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This study is concerned with gravity field recovery from low-low satellite to
satellite range rate data. An improvement over a coplanar mission is predicted in
the errors associated with certain parts of the geopotential by the separation of
the orbital planes of the two satellites.

Using Hill’s equations an analytical scheme to model the range rate residuals is
develorped. It is flexible enough to model equally well the residuals between pairs of
satellites in the same orbital plane or whose planes are separated in right ascension.
The possible benefits of such an orientation to gravity field recovery from range
rate data can therefore be analysed, and this is done by means of an extensive
error analysis. The results of this analysis show that for an optimal planar mission
improvements can be made by separating the satellites in right ascension.

Gravity field recoveries are performed in order to verify and gauge the limi-
tations of the analytical model, and to support the results of the error analysis.
Finally the possible problem of the differential decay rates of two satellites due to

the diurnal bulge are evaluated.
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Chapter 1

Introduction

The Earth’s gravity field has long been measured but the technology necessary
for it’s accurate global determination has only existed since the launch of arti-
ficial gatellites. The motions of these satellites first provided information about
the general shape of the geoid, or equipotential gravity surface, on a global scale;
ie the ellipicity of the Earth, the low zonal harmonics (King-Hele, 1983). More
accurate measurements of the satellite orbits produced further more detailed infor-
mation, for example measurements of lumped harmonics from satellites in resonant
orbits (King-Hele, 1981) and with the addition of data from more satellites the de-
termination of individual coefficients within these lumped harmonics (King-Hele
and Walker, 1985), but even today the full benefits our technology could afford us
are not being realised.

Knowledge of the geoid is of considerable importance to earth scientists and
oceanographers in the formation of models to understand and explain the physical
processes that we experience on Earth. For example measurements of gravity
indicate a correlation between geoidal highs and lows and areas of high geophysical
activity. This suggests that such measurements provide less information about

crustal elevations and more about the internal physical processes that determine
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them (Stacy, 1977).

The fluidity of the oceans means that sea surface elevation reflects more ac-
curately the nature of the equipotential surface. Using the sea surface as a geoid
however disregards the important effects on the sea surface of ocean circulation.
The ocean circulation is the dominant mode of heat transfer on earth and there-
fore of crucial importance to the climate system (Harries, 1990). By measuring
the geoid, the effects of the currents on the sea surface can be isolated.

This thesis is concerned with the determination of the Earth’s gravity field from
space using satellite motions. Measuring the velocity or acceleration instead of the
position of a satellite is beneficial because it improves the accuracy of recovery
of more detailed gravity information, as does differencing the motions of nearby
masses. Modern proposals for gravity missions such as Gradiometery (Rummel
and Colombo, 1985), (CIGAR, 1995) and satellite to satellite tracking make use
of these principles to measure high frequency gravity signal.

Several Satellite to Satellite Tracking (SST) missions have been proposed over
the last twenty years eg (Keating T., 1986) and (Frey, 1993). To measure the
gravity field to high resolution using this technique it is best that the satellites
occupy low orbits and track each other continuously. The high-low variant is not
as sensitive to the short wavelength features but has been proposed as a compli-
mentary aspect of a gradiometer mission in (CIGAR, 1995) where the gradiometric
satellite is tracked by the GPS network, thereby providing a full spectrum of the
potential signal.

Both the range and the range rate have been suggested as the raw measure-
ments for SST missions. The earlier proposals were to have used a doppler system
to measure range rate but more recently eg in (Frey, 1993) a laser ranging system
has been preferred. In the latter case the more useful range rate can be used as
the observation by differencing range measurements in time.

In this work the satellites are assumed to be in orbits of the same or similar
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heights so that they can track each other continuously and the observation used
in the mathematical model is the range rate.

The thesis begins in chapter 2 with a general discussion of the gravity field
and the principles of its recovery. Chapters 3 and 4 contain a description of the
analytical model that has been developed in order to describe the case where the
only restriction to the mission is that the satellites share the same mean motion
and rate of change of their ascending node. This model allows the possibility that
the spacecraft are in different orbital planes, separated in right ascension but with
the same inclination. The effect of this on the recovery procedure, as well as that
of height, inclination and separation are examined in detail in chapter 5 by means
of an error analysis. Once an ideal mission scenario has been established, limited
recoveries are performed in chapter 6 in order to verify the results of chapter 5.

More longitudinal information is present in the signal and therefore east-west
variations in gravity are more accurately determined from separation of the orbital
planes. Any problems in maintaining the along track separation between the satel-
lites is significant. One such problem could be the differential decay rates these
satellites suffer due to longitude dependent surface forces, in particular air drag.
In chapter 7 these effects are analysed and in particular the effect of the diurnal

bulge on the satellites is discussed to gauge the significance of the problem.
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Chapter 2

Principles of Gravity Recovery

2.1 The Earth’s Gravity Field

To a first approximation the effect of the Earth on an external mass such as an
artificial satellite is that of a homogeneous sphere of mass Mg, Hence the force of
attraction between these bodies is given by Newton’s universal law of gravitation,
namely

mMeg

F=G=32,

(2.1.1)

where the satellite has mass m, the distance between the geocentre and the centre
of mass of the satellite is 7 and G is the gravitational constant. Combined with
Newton’s second law of motion (2.1.1) gives the magnitude of the acceleration of
the satellite in this direction ( relative to an inertial reference frame ) as
a = G—
w £ (2.1.2)
This acceleration can also be expressed as the gradient of a scalar potential

which s dependent only on the position of the satellite relative to the Earth,
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where in spherical approximation
V= g (2.1.4)

The Earth however is a non spherical, non homogeneous mass and has a potential

given by

p(z,y,z o
V= G// o )dxdydz (2.1.5)

integrated over the whole Earth, where p(z,v,2) is the density of the volume
element at (z,y, z) and r (z,y, z) the distance between that element and the satel-
lite. If the mass of the satellite is negligible compared to the mass of the Earth
then a Cartesian coordinate system with origin at the geocentre is consistent with
equations (2.1.3), (2.1.4) and (2.1.5). (Kaula, 1966)

It can be shown from (2.1.4) or (2.1.5) that the external gravitational potential

of a body satisfies Laplace’s equation, which in the Cartesian system is written

PV BV 8V
V2‘r
=% o oz =0 0]

This equation is expressed in spherical coordinates r, 0, A ( radial distance, latitude
and longitude respectively) and the complete real solution obtained by the method
of separation of variables. The solution can be written in the form (Bomford, 1980)

m ® /R (1+1) 1

V== (—) >" Py (c0s 0) [cim cos mA + 8m sin ]

R 1=0 r m=0
where R is the mean radius of the Earth, P, (cos) are the normalised associated
Legendre polynomials and ¢, and s;, are the normalised gravity field coefficients,
parameters which define the geopotential.

It is necessary to transform equation (2.1.7) into Keplerian elements a, e, I,

w, Q, M, the semi major axis, eccentricity, inclination, argument of perigee, right

ascension of the ascending node and mean anomaly of the satellite’s orbital ellipse
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respectively . This transformation is carried out in (Kaula, 1966) and results in

the following expression, after choosing the geocentre as origin,

u ‘u 00 i R (‘+l} ] ) +oo
VeE+ES S (3)  TFm®) 3 G
T I=2m=0 * @ p=0 g=—00
1
X Z cos (dJ‘qu (t) 25 ¢1ma) Cima (217)
a=0
where
Yimpg = (1 = 2p+q) (M +w) — qw +m (2 = 0g) , (2.1.8)
and
bima = —7 (2a+ 1= (=1)"™). (2.1.9)

The Fi, (i) are the inclination functions and Gy, (€) the eccentricity functions.
The notation ¢mg = ¢ and cyn1 = Sim has been introduced for reasons of effi-

ciency. This is the form in which the Earth’s potential shall be expressed hereafter.

2.2 Satellite Motion and Gravity Field Determi-

nation

The motion of a satellite orbiting the Earth is dominated by it’s gravity field but
is also affected by atmospheric drag, solar radiation pressure and by the tidal
accelerations of other bodies such as the moon, the sun, and the planets. The

equation of motion can therefore be written
a= X = VV + fsurface o flidah (221)

where fourface and fi;40 are the surface force and tidal force vectors respectively.

The motion of the spacecraft can be predicted by modelling these forces and the
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Earth’s gravity field and then integrating equation (2.2.1) forward from the satel-

lite’s initial state,

X(to) = Xp (2.22)

X (to) = Xo. (2.2.3)

If fourface and fi;4 are neglected then a solution can be obtained by calculating
first order perturbations to the Keplerian elements from the Lagrange planetary
equations. However by assuming the satellite’s motion to be nearly circular and
the orbit to have a fixed ascending node it is possible to solve for the motion using
Hill’s equations. This method will be discussed in chapter 3.

The complete equation (2.2.1) can be solved more accurately by numerical
integration. In this manner the position and velocity of the spacecraft can be
known if the models of V, fsurface and fiiga are known.

Alternatively one can test an existing set of force models by making observa-
tions of the motions of one or more satellites , eg the range between an Earth based
laser station and the satellite or the differential velocity or acceleration between
two spacecraft. These observations are then compared to a simulated set of obser-
vations using the solution to equation (2.2.1) and the existing models of V/, four face

and fiiqa. Suppose the observations are S,;s; and the simulated observations Sea,i,

then

Secalei = Seale;i (Br,0) - (2.24)

Bk,0 represents the ‘known’ values of all the parameters which affect the motion
of the satellite or satellites, eg the initial state of the spacecraft, the gravity field
parameters and the other forces the satellite experiences. Any mismodelling of

these parameters will result in errors in the simulated observations. The observed

residuals are

AS; = Sobs,i — Seate,i (Br0) - o (2.2.5)
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These residuals can be used to improve the existing model by enabling one to
calculate corrections to the parameters S o. To this end equation (2.2.5) is equated

to a Taylor series in the parameters g,

aSca.lci 328 le,i
; B'Bk Bk,0 ﬁk ;; aﬁkaﬁk’ Bi,0.8k o Ok ( )

If the existing models are good then equation (2.2.6) can be truncated after the

linear term and one obtains (Colombo, 1986)

k aﬁk

where n; is the noise due to modelling errors, truncation of the Taylor series,

AS; =Y (§S_m;_) ABk + i, (2.2.7)
Bk,0

etc. Equation (2.2.7) with ¢ ranging over all observations is used to solve for
the unknown corrections Af. These cannot be solved exactly because of their
approximate nature and because of the existence of the noise in the observed
residuals. The solution is obtained by the Least squares minimisation method
which is discussed later in the thesis. Chapters 3 and 4 will deal with calculating
the partial derivatives in (2.2.7).

An important factor limiting the accuracy in refining the gravity field coeffi-
cients is the sensitivity of an observation to errors in these coefficients. The partial
derivatives in equation (2.2.7) are an indication of that sensitivity and shall be
used later to measure the expected accuracy of the gravity coefficients for different
mission scenarios. The importance of tailoring the observations so that they are

sensitive to those parts of the gravity field one requires shall be discussed next.

2.3 Satellite Observations

Measurements of spacecraft motions have been used to calculate the geopotential
coefficients ever since the first artificial satellites were launched. (Kozai, 1966)

These observations were made from Earth based tracking stations using optical,
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laser and radio-frequency measurements of the satellite’s position. With this type
of data, information can be obtained about the low degree and order coefficients
in the harmonic expansion of the Earth’s gravity field, corresponding to large scale
variations in the geopotential, typically wavelengths of a few thousand kilometres.

This limitation is due to several factors:

e To measure the smaller wavelength features a very low orbit is essential
and in such orbits satellites have a short lifetime due to the action of air
drag. This limits the amount of data one can obtain unless the satellites are

manoeuvered.

e Measurements made from Earth are subject to the perturbing effects of the

atmosphere and are hence degraded.

e A large number of tracking stations are required to have a near continuous

coverage.

e The position of a satellite is rather insensitive to gravity mismodelling except

for the very lowest degree coefficients and certain resonant coefficients.

In order to model the shorter wavelength features a different approach is re-
quired. Traditional ;ne'chods include land based gravimetry, and airborne gra-
diometry (Torge, 1980) but these techniques are limited by adverse geographic
conditions, political problems and the great expense of creating global data sets.
As a result terrestrial measurements are limited to providing local gravity models.

In recent years satellite altimetery has been used to map the global sea height,
from which one may infer an equipotential gravity surface or geoid. The fact that
these measurements cannot be made over land and the difficulties in separating
the geoid from other oceanographic effects such as ocean currents, make this an

insufficient source for a global high resolution field (Nerem, 1994).
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The more modern proposals to provide a useful source involve satellites in very
low orbits (160-400km). The problems of air drag are overcome by one of two meth-
ods. An accelerometer is used to measure the surface forces a satellite experiences.
Then either the non conservative accelerations are continuously compensated for
so the satellite is in a drag free environment, or manoeuvers are made periodically
to keep the orbit from deteriorating and the measured accelerations are removed
from the signal in post mission processing.

To overcome the problems of earth based tracking the satellites motion is mea-
sured from space. There are three types of mission that have been promoted in

recent years. they are:-
e Tracking a low satellite by GPS.
e Tracking between two low satellites.

e Gradiometry. Using differential acceleration measurements of proof masses

within a single low satellite.

All three missions have the important characteristic that the motion of at least
one low satellite or proof mass is measured. Thus the attenuation with height due
to the factor (f)m in (2.1.8) is less significant and the low satellite is subject to
greater perturbations from high degree coefficients.

The GPS network provides a coverage which could be used to measure the orbit
of a low satellite very accurately (Jekeli and Upadhyay, 1990). However the aim
of a gravity mission is to provide an accurate, high resolution field and it has been
found (Fischell and Pisacane, 1978) (Wakker K. et al, 1989) that low-low tracking
is more suitable than the high-low variant for this purpose. This is because the
separation of the satellites determines in part how gravity frequencies contribute to
the total signal. For larger separations the high frequency contribution is smaller.

Thus high-low tracking between satellites separated by a few thousand kilometres
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has less high frequency signal than the low-low case where the separation is a few
hundred km. In gradiometry the separation is much less, a metre or so, and this
necessitates a much more accurate observation since the signal will be very low
compared to SST.

Using relative velocity or acceleration measurements is also of benefit if the
high degree coeflicients are to be measured accurately, (Kaula, 1983), (Wolff,
1969), (Wagner, 1983). This is because the range measurements are the cumulative
effects of velocity fluctuations over time and thus by measuring the relative velocity
between spacecraft, more localised information is obtained. Similarly acceleration
measurements are an improvement over velocity measurements in high frequency
field recovery.

Proposals for a gravity field mission have therefore centred on either a low-
low satellite to satellite tracking observation of the range rate or a gradiometric
mission to measure the differential acceleration. Neither have been approved as
yet. In the recent GAMES satellite to satellite tracking proposal (Frey, 1993) the
use of a laser ranger was prefered. By differencing these range measurements a
range rate dataset could be obtained, double differencing would provide a relative
acceleration dataset but would introduce larger errors than by differencing just
once.

In the remainder of this thesis only the case of the relative line of sight velocity

between two satellites in low orbits shall be studied.
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Chapter 3

The Variational Equations

3.1 Introduction

The purpose of this chapter is to derive, discuss and solve a set of equations which
describe the sensitivity of a satellite’s motion to a small perturbing force. If one
assumes the spacecraft to be in a circular orbit which is fixed in space relative
to some inertial reference frame, the equations greatly simplify. The price of this
simplification is to restrict the applications of any soiution to near polar orbits,
which do not precess under the action of the Earth’s flattening. Furthermore no
satellite orbit can be truly circular because the Earth’s non sphericity induces a
slight eccentricity into an initially circular path. However the simple nature of
the equations and their sufficient accuracy for near circular and near polar orbits
needed for global gravity field improvement makes them useful for the task at

hand.

3.2 Hill’s Equations

The equations derived here resemble somewhat the approach used by G.W.Hill in

his theory of the lunar orbit (Hill, 1878) and they shall be referred to as Hill’s
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equations hereafter. The derivation follows (Schrama, 1989). In order to obtain
Hill’s equations the equations of motion are first described in an inertial frame
of reference with basis I, J, K. The coordinates shall be Y7, in the J direction,
pointing to the first point of Aries, Xj, in the I direction, towards the north pole
of the orbital plane and Z;, in the K direction, directed so that Xi,, Yin, 21, form
a right handed orthogonal coordinate system. Newton’s equations of motion for a

purely gravitational force are
X+ Y3+ Z2,K=VV (3.2.1)

where VV is the gradient of the geopotential V. In this coordinate system the

gradient vector is easily expanded and in component form (3.2.1) becomes

" av
Xm 9X1n
/ = | 2v 2
Yin 2. (3.2.2)
> av
Zf'n. 0Z1n

For a non precessing orbit it can be assumed that the satellite crosses the Xin, Yin
plane only on the Y7, axis without any loss of generality. Therefore to trans-
form between the coordinates of the inertial frame and those of the satellite’s
‘local frame’ with basis vectors h;, hy, hs in the cross track, minus along track
and radial directions respectively one must rotate the inertial coordinates through
an angle § = M + w — I about the Xy, axis. The relationship between the

coordinatesXyn, Yin, Z1n and u, v, w, in the directions hy, hy, h3 is written

Xln 1 0 0 u
'm=|Ym [ =]0 cosf —sind v | =R (0)x (3.2.3)
Zn 0 sinf@ cos@ w

where x denotes the triplet u,v,w. Now because the orbit is circular a uniform
rate of rotation can be assumed. Using Kepler’s third law, as accurate as the

spherical approximation of the earth, this means

. i
f=n,= ,/5 (3.2.4)
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where a and n, are the semi major axis and mean motion respectively. The orbit

being circular means a = |ry,|.

From (3.2.3) it can be shown that

=R, (0)x+R; (0)%

and
£ = Ry (0)x + Ry (0) %+ 2R, (0) %,

also
0
R, (0)x=nR; (0) | —w
¥

and
0

R] (0) X = —nﬁRl (9) v
w
Now using (3.2.7) and (3.2.8) equation (3.2.6) becomes
U
frn =Ry (0) | - 200 —n2v |,

W+ 2n,0 — nfw

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

which along with equation (3.2.2) gives the equations of motion in the rotating

frame. The gradient vector can be transformed according to the same relationship

as (3.2.3) so that

8V av
X1a du
av_ | =R, (9) | &
Yrn 1 (6) v
av_ | av
dZin dw
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As a result of (3.2.10) and (3.2.2), (3.2.9) can be written

av

du U

v || s . 2

S |=| V—2naw—nzy |. (3.2.11)
v - . 2

5 W+ 21,0 — nEw

Equations (3.2.11) are the equations of motion in the rotating frame. To obtain the
variational equations one must vary a parameter upon which the motion depends
eg. a gravity field coefficient, and determine the effect on equation (3.2.11). The
effect of this on the spatial partial derivatives of the potential is both direct in the
sense that the potential is a linear function of the coefficients and indirect in the
sense that the potential is a function of position which of course is a function of
the gravity coefficients. Mathematically this means that the sensitivity of (3.2.11)
to the variation of some parameter f;, which could be due to the gravity field or

initial state errors or some other source of mismodelling, is

av a2y v 22V O

du Sul dudv  Judw P
2 | Ay |4 | v 2y oV Bu | =
a0 dv dvdu  Bv dvow 9Bk

av 2V 9V v Ow

dw dwdu Owdv Jw? Lo i)

i
a
= == | —2nw—nv |. (3.2.12)
Ok

W+ 2n,0 — n?

oW

As long as B is not a function of time the operations taking the derivative with
respect to time or space, and the partial derivative with respect to f; commute.
The second term in equation (3.2.12) contains as a factor the gravity tensor, in

spherical approximation this becomes (Colombo, 1986)

sy &y &V,
ouf Oudv Oudw 10 0

vy v ov | —
dvdu v Ovdw r3 01 0

8ty 3y v -
Jwdu Jwov i‘)m5 0 0 2
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which, using (3.2.4) can be written

10 0
=-n2|01 0f. (3.2.13)
00 -2

Replacing this in equation (3.2.12) the variational equations are obtained,

B | av | = | 2 2.

aﬁk 90 —_— BF‘: —_— 2‘]’],06;;; . (3-2-14)
av 86, B _ q.200
dw o8c T 2MoBp, ~ Modpy

Equations (3.2.14) is the set of equations that shall be used to obtain the orbit
sensitivities used in the gravity field recovery procedure. It should be pointed out
that the cross track equation is a simple harmonic oscillator with natural frequency
n, and is uncoupled from the other two equations. The solutions to (3.2.14) will
resemble those of a perturbed mass spring system with natural frequency n, where
the force perturbations are given by the left hand side of the equation. However
before discussing the solutions to (3.2.14) it is necessary to find an explicit form

for these forcing partials in terms of the orbit and the gravity coefficients.

3.3 The forcing terms

Equation (2.1.8) gives the Earths potential, V, in terms of the Keplerian elements

as
o | (+1) I +00
H R _
V=Lt ES Y (2) 2 Fm (@) T Gl
=2 m=0 p=0 g=—00
1
% E €0S (Yimpq (t) + Pima) Cima (3.3.1)
a=0
where
Vimpg = (1 =20+ q) (M +w) = qw +m (2 - bg), (3.3.2)
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and
e “‘E (2a+1-(-1)""™). (3.3.3)

Since a circular approximation to the nominal orbit has been assumed thus far the
same will be assumed of the potential expression. Therefore F' is defined as M +w,

and only the ¢ = 0 terms are nonzero. The potential is now written

l l

& (I+1) 1
Vo= — + E Z ( ) Z Fimp (?,) E COS (ﬂJ;mp (t) + ¢’£ma) Clma (334)
= p=0 a=0

2 m=

where
Yimp = (I = 2p) F +m (- 0g). (3.3.5)

According to the circular orbit assumption a = r and F will be constant and equal
to the mean motion n,. The variation in {2 — 0 is also assumed linear in time.

Equation (3.3.4) is rewritten as

oo I 1

V=E4+3 3 3 Vinatima (3.3.6)

where after substituting j = [ — 2p,

R\U+) 1
Vima = % (";) J_zl[zl F _&1_1 (3) Ccos (lerm (t) 3 é!ma) (337)

and

vjjm (t) + Gima = Jnet +m (Q - 96’) t+ ian;;'irn (to) + ima

= Pjmt + Pjm (to) + Gima- (3.3.8)

Now to obtain the sensitivity of the forces in the directions of the coordinates
u, v, w due to a perturbation in a coefficient ¢;,, it is necessary to take the partial
derivatives of the potential with respect to a coordinate and a gravity coeflicient.
From (3.3.6) it is clear that
av

OCima

= Vima; (3.3.9)
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and so what is required is

oV -
% = across track sensitivity to cima

u
Ban . T
o minus along track sensitivity to cina (3.3.10)
an .

Ime  —  radial sensitivity to Cima.

ow

To formulate these partial derivatives it is necessary to use the chain rule to
undertake the differentiation with respect to a curvilinear coordinate system. This
will allow equation (3.3.7) to be used without any further change of coordinates.
The possible curvilinear coordinate systems are r, F' and either 2 or ¢. The system
chosen here is denoted rq, Fy,iq with  acting as a parameter fixing the origin of
the coordinates in the equatorial plane. In this system any point p in space can
be described by the coordinates r, F,i see Figure 3.3.1. It’s radial distance from
the geocentre is r, then on the geocentric sphere of radius r, the angle between
the equator and the great circle through p and 02 in Figure 3.3.1 is iq, finally the
angle between p and 02 is Fy. As long as € is chosen to be the right ascension of
the ascending node of the orbit of a spacecraft and p is a point on the orbit, then
ig = i and Fp = F where 7 and F are the inclination and argument of latitude
of the spacecraft. Now the partial derivatives of the potential with respect to the
local frame coordinates can be described in terms of the derivatives with respect

to the three curvilinear coordinates. Using the chain rule for partial derivatives,

avima _ alftma dar me i Bnga oF

0 = o T @ ou OF bu (3.3.11)
Ima __ Vima or BV;ma o1 61/{,“0 oF

2 = Jor v o v Tar o (33.12)
50 _ or ow ' o ow' OF 0w (3.3.13)
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9 equator

Figure 3.3.1

The 7, F, 1 coordinate system, relative to the parameter §2.

An important point is that all these partials are calculated along the circular
orbit defined by v = v = 0,w = r. To obtain these partial derivatives the differ-
entials in u,v and w must be expressed in terms of the curvilinear coordinates at
the point u = v = 0,w = r in the local coordinate system. This is done with the

aid of Figures 3.3.2 and 3.3.3.

At the point in question r = w, therefore the partials -é—’wi, % must be zero and
¢ — 1. This means that (3.3.13) is rewritten
EWma — 6Vima

ow  Or (3:3.14)
Now from Figure 3.3.2 it can be seen that

rdF = —dv (3.3.15)
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and therefore

oF 1

—_— = 3.3.16

dv r ( )
at u = v = 0,w = r. The partial derivatives of F' with respect to the other two
local frame coordinates are zero at that point. Equation (3.3.12) is therefore (cf.

(Colombo, 1984))

Vima _ 1 0Vima

(3.3.17)

v  r OF °

local satellite frame

sindF= —
r

=>r18F =-38vy

forsmall 8 F

Figure 3.3.2

The along track partial derivative
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In the same way from Figure 3.3.3 the partial

0i 1

5; = rsin F

(3.3.18)

is found to be the only non zero derivative with respect to u in equation (3.3.11).

The final partial is therefore (Koop, 1993)

du  rsinF 8

(3.3.19)

Substituting (3.3.7) in (3.3.14) and (3.3.17) to obtain the force sensitivities in the

orbital plane to an error in the coefficient ¢, the following are obtained,

OVima (42) 1 -
s == (?) | qu; F, i (i) 008 (3m (£) + fima) , (3.3.20)
e

T

aVIma M (R)(l+2) l

v R j§[2]ﬂ'ﬂmﬁgﬂ (i) sin (Yjm (2) + dima) .~ (3:3:21)

(3.3.20) and (3.3.21) can now be used in equations (3.2.14) to obtain the in-plane
orbital sensitivities to errors in the gravity field coefficient.

The cross track forcing term is given by equation (3.3.19) and is not as straight-
forward. It seems at first inspection that there is a singularity when sin F' = 0,
further development reveals that this is not a real singularity since the factor ﬁ’g‘“
disappears at the points where sin I/ = 0. To develop this term it is necessary to
refer to the derivation of the terms Vi,, = Vijno + Vi1 in  (Kaula, 1966). Be-
fore the inclination functions have been defined the derivatives of equation (3.58)
in (Kaula, 1966) are calculated with respect to inclination ., The sin ' term in
(3.3.19) is then cancelled out with a term in the numerator to obtain an expression

of the form

Y. Faen ()sin(@jm () = F+ dima)  (3.3.22)
j=—1+2[2] 4

avimu (R) (1+2)

ou I
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where the F}):nﬂ—;il (4) are called the cross track inclination functions (Koop, 1993).

Qrbital plane

a equatorial plane

p14p2= 5i

§u=op2-opl=rsinF §i

Figure 3.3.3

The cross track partial derivative

A well known problem with calculating the inclination functions which applies
also to the cross track inclination functions is their numerical instability for high
values of [, m. This problem has been overcome by using the Fast Fourier transform

algorithm to compute the required functions, this method is used in (Koop, 1993)
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but for completeness is described in Appendix A. Equations (3.3.20), (3.3.21) and
(3.3.22) are the forcing partial required to solve Hill’s equations (3.2.14). An

outline of the method of solution is presented below.

3.4 Solving Hill’s Equations

In the light of equations (3.3.20), (3.3.21) and (3.3.22), (3.2.14) can be rewritten

for the specific case where B = ¢jn, as

1 Vigg Qi 4 200
TSP o 98, T oap,
T oF 35, — 2Mogp, ( )
av; B 8% 2 dw
ima Lw, LY L,
Br ope T 2Mogp; — 3Mosg,

where the left hand side is made up of sums of sines and cosines whose arguments
increase secularly with time. This fact, and the linear, time invariant nature of the
equations makes them easy to solve, for example by the method of Laplace trans-
forms in (Colombo, 1984). Since this technique for solving differential equations is
an elementary one the procedure will not be carried out in this thesis and the solu-
tions shall be presented without proof. For this see (Colombo, 1984), (Wiejak W.,
1990).

The cross track equation (in ) is uncoupled from the other two; furthermore
it is the equation of a simple harmonic oscillator. It can therefore be solved inde-
pendently of the other two equations which, since they are mutually dependent,
must be solved simultaneously. The method of Laplace transforms yields a pair of
simultaneous algebraic equations from which the solutions are derived.

There are three different types of solution that are considered here

e The homogeneous solution for which the forcing terms are zero and the pa-
rameter 3 is one of the initial state parameters wu,, vy, Wo, Uo, Vo, W, Which

form the state vector of the spacecraft in it’s local frame at the beginning of
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the period of time for which the solution is required. The solutions will be

the sensitivities of the orbits to errors in the initial state parameters.

e Secondly there is the response to an oscillation in the gravity field at a
frequency that does not equal one of the critical resonant frequencies of the

system.

e Finally the response to a resonant oscillation.

3.4.1 The homogeneous solution

The solution to

Bii, 2 8u,
0 Pk + 1, 9Bk
= | .8 _ Dy, 3.4.2
0 95, 2n,3 B ( )
ein} B, gn20w
0 o8  2Mop; ~ Mg,

is given here, where B is one of u,, vy, Wo, Uy, Vo, W,, the position and velocity

components at time ¢ = t,. The general forms of the solutions are

0

5% = Ayg, cos (n,,t) + By, sin (not)

0

3_;— = Ayg, cos (n,t) + Byg, sin (n,t) + Cyp,t + Dy, (3.4.3)
3

ow ;

T Aup, €08 (not) + Bug, sin (net) + Cug,.

The constants Aug,, .., Cwg, can easily be calculated but it is not necessary to do
so here since the initial state will never be solved for. The forms of perturbations

associated with a variation in the initial state are all that is required.
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3.4.2 The response to an oscillation

If the forcing terms are sinusoidal in nature with frequency w not equal to either

zero or £n, then the response of the following equations will be non resonant,

ay cos (wt + @) + by sin (wt + ¢) 3“ T
ay cos (wt + ¢) + bysin (wt + ¢) | = K - 21;0{%"- (3.4.4)
ay cos (wt + ¢) + by, sin (wt + ) S+ 2n,g5 — In2 2

where ¢ is a phase angle and f;, is the parameter giving rise to the forces. Equations
(3.4.4) can be solved by Laplace Transforms to give a result which can be used
to solve (3.4.1) due to the linear superposition of solutions of linear differential
equations. The solution to equations (3.4.4) will include terms with the same
frequency of response as the forcing terms, a consequence of the equations being

linear with constant coefficients. The solutions are given below,

ou Ay by,
e = —(nz )cos(wt+¢)+( T_ %)

+ A¥cos (n,t) + B sin (n,t) (3.4.5)

sin (wt + @)

v a, (3n2 + w?) — 2n,wb,
B w? (n2 — w?) o i+ )

b, (3n? + w?) + 2n,wa,, .
+ L = o) sin (wt + ¢)

A?” cos (n,t) + B sin (n,t) + C't + D¥ (3.4.6)

a_w _ Gyw — 2n,b, (wt
0B~ w(n?—w?) cas b=t 0)

byw + 2n.a, .
W sin (wt -+ (,'b)

+ A" cos (net) + BY sin (n,t) + CY. (3.4.7)

The cross track equation is independent of the other two and is solved separately,

the coefficients in the solutions are only functions of the cross track forces. Using
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equation (3.3.22) as the forcing term, and applying the principle of linear super-

position

T

ou b (R\GD Ffap (1)
m R ( ) j:_;z+2[2] (nﬁ = (1/}_,-,“ — 110)2)
X sin (1,{:vjmt = Mol + Pima + Yjn — F o)
+  Aj.. cos (not) + By, sin (n,t) (3.4.8)
where 17, F'° are the initial values of these angles. Using
dem =Jn,+m (0 = S’!) (34.9)
(3.4.8) becomes
o | ey L Taea®
OCima  R? (r) _,-=_:Z+2[2] (ng - (15_,-_1,“.)2)
X sin (zilj_lmt + Gima + ’f’}’-lm)

+ A €08 (not) + Bji, sin (n,t) (3.4.10)

The two ‘in plane’ equations are coupled so are solved simultaneously. This
means that the radial forces affect the along track position and vice-versa. From
equations (3.3.20), (3.3.21) applied to the solutions (3.4.6) and (3.4.7) the in plane

orbit sensitivities to a gravity coefficient error are

ov R\(+2) 1 F(3n2+42 ) —2n42, (I+1
B (B S e (30 + 95 )2 i (41
ima i=-1]2) 2 lrbjm (no = wjm)
X sin (Yjmt + Guma + 92,
+  Apna €08 (1ot) + Bl sin (not) + Clnat + Dine (3.4.11)
and
O Ry 8 N\ =210 = Yim (141
= iz('_) Y Fpa () 220 Yim (4 1)
6clma R r i=-1[2] - wjm (ﬂg - wfm)
X Cos (qﬂjmt + Gima + ¢;?m)
+ A}, cos (net) + By sin (not) + G (3.4.12)
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3.4.3 Resonance

On examining equations (3.4.10), (3.4.11) and (3.4.12) it is clear that when the
frequency g/.:jm is equal to £n, and for the in plane equations zero, the solutions
are no longer valid. In fact it would seem that the response to a perturbation of
this type is infinite.

When there is a gravity term which has frequency equal to the orbital frequency
then the motion induced on the spacecraft is reinforced during every cycle. This
is because the accelerations are occuring at a natural frequency of the system
and much like a mass on a spring that is tapped at the same point during every
cycle, the amplitudes of the motions at these frequencies are amplified by the small
perturbing force. The resonant equations are given below, where fj is the source

of the resonant force perturbations,

ay €08 (15t + @) + by sin (n,t + ¢) DL 4 p2.0u

aﬂk Oaﬁk
Gy c0s (ot + @) +bysin (not + @) + ¢, | = | 2 - 2n, 2%
Qy €08 (Nt + @) + by sin (not + @) + ¢y % + 2110-‘%;- - 3”579%
(3.4.13)
and the general forms of the solutions are
ou .
%5, = (Aup, + Bug,t) cos (n,t) + (Cup, + Dyp,t) sin (n,t)
ov
-é-zi; = (Aﬂ'ﬁk + Bvﬂkt) Ccos (not) + (Cvﬁ;c + Dvﬁkt) sin (not)
+ Cup,t® + Dyt + Eyp, (3.4.14)
0
éﬂ; = (Auwg, + Bug,t) cos(net) + (Cyp, + Dugp,t) sin (not)

+ Gwﬁkt + Dwﬂk-

From (3.4.14) it seems that the secular once per revolution terms would increase
indefinitely. This is not so for two reasons, the damping of the motion of the

spacecraft due to air drag would eventually become significant and would oppose
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the motion. Secondly as the perturbations become large enough to be included
in the nominal orbit upon which these solutions are based, one would find that

resonance would begin to diminish.

3.5 The Orbital Sensitivities

In order to use the range rate residuals for gravity field analysis one must calculate
the partials of the velocity and position with respect to the gravity coefficients. In
the satellite’s local frame equations (3.4.10), (3.4.11) and (3.4.12) give the position
sensitivities, The derivatives of these with respect to time ¢ give the velocity

partials.

3.5.1 The Zonal Harmonics

If one or more of the frequencies 1;,, , or ¥;_,, for the cross track case, are equal
to +n, or zero then the resonant solution must be incorporated into the partials.
It is possible to choose an orbit for which the only significant coefficients that give
rise to such terms have m = 0. This type of orbit is to be used in subsequent
chapters, so if m = 0 and j = 0,+1 the resonant solution must be used. This
means that using (3.4.10), (3.4.11), (3.4.12) and (3.4.14) the m = 0 coefficients

have the following associated orbit sensitivities,

I
OCa R? \r j=—1+2]2] (ng— (@'-1.0)2)

X sin (@(Jj_l,ot + Gima + 1/";"—1,0)

+  (Aloa + Bioat) €08 (not) + (Cioa + Ditat)sin (not),  (3.5.1)

9 R\ 1 7 (3m2 +42)) — 2092 (1 +1)
- p,( ) Z G (1) ( -JO) -

dcla R \r j=-12] 15’32'0 (’”3 - 'Z’gz'o)
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X sin (",f:‘jut + di0a + 11’;0)
+ (Ala + Bioat) €08 (not) + (Ciog + Digat) sin (net) + Eigat + Fiog

(3.5.2)

and

ow L (R) s =210 = Wjo (L +1)
— (= Foo=s (1) — :
OcCi0a R \r j=z_;:[2] 073 Vjo (?13 - '/52'0)

X cos ('ljJJ‘ﬂt + dioa + ’J’?u)

+ (AR, + Bip,t) cos (net) + (Ciiy + Digat) sin (not) + Ejga- (3.5.3)

The coefficients Cyg,, Cwg, in equation (3.4.14) are zero since they depend solely
on the constant along track force provided by the j = 0 term in (3.3.21), which is
zero. Therefore these terms are dropped from (3.5.1), (3.5.2) and (3.5.3).

3.5.2 A General Gravity Coefficient

A general form for the orbit sensitivities can now be written as

: I . .. )
Daima 22, i 08 (Bt + e
(Cine + SmoDjft) cos (not) + (B + SmoFinat) sin (not)

+
+ Ghoat+Hi, (3.5.4)

where z* = 1,2, 3 refers to u,v and w. The phase angle

s

¢:maj = élma + 11,);?11 + 9

for i=1,2 and

Bimaj = Pima + Pjm- (3.5.6)

40



The amplitudes A},,,; can be found by comparison of (3.5.4) with (3.4.10), (3.4.11)
and (3.4.12), namely (cf. (Rosborough and Tapley, 1987))

(1+2) F:n_(;__n (i)
Koy = = (E) SO, (3.5.7)
r (ng = ('d’jm = no) )
(+2) i (3n2 +42,) — 20092, (1 +1
11’1311.0] — (.I_Z.) F‘;m_{f_—.tl (1) J ( .23 ) ':/J ( ) (358)
5 2 ﬂ’jm (nﬁ - irbjr'ﬂ)
(+2) 24110 = Pim (1 + 1
Ximaj = (E) Fytep () =2 Yim (1) (3.5.9)
T ) Vim (’nﬁ - '(,{J?m)
The frequencies are
Jn = B = jnatm (- 0o)
Yhn = (G=Dno+m(2-0g). (3.5.10)

It should be noted that the summations over j in (3.5.1), (3.5.2), (3.5.3) (and
(3.5.4) for m = 0) are restricted to values where j # 0,+1. Equation (3.5.4) gives
the general form for the sensitivity of the position of the spacecraft in it’s local
frame. To obtain the velocity sensitivities in the local frame this equation should
be differentiated with respect to time. Because of the motion of the frame these
velocities are not the same as one would obtain in an inertially static frame or a
frame which moves relative to this one. In order to correctly model the relative
velocity of two satellites using solutions to Hill’s equations care must be taken to

account for the relative motions that may exist between them:.
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Chapter 4

Satellite to Satellite Tracking

4.1 Introduction

In section 2.2 the general principles of refining an existing gravity field were out-
lined. The case of the range rate between two satellites in circular orbits will now
be developed .The discussion here will be general enough to allow for the case
when the satellites are in different orbital planes.

Using equation (2.2.7) , with S,;,; replaced by RR,,;, the i** observed range
rate measurement and S,,.; replaced by RR ... ,the i** calculated range rate value

then the Range Rate Residual

N, ’
ARR;(Bk,) = RRobsi = RReatei(Br,) = D 6RR§; —
=1 %

The i are the parameters which affect the motion of the satellites and hence

LAB,. (4.1.1)

the range rate.These can be split into gravitational and non gravitational param-

eters with (4.1.1) rewritten as

Lmaz | a RR silCimas
ARR;(Bi,) = X 2 Z caé)c Line, o) Acima
=2 m=0a=0 ima
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M . .
+ Z aRRaalu(clmm a’J) Aaj (412)
= da;

where a; are the M non gravitational parameters.
As far as this work is concerned the effect of the gravitational parameters cinq

is of most interest. In the next part of this chapter a form will be derived for

Q-gclfﬁf-i ,the so called partials.

Equation (4.1.2) is the linear (in terms of A¢;,n,) Taylor expansion of ARR;(By,)-
This implies that the partial derivatives in this and the next section are calculated
using values [, which are called the nominal values of the parameters. Conse-
quently the positions and velocities used in calculating the partials are called the

nominal positions and velocities.

4.2 The range rate residuals

orbit of satellite 2

Figure 4.2.1

The relative orientations of the satellites
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If the nominal position and velocity vectors of the two satellites in some arbitrary
but consistent reference frame are given by ry,, ro,, y,, Fg,, then the nominal line of
sight relative velocity between them is given by the scalar product of their relative

velocity with the nominal unit vector pointing from one to the other, namely

(t1, = Ia,).(r1, = I‘zo).

= 4.2.1
o ]1‘1, - 1‘2,| ( )
eg (Groten, 1987), (Colombo, 1984).
This could also be written as
RR, = (i1, — T3,)-€12, (4.2.2)

where €5, = %—1—“:—:::“-% is the unit vector pointing from satellite 2 to satellite 1, see

Figure 4.2.1 .

‘The nominal distance between the two satellites, is

Po = |r1, = r2,| = V/((r1, — 12,).(T1, — T2,))- (4.2.3)

In order to derive %&- , the chain rule of partial differentiation is applied.

ma

Since RR, = RR,(r1,,12,,T1,,T2,)

8RR,  ORR, 0r,, ORR, Or,

dCima - o Io "Ocpna Or, "OCima
ORE, 0i,  ORR, O,
81"10 ' 6c;ma 61"20 . ac;,m

(4.2.4)

where (4.2.1) and (4.2.2) are used to calculate the partials 5, Stfa, St 0%,
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ORR,

o = e (4.2.5)
ORR, ‘
Oty —€j2, (4.2.6)
ORR, : | | g ; dpo
ory. = (), = 1‘20)"0-0* = ;g'(l‘no — B, ):(F1, — 1‘2,)3::0 (4.2.7)
ORR, . .1 1. ) op
o, —(f, — 1‘2‘,):0: = E(rlo —Iy,).(r1, — 1‘2‘,)61.;- (4.2.8)
From (4.2.3)
apo — (rlo — r2o)
ar]o Po
— el?g (4.29)
apo — _(rlo — rzo)
Ory, Po
= =up (4.2.10)
and on substituting these in (4.2.7) and (4.2.8)
ORR, . ¢ w :
oy, (t1, — rzo)z - p_g(rla —1y,).(r1, — T2,) €2, (4.2.11)
and
ORR, A i 31 ) )
Bra, = —(1‘1,, = 1'2,,);; 4= p_g(rlo - 1‘29)-(1'1., - rza) €12,- (4-2-12)

Expressions (4.2.11) and (4.2.12) can be simplified if it is noted that the second
term in each of the equations could be written as p—L(i‘lo — Iy, ).ej2, €j2,. This is

the component of the first term in the e)s, direction. Therefore if the first term
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is split into three components in directions e;z,, fi2,, g12, which are defined as an

orthonormal triad, then (4.2.11) and (4.2.12) can be written

ORR, 1, . Lo s
) = —(fy, —I,).fig, fig, + —(f1, — I2,)-E12, B2, (4.2.13)
Iy, Po (]
ORR, A ; :
e —E(rlo — Ty, ).fi2, f12, — E(rlo — Iy, ).E12, B12,- (4.2.14)
Thus substituting (4.2.5), (4.2.6), (4.2.13) and (4.2.14) into (4.2.4)
ORR, _ (61"10 3 or,, i
OCima - OCima  OCima i
1,. 5 8!'1 al‘g
e = 83 - 2 ).f,
£ Po (rlo r2g) lzo(aclma aclma) o
5 : or,,  Ora,
+ E(rlq - r2o)-gl2o(ac1:na - ac‘:m).gu, (4215)

(Colombo, 1984).
The first term in equation (4.2.15) is the vector sensitivity of the relative velocity
along the direction e;,, to perturbations in the gravity co;aﬂicient Cima- This direc-
tion also depends on the gravity field and the range rate sensitivities take this into
account in the next terms. The second and third terms in (4.2.15) add the relative
velocity contributions from the directions perpendicular to ejs, to the range rate
sensitivities. Such terms contribute because although the directions e;s, and fig,

are perpendicular , the directions fio, and e;; are not and it is this direction along

which the observations are made.
To illustrate this point it is seen from Fig (4.2.2) that

P12 = po€12, + (Ar; = Arg) (4.2.16)

where Ar; and Ar; are the differences between the nominal and true positions of
satellites 1 and two respectively.

Now

(Ary ~ Ar2) = (Ar, - Ary).eqs, €12,
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+ (Ar; — Ary).fia, fi2,

+ (Ary; = Ary).g1a, 12,
= Apoejs,
+ (Ary — Ary).fig, fi2,

+ (Ary = Arp).g12, 812,

e
p12

true orbit 1

Figure 4.2.2

The true and nominal orbits

Thus for (4.2.16) and (4.2.17)
peiz = (po+ Apo)eis,
+ (Ary — Ary).fi2, fia,
+ (Ar; — Arg).gu2, 812,
Dividing (4.2.18) by p gives
€19 = €19,
+ %(Arl — Ary).f)q, 12,

1
- ;(Ar]_ e Ar2)‘g120 gl2o‘
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\
\ "
true orbit 2

(4.2.18)

(4.2.19)



On taking the scalar product of (4.2.19) with the relative velocity of the satellites
it can easily be shown that the difference between the range rate along the nominal

and true satellite to satellite vectors is

.. 1 . g
(I’}_ = I‘z).(elg = 9120) = E(AI‘] = Arg).flgo flzo.(rlo - 1‘20)

- i(Arl — Ary).g12, E12,-(T1, — T2,).  (4.2.20)
Comparing (4.2.20) with (4.2.15) illustrates the source of the second and third
terms; namely the contribution to the mismodelling of the line of sight relative
velocity from orbit errors affecting the line of sight.

In practice, (4.2.15) would be integrated along the paths r;,,rs, which are de-
termined by the nominal values of the parameters. In an analytical study however
this is implausible and one must use nominal values for the paths which, whilst
being close to the actual orbits, do not impede the elicitation of a simple solution
to the problem. In the case under consideration where both satellites follow nearly

circular paths one can consider three possible ways to simplify the orbital motion:-

e The motion can be approximated by creating an orbital path which varies
from the circular in a periodical fashion. This method was employed by
(Colombo, 1984) using a 9% order zonal field. The orbit had additional sym-
metry about the point of highest latitude and was obtained by varying the
initial state to converge the path using certain constraints.This is an accu-
rate orbit and yet still allows for efficient gravity recovery. Hill’s equations

are then used to form the partials.

e A precessing ellipse is used and the Lagrange planetary equations employed

(Wagner, 1983), (Kaula, 1983).

e A circular nominal orbit may be sufficient using Hill’s equations again for

the partials. (Wiejak W., 1990).
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For the problem set out in this thesis, that is to make a comparative study of
possible missions, it is considered unnecessary to use any but the most efficient
and simplest models, namely a circular orbit. This is not inacé:urate because of
the near circularity of the desired orbits.

In the following it will be assumed that the nominal orbits are circular and
(4.2.15) will be developed using the solutions to Hill’s equations. Before this can
be done however, it is necessary to study the relative motion of the satellites and

how this affects the partials.

4.3 Frames of Reference

It appears that with equation (4.2.15) and the solutions to Hill’s equations it
should be possible to write down an explicit form for the partials % It is
important however not to ignore the question of reference frames, particularly
when the satellites are not in the same orbital plane.

Suppose the components of the position vector of satellite 1 in the local frames
1 and 2 are denoted (r,);, (r;), respectively. Similarly define the components of the
trailing spacecraft’s position vector by (ry);, (r2)2. As long as both frames share
the same origin,the geocentre, then these components are related by the rotation

matrices Rig, Ro; as follows

(rg)1 = Ruz.(rp)2
(rg)2 = Rai.(rp) (4.3.1)

where = 1,2

In order to obtain these matrices it is necessary to refer both systems to a
common reference frame. The relationships between the coordinates of a point in
the common frame and the two local frames are obtained, and then used to connect

the two local frames. For the reference frame an inertial system is chosen, with
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the coordinates of some arbitrary point given by (X, Y1, Z;). The X; axis points
towards the first point of Aries, the Z; axis points towards the north pole and the
Y; axis is defined such that X7, Yz, Z; form a right handed orthogonal triplet.

To transform between these coordinates and the local coordinates relative to

satellite 4 a sequence of basic rotations is performed (Kaula, 1966)

e An anti clockwise (positive) rotation about the Z (third) axis through an
angle Q3 ,s0 that the new X axis points towards the ascending node of the

orbit of satellite § and is therefore in the orbital plane.

e An anti clockwise rotation about the X (first) axis through the angle Iz
which is the inclination of the orbit. The new Z and Y axes are now normal

to and in the orbital plane respectively.

¢ An anti clockwise rotation about this new Z axis through the angle Fjy —7/2
so the Y axis (which is renamed the w axis) is pointing towards the satellite
and the new X (v) axis is pointing against the direction of motion. The Z

axis is relabelled u.

The final system is represented by (v, w,u) and

v X1
(t)y = | w | =Rs(Fs—n/2).Ri(Ip).Rs(). | v
v/, Zr
= Rﬁ_[ (r)I (432)
or inversely
X v
(r)r = Y; — Ra(—Qg).Rl (—Ig).R::,(—Fﬂ + 7!'/2). w
Z
I U 8
= Rm (r)ﬁ - (4.3.3)
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Using these relationships the position components of a satellite in frame 1 relative

to frame 2 can be described, namely

U

wp

(s

Ug .

= Rg(Fl = W/Q)RI(I_‘)RQ,(Q;)

Vg
R3(—Qg).R1(—12).R3("F2 +7T/2) wg

Up

= Ru(r): T 434)
the inverse relationship
Ug
(rp)2 = wg
ug |,
= Ra(F, —7/2).Ry(12).R3()
Vg

Ra(—Ql).RI(—Il).R;;('—Fl +1T/2). wg
Up i
= Rzl.(rg)l. (435)
From (4.3.4) and (4.3.5) and from the properties of orthogonal transformations
one can see that Ry; = RJ,. In equation (4.3.4) which defines R,, the ordering of
the rows is negative along track, radial and cross track for 1,2,3 respectively. The
rows of the matrices are reordered to be consistent with the notation of chapter 2
where 1,2,3 are u, v, w respectively. Therefore a cyclic permutation of the rows of
the matrices is performed so that row 1 becomes row 2, row 2 becomes row 3, and

row 3 becomes row 1.
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Since the choice of reference frame to describe the partials is arbitrary, a choice
can be made based on the simplicity of the algebra. When the satellites are in the

same orbital plane so that ; = Q,, I, = I, then
Ry, = Rs(Fy — F;) =RT. (4.3.6)

Thus the transformations are time independent as the reference frames do not move
with respect to each other. Further any comoving, coplanar frame will essentially
have as simple a representation as any other.

For the solution under consideration where the satellites are not coplanar it is
considered simpler to choose the frame in which to describe (4.2.15) as one of the
local frames of the satellites. The leading satellite’s frame is chosen arbitrarily.

On differentiating equation (4.3.4) with respect to time with § = 2 one gets

the velocity components of satellite 2 relative to the local frame of satellite 1, ie
(r2); = Ruz.(r2); + Rz (r2)2 (4.3.7)

and taking partial derivatives with respect to the ¢,

3i‘ 2 a..[' 2 ) . ( 3r2 )
= R,y,. Rys. . 4.3.8
(acima ) 1 e (6C£ma 9 s OCima 9 ( )

The first terms in (4.3.7) and (4.3.8) are the velocity components of satellite 2

or the velocity sensitivity to ¢, as measured in its own local frame, with these
components transformed to the local frame of the leading satellite .As will become
clear it is immaterial which frame this terms components are expressed in as long
as the correct choice of basis vectors are used to form the scalar products with
€2, f12,g12 . The second terms in (4.3.7) and (4.3.8) are related to the relative
velocity of frames 1 and 2. If the planar case is considered then flu is zero so this
term drops out. In the non-planar case both R and R, have complicated forms

and in order to use (4.2.15) simplifications must be made to ease this problem.
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First however (4.2.15) is rewritten with the new notation, and in the local frame

of satellite 1 as
ORR, _ ory, B Or,, o)
8C£ma ac!ma 1 actma 1 ' el
| PN ; Or,, Or,,
+ —((1'1,,)1 = (1'2,)!)- (flzo)l ((6:1 ) = (30;2 ) )-(flzo)l
lma 1 LMy 1

b (b= ) e (2] - (7)) -
(4.3.9)

The first simplification in (4.3.9) is to assume that the satellites both move in
circular nominal orbits. This implies that both (i,); and (I3,)2 are zero since the

nominal position of a satellite will be stationary in its local frame. From (4.3.7)
(rz)l = Ru.(l’z)g. (4.3.10)
The position vector (rs),, from the above assumption, can be written as

0
(r2)2=1] 0 (4.3.11)

To

in frame 2. In (4.3.11) hys,7 = 1,2,3; 8 = 1,2 denote the basis vectors in frame £
in the directions i=1,2,3 ( cross track, minus along track and radial respectively )
and 7, is the common orbital height of the spacecraft .

On using (4.3.10) and (4.3.11)

0
(F2)1 = moRi2-| 0
1
3 -
- '.vt,z(nu,)mhijl (4.3.12)
i=1
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whilst
(1)1 =0 (43.19)

in frame 1. Further substituting

Brg _ 61'2
( 6%“)‘ = Ry ( 6%0)2 (4.3.14)

and (4.3.8) in (4.3.9), achieves

gﬁf: = (;(::a)l (e1z,), — [Ru (;::::a)g] (e,),

- [ ), e

- [ ] (), - ) |-
s % LE: (I'lm)i3 hu} - (812.), [(%)1 ~ R (;C'l;:a)z] *(Bizc

(4.3.15)

Equation (4.3.15) enables the partials to be written in terms of the solutions

to Hill’s equations which are the sensitivities of the motions in a spacecraft’s own

local frame.

Recall from chapter 3 that the solutions to Hill's equations are defined in the

satellites local frame so are expressed in the form

arﬂo . axtﬁ,
(aclma )ﬂ B Z aclma (4.3.16)
and
Ot ) 8. Otig
el = 5 R 4.3.17
(aclma i g aclma g ( )

Each of the terms in equation (4.3.15) requires that one takes the scalar prod-
ucts of the basis vectors h;s with one of the e, fiz,, 12, system of vectors. As
it stands the basis vectors used for each term would be the h;;. That is the basis

vectors of satellite 1’s local frame. However it is not necessary to describe each
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term with respect to the same basis vectors. In some terms it may be more efficient

algebraically to express the components with respect to the trailing satellites local

frame. The burden of consistency for each term is shifted to the requirement that

the vectors that make up the scalar product in those terms are defined in the same

reference frame.

With this in mind Equation (4.3.15) is rewritten, using (4.3.16), (4.3.17)

ORR,

actma

61’,2

= (hy,. el2o)p

[ 3
- % Z(Rlz) (hj1.fi2,) ] ( _ (hiyfi2,)p —
To [ 3 : 0z;
= p_ Zl(Rlz)js (hjl-gl2°)p\‘ (3c; l (hil-glz.,)p
o |j= ma

817;2

OCim

5.’1‘: i2
6c;m

(haz fi2,) )

(hi2.g12,) )]

(4.3.18)

where the subscript F on the scalar products indicates that they are calculated in

some arbitrary reference frame.

If the following notation is introduced for the scalars

Z [Rlz] (hirfi2,) p

O‘_

and

hj;. glzo) F

V==L 5[],

0‘__,

and the matrix
Vij = [Rlz] i (hir.e12,)
then (4.3.18) can be written

B

ORR,

aclma

3x,ﬁa
(3 [

i=1

(hig.e12,) p

99
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(4.3.20)

(4.3.21)



2 0z; ar.

- _1\8-1 100 ) i, .

; ngl( 1) (aclma (h;ﬂ-emo)p -+ _-_-actma [Vx,,,ﬁ])

3 .,

+ XV Oz 2, .

j=1 aclma

where
Vxip = Vy (hig.fia,) p + Vg (hig.812,) - (4.3.23)

In order to arrive at a usable form for equation (4.3.22) the following must be

modelled:-
e The nine elements of the matrix V;;
e Six terms Vy 5
e The scalar products h;z.e;5,

and in order to calculate these , h;p.fi5,, h;5.g12, and the elements of R,, must
also be modelled.

The scalar products are always frame invariant. This is very useful in calculat-
ing them because it means that all of the above can be approximated using only

the transformation matrices defined in (4.3.2) and (4.3.3), ie
Rip = Ra(—s).Ri(—1p) Rs(—Fp +7/2) (4.3.24)

Rgr = R3(Fs — m/2).R1(I5).Ra(p), B=1,2 (4.3.25)

and their derivatives.
First however fi2, and g2, must be defined and then along with e, written in
terms of the basis vectors.These vectors form an orthonormal triad and e, points

from the trailing satellite to the leading one so this can be written

To (h31 - h32)
|76 (h3; — hsa)|

€2,
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(ha; = hj))
|(ha1 — hap)|”

The vectors fj2, and g9, are arbitrarily defined in the plane perpendicular to e;s,

(4.3.26)

but since frame 1 is being used as the reference frame, define

I§
flz,, _ (131 X e120)

4.3.27
]hal X e12°| ( )

and

g2, = (enz, X fia,) (4.3.28)

Now because the scalar products are frame invariant, they are all calculated in the
previously defined inertial frame I. From equation (4.3.3) the components of the

basis vectors can be calculated in this inertial frame using Ryg
(hig); = Rug (hig), (4.3.29)

Thus the j** element of (h;g), is the element of Ryg in the j* row and i** column.
In this manner all basis vectors are calculated in the Inertial frame.
Explicitly, the components of the basis vectors in the inertial frame are given

by elements of the transformation matrices.

[(hiﬁ)[]j = [Rlﬁ]j.' (4330)

From these elements the components of the nominal satellite to satellite vectors
€12,,f12, and g1z, in the inertial frame I can be calculated from (4.3.26), (4.3.27) and
(4.3.28) respectively. Once all nine of the unit vectors have been calculated in the
inertial frame it is a simple procedure to form the scalar products h;z.e;2,,h;5.f12,
and h;s.g12,-

As for the elements of the matrix V;; and the six elements labelled Vg , these
are given in terms of the scalar products and the elements of the matrix which
transforms between the two satellites local frames [15{12] i in equations (4.3.19),

(4.3.20), (4.3.21) and (4.3.23). This matrix is the derivative of,

Ry =Ri1.Rp (4.3.31)
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and so can be written

R;g = R]].Rm + Ru.Rm (4332)
which in elemental form is
- 3 - -
[ng] o = z [Ru] » [R”]kj -k [R”]ik [R[g] k' (4.3.33)
k=1

Hence all the required products and functions in (4.3.22) which link the solutions
to Hill’s equations in the two different frames to the scalar values of the range rate
partials can, in theory, be formed from the products of different elements of the
matrices Rpgy, their inverses Rz and the derivatives of these matrices.

The problem with this method is the tremendous amount of tedious algebraic
manipulations that would be required to arrive at forms for all the functions
needed. A much more efficient way of approximating the elements is to numerically
calculate a time series for each. This cannot be used in the analytical formulae di-
rectly so each required product’s or element’s time series is solved by least squares
for the dominant constant and periodic terms.

Equations (4.3.24) and (4.3.25) give the matrices required in terms of three
basic angles,ﬂﬁ,[ g and Fg. Thus to derive the elements of R;g and its derivatives,
for example (4.3.24) is used and the elements of these mafrices are evaluated at
time intervals dt using a choice of initial values of Is, Fjs, s and using constant

values for the gradients so that the p* value of the angles are

Ip(to+pdt) = Iy (4.3.34)
Fy(to+pdt) = Fso+ F.p.dt (4.3.35)
Qs(to+p.dt) = Qo+ Qp.dt (4.3.36)

where p=0,1,...,N, — 1 (Engelis, 1987), (Wiejak W., 1990). The satellites have
the same values for their basic frequencies F, 2 and therefore the same inclination.
The elements of the matrices can now be calculated at successive time steps

. S 1P o 1P
and are written [Ror)%[Ragll; [Rar];, o[Ras];, where f=1,2p=0,1,2,.., N, -
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1;1,7 = 1,2,3. As described earlier the scalar products can now be formed at each

time step. For example e, .h;p

P _ (h3; — hg,) ) g
(e12,-hip)" = [m-hw]
E?:1 ([RI l]?a T [Rfﬂ]?a) [Rfﬂ]?i
Vi (Rl — [RplZs)?

on using equations (4.3.26) and (4.3.30).The other scalar products are formed in

(4.3.37)

the same way using (4.3.27), (4.3.28) with a value found at each time step.
From (4.3.19) and (4.3.32)

oDl
Vi = o Zl [Rm] . (irfig,)
and )
1
V7 = =
! \/Z?=1 ([RII]?:; - [RI2]?3)2
' ‘z:ké ([le]:k [Ralls + (Rl [Roo Za) (hir fi2,)”  (4.3.38)

with V¥ found in the same way (replace the f;,, above with g;5,). Using both
these and the scalar products the elements V%.ip can be found, ie
Vi = VF (higfi2,)" + VI (hig-g12,)° (4.3.39)

and finally
V‘-- = [R]Q]‘_j llgl.em,

3
Vi = 2 ([le]fk [Rra]i; + [Rurliy [R.rz]ij) (hir.e0,)”.  (4.3.40)

Equations (4.3.37) and (4.3.40) are used to approximate their respective func-
tions and scalar products and the results presented in Figures (4.3.1-4), first for
coplanar satellites for the non zero scalar products and then for non coplanar

satellites. Throughout a value of r, = 6600km and inclination 96.4° was assumed
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whilst the initial angle values are given.The units on the time axes are numbers of
revolutions and the value for the orbital period, T is approximated from Kepler’s
equation n2r2 = u namely

T = 27r\/("—5) : (4.3.41)

For the planar case in Figure (4.3.1) only the along track and radial scalar products
are non zero and the radial one is small. In fact their constant values are — cos(AF)
and sin(AF) respectively where AF is the along track separation.

The non planar case exhibits large periodic variations in the along track scalar
product with the satellite to satellite vector. Also a sinusoidal variation in the cross
track scalar product is introduced. The terms Vy ;s and V;; for this non planar
case are all small with the largest ones due to the effect of the cross track relative
velocity of the satellites introducing cross track orbit error into the partials.

In the following sections the variations are all supposed to be harmonics of the
orbital frequency, an observation supported by Figures (4.3.1) to (4.3.4). Further-
more although several terms are small all terms have been included in the analysis

for completeness as their inclusion does not complicate the work significantly.
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4.4 The signal equation

Based on the findings of the previous section the following approximations can

reasonably be made:-

Vxig = kf big x cOS (kFt) + ¢igk Sin (kFt) (4.4.1)
k=0

Vij = "‘"‘E‘” €ij,k COS (kﬁ’t) + fijx sin (kF t) (4.4.2)
k=0

h,‘ﬂ.euo = k”‘z‘” msg,k COS (kFi) + Gig k sin (kFt) . (443)
k=0

Using equation (3.5.4), namely

61'0.‘

l . .. .
Oima j;; [Xinag cos (F5mt + Bimas)|
+ (C’}m + ngbfgat) cos (net) + (E‘fma + 5mgﬁ?;)at) sin (n,t)

+ Gi t+H (4.4.4)

it is possible to derive expressions for the sensitivities of the motions of both
satellites. In the case considered here the spacecraft’s orbits have the same height
and inclination and therefore the same basic frequencies F' and . The only
differences are in the initial values of the angles F and Q (F, and €,). Therefore
to indicate which satellite is under consideration the index g = 1,2 is introduced
to the phase angle ¢}, .. in (4.4.4). Equation (4.4.4) is now written

0zip,
aclma

Il

!

3> [Xinag cos (Pimt + dines)|

P

4 (C‘:ﬂa + ngﬁfgﬂt) cos (not) + (Efﬂa + Jmoﬁ‘,%ﬂat) sin (n,t)

4 GE 4y HY 4.4.5
Ima

Now using (4.4.5) one can write

Di 5 A2 008 (it) + Bl sin (i)
Ima j==1
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+ (O’;ma + 6ngma ) cos (Ft) + (Ef,in + ngf']’;)it) sin (Ft)

+ GP_ (4.4.6)
as the derivative of
= E [A;,,,w‘_:r cos (1/ ) + Bt sm( im )]

+ (C;ma + 6moDigat) cos (Ft) + (Eif, + dmoFisat) sin (Ft)

63:,-30
Bclma

+ GPt+HP,, (4.4.7)
where
A:ﬁwj = ¢Jm%mj sin (¢Im¢13
Blirezaj = _wjm‘xlmj cos (¢1mj) )
and

8 .
A:mnj - ’thj cos (¢Imaj)

Bimaj = —Ximisin (dimas) -
bimaj IS given by
Bimaj = Pima + Pioe + = (4.4.8)
for i=1,2 and
Bioei = Bima + Yioe (4.4.9)
where
lb:ﬂ; = "Z':f: = jFp, +m (s, — 0c,0)
Vi = (—1) Fa, +m(Q, —0c,)- (4.4.10)
From (3.5.10)

l.?m = ’!j)?m = ]F +m (Q - 0(})
Pl = (G- D F+m(Q-0g) (4.4.11)
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and so
Pim + KF =4 (4.4.12)

Equation (4.3.22) namely

aRR 3 2 . ai‘i 0 axi (+]
° Z [Z(—l)ﬂ 1 (ac"fa h;s.ep3, + 30!::(; Vx,iﬂ)

ICima i=1 | g=1

- Sulza] o

will be developed. The first step is to examine the cross track partials (ie ¢ = 1)
and to express these in the same form as the other partials. From equations (4.4.6)
and (4.4.11) and writing 4, for i = 2,3 as ¢,

E [AimaJ cos (11!)3 im ) + Blmaj sin (1/ )]

g==1

C (C!ma + 4. oDmat) cos (Ft) (Efﬁa oFmat) sin (Ft)
Gl (4.4.14)

Now if the j summation is replaced by a summation over j' = j — 1 then the

summation limits become j' = —I — 1 and | — 1 and equation (4.4.14) is rewritten

as

6i‘ 18, £ 1
6clma

ey [Aimaj 141 COS (‘lﬂ'; 'm ) =+ Bimaj"+1 sin (’lfJJam )]
+ (mea + o Dmat) cos (Ft) (Etma + Jmoﬁ}uﬁt) sin (Ft)
Gima- (4.4.15)

The primed notation can now be dropped with the result that all partials are of

the same form except for their summation limits. A general term is now
- 611

= [Almc,}+5 i Ccos (ij)gmt) =+ Blmo:3+d' il sin (wjm )]

J—-I-—J
+ (C}m + 80Dl ) cos (Ft) ( W A+ B Fint ) sin (Ft)

Glma (4416)
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Equation (4.4.13) is now further developed. The terms in (4.4.13) are all similar
algebraically. Thus the first term is derived carefully and the other terms inferred
from this. The constant, once per revolution and secular terms at the end of
(4.4.16) are not explicitly worked out in the following although the period of their
variations are carefully noted.

Using (4.4.3) the first term in (4.4.13) is

;s -5 _ . ’ .
s, = | 5] [Afuses, o3 () + Blaagssy i ()

% (Cfm + éngfgat) cos (Ft) -+ (Efin + Jmoﬁ}‘;it) sin (Ft)

G Glma)

(id:z Mg,k COS (kF t) + gigx Sin (kFt)) (4.4.17)

k=0

which on using the following trigonometric results

2cos (a)cos (b)) = cos(a+b)+cos(a—1D)

2sin (a)sin(b) = —cos(a+b)+cos(a—>b)

2sin (a)cos (b)) = sin(a+b) +sin(a —b)

2cos(a)sin (b)) = sin(a+b) —sin(a — b) (4.4.18)

and (4.4.12) can be written as

""JI 1 kqu

Z Z (A::glaj+5u1niﬂ)k == B:ﬁlaj-{—ﬁuqiﬁ,k) cos (Id).?'f'kmt)

J——l 6‘1 k=0

A i s Mip k + Bioaj 1,8, k) cos (1/’: km )

1
hig.e1n, = 3

(
+ ( Imaj+&; TiB:k + Blmaj +6:, TV k) sin (wj-[-km )
(-

o+ Almaj-l-d 1 BBk + Btmaj +6;, 1T, k) sin (wg—kmt)
+ 52 (O + D) cos ()
kf_
+ (Egﬁcf F}ﬁklt) sin (k'F' t)] . (4.4.19)
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To see how this can be simplified look at the term

—0il kmaz N .
; . kzﬂ (A!maa +60 Bk — Bfrﬂ;mjwnqiﬂ,k) cos (‘l/’j+km*) .
J"_ il K=

By interchanging the order of summations and replacing the j summation by
§' = j + k the term becomes
kmu: ‘ 6¢l+k
i i3 i
E 2 ( o —k-+) T8k = Bibsagii—kra)1iguk) €08 (mt)
=0 j'=—1-6;1+k

Again reverse the order of the summation to give

maz

=61 4+kmaz X . .
. (Z (Al ks 50y ™tk — B:‘fm(y-mﬂ)qiﬁ.k)) cos (‘%"mt)

i'=—l-6i1+kmaz \ k=0
When ;' has a value outside the bounds given in the last equation then the value
of the bracketed index in the amplitudes is outside that defined in chapter 3. In
chapter 3 Affmj was defined for j = —I — §;; to | — ;; in steps of two from the
lower to the upper bound. If the value of any amplitude with index j outside
those values is defined as zero then the summation limits and the index j can be

generalised for the first four terms of equation (4.3.15) in the form

Dikig ] -Suthnes  [kmas .,
~hig.e;n, = = A Mg — BB . _
Ictma 2 gt kmas g‘o( tma(j—k+8u) Tk T Flma(j-k+éu)

" 3 ™
+ Ana(ikssa)Mink + Bimagiskrsa)Gidk) } cos (jmt)

mazx ;ﬂ 'ﬁ
+ LZ (Alma(j—k+6u)q=‘ﬂ-k + Bl‘ma[jv-k+6u)?n"ﬂ,k
=0

.ﬁ I .ﬂ - 1
- A;ma(j+k+6.'1)qiﬁsk + B:ma(j+k+6;1)7niﬁ:k) ] sin (ﬂijt)

+ kgl [(C‘f;‘ik pask t) cos (k Ft)
k=0
o (B )i (40 -
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Introduce the new notation

Aima: = [Z (Almcx(J k+6,)TMiBk — B;fm[j—k+au)%ﬁ,k
+ AP migx + B ) (4.4.21)
Ima(j+k+8,1)" ik Ima(j+k+6,1)TiB.k 4.
_ 1 maz i B;ﬁ
FIan == 5 Z( tma(j-k+6,-l)‘7iﬁ,k+ Ima(j—k+8;1) 40,k
k=0
” "
= Aok Bk + Bllma(j+k+6.-;)7niﬁ,k) ] (4.4.22)

then

; I-d;1+kmaz
0Z;g, hig.e;s, = % i (Almaj cos (zb_,m ) + Flmaj sin (f,bgm ))

J'*—l —di1 —kmaz
- Z [( ;ﬂ‘ f,‘,ﬂf’t) cos (k'Ft)

4 ( *"ﬂ"' + Fir ) sin (K'Ft)| . (4.4.23)

Ima Ima

Similarly one can show

|

Pediiekass
0z;p, Viis = 1 i (Azma_, cos (%m ) %+ leaj sin (‘/’:mt))

OCima 2 j=—l-b1—kmaz
b SE (Y + DI cos (k)
=
+ (BH¥ 4 B%'t) sin (K Ft))| (4.4.24)

where

i 1 maz ae i }3
Aigmj = 3 [E (A:gm(j—k‘lﬂfu)bm’k ™ B:ma(j~k+5.-1}ciﬂ-’=
k=0

as ~if
+ ;?{ila(j+k+6‘1)b‘ﬂ,k G 77 B:ma(3+k+6,1)ciﬂ,k) (4-4.25)

1 mazx "iﬁ ‘iﬁ
Flma: - '2_ [; ( lma(j—k-{-du)ciﬁ,k s Blma(j_k+5“)b£ﬂ,k
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(4.4.26)

"

8 1B
- :ma[j+k+6u)ciﬁ.k t+ B:ma(j+k+6,l)biﬁ:k)
The final term in (4.4.13) is written
2 aIf2¢)

E Virge
(4.4.27)

with each component expressible in the same way as the other two terms of equa-

tion (4.4.11) except for an extra index r which is needed,ie

63:}'20 1 I-6i1+kmaz pir ;
Virm = 5_,-__; %_kmu ( I?MJ cos (1,{ij ) ._,ﬁfad sin (1/)_,,,,, ))
km+1 o _
> [(Crzk + Dyrk's) cos (K Ft)
+ (E;;;fg"’ Fpzk ) sin (K'Ft)| (4.4.28)
where
ior L —_
Th?mu = '2' [;} (Ah?za(j—k+6ﬂ)eﬂ'.k =% Btria(j—k+6.;)fri,k
+ AR (k) Erik E{iamnaﬂ)fri.k) ] (4.4.29)
—=i2r ]- kmas
“imaj = o Z (Alma(_g k+6,l)fnk e B(nm(_} k+6,1)Crik
- Agm(5+k+5.‘1)fri,k + Err?m(j+k+5u)eri,k) :| . (4430)
Hence the final term in (4.4.13) is given by
3 63: 9 I-8;1+kmaz . 3 : .
> Vi ac" 2 = 3 (lz T}f,:uj] cos ('l/)jmt) + [ Eff,:aj] sin (ﬂijt))
r=1 Ima j==l-di1~kmax r=1 r=1
km+1 o _
+ Z [( Ok . Pk t) Cos (k'Ft)
+ (Ef,:f;k + Fpi2r¥'t) sin (K'Ft)]. (4.4.31)
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Using equations (4.4.23),(4.4.24) and (4.4.31) in (4.4.13) and interchanging the

B and j summations

ORR, 3 { 1-8i1+kmax

= 2 X

2 3 ) )
+ Z(_l)ﬂ_l ( lmaj s Flmag [ E;E:IGJ:I) sin (d“jmt)}

2 i
Lgl(—l)ﬁ-' (A:fia, FAB 4 [Z Tzf,:n,-]) cos (ymt)

B=1 r=1
- kfl [(Cizk, + Dizkt) cos (K Ft) + (Eni2 + Fi2it) sin (K Ft)] } ,
k'=0

(4.4.32)

where the Cf,f,f‘a etc. are a summation of the appropriate amplitudes. By reversing
the order of the 7 and j summations and expanding the limits of the j summation

equation (4.4.32) may be written more compactly. In detail

I+kmaz s j
E;RRO _ +Z [Almnj cos ('!,[)jmt) : ¢ B:maj sin (T,f)jmt)]
CIma j:—l—l—kmaz
b (0 Dike) con () + (B2 + ) sin ()]
(4.4.33)
where

3 2 -3 )
Aimag = D [E =1)f? (Am: h,,w:_,)+ Z”I‘;ﬁ;'aj” (4.4.34)
=1 lr=1

i=0 | A
[ 3

3 2 )
Bimaj = 3. [Z (=1)P1 (T2 + 112 0;) + Ezﬁg‘aj]] (4.4.35)
i=0 | f=1

Lr=1

kma:
¥i)
A‘m“’ - [ E A Ima(j—k+81)TTVibk — B:ma(j—k+6“)Q£ﬂ,k
k=0 :
+ Alm“(.‘\'"‘k‘f"s‘l)?n;ﬁ k -+ Blma[]+k+5'l)Qlﬁ k) ] i (4.4.36)
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:B

AlmaJ )y “lmajr

are given by

Flmaj

lmaj

v

Imaj

—ri2r

Imaj

and

—i2r
“lmaj

1

2 [;;] (Aima(J k+6:0) T8k + BImc:(J—k+d' Mg,k

A:ma(j+k+5“)qiﬂ,k + B;i&(j+k+6u)7ni18‘k) ] ) (4."1.37)

maz

1 v
ip
-2- [’E (A:ma(g-—k+6.1)blﬁsk - Blma{j—k+5|1)ciﬂlk

- .ﬂ ~
:ma(3'+k+6.'1)biﬁ|k‘ + B:ﬂ:a(j+k+ﬁu)c‘-ﬂik) ] J (4.4.38)
9 > ( tma(j—k+64)CiBk t Bima(j—k+8,1)bis k

k=0

i3 s
Alma(i+k+6,)CiBk T Btﬁnmuaﬂ)biﬁ.k) } ; (4.4.39)

kqu
> [Z (Atmau ktdi)Erisk — Blmagi-k+a1) frik

~ro "
A}lir"-ﬂf(Ji+k+f5;1)e""v'c 2 B{ria(j+k+6.1)fri.k) :| (4-4'40)
1 mazx - .
§ [;} (Abfm(j—kw.-;)frﬂk + Blr?m(j—k+5,-1)ef£,k
Alma(3+k+6‘l)ffi,k + B{;QU+k+6£1)eri1k) ] . (4.4.41)

etc., in terms of the amplitudes of the solutions to Hill’s equations

_'l:{;}m "Yljnj sin (¢:£m j)
Bfai = —VimXinicos (dis), (4.4.42)

Almaj

B _
A:maj = ‘;t’lm;,- Cos (étmaj)

Bf. = —Xijsin(dih,). (4.4.43)
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Equations (4.4.33), to (4.4.43) provide the relationship between the partial
derivatives of the range rate residuals with respect to a gravity coeflicient, and
the amplitudes of the solutions to Hill’'s Equations, the V;;, Vxis and the scalar
products. The amplitudes of the solutions to Hill’s Equations A7, ; are in turn
given in terms of the orbital elements and the values of the indices in equations
(3.5.7) to (3.5.9).

Equation (4.4.33), its subsidiary equations (4.4.34) to (4.4.43) and the proce-
dure to calculate all the coefficients migk, gigk, bigk, Cigk, €ijk, fijx from equations
(4.4.1-3) as discussed in the previous section is the basis of the work that follows.
The formulism is flexible enough to model the range rate residuals, or to recover
a gravity field, providing the satellites share the same orbital height, the same
inclination, the same near zero eccentricity but not necessarily the same orbital
plane.

In particular the methodology permits investigation of the extent that satel-
lites in different orbital planes may affect the recovery procedure. The premise is
that the relative orientation of the satellites as reflected in the increasing periodic
variations in the scalar products and subsequent terms introduces extra cross track
information into the signal. This extra information may then help recover certain
coefficients which are poorly determined when the spacecraft follow each other in

a plane.

4.5 Additional effects on the Range Rate Resid-

uals

So far the effects of the periodic, non resonant perturbations of the satellite’s mo-
tions on the range rate have been discussed. In addition to these there are the

effects of the zonal harmonics which, at the once per revolution or constant fre-
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quency accelerations for odd and even zonals respectively, give rise to the resonant
response discussed in chapter 3. Furthermore the response of the satellites to an
error in the initial state vector is an effect which was examined in chapter 2. These
will now be discussed briefly since they do not provide additional information on
the gravity field that can be used in the recovery. It is important therefore only to
derive the form of response that these parameters have on the line of sight relative
velocity, and not to detail their effects in terms of the zonal gravity coefficients or
initial state errors.

The contribution to the Range Rate Residuals from the once per revolution
and constant gravity signal, and the initial state errors can be calculated in the
same way as the other gravity signal. Equations (3.4.3) and (3.4.14) give the
perturbations to the satellites motions due to these effects. Their combined effects

can be represented by equations of the form (eg (Wiejak W., 1990))

Atiresfinit = (Au+ But)cos (Ft) + (Cu+ Dut)sin (Ft) + B,
Avregfint = (Ay+ Byt)cos (Ft) + (C, + D) sin (Ft) + E,t + F,(4.5.1)
AWresfinit = (Aw + Byt) cos (F t) + (Cy + Dyt) sin (F t) + E,.

Equation (4.3.22) with the partial derivatives replaced by the differentials in
(4.5.1), and using equations (4.4.1),(4.4.2) and (4.4.3) to take some account of the
relative motions of the satellites, give the general form for the perturbation in the
range rate due to the initial state error and resonant effects. It is written as

km+1
ARRyesfinit = g (A + Bit) cos (kF't) + (Cx + Dit)sin (kFt) . (4.5.2)
Ag, .., Dy, are due to the combined effects of the once per revolution and constant
gravity accelerations and the initial state errors.

Now using equations (4.1.2), (4.4.31) and (4.5.2) the Range Rate Residuals due

to all the effects so far discussed are written
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Lmaz 1 1 I+ kmqs

ARR = 3 3% 3 [Aimaj cos (imt) + Bimaj sin ($mt)]

1=2 m=0a=0 j=—I—1—kmasz
+ kit] [(A* + B*t) cos (kFt) + (C* + D*t) sin (kF7t)] (4.5.3)
k=0

where now Ay, .., Dy are due to the combined effects of the once per revolution and
constant gravity accelerations and the initial state errors but also the other effects
of the zonals at these frequencies. This places a restriction on the j summation
for the zonals. For m =0, |j| > &, + 1.

A new notation is now introduced. The partial derivatives filtered for the
combined effects of the constant once and up to k,, + 1 times per revolution gravity
accelerations and the initial state errors are called the filtered partial derivatives,

they are written

I4+kmax ) '
aafiRo,; _ +>: [Aimag cos (¥imt) + Bimag sin ($imt)]  (454)
e j=—t-1-kmaz

with the restrictions on the summation mentioned above implied. The equations
of the form (4.5.4) are the basis for the next chapter and provide the complete
description of range rate residuals between satellites in a drag free near circular

orbit under the influence of gravity and initial state vector mismodelling.
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Chapter 5

Range Rate Error Analysis

5.1 Introduction

The previous chapter saw the derivation of the partials %f‘ff‘ , namely the sen-
sitivities of the Range Rate to errors in the gravity field and the functions upon
which the recovery or error analysis procedures are based.

The least squares solution model developed in this chapter is used to undertake
an error analysis from which one may infer the relative benefits of one possible
mission over another. The normal matrix will be developed into a block diagonal
form which makes this kind of analysis practical . The study of this matrix will
indicate how the orientations of the satellites affect the accuracy of the recovered

coefficients.

5.2 The Least Squares procedure

It has been assumed here for reasons of efficiency and simplicity that only gravi-
tational errors are present. It is also assumed that the partials can be filtered of
the once,twice and up to k,, + 1 times per revolution signal and of the secular part

of the signal , leaving only the periodic part that is separable from initial state
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error and resonant effects, without introducing errors in the result. This may be
an inaccurate assumption but is thought that the relative effect of this assumption
on different mission scenarios is small (Wiejak W., 1990) (Colombo, 1984).

The filtered signal is of the form

Lmaz | 1 R i(Cima
ARReatei = 3, 33 Rg{f (o) ;e (5.2.1)
=2 m=0a=0 Ama

where the filtered partial derivatives are
BRRO i I4+kmaz . . .
——L = z [\A!maj cos (i/)_fmt.-) + Bimaj Sin (y:jmtg)] . (5.2.2)

aclma j==l=1=kmaz

The signal equation is given therefore by (5.2.1) and by the understanding that
ARRopsi = ARRegrei + € 1=0,1,..,Nops — 1, (5.2.3)

where €;, the model errors and noise of the it observation, are assumed to be
normally distributed.

If (5.2.3) is written in vector form then

ARRgps = Ac+ ¢ (5.2.4)

where ARR,ps and € are column vectors indexed by i and therefore of dimension
N,s , the number of observations in the dataset. cis also a column vector, made up
of the coefficients ¢, in some order. Since there are (Lyz + 1) (Linaz +2) = Linas
coefficients up to degree and order L,,,, then ¢ has that dimension. The matrix
of partials A is of dimension Nops X ((Lmaz + 1)(Limaz +2) = Limaz) and each of the
(Lmaz + 1) (Lmaz +2) = Lar columns comprises the N, partials for some [, m, c.

Equation (5.2.4) gives the observation equations in matrix form. The least

squares solution to these equations minimises the quadratic
q=c"We (5.2.5)

with respect to the elements of ¢ (Bomford, 1980). For a set of uncorrelated

observations W is a diagonal matrix, elements of which are the weights attached
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to each observation. The weights increase with the accuracy of the observation,
eg Wi = ;t; where o; is the standard error of the i** observation.

The solution to the minimisation procedure is the normal equations
(ATWA)E = ATWARRps. (5.2.6)

In (5.2.6) ¢ is the best linear estimate of c and (ATWA) the normal matrix. If all

observations have the same standard error ¢ then
1
(

1

—ATA)e = SATARR.,. (5.2.7)
o} o

The normal matrix is then given by

1
N= (-;ATA), (5.2.8)

which is made up of the scalar products of columns of A and is obviously sym-
metric. It can easily be shown (Bomford, 1980) that the elements of the inverted
normal matrix are the variances (diagonal elements) and covariances (non-diagonal
elements) of the coefficients to be recovered. Therefore by examining the elements
of the inverted normal matrix, information about the accuracy of the gravity field

recovery is obtained without having to simulate data and carry out an actual

recovery.

5.3 Efficient Least Squares Analysis

The problem in hand, that of finding the variances and covariances of the gravity
coeflicients from the inverted normal matrix is not straightforward as for high
degree and order solutions, say 120x120, this matrix has size 14400x14400 with
each element made up from contributions from each data point. This amounts to
around a million data points for a month of measurements taken every 3 seconds
and several million elements of the matrix. A considerable amount of computer

time would be required to compute the matrix and invert it.
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The problem can be greatly simplified by making a few assumptions about the
distribution of the dataset. The data is distributed along the paths of the satellites
which are assumed to be repeat orbits. Hence the orbital and nodal frequencies
can be written as (eg (Koop, 1993), (Colombo, 1984))

27 Nyes

5.3.1
= (5:3.1)

F='Hru=

and

L=Q—0g=-""daw (5.3.2)

The repeat period is T;., seconds and contains exactly N,.,s orbital revolutions
and Ngays revolutions of the nodes, where Nyeys and Nyay, are coprime integers, ie

without any common divisors, the gravitational frequencies are therefore

* 27 Nyevs ( Nda.ys)
- 2Neews (o Naays 5.3.3)
L ol :

On using (5.2.2) and (5.2.8) a typical element of the normal matrix is given by

1 Mt 9RR, 1, ORR, s

N {'m? ¢ = -
e o? Z[:] 0clma 6(‘,‘pmr a
1 Hkmas Vtkmaz
— 1
== X > AimejAvmasLijmm

J=—l=-1-kmaz j'==V-1-kmaz

2
+-Almaj By a'j’ Ij 3'mm/!

3
+Blmaj At’m"a’j’ 43'mm'

+BlmajBl'm"a’j" ji'tmm! (5.3.4)
where
Nops—1 . .
L = % cos (i})jmt,-) cos (ﬂ)j:m: t;)
=
Na ._1 . .
I;j:mm; = bz COoS (’lf)jmt;) sin (’l,bj:mf t,')
i=0
No .—1 . -
I;-*J-;mm, = bz sin (ﬂijt,-) cos ("ﬂj'm' t,-)
i=0
Nﬂ '_l . -
I}jrmmr = i: sin (’(,bjmt,') sin ( jrm't,')
i=0
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Now when:-

e the data points are equally spaced, ie t; = t, + iAt

e the sampling frequency is greater than twice the highest significant frequency
e there are an integer number of cycles in the sampling period

the summations are zero except for a few special cases due to the orthogonality
properties of trigonometric functions, from which similar results on trigonometric
series can be inferred, subject to the conditions listed above.

The number of cycles that an arbitrary frequency term performs in one repeat
period is jNyeys — MNgqys which is an integer. For a dataset of the required form

this implies that

mm! == 12 rmm! = mem: = :Z;j’mm' = 0 (53-5)
unless
[Yim| = Wi (5.3.6)
in which case
Jj‘mm" = I_‘?j"mm’ = 0 (5.3-7)
for all 7,7',m,m' , and
Nob
I}Jmm — jimm = 2 3: (5.38)

(Colombo, 1984).

This is the basis of all efficient numerical methods with equispaced data, and
is analogous to the Fast Fourier Transform routine where the data is situated on
a regular grid of points (Brigham, 1974), or to efficient harmonic analysis on a

regular grid (Colombo, 1981).
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Now equation (5.3.6) implies

Ndaus

j—_m—=">==+ (j’ — m’%) (5.3.9)
revs revs
On examining the positive option first
- Nises
J = . day (5.3.10)

!
m—1m Neeva

it is clear that,

—Lpar £ M- m' < Las

_2Lma.1: < J _j' S 2Lma:r:

and s0 if Nreys > Lmar then (5.3.10) cannot hold. Therefore (5.3.9) with the
positive sign holds only when m = ' and j = j'. This is a consequence of the
assertion that Ng,ys and N,.s are coprime. (Koop, 1993).

Similarly taking the negative option it can be shown that if Nyevs > 2Lmas
then non-zero series occur only for m = m’ and j = 5. The result is that (5.3.4)
can be rewritten as

NopsOppy  Hrhimas Vikmas

lma __
Nemlw = =35 2 2 it (AimajArmary + BimajBrmaty)

j=—t=1=kmae j'=—V'~1—kmaz
(5.3.11)

Thus elements of the normal matrix are non-zero only when the coefficients
share the same value of m, and the summations over which these elements are
obtained are limited by the fact that their values of § must also be equal. Only
one summation is needed and its range is the intersection of the two summations
above .

Further consideration requires a separate treatment of the m = m' = 0 case.
There j = —j' produces non zero series and therefore contributes to the elements

of the matrix. Also when j=3'=0

Z3oo = Tooo0 = Nob- (5.3.12)
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However, the contributions to the gravity signal from constant, and once up to ky,+
1 times per revolution frequency terms have already been absorbed by A¥, .., D¥.
Thus, as mentioned at the end of chapter 4, the j summation is limited to |j| >
kn + 1 for the zonals. The loss of these frequencies will have a degrading effect on

the lower degree zonals. When m = 0 an element of the matrix can be written

10 Nob.'l ""km.u.t l"‘l’kmaz
¢ I
Nyoar = e z Z 0 jjt (AajAroaj + BioajBroas

J“—"—l—l —kmaz j'=_l'_l —kmaz

== .AmajAl"[}a"—j' + BmajBI'Oa’—j’)
(5.3.13)

where |j|, |5| > km + 1, (Colombo, 1984).

In consequence of (5.3.11) and (5.3.13) the normal matrix is block-diagonal
if the coefficients are ordered within the vector ¢ so that elements are grouped
into those with the same order. The system now becomes a sparse block diagonal
normal matrix with the advantage that one can invert each of the smaller sub
blocks in turn and therefore reduce the computational effort. Further, there is
no need to sum the elements over all observations as would normally be the case
making the analysis much more efficient.

The results presented in this chapter are based on an analysis of this type.
However, before looking at the results a few points should be made about earlier
assumptions . A necessary simplification was made regarding the removal of sec-
ular and kn cycles per revolution signal for k£ less than k., from the residuals.
These terms would of course effect the errors in the coefficients to some extent
but there are few of these compared to the thousands still considered. For this
reason one could reasonably expect the errors to be dominated by the relationships
between all the coefficients within each sub-block (Colombo, 1984). Furthermore
the differential effect between two missions is likely to be small and the results can
be viewed as accurate relative to each other.

In the remainder of this chapter the variances and covariances of the gravity
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coefficients, that is the diagonal elements of the inverted normal matrix, are pre-
sented for a variety of possible mission scenarios. These give valuable information
about how the orbits and orientations of the satellites would affect the recovery of
the gravity field.

In addition to these results the eigenvalues of the inverted normal matrix are
displayed providing limits within which the solution is expected to lie. The maxi-
mum eigenvalue is the maximum error that could exist in a linear combination of
coefficients and as such illustrate where possible deficiencies in the recovery may
lie. Which coefficients are involved in the linear combination and their proportions
are given by the eigenvectors corresponding to each eigenvalue, these eigenvectors
have dimension equal to the coefficient vector. Similarly the minimum eigenvalue is
the lowest error that a linearly independent combination of coefficients is expected
to have.

Because of the block diagonal nature of the normal matrix it is possible to solve
for the eigenvalues of each block separately to see how coefficients of a particular
order perform in the missions discussed. Together with the degree variance plots
the eigenvalues allow one to pinpoint the strengths and limitations of each of the

cases studied and can be of use in deciding what type of mission would be best in

a gravity field determination using two satellites.
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5.4 Discussion of the error analyses

5.4.1 Analysis of the normal matrix

The elements of each sub-block are indexed by I, @, I', & and the sub-blocks them-

selves identified by m. Thus an element of the m! order sub block can be written

as (cf (5.3.11), (5.3.13))

z Ny, ™nb8) s
N ’?1’ e E AimajAl'mn’j + B!majBI’ ma'j (541)
m 20?2

jz —mm.(!,l' ) -1- kma,:
for m # 0, and

; Ny,  ™nl)+mas
a —_—
(N ‘0')0 T g2 Z (AioajAroaj + BioajBroai

J=—min(l,l')-1-kmazx

+ A!Oaj-AI'Oa'—j + B;gajB;rgar_j) (5.4.2)

when m = 0, where |j| > k,,+1. Therefore to obtain the variances and eigenvalues
from the normal matrix each sub-block is set up and inverted in turn, for a choice

of initial parameters. These are
e The common height of the satellites.

e The common inclination of the satellites.( Bearing in mind the model, or at

least Hill’s equations, are accurate only for near polar orbits)
e The separation of the satellites whilst they share the same orbital plane.
e The separation of the orbital planes in right ascension.

For all the results presented it is assumed that the satellites are in repeat orbits
in which they perform 323 orbital revolutions in 20 nodal days. This is consistent
with the value L., = 120 chosen here since 2 x 120 < 323.

The accuracy of the observations is assumed to be o = 0.1mm/sec , the value

quoted for the GAMES laser ranging mission proposal. Furthermore it is assumed

85



that varying the separation has no effect on this accuracy, therefore concentrating
attention on the mathematical rather than the practical aspects of this problem.
The time between the measurements was taken to be 3 seconds and thus there are
Ngps = 576000 measurements in the 20 day period and approximately 1783 in each
orbital period. This represents a sampling frequency of 1783 times per revolution
compared to a highest observed frequency of a little over 120 times a revolution.
The sampling rate is more than sufficient for the model as described previously.
Once the values of the parameters which describe the mission have been chosen,
the non zero elements of the normal matrix can be calculated from (5.4.1) and

(5.4.2). The complete matrix can be written
N = diag (No, Ny, .., N, ooy Ni...0. ) (5.4.3)
wherein Ny, is the m'™ sub block. The inverse of (5.4.3) is given by
N =diag (Ng', N, ., N;1,... N2, (5.4.4)

from which it can be seen that to invert the whole matrix it is necessary only to
invert each of the smaller sub blocks. |

To perform the inversions, use was made of the method of Cholesky factorisa-
tion (Burden and Clemence, 1989). The normal matrix and therefore all of the sub

blocks are positive definite. A consequence of which is the possibility of writing
Noi= Lals : (5.4.5)

where L,, is a lower triangular matrix called the Cholesky factor of N,,. The
matrix L,, can be easily inverted and it’s inverse used to calculate the inverse
of N, using (5.4.5). The elements of these inverted sub blocks are the variances
and covariances of the coefficients and are used to determine the accuracy of the
solution. Later in this chapter the diagonal elements of these matrices are used in

the variance plots along with the eigenvalues of the covariance matrix.
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If the eigenvalues of the matrix N~! are ); with associated eigenvector u;, then
N7y = \u;. (5.4.6)

and from elementary matrix theory
det (N™' = 1) =0. (5.4.7)

From the theory of determinants of block diagonal matrices this is equivalent to

Lmaz

I1 det (N7' = XimI) =0 (5.4.8)
m=0

where A; 5, are the eigenvalues of the matrix N,;!. Therefore the eigenvalues can be
considered independent of the eigenvalues of any other sub block. The eigenvalues
of the covariance matrix are the extrema that the variance of a linear combination
of coefficients can attain. Thus the maximum and minimum eigenvalues of a sub
block Ny, are bounds within which the variances of coefficients of order m lie.
Before presenting the results of these analyses approximate expressions for the
signal equations for the planar and non planar cases will be obtained. They should

be useful in helping to explain the results in later sections.

5.4.2 The signal for the planar case

For the planar case the satellites are assumed to be close so that the separation
AF is small compared to an orbital revolution. For the purpose of discussion
the simplification is made that the range rate residuals are due entirely to the
difference in the along track velocity perturbations of the satellites. This implies
that cos AF =1 and sin AF = 0.

Hence, writing y and z for the minus along track and cross track coordinates

OClma B OCima  OCima

(5.4.9)
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and differentiating equation (3.5.4)
1

> ~Vimjsin (tffjmts + Puma + Y3 + %) (5.4.10)

i=-1(2)

9Ys_ _
O0Cima

where

i QWNrevs ¥ Nda s .
Yimbi = ( - m) iAt
Jm Trep ? Nreﬂ'.s

= n, ( i %’im) iAL. (5.4.11)

Tevs

The amplitude in (5.4.10) is derived from (3.5.8) as

R\ M2 J 1/';?,“ +3n?) — 2pimno (L +1)
Yimj = % (-;) Finp ( ( d 1&3:()113 = J}m) ) : (5.4.12)

To develop (5.4.9) one takes

. AF
Vim + Vim = 2jm — Yjm—
(1]
. . AF
=Y = Y (5.4.13)
(]

where the temporal separation of the satellites is £E. Substituting (5.4.10) in

(5.4.9) and using (5.4.13)
aRleci

OCima

i Vimj (sm (1,{ ) cos (’%mt + Gima + ’4/);’,1,,)

i==1(2)
3 . AF AF ol
+ sin (1/}5,,“ 2710) cos (’/’Jm ) sin (TJ mti + Pima + 1/"jm)) :
‘ (5.4.14)

From equation (5.4.14) it can be seen that the important factors in determining

the sensitivity of the range rate signal to an error in ¢, are:-

e The functions Vi,; which describe the relation between the amplitude and
the frequency for a coefficient of degree [ and order m. These determine the
response of the along track velocity to oscillations in the radial and along
track gravity forcing terms and depend critically on the height and inclination

of a satellite in a circular orbit.
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e The separation in the form of the factors sin? (ﬂij:‘?f) and
sin (d’fm%) cos (1/33-,“-2‘3—’5). For certain separations AF and for certain fre-
quencies determined by j and m the signal could, due to these factors, become

greatly reduced.

In the non-planar case these formulae are not valid. In particular the additional
cross track terms will depend on the cross track inclination functions discussed in
chapter 3. Equations (5.4.13) are no longer valid either. A similar expression to

(5.4.14) will now be derived for the non planar case.

5.4.3 Signal for the non planar case

It was seen in chapter 4 that the non-planar case is more complicated than when
the satellites share the same plane as in the previous section. If the cross track
separation is quite small compared to the along track separation then one can
assume for the purposes of discussion that the signal is made up entirely of along

track and cross track velocity errors. Using the result from chapter 3 this amounts

to assuming
Vxipg = 0, Vi,

Vii, = 0, Vi,p
hyge; = 0,4=1,2.

(5.4.15)
Furthermore it is assumed, after consideration of Figure 4.3.2, that
hijges = gsinngt, f=1,2.
hgﬁ.elg = —'1, ﬁ = 1,2.
(5.4.16)
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Then from (4.4.34) and (4.4.35)

Aimﬁ.? = Almag lma_; - Atma; ?r?m_g
B!mag == leaj Flma} lmcu lea] (5.4.17)

The last two terms in these equations are the along track contributions and are

therefore in the form of (5.4.14) but in this case (5.4.13) are replaced by

o o 0 : AF
'g{)j,,; + 1/,!3-,27‘ = 21,/}3-,1?1 - Yim
o
AF

1 2 I
;m - %/’;?m = 'ﬂbjm
o

— mAQ (5.4.18)

where AQQ is the difference in right ascension of the satellites (positive for satellite

1 having greatest right ascension). Thus writing

. AF
Q/ij
n

— mAQ = ¢im (5.4.19)

(]

then the contribution from the along track terms can be written

BRleci) l ( ‘33 ]
DER e il = Vimi sin? (ﬂ) COS | Yimti + Oima + Jq:n
( OClma alongtrack j=§(2} ™ - (% ‘;bi ‘!J )
- ﬂa'm é m
+ sin (%) cos ( - ) sin (¢Jmt + Gima + V5, ))

(5.4.20)

This leaves the cross track contribution

( BRRcaJc i

aclma

= (A},La, ;m_,) cos (1'{;3,“)
+ (Tihe; — Ti2,;) sin (¥jmt) (5.4.21)

and from equations ( 4.4.36), (4.4.37), (4.4.42)

) acrosstrack

- ™
A!ma3 = 'é'{'}' (’Ylmj cos (¢Ima + ¢ ) Aimj+2 €OS (¢‘m°‘ + 1/J+2m 5))

i i ia
Flma} = % (Xtmj s (¢Ima + d’jm + '2') =4 "Ylmj+2 s (¢tma =} ¢J+2m 2))

(5.4.22)
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where, from (3.5.7) it can be deduced that

B R 1+2 E "jjjm
;gtmj_ﬁ(?) B, AR (5.4.23)

After a little simplification (5.4.21) becomes

ORRcalci qXimj [ . a"m ; o
(m) acrosstrack Tj (Sln2 ._32“ €08 (¢jmti + ¢‘ma * d)j:n)

X = i . n . -
q 2““3 (__ sin .?:’.E cos 2?) sin ('!/)jmti + ¢'£ma 4 l'i”;rln)

2

£ (s ¢’£2"‘) <05 (dimts + Guma + ¥512m)

% 3. g
q I;J+2 (__ sin ¢J;2m COS ¢3-;2m)

X sin ("Z’Jmt + dima + ¢J+2m)

(5.4.24)

Equation (5.4.24) and (5.4.20) are the main terms that affect range rate residuals

in this non planar case, namely

ORReuci ( aRRm,c.-) " (aRRmzc,-
alongtrack

dc, )
Ima 8clma aclm& acrosstrack

Vimi + qXim; [ . b ] o
— mj > J Sln2 ¢32m COSs ('!/}Jmtt 4= ¢£ma i 1?,).1’17‘)

Vimi = Qmj [ . ; w3 1
n 5 sin ; 2 cos sz sin (’gbjmti + Pima + 1)'{J_;,‘-'Jﬂr:r:)

qXimj+2 [ . (5 in )
" 23"‘ (31112 -i-'é"-"’—) cos (wjmt; ~+ Gima + Y; +2m)

qXimj+2 . Pisom _ Pisom
.._..._éi._. (— sin 32 cos 32 sin (v,bjmt + Pima + P I/J_,,zm) .

(5.4.25)

Equation (5.4.25) explains the effect on the errors of the coefficients due to the

choice of separations AF, AQ).
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5.5 Results for the planar case

Using the method outlined in section 5.4.1 the expected variances of the coeffi-
cients, and the eigenvalues of the inverted normal matrices were calculated and
the results presented in the following sections for various mission orientations. The
details of the repeat orbit used and the measurement accuracy assumed were dis-
cussed in section 5.4.1. The satellites are in repeat orbits in which they perform
323 orbital revolutions in 20 revolutions of the ascending node. The accuracy of
the observations is ¢ = 0.1mm/sec and they are made every 3 seconds. The or-
bital heights and inclinations are always common to both spacecraft, and unless it
is stated otherwise the orbital height is taken to be 6605km above the geocentre.
The inclinations will either be 91 or 96 degrees. Throughout this section only the

coplanar case is discussed.

9.9.1 The height of the satellites

The effect of the height of the satellites on the coefficients is illustrated with the
variances plotted in Figures 5.5.4, 5.5.5, 5.5.6 and 5.5.7 for heights of 6605, 6625,
6645, and 6665km. The separation is 2.0 degrees and the inclinations are 91
degrees for all cases . The factor (§)£+2 affects the amplitudes of the Range Rate
Residuals, so an increase in the common height will result in coefficients of higher
degree having reduced effect on the signal to the extent that such coefficients should
have greater errors. This is clear from Figures 5.5.4 to 5.5.7 where the errors of
the high degree terms are seen to increase quite dramatically with a modest height
increase, underlining the importance of low satellite orbits in this high resolution
gravity recovery. The remainder of the error analyses are therefore only presented

for a height of 6605km above the geocentre.
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5.5.2 The inclination of the satellites

To examine what effect the inclination has on the recovery 4 error analyses were
carried out. Since a near polar orbit is needed for a global recovery, values of 91
degrees (called a polar orbit) and 96 degrees (called a non polar orbit) were chosen
for the inclinations. Separations of 2 and 4 degrees along track are used for each
value of the inclination.

The variances of the coefficients are presented in Figures 5.5.4 and 5.5.15 for
the polar orbit and 5.5.8 and 5.5.9 for the non polar orbit. For the non polar orbit
all the mm = 0 (zonal) coefficients have large variances and so would be poorly
recovered. This is not the case when the orbits are polar. Comparing Figures
5.5.4 with 5.5.8 one can see a degradation in the accuracy of the high degree and
order coeflicients in 5.5.4, when the inclination is closer to 90°

Figure 5.5.1 show the eigenvalues of the inverted normal matrix for these mis-
sions. The Figures show that with a 2 degree separation the polar orbit solution is
less well determinable for higher orders, since the eigenvalues of the higher order
sub blocks are greater when the orbit is polar. The 4 degree separation cases show
that the non polar orbit is not as good as the polar orbit for determining the lower
order coefficients.

Putting the satellites into the non polar orbit affects the zonals partly because
of the data gap in the polar regions. However the absence of data at the poles
increases the density of data elsewhere and as a result the accuracy of the higher
order coefficients evidently increases. This explains the effect of the inclination
in part but a major influence is due to the inclination functions. The inclination
functions help describe how a given spherical harmonic affects the perturbations
of the satellite’s motion in the orbital plane at a certain frequency. For a polar
orbit the zonals have a strong effect in the orbital plane and none perpendicular

to it. As the orbit becomes less polar , the proportion of the zonals power in the
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orbital plane decreases.

P | Fa0,0 (91°) | F2o,0, (96°)
0| 0.8003 0.7192
1| -0.4056 -0.2140
2 | 0.3092 0.0723
3| -0.2625 -0.0007
4| 02348 -0.0415
5| -0.2166 0.0682
6| 0.2042 -0.0855
7| -0.1958 0.0967
8 | 0.1903 -0.1036
9| -0.1872 0.1074
10| 0.1862 -0.1086
11| -0.1872 0.1074
12| 0.1903 -0.1036
13| -0.1958 0.0967
14| 0.2042 -0.0855
15| -0.2166 0.0682
16| 0.2348 -0.0415
17| -0.2625 -0.0007
18| 0.3002 0.0722
19| -0.4056 -0.2140
20| 0.8003 0.7192
Table 5.5.1

zonal inclination functions

This can be seen by the fact that
the Fjo, which account for the high
frequency part of the range rate sig-
nal (high and low values of p) are gen-
erally greater as the orbital inclina-
tion tends to being polar, see Table
55.1,p=2,3,..,7,13,.20. The zonal
coefficients are therefore stronger in
the higher frequency part of their
Range Rate spectra for a polar or-
bit and weaker for a non polar or-
bit. These frequencies are important
for the accurate recovery of the coeffi-
cients partly because the signal from
equations (5.4.12) and (5.4.14) is sen-
sitive to high frequency oscillations in
the gravity field. If these oscillations
are smaller along one orbit then with
that orbit the recovery of the coeffi-
cients will be degraded.

More importantly the loss of sig-
nal at high frequencies may increase
the correlations between the coef-
ficients Cynay Cl—2ma aNd C_gma etc.

The distinct frequencies which are im-

portant in the separation of these terms are those with j close to +lI.
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To choose the inclination for a gravity field recovery one must trade accuracy in
the zonals with accuracy in the high order coefficients (cf Figures 5.5.4 and 5.5.8).
The higher order terms and in particular the sectorials have a long wavelength
variation with latitude and a short wavelength variation with longitude. For a
polar orbit this longitude or cross track information is not represented in the orbital
plane whereas for non polar orbits this signal does effect the in orbit perturbations.
This could explain the higher errors in these near sectorials for the polar orbit. It
seems however that the effect of the inclination on the zonals is so great it would
be wise to use a polar orbit. The loss of accuracy in the high order coefficients

could perhaps be reduced if the cross track velocities contributed to the line of

sight velocity.

5.5.3 The separation of the satellites

The discussion on how a certain frequency can affect the recovery of a coefficient
is related to how the along track separation affects the recovery because the higher
frequency parts of the spectrum are attenuated first as the separation is increased.
As AF approaches the wavelength of a gravity signal term, both satellites begin
to be affected by these frequencies in harmony. Such in phase motion results in

the relative velocity being unaffected at this frequency. The frequency is said to

have been attenuated.

From equation (5.4.14) it is clear that this will occur when

. AF
a3 {5 _
sin ('e,b_,m 2n0) 0
and
. AF\ . (: AF
e (%mﬁ) e (T'b’m 2?10) =1
That is
. AF
$ : = £ R
sin (v,b,m 2130) 0 (5.5.1)
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and so

«j;jmg—f =tkr. k=0,1,2,. (5.5.2)

Now from (5.4.11) this condition is

Naays
(j = A;ﬂm) AF = +2km, k=0,1,2,.. (5.5.3)
Writing AF = 2% then for the case in hand
.20 Fr
J— ﬁm = :EkN, k= 0, 1,2, - (0.0-4)

For k = 0 slowly varying gravity terms are weak in the Range Rate signal regardless
of the separation chosen. When k = 1 attenuation will occur for frequencies 1,/'ij
for which Equation (5.5.4) holds.

The common heights of the satellites are all 6605km and all have an inclination
of 91 degrees. To illustrate a full range of separations Equation (5.5.4) is used
to find the critical separation at which attenuation of the highest frequencies will
occur. For Lymg; = 120 the maximum frequency is, using (5.5.4) | — 120 — 2x 120 ~
127.5 cycles per revolution. Using k=1 in (5.5.4) gives N a2 128. From Table 5.5.2
this implies that AF = 2.8 degrees is the lowest separation at which attenuation
will occur. The inverse normal matrices were calculated, and the variances and
eigenvalues obtained, for separations of 1.2, 1.6, 2.0, 2.4, 2.8, 3.0 4.0 and 6.0
degrees. The variances are displayed in Figures 5.5.4 and 5.5.10 to 5.5.17 and the
eigenvalues in figures 5.5.2, 5.5.3. When the separation is less than 2.8 degrees there
is no attenuation and from Figures 5.5.4 and 5.5.10 to 5.5.16 the coefficients which
are determined with the least accuracy are those with high degree and order, that
is when m > 50 or so. This is a consequence of the polar orbit. However it seems
from Figures 5.5.4 and 5.5.12 that the variances of the coefficients with greater
order are reduced by increasing the separations to AF = 2.0 and 2.4 degrees. The
eigenvalues displayed in Figure 5.5.2 also indicate an improved solution for higher

orders as the separation reaches those values.
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When the separation is greater than or equal

AF N to 2.8 degrees, the variances in Figures 5.5.13 to
(degrees) 5.5.17 show that certain coeflicient’s accuracies are
1.2 300 strongly degraded. Other coeflicients are deter-
1.6 225 mined with greater accuracy for these separations.
2.0 180 In Figures 5.5.13 and 5.5.14 the separations are 2.8
24 150 and 3 degrees. These graphs show that the coef-
2.8 128.6 ficients of degree near 120 and order close to zero
3.0 120 are affected. The eigenvalues for these cases show
4.0 90 in Figure 5.5.3 that the lower orders are poorly de-
2.0 75 termined.
6.0 60 As the separation is increased to 4, 5 and 6 de-
Table 5.5.2 grees in Figures 5.5.15, 5.5.16, 5.5.17 the degree
N versus AF at which the zonal coefficients are affected most

strongly have [ =~ N for each case. Thus these co-

efficients have their highest frequencies attenuated

since the highest frequencies in each case satisfy equation (5.5.4) with k = 1, ie

for AF = 4°,N = 90 the zonals have their frequency 91900 attenuated. This is

the maximum frequency of the [ = 90 zonal coefficients. In section 5.5.2 the im-

portance of these largest frequencies in the recovery of a coefficient was discussed,

the same reasoning applies here to explain why the loss of just one frequency can
so adversely affect the recovery of certain coefficients.

The higher order coefficients are attenuated at a higher degree than the zonals.

In fact from Figures 5.5.15, 5.5.16, 5.5.17 the so called attenuation bands are U-

shaped. This can be explained by remembering that for the polar orbits used here,

the highest frequencies of the higher order coefficients are weak. Therefore the loss

of a frequency due to attenuation will not affect the higher order coefficients at

the same degree as the lower order coefficients. The coefficients of higher order
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for a given degree will rely on the same frequencies (values of j) as a lower degree
zonal. In Figure 5.5.17 there are two attenuation bands corresponding to k = 1, 2.
Therefore the frequencies affected are 60 and 120 times per revolution (Table 5.5.2
and Equation (5.5.4)). For m = 0 this gives § = %60, 2120 and these two groups of
frequencies will affect coefficients of degree 120 in a similar way to the 3° case, and
will also affect the U-shaped band of coefficients containing the zonals of degree GO.
Whilst some coefficients are more poorly determined with larger separations ,the
lower frequency terms and therefore lower degree coefficients are better determined
than with smaller separations. In the AF = 6 case (figure 5.5.17 there is a zone
of coeflicients with lower errors between the attenuation zones. For these terms it
seems the separation best suits their important frequencies.

The eigenvalues for these examples are shown in Figures 5.5.3. They all show
the low order deficiencies and indeed that beyond a 3.0° separation the mid and
even higher orders can be severely affected.

From these analyses one could say that if a single separation was to be used,
then for recovery of coefficients up to degree and order 120 a separation along track
of 2.4° would be best overall. Some coefficients would be better determined with
a greater separation but only at the expense of others. Perhaps the best overall

solution would be obtained with a number of different separations within the same

mission.
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Root Variances of Gravity coefficients. AF = 2.0°, AQ = 0.0° (height above
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Figure 5.5.5

Root Variances of Gravity coefficients. AF = 2.0°, AQ = 0.0° (height above
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Figure 5.5.7

Root Variances of Gravity coefficients. AF = 2.0°, AQ = 0.0° (height above

geocentre=6665km)
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Figure 5.5.10

Root Variances of Gravity coefficients. AF = 1.2°, AQ = 0.0°
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Figure 5.5.11

Root Variances of Gravity coefficients. AF = 1.6°, AQ = 0.0°
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Figure 5.5.12

Root Variances of Gravity coefficients. AF = 2.4°, AQ = 0.0°
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Figure 5.5.13

Root Variances of Gravity coefficients. AF = 2.8°, AQ) = (.0°
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Figure 5.5.14

Root Variances of Gravity coefficients. AF = 3.0°, AQ = 0.0°
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Figure 5.5.15

Root Variances of Gravity coefficients. AF = 4.0°, AQ) = 0.0°
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Figure 5.5.16

Root Variances of Gravity coefficients. AF = 5.0°, AQ = 0.0°
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Root Variances of Gravity coefficients.AF = 6.0°, AQ = 0.0°
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5.6 Results for the non planar case

In section 5.5.2 it was seen that a polar orbit is necessary for the accurate recovery
of the zonals, however with this orbit the recovery of higher degree and order
coefficients is degraded. This was explained as a consequence of the fact that the
coefficients in question do not have a strong effect on the in-plane, high frequency
orbital perturbations for a polar orbit. They do cause high frequency orbital
perturbations perpendicular to the orbital plane but when the satellites share the
same plane their contribution to the line of sight velocity is zero. By putting
the satellites into orbits with different initial right ascensions these cross track
velocities are no longer perpendicular to the line of sight and hence provide a useful
contribution to the range rate signal. In particular this means that if the satellites
are in polar orbits and have different right ascensions of their ascending nodes then
the range rate has high frequency signal contributions from both higher order terms
and zonals. To determine the extent that this helps the recovery procedure is the
subject of this section.

The variances of the coefficients and the eigenvalues of the inverted normal
matrices were calculated for Range Rate residuals of satellites in the same 323
revolution, 20 nodal day repeat orbits used in the last section whilst using a non
zero value for the right ascension difference AQ. Throughout this section the
height of the satellites is 6605km and the inclination is 91°. The sample rate and
the standard error of the observations are the same as in section 5.5. The values
of the along track separation chosen were 2°,2.4° and 3°. Separations in right
ascension of £0.1°,£0.2° and +0.3° for the 2° case and £0.2°,£0.3° and +0.4°
for the other two cases were chosen and the results of these analyses presented
as variances of coefficients in figures (5.6.4) to (5.6.21) and as eigenvalues of the
inverted normal matrices in figures (5.6.1) to (563) These results should be

compared to the planar cases of equal along track separation from the previous
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section.

From Figures 5.6.5, 5.6.7 to 5.6.21 (odd nos.) one can see that there is a
significant improvement in the expected errors of the higher degree and order
coefficients when a negative right ascension difference is introduced, that is when
the trailing satellites right ascension is increased beyond that of the first satellite.
These cases also show that there is no improvement in the coefficients of low order.
Furthermore as A2 becomes more negative, the better the improvement to these
coefficients. The eigenvalues in Figures 5.6.1, 5.6.2, 5.6.3 of the higher order sub
blocks for these cases are found to be reduced in size by separating the orbital
planes. The eigenvalues also show that increasing the negative right ascension
difference improves the errors of these high order coefficients.

When the right ascension of the leading satellite is increased beyond that of
the trailing satellite then the situation is not as straightforward. For most of these
examples, illustrated in Figures 5.6.4, 5.6.6 to 5.6.20 (even nos.)the improvement
is of the same character and as significant as when the right ascension difference
is negative eg compare Figures 5.6.8 and 5.6.9 or 5.6.20 and 5.6.21, between which
the missions vary only in the sign of AQ. Here once again there is no difference
to the errors in the coefficients of lower order, when compared to the planar case.
Only the coeflicients of higher order are affected.

There are certain results which show that a degree of caution must employed.
These are evident in Figures 5.6.6 and 5.6.7, and 5.6.10 and 5.6.11, where AF
and AQ are 2.0° and £0.2° ,2.4° and £0.2° respectively. No improvement in the
variances of the coefficients is made and some groups of coefficients seem to have
their accuracies degraded eg. the coefficients with high degree and mid to high
order. Figures 5.6.4, and 5.6.6, where AF and AQ are 2.0° and +0.1° and 2.0°
and +0.2° can be compared to illustrate how for this case increasing the difference
in right ascension does not improve the results.

The reasons why one could expect an improvement in the general case were
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outlined at the beginning of this section. The orientations of the satellites allow the
sectorial’s cross track velocities of high frequency to contribute to the line of sight.
These cross track velocities are characterised by the cross track amplitudes A},
and are chiefly affected by the cross track inclination functions, which are related
to the derivatives of the ordinary inclination functions. From the discussion in
section 5.5.2 the near sectorial ordinary inclination functions have the property
that the high order spherical harmonics they represent have little contribution to
the planar Range Rate signal for polar orbits. The result is a deficiency in the
accuracy of these coefficients.

An important characteristic of the cross track amplitudes seems to be that they
are more sensitive to the near sectorial coefficients than the along track amplitudes
as Table 5.6.1 shows. In Table 5.6.1 the proportion of the power of the inclination
functions at a given order is displayed. The cross track inclination functions have
more power in the higher values of mn than the ordinary inclination functions. This
will be realised in the equations by the higher order terms producing greater cross
track velocities than in plane ones. Hence the errors in the near sectorial coeflicients
would be lower when the satellites are in different planes than in the planar case,
and indeed with the exception of the anomalous results listed above this seems to
be true. Precisely why these results do not concur with the others is not clear, but
confirms the use of this kind of analysis in choosing the orbital parameters. For a
different inclination the improvements may be less significant for some other value
of AQ) and another error analysis would be necessary to discover what orientations
are best and those that should be avoided for an accurate recovery of the high
order coefficients.

In summary it has been shown that it is possible to make significant improve-
ment to the coefficients of high degree and order by separating the orbital planes
of the two satellites. It was also shown that not all cross track separations improve

the results and increasing that separation does not necessarily improve the results
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either. However by careful choice of the separations it is possible to recover accu-
rately those coeflicients which in the planar case have the worst errors. In fact of
all the results displayed in this chapter the best overall have been obtained when

different orbital planes were used.

e __WE;‘;U F20,mp01°) mzi‘;o Fiomp (1)
Lot d naa om0 § D000 30 (R o (0190
0 0.0583 0.0150
1 0.0564 0.0583
2 0.0541 0.0525
3 0.0546 0.0510
4 0.0559 0.0506
5 0.0562 0.0504
6 0.0540 0.0507
7 0.0515 0.0529
8 0.0516 0.0530
9 0.0513 0.0523
10 0.0487 0.0539
11 0.0481 0.0534
12 0.0464 0.0540
13 0.0461 0.0524
14 0.0428 0.0557
15 0.0425 0.0531
16 0.0408 0.0518
17 0.0391 0.0509
18 0.0373 0.0489
19 0.0341 0.0470
20 0.0302 0.0423

Table 5.6.1 Power of inclination functions vs. order
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Root Variances of Gravity coefficients. AF = 2.4°, AQ) = —(.2°
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Root Variances of Gravity coefficients. AF = 3.0°, AQ = —0.2°
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Root Variances of Gravity coefficients. AF = 3.0°, AQ = —0.3°
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Chapter 6

Gravity Field Recovery From
Range Rate Residuals

6.1 Introduction

In this chapter a number of gravity field recoveries will be performed using simu-
lated Range Rate Residual datasets. The efficient methods presented in chapter 5
are not used explicitly in recovering the gravity fields because the preprocessing of
the data would remove some of the gravity signal and therefore degrade the results.
Instead of removing the effects of the so called arc parameters before solving for
the gravity coefficients the whole system is recovered simultaneously. However as
a result the purely block diagonal structure of the normal matrix is lost. A set of
Range Rate Residuals is simulated by the method discussed below.

Multiple arc techniques are used to obtain a large enough dataset to make
extensive recoveries possible without introducing round off error in the numerical
integrator. All the recoveries presented here are howevqr limited in their extent for
reasons of efficiency and because of the difficulty in creating a long and accurate

enough repeat orbit to make a full scale recovery possible.
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A number of satellite orientations are experimented with in an attempt to verify

the results of chapter 5.

6.2 The Least Squares Recovery Procedure

6.2.1 The Normal Equations

In this section the Least Squares model is developed with a more general form
of signal equation than that considered in section 5.2. No assumptions are made
regarding preprocessing of the data such as the filtering mentioned in chapter 5.
The residuals are assumed to be the result of gravity field mismodelling which
produces resonant and non resonant responses, and initial state mismodelling.
Section 4.5 established a general form of analytical equation for this type of residual

signal, namely equation (4.5.3), ie

ARR.q. (1)

I
™
M-
N
[

[-Almaj Cos (¢Jmt)

=2 m=0a=0j==l-1-kmaz
+ Bf.maj sin ("rbjmt)] Ac!ma
km+1 _ ) ) _ )
+ 3 [(A* + B*t) cos (kF't) + (C* + D*t) sin (kFt)](6.2.1)
k=0
where the amplitudes Ajma;j,Bima; are derived in sections 4.3 and 4.4 and given by
(4.4.34-43). The terms indexed by k are the so called arc dependent terms, that is
they depend on initial state vector error. Additionally these terms contain gravity
field signals that cannot be distinguished from this initial state error. Thus the arc
dependent terms absorb any effects that may result from either source. The fact
that some gravity signal is absorbed into these coefficients limits the summation

over j in (6.2.1) to values for which the frequencies are not equal to k" for some
k.
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Equation (6.2.1) may be rewritten as

Loz 1 I+kmaz

ARReac(t) = 2 33 3 [Aimajcos (¥imt)

1=2 m=00=0j=—l—-l—kma:ﬂ

+ Blmc:j sin (%mt)] Aclmﬂ
4km+4 .

+ Z AF f* (t) (6.2.2)
k'=0

where the A are the A¥, B*, etc. in some order and the f*¥ (¢) are the appropriate
functions of time. The A* are called the arc parameters and the f*' (¢) the arc
functions. In any gravity field recovery it will be necessary to use more than one
arc as the derived position would otherwise be subject to unreasonable round off
errors in the numerical integrator whilst in a real mission orbital manoeuvers need
consideration. The result is that one must calculate a start vector for each arc. In
reality this is subject to error and therefore a new set of arc parameters must be
calculated for each arc. If the number of arcs used is N,y¢s and the arc parameters
and arc functions for each arc are A¥ and f} (t) where I = 1,.., Nyyes, then the
1, measurement will be modelled by the equation
B - 1. Dibusa

ARRcatc (ti) — 2 E z Z [-A'Hmaj cos ('Jjjmti)

1=2 m=0a=0 j=—l—1—kmaz

+ Bllmaj sin (d’jmti)] Ac!ma
Nares 4km+4

+ XX A ®), (6.2:3)

I=1 k=0
where the arc functions are non zero only for the arc on which they are defined.
The amplitudes A4, and Byy,,q; are calculated using the initial angles F,, 1, Lo 1
of the arc I, F' being the argument of latitude and L the longitude of the ascending
node.

The least squares solution to the combined arc problem is derived from the

solution to the single arc problem. In vector form for the [y, arc only, (6.2.3) may
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be written as

ARRcalc,I = [Ac,l : Aa;]

‘ } . | (6.2.4)
ar

If the observed Range Rate Residual vector is ARRps s and the vector of misclo-

sures is €7 then the observation equation for this arc is

ARR‘ObS,I = [Ac,f . An;]

C
+e1. (6.2.5)
ay

The rows of A1, A,;, ARR,,; and € are indexed by i = 0,1,..Ngs s — 1 where
Nobs, is the number of measurements in arc I. The columns of A ; are made up of
the filtered partial derivatives for some [, mn, o and those of A,,, the arc functions
for some value of k' and for arc I. The vectors ¢, a; are the corresponding gravity
coefficients and arc parameters.

The least squares solution to (6.2.5) is given by the normal equations which

¢ } = [b“’ } (6.2.6)
al ba.;

Nu f = AZIWAC,I

are

Nii,r Nigs
Nair Noos

where

Nii; =Ny = AL WA,

Nyy = AT WA, (6.2.7)
b,y = AT WARRg,,1
b, = AT WARRg, .

In (6.2.7) W is the weight matrix of the observations and ¢ and &; are the
estimated values of ¢ and a;. Equations (6.2.6) do not have the block diagonal

structure of the normal equations of chapter 5 as ,in general, the repeat period
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cannot ensure the arc functions to be orthogonal to either the filtered partials or
each other. As a result the sub matrices Ny and Ny, do not have any special
structure.

To combine the solutions from more than one arc the rows of the vector of
unknowns are ordered so that the gravity coefficients are followed by the arc pa-
rameters of each arc in turn. The reordered normal equations in matrix form
are then simply added together to give the combined solution. For example the

combined solution for 3 arcs is given by

-

Yi=1Nus Nigz=i Nigr=2 Nigg=s ¢ Yi=1 ber
Nop = Noo 1— 0 0 aj— baiy
21,I=1 22,I=1 r=t f _ = | (6.2.8)
Nai,1=2 0 Nao,1=2 0 ar=g ba,_,
| Napi=s 0 0 Nps=z | |dr=3]| | Dbo

The definitions (6.2.7) give the matrix sub-blocks in equation (6.2.8). For uncor-

related observations of equal variance the weight matrix is
1
W =—1, (6.2.9)
o
as in chapter 5. Therefore (6.2.7) becomes

1
Ny, = ;AZ;A.:,I

1
Nj =Ny = gAnga;
1
Nyt = ?AE,;A,,, (6.2.10)
1
bc‘ ] = '5‘—2- AE:IARRobs A

1
ba; = ?AE;AR‘RGEJS,I'

6.2.2 Setting up the Normal Equations

Using equations (6.2.8) and (6.2.10) the normal equations for a set of arcs can be

obtained. This requires that the blocks Ny; ;, Ny3 1, Ng; ; and the vectors b, ; and
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b, 1 are calculated.

The blocks Ny;,; are formed from the products of filtered partial derivatives
summed over the measurements contained in the arc /, these measurements are
indexed by i; = 0, 1,..Nyps,r — 1 where Ny, 1 is the the number of measurements for
the Iy, arc. The normal matrix discussed in Chapter 5 is equivalent to this block.
Therefore if the assumptions of chapter 5. concerning the orbit and distribution of
the measurements are made here, the matrix INy; ; will be block diagonal. Further-
more the elements will be given by the elements of (Nf%,)m in equations (5.4.1)
and (5.4.2). Without these assumptions it is necessary to return to a previous
point in the derivation of the normal matrix of chapter 5. The expression for a
typical element of the matrix Ny is given by equation (5.3.4) which is rewritten

in the notation of equation (6.2.8) as

Npobs—1
(N )Ima — _1'__ oz’ aRRcaIci; aRRcalci;
1L, iy = 23 o B Biosie .
ir=0 lma 'm'a
1 I+kmaz Utkmaz 1
= 0_2 z: E AIImajAH'm'a'j'Ifjj'mm'

J——‘ —kmaz J"'='*l'-'1 —kmaz
+AumajBH'm a J’Ifgj 'mm/!

+Bflmaj Ax’l'm’a’j’zfjj’mm’

+BﬂmajB“fm:a:jrzjj-'j:mm: (6211)

where
Nf obs_l
1 "
Il_fj'mmf Ccos ( Jmt”) cos (¢j’m" t;,)
31-0
Ny, obl“'l
2
Iljj'mm' = 0S ("J)Jmt ) n (1‘/)3 ! ti;)
i ~—U
NI olu_l
3
I,'J-j.mm, = sin (%m ) coS (wjrm:t,,)
t;..-l]
Ny obs_l
5 sin (Pjmts; ) sin (Yyrmts, ) - (6.2.12)
I;‘O
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The time of the i{* measurement ¢;, is taken from the beginning of the I** arc.

Without assumptions about the distribution of the data the summations in
equations (6.2.12) cannot be simplified in the manner of Chapter 5. Equations
(6.2.11) and (6.2.12) are therefore used to calculate the matrix Ny, ; in the recovery
procedure when a non repeating orbit is used.

The other sub blocks of the normal matrix are formed in the same way. From
(6.2.10) these are

1 k= aRRcalc i

N K = —_— k! t‘.
( 12,f)zma o2 ifzzo OCima fl ( I)
1 l+kmax Nf,oh_l . i
= =3 b5 Alimaj ), €08 (%‘mti) T (i)
j==l=1=kmaz ir=0
Nf,oh_l ” ,
+Bflmaj Z sin (T,L‘Jmt,) ;c(t”)) (62.13)
ir=0
and
K 1 Nf,obs—l X X
(Nzp)f = — Z{, frt (&) £t () (6.2.14)
=

Equations (6.2.11), (6.2.12), (6.2.13) and (6.2.14) are the general formulae for
deriving the elements of the normal matrix.

To calculate the right hand side of the normal equations it is necessary to create
the simulated dataset ARR;, ;, ; for i = 0,1, .., Nyops — 1. The method employed
for this task is discussed in section 6.3. Once the residual data set is obtained the

elements of the vectors b, ; and b, s can be formulated, namely

1 M R,

(bcsf)lma = ? ifz=:a 3sza ARRiIobs,I
1 I+kmaz NI,oba -1 .
= = > Alimaj Z cos (ﬂbjmfi) ARR;; 0
j=—l-1-kma=z ir=0
Nl.ch_l .
+ B}gmuj Z sin (‘l,bjmtg) AR‘Ri!ost) (6.2.15)
ij‘——o
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and

NI obs—1
1 3 '
(ba,1) = 2 f1 (t)ARR (6.2.16)
ir=0

6.3 Simulating the Range Rate Residuals

To form the right hand side of the normal equations a set of Range Rate residuals
is required as data. This is the part of the line of sight velocity that cannot be ac-
counted for by using existing models to determine the forces a satellite experiences
as it orbits the Earth. This mismodelling is of the earths gravity field, atmospheric
and radiation forces and errors within the methods used to determine the satellites
motions from these models.

Since this thesis aims to discuss gravitational forces only that source of mis-
modelling is considered here. In reality the problem of determining surface forces
must be overcome by the inclusion of an accelerometer on board the satellites, as
discussed in section 2.3.

The first step in creating a simulated data set is to calculate the range rate
between two satellites under the action of gravitional forces arising from a reference
field called the true field. This is done by calculating the positions and velocities
of two satellites in an inertial frame. Then after randomly perturbing the true field
to obtain the so called perturbed field one uses this to determine another set of
range rate residuals. The differences between corresponding measurements in the
two data sets are the aforementioned Range Rate residuals.

The force models and the numerical integrator used to determine the satellite
positions and velocities form a non linear set of second order differential equations
which require for their solution an initial state vector. This vector must be calcu-
lated to allow the satellite to follow the near circular, near polar orbits that have

been hitherto assumed. The method used to calculate these initial state vectors
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is discussed in the next subsection. The equations of motion, method of solution

and creation of the data set will be dealt with thereafter.

6.3.1 Calculating the initial state vectors

The kind of near circular orbit that allows the possibility of the exact repeat
orbit discussed in the last chapter is known as a frozen orbit. The effect of the
odd zonals on the argument of perigee becomes comparable to the effect of the
equatorial bulge when the orbit is nearly circular. It is possible therefore that the
combined effects of the odd zonals up to some degree and of the ¢yy term cancel
out. This results in the orbit having a fixed orientation in its precessing orbital
plane. Such an orbit was discovered by (Cook, 1966) and will result from the

following initial values of the Keplerian elements e, w

w = T
)

P Hedd) NP1 -1 .

o = 1% (3) () O s

; [Czﬂ (?)2 (1 - gsin2 z)l 1 ; (6.3.1)
where Fj; is the associated Legendre polynomial of order 1 and degree I, a i and
e are the semi-major axis, inclination and eccentricity of the orbit and L is some
sufficiently large odd number. If these initial conditions are fulfilled then w =0 ,

and the value of the eccentricity will be constant. It is approximately given by
TN %
e~1.182x 10 E) sini + O (cso) (6.3.2)

which is small enough to classify the orbit as near circular. In this orbit it is
possible to fix the semi major axis and inclination to ensure that the precession
of the nodes and the mean motion fulfil equations (5.3.1) and (5.3.2), thereby

ensuring a repeat orbit. Using arbitrary values for a,;,M, and §)y , and with
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equations (6.3.1) determining the other two Keplerian elements, the start vector
is determined. It remains to transform the start vector to inertial, Cartesian
coordinates Xy, Yin, Zin and Xin, Yin, Zin for use in the numerical integration,
see (Kaula, 1966). X, is in the direction of the first point of Aries and Z;, is in
the north polar direction. The start vectors can be calculated for the t“:o satellites
required with the restriction that the mean values of their mean motions must
be equal, thus ensuring that their separation is fixed. The separations AF along
track and A cross track are chosen and start vectors calculated from the sets of

Keplerian elements a,i,My and Qp, and a,i,My + AF and Qy + ASQ.

6.3.2 Creating the dataset

In the absence of surface forces and third body attractions the motion of the
satellites is determined by the Earth’s gravity field and the initial state vector. In
an inertial frame of reference the acceleration of a satellite is equal to the gradient

of the Earth’s potential V,

Xin = VV. (6.3.3)

These equations are integrated forward from the initial conditions

Xin(t)) = Ximo
Xin(to) = Xino (6.3.4)

using the eighth order Gauss-Jackson numerical technique. The partial derivatives
of the Earth’s potentia'l are calculated numerically along the ‘true path’ of the
orbit and not the circular approximation used for Hill’s equations in the analytical
theory expounded in this thesis. This makes the resultant orbits more accurate
but the equations of motion are no longer simple. Hence the need for the numerical

procedure.
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Using two start vectors corresponding to the two satellites separated along
track and across track by AF and Af) respectively, but sharing the same mean
mean motion, a pair of ephemerides can be calculated. These are the ephemerides
corresponding to the gravity field V, which shall be called the reference field or
true field, denoted by

Xfﬂ,TﬂiﬂJ (tU #* ?'At) ) XIn,Truc,l (tﬁ + 3At]

for the leading satellite, and

XIn,True,2 (to -+ ?:At) - an,fr,-ue,g (ta + 'iAt)

for the trailing satellite. The set of Range Rate values corresponding to the true

field are therefore, using equation (4.2.1)

Xintruei = XinTrue2) - KinTrued = Xintrue))

. (6.3.5)
| (Xln,True,l == XIn,True,?) I

If the reference field is now randomly perturbed either in part or as a whole,
and by a limited degree (eg each coefficient by a fraction of its standard error),
then the result shall be called the perturbed field. The ephemerides and range rate

are then calculated using this field,

(an,Pez,l = Xrn,Pet,z) « (Xin,Pet,t = Xin,Pet,2))
| (X1n,Pet,1 = Xin,pPet,2) | '

The range rate residuals, that is the mismodelling due to the perturbation of the

true field are calculable from (6.3.5) and (6.3.6) as

RRpct (t() + ?.At) - (636)

ARR; obs = RRpet (to + i1At) — RRrrye (to + iAt) (6.3.7)

These residuals are used to form the observation vectors in equations (6.2.15) and
(6.2.16).
It may bé necessary to perform a check on the ephemerides before inif:iatiug &

recovery procedure. It is important that the satellites do not drift apart by any
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significant amount during the course of the experiment, therefore one must check
that their mean mean motions are the same. The mean mean motions of both true
and perturbed ephemerides should be equal, and to that end their osculating semi
major axes are trimmed.

Take an arbitrary gravity field and satellite, it’s ephemeris is used to calculate
the speed V; and the radial height r; at each time step 7. Then from the energy

integral (Roy, 1978) the instantaneous semi major axis is obtained, it is given by

1
a; = 5 V) (638)
E——T

n; = (-’ia)% . (6.3.9)

The mean mean motion is obtained by solving n; by least squares for a constant
term. This value of the mean mean motion may differ from a predetermined ideal
by a small value An, and to improve this, a correction to the semi major axis is

made. Equation (6.3.9) gives
2a
Aa = —— 3.
a o An (6.3.10)

as the required correction. Once the start vector for the satellite in question is

improved the ephemerides are recalculated for use in the gravity field correction

procedure

6.4 Recovering a gravity field with a single arc

Using the procedure outlined in section 6.3 the range rate residuals are calculated
for a set of single six day arcs. The ’true‘ gravity field used was the JGM2 field
up to degree and order 70 (Nerem, 1994). The 102 coefficients of order 20 in this

field are randomly perturbed by a fraction of their standard errors and the result,
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along with the unperturbed coefficients make up the perturbed field. The initial
values of the independent Keplerian coordinates used to calculate the start vectors
of the pairs of satellites in each case, with the semi major axes trimmed according
to the procedure in section 6.3.2, are given in Tables 6.4.1 to 6.4.8. The result is
eight sets of range rate residual datasets. The data points are calculated twelve
seconds apart, and as a result the total number of data values in each six day arc
is N,ps = 43200.

Subsection 6.2.2 describes how the elements of the normal equations (6.2.8) are
calculated from the analytical partials and the simulated datasets. For each of the
eight cases the normal equations are formed and solved to obtain the vectors of
unknowns denoted in (6.2.8) by €. These solutions are the corrections to the per-
turbed gravity field. Once the corrections have been made the range rate residuals
are recalculated with the new perturbed fields and the procedure continued until
a suitable convergence is obtained.

The first four iterations in each of the eight cases are presented in Figures 6.4.1
to 6.4.8. They show the differences between the coefficients of the ’true’ field and
the successive perturbed fields for order 20 and degrees 20 up to 70 . For a pair of

coefficient errors Acjmo, Acim; the difference displayed is %\/ Act . + Ack,, where

ml
Acima 18 the difference between corresponding coefficients in the true and perturbed
fields . Figure 6.4.1 gives the recovery corresponding to the initial elements given
in Table 6.4.1, and similarly Figure 6.4.2 corresponds to Table 6.4.2 and so on.
Figure 6.4.1 shows how the recovery performs when the satellites are in the
same plane of inclination 96° and are separated by 4° along track. Figure 6.4.3
shows the planar case for the same inclination when the along track separation is 6°.
These graphs both show similar rates of convergence. A significant characteristic
of all the recoveries shown is the relatively poor convergence of the higher degree

coefficients. This could be due to the fact that they are shorter wavelength features

and require more data than the lower degree coefficients, but more important are
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the inevitable errors that accompany an analytical model, in particular the partial
derivatives were integrated along a circular path. The deviation of the actual
satellite path from this circle is more significant for higher degree coefficients than
for lower degrees. This could be why they are not recovered as efficiently.

Whilst the inclination remains at 96°, Figures 6.4.2 and 6.4.4 show the recov-
eries for non planar cases where the initial right ascensions of the two satellites are
different. In Figure 6.4.2 the along track separation is 4° and the right ascension
separation is 0.4° In Figure 6.4.4 the along track separation is 6° and the right
ascension separation is 0.6°. When compared to the planar cases with the same
along track separation, (Figure 6.4.2 compared with Figure 6.4.1 and Figure 6.4.4
compared with Figure 6.4.3) the non planar orientations seem to be beneficial to
the recovery of the lower degree, near sectorial coefficients.

Figures 6.4.5 and 6.4.7 show the recoveries when the satellites are coplanar,
of inclination 91° and with separations along track are 4° and 6° respectively.
Figures 6.4.6 and 6.4.8 correspond to the non planar case, again of inclinations
91° ,with separations along track of 4° and 6° and in right ascension of 0.4° and
0.6° respectively. When these are compared to the recoveries obtained from the
satellites in orbits of inclination 96° but with the same separations it can be seen
that the lower degree coefficients are recovered better with the nearer polar orbit.
This result seems to contradict the result of chapter 5. which indicated that the
96° orbit was better for these near sectorial coefficients. However the reason why
one should expect the nearer polar orbit to produce a better recovery is a result
of an assumption made in chapter 3 concerning Hill’s equations, from which the
partials are derived. This assumption was that the orbital plane of the satellites
did not precess with respect to an inertial frame, which is only true for polar orbits.
As a result Hill’s equations will model the motions better as the orbit becomes
more polar. This is likely to be a more important consideration in the recoveries

than the indications borne out of the error analysis in chapter 5.
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In comparing Figures 6.4.5 and 6.4.6, and 6.4.7 and 6.4.8 to see how the copla-
nar and non coplanar missions compare one can observe that there is no noticeable
improvement in introducing a right ascension difference between the satellites at
this inclination, neither however is there any degradation in the results. One may
conclude from this that the analytical model works as well for the coplanar and
non coplanar cases but the simplifications made to allow an efficient error analysis
prevent one from drawing conclusions from the gravity field recoveries carried out.

The relatively poor convergence of the higher degree coefficients referred to
earlier is probably due to a combination of factors. One is that the error anal-
yses carried out in chapter 5 showed the higher degree coefficients would not be
recovered as well as the lower degree ones. This is a fact of life in any recovery
because of the attenuation factor (%)UH) in the expression for the potential in
equation (2.1.7). Using the range rate compensates for this to a certain degree eg
the amplitudes of the velocity partials are the position amplitudes multiplied by
the frequencies @!.)J-m, thus the velocity measurements are more sensitive to higher
frequencies than position measurements. Differencing the velocities of the two
satellites has a similar effect, but the attenuation is still important.

Another factor is the aforementioned assumptions in the Hill’s equations model
concerning the circularity of the orbit. The fact that the orbit of a Earth satellite
must exhibit a small eccentricity will affect the higher degree coefficients because
their spherical harmonics will vary more over the distance between ellipse and

circle. To see this one can take the differential of equation (2.1.7) with respect to

r to obtain

Vi =l=1
Vim 7

Ar. (6.4.11)

Assuming a circular orbit means r = constant but the orbit is an ellipse with the

eccentricity given by (5.3.2), approximately 1 x 103, Thus Ar between perigee
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and apogee will be
Ar = 2ae = 13.2km, (6.4.12)

for an orbit with semi major axis a = 6600km. For small [/ the effect is small but
the mismodelling increases linearly with { . For the same reason the truncation in
q at zero of the gravity field expansion used to calculate the partials will affect the
higher degree coefficients to a far greater extent than the lower degree ones.

There is also the possibility that these higher degree coeflicients converge less
quickly because there is not enough data to sample the shorter wavelength spherical
harmonic functions associated with them. To test whether this could be so the
gravity field recoveries with 7 = 91° from this section are repeated with the addition
of another six day arc in the solutions. Therefore a total of twelve days data is
used in the recoveries. This is done in the next section.

Finally, as a verification of the model used to determine the gravity field, an-
other recovery is performed. In Figure 6.4.9 the analysis of Figure 6.4.8 is repeated
but now the cross track terms are suppressed. If these terms are not correctly mod-
elled one would expect to see a similar rate of convergence for the two graphs. This

is not the case. Figure 6.4.9 illustrates a poorer rate of convergence when the cross

track terms are neglected.
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Keplerian | satellite 1 | satellite 2 || Keplerian | satellite 1 | satellite 2
coordinates coordinates
F, 94.0 90.0 F, 94.0 90.0
20 0.0 0.0 Q 0.0 0.4
a 6605.000 | 6605.000 a 6605.000 | 6605.000
i 96.0 96.0 i 96.0 96.0
Table 6.4.1 Table 6.4.2
Keplerian | satellite 1 | satellite 2 || Keplerian | satellite 1 | satellite 2
coordinates coordinates
F, 96.0 90.0 Fo 96.0 90.0
Qo 0.0 0.0 Q 0.0 0.6
a 6605.000 | 6605.000 a 6605.000 | 6605.000
i 96.0 96.0 i 96.0 96.0
Table 6.4.3 Table 6.4.4

Initial elements for Figures 6.4.1-4
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Keplerian | satellite 1 | satellite 2 || Keplerian | satellite 1 | satellite 2
coordinates coordinates
F, 94.0 90.0 F, 94.0 90.0
% 0.0 0.0 Q, 0.0 0.4
a 6605.000 | 6605.000 a 6605.000 | 6605.000
i 91.0 91.0 i 91.0 91.0
Table 6.4.5 Table 6.4.6
Keplerian | satellite 1 | satellite 2 [| Keplerian | satellite 1 | satellite 2
coordinates coordinates
Fo 96.0 90.0 F, 96.0 90.0
Qo 0.0 0.0 2 0.0 0.6
a 6605.000 | 6605.000 a 6605.000 | 6605.000
i 91.0 91.0 i 91.0 91.0
Table 6.4.7 Table 6.4.8

Initial elements for Figures 6.4.5-9
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Successive iterations of Gravity field recoveries. The inclination for these simula-

tions is 96°. Tables 6.5.1-4 show the other initial elements for each case.
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coefficient error
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degres degree

Figure 6.4.5 Figure 6.4.6

coefficient error
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Figure 6.4.7 Figure 6.4.8

Successive iterations of Gravity field recoveries. The inclination for these simula-

tions is 91°. See Tables 6.5.5-8 for the other initial elements for each case.
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coefficient error

20 30 40 50 60 70
degree

Figure 6.4.9
Recovered gravity field without cross track terms.

Same dataset as in Figure 6.4.8

6.5 Multiple arc gravity field recoveries

It is necessary to test whether the higher degree coefficients could be recovered
more efficiently with the addition of more data. To that end some of the recoveries
performed in the last section are repeated here with the existing six day arcs
complimented with another six days range rate data.

The four recoveries performed use the same true and perturbed fields that were
used in section 6.4. Four different satellite orientations with separations along track
of 4° and 6°, and cross track of zero and 0.4°, and zero and 0.6° respectively are

used. All the satellites in this section have inclination 91°. For each orientation two
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arcs are used and the initial elements used to generate them are shown in Tables
6.5.1 to 6.5.4. The semi major axes were trimmed as in the previous section to
eliminate any drift between the satellites and the data points are twelve scconds
apart so that there are 43200 points per arc. The normal equations are calculated
separately for each arc and the required corrections to the perturbed gravity field
are the solution to the system obtained by adding together the normal equations for
each arc as in equation (6.2.8). The corrections allow one to make a refinement to
the perturbed field and successive iterations provide the improvements illustrated
in Figures 6.5.1 to 6.5.4.

The results of this section when compared to Figures 6.4.5 to 6.4.8 show no
improvement over the single arc recoveries. This indicates that the poorer de-
termination of the higher degree coefficients is due to the increased amount of
mismodelling they suffer. This mismodelling was attributed in section 6.4 to the
circular orbit approximations in both the gravity field and in the solutions to Hill’s
equations. The fact that 91° recoveries were better than the 96° ones supports the
assertion that the principle factor in the recovery performances discussed here is

how well the partials are modelled.
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Keplerian Arcl Arc 2
coordinates | satellite 1 | satellite 2 | satellite 1 | satellite 2
F, 94.0 90.0 94.0 90.0
Q2 0.0 0.0 0.9 0.9
a 6605.000 | 6605.000 | 6605.000 | 6605.000
i 91.0 91.0 91.0 91.0
Table 6.5.1
Keplerian Arc 1 Arc 2
coordinates | satellite 1 | satellite 2 | satellite 1 | satellite 2
F, 94.0 90.0 94.0 90.0
2 0.0 0.4 0.9 1.3
a 6605.000 [ 6605.000 | 6605.000 | 6605.000
i 91.0 91.0 91.0 91.0
Table 6.5.2

Initial elements for Figures 6.4.1-2
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Keplerian Arc 1 Arc 2
coordinates | satellite 1 | satellite 2 | satellite 1 | satellite 2
F, 96.0 90.0 96.0 90.0
Qs 0.0 0.0 0.9 0.9
a 6605.000 | 6605.000 | 6605.000 | 6605.000
i 91.0 91.0 91.0 91.0
Table 6.5.3
Keplerian Arc 1 Arc 2
coordinates | satellite 1 | satellite 2 | satellite 1 | satellite 2
Fy 96.0 90.0 96.0 90.0
Q, _ 0.0 0.6 0.9 1.5
a 6605.000 | 6605.000 | 6605.000 | 6605.000
i 91.0 91.0 91.0 91.0
Table 6.5.4

Initial elements for Figures 6.4.3-4
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Successive iterations of Gravity field recoveries. The inclination for these simula-
tions is 91°. See Tables 6.5.1-4 for the other initial elements for each case. Each

recovery is performed with two 6 day arcs.
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Chapter 7

Atmospheric Drag Problems

7.1 Introduction

The effects of air drag on a low satellite are significant but can be measured and
accounted for with the use of an on board accelerometer as was discussed in section
2.3. Thus atmospheric perturbations do not cause problems in isolating the gravity
signal but the possible differential decay rates of non coplanar orbits could result
in the satellites moving apart at a non negligible rate. The possibility of a pair
of drag free satellites would negate this problem but in the interest of economy
many proposed missions eg GAMES, have only one active satellite and one passive
target that is incapable of manoeuvering to avoid atmospheric decay.

In this chapter the effect on the mean motion due to a spherically symmetric
atmosphere with a day to night variation will be discussed. It is this day to night
variation which would cause two satellites with different right ascensions to decay
at different rates and therefore drift apart. The possibility of varying the area to

mass ratio of the spacecraft to combat the drift will be examined.
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7.2 The Atmospheric Density model

The atmospheric density is assumed here to vary exponentially with height ac-

cording to the equation

H
(King-Hele, 1964), where p, is the density at some arbitrary point distance 7,

p = poexp (—" ), (7.2.1)

from the Earth’s centre, the initial perigee point is usually chosen. H, assumed
constant here is called the density scale height, it relates to how the quickly the
density varies with altitude.

In this study any variation of drag with right ascension is of interest and the
most important variation of this type is due to the effect of the sun on the upper
atmosphere. This effect has been modelled by (Cook and King-Hele, 1965) as a
change in the density which at a given height depends on the angle between the
satellite and the centre of the so called diurnal bulge. This bulge is caused by solar
warming of the atmosphere, it’s centre is at the same declination as the sun but it
lags behind the sub solar point by A &~ 30° in right ascension. If the angle between

the centre of the bulge and the spacecraft is ¢ then the expression for the density

of an atmosphere with day to night variation is

p = po (1 + F cos ¢) exp (_r ;ITO) i (7.2.2)

where F' is a constant.

In order to develop an analytical model for the orbital variations due to drag it

is necessary to transform equation (7.2.2) to Keplerian coordinates. The argument

of the exponential can be written in terms of the eccentric anomaly E, the semi
major axis a, and eccentricity e, as

: o £ i

H H

Applying the equations of spherical trigonometry one can obtain the cosine of the

(ro —a+aecosE). (7.2.3)

angle ¢ in terms of the right ascension and declination of the sun «, and d;, the
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obliquity of the ecliptic ¢, the angle A defined earlier and the satellite’s angular

coordinates FE, 1,82, w,. It is written
cosp=A (cosE —e (1 — cos® E) +0 (82)) +B (l +ecos E+0O (92)) ,(7.2.4)
where

A = Psinw+ Qcosw, (7.2.5)
B = Pcosw— Qsinw (7.2.6)

and
P = sinesinisinL — cost (cos2 %sin (Q=A+1L)
sin? -%sin Q-2+ L)) (7.2.7)
Q = cos? -;- cos (2 — A + L) + sin? % cos(—-A+ 1), (7.2.8)

(Cook and King-Hele, 1968). The angle L is defined in terms of ay,d, and € by

the equations

sind, = sinesinlL
cosL = cosd,cosay,, (7.2.9)
cosesinL = cosd,sin ay.

The full expression for the density is therefore written

p = Po (1+FA(cosE —e (1 —coszE) +0 (e?))
+FB (1 +ecosE+ O (32))) exp (-}{- (ro — a+ aecos E)) (7.2.10)

In the next section the equation for the variation in the mean motion are discussed,

allowing one to use (7.2.10) to obtain an explicit solution.
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7.3 Orbital Variations due to Drag

To obtain the variation in the mean motion due to drag Lagrange’s planctary

equations in vector form are used. Differentiating the energy integral, namely

= Zif (7.3.1)

Now f.f is the component of the drag acceleration in the direction of the satellite
motion. It can be shown however that the dominant force per unit mass due to
drag acts tangential to the orbit. Thus, where 0 is the true anomaly and fr is the

component of f tangential to the orbit one can write
i.f=rlfr. (7.3.2)

The component fr of f is given in (King-Hele, 1964) as

1

fr=3p* (7.3.3)

where v is the motion of the satellite relative to the earth and

5 (1 _ Tpow cosi) SCD- (7.3.4)

S is the cross sectional area of the spacecraft, Cp and m it’s drag coefficient and
mass, w is the angular velocity of the atmosphere and the suffix p0 denotes initial
values at perigee. After transforming (7.3.1-4) into Keplerian coordinates wherein

one replaces the time derivative in (7.3.1) with

d ad

B S 5
E=T T (7.3.5)
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(7.3.1) can be rewritten

3
da ap5(l + ecos E)

dE (l—ecosE‘)%'

(7.3.6)

By integrating equation (7.3.6) between 0 and 27 the variation in a over the course

of one orbital revolution is obtained,

27 (14 ecos E)%

Aa = ad
0 (l—ecosE)ép

(7.3.7)

Now (7.2.10) can be substituted into (7.3.7) and the integral explicitly solved.
This is done by expanding the integrand as a power series in e, which for a necar
circular orbit can be truncated. Then using the integral representation of the

Bessel function of the first kind and imaginary argument, namely

1 27
Liz)= 5 ./u cos nd exp (zcos0)d0, (7.3.8)

a solution can be obtained. The series expansion of these functions is given by

Lo 5 O (7.3.9)

m!(n+m)!’

BN

m=0
After some simplification, equation (7.3.7) is solved and the solution written,

where z = %£, as

ro_a;

Aa = -—2mba’p, exp ( = ) (Lo (2) + 2el; (2)

+ FA(L@)+35 (I (2) +35(2) +0 (82))] . (73.10)

Thus the variation in a after one orbital revolution is given by equation (7.3.10).
Of interest to this work is the differential variation in the mean motion’s of two
satellites which have different right ascension. To that end one can apply a small

change to Kepler’s third law namely,

nfa® = p. (7.3.11)
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Hence

_ =-3n,Aa

An, = == (7.3.12)
and therefore
An, = 3no.mbap, exp (T" I_f- a) [Io (2) + 2el; (2)
+ FA (I, (2) + 5 (Io (2) + 3L, (2)) + O (62))] . (7.3.13)

Only A in equation (7.3.13) is a function of the right ascension and therefore, if
one wishes to compare the different rates of decay of two satellites with different
values of 2 it is sufficient to compare the respective values of An, one obtains with
Q= Q; and 2 = , corresponding to A = A; and A = A,. Furthermore since
the satellites are not assumed to have identical area to mass ratios, they can also
have different values of 4, so § = §, and § = d, correspond to satellites one and
two respectively. In the following section the combined effects on the decay rates
due to the diurnal bulge of two different satellites in different orbital planes are

discussed.

7.4 Relative Decay Rates

Assuming the variations in § and Q between the two satellites is small one can
take small changes in equation (7.3.13) to gauge the relative drift between the
spacecraft due to the diurnal bulge. First of all however (7.3.13) is simplified by

imposing a few restrictions.
e The orbit is nearly circular, ie e & 0.001
e The semi major axis is a = 6600km

e The orbit is polar, ¢ = 90°
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e The density scale height at this altitude is H = 37km which means z ~ 0.18.

e The constant F' has a value at this height of 0.2. (Cook and King-Hele, 1968)

Now equation (7.3.9) is used to evaluate the Bessel functions in (7.3.13), and

only terms linear in 2z are retained. Thus (7.3.13) becomes

An, = 3n.mdap,exp (T"; a) [1 + FA (z -2|- c)] . (7.4.1)

Therefore for satellites one and two respectively
An, = 3n.méiap, exp (E}%E) {1 + FA, (z —; e)] , (7.4.2)
Ane = 3n,mdap, exp (r"; a) [1 + FA, (z —; c)] : (7.4.3)

Differencing (7.4.3) and (7.4.2) and defining dA = A; — A; and dé = §; — §, one

obtains

Ane — Ansg = 3n.map, exp (ro I; a.)

x [da (1 + FA; (z ; e)) + FdAS, (z s ")] . (7.4.4)

2

In order that the two satellites do not drift apart ( or together) because of the

action of drag it is required that the left hand side of (7.4.4) is equated to zero.
Then one has the condition of zero drift, namely

d___F(R)

& (1+F4A (%)

Now applying the polar orbit restriction to (7.2.5-8) one obtains

(7.4.5)

Ap = cos® %'cos (Q — A — L + wg) + sin? % cos(Qp—A+L+wg) (7.4.6)

where 8 = 1,2 for satellites 1 and 2. The obliquity of the ecliptic, € = 23.4° which

means that

A = 0.96cos (2 —A =L+ wg)+0.04cos (s — A+ L + wp)
~ cos(p—A—L+ws). (7.4.7)
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Therefore for a small change df2 in 2 between satellites one and two
dA=x —sin(2 — A — L+ w)df) (7.4.8)

where ) and w represent mean values of these angles for the two satellites. Apply-
ing (7.4.8) and the restrictions to the values of the constants to equation (7.4.5)
realises,

dé

ol 0.018sin (2 — A — L + w) dS2. (7.4.9)
2

So for a value of dS2 of 0.6° = 0.0105 radians this becomes

(;—6 ~1.9x%x107*sin(Q =X - L+w). (7.4.10)
2

The definition of ¢ in (7.3.4) for a polar orbit, assuming the masses and drag
coefficients of the satellites are equal gives,

505
m

8p = (7.4.11)

where Sp, B = 1,2 are the surface areas of the two satellites. Now (7.4.10) becomes

d
-5;5 ~1.9%x107*sin (2 =\ — L +w). (7.4.12)
2

Therefore to ensure that the satellites have the same mean motion when separated
in right ascension by a value which in chapter 5 gave an improved solution, requires
a temporal variation in the surface area of one satellite with only 0.02 percent
maximum. This seems to suggest that the problem of differential air drag is of
less significance than that of using two different satellites. Furthermore if two
identical non spherical satellites were used then a small difference in the attitudes of
satellites could bring about the same variation in the mean motion that the diurnal
bulge would cause. The conclusion of this chapter is that for small differences in
right ascension the differential air drag due to the diurnal bulge is not a major

problem. Any drift could be negated by a small variation in the surface area of
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one of the satellites, this could be brought about by extending flaps to increase, or
retracting them to decrease the force of drag on the spacecraft to ensure constant

separation.
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Chapter 8

Conclusions

The work presented here has illustrated how an improvement in the accuracy of
a gravity field recovered from Range Rate observations between two low satellites
can be realised by separating their orbital planes. It has been explained that the
relative motions of the satellites in the directions normal to the orbital planes
allowed a significant cross track velocity component to contribute to the line of
sight direction and therefore improved the signal content for gravity coefficients
with a strong longitude variation.

In chapters 3 and 4 an analytical model was developed that proved flexible
enough to model the gravitational perturbations in the range rate between two
satellites at the same altitude and inclination but not necessarily the same right
ascension. The model was based on Hill’s equations which provided the sensitivities
of the velocity and position of a spacecraft in it’s local frame to errors in the gravity
field coefficients. The relative motion of the two local frames was accounted for in
a comprehensive manner that allowed for an efficient analysis.

Once this analytical model was developed it was used in chapter 5 to calculate
the variances and covariances of the gravity coefficients by a least squares pro-

cedure. This procedure made use of a technique analogous to the Fast Fourier
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Transform, whereby the assumption that the data set is made up of measurements
of equal variance distributed at even intervals along a repeat orbit results in an
extremely efficient analysis. To illustrate the benefit of this technique consider the
recovery of a 120 x 120 gravity field. The normal matrix made up of a randomly
distributed set of 100,000 measurements would be made up of around 2 x 10® cle-
ments, each the product of a summation over all the measurements in the dataset.
Such a matrix would be a considerable task to create and this would be some-
what over taxing for an error analysis. With the dataset distributed as detailed
above the matrix becomes block diagonal with the largest sub-block being of size
240 x 240. Furthermore each element of these sub blocks can be calculated with-
out summing over each of the measurements. The difference in computing time
between these two techniques is considerable.

The error analysis was carried out in order to illustrate how an optimum,
planar, Satellite to Satellite Tracking range rate mission could be improved upon by
allowing the orbital planes of the satellites to differ. First the need for a low, polar
orbit was established for the recovery of the higher degree coefficients and zonal
coefficients respectively. ‘Then for a 120 x 120 field, a range of separations were
tested using a 200k polar orbit. It was found that a separation of around 2.4°
was best overall but that for some larger separations certain groups of coeflicients
were recovered better. As a result it was deduced that for a planar mission the
best gravity field would be determinable from a mission combining a range of
separations.

Separating the orbital planes of the satellites was shown to reduce the errors
in the higher degree and order coefficients. These coefficients are associated with
spherical harmonic functions which have short wavelength variations in longitude
and long wavelength variations in latitude. Thus for a polar orbit they provide
only a little along track signal and more cross track signal. Therefore the cross

track velocities contributed significantly to the recovery process of these coefficients
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which for a planar mission were quite poorly determined. This result underlined
the desirability of a SST range rate mission with non coplanar satellites.

In chapter 6 recoveries of groups of coefficients were performed for coplanar and
non coplanar missions in both polar and non polar orbits. Single six day arcs and
pairs of these arcs were used for the recovery procedures. Using the single six day
arcs the recoveries were better for polar orbits. This was due to the assumption
in the derivation of Hill’s equations that the orbital plane does not precess. Thus
in the polar orbit the partials were more accurate.

The higher degree coefficients were not recovered as well as the lower degree
ones. This was seen to be due to the circular orbit assumption in Hill’s equations
and in the forcing terms as well as the attenuation of gravity signal with height.

The introduction of a second arc into the analysis confirmed that the reason
for poorer high degree recovery performance was not that the data was insufficient
since the results did not alter.

Finally as a check of the model a recovery was performed for non coplanar
satellites with the cross track velocities suppressed. This resulted in a poorer
recovery than when the full model was used.

Chapter 7 was concerned with the possible drawback in putting the satellites
in orbital planes with differing right ascensions. The existence of a bulge in the
atmosphere due to the warming effects of the sun means that satellites in different
planes will pass through different parts of the bulge and therefore be subject to
different drag forces, and hence have different decay rates. This would result in
the satellites drifting apart. After consideration of an analytic drag model and
it’s differential effects on a pair of satellites separated in right ascension by 0.6°
the conclusion was drawn that the problem was not too significant. Indeed for
such a cross track separation the differential drag would be negated by one of the
satellites having a sinusoidal time variation in it’s surface area (perpendicular to

the direction of motion) with an amplitude of approximately 0.02% of it’s mean.
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As a result of the work carried out in this thesis the supremacy of non coplanar
Satellite to Satellite tracking over the more frequently discussed planar case has
been established. In particular it improves the recovery of those coefficients that
are poorly recovered in a polar, planar mission, namely the high degree and order
(near sectorial) coefficients. The possible problems with air drag have been scen
to be rather small and techniques exist that could deal with them. Indeed when
compared to that of using two different satellites, the air drag problems discussed
here are quite insignificant.

This work would form an ideal basis from which more comprehensive simula-
tions and recoveries could be performed. In particular the recovery of a full gravity
field with the presence of the perturbing forces of air drag and solar radiation pres-
sure would provide a more realistic test of the ideas formulated and discussed in

this thesis.
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Appendix A

The Inclination Functions

The inclination functions allow one to express the gravitational potential in Kep-
lerian coordinates. Their normal method of calculation is from the expression for
the potential in spherical harmonics. Thus the it;clination functions are derived
from the Legendre polynomials and the sine and cosine terms in (2.1.7). The direct
calculation of the Legendre polynomials énd thefefbre of the inclination functions
is unstable at high degree and order and requires an alternative method. Recuir-
rence relations exist from whiéh the Legen-d.re 'polynomials and their derivatives
are derived efficiently, which can be uéed in conjunction with the Fast Fourier
Transform routine to provide a stable, efficient method to calculate the inclination
functions. A similar method allows the qalcuiatidn of the cross track inclination
functions introduced in equation (3.3.22). Both cases will be outlined here.

The method has been described by [Wagner,1983], [Schrama,1989] and
[Koop,1993] and makes use of the unit potential function. This is the potential of
equations (2.1.7) and (2.1.8) with g = sgn = p=R=r = 1. Itis calculated
along a unit circular orbit with a =1, Q = g = e = w = 0. Thus equating terms

in (2.1.7) and (2.1.8) one obtains

Vim = Vlmﬂ'f'viml
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l-meven
= Y Fimp [—i] cos ((I —2p) F) +sin ((I — 2p) F)

=0
l-modd

Dim (cos 0) [cos mA + sinm)]. (A.1)

The right hand side of equation (A.1) is expressed as a summation over [ —2p =

J =0or1,lin steps of two,

{-meven

[ 1
Vim = 3 [Fz.,.&—,u + Fxmm] cos jF
j=o1p2) : pl P
+ [Frntzn = Fiptza | sinsF. (A2)

Each V},» can now be calculated in terms of the Legendre polynomials and sines
and cosines of longitude times 1, for which efficient and stable methods allow good
accuracy to high values of | and m. The latitude 0 and longitude A are calculated
at equidistant points along a unit circular orbit of inclination 7. The V},, are
calculated at each point and the time series transformed to the frequency domain
by application of the FFT. Comparison of the amplitudes of the frequencies in

(A.2) with the amplitudes obtained by FFT allows one to solve for the inclination

functions.

Obtaining the required Fourier expansion in terms of the cross track inclination
functions is more complicated than for the normal inclination functions. From
equation (3.3.22) with the rules for the unit potential applied

l-meven

Vi Lo iV -1 P
— = ¥ v cos((j - 1) F)+ . sin((j —1)F)|.(A.3)

du
J==14217) l-modd

Transforming the j summation to & = j — 1 one obtains

alim — l:'!\ F +1‘1¢ cos (kF)+
= L lm"",“) lm"",-” '

du A~0,1[2]
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l-meven

-1
+ 1 [P}:‘ 0 Irl:ngj_;q.kl] sin (kF) . (A.4)
l-modd

This is the cross track derivative of the [, 1 term in the unit potential function.
To solve by FFT for the amplitudes of the fourier series (A.4) and from that
determine the cross track inclination functions, a set of values of 3—(.';’1“& are required
around the unit circle of inclination /. In order to produce such a dataset the
cross track derivative must be expressed in terms of the derivatives with respect

to latitude and longitude.

x. X'

Figure A.1 Geocentric cartesian and orbital systems
From Figure A.l the angle ¢ is defined as the ‘latitude with respect to the
orbital planc’. It can be scen that
OVim 10Vim
Ju r d¢
Vi

2%’

for the unit potential,
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The partial derivative with respect to ¢ is expanded by the chain rule as

OVim Vim0 OV, OX
26 00 96 T oA 3" (A.6)
From (2.1.7) oue can show
ONim
a9
and

= P, (cos0)[cosmA +sinm)]

r
g(;‘T"' = Py (cos0) [cosmA —sinm)]

from which it is clear that we must find -“?—; and % in order to calculate the required

time series.

A

L j

XX

Figure A.2 Goeocentric cartesian and polar systems

From Fignte A.2 it can be seen that the geocentric cartesian coordinates on
the unit splicte, in terms of the polar coordinates are
X = cosOcosA
Y = cosOsinA - - (A7)

Z sin0.
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From Figure A.1 the X', Y”, Z’ coordinates on the unit sphere give

X' = cos¢cosF
Y’ = cos¢sinF (A.8)
Z' = sing,

and the relationship between the two geocentric coordinate systems is ( for the

casw where the longitude of the ascending node is zero )

0 X'
0 cos! —sin/ Y'|. (A.9)

0 sinl/ cosl/ A

Combining (A7), (A.8) and (A.9) results in

cosfcos A = cos@cos F (A.10)
cosOsinAd = cos¢sin Fcosl —singsin/ (A.11)
sin0 = cos¢sinFsinl +singcos/. (A.12)

From (A.12), for ¢ =0,
0 cos/

—
—

d¢ cos 0’

(A.13)

and from (A.10) and (A.11)

'(l\_ ___bmfcocs,\. (A.14)

Jo cos0
Thus the time seties necessary to calculate the cross track inclination functions is

ealeulated from

di::: =T :: (l)l i (C0S0) [(‘os mA + sinm))
_dinlcosd Dy (c0s0) [cos mA = sinm)]. (A.15)
cos0

Lauation (A1) iy used to obtain these functions from the FFT of the time series

of (A.15), calculated at discrete points along a unit circle of inclination /.
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