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SUMMARY

In the process industries powders are frequently granulated in order to promote
their handleability and flowability. During the operation of powder granulation, a
liquid binder is usually mixed with the powders to increase their cohesiveness. For
binder granulation processes, the coalescence and breakage behaviour of moist gran-
ules during collision is a major concern. This thesis considers the computer simulation
of moist agglomerate collisions using the the discrete element method (DEM). The
study is confined to pendular state moist agglomerates, at which liquid is presented
as either adsorbed immobile films or pendular liquid bridges and the interparticle
force is modelled as the adhesive contact force and interstitial liquid bridge force.
Algorithms used to model the contact force due to surface adhesion, tangential fric-
tion and particle deformation have been derived by other researchers and are briefly
described in the thesis.

A theoretical study of the pendular liquid bridge force between spherical particles
has been made and the algorithms for the modelling of the pendular liquid bridge
force between spherical particles have been developed and incorporated into the As-
ton version of the DEM program TRUBAL. It has been found that, for static liquid
bridges, the more explicit criterion for specifying the stable solution and critical sepa-
ration is provided by the total free energy. The critical separation is given by the cube
root of the liquid bridge volume to a good approximation and the ‘gorge method’ of
evaluation based on the toroidal approximation leads to errors in the calculated force
of less than 10%.

Three dimensional computer simulations of an agglomerate impacting orthogo-
nally with a wall are reported. The results demonstrate the effectiveness of adding
viscous binder to prevent attrition, a common practice in process engineering. Results
of simulated agglomerate-agglomerate collisions show that, for colinear agglomerate
impacts, there is an optimum velocity which results in a near spherical shape of the
coalesced agglomerate and, hence, minimises attrition due to subsequent collisions.
The relationship between the optimum impact velocity and the liquid viscosity and
surface tension is illustrated. The effect of varying the angle of impact on the coales-
cence/attrition behaviour is also reported.

Key words: Agglomeration
Coalescence and attrition of wet granules
Discrete element method
Impact
Liquid bridge forces and stability



To My Famaily



Acknowledgements

I sincerely thank my research supervisor Dr. Colin Thornton for his guidance,
encouragement and support throughout the duration of the research programme. I
sincerely appreciate his enthusiastic help in organising the project, his invaluable
comments, advice and discussion provided at every crucial stage of the research and

his diligent effort in checking the equations and correcting the script.

I would also wish to especially acknowledge Dr. Michael J. Adams of Unilever
Research, Port Sunlight Laboratories for his enthusiasm in developing the project and

his useful advice and discussion on the progress of the project.

My sincere appreciation is also extended to Unilever Research, Port Sunlight Lab-
oratories and the CVCP for providing the financial support and an Overseas Research
Studentship (ORS) that assured the smooth progress and success of the project, to
Dr. David Kafui who provided technical assistance in the setting up of computer
facilities and softwares and generously checking the final draft of the thesis, and to
Cyril Hart for his help in correcting the draft and some other reports related to the

project.

I also wish to acknowledge the understanding, support and encouragement of
Zemin Ning, Teo Ciomocos, Leon Toland, Dr. Gexin Sun and Dr. David Kafui who

all had their own challenges in applying TRUBAL to their specific problems.

Finally, special thanks to my dear wife Yanqing for her constant support while
also working for her PhD degree, to my son Daniel for his understanding at his young

age, and to my parents.



Contents

1 Introduction 18
1.1 Background of theproject . . . ... ... ... ............ 18
1.2 Prescitalion OFAer . o w s s i v 9 & w0 & i 5 e % et @ 1 & o % 9 e w1 4 21

2 Literature Review 23
21 AgRIOTHEiabION « o ¢ = w 5o o 50 % a4 0w B e W e N e R e e 0 24

2.1.1 Interparticlebondforces . ... ... .............. 24
2.1.2 Primary particle coalescence . . . . . .. ... ... ... ... 27
213 Agpglometate growth . : v v v v svn w s m o w v v o o e s e 31
213 DHBOUBSION. . . s mvw v oo = om = 00w e B ol @ 060 5 80 % . B By 8 moe B e 32
2.2 Attrition atid comiminubion « .« « « ¢ v e v o % W a0 Fw e @ w0 e K o w 33
2.2.1 Attrition mechanisms of solid particles . . ... .. ... ... 34
2.2.2 Mass balance for particle fragmentation. . . . . .. .. .. .. 35
223 Atintionof apglomerates v v v s va ws s v o wew s 38
224 DISCHSTION o oo v inoim v w30 e ms w0 ams w e I T s e % 39
23 Agglomeratestrength . . s s v vn v svss v s wvms G e s 40
231 Rumpf'smodel ... ... ... ... .. .. 41
232 Chepls model . cooovv s wivmivsws ms o5 e s wiews 42
2.3.3 Fracture mechanics approach . ... .............. 45



234, DISCUBSIOMN o « w0 & e & 50 o 5 6 & o % Gy ® 60 & 0 e e e % W e e e w8 fe 48

24 Computersimulalion .. s iz iiei@idi@emas s wmEwswss 48
2.4.1 Discrete element method . . . . .. ... ... ... .. ..., 48
2.4.2 Computer simulated agglomerate collisions . . . . ... .. .. 50

28 SUIMMALY + oo imeditmbmisaiwi@iPsnst o gi@sn 54

3 Interparticle force of adhesive spheres 55

3.1 Adhesion force between rigid spheres . . . . ... ... .. .. .... 56

3.2 Normal loading of adhesive elastic spheres . . . ... ......... 60
321 JERABEOIY v vn s o5 6 5 & 505 685 5% % 9 ¥ % #® e e @ e 61
322 DMTmodel . . ....... ... . ..., 66
323 DIBCUBBION . v« v v o % e % o v 0w e e 8 e e e e el W e 71

3.3 Oblique loading of adhesive elastic spheres . . . . .. ......... 79
3.3.1 The theory of Savkoor and Briggs . . . . ... ... ...... 79
332 Thetheorvof Thomton « i w v vnn s siwewvweas< s 81

3.4 Energydissipation . . ... ... ...t 85

4 Interparticle forces of moist spheres 88

4.1 Cohesiveness of moist particles. . . . . .. ... ... ... ...... 89

4.2 Static liquid bridge forces and stability . . .. ... ... ... ..., 91
4.2.1 Brief literaturereview: . o . s s 06 555 5 oo e e w b 91
4.2.2 Theory and computational procedures . ... ... ...... 94
4.2.3 Rupture criterion and stability of liquid bridges . ... .. .. 98
424 Liquid bridgeforces. . . .. ... ... ... ... ... 107
4.2.5 Liquid bridge between unequal sized spheres . . . . . ... .. 117

4.3 Viscous force of dynamic liquid bridges . . . .. ... ... ...... 119



131 Governing equationg v s o s w5 o o 6 & 60 6 5 5 % v w5 @ s ¥ 119

4.3.2 Reynolds’ lubrication approximation .. .. .......... 122
4.3.3 Semi-infinite theoty « « o o v o v v w0 s 9 0 s s o ww w0 124

5 DEM computer program TRUBAL 128
Bl Intrsluetiin o o o v 5ooom 50 5 e @ e w e A e B e e R T B N % W e S S 129
52 QCeneralstructure of TRUBAL ¢ o s 5 v 6 s 5% s o @ e 565 » 6 131
52.1 Programstructure . . .. o« o oo o000 002000 poa i 131
922 Mal MemorY MED o v vowe @ w v s e e @k ke e 133
5.2.3 Arrays of sphere data, wall data and contacts . .. ... ... 136

B3 Assehiibly PERErabion. .« « v v e e v w e w5 0 0w e e w e ke s e 139
54 Introducing Walls ¢ o s o5 o8 s v B a8 6% ¢4 S 3 @ ¥ mpavas 141
5.5 Contact searchinginthe DEM . . . . ... ... ............ 142
§5:1 Initial particle generalion  « ¢ v e u wov w0 @ a0 0w w0 w e 142
552 Remeppmg . is .icssinimiddpssmams@nimsn s 146
553 Contacts withWalls « « s cn vs wicm v e msim o minio s mins o 149

56 Dystemieolition v i i st n i s s s wE N m s EEE @ 150
5.6.1 Particle displacements . . . . .. .. ... . 000, 150
562 Solid contact forces « : i s s v v v v i w v e v w ¥ 6w o e 151
5.6.3 Liquid bridgeforces. . . .. ... ... ... ..., 156

5.7 Implementing liquid bridgeforces . . . ... ... ... o000 156
5.7.1 Introducing liquid bridges . . . . . . . ¢ ¢ o000 0 s oo o 156
5.7.2 Computing liquid bridge forces .. ... .. .. ........ 160

5.8 Energy dissipation . v o5 s @ 8@ s 0 g 5 %88 @808 o0 168
5.9 Resultsoutput . . .. ... ... L o Lol o 169



6 Computer simulation of a moist agglomerate impact with a wall 171

6.1 Introduetion . . . .« o o iin ¥ 8.0 26 60 sim o & 5.9 & @ 50 e s 172
6.2 Computer simulation procedures. . . . .. ... .....0 0000, 173
8.2.1 Agglomerate preparation : o . v« o s v v v s w w60 6w e 173
8292 Testprocedures . . vvemmamisdsm s sninsh i3 855555 175

6.3 Results and diSCUBSION < v v v oo 6 w6 o s wwow e w E w e e e e e 176
631 Visualobservalions - : v s v msmsmsming apiesie 176
6.3.2 Agglomerate deformation. . . ... ... ............ 186
6.3.3 Damage assessment i o« s v s 5 6 6a s ws v e E e s e i a s 188

B4 SUDIMATY' . o o« oo v v me om0 5 m s oo e s 0 8 i 808 & % 6o 8 58 194
7 Computer simulation of agglomerate-agglomerate collisions 196
.1 Iotroduchion. . . . s osamodiciwh mi b 3 Si@ G adsBEs & 197
7.2 Computer simulation procedures . . . . . . ... ... ... ...... 198
721 Agglomeratéepreparation s c s v s sws @ ims B s v s €5 3 198
7.2.2 Impact simulations . .. ... ... ... ... .. ..., 201

78 Normal cOllBIONE o va &5 ¥ % ¢ e m w k@ ® s v 8 % = 5w o w0 6% x 202
7.3.1 Generalobservation. . . . . .. .. ... ... ... 202
132 Etergy distipafion’ « s vov v s s % w5 o v o0 ko w0 @ b 209
733 Damageassessment . . . . . . o ¢ ottt oo v v oo 000 214

T4 Oblitiie CollBIONE o i x o v 5 v v v b 00 v w0 n 008 0 5 78 & 0 & i & 221
Th SUNMAEY s v v s @i s S s BB s Vo ime R BEELEses 231
8 Conclusions 235
8.1 Cohesiveforce of moist particles s s « v v s w55 s v v v s o s 05w s 236
8.2 Moist agglomeratecollisions . . ... ... ... ... . .. 0. 238



8.3 Limitations and futurework . . . . . . . . ... ... .. ... ... 243

References 245
Frictional energy loss of elastic spheres under oblique forces 261
AL IntIoRNCHION o v o v 5o 5 0 6 5 5 5 & G 5 8 8 R R E G S B el & i @ el & e 262
A2 Normalforceconstant .. . ... oo o0 oo oo omoampio s 263

A.2.1 Energy dissipation during loading . . . . ... ......... 263

A.2.2 Energy dissipation during unloading . . ............ 265

A.2.3 Energy dissipation during reloading . . . . ... .. ...... 267
A3 Normalforcechanging : .« v i saw s s sans wonswsmens 268
Ad Sliding . . . . . . . e e e e e e e 272
AS With SdleSion « « v v ws ws w s e mmaa b5 m 5 e m s & Rw 0w e s 273
Command list of TRUBAL 275
Bl IOUORUCEION - 5 o v o o 50 50w v w0 6 3 R 5w b ¥ R K e B w8 e 276
B2 Commandlish ... i i csdisnsnibaii@msdissimamai a9 277

Graphics printings of computer simulated wet agglomerate impact 290
C.l Agglomerate-wall impact < i « ¢ s vu v osn s v snsiavsswon s 291

C.2 Agglomerate-agglomerate collisions . . . . ... ... ......... 299



List of Figures

3.1

3.2

3.3

3.4

4.1

4.2

4.3

Pure attractive (dashed line) and overall (solid line) interactive surface

forces as a function of separation between ideal surfaces. . . .. ...

Force-displacement relationships of DMT model in comparison with
the Hertzian theory. The forces are made dimensionless to P, = 47y R*

and the displacement is made dimensionless to R* . . . . ... .. ..

The normal traction distribution assumed by (a) the JKR theory and

(b)the DMT theory . . .. oo s v v oe v oo s vinonsssonsn

Comparison of the peeling failure criterion (solid line) defined by equa-

tion 3.99 and sliding criterion (broken line) defined by equation 3.101

States of liquid present in particle systems as the degree of saturation

72

83

increases: (a) pendular state, (b) funicular state and (c) capillary state 89

A symmetric liquid bridge between two equal sized rigid spheres . . .

Stable (solid lines) and unstable (dashed lines) numerical solutions of
the Laplace-Young equation versus dimensionless separation with dif-
ferent dimensionless liquid volumes and a zero contact angle expressed
in terms of dimensionless quantities of (a) neck radius, (b) half-filling

angle, (c) mean curvature and (d) total force. . . . .. .. ... ...

10

95



4.4

4.5

4.6

4.7

4.8

4.9

4.10

The dimensionless critical rupture distances of stable liquid bridges as
a function of the dimensionless liquid bridge volume-A comparison of
Mason and Clark’s (1965) measured data with the numerically com-

puted values at contact angles of 0% 5% and 10°. . . . ... .. .. ..

The dimensionless Gibbs’ free surface energy as a function of the di-
mensionless separation distance for a range of dimensionless liquid
bridge volumes and a zero contact angle corresponding to the sta-
ble (solid lines) and unstable (broken lines) numerical solutions of the

Laplace-Young equation . . .. .. ... ... .............

A double logarithmic plot of the numerically computed dimensionless
rupture distance as a function of the dimensionless liquid bridge volume

at a number of contact angles. . o v v v v e s vE e B E e e

100

106

Toroidal approximation of a liquid bridge between two equal sized spheres109

A comparison of the dimensionless liquid bridge force as a function
of the relative separation distance for a constant dimensionless liquid
bridge volume (0.005) and a zero contact angle, calculated using the
numerical method, the physically ‘correct’ method and the ‘mixed’

method of the toroidal approximation . . . . .. ... ... ......

A comparison of the dimensionless liquid bridge force as a function
of the relative separation distance for a range of dimensionless liquid
bridge volumes calculated using the numerical method (solid lines)
and the gorge method (broken lines) of the toroidal approximation for

contact angleof (a) 0%and (B} 40% s sssus s wsm s smams

A liquid bridge between two pairs of solid spheres of different radii and

with different half-filling angle and different separation distances . . .

11

112

113



4.11

4.12

4.13

4.14

4.15

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

A comparison of Mason and Clark’s (1965) data for the liquid bridge
force between two 30mm diameter spheres with the results obtained

using (a) the numerical computation and (b) the toroidal approximation.115

The scaling coefficients for (a) the neck radius and (b) the maximum
mean curvature from the toroidal approximation as a function of the
relative separation for dimensionless liquid bridge volumes of 0.001 (o)

P 11 B (=) [P 116

Toroidal approximation of a liquid bridge between two unequal sized

SPHETeS « o v v o v o 0 0 0ot s r oo s e s ee m e s e s e e 118

Schematic representation of a dynamic liquid bridge between two equal

sized spheres with three different relative movements . . . ... ... 120

Schematic representation of the squeezing flow between two colliding

SPhEres. « « v o v v v o v v e e s e e s e e e s e e e e e s 122
The program structureof TRUBAL . . . . ... ......... ... 132
The memory map of the main array . . . . . .. .. ... ... .... 134
The mapping scheme for spheres . . . ... ... ........... 143
The storage scheme for link lists and contact arrays. . . . . . ... .. 146
New and old box entries of a remapped sphere . . . . . ... ... .. 148
Mappingscheme forwalls: : sy pemswss v v s e w o me e wa s 149
The sign of the updated resultant tangential displacement . . .. .. 155

The ratio of half rupture distances as a function of the dimensionless

liquid volume for different values of the ratio of sphere radii. . . . . . 158

12



5.9

5.10

5.11

5.12

6.1

6.2

6.3

6.4

6.5

6.6

Effect of the ratio of sphere radii on the fitting coefficients co, ¢;, c; .

Dependence of the half-filling angle ¢; on the relative separation S/S.
as fitted by third order polynominals for different dimensionless liquid

volumes and different ratios of sphere radii: (a) % =1.0,.(b) T{:? = 2.0

and (¢) B2 =50 ........ ... i
The fitting coefficients Cy, C1, C2, C3 as functions of the dimensionless

liquid volume at different ratios of sphere radii, R;/R; = 1.0 (0O),
Ryl Ry:=20 (A); sod Byffy=8.010): w5 s v vt v v o w60 s i 5

The fitting coefficients b;, k; (j = 0,1,2,3) as functions of the ratio of

SPhEEE TRty 5 v 5 5 50 5 % 6 % 8 %% 4 0 B e ¥ A0 N 0 e e R R Y

The initial state of the prepared moist agglomerate with a body-centred
cubic arrangement: (a) the agglomerate, (b) total contact force distri-

bution and (c) rectilinear velocity field. . . . . ... ... .......

Side (above) and top (below) views of a moist agglomerate with a zero

liquid viscosity after impact with a wall at a velocity of 0.2m/s. . . .

Side (above) and top (below) views of a moist agglomerate with a zero

liquid viscosity after impact with a wall at a velocity of 0.5m/s. . . .

Side (above) and top (below) views of a moist agglomerate with a zero

liquid viscosity after impact with a wall at a velocity of 2.0m/s. . . .

Side (above) and top (below) views of a moist agglomerate with a liquid

viscosity of 0.1Pa.s after impact with a wall at a velocity of 1.0m/s. .

Side (above) and top (below) views of a moist agglomerate with a liquid

viscosity of 0.1 Pa.s after impact with a wall at a velocity of 2.0m/s. .

13

159

162

164

166

174

179

180

181

183

184



6.7

6.8

6.9

6.10

6.11

1

7.2

7.3

Side (above) and top (below) views of a moist agglomerate with a liquid

viscosity of 0.1Pa.s after impact with a wall at a velocity of 8.0m/s. .

Relative height and dimensionless contact area of moist agglomerates

aftercolliding withawall: s cncaomss s s smamens s

Size distribution of the debris produced by a body-centred cubic ag-
glomerate with inviscid liquid bridges impacting normal to a wall at a

velocity of 2.0m/s. . . . . . . . . ...

The dependence of (a) the damage ratio, (b) the newly-made liquid
bridge bonds and (c) the overall bond probability of the moist agglom-

erateofi the impact VeloeIY « s s s v ss v a e s w e s s 8%

The evolution of broken contacts (A), newly-made contacts (o) and
overall remaining contacts (O) of liquid bridges of a low viscosity
(0.01Pa.s) agglomerate (broken lines) and a high viscosity (0.1Pa.s)

agglomerate (solid lines) impacting at a speed of 2.0m/s. . . . . . ..

The initial state of the two prepared moist agglomerates: (a) the ag-
glomerates, (b) total contact force distribution and (c) rectilinear ve-

lackyfield. « oo x o w n v v s mm w w w e e % R R ¥ e

Two moist agglomerates with 0.01 Pa s viscosity and 0.025 N m~! sur-
face tension of liquid bridges after colliding at velocities of (a) 1.0 m 57,

(b)20ms~tand (¢)5.0ms™. ... ...

Two moist agglomerates after colliding at a relative speed of 2.0m/s
but with different liquid viscosities of (a) 0.100Pa.s, (b) 0.010Pa.s and
EI0DOLPES v wun camsmswiet o3 P @I EE R LHED 0 5o

14

185

187

191



74

7.5

7.6

7.1

7.8

.9

The size and shape of the resultant coalesced agglomerate as a function
of impact velocity: (a) Radius of circumscribing sphere and (b) fractal

AIMENSION. & & v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e

Ratio of initial kinetic energy (*) dissipated by viscous resistance (O),
interparticle friction (o) and liquid bridge rupture (A) for two collided
moist agglomerates with a liquid viscosity of 0.01Pa.s and a surface

tension of 0.025N/m. . . . . . . .. ...

Effects of the viscosity and surface tension of liquid bridges on the
ratios of initial kinetic energy dissipated by viscous resistance (dashed

lines), interparticle friction (solid lines) and liquid bridge rupture (dot

dashed lmes). s cimin i is s 09 sd 24w @B Hen

The effect of impact velocity on (a) the damage ratio, (b) the ratio of
newly made liquid bridges and (c) the bond probability of the collided

SPIOMBIALER.. .+ « a o v @ 2o % w0 0 @ ce @ s e e e e e R e 8 e

Distribution of broken (red lines), newly made (blue lines) and existing
(cyan lines) liquid bridges of two moist agglomerates during a collision
at a speed of 2.0m/s and with the liquid bridge properties of surface

tension -, = 0.025N/m and viscosity n = 0.01Pa.s. . . . . .. .. ..

Effects of impact velocity and liquid viscosity on the final distribution
of broken (red lines), newly made (blue lines) and existing (cyan lines)

liquid bridges of the coalesced agglomerate. . . . . . .. .. ... ...

7.10 Schematic representation of the oblique impact of two agglomerates .

15

208

212

216

219

221



7.11

7.12

7.13

7.14

7.15

7.16

Two moist agglomerates after oblique collisions at a velocity of 2.0m/s
and different incident angles of (a) 30°, (b) 45° and (c) 60°. The
properties of the binding liquid were: surface tension v, = 0.025N/m

and viscosity 1 =0.01P@.8. .« v o 5o v wwm s misa va 0w o

Two moist agglomerates after oblique collisions at a velocity of 5.0m/s
and different incident angles of (a) 30°, (b) 45° and (c) 60°. The
properties of the binding liquid were: surface tension 7, = 0.025N/m

and viscosity 1 =0.01Pa.8. . . v o vv v o s womon 000

Two moist agglomerates after oblique collisions at a velocity of 2.0m/s
and different incident angles of (a) 30°, (b) 45° and (c) 60°. The
properties of the binding liquid were: surface tension v, = 0.025N/m

and viscosityn) = 0.001Pa8, « « - o v v v mivm o won mon s

Circumscribing sphere radius and fractal dimension of the coalesced

agglomerates as a function of the incident angle of oblique impacts.

Mass percentage debris produced by oblique impacts of two moist ag-

LIOMEIAIEE. v i nr s wrmamrem e mamambe $8 HEGEFER

The dependence of (a) the damage ratio, (b) the newly-made liquid
bridge bonds and (c) the overall bond probability of the moist agglom-

erateon theincident angle. . ... .......ccovivoaia

16

224

225

226

227

229



List of Tables

5.1

5.2

5.3

6.1

(% |

Fitting coefficients of ¢, €1, €20« -« ¢ v v o v oo a oL 158
Fitting coefficients Cy, C1,C3, C; for the half-filling angle. . . . . . .. 163
Fitting coefficients of b;,k;, (7 =0,1,2,3). . ... ... ........ 165
Series of the moist agglomerate-wall impact tests . . . .. ... ... 176
Agglomerate-agglomerate impact tests performed. . . . .. .. .. .. 202

17



Chapter 1

Introduction

1.1 Background of the project

Most industrial materials or products such as food, detergents, agricultural chemicals
and pharmaceuticals are either provided or processed in fine particulate or powder
form. Unfortunately, these particulate materials are commonly manifested to be asso-
ciated with the problems of dust, environmental pollution and hazard. They are also
difficult to process and transport because of their poor flowability and handleabil-
ity. Agglomeration of fine particulate materials is heavily utilized in the chemical
processing industry. The benefit is that the agglomerated fine particles can be more
easily conveyed and processed without imposing dust and other hazards on the envi-
ronment. However, agglomeration can be also deleterious. One problem associated
with agglomeration is the plug-blocking of fluidised beds. In ceramic processing,
the overwhelming problem of defects or flaws in ceramic materials originates from

agglomerates which are present in the ceramic powders.

With agglomeration as a heavily utilized beneficial operation to promote the flowa-

bility and handleability of fine powders, attrition of agglomerates during handling and
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processing is, on the other hand, a commonly occurring nuisance. To prevent attri-
tion, the agglomerates must be strong enough to resist breakage during flow, but must
be easy to break down under intentional compression, grinding or shearing before

moulding. The intentional breakage of agglomerates is referred to as comminution.

The particle enlargement process of agglomeration depends on the bonding forces
between particles. It is a result of collisions between primary particles or granules
caused by agitation. During the agglomeration process, primary feed particles collide
with each other and coalesce into discrete granules. Binding liquid is often necessary
to activate the coalescence of the particles. When the agglomerates grow in size to
a certain stage, further collisions may result in the granulated agglomerates being
abraded, comminuted or fractured. The degradation phenomena of agglomerate at-
trition, comminution and fragmentation are always found in competition with the
agglomerate enlargement process during the agglomeration operation and the combi-
nation favours the production of agglomerates of specific size, strength, porosity and

structure.

Both particle agglomeration and degradation depend on the cohesive force be-
tween particles. A wide range of mechanisms of adhesion contribute to the inter-
particle cohesive force. They are identified as the adhesive force of inter-molecular
attraction between contacting surfaces, the binding force of liquid bridges and solid
bridges and the attractive force of electrostatic and magnetic potentials (Rumpf 1977,
Sherrington and Oliver 1981). The mechanics of single particle-pair interaction due
to different bond forces is well-established. However, the bulk mechanical behaviour
of particle systems in terms of the micro-level inter-particle forces is still a slowly
unfolding mystery. In fact, there have been very few studies published to correlate
agglomerate coalescence and degradation with packing geometry, interparticle bond
forces and particle properties. Most previously reported studies of agglomeration and

attrition are mainly descriptive. The theories are, in the main, concerned with simple
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systems of mono-disperse and regular packings. Studies of poly-disperse and random
packings are generally based on observations obtained from real experimentals. Real
experiments are not only expensive, but are also restricted by the lack of adequate
instruments and techniques for measuring internal quantities such as geometry, forces
and velocities. As a result, the information obtained is often empirical, inaccurate,

insufficient and incomplete; and lacks direct quantitative verification.

Computer simulated experimentation, using the Discrete Element Method (DEM)
is a recent development which has been applied to the modelling of granular materials.
By direct numerical simulation of the particle interactions the evolution of particle
locations and interparticle forces may be examined. Consequently, computer simu-
lation provides an opportunity to study the internal variables of particle assemblies
and relate them to the macroscopic behaviour. However, the technique is a relatively
recent development. Most current computer simulation programs only handle very
simple spherical particles and use simple linear contact rules. Furthermore, most ap-
plications of computer simulation are only concerned with dry particle systems. It is
desirable to extend the methodology to non-spherical particle systems and to incor-
porate different interactive laws between particles, in order to simulate the particle
systems more realistically. Modifications and enhancement to the computer programs
are also needed to apply the technique to agglomerate coalescence, attrition and other

problems in process engineering.

This research project is concerned with the application of the Discrete Element
Method (DEM) to the modelling of moist particle systems. In this project, the effect
of pendular liquid bridges between spherical particles is examined. Algorithms to
model interparticle liquid bridge forces have been developed and incorporated into

the Aston version of the DEM computer program TRUBAL (Thornton and Kafui
1992).

The modified 3D computer program has been used to simulate the collision of a
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moist agglomerate with a wall and with another moist agglomerate. The underlying
objective of the project is to investigate moist agglomerate coalescence and degra-
dation in more detail by examining their correlation with the internal geometrical
structure and contact bond strength so as to establish the criteria for assessing the
attrition resistance and coalescence propensity of wet agglomerates in terms of the
bulk properties of the constituent particles, the bond strength between the contiguous

particles and the physical properties of the liquid binder.

1.2 Presentation order

Chapter 2 presents a review of the previous research work on agglomeration, attrition,
comminution and agglomerate strength. Particle agglomeration and attrition are
closely related problems in process engineering industries and both depend on the
strength of the agglomerates. The application of computer simulations to agglomerate

impact, using the Discrete Element Method (DEM), is also discussed.

Chapter 3 briefly introduces the contact mechanics of single pairs of spherical
particles. The theories of Hertz (see Johnson 1985) and Mindlin and Deresiewicz
(1953) for the elastic deformation of spheres and the theories of Johnson et al (1971),
Savkoor and Briggs (1977) and Thornton (1991) for the additional effects of surface
energy are presented. These theories have been implemented in the Aston version
of TRUBAL for the modelling of dry particle systems (Thornton and Randall 1988,
Thornton and Yin 1991, Thornton and Kafui 1992).

Chapter 4 is concerned with pendular liquid bridge forces between spheres under
conditions when the effect of gravity is negligible. The condition for stable liquid
bridges has been examined by a minimum free energy formulation. The criterion for
specifying the stable liquid bridges and the relationship for the critical separation

distance of rupture have been established. For the static force of liquid bridges,
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algorithms according to the ‘gorge method’ (Hotta et al 1974) of evaluation based
on Fisher’s toroidal approximation (Fisher 1926) have been developed by comparing
them with the numerical solutions to the Laplace-Young equation. The theory of
Adams and Perchard (1985) is applied to the calculation of the viscous force of liquid

bridges.

Chapter 5 considers the incorporation of the liquid bridge algorithms into the
Aston version of TRUBAL. The methodology of the Distinct Element Method (DEM)
developed by Cundall (1971) is described. Modifications and enhancement to adapt

TRUBAL to simulate and to view agglomerate collisions are also discussed.

Chapter 6 and Chapter 7 present the results of computer simulated moist ag-
glomerate collisions. Chapter 6 is concerned with the collision of an agglomerate of
body-centred cubic packing consisting of 4062 primary particles with a wall. Chapter
7 is concerned with the collision of two randomly packed agglomerates each consisting
of 1000 primary particles. The transition from coalescence to attrition is examined

and the influence of the physical properties of the liquid binder is investigated.

Finally, Chapter 8 provides some concluding remarks concerned with the criteria
for assessing the attrition resistance and coalescence propensity of moist agglomerates
based on the results of the computer simulations. The general application of the DEM

technique to the computer modelling of moist particle systems is also discussed.
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Chapter 2

Literature Review

This chapter presents a review of the previous research work on agglomeration, at-
trition, comminution and agglomerate strength. No attempt is made to cover all of
the relevant literature and the emphasis is placed on the studies of microlevel inter-
particle forces and their effects on the bulk behaviour of granules. The application of
computer simulations to agglomerate collisions, using the Discrete Element Method,

is also discussed.
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2.1 Agglomeration

Agglomeration or granulation of fine particles of micron size is frequently used in
the chemical engineering industries to promote the containment and flowability of
chemical products and hence to reduce the potential pollution hazard that the chem-
ical dust imposes on the environment. The mechanism of particle size enlargement
by agglomeration is very often viewed as a sequence of collisions and coalescence of
primary particles into discrete granules and successive granule growth (Sherrington
and Oliver 1981). In the first stage of agglomeration, the nucleation of the primary
feed particles takes place initially by rapid random coalescence of primary particles.
At the second stage of granule growth, collisions of primary feed particles with the
granules or one granule with another can both occur. Many studies have been made
highlighting the granule growth by collision and coalescence of primary feed particles.
There are very few studies that have been made of the mechanism of granule growth

by collision and coalescence of small granules.

2.1.1 Interparticle bond forces

A considerable number of previous investigations have been made, at the microscopic
level, about the relevance of interparticle bonding forces to the cohesiveness of ag-
glomerates (Rumpf 1962, 1977; Sherrington and Oliver 1981; Hartley and Parfitt
1985a, 1985b; and Ayala et al 1986). Various interparticle attractive forces have been
identified as the contributing mechanisms for the adhesion and coalescence of parti-
cles and granules. Rumpf (1962, 1977) first studied the various interparticle bonding
forces at the microscopic level. The contributing interparticle bonding forces that
affect the adhesion and cohesiveness of agglomerates were identified as intermolecular
van der Waals's adhesive forces, electrostatic and magnetic attractive forces, liquid

bridges forces, solid sintering and crystallisation forces.
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In most cases, the van der Waals adhesion forces and liquid binding forces between
particles are considered to be the most important forces that hold fine particles to-
gether. For the intermolecular van der Waals’s adhesion forces between spherical
particles, the theory of Hamaker (1937) is often quoted. For two small spherical par-
ticles of radii Ry and R, with separation distance .S, the Hamaker equation estimates

the interparticle attraction force as,

AR*
P.= — 2.1
where A is the Hamaker constant and R* is defined as,
R R,
R'= ——— 2.2
Rt R (2:2)

The expression for the Hamaker attractive forces has been used to estimate the
cohesive strength of agglomerates by Rumpf (1962), Cheng (1968) and Hartley and
Parfitt (1985a).

Applying the Hamaker equation requires finite arbitrary values to be assumed
for the separation of surfaces because it predicts infinity for intimate contact. More
recent models for the adhesion forces between spheres were presented by Johnson et
al (1971) and Derjaguin et al (1975). The model of Johnson et al, the so-called JKR

model, predicts the pull-off force for the detachment of two particles as,

P.= grrl"R' (2.3)
where I' is the mutual interfacial surface energy of adhesion between two surfaces.

The model of Derjaguin et al, the so-called DMT model, predicts the pull-off force

as,

P.=2rTR" (2.4)



It is believed that the JKR model is applicable to larger soft particles such as rubber

and the DMT model is most appropriate for small hard spheres (Tabor 1977, 1978).

For most industrial agglomeration processes, particles are usually granulated in
the presence of a liquid. According to the degree of saturation of liquid, i.e. the ratio
of the amount of pore volume occupied by liquid to the total pore volume, the liquid
state in moist particle systems may be described as a pendular state, funicular state
or capillary state (Schubert et al 1975, Sherrington and Oliver 1981). In the pendular
state, only a small quantity of liquid is held at the contacts between particles in
the form of bridges. Each liquid bridge is isolated from the others. By increasing the
degree of liquid saturation, some liquid bridges will become inter-connected. The state
is considered as the funicular state because both liquid bridges and pores partially
filled with liquid are present. A further increase in liquid saturation to the state

where all pores are completely filled with liquid is regarded as the capillary state.

When fine particles are wetted by liquid, the cohesiveness between particles in-
creases. In the case of pendular liquid bridges, the attractive force between particles
is due to the effect of the surface tension, fluid pressure deficiency and viscous re-
sistance of the liquid. The static liquid bridge force which arises from the pressure
deficiency and surface tension of pendular liquid bridges may be calculated from the
Laplace-Young equation which relates the mean curvature of the bridge to the bulk

pressure deficiency. The total static force is expressed as,

Fs = 2wy1,y0 + TApyd (2.5)

where 7, is the liquid-vapor interfacial surface energy and is usually called the surface
tension of the liquid, yo is the radius of the bridge neck and Ap is the hydrostatic

pressure deficiency of the liquid bridge.

In practice, however, the toroidal approximation proposed by Fisher (1926) has
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been frequently used because the Laplace-Young ordinary differential equation can
not be solved analytically except for a few special cases. Based on Fisher’s toroidal
approximation, some analyses on the effect of liquid bonding forces in agglomeration
were made by Rumpf (1962, 1977) and others (Sherrington and Oliver 1981, Hartley
and Parfitt 1985b, Ayala et al 1986).

The presence of a thin liquid film between two approaching particles can signif-
icantly increase the cohesiveness of particles due the viscosity of the liquid. Adams
and Perchard (1985) derived an expression for the viscous force of pendular liquid
bridges between identical spherical particles based on the classical theory of lubrica-

tion between two surfaces. The viscous resistance force is given as,

_ 6mn(R")*vn

F, 5

(2.6)
where 7 is the viscosity of the fluid and v, is the relative approaching velocity of the
two spheres. The same expression was also derived later by Matthewson (1988) and
Ennis et al (1990) for the viscous force between spheres coated by thin liquid layers.
An experimental investigation of the viscous force of dynamic liquid bridges between
two moving spheres was presented by Mazzone et al (1987). It was found that the
viscous force could be orders of magnitude larger than the meniscus force of static
liquid bridges for very viscous liquid. The shape and the rupture distance of dynamic

liquid bridges were also found to be quite different from the static case.

2.1.2 Primary particle coalescence

Although interparticle attraction forces are necessary for fine particles to be held to-
gether, energy dissipation is also essential for the successful coalescence of colliding
particles and granules. At the microscopic level, some studies of the dynamic collision

and coalescence of two small particles were made by Davis and his co-workers (Davis
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et al 1986; Serayssol and Davis 1986; Davis 1987; and Barnocky and Davis 1988a,
1988b). Their elasto-hydrodynamic approach considers the viscous liquid, the attrac-
tive and repulsive surface forces, and elastic deformation of the particles in order to
determine whether the particles will stick together or bounce apart subsequent to
collision. Davis et al (1986) first presented a theory which only considered an elastic
solid sphere colliding with another elastic solid sphere, or plane, covered by a thin
viscous fluid layer. By determining the elastic deformation of the particle surface
and hydrodynamic pressure profile in the fluid layer via asymptotic and numerical
techniques, their theory established the criterion for predicting whether a colliding
particle sticks or rebounds in terms of the Stokes number S; of the liquid and Young’s

Modulus E of the particles.

Davis (1987) and Serayssol and Davis (1986) included the influence of London-
van der Waals adhesion forces and double layer repulsive forces into the elasto-
hydrodynamic model. In order to account for the interparticle surface forces, they
used the Hamaker equation (Hamaker 1937) for the London-van der Waals’s adhe-
sion forces and the Derjaguin equation (1940) for the electrical double layer repulsive
forces. The total surface stress which causes the particles to deform was considered
as the sum of the interparticle surface forces and the hydrodynamic pressure forces.
Through numerical solutions, they found that the interparticle surface forces are typ-
ically weak compared to the viscous forces if the elastic deformation of the solid is
significant. In this case, the viscous forces damp out most of the particle inertia
before the interparticle forces come into play. A criterion to predict the conditions
under which particles rebound or separate was established for different ratios of the
repulsive force to the attractive force. For relatively strong London-van der Waals’s
forces, a critical dimensionless Hamaker constant was identified. Above the critical
Hamaker constant, the attractive forces pull the surfaces of particles together and

prevent rebound.
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In principle, the elasto-hydrodynamic approach assumes no-slip fluid boundary
conditions. Barnocky and Davis (1988a) employed the Maxwell slip-flow approxima-
tion for the hydrodynamic pressure of the liquid layer and found that the effect of the
slip flow is to reduce the viscous force and permit colliding particles to make intimate
contact with sufficient inertia. A critical Stokes number, S}, a function of slip param-
eter, 3, was determined in order to determine if the colliding spheres stick or rebound.
The critical Stokes’ number was seen to decrease when the slip parameter increases.
Experiments with small metal and plastic spheres dropped upon smooth and artifi-
cially rough quartz surfaces were made by Barnocky and Davis (1988b) to delineate
the conditions under which the particles rebound, as opposed to sticking. The mini-
mum drop height that allowed the tested particles to rebound from smooth surfaces
were found to be in good agreement with the theory of Davis et al (1986). For the
experiments with rough surfaces, the viscous resistance to rebound was significantly

reduced.

Assuming that only the static and viscous liquid bridge forces are the dominant
operative parameters for particle granulation, Ennis et al (1991) presented a mi-
croscale model for the granulation of granules. Considering the colliding granules as
rigid spheres, Ennis et al (1991) derived the critical Stokes number for two collid-
ing granules in terms of the radius of the granules and the thickness of the binder
layer. Successful coalescence of granules could occur if the granules collide with ini-
tial Stokes numbers less than the critical one. Ennis et al (1991) also linked the
micro-level based critical Stokes number to the engineering granulation process by
considering the different regimes of a granulation bed. Within the granulation bed,
there is a spatial variation of the Stokes number. For non-inertial granulation, the
entire distribution of Stokes numbers within the granulation bed is well below the
critical Stokes number and hence all granule collisions cause coalescence. When the
agglomerates within the granulation bed grow in size, so does the spatial distribution

of Stokes numbers. In the regime of inertial granulation, the Stokes numbers of some
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large agglomerates reach the critical value. Coalescence may be expected only for
those collisions of smaller agglomerates with lower than critical values of Stokes num-
bers. As the agglomerates further grow in size, to a point where the average Stokes
number equals to the critical one, the successful coalescence by the collisions of small
agglomerates will be balanced by the degradation of large agglomerates colliding with
others. This regime of agglomeration is referred to as coating granulation with which

agglomerate growth by collisional coalescence may not be achieved.

It should be noted that the microlevel granulation mechanism presented by Ennis
et al (1991) is based on the collisional energy dissipation of rigid spheres by viscous
liquid binder only. However, as pointed out earlier, the interstitial liquid binder is
only a part of the functioning mechanisms of granulation. During the process of
agglomerate growth by collision, van der Waals’ forces are always present. Apart
from ignoring the surface adhesion between particles, a major problem of the theory
of Ennis et al (1991) is the assumption that the granules may be represented by
rigid spheres. In reality, granules are themselves clusters of primary particles held
together by interparticle bonding forces. The granules do not behave like rigid or
even elastic spheres any more. Plastic deformation may be dominant and hence
will contribute to energy dissipation during the collisional event. Given the fact
that different mechanisms of particle sticking and energy dissipation may operate
for particle granulation, the deterministic approach of two granule coalescence model

given by Ennis et al (1991) must be considered as a gross oversimplification.

Apart from the interparticle cohesive forces that hold particles together and the
energy that has to be dissipated for successful coalescence, there are other additional
factors that may influence particle agglomeration. They have been identified, mainly
from experimental observations, as the particle bulk properties such as size, shape,
surface area and wettability. Investigations by Holm et al (1985) and Kristensen et al

(1985b) showed that the particle size, distribution and shape affected the porosity of
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the powder bed, and also the degree of liquid saturation necessary for agglomeration
to occur. Other studies (Hunter and Ganderton 1972, Bier et al 1979, and Jaiyeoba
and Spring 1979) indicated that the granule porosity was inversely proportional to
the particle size. Kristensen and Schaefer (1987) suggested that the influence of
bulk particle properties could be explained in terms of the effective surface area
of the materials. For granule growth by agglomerate coalescence, Kapur (1978) and
Kristensen et al (1985a, 1985b) stated that the ability of the agglomerate to withstand

strain without degradation was essential.

2.1.3 Agglomerate growth

At the macroscopic operational level, agglomerate size, porosity, morphology, strength
and growth rate are of primary interest. Investigations of these final product prop-
erties of agglomerates in relation to the operational parameters such as the spray
drop size, atomizer type and location, liquid viscosity, primary feed particle size and
properties and flow rate were made by several disjointed bits of experimental mea-
surements. An investigation of the fluidised-bed granulation of pharmaceuticals was
made by Schaefer and Worts (1977). They observed a linear relationship between
the granule size and the spray drop size. Some studies on high speed mixer granu-
lation were made by Lindberg (1977) and Holm et al (1985a, 1985b). They showed
that the power consumption and granule growth rate were correlated with the liquid
saturation of moist granules, i.e. in the range of liquid saturation where the defor-
mation behaviour of granules changes from brittleness into plastic, both the power
consumption and granule growth increase rapidly for a slight increase in saturation.
Kristensen et al (1985a, 1985b) suggested that the correlation of power consumption
and granule growth with liquid saturation could be explained in terms of their depen-
dence on the strain behaviour of moist agglomerates exposed to external stresses due

to agitation, tumbling and rolling etc. They demonstrated by experiments that the
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plastic deformation of the moist agglomerates is the principal parameter that affects
granule growth. When the liquid content increases, the strength of moist granules
decreases and the deformability is improved. This gives rise to increased granule

growth and power consumption.

According to the suggested effect of deformability on granule growth by coales-
cence, it is to be expected that the reduction in granule strength also improves the
granule growth rate. However, the effect of a reduced granule strength means a reduc-
tion of the interparticle bonding force and the work required to separate particles. As
a result, successful coalescence of granules by collision may be reduced due to possible
attrition. Studies (Nienow and Rowe 1985; Kristensen et al 1985b; and Parker and
Rowe 1991) on the effect of particle size and morphology upon granule growth sug-
gest there exists a critical limit for the granule strength below which the agglomerate

strength is insufficient to ensure survival of the agglomerates.

2.1.4 Discussion

It is seen that the first step in the process of granulation is the wetting of the powder
mixture with the binding liquid. Nucleation of primary particles is the dominating
granule growth mechanism at this stage. The wettability and solubility of the powder
in association with the uniformity of the moisture distribution are the principle fac-
tors which affect the granule growth rate and energy requirement (Ayala and Parfitt
1984, and Ayala et al 1986). In the second stage, granule growth by mutual collisions
and successful coalescence becomes the dominating mechanism. Liquid saturation is
essential to regulate the strength and deformability of the agglomerates and hence
the granule growth rate. The assessment of the liquid requirement for the nucleation
and granule growth process is therefore essential to control the operation of gran-

ulation processes and the quality of the final agglomerate product. Most previous
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studies have been mainly concerned with micro-level interparticle bond forces and
the conditions for the successful coalescence of primary particles. At the operational
level of agglomeration processes, very few studies have been made on the assessment
of agglomerate size, porosity and strength in terms of operational parameters, micro-
level particle properties and interparticle bonding forces. Investigations of particle
agglomeration have been generally carried out by experiments and scale-up proce-
dures. Any changes in the material properties such as particle type, size, morphology
and binding liquid require new experiments. The problem of predicting the effect on
energy dissipation and the final product properties as a result of changing primary

feed particles, operation parameters and wetting liquid remains unsolved.

2.2 Attrition and comminution

Although particle breakdown is generally an unwanted nuisance associated with en-
vironmental and hazard problems, it can also be beneficial, such as in grinding mills.
Terminologically, the intentional size reduction of materials is described as comminu-
tion and attrition is normally defined as the unwanted breakdown of materials. Col-
lectively, both comminution and attrition may be referred to as degradation which,

however, also includes fragmentation, abrasion, wear and erosion.

Like the agglomeration process, most processes of attrition and comminution of
particulate materials are also caused by the collision between the materials with a
vessel wall or with themselves during the handling and processing. The difference is
that with agglomeration, the collision is to enhance the coalescence of particles and
granules, but with attrition and comminution, the collision is to produce fine particles
and daughter clusters that breakdown from the parent particles or agglomerates. In
some cases, agglomeration and fragmentation may occur in the same process. One

example is suspensions of solid particles in liquid (Ray and Hogg 1987). Gentle
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agitation of the suspension increases the frequency of particle-particle collisions and
can enhance the rates of agglomeration. More intense agitation, however, causes

breakage and, ultimately, the complete destruction of the agglomerates.

2.2.1 Attrition mechanisms of solid particles

Attrition and comminution may occur to both solid particles and porous agglomer-
ates. The degradation of agglomerates during their handling and processing is more
common. Unfortunately, most previous studies have been mostly concerned with the
attrition and comminution of solid particles. The attrition and comminution of solid
particles have been believed to be due to the particle fracture by crack initiation and
propagation. Particle properties of shape, size, surface and hardness in association
with the handling and processing conditions such as shearing stress and relative veloc-
ity have been identified as the most important factors that affect the particle fracture

process upon attrition and comminution (British Materials Handling Board 1987).

It is believed that the fragmentation of solid particles also strongly depends on the
strength of the material. Paramanathan and Bridgwater (1983a, 1983b) studied the
attrition mechanisms of solids by using an annular attrition cell which they developed.
Their investigation indicated that the particle attrition in the annular cell could occur
by both fracture and/or surface abrasion, depending on the material property. The
attrition of soda ash and laboratory salt was seen to be caused by surface abrasion
with edges and corners being most obviously lost. The attrition of Pure Dried Vacuum
(PDV) salt, however, was mainly caused by bodily fractures that form cubic materials.
It was also observed that granular salt was fractured radially to form hemispheres and

other fragments. It was also found that strain rate had little effect on the amount of

attrition produced.

The attrition mechanisms of NaCl salt were investigated in more detail by Yuregir
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et al (1987) through single particle impact tests. It was shown that, for sodium
chloride crystal particles produced by cleaving melt-grown ingots to about 1mm in
size, low velocity impact causes extensive plastic deformation on the impacting corner
and removal of thin platelets from the faces adjacent to it. The breakdown process
by impaction were compared with the fracture of single particles under quasi-static
indentation presented earlier by Badrick and Puttick (1986) and Ghadiri and Yuregir
(1987). It was suggested that the localised loading on the corner caused plastic
deformation and produced a rigid wedge acting as an indenter which initiates and
propagates cracks within the crystal. The formation of platelets was attributed to
sub-surface lateral cracks. It was also shown that impact loading leads to the removal
of thin platelets from the faces adjacent to the impact corner. Unfortunately, this
feature is not observed under quasi-static indentation. Ghadiri et al (1991) also
examined the attrition propensity of NaCl crystals and suggested it could be related
to the micro-hardness of the material. They also observed that the removal of thin
platelets was due to the sub-surface lateral cracks. However, the mechanism of the

sub-surface lateral cracks is not well-understood.

Knight and Bridgwater (1985) made a comparison of different methods used for
assessing solid attrition. They tested the attrition of spray-dried detergent powders
by using an annular shear cell test, single particle compression and spiral air classifier
respectively. It was shown that the single particle compression test did not provide a
reliable assessment of particle attrition, but the annular shear cell and spiral classifier

showed reasonable agreement.

2.2.2 Mass balance for particle fragmentation

For solid particle degradation, there has also been considerable interest in predicting

the evolution of daughter particle-size distributions during the fragmentation of par-



ent particles. Theoretically, according to the mass balance principle, the evolution of
the particle size distribution for a continuous system undergoing fragmentation may
be described by (Ziff and McGrady 1985, McGrady and Ziff 1987),

dw(z,t)

) = —B@u(e,t) + [ By, )y (2.7)

where w(z,t) is the concentration of particles of size z, B(z) is the rate at which
particles of size z breakdown and b(z|y) is the distribution of the products from the

breakdown of particles of size y.

Physically, the first term of the right hand side of equation 2.7 represents the loss
of particles of size z due to their breaking up and the second term represents the
increase of particles of size z produced from the larger particles of size y. Obviously,
the distribution rate of production of particles must be normalized so that the mass

is conserved, i.e.,

/ﬂy b(z|y)zdr =y (2.8)

For a discrete system, the size distribution wj;(t) is represented by the discrete

kinetic equation,

dwi(t)
dt

j=i+1
where B; is the specific rate of breakage for particles of size : and b;; is the daughter
fragment distribution or primary breakage distribution which represents the fraction

of particles of size : that breakdown from the particles of size j.

Applying the particle size distribution evolution theory requires the determination
of breakage parameters B;, b;;. Methods for determining the specific rates of breakage

B; and primary breakage distributions b;; have received considerable attention in
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comminution literature. Numerous papers on the breakage parameters of grinding
fracture were presented by Austin and his co-workers (Austin, Jindal and Gotsis
1979; Shoji, Lohrasb and Austin 1980; Austin and Brame 1983; Klimpel and Austin
1983; Austin, Barahona and Menacho 1986; Austin 1987; Austin and Klimpel 1989;
and Vervoorn and Austin 1990). Assuming that the grinding kinetics follows first-
order breakage law, their investigations cover a wide range of laboratory grinding
mills including hammer mills, dry ball mills and sizing wet tumbling ball mills. For
their laboratory mills, the specific rates of breakage were evaluated from batch feeding
of single sized particles. At steady-state conditions, the size of the feeding particle is

the maximum and equation 2.9 is reduced to,

dwl (t)
dt

— B0 @10

Since a first-order breakage law is assumed, the solution for the fraction of feed
particles is w;(t) = exp(—kyt) with which k; can be readily determined from the
slope of a semi-logarithmic plot. The complete set of k; can be obtained from a series
of experiments of feed particles with different sizes. The underlying assumption is
that the breakage rates are independent of the presence of other sized particles. But,
in real attrition and comminution, particles break up through mutual interactions or
with the vessel, fluid and others, the specific rates of breakage of certain size also

depends on the presence of the other sizes.

Experimental determination of the primary breakage distribution is more difficult.
The direct measurement is based on the grinding of a single sized fraction of particles
over very short times. A correction procedure has to be used to account for the
secondary breakage. Another method is the back-calculation by nonlinear regression
of the product size distribution. The back-calculation is more frequently used in
practice. Unfortunately, the calculated values of b;; are extremely sensitive to errors

in the size distributions. Using specific functional forms for the primary breakage
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distributions is also essential.

Koka and Trass (1987), using the mass-balance method to study the breakup
of Pittsburgh coal in a laboratory Szego mill, determined the breakage parameters.
However, when the experimentally determined breakage parameters are introduced in
the modelling of multi-pass grinding, it was found that the predicted size distributions
only fit the experimental data well at low rotational speed, and there is some deviation

at higher rotational speeds.

2.2.3 Attrition of agglomerates

Although the attrition and comminution of particulate materials in chemical engi-
neering are mostly associated with porous agglomerates, there is correspondingly
little information published to deal with the degradation of agglomerates. An early
investigation of the free-fall impact of sand-cement and spherical glass agglomerates
was reported by Arbiter et al (1969). In their free-fall impact tests, they observed
that the breakage started from the region of contact between the sphere and the
loading platen. Meridian fracture planes were seen to start from the periphery of the
contact circle (between the sphere and the platen) and believed to be developed by
the wedging action of the cone formed in the contact region. They also found the
size distribution curves of the fractured daughter fragments could be approximated
by two straight lines on a log-log plot. They ascribed this to two different operative
breakage mechanisms, the exoclastic coarse fragments with a small difference in size
and the endoclastic fine particles. The fines were mainly produced from the region

around the cones of impact and from the fracture surfaces.

Mullier et al (1991) investigated the agglomerate attrition of sand particles bound
with polyvinylpyrrolidone through both fluidised bed measurement and oblique im-

pact of single agglomerates. Their study showed that the agglomerate attrition during
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fluidisation occurs mainly by oblique impaction. The breakdown of agglomerates is
also seen to be quite different from that of solid particles. The debris produced by the
oblique impact of a single agglomerate with a rough wall was seen to consist of very
small particles resulting from the removal of single particles from the agglomerate
surface. The shape of the agglomerates after impact was largely unchanged. It was
suggested that the attrition process of agglomerates was analogous to abrasive wear
and the rate of material removal was found to be proportional to the reciprocal of the
critical stress intensity factor K, of the material, where K, is the material strength

parameter introduced from fracture mechanics.

A study of the agglomerate breakage in polymer-flocculated suspensions was car-
ried out on kaolin particles by Ray and Hogg (1987). Flocculated with a non-ionic
polyacrylamide, their experimental measurements of floc size distributions in agitated
suspensions showed that floc breakage was consistent with the simple first-order size
reduction model. They also investigated the effects of system variables. It was found
that the specific rate of breakage decreases rapidly with increasing polymer dosage,
indicating that the floc strength is improved substantially by the addition of floccu-
lant. It was also found that the specific rate of breakage generally increased with
agitation speed. However, because of the sensitivity of the back calculation approach
used to evaluate the breakage rates and primary breakage distributions, the confidence

intervals of the estimated parameters were rather broad.

2.2.4 Discussion

Generally speaking, little progress has been made in understanding the controlling
physical and chemical mechanisms involved in the attrition and comminution of ei-
ther porous agglomerates or solid particles. Consequently, the characterization of

material degradation, friability, prediction of breakage rates and determination of
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daughter particle/cluster size distributions and fractal dimensions rely largely on
practical experience gained from experiments rather than basic principles. Studies
of single particle/agglomerate breakdown have been mainly based on the continuum
mechanics approach which only allows for the prediction of the critical stress at which
the material fails and does not permit the characterization of the fractal geometry
of the daughter particles/clusters. Besides, it seems that under different controlled
conditions, the assessments of the degradation are not quite in agreement with each
other (Knight and Bridgwater 1985). The mass-balance model used extensively in the
laboratory grinding mill is in fact a scale-up black-box approach in which the mecha-
nisms of particle/agglomerate break-up in a grinding mill are not directly taken into
consideration. Apart from the sensitivity of the breakage parameters to measurement
errors, predicting the effects on the breakage parameters and energy requirements
of changes in the feeding particles/agglomerates, operating system, control velocities

and additive liquids still remains a problem.

2.3 Agglomerate strength

Agglomerate strength is of concern in a number of industries. In the processing in-
dustry, for example, where agglomeration is required to promote containment and
flowability of fine particles and powders, agglomerate strength serves as a direct as-
sessment of the attrition resistance and coalescence propensity of the agglomerates.
In some other industries such as ceramics, however, because agglomerates inhibit sin-
tering and act as defects and flaws, understanding and controlling the agglomerate

strength is crucial to obtain the required breakdown and dispersion of agglomerates.
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2.3.1 Rumpf’s model

The strength of agglomerates mainly depends on the strength of the bond force be-
tween particles. Early studies on agglomerate strength are based on the analysis of
fairly simple particle assemblies of mono-disperse and regular packings. Rumpf (1962)
studied agglomerate strength and derived an expression for the tensile strength of ag-
glomerates with regular packing structures. Assuming that (a) all particle bonds
are due to van der Waals’ attractive forces, (b) the bonds along the fracture plane
are ruptured simultaneously upon tensile failure, and (c) the strength of all these
bonds are the same for each contact, Rumpf obtained the tensile strength o for a
mono-disperse system as,

= ﬁ (2.11)
where ¢ is the volume fraction of the assembly, R is the radius of the constituent
primary particles and P, is the van der Waals’ attractive force between the constituent
particles, which, in terms of the Hamaker constant A (Hamaker 1937), is given by

equation 2.1,

Rumpf’s model of agglomerate strength was also extended to moist agglomerates
by Schubert (Schubert 1975, 1977; and Schubert et al 1975). The tensile strength
of wet agglomerates in the capillary state where all pores are filled with liquid was

assumed to be given by,

o = pb (2.12)

where 6, is the degree of liquid saturation and p is the capillary pressure.

In the pendular state where only a small quantity of liquid is held between con-

tiguous particles, the bonding forces between particles is considered as mainly due
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to the meniscus attractive force of liquid bridges. The tensile strength of the moist
agglomerate in the pendular state is then given by substituting the van der Waals’
force in equation 2.11 with the pendular liquid bridge force given by Fisher’s toroidal

approximation.

In the funicular state which is between the pendular state and capillary state,
both liquid bridges and pores filled with liquid are present in the moist agglomerates.
As a result, both the bridge bond force and the capillary pressure may contribute to
the strength of the moist agglomerate. Schubert et al (1975) assumed that the ag-
glomerate strength is the superimposition of the bonding mechanisms of the pendular

liquid bridge forces and the capillary pressure of the pore liquid.

2.3.2 Cheng’s model

Cheng (1968) proposed a different model relating the tensile strength of an agglom-
erate to its packing density and interparticle forces. Assuming the contact area per
unit fracture area as A, and the bonding force per unit contact area as f(S), the

tensile strength was expressed as,
o= A.f(S) (2.13)

The overall contact area of fractured bonds per unit area was related to the packing

structure and density by,

App

Voo, (2.14)

1
Ac = §fnfnz

where the 3 is introduced to allow for the random directions of each contact bond,
fn is the ratio of the number of particle contact pairs per unit area to the number of

pairs per unit volume, f, is the ratio of the real contact area per particle pair to the
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surface area per particle, Z is the coordination number, A, is the mean surface area

per particle and V,(S) is the mean volume per particle.

The separation distance of the bonds between the contiguous particles was also

related to the packing density,
2R
8= 8s— (e - 1) (2.15)
3 Po

where S, is the effective range over which the interparticle attractive forces act and
po is the corresponding density of the packing at the relative separation of So when

the attractive force vanishes.

Recently, Hartley and Parfitt (1985a, 1985b) developed another model which for-
mulated the overall contact area per unit fracture area in equation 2.13 differently.
Assuming that in a unit fracture area there are ny contact bonds between particles
with the attractive forces randomly directed between +% and the contact area of each
contact bond is A, the overall contact area per unit fracture area was given as,

1
Ac = gnsAq (2.16)
Using an empirical relationship between the coordination number Z and the pack-

ing density given as,

3

Zai— 0
l_p/ps

(2.17)

they obtained the following expression for the number of contact bonds in a unit

fracture area as,

_ 9(2R+ S)p/ps
" = 8x RS = p/p.) )
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where p is the density of the packing and p, is the density of the constituent particles.

Arguing that with fine particles, the distance of contact bonds between contiguous
particles will vary from a state where asperities are in contact to a state where not
all particles make actual physical contact but interparticle forces act, Hartley and

Parfitt proposed a simple geometric relationship for the contact area of each bond,

Aoy = TR(So - ) (2.19)

where Sg is the effective separation distance between particles when the bond force

reduces to zero.

Substituting equations 2.18 and 2.19 into equation 2.16, Hartley and Parfitt

(1985a) derived the tensile strength as,

_ IR+ 5)(So — S)(p/ps)
16R*(1 — p/p,)

f(S) (2.20)

for which the separation distance between adjacent particles is also related to the

packing density in a different empirical equation,

S = m[(%)”3 =1] (2.21)

Both of the models developed by Cheng (1968) and Hartley and Parfitt (1985a)
require a knowledge of So and po which, as defined above, are obtained from exper-
imental data by extrapolation. As a result, the models are in fact semi-empirical.
Based on Cheng’s theory of equation 2.13, Chan et al (1983) also derived an expres-
sion for the tensile strength of binary powder packings. However, instead of requiring

a knowledge of Sy, the model used the ‘reduced tensile strength’, which also needs to

be determined experimentally.
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2.3.3 Fracture mechanics approach

A common assumption in all the above agglomerate strength theories is that all inter-
particle bonds in the fracture plane are ruptured simultaneously upon failure. It is also
implicitly assumed that values of the separation distance between contiguous particles
and the attractive forces of all contact bonds are uniformly distributed. This is
only theoretically possible for mono-disperse regular packings. For random packings,
however, both photoelastic experiments (De Josselin de Jong and Verruijt 1969, and
Drescher and De Josselin de Jong 1972) and computer simulated experiments (Cundall
and Strack 1979b, and Thornton and Barnes 1986) have showed that the distribution
of contact forces is random. There are chains of large contact forces formed by a very
small number of contact bonds; other contact forces are relatively small. Apparently,
not only the simultaneous failure assumption does not apply, but also the bond forces
are not uniformly distributed. Horwatt et al (1989) measured the tensile strength of
carbon-black agglomerates in diametrical compression experiments. They used the
experimental data to calculate the effective Hamaker constant according to the model

of Hartley and Parfitt (1985a) and predicted an order of magnitude decrease.

Considering that particulate materials do not fail by instantaneous formation of
new surfaces but by fracture through a process of crack propagation, Adams (1985)
applied theoretical fracture mechanics to predict the strength of agglomerates and
showed that the tensile strength of perfectly elastic material, given as,

K.

o =~p> (2.22)

can be modified to give the tensile strength of particulate solids by the following

equation,

g T (2.23)



where K, is the so-called stress intensity factor which has been tabulated for various
initial crack geometries and can be fitted by experimental tests, c is the geometrical
size of the initial crack length, cz is the corrected nominal crack length accounting
for the inherent flaw size of agglomerates and Z is a dimensionless parameter which

depends on the geometry of the specimen and the crack.

For particulate materials, the critical stress intensity factor K. is an intrinsic mate-
rial property related to the inter-particle bond forces (Mullier et al 1987, 1991; Adams
et al 1989; and Adams, Williams and Williams 1989). Some experimental measure-
ments of the stress intensity factor for agglomerates made of sand, polyvinylpyrroli-
done (PVP) and glass ballotini were made by Adams (1985) and Mullier et al (1987).
It was found that the stress intensity factor of these materials increases with increase

in the inter-particle bond strength.

The shortcoming of the fracture mechanics model for the strength of agglomerate
is that the strength parameter is not directly related to the interparticle bonding
forces. Instead, it needs to be determined experimentally using, for example, three-
point bend tests. As Adams (1985) pointed out, a fracture mechanics description
for the strength of agglomerates depends on the development of suitable equations
relating the stress intensity factor to the inter-particle bond forces and energy losses

due to the bond breakage and local plastic deformations.

An alternative approach, also based on the fracture mechanics, was developed by
Kendall (1988) which assumed that at the macroscopic level, an agglomerate was
a continuous block of material which behaves like a perfect elastic, brittle solid but
contains a flaw of length c. In this case, the agglomerate strength is given by equation

2.22 and the stress intensity factor is given as,

G.E,

K:=
1= 12

(2.24)
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where G, is the critical strain energy release rate for crack propagation to occur and
E, and v, are the ensemble Young’s modulus and Poisson’s ratio of the agglomerate.
Kendall (1988) then attempted to relate the effective Young’s modulus and Poisson’s
ratio to the interface energy by assuming that the agglomerate assembly of spherical
particles of radius R deforms elastically under stress because of the compliance of
the contact bonds. For dry powders (without binder) of titanium dioxide, alumina,
silica, and zirconia, Kendall (Kendall 1987, Kendall et al 1987) derived the following
relationship for the effective Young’s modulus of the assembly in terms of the primary

particle properties,

2
E, = 17.1¢‘(%)”’3 (2.25)

where E is the Young’s modulus of the constituent particles, 7 is the interfacial

energy of the contact bonds. ¢ and R are volume fraction and particle radius as

defined before.

The critical strain energy release rate was also derived as,

5
o= 4 _Te \1/3 ;
564*(;pim) (2.26)
where 7. was derived from measurements to be higher than 4 and was defined as the

fracture energy.

In principle, the fracture energy 4. can be directly related to the interfacial en-
ergy v although the plastic deformation near the fracture crack also contributes to
the fracture energy losses. However, Kendall (1988) was not able to formulate an
expression for the fracture energy 7. in terms of the interfacial energy 4. Instead,
he presented some experimental data for several materials (titanium dioxide and alu-
mina). It is seen again, apart from the questionable assumption that agglomerates

are, at the macroscopic level, continuous elastic and brittle materials, Kendall’s model
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still depends on the development of suitable equations for the stress intensity factor
in relation to the interfacial energy of the individual particle bonding forces and

geometric factors associated with particle packing.

2.3.4 Discussion

For granular systems like agglomerates, inter-particle forces are significant in deter-
mining their properties and behaviour. Traditional theoretical analyses of agglomer-
ate strength are based on the assumption of fairly simple regular packings of mono-
disperse systems. For real agglomerates, however, very little is known about the
quantitative inter-particle forces and the packing geometries. The fracture mechanics
approach, on the other hand, considers agglomerates, at the macro-level, as continu-
ous media containing flaws. Knowledge about the effect of interparticle bond strength
and packing geometry, as well as particle properties, on the macro-agglomerate frac-
ture strength is lacking. Especially when one considers the wide range of different
properties of agglomerates from mono-disperse to poly-disperse and from dry systems
to moist systems, the traditional theoretical analyses and the fracture mechanics ap-
proaches to the strength of agglomerates seem to be over idealized. Determination
of the agglomerate properties of strength and deformability still relies mainly on real

experimental measurements.

2.4 Computer simulation

2.4.1 Discrete element method

Agglomerates are examples of complex and redundant particulate assemblies. It has

been shown that most traditional experimental and analytical studies on agglomer-
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ation, degradation and strength of agglomerates either ignore the internal contact
bonds and geometrical structures or consider only very simple systems of mono-
disperse and regular packings. Because of the difficulty of measuring the internal
quantities such as porosity, stress, and velocity, little information is known about
what actually happens internally and how the internal quantities affect the han-
dling and processing behaviour of particle materials. Current understanding of the
processes of agglomeration, attrition and comminution of particulate assemblies is
mainly obtained from empirical and statistical interpretations. The theories are al-

ways inaccurate, insufficient, incomplete and lack direct quantitative verifications.

In the case when the traditional approach of experimental and analytical inves-
tigations is restricted by the complexity and redundancy of particle systems, com-
puter simulation offers the unique opportunity to obtain a better understanding of
the microscopic mechanisms of particulate materials. With the computer simulation
approach, each constituent particle of the granular assembly is monitored through
the computation of its trajectories and interactions with others. The macroscopic be-
haviour of the simulated particle system is directly related to the internal microscopic

interaction mechanism of individual particles.

Computer simulation of particulate materials is a fairly recent development which
started in the 1970s. There have been several computer programs reported in the
literature, e.g. by Cundall (1971, 1978), Cundall and Strack (1979a, 1979b), Walton
(1983), and Campbell and Brennen (1985a, 1985b). According to the different ways
in which the interparticle interactions are handled, the computer models are classified
as rigid (hard) and soft particle models (Walton 1984). For rigid particle models, the
collision between constituent particles is modelled as instantaneous. The application
of the rigid sphere models has been mainly concerned with the modelling of rapid
flows of granular materials such as Couette flow, inclined chute flow and shear flow

(Campbell and Brennen 1985a, 1985b; and Campbell and Gong 1986).
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The soft particle model differs from the rigid particle model in that it simulates
the interparticle collision as a process taking place in a finite time duration. By
employing appropriate interaction laws, the interparticle contact and bond forces
are computed according to the distance of relative approach between the contiguous
particles. Cundall (1971, 1978) pioneered the soft particle approach to computer
simulation. A numerical technique, known as as the Distinct Element Method (DEM)
was developed to simulate soils composed of discrete discs (Cundall 1978, Cundall and

Strack 1979b).

Originally, the DEM program was designed to study the micromechanics of quasi-
static granular systems and to aid in the development of constitutive relationships
for soils, e.g. Cundall and Strack (1979a), Cundall (1988), Cundall et al (1989),
Thornton (1987a, 1987b, 1989) and others (Bathurst and Rothenburg 1988; Jenkins
et al 1989; Thornton and Barnes 1986; and Ting et al 1989). However, it has also
been applied to the simulation of both quasi-static and dynamic particle systems.
Walton (1983) applied the soft particle model to simulate the inclined chute flow of
particulate materials. An application of modelling hopper flow was also presented by

Thornton (1992).

2.4.2 Computer simulated agglomerate collisions

In principle, the methodology used by the soft particle model of DEM may be applied
to the simulation of many problems related to particle systems in process engineering.
Technologically, however, applying the DEM technique to this area requires appro-
priate interaction laws to be incorporated to account for the various bonding and
adhesion mechanisms that play a dominant role in holding micron and/or submi-
cron sized particles together. When the DEM computer program BALL (2D) and

TRUBAL (3D) were first developed by Cundall and Strack (Cundall 1978; Cundall



and Strack 1979a, 1979b), only very simple models for the normal and tangential
elastic deformation forces of the contacting spheres was considered. They used linear
springs to model the contact stiffnesses of the elastic deformation. Dashpots were
introduced to damp out the kinetic energy of the system in order to simulate the
quasi-static particulate systems. Although the theories of Hertz and Mindlin and
Deresiewicz (1953) were also implemented into the DEM program to simulate the
elastic contact deformation forces more realistically (Thornton and Randall 1988,
Randall 1989, Walton and Braun 1985), little effort has been made to implement

various bond forces between particles into the DEM program until recently.

The DEM program of Cundall was recently modified and enhanced by Yin (1992)
and Thornton and Yin (1991) to perform computer simulated experiments of ag-
glomerate collisions. New algorithms were developed and implemented in the Aston
versions of BALL and TRUBAL to model the surface adhesion forces and elastic
deformation forces of particles. BALL and TRUBAL are two dimensional (2D)and
three dimensional (3D) DEM computer programs originally developed by Cundall and
Strack (Cundall 1978, Cundall and Strack 1979a). For the interaction force between
two contiguous spheres, the theory of JKR, Johnson et al (1971), was used to compute
the normal component and the theory of Thornton (1991) was applied to calculate
the tangential component. The JKR theory was extended from the Hertz theory by
including the surface adhesion force into the normal elastic deformation force. The
theory of Thornton combines the previous work of Savkoor and Briggs (1977) and
Mindlin and Deresiewicz (1953) in order to model the tangential compliance force in

the presence of adhesion.

Computer simulated two dimensional agglomerate impact with a wall was per-
formed by Yin (1992) and others (Thornton, Kafui and Yin 1993). The simulated
2D agglomerates consisted of 1000 monodisperse primary particles. Three types of

behaviour were observed. At high impact velocities, the agglomerate was shattered
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with most of the bonded contacts between particles broken. At moderate impact
velocities, the agglomerate was fractured in a semi-brittle manner. At low impact
velocities, it was observed that the agglomerate bounces off the wall with very few
single particles or small clusters broken off; no significant fracture or crack damage
occurred to the agglomerate. The threshold velocity below which no significant dam-
age occurred was shown to be exponentially dependent on the surface energy 7, a
measure of the interparticle bond strength of the primary particles due to surface
adhesion. The impact velocity at which the transition from shattering breakup to
semi-brittle fracture occurred was also found to be related to the interfacial surface

energy by an exponential relationship.

From the computer simulated impacts of 2D monodisperse agglomerates, it was
observed that crack initiation and propagation was preceded by local plastic deforma-
tion as a consequence of contact sliding between contiguous particles. At high impact
velocities, because the plastic deformation zone is extensive, there is no clear crack
formation. Instead, the agglomerate was shattered mostly into singlets and small
clusters. At moderate impact velocities, however, the plastic deformation zone was
confined to a small zone near the contact between agglomerate and the platen. Crack
initiation was observed to take place in the plastic deformation zone. It was difficult
to predict the direction of the cracks because of the random force transmission within

the agglomerate.

Yin (1992) also performed computer simulated diametrical compression tests on
the same 2D agglomerate by crushing it between two parallel platens. The results
showed that at high platen velocities, extensive plastic deformation and crushing were
produced in the agglomerate. At low platen velocities, however, semi-brittle failure
was observed in which cracks were initiated in the agglomerate near to the platens
and propagated inwards towards the centre. The maximum force the agglomerate

could sustain was shown to be dependent on the nominal strain-rate. Higher strain-
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rates generated higher platen forces and the relationship was linear. The diametrical
compression tests were compared with the impact tests and reasonable agreement

was obtained for the damage ratio in terms of applied velocity or input energy.

Some results of a computer simulated 3D agglomerate impacting orthogonally with
a wall were presented by Thornton and Kafui (Thornton and Kafui 1992; Thornton,
Kafui and Yin 1993; Kafui and Thornton 1993). The agglomerate consisted of 7912
mono-disperse particles arranged in a face-centred cubic packing. The computer
graphics visualisation of the fracture/fragmentation of the agglomerate showed good
qualitative agreement with the real experimental results reported by Arbiter et al
(1969). They identified a threshold velocity below which no significant damage oc-
curred to the agglomerate. The threshold velocity was found to be dependent on the
contact bond strength, packing geometry, agglomerate size and impact angle. The
particle size distributions of the fragmentation clusters produced by the simulated

impacts were compared with published data and showed good general agreement.

At the micro-level, Thornton and Kafui (1992) examined the damage that occurred
to the agglomerate due to the collisions. It was found that during a simulated impact,
the number of broken contacts initially increases rapidly until a constant value is
reached. The damage ratio of the agglomerate was shown to be logarithmically related
to the impact velocity. However, in order to establish the relationship between the
macro agglomerate fracture/fragmentation behaviour and the micro packing geometry
as well as the interparticle bond strength, more work is necessary to examine the effect

of primary particle properties, packing structures and many other factors.

It has been demonstrated that the computer program TRUBAL can be used to
simulate a wide range of problems relating to particle systems, including agglomerate
collisions. Further work is desirable to modify and enhance the computer program
by incorporating various interparticle bonding forces such as liquid bridge forces in

order to model particle systems more realistically. Computer programs that model



different shaped particles are also needed.

2.5 Summary

Agglomeration and attrition/comminution are closely related problems in process en-
gineering during the handling and processing of fine particulate materials. They both
depend on the strength of agglomerates. Most previous studies have been concerned
either with very simple systems of mono-disperse regular packings or carried out in
very complex experimental conditions. The mechanisms of agglomerate coalescence,
attrition, comminution and their dependence on agglomerate strength have not been
correlated with the micro-level packing geometry, interparticle bond forces and parti-
cle properties. The application of computer simulation, using the the DEM technique,
to the modelling of particle systems in process engineering is a very recent develop-
ment and hence is still at the rudimentary stage. Most current DEM computer pro-
grams only handle assemblies of spherical particles. For the interaction force between
particles, only the elastic deformation force, surface adhesion force and tangential
friction force have been accounted for. The need is apparent to develop computer
programs that handle different particle shapes and incorporate different interparticle
interaction forces, such as the liquid bridge attraction forces, crystal sintering forces
and plastic deformation forces. These forces may greatly affect agglomerate strength

and hence the coalescence and fragmentation behaviour.
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Chapter 3

Interparticle force of adhesive

spheres

In this chapter we discuss the theory of contact forces interacting between two ad-
hesive spherical particles, that is, the van der Waals’ intermolecular adhesive force
which acts along the line of centres of the particles and the reactive contact force
due to the elastic deformation of the solid particles under load. For the condition
of normal loading, the Hamaker (1937) theory for rigid spheres is presented and is
followed by the theories of Johnson et al (1971) (JKR) and Derjaguin et al (1975)
(DMT). For the oblique loading of elastic spheres, the theories of Savkoor and Briggs
(1977) and Thornton (1991) are discussed.



3.1 Adhesion force between rigid spheres

Adhesive forces exist between micron or sub-micron sized particles and are mainly at-
tributed to the London-van der Waals’s attractive potential between individual atoms
or molecules in contiguous bodies. At the micro-level, the intermolecular interactive

energy between two molecules may be given as,

A
Up=_5 (3'1)

where ) is the London-van der Waals’ constant and r denotes the distance between

the two atoms or molecules.

For macroscopic particles, the adhesive force between them is explained by pair-
wise addition of the intermolecular interactive energy between individual atoms. This
adhesive force may be significant if the particles are of micron or submicron size.
Hamaker (1937) first applied the London-van der Waals’ theory to compute the over-
all adhesive force between spherical particles. In his calculation, the intermolecular
interactive energy between two similar particles was expressed as,

2
q*A
e /V ) fv A VadYy, (3.2)

where V,; and V), are the total volumes of the two particles and ¢ is the number of

atoms or molecules contained in a unit volume of the particles.

By integration, Hamaker (1937) obtained the intermolecular interactive energy

between two spheres at small separation distance S as,

_AR*

U=-%5

(3.3)

from which the overall adhesion force was obtained as,
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oU _ AR (3.4)

Fe =35 = 65

where the two spheres are assumed to be rigid and A = 72g%) is the Hamaker constant
and its numerical value has been quoted in the range of 0.01 — 200 x 107'°J. The
parameter R* is the relative radius of the two spheres which, for two spheres of radii

R, and R,, is defined by the following expression,

1 1 1

1 _t .2 3.5
= R1+Rg (3.5)

Tabor and Winterton (1969) and Israelachvili and Tabor (1972) performed direct
experimental measurements of the forces between solid surfaces of cylindrical sheets
of mica at separations below 10°A. They found that the unretarded van der Waals

attractive forces could be expressed as,

AR”

Fu=%s

(3.6)

which is obviously of the same form as equation 3.4.

For retarded van der Waals attractive forces, the expression was, however, given

in the following different form,

_ 27AR”

F 353

(3.7)

where A, is the retarded Hamaker constant.

Generally speaking, the attractive force between micron or submicron particles
becomes relevant if the separation distance is ~ 103A. One problem with the Hamaker
equation 3.4 is that the attractive force tends to infinity when the separation distance

approaches zero. In practice, however, when the relative separation between particles
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reduces below a certain value, the roughness of the surfaces becomes significant.
Besides, the repulsive force between particles may also become significant to balance

the attractive adhesion force.

On the other hand, other researchers describe the interactive adhesion force be-
tween solids in a different way. Johnson (1976) argued that arising from the competing
forces of attraction and repulsion between the individual atoms or molecules in both
bodies, the variation of force per unit surface area as a function of separation is

represented by a law of the form

p=—A,S"+B,S™ (m > n) (3.8)

where A, and B, are two constants of attraction and repulsion respectively. When the
two ideally flat solid surfaces come into atomic contact, they will have an equilibrium
separation So. At separations less than Sy the surfaces will repel each other and at
separations greater than Sy they will attract. On this basis, a tensile force—which
equals the adhesion force in magnitude—has to be exerted to separate the surfaces
and the work done in separating the surfaces is defined as the surface energy that

each surface possesses, thus the interface energy, I', is defined as,

(m —n)A,
(= D(m -5~

o0
I‘=‘h+'¥2—'hz=/5 pdS = (3.9)
0
where v; and 7, are the surface energies of the two surfaces and ;2 is the energy of

interface. In the case of like solids, v;; is conventionally zero.

Since m > n, the short-range repulsive forces do not appreciably affect the overall
force when it is attractive. If the repulsive force is ignored then, as shown in figure
3.1, the attractive force (dashed line) is essentially the same as the solid line, which
represents the overall attractive force, at most separations. Consequently, integration

of equation 3.9 can be further simplified. Such a formulation was given by Tabor

®
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Figure 3.1: Pure attractive (dashed line) and overall (solid line) interactive surface

forces as a function of separation between ideal surfaces.

(1977) who assumed the attractive force per unit area between two parallel flat plates

to be,
A
P=6rse (510)
and obtained
A
P= — = o—am .
N5 = 12752 (3.11)

Substituting equation 3.11 into 3.4, we obtain another expression for the adhesion

force between two spheres at equilibrium separation, given as,

P.=27R'T =27R"(m1 + 72 — 12) (3.12)

or, if both spheres are of the same material, 7, = 7, = 4 and 1,2 = 0,
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P, =4nyR" (3.13)

This was first derived by Bradley (1932).

3.2 Normal loading of adhesive elastic spheres

More realistically, for solid particles in contiguous contact, both elastic and plastic
deformations will take place around the contact region of the particles due to the
attractive and repulsive forces between the atoms in the solids. The elastic and plastic
deformation, on the other hand, will in turn affect the adhesive forces. Therefore, the
reciprocal influence of the contact deformation and intermolecular interactive force

between particles should be considered.

Some theoretical studies about the reciprocal influence between the contact de-
formation and surface adhesion of elastic spheres were represented by Johnson et al
(1971) (JKR theory) and Derjaguin et al (1975) (DMT theory). The JKR model con-
siders not only the effect of particle elastic deformation on the adhesion force but also
the influence of the adhesion force on the elastic deformation. The model assumes
that the surface adhesion acts only over the deformed contact area which is larger
than the Hertzian area. It also assumes an equivalent elastic load which would create
that same contact area. Based on the two assumptions, the surface adhesion force was
included in the extended Hertzian theory which is in line with the theory of contact
mechanics. Alternatively, the DMT model, as suggested by Derjaguin et al (1975),
considers the intermolecular adhesive force both inside and outside the deformed con-
tact area. However, the theory assumes that the van der Waals’s adhesive force does
not affect the deformation of the spheres, and only takes into account the effect of
elastic deformation on the adhesion force. As a result, the reciprocal influence of the

particle deformation and intermolecular adhesion is decoupled. Therefore, both the
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JKR and DMT models are approximations. The two theoretical models are discussed

below.

3.2.1 JKR theory

The JKR. (Johnson et al 1971) theory is extended from the Hertzian model to adhering
elastic spheres. For two elastic spheres with no surface adhesion, the classical Hertzian
theory shows that, under a normal load P, the contact radius @ between the two

spheres is related to the normal load by the following relationship,

3PR*
3= 3.14
© = 4E- (3.14)
and the corresponding relative approach of the two spheres, a, is given as,
2
a
— 3.15
amd (3.15)

where R* is the relative radius as already defined by equation 3.5 and E* is the
relative Young’s modulus related to the elastic properties, E;, E; and vy, v, of the

two spheres by the following expression,

1 _l—u,2 1 -2
E- - E, + E, (3.16)

Now if the two spheres are adhesive, an additional attractive force will apparently
act between the two contact spheres. Johnson et al (1971) argued that because of the
additional attractive adhesion force, the equilibrium contact area between the two

spheres would increase and it could be regarded as corresponding to an equivalent

Hertzian force P,

s 3PR*
¢ == (3.17)
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However, as it will be shown later, this equivalent Hertzian force P; is not simply
the sum of the applied load and the adhesion force. Johnson et al (1971) derived an
expression for the out-of balance applied load in relation to the adhesion force through
an energy balance approach. It is argued that because of the additional attractive
force of adhesion, the total energy of the system U, is increased which Johnson et al
(1971) assumed as being made up of three components: the increment of the stored
elastic energy U, due to the increased elastic deformation, the released surface energy
U, due to adhesion over the contact area and the increment of the mechanical energy

U, due to the applied load. The three components were formulated as,

3 11 .

U= (G symls A+ PR (3.18)

U, = —27( 3fE{J‘ Ja3 (3.19)
3 am. P2 _ "

Un=~liF )2!33(5!*)113 (P + 2P (3:20)

where 7 is the surface energy of the spheres.

The equilibrium condition requires that the first derivative of the total energy
Ui(= U. + U, + U,,) with respect to the equivalent Hertzian load P, becomes zero.

This leads to the following expression for the equivalent Hertzian load,

P, = P4 67yR" £ \/(P + 67yR")? — P? (3.21)

It can be shown that for stable equilibrium it is necessary to take the positive sign

so that

P, =P+ 6ryR" + \/(P + 6ryR*)? — P2 (3.22)

The corresponding radius of the contact area is
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s 3R'P, 3R*

a’ =

4E*  4E*

[P 4 6myR* 4+ /(P + 67yR*)? — P?] (3.23)

Rearranging equation 3.23, we obtain the expression for the applied load of ad-

hering spheres in terms of the contact radius as

4E*a®
Pi= R /167y E*a3 (3.24)

Thus equation 3.24 provides an explicit expression for the applied out-of-balance force
for the adhering spheres in terms of the radius of the contact area and the surface
energy. It is, however, still incomplete without knowing the pressure distribution
over the contact area. Johnson (1976) argued that this problem could be solved
theoretically by combining the adhesion force with the principles of contact mechanics.
He provided a distribution of normal traction over the contact area that is described

by the following equation,

3P| T2]2 Pl—.P ,,.2_2
Pr) = gl = @) =~ e 1= )7 R

According to the classical elasticity theory (see Johnson 1985), the first term of

equation 3.25 leads to a normal displacement over the contact area as,

u(]) = 3(1 = V?)Pl

, SE (27— 1?) (3.26)

and the second term of equation 3.25 leads to a uniform normal displacement over

the contact area,

o U ~w)(A-—P)
! 2E.-a

(3.27)

where i = 1, or 2.
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Here, the underlying assumption is that, in line with contact mechanics, the
profiles of the two surfaces in the contact region can be adequately described by
the Hertzian approximation and the surface displacement is the combination of the
Hertzian solution that corresponds to the first term of equation 3.25 and the uniform
displacement that corresponds to the second term of equation 3.25. Thus, the relative

approach of the two sphere may be derived as,

r? _3P1(2(12—1"2) PI—P+ r?
2R 8E*a3 2E*a ' 2R*

o= ugl) + u(zl) - u?) -+ u&” + (3.28)

Substituting P, (equation 3.23) and P (equation 3.24) into equation 3.28, we
derive the relative approach as a function of the radius of the contact area as follows,
4mvya

a=cm =\ 5 (3.29)

Equation 3.24 indicates that, when the applied force P = 0, the radius of the

contact area decreases to a finite value given by,

9ry(R*)?
@ (p=o) = ——7};, ) (3.30)

In order to further decrease the contact area, the applied force needs to be made
negative. However, a real solution may ensue only if the negative load (i.e. the

applied load is a pulling force) is in the critical limit of,
P > -3mvR* (3.31)

Johnson et al (1971) assumed that separation of the two spheres takes place when

the applied negative force reaches the critical value,

P=-F = -3ryR" (3.32)
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where P, is termed as the pull-off force. At the critical load P = —P,, the corre-

sponding radius of the contact area is further decreased to the following finite value,

3R*P.
@ =" (3.33)

and the relative approach between the two spheres is given as,

2 11/3 2 1/3
s _ 4P e (3.34)
3(E*)2R* 16( E+)2R*
which is obviously negative.
After the applied force reaches the critical value P = —P., further decrease of

the contact area is still possible. This happens when the two spheres are further
pulled apart and corresponds to the non-equilibrium state at which the negative sign
of equation 3.21 is taken. At the non-equilibrium state, the applied force slightly
increases but is still negative. Separation of the two spheres is assumed to have taken

place when da/da = 0, i.e.

a T lf?
- ()"

from which the radius of the contact area at separation is derived as,

a3 - .PCR'
* T 12E-

(3.36)

Substituting a, into equations 3.21 and 3.29, we derive the corresponding applied

force and relative approach as follows,

)
Pi=—3F. (3.37)
3 _ 3p?
% = 6B R (35



Finally, with the JKR model, the force-displacement relationship is implicitly
expressed by equations 3.29 and 3.24. Differentiating both equations with respect to

the radius of the contact area a, we obtain,

LT R K (3.39)
da R* E*a

dP _ 4E*a? -
= — 6y/myE*a (3.40)

Thus, by using the chain law, the normal stiffness of two contact spheres with adhesion

can be expressed as,

=2Fa— Y2 (3.41)

dP 3-3yFP./P
da 3—n/ PP

which degenerates to the Hertzian form in the case of no surface adhesion (P = 0).

3.2.2 DMT model

Derjaguin et al (1975) made an alternative attempt to take into account the effect
of contact deformation (due to the Hertzian load) on the adhesion force of spherical
particles. They, however, assumed that the intermolecular attractive force between
the two solid spheres did not appreciably change the deformation of the particles.
Consider two elastic siaheres of radii R; and properties E;, v; (: = 1,2) under a
normal load P. According to the theory of Hertz, the distribution of the normal

pressure over the contact area, when no surface adhesion force acts, is described as,

3P
PH = 211_:;\X1 —1?/a? 0<r<a (3.42)

where a is the radius of the contact area which is related the applied Hertzian load,
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3PyR"
5 . 3.43
@ = T4k )

The relative approach of the two spheres a = a1 + 2 is given as,

g (3.44)

In accordance with the Hertzian distribution py, the deformation (the displace-
ment of the surfaces) inside and outside the contact area of the two spheres is given

as,

3(1 — v2) Py

wi(r) = SEad (24* — r?) r<a (3.45)
— 2 2 2
w.-(r) — %[2&\/ 2 —a?2+ (2(12 _ r2) arccos(l — r_az)] r>a (346)

wherez = 1 or 2.

According to equation 3.45, it appears that at the coordinate origin r = 0, the

deformation is,

3(1 = V?)PH

: = =q; = 3-47
wi(r=0)=«a iEa (3.47)
Comparing equation 3.44 and 3.47 we obtain,

1 3(1—v?)Py

B 4B (3.48)

When this relationship is substituted into expression 3.45 and 3.46, it follows that,

w;(r) = %&(202 -1r?) r<a (3.49)
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2a?

wi(r) = - 2aVIT= @ + (20 — 1) arccos(1 - )] 7> (350)

where 2 =1 or 2.

Derjaguin et al (1975) argued that at the microlevel, the distance between the two
contact surfaces is not equal to zero, but a value of € which depends on the roughness
of the material. Therefore, the separation distance between the two deformed surfaces

is given as,

1"2

= 2R"

4w +w—a+e (3.51)

z

Substituting equation 3.49 into 3.51 we obtain the separation distance over the

contact area as,

F=E r<a (3.52)

Outside the contact area of Hertzian load the separation distance between the two

surfaces 1s,

1
TR*

=

[aV1? — a? — (2a® — r?) arccos 2 |+¢ r>d (3.53)
r
The interactive surface energy may be expressed as,
U,= / dry(z)rdr (3.54)
0

Over the contact surface z = €, the corresponding part of the free surface energy

is given as,

Uy = 2ma’y(e) = 2raR"y (3.55)

63



Outside the contact area, the integral 3.54 has been shown to equal,

U,, =4r f * y(2)rdr (3.56)

2 2

which, by substituting ¥ = r? — a?, may be rearranged as

Uso = 47 [ +la(F )l (357
0
where
F a) = ——laF 4+ (7% — a? T
z(F,a) = wR_[ar + (7* — a*) arctan a] +e€ (3.58)

To obtain the adhesion force, Derjaguin et al (1975) expressed the adhesion force
between the two elastic spheres as the derivative of the interactive surface energy with

respect to the relative approach a,

dU, dUg & dU,,
da da da

9(z) 92
0z Oa

=2ryR"* + 41/00 Fdr (3.59)
0

The second term of the equation cannot be expressed analytically.

The applied out-of-balance force due to adhesion and Hertzian elastic deformation

is thus expressed as,

4E*a®
3R~

* 9y(2) 9z

P=Py—P,= - —an [
H ko 1r0 0z Oa

dr (3.60)

For the case when the two spheres are just touching, i.e. @ — 0%, it follows from

equation 3.58 that
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.

YT +€ (3.61)
1

2 =3 (362)

Substituting equations 3.61, 3.62 into equation 3.59 we obtain the pull-off force

as,

.Pc = Pn |a=o = 2‘.’1"'}1’}2'l + Q?T‘YR‘ = 47?’}'R’ (363)

2.0 17 Applied force s
g ===0==- Adhesion force &
g | Hertzian force 'p" /
17 ] P
s 10 =5 A
E ‘l‘
.8 4
W .
| = P
0 "‘
-g o””
() 0.0 = /‘

/ - A
f’--u "4 L% -
'1 .0 T “: T T T T T
-5 0 5 10 15 20 25

Dimensionless relative approach (1.0e-5)

Figure 3.2: Force-displacement relationships of DMT model in comparison with the
Hertzian theory. The forces are made dimensionless to P, = 47yR* and the displace-

ment is made dimensionless to R*

For a finite approach a between two spheres, the adhesion force has to be obtained
numerically. Figure 3.2 shows the dependence of the numerically obtained adhesion
force (made dimensionless to 4myR*) on the relative approach (made dimensionless

to R*. Together with the adhesion force is shown the applied out-of-balance force
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(also made dimensionless to 47yR*) and the Hertzian force. As shown by figure 3.2,
it is surprising to see that the DMT model predicts an adhesion force which first
decreases dramatically and then converges to a constant value, which is half of the
pull-off force, as the flattening at the contact of the two spheres increases. This trend
of the adhesion force is contrary to the normal expectation that an increase in the
relative approach will result in an increase of the adhesion force because the contact

area increases.

3.2.3 Discussion

As far as the JKR and DMT models are concerned, they are both approximations.
The JKR model considers the adhesive forces between spheres as pure surfaces forces
which stitch the two surfaces together if they are in close proximity contact but snaps
when they are separated. Consequentially, the adhesive force is assumed to act only
on the contact area. In order to conform with the principles of contact mechanics,

the adhesive traction distribution was conceived in the form of
] T‘2 1/2
Pa = po(l — ;)' / (3-64)

where pj was given by Johnson (1976) as,

- P,—-P
Po 2ra?

(3.65)

Figure 3.3a illustrates pressure distributions of the attractive force, the equivalent
Hertzian force and overall contact force according to the JKR model. This distribu-
tion of the contact traction has two main problems. The first problem is the sharp
discontinuity at the edge of the contact area. Consequently, the outer annulus at the

perimeter of the contact area involves large strains and classical elasticity cannot be
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Figure 3.3: The normal traction distribution assumed by (a) the JKR theory and (b)
the DMT theory

strictly applied. Tabor (1977) argued that in practice there would be some rounding
off at the sharp discontinuity region because the stress at the region could not exceed
the limiting attractive forces that the interface can withstand. The second problem is
the inconsistency between the proposed attractive force distribution and the classical
assumption of interactive surface adhesions. In order to keep the adhesion mechanism
in line with the principles of contact mechanics, the JKR model assumed that the
intermolecular attractive force could be approximated by a pure surface force that
operates in an infinitely short range of separations and is important within the im-
mediate contact area. On this basis, one would normally expect a constant attractive
force distribution over the contact area since the separation is constant and the sur-
face property of the material is also uniformly distributed. However, the JKR model

assumed a non-uniform pressure distribution of the attraction force given in the form
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of equation 3.64.

It has been indicated earlier that for two undeformable flat half-spaces of two
parallel solid bodies that come into atomic contact, the variation of the force arising
from the competing forces of attraction and repulsion is usually represented by a law
of the form as given by equation 3.8. This form of surface interaction law should
still hold for elastic deformable solids if the intermolecular interactive forces can be
envisaged as pure surface forces. In these circumstances, it is clear that for two elastic
spheres, the adhesion force inside the contact area has to be uniformly distributed
and outside the contact area the adhesion force must be also significant over a finite
range. On this basis, it seems that the approach of the DMT model should be
more appropriate. The pressure distribution of the adhesion of the DMT model was
considered in the form as shown by figure 3.3b. However, with the DMT model the
quantitative expression of the adhesive force distribution is still not available. Apart
from that, the most serious problem is that the DMT model predicts an adhesion
force that first drops dramatically when the relative approach slightly increases from

the point contact.

Some critical discussions about the JKR and DMT models were given by Tabor
(1977, 1978) and Derjaguin et al (1978). Tabor (1977) showed that according to
the experimental results of mica glued surfaces of glass cylinders, the shape of the
deformed interface and the way in which the surfaces separate were more consistent
with the analysis of the JKR model rather than the DMT theory. Abandoning the
hypothesis that adhesion forces do not change the Herzian profile, Muller et al (1980,
1983) made a modification to the DMT model by considering the pressure distribution

being in the following special form of equation 3.8,

A Sow .S
p(r) = 653 [(ﬁ) = (%) l (3.66)
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where A is the Hamaker constant, Sy is the equilibrium separation distance between
surfaces and 2(r) is the local separation distance between the two profiles of the two
spheres. According to equation 3.9, the interfacial surface energy corresponding to

equation 3.66 may be obtained as

A

P e (3.67)

A general analysis of the contact of two elastic spheres subjected to the Lennard-
Jones pressure given by equation 3.66 has been carried out numerically by Muller
et al (1980). It has been shown that, as far as the pull-off force is concerned, the
more general solution is a continuous transition from the DMT to JKR theory and is

determined by the parameter g which is defined as,

8 [ AZR* ]"‘3 32[ rre 12
N )2]

=372 (4ST(E*)?| T~ 3r |nS3(E~ (3.68)

For u < 1 (hard solids of small radius and low surface energy) the solution corre-
sponds to the DMT theory. For p > 1 (soft solids, large radius and high surface

energy) the JKR theory is valid.

Horn et al (1987) pointed out that the exact solution to the contact problem of
two adhering elastic spheres is very difficult because the deformation of the spheres
that determines the interactive surface depends also on the pressure distribution of
the adhesion force. Maugis (1992) has more recently studied the adhesion interaction
between a sphere and a planar substrate using a fracture mechanics approach. He
demonstrated that the JKR theory corresponds to the formulae of a spherical punch
in linear fracture mechanics. For the case of two spheres in contact, the pressure

distribution is,

- 2\ 1/2 K 2\ —1/2
p,=2Eﬂ Lo, RN (3.69)
TR* a? VTa a?
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where K is the stress intensity factor defined as,

E* , ‘12 -
I{; = _\/ﬁ (a = EE:) = V2I'E (370)

and o is the relative approach due to p'.

For the JKR pressure distribution, singularity appears when r — a. In order
to cancel the stress singularity at the tip of the crack, Maugis (1992) assumed that
the intermolecular Lennard-Jones potential outside the contact area as a constant
pressure p” (attractive) applied on a length d = ¢ — a. This constant pressure is then
considered to be equivalent to an external axisymmetric crack of neck radius a in an

infinite solid, for which the stress distribution over the neck (i.e. the contact area) is

derived as,

" 2 2\~ 4. 2 —a?
o=L (\/c2 — a% + — arccos E) (1 - 3——) — P arctan [ S—2 (3.71)
Ta a

T a* —1r?

Introducing a stress intensity factor K,, defined as,

pﬂ'
b —

c

2
(\/ 2 —a%+ % arccos E) (3.72)

the stress distribution of equation 3.71 can be also written as,

K 2\ —1/2 90’ 2 _ 2
o= 7= (1 - %) - —:- arctan 22 _':2 (3.73)

for which a singularity also appears if r — a.

Adding equations 3.69 and 3.73 we see that the stress singularity at the edge of

the contact area disappears if,

" 2
Ki=K,=-2=(vV@—a+ < arccos = | = VITE" (3.714)
VTa a C

75



This equation relates the length d = ¢ — a of the constant attractive force to the

material property of spheres.

Using the Dugdale (1960) model, Maugis (1992) formulated the energy release rate
equation by the J-integral method and derived that, at equilibrium, the interfacial

energy I is related to the constant pressure p” by the following equation,

nz

G= =—-[\/_—+(m — 2) arctan Vm? — 1]
4(p”)2 [\/——l arctan Vm? — 1 — m + 1] (3.75)

where m = c/a.

Letting,

Ll ]1{3 (3.76)

Ay =20p [16«1‘(1&:-)2

we may rewrite equation 3.75 as,

Aa2 [ 4B 1P

e e .
[3 F(R“)z] [Vm2 — 1arctanvVm?2 —1 —m + 1] (3.77)

This relation plus equation 3.74 fixes the values of m = c¢/a, p” and AP as functions

of the material properties of E*, R* and T.

Due to the cancellation of the stress intensity factor K,, with Kj, the overall
pressure distribution of the attractive and repulsive force over the contact area is

p = p' + o, which, according to equations 3.69 and 3.73, may be given as,
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2E* 2\ 1/2 2# 2 _ 42
= a( r) L £ 2 r<a (3.78)

p= R — — arctan

a? T a? —r?

Outside the contact area there is a constant attractive pressure p”,

1

p=-p a<r<ec (3.79)

From the overall pressure distribution the applied load and relative approach can

be further derived as follows,

4E* 16xT(E*)2]"/°
P = 35 3 —2a? [%} (Vm? — 1 + m? arctan vVm? — 1) (3.80)

a? 4Arpa ( 37T 1/3
= = vVm?2 —
YTor T T3 (4E"R") m* =1 (80)

When A, = 0, m = ¢/a — oo and it can be derived from equation 3.77 that,

Apm — 0 (3.82)

o= ]
Thus equations 3.80 and 3.81 may be simplified as,

P= ;fe: a® — 2xT R (3.84)

a= % (3.85)

This is simply the Hertz curve shifted by 27T'R*. When the radius of the contact

area approaches zero (a — 0), we get the DMT result.

On the other hand, when A\, — oo, we get m = ¢/a — 1 and the following

relationships (from equation 3.77),
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vVm? — 1 + m?arctan Vm? — 1 = 2arctan vVm? — 1 ~ 2,/2(m — 1) (3.86)

*)2 1/3
3rT(R*) ] (3.87)

im-1) = & [ TS

Substituting equations 3.86 and 3.87 into 3.80 and 3.81, we get,

= 3
AT erEe (3.88)

3 R*
o= a? _ [2rTa (3.89)
~ 2R* E* '

which are the JKR equations.

Maugis (1992) pointed out that the parameter A, is similar to the parameter u
(equation 3.68) as introduced by Muller at al (1980). If we assume that the attraction

pressure is a function of the Lennard-Jones potential,

=1.03— (3.90)

we see that,

A, = 0.4p (3.91)

Thus, the analytical solution of Maugis (1992) represents more general conditions
and depends on the parameter A,. When A, — 0 (hard solids of small radius and low
surface energy), the solution degenerates to the Hertz curve but shifted by 27T R*".
When A, — oo (soft spheres of large radius and high surface energy), the solution

reduces to the JKR theory.
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3.3 Oblique loading of adhesive elastic spheres

3.3.1 The theory of Savkoor and Briggs

The oblique loading of two elastic spheres in the presence of adhesion is an even
more complicated problem. A rigorous analysis accounting for both the non-linear
response of the tangential force and the coupled effect of the surface interaction and
deformation is almost intractable. An approximate analysis, however, was first given
by Savkoor and Briggs (1977). They extended the JKR model to account for the
effect of oblique loading by arguing that with adhesion the tangential shear traction

distribution over the contact area could be prescribed by the ‘no-slip’ solution of

Mindlin (1949),

T
q(r) = %(az —p3)~12 r<a (3.92)

The corresponding tangential force T' in relation to the tangential displacement &

is given by,

T =8G"aé (3.93)
and the stiffness is,

k' = 8G"a (3.94)

where G* is related to the elastic properties of the two spheres Gy, G, and vy, v, by
the following expression,
1 2— 141 2— Vo

e e + G (3.95)
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Savkoor and Briggs (1977) assumed that due to the application of the tangential
force T, the mechanical potential energy is —T6 and the elastic energy is T'6/2.
Consequently, the addition of the tangential force reduces the potential energy of the

system by an amount of

(3.96)

Recalling equations 3.18-3.20, we obtain the total potential energy of the system

as,

U=U3+U5+Um+UT

_ 1 9 5E* .,
_15[16(E-)2R~P, 0 KA

|'/3(P? — 5PP, — 5P% — 307yR'P, — —

Thus, equilibrium of the system ensues when U /3P, = 0 which leads to the following

expression for the equivalent Hertzian force,

E-
4G*

P, = P+6ryR" + \/ (P +6myR*)2 — P2 — —T? (3.98)

The stable solution requires the positive sign. If P, = 3nyR*, it follows that,

b

Po=P+2P.+(4PP. +4P? -
1 + +( + c 4Gt

T (3.99)

for which the radius of the contact area is expressed as,

3R* E*
3. I
= 4E.‘[JD+2PC+(uf’}f’c+4P,, e

a Ty (3.100)

Equation 3.100 indicates that as the tangential force T' increases, the contact area

is reduced in a stable manner. This was suggested by Savkoor and Briggs (1977) as a
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‘peeling’ mechanism which they claimed was verified by experimental data. Savkoor
and Briggs also suggested that the ‘peeling’ process continues until the tangential

force T reaches a critical value, given by the equation

T, = 4\/ g (PP, + P2) (3.101)

and the corresponding radius of the contact area is reduced to,

s _ 3R
P 4E:

a

(P +2P,) (3.102)

If T exceeds T, there is no real solution to both the equations 3.99 and 3.100.
Savkoor and Briggs (1977) argued that at this stage the rate of elastic energy release
is more rapid than the rate at which the work of adhesion can absorb the energy and

hence the quasi-static approach is no longer adequate.

3.3.2 The theory of Thornton

One question about the model of Savkoor and Briggs (1977) is what happens next?
Besides, another very important fact that Savkoor and Briggs ignored is the interpar-
ticle sliding. Since the critical ‘peeling’ force is not related to the friction coefficient,
it is possible that long before the ‘peeling’ process is completed, the tangential force
T may exceed the limiting value given by the sliding criterion. For adhesive elastic

spheres, Thornton (1991) suggested that the sliding criterion could be given as,

T < u(P +2P.) (3.103)

where p is the friction coefficient of the material.

By quoting the experimental data reported by Briscoe and Kremnitzer (1979),

Thornton (1991) indicated that the sliding rule is comparable with the other two
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criteria proposed by Kendall (1986) and Barquins et el (1977) respectively. The

sliding criterion of Kendall (1986) reads as,

T < uPy, = p(P + 2P. + \/APP, + 4P?) (3.104)

Thornton (1991) also suggested an alternative criterion in the following form,

P-P
TL pPill ————PB (3.105)
3p
Figure 3.4 shows the sliding criterion using equation 3.103 in comparison with the
critical ‘peeling’ failure criterion of equation 3.101, where the normal and tangential

forces are both made dimensionless to the pull-off force P, = 3ryR*. The two curves

intersect when the normal load reaches,

4G* 4G*  4G*
P, =2F l(ng-_l)inzE‘n(sz._l)l (3.106)

As is shown by figure 3.4, in the region P < P, the tangential force at the end of
peeling is greater than that necessary for sliding. Consequently, the other question
to be answered is whether the tangential force is allowed to violate the sliding rule

before it reaches the ‘peeling’ failure criterion.

Thornton (1991) re-examined the oblique loading problem of two adhesive elastic
spheres. He suggested if P < P, the tangential force at the end of ‘peeling’ falls to the
value of the sliding force. For P > P,, it is suggested that there is a smooth transition
from peeling to sliding. This implies that when T' = T, the contact area given by
equation 3.102 is subject to an equivalent Hertzian normal traction corresponding to
an effective normal force P, = (P + 2P;) or P, = P(1 — L’:;;_lP)WZ_ It then follows
that the situation of the tangential force is well disposed to the micro-slip proposition

of Mindlin and Deresiewicz (1953). In other words, it is assumed that the peeling is
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Figure 3.4: Comparison of the peeling failure criterion (solid line) defined by equation

3.99 and sliding criterion (broken line) defined by equation 3.101

followed by the development of a slip annulus which spreads radially inwards until
the tangential force reaches the sliding criterion. Therefore, for monotonic loading of
the tangential force with T' > T}, the equation of the partial solution of Mindlin and

Deresiewicz (1953) can be written as,

T = u(P.) [1 —1 = %5)#2] (3.107)

and the corresponding radius of the slip annulus is,

e = afl - - (r‘;e) (3.108)

where § represents the relative tangential displacement at the contact between the

two spheres.

If the tangential force is unloading-reloading and/or the normal force is changing,

the analysis of the history dependent tangential force loading-unloading-reloading is
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much more complicated. Based on the theory of Mindlin and Deresiewicz (1953), the
tangential stiffness after ‘peeling’ was obtained by Thornton and Randall (1988) and
Randall (1989) as,

AP,

. : C; .
kt = 8G (2] + (—I)Jp(l - ZJ)E ] = U, 1,2 (3109)
where if AT/AP, < p,
&= §=0,1,2 (3.110)
Otherwise,
(
a\%l CLash i=0
Kl
€5 (3.111)
(=1 (T-T;)+2pAP,
ajl— 2uPe) = 12

where 7 = 0, 1, 2 denotes the path of loading, unloading and reloading respectively.
The effect due to the variation of the normal force AP, is taken into account by

updating the Tj,
T; =T; — (-1/pAP et

Before the ‘peeling’ process is complete, the tangential force is given by Mindlin’s

‘no-slip’ solution of equation 3.93 from which we can derive the stiffness as,
ki = 8G"a (3.113)

Again, if there is no surface adhesion (y = 0), the pull-off force P, and the critical
peeling force T, both become zero and the expressions for the tangential stiffness and
forces degenerates to the partial-slip solution of non-adhesive spheres provided by

Mindlin and Deresiewicz (1953).
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3.4 Energy dissipation

When two elastic spheres with adhesion collide with each other, they may bounce off
or stick together, depending on whether the kinetic energy of the two collided spheres
is greater than the energy required to break the contact. The energy required to
break the contact of two adhesive spheres is regulated by the energy dissipation due

to adhesive peeling, tangential slip and sliding.

The energy dissipation of adhesive peeling refers to the work required to pull two
adhered spheres apart to create new surfaces. An expression was given by Yin (1992)
where the energy dissipation was considered as the work done to pull the two spheres
apart from the point that the two spheres come into contact. In the case of the JKR
theory, this leads to the following expression for the energy dissipation of adhesive

peeling,
W, = / " Pda (3.114)
0

where a is the critical relative approach where separation of the two adhered surfaces

takes place. It is given by,

27n2y2R* 2

16(E*)? ~  \ 16(E*)R* (hL18)

Substituting equations 3.24 and 3.39 into 3.114, it follows that

as 4 F*a3 a ™
P a3 — —
W, —ja ( 3R 4\/ryE*a )(R“' _a)da (3.116)

0

where the contact area a, at separation and ap when a = 0 are given by,

_ 3 my(R*)?

== (3.117)

]



o/ dmy(R*)?

= A1
ap E" (3 8)
Thus, the energy dissipation due to adhesive peeling is obtained as,
D) : 545( R*)4
= —(12 —_——
W = 502+ V2){ ~ 5oy
—~ —%(1 + 6V/4)P.a, ~ —0.9355P.q, (3.119)

For adhesive elastic spheres, energy dissipation may be also caused by the frictional
slip and sliding after peeling due to the effect of tangential loading. In the context of
the Thornton (1991) theory, if the applied tangential force is less than that required
to cause rigid body sliding, it is to generate relative microslip. As demonstrated by
Mindlin (1949), the microslip is initiated at the edge of the contact area and progresses
inward until the tangential force reaches the sliding criterion. Consequently, energy

is continuously dissipated as a result of this microslip.

Complete derivations of the frictional energy dissipation due to tangential slip and
sliding are provided in appendix A. It has been shown that, if (=1)/AT/AP, < p,

the energy dissipation due to partial slip is
AWyip =0 (3.120)

Otherwise, if (—=1)?AT/AP. > p, the energy dissipation may be expressed as,

p(P. + AP.)[(-1YAT — pAP) . 3c; ﬁ
16G*c; 2 a & a3 8.121)

AWs!ip ==
where j = 0, 1, 2 refers to the path of loading, unloading and reloading, and ¢; is
again given by 3.110 or 3.111.

During sliding, the stored elastic energy is defined by,
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_ 3u*P.AP,

AW, = 50C"a (3.122)
and hence, the frictional energy dissipation during sliding can be derived as,
AW,iae = TAS — AA, = pP.(AS — SEAFe (3.123)
20G*a
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Chapter 4

Interparticle forces of moist

spheres

This chapter is concerned with the cohesive forces exerted on particles by liquid
bridges. The first part discusses the effect of a liquid on the cohesiveness of fine
particles and the second part deals with the force and stability of a static liquid bridge
held between two rigid spheres. In order to resolve the uncertainties in the rupture
criterion of stable liquid bridges and the accuracy of the toroidal approximation, a
simple numerical scheme for solving the Laplace-Young equation is described. For
the viscous force of liquid bridges, the classical theory of lubrication flow is presented
and is followed by the semi-infinite theory. Most of the work presented in this chapter

has been reported by Lian, Thornton and Adams (1993b).
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4.1 Cohesiveness of moist particles

For the particle size enlargement process of granulation, a binder liquid is usually
mixed with the powders to increase their cohesiveness. When a liquid is mixed with
micron and submicron sized particles, it may be present as either a mobile phase or an
immobile adsorbed layer. The mobile liquid may exist in different forms described as
pendular, funicular and capillary state respectively (shown by figure 4.1), depending

on the degree of saturation of the system.

(a) Pendular state (b) Funicular state (c) Capillary state

Increasing liquid saturation

Figure 4.1: States of liquid presented in particle systems as the degree of saturation

increases: (a) pendular state, (b) funicular state and (c) capillary state

For a small quantity of liquid that is uniformly dispersed in particle systems, the
liquid is either adsorbed by the particle surfaces as immobile films or held between
particles as pendular liquid bridges. This state is defined as the pendular state.
By increasing the amount of liquid, we get the funicular state where in addition to

the adsorbed liquid and pendular liquid bridges, some pores are also filled with the
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excessive liquid. Further increase in the amount of liquid leads to the capillary state

where all pores are completely filled with liquid.

Different states of the liquid phase in particle systems influence the cohesiveness
of particles in different ways. Due to the adsorbed layer of liquid, the surface adhesion
of the particles changes. For two solids 1 and 2 in the case of liquid immersion, the
Dupré work of surface adhesion is given as (Adams and Edmondson 1987),

F=19 4+ =1 (4.1)

where 7,, is the interfacial free surface energy which in the case of like solids is
theoretically zero. The solid-liquid interfacial energy —yS) (z = 1, 2) is related to
the solid-liquid contact angle 8, liquid-vapour interfacial energy v, and solid-vapour
interfacial energy 7{)) = 4; by the Young’s equation,

7 = % — Yy cos (4.2)

where i = 1, 2. Substituting equation 4.2 into 4.1, we obtain the surface adhesion

between two wetted solid surfaces as,

F'=v+7—2y,c0s0 — 72 (4.3)

Apparently, the surface adhesion force between wetted solids decreases due to the
presence of the adsorbed liquid. In the case of like solids with perfect wetting (i.e.
6 = 0), there is no adhesion between the solids and hence I" equals zero. The other

case for spontaneous separation to occur is when

29w cos @+ 12 > 11+ 72 (4.4)
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In the pendular state, liquid is mainly held between particles in the form of bridge
necks, which produce resultant forces between particles. These forces arise from the
capillary pressure deficiency of the liquid bridges, the surface tension and the viscous
resistance of the liquid respectively. Since the pressure deficiency and surface tension
only depend on the geometry of the liquid bridge, the combination of the two terms
is quoted as the static liquid bridge force. The viscous resistance is however produced
by the dynamic liquid bridge between relatively moving spheres, In the following

sections, the static and dynamic liquid bridge forces are discussed.

4.2 Static liquid bridge forces and stability

4.2.1 Brief literature review

When a quantity of liquid is introduced at the contact point between two contigu-
ous rigid solid spheres, a stable liquid bridge is formed which produces a resultant
attractive force between the two spheres. This arises from a combination of two
contributions, the effect of surface tension and the pressure deficiency generated by
the curvature of the bridge, both dependent on the geometry of the liquid bridge.
The geometry of a liquid bridge is dependent on the separation distance between the
spheres and a liquid bridge will be stable when stretched up to some critical sepa-
ration distance which will correspond to rupture. For relatively large liquid bridges,
the geometry is influenced by the gravitational distortion. The effect of the gravity
distortion has been addressed by Princen (1968) and recently investigated by Maz-
zone et al (1986), Bayramli et al (1987) and Bayramli and van de Ven (1987). Here
we will be only concerned with small liquid bridges when the gravity effects and also

the buoyancy force are negligible.

For a liquid bridge between two rigid solid spheres, when the effect of gravity is
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negligible, the geometry is governed by the Laplace-Young equation which relates the
mean curvature of the geometry to the pressure deficiency of the liquid. However,
the Laplace-Young equation cannot be solved analytically except for a few special
cases, Orr et al (1975). Numerical evaluation procedures have been developed by
a number of workers, most notably by Erle et al (1971) and DeBisschop and Rigole
(1982). They found that there were two solutions which converged to a single solution
at a critical separation distance. For separation distances that exceeded this critical
value, no solutions existed. It was conjectured that of the two solutions, the one
with the minimum Gibbs’ free surface energy was stable. It was also conjectured
that the critical separation distance where the two solutions converged corresponded
to the liquid bridge rupture. Erle et al (1971) suggested that if the two solutions
were expressed in terms of the liquid bridge diameter, the critical separation distance
corresponded to the point of rupture. DeBisschop and Rigole (1982) proposed an
alternative criterion based on the minimum half-filling angle of the liquid bridge.
The corresponding separation distance is less than the critical value at which the two
solutions converge. More recently, Mazzone et al (1986) argued that it was the critical

separation distance which was the correct rupture criterion.

The established approach for prescribing a stable solution to the Laplace-Young
equation, if one exists, is to apply the calculus of variations to the Gibbs’ free energy.
The first variational problem, the necessary condition for a minimum surface free
energy was formulated in different ways by Erle et al (1971) and DeBisschop and
Rigole (1982). Both solutions are of the same form as the Laplace-Young equation.
It is not clear which formulation is the correct one, because the second variation,
the sufficient condition for a minimum surface free energy, which should provide the

criterion for liquid bridge stability, has not been solved analytically.

It is now common practice to compare numerical solutions with the comprehensive

set of experimental data obtained for a small liquid-solid contact angle by Mason and
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Clark (1965). Erle et al (1971) and Mazzone et al (1986) obtained comparable force-
separation results with constant liquid volumes which were consistent with Mason
and Clark’s data except at very small separation distances. Erle et al (1971) pointed
out that there was some uncertainty in the experimental data in this region and
that they obtained good agreement with other data measured by Cross and Picknett
(1963) for spheres in contact. Mazzone et al (1986) made a detailed comparison of
their calculated rupture distances with the experimental data of Mason and Clark
(1965) and found that there was good agreement, while the rupture criterion due to

DeBisschop and Rigole (1982) resulted in 25-30% underestimation.

Fisher (1926) proposed a much simpler approach for estimating the liquid bridge
forces. It was based on a toroidal approximation which involved treating the merid-
ional profile of the liquid-air interface as an arc of a circle. This leads to a simple
closed-form solution which has been widely applied for the estimation of the forces
between spherical bodies (eg. Mehrotra and Sastry 1980, Sherrington and Oliver
1981, Adams and Perchard 1985). The toroidal approximation has been shown to
give good agreement with experimentally measured forces between two spheres and
between a sphere and a plane in contact (Clark et al 1968). However, it has been
claimed recently that there is an increasingly large underestimation as the separation

distance increases (Mazzone et al 1986).

An important factor in the uncertainty of the accuracy of the toroidal approxima-
tion is the confusion regarding the way that the forces should be calculated. Previous
workers have chosen to employ the liquid bridge geometry at either the neck or at the
liquid bridge solid contact region (Hotta et al 1974). The now established ‘correct’
method has been stated by Princen (1968). However, since the toroidal approximation
leads to a liquid bridge surface of non-constant mean curvature which is inconsistent
with the Laplace-Young equation, there is no physically correct solution, only one

that leads to an optimal simple procedure in terms of the accuracy of calculating the
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forces.

In order to resolve the uncertainties in the accuracy of the toroidal approximation
and the stability of liquid bridges, we describe a simple numerical scheme for solving
the Laplace-Young equation of liquid bridges between two spheres. The more fun-
damental criterion for specifying the stable solutions of Laplace-Young equation and

the critical separation distance of rupture is also examined.

4.2.2 Theory and computational procedures

Consider a liquid bridge between two equal sized rigid solid spheres of radius R as
shown by figure 4.2. In the absence of gravitational effects, the pressure deficiency
across the air-liquid interface of the liquid bridge is given by the Laplace-Young

equation which may be expressed in the following dimensionless form,

Y 1

2H" = - - -
(14 Y?2)3/2 Y(1+ Y?2)1/2

(45)

where X and Y are dimensionless coordinates with respect to the sphere radius, R,
and H* is the dimensionless mean curvature defined as,
_ApR

H* = 4.6
2111.' ( )

where Ap is the pressure deficiency across the air-liquid interface, -, is the surface

tension of the liquid (i.e. the liquid-vapor interfacial surface energy).

The total force, F, acting between the two spheres is the combination of two
components: (a) the axial component of the surface tension acting at the three-phase
contact line and (b) the hydrostatic pressure acting on the axially projected area of
the liquid contact on either sphere. This leads to the following expression for the

force,
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F = 27y, Rsin ¢sin(¢ + 0) + TR*Apsin® ¢ (4.7)

where ¢ is the half-filling angle as shown by figure 4.2 and Y; is the dimensionless

neck radius of the liquid bridge.

Figure 4.2: A symmetric liquid bridge between two equal sized rigid spheres

The solution of equation 4.5, Y/(X), represents the meridian profile of the liquid
bridge and it cannot be solved analytically. The numerical solution of equation 4.5
may be approximated by a truncated Taylor series to obtain the following recurrence

equation,
- 1 o
Yin 2 Y+ (X = XYi+ 5 (Ko — XD, i=0,1,2,... (4.8)

This is the modified Euler method for the numerical solution of ordinary differential
equations. In order to evaluate equation 4.8, it is necessary to obtain the expressions
for Y;, Y; and the initial value Y;—q which is the neck radius, Y, of the liquid bridge.

Substituting @ = Y2 + 1 into equation 4.5 yields
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@_@_ *"3/2
T — 5 =4HQ (4.9)

This is in the form of a Bernoulli equation which may be integrated to give

Y

*2 __
m-z)l—{z_'-ﬂy =C (4.10)

where C is an integration constant for which an expression may be found from the

following boundary conditions at X = X,

Y =sing (4.11)

Y = cot( + 0) (4.12)

which yield

C =sin¢sin(¢ + 0) + H*sin’ ¢ (4.13)

Since the liquid bridge is symmetrical about the Y axis, it follows that ¥ = 0 at

X = 0 which allows for the following expression for Y; to be obtained from equation

4.10,
C if H* =0
To= —1+/1+4H*C ., ,,. (14)
IH* !f H % 0

Expressions for Y; and ]7; may be found by rearranging equation 4.5 and 4.10 as

follows,

. % o
Yi= \/(C_—H.Y'_g) -1 (4.15)
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- 14Y2 .
Vi= —T50 4 2B (1 4+ V2 (4.16)

In summary, the numerical solution to the Laplace-Young equation was obtained
from the recurrence equation 4.8 evaluated using the expressions 4.14, 4.15 and 4.16 in
the interval X = 0 and X = X, see figure 4.2. The final limit at X, was determined
by the boundary condition 4.11 and the other boundary condition 4.12 was employed
to ensure that the interval AX = X;;; — X; was sufficiently small such that the
error in Y at X = X, was less than 10~6. This ensures that further reduction in the
interval AX did not lead to changes in Y(X) greater than 107%. In order to evaluate
Yy and f’, Y at different X; locations using equations 4.14, 4.15 and 4.16, values of
the dimensionless mean curvature, H*, the half-filling angle, ¢, and the solid-liquid
contact angle, 8, were specified. This is equivalent to specifying the dimensionless

liquid bridge force, F*, which, from equations 4.7 and 4.14, may be written as,

F

= = 2xYy(1 4 H'Y,) (4.17)
-nuR

The dimensionless liquid volume, V* = V/R?, was obtained directly from Y (X)

as follows,

Xe
v =j 2rY2dX — 2_1r (1 — cos ¢)*(2 + cos ¢)
0 3

Amge 2w
~ Y 2rYVEAX - = (1 — cos ¢)*(2 + cos ¢) (4.18)

X,=0

To maintain a constant volume of liquid for a given set of calculations, at a given
dimensionless mean curvature and a given solid-liquid contact angle, an interval-
halving iteration method was adopted to obtain the corresponding value of the half-
filling angle. The recurrence and iteration scheme were repeated for different values
of the dimensionless mean curvature to obtain a corresponding set of half-filling an-

gles, dimensionless liquid bridge forces and dimensionless separation distances (made
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dimensionless to the sphere radius, §* = S/R), for a constant volume of liquid. This

scheme results in high accuracies and computational efficiency.

4.2.3 Rupture criterion and stability of liquid bridges

For the first part of this work, numerical solutions to the Laplace-Young equation
were evaluated for the dimensionless liquid bridge between two spheres with different
solid-liquid contact angles (from 0° to 40°) and different dimensionless liquid volumes
(from 0.001 to 0.03). Some results of the numerically evaluated solutions to the
Laplace-Young equation are shown in figure 4.3 (a to d), where the variation of
the dimensionless neck radius, Yg, the half-filling angle, ¢, the dimensionless mean
curvature, H*, and the dimensionless force, F*, are plotted as a function of the
dimensionless separation distance, S*, for different constant liquid volumes and a
zero contact angle. It confirms that for the Laplace-Young equation there are two
possible solutions. The two solutions converge at the maximum separation of the
constant liquid volume curves. Since for separations which exceeds this maximum,
no solution exists, it is natural to choose this as the critical rupture distance of stable

liquid bridges.

It was pointed out earlier that previous workers have selected the neck diameter
(Erle et al 1971) and the half-filling angle (DeBisschop and Rigole 1982, Mazzone et
al 1986) as arbitrary criteria for determining the critical rupture separation distance.
The mean curvature and total force would be equally valid criteria on this basis since
these parameters are also obtained from the numerical evaluation of the Laplace-
Young equation. Figure 4.3 shows the plots of the numerically evaluated quantities
of neck radius, half-filling angle, mean curvature and force in dimensionless forms as
a function of the dimensionless separation distance. For all the cases, there are two

possible solutions and the upper limit value of the separation distance corresponds to
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Figure 4.3: Stable (solid lines) and unstable (dashed lines) numerical solutions of the

Laplace-Young equation versus dimensionless separation with different dimensionless

liquid volumes and a zero contact angle expressed in terms of dimensionless quantities

of (a) neck radius, (b) half-filling angle, (c) mean curvature and (d) total force.
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the point where the two solutions converge.

The values of the critical dimensionless separation distance, S, shown in this
figure, corresponding to the convergence of the two solutions, are all identical in terms
of each criterion and are consistent with the values obtained by Erle et al (1971) and
Mazzone et al (1986) and are in excellent agreement with the experimental data of
Mason and Clark (1965). This comparison is shown in figure 4.4 for three liquid-solid
contact angles of 0°, 5° and 10°. The optimal ‘fit’ corresponds to a contact angle of
about 7° which is consistent with the comments made by Mason and Clark (1965)

that the contact angle for their experimental systems was slightly greater than zero.

0.4

Dimensionless rupture distance

0.1 = 0
----- 0=>5
""" 0=10
0.0 ¥ T T T % 1
0.010 0.020 0.030

Dimensionless volume of liquid

Figure 4.4: The dimensionless critical rupture distances of stable liquid bridges as
a function of the dimensionless liquid bridge volume-A comparison of Mason and
Clark’s (1965) measured data with the numerically computed values at contact angles

of 0%, 5% and 10°.
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While the above criteria do produce good agreement with experimental data, it
is necessary to obtain the numerical solution for both branches and to identify the
stable one. Figure 4.3b shows that there is a minimum in the half-filling angle at
separation distances less than the maximum critical values. As correctly pointed out
by Mazzone et al (1986), this local minima of the half-filling angle was previously
employed by DeBisschop and Rigole (1982) as a rupture criterion which leads to
a large underestimation of the rupture distances determined by Mason and Clark

(1965).

A more fundamental approach to specifying stable solutions of the Laplace-Young
equation is to examine the minimum condition for the Gibbs’ free energy of the liquid
bridge system. The minimum Gibbs’ free energy formulation of liquid bridges was
previously obtained by Erle et al (1971) and DeBisschop and Rigole (1982) in different
ways. Since the first variational problem, the necessary condition of minimum Gibbs’
free energy, using either formulation, leads to the Laplace-Young equation, it is not
clear which is correct. This will be examined here by considering the previous work
involving the calculus of variations undertaken by Erle et al (1971) and DeBisschop

and Rigole (1982).

Assuming that the surfaces of the spheres which were not nominally in contact
with the liquid bridge were also wetted by a thin layer of liquid, Erle et al (1971)

derived the following expression for the surface free energy of the system, Eg, as

B v | dy., s/242R [ du.,
Eg—“?"}'u.[/ﬂ y l+(da:) d:r+[& uy/1 4+ ( :c) dz (4.19)

where z, y are dimensional coordinates, S is the dimensional separation distance and

u = u(x) represents the circular profile of the spheres which is defined as follows,

u(z) = \/R? — (z — 2,)? (4.20)

101



where (z,, 0) is the centre of the right hand sphere. Equation 4.19 may expressed in

the following form by substitution of equation 4.20,
Te dy
Eg = /0 Gg(z,y, E) dz + 27y, R(S + 2R) (4.21)

where

d
Ge(e, v, 72) = 47 [y 1+(—"")2—R] (4.22)

DeBisschop and Rigole (1982) considered that the total Gibbs’ free energy of a
liquid bridge comprised the sum of the energy involved in displacing the air phase
volume and the surface free energy associated with the liquid-air interface of the
bridge and also the liquid-solid interface where the bridge makes contact with the
spheres. This leads to the following expression for the total Gibbs’ free energy of the

system, Ep, given as,

Te dy L d‘u
-y Y1+ (522 dz+4m (v =700 f 1+ (Go)? dz+pV(4.23
Ep vr'nu_/o Y +(dx) T+47 (Yot —Ysv) - +(d:c) z+p.V(4.23)

where p, is the pressure in the vapour phase and 7y, 75, are the surface tensions of
the solid-liquid and solid-vapour interfaces respectively. Because of the well-known
Young’s formula of equation 4.2, it follows that equation 4.23 may be written as

follows by substitution of (vg4 — vsv),
Te dy
Ep = f Gp(z,y, E) dx + 27y, RS cos 0 + p,V (4.24)
0

where

d / d
Gp(z,y, ;i%) = 47T, [y 14 (d—z)"! — Rcos ¥
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The constraint which was placed on both formulations of the free energy was
the condition of a constant volume for the liquid bridge. This volume, V, as given
by equation 4.18 in the dimensionless form, may be also written in the following

dimensional form,

V=21r]zcy2dm—27r/rcu2d:c
0 S/2

Te 2 3 1
= 211']0 [v* - R+ (z — R— 5/2)%]dz + -33(2R3 + ZRS2 - g53) (4.26)
The minimisation of the Gibbs’ free energy subject to the constant volume con-
straint is equivalent to the minimisation of the following integral function,
8y,

2y (4.27)

E=E+AV= /% G'(z,y,
0 dz

where E is given by Eg or Ep, the parameter A is the Lagrange multiplier and Ep is an

arbitrary constant. The function G'(z,y,dy/dz) is given by the following expression
dy dy S
' 8y, _ ay 2 _ p2 _p_ 2y :
G(e.0, ) = Gle,v, L) + 20Aly? — R4 (2~ R— 5)1 (428)

where G is given by Gg or Gp corresponding to Eg or Ep respectively. The necessary
condition for the liquid bridge to have a minimum Gibbs’ free energy requires that
the following equation be satisfied,

aG'  d oG

— i e} =D 4.29

o~ 1235 (4.29)
Substitution of either equation 4.22 or 4.25 into 4.29 both lead to the same expression

as follows,

- y _____1
A=—vy, { (149232 y(1+ ‘1}2)1;2} (4.30)
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which is the other form of the Laplace-Young equation 4.5 with A = —Ap.

Strictly, it is necessary to introduce a supplementary condition for a minimum in
the Gibbs’ free energy since the integrals in equation 4.19 to 4.27 must be evaluated
between 0 and z, where the upper limit z. is not uniquely defined for a given volume

of liquid but is given by a function ¥(z,y) as follows,
Y(z,y)=(z—R-S5/2)*+y* - R*=0 (4.31)

The previous work of Erle et al (1971) and DeBisschop and Rigole (1982) ig-
nored the fact that a minimum Gibbs’ free energy also requires that the following

supplementary condition be satisfied,

dy (G_yfh")

When this equation is evaluated by employing equation 4.22 of Erle et al (1971)

_ 9y oG
— " 0z Oy

(4.32)

T=Tc

substituted into 4.28, the equation 4.32 reduces to,

Rcos@ =R (4.33)

This implies that the formulation of Erle et al (1971) is only applicable for a zero
contact angle. However, in the case of DeBisschop and Rigole’s (1982) formulation of
Gibbs’ free energy, i.e. by employing equation 4.25 for the substitution, both the left
and right hand sides of equation 4.32 reduce to the expression R cos#, showing that

it applies to a more general situation of finite solid-liquid contact angles.

Mathematically, for a stable liquid bridge with a minimum Gibbs’s free energy,
not only should the necessary condition, the first variation equals zero, be satisfied,
but also the sufficient condition, the second variation being positive, must hold. Un-

fortunately, the second variation problem of the Gibbs’ free energy has not yet been
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solved analytically. However, since for the Laplace-Young equation, which satisfies
the necessary condition of a minimum Gibbs’ free energy, there are two possible solu-
tions, we can alternatively identify the stable branch by comparing the Gibbs’s free
energy of the two solutions. For the more general formulation of the Gibbs’ free en-
ergy given by DeBisschop and Rigole (1982), the term p,V in equation 4.23 is in fact
a constant and, consequently, is not relevant to liquid bridge stability. Therefore, it
is only necessary to consider the case when p, = 0 and define the Gibbs’s free surface

energy of a liquid bridge system as follows,

E =4n~, [/0cy\/1+j2d:c—cos6'[w;uv1+112dm] (4.34)

or, in dimensionless form,

Xe :
E* =4rx j YV1 4 V2dX — dn(X. — S*/2) cos (4.35)
0

In accordance with the numerical solution, we further derive the expression for the

free energy as follows,
X i
E*~4r Y Yi\/1+Y2AX —4n(X,. — S*/2) cos b (4.36)
0

Equation 4.35 or 4.36 now arguably provides a fundamental way of expressing the
stability of liquid bridges since it is written directly in terms of the Gibbs’ free surface

energy.

For the same numerical solutions to the Laplace-Young equation, as shown by
figure 4.3, the corresponding dimensionless free surface energy curves are shown in
figure 4.5 for different dimensionless liquid volumes. Here it is obvious that, of the two
numerical solutions to the Laplace-Young equation, the stable branches correspond

to the lower free energy.
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Figure 4.5: The dimensionless Gibbs’ free surface energy as a function of the dimen-
sionless separation distance for a range of dimensionless liquid bridge volumes and
a zero contact angle corresponding to the stable (solid lines) and unstable (broken

lines) numerical solutions of the Laplace-Young equation

A comparison of figure 4.5 with figure 4.3 shows that the variation with the liquid
volume of the critical rupture distance at which the solutions converge is identical to
that found previously using the other criteria. This is the expected result since a liquid
bridge is uniquely specified by its volume, the separation distance between the spheres
and one of these five criteria. Finally in this section, an interesting observation was
made that there is a simple relationship between the calculated dimensionless rupture
distance, S and the dimensionless liquid volume, V*. These quantities are plotted

on logarithmic scales in figure 4.6 for a number of solid-liquid contact angles.

It may be seen that each set produces a straight line of slope 1/3 and can be

represented by the following fitting equation,
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S~ (140.50)VV* (4.37)

where the solid-liquid contact angle is expressed in radians. To a good approximation,
the dimensionless rupture distance is equal to the cube root of the dimensionless

volume for small contact angles.

Contact angle
o 0=0 >
o 0=20 A
o I
A 0=30
0
" g=40 I

i

LAY

NLAAN

=
L

Dimensionless rupture distance

.001 .01 A
Dimensionless volume

Figure 4.6: A double logarithmic plot of the numerically computed dimensionless

rupture distance as a function of the dimensionless liquid bridge volume at a number

of contact angles.

4.2.4 Liquid bridge forces

One of the intentions of this work was to compare the numerically calculated lig-
uid bridge forces with the experimental data of Mason and Clark (1965) and with
the various methods of applying the toroidal approximation (Fisher 1926). The ex-
perimental data of Mason and Clark (1965) have become a recognised standard of

comparison. They measured the forces for two 15mm radius spheres with liquid
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bridges comprising di-n-butyl phthalate/liquid paraffin mixture which had a surface
tension of 2.45 x 1073 Nm~!. The liquid bridges were suspended in water to elimi-
nate gravitational distortion. Consequently, these values of sphere radius and liquid
surface tension were employed in the work described here. Mason and Clark (1965)
did not specify the contact angle for their system but indicated that it was small. In

the current work, a range of solid-liquid contact angles was examined from 0° to 40°.

In the case of the much simpler toroidal approximation proposed by Fisher (1926),
the meridional profile of the liquid-air interface Yz(X) is an arc of a circle (see figure

4.7) which may be expressed as,
Yr=pi+ 02— V(p1)? - X? (4.38)

where p} and p; are the dimensionless principal radii of curvature with respect to
the radius of the spheres, R, such that p; corresponds to the radius of the meridian

profile and p, is the radius at the neck (refer to figure 4.7).

From the geometry of figure 4.7 the dimensionless principal radii can be derived

as,

. S*/241—cosd
Pr= cos(¢ + 0)

(4.39)

[1 —sin(é + 0)][S*/2 + 1 — cos ¢]
cos(¢ + 0)

p3; =sin¢ — (4.40)

Substitution of equation 4.38 into equation 4.5 leads to the dimensionless local
mean curvature, H, and the dimensionless volume of liquid, V; defined as follows,

« 2Y—pi—p5

= 4.41
H = =7 (441)

73

Vi =2m | (57 + )X+ (1) X —
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Figure 4.7: Toroidal approximation of a liquid bridge between two equal sized spheres

— (1 + p3)(Xe\/(p5)? — X2 + (p7)? arcsin %)

1

2
—-35 (1 — cos ¢)2 (2 + cos ¢) (4.42)
The minimum value of Hy is at the bridge neck and is given by,

" Pz — P
(HE)min = 5. % (4.43)
d 20303

The maximum value corresponds to that at the solid-liquid-vapour contact line, thus,

2sin ¢ — p} — p3
Hg mar — " 4.44
(HE) 2pising ( )

When using the toroidal approximation to calculate the force, various methods
are possible, depending on the location along the liquid bridge used to compute the
two components of the total force. The physically most ‘correct’ formulation of the

total force is that obtained from equation 4.7,
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Fy, = 2r{sin ¢sin(¢ + 0) + (Hy)sin® ¢} (4.45)

where H} is the maximum value specified by equation 4.44. One alternative is to
use the minimum value of H} given by equation 4.43, which in this work is referred
to as the ‘mixed method’. Another quite different formulation is based on what has
been termed the ‘gorge method’ (Hotta et al 1974). This involves using the area at
the neck to obtain the force arising from the hydrostatic pressure deficiency and the
tangent at the neck to obtain the surface tension component of the force, leading to

the following expression for the total liquid bridge force,

Fgp = 2mp3{1 + (HE)minp3} (4.46)

That this expression is of the same form as equation 4.17 with Y5 = pj} is fortuitous.

Calculations based on the toroidal approximation were also carried out for the
liquid bridges with the same ranges of liquid volume, solid-liquid contact angle and
separation distance as those used for the numerical computations. The forces cal-
culated using either the numerical scheme described in this paper or the toroidal
approximation were both consistent with the values published by others (Erle et al
1971, DeBisschop and Rigole 1982, and Mazzone et al 1986). A comparison was made
of the numerically evaluated liquid bridge forces with those calculated using the dif-
ferent procedures for the toroidal approximation. It was not possible to reproduce
the large differences reported by Mazzone et al (1986). Figure 4.8 shows some results
of the comparison where, for the toroidal approximation, both the physically most
‘correct’ formulation (equations 4.44 and 4.45) and the ‘mixed method’ (equations
4.43 and 4.45) were used. The dimensionless liquid bridge force is plotted as a func-
tion of the relative separation distance, (S/S.), where S, is the critical separation
distance corresponding to rupture. It is shown by figure 4.8 that there is a significant

overestimation of the force by using the physically ‘correct’ formulation. Using the
g phy g
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‘mixed method’, there is only a small overestimation at small separation distances.
At large separations, however, the ‘mixed method’ severely underestimates the liquid
bridge force. The difference increases for large liquid volumes and large separation

distances.

3
Y
"\ "“ Numerical solution
AR Y
i3 \.\“.‘ """"" Physically correct method
g a4 \\ e Mixed method
S
a
8 A
[=
2
=
g 27
E
D - - -
0
0.0 1.0

Relative separation, S/Sc

Figure 4.8: A comparison of the dimensionless liquid bridge force as a function of the
relative separation distance for a constant dimensionless liquid bridge volume (0.005)
and a zero contact angle, calculated using the numerical method, the physically ‘cor-

rect’ method and the ‘mixed’ method of the toroidal approximation

For the toroidal approximation, the best estimate of the total liquid bridge force
was obtained using the gorge method, equation 4.46. Figure 4.9a shows some results
of such calculations for a zero solid-liquid contact angle and different liquid volumes.
The dimensionless liquid bridge force is again plotted as a function of the relative
separation. It can be seen that when the gorge method is used, the toroidal approxi-
mation also underestimates the numerical values but the maximum difference is less
than 10% corresponding to the greatest volume considered. The accuracy does not

even change much when the separation distance increases.
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Figure 4.9: A comparison of the dimensionless liquid bridge force as a function of
the relative separation distance for a range of dimensionless liquid bridge volumes
calculated using the numerical method (solid lines) and the gorge method (broken

lines) of the toroidal approximation for contact angle of (a) 0° and (b) 40°
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Figure 4.9b shows a comparable set of data but for a contact angle of 40°. It can be
seen that when the gorge method is used there is virtually no change in the accuracy
of the toroidal approximation. This may be expected because of the self-similarity of

liquid bridges between two spheres as exemplified by figure 4.10.

)

R

Figure 4.10: A liquid bridge between two pairs of solid spheres of different radii and

with different half-filling angle and different separation distances

It is shown that a liquid bridge between two solid spheres of radius, R, with a
contact angle, 0°, half-filling angle, ¢, and separation distance, S, is identical to a
liquid bridge with a finite contact angle, 6, and the following transformed quantities

denoted by a prime,

¢ =¢—0 (4.47)

= Rsiniie;”—6 ) (448)
sin @ — sin ¢ + sin(¢ — 0)
sin(¢ — 0)

S'=S+2R (4.49)
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To underline the accuracy of the gorge method using the toroidal approximation,
a comparison was also made with the experimental data of Mason and Clark (1965)
as shown in figure 4.11. These calculations were performed for a solid-liquid contact
angle of 7°. It may be seen that the agreement with the experimental data is compa-
rable for the exact and the toroidal gorge approximation. The discrepancies produced

by both methods at large volumes and small separations were discussed previously.

An alternative approach to estimating the forces using the toroidal approximation
is to scale the dimensionless mean curvature and neck radius in equation 4.17 by
expressions calculated from the toroidal approximation. For the scaling coefficient
for the neck radius, ky = Y5/p3, a plot of the coefficient as a function of the relative
separation distance for a range of liquid bridge volumes is shown in figure 4.12a.
It can be seen that large deviations from unity are only apparent at large relative
separations. Furthermore, this scaling coefficient is independent of the bridge volume.
Consequently, it may be expressed as a function of the relative separation only. By

employing an exponential form function, the scaling coefficient may be best fitted by,
ky = 1.0 — 0.00032 exp(6.85/5.) (4.50)

The scaling coefficient employed for the dimensionless mean curvature was ky de-
fined as (H*+ 1)/[(HF)maz + 1] where (HE)maz is the dimensionless mean curvature
evaluated at the solid-liquid contact from equation 4.44 using the toroidal approxima-
tion. This coefficient is plotted in figure 4.12b as a function of the relative separation
for a range of liquid volumes. In this case, deviations from unity start at low separa-
tion distances but again the coefficient is relatively insensitive to the bridge volume.
The coefficient may be expressed in terms of the relative separation by the following

second order polynomial,

S S
ky =0.91 —0.10— — 0.61(=)? ;
g =09 01056 061(50) (4.51)
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Figure 4.11: A comparison of Mason and Clark’s (1965) data for the liquid bridge
force between two 30mm diameter spheres with the results obtained using (a) the

numerical computation and (b) the toroidal approximation.
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Figure 4.12: The scaling coefficients for (a) the neck radius and (b) the maximum
mean curvature from the toroidal approximation as a function of the relative separa-

tion for dimensionless liquid bridge volumes of 0.001 (o) and 0.01 (O)
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Thus a reasonably exact closed-form approximation to the total dimensionless liquid
bridge force may be derived using equation 4.17 with the modified dimensionless mean
curvature and liquid bridge neck radius obtained from the toroidal approximation. It

is written as,

F* = 2mky p3 {1 + [kt (H3mas + ki — 1]k, 03} (4.52)

This expression is applicable for separation distances up to critical rupture value
and for any liquid bridge volume and contact angle. However, it does assume that

the gravitational effect is negligible.

4.2.5 Liquid bridge between unequal sized spheres

For a liquid bridge between two unequal sized spheres, the toroidal approximation
can be modified. This is achieved by choosing the origin of the coordinate system
at the neck of the bridge as shown by figure 4.13 where the sphere radii are de-
noted as R;, R;. From geometric considerations, the two principal radii, p1, p2, that

characterize the toroidal bridge may be expressed as,

_ Si+ Ri(1 — cos ¢;)
= cos(@; + )

(4.53)

[1 —sin(¢; + 0)][S; + Ri(1 — cos ¢;)]

p2 = R"Si“ ¢i tEa COS((&{ + 9)

(4.54)

where z = 1 or 2.

For a given separation distance, S = S; + 53, between the two spheres the toroidal

approximation provides the following expression for the total volume of liquid V =

i+V,

117



Figure 4.13: Toroidal approximation of a liquid bridge between two unequal sized

spheres
z; . Tei
Vi = nl(p1 + p2)"z + pizei — 5 — (o1 + p2)(zeit/ pt — 2% + pf aresin =)
1
R3
—3’3—=(1 — cos 6;)%(2 + cos ¢;) (4.55)
where i = 1, 2 and
To = S; + Ri(1 — cos ¢;) (4.56)

From equation 4.53 and the relation S = S;+3S5,, it follows that the half-separation

distances, S;, S;, can be expressed as,

S+R1 +R)_— R] COS¢| - RQCOSQSQ

Gy =0 +fall —eonghs) — = TB+ coslda 1 0)

cos(¢z +0) (4.57)

S + R] + R'z — R] COS¢| _ R2C03¢)2
cos(¢1 + 8) + cos(¢, + 0)

Sz = S + Rl(l — COS é]) s COS(QSI + 9) (4'58)
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Substituting the expressions of S; and S, into equation 4.54, we obtain the fol-

lowing equation by rearrangement,

Ry sin ¢ — R sin ¢, _ sin(¢z + 8) —sin(¢ 4+ 6)
[S+ Ri(1 —cosy) + Ra(1 — cos ¢2)]  cos(éy + 0) + cos(p2 + 0)

(4.59)

which can be further rewritten as,

(R1 — Ry)sin ¢y cos(¢z + 0) + [(R1 — Rz)cos ¢1 — (S + Ri + Rz)]sin(4; + 0)

-+ (S + Rl + Rz) sin(r,bl + 9) - (R] - R;;)Sin 0=0 (460)

From this expression, it is further derived that the half-filling angle ¢, may be ex-

pressed in terms of ¢; as follows,

S%sin(¢y + 0) — (R; — Ry)?sin(¢y — 0) —2Sg(R; — Ry)sin 6

sin(¢s + 0) = St + (R1 — R2)? — 2Sr(Ry — R2) cos ¢y

(4.61)

where we denote Sg = S + R; + R,. Thus a liquid bridge between two unequal sized
spheres is uniquely determined for a given set of parameters of sphere radii, R;, R,,
separation distance, S, and half-filling angle, ¢,. This is equivalent to specifying
the volume of liquid, as given by equation 4.56, and the force, as approximated by

equation 4.46, of the liquid bridge.

4.3 Viscous force of dynamic liquid bridges

4.3.1 Governing equations

For a dynamic liquid bridge between two spheres, a continuous deformation of the

liquid bridge takes place due to the relative movement of the spheres and hence the
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Figure 4.14: Schematic representation of a dynamic liquid bridge between two equal

sized spheres with three different relative movements

strength of the bridge depends not only on the shape-dependent meniscus force of
the bridge but also on the rate-dependent viscous resistance of the fluid. In certain
chemical processing engineering problems such as fluidized beds, dryers, agglomera-
tors and powder flows, the viscous force is very significant for highly viscous liquids.
The viscous term can be also dominant for moderatly viscous fluid at high shear rates.
An understanding of the viscous effects is therefore important when considering the

high-strain-rate properties of moist agglomerates.

In general, for a dynamic liquid bridge between two equal sized spheres, if the
coordinate system is chosen such that the origin is fixed on the centre of one sphere
and the z—axis points to the centre of the other sphere, as shown by figure 4.14, the
relative movement between the two spheres can be resolved in terms of (a) the normal
translation vy, (b) the tangential translation v; and (c) the rotation w. For all the

cases the following Stokes-Navier equation should be satisfied if the inertia effect of
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the liquid bridge fluid is negligible. The Stokes-Navier equations are,

Vp =V
Vi=0

(4.62)

where p is the fluid pressure, ¥ = (v, v,,v.) is the velocity field and 7 is the fluid

viscosity. V and V? are the Hamilton and Laplace operators which are defined as

follows,
-d <0 =0
V=z$ +36_y+k5 (4.63)
2 2 2
N LA (4.64)

T :
dz? ~ Oy? ¥ 022
where E, _:,-", k are the unit vectors in the z—, y—, z— axial directions.

For the three different relative motions, solutions to the Stokes-Navier equations
should be evaluated separately in association with the corresponding boundary con-

ditions. However, exact solutions are very difficult.

For a dynamic liquid bridge when the spheres are subjected to relative move-
ment in the normal direction, McFarlane and Tabor (1950) observed experimentally
that the viscous force was significant for more viscous liquids (viscosity ~ 1Pas). Re-
cently, studies have been made by Adams and Perchard (1985), Mazzone et al (1987),
Matthewson (1988) and Ennis et al (1990). They considered the Reynolds’ lubrication
equation for the case of a sphere moving normal to a flat surface or another sphere
at a small separation distance. The solution obtained however is asymptotic which
is very similar to the asymptotic solution of a sphere moving through a semi-infinite
fluid. Here, both the Reynolds’ lubrication theory and the semi-infinite theory are

discussed.
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4.3.2 Reynolds’ lubrication approximation

Assuming that locally and instantaneously the flow is taken to be steady, Hocking
(1973) showed that the Reynolds’s lubrication equation that describes the pressure
distribution, p(r), in the squeezed fluid between two close surfaces reduced to the

following equation (refer to figure 4.15 for the notation),

14
127}0,, = ;5

r23(r) 32(:)] (4.65)

where p(r) is the pressure distribution, 2(r) is the local separation distance between

the two surfaces and r is the radial distance from the centre.

Figure 4.15: Schematic representation of the squeezing flow between two colliding

spheres.

For a power law liquid film between two axisymmetric surfaces, a solution for
equation 4.65 was obtained by Adams and Edmondson (1987) which leads to an

expression for the viscous force as follows,

2rn _I_ 1 Rsil.l.¢ rnl+2
— am+1_1, m,.m .
Fu = 2™k, (ST fo i (4.66)

122



where m is the power law index (i.e. n = k,v™).

In the case of two spheres with a separation distance .S, Adams and Perchard
(1985) assumed that the liquid bridge is only around the small area of the contact and

thus the local separation distance between the two profiles z(r) can be approximated

by,

2

r
=5+ 4.67

z +5 (4.67)

For a Newtonian liquid of m = 0 and k, = 7, substitution of equation 4.67 into 4.66
leads to the following expression for the viscous force of the dynamic liquid bridge,

3 R*v,
ko= 25

(4.68)

A similar expression for the viscous force of the liquid film between a sphere and

a flat surface was obtained by Chan and Horn (1985)
F, = 6mR*v,/S (4.69)

For a liquid bridge between a sphere and a plane with a finite half-filling angle ¢,

Matthewson (1988) modified this equation to give the viscous force as follows,

S 2Un

— M1
Fo = 6m R S+ R(1 — cos qf))] S

(4.70)

For a liquid film between two unequal sized spheres of radii R;, R; at a separation
distance, S, we can similarly approximate the local separation distance between the

two surfaces as,

(4.71)



where R* is as defined by equation 3.5. With the substitution of equation 4.71
into 4.65, it follows that the pressure distribution over the spherical surfaces can be

obtained as,

. 1
p(r) =3nR v,,(S T RR (4.72)
which can be integrated to derive the viscous force as,
F, = 6mn(R*)*v,/S (4.73)

It is obvious that both equations 4.68 and 4.69 are two special cases of equation 4.73.

The above analysis only considers the relative movement of rigid solid spheres.
The more general case is the viscous resistance of an elastic sphere moving towards a
second elastic sphere or a plane surface, under the condition that the two solid surfaces
are separated by a thin infinite fluid layer or a finite liquid bridge. The problem of
elastohydrodynamic collisions of particles has been studied by Davis (1987) and others
(Davis et al 1986; Serayssol and Davis 86; Barnocky and Davis 1988a, 1988b). In their
studies, the pressure profile of the Reynolds’ lubrication equation 4.65 was obtained
numerically by considering the dynamic deformation of the solid spheres. However,
this is a more complicated case for which analytical expressions are not possible. For
most cases, we may assume that the spheres are rigid enough that the deformations

of the surfaces are small and hence negligible in relation to the sphere displacement.

4.3.3 Semi-infinite theory

For the viscous force of a dynamic liquid bridge due to either the tangential or ro-
tational relative movements of the spheres, there are no direct experimental nor the-

oretical studies published in the literature. The more relevant semi-infinite theory,
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however, may approximately apply. In fact, the Reynolds’ lubrication equation can
be also regarded as a special case of the semi-infinite problem. The semi-infinite
theory considers a rigid solid sphere (or two spheres) moving through a semi-infinite
fluid bounded by a plane. There are several different cases. The typical cases which
are relevant to the liquid bridge problems include (a) a sphere translating towards or
away from a plane wall, (b) a sphere translating parallel to a plane wall and (c) the
rotation of a sphere parallel to a plane wall. The three cases and their relevance to

the dynamic liquid bridges are discussed below.

Translation of a sphere normal to a plane

The case of a sphere translating towards or away from a plane which bounds a semi-
infinite viscous fluid was studied by Brenner (1961). He showed that for a sphere of
radius R at a separation distance, S, and velocity, v,, the viscous force exerted on

the sphere due to the translatory motion can be expressed as follows,
F, = 6mnRv,A,.(S/R) (4.74)

where ), (S/R) is a correction factor to the Stokes force arising from the presence of
the plane. If the plane is a rigid plane wall, Cox and Brenner (1967), by employing
singular perturbation theory, obtained an approximate expression for A,(S/R) which

applies to small gaps of S/R — 0 and may be expressed as,

R S, R S
o =2t [ Y i 9718 _) 4.75
M(S/R) = 5 (14 ZIn 5 +0.97132 (4.75)
Substituting this expression into 4.74 and comparing with 4.69, we recognize that
the solution to the Reynolds’ lubrication equation can be also regarded as a special

case of the semi-infinite solution with the last two terms of equation 4.75 being trun-

cated, which for small separation distances, only account for a very small part of the
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total viscous force. Therefore, the viscous force for a dynamic liquid bridge at small

separation distances can be reasonably approximated by the semi-infinite solutions.

Translation of a sphere parallel to a plane

For the translatory motion of a rigid solid sphere in a semi-infinite viscous fluid and
parallel to a nearby rigid plane wall with a velocity, v,, and at a separation distance, S,
Goldman et al (1967a, 1967b) solved the Stokes equation and presented an analytical
expression for the viscous force exerted on the sphere. For a small gap of S/R — 0,

asymptotic, lubrication-theory-like expressions for the viscous forces were derived as

follows,
R
= (—— In— + 0.9588)67n Ru, (4.76)
2. R 3
Mu = (E In E == 0.2527)61”}.R Ve (4.77)

where T, is the viscous force and M, is the viscous torque. Goldman et al (1967a)
also carried out numerical calculations and indicated that the asymptotic solutions
are in good agreement with the exact solutions for a ratio of the separation to the

sphere radius S/R smaller than 0.3.

The parallel translation of a sphere in a semi-infinite viscous fluid resembles the
tangential relative translation of the dynamic liquid bridge spheres if the rigid wall
bounding the semi-infinite fluid is treated as a sphere with an infinite radius. On
this basis, the semi-infinite solutions of equations 4.76 and 4.77 may be extended
to approximate the viscous force due to the tangential translation of liquid bridge

spheres.
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Rotation of a sphere parallel to a plane

The relative rotation of spheres connected by a dynamic liquid bridge is very similar
to the rotation of a sphere in a semi-infinite viscous fluid bounded by a rigid plane wall
and about an axis parallel to the wall. This semi-infinite problem was also studied
by Goldman et al (1967a). For a sphere of radius, R, at separation distance, S,
from the wall and rotating with a velocity, w, Goldman et al derived the approximate

asymptotic expressions for the viscous force at small gaps as follows.

F,= ('116 In -g’ — 0.1895)87my R*w (4.78)
2. R
M= (g In 5 0.3817)8mn R*w (4.79)

where F,, is the viscous force and M, is the viscous torque.

As an approximation, equations 4.78 and 4.79 may be applied to evaluate the
viscous resistance of a dynamic liquid bridge due to the relative rotation of the spheres

by replacing R with R*.



Chapter 5

DEM computer program
TRUBAL

This chapter is primarily concerned with the application of the Distinct Element
Method (DEM) to the simulation of dry and moist particle systems. The implemen-
tation of the contact force and liquid bridge force in the DEM simulation of particle
systems using Cundall’s (1988) computer program TRUBAL is discussed. At Aston,
there are two new versions of TRUBAL. One version is the basic version which is
used for the modelling of dry particle systems and the other is developed from the
basic version to simulate moist particle systems with pendular liquid bridges. In this
chapter, the latest developments and enhancements of the two versions of TRUBAL

are also explained.
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5.1 Introduction

TRUBAL is a computer program for the modelling of three-dimensional particle sys-
tems of elastic spheres by using the Distinct Element Method (DEM). It was origi-
nally written in FORTRAN by Cundall in 1979 and modified from time to time. In
1989, Cundall’s latest version of TRUBAL was introduced to Aston. This version of
TRUBAL is capable of modelling cuboidal assemblies of dry particles under different
loading and unloading conditions. During a simulation, particles are randomly gen-
erated in a specified cubic space (unit cell or work-space). Periodic boundaries are
introduced for the unit cell. The progressive movement of each constituent particle is
calculated according to Newton’s second law of motion using a time-dependent finite
difference scheme. At the contacts between particles, the normal force-displacement
is modelled according to the Hertzian theory and the tangential force-displacement is
modelled as a linear spring. Extra facilities including servo-control, two dimensional
mode option and rudimentary 2D plots were included. The earlier applications of
TRUBAL have been mainly concerned with the simulation of quasi-static shear tests
on dense sphere assemblies (Zhang and Cundall 1986, Cundall 1988, and Cundall et al
1989). The focus of their work was to establish micromechanically based constitutive

laws for granular materials.

At Aston, extensive modifications and enhancements have been made to the com-
puter program TRUBAL. One major modification is that more realistic interaction
laws are now implemented. For particles without surface adhesion, the version of
TRUBAL at Aston models the normal and tangential contact forces according to
the theories of Hertz (see Johnson 1985) and Mindlin and Deresiewicz (1953) respec-
tively. In the presence of adhesion, the theories of Johnson, Kendall and Roberts
(1971) and Thornton (1991) are used for the normal and tangential contact forces
between particles. Modelling of the liquid bridge forces for the simulation of moist

particle systems has also been incorporated. The static forces of the liquid bridges
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are modelled according to the toroidal approximation (Fisher 1926). The viscous
forces are modelled according to the theory of Adams and Perchard (1985). Other

modifications and enhancements made to TRUBAL at Aston include,

- Options to generate particles randomly or automatically. The former is used to

generate random packings and the latter to generate regular packings.

- Options to generate particles in the unit cell or in a specified spherical region in

the unit cell.

— Options to define smooth plane walls or spherical containers. A servo control

mechanism is also available for walls.

- Options of a number of three-dimensional graphics output to view particles, ve-
locities, displacements, contact forces, contact connection diagram and clusters

etc.

- Options of screen graphics monitoring of energy partition, stress tensor, contact

number and other general information.

At Aston, recent applications of TRUBAL have focussed on the simulation of
agglomerate impact with a wall and collisions of two agglomerates (Yin 1992, Thorn-
ton and Kafui 1992, Kafui and Thornton 1993, Lian et al 1993a). The underlying
objective is to establish the criteria for assessing the fracture, fragmentation and
other degradation processes in terms of the physical and mechanical properties of the
constituent particles and binding materials. Computer simulated compression and
shearing tests of particulate assemblies have also been performed (Thornton and Sun
1993). At present, there are two versions of TRUBAL at Aston. They are capable of
modelling a wide range of problems related to particle systems such as hopper flow,

shear tests, diametrical compression tests and agglomerate collisions. One version is
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the basic version of TRUBAL which is used for the simulation of dry particle assem-
blies and the other has been developed from the basic version in order to model the
liquid bridge forces in moist particle systems. In the following, the development and

enhancement of the latest versions of TRUBAL at Aston is discussed.

5.2 General structure of TRUBAL

5.2.1 Program structure

TRUBAL simulates the mechanical behaviour of granular assemblies consisting of
spherical particles. To simulate a particulate assembly, the Distinct Element Method-
a time-dependent finite difference scheme developed by Cundall (1971)-is applied to
the cyclic calculation of the incremental contact forces and progressive movements
of the spheres. For each calculation cycle, the translational and rotational accelera-
tions of each of the constituent particles are given by Newton’s second law of motion.
Numerical integration is then performed over a small time-step to give updated ve-
locities and displacements for each sphere. The velocities of each particle are used
to find the relative approach between contacting particles which is in turn used to
calculate the incremental contact forces (normal and tangential) according to contact
force-displacement laws. The contact forces are resolved to obtain the out-of-balance
forces on each particle, from which new accelerations of each particle are then calcu-

lated at the next time-step.

The basic structure of TRUBAL (as shown in figure 5.1) consists of four parts.
The first part is the assembly generation module which is used to generate assemblies
of particles and to define particle properties. The main part of TRUBAL is the cyclic
simulation module, with which the evolution of contact forces and particle move-

ments is simulated using the Distinct Element Method. In order to perform a wide
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START >

ASSEMBLY GENERATION
Particle Generation
and Parameter Input

or Assembly Restoration

SIMULATION EXTERNAL CONTROL
Cyclic Computation Set or Change Control
of Contact Forces Mode, Boundary or Initial
and Particle Movements Conditions or Material Type
OUTPUT
Print output
and Graphic Plotting

SAVE (for RESTART)

{ STOP

Figure 5.1: The program structure of TRUBAL

132



range of computer simulated experiments, the external control module is included in
TRUBAL. Interactive laws and physical properties can also be changed. External
control options can be set or changed at any time during the simulation. The fourth
part of TRUBAL is the output module which provides a large selection of graphic
and print out options to facilitate the interpretation of the simulated experimental

results.

The basic structure of TRUBAL has not been changed since the program was first
written by Cundall in 1979 (Cundall and Strack 1979b). However, many modifications
have been made and many extensions provided in the present version of TRUBAL to

permit a wide range of problems related to particle systems to be simulated.

TRUBAL uses operative commands. Each operative command is associated with
the computation of one or a few basic steps related to the modelling of particle sys-
tems. The operative commands can be regarded as modules with different algorithmic
capabilities. The advantage of introducing operative commands is that one can apply
TRUBAL to different simulation problems of particle systems without changing the
program code of TRUBAL. If necessary, modules of the operative commands can be

enhanced and new ones can be added without interrupting other user’s capabilities.

When executing TRUBAL, the user only needs to learn the mnemonic language
of the operative commands and to form a specific operative command list for the
given problem. The simulation procedure for the given problem is then controlled by
the operative command list. A full list of the operative commands and their usage

provided by the present versions of TRUBAL is given in appendix B.

5.2.2 Main memory map

The running of TRUBAL is initiated by the command ‘START’ or ‘/RESTART".

If the first command is ‘RESTART’, a previously-saved problem is restored. When
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the ‘START’ command is given on the first line of the command list, a new problem
is initiated, for which the scale of the particle assembly to be generated is specified

by the following parameters,

Iz, 1y, 1., Mbox, M sphere, Mwall

where I, [, and [, specify the size of the rectangular parallelepiped that defines the
workspace. Msphere and Mwall are the maximum number of spheres and walls that
may be required to be generated and Mboz is the number of boxes that the workspace
is sub-divided into. TRUBAL divides the workspace into small boxes in such a way
that both the number of boxes and the size of a box in each axial direction are the

same. Hence the actual number of boxes that the workspace is divided into is given

as Nboz = (intv/ Mboz)3.

TRUBAL uses a main memory A which is partitioned to store all the arrays of
sphere data, wall data, box data, link lists and contact data. Each array is dynam-
ically dimensioned according to the number of boxes and the maximum number of
spheres and walls requested by the ‘START’ command for a given problem. The
main memory map is shown by figure 5.2. M5 is the upper limit address of the main
memory and is declared in the program. If the capacity of the main memory is ex-

ceeded, an error message is printed and the program stops. The main memory limit

needs to be changed to a higher value if overflow occurs.

SPHERE DATAI FREE| WALL DATA :[ FREE | BOXES | LINK LISTS & CONTACT DATA :[ FREE

Mi1=1 M1A M2 M2A M3 M3A M4 Ms

Figure 5.2: The memory map of the main array
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M2, M3 and M3A are dynamic addresses pointing to the upper limit of the arrays
of sphere data, wall data and box data respectively. They are determined according

to the following equations,

M2 = M1+ Msphere x Nvarb (5.1)
M3 = M2 + Mwall * Nvarw (5.2)
M3A = M3+ 2+ Nbox (5.3)

where Nvarb is the number of variables stored in each sphere data array and Nvarw

is the number of variables stored in each wall data array.

The memory for sphere data is allocated between M1 and M2 with the lowest
address at M1, and the wall data between M2 and M3 with the lowest address at M2.
The actual storage taken by the sphere data and wall data, however, is dynamically
located depending on the actual number of spheres generated and walls defined. The

upper addresses of their actual storage are adjusted according to,

M1A = Nball ¥ Nvard (5.4)

M2A = M2 + Nwall ¥ Nvarw (5.5)

where M1A and M2A are the actual highest addresses of sphere data and wall data
respectively, Nball < Msphere and Nwall < Mwall are the actual number of parti-

cles and walls generated.

The storage for link lists and contact data is allocated between M3A and MS5.
The lower address is at M3 A and the higher address, M4, moves up according to the

number of links and contacts detected and is given by the following equation,
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M4 = M3A + 2 x Nlink + Ncont x Nvarc (5.6)

where Nvarc is the number of variables stored in each contact data array, Nlink
is the number of links detected and Ncont the number of contacts detected (N cont

includes near-contacts which are not currently transferring load, see section 5.5).

5.2.3 Arrays of sphere data, wall data and contacts

In the current version of TRUBAL, the dimension size of one sphere data array is
set to Nvarb = 30. The information stored in the 30 elements of a sphere data array

B(Nvarb) are as follows,

B(1) to B(3): Coordinates of the sphere z;

B(4) to B(6): Accumulated displacement increments Az;

B(7) to B(9): Components of translation velocity v;

B(10) to B(12): Angular displacement ®;

B(13) to B(15): Accumulated angular displacement increment A®;

B(16) to B(18): Components of rotational velocity w;

B(19) to B(21): Components of out-of-balance force F;

B(22) to B(24): Components of out-of-balance moment M;

B(25): Code indicating material and size type ITY PM,ITYPS
B(26) to B(30): Free.

The dimension of one wall data array W(Nvarw) is set to Nvarw = 41. Since
both platen wall and spherical container (wall) can be handled in the current ver-
sion of TRUBAL (see section 5.4), the information contained in a wall data array is
correspondingly different. If it is a platen wall, the data stored in the array are, the

following,
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W(1) to W(4): Parameters d, a, b, ¢ which define a plane wall as
d=az + by + cz

W(5): Normal force F, (set by servo)

W(6): Maximum normal velocity of the wall v,, (set by servo)

W(7) to W(9):  Components of wall translation velocity v;

W(11): Measured normal force on the wall F,,
W(12): code indicating the wall type (= 1)
W(14): Gain parameter used by servo control

W(15) to W(17): Accumulated displacement increment of the wall Axz;
W(19) to W(21): Components of out-of-balance force F;
W(25): Code indicating material type ITY PM

Others: Free.

If it is a spherical container (wall), the information contained is the following,

W(1) to W(4): Parameters d, a, b, c which define a spherical container as
d=(z—a)+@y—-0)>%+(z—¢)?

W(5): Total radial force F set by servo

W(6): Maximum radial velocity v,, (set by servo)

W(7) to W(9): Components of wall translation velocity v;

W(10): Radial velocity of the spherical wall v,
W(11): Measured radial force on the wall F,
W(12): code indicating the wall type (= 2)
W(14): Gain parameter used by servo control

W(15) to W(17): Accumulated wall displacement increment Axz;

W(18): Accumulated radial displacement increment of the wall Ad
W(19) to W(21): Components of out-of-balance force F;

W(25): Code indicating material type ITY PM

Others: Free.
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There are two versions of TRUBAL at Aston. For the version that simulates

dry particle systems, there are 23 elements for a contact data array C(Nwvarc) (i.e.

Nvarc = 23) and the data stored in the contact array are,

C(1) to C(3):
C(4):

C(5) to C(6):
C(7) to C(9):
C(10):
c(11):
C(12):
C(13):
C(14):

C(15):
C(16):

c(17):

C(18):

C(19) to C(20):
C(21):

C(22):

C(23):

Components of the tangential force at the contact T
Normal contact force (Hertz or JKR) P

Links pointing to the ball or wall addresses

Components of the relative tangential displacement §;
Relative tangential displacement §

Tangential force at the contact T

Tangential force from which unloading commenced, T}
Tangential force from which reloading commenced, T,
Accumulated distance that the tangential force falls short of
its equivalent curve of constant normal force, see Thornton
and Randall (1988)

Tangential peeling force in the presence of adhesion, T},
Interfacial surface energy vy

Radius of the contact area, a

Code indicating the direction of the tangential force,CDF
Free

Normal stiffness of the contact

Tangential stiffness of the contact

Link pointing to the address of next contact.

For the version of TRUBAL that simulates moist particle systems, each contact

array is expanded to 31 elements (i.e. Nvarc = 31) in order to model the liquid

bridge forces. C(19) and C(23) are also changed. The data stored in the expanded

and modified elements are,



C(19): Volume of liquid held at the contact, V,

£

(
(23): Rupture distance of the liquid bridge, S,
(

Q

24): Static force of the liquid bridge, F,

C(25): Normal component of viscous force of the liquid bridge, F?
C(26): Tangential component of viscous force of the liquid bridge, F'
C(27): Half filling angle of the liquid bridge with the sphere C(5), ¢,
C(28): Free

C(29): Energy required to break the static liquid bridge bond

C(30): Gap or overlap between the two spheres «

C(31): Link pointing to the address of next contact.

5.3 Assembly generation

In Cundall’s 1988 version of TRUBAL, the particles of a simulated assembly were gen-
erated randomly over the whole region of the working space of which the boundaries
were periodic. To generate a particle randomly, three random numbers are selected
in the closed intervals of [0,1.],[0,1,] and [0,.] and are assigned as the coordinates of
the centre of the particle. If the newly generated particle overlaps with previously-
generated particles, it is rejected. Otherwise, it is added to the assembly. The process
is repeated until the desired number of particles are generated or the limit set to the

number of tries is exceeded.

The current version of TRUBAL generates the particles in two different ways.
In addition to the random generation method, an option for automatic generation
of regular packings is now provided. The automatic generation of a regular pack-
ing is achieved by a scheme as follows. One specifies the coordinates of the centre
of a particle with given size-type and material-type. The particle is located at the

lower back left of the unit cell. The remaining particles of the same size-type and
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material-type are automatically generated by placing them at given increments in x-,
y- and z-directions. Overlap checks are also carried out during the auto-generation of
a regular packing. The basic auto-generated structure is orthorhombic. To generate
body-centred orthorhombic packings, one should use the auto generation command
repeatedly by specifying the location of the lower back left particle at different posi-
tions. The following example shows how to generate a regular packing of body-centred

cubic by using the automatic generation command twice,

start 0.1 0.1 0.1 1000 2000 2 log

rad  0.004330127 1

agen 1110000.010.010.01

agen 111 0.0050.0050.0050.010.01 0.01

where the size of the unit cell is 0.1 x 0.1 x 0.1, ‘rad’ is the command that specifies
the radius of a size-type particles (where the radius of size-type 1 particles is set to
be equal to 0.004330127), ‘agen’ is the command for automatic generation of regular

packings (refer to Appendix B Command List).

Another option provided in the present version of TRUBAL for assembly genera-
tion is to generate particles in a specified spherical region within the working space
(unit cell). Using the agglomerate command, the current version of TRUBAL allows
one to define up to two spherical regions within which particles may be generated
to form agglomerates. The agglomerate command must be given before the particle
generation commands and the agglomerate-type (i.e. which spherical region) must
be specified. During particle generation, a location check is carried out before the
overlap check. If the newly generated particle resides outside the spherical region
corresponding to the specified agglomerate-type, it is rejected. Otherwise, overlap
check is performed and the particle is accepted if it does not overlap with existing

particles.
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If the agglomerate command for defining the spherical region(s) is ignored before
specifying the particle generation command particles will be generated in the whole
region of the working space (unit cell). However, the agglomerate-type in the particle
generation command still needs to be specified as 1. During particle generation,
because the spherical region corresponding to the agglomerate is not defined, the

location check is not used.

It is also possible to create an individual particle at a specified position using the
‘CREATE’ command available in the original version of TRUBAL. This command

has now been modified to incorporate an overlap check.

5.4 Introducing walls

In Cundall’s version of TRUBAL, rough ‘walls’ are provided by two layers of ‘fixed’
particles that are intersected by two specified planes. During calculations, particles
‘fixed’ by the two upper and lower planes perpendicular to the y-axis are only allowed
to move according to a specified velocity. The mechanical and physical properties of

the rough wall are difficult to characterize and vary greatly at different positions.

The present version of TRUBAL defines walls in a totally different way. Instead
of having rough walls, two types of smooth and continuous ‘massive’ elastic walls are
introduced. One can define either smooth plane walls perpendicular to one of the x-,

y- and z- axes defined as,

;= d (57)

or smooth hollow spherical walls (containers) defined as,

(z—a)+(y—b+(z = = & (5.8)
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where the centre of the hollow sphere wall is located at (a, b, ¢) and the radius of the

hollow sphere is d.

Translational movement of both types of walls is achieved by specifying the ap-
propriate velocities. The hollow spherical wall is also allowed to have a radial velocity
so that the wall can shrink or enlarge by changing its radius. A servo control mecha-
nism is also introduced for walls with which the velocity is continuously adjusted so
that the difference between the calculated normal (platen wall) or radial (spherical

container) force acting on the wall and the required force is minimized.

A wall is generated by the wall definition command ‘DWALL’. During cyclic
calculations one can also change some parameters of a previously defined wall with

the wall alteration command ‘AWALL?.

5.5 Contact searching in the DEM

The simulation of particle systems requires cyclic calculations of particle displace-
ment increments and contact force increments. For the calculation of contact forces
between particles, an efficient searching scheme is needed to detect the contacts be-
tween particles. Because a particle cannot make contact with particles which are far
away from it, the principle is to search for contacts with only those particles lying in

the local vicinity. The contact detection scheme is described below.

5.5.1 Initial particle generation

In the Distinct Element Method, the workspace or periodic cell is divided into Nboz
boxes or sub-cells where Nbor is specified by the ‘START’ command and is so chosen

that the size of the boxes should be larger than the diameter of the largest sphere.
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Figure 5.3: The mapping scheme for spheres

However, in order for the Distinct Element Method to search the contacts efficiently,

the box size should normally be less than twice the largest sphere diameter.

The first step in the contact detection scheme is to form link lists for each box
by mapping all constituent particles into the appropriate boxes. A spherical particle
is said to be mapped into a box if one or more corners of the circumscribing cube
of dimension 2(R + TOL) falls into the box. Because the maximum radius of the
constituent particles is restricted such that Ry, < (DEL/2+ TOL), where DEL is
the dimension of the boxes, the maximum number of boxes in which a particle has
entries is eight. The mapping scheme for spheres is shown in figure 5.3 for the 2-D

case,

In fact, each particle is mapped twice. The first mapping uses the circumscribing
cube as the same dimension of the sphere diameter 2R and the second one uses that

of a dimension of 2(R + TOL). Through the first mapping scheme, link lists are
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formed for each box to locate the addresses of all spheres that are mapped into it.
For the box data allocated in the main memory from M3 to M3A, each box has two
addresses. The lower address stores the start of a particle link list. The upper address
stores the start of a contact link list. The link list for a box is formed in the following
way. When particles are first generated (or created), the address of a sphere that
first maps into a box is stored in the lower address of that box. When another sphere
is mapped into the same box, two links are allocated from M4 to M4 + 1 and M4
(the end pointer of the link lists and contact arrays which is initially set to M3A) is
updated to M4 + 2. The higher link stores the address of the first sphere. The lower
link stores the address of the second sphere. The content of the lower box address
is then updated by the address of the lower link (i.e. M4 —2). For the third sphere
that maps into the box, another two links are allocated from the updated address
of M4 and M4 + 1 and M4 is updated again by moving up another two elements.
The higher link stores the address of the second sphere and the lower link holds the
address of the third sphere. The lower memory of the two previously created links
is updated to store the lower address of the newly created links. The procedure is
continued until the link list for all spheres that map into the box has been created.
At the end of the link list, both the last lower and higher links store the addresses
of the two spheres that last mapped into the box. In this way, the link lists identify

those spheres in near proximity to each other.

The second step is the contact searching. Since possible contacts exist only be-
tween those particles which are mapped into the same box, contact searching needs
only to be performed between those spheres that are held in the link lists of each
box. With the Distinct Element Method, the contact search is in fact performed in
the same process during the mapping for link list forming. Each time when a sphere
is mapped into a box, the spheres that previously mapped into the same box are
searched and their distances to the newly mapped sphere are calculated. Any sphere

in the link list lying within a specified gap distance TOL of the newly mapped sphere
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is regarded as a potential contact. The gap centre between the two spheres is defined
as the contact point which is also mapped into the boxes. A contact array is allocated
for the contact from the address M4 to M4 + Nvarc. M4 is updated by moving up
Nvarc + 1 elements. For a contact that first maps into a box, the address of the
contact array is stored in the higher box memory. The address of the second contact
that maps into the same box is stored in the last memory of the first contact array.
The procedure is continued until the contact arrays for each box are established. For

the last contact array of each box, a ‘0’ is stored in the last memory.

If the currently mapped sphere is very close to the border of the mapped boxes, it
may also have potential contacts with the spheres that are mapped into other boxes
in close proximity with the sphere. For instance, the sphere C in figure 5.3 may
have potential contacts with the spheres that reside in box 6. In order to detect the
possible contacts of a sphere with those spheres that reside in neighbouring boxes,
the second mapping uses the circumscribing cube with the dimension of 2(R+ TOL).
This enables the mapping of a sphere into its neighbouring boxes and the detection
of the spheres (held in the link list of the neighbouring box) that may be in close
contact with the currently mapped sphere. The second mapping is also useful to
retrieve the old links of a remapped sphere and delete them when the box entries of
the remapped sphere are changed. Remapping is only necessary when the maximum
component of the accumulated displacement increment of a sphere exceeds XRES

(XRES < TOL/2V/3), see section 5.5.2.

The whole scheme for the storage of box data, link lists and contact arrays is

illustrated by figure 5.4.
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Figure 5.4: The storage scheme for link lists and contact arrays.

5.5.2 Remapping

Once the link lists and contact arrays are established and allocated, the next particle
remapping and search for new contacts is only necessary after several time steps when
the maximum accumulated component of the translational displacement increment
of any constituent particles exceeds X RES (XRES < TOL/2V/3), where TOL is
a tolerance set for the sphere mapping. If this condition is false then the maximum
relative movement between any pair of spheres is less than TOL. During the previous
contact search, if those spheres were not detected as potential contacts, the gaps
between them must have been larger than TOL at that time. Consequently, they will

still not be in contact and will not contribute any forces until the next contact search
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is triggered. Before the the next sphere mapping and contact searching is necessary,
the cyclic calculation of contact force increments needs to be only performed for the
contact arrays that were established and allocated previously. By avoiding sphere

mapping and contact searching at every timestep a lot of computer time is saved.

Whenever the maximum component of the accumulated translational displace-
ment increment of a sphere exceeds X RES, the sphere is remapped twice again.
During the first mapping, the circumscribing cube of the same dimension as the
sphere diameter 2R is used. The link lists of the boxes that the sphere mapped into
are checked and if any of the link list does not contain the address of the remapped
sphere, it is added. Contact searching is then performed by mapping the sphere
again but using the circumscribing cube of dimension 2(R + TOL). Any contact of
the remapped sphere with other spheres that is not contained in the corresponding
contact arrays is added. For the remapped sphere, however, there may be a need to
delete its old links or contact arrays. The problem arises when the remapped sphere
and its contact points moves from one box to another. Since for the box that the
sphere previously mapped, the sphere is not mapped into again during the remap-
ping, the two links contained in the box should be deleted and so should the contact

arrays. The deletion of old links and contact arrays are described below.

Since the maximum component of the accumulated displacement increment of the
remapped sphere is X RES < TOL/2v/3, the second mapping using the circumscrib-
ing cube of dimension 2(R+ T'OL) not only identifies the boxes the remapped sphere
resides, but also retrieves the boxes that the sphere previously mapped into. But with
the first mapping, the remapped sphere is only mapped into the boxes the sphere cur-
rently resides. For any corner of the circumscribing cubes, if the box entry of the first
mapping NBSAV is different from that of the second mapping NBNEW (see figure
5.5), then NBN EW indicates the boxes that the sphere had previously been mapped

into. As a result, the two links contained in the link list of box NBNEW should be
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Figure 5.5: New and old box entries of a remapped sphere

deleted. The two links are deleted by setting the higher link to ‘0’ and the lower link
to NEML. NEML is updated by the lower address of the deleted two links, where
NEML is the indicator pointing to the beginning address of the deleted link list and
is initially set to ‘0’. The content of the deleted lower link is now stored in the lower
link of the two links preceding the deleted ones. For the deletion of contact arrays,
a similar procedure is used. The address of the currently deleted contact array is
indicated by N EMC which is also initially set to ‘0’. The address of the previously
deleted contact array is stored in the last element of the currently deleted contact

array.

Every time a sphere is reboxed, any memory space available due to deleted links
or contact arrays is first used if new links and contacts are detected. Free links
and contact arrays due to deleted links and contact arrays are available when the
indicators NEML and NEMC are non-zero. If there are no free links and contact

arrays, however, the free space between M4 and M5 will be used in the normal way.
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5.5.3 Contacts with walls

In the new versions of TRUBAL at Aston, because continuous ‘massive’ walls are
incorporated, contacts between particles and walls need to be considered. In order
to deal with walls in a manner consistent with the handling of particles, a similar
scheme for the mapping of walls is used. The mapping scheme for walls is shown by

figure 5.6.

—— ]

3
: Walls Box entries
| 6 Spherical 1,2,3,4,5,6,7,8,9
22 A Plane 7,8,9

Figure 5.6: Mapping scheme for walls

A plane wall is mapped into a box if any part of the wall (with the given tolerance
TOL) falls into the box. A hollow spherical container wall is said to be mapped
into a box if any part of the circumscribing cube of dimension 2(d + TOL) falls into
the box, where the tolerance TOL is only used for the second mapping. A separate
subroutine in the program was written to handle the mapping of walls. When a wall
is mapped into a box, the address of the wall is inserted into the link list of the box

by allocating another two links. During the second mapping for contact searching,
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the distances between the wall and the neighbouring spheres held in the link list are
also calculated to detect possible contacts. All the other procedures for allocating or

deleting links and contact arrays are the same as for contacts between particles.

5.6 System evolution

5.6.1 Particle displacements

TRUBAL uses the finite difference method to simulate the evolution of contact forces
and particle movements. The progressive movement of each constituent particle is
modelled by Newton’s second law of motion. For a particle over an interval of time
step At, the out-of-balance forces and hence the accelerations are assumed to be
constant. Consequently, Newton’s equations of motion for the particle with global

damping are given as follows,

.u:lew ¥4 v:_)!d' v?cw _ U:_:n‘d
Fi+ mg; = g2 F 0 W2 (5.9)
wheY 4 wold whew _ wg!d
i — B, o : 5.10

from which the updated velocity components are given as,

new __ !H/At — ﬁ_qf2 old F: T+ mg;

W T A a2 T At B, S
new __ I/At - ﬂg/zwofd M:'
C T T/At+ B2 Y T]At+ B2 (5.12)

where ¢z = 1,2,3 indicates the three components in #—,y— and z— coordinate direc-
tions, B, is the global damping coefficient, At is the time-step, F; are the components

of the out-of-balance force, M; are the components of the out-of-balance momentum,
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g; are the components of gravity, m is the mass of the sphere, I is the rotational

inertia of the sphere, v*” and w?*" are the updated components of the linear and

old

rotational velocities and v?'? and w?'? are the previous ones.

Using the updated velocity components of each sphere, the components of the
linear and rotational displacement increments of each particle in the time-step are

accordingly obtained from,

Az; = At (5.13)

AD; = WAt (5.14)

which are then added to update the coordinates and rotational displacements of each
sphere. For the linear translation, the coordinates of a sphere are determined by
two parts. The first part is the original coordinates of the sphere at the previous
mapping and the other part is the accumulated displacement since the last mapping.
When the newly obtained linear displacement increment is added to the accumulated
displacement, a check is also made about the maximum component of the accumu-
lated displacement. If it exceeds X RES(< TOL/2V/3), the sphere is reboxed. The
accumulated displacements are set to ‘0’ after they have been added to the original

coordinates of the sphere.

5.6.2 Solid contact forces

The interaction force between each pair of contacting spheres is computed in an
incremental way. In the case of two spheres contacting one another, the relative
movement at the contact has three components, the relative normal approach along
the centre line of the two spheres, the relative tangential displacement between the

two particle centroids and the relative rotation of the two spheres. Because the area
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of the contact is very small, the twisting resistance at the contact due to the relative
spin about the line joining the centroids of the two spheres is ignored and hence

only the normal and tangential contact forces are considered in the current version

of TRUBAL.

For a pair of spheres in contact, if the linear and rotational velocities are denoted

A

as v#,wA and v2,w?B

7 w7 respectively, the relative normal displacement increment at the

contact in a time step can be given as,

Aa = (v? — vi)n;At (5.15)

where ¢ = 1,2, 3 indicates the three coordinate directions and n; is the component of
the unit vector normal to the contact plane and directed from sphere A to sphere B.
In a time-step, the component of the relative tangential displacement increment

at the contact between the two sphere is,

Aé; = (vP — v#)At — Aon;

1

— (WA niy2 — whonip ) RAAE — (w8 niys — whnip ) R AL (5.16)

where R4 and Rpg are the radii of the two spheres and all the subscripts 2,2+ 1,2+ 2

should be rotated from 1 to 3.

The updated normal force at the contact is given as,

N"™ew = Nold 4 AN (5.17)

where AN is the normal force increment which is obtained from (3.41) which applies

to both adhesive and non-adhesive spheres.
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The computation of tangential force increment due to the tangential displacement
increment differs according to the interaction laws used. If Mindlin’s no-slip solution
is used, the tangential force-displacement relationship is linear elastic. As a result,
the resultant tangential force increment can be calculated from its components by

substituting Aé; into equation 3.112, viz.

AT: = 8G"aA6; (5.18)

However, adding the tangential force increment to the previous tangential force is
complicated due to the fact that the contact plane may be rotating. Over a time-step,

the rotation of the contact plane can be derived as,

1 n;
0 = [(vB, — vA,)At — Aanyy)] Z"‘ [(vB, — vA,)At — Aany] Z“ (5.19)

where Z,, is the distance between the centroids of the two spheres and the subscripts

1,1+ 1,7 + 2 should also be rotated from 1 to 3.

Hence, the components of the previous tangential force and displacement are re-

calculated using

T.= Q-‘+1T:ﬁ :+2T-T{ (5.20)
& = Qig16%% — Qivaby (5.21)

where T°'4 and 2% are the components of the previous tangential force and displace-
i H p p g P

ment prior to rotation.

If the partial-slip solution of Mindlin and Deresiewicz is used for the tangential
force, the calculation becomes much more complicated because the force-displacement

law is history dependent. As a result of the nonlinear hysteretic interaction rule, the
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loading history of each component is different and the loading history of the resultant
tangential force differs from its components. Consequently, the partial-slip solution
cannot be applied to each component independently. The resultant tangential force

increment has to be calculated directly.

In three dimensions, the resultant tangential displacement can have any orien-
tation in the contact plane. In order to identify the loading path of the resultant
tangential force, the direction of the resultant tangential displacement has to be iden-
tified. In the current version of TRUBAL, the direction of the resultant tangential
displacement at the first time step of each contact is regarded as positive. For any
subsequent time step, suppose the previous resultant tangential displacement is § and
its orientation, after correction for the rotation of the contact plane, is defined by the
components ;. It follows that the updated tangential displacement components due

to the incremental displacement should be given as,
N = §; + A; (5.22)
The updated resultant tangential displacement is given by the following equation,

™Y = sign(8)sign(8;A;)y/ brevérer (5.23)

The sign of the updated resultant tangential displacement is determined as shown
by figure 5.7, where the previous tangential displacement is taken as positive and the
updated tangential displacement is negative. Suppose the contact plane is divided
into two regions by the line normal to the previous tangential displacement. If the
updated tangential displacement lies on the same side of the previous one, the sign
of the updated resultant tangential displacement is the same as that of the previous
one and sign(8;A§;) in equation 5.23 is positive. Otherwise, sign(6;Aé;) is negative
and the sign of the updated resultant tangential displacement changes to the opposite

sign to that of the previous one.



Figure 5.7: The sign of the updated resultant tangential displacement

From the updated resultant tangential displacement, one obtains the magnitude

of the resultant tangential displacement increment as,

AS =" — § (5.24)

which is used to obtain the resultant tangential force increment AT by using equations

3.109-3.111. The resultant tangential force is now updated as,

T = T + AT (5.25)

The updated resultant tangential force is compared with the sliding criterion. If
the sliding criterion is exceeded then the tangential force is reset to the limiting value.
The direction of the resultant tangential force is assumed to be in the same direction

as the tangential displacement and its components are given as,

dv_ww
T;new = Tmcwl_é‘iﬂgl (5-26)

From the updated normal and tangential contact forces, the contribution to the

out-of-balance force of each sphere is obtained as,
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Sphere A Ff = —N"*n; — Trev : (5.27)

MA = Ry(nig Ly — nip o TRSY) (5.28)
Sphere B F;B - Nnewni =8 T:_new (529)
MP = —Rg(ni. Try — nip2T347") (5.30)

5.6.3 Liquid bridge forces

The binding forces of liquid bridges are calculated after the calculation of contact

forces. This is discussed in the next section (Section 5.7).

5.7 Implementing liquid bridge forces

5.7.1 Introducing liquid bridges

Pendular liquid bridges may be introduced or removed at any stage of the cyclic cal-
culations. Liquid bridges are introduced by the command ‘LIQUID?, which specifies
the liquid volume, surface tension, contact angle and viscosity of the liquid bridges.
The same command may also be used to remove previously introduced liquid bridges
if the liquid volume is set to zero. When the command LIQUID is issued, the contact
arrays are searched. For a contact array, if the contact is a solid contact, a liquid
bridge is formed. Otherwise, a quantity of liquid is still assigned, but the liquid bridge

will not be formed until the potential contact becomes a solid contact.

The rupture distance of each newly introduced liquid bridge is calculated. For a
liquid bridge between two unequal sized spheres of radius R;, Rj, the rupture distance

Se = Sea1 + Se2 may be related to the liquid volume by,
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1 3
Sa = 5(1+0.50)/2V. (5.31)

where ¢ = 1 or 2 and V4, V;, are the half liquid volumes that the liquid bridge is

fictitiously divided into.

From the relation V = V; 4+ V4, it follows that

2S5a 252

[(1 + 0.50 )y (1 + 0.50 i (8:92)

However, for a given quantity of liquid, this equation is not sufficient to evaluate
Se1y Sc2. Another relationship between S.; and S, is required. This relationship is

obtained through the following procedures.

For a given set of the sphere radii R;, R3, half liquid volume V;, the half rupture
distance S, was evaluated using the relationship 5.31 and the half-filling angle was
determined using an iteration scheme based on the toroidal approximation. From
geometrical considerations, the half rupture distance S.; and hence half liquid volume
V2 were accordingly determined. This procedure was repeated for different sphere

radii Ry, R; and half liquid volume V; to obtain a set of half rupture distances S.;,

Sez.

Figure 5.8 shows the dependence of the ratio of half rupture distances S.;/S.; on
the dimensionless liquid volume V/R? for different values of the ratio of sphere radii.
It can be seen that the relationship between the ratio of half rupture distances and

the dimensionless liquid volume can be best fitted by a family of curves in the form

of

’ )+ 1112(1 (5.33)

7}

S
ln( 5 )=co+cln(— I
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Figure 5.8: The ratio of half rupture distances as a function of the dimensionless

liquid volume for different values of the ratio of sphere radii.

Rz/ R, G (&1 C2

1.2 [ 0.11051 | 0.02401 | 0.00146
1.5 [ 0.21350 | 0.04588 | 0.00277
2.0 |0.30951 | 0.06583 | 0.00395
5.0 |0.46645 | 0.09722 | 0.00573

Table 5.1: Fitting coefficients of cg, ¢1, 3.
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The three fitting coefficients cg, ¢;, ¢; are only dependent on the the ratio of
sphere radii. For different values of the ratio of sphere radii, the corresponding fitting

coefficients are given in table 5.1.

It was found that the three coefficients could be further expressed as simple func-
tions of the ratio of sphere radii. This is shown in figure 5.9 which shows that the

three coefficients were linearly related to the ratio of sphere radii R;/R; and are best

fitted by
co = 0.61109(1 — -%) (5.34)
¢ = 0.12941(1 — %) (5.35)
c; = 0.00773(1 — % (5.36)

Thus, for a liquid bridge with a given quantity of liquid volume and given sphere

radii, the rupture distances are uniquely determined using equations 5.32 and 5.33

5.7.2 Computing liquid bridge forces

During the cyclic calculations, liquid bridge forces are calculated after the computa-
tion of solid contact forces. Instead of using the incremental method, both the static
and viscous forces are calculated directly by using integral equations. The static lig-
uid bridge forces are calculated according to Fisher’s toroidal approximation using
the ‘gorge’ method of equation (4.46). As it has been demonstrated in Chapter 4, the
gorge method gives the best estimate of the total static forces. In equation 4.46, the
static force that a liquid bridge exerts on the spheres is given in terms of p; and p2,
which are expressed in terms of the separation distance and half-filling angle. Since

the half-filling angle varies with separation for given liquid bridge volumes, the main
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problem is how to determine the half-filling angle. It is known that for a given volume
of liquid held between two spheres, the relationship between the half-filling angles and
the separation distance is given by equation (4.55) where for two spheres of radii R;
(z = 1, 2) the half-filling angle ¢, may be expressed in terms of ¢, as indicated by
equation (4.61). Thus for a liquid bridge between two unequal sized spheres with
a given set of parameters of sphere radii R;, R, separation distance S and liquid

volume V/, the half-filling angle ¢; and hence ¢, are uniquely determined.

However, the equations (4.55) and (4.61) do not permit an explicit expression
for the half-filling angle ¢; or ¢, in terms of the separation distance, liquid bridge
volume and sphere radii. Numerical solution for the half-filling angle can be achieved
although it requires iterative calculations and costs much more in computer time. In
TRUBAL, an approximate relationship between the half-filling angle and separation
distance is used. This relationship is obtained by fitting the numerical results with a

third order polynomial function.

Figure 5.10 shows the relationship between the half-filling angle ¢, and separation
distance at different liquid bridge volumes and different sphere radius ratios Rz/R;.
The half filling angle is plotted against the relative separation distance S, = S/S.
where S, = Sq + Se2 is the maximum separation distance of rupture and the liquid
volume is made dimensionless to R}. It can be seen that for a constant dimensionless
liqu.id volume, the dependence of the half-filling angle ¢; on the relative separation

distance S/S. can be best fitted by a third order polynomial function given as
S S S
= = =) =) 5.37
$ a+015c+02(sc) +03(S'c) (5.37)

where Cy, Cy, Cy and Cj are four fitting coefficients.

It has been found that the four fitting coefficients are only dependent on the

dimensionless volume of liquid bridges and the ratio of sphere radii. For different sets
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Figure 5.10: Dependence of the half-filling angle ¢, on the relative separation S/S.

as fitted by third order polynominals for different dimensionless liquid volumes and

different ratios of sphere radii: (a) %l‘-

1.0, (b) £ = 2.0 and (c) 2 = 5.0.
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Ry/ R,

V/R

Co

G

(&

Cs

1.0

0.00100
0.00500
0.01000
0.02000
0.03000

0.16702
0.25947
0.31461
0.38246
0.42938

-0.28582
-0.35601
-0.38911
-0.42474
-0.44723

0.37579
0.43167
0.45302
0.47284
0.48390

-0.16440
-0.17593
-0.17792
-0.17819
-0.17763

1.2

0.00102
0.00519
0.01049
0.02126
0.03219

0.17069
0.26593
0.32299
0.39351
0.44248

-0.30147
-0.37800
-0.41431
-0.45349
-0.47824

0.40023
0.46296
0.48704
0.50925
0.52151

-0.17671
-0.19087
-0.19368
-0.19445
-0.19400

0.00105
0.00540
0.01104
0.02268
0.03470

0.17477
0.27313
0.33238
0.40597
0.45733

-0.31925
-0.40321
-0.44330
-0.48667
-0.51410

0.42825
0.49922
0.52656
0.55157
0.56514

-0.19090
-0.20831
-0.21213
-0.21348
-0.21312

2.0

0.00107
0.00563
0.01164
0.02429
0.03758

0.17933
0.28125
0.34301
0.42015
0.47431

-0.33966
-0.43246
-0.47710
-0.52553
-0.55620

0.46078
0.54180
0.57317
0.60160
0.61670

-0.20749
-0.22896
-0.23407
-0.23617
-0.23588

o
o

0.00112
0.00608
0.01288
0.02774
0.04394

0.18917
0.29893
0.36628
0.45145
0.51199

-0.38552
-0.49937
-0.55504
-0.61588
-0.65454

0.53511
0.64127
0.68297
0.72017
0.73914

-0.24577
-0.27783
-0.28650
-0.29073
-0.29069

Table 5.2: Fitting coefficients Cy, Cy, Cy, C3 for the half-filling angle.
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Figure 5.11: The fitting coefficients Cy,C}, Cy,Cs as functions of the dimensionless

liquid volume at different ratios of sphere radii, R,/R, = 1.0 (O), R,/R;, = 2.0 (A),

and Ry/Ry = 5.0 (o).
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Ry/Ri | bo ko by ky b k2 bs ks
1.0 [ 0.2774 | 1.1319 | -0.6094 | -0.1087 | 0.5978 | 0.0734 | -0.1941 | -0.0092

1.2 1 0.2758 | 1.1379 | -0.6497 | -0.1174 | 0.6453 | 0.0812 | -0.2146 | -0.0118
1.5 | 0.2748 | 1.1492 | -0.6966 | -0.1277 | 0.7007 | 0.0905 | -0.2385 | -0.0150
2.0 |(0.2732 | 1.1600 | -0.7507 | -0.1395 | 0.7656 | 0.1014 | -0.2669 | -0.0188

5.0 |0.2712 | 1.1938 | -0.8776 | -0.1682 | 0.9209 | 0.1290 | -0.3359 | -0.0289

Table 5.3: Fitting coefficients of b;,%;, (7 = 0,1,2,3).

of dimensionless liquid volumes and sphere radii, the four fitting coefficients obtained
are given in table 5.2. In figure 5.11, the four fitting coefficients were plotted as
functions of the dimensionless liquid volume for a range of ratios of sphere radii. It
can be seen that the four fitting coefficients can be further expressed in terms of the

dimensionless liquid volume by functions in the following forms,

Co = talz)" (5.38)
Co= b 5, log(}%]) (5.39)
Giebyb ks log(%]) (5.40)
Cs = by + ks log(R%) (5.41)

where b;, k;, ( = 0,1,2,3) are fitting coefficients that depend on the ratio of sphere
radii only. For a range of the ratios of sphere radii, these fitting coefficients were
obtained and are given in table 5.3. Figure 5.12 shows that when plotted against
the ratio of sphere radii Ry /R,;, all sets of the fitting coefficients b;,k;, ( =0,1,2,3)

produce straight lines and can be represented by the following simple fitting equations,

165



' . —
— r—— i
3 1.0+ ~ -0.2
2 =
a @
Z 034 a: ol 5 -04- o bl
= 4 ko & A g
g 2
o0 0.6 - 06 3
g £
i i
0.4 -0.8 4
- = — =
02 v T T T T -1.0 T T T T b T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ratio of sphere radii, R | /R, Ratio of sphere radii, R, /R,
1.0 0.0 -
" -
-
S 03- =
.'g S -0.1
L vy
% L5 a b3
5 6 P S A
&= o b2 = |
g g -02
o a4 K2 e
[ % 014
02+
e s e {
0.0 v T T T T T -04 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ratio of sphere radii, R, /R, Ratio of sphere radii, R, /R,

Figure 5.12: The fitting coefficients b;, k; (5 = 0,1,2,3) as functions of the ratio of

sphere radii.
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by = 0.26958 — 0.00766%‘ (5.42)
2

Lic}

ko = 1.20420 + 007753 2 (5.43)
by = —0.93128 + 0.33513%; (5.44)
ky = —0.17990 + 0.07435% (5.45)
b, = 0.98431 — 0.40353% (5.46)
ky = 0.13948 — [}.06938;—: (5.47)
by = —0.36328 + 0.17703% (5.48)
ks = —0.03245 + {].02456% (5.49)

In summary, the procedures for calculating the static force of liquid bridges are de-
scribed as follows. For each liquid bridge, the fitting coefficients b;, k; (j = 0,1,2,3)
are evaluated by equations (5.42)-(5.49) respectively with the given sizes of the two
spheres. These parameters are then substituted into equations (5.38)-(5.41) accord-
ingly to determine the coefficients C; (7 = 0,1,2,3) for a given quantity of liquid.
Thus, the half-fitting angle ¢, may be obtained from equation (5.37) for a given sep-
aration distance. Finally, the calculation of the principal radii p;, p, of the toroidal
curvature and hence the force is straightforward using equations (4.39), (4.40), (4.43)

and (4.46) which are given in chapter 4.

For the calculation of viscous force of a liquid bridge, the relative normal and

tangential velocities between two spheres are given as,
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v, = (v2 — vf)n; (5.50)
v'i; = (0P — o) —van; (5.51)

Equation 4.73 from Adams and Perchard (1985) is applied for the computation
of viscous force due to normal velocity and equations 4.76 and 4.77 for the tangen-
tial velocity. However, these equations predict an infinite force when the separation
distance approaches zero. This is because the models are based on the assumption
that the spheres are rigid with perfect smooth surfaces. For real particles, however,
the separation gap can not reach zero due to both the roughness of the surfaces
and elastic-plastic deformation of the spheres. Elastic and plastic deformation of the
sphere may occur when the viscous hydraulic pressure is high. Considering the full
elasto-plasto-hydro-dynamics of particles with surface roughness is too complicated.
In the current version of TRUBAL the problem is eliminated by setting the separa-
tion gap to some limiting value. In the work reported in Chapter 6 and Chapter 7
the limiting separation gap has been related to the sphere diameter using values in
the range R/1000 < S,.in < R/100. For micron sized particles this corresponds to a
minimum separation gap of 0.001 ~ 0.01gm. Also in the work reported in Chapter 6

and Chapter 7 the viscous force of liquid bridges due to the tangential velocity is not

included.

5.8 Energy dissipation

Particulate systems are not energy conserving. With strain rate controlled periodic
cells or wall controlled boundaries, the particle system gains energy from the external
applied field. This causes problems for the simulation of quasi-static systems, e.g.
agglomerate preparation, shear testing, where energy has to be dissipated in order to

reach quasi-equilibrium. TRUBAL provides two forms of viscous damping: contact
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damping and global damping. The contact damping considers the energy losses during
the force transmission through the solid particles. This type of damping is modelled
by a dashpot. The damping force is calculated to be proportional to the the relative
velocity and the normal and tangential contact force increments. Having calculated
the contact forces between spheres, damping forces are calculated and added to the
contact forces to give the total contributions to the out-of-balance forces of each

sphere.

The global damping is a type of mass proportional damping. It operates in the
form of classical Rayleigh damping and is handled in the subroutine which calculates
the motion of each sphere. The mass proportional damping can be envisaged as
dashpots that connect all constituent particles to the reference axes of the simulated
system. For each sphere, the resistance force of global damping that is exerted on
the sphere is opposite to its velocity vector (both translational and rotational) of the
sphere. The magnitude of the resistance force is proportional to the absolute velocity
of the particle. The effect of global damping is like immersing the constituent particles
in a viscous fluid. It is useful to dissipate kinetic energy during the preparation of
a simulated system in order to avoid excessive computer time. Before the system is

subjected to the desired computer simulated experiment, the global damping should

be switched off.

In addition to the two damping mechanisms, energy is naturally dissipated by

interparticle friction, adhesive peeling, and viscous resistance of liquid bridges.

5.9 Results output

In the current version of TRUBAL, the results of a computer simulated experiment
can be either printed and/or plotted. With the printout option, one can obtain

the results of sphere data, wall data, contact data, energy terms, stress tensor and
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other general information. All such data can be printed out at any stage during the
simulation. With the graphics plotting option, one can obtain 3-D colour pictures of
spheres, walls, contact forces, contact connection diagram, particle velocities, particle
displacements and particle clusters. The contact forces are plotted by lines passing
through the contact point. The magnitude of the force is scaled to the thickness of
the line. The contact connection diagram provides information about the evolution
of contacts, i.e. the contacts still existing, deleted, or newly made, in reference to a
previously saved state. Different coloured lines joining the centres of spheres represent,
the different types of contact. Particle velocities and displacements are illustrated by
vectors originating from the centre of each sphere. For the plot of particle clusters,
the individual particles are colour coded according to the size of the cluster to which

they belong.

The current version of TRUBAL also provides a screen monitoring facility which
permits the evolution of the energy partitions, stress tensor, contact number, porosity

and other general information to be monitored on the screen during the simulation.

The graphic package of the current version of TRUBAL is written in FORTRAN
using graPHIGS API for IBM RS6000 workstations.
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Chapter 6

Computer simulation of a moist

agglomerate impact with a wall

In this chapter, the results of computer simulations of a moist agglomerate impacting
with a wall are presented and discussed. A body-centred cubic moist agglomerate
consisting of 4062 primary particles was prepared for the computer simulation. The
visco-plastic deformation and interstitial liquid bridge rupture of the impacted ag-
glomerate have been examined and the effects of the cohesive liquid bridges have
been investigated. Some of the work in this chapter has been also reported by Thorn-

ton, Lian and Adams (1993).

171



6.1 Introduction .

Agglomerate properties, particularly strength and deformability, are clearly of rele-
vance to granule coalescence, attrition and breakage. Although many different types
of tests have been described for assessing agglomerate strength and attrition tendency,
the impact test is the most simple and direct method to quantify and measure the
deformation and breakage of particulate solids. The impact test falls into two cat-
egories, namely single particle impact tests and multi-particle (agglomerate) impact
tests. The single particle impact test is mainly used to enhance the understanding
of the mechanisms of particle breakage but the results are difficult to compare with
real agglomerate breakage observed in process engineering. The agglomerate impact
test is more closely related to the granulation, attrition and breakage processes but,
with real experiments, it is primarily empirical. This is because with real experiments
it is difficulty to obtain the internal parameters describing the packing structure of
the agglomerates, such as particle shapes, sizes and interparticle contact forces. Also

with real experiments, only a limited number of variables can be considered.

Computer simulated 2D and 3D dry agglomerate impact tests were recently re-
ported by Yin (1992), Thornton and Kafui (1992), Thornton, Kafui and Yin (1993)
and Kafui and Thornton (1993). Adapted from the 2D program BALL and 3D pro-
gram TRUBAL, these authors incorporated surface adhesion forces between particles.
It is clear from the computer graphics provided that the computer simulated agglom-
erate impact tests provide micro-level scrutiny of the crack initiation and propagation
within the agglomerate during impaction. In this chapter, 3D computer simulated
impact tests on a body-centred cubic moist agglomerate consisting of 4062 primary
particles are reported. The mechanical behaviour of the moist agglomerate-wall colli-
sions has been examined and information has been obtained concerning visco-plastic
deformation and internal damage in terms of the interparticle liquid bridge forces and

packing structures.
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6.2 Computer simulation procedures

6.2.1 Agglomerate preparation

For the computer simulated moist agglomerate impact with a wall, a 3D body-centred
cubic agglomerate consisting of 4062 primary particles was prepared. The primary
particles of radius R = 30um were attributed with the following properties: density
p =2.65Mgm™2, Young’s modulus E = 70Gpa, Poisson’s ratio v = 0.3 and friction
coefficient 4 = 0.3. To prepare the agglomerate, primary particles were generated
inside a circumscribing spherical region of radius R. = 575um. The structure of the
generated particles is body-centred cubic with point contacts between the particles.
Pendular liquid bridges were then specified for each contact and the quantity of liquid
assigned to each contact was 0.1% of the particle volume, which, in the case of the
body-centred cubic arrangement, corresponds to a degree of saturation of 0.85%.
The liquid modelled was silicone fluid with the following properties: surface tension

Yiw = 0.025Nm™!, solid-liquid contact angle # = 0° and viscosity 7 = 0.00 ~ 0.10Pa s.

After the creation of the particles with liquid bridges, cyclic calculations were
performed to allow the agglomerate to reach a state of equilibrium. During this stage,
high viscosity (0.1 Pas) of the liquid bridges was used to damp out the kinetic energy
which was produced when the attractive forces of the liquid bridges pulled the primary
particles closer together. After 450,000 time steps, the total contact force (i.e. the
combination of the attractive liquid bridge force and the repulsive Hertzian contact
force) at each contact was less than 1.0u/N and the global rectilinear velocity of each
particle was around 10um/s. This stage of the agglomerate was assumed as the quasi-
equilibrium state and was used as the initial state for all subsequent simulations of
agglomerate impact. Figure 6.1 shows the agglomerate at the quasi-equilibrium state
together with the distributions of the residual total contact forces (figure 6.1b) and the

residual rectilinear velocities (figure 6.1c). At this stage, there were 14906 interstitial
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Figure 6.1: The initial state of the prepared moist agglomerate with a body-centred
cubic arrangement: (a) the agglomerate, (b) total contact force distribution and (c)

rectilinear velocity field.
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liquid bridges which corresponds to a measured average coordination number of 7.339.
Theoretically, the coordination number of a body-centred cubic packing should be 8,
but this only applies to an infinite structure. For the body-centred cubic agglomerate

of 4062 particles, the particles on the periphery have less than 8 contacts.

In figure 6.1b, contact forces (the overall force of liquid bridges and Hertzian
contact) between particles are represented by lines joining the centroid of particles
with the compressive forces represented by green lines and the tensile forces by blue
ones. Of the 14906 contacts, there are 7391 compressive and 7515 tensile. The
magnitude of the contact forces is indicated by the thickness of the lines which are
scaled to the current maximum force (1.3 x 107/N). In figure 6.1c the rectilinear
velocities of each particle are represented by lines each with a red dot to indicate the
forward direction. The length of each line is scaled to the magnitude of the velocity.
The maximum speed of the constitutent particles at this stage is 1.9 x 10™°m/s. It
can be seen that the residual velocities and contact forces are very small and are all
randomly distributed. Due to the numerical truncation of the computer calculations,
it is impossible to reach the absolute equilibrium state with uniform or zero particle

velocities.

6.2.2 Test procedures

For each impact test, a smooth and continuous ‘massive’ elastic plane wall was cre-
ated. This wall was generated at a position below the agglomerate. The properties
of the wall were considered to be the same as the primary particles and the thick-
ness of the wall was simulated as a semi-infinite half-space. Each impact test was
performed by setting an appropriate colliding velocity to all the primary particles of
the agglomerate and the wall was stationary. In total, three series of agglomerate-

wall impact tests were performed with each series considering different viscosities of



Liquid viscosity Impact velocity
Pa.s (ms™1)
0.00 0.2, 0.3, 04, 0.5, 1.0, 2.0
0.01 0.2, 0.3, 0.44, 0.6, 1.0, 2.0, 3.0
0.10 0.3, 0.4, 0.6, 1.0, 2.0, 4.0, 8.0

Table 6.1: Series of the moist agglomerate-wall impact tests

0.00, 0.01 and 0.10Pa.s respectively for the interstitial liquid bridges. The series of

the agglomerate-wall impact tests is described in table 6.1.

6.3 Results and discussion

6.3.1 Visual observations

Computer graphics visualisation of all the simulations, showing the agglomerates after

impact, are provided in Appendix C.1.

Computer simulated 2D and 3D dry agglomerate-wall impact tests were reported
by Yin (1992), Thornton and Kafui (1992), Thornton, Kafui and Yin (1993) and Kafui
and Thornton (1993). For all their simulations reported, the properties of both the
particles and the wall were: density p = 2.65Agm™2, Young’s modulus E = 70Gpa,
Poisson’s ratio » = 0.3 and friction g = 0.35. The primary particles adhered together
as a result of van der Waals’ forces (auto-adhesion). The 2D simulations were carried

out on a 1000 primary particle monodisperse agglomerate in order to provide clear
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visual evidence of the internal agglomerate damage processes. The radius of the
primary particles was R = 100um. The 1000 primary particles were initially randomly
generated within a prescribed circular region and then a centripetal gravity field was
imposed to bring the particles together. For the 3D simulations, Thornton, Kafui
and Yin (1993) reported a dry agglomerate which consisted of 7912 primary particles
arranged in a face-centred cubic packing to form a spherical agglomerate. They used

a primary particle size R = 100um.

In the 2D dry agglomerate-wall impact simulation, it was found that when the
agglomerates were impacted at a relatively high velocity, they were effectively shat-
tered with more than 80% of the interparticle bonds being broken. Many singlets
and very small clusters were produced in the region nearest to the wall and at the
rear of the agglomerates. When impacted at moderate velocities, it was observed
that the agglomerates failed in a very different way. Only a very small portion of the
primary particles were broken away as small clusters (i.e fine debris). As a result of

the impact, fracture occurred which roughly divided the agglomerates into two parts.

Thornton and Kafui (1992) and Thornton, Kafui and Yin (1993) reported that,
in the case of the 3D agglomerates, moderate impact velocities resulted in a main
fracture along a meridian plane and the two divided hemispheres were themselves
fractured by small cracks. It was clear from the computer graphics provided that at
moderate impact velocities, the dry agglomerates appear to fail by brittle fracture. It
was also shown that at low impact velocities, the dry agglomerates bounced off the
wall after the impact and there were few bonds broken. However, Kafui and Thornton
(1993) reported that in their subsequent 3D agglomerate wall impact tests fracture

along a meridian plane was not observed.

For the computer simulated moist agglomerate impact test, however, it was found
that the agglomerate behaved in a very different way. Figure 6.2-6.4 shows some

pictures of the side and top views of a moist agglomerate with zero liquid viscosity
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after impact with a wall at different velocities of 0.2, 0.5 and 2.0m/s respectively.
For all the pictures shown here and the following pictures, the size of the clusters
is represented by different colours. Particles belong to a cluster if they are all held
together by the pendular liquid bridges. The colour code of the cluster sizes is as

follows,

Green Singlets

Cyan  Clusters with 2-10 primary particles
Black Clusters with 11-50 primary particles
Blue Clusters with 51-200 primary particles
Yellow Clusters with 201-600 primary particles

Red Clusters with more than 600 primary particles

It can be seen from figure 6.2 that when the moist agglomerate with inviscid
liquid bridges was impacted on to the wall at a low velocity of 0.2m/s, it remained
adhered to the wall. There were no particles broken away from the parent cluster and
the agglomerate deformed slightly in the region near to the wall. Figure 6.3 shows
that when the impact velocity was increased to 0.5m/s, no debris of small clusters
was produced but the plastic deformation of the whole agglomerate was increased
significantly. Figure 6.4 indicates that with further increase in the impact velocity
to 2.0m/s, the moist agglomerate flattened and spread over the wall due to the
collision. Quite a number of singlets and small clusters were produced by either the
dislodgement from the agglomerate surfaces or from local shattering in the zone near
to the wall. However, although a significant number of primary particles were broken
away and many internal bonds of liquid bridges were broken, it can be seen that the
moist agglomerate is not fractured in a brittle manner. The agglomerate is neither

extensively shattered nor fractured as in the case of the dry agglomerates.

The top view of figure 6.2-6.4 indicates that due to the impact strain along the di-

rection of the collision, the moist agglomerate dilated horizontally and the maximum
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(b)

Figure 6.2: Side (above) and top (below) views of a moist agglomerate with a zero

liquid viscosity after impact with a wall at a velocity of 0.2m/s.
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(b)

Figure 6.3: Side (above) and top (below) views of a moist agglomerate with a zero

liquid viscosity after impact with a wall at a velocity of 0.5m/s.
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(b)

Figure 6.4: Side (above) and top (below) views of a moist agglomerate with a zero

liquid viscosity after impact with a wall at a velocity of 2.0m/s.
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extension was along the four diagonal directions normal to the impact direction. In
figures 6.2b, 6.3b, 6.4b the agglomerate is viewed in a direction slightly inclined to the
vertical and hence the agglomerate appears to be “rectangular” rather than square.
The preferential dilation is due to the fact that the agglomerate was impacted in a
direction orthogonal to the square-packed planes of the body-centred cubic arrange-
ment. Thus, when the the agglomerate was more strained at high impact velocities,
its preferential extension becam; more significant.

It is apparent that a moist agglomerate is more resistant to fracture/fragmentation
and can sustain a much larger amount of plastic deformation in comparison to a dry
agglomerate. This is because in comparison with the auto-adhesion of van der Waals’
forces, the liquid bridge bonds are much more extendible and provide more energy
accommodation. Lian et al (1993) indicated that, if, for example, the degree of
liquid saturation of a monodisperse particle system is 1%, the critical extension at
which the liquid bridge bonds rupture is about 15% of the particle radius . For
a dry agglomerate, according to JKR theory, rupture of contact bonds occurs at a

separation distance of only ~ 1034 (assuming E ~ 10'°Pa and 4 ~ 10~1J/m?).

The strength of the moist agglomerate to resist fracture/fragmentation and to
sustain plastic deformation is greatly increased by increasing the viscosity of liquid
bridges. This is illustrated by figures 6.5-6.7 which show the side and top views
respectively for the wet agglomerate with 0.1Pa.s liquid viscosity after impact at
different velocities of 1.0, 2.0 and 8.0m/s. It can be seen that when a higher viscosity
was assigned to the liquid bridges of the agglomerate, a much higher impact velocity
was required to deform the agglomerate to a similar extent. Increasing the viscosity
also decreases the number of fine particles broken away. With a viscosity of 0.1 Pas
attributed to the liquid bridges, it is apparent from figures 6.5 and 6.6 that, at the
impact velocities of 1.0 and 2.0m/s, the agglomerate remains completely intact but

deforms as though it was a visco-plastic ball. At a high impact velocity of 8.0m/s,
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(b)

Figure 6.5: Side (above) and top (below) views of a moist agglomerate with a liquid

viscosity of 0.1 Pa.s after impact with a wall at a velocity of 1.0m/s.
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(b)

Figure 6.6: Side (above) and top (helow) views of a moist agglomerate with a liquid

viscosity of 0.1 Pa.s after impact with a wall at a velocity of 2.0m/s.
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(b)

Figure 6.7: Side (above) and top (below) views of a moist agglomerate with a liquid

viscosity of 0.1 Pa.s after impact with a wall at a velocity of 8.0m/s.
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figure 6.7 indicates that the agglomerate was so severely deformed that it was planar

shaped. However, attrition still did not occur.

The rheological behaviour of the computer simulated moist agglomerate may be
explained in terms of the interaction forces between particles. Since deforming the
agglomerate requires external applied forces to overcome the interparticle friction
and liquid bridge forces, the bulk behaviour of the agglomerate is dominated by the
contact interactions. As the viscosity of the liquid bridges increases, the force and
energy required to break the liquid bridge bonds also increase. Mazzone et al (1987)
demonstrated that the force and energy required to break a viscous liquid bridge is
sometimes orders of magnitude higher than that required in geometrically identical
non-viscous systems. As a result, the visco-plastic deformation (rheological flow)
behaviour of the moist agglomerate is more obvious when the viscosity of interparticle
liquid bridges increases. From this point of view, the computer simulated results of
the moist agglomerate impacts qualitatively demonstrate the effectiveness of adding
viscous binders to prevent agglomerate attrition and promote powder granulation, a

common practice in process engineering.

6.3.2 Agglomerate deformation

At the macroscopic level, the visco-plastic deformation of the agglomerate can be
quantified by the diametrical compression induced orthogonal to the wall surface and
the lateral spreading of the agglomerate over the wall surface. The relative height
(k/2R.) of the impacted agglomerate as a function of the impact velocity and the
viscosity of the liquid binder is shown in figure 6.8a, where h is the measured height
of the impacted agglomerate and R. is the radius of the initial agglomerate before
impact. It can be seen that, as the impact velocity increases, the relative height

of the impacted agglomerate decreases. At very low impact velocities, changing the
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viscosity of the interstitial liquid binder has no significant effect. At higher impact
velocities, however, the relative height reduces with reduction in the viscosity of the
liquid bridges. This indicates that at low impact velocities, interparticle friction and
static liquid bridge forces are more significant and the viscous effect becomes dominant

when the impact velocity is relatively high.

In figure 6.8b the dimensionless contact area of the agglomerate with the wall
(Ac./mR?) is plotted against impact velocity in a log-log scale. It can be seen that,
for each value of viscosity, the relationship almost follows a straight line with a slope
of 2. This implies that the contact area is almost a linear function of the initial
kinetic energy of the agglomerate. Comparing the results shown for liquid viscosities
of 0.01Pa.s and 0.10Pa.s, it is observed that the normalised contact area scales

inversely with the viscosity. This may suggests that,

A.c o — (6-1)

n
where v is the impact velocity and 5 is the viscosity of liquid bridges. However,
this does not apply to the agglomerate with inviscid liquid bridges because its bulk

behaviour is dominated by interparticle friction and static liquid bridge forces.

6.3.3 Damage assessment

Visual observation of the computer simulated moist agglomerate impact tests indi-
cated that attrition only occurred when agglomerates with low viscosities were im-
pacted at high velocities. Neither shattering nor semi-brittle fracture were observed.
Instead, for the most severe damage case of the inviscid agglomerate impacted at a
speed of 2.0m/s, a large cluster consisting of 3501 primary particles survived, in spite
of being subjected to severe plastic deformation. This cluster accounts for 86.2% in

mass of the original agglomerate. The other 13.8% corresponds to the debris which
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Figure 6.9: Size distribution of the debris produced by a body-centred cubic agglom-

erate with inviscid liquid bridges impacting normal to a wall at a velocity of 2.0m/s.

mainly consisted of singlets, doublets and triplets. The size distribution of the debris
is shown in figure 6.9. It can be seen that of the 13.8% debris, there are 49.02% sin-
glets, 15.33% doublets and 7.49% triplets. The clusters with more than 10 primary
particles only account for 8.73% of the debris with the largest cluster consisting of 21

primary particles.

The number of particles and small clusters that break away from the moist agglom-
erate is greatly reduced when the viscosity of the interparticle liquid bridges increases.
This is indicated in figures 6.5-6.7. When the viscosity of the liquid bridges of the
agglomerate was increased to 0.1 Pas, no particles were broken away even when the

impact velocity was very high and the agglomerate was severely flattened.

Although collisions do not produce significant attrition and fracture, especially
for very viscous agglomerates, significant internal damage may occur if the impact

velocity is relatively high. This is shown by figure 6.10a where the damage ratio of
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the moist agglomerate is plotted as a function of the impact velocity for different

liquid bridge viscosities. The damage ratio is defined as,
Ny
D, = — :
N, 62)

where N, is the number of the ruptured liquid bridges and N, is the number of initial

liquid bridges in the agglomerate before impact.

It can be seen from figure 6.10a that there is a distinct threshold velocity below
which the impact causes no internal liquid bridge rupture. Above the threshold
velocity, the damage ratio increases as the impact velocity increases. In the semi-
logarithmic plot, each set of damage ratio data produces a straight line with a slope
of 1. Consequently, the dependence of the damage ratio on the impact velocity can

be represented by a logarithm function of the following form,

D, = log vi (6.3)
where v, is the threshold impact velocity below which the impact causes almost no
internal damage to the agglomerate. This relationship is similar to that obtained
for dry agglomerate impacts as reported by Yin (1992). Figure 6.10a shows that
the threshold velocity increases with the bond strength of the liquid bridges. For
the three liquid viscosities of 0.0, 0.01 and 0.10Pa.s, the best fit of data gives the

threshold velocities as 0.35, 0.44 and 0.98m/s respectively.

During the impact process, whenever a collision between the primary particles
occurred, a new liquid bridge was formed if there was no liquid bridge before. Figure
6.10b shows that, in addition to liquid bridge rupture, there were also quite a number
of new liquid bridges formed. The ratio of newly made bridges also increases as the
impact velocity increases. Newly made liquid bridges occurred at much lower impact

velocities than the threshold velocity to cause damage. As a result, the overall bridge
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number increased if the impact velocity was below the threshold velocity. However,
when the impact velocity was above the threshold velocity, the rate of increase in the
number of ruptured bridges with impact velocity was much higher than that of the
newly made liquid bridges. Consequently, the overall number of liquid bridges in the
agglomerate after impact decreased at high impact velocities. It is also observed from
figure 6.10b that as the impact velocity reaches the threshold velocity for damage the

number of newly-made liquid bridges decreases slightly.

The overall contact number due to the balance between the broken liquid bridges
and newly made ones can be described by the bond probability which is defined as
the ratio of the final to initial number of liquid bridges,

Z N,— Ng+ N,
12 N,

Nd—Nn)
N,

o= === (64)
where N, is the number of the newly made liquid bridges and Z is the coordination
number. The coefficient Z/12 is introduced because, for regular packings, the densest
packing is face-centred cubic (FCC) which has a coordination number of 12. Thus, the
coefficient Z/12 scales the bond probability of the face-centred cubic arrangement to
the highest bond probability 1. According to this definition, the coordination number
of the body-centred cubic (BCC) is Z = 8 and the bond probability is 2/3. Strictly
speaking, 8 and 12 are the coordination numbers for BCC and FCC but not when
there are finite boundaries. For agglomerates of BCC and FCC the coordination

numbers are less than 8 and 12 respectively. For simplicity, we use 8/12 to scale the

bond probability of the body-centred cubic agglomerate.

Figure 6.10c shows that in terms of bond probability, there are two distinct re-
gions of moist agglomerate-wall impact. In the low impact velocity region, the bond
probability first increases and then decreases as the impact velocity increases, but
the bond probability is above the initial value of 2/3. Thus, the agglomerate may

be considered to be stronger after the impact because there were more interparticle
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liquid bridges. In this sense, the strongest agglomerate is obtained by impacting at
the damage threshold velocity which also corresponds to the maximum bond proba-
bility of the agglomerate after impact. In the high impact velocity region the bond
probability is reduced to less than the initial value of 2/3 and the agglomerate may
be considered to have been weakened by the impact. This is due to there being more

broken bridges than newly-made ones.
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Figure 6.11: The evolution of broken contacts (A), newly-made contacts (o) and over-
all remaining contacts (O) of liquid bridges of a low viscosity (0.01 Pa.s) agglomerate
(broken lines) and a high viscosity (0.1Pa.s) agglomerate (solid lines) impacting at a

speed of 2.0m/s.

In order to illustrate further the apparent strengthening/weakening process, the
evolution of broken bridges, newly-made bridges and overall remaining bridges are
plotted in figure 6.11 for two typical cases. It shows clearly that when the agglomer-
ate with a lower viscosity of 0.01 Pa.s was impacted at a velocity of 2.0m/s, the rate

of bridge rupture exceeded the rate at which newly-made liquid bridges were formed.
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Consequently, the overall number of liquid bridges continuously reduced until a con-
stant value was reached when the kinetic energy of the collision had been almost
fully dissipated. When the viscosity of the binding liquid was 0.1Pa.s, the rate of
liquid bridge rupture was initially less than the rate at which new liquid bridges were
formed and during this stage the overall number of the bridges, therefore, increased.
Subsequently, the overall number of liquid bridges decreased due to the rate of bridge
rupture exceeding the rate of forming new contacts. However, at the equilibrium
state, the final number of liquid bridges was still larger than the initial number prior

to impact.

6.4 Summary

Results have been presented from computer simulations of a moist agglomerate im-
pacting with a wall. The agglomerate consisted of 4062 primary particles with a
body-centred cubic arrangement. It has been shown that when the agglomerate was
impacted, it remained adhered to the wall and deformed visco-plastically. Only at
high impact velocities did any attrition occur with the agglomerate being greatly de-
formed into a planar shape. The maximum amount of attrition was observed when
the inviscid agglomerate was impacted at a velocity of 2.0m/s. However, the debris
produced consisted of only a small portion of the agglomerate mass. Semi-brittle
fracture/fragmentation and shattering behaviour observed for dry agglomerates were
not observed in the moist agglomerate simulations. When the viscosity of the binding
liquid increases, attrition due to the break up of single particles or small clusters de-
creases and so does the visco-plastic deformation of the agglomerate. This indicates
that the resistance of the agglomerate to attrition and deformation increases with the

increase in the liquid bridges viscosity.

At moderate impact velocities, attrition did not occur. Internal damage to the
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agglomerate was produced due to the rupture of interparticle liquid bridges. Thereis a
distinct threshold velocity above which the ratio of ruptured liquid bridges increases
logarithmically as the impact velocity increases. At low impact velocities, below
the threshold velocity, the impact did not cause any internal bridge rupture. The
threshold velocity was found to increase as the viscosity of the liquid bridges and

hence the strength of the agglomerate was increased.

It has been shown by the computer simulations that new liquid bridges were also
formed between the primary particles of the agglomerate during the impacts. The
creation of new liquid bridges can occur at impact velocities much below the thresh-
old velocity of bridge rupture. The number of newly-made liquid bridges increases
with the impact velocity and is dependent on the viscosity of the binding liquid. The
total number of liquid bridges, as represented by the bond probability of the agglom-
erate, reflects the balance between ruptured and newly-made liquid bridges. It was
found that at low impact velocities, the bond probability of the impacted agglom-
erate increased because more liquid bridges were created than were ruptured. This
may be interpreted as a strengthening (or hardening) of the agglomerate during im-
pact. In this sense, the strongest agglomerate, having the highest bond probability,
is obtained at the threshold velocity for damage. At high impact velocities, the bond
probability is reduced during impact, implying a weakened agglomerate due to more
liquid bridges being broken than new bridges being created. The transition from
the “strengthening” to “weakening” depends on the viscosity of the liquid bridges.
When the viscosity of the liquid is increased, the transition occurs at a higher impact

velocity and the maximum bond probability also increases.



Chapter 7

Computer simulation of

agglomerate-agglomerate collisions

This chapter is concerned with the computer simulation of agglomerate-agglomerate
collisions using TRUBAL. Two moist agglomerates each consisting of 1000 randomly
generated particles were prepared. Results of normal and oblique collisions of the
two moist agglomerates are reported. The coalescence and attrition mechanisms of
the agglomerate collisions have been examined in terms of the energy dissipation and
visco-plastic deformation. The effect of interstitial liquid bridge properties has also

been investigated. Some results presented in this chapter have been reported by Lian,

Thornton and Adams (1993a).
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7.1 Introduction

For powder granulation, moist particles or granules are agitated to move about and
collide with each other. As a result of a collision, the granules may stick, break-
up or rebound. Whether the collision of moist granules or agglomerates leads to size
enlargement or reduction, the review in chapter 2 indicates that the underlying mech-
anism is not clear. The study by Nienow and Rowe (1985) stressed the importance
of the balance of interparticle binding forces and collisional break up forces. They
argued that if the binding forces dominate over the break-up forces, agglomerates
continue to grow in size. If the break-up forces are greater than the binding forces,
agglomerates will break up. However, binding forces and break-up forces in agglom-

erates are not well understood, and are rarely quantified (Adams, Mullier and Seville

1987).

At the microscopic level, studies reported by Davis (1987), Ennis et al (1991)
and others (Barnocky and Davis 1988a, 1988b; Davis et al 1986; and Serayssol and
Davis 1986) indicated that for single pairs of elastic or rigid particles, successful
coalescence may occur only if they have insufficient relative kinetic energy to overcome
the retarding force of the binding liquid. However, it has been demonstrated by the
computer simulated agglomerate impact tests in chapter 6 that moist agglomerates
differ from single rigid or elastic particles in that they behave visco-plastically. In
comparison with dry agglomerates, moist agglomerates are also more resistant to
attrition and fracture-fragmentation because the interparticle bonds of liquid bridges
are more extendible and provide more energy accommodation. At the microscopic
level, it has also been demonstrated that the strength and deformability of moist

agglomerates are mainly dependent on the viscosity of the interparticle liquid bridges.

In order to examine the mechanisms that control the coalescence and break up of

moist agglomerates, the computer program TRUBAL has been applied to simulate
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collisions between two moist agglomerates. The two agglomerates, each consisting of
1000 randomly packed particles, were prepared and a series of normal and oblique
collisions were performed. Pictures of the two agglomerates after collisions are pre-
sented and their coalescence and attrition mechanisms are discussed in terms of the
energy dissipation and visco-plastic deformation. At the microscopic level, the effect

of the liquid bridge properties is also examined.

7.2 Computer simulation procedures

7.2.1 Agglomerate preparation

For the computer simulated moist agglomerate-agglomerate collisions, two agglomer-
ates each consisting of 1000 randomly packed particles were prepared by the following
procedures. First, one thousand particles were randomly generated in each of two
spherical regions. The radius of the generated primary particles was R = 30um with
a normally distributed deviation of +3um. This deviation of the particle size is used
to ensure random packing of the agglomerates. The properties of the primary par-
ticles were: density p = 2.65Mgm™3, Young’s modulus E = 70Gpa, Poisson’s ratio

v = 0.3 and friction coefficient p = 0.3.

When the particles were first generated, there were no initial inter-particle con-
tacts. Centripetal gravity fields were then applied to the particles in each region to
bring them together. During this process, whenever a collision between the primary
particles occurred, a quantity of liquid (0.1% of the particle volume) was assigned to
the contact between the particles to form a liquid bridge. The liquid bridges were
modelled with the following properties: surface tension 7, = 0.025 ~ 0.050N m™1,

viscosity 7 = 0.001 ~ 0.1 Pa s and solid-liquid contact angle 6 = 0°.



Because of the viscous resistance of the liquid bridges, all particles gradually co-
alesced under the centripetal gravity fields and two agglomerates were formed. How-
ever, the coalescence of the particles under the centripetal gravity field requires very
long computer time because, with the normal density of the particles, the time step
is very small. Thus, during the agglomerate preparation process, a high density of
p = 2.65 x 103M g m=2 for the particles was specified so that a much larger time step
could be used. When the kinetic energy of the two coalesced particle systems was
satisfactorily dissipated by the viscous damping of the liquid bridges the centripetal
gravity fields were then slowly removed so that the two agglomerates were not dis-
turbed due to the sudden removal of the applied gravity field. After the removal of
the centripetal gravity field, normal density was assigned to all the particles and fur-
ther cyclic calculations were carried out to ensure that the systems of the two moist
agglomerates attained a state of quasi-equilibrium. The two agglomerates were then

moved close to each other prior to specifying the desired impact velocities.

The two wet agglomerates formed by the above process are shown in figure 7.1
where the distributions of the overall contact forces and residual rectilinear velocities
of the constituent particles are also presented. In figure 7.1b contact forces are rep-
resented by lines joining the centroids of the primary particles that are in contact. A
green line indicates a compressive force and a blue line indicates a tensile force. The
magnitude of the contact forces is indicated by the thickness of the lines. In figure
7.1c, the rectilinear velocity of each particle is represented by a line that starts from
the particle center and ends at a red dot. The magnitude of the velocities is indicated

by the length of the line.

For the two agglomerates shown in figure 7.1a, the measured radii of the cir-
cumscribing spheres are 384um and 383um respectively. Altogether there were 7183
interstitial liquid bridges which corresponds to a degree of average saturation of 0.71%

and an average coordination number of 7.183. The coordination number is very close
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to that measured for the body-centred cubic agglomerate of 4062 particles reported
in the previous chapter. Theoretically, the coordination number of a body-centred
cubic packing should be 8, but for the agglomerate of 4062 particles the measured av-
erage coordination number was 7.339. This is because for the reported body-centred
cubic agglomerate, the particles on the periphery have less than 8 contacts. Thus,

the measured average coordination number is less than 8.

Of the 7183 interstitial liquid bridges, the overall forces are either compressive
(3263 in total) or tensile (3920 in total). The magnitude of the maximum force is
1.5 x 1073 N. It can be seen from 7.1b that the tensile and compressive forces are
randomly distributed within the two agglomerates. The translational velocities of
the constituent particles are shown by figure 7.1c. It can be seen that they are also
randomly distributed. The maximum rectilinear velocity is around 1.0e—5m s~'. The
kinetic energy of the two agglomerates is 9.21 x 107'7J. Further cyclic calculations
to reduce the kinetic energy was not attempted because it was observed that the
local oscillations of the primary particles were more dominant and it needs a lot more
cyclic calculations to further reduce the translational velocities. The stage of the
agglomerates shown in figure 7.1 was achieved after about 340,000 calculation cycles

(time steps) from the very beginning when the primary particles were first generated.

7.2.2 Impact simulations

All successive computer simulated collisions were started with the same agglomer-
ates from the same stage. Two series of agglomerate-agglomerate collision tests were
performed. The first series of tests involved the normal collisions of the two ag-
glomerates. The effects of impact velocity, liquid viscosity and surface tension were
examined. The second test series was concerned with oblique collisions of the two

agglomerates in order to investigate the influence of different incident angles on the
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agglomerate coalescence and attrition. Both series of impact tests are described in

Normal impact
Liquid | Surface | Incident Impact velocity
viscosity | tension | angle
(Pa.s) | (N/m) | (deg) (m/s)
0.001 0.025 0 0.2,05,1.0,1.2,1.5;20
0.010 0.025 0 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0
0.010 0.050 0 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
0.100 0.025 0 2.0, 5.0, 6.0, 7.0, 10.0, 15.0
Oblique impact
Liquid | Surface | Impact Incident angle
viscosity | tension | velocity
(Pas) | (N/m) | (m/s) (deg)
0.010 0.025 2.0 15, 30, 45, 60, 75, 85
0.010 0.025 5.0 15, 30, 45, 60, 75, 85
0.001 0.025 2.0 15, 30, 45, 60, 75, 85

Table 7.1: Agglomerate-agglomerate impact tests performed.

7.3 Normal collisions

7.3.1 General observation

All pictures of the computer simulated normal collisions of the two moist agglomer-

ates are shown in appendix C.2. Figure 7.2 illustrates three typical cases where the
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two agglomerates are shown after they had collided at relative velocities of 1.0, 2.0,
and 5.0 m s~! respectively; the properties of the interstitial binding liquid for all three
cases were: viscosity 0.01Pa s and surface tension 0.025 N m~'. It can be seen from
figure 7.2 that, in all cases, the two moist agglomerates coalesced. When the relative
colliding velocity was 1.0 m s~!, the two agglomerates coalesced but were only slightly
deformed near the local region of impact. The shape of the two moist agglomerates re-
mained essentially unchanged. When the relative velocity was increased to 2.0m s™',
the two moist agglomerates also coalesced but their deformation was increased to
such an extent that they were almost deformed to hemispheres as a result of the col-
lision. When the relative impact velocity was further increased to 5.0 m s~!, however,
attrition occurred due to the removal of single particles and the two agglomerates

were so greatly deformed that the resultant coalesced agglomerate was disc-shaped

and would probably be prone to significant attrition in any subsequent collision.

The effect of binder viscosity is illustrated in figure 7.3 which shows the two moist
agglomerates after colliding at the same relative velocity of 2.0m/s. It can be seen
that the stronger agglomerates, with a liquid viscosity of 0.100Pa.s, coalesced and
were only slightly deformed after the collision. When the viscosity of the binding
liquid was reduced to 0.010Pa.s, the two collided agglomerates coalesced but were
deformed to almost hemi-spheres. For the weakest agglomerates with a liquid viscosity
of 0.001 Pa.s a small amount of agglomerate attrition occurred and the two original

agglomerates were also greatly deformed.

For all cases of the two moist agglomerates subjected to normal collisions at dif-
ferent impact velocities and with different properties of liquid bridges, pictures shown
in appendix C.2 indicate that they all coalesced. Only when the two agglomerates
with low liquid viscosities were impacted at relatively high impact velocities, did any
attrition occur, with just a few particles broken away. When the viscosity of the bind-

ing liquid increases, the impact velocity to produce attrition also increases. But with
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Figure 7.2: Two moist agglomerates with 0.01 Pa s viscosity and 0.025 N m™~! surface
tension of liquid bridges after colliding at velocities of (a) 1.0m s™?, (b) 2.0m s™! and
(c) 5.0ms™1,
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(¢)

Figure 7.3: Two moist agglomerates after colliding at a relative speed of 2.0m/s but

with different liquid viscosities of (a) 0.100Pa.s, (b) 0.010Pa.s and (c) 0.001 Pa.s



higher viscosities of liquid bridges, fewer primary particles were broken away even
if the two agglomerates were greatly deformed. The impact velocity for producing

attrition also increases if the surface tension of the binding liquid is increased.

The observed damage behaviour of the moist agglomerates is much different from
that observed for dry agglomerates impacted at corresponding velocities (Yin 1992;
Thornton and Kafui 1992; and Thornton, Kafui and Yin 1993; and Kafui and Thorn-
ton 1993). In the computer simulated collisions of the moist agglomerates, neither
shattering nor semi-brittle fracture was observed. Break-up of single particles or small
clusters was observed only at high impact velocities. At low collision velocities the
wet agglomerates coalesced and deformed. An increase in the impact velocity leads
to an increase in the plastic deformation of the agglomerates and consequently affects

the size and shape of the resulting coalesced agglomerate.

A simple way of characterising the shape and size of an agglomerate is provided
by fractal geometry. According to Mandlebrot (1983), for an agglomerate with the
number of primary particles, N,, the fractal dimension, Dy, is related to the radius

of the smallest sphere that circumscribes the agglomerate, R, by the equation

N, = ¢'3(RCIR)D" (7.1)

where R is the radius of the primary particles and the parameter ¢ is often taken
to be unity but, if known, is the solid fraction of the agglomerate, Feder (1988). For

simplicity we will assume ¢, = 1.0.

The fractal dimension is also a measure of the agglomerate structure. Using
equation 7.1, the size and shape of the BCC agglomerate (4062 primary particles,
R = 30um) reported in chapter 6 may be defined by a circumscribing sphere radius
R, = 572um and fractal dimension D; = 2.82. Kafui and Thornton (1993) reported

a face-centred cubic agglomerate consisting of 7912 primary particles of radius R =
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10pm. The measured radius of the circumscribing sphere is R, = 230.5um which
corresponds to a measured fractal dimension of Dy = 2.86. For the two randomly
generated agglomerates reported in this chapter, the size and shape of each of the
initial agglomerates before impact may be defined by R. = 0.3835mm and Dy = 2.71.
Considering the two agglomerates together when they are just touching each other,

the fractal dimension is Dy = 2.345.

Figure 7.4 illustrates how the radius of the circumscribing spheres and the frac-
tal dimension of the resultant coalesced agglomerate are dependent on the relative
impact velocity, surface tension and viscosity of the liquid bridges. As the velocity
increases the size of the coalesced agglomerate decreases and the fractal dimension
increases. There is an optimum velocity above which the size increases due to the
extensive flattening in the plane orthogonal to the impact direction, with a corre-
sponding decrease in the fractal dimension due to the increased tendency to produce

a flat “two-dimensional” agglomerate.

Figure 7.4 also shows the effects of different binding liquid properties on the size
and shape of the coalesced agglomerate. When the viscosity of the liquid bridges
increases, the fractal dimension increases with impact velocity at a slower rate and
the maximum fractal dimension is obtained at a higher optimum impact velocity.
Correspondingly, the circumscribing sphere radius decreases with impact velocity at
a reduced rate due to the increase in viscosity. The effect of the surface tension of

the liquid is similar to that of the liquid viscosity.

In terms of granulation and attrition, it is generally believed by experimentalists
that the effect of increasing the impact velocity (by increasing the gas velocity of a
fluidised bed for instance) is to decrease particle agglomeration and increase attrition.
It is argued that, as the gas velocity increases, the particles will have greater impact
velocities and hence the break-up forces will be increased (Smith and Nienow 1983a;

Mullier 1991). In the computer simulated agglomerate collisions, however, it was
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observed that, below the optimum impact velocity, an increase in impact velocity
enhances the coalescence of the two agglomerates. This is because of the fact that
in this region of impact velocities, the number of newly-made liquid bridges between
the two agglomerates increases as the impact velocity increases and attrition does
not occur. Apart from that, the size of the coalesced agglomerate also decreases
with the impact velocity. At the optimum impact velocity, the collision produced a
near spherical shaped agglomerate which should minimize attrition due to subsequent
collisions. Only at high impact velocities beyond the maximum impact velocity did
any attrition occur, with some particles or small clusters broken away. However,
the two agglomerates were also severely flattened. It is only in this region, where
the impact velocity is above the maximum impact velocity, that the increase of the
impact velocity will increase the attrition of the agglomerates and hence decreases

granulation.

7.3.2 Energy dissipation

Generally speaking, for the size enlargement process of moist agglomerates, energy
dissipation and visco-plastic deformation are essential for their successful coalescence.
At the micro-level, Davis (1987) and others (Barnocky and Davis 1988a, 1988b; Davis
et al 1986; Serayssol and Davis 1986) studied the elasto-hydro-dynamic collision of
elastic solid spheres. A similar theory was also presented by Ennis et al (1991) for
moist granules, where the granules were considered to be rigid spheres covered by
thin liquid layers. For either rigid or elastic spheres, the successful coalescence was
shown to be due to the complete dissipation of the kinetic energy only by the thin
layers of the liquid that covered the spheres. From the computer simulated moist
agglomerate collisions, however, the coalescence mechanism was seen to be quite
different. Dissipation of the kinetic energy for the moist agglomerates was not solely

due to the viscous resistance of the binding liquid, but also due to the rearrangement
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visco-plastic deformation) of the particle structure which involved energy dissipation
P gy

due to interparticle friction, viscous resistance and liquid bridge rupture.

Figure 7.5a shows the initial kinetic energy and the energy dissipated by viscous
resistance, interparticle friction and liquid bridge rupture as a result of the two ag-
glomerates colliding at different velocities, where the properties of the binding liquid
were: viscosity 7 = 0.01 Pa.s and surface tension 7y, = 0.025N/m. In figure 7.5b the
energy dissipated is expressed as a ratio of the initial kinetic energy. It can be seen
that when the viscosity of the liquid is 0.01 Pa s, the energy dissipated by the viscous
liquid accounts for about 60% of the initial kinetic energy and the energy dissipated
due to interparticle friction accounts for more than 30%. The energy dissipated as
a result of rupturing the internal liquid bridges is a very small proportion of about
5% of the initial kinetic energy. The impact velocity does not significantly affect the
relative ratios of energy dissipation except for very low impact velocities. At low
impact velocities, it can be seen from figure 7.5b that the energy ratio dissipated by
viscous resistance increases and the energy ratio dissipated by friction decreases as

the impact velocity decreases.

The ratios of kinetic energy dissipated by viscous resistance, interparticle friction
and liquid bridge rupture are dependent on the viscosity and surface tension of the
binding liquid bridges. This is shown in figure 7.6. It can be seen from figure 7.6a that
when the viscosity of the liquid was increased to 0.100Pa.s, the ratio of the kinetic
energy dissipated by viscous resistance correspondingly increased to about 80% and
that by interparticle friction decreased to about 20%. The energy dissipated by the

rupture of liquid bridge bonds slightly decreased when the viscosity increases.

Figure 7.6a also indicates that the surface tension of the liquid bridges also affects
the ratios of the initial kinetic energy dissipated. By increasing the surface tension
from 0.025N/m to 0.50N/m, the energy dissipated by interparticle friction increased

by more than 5% and the energy dissipated by viscous resistance decreased by more
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than 5%. The energy dissipated by the rupture of interstitial liquid bridges also

slightly increased.

For all the cases shown in figure 7.6a, the relative ratios of energy dissipation
remained almost constant at high impact velocities. At low impact velocities, the
energy ratio dissipated by viscous resistance increases and the energy ratio dissipated
by interparticle friction decreases as the impact velocity decreases. In addition, the
energy ratio dissipated by viscous resistance always exceeded the energy ratio dis-
sipated by interparticle friction regardless of impact velocity. However, figure 7.6b
indicates that when the viscosity of the liquid is very low, the distribution of energy
dissipation is different from the above cases. It can be seen from 7.6b that, with a
liquid viscosity of 0.001Pa.s, the energy dissipated by viscous resistance decreased
from 70% to 30% as the impact velocity increases. On the other hand, the energy
dissipated by interparticle friction correspondingly increased from 25% to 60% of the
initial kinetic energy. Therefore, at low impact velocities, the energy ratio dissipated
by viscous resistance is dominant, but, when the relative impact velocity is higher

than 0.5m/s, frictional dissipation dominates.

During the course of a collision, there are only relatively few new contacts and
liquid bridges formed between the particles of one agglomerate and the other. As
a result, most of the energy dissipated by interparticle friction and viscous resis-
tance is accommodated by the internal contacts and liquid bridges where the relative
movement between particles is propagated by the deformation of the agglomerates
themselves. Consequently, the theory of single elastic or rigid particle models must
underestimate the energy dissipation of moist agglomerates significantly since they
do not account for the most significant microscopic energy dissipation mechanisms of

internal viscous and frictional damping.
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7.3.3 Damage assessment

Of the three contributions to the energy dissipation, the viscous and frictional energy
dissipation components are associated with the overall visco-plastic deformation of
the granules and favour agglomerate coalescence. However, the rupture of the liquid
bridges between the particles constitutes internal damage to the agglomerates. Al-
though the energy dissipated due to liquid bridge rupture is only a small percentage,
which decreases when the impact velocity is increased, the damage to the agglomerate
is, however, increased since the number of the broken liquid bridges increases with
impact velocity. It was observed that for the computer simulated moist agglomerate
collisions, a certain number of new contacts of liquid bridges were also made due to
the collisions of the primary particles. Thus, some of the broken liquid bridges were
compensated for by the newly made ones. The number of broken liquid bridges and
the number of newly made ones are illustrated by figure 7.7a for different interparticle
liquid bridge strengths and different impact velocities. It can be seen that both the
ratios of ruptured liquid bridges and newly-made ones are logarithmically dependent
on the impact velocities but, when a higher velocity is used, the increase in newly-
made liquid bridges is less than the increase in ruptured liquid bridges. There are
no distinct threshold velocities. It was found that, even at low impact velocities, a
small number of liquid bridges were ruptured and new bridges were formed. At high
impact velocities, however, the damage ratio of liquid bridge rupture can be fitted by,

D, = log Ui (7.2)

o

and the ratio of newly-made liquid bridges can be fitted by,

n, = 0.62log ;’—, (7.3)

o

where v is the relative impact velocity and v, is the fitted threshold velocity of liquid

bridge rupture and v/ is the fitted threshold velocity of newly-made liquid bridges.
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For the agglomerates with liquid bridges of a surface tension of v, = 0.025N/m
and viscosities of 7 = 0.001, 0.010, and 0.100Pa.s, the fitted threshold velocities of
liquid bridge rupture are 0.73, 0.91, and 2.29m/s and the fitted threshold velocities
for the newly-made liquid bridges are 0.87, 1.02 and 2.15m/s respectively. When the
liquid viscosity is 0.010Pa.s and the surface tension is 0.050N/m, the fitted threshold

velocities are v, = 1.19m /s and vp = 1.35m/s.

Overall, the total number of liquid bridges did not change significantly at low
impact velocities. Only when the impact velocity was high did the overall number of
liquid bridges decrease. In figure 7.7c the overall bond probability of the coalesced
agglomerate is plotted as a function of the impact velocity for different liquid bridge
viscosities and surface tensions. Equation 6.4 is used to calculate the bond probabil-
ity. The measured initial coordination number and hence the initial bond probability
of the two agglomerates before collision are very close to that of the body-centred
cubic agglomerate with 4062 particles. It can be seen from figure 7.7 that, for the
normal collision of two agglomerates, the relationship between the bond probability
and the impact velocity is slightly different from that of the agglomerate-wall colli-
sions. At relatively low impact velocities, the bond probability did not change much
after the collision, suggesting that there is no significant increase nor decrease in the
“strength” of the coalesced agglomerates. At relatively high impact velocities, the
bond probability of the coalesced agglomerate decreased. It is also noted that there
is a significant reduction in the bond probability at the optimum impact velocities

which produced near spherical coalesced agglomerates.

For all the simulated two agglomerate collisions reported herein, the damage be-
haviour of the coalesced agglomerate is very similar to that of the agglomerate-wall
impacts. The damage was mainly in the form of the internal breakdown of the liquid
bridges. Agglomerate attrition was only observed at high impact velocities, with only

a few individual particles separated from the parent cluster. However, for the colli-
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sions at velocities above the optimum impact velocity, the internal damage of liquid
bridge contacts breakdown is significant. Thus attrition may be produced when the

coalesced agglomerate is subjected to future collisions.

The internal damage caused to the moist agglomerates was much lower than that
previously observed for dry agglomerates by Thornton and Kafui (1992), Thornton,
Kafui and Yin (1993) and Yin (1992), but was comparable to that observed in the
moist agglomerate-wall impact tests reported in chapter 6. For the computer simu-
lated normal collisions of the two moist agglomerates, it was observed that the kinetic
energy and force transmission propagated from the contact region to the rear end of
the agglomerates. Due to the viscous and frictional damping, the kinetic energy is
significantly dissipated within a region close to the interface between the two original

agglomerates. The remaining energy then further propagates. This is illustrated by

figures 7.8 and 7.9.

Figure 7.8 shows the spatial distribution of liquid bridges that have been broken
(red lines), newly made (blue lines) and survived (light lines) during a collision be-
tween the two agglomerates at a relative velocity of 2.0m/s. Here the liquid bridges
are represented by lines connecting the centroids of the particles. The liquid bridge
properties of the two agglomerates were: surface tension v, = 0.025N/m and vis-
cosity n = 0.01 Pas. It can be seen from figure 7.8 that the ruptured liquid bridges
are oriented mainly in the direction of extensional agglomerate strain and the newly

made liquid bridges are oriented mainly in the direction of compressional strain.

Figure 7.8a corresponds to an elapsed time of 61us. At this stage, most of the
liquid bridges that have been broken and newly made have occurred near the contact
region. Slightly away from the contact region, there are very few liquid bridges
broken or newly made. After 194us, however, figure 7.8b indicates that the region
of the ruptured liquid bridges produced by the collision penetrated further into each

agglomerate and so did the newly-made liquid bridges. The final pattern of the
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liquid bridges that have been ruptured and newly-made is shown by figure 7.8c which
corresponds to an elapsed time of 437us. About 98% of initial kinetic energy of the
two agglomerates was dissipated at this stage. It can be seen that by the end of the
collision, the region of the ruptured liquid bridges and newly-made liquid bridges is
still contained within the two hemi-spheres adjacent to the agglomerate-agglomerate

interface.

The final spatial distribution of ruptured and newly-made liquid bridges is depen-
dent on both the impact velocity and the the liquid bridge viscosity. This is illustrated
in figure 7.9. Figure 7.9a corresponds to a collision at a relative velocity of 2.0m/s
with a liquid viscosity of 0.10Pa.s. It can be seen that both the broken and newly
made liquid bridges mainly occurred in a small region around the interface between
the two agglomerates. Slightly away from the contact region, the liquid bridges bonds
were not affected. Figure 7.9b shows the contact diagram of the two agglomerates
with the same viscosity of 0.10 Pa.s but after a collision at an increased relative im-
pact velocity of 6.0m/s. It can be seen that, due to the increase in impact velocity,
the distribution of both the broken and newly made liquid bridges extended over a

much larger domain.

Figure 7.9c show the liquid bridge distribution after a collision at a relative velocity
of 2.0m/s with the liquid bridge viscosity reduced to 0.01Pa.s. It can be seen that,
in comparison with figure 7.9a, the number of the broken liquid bridges was greatly
increased and so was the number of newly-made liquid bridges due to the decrease
in the viscosity of the binding liquid. The broken and newly made liquid bridges
extended over a much larger region. This indicates that the collisional energy can be

more easily propagated through agglomerates with less viscous liquid bridges.



(a) t =61ps

(b) t = 194ps

(c) t =43Tus

Figure 7.8: Distribution of broken (red lines), newly made (blue lines) and existing
(cyan lines) liquid bridges of two moist agglomerates during a collision at a speed of
2.0m/s and with the liquid bridge properties of surface tension v, = 0.025N/m and

viscosity 7 = 0.01 Pa.s.
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(€) Y1 = 0.025N/m, n = 0.01Pa.s, v = 2.0m/s

Figure 7.9: Effects of impact velocity and liquid viscosity on the final distribution of
broken (red lines), newly made (blue lines) and existing (cyan lines) liquid bridges of

the coalesced agglomerate.
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7.4 Oblique collisions

Oblique collisions of the two agglomerates were also simulated in order to investi-
gate the effect of different incident angles. Appendix C.2 illustrates all the computer
graphic pictures of the oblique impacts. For oblique impacts between the two ag-

glomerates, the incident angle © is defined as shown by figure 7.10.

Figure 7.10: Schematic representation of the oblique impact of two agglomerates

Figure 7.11 shows the two agglomerates after impact at different incident an-
gles of 30° 45° and 60° respectively. The relative impact speed was 2.0m/s and
the properties of the liquid bridges were: surface tension v;, = 0.025N/m and vis-
cosity 7 = 0.01Pa.s. It can be seen that at a low incident angle of 30°, the two
agglomerates coalesced and deformed during the collision. However, in comparison
with the corresponding normal impact shown by figure 7.2b, the coalesced agglom-
erate was significantly distorted due to the oblique impact effect. When the two
agglomerates collided at an incident angle of 45°, they still coalesced but there were
far fewer interparticle contacts between the two agglomerates, As a result, the coa-

lesced agglomerate will be prone to attrition or break-up in any subsequent collision.

221



The deformation of the two agglomerates was also decreased to such an extent that
although abrasion occurred near the interface the two agglomerates remained essen-
tially undeformed. Figure 7.11c illustrates that at an incident angle of 60°, the two
agglomerates bounced off each other and their shape remained essentially unchanged.

However, attrition also occurred with a few primary particles produced by abrasion.

Typical results obtained for the same agglomerates impacted at a relative speed
of 5.0m/s are shown in figure 7.12. It can be seen that, due to the higher impact
speed, attrition occurred for all incident angles. The debris produced was only a very
small mass fraction of the two agglomerates and consisted of single particles or small
clusters. Fracture or fragmentation of large clusters did not occur. Figure 7.12a shows
that when the two agglomerates collided at an incident angle of 30°, they coalesced
and were also greatly deformed. The debris of primary particles produced appears
to be ejected as a result of the arrival of the compression wave at the agglomerate
surface. Figure 7.12b indicates that when the incident angle was increased to 45°, the
two agglomerates still coalesced but their deformation was decreased. The attrition
mechanism was also different. Debris of primary particles was produced not only
by the compression wave but also by abrasion at the rough interface between the
two agglomerates. The agglomerate attrition by surface abrasion appears to be more
significant when the incident angle of the impact was increased to 60° as shown
by figure 7.12c. Here the debris of primary particles was mainly removed by the
sliding between the rough surfaces of the two agglomerates. The agglomerates did
not coalesce and their deformation was so decreased that they were only abraded near

to the colliding surfaces.

The effect of the viscosity of the liquid bridges, and hence the strength of the
agglomerates, on the oblique impact behaviour was also investigated. This is illus-
trated by figure 7.13 for the same agglomerate impacted at a relative speed of 2.0m/s

but with a lower liquid viscosity of 0.001Pa.s. When compared with the stronger



agglomerates (7 = 0.01Pa.s), figure 7.11, it was found that due to the decrease in
the agglomerate strength, attrition always occurred. At an incident angle of 30°, the
debris produced was mainly due to the ejection caused by the compression wave. At
an incident angle of 45°, attrition of the weaker agglomerates occurred as a result of
both particle ejection and interface abrasion. When the incident angle was increased

to 60°, however, the two agglomerates were mainly abraded and did not coalesce.

In terms of coalescence, the incident angle has an important effect on the shape
and size of the agglomerates subjected to oblique impacts. This is shown in figure
7.14 where the circumscribing sphere radius and fractal dimension of the coalesced
agglomerates due to oblique impact are plotted as a function of incident angle. It
can be seen that, for all the cases of the oblique impacts, the agglomerates coalesced
only when the incident angle was not greater than 45°. For the oblique impacts at a
relative speed of 5.0m/s and with a liquid viscosity of 0.01 Pa.s, the circumscribing
sphere radius was increased and the fractal dimension decreased as the impact angle
was slightly increased to 15°. This is because, with a small incident angle, the normal
flattening of the two coalesced agglomerates remained almost the same as the normal
impact but the shearing between the two agglomerates in the tangential direction
of the collision became very significant and the tangential shearing increased the
circumscribing sphere radius and, hence, decreased the fractal dimension. As the
incident angle was further increased from 15° to 45°, however, the normal flattening
was significantly reduced although the tangential shearing was increased. As the
decrease of normal flattening is to decrease the size of the resultant agglomerates, the

circumscribing sphere radius was decreased and the fractal dimension increased.

For the same agglomerates impacted at a lower relative speed of 2.0m/s, however,
when the incident angle was increased, the normal deformation was also decreased,
but the reduction of the normal deformation is to increase the size of the resultant co-

alesced agglomerates because the normal impact produced an almost spherical shaped
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(b)

()

Figure 7.11: Two moist agglomerates after oblique collisions at a velocity of 2.0m/s
and different incident angles of (a) 30°, (b) 45° and (c) 60°. The properties of the

binding liquid were: surface tension 7;, = 0.025N/m and viscosity 7 = 0.01 Pa.s.
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Figure 7.12: Two moist agglomerates after oblique collisions at a velocity of 5.0m/s
and different incident angles of (a) 30°, (b) 45° and (c) 60°. The properties of the

binding liquid were: surface tension 7, = 0.025N/m and viscosity 7 = 0.01 Pa.s.
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(b)

(c)

Figure 7.13: Two moist agglomerates after oblique collisions at a velocity of 2.0m/s
and different incident angles of (a) 30°, (b) 45° and (c) 60°. The properties of the

binding liquid were: surface tension <, = 0.025N/m and viscosity = 0.001 Pa.s.
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Figure 7.14: Circumscribing sphere radius and fractal dimension of the coalesced

agglomerates as a function of the incident angle of oblique impacts.
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resultant agglomerate. Thus, as it is shown in figure 7.14, the increase of the inci-
dent angle always resulted in the increase of the circumscribing sphere radius and the

decrease of the fractal dimension.

For the less viscous agglomerates (0.001 Pa.s) agglomerate impacted at a relative
speed of 2.0m/s, the effect of the incident angle on the size and shape of the coalesced
agglomerate is also shown in figure 7.14. It can be seen that, except for the normal
impact, when the incident angle was increased, below 30°, the circumscribing sphere
radius was also increased due to the increase of tangential shearing. The fractal
dimension was correspondingly decreased. Further increase in the incident angle
from 30° to 45° resulted in a slight reduction in the circumscribing sphere radius and
an increase in the fractal dimension due to the reduction in the normal strain. For the
normal impact, the size of the coalesced agglomerates was higher than that of the 15°
impact. The picture of figure 7.3a indicates that, for the normal impact, there are two
particles which remain attached to the bottom of the resultant coalesced agglomerate
and, hence, the circumscribing sphere radius is significantly increased and the fractal

dimension is decreased.

For the oblique impacts, the debris expressed in mass percentage of the original
agglomerates is plotted in figure 7.15 as a function of the incident angle. It can be
seen that there is a general trend that suggests that the maximum amount of debris
is produced at relatively low incident angles in the range of 15° — 45°. However, the
evidence in support of this suggestion is based on the results of only a few simulations
in which the debris consisted of a very small number of primary particles. More

simulations are necessary to be confident that the data are statistically representative.

In figure 7.16, the damage ratio (ratio of ruptured liquid bridges), the ratio of
newly-made liquid bridges and the overall bond probability resulting from the oblique
collisions are plotted as functions of the incident angle. It is clear that both liquid

bridge rupture and new bridge formation decreased as the incident angle increased.
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Figure 7.15: Mass percentage debris produced by oblique impacts of two moist ag-

glomerates.

For all cases, except when © — 90°, the number of ruptured bridges exceeded the
number of newly made ones and, hence, the bond probability of the two agglomerates
decreased as a result of the impact. At very high incident angles, © — 90°, the
resultant bond probability of the two agglomerates remained almost unchanged after

collision.

Figure 7.16 also indicates that both the damage ratio and the ratio of newly-made

liquid bridges can be best fitted by the following cosine functions,
D, = D,cos*© (7.4)
n, = n,cos’ O (7.5)

from which we can, using equation 6.4, derive the expression for the bond probability

as follows,
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where D, and n, are the damage ratio and newly-made liquid bridge ratio of the
agglomerates produced by normal impact, which may be defined by equations 7.2

and 7.3. Hence, for the general case,
D, = cos? O log Ui (7.7)

n, = 0.62 cos® @ log 5 (7.8)

which can be further rearranged as,

2
D;= (v—") log-v— (7.9)
v U,
—062(”—“)31 e 7.10
e =062 (=) log 2 (7.10)

where v, is the relative normal velocity component and v, v, and v, have been defined

previously.

Recalling equation 7.6, it follows that,

2 v, \? v v \3, v
_2n_ (= Y '2(¢) 2 11
Db 3[1 (v) logvo+06 » Iogv; (7.11)

7.5 Summary

The significance of interstitial liquid bridges on moist agglomerate coalescence and
attrition has been investigated by computer simulated normal collisions of two moist

agglomerates. It has been demonstrated that at relatively low impact velocities the
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two moist agglomerates deformed and coalesced after collision. As the impact velocity
increases, the deformation of each agglomerate increases and the size of the coalesced
agglomerate decreases. There is an optimum impact velocity that minimises the size
of the coalesced agglomerate. In terms of attrition, the optimum velocity produces a
near spherical shape which should minimize any breakage due to subsequent collisions.
Below the optimum impact velocity, an increase in velocity enhances granulation. At
high impact velocities, above the optimum velocity, the size of the coalesced agglom-
erate increases as the velocity increases due to the increasing tendency to flatten the
agglomerates in the direction orthogonal to the impact direction. The resultant disc-
shaped coalesced agglomerates should probably experience significant attrition, and

possibly fragmentation, as a result of subsequent collisions.

In the computer simulated normal collisions of the two agglomerates, debris con-
sisting of single particles or small clusters was produced due to extensive flattening at
very high impact velocities. Semi-brittle fracture and shattering were not observed.
At moderate impact velocities, it has been found that collisions cause internal bridge
rupture. Generally speaking, the damage ratio is logarithmically dependent on the
impact velocity, but there is no distinct threshold velocity. A small number of liquid
bridges were ruptured even at very low impact velocities. Agglomerate collisions also
produced new liquid bridges between particles. The bond probability of the resultant
coalesced agglomerates remained almost unchanged if the impact velocity was below
the optimum velocity that produced a spherically shaped coalesced agglomerate. At
high impact velocities, above the optimum velocity, the overall bond probability of
the coalesced agglomerate decreased significantly. Thus, in terms of coalescence and
attrition, there are two distinct regions for agglomerate collisions. Below the optimum
velocity, the collision produced a coalesced agglomerate with a bond probability sim-
ilar to that of the initial agglomerates. In this region collisions enhance agglomerate
coalescence. Above the optimum impact velocity, the collision produces a significant

amount of internal bridge rupture and may result in attrition of fine particles.
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The viscosity of the interstitial liquid has significant effects on the coalescence
propensity and attrition resistance of moist granules. It has been found that, as the
liquid viscosity is increased, the optimum impact velocity to produce a spherically

shaped coalesced agglomerate increases.

From the oblique collision simulation, it was found that the agglomerates coalesced
only if the incident angle is not greater than 45°. At low incident angles, the increase
of the incident angle resulted in the increase of the circumscribing sphere radius and
the reduction of the fractal dimension of the coalesced agglomerates. For low speed
oblique impacts, where the normal collision produced a spherical shaped resultant ag-
glomerate, the increase in the size of the coalesced agglomerates continued. However,
for high speed oblique impacts or less viscous agglomerate impacts, where the normal
collisions produced intensive normal flattening, the size of the coalesced agglomerates
reaches a maximum at a small incident angle and further increase in incident angle
resulted in a reduction of the size of the coalesced agglomerates due to the the sig-
nificant reduction in the normal flattening. The incident angle at which the size of
the coalesced agglomerates reaches a maximum increases if the initial flattening of

normal impacts decreases.

When the incident angle of the impact increases, the number of internal liquid
bridge rupture decreases and so does the newly made liquid bridges. It has been
found that, to a good approximation, the ratio of ruptured liquid bridges is a cosine
squared function of the incident angle, suggesting that the liquid bridge rupture is
mainly controlled by the normal component of the impact kinetic energy. It has been
also found that the ratio of newly-made liquid bridges is best fitted by a third order

cosine function of the incident angle.

Attrition also occurred for oblique impacts. However, depending on the angle of
impact, attrition occurred due to different mechanisms. At low incident angles, it was

found that attrition occurred by the ejection of particles due to propagation of the
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compression wave. At high incident angles, attrition was mainly produced by surface
abrasion. The simulation also suggests that the maximum amount of attrition occurs

at small impact angles in the range of 15° < © < 45°.



Chapter 8

Conclusions

This chapter summarises the main findings and achievements of this research pro-

gramme together with some comments and suggestions about possible future work.



8.1 Cohesive force of moist particles

Powder granulation with a liquid binder is heavily utilized in process industries. At
the microscopic level, the fundamental mechanism of particle enlargement by gran-
ulation is based on the competing interparticle forces. In the pendular state, where
the liquid is present as either adsorbed immobile films or discrete liquid bridges, the
cohesive force between particles mainly arises from two different mechanisms, the van
der Waals’ intermolecular adhesive force and liquid bridge binding force. Theories
for the van der Waals’ adhesive force between elastic spherical particles have been
reviewed and discussed. It has been shown that both the theories of JKR (Johnson
et al 1971) and DMT (Derjaguin et al 1975) are approximations. A major difference
between the two theories is that the former predicts a pull-off force of 37I'R* and the
later of 27" R*. The more recent theory of Maugis (1992) represents the more general
situations between the two extremes of JKR and DMT models. The effects of van der
Waals’ adhesive force on the tangential interactive force between spherical particles
have also been discussed by reviewing the theories of Savkoor and Briggs (1977) and

Thornton (1991).

For the binding liquid bridges, the interactive force between particles arises from
the capillary pressure deficiency, surface tension and viscous resistance of the liquid.
For static liquid bridges between two spherical rigid bodies of equal radii under con-
ditions when the effects of gravity are negligible, the geometry is governed by the
Laplace-Young equation which relates the liquid bridge pressure deficiency to the
mean curvature. Since the Laplace-Young equation cannot be solved analytically
except for a few special cases, a numerical scheme has been developed. Numerical
solutions have been obtained for a dimensionless liquid bridge between two spheres
in close proximity. For the Laplace-Young equation of liquid bridges, there are two
solutions that satisfy. As the separation distance between the spheres increases, the

two solutions converge to a unique solution at a critical separation. At greater separa-
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tions, no solutions exist. Previous workers have conjectured that, when the solutions
are expressed in terms of the liquid bridge diameter or filling angle, the critical sepa-
ration corresponds to the rupture of the liquid bridge. The current work shows that
the more explicit criterion for specifying the stable solution and critical separation is
provided by the total free energy of the liquid bridge system. The formulation of the
minimum free energy is shown to be equivalent to previous conjectures. It has been
further observed that the critical separation for rupture is given by the cube root of
the liquid bridge volume to a good approximation and this relationship is in good

agreement with the experimental data of Mason and Clark (1965).

For a liquid bridge between two spheres, Fisher (1926) proposed a much simpler
approach for estimating the static liquid bridge forces. It was based on a toroidal ap-
proximation, which involved treating the meridional profile of the liquid-air interface
as an arc of a circle, and leads to a range of values since this approximation results
in a liquid bridge geometry of varying mean curvature which is inconsistent with the
Laplace-Young equation. Consequently, there is no physically correct solution for
the toroidal approximation, only one that leads to an optimal simple procedure in
terms of the accuracy of calculating the forces. The uncertainty of the accuracy of
the toroidal approximation has been checked against the numerical solution. It has
been found that the best estimate of the total liquid bridge force was obtained using
the ‘gorge method’ in which the area and mean curvature at the neck is used in the
calculation of the force. For a wide range of liquid bridge volumes and all stable sepa-
ration distances, this method of evaluation produces errors in the static liquid bridge
force that are less than 10% of those obtained using an exact numerical technique

and the accuracy is independent of the contact angle.

The ‘gorge method’ based on the toroidal approximation coupled in combination
with the simple relationship that specifies the critical separation distance of rupture

provides a closed-form solution for the static liquid bridge forces. It has been shown
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that this simple closed-form expression can be also extended to the liquid bridges
between unequal sized spheres from geometrical considerations. The only limitation
of the toroidal approximation is that for a given volume of the liquid, the filling angle
cannot be expressed explicitly. This problem has been solved in this work by showing
that, for a constant liquid volume, the relationship between the half-filling angle and
relative separation distance can be fitted by a third order polynomial relationship in
which the fitting coefficients can be further expressed in terms of sphere radii and

liquid volume.

8.2 Moist agglomerate collisions

Based on the closed-form solution of ‘the gorge method’, a third order polynomial
relationship between the half-filling and separation distance has been observed for
liquid bridges between unequal sized spheres with given quantities of liquid volume.
Simple algorithms to calculate the static liquid bridges forces have been developed
and implemented into the Aston version of TRUBAL. For the computation of viscous
liquid bridge forces, the equation proposed by Adams and Perchard (1985) was used
for the normal component and the equations by Goldman et al (1967a, 1967b) were

applied for the tangential component.

Using the modified DEM computer program TRUBAL, the normal impact tests of
a 3-D body-centred cubic agglomerate with a wall have been performed and the effects
of the interstitial liquid bridge forces have been examined. The agglomerate consisted
of 4062 mono-disperse particles. It has been shown by the computer simulation
that, for the inviscid agglomerates with a zero liquid viscosity, high impact velocity
produced significant attrition. The attrition was produced by the break-up of singlets
and small clusters of primary particles. Semi-brittle fracture and shattering behaviour

previously reported for dry agglomerate impact simulations was not observed for the
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moist agglomerate. At relatively low impact velocities, the agglomerate deformed and
remained adhered to the wall after the impact. Attrition did not occur. However,
internal damage did occur due to the rupture of some liquid bridges between particles.
There is a distinct threshold velocity for the agglomerate below which the impact
cause no internal damage. Above the threshold impact velocity, the damage ratio of

ruptured liquid bridges is logarithmically dependent on the impact velocity.

During the agglomerate-wall impact, it has been found that new liquid bridges
were also formed between the primary particles. The ratio of newly-made liquid
bridges is also dependent on the impact velocity. The creation of newly made liquid
bridges can occur at velocities below the threshold velocity of liquid bridge rupture.
In terms of the overall bond probability of the agglomerate after impact, there are two
distinct regions. At low impact velocities, the bond probability of the agglomerate
after impact increased because there were more newly-made liquid bridges and none
or few broken ones. This may be interpreted as a strengthening (or hardening) of the
agglomerate during impact. In this sense the strongest resultant agglomerate, having
the highest bond probability, is obtained at the threshold velocity of liquid bridge
rupture. At high impact velocities, the overall bond probability of the agglomerate
was decreased during impact, implying a deteriorated agglomerate due to the internal

liquid bridge rupture.

The effects of the interstitial liquid bridge viscosity on the agglomerate-wall impact
were examined. It has been found that when the liquid viscosity was increased, the
strength of the moist agglomerate to resist attrition and break-up also increased and
the agglomerate deformed more visco-plastically. For a liquid viscosity of 0.1Pa.s,
attrition did not occur even when the agglomerate was impacted at a high velocity of
8.0m/s and deformed to a planar shape. It has been also observed that an increase
in the liquid viscosity resulted in the reduction in the agglomerate deformation, as

quantified by the relative height and normalised contact area, if the impact velocity
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is the same. For the interstitial liquid bridges, an increase in the liquid viscosity
resulted in the increase of the threshold velocity of internal liquid bridge rupture.
The ratio of newly made liquid bridges, however, is not significantly affected by the
change of liquid viscosity. In terms of the overall bond probability of liquid bridges, it
has been found that, due to the increase in the the liquid viscosity, the transition from
“strengthening” to “weakening” occurs at a higher impact velocity and the maximum

bond probability increases.

Computer simulated agglomerate-agglomerate collisions have been also performed.
Each agglomerate consisted of 1000 randomly packed primary particles and had a co-
ordination number of 7.183 of liquid bridges, corresponding to a degree of saturation
of 0.71%. For all the computer simulated normal collisions, the two agglomerates
coalesced. At low impact velocities, the two agglomerates were slightly deformed. At
high impact velocities, the two agglomerates were greatly deformed and the resultant
coalesced agglomerate was disc-shaped. Debris of primary particles and small clusters
was also produced at very high impact velocities. There is an optimum impact ve-
locity where the circumscribing sphere radius of the resultant coalesced agglomerate
is minimised and the fractal dimension is maximized. This optimum impact veloc-
ity produces a near spherical shaped resultant agglomerate which should minimize

attrition due to subsequent collisions.

For the normal collisions of the two moist agglomerates, it has been shown that
before any attrition occurred, internal damage of interstitial liquid bridge rupture was
produced. The damage ratio of the liquid bridge rupture is almost logarithmically
dependent on the impact velocity, but there is no distinct threshold velocity of liquid
bridge rupture. Even at very low velocities, it was observed that a small number of
liquid bridges of the agglomerates were ruptured during impact. It was also found
that new contacts of liquid bridges were formed during agglomerate-agglomerate col-

lisions. Overall, at low impact velocities, below the optimum impact velocity, the
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bond probability of the resultant coalesced agglomerate remained almost unchanged.
At high impact velocities, above the optimum impact velocity, however, the ruptured
liquid bridges exceeded the newly-made ones and, hence, the bond probability de-
creased significantly. The resultant coalesced agglomerate is disc shaped and would

be probably prone to attrition and fragmentation in any subsequent collisions.

Although the ratio of internal liquid bridge rupture is relatively high at high
impact velocities, the energy dissipation due to it is only a small percentage of about
5%. It has been found that over 90% of the initial kinetic energy of collision was
dissipated by the viscous resistance of interstitial liquid bridges and tangential friction
between primary particles. Since viscous resistance and interparticle friction arise
from the visco-plastic deformation of the agglomerates, the visco-plastic deformation
and the associated energy dissipation are essential for the successful coalescence of
moist granules. This implies that the simple theories of granule coalescence based on
single pairs of elastic or rigid spheres cannot be applied to agglomerate-agglomerate

aggregation.

The viscosity and surface tension of the interstitial liquid bridges have a significant
effect on the coalescence and breakage of agglomerate-agglomerate collisions. When
the liquid viscosities or surface tension were decreased, attrition of primary particle
breakage was increased and the optimum impact velocity to produce a near spher-
ical shape of the resultant coalesced agglomerate decreased. The bond probability
was also decreased due to more liquid bridges being ruptured and fewer newly-made.
This indicates that both the coalescence propensity and attrition resistance of moist
granules were decreased as the cohesive force of interstitial liquid bridges was de-
creased. The decrease of liquid viscosity also resulted in the decrease of the energy
ratio dissipated by viscous resistance and the increase of the energy ratio dissipated
by interparticle friction. As a whole, however, the energy dissipation by viscous re-

sistance and interparticle friction still dominates and the energy dissipated by liquid



bridge rupture dissipated only about 5% of the total kinetic energy of collision.

Oblique collisions of the two moist agglomerates were also performed. It has been
observed that varying the incident angle of impact has a remarkable effect on the
coalescence and attrition of moist granules. Coalescence occurred only if the incident
angle was not greater than 45°. For low speed oblique impacts, where the normal
impact produced a spherical shaped coalesced agglomerate, an increase in the incident
angle resulted in an increase in the circumscribing sphere radius and a decrease in the
fractal dimension of the coalesced agglomerate. For high speed oblique impacts, where
the normal impact produced a disc shaped coalesced agglomerate, the circumscribing
sphere radius first increases and then decreases as the incident angle increases. The
incident angle that maximizes the size of the coalesced agglomerate was increased if

the disc shaped flattening produced by normal impacts was decreased.

For oblique impacts, attrition mainly occurred at high impact velocities and with
low liquid viscosity agglomerates. The agglomerates were also severely deformed if
any attrition occurred. It was noticed that, depending on the incident angle of im-
pact, attrition occurred due to different mechanisms. At low incident angles, attrition
occurred by the ejection of particles due to propagation of the compression wave. At
high incident angles, attrition was mainly produced by surface abrasion. Agglomer-
ates did not coalesce and their shape remained essentially unchanged after collisions.
In terms of mass percentage of debris, the oblique impact simulation suggested that

the maximum amount of attrition occurs at small impact angles in the range of 15°—

45°.

Both the ratio of ruptured liquid bridges and the ratio of new liquid bridges were
reduced when the incident angle was increased. To a good approximation, the ratio
of ruptured bridges is a cosine squared function of the incident angle. This suggests
that, for oblique impacts, liquid bridge rupture is mainly controlled by the normal

component of kinetic energy. However, the ratio of newly-made liquid bridges was
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best fitted by a third order cosine function of the incident angle.

8.3 Limitations and future work

It has been shown that the computer program TRUBAL using the Discrete Element
Method (DEM) is capable of modelling moist agglomerate collisions. The advantage
of the DEM simulation is that it provides scrutiny of the microlevel mechanisms of
agglomerate coalescence and breakage. The current version of TRUBAL simulates a
moist granule as an assembly of spherical particles held together by interstitial liquid
bridges. For the interaction force between particles, the force exerted by particle
deformation, surface adhesion, tangential friction and interstitial liquid bridges have

been considered.

In terms of the future work, the present computer program TRUBAL at Aston
has two major limitations. Firstly, the current research centres on the modelling of
moist agglomerates with immobile fluid which is present as pendular liquid bridges.
There is a need to develop new algorithms to model mobile fluid, funicular state fluid
and capillary state fluid of particle assemblies. Secondly, the constituent particles are
spherical. It is desirable to develop algorithms to model non-spherical particles and,

through computer simulation, to examine the effects of particle shape and size.

The coalescence propensity and attrition resistance of moist granules are greatly
influenced by their internal packing structures such as particle size, shape and distri-
bution. This research has only simulated a body-centred cubic agglomerate impacting
with a wall and two randomly packed agglomerates colliding with each other. For
the interaction force between particles, the surface adhesion was set to zero (which
corresponds to perfect wetting) and only liquid bridge forces in association with elas-
tic deformation and tangential friction forces between particles were considered. It

is therefore believed that more computer simulations of agglomerates with different
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packings, sizes and different interstitial liquid cohesivenesses should be performed be-

fore any firm conclusions of moist granule coalescence and breakage can be reached.

The DEM computer program has found a wide range of applications in the sim-
ulation of particle systems. There are more potential applications. More powerful
computer facilities are also required if the DEM is to be extended to simulate larger
scale particle assemblies. The current version of TRUBAL is only capable of effec-
tively simulating assemblies up to 10,000 particles on the 320 and 320H models of
IBM RISC 6000 workstations. An alternative to combat the limited computer power
is to develop more efficient algorithms for the implementation of other interaction

forces in the future.
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Appendix A

Frictional energy loss of elastic

spheres under oblique forces
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A.1 Introduction

For two elastic spheres in contact under an oblique force, Mindlin (1949) demonstrated
that the effect of the tangential force is to cause relative slip over an annular region
of the contact area. The slip annulus is initiated at the perimeter of the contact area
and progresses inward as the tangential force increases. As a result of the relative slip
and sliding frictional energy dissipation occurs. For the special case of two spheres in
contact under a constant normal force P but an oscillating tangential force between
—~T and T (T < pP), Mindlin et al (1951) derived the energy dissipation for one cycle
loop as,

9u? P?  § 5T f§
com e Y = (=P — )23 .

where p is the coefficient of friction and a is the radius of the contact area, which,

according to the Hertzian theory, is given as,

s _ 3PR"
4B

(A-2)

For two spheres of radii R;, R, and elastic properties Ey, Gy, 11 and E;, Ga, v,

R*, E* and G* are defined as,

1 1 1
S A.
R R R (A:8)
1 1—v} 1=}
— = A4
E* Ey E, (8:4)

— = + (A.5)

However, for other more general cases, the expression for frictional energy dissi-

pation has not been obtained yet. Here, based on the partial-slip solution of Mindlin
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(1949) and Mindlin and Deresiewicz (1953), an analysis is made of the frictional

energy dissipation of elastic spheres due to slip and slide.

A.2 Normal force constant

Consider two spheres in contact under a constant normal force P which produces
a contact area of radius a as given by equation A.2. Mindlin (1949) showed that
the application of a tangential force is to cause relative slip over an annulus of the
contact area. The slip annulus spreads radially inwards until sliding occurs. The
precise tangential traction varies depending on the loading path and was given as a

sequential superimposition of several terms in the following form,

2
T
q(r) = qo(1 — F)m r<p (A.6)
Correspondingly the elastic displacement on the surface of each sphere is,
_ﬂ'Qo_[4(2 —13)p? + 2(2 — )r* + viricos2y) r<p

32G;p =

Ui = 3§

lﬁG B —{(2(2 — 1)[(20% 1 )arcsm + VT =) (A.7)

\ + v;[r? arcsin ; + (‘%‘ —1)pV17 = p?|cos 29} 1

where : =1 or 2.

A.2.1 Energy dissipation during loading

If the tangential force is monotonically increased from zero to T < P, slip is initiated
at the edge and progresses inward to a radius cg. The distribution of the tangential

traction is given as ¢ = ¢(*) 4 ¢!® where the two additive terms are defined as follows,
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3uP

(1) — 2 _ . 2\1/2
¢ 21ra3(a ) rso (A.8)
3uP
(2) o 2 2 _ . 2\1/2 <
q 21ra3(c° ) r<eco (A.9)

The overall tangential force and relative displacement between the two spheres are

accordingly obtained as,

T = pP(1 - %) (A.10)
_3wP 8
o= lﬁG"a(l_az) ()

Considering the two traction distribution given by equations A.8 and A.9 and
applying equation A.7 over the range ¢, < r < a provides the elastic displacement

over the slip annulus as,

2 v
u; = 3#!'3 (2—w) { -2 %[‘Jl(cm'-") =3 _‘zuigz(cm") o 2¢’]} (A.12)

where = 1 or 2. From this expression, the relative slip can be derived as,

3uP

s b=l s e

G* 1541 V)
o) — —(=—+—= Co, 1) COS 2 ] A.13
where the g, and g, are two functions denoted as,

ai(c,r) = (r* — 2¢?) arccos rE +cVr? —¢? (A.14)

9.2

ga(c,r) =12 arccosg - (% —1)evr?—¢? (A.15)

If the tangential force further increases by an amount of AT, the relative displace-
ment and slip will correspondingly increase. From equations A.10, A.11 and A.13 it

follows that,



2
Co

_ _3uPe

A6 = —%Gas (A.17)
_ 3upP " vy 4cg — 4(:37'2

As= onCrad [460 arccos — + G (Gl Gy r2\/mcos 2| Aco (A.18)

Substituting equation A.17 into A.18 we obtain,

25
As = — 4c0a.rccos +('}"'(—+—ui & 0521[)] Aé (A.19)

21 Gy’ p2, /p2 s
Due to the increase of the relative slip, energy is dissipated by friction. The

dissipated energy can be derived as

. 3
AAsip = f f qAsrdrdy) = ﬂ ( L + &) Ad (A.20)

a a3

Subtracting this energy from the work done by the incremental tangential force

we further derive the elastic energy stored as follows

2 a3

3
AAges = TAS — AAy;, = Aus (9 = i) A§ (A.21)
a

A.2.2 Energy dissipation during unloading

If the applied tangential force is, after it is monotonically loaded to Ty (< pN),
unloaded to T' (=T} < T < T), Mindlin (1949) suggested that the slip produced by
loading is frozen and reverse slip is to start at the perimeter of the contact area and
propagate inward to a radius ¢; (o < ¢; < a). The distribution of the tangential

traction consists of three terms ¢ = ¢(") + ¢(® + ¢® which are given as follows



3uP
(1) —_- - 2 _ 2y1/2 ?
q B ch (a* —r*) r<a (A.22)

3uP

@) _ _ 2, 2\1/2 <

q 53 @~ ") r<eo (A.23)
3uP

q(3) T rd (Cf =5 7'2)1‘{2 r<a (A.24)

The overall tangential force and relative displacement are

3 3 C3
T = uP (2% - % - 1) =T, —2uP (1 = a—;) (A.25)
3uP g 3uP c
e D] | =id= = A.26
16G*a ( a? 1™ 8G=a a? ( )

where T} and &, are the tangential force and relative displacement from which un-
loading commenced. Over the slip annulus ¢; < r < a, we can, using equations A.7,

A.22, A.23 and A.24, derive the elastic displacement of each sphere as

v; cos 21

_é{gl (co,7) = 2g1(c1,7) — [g2(c0, 7) — 292(c1, 7)) 4 — 2y,

o

where 2 = 1 or 2. This leads to the relative slip expressed as,

3P
5= 162‘-“3{91 (co,7) — 2g1(c1,7)
G* 1n ”y
~S2 4 Eloaeor) — 2aalersr)] cos 20} (A28)

If the unloading tangential force further changes by an amount of AT, it follows

from A.25, A.26 and A.28 that
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2
AT = ﬁ,uP% Acy (A.29)

6pPc;
Ad = PYeTye Acy (A.30)
Mg 3uP v v Aci —4cir?

(5] 14
— (— + =)————=cos 2¢| A
S G a3 [4(:1 arccos — +G (G1 + Gz)rZ g cos z,b] ¢

1 (53] " Va 48‘: — 40%?'2
= 4¢y arccos — + G (— + —)————=rcos 20| Aé A.31
21TC1 [ } r Gl G2 1"2 ’?'2 _ c¥ ¢ ( )

From the distribution of the tangential traction and relative slip the energy loss during

unloading is obtained as follows,

a 2w k o3
A = | | | aasrdrdp = —% (2 Y _'3) A (A.32)

a a

A.2.3 Energy dissipation during reloading

If the tangential force, after it has been unloaded to T3, is reloaded again, the slip
caused by loading and unloading becomes fixed and a new slip annulus is developed
at the contact area perimeter and spreads radially inwards to a radius ¢; (¢p < ¢; <
c; < a). The distribution of the tangential traction is due to the contribution of four

terms ¢ = ¢V + ¢®@ + ¢® + ¢ where

70 = :23;‘:;(62 — r2)1/2 r<a (A.33)
£2) = _gi‘(‘;(cg M e (A.34)
R R T (A3
@ = —%(cﬁ —r2)1/2 r<e (A.36)



From these terms, the tangential force and displacement are accordingly given as,

s foss 3 c
T:pP(l—§+2a—;— 2| =Ta+2uP(1-2 (A37)
_ 3#P 2 c% _ 3uP C%
4= T6G-a ( at 2 —2a) =htgeLa\lT (A.38)

where T and §, are the tangential force and relative displacement from which reload-

ing commenced.

By analogy, it can be derived that, during the tangential reloading, the relative

slip and energy dissipation are correspondingly expressed as,

1 vy Ach —Ach
As = — |dc; arccos 2 +G"( . )—2—— cos 2¢ | A (A.39)
2mey [ 8 62 2 [1:2 —a
a 2w P 3 3
Aduip= [ [ qbsrdrdy = - (2 - " “—;) A (A.40)
c2 JoO 2 a a

A.3 Normal force changing

The tangential compliance of elastic spheres under varying oblique forces was studied
by Mindlin and Deresiewicz (1953). Suppose that an initial state has been obtained
by applying a normal force P and followed by a tangential force T' (< uP). A change
of the normal force by an amount AP results in a change of the contact area with

the radius of the new contact area given as

s 3(P+AP)R"
&= 4E

(A41)

However, if the tangential force changes by an amount of AT, Mindlin and Dere-

siewicz argued that the tangential displacement not only depends on the past history
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of the tangential force but also the relative rates of change for the tangential force
and normal force. Generally speaking, there are four different cases for the instan-
taneous relative rates of change of normal and tangential forces. These includes (a)
normal force increasing, tangential force increasing, (b) normal force increasing, tan-
gential force decreasing, (c) normal force decreasing, tangential force increasing, (d)
normal force decreasing, tangential force decreasing. Of the four cases, (a) and (c)
applies to the path of tangential force loading or reloading and the other two applies

to unloading.

For the loading and reloading cases (AT > 0) if the normal force is also increasing
(AP > 0) then the contact area is increasing. Mindlin and Deresiewicz (1953) sug-
gested that, during the process of increasing the contact area, the initial tangential
traction is frozen over the initial contact area r < a. The increase of the tangen-
tial force generates slip which originates at » = «¢; (a; > @) and spreads inwards to
r = c; (j = 0 for loading, j = 2 for reloading). There is a jump discontinuity in
the inward propagation of the slip annulus when AT = pAP. For AT < pAP, the
inner radius of the slip annulus is greater than the initial contact radius, i.e. ¢; > a.
For AT > uAP, the inner radius of the slip annulus is less than the inner radius of
the initial slip annulus which was frozen prior to the increment in normal force, i.e.

Cf?-(ci.

If AT < uAP, since ¢ > a, the area of the slip annulus ¢; < r < a; is negligible
in comparison to the overall contact area and hence the energy dissipated may be
neglected. Consequently, for AT > u P, only the excess increment AT' = AT — pAP
is considered to produce displacements which involve the dissipation of energy. The
general expression for the total displacement increment, see chapter 3 section 3.3.2,

may be written as

AT T uAP

c;la

1
= —— AP
Ad 5Cc +pAP 4+
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For loading or reloading with AP > 0 this reduces to

_ pAP AT

-
Al = 3Ga T 3G

(A.43)

Hence, the displacement increment corresponding to AT", defined as Aé’, takes

the form
A8 = A6 — g“g“z (A.44)
and
I (45
TR

Recalling equation A.20 or A.40 we obtain, by analogy, the energy loss due to

frictional slip as

2 a a 8G*a

&

AAgip = e HOF) Ak (2 PGy ﬁ) (Ab‘ = "‘AP) (A47)

If the normal force is decreasing (AP < 0) the contact area is decreasing and
the annulus a; < r < a is no longer in contact. Consequently, before a reduction of
the normal force may be considered, it is necessary to remove the initial tangential .
traction from the annulus a; < r < a. Mindlin and Deresiewicz suggested that
this could be accomplished by the application of a distribution of tangential traction
which allows no slip on the contact area r < a;. This corresponds to a reduction of
the tangential force by an amount pAP and a decrease in tangential displacement by

an amount uAP/8G*a without any loss of energy. Therefore, when considering the
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energy dissipation due to the subsequent increment in tangential force, it is necessary
to consider the increment AT’ = AT — pAP in which AP is negative and hence
AT' > AT. The corresponding displacement increment Aé’ is given by equation
A.44 and the energy loss due to frictional slip is provided by equation A.47 using
equations A.45 and A.46 provided that, in each of these equations, AP is taken to

be negative.

Mindlin and Deresiewicz (1953) demonstrated that similar arguments to those
presented above also apply to the unloading case (AT < 0). For the unloading case,

equation A.42 takes the form

AT + pAP

Cl/ﬂ'.

Ab

—pAP + (A.48)

~ 8G*a
in which AT is always negative and AP may be positive or negative depending on
whther the normal force is increasing or dcreasing. When examining the energy
dissipation it is necessary to consider the increment AT = AT + pAP and, hence,

equation A.48 may be rewritten as,

ubP AT’
_ 4
=i 8G*a &2 8G*¢; (A7)
and the effective displacement increment
AP
A8 =06+ E A.50
Ad + 3Ca (A.50)

remembering that Aé is negative. Consequently, the energy dissipation due to slip,

for the unloading case, is given as

_ u(P+AP) _3a e ( pAP)
AA = ——— 2 - - p Aé + SCa (A.51)

where



ci=a 1+

_ _ 1/3
T 2pAP] AsE)

2u(P+ AP)

Re-examining the equations developed in this appendix, it is concluded that, for

all cases, the energy dissipation due to slip may be defined by the general expression

(P +AP) ([ 3¢ c_?( __jnAP)
AAp, = (—1) . e U e (A.53)

where j = 0 for loading, j = 1 for unloading, j = 2 for reloading and the algebraic

(not the absolute) values of AP and Aé are used.

A.4 Sliding

The partial-slip solution of Mindlin and Deresiewicz (1953) implies that once the slip
annulus has reached the centre of the contact area, sliding all over the contact area

occurs. During sliding, the distribution of the tangential traction is in the form

_ 3uP

=+5— (a® — r?)1/? r<a (A.54)

q

and the overall tangential force is accordingly given as,

T==xuP (A.55)

This distribution of tangential traction produces the following elastic deformations

over the contact area of the two spheres,

3uP
64G,‘(l3

y ==+ [2(2 — »)(2a® — 1?) + v;1? cos 29 (A.56)



where 7 = 1 or 2 indicating the two spheres respectively.

If, during sliding, the normal force changes by an amount of AP, then the elastic

deformation of each sphere also changes by an amount of,

3uAP

Au£ - :l: 64G,-a3

[2(2 — v;)(2a® = ?) + v;1? cos 2¢] (A.57)

From the tangential traction and elastic deformation, we may obtain the correspond-

ing energy stored in the elastic deformation as given below

¢ 2% 3uAPT
elas = dr o .
AAq fo ]0 QB+ Aug)rdrdyp = o (A.58)
As a result, the frictional energy loss due to sliding is expressed as,
JuAP
A.li e = TA - elas — - .
AAsid 66— AA, T(AS 206"‘(1) (A.59)

A.5 With adhesion

For the tangential interaction between two adhering elastic spheres, Thornton (1991)
suggested that the partial-slip solution of Mindlin and Deresiewicz (1953) could be
applied after the adhesive peeling and until, when T' = uP,, sliding occurs. Here
P.=P+42P.or P, = P,(1 — (P, — P)/3P,)*?, as suggested by Thornton (1991), is
the effective normal force and P, = 3ryR* is the pull-off force, P; is the equivalent
Hertzian force, see chapter 3 section 3.3. Hence, it follows that the energy dissipa-
tion of the tangential force can be obtained using the foregoing analysis with the

substitution of P. for P. This is summarised as follows

AAsh'p =

J”'(Pe + Ape)[(_l)JAT == I“'APE] (

3¢;
G 2
16G-c, 2 + ) (A.60)

a a3
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if (=1 AT > pAP.. The radius of the slip annulus ¢; is given as,

T-I-EAPE =0
F’(Pe+rﬁpe J=

(A.61)

1.2

TP,
! N 2p(Pe+APe) =

where j =0, 1,2 denotes the path of loading, unloading and reloading.

Otherwise, if (=1)AT < pAP,, the energy dissipation is negligible. When sliding
occurs, the frictional energy loss may be still calculated by the expression A.59, with

the substitution of P, for P.

During the peeling process before the following critical value of T is reached,

T, = 4\/G’(PP + P?) (A.62)

the tangential force is described by Mindlin’s no-slip solution as suggested by Savkoor
and Briggs (1977). If this is the case, there is no frictional energy dissipation before

peeling is completed.
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Command list of TRUBAL
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B.1 Introduction

The commands listed here apply to the current version of TRUBAL (1st May 1992)
resident on IBM RS6000 workstations. Commands may be given in any order that is
physically meaningful except for the Start and Restart commands which must be
given as the first command in any command file. Most commands require parame-
ters. When parameters are arranged horizontally, they must all be given, except for
optional parameters, denoted by brackets [ ]. Parameters arranged vertically after
a command denote the selection of options that may be given: any or all of these
parameters may be given in any order. For example Print G C I will print the
grid-size, contacts and general information respectively. Parameters that start with
a lower-case stand for numbers: e.g. nball may be given as 100 and ed22 may be
given as 1.2e-7. Parameters and commands that start with an upper-case letter are
typed literally — either in upper- or lower-case. These commands and keywords may
be typed in full, or truncated to just those letters in upper-case. For example, the
command Print Contacts may be given as p ¢, Pr cO or any other variation. Pa-
rameters may be separated by any number of spaces, commas, brackets () or slashes.

For clarity it is helpful to give a minimum of three letters.

When starting TRUBAL, a file called TRUBAL.DIR should exist in your current
working directory. If this file contains the word BATCH, the program will operate
in batch mode and take its input from file TRUBAL.DAT and place its output in
TRUBAL.OUT. If TRUBAL.DIR contains the word TERM, the program will ex-
pect input from the keyboard and send its output to the display. Input and output
redirection can however be used in this case to take input from and send output to

specified files.
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B.2 Command list

AGGlomerate nagg z. y. 2. Ra

Define a spherical region of radius R 5 centred at (X, Y, Z¢) for the agglomerate
nagg, where particles belong to the agglomerate are to be generated (refer to
the commands AGEnerate and RGEnerate). nagg should be given as either
1 or 2 because only up to 2 agglomerates can be handled by the computer

program.

AGEnerate isize imat iagg z, y, 2, dx dy dz

Particles of isize radius and imat material type are automatically generated in
a way that the lowest left particle is at Xo,¥Yo,Zo and others are placed at the
specified incremental distance of dx, dy, dz in each direction from one each
other. iagg is the agglomerate number the generated particles belong to. If
a spherical region is specified for the agglomerate (refer to the command AG-
Glomerate), only those particles fall inside the spherical region are accepted
and others fall outside are rejected. Otherwise, particles are to be generated to

fill the whole cubic cell. This command is useful to generate regular packings.

AWAIl n [Pdabc] [V vxvyvz] [M mtyp] [SE F vmax g]
n [SPdabc] [Vvxvyvzvr] [Mmtyp] [SEF vmax g]

This command alters the position (P/SP) or velocity (V) or material-type (M)
of a wall. S selection sets servo control for the wall. See DWALII for definition
of parameters. P/SP, V, M and SE are all selectable but the wall number
n must be logically specified. The first form is used for a plane wall and the
second form applies to a hollow sphere wall. With AWAIl command, one can

change a plane wall to a sphere wall or vice versa.
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COHesion v mtyp

v is taken as the surface energy for particles of material type mtyp.

CReate x y z v, v, v, 0, 0, 0, isize mtyp

A particle is created at location (x, y, z) with size type isize and material type
mtyp. The z, y and z linear and angular velocity components for the sphere
are given as vz, Uy, Uz, Oz, 0y, 0. respectively. Currently, TRUBAL allows 10
size-types and 5 material-types. If the created particle overlaps existing particle

or particles it is then rejected.

Cycle n [SO V]
[SIMS2 v]
[S11 V]
[S22 V]
[S33 V]
[RING v]

The program executes n calculation cycles, and returns control to the user
when they are complete. The optional keywords denote that the servo-control
will attempt to hold the specified variable constant at the value v. Keyword SO
corresponds to mean stress oo where og = (011 + 022+ 033)/3. Keyword SIMS2
is similar, but corresponds to the “two-dimensional mean stress” : (o071 +02,)/2.
Individual stresses, o1, 02 and o33 are controlled by the keywords S11, S22
and S33, respectively. RING controls the angle of major principal stress in
a ring shear test. Combinations of control keywords may be used when this is

physically reasonable. See related commands Gain and Mode.
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DAmping frac freq imass istiff iswitch

Damping is specified in terms of the Rayleigh damping parameters: frac is the
fraction of critical damping at the modal frequency freq. Rayleigh damping in-
volves mass-proportional (global) damping and stiffness-proportional (contact)
damping : the former may be switched off by giving imass as 1, and the lat-
ter by giving istiff as 1. Otherwise these parameters should be set to zero for
full Rayleigh damping. Note that contact damping may require a reduction in
time step for numerical stability. If in doubt give istiff as 1. The damping
parameters are specified for ball-to-ball contact if iswitch is given as 1 and for

ball-to-wall contact if iswitch is given as 0.

Density d mtyp

d is taken as the mass density of all particles of material type mtyp.

DWAIl Pdabc Vvxvyvz M mtyp SE F vmax g

SPdabc [Vvxvyvzvr Mmtyp SEF vmax g

This comman.d creates a wall. In the first form, a plane wall is created. P
defines the plane wall as ax+by+cz=d. Only walls parallel to one of the three
planes x-y, y-z and x-z are handled in 3-d at the moment. This means that
only one of the parameters a, b or c is non-zero for any wall. For a non-zero
a for example, the ratio d/a then gives the x-intercept of a ‘y-z’ plane wall.
In the 2-d case which handles only walls parallel to either the x- or y-axis, the
equation reduces to ax+by=d, but a value of zero must still be specified for c.
V gives the translational velocity of the wall (vx, vy, vz) and M indicates the
material-type of the wall (given by mtyp). The selection SE introduces servo
control to the wall. F is the desired normal force to be reached by the wall.

vmax is the maximum normal velocity allowed for the wall, g is the servo gain.
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Fix

In the second form, an hollow sphere wall is created. The sphere wall is defined
by SP as d* = (z —a)? + (y — b)® + (2 — ¢)%. V sets the translational velocity of
the wall to (vx, vy, vz) and the radial velocity to vr. SE sets the radial force
F, maximum radial velocity vmax and gain g for the servo control mechanism
of the wall. For both forms, the order of the last three items can be given in

any order. The first three items must be specified.

ix iy iz irx iry irz iadd
All
The translational or angular velocity of any particle may be held constant by
setting the appropriate parameter equal to 1 : ix, iy and iz control the z, y
and z velocities, and irx, iry and irz the angular velocities about the z, y and
z axes, respectively. The constraints may be removed by setting the parameters
to zero. The final parameter, iadd, is the address of the particle to be fixed. If
the word All is substituted, then all particles are affected. Note that the Fix

command does not set velocities to zero — see the Zero command.

FMM r

All applied particle forces are multiplied by r. This command has no effect on

particle-particle forces and force-sums of fixed particles.

FRO

Sets angular velocities of all particles to zero.

FRAction f

The time step is set to a fraction of the critical time-step At = fAt,;. The
critical time step (Atferit) is based on the Rayleigh wave speed. The default

value of fis 1.



FRiction amu mtyp

The friction coefficient is set to amu for particles or walls of material type mtyp.
For two different material types in contact, the smaller of the two coefficients is

used in the program.

GAIN g edmax

The servo gain, g, and the maximum allowed strain-rate, edmax, are set. In
mode 0 (see Mode command), the parameter g represents Aé/0error, Where Aé
is the change in grid strain-rate that occurs for an error in the controlled stress
Oerror- The “controlled stress” is the one given on the Cycle command, and the
“error” is the difference between the given value and the measured value for the
assembly of particles. For mode 1 operation, the parameter g is €/Gerror- The
optimum value of g is, to some extent, a matter of trial and error. If it is too
high, the servo will “hunt” or will be unstable; if g is too low, the servo will be

sluggish and the error may be too large.

GRAVvity gx gy gz

Gravitational accelerations are prescribed for each of the coordinate directions.

Note that gravity is not meaningful when full periodic boundaries are in effect.

GRID ed11 ed22 ed33 ed12 ed23 ed31

The strain-rates €1, €2, 33, €12, €23, €31, of periodic space are set. Note that the
strain rates é;3 and éa; are not used although they should be entered on the Grid
command as zero. The components é,;, é3; and é;3 cause the periodic volume to
change shape. However the component é;, does not distort the periodic volume
in shear; rather there is a step in & or z displacement between the bottom y-
boundary and the top y-boundary. This step in shear is printed out when the

Print Grid command is given.
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Iset k iadd

The integer k is inserted into the main memory array IA() at address iadd.

Great caution is needed when using this command.

LIQuid pvol gsurf gcon gvis

By using the command, liquid is distributed to all contacts (including those not
taking load). Liquid bridges are immediately formed for all contacts which are
taking load. For those that are not taking load, liquid bridges are formed when
they start to take load. The volume of the liquid bridge at each contact is set
to be pvol% of the volume of the two spheres. The other three parameters are
surface tension (gsurf, in N/m, not to be zero if pvol is not given as zero), solid-
liquid contact angle (gcon, in degree) and viscosity (gvis, in pa.s) respectively.
To change the liquid volume or any one of the other parameters, simply use the

command again. If pvol is set to be zero, all liquid bridges formed before are

removed.
Log ON
OFF

The command Log ON causes all commands, comments, error messages, etc.,
to be reproduced on a file TRUBAL.OUT. The command Log OFF suppresses

this echo function, except for output from the Print command.

Mode n

This selects the type of servo control. Mode 0, which is the default, selects
“velocity increment control”, in which the increment in grid velocity is pro-
portional to the error (difference between measured value and desired value).
Mode 1 selects “velocity control”, whereby the grid velocity is set directly by

the servo.



New

The program returns to the point at which it expects a Start or Restart

command. The data for the current problem is lost from memory.

Plot BALI or DISks
BOU (for 3-d) or GRId (for 2-d)
CLUster or LCLuster
CND or LCNNd
COUple
FORces or LFOrces or MFOrces
RDIsp
ROTation
SAVe
VELocity
WALI

The Plot command produces either 2-d x — y plots or 3-d £ —y — z plots. The
different options are explained below.

Ball or DISks produces a plot of the constituent particles. For the option
BALLI, particles are plotted as spheres (3-d) or shaded circles (2-d). Disks is
an option used only in the 3-d mode to plot the particles as shaded circles as
seen from one viewpoint.

BOu plots an z — y — 2 box of the simulation volume or the z,y and z axes
(3-d mode only). The corresponding 2-d parameter Grid gives an z — y grid of

the simulated area.

CLUster plots clusters (or fragments) of the agglomerate(s) in different
colours according to the numbers of particles of the clusters. The option

LCLuster, plots the clusters connected by liquid bridges.

2
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Cnd plots the contact connection diagram, which compares the current state
of the simulated agglomerate(s) with a previously saved state and identifies the
contacts which are still present (existing contacts), newly made (new contacts)
and broken (deleted contacts). The option Lend is to plot the connection
diagram of liquid bridge contacts.

COuple produces a plot of couple stresses as vectors (never been used at
Aston).

Forces plots the contact forces as lines oriented in the direction of the
force. In 2-d, the thickness of the line is proportional to the magnitude of
the force (scaled to the current maximum force). The options LFOrces and
MFOrces are used to plot the contact forces of liquid bridges and body contacts
respectively.

Save does not produce a plot, but causes the current state to be saved in a
memory buffer : this state is necessary before using the parameters Rdisp and
Rotation, which produce plots of relative displacement and relative rotation

respectively. Typical usage is:

plot save
cycle 200

plot bou rdisp

In this example, the incremental displacement vectors corresponding to a 200-
cycle interval will be plotted.

Vel causes velocity vectors to be plotted.

Wall causes all walls to be plotted.

PRA v mtyp

Specifies the Poisson ratio value v for material-type mtyp.
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PRint Balls
CHist
Contacts  [All or Gap]
Energy
Entries
Grid
Info
Map
Partitions

Stress

A printout is made of various quantities. The above parameters correspond,
respectively, to: balls, contact histogram, contacts, energy terms, box entries,
grid size, general information, memory map, stress partitions and stress tensor.
The optional keyword All requests that all contacts are printed, rather than
just those taking load, which is the default. The optional keyword Gap causes
only contact overlaps and normal forces to be printed. To reduce the amount

of output, the Window command may be given prior to the Print command.

PRObe E11
E22
E33
E12
E23
E31
E1M2
E2M3
E3M1

The command causes a strain increment to be made at the current state. The



resulting modulus (stress/strain) is printed out. Only one of the above keywords
may be given per Probe command : they correspond, respectively, to probes of
Neyy, Degg, Neas, Neja, Negs, Nesy, Depy — Dexg, Deay — Aeaz, Neas — Neyy.
The current state is saved before the probe is done and is restored afterwards.
During the probe, 500 cycles are done at zero strain, to get the “baseline” state;
then 250 cycles of probe are done, and finally 500 cycles of zero strain are done.

So a probe takes quite some time to execute.

RAdius r isize

r is taken as the radius of particles of size type isize.

RESet

Accumulated rotations are set to zero. This has no effect on the mechanical
behaviour, since only incremental rotations are used in the calculation. These

rotations are simply the summations, over time, of the incremental rotations.

Restart [filename]

A previously-saved problem is restored from the file filename. If a file name is
not given, a default file name of save.old is assumed. The command Restart
may only be given as the first command of a run or as the first command after

a New command.

RGEnerate n isize mtyp naggm

Seed n

In the first form of the command, n particles of size type isize and material type
mtyp are randomly generated over a spherical region (defined by the command
AGGIlomerate) for agglomerate naggm or over the cubic cell (otherwise). No

effort is made to fit particles into gaps between other particles. If a candidate
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particle overlaps an existing particle, it is rejected and another one is tried.
Before giving this command, a radius must already have been defined for the
size type isize. If several sizes of particles are to be combined in an assembly,
the larger ones should be generated first since it is easier to fit small particles.
naggm (1 Or 2) indicates the number of agglomerates that the generated parti-
cles belong to. In the second form of the command RGE Seed n, no particles
are generated, but the random number generator produces n numbers that are
discarded. This is useful when generating different distributions of the same

particles.

Rset r iadd

The real number r is inserted into the main memory array IA() at the address

iadd. Great caution is needed when using this command.

SAve [filename]

The current problem state is saved on the file filename. If a file name is not
given, a default file name save.new is assumed. If a file name is specified that
already exists, the existing data is over-written. The saved state records all
positions, velocities, forces, options and so on, at a given stage in a run; it
corresponds to a “snapshot” at a single point in time. The Save command does

not record a sequence of commands.

Start xmax ymax zmax nbox nball nwall [Log]

This command (or the Restart command) must be the first one to run
TRUBAL. The parameters xmax, ymax and zmax are the total widths
of the box volume (also the periodic volume) in the z, y and z directions, re-
spectively. nbox is the number of boxes requested, and nball is the maximum

number of spheres that may be needed — there is no problem if fewer spheres



are subsequently generated: the purpose of the Start command is to allocate
enough memory to hold all the required boxes and particles. The parameter
nwall indicates the maximum number of walls that may be needed. The op-
tional keyword Log turns the “log” facility on immediately: i.e. output is

echoed to the output file TRUBAL.OUT unless redirected.

Stop

Stops the program. The current state of the problem is not saved automatically.

Use the Save command to do that before issuing the stop command.

VELocity vlix vly vlz ivd

vix vly vlz v2x Vv2y v2z ivd

This command is used to specify the velocity of a particle or particles in an
agglomerate. The parameters v1x, v1y, v1z specify the z, y and z components
of the desired velocity for particles in the first agglomerate, and where there
are two agglomerates, v2x, v2y, v2z specify the velocity components for the
second agglomerate particles. The parameter ivd is used to indicate whether the
agglomerate(s) is (are) being impacted (ivd=1) or not (ivd=0). In the former
case, a flag is set in the program which ensures that any secondary contacts
formed after impact use a base value of surface energy corresponding to van der

Waal’s forces of attraction only.

VMU r

The velocities of all fixed degrees-of-freedom are multiplied by r. See the FIX

command.



Window x1 x2 yl1 y2 z1 z2

This command limits the volume (or area) space that is addressed by the Print
command, when it is printing out information on spheres, contacts, etc. The

volume is:

x1l <z < x2
yl<y<y2

zl <2< 22

YMD ymod mtyp

Specifies a Young’s modulus value of ymod for all particles of material-type

mtyp.

Zero izf

Sets the particle velocities (translational and rotational) to zero. If izf is given
as 1, in all subsequent cycles, the particle velocities are set to zero after each

cycle. Use izf=0 to over-ride this.

2-D
This command causes TRUBAL to operate in two-dimensional mode. The
particles are still regarded as spheres, but they are constrained to move in the z—
y plane only. Although the equations of motion are truncated to two dimensions,
the force-displacement calculation (subroutine HFORD) still operates in three
dimensions. This could be modified to improve running speed. In 2-d mode,
the generation routine sets the z coordinate of all particles to the same value —
corresponding to the centre of the box volume in the z direction. Only one box
should be specified in the z direction, although TRUBAL will not complain if

more are requested.
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Appendix C

Graphics printings of computer

simulated wet agglomerate impact

This appendix presents the graphics printings of the series of computer simulated
moist agglomerate collision tests described in Chapter 6 and 7. All the graphics

printings are colour copies of the screen visualisation of a IBM RS 6000 workstation

(340 model) provided by a GAMMACOLOR System 400.
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C.1 Agglomerate-wall impact

Computer simulated agglomerate-wall impacts were performed of a body-centred cu-
bic moist agglomerate consisting of 4062 particles of radius R = 30x. The proper-
ties of the constitutive particles were: density p = 2.65Mgm=, Young’s modulus
E = T0Gpa, Poisson’s ratio v = 0.3 and friction coefficient p = 0.3. At each con-
tact, a quantity of liquid of 0.1% of the particle volume was assigned to f(;rm a
liquid bridge. This corresponds degree of saturation was 0.85% for the body-centred
cubic arrangement. The liquid modelled was silicon fluid with the following prop-
erties: surface tension 4, = 0.025, solid-liquid contact angle & = 0° and viscosity

7 =0.00 ~ 0.1 Pas.
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Impact velocity v = 0.2m/s, viscosity 7 = 0.0, surface tension 7, = 0.025N/m.

Impact velocity v = 0.3m/s, viscosity n = 0.0, surface tension 7y, = 0.025N/m.

Impact velocity v = 0.4m/s, viscosity n = 0.0, surface tension 7, = 0.025N/m.
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Impact velocity v = 0.5m/s, viscosity 5 = 0.0, surface tension 7, = 0.025N/m.

Impact velocity v = 1.0m/s, viscosity n = 0.0, surface tension 7, = 0.025N/m.

Impact velocity v = 2.0m/s, viscosity = 0.0, surface tension 7;, = 0.025N/m.
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Impact velocity v = 0.2m/s, viscosity 7 = 0.01 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 0.3m/s, viscosity n = 0.01Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 0.44m/s, viscosity n = 0.01Pa.s, surface tension v, = 0.025N/m.
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Impact velocity v = 0.6m/s, viscosity = 0.01 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 1.0m/s, viscosity = 0.01 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 2.0m/s, viscosity = 0.01 Pa.s, surface tension 7, = 0.025N/m.



Impact velocity v = 3.0m/s, viscosity 7 = 0.01 Pa.s, surface tension -, = 0.025N/m.

Impact velocity v = 0.3m/s, viscosity n = 0.10Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 0.4m/s, viscosity n = 0.10Pa.s, surface tension v, = 0.025N/m.
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Impact velocity v = 0.6m/s, viscosity 7 = 0.10Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 1.0m/s, viscosity 7 = 0.10Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 2.0m/s, viscosity n = 0.10Pa.s, surface tension 4, = 0.025N/m.
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Impact velocity v = 4.0m/s, viscosity n = 0.10Pa.s, surface tension -, = 0.025N/m.

Impact velocity v = 8.0m/s, viscosity n = 0.10 Pa.s, surface tension v, = 0.025N/m.
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C.2 Agglomerate-agglomerate collisions

Appendix C.2 presents graphics printings of the computer simulated agglomerate-
agglomerate collisions reported in Chapter 7. Each agglomerate consisted of 1000
randomly packed particles of radius R = 30pum with a normally distributed deviation
of +£3um. The properties of the constitutive particles were: density p = 2.65Mgm=3,
Young’s modulus E = 70Gpa, Poisson’s ratio » = 0.3 and friction coefficient p = 0.3.
At each contact, a quantity of liquid of 0.1% of the particle volume was assigned to
form a liquid bridge and the corresponding degree of saturation was 0.71%. The liquid
modelled was silicon fluid with the following properties: surface tension 7, = 0.025 ~

0.050 Nm™!, solid-liquid contact angle § = 0° and viscosity = 0.001 ~ 0.10Pas.
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Impact velocity v = 0.2m/s, incident angle © = 0°,
viscosity 7 = 0.001Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 0.5m/s, incident angle © = 0°,
viscosity n = 0.001Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 1.0m/s, incident angle © = 0°,
viscosity 7 = 0.001 Pa.s, surface tension 7y, = 0.025N/m.
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Impact velocity v = 1.2m/s, incident angle © = 0°,
viscosity 7 = 0.001Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 1.5m/s, incident angle © = 0°,
viscosity g = 0.001Pa.s, surface tension v, = 0.025N/m.

®

Impact velocity v = 2.0m/s, incident angle © = 0°,
viscosity n = 0.001 Pa.s, surface tension 7, = 0.025N/m.
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Impact velocity v = 0.5m/s, incident angle © = 0°,
viscosity n = 0.01 Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 1.0m/s, incident angle © = 0°,
viscosity n = 0.01 Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 1.5m/s, incident angle © = 0°,
viscosity 7 = 0.01 Pa.s, surface tension v, = 0.025N/m.
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Impact velocity v = 2.0m/s, incident angle © = 0°,
viscosity 7 = 0.01 Pa.s, surface tension -, = 0.025N/m.

Impact velocity v = 2.5m/s, incident angle © = 0°,
viscosity = 0.01Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 3.0m/s, incident angle © = 0°,
viscosity n = 0.01 Pa.s, surface tension v, = 0.025N/m.
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Impact velocity v = 4.0m/s, incident angle © = 0°,
viscosity n = 0.01 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 5.0m/s, incident angle © = 0°,
viscosity 7 = 0.01 Pa.s, surface tension v;, = 0.025N/m.
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Impact velocity v = 0.5m/s, incident angle © = 0°,
viscosity n = 0.01 Pa.s, surface tension 7, = 0.05N/m.

Impact velocity v = 1.0m/s, incident angle © = 0°,
viscosity 7 = 0.01 Pa.s, surface tension -, = 0.05N/m.

Impact velocity v = 2.0m/s, incident angle © = 0°,
viscosity 7 = 0.01 Pa.s, surface tension vz, = 0.05N/m.
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Impact velocity v = 3.0m/s, incident angle © = 0°,
viscosity n = 0.01 Pa.s, surface tension -y, = 0.05N/m.

Impact velocity v = 4.0m/s, incident angle © = 0°,
viscosity 7 = 0.01 Pa.s, surface tension v, = 0.05N/m.

. 4

Impact velocity v = 5.0m/s, incident angle © = 0°,
viscosity n = 0.01 Pa.s, surface tension v, = 0.05N/m.
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Impact velocity v = 2.0m/s, incident angle © = 0°,
viscosity 7 = 0.1Pa.s, surface tension 4, = 0.025N/m.

Impact velocity v = 5.0m/s, incident angle © = 0°,
viscosity n = 0.1Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 6.0m/s, incident angle © = 0°,
viscosity n = 0.1Pa.s, surface tension v, = 0.025N/m.

307



Impact velocity v = 7.0m/s, incident angle © = 0°,
viscosity 7 = 0.1 Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 10.0m/s, incident angle © = 0°,
viscosity 7 = 0.1Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 15.0m/s, incident angle © = 0°,
viscosity n = 0.1 Pa.s, surface tension 7y, = 0.025N/m.
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Impact velocity v = 2.0m/s, incident angle © = 15°,
viscosity 7 = 0.01 Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 2.0m/s, incident angle © = 30°,
viscosity n = 0.01 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 2.0m/s, incident angle © = 45°,
viscosity n = 0.01 Pa.s, surface tension 7, = 0.025N/m.
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Impact velocity v = 2.0m/s, incident angle © = 60°,
viscosity 7 = 0.01 Pa.s, surface tension v, = 0.025N/m.

Impact velocity v = 2.0m/s, incident angle © = 75°,
viscosity 7 = 0.01 Pa.s, surface tension -, = 0.025N/m.

Impact velocity v = 2.0m/s, incident angle © = 85°,
viscosity n = 0.01 Pa.s, surface tension v;, = 0.025N/m.
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Impact velocity v = 5.0m/s, incident angle © = 15°,
viscosity = 0.01 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 5.0m/s, incident angle © = 30°,
viscosity n = 0.01 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 5.0m/s, incident angle © = 45°,
viscosity 7 = 0.01 Pa.s, surface tension v, = 0.025N/m.
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Impact velocity v = 5.0m/s, incident angle © = 60°,
viscosity 7 = 0.01 Pa.s, surface tension v;, = 0.025N/m.

®e

Impact velocity v = 5.0m/s, incident angle © = 75°,
viscosity 7 = 0.01 Pa.s, surface tension 7;, = 0.025N/m.

Impact velocity v = 5.0m/s, incident angle © = 85°,
viscosity n = 0.01 Pa.s, surface tension 7, = 0.025N/m.
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Impact velocity v = 2.0m/s, incident angle © = 15°,
viscosity 7 = 0.001Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 2.0m/s, incident angle © = 30°,
viscosity 7 = 0.001 Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 2.0m/s, incident angle © = 45°,
viscosity n = 0.001Pa.s, surface tension 7, = 0.025N/m.
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Impact velocity v = 2.0m/s, incident angle © = 60°,
viscosity 7 = 0.001 Pa.s, surface tension v, = 0.025N/m.

.3
.’.

Impact velocity v = 2.0m/s, incident angle © = 75°,
viscosity n = 0.001Pa.s, surface tension 7, = 0.025N/m.

Impact velocity v = 2.0m/s, incident angle © = 85°,
viscosity = 0.001 Pa.s, surface tension 5, = 0.025N/m.
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