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Summary

In the processing industries particulate materials are often in the form of powders which
themselves are agglomerations of much smaller sized particles. During powder
processing operations agglomerate degradation occurs primarily as a result of collisions
between agglomerates and between agglomerates and the process equipment. Due to
the small size of the agglomerates and the very short duration of the collisions it is
currently not possible to obtain sufficiently detailed quantitative information from real
experiments to provide a sound theoretically based strategy for designing particles to
prevent or guarantee breakage. However, with the aid of computer simulated
experiments, the micro-examination of these short duration dynamic events is made
possible.

This thesis presents the results of computer simulated experiments on a 2D
monodisperse agglomerate in which the algorithms used to model the particle-particle
interactions have been derived from contact mechanics theories and, necessarily,
incorporate contact adhesion. A detailed description of the theoretical background is
included in the thesis.

The results of the agglomerate impact simulations show three types of behaviour
depending on whether the initial impact velocity is high, moderate or low. It is
demonstrated that high velocity impacts produce extensive plastic deformation which
leads to subsequent shattering of the agglomerate. At moderate impact velocities semi-
brittle fracture is observed and there is a threshold velocity below which the
agglomerate bounces off the wall with little or no visible damage. The micromechanical
processes controlling these different types of behaviour are discussed and illustrated by
computer graphics. Further work is reported to demonstrate the effect of impact
velocity and bond strength on the damage produced. Empirical relationships between
impact velocity, bond strength and damage are presented and their relevance to attrition
and comminution is discussed. The particle size distribution curves resulting from the
agglomerate impacts are also provided.

Computer simulated diametrical compression tests on the same agglomerate have also
been carried out. Simulations were performed for different platen velocities and
different bond strengths. The results show that high platen velocities produce extensive
plastic deformation and crushing. Low platen velocities produce semi-brittle failure in
which cracks propagate from the platens inwards towards the centre of the agglomerate.
The results are compared with the results of the agglomerate impact tests in terms of
work input, applied velocity and damage produced.
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Introduction

1. Introduction
As far as the laws of mathematics refer to reality, they are not
cerlain; and as far as they are certain, they do not refer to reality.

-Albert Einstein
“To understand how nature works, one has only to start from first principles.” Yet to
many of us, first principles means producing a set of governing equations or working
through a pre-conceived idea. Research is known to be based on man’s imagination
and the fundamental studies and breakthroughs in the field of science and engineering
have always been associated with real physical experiments. Equations are vigorously
manipulated mathematically to conform with the experimental data. Man has often been
inspired by each new contribution, new idea and strived to make further improvements.
Yet along this path to pursue the unknown, man has intuitively been inclined to believe
in obtaining the ‘answers’ through the ‘experimental way’. Any other means is but a

fallacy until it is confirmed by experimental results.

The introduction of computing power in recent years has made a phenomenal impact on
many scientists in their quest for excellence. Computer generated results using
numerical analysis have given a better understanding and insight which were once
unthought of. New techniques are developed to ‘test’ and correlate with real
experiments to fully justify the authenticity of computer generated results. One
common example is the use of the Finite Element Method (F.E.M) which uses a
continuum approach to obtain detailed stress/strain distributions within materials by
considering the material to be composed of a large number of small elements.
However, this technique does not always provide accurate results because it depends
on the actual discretisation of the material and on the validity of the constitutive laws
incorporated into the formulation. The F.E.M, due to the arbitrarily selected elements
and the continuum mechanics constitutive laws, cannot explain how the macroscopic

behaviour of particulate materials is related to the properties of the constituent particles.
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Introduction

The Distinct Element Method (D.E.M), Cundall and Strack (1979), was developed in
order to examine how the internal micromechanics of systems of discrete particles is
related to the complex macroscopic behaviour of the particulate material. The method
uses the physical and mechanical properties as input parameters. The ‘constitutive
laws’ are the particle interaction laws which define the contact stiffnesses. Using
statistical mechanics, the data can be analysed to provide the bulk mechanical properties
of the system as output information. In addition, the detailed evolution of the

micromechanical processes may be examined using computer graphics.

Because of its methodology the D.E.M is applicable to a wide range of problems in
particulate technology. There is hardly a branch of science and engineering which is
not concerned with particulate technology - civil engineers working on problems of soil
mechanics, metallurgical engineers working in the area of powder metallurgy,

mechanical engineers on pneumatic and hydraulic transport of particulate materials.

The degradation or attrition of particulate materials during handling and processing is a
common occurrence in the chemical, agricultural and allied industries. In these
industries particle attrition can be the cause of two main problems. Firstly, it changes
the physical properties of the material such as particle size distribution, surface area,
flowability and density, causing difficulties with subsequent handling and processing
operations. Secondly, the generation of fine particles, and hence dust, can result in the
loss of valuable material and requires investment in control measures to prevent damage

to health and the general environment.

Most particle degradation is a result of some form of motion between a particle and the
wall of a vessel or another particle. This relative motion may be caused by flowing
fluid, gravity or mechanical vibration. The forces involved in the breakage process
may be generated by high speed collisions or may be transmitted through a matrix of

comparatively slow moving particles.
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Introduction

Although attrition is a widespread phenomenon, it has rarely been studied in a
systematic fashion and there is correspondingly little information published in the open
literature. This reflects the difficulties associated with research into a subject in which a
large number of parameters control and influence the process. The general paucity of
information on attrition is in marked contrast to that on the related subject of
comminution. In both processes large particles are broken into smaller ones. However

in comminution, unlike attrition, the breakage is intentional.

The object of this research is to examine in detail the breakage of agglomerates using a
numerical simulation program based on the methodology of the D.EIM. The
underlying physical mechanisms that control the processes are still poorly understood.
Consequently, it was proposed to study the basic interactions for a single contact before
applying the program to a system of 1000 monodisperse primary particles. One should
acknowledge, at this stage, that this research is based on computer simulated
experiments with a relatively small number of primary particles modclled as closely as

possible to reality.

1.1 Order of Presentation

Chapter 2 and 3 both deal with the mechanics of a single contact between two spherical
particles. In Chapter 2 the spheres are considered to be elastic with friction but no
adhesion. A detailed description of the theories of Hertz (1882), Mindlin (1949) and
Mindlin and Deresiewicz (1953) is provided. These theories are used in the computer
simulation program to model the normal and tangential force-displacement behaviour at
the interparticle contacts. Results of computer simulated oblique impacts of two elastic

spheres are then presented. *

Chapter 3 considers the effect of adhesion at the contact. The theory of Johnson,
Kendall and Roberts (1971) is used to model the normal interaction between two

spheres. The tangential interaction is based on the theories of Savkoor and Briggs
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(1977) and Thornton (1991). After a description of the theoretical background, the
results of computer simulated oblique impacts of particles with adhesion are reported.
The computer simulated impact tests reported in both Chapter 2 and Chapter 3 illustrate
the complexity of such apparently simple events and demonstrate the effect of impact

angle on the energy dissipated during the collisions of elastic spheres.

In Chapter 4 computer simulation is discussed and the methodology used in the
computer program is described. In order to simulate agglomerates it was necessary to
adapt the computer code so that contact adhesion could be modelled. The main changes
made to the program occurred in the subroutine FORD which updates the contact
forces. A description of the new subroutine FORD is provided. The application of the
new program to computer simulated experiments on agglomerates is described in

Chapter 5 and 6.

Chapter 5 presents the result obtained from computer simulations of :«1‘ 2D monodisperse
agglomerate, consisting of 1000 primary particles, impacting with a wall. The work
reported is restricted to normal impacts. The results of the agglomerate impact
simulations show three types of behaviour depending on whether the initial impact
velocity is high, moderate or low. It is demonstrated that high velocity impacts produce
extensive plastic deformation which leads to subsequent shattering of the agglomerate.
At moderate impact velocities semi-brittle fracture is observed and there is a threshold
velocity below which the agglomerate bounces off the wall with little or no visible
damage. A detailed description of these different modes of behaviour is provided.
Further work is reported to demonstrate the effect of impact velocity and bond strength
on the damage produced. Empirical relationships between impact velocity, bond
strength and damage are presented and their relevance to attrition and comminution is
discussed. The particle size distribution curves resulting from the agglomerate impacts

are also provided.
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Chapter 6 presents results of computer simulated diametrical compression tests on the
same agglomerate. Simulations were performed for different platen velocities and
different bond strengths. The results show that high platen velocities produce extensive
plastic deformation and crushing. Low platen velocities produce semi-brittle failure in
which cracks propagate from the platens inwards towards the centre of the agglomerate.
The results are compared with the results of the agglomerate impact tests in terms of

work input, applied velocity and damage produced.
Finally, some concluding remarks are provided in Chapter 7.

1.2 Why computer simulation?

Although the computer simulation technique is a relatively new tool to enhance
research, early results have proven its feasibility. Attempts to understand the
microscopic behaviour of granular materials have been assisted by information about
load transfer paths, failure mechanisms, energy dissipation and anislotropy which has
been made possible through direct numerical simulations of particle assemblies. This
thesis is based wholly on the use of a particular program which uses specific contact
interaction laws to model the particles as elastic spheres with both friction and
adhesion. Although the simulations are all in 2-dimension, the results obtained do
agree qualitatively with published experimental work as will be shown in later chapters.
In order to model ‘correctly’ the behaviour of discrete materials, all interaction laws
adopted must be as real as possible. This is significant because without realistic

interactions laws, it will be classed as computer animation and not computer simulation.
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2. Impact Of Spheres Without Adhesion

Among simulationists, the real world is often a special case.

2.1 Introduction

The term 'impact' is synonymously linked to expressions including those used in such
diverse fields as psychology, economics, physics and engineering. In all cases, the
word denotes the idea of abruptness, coupled with a physical change in the end
product. This chapter, however, treats only certain aspects of 'impact’, defined as the

process involved in the collision of two objects.

Impact applies to a variety of situations as exemplified by the game of snooker, vehicle
accidents, air blasts upon structures and even molecular collisions. However, it is
essential that the number of collisions must be restricted to a relatively small
occurrence, otherwise a condition of repeated loading would prevail. Additionally, the
terminology ideally limits the phrase 'impact' to collisions in which the mass effect of
both impinging bodies must be taken into account, favouring thc'argument for the

principle of conservation of linear momentum.

The concept of impact is further distinguished from the case of static or rapid loading
by the nature of its application. Forces, both normal and tangential, created by
collisions are exerted and removed in a very short duration of time (in the region of
milliseconds) and initiate stress waves which originate from the contact area travelling
outwardly. Static loading is often regarded as a series of equilibrium states and
requires no serious consideration of acceleration or wave effects. Rapid loading, in
contrast, is not usually produced by means of a collision and normally involves longer

loading times than found in impact processes. +

The impact behaviour discussed in this chapter is a combination of static loading and

the elastic response of the material, which can be readily tackled by the theory of
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contact mechanics. The quantitative description of the regime considered is at best only

a close approximation to the real world.

The complicated process of energy conservation and loss under impact conditions leads
to serious difficulties in the mathematical analysis of this type of problem. Therefore, it
has been suggested that models representing any physical system must be idealised to
render them amenable to theoretical treatment and the postulated dynamic behaviour of
such systems must be verified by suitable physical experiments. As a consequence,
complete and thorough solutions have been obtained only for simple geometrical
configurations, utilising the laws of conservation of mass, conservation of momentum
and a mechanical energy balance. Although many different approaches to the same

problem have been recorded, no general impact theory has been developed to date.

In the work presented in this and the following chapter, consideration will be restricted
to the impact behaviour of perfectly elastic spheres. Notwithstanding the complications
of the real physical world, as mentioned above, it is hoped that the results presented

will provide a rational contribution to current and future research.

2.2 Brief Literature Review

The fundamental principle for a rational description of impact and impact associated
phenomena was established simultaneously with the evolution of the science of
mechanics. The initial approach to the laws of collisions was based on the behaviour of
objects as rigid bodies, with suitable correction factors accounting for energy losses.
The initial concept of rigid body impact is due to Galileo, who recognised that impact
performs work, but confused the ideas of momentum and energy. Newton furnished
not only his law of motion but also the notion of the coefficient of restitution, which is
still widely adopted in many research fields, though of questionable fundamental

significance.
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It was only towards the end of the last century when Hertz (1882) (see Johnson
(1982)) forwarded his theory of local deformation for perfectly elastic spheres. This
theory enables predictions to be made about, for example, the stress and displacement
fields in the bodies and the duration of the impact. Lifshitz and Kolsky (1964) carried
out validation experiments on elastic rebounds based on the Hertzian theory. Hunter
(1957) showed that the Hertzian theory was quasi-static in the sense that the theory
neglected loss of energy in transmitted stress waves. Deresiewicz (1968) showed that
it is possible to accurately predict the duration of the impact using the basic principle of

the Hertzian theory of local deformation.

The tangential response during oblique loading was examined by Mindlin (1949) and
Catteneo (1938). As the bodies respond to tangential forces, some of the work done in
deflecting the bodies tangentially is stored as elastic strain energy in the solids and is
recoverable under suitable circumstances. The relative displacements are not
necessarily constant over the contact area and it is possible for SOI:IIC region to stick
while others are sliding. Mindlin (1949) showed that even when a small but finite
tangential load is present, an annulus of slip is generated at the boundary of the contact.
If the tangential load is allowed to increase, the inner radius of this annulus
progressively reduces until, when a critical value of tangential force is reached, the
bodies starts to slide. Mindlin described these conditions as micro-slip and gross-slip

respectively.

Mindlin and Deresiewicz (1953) developed compliance relationships for cases in which
both normal and tangential loads may vary. Owing to the presence of slip with its
associated energy dissipation and permanent set, the changes in tractions -and
displacements depend not only upon the initial state of loading, but upon the entire past
history of loading and the instantaneous relative rates of change of the normal and

tangential forces.
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2.3 Normal Impact

The first attempt to incorporate a theory of local indentations or deformation and
consequently the analysis of the stresses at a contact was initiated by Hertz (1882) (see
Johnson (1985)). A solution was obtained in the form of a potential which described
the stresses and deformations in the locality of the contact point as a function of the
geometrical and elastic properties of the bodies. This result, although both static and
elastic in nature, has been widely adopted for impact situations under non-quasi-static
conditions. The use of Hertzian theory beyond the limits of its validity has been
justified on the basis that it appears to predict accurately most parameters that can be

experimentally verified.

Hertzian theory predicts the static normal compression of two isotropic elastic bodies
whose surfaces are assumed to be perfectly smooth. Figure 2.1 shows the geometry of

the contact plane due to local deformation.

For two contacting spheres of radii R, (i=1, 2), the Hertzian pressure distribution acting
over the small circular contact area of radius, a, is illustrated in figure 2.2 and
expressed as

p(r) =po [ 1 - (/2)2]12 (2.1)

which leads to normal displacements over the contact area

u;(r) = (np, (1 - vi2) / 4E;a) (2a2 - r2) 2.2)

where E; and v;are Young's modulus and Poisson's ratio for the respective sphere, and

equation (2.2) satisfies the following boundary condition for the surface of the contact

area )
ur) +ufr) = o - (1/2R*)r” (2.3)
as defined in figure 2.1
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Figure 2.1 Deformation over the contact plane for two conforming spheres
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Figure 2.2 Hertzian pressure distribution over contact area
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where,

lfR* = 1/R.1 + 1/R2 (2.4)
and o, is the relative approach of the centroids of the two spheres in contact.

Substitution of (2.2) into (2.3) fori =1, 2 leads to

(rpy/4aE* ) (2a°-17) = ot - (12R*) 1 2.5)
where

1/E* = (1 - v12)/Eq + (1 - V22)/E, (2.6)
Substituting r = 0 into (2.5), the relative approach of the sphere centroids is

o = mpa/2E* .7

and the radius of the contact area is obtained from (2.5) and (2.7) withr = a to give
a = tp,R*/2E* (2.8)
The total normal load is defined as

p= f “pr2nr dr = 2pymaZ3 @29
0

which may be substituted into (2.7) and (2.8) to give

a3 = 3PR*/4E* (2.10)
and

a3 = 9P2/16R*E*2 (2.11)
noting also that

o = a2/R* (2.12)

For computer implementation it is necessary to define the normal 'stiffness'.
Therefore, rearranging (2.11),

P = 4E*(R*a3)1/2/3 (2.13)
from which the 'stiffness’ is defined as -
dP/do. = 2E*(R*)1/2 (2.14)

or, using (2.12),

dP/do. = 2E*a (2.15)



Impact Of Elastic Spheres Without Adhesion

However, (2.15) cannot be used for the first contact calculation and therefore if a = 0,

then it is necessary to use (2.13) noting that fora =0, P = AP, o = Aa..

The normal force displacement relationship given by (2.13) is illustrated in figure 2.3.
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Figure 2.3 Hertzian force displacement curve

The theory can be further extended to predict the impact duration for two perfectly
elastic spheres. Deresiewicz (1968) showed that for two spheres of masses m; and m,,
and velocities V; and V, acting normal to their contact, the relative velocity is given as,
V, -V, =doy/dt (2.16)

The normal force between them is,
P=m;dV,/dt=-m,dV,/dt

(2.17)
thus,
-P/m* = d(V; - V1)/dt = d20/dt2 (2.18)
where, .

1/ m* = 1/m; + 1/m,

The load-displacement relationship is assumed to be the same as for a static elastic
contact, rearranging (2.11),

P = (4/3) [R*12E*q3/2) = K3/2 (2.19)
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and hence,

m* d2o/dt2 = -Ka3/2 (2.20)
Integrating (2.20) gives

0.5[ V2 - (da/dt)2 ] = (2/5) (K/m*)a5/2 (2.21)
where

Vq = (V3 - V) =0 is the approach velocity.

At the maximum compression o*, doy/dt = 0,

a = (5m* V,2/4K)?5 = [15m* V_2/16R*1/2E*]2/5 (2.22)

The compression time curve is found by a second integration, thus

t=(a*/V,) f d(o/o*)/(1-(a/a*)3/2) 1/2 (2.23)

This integral has been evaluated by Deresiewicz (1968) and is presented as a force- time
curve in figure 2.4. After the instant of maximum compression t*, the spheres expand
again. Since they are perfectly elastic and frictionless, if the energy absorbed in wave

motion is neglected, the deformation is perfectly reversible. The total time of impact T,

is therefore, given by,
T.=2t* = Qa*/V,) f d(o/o*)/ (1-(o/a*) 572 }172

=294 a* N,
=2.87 (m*2 /RE*2V)1/5 (2.24)
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Figure 2.4 Variation of compression o and force P with time during a Hertz impact
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2.4 Oblique Impact

An application of a tangential force to a system of two spheres brought in contact, may
not give rise to a sliding motion but nevertheless, will induce a tangential traction
distribution on the contact interface. It is essential to examine the sequence of tangential
tractions that may arise from a combination of normal and tangential forces which does

not cause the bodies to slide relative to each other.

The problem is illustrated in figure 2.5. When two bodies are compressed and held
together by a constant normal force, P, a finite contact region is established on the

contact interface as the result of elastic deformation on the two conforming surfaces.
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Figure 2.5 Contact interface with shear deformation due to application of
tangential force

The corresponding pressure distribution will, as in the Hertzian assumption, remain
unhindered by the presence of the tangential force, T. On the contrary, the application
of the tangential force, T, will result in the bodies deforming in shear as indicated by
the distorted centreline. It then follows that positions on the contact interface at the

deformed regime of each of the two conforming bodies will experience a tangential
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displacement u, relative to the distant points T, and T,in the undeformed regime of
each body. If sliding motion were to persist between the two bodies, then all conjugate
points on the contact interface deform with no relative motion. However, when there is
no sliding motion, then there must be at least one point at the contact interface where the
surfaces deform under no relative motion. Therefore for a tangential force less than the
limiting friction force, T < pP (no sliding) deformation as shown by A and A results
and this small but finite relative motion is termed as slip or microslip. The remainder of
the interface deforms without relative motion and in such regions the surfaces are said
to adhere or stick. For convenience in terminology and to avoid confusion in the next

chapter, it is best to use 'stick’ as opposed to adhere, for no relative tangential motion.

To proceed with the set of boundary conditions governing 'stick' and 'slip', A; and A,
denote two point on the interface which were coincident before the application of the
tangential force. Under the influence of the tangential force, remote points in the body
such as T; and T, ,move through rigid displacements 8,; and 3, while the conjugate
points at the deformable contact interface, A; and A, experience tangential elastic
displacements u,; and u,, relative to T, and T,. If the absolute displacements of A,
and A, relative to O are denoted by s,; and s,, , then the components of slip between
A, and A, may be written
Sx = Sx1-8x2= (Ux1-8y9) - (ux2-8,))

= (uxy - Uy - (8,;1' 8;2) (2.25)
If the position of A; and A, were coincident to each other (in the stick regime) the slip
s, will be zero, equation (2.25) then becomes
(uyg - Uyp) = (B5; - Ox0) = Oy (2.26)
The right hand side of this equation denotes a relative tangential displacement between
the two bodies as a whole under the influence of the tangential force. Hence, it can be
shown conclusively that 8, is constant and independent of the position of A, and A,

within the 'stick' regime. The condition of no slip embodied by (2.26) is thus the
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situation where all points on the contact surface within a 'stick' regime undergo no

relative tangential displacement.

At points within the stick region the resultant tangential traction cannot exceed its

limiting value. Assuming Amonton's law of friction with a coefficient W, this

restriction may be stated

q(x) <plp) (2.27)
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Figure 2.6 Tangential Traction Diagram, showing the stick and slip regions

In the slip region, the condition of (2.26) does not hold, but the tangential and normal

tractions (figure 2.6) are related by
Iq(x)l = L Ip(x)! (2.28)

Difficulty arises in the solution to predict the areas of the stick and slip regimes as
neither is known a priori. In a circumstance like this, it would be best to assume a fully

no slip solution initially over the contact interface. Slip is then likely to occur when the

tangential force exceeds the limiting frictional value.
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Having established the co-existence of stick and slip region on the contact interface, it is

best to re-examine why it is not possible to have a complete no slip case.

2.4.1 Mindlin's No Slip Solution

Mindlin (1949) first forwarded the theory for no slip over the contact interface. The
tangential traction distribution is defined by,

q(r) = (T/2ma2) (1 - r2/a2)'12 (2.29)
with the corresponding displacement

uy =(2-v)T/8Ga (2.30)

which must satisfy the boundary condition set in (2.26). Hence, the relative tangential
displacement of the two bodies in contact is,

%G, *G, "% 2.31)

S

This relationship is shown by the dotted line in figure 2.7. The tangential displacement

is directly proportional to the tangential force.

1.0

TP

1.0

1688, 13pP

Figure 2.7 Tangential load-displacement relationships for no 'slip'and 'partial slip'

Since this is a no slip solution, it corresponds to the solution for a fully ‘adhered’

contact and since there is no relative motion between the points on the contact interface
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of the two spheres, the solution does not admit the possibility of spin. However, as
shown in figure 2.8, there exists a theoretically infinite traction at the periphery of the
contact area, which then leads to a situation where some micro-slip will be inevitable at

the edge, in order to relieve this infinitely high tangential traction.
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Figure 2.8 Tangential traction with no slip

2.4.2 Mindlin's Partial Slip Solution

In the partial slip approach, for a constant normal force (AP=0), the effect of a
tangential force, T<UP, is to cause slip over part of the contact interface. Since the
contact area is of circular shape, a slip in the shape of an annulus is subsequently
formed. The formation of this slip or annulus is due to the tangential motion of points

over the contact interface. This suggests an alternative solution to the otherwise no slip

approach.

-

The partial slip approach suggests the formation of a slip annulus which starts from the
circumference of the contact area and progresses radially inwards towards the centre.
Hence there exists an outer region of slip, whilst a stick region is present in the centre

as long as T<pP. The theory requires that for any location within the contact surface,
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the magnitude of the local tangential traction 1 , is at most equal to the product of a

constant coefficient of friction pu and the local normal traction ¢. In addition, the

magnitude of the tangential force and consequently the tangential traction, is a function

of the load obliquity. Figure 2.9 shows the formation of slip annuli created at different

inclinations of total load.

Aston University

llustration removed for copyright restrictions

Figure 2.9 Annuli of slip. (Johnson, 1985 )

Slip, in the direction of the force causing it, progresses radially inward from the
boundary of the contact surface, forming an annulus of slip. When T=uP, the limiting
criterion, no part on the contact area is 'stuck’ and rigid body sliding occurs. The
development of the slip annuli involves a dissipative process. If the tangential force is
reduced then slip in the opposite direction or counterslip spreads radially inwards from
the perimeter of the contact area. The energy needed to produce the annulus of
counterslip is twice that needed to form the original slip annulus since the counterslip
has to cancel the original slip and progress the slip in the opposite direction. If the
annulus of counterslip did not fully progress to the same extent as the original slip
annulus, and the tangential loading is once more reversed, an annulus of slip in the

original direction would progress radially inward. This slip annulus would also require
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twice the energy of formation of the original annulus due to the cancelling and reversal
of the counterslip annulus. In general, all load reversals initiate slip reversals that
spread radially inwards from the perimeter of the contact area, rather than causing a

recession of the existing slip annulus. Consequently the tangential stiffness is

dependent on the loading history.

2.4.3 Tangential Loading

For the limiting condition of T = uP to prevail, the distribution of the tangential traction
is given by

q(r) = (Hpo/a) (a2 - 12)12 O<r<a (2.32)
For T < WP, the corresponding traction distribution is obtained by superimposing on

(2.32) a negative traction over the stick regime of radius b (< a)

q(r) = -(ppy/a) (b2 -12)1/2 O<r<b (2.33)
PR ‘_H\\
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Figure 2.10 Tangential traction distribution (loading)

Hence, the distribution of the tangential traction over the total contact area, shown in

-

figure 2.10, is given as
q= (l-‘-pofa) ( a2 -2 )1}2 b<r<a (2.34)
q = (Upy/a) [ (a2 -r2)12 - (b2 - 12)112) O<r<b (2.35)
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and the displacement of distant points with respect to the uniform displacement of the

stick portion is

6= (3uP/16 G*a) (1- b2/a2) (2.36)
where
1/G*=(2-v))/G) +(2-Vv,)/Gy (2.37)

The magnitude of the tangential force is defined, using (2.34) and (2.35), as

T=2n J:qrdr (2.38)
Hence,

T=uP (1-b3/a3) (2.39)
Rearranging (2.39)

b/a= (1 - T/up)1/3 (2.40)

Hence, the tangential force-displacement law is obtained from (2.36) and (2.40),

&= (3uP/16G*a) [ 1 - (1 -T/uP)273) . (2.41)

To obtain the tangential stiffness it is more convenient to differentiate (2.41) to obtain
the compliance and then invert. Thus

dT/d8 =8G*a(1-T/up)13 (2.42)

From (2.42) it is also noted that the initial stiffness is

(dT / d8)1p = 8G*a (2.43)

and the tangential displacement to cause sliding 6*, when T =pP in (2.41), is

&* = (3uP / 16 G*a) (2.44)
2.4.4 Tangential Unloading
During tangential loading, slip within the annulus b<r<a is a dissipative process and

consequently the tangential force-displacement law is dependent on the loading history.
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Mindlin and Deresiewicz (1953) examined several loading sequences involving

variations of both normal and tangential forces.

It was shown that, following the application of a monotonically increasing tangential
force with the normal force held constant, a subsequent reduction in tangential force
will initiate counterslip (slip in the opposite direction to the slip developed during the
previous tangential loading) at the perimeter of the contact area ( r= a) which will spread

radially inwards as the tangential force is further decreased.

The distribution of tangential traction at the start of unloading is given by (2.34) and

(2.35). To obtain the traction distribution during unloading a negative traction is

superimposed of the form
q(r) =-2 (Upy /a) (a2-12)12 c<r<a (2.45)
q(r) =-2 (Upgy /a ) [(a2-12)12 - (c2-12)172) O<r<c (2.46)

where c<r<a defines the annulus of counterslip. Figure 2.1i shows a graphical
representation of the traction distribution during unloading,with emphasis on the

annulus of counterslip shown by the negative traction on the resultant curve.

The resultant distribution is therefore given by adding (2.34), (2.35), (2.45) and (2.46)

to obtain

q= -(1po/a) (a2-12)12 c<r<a (2.47)
q=-(1po /a) [(a2-12)12-2(c2-12)12] b<r<c (2.48)
q =-(Upy/a) [(a2-12)12-2(c2-12)12+ (b2-12)172] O<r<b (2.49)
Using (2.47), (2.48) and (2.49) to define q, T is obtained as before from

T=2% J; aqrdr (2.50)
Hence,

T=pP (1-b¥a3)- 2uP (1-c%a) (2.51)
from which
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Figure 2.11 Tangential traction distribution (unloading)

c=al[l-(T*-T)/2uP]3 (2.52)
where T* is the initial tangential force from which unloading commenced and is given
by (2.39).

The relative tangential displacement of the two spheres is given by

8 = ( 3uP/16G*a )( 2c2/aZ - b%/a2- 1) ' (2.53)
or
8 = (3uP/16G*a)[ 2 (1- (T* - T )/2uP )23 - (1 -T*puP)2B-1] (2.54)

Differentiating (2.54) to obtain the compliance and then inverting yields the tangential

stiffness

dT/d8 =8G*a[1-(T*-T)/2uP]l/3 (2.55)

The load-displacement curve for a decreasing tangential force or unloading is shown in
figure 2.12. If unloading commenced from point A on the loading curve OA*, then
the tangential force decreases along ABC. The distribution of tangential traction at
point B when T = 0, is illustrated in figure 2.11. Counterslip continues to, spread
radially inwards until point C is reached when T = -T* and ¢ = b. The traction
distribution is then a mirror image of that existing when T = T* and further decreases in

T follow the inverse loading curve OCC* on figure 2.12.
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reloading

loading

unloading

C* C

Figure 2.12 Tangential force-displacement plot

2.4.5 Tangential Reloading

Following the sequence of loading and unloading, it is possible that a reversal in the
relative tangential displacement of the two spheres will occur which will result in a
reloading situation. This case was not fully covered by Mindlin and Deresiewicz
(1953). However, the solution follows from the procedural rules given by Mindlin and
Deresiewicz (1953) and the derivation of the stiffness during reloading is similar to that

presented in the previous sections, and was provided by Randall (1989).

Consider that the initial tangential loading produced slip over the annulus b<r<a and a
distribution of tangential traction as shown in figure 2.10. Subsequent unloading
produced a counterslip annulus c<r<a and a traction distribution as shown in figure
2.11 when the tangential force was zero. Reloading from this point will initiate slip at
the circumference of the contact area, in the same sense as that produced by the initial
loading. This 'reslip' will spread radially inwards over an annulus d<r<a with
increasing tangential force and to obtain the distribution of tangential traction during
reloading a positive traction of the form

q' = (2upy/a) (a2-r2)12 d<r<a  (2.56)
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q" =(2upy/a) [(@2-r2)12 - (d2-r2)12] O<r<d  (2.57)
is superimposed on the traction distribution at the start of reloading given by (2.47),
(2.48) and (2.49). This leads to a distribution for reloading described by summing
(2.47), (2.48), (2.49), (2.56) and (2.57) to obtain
q = (2upy/a) @2-12)1/2

q = (2upy/a) [(a2-12)1/2 - 2(d2-12)12]

q = (2upy/a) [ (a%2-12)1V2 +2(c2-12)1/2-2(d2-r2)1/2) b<r<c  (2.60)
q = ( 2upy/a) [(a2- 12)1/2 - (b2 - 12)12+ 2(c2 - 12)1/2 - 2(d2 - 12)1/2] O<r<b (2.61)

d<r<a  (2.58)
c<r<d (2.59)

Figure 2.13 shows the resultant distribution of the tangential traction during reloading

Figure 2.13 Tangential traction distribution (reloading)

Integrating,
a
T=2n f qrdr (2.62)
0
using (2.58) to (2.61) gives,
T=uP (1-b3/a3)-2uP(1-c3/a3)+2uP(1-d3a3) (2.63)
from which
(2.64)

d=a[1-(T-T*)/2upP]/3
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where T** is the tangential force from which reloading commenced. Hence the relative
tangential displacement is

8 = (3uP/16G*a) [1 - b2/a2 + 2¢2/a2 - 2d%/a2 ] (2.65)

In a similar approach as the two previous sections, substituting (2.40), (2.52) and
(2.64) and differentiating leads to

dT/dd=8G*a[1-(T-T**)2uP]1/3 (2.66)

which defines the tangential stiffness during reloading.

2.5 General Solution

The tangential force is also dependent on the magnitude of the normal force and hence
there exists an infinite set of geometrically similar force-displacement curves, each
corresponding to a different value of normal force. Figure 2.14 shows two curves;
illustrating loading, unloading and reloading conditions. For the case of normal force
varying (increasing or decreasing), a detailed analysis of the subsequent tangential

force-displacement relationship is fully covered by Randall (19895.

The theoretical investigation presented by Mindlin and Deresiewicz (1953) offered
solutions in the form of instantaneous compliances which, due to the dependence on
both the initial state and the entire loading history, could not be integrated a priori.
However, in computer simulation, it is possible to adopt the incremental approach
having identified the general procedural rules of several loading sequences involving
variations of both normal and tangential forces. It is necessary to consider tangential
displacement rather than tangential force as the criteria for loading, unloading and
reloading. This is because it is the displacement increments that are known from the
new particle velocities. The procedure is to update the normal force and contact radius
followed by calculating AT using the new values of P and a. By reanalysing the
loading cases considered by Mindlin and Deresiewicz (1953), it was shown by
Thornton and Randall (1988) that for loading, unloading and reloading, the tangential

incremental displacement may be expressed as
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1 ATzpAP
= ——— —
AS 5G%a ( £pAP + - ) 2.67)
except when, for AP > 0,
LAP
IASI < 3G*a (2.68)
Rearrangement of (2.67) defines the tangential stiffness as
AP
= s Y-
K¢ =8G*a0 £ p(1 G)AS (2.69)
where
1/G*=(2-v1)/G1 +(2-Vv,)/Gy (2.70)
03 =1-(T+ pAP)/uP (loading) 2.71)
03=1-(T*-T+2uAP)/2uP (unloading) (2.72)
03 =1 - (T - T** + 2uAP)/2uP (reloading) (2.73)

and the negative sign in (2.69) is only invoked during unloadiné. The parameters T*
and T** define the load reversal points, as illustrated in figure 2.14, and need to be
continuously updated ( T* = T* + HAP and T** = T** - HAP) to allow for the effect of
varying normal force. For a current state given by point 1 in figure 2.14 (during
loading, unloading or reloading), a tangential incremental displacement equal to the
right hand side of (2.68) will result in a new state given by point 2 on the curve
corresponding to the new value of P. Larger values of | A 8 | will result in a state
further along the curve such as point 3. A problem occurs if the conditions given in
(2.68) occurs, since point 2 is not reached and the new state does not lie on the curve
corresponding to the new value of P. This case has been considered analytically by
Szalwinski (1985) but, by adopting an incremental approach, a satisfactory solution to
the problem is obtained by setting 6 = 1 in (2.69) until the following condition is

satisfied.

41



Impact Of Elastic Spheres Without Adhesion

T
A
? loeding
, TR ‘fumoadmg
s 3
2 -
P4+yuP I]\reloadmg
1 1
P 1
7 Rl 2
3
TH*-
i > 8
Figure 2.14 Tangential force-displacement
8G*aZIAd|>puZAP (2.74)

A detailed explanation of the computer code is provided in Chapter 4. In the following
section results from computer simulated impacts of two identical elastic spheres will be

presented.

2.6 Computer Simulated Impact Tests

Two identical spheres were created with the following properties: R = 100pm, p =
2.65 Mg/m3, E =70 GPa, v = 0.3 and p = 0.35. The initial configuration of the
system is shown in figure 2.15. Velocities of £0.05 m/s in the vertical direction were
specified and the evolution of the system was advanced over a sufficient number of

calculation cycles to complete the impact simulation.
In the first calculation cycle, the imposed velocities are multiplied by the very small

time step used to advance the simulation to give the incremental displacements of the

two spheres, which are then added to the original co-ordinates of the spheres centres to

42



Impact Of Elastic Spheres Without Adhesion

Figure 2.15 Impact configuration

give the new positions. In the second and subsequent time steps, the current positions
and velocities of the two spheres are used to obtain the relative normal and tangential
displacement increments at the contact, having accounted for arlly relative spin of the
two particles. The relative normal and tangential displacement increments at the contact
are multiplied by the current contact normal and tangential stiffnesses to obtain contact
force increments which are then used to update the normal and tangential forces at the
contact. The new contact forces lead to out-of-balance forces and moments on the
particles which are divided by the particle mass and moment of inertia to provide
accelerations. The accelerations are multiplied by the small time step to give velocity
increments which are used to update the particle velocities. Multiplying the new
velocities by the time step, displacement increments are obtained which are used to
obtain new particle positions. The above calculation cycle is a repetitive process until

the end of impact. -

A series of simulations were performed for different values of impact angle 6. Figure
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2.16 shows a typical normal force displacement curve obtained for a colinear impact.

Excellent agreement with theory is clearly demonstrated.

For a normal impact, Deresiewicz ( 1968) calculated the total impact duration, T,
(2.24). Figure 2.17 shows the evolution of the normal force with time indicating a
contact duration of 0.96 pus obtained by simulation in exact agreement with the

theoretical value.

A series of simulations was performed to examine the effect of impact angle 6 on the
contact interaction behaviour. Figure 2.18 shows typical loading paths and the
corresponding evolution of the tangential force-displacement behaviour is shown in
figure 2.19. It can be seen from figure 2.19 that for small impact angles less than the
angle of interparticle friction, e.g 15°, the limiting condition | T | = uP associated with
rigid body sliding, only occurs during the final stages of the impact. The
corresponding force-displacement curve, however, clearly sho’ws that prior to rigid
body sliding, energy is dissipated as a result of microslip. If the impact angle is greater
than the angle of internal friction, e.g 30° and 45°, rigid body sliding occurs from the
start of the impact and continues until the decelerating relative tangential motion of the
spheres and the accelerating particle spin induced by the tangential force combine to
reduce the tangential force increment to AT < pAP. Subsequently, as the resultant force
rotates, the tangential force reduces, reverses in direction and finally towards the end of
the impact rigid body sliding recurs. Figure 2.18 shows that, for an impact angle of
60°, the initial rigid body sliding continues into the recovery stage of the impact. For
still larger impact angles, e.g., 75°, rigid body sliding continues throughout the impact

with no reversal of the tangential force direction.
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Figure 2.16 Normal force-displacement relationship

* v 7 T ¥
0.0 0.2 0.4 0.6 0.8 1.0

time /us

Figure 2.17 Contact duration of an elastic colinear impact
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The energy dissipated during oblique impacts of two perfectly elastic spheres is clearly
demonstrated by the force-displacement curves shown in figure 2.19 The evolution of
the linear kinetic energy during an impact and the way in which the energy is converted
into work done by the contact forces are illustrated in figures 2.20, 2.21, 2.22 and 2.23

for impact angles of 0°, 30°, 60° and 80° respectively.

During a colinear impact, figure 2.20, the kinetic energy decreases with a
corresponding increase in the work done by the normal force during the first half of the
impact period. When the relative approach and the normal force simultaneously reach
maximum values, the kinetic energy is zero since the particles are momentarily
stationary. During the second half of the impact, the work done by the normal force is
progressively recovered and converted into kinetic energy until all the initial kinetic
energy has been recovered at the end of the impact. During oblique impacts, the linear
kinetic energy never reduces to zero (figures 2.21, 2.22 and 2.23) since the normal and
tangential velocities reverse direction at different times. As' the impact angle is
increased, the minimum kinetic energy increases and the time at which the minimum
occurs increases. For large impact angles, which result in rigid body sliding
throughout the impact duration, there is no recovery of linear kinetic energy during the

rebound stage, figure 2.23.

For all impacts, the work done by the normal force is fully recovered at the end of the
impact. The work done by the tangential force is twofold: work done in shear at the
contact and work done in rotating the spheres. The way in which these two
components of tangential work evolve during an impact is shown in figures 2.21, 2.22
and 2.23. The evolution of the shear component reflects the behaviour shown in figure
2.19. In general, the work done in shear is partially recovered as the tangential force
reduces to zero and increases continuously once the tangential force has reversed
direction. The work done in rotating the spheres increases until the tangential force

direction is reversed, after which there is some partial recovery. However, if sliding
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occurs throughout the impact, both components of tangential work increase

continuously.
0.03
=2 u >
2 5 s " :
o 0.02 - . . . Pl
3 1] ) 5 u
Gy ., . .l
2 1 N "» - normal wd
.2 i a total wd
3 v . = Kkinetic energy
E 0.01- A .
2 S .
) . ey
E » - L]
. a o
I. ...
COOftr—— e B e
0.000 0.200 0.400 0.600 0.800 1.000
time/ls

distribution of work/ nJ

Figure 2.20 Energy Evolution during impact, 6 = 0°
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Figure 2.21 Energy evolution during impact, 6 = 30’
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Figure 2.22 Energy evolution during impact, 6 = 60°
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Figure 2.23 Energy evolution during impact, 6 = 80°
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Figure 2.24 Effect of impact angle on linear and rotational kinetic energies and energy

dissipated

Figure 2.24 illustrates the effect of obliquity on the percentage loss in linear kinetic
energy, the percentage gain in rotational kinetic energy and the percentage energy
dissipated due to microslip and rigid body sliding. It can be seen that, as the angle of
impact increases, the loss in linear kinetic energy and the gain in rotational Kinetic
energy increase until the impact angle is sufficiently large to produce rigid body sliding
throughout the impact. Further increases in impact angle result in decreases in
rotational kinetic energy and corresponding smaller losses in linear kinetic energy. The
energy dissipated during an impact increases with obliquity of the impact until the
linear and rotational kinetic energies have attained optimum values. The dissipated
energy continues to increase as the impact angle is increased further but dccx:eases at

very high impact angles due to the friction-limited tangential force.

Maw et al ( 1976) reported a series of experiments undertaken to validate the analysis

presented by Maw et al (1981). A disc-shaped puck was propelled over an air bed
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towards a clamped block of an identical material. A heavy launching device,
incorporating a pendulum, provided a means of producing repeatable initial conditions
and stroboscopic photography was used to measure impact and rebound angles and
velocities. Maw et al (1976, 1981) demonstrated both theoretically and experimentally
that, for a particle impacting with no initial spin, if sufficient rotation is imparted to the
particle during impact the contact patch 'bounces back'. The centroid of the particle,
however, always rebounds in a forward direction but at an angle less than the impact

angle. This is illustrated diagrammatically in figure 2.25.

Figure 2.25 Oblique impact trajectories

The results of the computer simulation experiments are provided in figure 2.26
showing the effect of impact angle on both the angle of reflection of the contact patch

and the rebound angle of the particle centroid.
It can be seen that there is a range of impact angles over which the angle of reflection of

the contact patch is negative and this range of values is primarily dictated by the

interparticle friction but also slightly affected by the Poisson ratio of the spheres.
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Randall (1989) demonstrated that, when the same properties were used, the computer
simulations gave exact quantitative agreement with the theoretical predictions of Maw et

al (1976, 1981).
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Figure 2.26 Effect of impact angle on rebound angles

Figure 2.27 shows the effect of the angle of impact 6 on the coefficient of restitution
where the coefficient of restitution is expressed in terms of resultant velocity vectors
and defined as the ratio of the rebound velocity to the approach velocity. It can be seen
that as 6 increases, the coefficient of restitution decreases until a minimum value is
attained and then increases at larger impact angles. The curves are, of course, similar to
the variation in percentage loss in linear kinetic energy, as shown in figure 2.24 and are
therefore a function of both the energy dissipated and the energy converted into
rotational kinetic energy as a result of the spin imparted to the particles upon rebound.
It follows, therefore, that as indicated in figure 2.27, the coefficient of restitution is
dependent on the coefficient of friction. An increase in interparticle friction results in
lower coefficients of restitution and an increase in the angle of impact at which the

minimum coefficient of restitution occurs.
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For a smaller coefficient of interparticle friction, b = 0.12, it was observed that the
coefficient of restitution is lower than that obtained when p = 0.35, at lower angle of
impacts. This phenomena can be clearly explained by the governing criteria of limiting
friction. Tangential forces generated as the result of an oblique impact can then easily
invoke sliding throughout most of the contact duration. This is not very much a case
for p = 0.35, where sliding only commence at the cessation of the contact duration.
Consequently, the energy dissipated and therefore the coefficient of restitution is not in

excessive.

coefficient of restitution

0-7 1 I I L] 1 I 1 1
0O 10 20 30 40 50 60 70 80 90

impactangle / ®

Figure 2.27 Effect of angle of impact, 6, on the coefficient of restitution

2.7 Discussion

Particle interactions within large systems of particles invariably involve oblique contact
forces yet relatively little information is provided in the literature about the tangential
contribution to oblique impacts. This chapter has illustrated the complexity of such

apparently simple events.
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Following an oblique impact, the rebound angle, velocity and particle spin are all
functions of the total loading history of the impact duration. The computer simulations
of oblique impact of elastic spheres have shown that the energy dissipated and changes
in both linear and rotational kinetic energy are significant and are complex functions of

the angle of impact.

In the numerical modelling of particle transport problems, which may involve both
particle-particle and particle-wall collisions, it is necessary to predict the change in
particle spin and either the normal and tangential rebound velocities or the resultant
rebound velocity and the angle of rebound. The results of the computer-simulated
impacts show that, as a result of the complex tangential load-displacement behaviour,
there would appear to be no simple rules (e.g., coefficient of restitution, scattering

probability) that will satisfactorily achieve this.
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3. Impact Of Elastic Spheres With Adhesion

The trouble with doing something right the first time
is that nobody appreciates how difficult it was - IBM

3.1 Introduction

Adhesion is a significant phenomenon in both industry and nature. In industry, the
phenomenon plays a major role in filtration, separation of dry materials, cleaning of
surfaces, electrophotography, treatment of plants with pesticides and many other
processes. In particulate technology, adhesion properties sometimes have a decisive
effect on the choice of methods and conditions for the preparation, storage, application,
and transport of powdered materials. Adhesion is a major factor in processes taking
place in nature. If there was no adhesion, dust settling on the ground would be
continuously returned to the atmosphere by air currents, and the dust concentration in

the atmosphere would reach vast proportions.

Although there are very few publications devoted solely to the in.vestigation of particle
adhesion, there are many publications in which adhesion is considered in conjunction
with other phenomena. A phenomenon closely related to adhesion is cohesion.
Cohesion is understood to be the interaction between molecules within a single solid
body. Adhesion is often defined as molecular coupling between two unlike contiguous
bodies. This interpretation of adhesion does not reflect the great number of processes
taking place in the adhesion of particles to a solid surface or to another particle.
Microscopic particles in an air medium adhere to a solid surface not only because of
surface energy, but also because of the capillary forces of liquid condensed in the space

between contiguous particles and the electrical double layer formed.

It is generally considered that surface effects due to van der Waals forces become
significant for the particle sizes less than 100 pm. The phenomenon is frequently
referred to as autoadhesion. The theoretical model described in this chapter can be

shown to be relevant to the case of autoadhesion but it will, for convenience of
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computer simulation, be considered to be also applicable to other types of particle-

particle adhesion.

3.2 Brief Literature Review.

Adhesion is frequently discussed in relation to the strength of joints as determined
experimentally but a joint is a relatively complex system where the stresses are unlikely
to be uniform and when failure occurs it may be in the layer of adhesive or in either
component of the joint. The term adhesion should be reserved strictly for the bonding
at the interfaces since a third form of bonding, as in joints, is a different form of
adherence altogether. If it is assumed that the interfaces represent the weakest points so
that failure occurs under stress, the empirical strength of most bonding can be explained
by van der Waals’ forces alone acting at the interface. This was pointed out by de
Bruyne (1947), and shows that relatively weak bonding at the interfaces can explain
experimentally measured joint strengths, provided that there is intimate contact over the

entire interface.

Since adhesion involves intimate contact of two surfaces, it is often convenient to think
in terms of energies of the surfaces involved. Fox and Zisman (1950) introduced the
distinction between high and low energy surfaces. Solids with surface free energies
below 0.1 J/m?2 are termed soft solids or low surface energies, whereas hard solids
having surface free energies above 0.5 J/m? are termed high surface energy. Organic
polymers, waxes and similar materials generally have low surface energies whilst
metals, metal oxides and glasses have high surface energies. The surface energy
approach was originated by Dupre more than 100 years ago. He suggested that the
work done in breaking the bond is given by the equation
=y +Y- Y12 3.1
where I = the Dupre energy of adhesion

Y, and ¥, = the intrinsic surface energies

Y12 = energy of the interface

57



Impact Of Elastic Spheres With Adhesion

It is difficult to test the validity of this equation because none of the parameters are
measurable but this empirical relationship does form the basis for many fundamental

ideas in dealing with adhesion.

There is much evidence to suggest that attractive forces act between solids close
together, Adamson (1967), and such forces explain qualitatively why a mechanical
load is required to separate two solid bodies placed in intimate contact. Extensive
measurements have been made of the range of action of these surface forces. In some
studies strong adhesion was found, in others none. For example, Tomlinson (1928)
found strong adhesion between dry glass surfaces, which he attributed to molecular
attraction, and Bradley (1932) found good adhesion between quartz and sodium
pyroborate spheres. Budgett (1911), Stone (1930) and McFarland and Tabor (1950)
found that adhesion between dry glass spheres was small, but when a thin film of water
was present strong adhesive forces could be observed. Kendall (1969) found
reasonably strong adhesion between dry glass surfaces and wasl able to show that the

contact area was greater than that of the Hertzian type.

In support of their adhesion theory of friction, Bowden & Tabor (1950) have made
careful measurements to find a force of adhesion between metal surfaces but little could
be observed except for the very soft metals e.g. indium, for which plastic rather than
elastic deformation takes precedence and surfaces are less readily contaminated in air
and elastic limits are much lower. Tabor and Winterton (1969) obtained supporting
evidence for van der Waals forces acting at the nano-scale. They provided a direct
measure of the magnitude of the van der Waals forces for mica and the way in which
these forces vary with distance for separations ranging from 5 to 30 nm. The
experiments showed that the normal van der Waals forces predominate for separations

less than 10 nm and the retarding forces for separations greater than 20 nm.
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In 1971 Johnson, Kendall and Roberts (henceforth referred to as JKR) extended the
Hertzian theory to two adhering solids, i.e. to solids that adhere together when in
contact, due to the presence of surface energy or van der Waals forces. The JKR
theory considers the adhesion between the two spheres simply as a change in surface
energy only where they are in contact, i.e., that the attractive force between them is
infinitely short range. In contrast, Deryaguin, Muller and Toporov (DMT) (1975)
suggested that any attractive force between the solids must have a finite range and
therefore act in the region just outside the contact zone where the surfaces are a small
distance apart. Muller et al (1980) have formulated more complete descriptions of the
problem by allowing the solid-solid interaction to be a prescribed function of the local
separation between the surfaces. However, the complete solution is difficult to achieve
as it needs to consider the stress distribution in the solids which in turn is dependent on
the shape of the deformed surfaces but this is unknown unless the stress distribution is
known. The complete solution will only be tractable if the surface force as a function
of surface separation is known and solving this nonlinear integ:ral equation involves
numerical method with a suitable Leonard-Jones potential to describe the molecular

interactions between the solids.

3.3 Normal Loading With Adhesion

In recent years, there has been a continuing debate about the appropriate theoretical
model for the normal loading of elastic spheres in the presence of adhesion. Johnson et
al (1971) (the JKR model) extended the Hertzian model to two adhering elastic spheres,
assuming that the adhesion between the two spheres resulted only in a change of
surface energy over the contact area, thereby implying that the attractive interparticle
forces are of infinitely short range. The theory predicted a much larger contact area
than that predicted by Hertz, with an infinite tensile stress at the perimeter.
Consequently, there existed an outer annulus which experienced tensile stresses

surrounding an inner circular region over which a Hertzian-type compressive stress
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distribution acted, see figure 3.2b. This inner compressed region was also larger than

that predicted for no adhesion.

Hertz JKR DMT MYD
Forces between surfaces

a

Stress under compressive load

ATE

Shape under compressive load

-

Shape under zero load

i

| Adhesion (Pull-off force)

T~

DT

>

XX

0 3YMR* 4y R* (3-4)Yn R*

Figure 3.1 A comparison of the main features of various theories of
the deformation and adhesion of elastic spheres. Column 1 summarises the results
obtained by Hertz, column 2, those of Johnson et al., column 3 those of Deryaguin et
al and the last column shows the results of Muller et al

In contrast, Deryaguin et al (1975), the DMT model considered the attractive forces to
have a finite range and hence must be significant just outside the contact zone where the
surface separation is small. It was assumed that the surface forces have no effect on the

shape of the particles and hence the contact area experiences a Hertzian compressive
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stress distribution and, outside the contact, there is a tensile stress which decreases with

surface separation.

Much of the debate about the relevance of the two (JKR and DMT) theories has been

centred on the predicted 'pull-off force' which , according to JKR theory is

Pc =3nyR* (3.2)
whereas DMT theory predicts
¢ = 4nyR* (3.3)

where v is the Dupre energy of adhesion given by (3.1). Muller et al (1980) showed
that the prediction was governed by the parameter

A = (32/37zy) (Y2R*/E*2)1/3 (3.4)
where z; is the equilibrium separation, and that the JKR and DMT theories were
accurate to within 10% for values of A>3 and A<1, respectively. Similar conclusions
were drawn by Greenwood and Johnson (1981) who adopted a fracture mechanics
approach to investigate the effect of the shape of the surface pr(;ﬁle on the predicted

pull-off force.

In the theory developed in the next section for oblique loading, the JKR model will be
used for normal loading of adhered elastic spheres. Before proceeding into the next
section, it is best to understand the principles of the energy approach adopted in the
JKR theory. Consider the contact of two smooth perfectly elastic spheres of radii R,
and R,. In the absence of adhesive forces the stress and deformation due to a contact
force P are given by the Hertz theory, (2.1) and (2.10) respectively. If, in addition,
attractive forces act between the surfaces the contact radius in equilibrium will be a;,
figure 3.2(a and b), which is greater than a, the Hertzian contact radius. Although the
applied load remains at P, an apparent Hertz load P; corresponding to the contact radius
a; may be defined by point A in figure 3.2. The resulting distribution of surface
traction is found by subtracting the stress under a flat cylindrical punch from the Hertz

pressure distribution, viz:
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o(r) = (3Py/2na3) (a2 - 12)1/2 - (P, - P)/2na (a2 - r2)"1/2 (3.5)
This traction is tensile (negative), at the edge of the contact and compressive (positive),

in the centre, as shown by curve B in figure 3.2b.
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Figure 3.2 The contact between two elastic solids both in the presence (contact radius
aj) and absence (contact radius ag) of surface forces.

(a) Shows the contact between two convex bodies of radii Ry and Ry under normal load
of P ; o is the elastic displacement. (b) Indicates the distribution of stress in the
contacting spherical surfaces. When surfaces are maintained in contact over an
enlarged area by surface forces, the stresses between the surfaces are tensile at the edge
of the contact and only remain compressive in the centre. Distribution A is the Hertz
stress with a = aj and P = Py; distribution B the actual stress (Johnson, 1958) with a =
ag and P =P. Distribution C is the Hertzian distribution over area of contact radius a,.

(c) Represents the load-displacement relation for the contacting surfaces.
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The total energy Uy of this system is made up of three components, the stored elastic
energy Ug,
Ug = [(P;5/3/15) + (P2P-1/3/3)] / (16E*2R*/9)1/3 (3.6)
the mechanical potential energy
Um = (-PI(P173/3) + (2PP;-1/3/3)]} / (16E*2R*/9)1/3 (3.7)
and the surface energy
Ug = -2my ( 3R* P,/4E*)2/3 (3.8)
The total energy Ur is
Ur=Ug + Uy +Ug
= [( P53 /15) + (P2 P;~1/3/3)] / (16E*2R*/9)1/3

+ (-P[(P12/3/3) + (2P P"173/3)]} / (16E*2R*/9)1/3

-2my ( 3R* P /4E*)2/3 (3.9
Equilibrium ensues when
dUr/da; = 0. This is equivalent to dUp/dP;=0
dUp/dPy= [(16E*2R*/9)-153] { P12/3 /9 - P2 Py-4/3 /9 - 2PP1-113/9'+ 2P2 p,4/3/9)

- (4/3)yn(3/4)23R*2/3 pl-IB/E*Zf'B
= [ Py4/3(3/4)23/9E*23R*1/3]{ P42 - P2- 2P P, + 2P2 - 12ynR* P}

...................... (3.10)
Therefore at equilibrium
P2 -2 P;(P +6ynR*) + P2 = (, (3.11)
remembering (3.1), hence,

P;2-2Py(P+2P;) + P2=0

Py =P + 2P; * (4PP, + 4P.2)1/2 (3.12)

Equation (3.12) shows that the apparent Hertz load P; acting between two elastic
bodies of surface energy Y is larger than the applied load P. -

The Hertz equation, modified to take into account the surface energy effect, is

a3 = (BR*/4E¥) [P + 2P, + (4PP + 4P2)1/72] (3.13)
When 7y = 0 this reverts to the simple Hertz equation as shown by (2.10). At zero

applied load the contact area is finite and given by
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a3 = (3R*/4E*) [4P_] (3.14)

When the load is made negative the contact radius decreases. For a real solution to be
obtained to equation (3.13),

4PP. < 4P.2

P2-P;. (3.15)
Separation of the spheres will just occur when P = -Pg, which is termed the pull-off

force and is independent of the elastic modulus.

The load displacement relationship was provided by Johnson (1976) and is illustrated
in figure 3.3. The corresponding distribution of normal traction over the contact area is
described by (3.5), and is illustrated in figure 3.4.

The radius over which the compressive stresses act, 1, is obtained by setting o(r) =0
in (3.5) which leads to

1o =a[1- (P; - P)/3 P;]1/2 (3.16)
which is greater than the radius of the contact area given by tﬁe Hertzian solution,

(2.10).

In computer simulation, it is necessary to compute the normal stiffness. Johnson

(1985) argued that the relative approach is defined by,

o = (ma/2E¥) [ py + 2 p'ol (3.17)
where

Po = 2aE*/nR* (3.18)
and

P'o=- (4E*/na)l/2 (3.19)

Hence (3.17),

o = (na/2E*) [ (2aE*/nR*) - 4(YE*/na)12]
= a2/R* - 2(yma/E*)1/2

da/da = 2a/R* - (Yn/E*a) /2 (3.20)

-

The applied normal force can be calculated from (3.5),
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Figure 3.3 Normal force-displacement curve (JKR theory)
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Figure 3.4 Normal traction distribution (JKR theory)
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a
P=2n| p(r)rdr
0

a
= 2% a(po(a) (a2 - r7') 1Zdr-2n| (p'w) (a2 - rz)'mrdr
0 0

P =4E*a3/3R* - (16ynE*a3)l/2 (3.21)
dP/da = 4E*a2/R* - 6(ynE*a)1/2
Therefore,
dP/do = (4E*a2/R* - 6(yrE*a)l/2)/ (2a/R* - (yn/E*a)l/2)
= {4E*2a3 - 6(myR*2 E*3a3)112) / (2E*a2 - (ynR*2E*a)1/2)
= 2E*a [ ( 2E*aZ - (9ynR*2E*a)1/2) / (2E*a2 - (ynR*2E*a)1/2)]
= 2E*a { [1 - (9ynR*2E*a/4E*2a%)112] / [1- (YrR*2E*a/4E*2a4)172] )
and, since Pg = 3ynR*
dP/dow = 2E*a { [1 - (3PcR*/4E*a3)12] / [1 - (PcR*/12E*a3)1/2]}
However, from Johnson (1976), when P = -Pg, a = a; = (3P R*/4E*)1/3
therefore the normal stiffness is
kp = dP/do. = 2E*a ([3 - 3(ac3/a3)12] / [3 - (ac3/a3)172] } | (3.22)
which reduces to (2.15) for zero adhesion.

3.4 Oblique Loading With Adhesion

Savkoor and Briggs (1977) extended the JKR analysis to account for the effect of
oblique loading in the presence of adhesion. It was argued that the tangential stress
distribution over the contact area would be prescribed by the ‘no-slip' solution of
Mindlin (1949) given by equation (2.29). If no slip is permitted at the contact interface,
material points inside the contact undergo no relative tangential displacement &, as
shown by (2.31). Noting that the distribution of this traction is axially symmetric and
that the traction tends to be unbounded at the edge of the contact, Mindlin argued that
slipping must occur, section 2.3.1. This is only true in the absence of adhesion.
However, in the presence of surface adhesion the slip annulus hypothesis will be

inappropriate. The actual finite tractions at the edge of the contact cannot be resolved
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with the help of the linear elastic theory. Instead it would be more realistic to treat the

contact as an adhesive joint and hence adopt a fracture mechanics approach.

Savkoor and Briggs (1977) suggested that the application of a tangential force reduces
the potential energy by an amount T3/2. Hence, the total energy balance (3.9)
becomes,
Uy = [(P,573 /15) + (P2P;~1/3/3)] / (16E*2R*/9)1/3
+ {-P[(P,2/3/3) + (2PP;"173/3)]} / (16E*2R*/9)1/3
-2my ( 3R*P,/4E*)2/3 - T2/16y*a (3.23)
but
a3 = (3R*P,/4E*)
therefore
Ur = [(P,53/15) + (P2P,-1/3/3)] / (16E*2R*/9)1/3
+ (-P[(P12/3/3) + (2PP,"153/3)]} / (16E*2R*/9)173
-2my ( 3R*P,/AE*)23 - (T2/16y%)(3R*P,/4E*)"1/3 ' (3.24)
Differentiating (3.24) with respect to P; to obtain equilibrium,
dUp/dP; = [(16E*2R*/9)-153] (P,23 /9 - P2P-4/3 9 - 2PP,-1/3/9 + 2P2P;-4/3/9)
- (4/3)ym(3/4)Y23R¥2/3P,-13[E*2/3 + (T2(3R*/AE*)13P,4/3/48y¥)
= [P,"43(3/4)23/9E*23R*13]{P,2 - P2- 2PP;+ 2P2 - 12ynR*P,
+ T2E*/4y*) (3.25)
Therefore at equilibrium, when dUp/dP; =0,
P,2 - 2P;(P +6YnR*) + P2 + T2E*/4y* = 0,

remembering (3.2),

P,2 . 2P,(P+2P;) + P2 + T2E*/4y* =0

P, =P + 2P + (4PP +4P2 - T2E*/4y*)1/2 (326)
a3 = (3R*4E*) [P + 2P + (4PP; + 4P2 - T2E*/4y*)1/72] (3.27)

Equation (3.27) indicates a reduction in the contact radius under increasing tangential

force. Savkoor and Briggs (1977) suggested that this corresponds to a 'peeling’
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mechanism which continues in a stable manner until a critical value of T is reached,
given by the equation

To =4[ (PP, + P2 )yy*/E*]1/2 (3.28)

It is also noted that when T = Tg, (3.28) reduces to

a3 = (3R*/4E*) (P + 2P,) (3.29)

If the relative tangential displacement increases beyond that corresponding to T = Tg,

the peeling process is complete. According to Savkoor and Briggs (1977),if T > T,

then the rate of energy release was more rapid than the rate at which the work of
adhesion could absorb the energy and, hence, the quasi-static approach became
inappropriate since kinetic energy terms began to play a significant role. It was argued

that it was reasonable to expect the contact area would diminish to the Hertzian area,

with the radius defined by (2.10), when T > T;. It was also suggested that, for larger

values of T > T, a shear mode of separation may occur resulting in a behaviour

somewhat similar to Mindlin's (1949) concept of slip.

In considering what happens during the post peeling phase, it is more appropriate to
consider what will happen when the tangential displacement is increased beyond the
value of 8 = §; required to complete the peeling process, since the corresponding value
of T = T may be larger than the tangential force required to cause sliding. The major
assumption of Savkoor and Briggs (1977) is that, when peeling is complete, the contact
area 'immediately' reduces to the Hertzian value corresponding to the applied normal
force P. However, it is noted that the equation for the contact radius, a, given by
(3.26) reduces to (3.29) when T = T;. In contrast to Savkoor and Briggs (1977), a
new hypothesis is postulated to deal with post peeling mechanism. Accepting the
arguments put forward by Savkoor and Briggs (1977) with regard to the peeling
mechanism, which results in a reduction in the contact area as expressed by (3.26), it is

suggested that there is a smooth transition from pec].ing to sliding in that when T=T_ the

contact radius is given by (3.28). Recognising that the JKR model is only an

approximation to the true solution, it can be reasonably assumed that for & = §. the

68



Impact Of Elastic Spheres With Adhesion

contact area defined by (3.28) is subject to an equivalent Hertzian-like normal stress

distribution corresponding to an effective normal force (P + 2P;). It then follows that

the situation is well disposed to the micro-slip proposition of Mindlin (1949).

In the context of this hypothesis, if the tangential force T is less than that required to
cause rigid body sliding, it is nevertheless sufficient to generate micro-slip over an
annular region of the area defined by (3.28). The energy dissipated as a result of this

micro-slip may well account for the excess rate of energy release referred to by Savkoor

and Briggs (1977) when T > T,. If the tangential force T exceeds the value required
for rigid body sliding then, when & > &, the tangential force immediately drops to the
sliding value. It follows from the above arguments that, since the contact area is larger
than the Hertzian area and is defined by (3.28), the sliding criterion is given as
T=pn(P+2P;) (3.30)
which may be compared with T = 1 (P + P ) as suggested by Deryaguin (1975).

It also follows that for T > T, the behaviour can be described by Mindlin's (1949)

theory with the substitution of P + 2P for P. Hence, for monotonic loading with T >

Tc;

T=p(P+2P:)[1-(1-8/85)32] (3.31)
where

3 =31 [ (P +2P¢)/16G*a) (3.32)

The proposed model suggests two 'failure criteria'. The first criteria is defined by the
peeling mechanism, (3.28), followed by a sliding criteria, defined by (3.30). The

corresponding failure envelopes are shown in figure 3.5 and intersect when P is given

by the equation

-

P* = 2P {(x - 1)+ [x(¢ - DIV2) (3.33)
where
¥ = 4G*/u2E* (3.34)
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Figure 3.5 Failure envelopes

Taking the positive root in (3.33), if P > P*, then peeling is followed by the

development of a slip annulus which spreads radially inwards until, when T = u(P +

2P.), sliding occurs. The tangential force-displacement relationship is illustrated in

figure 3.6.
1  P=10mN
<—T = (P + 2Pc)

g 37
8
S,
=
g
=
: \

1~ Te

0 7 T T ' T 1 1 .

0 10 20 30 40 50
tangential displacement / nm

Figure 3.6 Tangential force-displacement curve when P > P*

70



Impact Of Elastic Spheres With Adhesion

If P < P*, the tangential force at the end of peeling is greater than that necessary for

sliding and hence , when & = 8, T falls to the value given by (3.30), as shown in

figure 3.7.
G P=0
pe— Tg

g
&
& 0.1+
=
=
S, - <—T = (P +2Pc)
g

0.0 T T T T T T | D | e s |

0 2 4 6 8 10 12
tangential displacement / nm

Figure 3.7 Tangential force-displacement curve wheri P<P¥*

Figure 3.7 implies that, once sliding has occurred, there is no readhesion of the
contact. If this is not the case, then it might be expected that, if the sliding velocity is
sufficiently slow to permit the contact to readhere, there will be a corresponding
increase in the contact area. The contact will then stick until a tangential force has been
mobilised sufficient to cause peeling once more. This process may repeat itself
continuously thereby exhibiting the phenomenon of 'stick slip' behaviour. It is
therefore implied by the theory that this type of stick slip behaviour will not occur when

the normal load P is greater than that given by (3.33).

3.4.1 The Sliding Criterion
A new hypothesis has been proposed to describe the transition from peeling to sliding
under oblique loading. As shown above, this leads to a new sliding criterion given by

(3.30). The proposed model rests on the assumption that, when peeling is complete,
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the contact radius is defined by (3.29) and that this is reduced but nevertheless larger
than the Hertzian area. The normal stress distribution at the post peeling stage is
assumed to be everywhere compressive, contrary to the argument put forward by JKR
where the infinite tensile stress at the edge remained. This is essential in order to
justify the immediate transition from peeling to the micro-slip mechanism of Mindlin
(1949). For this condition to be satisfied, it is necessary that the value of a given by

(3.29), is not greater than the value of ry given by (3.16). The ratio of these two radii

can be written in the form

T/a=[m/(n +2)]'3/ [(n +2m)/3m]1/2 (3.35)
where

m=n+2+2(1+n)l/2 (3.36)
and

P =nP, (3.37)

An examination of the variation of ry/a with the ratio P/P; shows that the condition Ig=

a is satisfied except when P <-0.3P, figure 3.8.

1.0

Ipgla

0.6 .
0.4 i

0.2 il

*J

— | AR eS|
-2 0 2 4 6 8 10
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Figure 3.8 The variation of ry/a with the ratio P/P¢
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An alternative hypothesis is that the contact radius reduces to 1y after peeling for any
values of P < -0.3P.

Using (3.12), (3.13) and (3.16),
103 = (BR*P/4E*) [1 - (P - P)/3P;]32

or,

1o° = (BR*/4E*) P, (3.38)
where

P, = P4[1 - (P, - P)/3P,13/2 (3.39)

and leads to the alternative sliding criterion

T =uP, (3.40)
which may be contrasted with

T = pPy (3.41)

as suggested by Kendall (1986), who did not consider the need for peeling to occur
prior to sliding. A comparison between the two sliding criteria as defined by (3.40)

and (3.30) for the negative normal loads is shown in figure 3.9.

- 0.08
- 0.06 %
Py
B
- 0.04 ‘j,é
b=
5]
Lo 5
0.00

] ¥ 1] . 1 = L] L L] L
-0.10 -0.08 -006 =004 -0.02 0.00
normal force ! mN

Figure 3.9 Sliding criterion when P < -0.3P¢
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Figure 3.10 Comparison of equation (3.40) with experiment at small normal loads

The analysis of Savkoor and Briggs (1977) contains an approximation in that the
tangential energy Td / 2 assumes a linear response, although ’the tangential force
displacement law (2.31) is non-linear since the contact radius, a, varies with T, as
shown by (3.27). A rigorous analysis accounting for the non-linear tangential response
would appear intractable. Consequently, in the context of the JKR model of adhesion,
(3.40) may well be the true sliding criterion. It must be noted, however, that the
sliding criterion given by (3.40) is not consistent with peeling criterion (3.28) which is
obtained from (3.27). For the computer simulations reported in the subsequent section,
the sliding criterion given by (3.30) is used only when P < -0.3P; and (3.40) for P > -
0.3 P;. Superimposing the two sliding criteria with experimental data reported by
Briscoe and Kremnitzer (1979) for polyethylene terephthalate monofilaments clearly
demonstrate the viability of using the two sets of sliding criteria to give a reasonable
representation (figure 3.10). In considering the experimental data for negative loads,
figure 3.10, it is clear that the sliding criterion defined by (3.40) with p = 0.35,

provides the best overall fit to the experimental data.
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Figures 3.11 show the results of friction measurements reported by Briscoe and
Kremnitzer (1979) for polyethylene terephthalate monofilaments in full spectrum, in
contrast to that of figure 3.10, where emphasis is placed on fitting the theoretical curve
for negative loads. Briscoe and Kremnitzer (1979) measured experimentally the pull-
off force and quote a value of P; = 1.6 uUN. Superimposed on figure 3.11 are the two
sliding criteria given by (3.30) and (3.40) assuming values of i = 0.35, for P > -

0.3P; and P < -0.3P; respectively. Both theoretical curves agree well with the

experimental data over the complete range of experimental results.

In order to deal with the post-peeling behaviour the only other modifications to the
Mindlin and Deresiewicz (1953) general solution, given in section 2.4, is that (2.71),
(2.72) and (2.73) are modified by substituting P + 2P for P if P > -0.3P, and
substituting P,, given by (3.38), for P if P < -0.3P.

10
8 -
a-‘u 6 -]
(_‘ o
4 -
s O  experiment
= equation 3.30 and 3.40

L it | L] T T T T T v I L 1

-3 0 S 10 15 20 25

Figure 3.11 Sliding criteria in comparison with experiment
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3.5 Computer Simulated Impact Tests
The simulated oblique impacts of two elastic spheres reported in section 2.5 were

repeated using identical particle properties and initial velocities (+ 0.05 m/s) but with

surface energies, ¥, =Yy = 0.2 J/m2,

For all values of impact angle 6 > 0, at the start of the impact the ratio AT/AP is almost
constant and slightly greater than tan 6, due to the difference between the tangential and
normal contact stiffnesses. Except for the small impact angles, the contact peels and
then slides as the normal force increases. Subsequent behaviour is similar to that for no
adhesion with rigid body sliding recommencing towards the end of the impact.
Although more work is dissipated as a consequence of the larger contact area due to
adhesion, once peeling has occurred, the behaviour is essentially similar to the case
with no adhesion. Hence the rebound angles are not significantly affected by adhesion.
On the other hand, for small angles of impact (e.g. 5°), the particles rebound along the
initial impact trajectories, the mechanics of the contact during imbact is very different

when adhesion is present.

A comparison between figures 3.12 and 2.18, shows that, for small impact angles,
much higher tangential forces are generated and, provided that the impact velocity is
small enough to prevent a peeling failure when the normal force is increasing, peeling is
only completed at the end of the impact. Thus, for any impact, if the impact velocity is
not large enough to cause a peeling failure as the normal force is increasing then peeling
will only occur at the end of the impact with the consequence that the particles will
rebound back along the initial impact trajectory. The tangential force-displacement
behaviour shown in figure 3.13 is very similar to that shown in figure 2.19 for the case
of no adhesion, once peeling has occurred. Except for the case of small impact angles
when peeling did not occur during increasing normal force, peeling was immediately
followed by rigid body sliding. Figure 3.13 clearly shows the significant energy

dissipated when this sudden switch occurred.
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Figure 3.12 Loading paths for various degree of obliquity
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The evolution of the linear kinetic energy during an impact and the way in which energy
is converted into work done by the contact forces is illustrated in figures 3.14, 3.15,
3.16 and 3.17 for impacts angles of 0°, 30°, 60° and 80° respectively. During a
colinear impact, figure 3.14, the elastic strain energy is initially negative due to the
action of surface forces that exert an instantaneous tensile pull on the contact. This
effect, although small, is not insignificant when the impact velocities are sufficiently
small to allow the two particles to stick together. During a colinear impact there is,
contrary to the case of no adhesion, a net loss in the kinetic energy as a result of the

work done in breaking the 'adhesive bond'. This point will be returned to in section

3.6.

During oblique impacts, the general trends illustrated in figures 3.15 to 3.17 are very
similar to those reported in chapter 2 for the case of no adhesion, except that the work

done by the normal force is not fully recovered at the end of the impact.

0.03 = Normal impact
3 % . o
-t ] »
5 0.02 = "- ...
3 -.| . o ..
=] = - - normal wd
= Tt .-
ke O s total wd
8 0.01- LA ¥ s - s %
2 i L] . s = kinetic energy
.g 5 -.. -.. -.I ,'-
0.00 = wree=’ i

"0.01 —— T T T T T T g (S e T T L] 1
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time/|Ls

Figure 3.14 Energy evolution during impacts, 8 = 0°
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Figure 3.15 Energy evolution during impacts, 8 = 30°
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Figure 3.16 Energy evolution during impacts, 6 = 60°
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0.03~ 80 degree impact with adhesion
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For the relative impact velocity of 0.1 m/s, figure 3.18 shows the effect of adhesion on
the percentage loss in linear kinetic energy, the percentage gain in rotational kinetic
energy and the percentage energy dissipated due to interparticle friction. For impacts
during which peeling failure occurs as the normal force is increasing, the effect of
impact angle on the linear and rotational kinetic energies is similar to the case for no
adhesion, figure 2.24, but with the optimum occurring at a larger impact angle. For
small impact angles which result in a peeling failure at the end of the impact, there is no
rotational kinetic energy developed, but there is a loss in linear kinetic energy due to the

energy dissipated in adhesive peeling.

Figure 3.19 illustrates the effect of adhesion on the angle of reflection of the contact
patch and the rebound angle of the particle centroid. For small angles of impact,
adhesion provides sufficient kinematic constraint on the particle movements such that
the contact behaviour is simply that of an oblique elastic spring, resulting in both the
contact patch and particle centroid rebounding back along the initial impact trajectory.
However, above a certain critical impact angle, there is a rapid transition to behaviour

very similar to that experienced by the particles with no adhesion, figure 3.20.

At larger impact angles, the effect of adhesion on the rebound trajectory of the particle
centroid is negligible. The effect of adhesion on the contact patch trajectory is
significant, however, as can be seen from comparing figure 3.20 with figure 2.26. The
rebound trajectories are independent of the impact velocity if there is no adhesion but,
in the presence of adhesion, the impact angle at which the simple elastic spring effect

breaks down increases with decrease in initial impact velocity.
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3.6 Work Done In Adhesive Peeling

The above observations are for cases in which particles rebound after impact. Another
possibility, of relevance to a wide area of particulate technology, for example, aerosol
industry, is that the particles may adhere and rebound. Figure 3.21 displays the

various stages of work on a typical JKR curve during a colinear impact.

& /
PP,
l -
1
T i I I |
-1 1 2 3
A1 §
wmc

Figure 3.21 JKR curve, showing the various stages of work

On approach, surface forces do not come into play until the sphere surface are within a
few angstroms separation, i.e. at the origin O. At that instant adhesive forces rapidly

pull the surfaces together so that a tension is established without any measurable change

in . The spheres proceed to compress until work done by P reduces the kinetic
energy to zero. On rebound the process is elastic whilst o is positive, but the surfaces
then remain adhered up to the separation point. The work done by the adhesive force,
denoted by area A, in the figure, reduces the kinetic energy of rebound and may even
prevent it altogether if the initial velocity is low or the surface energy is large. This

energy is accounted for by the strain energy component of the JKR equation.
In order to fully appreciate the small but finitely significance work done and hence the

value of a critical velocity, a mathematical analysis is essential. Figure 3.22 shows the

JKR normal displacement-force curve.
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Figure 3.22 Normal displacement against normal force

The force-displacement curve is defined, Johnson (1976), by

o  3(PP)+2+2(1+ P/P.)1/2

=  Z2B (3.42)
0. 377(P/P.+2x2(14P/P;)1/2)1/3
The work done may be obtained from

-Pe P
WD = (5/9)Pc(xc+f o dpP —f odP (3.43)

-5P /9 -8P /9
Substituting y = o/oc and x = P/P; so that (3.42) may be written as
y=[3x+2£2(1 +x)12]/ 323)[(x + 2+ 2(1 +x)12]13 (3.44)
the work done becomes
-1 o
WD =P, ( 59+ [ yax- [ yax) (3.45)
-5/9 -8/9

Further substitution of z =1 + x leads to
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0 0
WD =P 0 { (59 + [ ydz- [ yaz) (3.46)
4/9 1/9
with
3z-1+27"2
y =
323 2+ 1+ 221153 (3.47)
or
y = (323)(3z12 3 1)(z12 £ 1)1/3 (3.48)

Substituting s = z1/2 £ 1 gives
y = (3s 7 4)(/913 (3.49)
in which the negative sign applies over the range -8P/9 >P > -P¢ and the positive sign

applies for -5P¢/9 >P > -P.. Hence the work done may be written as

-1 1
WD =P, 0. [(5/9) + /3% | (35 + 4)s s+ 1)ds - 27373 f (3s - 4) s (s-1)ds]
-1/3 4/3

............................. (3.50)
WD =P o {(5/9) + '3%3‘(0.414647108) - ;225(0.019486067)} (3.51)
Therefore,
WD = 0.9355 Pcotg (3.52)
Since,
P, = 3nyR*
and
0 = [TY2R¥/2E*2] 1/3
= [3P2/16E*2R¥]1/3 (3.53)
Poo = (9/2) [R3YSR*4/2E*21/3 (3.54)
WD = 4.21 [r5ySR*4/2E*2]1/3
=22.5 [ySR*4/E*2]1/3 (3.55)
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Since the work done, as defined above is the excess work required for peeling, the
critical velocity below which peeling does not occur may obtained from
(0.5mV2)=WD (3.56)
assuming perfectly elastic spheres for which the coefficient of restitution e = 1.

Hence,

Ve = { (45/m) [YSR*4/E*2)1/3}12 (3.57)
Since the mass, m = 4npR3/3 and, for like spheres, R* = R/2, (3.57) may be rewritten

as

Ve =2.065 (p) 12(E*)"13 (y/R)5/6 (3.58)

3.7 Critical Impact Velocity

A series of investigative simulations were performed to gain an insight into the
behaviour of the particle's tendency to adhere or rebounce and hence the critical
velocities. Equation (3.58) shows that the critical velocity, Vg, is a function of the
mass, the Dupre energy of adhesion, the radii and the Younlg's modulus of the
particles. Of the four parameters, the radii and the Dupre energy of adhesion contribute
a significant role in determining the critical velocity and the pull of force as presented in
equation (3.2). It is on the basis of these governing factors that the simulations were
performed by varying each of the two parameters separately while keeping the rest

constant.

Figure 3.23 shows the effect of varying the size of the particles on the critical velocity
below which the particles remain adhered together. It can be seen that an order of
magnitude reduction in the particle radius leads to an order of magnitude increase in the
critical velocity. For a given particle size, R =100um, figure 3.24 illustrate the effect of
surface energy on the magnitude of the critical velocity. The effect of surface energy on
the magnitude of the critical velocity. The figure shows that the critical velocity
increases by an order of magnitude if the surface energy is increased by an order of

magnitude.
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velocity of approach/m/s

¥y =0.22Jm-2
@ 0% damping
:1 ® 5% damping
— JKR theory
®
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Figure 3.23 Effect of size to rebounce and adhere
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Figure 3.24 Effect of surface energy to rebounce and adhere
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The above order of magnitude effects are, explained by equation (3.57) which, for
equal sized spheres, indicates that the critical velocity is proportional to (Y/R) 566
Whether sticking occurs or not depends on the competition between the kinetic energy
and the energy required to break the ‘adhesion bond’. Large stiff dense particles will
tend to bounce unless the impact velocity is small or the adhesion energy is high. Small
soft light particles will tend to stick unless the velocity is high or the surface energy is

low.

Figures 3.23 and 3.24 show that the results of the simulations of perfectly elastic
spheres, with no contact damping employed, agree exactly with the prediction of the
JKR theory provided by (3.57). If, in these simulations, the velocity is sufficiently
small that the particles remain adhered together then the normal force oscillates
indefinitely and an equilibrium state is not achieved. This is, of course, unrealistic and
would cause problems when simulating large system of particles. Consequently it is
necessary to incorporate a small amount of damping ( 5% of the Icritical damping) in
order to attenuate the force oscillations. This corresponds to the natural dissipation
process that occurs as stress waves travel through the solid material of the particles
themselves. Figures 3.23 and 3.24 show that this small additional energy dissipation
mechanism results in a small increase in the critical velocities. The attenuation of the
contact force as a consequence of contact damping is illustrated by the envelope to the

force oscillations shown in figure 3.25.

3.8 Discussion

The effect of adhesion has been illustrated by simulations of oblique impacts for an
initial relative impact velocity of 0.1m/s. The results show that, although adhesion
affects the dissipation and redistribution of energy for all angles of impact, the effect is
most pronounced when peeling is only completed at the end of the impact. The angles
of impact at which this occurs depend on the impact velocity. For all impact angles, if

the impact velocity is not large enough to complete the peeling process when the normal
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Figure 3.25 Effect of damping in attenuating the normal force

force is increasing, then the particles will rebound back along the initial impact

trajectory, unless the impact velocity is sufficiently small that sticking occurs.

For colinear impacts with adhesion, the computer-simulated experiments identified
critical impact velocities above which particles bounce and below which particles adhere
together. As expected, the observations agreed with the predictions of the JKR theory
and presented a similar pattern of adherence and bounce to that reported by Reeds

(1987).

In order to simulate oblique impacts with adhesion, it has been necessary to extend and
combine the theoretical approaches of Savkoor and Briggs (1977) and Mindlin and
Deresiewicz (1953). The resulting theory, however, is not a rigorous solution, .due to
the approximations in existing theories and the speculative nature of the proposed
sliding criteria. Nevertheless, it is believed that the proposed theoretical model is
qualitatively correct in describing the tangential response as one which requires peeling

to occur prior to sliding,.
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The adhesion between two bodies is even more complicated if they are allowed to be
viscoelastic rather than simply elastic. In this case, energy losses due to the effect of
plasticity will make the situation different for increasing and decreasing loads and, in
general, dependent in the history of the sample. Even with this degree of complexity
the theories do not describe the real world, for they assume perfectly smooth surfaces.
Any attempts to describe friction, cold welding or adhesion in a real situation must

consider surface roughness, and theories then become semi-quantitative or empirical.

In simulation experiments, the question of how much surface energy governs the
choice of theoretical models like JKR, DMT, and even MYD, proved to be a
predicament. In recent years, there was the argument that 'hard' materials fits in better
with DMT while 'soft' materials are a better fit for JKR. Any quantitative results
obtained from simulations, especially those involving impacts received no specific

experimental backing and the validity of these results needs further real confirmation.
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4. The Distinct Element Method
Discrete Numerical Modelling and the Methodology

It is easier to write an incorrect program than understand a correct one - Murphy's law of computing
4.1 Introduction

Discrete or Distinct element methods (DEMs) are a family of related numerical
techniques designed specifically to solve problems in applied mechanics which exhibit
gross discontinuous material and geometrical behaviour. For example, many DEM
models are capable of analysing multiple interacting rigid or deformable bodies
undergoing large dynamic or pseudo static absolute or relative motions, governed by
complex constitutive behaviour. In many of these discontinuous situations, the
continuity constraints are either inappropriate or relaxed because of the physics of the
problem and are either intractable or very difficult to analyse with the set of procedures
based upon continuum principles such as the conventional finite element method,

boundary element or finite difference methods.

Useful experimental observations of micromechanical parameters such as contact forces
have been made in granular media, for example using photoelastic techniques.
However, the interpretation of these experiments are very time consuming. Numerical
experiments using computers have increasingly become the preferred tool to investigate
in detail the micromechanical behaviour of granular media as improved techniques and

more powerful computers become easily available.

Although computer simulated experimentation using the DEM was originally developed
as a tool for examining geomechanical problems, Cundall (1971), the dynamic nature
of the methodology used lends itself readily to many other areas of scientif:lc and
industrial interest. One such area is that of process engineering in which the physical
and geometrical formation of agglomeration processes and agglomerate breakdown,

either by attrition or comminution, are also amenable to investigation by the DEM.
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4.2 Brief Literature Review

A discontinuous system is an assembly of discrete particles with interactions taking
place only at points of contact. Therefore it is essential to establish methods of
identifying contacts and modelling the contact interactions in all discrete element
methods. For all methods, general allowances are made to cater for contacts to be
broken or slide, and they are divided into two main categories according to the
treatment of the behaviour in the normal direction of motion. In the first group, using
the hard contact approach, (or the rigid particle model) the interpretation is regarded as
non-physical and algorithms are coded to prevent any interpenetration of the two bodies
that form a contact, Campbell (1982). In the second group, using the soft contact
approach (or the soft particle model) a finite normal stiffness is taken to represent the
measurable normal stiffness that exists at a contact, Cundall (1978) or the extensions
by Thornton and Randall (1989) where the normal stiffness is derived through the non-

linear behaviour of the Hertz theory (see Johnson 1985).

In the rigid particle model, collisions are assumed to be instantaneous and no
interpenetration of the two bodies occur. Post collision trajectories are determined from
the initial trajectories and an inelastic, frictional collisional operator governing the
dynamics of idealized binary collisions. The 'predictor’ strategy is used so as to ensure
displacement compatibility in the normal direction at all contacts, while satisfying
equilibrium and the constitutive laws. A list of collisions in order of precedence is
maintained and simulation proceeds by variable time steps between successive
collisions. The hard contact assumption is especially appropriate in simulations of
'molecular dynamics', in which sparse populations of bodies move around at high
speed and interact by collision. The collisions are very brief, and can be modelled as
instantaneous exchanges of momentum and energy may or may not be conserved by the
particle pair. The rigid particle model for granular flow was developed by Campbell
(1982), who modelled rectilinear uniform shear flows using streamwise periodic

boundaries. Hopkins (1987) developed a dynamical rigid particle numerical simulation
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program similar to Campbell's for comparison with the two -dimensional air table
experiments of Sanders and Ackermann (1987). In Hopkins (1987) simulations, the
collisional operator used is capable of explicitly accounting for finite values of friction.
The search strategy devised does not require complicated maintenance of a collision list
but rather allows for small overlaps between particles. Potential overlaps, similar to

those of the soft particle model, are searched only among neighbouring particles.

The soft particle approach requires that collisions are of finite duration. The duration of
contact is related to a non-infinite contact stiffness which is specified as a contact
property. The force at the contact is continuously varying as the particles are being
deformed. Deformation of the particle is represented as a small overlap. A well known
example of a soft contact formulation is the Hertz theory (see Johnson 1985), in which
the assumption of elasticity is used to derive the normal stiffness at the contact between
two deformable spheres. A further assumption is that the radius of the contact area is
small compared to the radius of the spheres. Forces at all the conti;cts are determined at
one instant and Newton's equations of motion are then numerically integrated to obtain
new particle velocities and positions. The derived normal stiffness is non-linear and
may be used directly in numerical simulations. Simulation proceeds by small timesteps
which are usually a function of the physical properties of the discrete elements. In
order to accurately integrate the equations of motion the usual explicit schemes require
more time steps during a collision. This approach is more efficient than a rigid particle
approach for dense systems. More significantly, this approach is applicable to all

configurations including both quasi-static and dynamic situations.

Cundall and Strack (1979, 1982, and 1983) developed the first discrete particle model
based on the soft particle approach. They used linear springs to model the normal and
tangential contact stiffnesses with the tangential force limited by a Mohr-Coulomb
criterion. Although their calculation method treats the full dynamics of the system of

particles, it was used primarily to investigate the behaviour of granular material
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undergoing slow, quasi- static deformations and the simulation results were in good

qualitative agreement with experimental measurements.

Walton (1982, 1983) developed an explicit particle-dynamics model for granular
materials, similar to the model of Cundall and Strack (1979). One difference is the
inclusion of the damping or dashpot normal force in determining the total normal force
used for the friction limit. It was suggested that this is more suitable for rapid particle
flows involving dynamic impacts. This model is intended to be used for rapid
deforming granular material. Walton and Braun (1985) used a different force model in
their study of assemblies of nearly rigid, inelastic, frictional discs undergoing steady
state shearing. The normal force model was a partially latched spring model which
provided different stiffnesses for loading and unloading. Consequently, energy
dissipation due to normal interactions was modelled in a way similar to that due to
plastic deformation in real systems. The tangential friction force model was similar to

that of Mindlin and Deresiewicz (1953).

4.3 Methodology For Modelling Discontinuous Systems

In order to reliably model discontinuous media a program must be able to accommodate
finite displacement and rotation of the discrete bodies. Other issues like the ability to
identify contact breaking and to recognise new or potential contacts as the simulation
progresses are also essential features. The logic of identifying interacting pairs of
particles efficiently is important because it will save many computing hours especially
when dealing with large systems of particles. Cundall and Strack (1979) developed an
efficient systematic data structure for the program Ball which, with only minor

modifications, is the basis of the program used in the work reported in this thesis.

The program identifies a rectangular 'workspace' which is divided up by a grid to form
a series of boxes or cells. Particles are mapped into their respective boxes according to

the locations of the corners of a circumscribing square. In this way a particle may map
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into 1, 2 or 4 boxes. Only the boxes into which a particle is mapped are searched for
potential contacts. During a simulation, when the accumulated displacement of a
particle (items B11 and B12, see figure 4.2) exceeds a specified amount, a check is
made to determine whether or not the particle needs to be remapped into different boxes

(reboxing).

4.3.1 Data Structures

The memory map which contains all the information on particles, walls, boxes and
contacts is stored within a single real array A(I) which is continuously updated. The
array contains 32 bit words except for the box data and link data which are stored in 16
bit half-words. The array A(I) is equivalenced to an integer array IA(I) so that integers
may also be stored. Figure 4.1 shows the overall memory map with the particle, wall,
box and contact information stored in separate sections. Pointers M1 to M5 identify the

subdivision of the array into these different sections.

Particles, walls and contacts require 13, 22 and 10 items of information to be stored
respectively. These are identified in figures 4.2, 4.3 and 4.4 (the actual x, y
coordinates of a particle centroid are given by summing the items B1+B12 and
B2+B12, figure 4.2). In the box data list each box is represented by a 32 bit word
which is subdivided into two 16 bit half-words. Each half-word contains an integer
which acts as a pointer. One pointer indicates the address of the start of a linked list of
contacts that map into the box. The other pointer indicates the starting address of a
linked list of particles that map into the box. The program systematically considers
each box in turn and thereby deals with all particles and contacts during each calculation
cycle. For further details of the program structure the reader is referred to Cundall

(1978), Barnes (1985) and Randall (1989).
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Particle [Wall | Box Contact data

data data | data listn and links | FT°

list list list
Y Y v ¥ Yy v
Ml M2 M3 M3A M4 M5 I

Figure 4.1 The overall memory map of array A(J).

l_.. Link

Bl1 | B2 |B3|B4|B5 |B6 |B7 |B8| H9 |B10|B11|B12|B13

Particle type

13 words particle data

B1 - x coordinate of particle, see text

B2 - y coordinate of particle, see text

B3 - x velocity of particle

B4 -y velocity of particle

BS - angular velocity of particle

B6 - x component force at the centroid of the particle

B7 - y component force at the centroid of the particle

B8 - moment about the centroid of the particle

B9 - pointers

B10 - angular displacement of particle

B11 - accumulated displacement in the x direction, see text
B12 - accumulated displacement in the y direction, see text
B13 - accumulated angular displacement, explanation as in B11 and B12

Figure 4.2 Ball information
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|__> link

Ws

W1 W3|W4 W6 | WTIW8 [W9

|
W IW(w

w w
l|8 1920|2122

22 words in Wall data

W1 - distance of end of wall to origin of rotation
W2 - distance of start of wall to origin of rotation

W3 - x coordinate of origin of rotation

l—> Wall type

W12 - y coordinate at start of wall
W13 - x coordinate at end of wall
W14 - y coordinate at end of wall

W4 - y coordinate of origin of rotation W15 - Force on wall (X)
W5 - angle of wall in radians (anti-clockwise) W16 - Force on wall (Y)
W6 - velocity in the x1 direction W17 - Moment on wall
W7 - velocity in the x2 direction W18 - Pointers
W8 - angular velocity W19 - Wall name
W9 - Sin (WS5) W20 - accumulated displacement
W10 - Cos (W5) in the x direction
W11 - x coordinate at start of wall W21 - accumulated displacement
in the y direction
W22 - accumulated angular
displacement
Figure 4.3 Wall information
Ala|ca|ca]cs)cs| er| 3| oo co

Pointer to particle g |
with lower address

L Pointer to next contact address

Pointer to particle
of higher address

Contact and link data
C1 - Contact radius
C2 - Cumulative sliding displacement
C3 - Contact normal force
C4 - Contact tangential force
C5 - Pointers
C6 - Pointers
C7 - Marker for pre and post-peeling
C8 - T*, see section 4.4.1
C9 - T**, see section 4.4.1
C10 - Critical displacement,DD, see section 4.4.2

Figure 4.4 Contact array.
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4.3.2 Choice Of Timestep

In the distinct element method, the contact forces and displacements within an assembly
of spheres are found through a series of calculations tracing the movements of the
individual particles. These movements are the result of the propagation through the
medium of disturbances originating from some applied external field, e.g. gravity,
boundary strain, or wall displacement. The speed of propagation is a function of the
physical properties of the discrete medium. The evolution of the system is advanced in
time by carrying out repeated calculations over a large number of small timesteps. Itis

assumed that during a small timestep the velocities and accelerations are constant.

The distinct element method is also based upon the idea that the timestep chosen is so
small that, during a single timestep, disturbances cannot propagate from any sphere
further than its immediate neighbours. Thus, at all times the resultant forces on any
sphere are determined exclusively by its interaction with the spheres with which it is in
contact. It is this underlying feature of the distinct element method that makes it
possible to follow the non-linear interaction of a large number of spheres without

excessive memory requirements.

4.3.3 Particle-particle Interactions

The main calculation cycle performed in the distinct element method alternates between
the application of Newton's second law of motion to the spheres and the force-
displacement laws to the contacts. The motion of a particle obeys Newton's second
law from the forces acting on it. The force-displacement laws are then used to find

contact forces from the displacements, see figure 4.5.
In the program, the particles are allowed to overlap one another at the contact points to

model elastic deformation of the surface. Normally this overlapping is very small in

comparison with the diameter of the particle. Large overlapping will cause numerical

100



Discrete Numerical Modelling And The Methodology

instabilities as it will create excessive contact forces leading to a large out-of-balance

force and high accelerations.

— = Subroutine Motion

All particle displacements and velocities are upadated
from known centroid force sums, using Newton's

Subroutine Ford

All contact forces are updated from the known incremental
displacements of the particles concerned, using the contact
interaction laws.

Figure 4.5 The main calculation cycle

Figure 4.6 Kinematics of contacting spheres
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A\

Figure 4.7 Interparticle contact forces

In order to demonstrate how forces and displacements are determined during a
calculation cycle, the typical case represented in figures 4.6 and 4.7 will be considered.
For simplicity, consider the case of no adhesion with the contact stiffnesses represented
by linear springs. The coordinates of the centres of spheres are X4; and Xp; with i =
1, 2 and the indices 1 and 2 refer to the Cartesian coordinate system indicated in the
figure. Contact between the particles exist if

D<Ra+Rg 4.1)
where D2 = (xg; - xo)? + (¥B; - YAD? (42)
The contact point, however, is midway between the point C4 and Cg as shown in
figure 4.6. Unit vectors n and ¢ are orthogonal, » being in the normal direction to the
contact plane and in the direction of the line joining the centres. The direction cosines
n; are as defined as

nj = (xpi - XA1) /D (4.3)
and, in 2D, may be written as nj = cos & and ny = sin & where « is the inclination of
the contact normal vector to the 1 axis of the global reference frame. i

Since n and t are orthogonal

nyt; =0 (4.4)
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The kinematics at the contact point may be understood as the velocity of point Cg
relative to Cp,
xci= (XBi- Xa) - (0 sRA+6BRp); (4.5)

and resolving vector x c;into components n and s that are normal and tangential to the

contact
e g (4.6)
§= ?.(Ci t; 4.7)

and using (4.5) equations (4.6) and (4.7) may be written as,
ﬁ=(;‘Bi'7'(Ai)ni (4.8)
s = (xBi- Xai)t;- (8 AR A+ OBRp) 4.9)

The increments in displacement may be obtained by multiplying equations (4.8) and

(4.9) by the timestep, At
An = [( ’-(Bi' ).(A;)ni]At (4.10)
As = [( iBi—iAi)ti-(éARA+éBRB)]At (4.11)

Force increments can then be calculated by multiplying the obtainéd displacements by
their respective stiffnesses.

AF, =K, An (4.12)
AFg =K As (4.13)
Once the new force increments have been accrued, an update procedure is followed,

F, =F, + AF, (4.14)

Fg = Fg + AF (4.15)

A further condition is imposed that restricts the maximum tangential force that may be
developed at the contact,

Fg <pF, (4.16)
Once the normal and tangential forces have been determined for each contact of a
sphere, they are resolved into components in the 1 and 2 directions, i.e. globally. For
each sphere, the sum of these contact force components gives the resultant forces

Y Fiand Y Fy, The resultant moment acting on the sphere Y'M, is taken positive if
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acting in the counter-clockwise direction and is found from ZM = EFSR, where the

summation is taken over all contacts for a given sphere.

The above calculations are performed in subroutine FORD. When the program has
updated all the contact forces in an assembly of particles and new out-of-balance forces
and moments have been obtained for each particle, the program moves to subroutine

MOTION to update the particle positions and velocities.

The new resultant forces and moments acting on each sphere at time t are used to

determine the new accelerations x; and 6; according to Newton’s second law of motion.
mi; = 3 F; 4.17)

10 =M (4.18)

where I is the moment of inertia of the particle. New particle velocities are obtained

from the equations
(XDt +ay2= Xdt-a2+ [zFi/m]tAt (4.19)

©D1ravz= @) ava+ [ M AL a5

These equations are applied to each sphere in turn. The new value for the velocities are

used to update the positions and rotations of the spheres by further numerical

integration
XD+ ar= K+ X+ ay2At 4.21)
Orsar=01+ 0120t (4.22)

The finite difference equations of (4.19) to (4.22) represent a time-centred system.
Body forces, such as gravitational forces, are also featured in the program. The term

mg;At is included in equation (4.19), where gj = (g1, g2) represents the two

components of acceleration vector due to the body force.
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4.3.4 Damping

In order to control the energy in large assemblies of interacting elastic spheres various
forms of energy dissipation mechanisms are necessary. Energy is dissipated during
sliding when the absolute value of the tangential force exceeds the frictional limit.
Adhesive peeling also results in energy dissipation. Energy dissipation also occurs as a
consequence of the non-linear, history dependent, tangential interactions defined by the
theory of Mindlin and Deresiewicz (1953). In addition to these dissipative mechanisms
that occur naturally from the contact mechanics based interaction laws, two types of

viscous damping are incorporated in the program, BALL.

In real systems energy losses occur as energy is transferred through the solid bodies.
In order to account for this type of energy dissipation “contact damping” is used. This
type of damping is modelled by a viscous dashpot and is a function of the relative
velocity of the two particles in contact. Having calculated the contact forces for a
contact using equations (4.14) and (4.15) the program then cal;:ulates normal and
tangential damping forces which are added to the contact forces to give the
contributions of that contact to the out-of-balance forces and moments of the two
contacting spheres. This type of damping is always used and it is normal to adopt a
damping coefficient equal to 5% of the critical damping coefficient. The importance of
this type of damping is demonstrated when simulating particles with adhesion. If two
particles stick together and contact damping is not used then the contact forces will

continue to oscillate and an equilibrium state will never be reached.

The second type of viscous damping available may be described as either global or
mass-proportional damping. It takes the form of Rayleigh damping and is incorporated
into the equations of motion (4.19) and (4.20). The effect of global damping is like
immersing the system of particles in a viscous liquid. For example, consider the
simulation of a single sphere falling under the influence of gravity. By incorporating

global damping into the equations of motion, the sphere will reach a terminal velocity
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within a small number of timesteps. Except for quasi-static simulations, global
damping is not normally used. It is, however, a useful device which may be
introduced whenever it is required to reach an equilibrium state within a reasonable
amount of computing time. It is, therefore, useful to introduce global damping during

the final stages of simulating pluvial deposition or agglomerate preparation.

4.4 Program BALL To Model Surface Adhesion

The original BALL program developed by Cundall and Strack (1979) was used mainly
for quasi-static shear deformation simulations using linear springs to model both the
normal and tangential stiffnesses. The inclusion of non-linear interaction laws into
BALL by Randall (1989) provided a more realistic simulation in comparison to the
early version of BALL. In order to account for adhesion at the contacts major changes

have been made to the program to accommodate this effect.

Whilst adopting Randall's version of FORD, the new version also makes allowances
for adhesion based on the combination of theories due to Johnson et al (1971), Savkoor
and Briggs (1977) and Thornton (1991). These theories have been discussed in
chapters 2 and 3. The following sub-section will provide an explanation of the flow and
logistic guide through the subroutine FORD. A listing of subroutine FORD is provided

in Appendix A.

4.4.1 Subroutine FORD

When there is a contact between a particle and a wall, a logical flag is set as true and
sends the program to calculate their relative positions based on the particle and wall
coordinates. The equivalent radius for the contact is set to that of the particle. If the
logical flag is set as false, i.e no wall, the program skips to calculate the relative

positions of the two particles from the coordinates of the particle centroids.
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Particle contacts or potential contacts are first checked in subroutine BTEST before
passing to FORD. In BTEST, any two particles within the tolerance limit are
considered as potential contacts. In FORD, however only particles that are in contact
are analysed before updating the new forces, otherwise the contact data will be zeroed.
This is determined by examining if the distance between the centres of the two particles
is less than the sum of their radii. If, however, there is a potential contact between a
particle and a wall, then a check is performed to determine if the normal distance
between the centre of the particle and the wall is less than the radius of the particle after

checking that the particle centre lies between the two ends of the wall.

The program then calculates the relative properties of the contact.

The equivalent radius:

R*=R;R;/(R;+Ryp) (4.23a)
R* = R;, for wall/particle contact (4.23b)
equivalent mass:

M* = M{My/( M+ My) (4.242)
M* = M,, for wall/particle contact (4.24b)
equivalent Young's modulus:

E* = E{Eo/( Ej(1 - v42) + Ex(1 - v,2) (4.25)
and finally, the relative shear modulus:

G* = G1Gy/( G+ Gy) (4.26)
where

G =E/Q(1 +v)*2 - vy) (4.27a)
Gy = Eo/(2(1+ v9)*(2 - v9)) (4.27b)

and v is Poisson’s ratio.
If adhesion is specified, the program then calculates the following parameters:

Y=(11*7)/2 (4.28)
where y; and ¥, are the intrinsic surface energies of the two particles in contact,

P, = 3R*yn (4.29)
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a. = (0.75R* P /E*)1/3 (4.30)
which is the contact radius when P = -P, and

a;=(0.75)028 a, (4.31)
which is the initial radius of the contact which is instantaneously established due to
surface attraction when contact is first made. In order to determine when a contact is
broken the program also calculates the rupture separation distance

o = (0.1875 P 2/E*2R*)1/3 (4.32)
Having calculated all these parameters, the program then proceeds to calculate the
relative particle velocities making allowance for any imposed external strain field. From

the relative velocities the increments of normal and tangential displacement at the contact

are calculated.

For particle/particle contacts:

An = (xcos B + ysin 0)At (4.33)
As = (xsin 6 - ycos 8 - ®1R - W3R )AL ' (4.34)
For wall/particle contacts:

An = (ycos 8 - xsin 8 + X, Q)At (4.35)
As = (xcos § + ysin 6 - @ R At (4.36)
where,

x and y are the relative velocities in the global Cartesian reference frame,

0 = angle of contact for particle/particle contacts and angle of wall for wall/particle
contacts,

R; = radius of particles i,

w; = angular velocity of particle i,

Q = angular velocity of wall

and X; € is the additional normal relative velocity due to wall rotation.

A series of conditional statements are set to create a logical pathway to deal with the

inclusion or exclusion of surface adhesion. The conditional statements are based on the
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parameter P, the contents of memory cells C(1), C(3) and C(7) (see figure 4.4) and
RDIF which is the difference between the sum of the two particle radii and the distance
between their centres for a particle/particle contact or, for the case of a particle/wall
contact, the difference between the particle radius and the distance between the particle

centre and the wall in the direction normal to the wall.

The program then proceeds to calculate the normal force increment but must, first of all

check whether the contact is new.

If no adhesion is specified and there is no existing normal force, as indicated by C(3),
this indicates a new contact and the normal force increment is calculated from

An = -RDIF (4.37)
AP = (4/3)E*(R* An3)1/2 (4.38)

If the contact has already been established the stiffness and normal force increment are

calculated
K, =2E*a (4.39)
AP =K, An (4.40)

For the case of adhesion, a new contact is identified if the contact radius is zero, as

indicated by C(1). If so then the initial normal force is calculated as

P =-8P,/9 (4.41)
and the normal force increment is obtained from

Aa = An/((2ay/R*) - (wy/Exa;)1/2) (4.42)
AP = Aa((4E*a; 2/R*) - (6( myE*a;) 12)) (4.43)

If the contact has already been established the normal stiffness depends on whether

tangential peeling has been completed or not. If not and T < T*, as indicated by C(7) <

0.0, then
K,=2E*a((3-32a)/(3-13,)) (4.44)
where a, = (a; /)32 (4.45)
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If C(7) > 0.0 this indicates that the tangential peeling process has been completed and
the normal stiffness is obtained from (4.39). For both cases, the normal force

increment is then calculated using (4.40).

The program then updates the normal contact force using

P = C(3) +AP (4.46)
where C(3) contains the old value of normal force. For the case of no adhesion a check
is then made to determine whether or not the contact still exists. If it does then the new
normal force is stored in C(3) and the normal damping force is calculated from

P4 =2 B (M*2E*a)}/2(An/ At) (4.47)
where B is the specified percentage of critical damping and depends on whether the
contact is between two particles or between a particle and a wall. The damping force is
then added to the contact force to give the “total force” P, which is later used for

calculating the out-of-balance forces on the two contacting particles.

Having calculated the new normal force the program then updates the contact radius.
For the case of no adhesion

a = (0.75 PR*/E*)1/3 (4.48)
The procedure for the adhesion case depends on the current state of the tangential
interaction. If the contact is still in the process of peeling then

a = (0.75 P;R*/E*)1/3 (4.49)
where Py = P + 2P, + (4PP, + 4P 2 - T2E*/4G*)1/2 (4.50)

If the tangential peeling process has been completed, as indicated by C(7) > 0.0, then,
if P £-0.3P,

a = (0.75 P,R*/E*)1/3 4.51)
where P, = P1((2P + P)/3P;)3/2 4.52)
else, if P >-0.3 P,

a = (0.75 PyR*/E*)1/3 (4.53)
with Py =P + 2P, (4.54)

110



Discrete Numerical Modelling And The Methodology

Having updated the contact radius the new value is stored in C(1). The program is then
ready to consider the tangential interaction and, first of all, deals with frictionless
contacts. Having determined the minimum coefficient of friction for the two spheres in
contact, the program sets AT, T and T, ( the total tangential force to be used for out-of-

balance force summations) to zero if the coefficient of friction is zero.

The direction of tangential loading is determined and a logical flag is set in accordance
to the program's sign convention. In short, for all contacts with a positive loading
direction,

CDF=1 (4.55)
and for a negative loading direction,

CDF =-1 (4.56)
For virgin loading CDF = 1 for T>0. For the cases of unloading and reloading the sign
of CDF is controlled by the sign of T* which is the tangential force at which unloading
was initiated and the sign of the T** which is the tangential force at which reloading

was initiated.

The program then calculates the tangential force increment using the value of 0 as
determined by the function THETA which also sets the unloading flag UFL. For the
case of adhesion, 0 is equal to unity whenever in the process of peeling. Otherwise
the value of 0 is set by the function THETA. The increment of tangential force over a
time step is,

AT = CDF( 6(8G*a AsCDF - u AP.UFL) + p AP.UFL) (4.57)
Once the tangential force increment is calculated a check is made to see whether the
contact has peeled during the timestep. If peeling has not occurred the new tangential
force is calculated and stored in C(4). If the new tangential force is greater than T,

where

T, = 4((PP, + P,2)G*/E*)1/2 (4.58)
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then C(7) is set to the absolute value of T, to indicate that the contact has peeled and the
tangential force increment is recalculated. If peeling has previously occurred, or there

is no contact adhesion, then the program calculates the parameter DD which is used in

function THETA, see section 4.4.2.

The program then proceeds to test for load reversals. If the tangential displacement (
As) multiplied by CDF is positive, and T* # 0.0 but T** = 0.0 it implies that reloading
has commenced. T** is consequently set to the old value of the tangential force. If the
tangential displacement multiplied by CDF is negative and T* and T** are both zero,
then unloading must have been initiated and T* is set to the old value of the tangential

force.

The program then proceeds to update the tangential force and to check for sliding. If
the tangential force is greater than the limiting value Ty, then it is reset to Ty, and the
sliding displacement is accummulated.

For the case of no adhesion,

Tmax = HKP (4.59)
For the case of adhesion, if P < -0.3P_

Tmax = HPe (4.60)
otherwise

Tmax = L(P+2P;) (4.61)

The tangential force is stored in C(4) and the tangential damping force is calculated
from

T4 = 2B(M*IAT/ Asl) As/ At (4.62)
Adding the damping force to the tangential force gives the tangential contribution to the

out-of-balance forces and moments for the two contacting particles.

In preparation for the next timestep, it is necessary to identify the correct normal force

constant curve, see figure 2.14, and to check whether there has been a change from
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reloading to loading or from re-unloading to unloading. In order to identify the new
curve the program updates T* and T** using

T* = T* + CDFUAP (4.63)
Tk* = T* . CDFUAP (4.64)
and T* and T** are restored in C(8) and C(9) respectively. If there has been a change
from reloading to loading then both C(8) and C(9) are set to zero. If the change is from

re-unloading to unloading then only C(9) is set to zero.

As described above, damping forces are added to the contact forces to give the “total”
normal and tangential forces P, and T,. These forces are used to calculate the contact’s
contribution to the out-of-balance forces and moments acting on the two contacting

particles.

At various points in subroutine FORD there are checks to test whether contact has been
broken. If this is true the contact address is not necessarily deleted from the linked list
in the memory map since contact may be re-established within a few timesteps.
Consequently, when a contact is broken, the program checks the size of the gap
between the two particles and compares it with a user specified tolerance. Only if the
gap is greater than the tolerance is all information about the contact deleted from the
memory map. If the gap is less than the tolerance all the contact data are zeroed except
for the pointers in C(5) and C(6). Finally, when subroutine FORD ends control is

passed back to subroutine CYCLE.

4.4.2 Function THETA

The function THETA is used in subroutine FORD to determine the appropriate value of
O to be used in calculating the tangential force increment, equation (4.57). The
unloading flag UFL is also set in function THETA.

As explained in section 2.5, if the normal force increases, the tangential displacement

may not be sufficient to increase the tangential force to a point on the tangential force-
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displacement curve corresponding to the new normal force, see figure 2.14. This is the
case if AT < pAP. The critical tangential displacement is

As. = HAP/8G*a (4.65)
and is calculated in function THETA. The problem occurs when As < As; and may
continue over a number of consecutive timesteps. It is, therefore, necessary to
determine when X As 2 ¥ As.. This is done by calculating DD in subroutine FORD.
The parameter DD is stored in C(10) and is calculated as

DD =DD + (As, - As) for AP>0 (4.66)
DD =DD + As, for AP<0 (4.67)

with the condition that if DD becomes negative it is reset to zero.

In function THETA the program tests for all the different possible loading cases and for
the case of normal force increasing identifies whether the above problem exists. By a
process of elimination the program determines when As < As; + DD and sets 6 = 1.0.
For all other cases a flag is used to identify which of the following 'cxprcssions should

be used.

8 = (1 - (T.CDF + pAP)uP")!/3 if loading (4.68)
8 = (1 - (T*.CDF - T.CDF + 2 uAP)/ 2uP)) 3 if unloading (4.69)
0 = (1 - (T.CDF - T**.CDF + 2 uAP)/( 2uP")) 113 if reloading 4.70)

where P'= P for no adhesion and P' = P+2P; for adhesion.
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5. Agglomerate Impact

If the facts do not conform to the theory, they must be disposed of - Maier’s Law

5.1 Introduction

In the powder industries, engineering problems associated with the prevention of
excessive generation of dust or fines remains of prime importance. Faced by the
potentially hazardous environmental and health impact on people, scientists and
researchers have been trying various techniques to curb such phenomena. Methods
like properly sealed cyclones, closed piping and agglomeration are a few typical

examples of the many techniques introduced to date.

In agglomeration, individual discrete particles are compacted or moulded together to
form a larger mass. The main advantage of this method is that it reduces the possible
generation of fines that would occur in the subsequent processes during transportation
or conveying. Two terms closely associated with agglomerate breakdown are attrition
and comminution. The former relates to unintentional breakage of the agglomerate that
arise during processing. In contrast, the latter refers to the intentional breaking up of
the agglomerate to facilitate ensuing processes. However, both phenomena are

controlled by the interactions between the primary particles.

This chapter will explore and attempt to explicitly clarify physical phenomena like stress
wave transmission, crack initiation and propagation, and shattering, all of which may
possibly occur in agglomerate attrition and comminution. Current work reported in this
chapter begins with the problem of arbitrarily creating an agglomerate, the problems
faced and the technique adopted in preparing an agglomerate with specific ‘bond’
strength. Once the desired agglomerate ‘bond’ strength had been achieved, impact
simulations were carried out and the results are duly reported. Using simple but
realistic interaction laws as described in chapters 2 and 3 at the local points of contact,
the global behaviour was found to be very similar to what is observed in real

experiments. This can be visually appreciated by the computer graphics presented in
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this chapter and Appendix B. Detailed analysis of the micromechanics of particulate
material, for the case of a dense packing, can be studied via the simulation data and an

attempt is made to provide a clear explanation of such fundamental behaviour.

5.2 Brief Literature Survey

Impact phenomena provide a good and arguably critical testing ground for theories of
mechanical behaviour. Experimental impact studies are difficult and expensive to carry
out and a good theory that minimises the number of required measurements is
invaluable. Experimental difficulties occur primarily due to the short time scale in
which the micromechanical aspects need to be examined and the destructive nature of
strong impacts. Further complications arise due to time and temperature effects on the

material properties.

Until recently, neither experimental nor theoretical techniques had advanced sufficiently
to demonstrate what actually takes place when a specimen is im‘pacted. Available
experimental techniques did not have sufficient simultaneous time and space resolution
to determine important features of the behaviour such as crack initiation and
propagation. Also, the theoretical models that were used to describe the behaviour
were grossly simplified. In retrospect, this was because complex models were

impractical before the advent of electronic computers.

The first step in developing an understanding of impact phenomena is to consider the
elastic waves that are present and how these result from the equation of motion. The
plane part of a propagating mechanical disturbance is necessarily immersed inside the
material and therefore is quite inaccessible except to techniques such as flash x-
radiography, Venables (1964). Furthermore, the wave front may be very sharp with
substantial changes occurring in about 0.1ps. These specifications can only be
satisfied by very fast sensing equipment applied at an external surface. It has become a

standard practice to measure the back surface velocity as a function of time. Early
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measurements of back-surface velocities used a series of contact pins that had slightly
different lengths, so that the wave reached their ends and thereby closed the contacts at
slightly different times, Minshall (1955). This method measures average velocities
accurately but has insufficient time resolution for acceleration measurements. Later an
optical wedge method was developed, Marsh and McQueen (1960), but the first
methods with adequate resolving power used capacitance changes. Hughes et al (1961)
used radio-frequency excitation of the capacitor whereas Rice (1961) used a static
excitation voltage to maximise the time resolution. Quartz transducers can also be used
to measure surface velocities (Jones et al (1962)), because the short circuit current from
the thin quartz disc is directly proportional to the specimen quartz interface stress for
times less than the wave transit time in the disc. High speed interferometers were used

by Barker et al (1965) to measure displacements as a function of time.

The passage of an elastic wave will create excessive damage to the region of high stress
concentration. Most materials exhibit flaws, dislocation lines, mic'ro-cracks etc. The
pioneering work of Griffith (1920), a follow up of Inglis (1913)’s concept of stress
concentration factors in the region of the tip of the flaws, made a significant
contribution to the origins of fracture analysis. Griffith (1920) considered an isolated
crack in a solid subjected to an applied stress and formulated a criterion for its extension
in terms of the fundamental energy theorems of classical mechanics and
thermodynamics. However, the main problem facing early workers in fracture
mechanics was how to add quantitative substance to the concept of Griffith (1920).
The singularity of a perfectly linear elastic event does not hold when one examines the
local rupture region. Hence, the work of Irwin (1958) and Orowan (1955), working
independently, proposed the hypothetical division of the crack system into two defined
zones. The two zones were distinctly identified as the linear elastic outer surrounding
zone of the crack tip and, the nonlinear elastic inner surrounding zone of the extended

crack tip. The outer surrounding zone, consisting only of linear elastic material,
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transmits the applied traction to the inner, extended cracktip zone where the non-linear

separation process operates, Irwin (1958).

Both the theories of Griffith and Irwin-Orowan are only focussed on a static crack
system. If an unbalanced force acts on any volumetric element within a cracked body,
that element will be accelerated and will acquire kinetic energy. The system, therefore,
is a dynamic one and the equilibrium conditions of Griffith and Irwin-Orowan are no
longer valid. A general approach to the dynamic fracture problem was outlined by
Mott (1948) in an extension of the Griffith concept. The fundamental idea is to add a
kinetic energy term to the expression for the total system energy and seek a

configuration which maintains this total energy content constant.

Some experimental work has been carried out to identify the characteristics of the
theories stipulated above. These include, works reported by Yuriger et al (1987),
Puttick et al ( 1987) and Arbiter et al (1969). The attrition of ﬁarﬁculatc solids is
directly linked to material properties and is highly dependent on the local modes of load
application as explained by Ghadiri et al (1990). It is therefore essential to distinguish
between the various modes of local loading as crack morphology and subsequently the
attrition products differ vastly as a result. Ghadiri et al (1990) found that the
complicated inter-dependency between material properties and the application of loading
made it difficult to obtain a good prediction of the attrition rate. This was laigely due to
the problem associated with quantifying the stresses experienced during load
application as the result of insufficient data on materials properties. The work
concentrated on building up melt-grown ionic crystals as ‘model’ granular materials and
made clear observations and agreements with the general theories discussed abovge. In
the work of determining impact attrition of the sodium chloride crystals, the severity of
attrition was found to be greatest at corners and edges where plastic deformation
occurred. This resulted in the formation of diagonal cracks and detachment of platelets

from the free face adjacent to the impact site. Detachment of the platelets was attributed
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to the formation of subsurface lateral cracks which, as captured by high speed

photography, indicated that such cracks arise during the unloading stage.

Arbiter et al (1969) reported on work concerning comminution through a free-fall
impact, double impact and slow compression tests. Fundamentally, these works
involved an effort to study products resulting from a single-stage operation, such as the
breakage of a specimen under single fracture conditions. The goal of their research was
to study the energy utilisation in the single fracture of brittle specimens and to relate the
pattern of breakage and the resultant fragment size distribution with the nature of the
material, specimen size, the manner of load application and the rate of loading. For all
three types of tests conducted, it was found that breakages started from the region of
contact between the sphere and the loading surfaces and failure, in general, occurred
along a conical surface (plastic deformation) whose base was the area of contact. In the
free-fall test, the area of plastic deformation or volume of permanent deformation was
found to be proportional to the energy input and independent of spécimen size. In the
slow compression and double impact tests, breakages were observed to have been
caused by the wedging action of the plastic deformation cones and by the hoop-tension
existing in the peripheral part of the specimen. With the sand-cement spheres, similar
breakage efficiency was observed from all the different type of tests conducted with the
exception that free-fall impacts needed twice the energy required by slow compression
to initiate fracture. The qualitative findings of the paper reported by Arbiter et al (1969)

are comparable with the computer simulated impact results presented in this chapter.

It should be noted that the above literature survey is restricted to a continuum
viewpoint. Though customarily treated in mechanics as continua, granular media
exhibit essentially discontinuous or discrete behaviour. When subjected to static or
dynamic stress or strain, the stress distribution and transfer of load from a particle to its
neighbour along a load transfer path can be systemmatically visualised through

photoelastic experiments. The works of Drescher and de Josselin de Jong (1972),
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Drescher (1979) and Rossmanith et al (1982), utilising photoelastic techniques, showed
a good visualisation of the stress propagation produced through isochromatic fringe

patterns.

The work of Rossmanith et al (1982), in particular, showed that dynamic wave
propagation in granular media differs extensively from the classical wave propagation
in continuum mechanics because of the peculiar structure in discrete materials. The
wave propagation process, as observed in the experiments, is governed by the Rayleigh
wave which increases the density of contacts in the propagation direction. Upon
passage of the wave, contact is partially released and the spatial orientation of the
granular media may be altered. A simple study of dynamic load transfer along specific
load transferring chains provided basic knowledge about wave velocities, contact
duration and directional stability. Though the work contributed some strong
concluding remarks