74
38 X% gfites 499630 | 1147.3 211.86
3020 gfites 378668 977.7 181,95
356 x 406 x 634 275140 808.1 142,02
356 x 406 x 551 227023 701.8 123,42
356 x 406 X 467 183118 595.5 104 .61
356 x 406 x 393 146765 500.9 88.03
356 x 406 x 340 122474 432,7 76.16
356 x 406 x 287 99994 366.0 64,29
356 x 406 x 235 79110 299,8 52,64
356 x 368 x 202 66307 257.9 44,95
356 x 368 x 177 57153 225.7 39,38
356 x 368 x 153 48525 195.2 34,04
305 x 305 x 158 38740 201, 2 32.86
305 x 305 x 137 32838 174.6 28.50
305 x 305 x 118 27601 149.8 24,54
254 x 254 x 107 17510 136.6 22,26
254 x 254 x 89 14307 114,0 18,51
254 x 254 x 73 11360 92.9 15,18
203 x 203 x 71 7647 91.1 14,91
203 x 203 x 60 6088 75.8 12,60
203 x 203 x 52 5263 66 .4 10,92
152 x 152 x 37 2218 47.4 7.97
152 x 152 x 30 1742 38,2 6.47

TABLE 2.3:

UNIVERSAL COLUMN SECTIONS (GRADE 43)




UB Sections

Second moment
of area cm

Area
cm

Price € per m

As in Table 2.2 for steel grade 43

838 x 292 x 194 278833 2469 42,68
762 x 267 x 173 204747 220.2 37.80
762 x 267 x 147 168535 187.8 32,12
686 x 254 x 140 135972 178.4 30.59
610 x 229 x 140 111673 178.2 30,31
610 x 229 x 125 98408 159.4 27.06
610 x 229 x 113 87260 144,3 24,46
533 x 210 x 109 66610 138.4 23,27
533 x 210 x 101 61530 129.1 21.56
533 x 210 x 92 55225 117.6 19.64
457 x 191 x 89 40956 113.8 17.98
457 x 191 x 82 37039 104 .4 16.56
457 x 191 x 74 33324 94,9 14.95
457 x 191 x 67 29337 85.4 13.53
457 x 152 x 60 25464 75.9 12.93
457 x 152 x 52 21345 66,5 11.21
406 x 140 x 46 15603 58,9 9,98
356 x 127 x 39 10054 49.3 8.58
356 x 127 x 33 8167 41,7 7.26
305 x 102 x 28 5415 36.3 6.22
305 x 102 x 25 4381 31.4 5.55
305 x 102 x 22 2863 28,4 4,86
TABLE 2.4: UNIVERSAL BEAM SECTIONS FOR GRADE 50 STEEL




UC Sections

Second moment
of area cm?

Area
cn

Price £ per m

As in Table 2,3 for steel grade 43

356 x 368 X
305 x 305 x
305 x 305 x
305 X 305 x
254 % 254 %
254 x 254 x
254 x 254 x
203 x 203 x
203 x 203 X
203 X 203 x

202
198
158
137
132
107
89
86
71
60

66307
50832
38740
32838
22416
17510
14307

9462

7647

6088

257.9
252.3
201.2
174.,6
167.7
136,6
114.0
110.1

91,1

75.8

44,95
41,18
32.86
28.50
27.46
22.26
18.51
18.06
14.91
12,60

TABLE 2.5:

UNIVERSAL COLUMN SECTIONS FOR GRADE 50 STEEL




A

I second moment of area for columns
c

I -
Co
9}
o
—
7 i
0 N

‘ B1
[BS IBZ

I -1 . L. - I,
B2 B3 | Bl B2

- e -

FIGURE 2.9 LINEAR EXTRAPOLATION TO FIND THE SECOND MOMENT OF
AREA FOR THE COLUMNS
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A Storey level sway = 39.99 mm
4 b \7>7
/
>3 sway = 40.67 mm
/
7
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/
(// Deflection profile with
/ k = 56 used in the design
a = 1/360
2 9
Lk
/0
4
/4
//
/) The sway deflection in mm
0 20 50 40

FTGURE 2.11 DEFLECTION.CURVES FOR VARIOUS VALUES OF k FOR THE FOUR
STOREY SINGLE BAY FRAME
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4
Total mass 1n kg
132 kN
! 16 kN !
3 32 kN 4132 kN
5500 32 kN 1132 kN
32 kN L132 kN
ﬂ ML I” 7 77)L7/7I
5400 b=
5349 kg
5300 i R , \ . , . .
1 2 3 4 5 6 7 No of the design cycle

FIGURE 2.20: TOTAL MASS FOR EACH DESTGN CYCLE FOR THE FOUR-STOREY
SINGLE BAY FRAME



Select beam sections and internal to external column ratio

for the first two preliminary designs

!

Choose the cheaper preliminary deign to start

Change internal to external column ratio keeping the previous

v

&

beam sections

the design with the new ratio Keep the

cheaper? old ratio

Adopt the new ratios

Change beam sections keeping the previous column ratio

Adopt the
new beam the design with the new beam
sections section cheaper?

FIGURE 2.21 THE PROCEDURE FOR ECONOMY



CHAPTER THREE

REFINING THE DESIGN PROCESS

In the presence of high member aiial forces the bending stiff-

ness of a column is reduced by including the "stability functions"

in the stiffness equations of the column., If Livesley's ¢ stability

functions are used, equations (2.5) are altered to become:

e ; - — p—
bo. 0 ~doy | -dog 0 -do, x,
first end 0 a o . O -a 0 Ys
~d¢2 0 e¢3 E d¢2 0 f¢)4 T
i
E = ----~————-—--———---——-——--;————---—-—-----—------—----- -------
E
~bos 0 do, . | Dég 0 do, 3
second end 0 -a 0 ; 0 a 0 yj
—dq;z 0 f¢4 : d¢2 0 edq r;

Accordingly, the modified stiffness equation for a joint in a

(3.1)

column (given by equations 2.20, 2.23, 2.26, 2,29, 2.31 and 2.38)

are altered. For example, equation (2.20) becomes:

%3 - (Hj v dcj ¢2cj rj ¥ bcj ¢5cj *n T

dcj ¢2cj T’ bcm ®Sem Tm T dcm ¢2cm T

- . . b
dcm ¢2cm I'j)/(bcj ¢SCJ " cm ¢5cm)

where i and m refer to member numbers,

(3.2)

Obviously, the values of the ¢ functions are dependent on the

second moment of area of the column but this is not known before



the iteration starts. Furthermore, during the first design cycle
the values of I for the column change rapidly as the iteration is
started with unacceptably small values of I; For these reasons,
and since the first design cycle is merely a procedure to obtain
approximate sections, the effectsof the aiial forces are neglected

in this cycle. Thus 01 = ¢y = b =0, = b = 1.

At the beginning of a subsequent design cycle an approximate
value of I is available for each column. This is used for cal-
culating the ¢ function in the first iteration. At the end of each
iteration, a new I is obtained for each column which is then used
in the next iteration to calculate a new and revised set of stabi;

lity functions.,

3.2 CALCULATION OF THE AXIAL FORCES

The values of the stability functions are dependent on the
axial force in the column which is also not known before the
iteration starts. However, to assess the axial forces it is found
that it is sufficiently accurate to proportion the vertical loads
between the columns so that the external columns equally carry
half the load on the external bays above. On the other hand,
internal columns proportionally share the rest. The use of this
approximation in assessing the axial forces instead of calculating
the exact ones simplify the design procedure and reduce the computer
time. Alternatively, it is possible, using a computer, to cal-

culate the axial forces exactly from:

(3.3)

-
=
[

p =k .A.

where {p} is the vector of member forces, k is the member stiffness

matrix, A is the displacement transformation matrix of the member,
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and {x} 1s the vector of joint displacements;

To obtain the exact axial forces for each design cycle the
iteration must be used first to find the joint displacements. The
internal forces are then calculated using equations (5.3)° This
process must be repeated until the difference between two succes-
sive sets of axial loads is smaller than a specific tolerance.

Such a calculation is lengthy and it can be shown that the differ-
ence between the approximate and the e*act values of the akial
forces is small. Their effect on the outcome of the design is even

smaller.

3.3 EXAMPLE ON THE AXIAL LOAD EFFECT

The five-storey, three unequal—bay; frame shown in Figure 3.1
was‘designed using the deflection profile shown in the figure,
This frame is used here for an extensive investigation into the
effect of the axial load in the design of sway frames! Two designs
were obtained. The first design procedure initially neglected the
effect of axial forces in the columns, until a reduced cost
design was obtained. The beams of this design were kept unaltered
but the columns were subsequently altered to allow for the effect
of axial forces. These are calculated exactly using equations (3.3),
with a tolerance of 0.001. Second column in Table 3.1 shows the
reduced cost design with the axial forces neglected, while the third
column in the table shows the design with the axial load effect
included. In both designs the second moments of area after selecting
sections from the list are shown., It can be seen that some column
sections are increased due to the effect of the application of the
axial load. These sections are marked by an asterisk in Table 3.1.

Including the axial load effects increases the material cost by 4.09%.
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Final Non-linear

Final Non-linear

Member design, The lin-|design. The_effect
number Final linear |ear design is of the approximate
(taken as design axial mgdified by con- |axial load is con-
joint load effect |sidering the sidered from first
number 1s neglected |exact axial load |design cycle
I in cm I in cm?
1 -3 47363 47363 33324
4 -6 47363 47363 47363
7 -9 21345 21345 29337
10 - 12 21345 21345 18576
13 - 15 18576 18576 18576
16 11360 11360 11360
17 14307 17510* 17510
18 11360 14307 * 14307
19 6088 7647% 7647
20 11360 11360 11360
21 14307 17510%* 17510
22 11360 14307* 14307
23 6088 6088 7647
24 5263 6088* 7647
25 11360 14307* 11360
26 5263 6088* 11360
27 5263 6088* 5263
28 5263 6088* 5263
29 7647 7647 7647
30 5263 6088* 6088
31 5263 5263 5263
32 - 35 5263 5263 5263
Total cost
of mater- £2485,95 £2592,03 £2591.13
ial in £
Total mass| 17778 kg 12286 kg 12519 kg

in kg

* marks sections change due to the effect of exact axial force

TABLE 3.1:

THE DESIGNS OF THE FIVE STOREY FRAME
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In the second design procedure the axial load effect is
introduced from second design cycle as described in section 3.2,
The axial forces for this design are calculated approximately
as explained in section 3.3, The design obtained in this manner
is shown in column four of Table 3.1. Although this design is
different from that obtained by considering the exact axial force,
the cost of the material for both designs is almost ekactly the
same, However the total mass is different by 1.9%. This shows
that a consideration of a cost reduction in the design procedure
is much more realistic than a consideration of a weight reduction.

When considering the design with approximate axial forces,
column 25 and 27 are found to have smaller sections than those
obtained when the axial forces are calculated eiactly; On the
other hand beams 7, 8 and 9 have larger sections, see Table 3.1.

From this example one could conclude the following two points
1 - Taking axial load effect into consideration increases the

initially selected column sections
2 - C(Calculation of the axial loads approximately, simplifies the
design procedure but produces feasible designs which are not

much different from those obtained using an exact procedure.

3.4 ECONOMY IN COMPUTER TIME

Normally between five and twelve design cycles are needed to
obtain the final set of sections for a frame. Although the iter-
ation process in each cycle converges quickly it is possible to
reduce the computer time in two different ways. These are:

(a) Once the iteration in a design cycle is complete, the
joint deflections, the axial forces and the second moment of area

of each column becomes known. Before entering the next design
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cycle, a set of heam sections are selected in an effort to reduce
cost. This set is only slightly different from the one used in the
previous cycle as each beam is only up or down graded by one sec-
tion. Such a change does not alter the member axial forces and
joint deflections drastically. Rather than starting the iterationm,
in the new design cycle, from unrealistic initial values for all
the variables in the modified stiffness equations; it was decided
to use the old values of these variables as given in the previous
design cycle. Starting the iteration using these realistic ini-
tial values, speeded up the subsequent design cycles considerably.

For example, eight design cycles were needed to obtain the
final reduced cost design of Table 301; column four; The number
of iterations for each trial is shown in Figure 3.2, where it can
be seen that the number of iterations in each cycle is reduced
drastically after the second design trial. The reason is that,
the results of one design cycle are used as the starting point for
the next design. The large number of iterations in the second
design trial is due to the introduction of the stability functions
at this stage. The total number of iterations for the last six
trials is less than that of the first or the second trial,

(b) As an iterative technique is being used for solving the
modified stiffness equation, the tolerance control of this technique
has a vital influence on the speed of convergence. A small toler-
ance increases the number of iterations and results in a consider-
able increase in computer time. This is not only unnecessary but
also can consume all the available computer time before convergence
is achieved. A large number of tests showed that a tolerance of
0.01 was adequate for relatively small frames (up to twelve storeys),

and also for medium size frames (up to twenty-four storeys) which
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had equal or nearly equal hays, For medium irregular frames, with
unequal bays, 1t was found that a tolerance of'0:001 will be adéqu-
ate. This is also sufficient for larger frames: To demonstrate
the effect of the tolerance on the design outcome, the five-storey
three unequal bay frame of Figure 3;1 was first designed with a
tolerance of 0.001. The results of this design are shown in

Table 3.1, column four. This same frame was then designed using

a tolerance of 0,01 and resulted in-the same final sections. To
compare the displacements of the joint, this design was analysed
by an existing computer program which solves the stiffness equations
explicitly (Celik, 1977). Comparison between sway deflections

is not possible .because these are constants in the design whatever
the tolerance. For this reason the vertical displacements are
compared . For joints 1, 2 and 3, see Figure 3!1; these are listed

in Table 3.2,

Kinds of Solutions y for joint 1|y for joint 2|y for joint 3
Direct Solution -12.42 mm -2.61 ™m ~3.78 mm
Iterative Solution with -12.42 mn -2.61 mm -3.78 m

tolerance of 0.001

Iterative solution with -12.40 mm -2.64 mm ~3.79 mm
tolerance of 0.01

TABLE 3.2 VERTICAL DISPLACEMENTS OF JOINTS 1, 2 AND 3
OF FIGUTE 3.1

It can be seen from the table that the direct solution of the stiff-

ness equations leads to the same answer as that obtained by the




iteratiye technique with a tolerance 0f 0,001, For the tolerance
of 0.01, the displacements are nearly the same;‘and the difference
does not exceed 0,05 mm;

The computer time needed, with a tolerance of 0.01, using
Aston Computer (ICL 1904s) to complete the eight design trials was
only 26 seconds. This included the time to check the strength of
the final design, The efficiency of the design method is realised
when it is noticed that a single eXplicit non-1linear analysis of
this frame, using a compact storage scheme, needed as much as 22
seconds. The dotted graph in Figure 3;2 shows the number of iter-
ations for each trial with a tolerance of 0.001. As ekpected, the
number of iterations for each trial increased; and the computer
time increased to 46 seconds, HOWever; the final reduced cost
design is the same. Thus, in this example, no benefit is gained
using a small tolerance. Even then the computer cost of a com-
plete design is only twice as much as an explicit analysis solving

L = K X directly.

3.5 ECONOMIC USE OF COMPUTER STORAGE

As stated in Chapter 2, sections 2.4, 2.4.1 and 2.4.2 the
modified stiffness equations are formulated and solved iteratively
one joint at a time. Thus no matter how large the frame is, the
storage requirements is that needed by a single joint. The com-
puter program written for the design method does not therefore
require the use of any backing store as is often the case in the
analysis of large frames. Five one-dimensional arrays are needed

in the core store. These keep the current values of areas and the

second moments of area of the sections, the current ratio of inter-

nal to external columns, the current rotations of the joints, and



their yertical displacements, A further, five similar arrays are
also needed to store the previous values of these variables; ThuS
the storage requirement of the design method is vefy small indeed.
For a total of n joints in a frame, the iteration process only
required 10 n locations. For instance, the five storey, three bay
frame shown in Figure 3.1 used only 8050 words (approximately

8 k). This included storing the computer program itself,

3.6 THE DESIGN CRITERIA

Two categories of design criteria are adopted. The first
category includes the deflection requirements; while the second is
concerned with the strength requirements. For deflection require;
ments, the existing BS 449 does not recommend any specific value
as the limit for the horizontal sway in the columns of multi-storey
frames. On the other hand the B/20 Draft (Document 77/13908DC,
1977) which will replace BS 449 recommends that:

"The sway of the column should not exceed the 1limit of
the height of the storey/300".

This design criterion dominates the design of the sway frame when
the wind load is high. In reality the wind load is calculated
according to CP3, Chapter five (British Standard 1972). If the
frame is subjected to such a wind load, and is made from grade 50
steel, then the horizontal sway in the columns usually governs its
design. Frames made from grade 43 steel are also dominated by the
column sway in many cases. Thus one criterion is

i) The sway of the storey does not exceed its height/300.
The second category of the design criteria caters for strength
requirements., For this B/20 Draft Specification in Chapter 12,

clause 12.5.4.1 recommends the following:
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"In a mult}-storey rigid jointed frame which is not effectively
braced against sidesway in its own plane, plastic design shall
bg gsed only when proper allowance-is made for frame-insta-
blllty effects. This may be done either by carrying out a full
elastic-plastic sway analysis using methods which make proper
al}owance for frame instability or alternatively, in appro-
priate cases by the simple method specified in 12.5.4.3".

The method of Majid (1972), (Majid and Anderson 1969), and
(Anderson, 1969) is one of these methods which makes proper allow-
ance for frame instability. The overall instability of the frame
due to gradual deterioration of its stiffness is fully considered.
For this reason, most of their design criteria are adopted; these
ensure that the frame has adequate load factors against collapse
under various loading cases. The aim is to ensure that the two
following conditions are satisfied.

(ii) Under combined vertical and wind load from either side,
the frame does not collapse until the load factor exceeds Al
(taken as 1.29 in this thesis).

(iii) Under dead load and vertical load the frame does not
collapse until the load factor exceeds AZ (taken as 1.75).

Analysis of a large number of frames by Majid (1972), (Majid
and Anderson 1969) and (Anderson, 1969) shows that if certain res-
trictions are made on the formation of the plastic hinges, then
in most cases the above two conditions are not violated. These
restrictions are:

(iv) No plastic hinge should develop in a beam below the
load factor of unity and the frame should be entirely elastic under
the specified unfactored loads.

(v) No plastic hinge shall develop in a column until the load
factor exceeds a permissible value Xl under combined loading or Az

under vertical loading.

The condition (iii) and the restrictions on the formation of

the plastic hinges (1iv) and (v) are used as design criteria for
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this work. Condition (ii) is excluded because it is necessary

to perform an elastic~plastic analysis, which follows the successive
development of plastic hinges. This kind of analysis needs consider-
able computer storage and time. However, the restriction on the
formation of plastic hinges is a safeguard for this criterion.
Furthermore, the instability of the frame increases rapidly with
the increase of the sway of the frame. For this reason the restric-
tion on sway imposed by criterion (i) will provide the proper
allowance for frame instability proposed in Clauses 12.5.4.1 of B.20.

To ensure that the above criteria are all satisfactory, the
final design is analysed at a load factor Al = 1;29 under combined
loading and taking the effect of axial loads into consideration.
The maximum bending moment in each column obtained by this analysis,
is compared with the reduced plastic hinge moment of the member
cross-section. If the section is unsatisfactory, a new satisfactory
section is selected for that member.

Table 5.2.1 of B/20 specifies the factors Al as 1,2 and AZ as
1.6. This is equivalent to Al = 1,29 and AZ = 1,75 used in this
thesis if the minimum yield stress is used instead of the design
strength, B/20 clause 5.7.1 specifies the design strength as
follows:

"P_ may be taken as 0.93Y_ .... where Y, is the minimum
Y
yield stress specified in BS 4360".
In this design method the minimum yield stress is used as the design
strength to account for the increased in the design strength up to
the yield stress. The values of Al and AZ are therefore taken as
1.29 and 1.75 respectively. The reason for taking these values 1is

that. if M_ is the total plastic moment of the section, and Zp is
hat, if My
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the plastic modulus, the design strength is given by PY = 1.2 Mp/
Zp or.alternatively 0.93 y5 = 1.2 MP/ZP, This gives Yo = 1;29
MP/Zpo For similar reasons a load factor of 1,75, taken in this
thesis, is equivalent to 1;6 specified in Table 5:2;1 of B/20.

It should be noted that the design program has been written
in general terms, and the permissible load factors may therefore

be assigned any values. However, for the examples in this thesis,

the values given above are used.
Notes:

(1) Sections must be selected for columns so that reverse
column taper does not occur., If it does; then the beam section
of the storey is increased to the next larger size until the same
column section could be used for two successive storeys. It should
be noted that a redesign is needed for each increase in a beam
section,

(2) Certain sections which are not suitable for plastic
actions are omitted from the sections list; This is because fail-
ure due to local buckling for these sections might occur before
they reach their full plastic moments.

(3) This thesis only de;ls with plane rigidly jointed frames

and assumes that satisfactory restraints are available to prevent

buckling out of the plane of the frame.

3.7 STRENGTH REQUIREMENTS

Once a set of sections are selected which satisfy the sway
requirements, the member forces are checked and the task becomes

that of satisfying the strength requirements if these are violated.

3.7.1 Forces in a Member

The axial force, shear force and bending moment of a member
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are obtained from the equation

pY = KA Ix) (3.4)

where {p}, k A and {x} are as defined before in Section 3.2, For

a member linking joint i and j the member forces are calculated

from:
o _ first end ; second end _
p -al -a 0o X
P mp s alp amp 0 Xi
S b¢ _m -b¢_1 d -
POy Pesl,  doy b -begmy Begl, déyl 1Y (3.5)
M d ~-d¢ .1 HE—
1 ogmy -doply edg i -depm Aoyl fo 0,
M d -d¢, 1 b odem dée1l es ! x|
5 ¢2mp ¢2 b f¢4 ! d¢2mp d¢21p e¢3 Xj
Y3
0.
L...J..a

Notice that joint i is the first end of the member; and joint j

is its second end. For a beam member with axes as shown in Figure
2.1 1p is equal to 1 and mp is 0. If the axigl stiffness; EA/L,

is ignored, then the first row of equation (3.5) should be dis-
regarded. Furthermore, if the axial load effect is not considered,'
then @1, ¢ ¢3, ¢4 and ¢5 should be equal to 1: Thus the equa-

tion which calculates the member force in a beam is given by:

First end Second end
- mad ] — - s
S | b d i b d y.
3 1
i
— - 6~
M1 = d e : d f i (3.6)
} -d f d e
LMZ : > | YJ
0.
J
J— g

For a column member with axes as shown in Figure 2.1, 1p = 0 and

m = -1. Because the axial load is estimated as in Section 3.2,
P

the first row of equations (3.5) is ignored. Hence the column

forces are given by:
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{ o o
s -hog  dp, | g, d¢27 %
M - .
Yl=| T 51 49y £9, o,
M2 'dq)z f¢4 ': dd)z e¢3 xj (3.7)
| 6.
L L

The joint displacements X;s Y3 and ej at the first end of the
member, and xj, yj’ej at the second end are calculated by the
iteration method given earlier, This also gives the second moment
of area of the columns. These are obtained under unfactored load.
Thus, the shear force and bending moments at both ends of a

member are found for working load conditions; To obtain the inter-

nal forces under factorized loading, the values of these forces are

multiplied by the appropriate factor,

3.7.2 Checking the Beam Sections

It was stated in Chapter 2; section 2;5 that under vertical
loading each beam is prevented from collapsing by a beam mechanism
at a load factor below Azo This restriction on beam sections is
applied when selecting the beam section even before considering the
deflection requirements.

Later at the end of the design cycles under vertical and wind
loading, the bending moments at the ends of a beam and at mid-span
are calculated from equation (3.6) under specified loads. For a
unit load factor none of these 1is allowed to exceed the full plastic
noment of the section as selected for the reduced cost design. If
it is, then a larger section is selected, for the beam. This 1is

done using:

- \/
Zp h 5maX/YS

where M is the maximum bending moment in the member, YS is the
max
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minimum yield stress, and ZP is the plastic modulus of the sectiom,
If we consider the deflection requirements; an increase in the

beam section will reduce the column sections; For this reason, if

a beam section is changed, the iterative technique is required to

be applied again to obtain new column sections; These may turn

out to be less than the previous ones; The joint displacements

will also change. These new values are used to calculate new bending

moments. This process is repeated until no change in beam sections

is required.

3.7.3 Checking the Column Section for Strength

At the end of the design cycles; the bending moment at each
end of a column is calculated from equation (3;%) at a unit load
factor for combined loading. The member forces including the
axial forces are then increased by the load factor kl which is
taken as 1.29., The factorized maﬁimum bending moment kleai is
then compared with the reduced plastic moment of the column. If
the reduced plastic moment is less than the AleaX in the column,

then a larger column section is needed. The reduced plastic modu-

lus of this is given by:

/Y (3.8)

Zé B Al Mmax s

new universal column is then selected from the tables so that it

has a reduced plastic section modulus larger than Zé° The iteration
process is then repeated but this time the object is to calculate

the actual sway in each storey after the column sections are modified.
Naturally, because the strength requirements dominate, the sway in
the storeys will be less than those permitted. The process of

altering the column section and finding the internal forces is

repeated until no change in any column section 1S required,
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CHAPTER FOUR
COMPUTER PROGRAM

4,1 "INTRODUCTION

This chapter presents a computer program for the design of two
dimensional, rectangular, steel, sway-frames. The program makes
use of the design procedure described in the previous chaters. It
is written in Fortran and runs on the ICL 1905 computer at the
University of Aston,

The program consists of a master segment calling a number of
subroutines, the functions of which are illustrated by the flow
diagram shown in Figures 5.1, 5.2 and 593o There are nine subrou-
tines in the program. These are:

I - Subroutine ITERATE: This constructs the modified stiffness
equations and solves them.

IT - Subroutine REDUCE: This calculates the cost of the material
for each storey of a frame., It finds the best set of beams which
should be used in the next design cycle. It also decided the ratio
for the second moment of area of an iternal column to that for an
external column.

III - The Subroutine INTERNAL FORCES: This calculates the bending
moments and shear forces in each member of the frame from the joint
displacements obtained by subroutine ITERATE,

IV - Subroutine COLUMN-I: This chooses a section for a column,
from the universal column sections, after the value of I is cal-

culated by the iteration process.

V - Subroutine BEAM-I: This selects a section for a beam from

the universal beam sections.
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VI - Subroutine COLUMN-ZP; This cheoses a section for a columm

from the universal column sections, once the plastic modulus of
the column is known;
VII - Subroutine BEAM-ZP: This chooses a section for a beam
from the universal beam sections, once the plastic modulus of the
beam is known.,
VIII - Subroutine REDUCED-ZP: Calculates the reduced plastic
modulus for a column,
IX - The subroutine STABILITY-F: Calculates the stability
functions of a column member.

The flowchart of the master segment shown in Figures 5.1,
5.2 and 5.3 is divided into 16 steps. The number of each step
appears in brackets to the right of the chart. These steps are
~explained in some detail in the next three sections of this

chapter,

4.2 TINPUT DATA (Steps 1 and 2)

STEP 1: The method of numbering the joints was described in
section 2.3. The program is written to ekpect at least one joint
in each beam, whether there is a load applied on the span or not.
The data consists of four groups these are:

preliminary data - one card

a -
b - Beam-joints data - one card per joint

¢ - Colum-joints data - two cards per joint
d - Frame data - two cards.

An example of the data preparation is given in Appendix A of this
thesis,
The data preparation can be tedious especially for large

Y miol i nan errors. Fror these reasons, a
frames, and might involve huma T ,
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// INPUT DATA J// (1
Y

READ UB AND UC SECTIONS PROPERTIES FROM A CONSTANT FILE KEPT
IN THE BACKING STORE

106.

(2)
%
CALCULATE A LOWER BOUND ON BEAM SECTIONS FROM APPLYING THE
BEAM MECHANISMS (3)
CALCULATE AXIAL LOAD IN EACH COLUMN (4)
CALCULATE PRELIMINARY BEAM SECTIONS (5)
CALCULATE PRELIMINARY COLUMN-RATIOS FROM SIMPLE DESIGN (6)
SELECT BEAM SECTIONS FROM LIST, FOR FIRST CYCLE (7)
A
- CALL ITERATE TO
. CALCULATE DISPLACE-
% MENTS, AND COLUMN 4
| > SECTIONS INCREASE BEAM | g5
\ SECTION
i
|
1 L
§ THERE A REVERSE
s COLUMN TAPER?
l! &
A
FIND THE COST, PRINT COST AND
NUMBER OF ITERATIONS (%)
"ECT BEAM | //zfﬁ;\\
SEI}: Sion 1S \
SECTION FOR 4 yp f{ilS THE FIRST
SECOND CYCLE ~DESTGN CYCLE? (10)
A - |

FIGURE 5.1: !ASTER PROGRAM
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RETAIN ONLY THE TWO MOST RECENT DESIGN TRAILS

G TO 100

IS
THERE ANY
~ CHANGE IN BEAM
SECTIONS?

PRINT RESULT
OF REDUCED
COST DESIGN

CALL REDUCE.
TO SELECT NEW BEAM SECTIONS AND RATIOS
FOR NEXT DESIGN TRIAL

CALL INTERNAL FORCES
TO CALCULATE BENDING MOMENTS AND SHEAR
FORCES

v

/ PRINT BENDING MOMENTS SHEAR FORCES,

AND AXIAL FORCES FOR EACH MEMBER

<t
2
3 200
,.__—-.—.b...—-—--
A

CALL TITERATE
TO CALCULATE
DEFLECTIONS
INCLUDING
SWAY

FIGURE

ARE
THE STRENGTH

CONSTRAINTS FOR BEAMS
SATISFACTORY?

NO

THE STRENGTH
CONSTRAINTS FOR COLUMNS
SATISFACTORY?

s 5. MASTER PROGRAM (Continued)

(1)
Y
g—
(12)
et
&

CALL ITERATE
TO CALCULATE
NEW COLUMN
SECTIONS AND
DEFLECTIONS

(13

(14)
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// PRINT RESULTS OF FINAL DESIGN BEFORE AND AFTER
SELECTING COLUMN SECTIONS FROM THE LIST (15)

CALL ITERATE TO CALCULATE THE SWAY AFTER SELECTING
COLUMN SECTIONS (16)

\

/ PRINT THE SWAY AND OTHER
/ DEFLECTIONS

/

FIGURE 5.3: MASTER PROGRAM (Continued)
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reduction in the data is always useful, For regular frames a
program is written to prepare data for the frame!' The program
creates a data file for the original design program. The only
data needed in this case is the preliminary data; the frame data,
the height of the storey; and the loads applied on the frame;

STEP 2: The properties of the universal columns and beams
must be given to the program as data; To avoid punching these
for each frame designed, they are kept in a data file on the back-
ing store., This file is called each time a frame is to be designed.
The properties kept in this file are the sizes of the section, the
current price, the area, the second moment of area, the weight,

and the plastic modulus of the section.

4.3 DESIGN FOR DEFLECTION REQUIREMENTS (Steps 3 to 11)

STEP 3: - A set of lower-bound sections is selected for the
beams. To avoid collapse under vertical loading at a load factor
AZ (1,75), the lower-bound beam sections are selected so as to
avoid collapse by a rigid-plastic beam type mechanism, The sec-
tions obtained in this’manner are retained, and each time a beam
is redesigned, the section is compared with its lower-bound beam

section.

STEP 4: The axial loads are calculated approximately as
described in section 3.3.

STEP 5: Preliminary second moments of area for beam sections
are calculated according to section 2.5, either by using the method
of Anderson and Islame, or by using the portal method,

STEP 6: The simple portal method of design is applied to
calculate the preliminary ratios of internal to external column

second moments of area. Equations (2.34) give these ratios using

the portal frame method.
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STEP 7: For each beam section the second moment of area is
calculated in Step 5, a universal beam is chosen from the list by
calling subroutine BEAM—I;

STEP 8: The second moments of area of the columns, and the
joint displacements are calculated for the first set of beams. The
subroutine ITERATE for doing this will be discussed later in this
chapter. The second moments of area of the columns resulting from
this subroutine might form a reverse column taper. In this case
the appropriate beam section is increased to the next larger size
on the list, Subroutine ITERATE is called again to calculate the
new second moments of area of the columns and the joint displace--
ments. This process is repeated until no reverse column taper
occurs.

STEP 9: The cost of the materiél and the number of iterations
needed for a design cycle are printed;

STEP 10: The beam sections are reduced to the next smaller
size on the list, and the procedure of steps 8 and 9 is repeated
for the second design cycle.

STEP 11: The results of the two most recent design cycles
are kept in the memory to be used in the extrapolation for reducing
the cost of the material of the frame. This is done by subroutine
REDUCE, which calculates the cost of the material for each storey
for the most recent two designs. The subroutine reduces the

sections of the beams to the next smaller sizes in the list of

universal beam sections, finds the cost of the material, and decides

which beam section is most suitable to use in the next design

cycle It also decides the best internal to external column ratio.

This process of reducing the material cost is repeated until any

chance in a beam section results in a higher cost, or 1in a beam
=
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section smaller than that specified as a lower hound in step 3.
The sections of the final reduced cost design and their properties
are printed. Also the joint displacements are printed in addition
to the cost of the material of the frame; the total weight, and

the number of iterations,

4,4 "DESIGN FOR STRENGTH’REQUIREMENTS'(Steps'12't0'17)

STEP 12: The final reduced cost design should be checked for
strength., To do so, the joint displacements, obtained for the last
design cycle are used in calculating the internal forces in the
frame. This is done by subroutine INTERNAL FORCES. The resulting
bending moment at both ends of a member, the shear force, ard the-
approximate aiial force are printed in IS units,

STEP 13: The procedure of paragraphl3°5°2 is applied to
check the beam sections. If the strength requirements in one of
the beams are not satisfied, then that beam section must be incre-
ased. A new plastic modulus for the section is obtained by using
Zp = Mmax/YS° A universal beam section, in turn, is obtained by
calling subroutine BEAM-ZP. An increase in a beam section may
result in smaller column sections, For this reason, subroutine
ITERATE is called to obtain new column sections and joint dis-
placements.

STEP 14: The procedure of paragraph 3.5.3 1is applied to check
the strength of the column sections., The reduced plastic modulus

of a column section should be more than that required by Z! =

%
/Y . The reduced plastic modulus is obtained by calling

>\1 max’' S
subroutine REDUCED-ZP. If a column section is not satisfactory,
then the section 1s increased and a new universal column section

is found by calling subroutine COLUMN-ZP. This increase in the

column section results in a decrease of the sway below the
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allowableo For this reason Subroutint ITERATE is Calledq This

time to obtain the sway and the rest of the joint displacements,

The procedure described in steps 13 to 14 above is repeated
until all the sections satisfy the strength requirements,

STEP 15: The results of the final design which satisfy
deflection; strength; and reduced cost requirements are printed,
before and after selecting universal sections for the columns.

STEP 16: Selecting a universal section for a column reduces
the sway in a storey below the allowable. To examine the new
sway deflections, the subrouting ITERATE is called to calculate
the resulting sway and other joint displacements. These are due
to the difference between the actual second moment of area of a

column and that of the selected universal section,

4,5 SUBROUTINE ITERATE

This subroutine is used to calculate the second moments of area
of the columns if the sway is specified, or to calculate the joint
deflections if the second moments of area of the columns are known.
In both cases the vertical displacements and the rotations of the
joints are also calculated. A comprehensive flowchart for this
subroutine is given in Figures 5,5, 5.6, 5.7 and 5.8, in which the
integer NIR is used to count the number of iterations as they are
carried out. JB and JC are used to count the joints of beams and
columns as they are handled.

The subroutine starts by setting the values of the joint dis-
placements x, y and R, and the second moment of area of the column
I to their values in the previous design., Obviously for the first
design cycle these are set to their preliminary values (i.e. I =1,

v = -1 and R = 0). Level 600 of Figure 5.5 in the chart marks the
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e THIS THE
& FIRST DESIGN CYCLE?

YES
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SET UP y, R
FOR EACH JOINT
TO THEIR PRELI-
MINARY VALUES

, L, x

DESIGN CYCLE

SET v, R, I, x TO THEIR VALUES IN THE PREVIOUS

¥

SET NUMBER OF ITERATIONS NIR = O

Y

600

e

NIR = NIR + 1

%

600

JB = JB + 1

!

CALCULATE THE CONTRIBUTIONS OF EACH BEAM
CONNECTED TO JB

Y

FIND v RIB FOR THIS BEAM JOINT

JB’

NO JB EQUAL TO TCTAL

<;\\\\NUMBER OF BEAM JOINTS
\\\\\\\\\\

YES

5.4: SUBROUTINE ITERATE

FIGURE




500

&

th

CALL STABILITY-F TO CALCULATE

IS THIS
THE EXTREME LEFT JOINT OF
THE STOREY?

BE CALCULATED
YES

FIND THE CONTRI-
BUTIONS OF ALL
MEMBERS CONNECTED
TO ALL THE JOINTS
OF THE STOREY
CALCULATE x

FIND THE CONTRIBUTIONS OF ALL MEMBERS CONNECTED
TO THE JOINTS OF THE STOREY TO CALCULATE I

(4)
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FIND THE CONTRIBUTIONS FOR ALL THE MEMBERS CONNEC- i
TED TO JOINT JC. FORM EQUATIONS FOR y . and R 200 (6
AND SOLVE THEM
A
& co 10 50
GO 0 s
JC BQUAL TO THE
TOTAL NUMBER OF JOINTS?
A
YES (7)
4 6o 10 600 ) Is | GO TO
AND  [(R-RG)/Ry| < Z

FOR EACH BEAM JOINT?

N
¥\
NO
YES
(8)
IS x {(x—x )/ x ‘<Z
‘ 0 0
BEING CAL- X~  YES |
: . FOR EACH COLUMN
CULATED?
JOINT?
NO
¥ YES
GO TO 300

FIGURE 5.6: SUBROUTINE ITERATE (Continued)
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GO TO 600

(-1 /15 < 2

FOR EACH COLUMN JOINT?

& Go To 600

, IS
[ (Y=Y /Yol < 2
](R—RO)/RO} < Z
FOR EACH COLUMN JOINT?

(9)

NO

RETURN

FIGURE 5.8: SUBROUTINE ITERATE (continued)
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start of one iteration. The operations between this leyel “and

level 300 in Figure 5.8 represents one iteration, The process of

calculation for an iteration is divided into nine steps. The number
of each step appears in brackets at the right of the chart.

STEP 1: The number of iteration NIR is set to zero and is
increased by one for each iteration:

STEP 2: For each beam joint the contributions of the beams
connected to the joint are calculated. Then the vertical displace-
ment of the joint ij and the rotation R

JB
equations (2.14) and (2.17) respectively.,

are found, using

STEP 3: For each column joint the ¢ functions are calculated
for columns'Cj and Cm connected to joint JC. However, for the
first design cycle the stability functions are set to 1, as the
axial load effect is neglected in this cycle.

STEP 4: The second moment of area of a column needs to be
calculated once in each storey. The rest of the column second
moments of area are then found by proportion. The calculation is
carried out for the extreme left joint of the storey, and the value
of T is obtained from equation (2.38). However, if the second
moment of area of the column is known and the sway is wanted,
then equation (2.29) is used instead to calculate the sway for the
complete storey.

STEP 5: The second moments of area of the other columns in
a storey are found from the internal to external columns ratios by
multiplying I by the appropriate ratio p.

STEP 6: The vertical displacement of joint JC and the joint
rotation must be feund for each column joint, This is done by
solving equations (2.23) and (2.26) respectively.

STEP 7: To determine whether a desired degree of accuracy (Z)
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1s acquired or not. The yertical displacement y and the joint

rotation R are examined using the inequality

The Previous Value

where Z is the required accuracy. If the above condition is not
satisfied; then another iteration will be needed starting from level
600,

STEP 8: For each column joint, the above inequality is used
to establish whether the value of I or i achieves the required
accuracy or not.

STEP 9: For each column joint the test is also applied on the
value of the vertical displacement y and the rotation of the joint
R.

In both steps 8 and 9 the control is transferred to level
600 to start a new iteration if the above inequality is not satis-

fied.
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CHAPTER FIVE
DESIGN EXAMPLES

5.1 A 12 STOREY-SINGLE BAY FRAME

Most of the existing design methods for deflection limitation
do not consider the axial stiffness and the axial load effect (see
Chapter One). In order to show these effects, the 12 storey single
bay frame of Figure 5.1 was first designed disregarding the axial
stiffness EA/L and the stability functions. The deflection pro-
file used in the design is shown in Figure 5.2, The value of k
used in the deflection curve was 30,

The second column in Table 5.1 shows the second moments of

area of the initial beam sections., These are obtained as follows:

1 - The beam sections are designed using the simple portal frame
method of the steel designer's manual (Allwood, et al, 1966).
It should be noted that no beam section is allowed to be
below that obtained by a beam mechanism.

2 - The second moment of area of the beam sections obtained in
step (1) are magnified by a factor. This is taken as 2 at
the top storey, and 4 at the bottom. From this initial
design, eleven cycles are needed to obtain the final linear
reduced cost design.

Column three of Table 5.1 shows the second moments of area
for this design after sections have been selected from the list,
The number of iterations per design cycle is represented in Figure
5.3, This shows the reduction in the number of iterations after
the first design cycle. Figure 5.4 is for the reduction in material

cost in each design cycle. Trial 6 shows an increase in the



material cost, due to the increase in' some beam sections to prevent

reverse column taper. The computer time needed to complete the

design, with a tolerance of 0.01, was 27 second on Aston 1904s
Computer (at a cost of £2.37), This is iess than the 29 second
needed for one explicit analysis solving L = K X directly.

In the second stage, the beams for the final linear design
were kept unaltered, but the columns were subsequently altered to
allow for the effect of axial forces. These were calculated
exactly using equations (3.3), with a tolerance of 0.0l. The
design with the axial load effect included is shown in the fourth
column in Table 5,1 This gives the second moments of area of the
sections selected from a list for universal beams and columns.

The time needed to obtain the final non-linear design was 32
seconds. This includes the time to check the strength of the
final non-linear design. Thus, when considering the axial load
effect the computer time increases considerably, but even then the
computer cost of a complete design is only £7.20.

The effect of the axial stiffness and the stability functions
on the design of the column sections is obvious. A glance at the
third and fourth columns in Table 5.1 shows that, except for the
top two columns, all the sections are increased when the effect of
axial load is considered., This will cause the total material cost
of the frame to increase by 12.24% from £5608.18 to £6390.69,

The total mass increases by 11.,18% from 25832.28 kg to 29082.36 kg,

To check the safety of the final design, a non-linear elastic-
plastic analysis was carried out for this frame by an existing
computer program (Majid and Anderson, 1967). This showed that
under combined loads the frame remained elastic at a load factor of

1.29. No plastic hinge occurred in any member of the frame at this

i

load factor.
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5.2 A 24 STOREY FRAME WITH THREE EQUAL BAYS

The computer program described in Chapter Four was used to
design the 24 storey frame shown in Figure 5.5, This frame belongs
to a structure consisting of parallel frames which are 4.5 m apart.
The vertical and the wind loads are calculated according to CP3
Parts 1 and 2. The wind load is calculated for a frame to be
built on a surface with large and frequent obstructions. Each
frame is symmetrical and is loaded symmetrically.

The deflection curve used in the design and the maximum allow-
able sway in each storey are shown in Figure 5.6, The value of k
used in the deflection curve is 26, The results of the design in.
which the axial load effect is included are shown in Table 5.2.
This gives the second moments of area of the selected sections, in
which steel grade 50 is used.

The design was carried out with a tolerance of 0,001, How-
ever, the same frame was designed with a tolerance of 0,01 and the
same sections were obtained with considerable saving in computer
time., The time needed for designing the frame with a tolerance
of 0.001 is 1020 seconds, which means that the cost of the design
for a user from outside the university would be £88. The cost
reduces to £23.76, if a tolerance of 0,01 is used. The computer
time needed in this case is 267 seconds.

To start with, the beam sections were taken from Anderson
and Islam's design described in Chapter One, using the linear
deflection curve. The sway between the two ends of a column in
their design was taken to be H/300, where H is the column's length,
The results of the design using their method is shown in Table

5.3%. which gives the second moments of area of the selected sections.
° b o
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Anderson and Islam's design does not consider the effect of the

vertical load on the sway, Therefore, to compare the results, a

third design should be obtained, This is done by using the
computer program described in Chapter Four, but neglecting the
axial stiffness of the columns and the axial load effects, Table
5.4 shows the second moments of area for the selected sections.

The price of the material and the total mass of the frames
are given in Table 5.5 for the three designs. It can be seen that
the design obtained by this method (neglecting the axial stiffness
and the axial load effect) is 1.22% cheaper than that obtained by
Anderson and Islam's method. It is also noticed that if the axial
load effects are included in the design of this frame then the
material cost will increase by 11.45%.

In order to justify this increase and to examine the efficiency
of Anderson and Islam's design, each frame was analysed using an
existing computer program. The differential sway between the ends
of each column, obtained by each analysis, 1is shown in Figure 5.7,
The vertical line shows the h/300 limit on the differential sway,
Curve 1 shows sway in each column for the final design. None of
the points of this curve is to the right of the vertical limiting
line, Curves 2 and 3 show the differential sway between the ends
of each column for the frame designed by Anderson and Islam's
method, given in Table 5.3. Curve 2 is for wind load only, exclu-
ding axial load effect. Curve 3 is for wind and vertical loads,
including axial load effects. Because this frame is symmetrical
and loaded symmetrically, the difference between curves 2 and 3
is solely due to the effect of axial loads. It can be seen that
this difference is significant and cannot be neglected. In fact

an increase of 11.45% in the material cost is needed if the axial



123

16ad effects are considered in the final design,

Twelve design trials are needed to reduce the cost of the
material from the initial beams, obtained from Anderson and Islam's
design, The reduction in the material cost in each trial is shown
in Figure 5.8. Trials 8 and 9 show an increase in the material
cost, due to the increase in some beam sections to prevent reverse
column taper. The number of iterations used in each design trial
for a tolerance of 0,001 is plotted in Figure 5.9. This shows a
considerable reduction in the number of iterations after the second
trial. This is due to the use of the previous design results as
initial values for the current ones., The relatively large number.
of iterations in the second design trial is due to the introduction
of the axial load effect at this stage.

The final design shown in Table 5.2 was obtained by applying
the deflection requirements only. However, the design was checked
for strength requirements as described in Chapter Three sections
(3.5, 3.5.1, 3. 5.2 and 3.5.3). This showed that all the sections
were satisfactory. Furthermore, a non-linear elastic-plastic
analysis of the frame with the final sections was carried out using
an existing computer program (Majid and Anderson, 1967). This
analysis showed that under combined loads the frame remained elastic
at a load factor of 1,29. It should be noted that, for strength
requirements a beam was allowed to develop a plastic hinge below
a load factor of 1.29, but because of the deflection requirements

governing the design, 1t was found that all the beams remained
(=]

elastic at this load factor

5.3 A 35 STOREY - TWO UNEQUAL BAY FRAME

The 35 storey - two unequal bay frame shown in Figure 5.10
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was designed from steel grade 50. In the out-of-plane direction,
the frames were assumed to be 4.5 m apart. The vertical and the
wind loads were calculated according to CP3 Parts 1 and 2., The
wind load was calculated from a frame to be built on a surface
with large and frequent obstruction. Because the frame is assym-
metrical, both vertical and wind loads affect the deflection. The
linear and the non-linear profiles of the frame are shown in
Figure 5,11, For practical reasons, the left and the right spans

in each storey are to be built out of the same beam section,

The frame was first designed using Anderson and Islam's
equations., The sway between the ends of the column was taken as
height/300, The results of the design using their equations with
the linear deflection curve ére shown in Table 5.6. This
shows the second moment of area of the members after selecting
sections from the list of universal beams and columns. The
design represented in the table was analysed using an existing
computer program (Celik, 1977). Four different load cases were
considered, and the sway between the ends of each column is
shown in Figures 5,12 and 5.13.

(1) Curve 1 of Figure 5.12 is for wind load only with the wind
acting from the left; and neglecting the axial load effects.

(2) Curve 2 in Figure 5.12 is for the combined loading, with the
wind acting from left; and considering the axial load effects.

(3) Curve 1 of Figure 5.13 is for wind load only, with the wind
acting from the right; and neglecting the axial load effects.

(4) Curve 2 of Figure 5.13 is for combined loading, with the

wind acting from the rigﬁt; and considering the axial load effects,
In both Figure 5.12 and 5.13 the vertical line shows the permiss-

ible limit on sway. A point to the left of this vertical line
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means that the sway at a storey is acceptable, while a point to

the right means it is not. It is obvious from Curves 1 and 2 in

both figures that the sway exceed, the limit of H/300 by a con-
siderable margin. In fact for the combined load case with the
wind acting from the right, the sway of the 33rd floor is equal
to H/120. This is 2,5 times larger than the limit.

The design obtained from Anderson and Islam's equations was
therefore found to be totally unsatisfactory. The beams obtained
from their equations with the sway restriction of H/300 cannot be
used as a starting point for the iteration technique. However,
Anderson and Islam's approach can still be utilized to select
trial initial beams provided that the allowable sway is severely
restricted, It must be emphasized that this restriction on sway
only applies when selecting beam sections from Anderson and Islam's
equations. But when using the design method proposed by the author,
the code limitation of H/300 is observed. In other words Anderson
and Islam's approach is only used to select an initial trial set
of sections,

In the design procedure described in Chapter Two, economy 1in
the cost of the material of the frame was achieved by reducing each
beam section to the next available in the list of universal sections.
For large frames such a policy can increase the number of design
cycles. The design procedure can be speeded up by drawing a curve
relating the cost to the beam sections as follows:

(1) Anderson and Islam's equation are used to calculate several
sets of beam sections under different restrictions of the sway

between the two ends of the column. Some of these, however, may

be too weak to resist failure by a beam type mechanism. To avoid

i initi 1 sections are increased
such a failure, these initial trial
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substantially,

(11) For each initial set of beams thus obtained, the columns are

designed using the method developed in this thesis to satisfy the
deflection profile given by curve b of Figure 5.11. The axial load
effects are included when designing these columns., A graph is
drawn to show the cost of materialifor different designs as obtained
from a number of trial sets of beams, Figure 5.14 shows the cost/
beam-section curve for the 35 storey frame. It can be seen that
six trials are needed to draw the curve. This is considerably

less than the 12 trials, which was needed to obtain the reduced
cost design of the 24 storey frame shown in Figure 5.5 Figure 5.14
shows that the most economic design is obtained when the sway in
Anderson and Islam's equations are restricted to H/800. A sub-
sequent analysis of this design showed that plastic hinges deve-
loped in some of the columns below a load factor of 1,29, This

is perfectly acceptable provided that failure takes place above
such a load factor. However to avoid the formation of such

hinges two modifications can be made:

(1) The column sections where hinges occur could be increased,
until an analysis shows that no hinge 1is developing below a load
factor of 1.29. The beam sections are kept unchanged.

(2) A smaller set of beams could be used to satisfy sway require-
ments so as to obtain larger columns from the iteration,

In fact the second solution was found to be more economical,

In order to produce a design which satisfies both sway and
strength requirements, the second approach described above was
therefore used, First, the iteration technique using a set of
beams obtained from Anderson and Islam's equations with a restric-

tion of H/700 was analysed. This was found to be similar to that
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of H/800., Then, the design using a set of beams with sway restric-

tions of H/600 was analysed. The beams in this case were relatively
small and the resulting columns were relatively large. The analysis
of the frame designed in this manner under combined loading
showed that no hinge developed below a load factor of 1.29, and the
frame was completely elastic at this load factor. Although hinges
were allowed to develop in the beams below a load factor of 1.29
(for combined loading), it was found that these too remained
elastic.

The designs of the frame obtained using the computer program
described in Chapter Four are summarized in Table 5.7 and 5.8,
These show the second moment of area for the selected sections from
combined loading, with the wind acting from either side. The
second moment of area obtained by using Anderson and Islam's
equations, with the restriction of H/600 on sway, plus the second
moment of area for a section that satisfies a beam mechanism provides
the actual beam section used in the iteration technique. The
deflection profile used is that of Figure 5.11 (the non-linear
curve b)., The design was carried out with a tolerance of 0,001,
and when a tolerance of 0.0l was used a premature convergence was
noticed. It is obvious from Table 5.7 and 5.8 that the critical
design is that for wind acting from the right. This design is
considered as the final design because the column sections obtained
are larger than those resulting from the wind acting from the left.

It should be noticed that in this example, only two design
ficient for each initial set of beams. In the first

cycles were suf

design cycle the axial load effect and the axial stiffness were

neglected. In the second design cycle the results of the first

cycle were used to introduce these effects,



128

The number of iterations needed for the first design cycle is
565, while 493 iterations are needed for the second design cycle.
Comparing these with the number of iterations needed for other
frames in the first two design cycles shows that the number of
iterations increases rapidly for large frames. However, the computer
time needed, to obtain the design of Table 5.7, 1076 second.

This includes the time to check the strength of the final design,
which means that the cost of the design for a user from outside
the university would be £92,05. The store needed was 3120 words
(approximately 32 k). This included storing the computer program
itself.,

To ensure that the sway is under the limit and to examine the
accuracy of the program, the design of Table 5.7 was analysed
considering the axial load effects. The sway between the ends of
each column is shown by curve 3 of Figure 5,12, for combined
loading with the wind acting from the left. This shows that all
the points are within the permissable limit on sway represented
by the vertical line. For the case of wind acting from the right,
the sway of each storey is shown by curve 3 of Figure 5,13, It
can be seen that for the case of combined loading with wind
acting from the right, some of the point are slightly out of the
limit. The reasons for this are:

(1) The approximation made in calculating the axial loads in the
iteration method.

The change of the second moment of area of the column due to

~
S8
—

a selection of a column section from the list of universal

columns.,
5.4 CONCLUSIONS

From the examples given above, it is possible to conclude



the following:

1

The examples indicate that the iteration technique can be
used. Successfully for designing different sizes of frames,
In all the frames designed, the iteration converged to a

set of acceptable column sections,

For larger frames a small tolerance such as 0.001 is required
to obtain a complete convergence., The 35 storey frame showed
that a premature design was obtained when a tolerance of

0,01 was used. However, the latter was used successfully

for all the other frames. Obviously, a larger number of
iterations and design cycles are needed for a larger frame.

A frame which is designed to satisfy deflection requirements
results in the frame having an overall strength which is
greater than that required by the elastic-plastic design
methods. In fact, for all the above designs the non-linear
elastic plastic analysis under combined loading shows that
the frames remain elastic at a load factor of 1.29,

The cost of the computer time and storage is negligible

compared to the material cost of the frame.
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Initial Linear Non-Linear
Level @esigg design design
I in cm I in cn? I in cm
BEAMS
Level 1 503781 324715 324715
Level 2 435796 204747 204747
Level 3 375110 245412 245412
Level 4 375110 168535 168535
Level 5 245412 168535 168535
Level 6 245412 135972 135972
Level 7 168535 117700 117700
Level 8 135973 75549 75549
Level 9 75549 55225 55225
Level 10 75549 47363 47363
Level 11-12 75549 21345 21345
COLUMNS
Level 1-2 - 66307 79110
Level 3 - 57153 79110
Level 4-5 - 48525 66307
Level 6 - 38740 57153
Level 7-8 - 32838 57153
Level 9 - 27601 57153
Level 10 - 17510 32838
Level 11 - 11360 17510
Total Mass 25832,28 kg  29082.36 kg
Total cost of material £5608,18 £6390,69

TABLE 5.1:

DESIGNS OF THE 12 STOREY FRAME
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Second moments of area x 10

4

Storey Beam External Internal

Level mm Column mm? Column mm
Level 1 87260 99994 183118
Level 2 87260 66307 122474
Level 3 87260 50832 99994
Level 4 87260 38740 79110
Level 5 87260 32838 66307
Level 6 87260 32838 66307
Level 7 87260 32838 66307
Level 8 87260 32838 50832
Level 9 87260 22416 50832
Level 10 87260 22416 50832
Level 11 66610 22416 50832
Level 12 66610 22416 50832
Level 13 55225 22416 50832
Level 14 55225 22416 50832
Level 15 40956 22416 50832
Level 16 40956 22416 50832
Level 17 33324 22416 38740
Level 18 29337 17510 38740
Level 19 21345 17510 32838
Level 20 21345 14307 32838
Level 21 15603 9462 17510
Level 22 10054 6088 14307
Level 23 and 24 10054 6088 6088
Total mass 111597.0 kg Total cost £23817.19

TABLE 5.2:

DESIGN OF THE 24 STOREY - 3 EQUAL BAY FRAME
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Second moments of area x 104

Storey Beam External Internal
Level mm? Column mm Column mm*
Level 1 87260 38740 79110
Level 2 87260 38740 79110
Level 3 87260 38740 79110
Level 4 87260 38740 79110
Level 5 66610 38740 66307
Level 6 66610 32838 66307
Level 7 61530 32838 66307
Level 8 61530 32838 66307
Level 9 55225 32838 66307
Level 10 55225 32838 66307
Level 11 55225 32838 50832
Level 12 55225 32838 50832
Level 13 40956 22416 50832
Level 14 40956 22416 50832
Level 15 37039 22416 38740
Level 16 33324 17510 32838
Level 17 29337 14307 32838
Level 18 25464 » 14307 32838
Level 19 21345 14307 22416
Level 20 15603 9462 17510
Level 21 15603 7647 14307
Level 22 8167 6088 14307
Level 23 and 24 4381 6088 6088
Total mass 100398.0 kg Total cost £21347.18

TABLE 5,3:

ANDERSON AND ISLAM'S DESIGN OF THE 24 STOREY

- 3 EQUAL BAY FRAME
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Second moments of area x 104

Storey Beam External Internal

Level mm? Column mm# Column mm
Level 1 87260 79110 146765
Level 2 98408 38740 79110
Level 3 61530 38740 79110
Level 4 87260 32838 66307
Level 5 66610 32838 50832
Level 6 87260 32838 50832
Level 7 87260 22416 38740
Level 8 87260 17510 32838
Level 9 87260 14307 32838
Level 10 87260 14307 32838
Level 11 66610 14307 32838
Level 12 55225 14307 32838
Level 13 55225 14307 32838
Level 14 66610 14307 22416
Level 15 37039 14307 22416
Level 16 55225 9462 22416
Level 17 29337 7647 17510
Level 18 37039 7647 17510
Level 19 21345 7647 14307
Level 20 29337 7647 9462
Level 21 15603 6088 6088
Level 22 15603 6088 6088
Level 23 and 24 10054 6088 6088
Total mass 99080.0 kg Total cost £21088,36

TABLE 5.4: DESIGN OF 24 STOREY - 3 BAY FRAME NEGLECTING

AXIAL STIFFNESS AND AXIAL LOAD EFFECT



Cost of the Total mass
Type of Design material of the frame
in Kg

The final design includes
the axial stiffness and 23817.19 111597.0
the axial load effect
Design neglecting axial
stiffness and axial load 21088.36 99080.0
effect
Anderson and Islam's Design 21347.18 100398.0

TABLE 5.5: COST AND MASS OF THE 24 STOREY
- 3 EQUAL BAY FRAME DESIGNED BY VARIOUS METHODS

140



STOREY LEVEL

Analysis of the final
design under combined
loading (axial load

effect is considered)

00}
g m e mm b

~1

Analvsis of the
frame designed by
Anderson and Islam™s 7
method under wind
load (axial load
effect is not con-

N

141

H/243

Analysis of the frame
designed by Anderson

and Islam's method under
combined loading (axial
load effect is considered)

Differential sway

—

L

O -

Y

15 16 mm

ANALYSTS OF DIFFERENT DESIGNS OF THE 24 STOREY - 3 EQUAL



& 142

Cost of the material in £
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Second moments of area for selected sections
in x10% mm?

Storey Left Right Left Internal Right

Level Beam Beam Column Column Column
Level 1-4 278833 | 87260 | 122474 183118 66307
Level 5-6 278833 | 87260 99994 183118 66303
Level 7 278833 | 66610 99994 146765 66303
Level 8 278833 | 66610 99994 146765 50832
Level 9 204747 | 61530 99994 146765 50832
Level 10-12 | 204747 | 55225 99994 146765 50832
Level 13 204747 | 55225 79110 122474 50832
Level 14-15 168535 | 55225 79110 122474 50832
Level 16 168535 | 55225 79110 122474 38740
Level 17 168535 | 55225 66307 122474 38740
Level 18 168535 | 55225 66307 99994 38740
Level 19-20 | 135972 | 40956 66307 99994 32838
Level 21 135972 | 37039 66307 99994 32838
Level 22-23 111673 | 33324 50832 79110 32838
Level 24 98408 | 29337 50832 66307 32838
Level 25 87260 | 29337 38740 66307 22416
Level 26 | 87260 | 25464 38740 66307 22416
Level 27 | 87260 | 21345 32838 50832 17510
Level 28 61530 | 21345 32838 50832 17510
Level 29 55225 21345 32838 38740 14307
Level 30 . 55225 15603 22416 32838 14307
Level 31 | 37039 | 15603 17510 32838 9462
Level 32 29337 8167 14307 22416 7647
Level 33 ; 21345 5415 9462 17510 6088
Level 34-35 . 10054 4381 6088 9462 6088

| |

Total mass 138773.50 kg Total cost £30253,82

TABLE

5.6: TRIAL INITIAL SECTIONS FOR A 35 STOREY - 2
UNEQUAL BAY FRAME OBTAINED BY ANDERSON AND ISLAM'S

EQUATIONS USING THE LINEAR DEFLECTION CURVE WITH a=1/300




level

Storey

O Ll Ul
O
4

o M

QU oo}
(O N e

to

[SCREE N G AO R § )

I
~ 0w O

167
15¢
14t

Wl U1 Ul
Ul W

D
T

i SO V2 RSN

Curve

Analysis of the
final design

1 under combined

loading (axial

load effect 1is

considered)

147

Curve (1)
Analysis of
Anderson and
Islam's design
under wind load

(axial load effect
is not considered

L
160

. R
| S Lo
L y 4 ¢
wind r____f“_nmi__f_i__n_____
R 4 | IR
- - A

M

+

+
/f ™~ 1?0
F
+

Analysis of
Anderson and
Islam's design
under combined
loading (axial
load effect 1is
considered)

Storey sway 1In mm

10

IGURE 5.12

lé

14 16 18 20

22 24

COLUMN SWAY OF THE 35 STOREY - 2 UNEQUAL BAY FRAME,

WITH WIND FROM THE LEFT FOR VARIOUS DESIGNS



g\

[FSERN TN IR O R 2 RS
0 Ll s U
- v v T

(3]
w W O

~J

(PSSO T NC T SO T NG T ST NG T SC TR (S T $5

Sl o W OO~ o L BT O
v g ¥ T 4 v Y Y g

— =

S U o -1

. o Wl
v ¥

Storey level

;T

Curve (3)
Analysis of the
final design unde
combined loading
(axial load effect
is considered)

148

L ¥ R
¥ ¥
4 N wind
|2 4 gy d
[ s— —
. ' B
300 Ty T TR
-h‘\‘ﬁ
T T
Y% H H
4 T69 ™70
H £
275 v
f*

Curve (1) +
Analysis of f’“ﬁ*

Anderson and _é
Islam's design '
under wind load /

(axial load

- /

effect is not 1t

considered) >
_.f‘,
*
F
.f.
¥
+
J
5
_}/.

Curve (2)

Analysis of Anderson

and Islam's design under
combined loading (axial
load effect is considered

Storey sway in mm

i L . i

> 14 16 18 20 22 24 26 28 30

ANALYSIS OF DIFFERENT DESIGNS OF THE 35 STOREY - 2

UNEQUAL

BAY FRAME, WIND FROM RIGHT



149

&

£60,000 | Cost of the material for
the design
£55,000 F
£50,000 t
acceptable desig
no hinge developed
at a load factor of hinge developed at
1.29
bottom columns at a
£45,000 ¢t load factor of 1.29
1/500 1/700 1/900 1/1100 1/1300
A i S A S

limit on sway in Anderson and Islam's design

CTIGURE 5.14: COST OF THE MATERIAL FOR FINAL DESICNS STARTING WITH
S OIEFERENT SETS OF BEAMS OBTAINED FROM ANDERSON AND
ISLAM'S DESIGN
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Second moments of area of the selected sections

stovey | momn | Gl | TColum | cotim
vels mm* x 10 mm? x 104 m? x 104 m? x 104
Level 1 503781 | 146765 378668 275140
Level 2-4 503781 99994 227023 146765
Level 5-8 503781 79110 227023 146765
Level 9-12 435796 79110 227023 146765
Level 13-16 | 375110 79110 227023 146765
Level 17-19 | 324715 79110 227023 146765
Level 20-21 | 278833 79110 227023 146765
Level 22 278833 66307 227023 146765
Level 23 278833 50832 227023 146765
Level 24 278833 50832 183118 122474
Level 25 204747 38740 146765 99994
Level 26 204747 32838 146765 99994
Level 27 168535 32838 122474 79110
Level 28 168535 32838 99994 66307
Level 29 135972 22416 99994 66307
Level 30 135972 17510 79110 50832
Level 31 98408 14307 50832 38740
Level 32 87260 9462 50832 32838
Level 33 61530 6088 32838 22416
Level 34 55225 6088 14307 7647
Level 35 25464 6088 6088 6088
Total mass221865.47 kg | Total cost £49275.87

TABLE 5.7:

DESIGN OF THE 35 STOREY - 2 UNEQUAL

BAY FRAME, COMBINED LOADING, WIND FROM RIGHT
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Second moments of area of the selected sections

Storey Beam ri8ht Internal left
Level mn4 x 10% m;ﬁlimﬁo m;21§m204 m;21§m204
Level 1 503781 146765 378668 275140
Level 2-8 503781 99994 227023 146765
Level 9-12 435796 7910 227023 146765
Level 13-16 | 375111 7910 227023 146765
Level 17-19 | 324715 79110 227023 146765
Level 20-21 | 278833 79110 227023 146765
Level 22 278833 66307 183118 122474
Level 23 278833 50832 146765 99994
Level 24 278833 50832 122474 79110
Level 25 204747 38740 123474 66307
Level 26 204747 32838 99994 66307
Level 27 168535 32838 79307 50832
Level 28 168535 32838 66307 50832
Level 29 135972 22416 66307 38740
Level 30 135972 17510 50832 32838
Level 31 98408 14307 32838 22416
Level 32 87260 - 9462 32838 17510
Level 33 61530 6088 17510 14307
Level 34 55225 6088 9462 6088
Level 35 25464 6088 6088 6088

Total mass215414.50 kg

Total cost £47929.49

TABLE 5.8:

LEFT

DESIGN OF THE 35 STOREY - 2 UNEQUAL
BAY FRAME FOR COMBINED LOADING WIND FROM
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CHAPTER SIX

DESIGN OF REINFORCED CONCRETE FRAMES

6.1 INTRODUCTION

The design procedure given in Chapters 2-5 for the design of
steel frames is used in this chapter for the design of reinforced
concrete frames. The CP110:1972 Code of Practice for The Struc-
tural Use of Concrete is based on the principles of Limit State
Design. The object of limit state design is to achieve an accept-
able probability that a structure will not become unservicable in
its lifetime. It, therefore, sets out to examine all the ways in~
which a structuré may become unfit for use.

The condition of a structure when it becomes unserviceable
is called a "limit state". The most important of these limit
states which must be examined when designing a frame are:

(a) the ultimate limit state which requires that neither the
whole structure nor any part of it should collapse under
foreseable overload (strength requirements);

(b) the serviceability limit state of deflection which requires
that the deflection of the structure should not adversely
affect its appearance and;

(c) the serviceability limit state of cracking.

The usual approach is to design a reinforced concrete frame
on the basis of the most critical limit state and then check
that the remaining limit state requirements are not violated. 1In
general, engineers often try to satisfy the ultimate limit state

(strength requirement) first and then check that the deflections

of same joints or the sway in the members within acceptable limits.

They may also check that any crack that may develop is within
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acceptable limits. However, for sway frames, especially for tall

slender frames the sway in the columns can often be more critical

than strength. For this reason, it is believed that the rational

approach for the design of such frames will be to consider the
limit state of deflection first and then proceed to check for

strength and crack development,

Clause 2,2,3.1 on deflection in CP110 recommends the following:

"The deflection of the structure or any part of the
structure should not adversely affect the appearance or
efficiency of the structure.

The engineer must satisfy himself that deflections
are not excessive having regard to the requirements of

the particular structure ....

The effect of lateral deflection should be con-

sidered, particularly for tall slender structures ...'.

The clause does not recommend any specific value as the limit

of the horizontal deflection for multistorey frames. However,

the

original draft did consider a severe limit of height /500 (Allen,

1977). In the absence of a better limit, and as a large sway

might produce excessive cracks, the limit of height/500 is adopted

for the design of concrete frames in this thesis,

6.2 THE PRINCIPLES OF DESIGN

The design method described in Chapters 2-5 is also applied

here to generate the values of the required second moments of area

for the columns of a multistorey sway frame, This is done to

satisfy the horizontal sway limitations imposed by the service-

ability limit state of deflection., As before, this is conditional

on that the values of the second moments of area for the beams
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being known before starting the iteration. The second moment of
area of each column is then used to obtain the minimum column
depth required so that the sway does not eiceed the limit.

It was found; when designing several frames, that the actual
column depth obtained by this method is considerably greater than
the minimum imposed by the code.

The code suggests in clause 3,5,8 that if the depth of a column
is more than its effective height/30 then the sway requirement
may be satisfied without further calculation. However, the author
found that this underestimates the column depth needed formulti-
storey frames and particularly the depth of the columns at the
lower storeys.

The 1972, CP110 also requires that the frame should be designed
for the serviceability limit state of deflection for different load
cases, To produce a design which satisfies all the load cases,
the column sizes obtained, when designing for the first loading
case, are used as lower bounds for the second loading case, and
so on. The application of lower bounds obtained when designing
for a previous load case ensures that each load condition is satis-
fied.

In the proposed design method, the sections obtained from
the final deflection limitation design are checked for strength
requirements. Again the frame has to be checked for all the
ultimate limit state load cases. For this purpose, an elastic
analysis using the iteration method given in Chapter 2 is carried
out for each load case. Once again the axial load effect and the
axial stiffness (EA/L) are taken into consideration, The maximum
bending moments, the shear force, and the axial force from all the

load cases are obtained, and the sections are checked for these



'155:

ultimate values,

6.3 DESIGN ASSUMPTIONS

When iteratively analysing a reinforced concrete frame for
the ultimate limit state, the relative stiffness of the members
may be based on any one of the following (CP110, ,clause 2.4.3.1):
(a) The concrete section: the entire concrete cross-section,

ignoring the reinforcement,

(b) The gross section: The entire cross-section, including the
reinforcement on the basis of modular ratio. The second
moment of area for this section is called the uncracked
second moment of area as all the area of the concrete is
considered.

(c) The transformed section: The compression area of the con-
crete cross-section combined with the reinforcement on the
basis of modular ratio. The second moment of area for this
section is called the cracked second moment of area as the
tension area of the concrete cross-section is ignored.

The work of Beeby and Taylor (1978) shows that the results
of an analysis vary considerably with the assumption made in
choosing the properties of the sections. Their analysis of a
portal frame using different assumptions showed that the maximum
bending moment was obtained when the cracked second moment of
area for the beam section was used and the uncracked one for the
column section.

In a multistorey frames a column should be designed to resist
the axial load and the bending moment. Usually the axial force in
a column dominates the design of the section (except for the top

one or two storeys where small axial forces may occur). If the
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moment is small and the axial load is comparatively large, then the
position of the neutral axis would be outside the section. In

this case the column area would be under compression and the sec-
tion uncracked; For the reasons described above, it is logical

to assume that:

i) The relative stiffness of a column section is based on
assumption (b), and the uncracked second moment of area is
used.,

ii) For a beam section the bending moment would dominate the
design of the section and the moment would be large enough
to make the major parts of the beam crack. Therefore, it is --
reasonable to assume that the relative stiffness of a beam
section is based on assumption (c), and the cracked second
moment of area of a rectangular section is used.

Assumptions (i) and (ii) are used in this chapter for evalu-
ating the relative stiffness for both ultimate limit state and
serviceability limit state of deflection. In fact CP110:1972
Appendix A, clause 1, states that greater accuracy may be achieved
in the deflection calculation if the relative stiffness of the
cracked beam is used.

iii) The effects on deflection of temperature, creep.and shrink-
age are ignored in this thesis.

iv) The bar spacing rules should be satisfied so that no excessive
cracking occurs. In this respect, it is assumed that the
reinforcement will be distributed within the section so that
the distance between two bars does not infringe the maximum
and minimum limits. Furthermore, the cover for the rein-
forcement is chosen according to the characteristic strength

of the materials to prevent the influence of weather on
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reinforcement. Minimum concrete covers for the reinforce-

ment are given in clause 3.11.2, and Tablé 19 of CP110. 1In

the design examples given in this chapter these recommendations
are taken into consideration,

For practical purposes the overall depth of a beam or a

column is rounded to the nearest 50 mm.

6.4 REINFORCEMENT REQUIREMENTS

Requirements regarding areas of reinforcement in a beam are

set out in CP110 as follows:

(1

(2)

Clause 3,11.4.1.. The area of tensile reinforcement should
not be less than: 0.15% btd for high yield reinforcement andv
0.25% btd for mild steel. Here bt is the width of the
section and d is the effective depth. For a T-section, bt
should be taken as the average breadth of the concrete below
the upper flange.

Clause 3.11.5. The maximum area of reinforcement in either
tension or compression should not exceed 4% of the gross
cross-sectional area of the concrete.

Requirements regarding areas of reinforcement in the columns

are defined in clause 3.11.4.1; viz

(a)

(b)

The minimum area of main longitudinal bars is 1% of the gross
area of the column

The minimum number of bars in a rectangular column is 4 and
their diameter should not be less than 12 mm.

The maximum area of longitudinal reinforcement is given in

clause 3.11.5, CP110. This should not exceed 6% of the gross cross-

section in vertically cast columns.
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Unlike the Steel Code of Practice, factored loading is not

allowed in CP110;1972,

Furthermore, the design loads for the

serviceability limit states of deflection are not just the

working loads,

The characteristic loads are defined in clause 2.3.1 as:

(a) Characteristic dead load G

plete structure,

k

which is the weight of the com-

(b) Characteristic imposed load Qk which depends on the use of

the building. These loads are given in CP3 Chapter V, Part

1, for various buildings.

(¢c) Characteristic wind load Wk°

in accordance with CP3(1970) Chapter V, Part 2,

This is defined and calculated

The design load is obtained by multiplying the characteristic

load by the partial factor of safety Ye which takes account of (1)

possible overloads; (2) inaccurate assessment of the effects of

loading and unforeseen stress redistribution within the structure;

(3) variationsin dimensional accuracy; and (4) the limit state

being considered. The value of Ye varies for the different limit

states as set out in Tables 6.1 and 6.2.

wind load

Load Combination Dead Load Imposed Load Wind Load
1 - Dead and imposed 1.0 1.0 0
load
2 - Dead and wind 1.0 0 1.0
. load
3 - Dead, imposed and 1.0 0.8 0.8

TABLE 6.1: VALUES OF Yf,SERVICEABILITY LIMIT STATE

OF DEFLECTION
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6.,5.1 Desi8n Loads for Seryiceability Limit

For the serviceability limit state of deflection there are
three load combinations. The first load combination concerns
vertical loads only and as sway is mostly due to wind load, the
first load case is disregarded in this thesis. The second load
combination gives 1,0 Gk + 1,0 Wk and there is no need to consider

any change in the load arrangements., The third load combination

gives 1,0 G, + 0.8 Qk + 0.8 W, .

k k

6.5.2 Design Load for Ultimate Limit State

With regard to ultimate limit state, the arrangement of loads
should cause the most severe forces., Under load combination (1)
on the loaded spans there should be 1.4 Gk + 1,6 Q> but only
1.0 Gk on the unloaded span. For example, for a three bay frame,
four arrangements should be considered. Figure 6.1 shows the
different loading patterns for individual floors. The frame

should be analysed four times, with the appropriate loading pat-

tern applied on all floors.

) . Dead Load | Imposed Load .
Load Combination Max. Min. | Max. Min., Wind Load
1 - Dead and imposed 1.4 1.0 1.6 0 0
load
2 - Dead and wind 1.4 0.9 0 1.4
load
3 - Dead,‘imposed 1.2 1.2 1.2
and wind load

TABLE 6.2: VALUES OF Yf)ULTIMATE LIMIT STATE
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Under load combination (2), the most critical condition will
have to be considered. This may arise when moments due to 1.4 Gk
on some parts of the structure are added to the wind moments, and
moment due to 0.9 Gk on other parts of the structure from the
restoring moment., For the three-bay frame, another four load cases
should be considered. Figure 6.2 shows the different loading
patterns for individual floors. It should be noted that the wind
load for the four arrangements remains the same, i.e. 1.4 Wko

Under load combination (3) a factor of 1.2 on all loads is
used throughout the structure, with no variations for loaded and
unloaded spans. This load case is similar to the one considered -
in steel design and the two codes CP110 and the draft B/20 agree
on the load factor of 1.2,

It can be seen that for the three-bay frame, nine load cases
should be considered, to obtain the maximum internal forces in the
frame., The number of load cases obtained from the three load

combinations depends on the number of bays in the frame, but at

least four load cases are needed for a single bay frame,

6.6 EQUATION FOR THE MINIMUM COLUMN DEPTH

The iteration technique described in Chapter 2 is used to
obtain the second moments of area for the columns so that the
sway deflections are satisfied. These are then used to obtain a
lower bound for the overall depth of each column.

For a rectangular section Figure 6.3, the uncracked second
moment of area of the section is given by Reynolds and Steedman
(1976) as:

_ 1 3 (h-x)3 -1
Ixx =3 b [x® + (h-x)°] + (ae )

(6.1)

[ 1y 2
[A, (d-x)% + AL (x-d")7]
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WA =a=a_/2
S S SsC

FIGURE 6.3: A TYPICAL COLUMN SECTION

where x is the distance of the neutral axis below the top edge,

which is

X = [Ebn? o+ (0, = 1) (Ad + Ald")] (6.2)

tr 2
Here Atr is the effective area given by:

A =bho+ (a - 1) (Ag+ AD (6.3)

and o is the modular ratio, thus
%e T ES/EC (6.4)
where ES is the modulus of elasticity of steel and
EC is the modulus of elasticity of concrete. Values for
EC are obtained from Clause 2.4.2.2 of CP110 for short
term loading. In these expressions As is the area of tensile

reinforcements, A; is the area of compression reinforcements

h is the overall depth of the column section, b is the width
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of the section, d is the effective depth to tensile rein-
forcement and d' is the depth to compression reinforcement.
When designing the column section, it is common practice to
take the compression reinforcment equal to the tensile reinfor-
cement (i.e, AS=A;)Q In fact, all the design charts for rectan-
gular column cross-section in CP110:Part 2:1972 have been derived
using AS = A;. If this is the case, then equation (6.2) is

simplified to x = h/2, and equation (6.1) becomes
3 5
IXx = bh /12 + 2AS (ae-l) (h/2 - d")= (6,5)

Equation (6.5) could be written in terms of the percentage of the

reinforcement p, thus

= bh3 _ebh - EE,; ' 2
IXX bh®/12 + 50 (ae 1 ( 7) hd' + d' ) (6.6)
where p = (100 x ZAS)/(bh) (6.7)
Let
C1 = p (ae—l)/IOO (6.8)

and with Es > EC Cl is always positive. Equation (6.6) can be

written in terms of Cl’ thus:

bh3

5 (1+3C) - Cld'bh2 + Cld'2 bh - I =0 (6.9)

Now with C2 =b(l + SCI)/12 (6,10)
which is always positive, equation (6.9) becomes:

C,d'b c,d' b -
2 — 1 7
Ga h2 + = h -1 /C,=0.0 (6,11)

h3 -

which can be written in the form

h3 + Alh2 + Ah + Ap = 0.0 (6.12)
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where
Ay = -Cd'd/C, (6.13)
A, = cld'f’-b/c2 (6.14)
Ag= -1 /C (6.15)

An analytical solution for equation (6.12) is available (Spiegel,
1968), and it depends on the value of the discriminant. This is

defined as:

D= Q3 + R? (6.16)
where 2
Q = (3A, - A7)/9 (6.17)
- - _ 23
and R = (9AA, - 27A, - 2A7)/54 (6.18)

It can be proved that D in this case is always a positive
number. For a positive discriminant equation (6.12) has only one
real root, and two other complex conjugates. This means that there

is only one real solution for equation (6,12) which is

h=8+T-=-1/34A (6.19)
where S = 3/R + VD (6.20)
and T = 3/R - /D (6.21)

Here R and D are as defined by equations (6.18) and (6.16) above.
It should be noticed that to be able to calculate h the values of
o, b and d' should be known. These are given as data in the compu-

ter program written for this purpose.
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6.7 DESIGN OF A BEAM SECTION

The second moments of area for a beam section should be

known before the iteration technique can be applied to obtain the

column second moments of area, The width b of the beam section is

first assumed, and then the effective depth d is taken as the maxi~-
mum obtained by the following two methods:

1) The second moment of area I of the beam is obtained from
Islam (1978) and Anderson and Islam (1979). The plain con-
crete section is then used, only to obtain a preliminary beam
depth from I = bh3/12 or h = 3¥12I/b.

2) The effective depth is obtained from the limitation of the
span/effective depth ratio, The allowable value for span/
effective depth ratio depends on:

a) The span and the support conditions;

b) The amount of tensile steel and its stress;

c) The amount of compression steel; and

d) The type of beam.

The basic span/effective depth ratios for rectangular beams

are given in table 8, CP110. These are based on a beam with 1%

tension reinforcement with a characteristic strength of 410 N/mm?

The limit on deflection is span/250. The values given depend on

the support conditions and apply to beams up to 10 m span, The
basic span/effective depth ratio from Table 8, CP110 is 20 for a
simply supported beam., To obtain a safe preliminary beam depth,
this ratio.is taken to be 20 for the beams of the frame. For a
steel with a characteristic strength of 250 N/mmz, the span/
effective depth ratio is taken to be 29 according to Table 10,

CP110.
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FIGURE 6.4 A TYPICAL RECTANGULAR BEAM SECTION

The larger value for the beam depth obtained from (1) or (2)
above is used with a reinforcement of 1% to obtain the cracked
second moment of area of the rectangular section. This is then
used in the iteration technique to find the second moments of area

of the columns so that the sway in each column is satisfied.

6.7.1 Design of the Beam Section for Ultimate Limit State

When checking the beam section for strength requircments
(ultimate limit state), the maximum sagging and hogging bending
moments are needed. These are obtained from applying all the
ultimate limit state load cases and then choosing the most severe
bending moments. These are then used to obtain the reinforcements
£or the beam section. For the maximum hogging moment a rectangular

cross-section (Figure 6.4) is used with width b, and effective

depti d obtained by (1) or (2) above in section 6.7. For the
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FIGURE 6.5 A TYPICAL T=BEAM SECTION AT MID-SPAN

maximun sagging moment a T section is used, where the beams are

integrally cast and support a continuous floor slab. Part of the

slab adjacent to the beam is thus regarded as the compression
flange, see (Figure 6.5). In this figure BF is the effective

width of the compression flange, b is the width of the web and

h_. is the thickness of the floor slab. The effective width Bf

Fh

of the compression flange is specified in Clause 3.3.1.2 of CP110.
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For both rectangular and T-sections, the tensile reinforcements
are considered first; However, if the concrete in compression is
overstressed, compression reinforcements is then added to assist
the concrete to carry the extra load.

Design charts for singly reinforced beams and doubly rein-
forced beams are given in CP110:Part 2:1972., All the charts have
been derived using the assumptions given in Clause 3.3.5.1 of
CP110:Part 1:1972 for the analysis of cross-sections., A computer
subroutine was written by MacGinley (1978) to derive these charts.
This however was limited to rectangular sections, with a constant
beam depth. For this reason, MacGinley's flow-chart is altered
in this thesis to design T-sections, and to increase the beam
depth for cases when the maximum reinforcement in tension and

compression is exceeded.

6.8 ULTIMATE LIMIT STATE FOR THE COLUMNS

Once the columns are designed for deflection limit state,
the overall calculated depth hj of a section and the area of
reinforcement Asd must be checked for the ultimate limit state.
To do this, it is necessary to calculate the maximum bending
moment M and the maximum axial load N for all the load

max max
cases, Checking is carried out by recalculating the area of
reinforcement ASC for a column section of depth hj to provide the

i i i i M and . ea
section with an ultimate resistance to M oax Nmax The ar
A is then adopted if A__ > A_,. This 1is provided that the area

sc sc sd

of the reinforcement is less than the maximum allowable 6%, If
not, the computer programme increases the depth hj in increments
of 50 mm and the area Asc is recalculated until it is below 6%,

The reinforcement for columns resisting moments and axial
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forces can be either calculated using Clause 3,5.5,3 of CP110 or
obtained using charts given in part 2 of the code. The charts

are for rectangular parabolic stress distribution for concrete

and a trilinear stress-strain curve for the steel reinforcements,
as for beams (Clause 3,3.5.1, CP110). A computer subroutine 1is
written to derive these charts, This ‘makes use of certain signi-
ficant points on the chart to accelerate the trial and error pro-
cedure needed for the.design, To show how this subroutine works an
explanation is given first of how the design charts are constructed
and what properties they have°1 More information about the use

of these charts is given in CP110:Part 2:1972, (Allen 1977) and

(MacGinley 1978).

6.8,1 Construction of Design Chart in CP110

A symmetrically reinforced column section subjected to the
ultimate axial load N and the ultimate moment M is con-
max max
sidered. The moment is equivalent to the axial load acting at an
eccentricity e = M __ /N . Depending on the relative values of

max max

Nmax and Mmax’ two cases occur for analysis.
i) Compression over the whole section where the neutral
axis is outside the section,.
ii) The section is divided into two parts by the neutral
axis, in one part the steel is under tension while in
the other part both steel and concrete are in compressiom,
For a given location of the neutral axis, and for a given
reinforcement, the strains and stresses in both the concrete and
the steel can be determined, and from these the values for the

internal forces can be found. The resultant internal axial force

and resistance moment can then be evaluated. These should be
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equal to N and M . Consider a section subject to an ultimate
load Nmax which is less than the capacity of the section under
pure axial load., This section is able to support Nmai and a
determinable maximum ultimate moment Mmai when the concrete is at
its maximum strain and design strength. The stresses in the
steel depends on the location of the neutral aiis;

It can be noticed from the above that for a given percentage
of reinforcement the value of the resisting moment and axial
force for the section depends on the location of the neutral axis.
This means that successive trials would be required to find the
solution. To assist the engineer the different trials are readily
calculated and plotted in the form of a design curve in part 2 of
CP110,

For a selected grade of concrete and reinforcement, the
design curve for a section with a given percentage of reinforcement
100 Asc/bh and its location d/h symmetrically placed about the
centre line of the section is formed. This is done by plotting
values of N/bh against M/bh? for various positions of the neutral
axis. It should be noticed that A_. is the total area of rein-
forcement and that this is divided equally between the faces
parallel to the axis of bending. (e.g. in Figure 6.3 AS = A; = ASC/Z)°
A typical design curve is shown in Figure 6.6 with the stress strain
curve for the reinforcement shown in Figure 6.7,other curves can
be constructed for percentages of steel ranging from zero to a
maximum of 8%. The family of curves forms the design chart for a
particular combination of materials and a typical chart is shown
in Figure 6.8.

In Figure 6.6, the specific points correspond to those in the

stress-strain curve for steel as shown in Figure 6.7. For example,
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point A in the design curve corresponds to the final yield in the
stress-strain curve;

The strain in the steel is obtained from the stress strain
curve (e.g. for mild steel the strain 1is 0300309); While the
strain in concrete is always assumed to be at its maximum value of
0,0035 as specified in the code. The depth x of the neutral axis
is calculated assuming a linear strain distribution as shown in

Figure (6.9). From this:

0.0035 _ 0,00309

- = 0.8h-x or x = 0,425h

Ssimilarly, for point B in the design curve which corresponds to a
strain of 0,00087 at first yield, the strain diagram shown in

Figure(6.9 c)gives the position of the neutral axis as:

10,0035 _ 0.00087
X 0.8h~x
x = 0.,646h

Point ¢ in the design curve corresponds to zero strain in tensile
steel (Figure 6.9d). Thus the neutral axis is at the centre of
the tensile steel with zero stress, For the part CDE of the design
curve in Figure 6.6 the tensile steel is in compression, For the
part FABC of the curve the steel is in tension. Point F of the
curve is for x = h - d. This value of x is the minimum allowable
in the code. No solutions are given for x less than h-d. The
design curve is flattened off at part DE to ensure that a minimum
allowable moment of 0.05 Nmax h is automatically included.

From the above description of the design curve, it could be

concluded that five significant points can be recognised. These

are:
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Point F where X =h ~d=d'., This is the lowest allowable
value of x

Point A where x is obtained for final yield of the tensile
steel

Point B where & is obtained for first yield of the tension
steel

Point C where x = d, and the stress in the tensile steel

is zero.

Point D where x is obtained for the section resisting a
minimum moment of 0,05 Nh,

The design curve FABCDE is for a specific percentage of

steel as 4%, Other design curves for the steel percentages of

0, 1, 3, 5, 6, 7 and 8 may be plotted. These form the design

chart shown in Figure 6.8, The various zones which depend on the

location of the neutral axis are marked on the chart. The sig-

nificant points on the design curves are marked, and equivalent

points are connected by the dotted lines to form these zones,

6.8.2 Computer Subroutine

A computer subroutine is written in Fortran to determine the

amount of reinforcement required in a symmetrically reinforced

section to resist a given axial force Nmax and moment M__ ., If

M
max

max

< 0,05 N h then M is taken as equal to O.O05 N.. . A
max max max

process of successive trials making use of the significant points

on a

design chart is used. The process is general, but it would be

simpler to explain by the following example,

6.8.3 Example

Design the reinforcement of a column section subjected to an

ultimate load of N ax/bh of 10.5 N/mm2 an ultimate moment of
m
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2 . 2
M ax/Ph™ of 3.5 N/mn”.  The materials are grade 25 concrete and

mild steel reinforcement. The location of the steel bars is given

by d/h = 0,8,

The design chart for the materials specified is shown in

Figure 6.8, and the subroutine is searching for point R which is

located as follows:

(D

(2)

(3)

(4)

(4a)

(5)

(6)

Set the percentage of reinforcement at the minimum value of

1

o\

Set the depth of the neutral axis to correspond to point A in
the design chart with x = 0,425 h,
Calculate the value of the resisting moment and axial force
Q and W,
IfQ <M and W < N, then increase the percentage of
max max
reinforcement by 0.25%.
Repeat step 4 until Q > Mmax or W > Nmax’ or the percentage
of steel is starting to become more than 6%.
If the percentage of reinforcement exceeds 6% and Q is less
than M~ and W is less than N ___, then increase column depth
max max
by an increment of 50 mm. Steps 1 to 5 are repeated,
Depending on the values of Q and W one of these two cases
occurs first.
a) Q>M but W < N __. This means that point R is above
max max
the dotted line AA' on the design chart.
b) Q <M but W > N . This means that point R is below
max max
the line AA'. For the example under consideration, case (a)
occurs. In Figure 6.8, as soon as the steel percentage 1is
2 .
increased from 3.50% to 3.75%, Q/bh” will be equal to 3.6 and
= C d W< N . Thi s that
W/bh 3.8, Thus Q > Mmax an max is mean a

point R for this example is above the line AA' and the depth
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of the neutral axis is more than 0,.425h,

From the above steps it is only possible to know whether the
neutral axis is below or above one of the dotted lines shown in
Figure 6.8, Repeating the steps with points B and C it is poss-
ible to specify upper and lower boundaries for the depth of the
neutral axis., Once this is done, a new trial position of the

neutral axis is obtained by:
Xq = (xl + xz)/Z (6.22)

where X and X, are the upper and lower boundaries respectively.

For point R for instance, x, = 0.8h, and X, = 0.646h, Thus for

1
the first trial Xz = (0.8h + 0.646h)/2 = 0.723h steps 1 to 6 are

now repeated to determine whether x, is a new lower or upper

3
bound. Equation (6.22) is then applied with this value of Xq

replacing X, to calculate a new value for x, and the process 1is

3
repeated until two successive values of X, are within a specified
tolerance.
The amount of reinforcement is obtained by starting with
A /bd as 1% and then increasing it in steps of 0.25% until
s
Q=M__,and W=N___. At this point the actual neutral axis is
max max
known as well as percentage of steel. A large number of columns
were designed by the above computer subroutine and it was found

£0 be faster than that used by MacGinley (1978). Usually five to

seven trials are needed to determine the actual position of the

neutral axis.

6.9 COMPUTER PROGRAM FOR THE DESIGN OF REINFORCED CONCRETE

FRAMES

A program for the design of two dimensional, rectangular
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reinforced concrete, sway frames was written in Fortran and run on
the ICL 1904S computer at the University of Aston. This program
makes use of the design procedure described in this chapter; The
program consists of a master segment calling a number of segments,
the functions of which are similar to that of the steel program
described in Chapter 4. However, in the program for the design

of reinforced concrete frames, the beam sections are kept unaltered.
The ratio between the second moment of area for internal and exter-
nal columns is also kept constant. This is because there is more
flexibility in the procedure for the design of reinforced concrete
colums. For instance, the design for deflection limit state is -
carried out with 1% reinforcement and rather than altering beam
sections, the ultimate limit state design is obtained by increasing

this percentage.

6.9.1 The Program Segments for the Design of

Reinforced Concrete Frames

This consists of the master segment calling eight other seg-

ments these are:

=
i

ITERATE

3]
i

INTERNAL FORCES as in the steel program

3 - STABILITY-F

4 - The function CDEPTH: This calculates the depth of the column
provided that the second moment of area of the column section
and the reinforcement ratio are known. This segment makes use
of equation (6.19).

5 - The function SMAB: This calculates the cracked second moment

of area for a beam section provided that the beam depth is known.

1% reinforcement is assumed. The beam depth is calculated as
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described in section 6,7,

6 -~ The subroutine U-BEAM: This designs the reinforcement for a
beam section for the ultimate limit state making use of
section 6g7ol:

7 = The subroutine ﬁ—COLUMN: This designs the reinforcement for
a symmetrically reinforced column section for the ultimate
limit state making use of section 6.8.2. This is done after
the column depth is calculated from the limit state for defl-
ection,

8 - The subroutine SSSC: This is called by subroutine U-COLUMN
to calculate the steel stresses from the stress-strain curve.
The strain in the steel is calculated according to the position

of the neutral axis.

6.10 A 15 STOREY REINFORCED CONCRETE FRAME WITH

THREE UNEQUAL BAYS

The computer program described was used to design the 15 storey -
3 unequal bay frame shown in Figure 6.10, The frame is to be built
of reinforced concrete. The characteristic strength of the concrete
and the steel are 40 N/mm2 and 410 N/mm2 respectively., The applied
loads on the frame are shown in Figure 6.10. The design loads are
obtained by making use of sections (6.5, 6.5.1 and 6.5.2)., Hence
two design load cases for deflection limit state, and nine others
for the ultimate limit state are obtained.

The limit on the sway is taken to be equal to the height of
the column/500. The deflection profile used in the design is shown
in Figure 6.11. The width of the beam and column sections 1is
taken equal to 200 mm for all storeys. The flange depth he for

T-beams is taken as 120 mm, while the flange width B, equals 830 mm.
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The covers of tensile steel (d!') and compression steel (G) are

33 mm, and 28 mm reSpectively; The percentage of the reinforcement
assumed to resist the sway deflection is 2% for the columns at
levels 1 to 5. 1,5% for the levels 6-10, and 1;0% for the columns
of the top five storeys., The cover for this reinforcement d' is

36 mm for all columns,

A typical storey is represented in Figure 6,12 in which the
sections at which the reinforcments are calculated are shown. In
each beam three sections are considered. These are A, B and D.
For each column one section is considered this is the section with
the maximum bending moment, which is at one of the column ends.

The design of the beam sections for the limit state for
deflection is shown in Table 6.3. All beams have the same section
and reinforcement. This is because the beam depth obtained from

the limitation of the span/effective depth ratio dominates the

Reinforcement
D
Span under H B at A, B and

consideration | mm | mm AS mm2 A; —

Leftfspan beam 500 | 200 934 533
sections

Mid-§pan beam 300 | 200 s34 L33
sections

Rightfspan beam 400 | 200 234 183
sections

TABLE 6.3: 15 STOREY FRAME - THE DESIGN OF
THE BEAM SECTIONS FOR THE LIMIT
STATE OF DEFLECTION

design. For all the beams, the limitation gives larger beam depths
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than those obtained using Anderson and Islam's equation; The
percentage of the reinforcement (As/bd) is assumed to be 1% for all
the beams; This is the basic percentage referred to in CP110
(1972), at which the span/effective depth equals 20 for a simply
supported beam, The beam sections for the final design which
satisfy the ultimate state as well as the limit state for deflection
and cracking remain unchanged. However the steel area is increased
for most of the beam sections. The steel area for beam sections

A, B and D of the final design are shown in Table 6.4. It can be
seen that some reinforcement area are determined by the limit

state of deflection. These are marked by an asterisk in Table 6.4,

The design of the column sections is shown in Table 6.5 for
deflection limit state and the ultimate limit state. It can be
seen from the table that the ultimate limit state is governing the
design and most of the column depths obtained from this state are
more than those obtained from the limit state for deflection.
Furthermore the reinforcement is also increased considerably.,

It should be noticed, that the column depth obtained for
deflection limit state is considerably greater than the column
depth specified in CP110:1972. The code considers a value of
effective height/30 to be acceptable. This underestimates the
column depth needed to satisfy the limit state for deflection.

For example in this frame, if the effective height is taken equal
to the actual height (i.e. 3500), then the minimum column depth
specified in the code is 3500/30 = 150 mm (rounded to the nearest
50 mm) and except for the top three storeys this is much less than

the column depth proposed by this new design method.
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6.11 A 24 STOREY REINFORCED CONCRETE:FRAME

WITH TWO UNEQUAL BAYS

The 24 storey - two unequal bay frames shown in Figure 6.13
was designed using the computer program described in section 6.9,
The frame is to be built of reinforced concrete., The characteri-
stic strength of the concrete and the steel are 40 N/mm2 and 410
N/mm2 respectively., The applied load on the frame are shown in
Figure 6,13, The design loads are obtained as described in
sections (6.5, 6.5.1 and 6.5.2). This gives two design load cases
for the limit state for deflection, and five other cases for the
ultimate limit state,

The non-linear deflection profile (used in the design) and the
linear profile are shown in Figure 6.14, in which the sway is
restricted to h/500., However, for selecting the beam sections,
Anderson and Islam's equations are used with sway restricted to
h/1000. It should be stressed that this latter restriction is
only applied for the purpose of selecting the beam sections since
Anderson and Islam's equations underestimate these,

To calculate the column depths, and the reinforcement of the
beams and the columns certain sectional properties need to be
supplied. These are:

1) The covers to the reinforcement, which are given in Table 6.6
making use of the recommendation given in CP110:1972, clause
3.11.2. In this table d' and G are those shown in Figures 6.3
and 6.4.

2) The width of the beam and column sections, which is taken equal.

to 250 mm for storey levels 1-18 inclusive. This is reduced to

200 mm for the rest of the frame.
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3) For T-beam sections the flange depth hf (see Figure 6.5) is
taken equal to 120 mm for all the storeys. The flange width
Bf is 880 mm for storey levels 1-18, but is reduced to 830 mm
for the remaining storeys.,

4) The percentage of reinforcment (1OOAS;/bh) assumed to resist
the sway of the column, These percentage are given in Table
6.7,

A typical storey is represented in Figure 6,15 in which the
sections at which the reinforcements are calculated are indicated,
There are three sections in each beam A, B and D,and one section
in each column.

The design of the beam sections for the limit state for defl-
ection is shown in Table 6.8. It is noticed that (except for the
top three storeys) the beam depth designed by Anderson and Islam's
equations is larger than that obtained from the limitation of the
span/effective depth ratio. The percentage of reinforcement (A//bd)
assumed to be 1% for all the beams. The steel areas obtained
using this percentage are given in Table 6.8. For the compression
steel the minimum percentage of 0.25% is used.

The beam sections for the final design which satisfy the
ultimate limit state as well as the limit state for deflection and
cracking remain unchanged. The area of the tensile steel for this
design is shown in Table 6.9. Sections A, B and D in the table
refer to those of Figure 6.14. The area of the compression steel
remains nominal at the minimum of 0.25%. It can be seen that many
tensile steel areas are determined using the deflection limit state.

These are marked by asterisks in Table 6.9,

The design for the column sections for the deflection limit
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state is shown in Table 6,10, This also shows the final design,
in which the ultimate limit state as well as the limit states for
deflection and cracking are satisfied. Unlike the 15 storey
frame, most of the column depths obtained by the limit state for
deflection are adequate for the ultimate limit state, and no
increase in the column depth is required; The unchanged column
depths in the final design are enclosed in brackets in (Table
6.10), For some sections the deflection limit state governs the
design, where the column depth and the steel area are determined by
this state. For example, column C1 at level 14 (see Table 6.10)
has a column depth of 450 mm. The area of reinforcment . resisting

the sway is 2250 mm2 which is more than that required for the

>
ultimate limit state. This means that the final design should have
an area of steel equal to 2250 mm2 to satisfy deflection as well
as strength requirements, The steel areas determined by the limit
state for deflection and not by the ultimate limit state are
marked by asterisks in Table 6,10, However, most of the sections
need a larger steel area for the ultimate limit state,

It is noticed, that the column depth obtained forlthe limit
state for deflection is considerably greater than the column depth

specified in CP110:1972, clause 3.5.8, which gives a column depth

of 150 mm which is adequate only at the top storey.
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S Steel area 5 Steel area Steel area
torey Span Section A mm”| Section B mm” | Section D mm
level
A A! A 1
S s S AS As Aé

Lgft 1214 233 1459 233 2891 883

1 M}d 854 133 763 133 1696 555
Right | 1159 183 1117 183 2258 678

L§ft 1282 233 1426 233 3089 1110

2 M}d 847 133 764 133 1824 701
Right|{ 1115 183 1096 183 2465 916

L§ft 1329 233 1428 233 3093 1115

3 M}d 867 133 764 133 1842 722
Right| 1107 183 1097 183 2484 937

Left 1385 233 1435 233 3037 1051

4 Mid 895 133 764 133 1820 697
Right| 1112 183 1102 183 2445 893

Left 1417 233 1462 233 2925 921

) Mid 927 133 765 133 1766 635
Right| 1126 183 1118 183 2346 799

Left 1413 233 1503 233 2772 746

6 Mid 952 133 765 133 1696 554
Right| 1147 183 1142 183 2201 612

Left 1358 233 1557 233 2609 558

7 Mid 981 133 765 133 1613 459
Right | 1151 183 1174 183 2041 428

Left 1270 233 1619 233 2444 369

8 Mid 996 133 765 133 1538 373
Right| 1157 183 1211 183 1870 231

Left 1163 233 1690 233 2280 233

9 Mid 1008 133 764 133 1467 291
Right| 1158 183 1254 183 1695 183

Left 1034 233 1773 233 2100 233

10 Mid 1016 133 763 133 1396 210
Right| 1155 183 1306 183 1389 183

Left *934 233 1873 233 1783 233

11 Mid 1078 133 760 133 1327 133
Right| 1141 183 1371 183 1120 183

Left *934 233 1995 233 1519 233

12 | Mid 1227 133 755 133 1263 133
Right| 1122 183 1452 183 857 183

=] .

* marks steel area determined by the limit state of de

TABLE 6.4

15 STOREY FRAME - THE

OF THE FINAL DESIGN (Cont)

STEEL AREA FOR BEAM SECTIONS

flection



Steel area Steel area Steel area
Section A mm | Section B mm | Section D mm
Span
A Al ' !
] s As As As As
Left *934 233 2148 233 1248 233
Mid 1330 133 747 133 1192 133
Right 1084 183 1556 183 *734 183
Left *934 233 2355 233 997 233
14 Mid 1472 133 732 133 1260 133
Right 1020 183 1713 183 *734 183
Left *934 233 2558 233 *934 233
15 Mid 1610 455 715 188 1373 133.
Right 946 183 1874 183 *734 183
TABLE 6.4: 15 STOREY FRAME - THE STEEL AREA FOR BEAM SECTIONS

OF THE FINAL DESIGN
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.. ]
Limit state of}| Ultimate limit
Storey | Column deflection state
level section 5 >
h A mm h A mm
mm SC mm sC
C1 550 2200 600 3575
1 O 600 2400 900 6400
Cq 600 2400 750 5525
c, 500 2000 500 3250
o 550 2200 550 4675
5 C, 600 2400 850 7225
o 600 2400 700 6300
C, 500 2000 500 4500
o 550 2200 550 5700
3 C, 600 2400 800 7650
o 600 2400 650 7500
c, 500 2000 500 4750
C, 500 2000 500 3825
A o 600 2400 700 6500
o 550 2200 600 4950
CZ 450 1800 1450 3800
C, 400 1600 450 4000
C, 500 2000 650 6000
> c 450 1800 550 4750
C, 400 1600 400 4200
o 350 1050 400 3400
6 C, 400 1200 600 5500
C 400 1200 500 4500
ci 300 900 350 3325
Cy 300 900 400 3400
. c, 350 1050 550 5500
C 300 900 450 4500
ci 300 900 350 3325
Cy 250 750 350 3500
C, 300 900 500 5000
8 opd 300 900 400 4200
c, 250 750 350 2625
o 250 750 400 1800
5 o 250 750 450 4725
C 250 750 350 4025
ci 200 600 300 2850

TABLE 6.5: 15 STOREY FRAME - DESIGN OF THE COLUMN
SECTIONS FOR DEFLECTION LIMIT STATE AND
ULTIMATE LIMIT STATE




Limit state of| Ultimate limit
Storey | Column deflection state
level section 5
2
h ASCmm h o Asc mm
C, 200 600 300 3000
. c, 250 750 400 4200
o 250 750 350 2800
c, 200 600 300 2100
Cy 200 400 300 2100
C, 200 400 400 2800
11 o 200 400 300 2550
c, 200 400 250 2375
Cy 150 300 250 2125
. c, 200 400 300 3450
12 c 200 400 250 2125
c, 150 300 250 1500
C, 150 300 200 2200
13 c, 150 300 250 3000
o 150 300 200 2100
o 150 300 200 1600
c, 150 300 200 800
c; 150 300 200 2200
14 C 150 300 200 800
ci 150 300 150 1800
C 150 300 150 300
cl 150 300 150 825
15 2 150 300 150 300
CZ 150 300 150 300
TABLE 6.5: 15 STOREY FRAME - DESIGN OF THE COLUMN

SECTIONS FOR DEFLECTION L
ULTIMATE LIMIT STATE (Cont)

IMIT STATE AND
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24 STOREY CONCRETE FRAME

24 storey each at 3.5 m height
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Storey
level

Covers for beam
reinforcement

Covers for
column
reinforcement

dl

G 4

1 to 12

13 to 24

36 mm

33 mm

30 mm 40 mm

28 mm 36 mm

TABLE 6.6:

24 STOREY FRAME - REINFORCEMENT

COVERS

level

Storey

Reinforcement ratio of the
column sections (100 Asc/bh)

1 to 18

19 - 21

22 - 24

200

1.5

1.0

TABLE 6.7:

24 STOREY FRAME-REINFORCEMENT
RATIOS ASSUMED FOR THE LIMIT
STATE OF DEFLECTION
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Reinforcement at

Storey Span Beam A, B and D
level under Depth

Consideration{ h mm 2 )

A mm | A' mm

S S

1-4 Left 750 | 1785 446
Right 500 1160 290

Left 700 1660 415

5-9 -

Right 500 1160 290

10 - 12 Left 650 1535 383
Right 450 1035 258

13 Left 650 1542 385
Right 450 1042 260

14 Left 600 | 1417 354
Right 450 1042 260

s Left 600 1417 354
Right 400 917 229

16 - 18 Left 550 1292 323
- Right 400 917 229

r Left 500 1034 258
Right 400 734 183

Left 500 934 233

20 - 2l Right 350 | 634 158
Left 500 934 33

22 - 24 Right 300 | 534 | 133

TABLE 6.8: 24 STOREY FRAME - THE DESIGN OF THE BEAM

SECTIONS FOR THE LIMIT STATE FOR
DEFLECTION




198

» A A
Storey S . '
 level Span |at seltion | at section |at section
' A mm B mm D mm2
. égfﬁ %1785 %1785 2960
ight 1213 *1160 1918
, | Left 2130 %1785 3817
Right 1801 *1160 2684
. | Left 2240 %1785 4091
Right 1967 *1160 2809
. | Left 2196 %1785 4112
Right 2049 *1160 2878
.| Left 1916 *1660 3946
| Right 2250 *1160 2978
o | Left 1822 *1660 3891
Right 2260 *1160 2981
Left 1699 *1660 3799
7 | Right 2176 *1160 2915
Left *1660 *1660 3543
8 | Right 2102 *1160 2856
Left *1660 %1660 3447
9 | Right 2113 *1160 2849
Left *1535 %1660 3526
10 | Right 1841 *1160 2674
Left *1535 *1535 3251
11| Right 1735 *1035 2601
Left *1535 %1535 2932
12 | Right 1554 *¥1035 2447
Left %1542 1542 2621
13 | Right 1406 *1042 2246
Left %1417 *1417 2473
14 1 Right 1350 *1040 2120
Left %1417 %1417 2352
15 I Right 962 * 917 2081
Left %1292 1331 2387
16 | Right 947 * 917 2124
Left %1292 1356 2357
17 Right 935 *917 2088

% Marks steel area determined by the limit state for
deflection.
TABLE 6.9: 24 STOREY FRAME - THE STEEL AREA FOR

t.
REAM SECTIONS OF THE FINAL DESIGN (Cont.)
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A A A
Store .

1eve1y Span at segtlon at segtion at segtion

A mm2 B mm? D mm

18 Left *1292 1400 2272

Right *917 *917 1864

19 Left 1090 1390 2295

Right *734 *734 1750

20 Left 1405 1534 2361

Right *634 661 1652

)1 Left 1359 1608 2237

Right *634 681 1443

29 Left - 1104 1772 1925

Right 841 831 1065

23 Left *934 2073 1398

Right 1091 887 *534

24 Left *934 2446 957

Right 1455 943 *534

% Marks steel area determined by the limit state for
deflection

TABLE 6.9: 24 STOREY FRAME - THE STEEL AREA FOR BEAM
SECTIONS OF THE FINAL DESIGN




The design for
th@llimiﬁ state | Final design
Storey | Column | .of deflection | . =~~~ "~ °
level section 5
h 2
m ASC mm | h o ASC mm. .
Cy 600 3000 | 750 10781
1 o 650 3250 | 950 13656
o 500 2500 | (500) 6875 -
Cy 550 2750 | 700 8750
2 C, 600 3000 | 900 11813
o 450 2250 | (450) 5906
Cy 500 2500 | 700 7438
3 o 600 3000 | 850 11156
o 400 2000 | 450 5063
C, 500 2500 | 650 7719
4 C; 600 3000 | 800 11000
o 400 2000 | (400) 5750
o 500 2500 | 650 6906
5 o 600 3000 | 800 10500
o 400 2000 | 450 4219
c, 500 2500 | 600 6750
6 o 600 3000 | 750 10313
o 400 2000 | (400) 5250
C, 500 2500 | 550 6875
7 o 600 3000 | 700 10500
C 400 2000 | (400) 5000
C 500 2500 | 550 @ 5844
8 ct 600 3000 | 700 9625
cé 400 2000 | (400) 4500
C 500 2500 | (500) 5938
9 ct 600 3000 | 650 9344
c? 400 2000 | (400) 4000
o]
c 500 2500 | (500) 5313
10 cl 600 3000 | 650 8531
Cé 400 2000 | (400) 3500

Unchanged column depths a

TABLE 6.10:

SECTIONS FOR LIMI

re enclosed in brackets

AND ULTIMATE LIMIT STATE

e

24 STOREY FRAME - DESIGN OF THE COLUMN
T STATE OF DEFLECTION

(Cont.)

200

i

ki
T




201

The design for

the limit state |Final design
Storey| Column | of deflection. .} = ... . .. S
level section}
h 2 2
mm ASC mm h o Asc mm‘ .
C, 500 2500 |(500) 4063
11 C, 600 3000 |(600) 8525
c 400 2000 | (400) 2750
c, 450 2250 | (450) 4219
12 Cy 550 2750 | 600 7500
c; 400 2000 | (400) 2250
C, 450 2250 | (450) 3375
13 | ¢, 500 2500 | 600 6000
c5 350 1750 | (350) 2844
C, 450 2250 | (450) *2250
14| 500 2500 | (500) 6563
c 350 1750 | (350) 2406
c, 450 2250 | (450) *2250
15 | ¢, 500 2500 | (500) 5625
c; 350 1750 | (350) 1969
c, 450 2250 | (450) *2250
16 | C, 500 2500 | (500) 4688
cy 350 1750 | (350) *1750
c, 400 2000 | (400) 2500
17 | ¢ 450 2250 | (450) 4781
cé 350 1750 | (350) *1750
C 350 1750 | (350) *1750
18 | ct 400 2000 | (400) 5000
cé 300 1500 | (300) 1875
C 350 1050 | (350) 2100
19 | ¢ 400 1200 | (400) 4800
c? 300 900 | (300) 1800
n)

C 350 1050 | (350) 2100
20 | ct 400 1200 | (400) 4000
ci 300 900 | (300) 1500

* marks steel area determined by the limit state of
deflection and not by ultimate limit state

TABLE 6.10: 24 STOREY FRAME - DESIGN OF THE COLUMN
SECTIONS FOR LIMIT STATE OF DEFLECTION

AND ULTIMATE LIMIT STATE (Cont.)

[ o Tmmmmmnon e S s e B e e
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The design for
the limit state | Final design

Storey | Column of deflection
level section 5 )

h

mm Asc b mm Asc i
C1 300 500 | (300) 2700
21 C2 350 1050 | (350) 4025
C3 250 750 | (250) 1875
C1 250 500 300 1800
22 C2 250 500 300 3300
C3 250 400 200 1000
C1 200 400 | (200) 500
23 C2 200 400 250 2750
C3 150 300 200 400
C1 150 300 | (150) 1725
24 C2 150 300 | (150) 900
C3 150 300 (150) *300

TABLE 6.10: 24 STOREY FRAME - DESIGN OF THE COLUMN
SECTIONS FOR LIMIT STATE OF DEFLECTION
AND ULTIMATE LIMIT STATE
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CHAPTER SEVEN

DESIGN OF SPACE FRAMES

7.1 INTRODUCTION

The iteration technique given in Chapter 2 can in fact be
generalised for the design of space frames. In this chapter, it

is used to design pin-jointed space frames in which the deflections
are specified at certain joints in these frames. The aim here is
to select member areas so that the stress requirements are satis-
fied while the deflection at the specified joints are allowed to

take place.

In general the deflection, usually at the middle of certain
spans, are specified by codes of practice. For instance, the
British Standard draft B/20 restricts the deflection in the middle
span of a roof to the span/360. For such a frame, the procedure is
to calculate the member areas so that the deflection in the middle
span will be equal to the specified limit. Naturally, the strength
requirements in some of the members will not be satisfied. The

cross sectional areas of these are therefore increased and the

interaction is repeated so that the areas of other members are
reduced. The process is repeated until the deflection as well as

the strength requirements are satisfied throughout.

7.2 The Contributions of a Member to the Overall

Stiffness Matrix

In a given pin-jointed space frame, let a general member 1
be connected to joint j at its first end and k at its second

end. This member is shown in Figure 7.1, in which the arrow on

the member specifies 1ts positive longitudinal P axis. The system
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j (first end)

8

FIGURE 7.1 A MEMBER IN A PIN-ENDED SPACE FRAME
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coordinates XYZ are also shown in the figure. ‘A right handed
system is used for the X, Y and Z axes,

The contributions of member i to the overall stiffness matrix
[K] of the space frame is given below by equation (7.1) on the

next page (Majid, 1978). In equation (7.1) {w

@ 0000

LW LW
XJ ¥Y) XJ
L wjk wzk} is the vector of the external loads applied to the

joints. Each load w has two subscripts, the first denoting

the direction of the force, and the second, either j or k, denoting
the joint at the end of the member being considered. The direction
cosines of the member are Qp, mp and npo It is noticed that only
the direction cosines of the P axis relative to the X axis are
involved. In equation(1.7 ) 2= EA/L is the axial stiffness of the
member. Where A is the area of the member, L is the length, and

E is the elastic modules. The column vector {x. yj Zj senee Zp Tk
zk} is the joint displacements vector.

It is useful to note that equation (7.1) does not alter if
the arrow on the member is reversed in Figure 701v so that j becomes
the second end of the member. The direction cosines change thelr
sign but the signs of Qé, mé, Qmmp etc do not change. This obser-

vation is useful when deriving the modified stiffness equations

for the structure.

7.3 MODIFIED STIFFNESS EQUATIONS FOR A GENERAL JOINT IN THE

PIN JOINTED SPACE FRAME

The relationship between the external loads H_and the vectori-
ally equivalent joint displacements A, in terms of the system co-
ordinates XYZ, is expressed by the equation

WK (7.2)
The vector 4 has Xj’ yj and zj as three displacements in X, Y

and Z directions of a general joint j. Thus, three equations are
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needed to define the displacements of each joint

In the design problem, the deflection at a joint in a given

direction may be specified. The corresponding stiffness equation

is then modified so that it is used to calculate the areas of the
members connected to that joint. The modified stiffness equation
for Xj is obtained as follows:

The contributions of a member i to the deflection Xj are cal-

culated from the first row of equations (7.1), thus

a.22.x. + a.f .m_.Y. 2 .n .z, - 2
i7pi™] i'pi p1>3 * alzplnplzj aizpixk
. (7.3)
T84 pimpiyk - aigpinpiﬁkz wxj ’
Rearranging equation (7.3) for Xj we obtain
= bt . . - - . - 2 .
Xj ( wXj + aiﬁplmplyJ + alzplnpizj aizplxk
(7.4)

- - - 2
astoimoi Y ™ 23tpitpiad/ (25 hps)

Equation (7.4) gives the deflection Xj when one member only 1is
connected to the joint, If R members are connected to j then each
will have the same pattern of contributions, and the modified

stiffness equations for X5 becomes:

i=zR 2

= [-w . o+ T 4m V. L oa.f N .Z. - a RZ.X
*] [ Yxi T 15y (algplmpl'] t %i%pi pi’j 1i"piTk
(7.5)
i=R 2
- - . -.Z a.l<.
aizpimpiyk aizpinplzk)} /1 i=1 ( i pl)]
Similarly, the modified stiffness equations for yj and Zj are:
y. = [-w . + ifR (a. % .m_.x. +anmn .m.z. - a.% .m_.X
J yj i1 ~ 1 pipl ] iplpl] i"pipik
(7.6)

’ i-"—R 2
- agm2y, - oagmyn5) )/ gk (a;ms3)]

2
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= [~w . + %iR (a.4 .n_.x. +a.m .n .y, - a,f .n
25~ A51 iTpiopity T Cipilpi’y T %ipilpi Yk
. 7.7)
- a.m .n . - a.n?,. . 1sR 2 (
iMpi plyk alnplzk)] /[ igl (ainpi)
7.4 DESIGN EQUATION FOR MEMBER AREAS
If one of the deflections xj, yj or Zj is specified, then
equations (7.5), (7.6) or (7.7) can be used to find the member
areas., To do this, the axial stiffness of member 1 is written
as a factor of the area Ai, thus
a. = A, b. (7.8)

where b, is equal to E/Li'
In practice, for construction purposes the members are grouped
together so that the members of a group have the same area Ag'
i - o 0ouv 00 Qo000 A
For a total of n groups with areas Agl’ Ag2’ Agr’ an’

let

Q
1
=
~
>
fl

1, a, = AgZ/Agl’ conee 5 O F Agr/Agl soaces

(7.9)

%n T Agn/Agl
Hence, the axial stiffness of member i given in equation (7.8) can
be written in terms of the area of the first group of members as:

= A . b, (7.10)

a; T %y gl i

where the area Ai of member i, which is in group T, is equal to
a._ A Each ratio o has two subscripts, the first i denoting

ir gl’

the member number, and the second r, denoting the group to which

member i belongs.

For a specified deflection in a given direction the design
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equations are written to calculate the area of the member in the

first group. The areas of the other groups are then obtained from

equation (7.9).

7.,4.,1 Calculation of A01

(=3

If the deflection Xj in the direction of X axis is specified,
then equations (7.4), and (7.5) can be used to find the area of
the members in the first group. Equation (7.4) is rewritten in

terms of A and «. as:
gl ir

_ 2
Agl wx?/(air By fpi X5 %yp Py Fpi i Yy (7.11)

> . _ B}
T T T D S PR O LT

When R members are connected to joint j then equation (7.11)

becomes:
A =W [ifR (a. b.22.x. + o, b.2 .m .y. +a b2 .n .z
gl xj/ *i=1 “ir 17p1) ir 1"pi pi’j ir i7pl pi™)
(7.12)
- 2 - L9 .m . - a. b.2_.n_.
0‘irbiﬁpixk 0‘irbljlplmplyk “ir 1lp1np12k)]
Similarly equations (7.6) and (7.7) become:
i=R 2
= m.x. +a, bméfy., +a, . bn .m. .2,
Agl Wy}/igl (airbizplmplxj “ir7i plyj ir i pi pil jJ
(7.13)
- - 2, - o, b.n_.m .Z
h OLil‘bilpimpixk OLil‘bimplyk “iri pi pi K)
and
i=R
= b.g .n .X. + 0. b.m .n_.Y.
Agl wz?/;él (uir 12p1np1 J ir 1 pi pil’)
(7.14)

2

1 -~ ¢, b.m .n_. - o, b.n?.z
“ir inpiZj - 0Liroiﬂpinpixk “ir 1mp1 plyk “ir'i pi k)

+




It should be noticed, that in equations (7.12), (7.13) and
(7.14) the area of the members of the first group A ] camnot be
calculated if joint j is unloaded in the direction of the specified
deflection, However, it is unlikely for a joint to have a critical

deflection in the unloaded direction,

The ratios Gps Oos oesey Oy ceso, O aTE not known in the
first design cycle. For this reason, in this cycle, it is assumed
that G = 0y T eeo F G, = voe =0 = 1. Obviously, this means
that for the first design cycle all the member areas are equal and
the frame is constructed from the same group, The ratios a are

changed in the subsequent design cycles.

7.5 DESIGN PROCEDURE

The design procedure for a pin-jointed space frame is to some
extent similar to that of a steel sway frame, described in section
2.8, This consists of the following steps:

STEP 1 Specify the joint at which the deflection is expected to

be critical,

STEP 2 - Specify the direction (X, Y or Z) and the value of this

deflection,
STEP 3 - Set each a to unity to initiate the first design cycle.
STEP 4 - Assume the area of the members in the first group, and

the deflection of all the joints. Infeasible values for
the deflections such as X5 = yj = Zj = 1 etc., are accep-
table for the purpose of starting the iteration process.
The area AUl could have an infeasible value too, but it
was found zhat convergence 1s achieved more rapidly with
a large Agl’ €ogo 105 mm .

STEP 5 - Using the modified stiffness equations, calculate the joint




STEP 6 -

STEP 7 =

STEP 8 -

STEP 9 -
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displacements for all the joint up to that in which the
deflection is specified,

Using the appropriate design equation, now calculate the
first new value of Agl and hence calculate the new member
areas in all the other groups using equation (7.9).
Continue with the iteration and calculate a new value

for each unknown joint displacement., At this stage all
the modified stiffness equations for all the joints have
been utilized.

Repeat steps 5, 6 and 7 until convergence is achieved.
This happens when (the new value of Agl - the previous
value of Agl)/(the New value of Agl) is less than a
specified tolerance. Notice that the convergence test
could also be applied to the joint displacements. At

this stage of the design procedure the first design

cycle is complete and a new area is provided for each
member. All the joint deflections are also found, Notice
that for this first design cycle all the calculated

member areas have the same value. The member areas and
the joint deflections calculated fully satisfy the
stiffness equations and the design obtained in this

manner is feasible. However, the design process continues
for the following reason:

a) To check that while deflection requirements are
satisfied, the stresses are satisfactory in all the members
b) To achieve economy by altering the ratios between

the areas of the groups.

Check that the deflection of each joint in the frame is

less than that specified in Steps (1) and (2) for a
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given joint, If the maximum deflection appears in a
joint other than the one specified in step 1, then

repeat steps 1 to 8 with the deflection limitation

applied to this new joint,

STEP 10 - Using the joint displacements obtained in steps 8 and 9
calculate the internal forces in the members of the pin
jointed frame. The force P in a member i is expressed
in terms of the displacements of the joints to which
it is connected as

p; = (EAi/Li) (-szpi —yjmpi -zjnpi + Xklpi + ykmpi + anpi)

(7.15)

STEP 11 - Design the member areas to meet the stress requirements,
The design stresses are those given in British Standard
Draft B/20. Notice that two desién stresses are used.
The first is for a member under tension, and the second
is for compression. As a result new areas for the mem-
bers in each group are obtained, and the new ratios for
each group are calculated,

STEP 12 - Repeat the jteration process, 1.e. steps 5, 6 and 7 until
convergence is obtained once again. Notice that when
entering the iteration this time, the current values of
the joint displacements and mgmber areas are employed.
These values are moTre realistic than the initial infea-
sible ones.

STEP 13 - Repeat steps 10 to 12 until the values of Gps Ops oo s

O, o.e, O_ Decome stable. This happens when:
T

{ new value of o - old value of a { < The tolerance
New value of a ‘
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this stage the design is complete. The final design obtained

this manner satisfies:

- The deflection requirement at the critical joint;

- The strength requirement, as the stresses in all the members
are less than or equal to the design stresses;

- Design economy is achieved, as this design satisfies the
deflection requirements, and at the same time the cross
sectional areas of the members are distributed according to
their stress requirements. In this manner the member areas

are distributed more efficiently,

7.6 COMPUTER PROGRAM

A computer program based on the design procedure just described
was written in FORTRAN and run on the ICL 1904S computer. The
program consists of three segments. These are:

1 The MASTER segment: This follows the steps of the design pro-

cedure of Section 7.5,

2 - The subroutine ITERATE. This calculates the area of the
members in the first group and the joint displacements., A
flow-chart of this subroutine is given in Figure 7.2 and it
will be explained in more detail later,

3 -~ The subroutine INTERNAL-FORCES: This calculates the force in
each member using egquation (7.15). A positive force means
that the member is in tension.

The data preparation for this program is described in Appendix

C of this thesis. The data given is similar to that used by the

PAVO ANALYSIS SYSTEM, Space Structures Research Centre, University

of Surrey. Obviously, extra data should be supplied to specify

the joint at which the critical deflection is expected to occur and

the direction of this deflection,




214

7.6.,1 ‘Subroutine Iterate

Figure 7.2 shows a flow chart for this subroutine. This
consists of three loops. The inner loop, starts at level 10 and
counts the number of members, in the structure. The middle loop
starts at level 100 and counts the number of joints; and the out-
side loop starts at level 1000 and countg the number of iterations
NIR needed for each design. The integers I and J are used to count
the members, and the joints as they are handled. M and N are the
total number of members and joints respectively.

For a particular joint J, the contributions to the modified
stiffness equations for each member connected to the joint are cai-.
culated. These are given by equations (7.5), (7.6) and (7.7).

If the deflection at joint J is specified, in one of the direction,
X, Y or Z, then the contributions to the appropriate design equa-
tion for each member connected to that joint are found instead.

The above procedure is carried out for each joint in the space
frame, calculating each joint deflection, and the area of the
members A . in the first group. Several iterations will be needed

gl

to obtain a complete convergence.

7.7 DESIGN EXAMPLE 1 : A SIX MEMBER ISOSTATIC SPACE FRAME

The isostatic pin-jointed space frame shown in Figure 7.3 was
designed by the computer program described above. This frame was
also designed by hand and the results were compared with those
obtained by the program. NO difference between the two results was
observed.

The members were allowed to have any area and were not specifi-

cally grouped. However, for the first design cycle all the member

areas were assumed to be equal, thus oy =Gy T eees T a6 = 1,
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The deflection at joint (1) in the positive y direction was specified
to be 11,11 mm.

Using a small tolerance of 0.001, the area of the members
obtained by the iteration technique was 402,01 mm2° This is accur-
ate to two decimal places. Thirty five iterations were needed to
achieve convergence. The result of each iteration is shown by the
graph in Figure 7.4. The total volume of the frame was
10951853.8 mmsg As a result of this design cycle the joint dis-
placements were also obtained, from which the internal forces in
the members were calculated using equation (7.15). The forces in
the members and the design for the stress requirements are given in
Table 7.1, The design stresscs used  were 0.200 K[\]/mm2 and
0.250 kN/mmzu These values are taken £rom Table 6.2.2/5.5 of the
B/20 draft specification for a slenderness X = 50 and for a
Robertson constant a = 5.5, Table 7.1 also shows the new ratios
of the areas of the members. It can be seen from this that ghe
area of members 2, 3 and 4 have to be increased, while the rest
have to be reduced.

The second design cycle was carried out with these values of
o, and using the iteration technique. A total of only 9 iteration
was sufficient to obtain a new set of member areas. This was equal
to 125.95 mm2 for member 1., Multiplying this value by each a, the
new member areas were calculated., These are given at the bottom of
Table 7.1. The total volume for this design which satisfies both
deflection and stress requirements was 6020203.3 mmsg This is con-
siderably less than the total volume obtained for equal member areas
in the first design cycle.

No further design cycles could be carried out, because the

frame is isostatic and  the member forces are independent of the
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frame stiffness.

7.8 DESIGN EXAMPLE 2 - AN 8 MEMBER HYPERSTATIC

SPACE FRAME

To obtain a hyperstatic space frame, two members (7 and 8)
are added to the structure designed above. Member 7 connects
joint (5) to (1) and member 8 connects joint (6) to (1). The
resulting frame, is shown in Figure 7.5. The dimensions; design
stress, loading and deflection specifications are kept as in
example 1., The frame is used here for an extensive investigation
into the proposed design method., The members are kept ungrouped
and each member is allowed to have a separate area.

At the first design cycle the member areas were assumed to
be equal to each other, For a tolerance of 0.01, fifteen iter-
_ations were needed to obtain the joint displacements and the member
areas. These were found to be equal to 187.61 mmzu

For the subsequent design cycles the a ratios were changed
according to the designs for the stress requirements., The values
of these ratios are given in Table 7.2 for various design cycles.,
This shows that o and o, converge to zero, which means that for
the final design, members 5 and 7 are to be removed from the

structure. Eleven cycles were needed to obtain the final design,

the member areas are given in Table 7.3. This also shows the

total volume of the structure. The change in volume at each design

cycle is represented in Figure 7.6, which shows the reduction in

the total volume of the frame due to the distribution of the member

areas according to the stress requirements. The member areas

needed to satisfy the stress requirements are given in Table 7.4,

From which,

it can be seen that these are less than those needed for
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the deflection requirements. Thus, for the final design the member
areas glven in Table 7.3 should be used. Figure 7.7 shows the

number of iterations per design cycle. This number reduces con-

siderably after the first cycle,

It can be noticed from the above example, that the hyperstatic
space frame specified initially was reduced to its basic isostatic
shape at the final design stage. To ekamine whether this was
accidental or not, the frame was redesigned, but this time with
joint 2 unloaded. All the members and the other loads remain the
same., Again the members were allowed to have any area and no
grouping was imposed. After 12 design cycles the final design
was obtained, in which members 1, 2, 5, 6 and 7 were removed from
the space frame., The remaining members had areas:

A3 = 337.5 mm2; A4 = 198.0 mmz, A8 = 90.1 mm2

The total volume of the structure at the first design cycle was
6726062.7 mms, while at the final design this was reduced to
2930511.0 mms, a reduction of more than 50%.

From the final design obtained above with joint (2) unloaded,
the space frame was also seen to be reduced to its basic isostatic
shape. The members connecting joint (2) to the supports and to
joint (1) need not be constructed to resist the specified Y1 deflec-
tion at joint (1). Furthermore, the final design obtained for the
deflection limitation was found to be satisfactory for the stress

requirements as well. The areas needed to resist the internal forces

are:

2 2
A_ = 250.0 mng A4 = 146.6 mm and A8 = 66.7 mm

b

These are less than those given above for the deflection limitation.
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The same frame with joints 1 and 2 loaded as in Figure 745
was also designed, but this time grouping the members into three
groups, The first contained members 1 and 4, member 2, S and 6
were in group 2, while the third group consisted of members 3, 7
and 8.

In the final design stage none of the members were removed.
The member areas in each group, for the design which satisfied both
deflection and stress requirements, are:

= 196.1 m° A . = 216.8 mn°

2
A . = 107.9 mm ; A
g2 g3

gl
with a volume of 7089646,9 mm3° This is considerably greater

than the design without grouping the members shown in Table 7.3.

7.9 DESIGN EXAMPLE 3 |

The hyperstatic pin-jointed space frames (a), (b) and (c)
shown in Figures (7.8), (7.9) and (7.10) were also designed using
the computer program described in Section 7.6. The space frames
(a), (b) and (c) were made hyperstatic by adding one, two, and
three extra members respectively to their basic isostatic frame.
The joint coordinates, the external applied loads, and the deflec-
tion specifications were kept the same for the three frames.

These are given in Table 7.5 in which joints, 3, 4, 5 and 6 are
the supports. Each of the other joints have three degrees of free-
dom. The deflection at joint (7) in the positive y direction was

specified to be 11.11 mm. The members were not grouped. The

design stresses were taken as in example 1 and 2 above.

The member areas are given in Table 7.6 for the final designs

of the three frames. Although, these areas are calculated to

satisfy deflection requirements it is found that they satisfy stress

requirements as well. In each case member 3 was removed. Member
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10 was also removed from frames (b) and (c) while member 5 was
omitted from frame (c). The members which have to be omitted
from each frame are denoted by asterisks in Table ?aéa

At the final design stage, all the hyperstatic space frames
specified initially were reduced to their basic isostatic shapes.
Table 7.6 gives the volumes for the frames from which it can be
seen that frame (b) has the smallest volume of the three. Curves
I and II in Figure 7.11 show the change of volume of frames (a)
and (b). Curve III in Figure 7.12 shows the same information for

frame (c).

7.10 DESIGN EXAMPLE 4 - A PYRAMID SHAPE SPACE FRAME

The four sided pyramid shape space frame shown in Figure 7.13
was designed next. Members 9 to 14 are in a plane parallel to the
Y-Z plane. The joint coordinates and the external loads are given
in Table 7.7. The deflection of joint (1) at the apex of the
pyramid in +y direction was specified to be equal to 13.33 mm.

The member areas at the final cycle are summarised in Table 7.8,
The first column shows the member numbers the second gives the
area of each member obtained to satisfy deflection requirements,.
Each member has a different area, since members were not grouped.
Columns 3 and 4 of Table 7.8 give the internal forces in the mem-
bers and the member areas obtained by designing for these forces.
The design stresses used were 0.250 kN/mm2 in tension and 0.200

kN/mm2 in compression. These were taken from Table 6.2.2/5.5 of

the B/20 draft specification for A = 50 and a = 5.5, The table

also gives the values of o« at the final design cycle.

It can be seen from Table 7.8 that the member areas needed to

satisfy deflection requirements are larger than those needed for
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stress requirements. Thus, in the final design the member areas

(which are given in the second column of Table 7.8) needed to
satisfy the deflection requirement should be used. Notice that
members 4, 13 and 14 are removed and the final frame is statically

determinate,

At the first design cycle the total volume of the frame was
3 .
4987942 mm~, This was reduced to 3322268 mm3 at the final design,

a reduction of 50,14%,

7.11 DESIGN EXAMPLE 5 - A SPACE FRAME WITH 781 MEMBERS

The practical pin-jointed space frame shown in Figure 7014.has
781 members and 242 joints and was designed using the computer
program described in Section 7.6. In the figure, the structure is
cut by planes parallel to the X-Y and the Y-Z planes to show how
the members are connected. Figure 7.15 shows an XZ section at
level O (i.e. Y = 0). The small circles in the figure represent
the supports. There are 40 supports and each one is prevented
from movement in the X, Y and Z directions. The other joints
have three degrees of freedom each. The distance between two neigh-
bouring joints in XY, ZY or XZ plane is 2000.0 mm., Figure 7.16
shows the top net of members in plane XZ at level y = 2000.0 mm.
Various other sections in the XY and YZ planes are shown in
Figure 7.17. It can be seen that two inclined members are used
at the edge sections, but only one at other sections.

The structure is subjected to a dead load of 10 kN at each

joint and a concentrated imposed load of 140 kN at joint A which

is at the midspan (see figure 7.15), The vertical deflection at

A was limited to 20000/360 = 55,55 mm to satisfy the requirements

specified in the draft code B/20.
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For easy construction, the members are grouped ‘into four

categories as 1s common practice. The first group consists of

all the inclined members, the vertical members are all in group 2
and the horizontal members are in groups 3 and 4, These are shown
in figures 7.15 and 7.16 respectively and are for the members in
the bottom and the top XZ planes.

The frame is to be built of high yield. This has a tensile
design strength of 400 N/mm2 and a compressive design strength
specified in Table 6.2.2/5.5 of B/20 Draft as 304 N/mm2a This
means that the slenderness A of a member should not exceed 50.

Figure 7.18 shows the change of volume of the frame at each
design cycle., Curve (I) shows this change when the frame was
subject only to deflection constraint at A. Curve(II)gives the
same information but with the frame subject to stress constraints.

It can be seen from this figure that, each point on curve (I)
requires larger volume than a point on curve (II), which means
that the deflection requirements govern the design of this frame.
It should be stressed that, although curve (I) was obtained by
imposing the deflection requirements only, the designs obtained
were found satisfactory when stress requirements were checked for
each and every member.

Twelve design cycles were required to obtain a design in which

the ratios a, between the member areas in each group and those in

the first group, became stable. The values of a for each design

cvcle and the area of the members in group (1) are given 1in Table

7.9. A tolerance of 0,005 was adopted.

It can be seen from Figure 7.18 that the frame has the lowest

volume at point C obtained in the second cycle of the design process.
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The member areas and the total volume for this design are given by

the first row of Table 7.10. The corresponding member areas

required to satisfy stress requirements are given in the second
row of this table, These are less than or equal to those required
for deflection requirements. Thus, the design given in the first
row is safe and serviceable,

The same frame was designed, but this time using mild-steel,
For a slenderness ratio X not more than 50, Table 6.2.2/5.5 of
B/20 Draft specifies the tensile and compressive design strengths
for this steel as 250 N/mmz, and 200 N/mm2 respectively.,

Seven design cycles were needed this time to stabilise the
values of a., Table 7.11 shows the change in these ratios for
all the design cycles, This table also gives the area of the
members in the first group.

The change in the volume of the structure at each cycle is
shown in Figure 7.19. Curve (I) shows this change when deflection
constraints were applied, while curve (II) shows it when stress
requirements were applied.

From this figure it can be seen that stress requirements govern
the design in the case. The design with the lowest volume was

again obtained in the second design cycle.

The area of the members at the second cycle are:

2 2 _ 2 2
= . = 7 mm”, A, = 682.2mm , A, = 1158.1 mm
A 497.6 mm ; AgZ 295.7 » Ags !

gl

&

. 7 3
the total volume for this design is 119.2639 x 10" mm~. When the

deflection requirements only were imposed, then the member areas

were:

2 o 2 _ 2 - 2 .
Agl = 411.3 mm Ag2 = 256,3 mm , Ag3 = 596.1 mm ; Ag4 915,5 mm with

total volume of 98,198 X 107 mmso These areas are less than those




given above. Thus, stress requirements govern the design in this
case and the first set of areas should be used to obtain a safe and
serviceable design,

The number of iterations per design cycle is represented in

Figure 7.20 for a tolerance of 0,005.
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(0,3,0)
nenpe ..
.. ) . r joint (2
joint (4) _ 1 (4,3 é))
(0,3,3) 10 KN
T 10 KN
20 KN

(0,0,3)
joint (3)

FIGURE 7.3 6 MEMBER - ISOSTATIC SPACE FRAME
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Member areas obtained in
the first design cycle

A :'A = = = =
im 1 2 7 A4 AS A6 402,01
. P, 23,33 p, = -33,33 p3 = -66,66
Member forces in kN
P, 63,33 P = 14,14 Pg = 16,67
*
Design of the member for A1 93.5 AZ = 166.6 AS = 333.3
stress requirements,
area in mm A 2533 A = 56.6
4 o = 56, A6 = 66,7
al 1.0 a2 = 1,786 Ay = 3,573
The new ratios between
the member areas
u4 2,715 o = 0,606 ag = 0.714
Final design, which Al 125.954 | A, = 225.0 Az = 450,0
satisfy strength and
deflection requirements
area of the members in A4 342,0 A5 = 76.3 A6 = 90.0 °

mm

Total volume obtained
in the first cycle

10951853.8 mm3

Total volume obtained
in the second cycle

6020203.3 mm3

Percentage reduction

81.92%

Table 7.1: 6 MEMBERS ISOSTATIC SPACE FRAME

Various design values

2
% design stress in tcnsum=O.ZSOKN/mm

design  stress 10

compression=0.2 00 KN/mm
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i
i

2 2 2
22,2 mm~ | A, 112,6 mm™ | A 337.4 mm~ | A 197.9 mm2 Total

3 4
volume
A = 180.2 mm° - 2
6 " .2 Tm A7 = 0,0 A8 = 90,5 mm 4,487,498
3

Table 7.3: 8 MEMBER-HYPERSTATIC SPACE FRAME, MEMBER AREAS IN THE FINAL
DESIGN, BOTH STRESS AND DEFLECTION REQUIREMENTS ARE SATISFIED

MembeT Py = -3.301 P, = -16.67 Py = -49.97 | p, = 36,65
forces in Total volume
kN Pg = 0.00 Pg = 33.33 P, = 0.00 Pg = 16.70
Member Al = 16.5 A2 = 83,3 A3 = 249,8 A4 = 146.,6 3
area; in 3,320,001 mm
mm _ _ }
A5 = 0,00 A6 = 133.3 A7 0.0 A8 66.8

Table 7.4: & MEMBER-HYPERSTATIC SPACE FRAME MEMBER FORCES, AND MEMBER
AREAS WHEN ONLY STRESS REQUIREMENTS ARE SATISFIED
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joint (5)
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joint (4)
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joint (3)’»3 joint (7)

joint (1)

FIGURE 7.8 SPACE FRAME (a) ~ MEMBER AND JOINT NUMBERS

joint (5)

joint (2)

joint (4)

/7

Soint ( joint (7)

921
—

W,
joint (1)

FIGURE 7.9 SPACE FRAME (b) - MEMBER AND JOINT NUMBERS




joint (5)

joint (4)

joint (3)

joint (1)

FIGURE 7.10 SPACE FRAME (c) - MEMBER AND JOINT NUMBER

Coordinates in m Loads 1n kN
joint
number
X Y 7 w W
X zZ
1 1.0 0.0 3.0 5.0 5.0
2 4,0 3.0 0.0 10.0 10.0
3 0.0 0.0 3.0 0.0 0.0
4 0.0 3.0 3.0 0.0 0.0
5 0.0 3.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0
7 4.0 0.0 0.0} -10.0 -17.0

Table 7.5: JOINT COORDINATES AND EXTERNAL APPLIED
10ADS FOR FRAMES (a), (b) AND (c) OF

FIGURES (7.8), (7.9) AND (7.10)

joint (2)

2 joint (7)




Member gesign of Design of Design of
number rame (a), | Frame (b),| FPrame (c)
area 1n mm | area in mm | area in mm
1 394.8 393.8 281.3
2 69.5 70,3 140.6
3 0.0* 0.0* 0.0%*
4 33.2 96.7 141.7
5 60,3 59.7 0.0*
6 534.8 534.4 478,2
7 274.1 274.2 274,2
8 67.8 114.8 114.8
9 203.1 105,5 105.5
10 91.1 0.0* 0.0*
11 - 98.4 98.4
12 - - 82.0
Total volume 31 7425600 mn® | 7450113 mn®

in mm?

7564876 mm

* Denote the members which has been removed from the

final design

TABLE 7.6:

FINAL DESIGNS (IN WHICH DEFLECTION AND STRESS
REQUIREMENTS ARE SATISFIED) FOR FRAMES (a),
(b) AND (c) SHOWN IN FIGURES (7.8), (7.9)

AND (7.10)




mnm

Volume x 10

[S]
O3
Q)

17.0
16.810
16.472
16,0/
15.0F
final shape of
frame (b)
14,0
15.0F
12,08
11.0r
final shape
of frame (a)
10 }
curve II for
\ frame (b)
9.0F \
8.0F +—-
curve | .
for frame (a) . /.355
\"“‘“*"'—1——'—%-—-—- 7.426
7~O £ 4 4. 4. A o ) ya -] s & 4
1 23 4 5 6 7 % o 10 11 12 13 14
o : Number of design cycle
FIGURE 7.11 FRAMES (a) AND (b) OF FIGURES 7.8 and 7.9, TOTAL VOLUME

AT EACH DESIGN CYCLE
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Curve (II1)

for frame (c)
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frame (¢)
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1 ) ; % 6 7 8 5 10 11 12
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FIGURE 7.12 FRAME (c) OF FIGURE 7.10 TOTAL VOLUME AT EACH DESIGN

CYCLE
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Toint Coordinates in m Load in kN

number

X Y Z W W W

1 4,001 1.50 |1.50} -30.01{30.0| 5.0
2 2,0 }2.25 12,25 -5,0| 5.01{10.0
3 2.0 12,25 10,75 -5.0{ 5.0/ 5.0
4 2,0 10,75 2,25} -10.0{ 5.0 5.0

5 2,0 10,75 10,75} -5.0| 5,0 5.0

6 0.0 0.0 |3.0 0.0} 0.0} 0.0
7 0.0 [ 0.0 }0.0 0.0} 0.0} 0.0
8 0.0 |3,0 |3.0 0,0 0.0} 0.0
9 0.0 |3.0 {0.0 0.0} 0.0} 0.0

Table 7.7: THE PYRAMID SHAPE SPACE FRAME-JOINT

COORDINATES AND EXTERNAL APPLIED LOADS
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Area needed| Internal Area needed -
Member for deflec-| forces in for stress | Value
number tion requi-{the members requirement | of o
rements mmZ|in kN only in mm?

1 114.4 -19.863 99.3 1.0

2 330,8 -57.536 287.7 2,897

3 65.2 14.148 56,6 0.570

4 0.0* 0.0* 0,0* 0.0*

5 24,2 5.248 21,0 0.211

6 11.7 -2,015 10.1 0.102

7 118.4 -20,612 103.1 1.038

8 85.8 18,674 74,7 0,752

9 55.6 -9,680 48,4 0.487

10 20,0 4,363 17.5 0.176

11 45.8 9,971 39.9 0.402

12 57.2 -9.961 49.8 0.502

13 0.0* 0.0%* 0,0%* 0.0*

14 0,0%* 0,0%* 0,0* 0,0*

15 81,8 -14.201 71,0 0.715

16 276,2 -48.056 240.3 2,420

17 22.1 4,768 19.1 0,192

18 108.1 23,529 94,1 0.948

Total volume |3,322,268 2,888,220
in mm3
Table 7.8: PYRAMID SHAPE SPACE FRAME - DESIGN VALUES AT THE

FINAL CYCLE
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Area of the
members in

a a
1 2 3 % groups (1)
2
1.0 | 1,0 1.0 1.0 653,86

1.0 j0.62287 | 1,44867 | 2,22499 | =~ 411,45
1.0 10.59418 | 1,37098 | 2,79649 389.34
1.0 {0.58592 | 1.30943 | 3.28939 389.96
1.0 j0,577994 1,25918 | 3.84170 361,13
1,0 {0,57470 ) 1,27180 } 4.11295 360,70
1.0 {0.57253 | 1,28253 | 4.38785 342,56
1.0 |0.57471 | 1.28683 | 4.53106 338,89
1.0 {0.57585 | 1.29028 | 4,65067 337,21
1.0 {0.57626 | 1.29236 | 4.75762 333.89

1.0 |0.57652 | 1,29200 | 4.83382 332,47

1.0 {0.57644 | 1,29209 | 4.83555 332,46

Table 7.9: THE 781 MEMBER SPACE-FRAME HIGH YIELD STEEL
~ MEMBER AREAS IN THE FIRST GROUP AND VALUES

OF a FOR EACH DESIGN CYCLE
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Area of the
al a, 0y a, members in

groups (1)

mm2

1.0 1.0 1.0 1.0 653.86
1.0 10,6229 1,4487 2,2250 411.45
1.0 10,5942 1.3710 2.3274 412.34
1.0 10,5861 1.324 2.3925 413,34
1.0 10,5828 1.2916 2.4370 412,77
1.0 } 0.5827 1.2789 2,4575 412,06
1.0 { 0.5822 1.2738 2,4548 411,75

Table 7.11: VALUES OF o FOR THE MILD STEEL SPACE FRAME
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FIGURE 7.19 THE 781 MEMBER SPACE FRAME - MILD STEEL USED. VOLUME
OF THE STRUCTURE AT EACH DESIGN CYCLE




Number of iterations for each design cycle

Tolerance 0.005

THE 781 MEMBERS SPACE FRAME - MILD
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CHAPTER EIGHT
OPTIMUM DESIGN OF RIGIDLY JOINTED STEEL FRAMES

8.1 INTRODUCTION

In Chapter 2, once a design was obtained, an extrapolation
technique was then used to change the beam sections of rigidly
jointed steel frames. Although this is an approximate method for
reducing the material cost of the frame, it was found to be satis-
factory from the practical point of view. 1In this chapter a more
mathematical approach is presented using a classical method of
optimisation by calculus. The constraints involved are all equal-=
ities and the method of Lagrange multipliers (Hadley 1970, and
Majid, 1980) can be used to formulate the design problem. Such an
approach may be more efficient than using linear programming because
in the latter case each equality requires the.introduction of an
artificial variable which is often difficult to remove from the
simplex table (Majid, 1974 and Saka, 1975).

Using the second moment of area of the members as the design
variables, the objective function Z for a minimum weight design may

be expressed as:

M
1

[Hinef]}

I L (8.1)

u
z = £(1) = u u u

where M is the total number of members, Iu is the second moment of
area of member u, which has length Luo If the effectsof the axial
loads in the members are neglected then the number of the stiffness
constraints can be reduced to 2N, where N is the number of joints

in the frame. These constraints are:

g, (X) = b, v =1, ceeens 2N (8.2)
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Each of the above equations represents a row in the stiffness
equations L = K X,
To apply the Langrange multiplier technique (see Chapter 1,

section 1.4) equations (8.2) are first converted to the form:

G, =2, b, =g, (O] v=1, .....,2N (8.3)

where the variable AV 1s known as the Lagrange multiplier., The

constraints GV are then added to the objective function Z to form
F (Y, ) = £I) + ¥ a b -g 0] (8.4)
> vE1 v Py TEy °

F (Y, A) is the unconstrained Lagrangian function which when
minimum, ensures that Z is also minimum, The difference between “
F(Y, A) and £(I) given by (8.1) is that F(Y, A) has more variables
than f(I)., For example F(Y, X) contains the variables I, as well
as the stiffness constrains g, (X) = bv’ and the Lagrange multi-
pliers A. Notice that the turning points of F(Y, X) also include
those of f(I).

To obtain the point of Absolute Minimum for the new uncon-
strained objective function (8.4), its partial derivatives with

respect to each of the M+2N variables are set to zero. Thus:

g
3F of 2N v
F _ = = 1,.00., M 8.5
31 ST " vk v - % v ’ ’ (8.5)
u u
og
SF of 2N oSy _
oF _9r =0, V=1, suee, 2N 8.6
3X ax Vil A v 3 ’ ’ (8.6
v Vv v
SF _
OF _ 4 . X) = 0 V=1, veee, 2N (8.7)
X, v g, (%) =0, ’

These equations are solved iteratively to obtain the unknown second

moments of area I, the joint displacements X and the Lagrangian




254

multipliers A, Notice that equations (8.7) simply state that
bV = gV(X) and are in fact the stiffness equations of the frame.
These were, on their own, used in Chapter 2, to calculate the
joint displacements and the second moments of area of the columns.,
Thus part of the new iteration process is merely a repeat of the
process given in Chapter 2, Some of the equations in (8.6) are
partial derivatives of F with respect to the joint rotations at
the ends of the columns. These give expressions containing the
second moments of area IB of the beams and are thus used to cal-
culate IBo The rest of equations (8.6) and all the equations (8.5)

are used to calculate the unknown wvalues of A,

8.2 A DESIGN EXAMPLE

To explain the use of equations (8.5) to (8.7) they will be

formulated for the frame shown in Figure 8.1 and then used to

demonstrate the steps of the iteration process., The frame was used

in Chapter 2, section 2.4.4 to explain the derivation of the
modified stiffness equations. The stiffness equations L = K X

for this frame were given by equations (2.39)., These are::

- 1 r | | ' 1
f
12ET,  12EI, | 6EI | , | 6EI
q 1+ 1, _ 1 | 0 | 0
3 3 2 * 2
h3 h h | | , h
—— — - . ___:__ U VO
! | |
. 6E1, i4EIl ) 4ET, l_-61312 | 2EL, L
h2 ;"h L/2 ; (L/2)2 : /2~ :
S B B T mm e o
; . . 6EI, :12512 . 12E1, o 6ET,
= P il —
Co@w/2)2 /2y /2y | (L/2%
l
! e
-0 - - - ---, - - - =" ] !
: 2EL, | |4ET, 4EI,! 2EI,
| 0 | +
0 0
: L/2 : IL/2 L/2 : 1/2
A I SR S |
I | o
6ET, : i | GBI, | 2EL, E4EIIA4E12
0 - — R VT2 h L/2
G ! I (L/2F L | /
; ' !

- 4L (8.8)
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P = ~132
X5 X,
Q = 331 | joint (1 L e
AN -
joint (2) ! el L 1 -] /
/ e S - 3 /
! v .8 /
// 1 1 ,/
/ /
. /[ h = 3660 mm
I / ;
I
L 1}
i {
! ”
/ y
TaTTINTTIT 7777‘9777
p L/2 = 4575 mm 4 L/2 = 4575 mn R
r I 71
FIGURE 8.1 SINGLE STOREY - SINGLE BAY FRAME
where rl, T,, T, are the rotations of joints 1, 2 and 3 respectively,
L D
horizontal sway and Yy i1s the vertical sway of joint 1.
the columns and the beam are I1 and
for the steel may be

th

e

1s
of elasticity [

X
The second moment of area for
The modulus

respectively.

Z
4

function

given by:

(8.9)

I,

taken as 207 kN/mm~
problem is to minimise the objective
equations

The
1+ I,L

z £(I) 21,1
1
1e Lagrange multiplier technique the stiffness

the
10) each Lagrange nultiplier has two suffixes.

To apply
and the second

2 or 3,

5.8) are first converted to the form L = S, X or equation (3.10) below.

(n ¢
Q

In equations (S.

denotes the tvpe of deflection
Yis

-

The first denotes the joint number 1,
is either 1 or 2
One specifies a vertical translation (e.g.

suffix, which

(@}

onsidered.
hile two refers to a joint rotation.
should be noficed that, cquations (8.10) are the matrix
To obtain the Lagrangian function F(Y, A)

cquations (8.3).
y row of equations (8.10) is added to the

L s
(3.1} cac!

of equation
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objective function given by equation (8,9), This results in:

. X . 2481,
(Y,2) = 2T} h + T)L o+ )0 (-Q + L x,
. h
6EIl 6ET 6EI
= r, - T)) + A (-0 - 1 X
h2 2 h2 3 22 h2 2
4EI 4E
- — 2" - Ty " ik Yyt i )+ Ay (<P -
h L/2 wn? 'l oy VU
6
-.-—-———-—-EIZ 71'24--2_@.}7 +_6E.:Fg___.r) + A (O+2E12r
Z 371 -
(L/2) (L/2) (L/2)° 3 12 L/z- 2
. 8EI, . 2EI, e A, (0 6EI1 .
L/2 L/2 h‘? <
6EI 2EI 4EI 4EI
+ 2 > yl + 2 rl + 1 r3 + 2 r3) (8.11)
(L/2) L/2 h L/2

The above function includes the turning points of the objec-
tive function Z = f(I) and once minimised we obtain the minimum
Z, To do so, the partial derivatives with respect to each of
the variables are set to zero. These derivatives are given in a
general form by equations (8.5),(8.6)(8.7). Equations (8.5) means
that the derivatives with respect to I should be equal to zero.

Thus:

0.0 (8.12)

9F/31, = 0.0,  3F/3I,

Equations (8.6) gives:

1]

8F/9x, = 0.0, 8F/8r, = 0.0, ap/aYiz 0.0

il

BF/arl 0.0, aF/ar3 = 0,0 (8.12a)




Notice that equations (8,7), for which 3F/3)

= 0,0,

51 = 0.05 9F/2h,,
BF/Bkll = 0,0, BF/Bklz = 0,0 and 8F/8A32 = 0,0, are in fact the
stiffness equations of the frame, These are given by equations
8.8, and they are used on their own in Chapter 2 (equations 2,40,

2,41, 2.43, 2,44 and 2.45) to calculate the joint displacements

and the second moment of area of the columns.

In the above expressions, Xy is a specified constant (e.g.
X, = h/300), and in the case of more than one storey frame the

values of the sway are usually calculated from equation (2,51 )

J o2

section 2.9, However, a relevant Lagrange multiplier XA,, is used,

21

and in this case the derivative of F(Y,A) with respect to x, should -

2
be found (Hadley, 1970) although X, is a constant,

The derivatives given by equation (8.12) and (8.123a) are
calculated below in the same order as in the computer program.
This is the same order in which the equations are solved during
the iteration process.

1) BF/Byl: The differentiation of the function F(Y,A) given by

equation (8.11) with respect to Y1 is:

6EI2 24EI2 6EI2
A —= o+ All - —_ =0,0 (8.13)
(L/2)3

22 (122 5T w2y

The same result could be obtained from the third column of §a in
equations (8,10). This is because, the elements of this column
are all coefficients of Y1 and remain in the derivative of Yo

From equation (8.13), kll which is relevant to Y1 is calculated.

Hence
6ET, 6EL,
- 7-+A32 )
L= 22 (L/2)“ (L/2) (8.14)
11 24ET,

(w23



2) aF/arl: This is obtained from equation (8.11) as:

2EI

- 8EI 281,
12 (g * Agy )

- 2EL
Ao g + A

The above equation can also be obtained from the fourth column

of matrix §a in equations (8,10).

From equations (8.15) xlz which is relevant to the rotation

Ty is calculated. Rearranging equation 8.15 gives:

3) BF/SIlt This is obtained by differentiating the function

given by (8.11), thus:

24E
2h + A (—— x
21 h3
6E
+>\32(—;1—2"X2

2 72 ’7r3)+>‘22(“?

The same equation can be obtained by considering the elements

The coefficients of I

which involve I1 in the matrix §a°

appear when differentiating with respect to Ilo

From the above equation the value of k22 is calculated,

rearranging for A,, gives:

24E

h3

2h + A (

21 x

22
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4) BF/BrB: Differentiating the function F(Y,)) or the fifth

column of matrix §a gives:

 6EI 6ET, 2ET CARI.  4EI
21 2l t A+ A, o sy (g R
h (L/2) /2 L/2

(8.19)

From this equation the value of A_, is calculated, hence, rearran-

32
ging equation (8.19):

: 6EI 6EI 2EI
-2 L 2 oA, —2
-2 2
\ ) 21 h 11 (L/2) 12 L2
32 (8.20)
4EIl 4EI2
B o

5) 8F/8x2: Differentiating the function F(Y,A) with respect to

or the first column in the matrix §a:

X5 s
24EIl 6EIl 6EIi
A - A —_— - A —= 0,0 (8,21)
21 h3 22 h2 32 h2
from which XZl is:
sy 6EI1 . 6EIl
22 hZ 32 h2
AZI: (8.22) -
24ET
1
h3

6) BF/BrZ: This is obtained using equation (8.11) or from the

elements of the second row of matrix s, thus,

6EI 4E1 4E1 6EI 2EI
\ L ke 8 —2 o 2000
- . 727 "1l 2 7 12 T
T (L/2) L/2

(8.23)
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In the design procedure during the iteration process, ‘the wvalues

of A21, A22"A11’vA12 and I1 will be calculated previous to the
use of the above equation, Thus, this equation is used to cal-

culate I2° Rearranging:

6EI
+ A .—_.1_ - A i].i.I_]:.
21 hz 22 N
I, = (8.24)
) 4E \ 6E . 2E
22 LT/2 T "1 T 7 2 /2

8.2,1 Solution of the Derivative Equations by the

Iteration Technique

The modified stiffness equations for the above example were
solved in section 2,7, Table 2.1 gave the value of the joint dis-

placements and I, after convergence was obtained. Using these

1
values a new iteration solves the derivative equations given

by (8.14), (8.16), (8.18), (8.20), (8.22) and (8.24)., This is
assuming (as in section 2.7) that x2/h = 10,17 mm and I, = 2,1345

A A A are set

8 4 e
x 100 mm , The initial values of All’ l12’ 222 Mz0s Ao

to Zero,

The first iteration cycle starts by solving equations (8.14),
and (8.16) respéctivelya These give M1 ® A12 = 0,0. Equations
(8.18) is solved next, which gives Ayy = 2,40962 x 1O6D For the
rest of this cycle the new value of A22 is used for the calculation
of all the other variables., Equations (8.20) and (8.22) gives

N

X"Z = 0,0, and A, = 2.,20480 x 1099 The above values of X are now
o] Z4i
used to calculate the first value for the beam section using equa-

7 4
tion (8.24). This gives I, = 2.92193 x 100 mm . It can be seen

that for the first cycle some of the values of A are zero, but
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these change as the iteration continues. For instance, in the second

cycle we will find that Ap = 2.75600 x 109, Ayy = ~6.02405 x 105,

— 6 rd 6
Aoy = 3,28459 x 107, ASZ = 3.41365 x 10, Ay = 6.12889 x 109,
7 _ 4
and I2 = 1.51731 x 10" mm . The procedure described is repeated
until all the variables converge to stable values . To test this

convergence a tolerance is introduced, and a variable is said to

have become stable if;

lNew value - old value
new value

|< The tolerance

In the next three sections general expressions for the deri-

vative equations will be obtained.

8.3 THE DERVIATIVES OF THE LAGRANGIAN FUNCTION FOR A

GENERAL JOINT IN A FRAME

The derivatives given in equations (8.5) and (8.6) can be
written in a general form for a typical joint j in a frame. To do
this, it is necessary to multiply the contributions of a member, to
the overall stiffness matrix, by the Lagrange variable. Equations
(2,6) gave these contributions for a beam member connecting joint
T at its first end to joint D at its second end, These equations

are altered to:

First end at T Second end at D

RAan b -rd |-ab toad | [y ]
V1 SR A %)
First |-=-o |== = =q=-oof momnm = oo oo
M “Apd | Apge | Appd 1 Ay . (5.25)
end D | |
A .d
Y S LA IR N LIRS V1 p
Second N I .
R |
end D My —AD2d | Asz ADZd I Apo® T,
L 1L | a 4 L
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or E:

In the above equations suffik T, and D refer to the first, and
second end of the member respectively., Each X has two suffikeso
The first denotes the joint number at the end of the member and
the second suffix which 1s either 1 or 2 denotes the type of deflec-
tion being considered. For a beam, one specifies a vertical trans-
lation while two refers to a joint rotation.

It should be noticed that, in equations (8.25) the matrix
Eb is not symmetrical because each row of the original stiffness
matrix is multiplied by a different X. For example, the element
in the first row of §b in equations (8.25) are multiplied by le,
since this row is used to calculate the vertical deflection Y
at the first end of the beam. The eleménts in the second row are
multiplied by xTz, because this row is used to calculate the rota-
tion rTo.

The contributions of a column member to the stiffness equations

{L} = K {X} were given by equation (2.7). These are altered to:

first end at second end at
joint T joint D
- T i : 7 - 1
- d -A..b P -x..d X
ripse | Hr| |Pm1P ! A 11° | ~'T1 T
end —--- ———q = === -—%— —-— =
{
T Mo |mAppd 1 App® Mod LA r.
= ; : (8.26
Second HD —leb ‘ xDld Xle : ADld XD
end — = = = = —- - - — -
D ‘ ‘ \ I e T
My | rp2d M2t *p2d | D2 D
i - L { 4 d - o
l1.e, £.= §c E

7t should be noted, that in equations (8.25) and (8.26)

the derivatives of the load vectors {Vo My cecocseos vy MD} and

Sy X (8,25b)



e A e B Dt e o s i i e R

264

{HT MT osoeotp MD} are zero because they are constants, For this

reason they disappear by differentiation,

The member and joint specifications were stated in section
2,3, where a beam joint was distinguished from a column joint,
In that section, it was also stated that a member is given the
same number as the joint at its first end., 1If a beam joint j is

considered, then three equations are needed to evaluate I., A

jl
and Ajz for this joint. These equations are:
oF oF oF
=0 =0, and =— =0 (8.27)
ol . > dy. g . ’
B Y5 i |

Notice that suffix j refers to a specific joint in the frame and
equations (8.27) from part of the general equations (8.5) and

(8.6) for the frame. For a column joint equations similar to

(8.27) are written, thus

5F 5F 5F
T 0, 5— =0, and =0 (8,28)

. or .
J J J

In the next two sections, expressions are derived for Ij’ Ajl’
and Aj2 as was done for the modified stiffness equations in
section 2.4, For a beam joint the differentiation SF/BIj need not
be calculated. This is because in the design procedure the value

of I for a beam section is specified during a design cycle and

altered only at the end of that cycle.

8.4 THE DERIVATIVES OF THE LAGRANGIAN FUNCTION FOR A

BEAM JOINT

The specifications for a joint in a beam were shown in Figure
2.3 and given in Figure 8.2. The stiffness coefficients bj, dj’

ej and f. for bean Bj’ and bi’ di’ e, and fi for beam B, connected
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to joint j were given by equations (2.10) and (2.11) respectively.

The same notation is used here to obtain 3F/3y. and 3F/3r..
]

a) aF/Byj: The derivative of Lagrangian function F(X, A) with

respect to the vertical deflection yj is obtained from the first

Beam Bi joint Beam Bj

i ‘ j k
FIGURE 8,2 .SPECIFICATIONS FOR A JOINT J IN A BEAM

column of §b in equation (8.25),

The elements

{leb -ATzd —led —ADZd}

of this column are all coefficients of Yr and thus when differen-

tial with respect to Yoo they give:

A.. by = A..d. - A b, - X, .d. =0 8.29
jl 73 j27] k13 k275 : ( )

Notice that the first end of beam Bj is connected to joint j and
its second end is connected to joint k thus when constructing equa-
tion (8.29) f;om the first column of §b we have replaced T by j and
D by k.

Apart from beam Bj’ the beam Bi is also connected to joint j.
For this beam, i replaces T and j replaced D and the elements in

the third column of §b in (8.25), differentiation with respect to

j, give:

“%..b. + x..b. + x..b. + a..d. = 0.0 (8.30)
il i 1271



Adding the contributions of B, and Bj’ given by equations

(8.29) and (8.30)results in the following equation for BF/ayj:

- A - X.,b

9F/3y. = X..b. ~-)x..d. -
/875 = APy Aypdy - 2 k245 7 APy

k1°;
+ AiZdi + Ajlbi + Aj2di = 0 (8.31)
Hence

A.. = (+A..d. + A, _Db. . -
jl ( j27j k175 * AkZdj * Aby Ai2d3

= 255450/ (bs + by) ' (8.32)

Comparing this with equation (2.14) which was used to calculate

yj, it will be noticed that equation (8.32) can in fact be obtained
from (2.14) by replacing each deflection in (2.14) by its corres-
ponding Xx. Thus Akl replaces the vertical deflection Y for joint

k replaces the rotation Ty and so on,

> 2
b) aF/Brj: The derivative of the Lagrangian function F(X, X) with
respect to the rotation rj is obtained as follows:

i) When differentiating with respect to T only the coefficients

of r. in the second column of §b in equation (8.25) remain. All the
other variables are kept constant and thus their coefficients in

equation (8.25) disappear during the differentiation. Thus:

- . f. = 0.0 8,33
Ajldj + AjZej + Akldj + Ak2 ; ( )

ii) The contributions of the beam B, to BF/arj are calculated
from the fourth column of §b in equations (8.25), as joint j is at

the second end of beam Bi’ thus

d, #Ae, = 0.0 8.34
119 7 Mafi T A% et (838
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ii1) The expression for the deriyative aF/arj is obtained by adding

equations (8.33) and (8.34), Thus:

9F/3r. = -« A..d. + )._e. . -
j 719 7 45285 F Mady o Nefy - A (8.35)

*oAofy  Agpdy F A8y = 0.0

Rearranging the above equation to calculate A'Z gives:
J

A = d. - -
2 = Agpdy = Agdy - A

3 + Aildi - X. . f

kaj i271

-Ajldi)/(ej + ei) (8.36)

comparing the above equation with equation (2,17), it is possible
to see that the above equation can be obtained from (2.17) by
replacing each deflection by the relevant Lagrange multiplier,

For example, AX.

i1 replaces yj and Akl replaces Yk and so omn,

8,5 THE DERIVATIVES OF THE LAGRANGIAN FUNCTION FOR A

COLUMN JOINT

The specifications for a general configuration of a column
joint j were shown in Figure 2.5 and repeated in Figure 8.3, in
which two beams B. and Bj and two columns Cm and Cj were connected
to the joint. Their stiffness coefficilents were defined in section
2.4.1. The derivatives BF/BICj, aF/ij and BF/arj are obtained

here using the same notation.

a) For aF/BICj: The derivative of the Lagrangian function F(X,A)
with respect to the second moment of area ch of column Cj is
obtained from equation (8.26). In this equation ch appears in
every element of matrix §C° The coefficients of all the other

variables disappear when differentiating with respect to ch°
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- Thus for column C. with joint j at its first end and n at its
J
"scecond:

e = b...x. - x..d...r. - A..b_ . x
3F/9lcs = Loy * A5 Pei1¥5 T Aideit®s T M1Peirka

1

- X . . . Aood
Mdesith T Ay T A%ty T M2%e e

2 q r A A b.. X
Mofeirtta T MarPeinty T Amdeiny n1”cjl
+ A d .,r -~ X _.d Xoo+ A E A PRITEE
nl Cjln n2 Cjl i nZz Cjl ) nZz Cjln
+ A r = 0,0

e..
n2 Ciln

i quati he te is obtained from differentiating
Tn the above cquation tne term LCj is obte g

i i e i F i e S .. This gives the
the objective function f(I) with respect to ICJ g
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Length LCj of column Cj' Equation (8.37) is rearranged to cal-

culate ki Thus

20

Aoy = [Loi+X

Jz 1("'b

55107031557 9058 5Py 1% g1 )

* A1 (beyrxy - d

« M20ei1%y ~ foynT5dey 1%yt Y/
ey ety deprn i)

b) BF/ij: The derivative of the Lagrangian function F(X,A)

with respect to the sway Xj’ of joint j is obtained as follows:
i) The contributions of the column Cj to BF/ij are calculated

from the first column of the matrix Se given in equations (8.26),

since joint j is at the first end of column Cj and, n is at the

second end,then mequation (8.26) j replaces T and n replaces D,

thus:
51Pc5 7 M2dei T MaiPei T Mn2dc;

ii) Joint j is at the second end of column Cm and replaces D

in equation (8.26) while joint m which is at its first end replaces

T.- This means that the contributions of Cm to BF/axj are given

by the third column of the stiffness matrix, which gives:

3 1Pen * Aodem * leme + szde = 0,0 (8.40)

iii) There are no contributions from the beams Bi and Bj to
BF/Bxi. This is because the axial extensions of these beams are

ignored.

ci1%5 ~ Peji¥n T dgi1Tn) (8.38)

d.. = 0.0 (8.,39)



iv) The expression for aF/axj is thus obtained by adding

equations (8.39) and (8.40). Hence

SF/3x. = A..b.. ~ A..d.. - - i
7T M1 7 M2%5 7 MaaPey T Ma2des  MPem

o 7 (8.41)
* Mmden * A1Pon * Ay2dgy = 040
From the above equation the value of Ajl is calculated. This
gives:
Ao, = Al . . .
jl (+XJZdCJ ¥ >\n1bCJ ¥ An2dCJ * >\m1me
(8.42)

“An2dem = Ay29em)/ By * ey

Once again, the above equation can be obtained from equation (2.20)
by substituting, for each deflection, the relevant Lagrange

multiplier and ignoring the load.

c) BF/arj: The derivative of F(X,A) with respect to the rotation
rj, of joint j is obtained as follows:
i) The contributions of the beams B; and Bj to 8F/8rj are already
derived and were given by equation (8033) and (8.34).
ii) Column Cj contributes to aF/arj by the coefficients of the

second column of the metriX §c in equation (8.26). Hence

) , £
M1des * 2% * Mdes T Mez'c

= 0.0 (8.43)
iii) Joint j is at the second end of column Cpe Hence the fourth

column of matrix S in equations (8.26) gives the contributions of
-

this member to aF/arj, Thus

d 0.0 (8.44)

+ A

- .d. o+ A.,€ =
Amlde meCm ¥ xJl Cm j2 Cm

iv) Adding equations (8.33), (8.34), (8.43) and (8.44) together

gives the final expression for BF/arj as:
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3F/3r. = -A..d. + A..e. -
3 19 7 452% T Aady Aoty - Apd;
+ A, . + A..d. o+ AL e. =x..d._.
1271 7 M1% T 5285 "0 A% Al (8.45)
+ A f .. - A - =
n2'ci ~ *mi%n * Mmefon * A28t Aj28on = 000

. 2
Notice that dj = ~6EIj/Lj, ej = 4EIJ./Lj etc, thus equation (8.45)

contains the second moment of area of the beam Bj and is used to
calculate the value of I for this beam.during one step of the
iteration process. The use of equation (8.45) to calculate IBj

is convenient because, apart from I it contains A(s) and I

Bj’

for the columns and these will be calculated at stages previous

to the use of equation (8.45).
In .equation (8.45) dj = (-6E/L?)Ij which can be written as
, .
d. = I.d., where d., = -6E/L., Similarly e. = I.e.. where e
i % j1 /L 785 7 % i1
= 4E/L. and f. = I.f.. where f.. = 2E/L.. Rearranging equation
/L j o il j1 /L5 ging <q

(8.45), we can calculate IB. as:

J

Ig; = (g = A50f5 = 2559 7 242%0 % M9~ 2%

-Anlde - Anzf(:j * Anden ™ Amefon - Ajlde (8.46)

Moo/ (Ay1dyn * A28t Madin T e fyn)

Equations (8.32), (8.36), (8.38), (8.42) and (8.46) provide the
right number of equations to calculate the Lagrange multipliers
and the optimum values for the second moments of area for the
beams. These are given for a general joint and they are repeated
for the total number of joints in the frame. The iterative tech-

nique, used to solve the modified stiffness equation, is used here

once again to obtain the values of X and IB°




8.6 OUTLINE OF THE DESIGN PROCEDURE

The optimum design for a given frame is obtained by a two
loop iteration. The first loop solves the modified stiffness
equations (2.14), (2.17), (2.26), and (2.38) given in Chapter 2,
section 2.4, The second iteration loop solves the derivative
equations given above. The procedure is summarised in the flow-
chart shown in Fig 8.4 and a step by step approach would be as
follows:
STEP 1 - Select a set of lower bounds for the beam sections., This
is decided by preventing the failure of each beam under vertical
loads by the development of a beam mechanism. Under combined
vertical and wind loads a beam section is not allowed to be smaller
than its lower bound.
STEP 2 - Specify the horizontal deflection at each storey level,
An equation for calculating this is given in section 2.9,
STEP 3 - Define the ratio of an internal to external column for the
second moment of area as in equation (2.33).
STEP 4 - Select an initial set of beam sections using one of the
methods given in section 2.5,
STEP 5 - Set the values of the Lagrange multipliers for each joint
to zero.
STEP 6 - Solve the modified stiffness equations (2.14), (2.17),
(2.26) and (2.38) by iteration to obtain the values of the unknown
sectional property I of the columns and the unknown joint displace-
ments. The method of solving the modified stiffness equations
was explained in sections 2.6 and 2.7. Notice that the solution
is carried out until convergence is fully achieved.
STEP 7 - Using these values of deflections and column sections,

calculate the Lagrange multiplier for each beam joint from equations

(8.32) and (8.36).
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STEP 8 - Calculate the Lagrange multipliers for a column joint
using equations (8.38) and (8.42),

STEP 9 - Calculate the second moment of area IB from equation
(8.46) for each beam associated with its corresponding column. in
step (8).

STEP 10 - Repeat steps (8) and (9) for all the column joints until
all the derivative equations are used up.

STEP 11 - Repeat steps 7 to 10 until convergence is achieved., At
this stage a new set of beam sections becomes available.,

STEP 12 - With the new beam sections repeat steps 5 to 11 until

no reduction in any beam section is possible, No beam section is
allowed to reduce below its lower bound imposed by vertical loading
conditions,

It is possible to solve the modified stiffness equations as
well as the derivative equations in one iteration loop. In this
case for any iteration cycle, the joint displacements are calcul-
ated first, followed by the calculation of the Lagrange multipliers
and then IB for the beam section, This process is repeated until
coﬁvergence is achieved for the total number of the unknowns,
However, the procedure of solving all the equations at one go was

found to be inefficient, as it increases the number of unknowns to

be calculated at one time.

8.7 THE COMPUTER PROGRAM

A computer program was written for the optimum design of
rigidly jointed plane frames which makes use of the design pro-
cedure described in the previous section. The program consists of
three segments. These are:

1 - The MASTER segment; this follows the optimum design flow-chart

given in Figure 8.4.
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2 - The subroutine ITERATE: as was given in Chapter 4,
3 - The subroutine OPTIMUM: This calculates the Lagrange multi-
pliers and the optimum, values for the second moments of area of
the beam sections, making use of the derivative equations, The
flow-chart of this subroutine is similar to that of ITERATE.
Except that for the subroutine OPTIMUM the contributions of a
member to the derivative equations are calculated at each iter-
ation cycle instead of the contributions to the modified stiffness
equations,

The input data to this program is exactly the same as for

the design of steel frame given in Appendix A of this thesis.,

8.8 DESIGN EXAMPLE 1 ~ A FOUR STOREY SINGLE BAY FRAME

The four storey single bay frame which was shown in Figure
2,10a is designed here using the computer program described above,
This frame was designed in section 2,11.1 using the linear
extrapolation technique and the final reduced cost design was
shown in Figure 2.18. The optimum design for this frame obtained
by Saka (1975) using a programming type of optimisation was given
in Figure 2.19.

Using the classical type of optimisation as described in
this chapter the second moment of area for each member is shown in
Figure 8.5, To calculate the weight of the frame the length L of
each member is multiplied by the second moment of area I, and the
sum £IL is calculated., It was found that IIL for the design with
classic optimisation 1s 10894Ox1013 mms, while for the optimum
design by Saka this was 1.,88353(1013 mm5 with a difference of 0,55%.,

This small difference may be due to the fact that Saka's objective

function minimised the actual volume IAL and not ZIL,
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Five design cycles were needed to obtain the final optimum
design, and the Lagrange multipliers for each joint at the final
design are given in Table 8.1. The reduction in the sum IIL for
each design cycle is represented in Figure 8.6, This shows that
the biggest reduction occurs at the second design cycle, where
the Lagrange multipler are first used. Table 8.2 shows the
number of iterations per each design cycle for both the stiffness
and the derivative iteration techniques.

The sum ZIL for the reduced weight design which was shown in
Figure 2,18 was 10903x1013 mm5 with an increase of 0,48% over the
optimum. This difference is small and for this reason the economy
by using the linear extrapolation technique may be sufficient for
practical purposes.

The computer time used for obtaining the classical optimum
design was 63 seconds. The time needed for the optimum design
by Saka was 467 seconds which is more than seven times that of the

present method.

8,9 DESIGN EXAMPLE 2 - A FOUR STOREY - TWO EQUAL BAY FRAME

The four storey two bay frame shown in Figure 8.7 was designed
using the computer program described in section 8.7. The height
of each storey and the wind load at each storey level is similar to
that of the four storey single bay frame designed above. The
sway deflections used here are shown beside the frame in Figure
8.7. These were obtained using the procedure described in
section 2,9 with a = 1/300.

Six design cycles were needed to obtain the optimum design
shown in Figure 8.8, in which the second moment of area for each
member is given. The initial ] values for the beam sections were

taken all equal to 111673 cm4° The sum LIL for each design cycle
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is shown in Figure 8.9, This shows that the biggest reduction
is obtained at the second design cycle, in which the Lagrange
multipliers are first introduced. For the optimum design shown
in Figure 8.5 all the bean sections are reduced to those needed
by the beam mechanism type of collapse. No further reduction in
the beam sections is allowed as this violates the strength require-
ments for vertical loading.

The same frame was designed by the method used in Chapter 2,
in which the linear extrapolation technique was used to reduce
the cost of the frame material. The initial I values for all
beam sections were taken equal to 111673 cm4, which are similar to
those of the initial values for the optimum design. The reduced
cost design obtained, is shown in Figure 8,10. The total IIL for

this design was 2.0065x1013 mm5 which is 5,68% more than the

optimum of 1.8955x103 mms.

8.10 DESIGN EXAMPLE 3 - FOUR STOREY TWO UNEQUAL - BAY FRAME

The four storey two unequal bay frame shown in Figure 8.11 was
first designed by the optimum design computer program described in
section 8.7, and then by the method used in Chapter 2, The reason
for this is to provide a comparison of the two designs. The height
of each storey and the deflection profile used here was the same
as those used for the two equal-bay frames dealt with above. Both
designs (the optimum and of Chapter 2) start by assuming the same
initial set of beam sections, and a high I value of 111673 cm4q

The optimum design for the frame is shown in Figure 8.12 for
which £IL = 1053012x1013 mmsg Five design cycles were needed to

13 5 .
reduce IIL from its initial value of 7.38128x10 mm~ to 1ts

optimum value, Some of the beam sections are reduced to those needed

by the beam mechanism type of collapse, and marked by asterisks in



Figure 8.12, The reduction in IIL per design cycle is shown in

Figure 8.13,

The design by the method proposed in Chapter 2 is shown in
Figure 8.14, for which IIL = 1.63879x10'° mm> with an increase
of 7.10%. However, it should be noticed that in this design the

beam section at each storey is continuous over the two spans,

which may reduce the erection cost of the frame.
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joint M AZW joint HAI
number xlO1O x10” | number | x1010 x107
1 7.713 12,157 7 2.929 1 0.885
2 1,399 | 0,735 8 1.798 | 2,345
3 4,438 1 1,798 9 7.373 1 5,534
4 10,717 | 3,217 10 0,994 ;7 1.602
5 0.148 { 0.741 11 9,353 {11,121
6 16,671 | 8,188 12 2,068 1,710

TABLE 8.1 THE 4 STOREY-SINGLE BAY FRAME LAGRANGE

MULTIPLIERS FOR EACH JOINT IN THE FRAME

Cycle | Cycle | Cycle | Cycle | Cycle

1 2 3 4 5
Number of iterations
for modified 12 9 9 10 10
stiffness equations
Number of iterations
for derviatives 28 16 11 14 14
equations

TARLE 8.2 THE 4 STOREY-SINGLE BAY FRAME NUMBER OF ITERATIONS

PER DESIGN CYCLE

280



281

)
‘.).'.'ILxlO'l~ mm5

46

> 18.9400

Number of design cycle

6

18
| 5

16 -
STOREY SIMNGLE BAY FRAME ZIL IN EACH DESIGN CYCLE

FIGURE 8.6 THE 4




16
KN

(O3]
[§S]

=
o0

Ut
3]

23
Z.

0
DL

KN

joint number is enclosed in bracket

282

Sway deflections
imposed with

FIGURE

132KN 132KN
’ l 32KN a = 1/300
-1—47.99 mm
(18) (7) (19) (8) (20)
llSZKN 11321@.\1
33.79 mm
(15) (5) (16) (6) (17)
e
=
132KN 132KN =
i l :
v
A 23.59 mm
(12) (3) (13) (4) (14 5
5
>
o
3
L32KN 132KN 2
l l -
: 11,39 mm
(9) (1) (10) (2) (11)
7T T w7 ——
| 4575 mm 4575 mm 4575 mm %14575 mm X

8.7

A 4 STOREY -

2 EQUAL BAY FRAME DIMENSIONS AND LOADS



Second moments of area in cm4

283

21345 21345
808 1616 808
21345 21345
3628 7255 3628
21345 21345
10186 20372 10186
21345 21345
8127 16254 3127
i auunarg s
STL = 1.8955x1013 mm#
FIGURE 8.8 OPTIMUM DESIGN OF THE FRAME USING CLASSICAL

OPTIMISATION



88L

84

80

761

68F¢

64

60t

12 5
rILx10 mm

%

9150 mm

18.9548

A 4 STOREY

EQUAL BAY FRAME

ZIL PER DESIGN CYCLE




285

second moment of area in cm4
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CHAPTER NINE
SUGGESTIONS FOR FURTHER WORK

The direct design method for deflection limitations presented
in Chapter 2 to 5 1s successful in designing multistorey steel
frames in which limitations are imposed on their sway., The frames
designed by this method proved to satisfy the strength requirements
of the proposed new code, In fact, the design examples of Chapter
5 show that the frames designed to deflection requirement remain
elastic under factorised combined loading, when a non-linear elastic
plastic analysis is carried out,

It was found that many existing design methods for sway framés
which satisfy strength requirements first prove to produce sections
which do not reduce the storey sway to'acceptable limits. This
indicate that it is more realistic and advantageous to initiate
the design activity by satisfying the sway requirements first.

Formulation of the design problem using the modified stiffness
equation enables the structure to be considered in its entirety,
without considering each storey individually as in the existing
design methods (Moy, 1974), (Anderson and Islam, 1979). Hence
it was possible to obtain an exact design without the need for
simplifying assumptions, such as the insertion of points of con-
traflexure at midpoints of the members. The introduction of the
axial load effect into the design method was made possible using
stability functions,

The iteration technique used for solving the non-linear modi-
fied stiffness equations was found to be effective., Hitherto this
technique has been used only to solve sets of linear equations, but

it is shown that it may successfully be applied to the solution
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of non-linear equations. In all the design eiamples solved by this
technique convergence was always obtained. However, experience
showed that it is difficult to achieve convergence if the iteration
process is started with a set of infeasible beam sections,

In this proposed design procedure, the list of universal
Beam and column sections included only those with the most econo-
mical second moment of area/cost ratios. However, if it is
required to restrict the depth of a member, it may be necessary to
select a section that is not among this 'economical' list, 1In
this case it is necessary to alter the list accordingly. UB and
UC are selected for the beams and the columns respectively, but
the use of UB sections for some column members may sometimes be
found economical.

The computer program is written for the design of fixed base
frames. Although most of the multistorey frames in practice are
designed as such, the program can be modified to include pinned
base frames. Such modifications can be easily done by changing
the modified stiffness equations to allow for a hinge rotation at
the base of the frame.

The computer time needed for the direct design of the frame
to deflection limitations is relatively small. The time consumed
to obtain the final design for a frame, including the time for
checking the strength requirements, is only twice that needed for
a single direct analysis of solving the stiffness equations L =
K X directly. However, for larger frames i,e. those with more

than 24 storeys, the design time does increase and this is expected

in such frames.

The computer storage requirements of the design method proved

£o0 be so small that it is in fact possible to.use the method to
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design many smaller frames on programable pocket calculators. In
fact, many of the frames designed in this thesis were obtained by
desk~-top computers using the basic language. This is an important
advantage of the method and is achieved because the modified stiff-
ness equations of only one joint 1is operated upon at any given
stage of the iteration,

The proposed method was also applied successfully to design
reinforced concrete sway frames. It was shown, in Chapter 6, that
the limitations on sway deflections govern the design of some of
the beams and columns in a frame, The examples show that for
taller frames, the sway deflections of a frame become more and
more demanding.

When designing reinforced concrete frames for deflection
limitation, the second moment of area of a cracked rectangular
beam was considered to be constant along the length of the member.
The proposed method is therefore only approximate in this respect
as the sagging part of the beam acts as a T-beam. However, it
is difficult to select a unique second moment of area which represents
the member accurately throughout its length,

In Chapter 7, the proposed method was extended to design
pin-jointed space frames also to satisfy deflection limitation
first., For this .. category of structures, it was found that with
high yield steel the design is also governed by deflection limit-
ations rather than strength constraints. In fact, the author
carried out a comparison of prices and found that the large space
frame in example 5 of Chapter 7, is marginally cheaper when
manufactured out of high yield steel than mild steel. In this
practical type frame, it was found that only after one cycle of

design the weight of the frame was reduced to a minimum. Further
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redistribution of the material throughout the frame and in accord-
ance to strength requirements did not prove to be profitable. In
fact, this realistic example showed that the strength requirements
of the code played no significant part in selecting the member
areas, These latter requirements were merely used in the second
cycle to alter member sizes (i.e. the values of a), but in the
resulting minimum weight design the deflection requirements proved
to dictate the member sizes.

In many small hyperstatic space frames it was found that the
final design is always statically determinant. This may cause
misleading conclusions as the structures designed were small and -
grouping members together prevents such an outcome.

In the present computer program, for the design of pin-jointed
space frames, the deflection was specified at one joint (e.g. at
mid span) and the corresponding modified stiffness equations were
used to calculate the member areas in the first group. Those
of other groups were calculated by proportion. It is therefore
suggested that the program is modified to specify the deflections
in more than one joint., In that case, proportioning the members
using stress requirements may become unnecessary. The problem
arises as to what deflections should be used for these other joints
and further research is needed in this field.

In Chapter 2 to 5 a linear extraploation technique was used
to change the beam sections of rigidly jointed steel frames.
Although this was found to be satisfactory from a practical point
of view, the final design is dependent on the initial beam sections.,
It was however, found that these initial sections are difficult to
be specified satisfactorily by a simple method. Further more, a

given assumed set of initial sections can only be improved by the



extrapolation method without ever obtaining the optimum design.

This is inspite of the fact that the examples solved gave near

optimum designs. However, the Lagrange multiplier method, applied

in Chapter 8, overcame this problem and gives the optimum set of

beam sections without the need of starting the procedure from any

particular set of sections.

In this method of optimisation, the iteration technique

was used successfully to solve the derivative equations. The aim

was to
of the
to use
weight

of the

reduce the sum, (for all the frame members), of the product
second moment of area and length. It is therefore proposed
the method of Lagrange multiplier to optimise the actual

of the structure. Such an effort may improve the accuracy

method but can also lead to mathematical complications.
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APPENDIX A

DATA PREPARATION

THE DESIGN OF STEEL FRAMES

data for the frame shown in Figure Al are given below as

€,

.......

One

(1)
Al, this

(2)

2 for the

card containing:

The highest joint number; For the frame shown in Figure
is equal to 6.

Total number of joints in the beams (this is equal to
frame in Figure Al),

The yield stress for the steel used in KN/mm2 (0.250)
The load factor for vertical loading (1.75)

Modulus of elasticity in KN/mm2 (207)

Tolerance (0.001)

1/a for Anderson and Islam's preliminary design (400)
1/a allowed in the code (300)

The load factor for combined loading (1.29)

- joints Data (1 card per joint)

The data

specification of a beam-joint was given in Section 2.3,

for beam-joints 1 and 2 of the frame shown in Figure Al

would appear as follows:

joint (1)

joint (2)

: 1 4575. 4 3 -132.0 0.0

2 4575 6 5 -132.0 0.0

The data refers to the following:

| (1
(2)

The joint number j e.g. (1) for first joint

The length of beam Bj in mm (4575.)
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(}) The joint numher following joint J (which is 4 for beam:1).
(4) The joint number preceding Bi (which is 3 for joint 1)
(5) The vertical load acting at joint j in KN (~132,0)

(6) The externally applied moment on joint j in KN/mm (0.0)

¢ - -Column-joints Data (2 cards per joint)

The specification of a column-joint was given in section 2,3,
The data is punched on two cards, For example, the data for joint

3 of the frame of Figure Al would appear as follows:

first card 3 1 0] 0 5 10.17 3 4

second card 3 4575, 3660, . 16,0 0,0 0.0

The First Card contains the following information:

(1) The joint number j (e.g. 3)

(2) The joint number at the second end of beam Bj (which is
1 for joint 3)

(3) The joint number at the first end of beam Bi (which is O
for joint 3, because Bi does not eiist)

(4) The joint number at the second end of column Cj (which is
0 for joint 3, because Cj is fixed at its second end)

(5) The joint number at the first end of Column C, (which is
5 for joint 3)

A(6) The sway of the joint in mm (10.17)

(7) The number of the extreme left joint of the storey of j (3)

(8) The number of the extreme right joint of the storey of j (4)

The Second Card, which follows the first one, contains:

(1) The joint number (e.g. 3)
(2) The length of beam Bj in mm (4575.0)

(3) The length of column Cj in rm (3660.0)
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(4) The external horizontal load applied at joint j in KN (16.0)
5) The external yertical load applied at joint j in KN (0.0)

(6) The external applied moment on joint j in KN.mm (0,0)

Notice that a joint is given a number zero if it does not
exist, or if it is fiked to a support. For example, for joint 3
the joint number at the first end of beam B is zero; because
there is no beam Bio Also the joint number at the second end of
éolumn Cj is zero, because this end is fixed to the ground! The
rest of the data for joints 4, 5 and 6 of the frame shown in Figure

Al is given in Table Al.

.. Card 1: | 4 0 1 0 6 10.17 3 4
joint ,
4 Card 2: } 4 0.0 3660, 16.0 0.0 0.0 -
Card 1: |5 2 0 3 0 20,33 5 6
joint '
5
Card 2: |5 4575, 3660, 8.0 0.0 0.0
Card 1: |6 0 2 4 0 23,33 5 6
joint ‘
6 Card 2: {6 0.0 3660.0 8.0 0.0 0.0

TABLE Al DATA FOR COLUMN-JOINTS 4, 5 AND 6 OF THE FRAME OF
FIGURE Al

d - Frame Data (two cards)

The first card contains the number of storeys and the number
of bays in the frame. The second card contains the length of each
bay in mm starting from the left bay. For the frame shown in Fig--

ure Al these two cards are: 2 and 1 on the first card and 9150 on

the second.
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132 KN
16 KN
& » b
& ©, ®
T 1
32 KN 132 KN
> P b
©, ® ®
‘i ez 77777
0 4575 mm 4575 mm 0
o
< QISO:%n

FTIGURE Al

EXAMPLE ON DATA INPUT FOR THE STEEL DESIGN PROGRAM
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DATA FOR THE CONCRETE PROGRAM
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Tt is obvious that the steel universal column and beams are

not used as data for concrete program.

properties of the concrete sections are used,

Instead some of the sectional

These properties dif-

fer from one frame to another and should be given for each individual

frame,

(i) Beam Sections Data:

The data consists of:

the following

1)
2)
3)
4)
5)

6)

The

The

The

(ii) Column

joint number j

(One card per section)

.
3

information,

width of the section b;

cover of the tensile steel d';

cover of the compression steel Gj;

flange depth h,. for a T-beam sectilon;

width of the flange B

Sections Data:

provides three numbers.

1)

2)

3)

The width of a column is not given as data because this is

The

joint number.

f

£

(One card per section).

These are:

for a T-beam section.

Each card

The cover (of the tensile and compression steel).

The percentage of reinforcement (IOOASC/bh) assumed to

resist the sway of the column.
equal to 1 at the top storey and increases gradually at

the lower storeys.

taken to be equal to the width of the beam,

Each card contains

This percentage is taken
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APPENDIX C
DATA PREPARATION

THE DESIGN OF PIN-JOINTED SPACE FRAMES

The data for the frame shown in Figure Cl are given below
as an example, (this frame was shown in Figure 7.3 and designed in
section 7.7).

a - Preliminary Data

One card containing:

(1) Total number of members in the frame (this is equal to six for
the frame in Figure Cl),

(2) Total number of joints including supports. For the frame shown
this is equal to six.

(3) Total number of supports (equal to four for the frame).

(4) Total number of joints at which deflection is specified. This
is equal to one.

(5) Modulus of elasticity in KN/mmZo (200)

(6) Design stress for members in tension in KN/mm2o (0.250)

(7) Design stress for members in compression in KN/mmza (0.200)

(8) Tolerance. (0.001)

(9) Total number of groups. (For the frame in Figure Cl this is
equal to six, as members were not grouped in this example).

b - Section Data (one card per group)

Each card contains the group number and the member areas for
the group in mm2 e.g. for the first group the card appears as
follows:

1 100
If the ratios between the member areas in the groups are to be

taken initially as equal to one, then the area of the members in



joint (5)
(0,3,0)

joint (4) -7 joint (2)
(0,3,3) - (4.3,0)
= 10KN
% 10KN
ZOKN
i
{
[}
{
i
i
i
-’:J

-

FIGURE C1 6 MEMBERS - ISOSTATIC SPACE FRAME

the remaining groups should be initially set to 100. Thus

2 100
3 100
4 100
5 100
6 100

¢ - Member Data (one card per member)

The data for member 1 of the frame of Fig. Cl1 would appear

as follows:

the data refers to the following:

(1}  the member number e.g. (1) for first member

(2} the joint number at the first end (which is 5 for member 1)

(31 the joint number at the second end (which is 2 for member 1)

) the number of the group in which the member belongs (e.g. 1).
2, 3, 4, 5 and 6 of the frame,

The remainine data fro members 2, o,

. . . . . C .
shown 1n Figure Cl, are given 1n Table Cl.
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Member 2 , 2 4 2 2

Member

(93]
(O3]
N
—
(O3]

Member 4 4 3 1 4
Member 5 5 1 2 5
Member 6 6 6 2 6

TABLE C1 DATA FOR MEMBERS 2, 3, 4, 5, AND 6 OF THE FRAME
OF FIGURE Cl

d -~ Joint Data (one card per joint)

The data for joint 1 of the frame of Figure Cl would appear
as follows:
1 4000 0 3000 10.0 30,0 10.0
the data refers to the following:
(1) the joint number (e.g. 1)
(2) the joint coordinate X in mm (4000)
(3) the joint coordinate Y in mm (0)
(4) the joint coordinate Z in mm (3000)
(5) the externally applied load to the joint in the X direction in
in KN (10.0)
(6) The externally applied load to the joint in the Y direction in
KN (30.0)
(7) the externally applied load to the joint in the Z direction in
KN (10.0)
The rest of the data for joints 2, 3, 4, 5 and 6 of the frame,

shown in Figure Cl, are given in Table CZ.
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joint 2 | 4000 3000 0 10,0 20.0 10.0
joint 3 0 0 3000 0.0 0.0 o;o_
" joint 4 0 3000 3000 0.0 0.0 0.0
joint 5 0 3000 0 0.0 0.0 0.0
joint & 0 0 0 0.0 0.0 0.0

TABLE C2 DATA FOR JOINTS 2, 3, 4, 5 AND 6 OF THE FRAME
OF FIGURE C1

e - Restraint Data (one card per support)

Each c¢ard contains:

(1) The number of the joint which is restrained in some way

(2) Degree of freedom in X, Y and Z directions. (one if the.
joint is constrained in this direction and O if it is not),
For the frame shown in Figure Cl joints 3, 4, 5 and 6 are

restrained in the X, Y and Z directions, thus the data for these

joints are:

N U1 B~
=
=
==

f - Deflection specification (only for the joints at which deflection
is specified - one card per each such
joint)

For the frame of Figure Cl there is only one card. This would
appear as:
1 0.0 11.11 0.0 0 1 0
The above data refers to the following:

(1) The joint number at which deflection is specified,



(2]
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Deflections x, y and z for this joint (the value of the
specified deflection in mm, or 0,0 if the deflection in the
corresponding direction is not specified).

Direction specification X, Y or Z (1 for the specified direc-

tion and O for the rest).
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