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Summary 

Tonal, textural and contextual properties are used in manual photointerpretation of 
remotely sensed data. This study has used these three attributes to produce a 
lithological map of semi arid northwest Argentina by semi automatic computer 
classification procedures of remotely sensed data. Three different types of satellite data 
were investigated, these were LANDSAT MSS, TM and SIR-A imagery. 

Supervised classification procedures using tonal features produced only poor 
classification results. LANDSAT MSS produced classification accuracies in the range 

of 40 to 60%, while accuracies of 50 to 70% were achieved using LANDSAT TM data. 
The addition of SIR-A data produced increases in the classification accuracy. The 
increased classification accuracy of TM over the MSS is because of the better 
discrimination of geological materials afforded by the middle infra red bands of the TM 
sensor. The maximum likelihood classifier consistently produced classification 
accuracies 10 to 15% higher than either the minimum distance to means or decision tree 
classifier. This improved accuracy was obtained at the cost of greatly increased 
processing time. A new type of classifier, the Spectral Shape Classifier, which is 
computationally as fast as a minimum distance to means classifier is described. 
However, the results for this classifier were disappointing, being lower in most cases 
than the minimum distance or decision tree procedures. 

The classification results using only tonal features were felt to be unacceptably poor, 
therefore textural attributes were investigated. Texture is an important attribute used by 
photogeologists to discriminate lithology. In the case of TM data, texture measures 
were found to increase the classification accuracy by up to 15%. However, in the case 
of the LANDSAT MSS data the use of texture measures did not provide any significant 
increase in the accuracy of classification. For TM data, it was found that second order 
texture, especially the SGLDM based measures, produced highest classification 
accuracy. 

Contextual post processing was found to increase classification accuracy and improve 

the visual appearance of classified output by removing isolated misclassified pixels 
which tend to clutter classified images. Simple contextual features, such as mode filters 
were found to out perform more complex features such as a gravitational filter or 

minimal area replacement methods. Generally the larger the size of the filter, the greater 

the increase in the accuracy. 

Production rules were used to build a knowledge based system which used tonal and 
textural features to identify sedimentary lithologies in each of the two test sites. The 

knowledge based system was able to identify six out of ten lithologies correctly. 

Key words: Argentina, Geological Remote Sensing, Digital Image Processing, Textural 

Analysis, Contextual Analysis
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Chapter 1 

Introduction 

1.0 Data Production Rates 

Remotely sensed data are being acquired at such rates that it is now impossible to view 

all scenes which are recorded. According to Hardy (1985) LANDSAT Multispectral 

Scanner (MSS) generates 5x103 bits/km2 (208 pixels by six bits by four bands). The 

Thematic Mapper (TM) on LANDSAT four and five generates 5.4x104 bits/km2 and 

the SPOT High Resolution Visible (HRV) sensor generates 6x104 bits/km2 in 

multispectral mode and 8x104 bits/km2 in panchromatic mode. If the area covered by a 

typical satellite is 5x108 km2, and this is covered in say 16 days, then the earth is 

covered by somewhere in the region of 10!4 bits of data every year by just one 

satellite. Put another way this is equivalent to over 100 000 Computer Compatible 

Tapes (CCT's) recorded at 6250 Bits per inch (BPi) every year. Furthermore with the 

new generations of radar satellites now being planned such as ERS-1 (and ERS-2), 

RADARSAT and the Japanese radar satellite, this situation can only be exacerbated. 

Especially as active sensors such as these radars can produce images in all weathers 

both night and day. The data generated by these satellites may be useful for a number 

of different disciplines, therefore the processing of the data is daunting. A plethora of 

papers appear when a new sensor becomes operational while the data from yesterday's 

satellite is left not fully investigated for their potential benefits. 

1.1 The Nature of Remotely Sensed Data 

The user needs knowledge or information about an object being sensed by a remote 

sensing device, in a form which he can understand. This information is generated by 

interpretation of the data. Remotely sensed data can be interpretted in two ways: firstly 

by the human interpreter and secondly by computer. The human interpretation may 

take place either prior to enhancement or after enhancement; the enhancement may either 

be non digital (photographic enhancement),or digital (computer enhancement). Typical 

enhancement might be contrast stretching or edge sharpening. Computer analysis may 

be in the form of the production of area statistics of classes in a scene, or the production 

of a thematic map such as land cover or lithological map. 

In an ideal world remotely sensed data would be stationary (that is, the measurements 

made on an unchanging object would not vary with time). The variations of the 

physical properties of an object would be explained by simple mathematical models 
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(for example gaussian distributions). The physical properties being sensed might be 

the spectrum of energy a material reflects (or absorbs), a particular wavelength of 

radiation it emits, or some property of its radar roughness. Therefore the sensor would 

image in regions of the electromagnetic spectrum where the object being sensed was 

uniquely discriminated and identified. 

In the real world of course the criteria above are not found; normally the remotely 

sensed data is non-stationary, non gaussian distributions are found, physical properties 

of objects are ambiguous, and the image is noisy to a greater or lesser extent. 

Furthermore, the means of analysis is by computer (digital image processor) which are 

normally not designed for remote sensing data sets. Most computers are designed to 

hold relatively small data sets with a high degree of precision. However, remote 

sensing images are normally large data sets, for example 3240 by 2340 pixels for a 

typical LANDSAT MSS scene( LANDSAT TM and SPOT images are much larger), 

held with a low degree of precision (typically eight bits or less for each band). 

Therefore there is a mismatch between the data source and the means of analysing it. In 

the real world therefore there are many problems which need to be investigated. 

1.2 Trends in Remote Sensing 

Many trends or developments in the twin fields of remote sensing and digital image 

processing can be identified. These include the following: 

1) Higher resolution images and therefore much larger data arrays. In the past decade 

the spatial resolution of earth resource satellites has come down from about 80 m (for 

LANDSAT MSS), to 30 m in 1982 (for LANDSAT TM) to 10 m in 1986 (for SPOT 

HRY panchromatic). A LANDSAT MSS image pixel is therefore covered by some 64 

SPOT panchromatic pixels. The Earth Observation Satellite Company (EOSAT) who 

operate the LANDSAT series of satellites are investigating the possibility of placing a 

panchromatic band on LANDSAT 6 or 7 which will have a spatial resolution of 5 m, 

and therefore the increasing spatial resolution of sensors will continue into the 

forseeable future. 

2) More and better positioned spectral bands. LANDSAT MSS has four bands in the 

visible and near infra red, these bands are both broad (that is they cover a wide part of 

the electromagnetic spectrum) and are in adjacent parts of the spectrum, so that 

particular spectral features cannot be identified. LANDSAT TM has six bands which 

are both narrower and better positioned than the bands for LANDSAT MSS. This is 

particularly important in geological surveys because of the ambiguous spectral response 

of geological materials in the visible and near infra red. The trend toward terrestrial 
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sensors with improved spectral capability continues, from the ATM with 11 bands, to 

instruments such as the Fluorescent Line Imager (FLI) which has some 288 channels 

covering the visible to the thermal infra red. It is only a matter of time before a 

spaceborne spectroradiometer of this sort is launched. 

3) Three dimensional data sets for stereoscopic viewing. These are the norm in aerial 

surveys because of the topographical information they provide. The SPOT satellite is 

the first commercial earth resources satellite available with the ability to produce 

stereoscopic images at nearly all latitudes. Stereoscopic images are particularly 

important in geological work because of the structural detail they give, such as amount 

and direction of bedding dip, amount and direction of fault movement and 

chronostratigraphic information such as unconformable contacts. 

4) The use of multitemporal and or multisensor data sets. This will become particularly 

important when radar data sets become routinely available in the 1990's, in the same 

way that multispectral passive images are now available from the LANDSAT and SPOT 

satellites. The importance of radar images is that they have ‘all weather night and day' 

imaging capability, because they provide their own energy to sense an object. They 

also provide information about the physical properties of an object, such as its 

roughness or complex dielectric constant, which are not provided by other sensors. 

Therefore radar images have very important benefits to both the civilian and the military 

remote sensor. 

5) The repeat time of sensors. This is an important point, especially in the case of 

dynamic situations such as monitoring volcanic events. The repeat time (the revisit time 

for a point on the earth's surface) of LANDSAT's 1, 2 and 3 was 18 days, this was 

reduced to 16 days with LANDSAT's 4 and 5. Although the revisit time for an orbit of 

the SPOT satellite is 26 days, the satellite can steer its sensors so that (depending on 

latitude) a revisit time of 3 to 4 days is possible. The revisit time of meteorological 

satellites is by necessity much more frequent than those of earth resources satellites: 

once a day for AVHRR data, and three images an hour for METEOSAT data. Much 

useful work can be done viewing large scale geological phenomenon with these 

satellites, such as monitoring the progress volcanic clouds in the upper atmosphere. 

In order to be able to fully exploit the information content of the data which is currently 

being produced by remote sensing devices, it will be necessary to develop algorithms 

which efficiently process and analyse the data. This means producing results which are 

satisfactory to an end user who may have no knowledge of how the product was 

generated. It may be possible that processing to geometrically and radiometrically 

correct the data onboard the satellite will be developed. Radar images might be 

converted to images onboard the satellite, perhaps by using a transputer array to 
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perform the necessary processing. Processing of this sort is important because it not 

only cuts down the amount of processing which must take place on the ground, it also 

means that the amount of data transmitted to the ground might be reduced. Further 

investigation into the uses of radar images and combined data sets must be undertaken. 

However, one of the problems of such multiple data sets was pointed out by Mather 

(1985) who states that the computational time of the maximum likelihood classifier 

increases as a square of the number of bands. Therefore new algorithms must be 

investigated which are both computationally simple and efficient. Multisensor data sets 

are a great demand on computer time, however, advanced processor technology such as 

that described by Landgrebe (1981) is likely in the near future to make this less of a 

problem. 

Clearly there is a need for a policy on archiving otherwise, the rate of production 

would eventually outstrip the ability to record and store the data. This means devising 

algorithms to do automatically, or at least semi automatically, what is currently done by 

the human interpreter. It also means throwing data away which is either of poor quality 

or of little interest to users. While this rather glib statement sounds relatively 

straightforward this is no means the case, as some of the very special operations that 

are undertaken by the human brain are at present very difficult if not impossible to 

emulate. Furthermore, problems of archiving are exacerbated by the fact that one 

scientist's cloud ruined scene is another's interesting weather pattern. One of the tasks 

for remote sensing scientists must be to evaluate the full potential of each type of 

imagery for each interested discipline. This means research into the fields of Artificial 

Intelligence and image understanding. This is a long term aim for digital image 

processing, in the shorter term there should be an aim to better exploit the data with 

more sophisticated analysis techniques and to produce more accurate useful and timely 

products. 

1.3 The Aims of this Research 

The aims of this research are to investigate the various types of multisensor data set 

(which are now becoming increasingly common), and their application to lithological 

mapping. This is of great interest, as large regions of the planet remain either poorly 

mapped or totally unmapped in terms of both geomorphology and geology. This is 

particularly the case in desert areas where the inhospitable conditions make fieldwork 

both expensive and dangerous. It is intended that remote sensing data sets can be used 

to produce geometrically and lithologically accurate thematic maps. There is a slight 

problem here, because the only way at present to produce geometrically correct remote 
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sensing data is to register to an existing map or surveyed ground control points. It is 

envisaged that in the near future the orbital characteristics of resources satellites will be 

monitored sufficiently, so that the geometric errors of the satellite can be modelled. 

Therefore, accurate maps will be produced from these data without the need for reliable 

base maps. The techniques which are described and tested in this work have been 

specifically applied to lithological mapping. However, exactly the same techniques can 

find application in the many diverse subjects for which digital satellite data has found 

use. 

1.4 Methodology 

Chapter 2, deals with geological remote sensing and some of the techniques, both 

digital and non-digital, which are currently used for this work. The next chapter 

discusses digital image classification techniques and attempts to show why these 

techniques have received but limited success in the field of lithological mapping. 

Chapter four describes the nature of the imagery used for this work. Chapter five 

describes the geological setting of the study areas for this research (that is North 

Western Argentina) and the appearance of the lithounits in the imagery. Chapter six 

investigates the techniques of textural classification and attempts to show which are the 

most useful for remotely sensed data sets. The following chapter introduces some of 

the ideas which have been suggested for contextual analysis for increasing classification 

accuracy, and describes the results of tonal/textural and contextual classification of the 

test sites. Chapter eight describes how simple knowledge based rules may possibly be 

used for high level labelling of classes in imagery. This means assigning names to 

lithotypes in a similar way to the photogeologist. Finally the conclusions of the 

research are drawn and a discussion about the possible benefits of this research is given 

along with possible areas for further research. 
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Chapter 2 

Geological Remote Sensing 

2.0 Introduction 

Geological remote sensing is an extension of the earlier discipline of photogeology. 

Photogeology can be defined as the visual extraction of geological information from 

photograph or image (Robinove, 1963). The term remote sensing was first used in the 

early 1960's with the first Symposium on Remote Sensing of Environment (University 

of Michigan, 1962). Much of the impetus for remote sensing was provided by the 

declassification of military imagery and the wide variety of electronic and optoelectronic 

scanners then being developed (Colwell, 1983). Further momentum occurred with the 

advances in platform design and especially the potential made possible by space 

platforms. 

Geological remote sensing includes all the techniques and principles of photogeology 

combined with a multitude more borrowed from a wide variety of other disciplines such 

as computing, chemistry, spectroscopy and physics. The term embraces the manual 

and digital analysis of images from a large number of remote sensing devices in order 

to extract geological information. The importance geological remote sensing is 

underlined by Allan (1986) who shows that this is one of the few commercially viable 

areas of remote sensing. 

A number of texts have been published on both photogeology and geological remote 

sensing. Photogeology Regional Mapping (Allum, 1966) remains a classic text on 

photogeology. The first edition of the manual of remote sensing has a chapter given 

over to "Terrain and Minerals: Assessment" (Reeves et al., 1975) and this is updated in 

the second edition under the title "Photogeology and Geological Remote Sensing" 

(Williams, 1982). One of the best texts in geological remote sensing remains "Remote 

Sensing in Geology" (Siegal and Gillespie, 1980), two of the four sections are devoted 

to image processing and enhancement techniques. Slaney (1982) in "LANDSAT 

Images of Canada a Geological Appraisal" provides field geologists with LANDSAT 

imagery and invites them to comment on the usefulness of these data. Probably the 

most visually impressive and most up to date text in this area is Image Interpretation in 

Geology (Drury, 1986a). This book includes excellent chapters on thermal images, 

radar images and image processing. 
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2.1 Development of Geological Remote Sensing 

As previously stated the use of conventional aerial photography in geological 

interpretation is a long established technique but it was not until the results of the space 

programme became available that the scope of remote sensing in geology began to be 

appreciated. For example much of the pioneering work on lunar stratigraphy was 

carried out by the United States Geological Survey (notably by Shoemaker and 

Hackman) from earth based photography and Soviet Moon probe imagery (Rothery, 

1985a). 

Many geologists (particularly academics) remain largely unaware of the geological 

value of remotely sensed data. Many may have become disenchanted by the wild, and 

largely unfilled claims made in the early days of LANDSAT, others were probably 

disappointed by the poor quality of the standard products produced by NASA 

(Rothery, 1985b). However, hardware and software for digital processing of these 

data is now becoming comparatively inexpensive. An example of what can be achieved 

can be found in the remote sensing unit at Aston, here 3 frame grabber boards each able 

to hold 512 x 1024 x 8 bits of data were purchased to work with an IBM PC-AT host, 

A certain number of low level subroutines were provided with the boards for software 

development. The total cost of the system including IBM PC, display and colour 

printer was somewhere in the region of £7000 in 1987 prices. With this price tag the 

production of products suitable for the special requirements of the geologist are now 

possible for relatively small (under financed) Geology Departments and for small 

companies. 

2.2 Objectives of Geological Remote Sensing 

The major objectives of geological remote sensing from satellite data were given by 

Fischer (1976) he lists four main aims, these are: 

1. The identification and location of large features (including glacial, fault, and 

volcanic features) which are present on the surface of the earth, but because of their size 

and subtle expression have gone unrecognised. These features can be seen because of 

the synoptic viewpoint given by satellites. 

2. The use of multispectral imagery for mapping the distribution of lithology. 
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3. The identification of certain environmental features which are only 

intermittently visible depending on the angle of illumination and on snow, water or 

vegetation distributions. 

4. Viewing certain geological processes such as vulcanicity or sedimentation 

which can be better understood if seen in some form of time lapse mode. 

The following sections describe some of the routine ways in which remotely sensed 

imagery has been applied to geological problems and some of the manipulation 

techniques carried out. An emphasis in this text is placed on those techniques which 

satisfy Fischer's second aim of geological remote sensing, because this is the major 

thrust of this thesis. 

2.3 Lineament Analysis 

O'Leary et al. (1976) defined a lineament as a "mappable, single or composite linear 

feature of a surface, whose parts are aligned in a rectilinear or slightly curvilinear 

relationship. . . . and reflect a subsurface phenomenon". They can be formed by a 

variety of geomorphological elements, including, topography, vegetation and soil or 

rock tonal alignments. Most appear to be continuous, but on closer inspection consist 

of closely spaced edge and line segments which tend to be merged by the eye. This 

intermittent nature of lineaments is one of the reasons why it is difficult to produce 

algorithms which will objectively enhance and extract these features. 

Geological lineaments are important for a number of reasons, they may represent fault 

or fracture zones. These zones may be areas of high seismic risk or subsidence. They 

also be areas of economic importance, for example it is well known that certain types of 

mineralising fluids tend to follow zones of weakness in rocks these can give rise to the 

famous Mississippi valley (Cu-Pb-Zn) type of mineral deposit. 

Many studies by photo-interpretation of lineaments have been attempted, Qureshy 

(1982) found coincidence between photo-interpreted lineaments in LANDSAT MSS 

imagery and gravity and magnetic data of a study area in northern India. Ray et al. 

(1980) studied lineaments in LANDSAT MSS imagery of northwestern India they 

linked this to the genesis of base metal mineralisation in the area. Other studies include 

Babcock and Sheldon (1976); Bhan and Krishnanunni (1983); Gold and Parizck 

(1976); Haman (1976) and Wheeler and Stubbs (1976). 
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2.3.1 Measuring Lineaments 

Podwysocki et al. (1976) studied lineaments interpreted by four different skilled 

observers. They found that "only 0.4% of the total 785 linears" (in the image) " were 

seen by all four operators, 5% by three operators, and 18% by two operators". The 

study also showed that the average lengths of the lineaments mapped by different 

observers were significantly different. It should also be noted that right handed 

interpreters find it easier to draw NE-SW trending lines (conversely left handed 

interpreters find easier to draw NW-SE lines). To avoid bias, the image should be 

periodically rotated through 90°. These results show some of the drawbacks of manual 

interpretation of lineaments. It is for these reasons that objective procedures for 

lineament enhancement and extraction have been proposed. 

2.3.2 Lineament Enhancement Methods 

Various techniques have been tested to enhance lineaments, these include both digital 

and optical processing methods. The next sections describe some these. 

2.3.2.1 Optical Processing 

Pohn (1970) pointed out that lineaments could be enhanced by using a coarse 

diffraction grating consisting of closely spaced parallel lines on a glass or plastic plate. 

The apparatus is slowly rotated in front of the image, features perpendicular to the 

grating become enhanced at the expense of those parallel to the grating (ie directional 

filtering). This apparatus is known as "Ronchi Ruling" and was used to identify 

several sets of linear features by Offield (1975). 

Other optical techniques for lineament extraction are based on the Fourier transform of 

the image. If an image is thought of as a two dimensional surface where the brightness 

at any point (ij) represents the height of the surface at that point then the image can be 

thought of as a three dimensional wave surface. This wave can be thought of as a 

composite wave made up of pure sine and cosine waves of various amplitudes and 

frequencies. The low spatial frequency content of the image represents large areas with 

constant brightness. High frequency information consists of brightness changes over a 

short spatial dimension. Lineaments therefore can be thought of as belonging to the 

high spatial frequency component of the image. 
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McCullagh and Davis (1972) found that the technique was useful for showing the 

spatial frequencies in various types of aerial images. Experiments using the optical 

Fourier transform on LANDSAT imagery were carried out by Barnett et al. (1976). 

They were able to extract textural information corresponding to fine details in the image 

and thus they claim that a better appreciation of the geological structure can be obtained. 

2.3.2.2 Digital Processing 

Two types of digital processing have been used for lineament analysis, these are firstly, 

Fourier based techniges and secondly, techniques based on convolution filtering. In 

the Fourier transform the image is separated into its component sine and cosine waves, 

the image is said to be transformed from the spatial domain to the frequency domain. 

The transform can be performed by both optical and digital means. The transform is 

fully reversible so that the Fourier transform of an image can be transformed back to the 

original image. The simplest way to view a Fourier transform of an image is by 

computing the power spectrum, this is the magnitude of the transform at each (i,j) point 

in the image. 

power spectrum=v((real part)2 + (imaginary part)2) equation 2.1 

The power spectrum shows the highest spatial frequencies at the centre of the 

transformed image and successively lower spatial frequencies at greater distances away 

from the centre. The direction of a particular frequency is given by the angle that it 

plots at. 

Various filters which can block out or enhance certain directions or frequencies can be 

used. The simplest way of blocking out the lower frequencies is a ring which allows 

frequencies near the centre of the image to be passed while impeding those which occur 

in the vicinity of the ring. 

Gramenopoulos (1973) used both optical and digital Fourier methods to extract spatial 

signatures of land cover classes using LANDSAT MSS data, he had accuracies ranging 

from 11% for river beds to 97% for a desert class. Fredericksen (1981) used digitised 

aerial photography in order to obtain spatial signatures of various geological and 

geomorphological classes using the Fourier transform. 

This is a digital technique in which a small matrix (or kernel) is passed over all the 

pixels in the image. The pixel to be altered (in figure 2.1 this is denoted by P5) is 
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replaced by some mathematical function of the pixels in the kernel (see figure 2.1). In 

general the new pixel value PS' is given by: 

P5' = (A.P1 + B.P2 + C.P3 + D.P4 + E.P5 + F.P6 + G.P7 + H.P8 +I -P9)/K 
equation 2.2 

Where P1, P2, P3, P4, P6, P7, P8 and P9 are the neighbouring pixel values to PS, A, 
B, C, D, E, F, G, H and I are kernel values as shown in figure 2.1, and K is constant. 

The new central pixel is placed in the output image and the kernel advances along one 

pixel in the image as shown in figure 2.2. Typical sizes of kernels are 3 x 3, 5x D5 0k 
7 but sizes of up to 101 x 101 are sometimes used. For example, the average of the 

pixels in the kernel may calculated, the output image will appear blurred because the 
high spatial frequencies are suppressed. If this (low pass filtered) image is then 

subtracted from the unfiltered image then only the high frequencies will remain. As 
already stated these high spatial frequencies include the lineaments which we are 

seeking. This type of approach known as subtractive filtering was used by Chavez et 

al. (1976), Thomas et al. (1981) and by Brunner and Veck (1985). 

Figure 2.1 To illustrate the Kernel used in convolution filtering 

  

  

  

Image 3 by 3 Kernel (or Mask) 

Pisces A B Cc 

P4 | P5 | P6é D E ie 

By |ERS: og G H |           

21



Figure 2.2 To illustrate the movement of a filter through the image 
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Filters which enhance high spatial frequencies are known as high pass filters, those 

which suppress high spatial frequencies are known as low pass filters. Non square 

filters or directional filters are sometimes used but these can introduce linear artefacts 

into the image (Gillespie, 1976). Directional filters were used by Moore and Waltz 

(1983) who outline an objective procedure for lineament enhancement. This method 

involves selective thresholding of the filtered imagery to find the lineaments in the 

imagery after filtering. Drury (1986b) finds disappointing results for directional 

filtering of LANDSAT TM imagery of South west England because of the clutter 

caused by agricultural features. 
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2.4 Lithological Mapping 

The major aim of geological mapping is to identify geological materials, in terms of 

age, structural relationship and lithology. Remote sensing cannot give absolute ages 

but can be sometimes indicative of relative age. Just as a field geologist bases his 
subdivisions on hand specimens which are more generalised than the subdivisions used 
by the petrologist using the microscope, so the photogeologist must use more 

generalised subdivisions than the field geologist. The ability to distinguish lithology is 

often very much restricted because of the relatively poor positioning of spectral bands 

and the low spatial resolution in many remote sensing devices used for geological 
work. Lithological mapping using remotely sensed data involves the ability to both 

distinguish and identify at least two lithofacies in the imagery. The ability to 

distinguish implies recognising differences in spectral and/or spatial properties of the 

classes in the data. The ability to identify lithological materials is a much more difficult 

problem than simply distinguishing them. Lithological materials which are quite 

different lithologically may have similar spectral responses while similar materials may 

have different spectral responses. This is further exacerbated by vegetation and soil 

development which can alter spectral signatures. Geological photo-interpreters are able 

to recognise and map units in an image by a number of different criteria, including 

differences in albedo, spectral contrast, textural (spatial) properties and by position in 

the image. It is these skills which the computer must emulate in order to routinely 

process images in a meaningful way. 

2.4.1 Spectral Identification and Discrimination of Geological Materials 

LANDSAT MSS data has a spectral range that covers only the visible and the near IR 

parts of the electromagnetic spectrum. In this region of the spectrum limonite (a catch 

all term for iron hydroxides) is the only mineral which can be uniquely identified 

(Hunt, 1976). Limonite has absorption bands associated with the ferric cation which 

gives rise to a characteristic spectral response in this part of the spectrum. The unique 

identification of rock material is therefore not possible in the visible or near IR. 

However, considerable success can be achieved in delineating and discriminating rock 

units, providing the correct processing is carried out. 

Limonite is important because hydrothermally altered rocks often contain iron pyrites 

which oxidizes to give limonite. Rowan et al. (1974), Podwysocki and Segal (1980), 

and Podwysocki et al. (1982) used multispectral scanner data to delineate limonitic 

material which may be associated with hydrothermally altered rock. However, not all 
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limonite occurs in hydrothermally altered rocks, or hydrothermally altered rocks may 

occur without iron pyrites. Therefore the presence or absence of limonite does not 

unequivocally prove hydrothermal alteration. 

Distinctive silicate bending and stretching vibrations occur when silicate lattices are 

excited by radiation from the middle and the thermal infrared. This gives rise to 

distinctive spectral responses for these materials in those parts of spectrum. As silicates 

make up over 80% of the earths crust they are of the upmost importance for the 

geologist. For these reasons much effort has been expended producing scanners such 

as TIMS (thermal inertia multispectral scanner) and other thermal scanners and even 

spectro-radiometers such as FLI (fluorescent line imager) which has up to 288 

channels. 

Minerals such as carbonates, clay minerals such as kaolinite, montmorillonite, jarosite, 

alunite, sericite and pyrophyllite have distinctive spectra in the middle infra red 1.8 pm 

to 2.5 um range. It is for this reason that the band 7 of the thematic mapper was added 

(on the recommendation of the GEOSAT working group (Henderson and Swann, 

1976)). This band was added at such a late stage that it was given the name band 7 

even though band 6 is a thermal band covering the 10 jm to 12 um range. 

Clay and other minerals diagnostic of hydrothermally altered rocks have been mapped 

using aircraft MSS data by Ashley and Abrams (1980), and by Rowan and Kahle 

(1982) and using satellite data by Rothery (1987). 

The thermal IR (8-14 jm) range is especially important for the reasons stated above, 

that is it contains emittance minima diagnostic of the major types of silicates (Vincent et 

al., 1975); Hunt (1981). These minima occur at different spectral positions depending 

primarily on the mineral composition. The position of these absorption features is 

associated with bending and stretching movements in the Si - 0 tetrahedra (the so called 

restrahlen bands). The amount of absorption is dependent on the interconnection of the 

Si - 0 tetrahedra comprising the crystal lattice. The end members are represented by 

quartz with complete sharing of all oxygen molecules, to olivine, with its isolated Si04 

tetrahedra (Goetz and Rowan, 1983). 

2.4.2 Radar Image Analysis 

Radar images provide complementary information to other forms of remote sensing 

imagery which make them useful for mapping the surface roughness of classes on the 
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ground. In terms of lithology this means that they can often differentiate between fine 

and coarse grained rocks. Koopmans (1985) using SAR 580 data of European test 
sites found that the "spectral" characteristics of radar data were not useful for mapping 

rock units. He found that the geological information was bound up the texture of the 

image, the texture being related mostly to the drainage pattern. Evans et al. (1986) used 

10m resolution multipolarisation data over geological sites in the Death Valley area of 

California. The radar images gave data for the mapping of surficial deposits of 

differing age, lithology, and chemical composition. In the Wind River Basin area, they 

found that multiple polarisation radar data could discriminate sedimentary rocks based 

on their surface roughness and vegetation cover. 

2.4.3 Coregistered Multispectral Imagery and Radar Imagery 

Stewart et al. (1980) used coregistered LANDSAT MSS and SEASAT data of the San 

Rafael Swell area of Utah. This is a large breached asymmetric anticline composed of a 

variety of sedimentary rock types. The SEASAT image allows differentiation of fine 

grained rock units from coarse grained units, because it is sensitive to surface 

roughness. The LANDSAT image on the other hand provides surface composition 

information, therefore the two images provide complementary information. 

Furthermore the SEASAT image with a pixel size of 35 m allows additional lithological 

units to be differentiated, the added texture is of great help in distinguishing between 

some of the subtly different units. 

Geometric registration of SIR-A, SEASAT and LANDSAT MSS images was carried 

out by Rebillard et al. (1984) for analysis of a terrain in northern Tunisia. The 

SEASAT image was chosen as the reference image and root mean square (RMS) errors 

of two to three pixels in both x and y were obtained for a least square method of 

solving the transform equations and using a bicubic interpolation. Similar RMS errors 

were found by Oldfield et al. (1988) using LANDSAT MSS, TM and SIR-A data ina 

study area of northern Argentina. 

2.4.4 Band Ratioing 

Various arithmetic combinations of bands are possible. The most useful of these 

combinations for lithological discrimination is the ratio of one band to another (that is, 

band A divided by band B). The ratios can theoretically produce values from zero to 

infinity but because of the restricted range of pixel values in most images ratios rarely 

fall outside the range of 1/4 to 4, These ratios are then scaled into the range of 0-255 
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for display. This may be completed by setting values of less than unity to values of 0- 

127 and values of greater than unity to the range of 129-255. 

The most important advantage of a ratio image is that the spectral signature curve of the 

particular surface material is accentuated. If the bands cover peaks, or absorption 

troughs, or changes in slope of the curve they can be combined in pairs to enhance the 

subtle spectral response of the material. In LANDSAT MSS for example, bands 5 and 

7 show vegetation as dark and light respectively (the so called red edge). In a standard 

false colour composite vegetation will stand out as red. However, variations in 

vegetation density and type are lost. Ratios of these two bands show small changes in 

these parameters because the amount of vegetation has a large effect on the ratio. 

A second major advantage of band ratioing is the reduction of shadow effects. Because 

of topographic slopes in a scene a lithology may appear in different tones due to 

shadow effects. The amount of shadow should be the similar in all bands, therefore a 

ratio image of the same lithology should show similar tone no matter what the 

illumination (ie the shadow divides out). In practice this is not always the case because 

the spectral response of the material is subtly different in shadow than that of the same 

material in direct illumination. Nevertheless, a ratio image does reduce the effects of 

uneven lighting caused by slope and shadow. 

A disadvantage of band ratioing is that it enhances noise, this is because noise is 

uncorrelated with the data set. This gives rise to erroneous values in the numerator or 

the denominator of the ratio which in turn produces extreme values for the ratio. A 

second disadvantage of band ratioing is that it suppresses albedo information (where 

albedo is the overall ability of a material to reflect radiation of all wavelengths). For 

example some clay rich rocks such as marls have similar spectral properties to the basic 

igneous rocks. However, the basic rocks have lower albedo than the marls. In a ratio 

image the lithologies will appear identical. Clearly in this case a multispectral image is 

needed to discriminate the features in the image. 

Because of the 4 bands on LANDSAT MSS there are only 6 possible ratios (and their 6 

reciprocals) these are 4/5, 4/6, 4/7, 5/6, 5/7 and 6/7. These can be combined in various 

false colour composites of which more than 20 different choices are possible. In order 

to determine which composite will produce the best discrimination the important 

spectral features should be decided upon prior to analysis. This can only be achieved 

by a knowledge of the rocks and the soils in the study area and their spectral response. 
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Band ratioing has been successfully used to identify rocks containing limonite by 

Rowan et al. (1974); Goetz et al. (1975); and Blodget et al. (1978). It has been applied 

to aircraft MSS data by Rowan and Kahle (1982); and Podwysocki et al. (1982). 

Davis et al. (1982) used band ratios for locating phosphate, gypsum and limestone 

deposits with LANDSAT MSS imagery of south central Tunisia. 

2.4.5 Principal Components Transform 

Principal Component Analysis (PCA) (also known as the Kohunen Loeve transform) is 

a mathematical transformation based on the image covariance or correlation matrix. In 

this transformation the original n bands of data are projected onto n new principal 

components. The new axes are calculated by, linear additive combinations of the old 

bands. The principal axis known as the first principal component (PC1), lies along the 

line of greatest variance in the scene. The second principal component (PC2) is 

orthogonal to the first principal component in such a direction to maximize its variance 

(see figure 2.3). Successive components each have successively less scene variance. 

Principal components is an analysis technique used to give the investigator a feel for the 

distribution of data. In a typical LANDSAT MSS scene the first principal component 

may contain between 90% and 95% of the total scene variance and the fourth principal 

component (PC4) (last and least component) may have less than 1% of the variance. 

Band 2 

  

Band 1 

Figure 2.3 To illustrate the principal components transform 
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Principal components may be displayed in combinations of threes one on each of the 

colour guns of a video output to produce a false colour composite. The transform can 

reduce the dimensionality of large multiband data sets (which are becoming increasingly 

common in remote sensing). Further instead of the limited number shades and hues 

that characterise most images, principal components with their decorrelated bands give 

vivid colours. Unfortunately since the statistics of no two scenes are alike, the colours 

in the image after the transform will not be alike even though identical themes may be 

present. A further disadvantage is that noise is not correlated with the data set, lower 

components therefore often have large contributions of noise. Since in the false colour 

composite each band is given equal prominence the lower components give the scene a 

noisy appearance. 

Despite these drawbacks the principal components transform has been successfully 

applied to lithological discrimination by many authors including Taylor (1974); 

Fontanel et al. (1975); Merembeck et al. (1977); Blodget et al. (1978); Blodget and 

Brown (1982); Jacobberger et al. (1982); Lees et al. (1985); and Fraser and Green 

(1987); 

A technique similar to the principal component transform is called canonical analysis. 

Here the statistics of the PCA are calculated from small training areas which are 

indicative of the themes which are to be discriminated, but the transform is applied to 

whole image. This method was used by Rothery (1985c). 

A process known as decorrelation stretching is based on the principal component 

transform. In this method the new decorrelated axes are computed and some form of 

contrast enhancement is applied. The data are then projected back onto the original axes 

so that the original colours of the lithologies are preserved. The scene, however, has a 

much richer set of colours which makes interpretation easier. This method was applied 

to LANDSAT TM geological images by Rothery and Francis (1987); and Rothery 

(1987). 

2.4.6 Colour Spaces 

Most images are expressed as the three additive primary colours red, green and blue. 

This is known as the RGB colour co-ordinate system or the RGB colour space. The 

problem with this colour space is that it is difficult to optimise contrast stretches. Some 

transformations such as the principal components produce vivid colours but are scene 

dependent, so that they are not easy to relate to the electromagnetic interactions of the 
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surficial material. To overcome these problems alternative colour spaces can be 

considered. 

One of the most widely used colour spaces is the Intensity, Hue, Saturation system 

(IHS). The hue of an object is the average wavelength which it reflects. There are two 

kinds of hue those like green, yellow and blue which can be found in the visible 

spectrum (known as the spectral hues) and those such as purples and browns which 

cannot be found in the visible spectrum (known as non-spectral hues). Saturation is the 

range of wavelengths around the average wavelength, in other words it is a measure of 

the pureness of the light. A high value of saturation indicates a single pure colour. 

Intensity is a measure of the total energy involved in all wavelengths of the reflected 

light from an object. A high intensity means much light. 

Transformation from RGB to IHS space can be performed by rotation of the RGB 

system co-ordinates to spherical co-ordinates. The IHS system can be thought of as 

possessing a conical shape, where intensity is the vertical axis, saturation is the distance 

from the centre of the cone and the hues lie in a radial sequence about the centre of the 

cone. 

Rothery (1987) performs a contrast stretch in IHS colour space and then transforms the 

data back onto the original axes for the reasons described section 2.4.5. IHS 

transforms have been used on single band data by using low pass and high pass filtered 

images of a scene. These can be used together with the raw data to modulate intensity, 

hue and saturation, thereby producing a coloured image. This was described by Daily 

(1983) and by Brunner and Veck (1985). 

Other colour spaces have been investigated including Taylor colour space where 

brightness is controlled by PC1. The range of DN of PC2 are assigned hues produced 

by mixing red (DN=0) and green (DN=255). Hues between blue (DN=0) and yellow 

(DN=255) are controlled by the DN of PC3 (Drury, 1986a). Munsell colour space is 

yet another colour space here brightness and colour variations in the image are 

expressed as brightness, red-greeness and blue-yellowness (ibid.). 

2.4.7 Image Classification 

This is a technique to define or recognise classes or groups where members have 

certain characteristics in common. It may be performed manually by the skilled 

interpreter or semi-automatically by computer. The classes or 'themes' give a thematic 
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map (although this term has now fallen out of favour as all maps have some theme). In 

geological terms the classes will be lithologies and the map will be a lithological map. 

For reasons discussed earlier in this chapter a map produced by remotely sensed data 

cannot be a true geological map. Two approaches to image classification can be 

attempted these are (1) supervised, and (2) unsupervised. These will be described in 

more detail in the chapter 5. 

2.5 Summary 

Remotely sensed data offers the geologist a viewpoint of features so large that they 

cannot be seen on the ground and may only be inferred after careful fieldwork. The 

structural features which are observed on the ground can be placed in their proper 

regional context by the unique synoptic viewpoint offered by remote sensing. 

Therefore a better understanding of the regional geology can be obtained 

Remotely sensed data are capable of discriminating and even identifying geological 

materials in favourable circumstances. However, the most commonly used satellites 

(LANDSAT and SPOT) have poorly positioned spectral bands for geological mapping 

and therefore only a very limited number of lithologies can be identified. Digital 

processing of the data can produce good discrimination of rock types. The data cannot 

be directly used for geological mapping as age data are not present so that stratigraphic 

units can only be inferred. In the case of the LANDSAT satellite the lack of 

stereoscopy means that few structural features such as the dip of bedding can be 

mapped, therefore these data can only be used to produce lithological maps. 
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Chapter 3 

Description of the Study Areas 

3.0 Introduction 

The study areas used for this project are in the region adjacent to the city of San Jose de 
Jachal (La Rioja Province) in northwest Argentina. This region was chosen for four 
reasons. Firstly, because of its semi-arid nature which gives good exposure of 

lithology. Secondly, conventional forms of fieldwork are both expensive and difficult 

to carry out because of logistical difficulties. Thirdly, because of the opportunity for 

analysis of multi-sensor data, as satellite data from three different sources were 

available for this study. The areal coverage of each data set is shown in figure 3.1. 

LANDSAT 2 MSS image 249/081, viz. LANDSAT 5 TM quarter scene 232/081 and 

SIR-A data take 29 (a fuller description of these data is given in chapter 4). The 

LANDSAT TM scene was available only for the last three months of the project. 

Finally the region was chosen because of the availability of ground data showing the 

distribution of lithologies, from the Argentine Geological Survey 1:200 000 series of 

geological maps and their corresponding bulletins. 

The physiography of the region can be split into two parts. In the west of the region 

there are a series of mountain belts trending north to south, parallel to strike, which 

reach heights of over 2600 m. These pass eastwards into a great outwash plain (which 

is at a height of 1400 to 1500 m) covered by recent alluvium, on which the city of San 

Jose de Jachal is situated. The drainage is dominated by the eastward flowing Rio 

Jachal (perpendicular to strike) and its tributaries which are parallel to strike. 

3.1 Climate and Soils of the Study Area 

Canoba (1983) describes the general climate of the region. The area has a mean winter 

temperature of 8 °C, the summer temperature is 25 °C with variations depending 

mainly on local topography. The region has in general, very low precipitation, with the 

mean annual rainfall in La Rioja being 275 mm. The spring is dry and most of the rain 

occurs in the summer (January and February). The rains are unpredictable and 

torrential in nature, causing flash floods with great erosive force. The autumn and the 

winter are dry, the latter being cold, with frosts occurring almost daily between March 

and August. 

The soils of the region are generally granular (stony, stony sandy and sandy) but a thin 

humic layer can occur in places. Vegetation is small and stunted in size and generally 

sparse, though it is more common on the higher parts of the mountains. 

31



Figure 3.1 To show the areal coverage of each data set 
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3.2 Description of the Test Sites 

The two test sites are close to the city of San Jose de Jachal (see figure 3.1) they are 

covered by a SIR-A swath (data take 29) and LANDSAT MSS image 249/081. Test 

site 2 is also covered by TM scene 232/081. In both test sites five different 

lithostratigraphic units were shown on the geological map. The assumption was made 

that the published geological maps show the correct distribution and type of lithology, 

and that the whole area of each test site was represented by only these classes. The 

possibility that other unrecognised lithologies exist was not taken into account. 

Classification accuracy is inversely proportional to the number of classes present, 

therefore the fact that each test site is covered by the same number of lithologies makes 

the direct comparative tests of classification accuracy possible. 

3.3 Test Site 1 Jachal, Provincia de San Juan 

Test site 1, lies some 10 km west of the city of San Jose de Jachal, it is covered by 

sheet 18c of the Argentinian 1:200 000 series of geological maps and the geology is 

described in the corresponding bulletin written by Furque (1979). Most of the 

description of the geology of the area which follows is largely abridged from this work. 

Test site 1 is represented by a number of sedimentary rock types with some 

pyroclastics, and some basic igneous intrusives. Rocks ranging in age from the 

Ordovician period to the Quaternary period outcrop in this test site which have been 

subject to low grade regional metamorphism (with the exception of the Quaternary). 

The lithological map of test site 1 is shown in map 3.1, plate 3.1 shows the LANDSAT 

MSS (4, 5, 7) false colour composite of the test site, plate 3.2 is the SIR-A image of 

test site 1. 
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AT MSS false colour composuite of test site 1, band 7 displayed as 

red, band 5 as green and band 4 as blue. 

 



T MSS false colour composuite of test site 1, band 7 displayed as 

red, band 5 as green and band 4 as blue. 

 



3.3.1 Ordovician Yerba Loca Formation 

The oldest rocks in test site 1 belong to the Ordovician period and are called the Yerba 

Loca Formation. The outcrop of this formation extends in a band from the extreme 

north of the test site, where it reaches a width of 15 km, to the extreme south where its 

width is less than 3 km. The outcrop forms the mountain range which is called Sierra 

de Yerba Loca (which gives the formation its name). 

The oldest rocks of this formation occur in the western part of the outcrop, consisting 

of a medium grained conglomerate 2 to 3 m in thickness and cornposed of rounded 

quartzite pebbles in a sandy matrix. This passes upwards into coarse, pale grey, sandy 

quartzites, interbedded with a fissile, finely laminated pale green sericitic argillite which 

is overlain by thickly bedded, massive quartzites (beds reaching thicknesses of up to 12 

m). These beds are strongly resistant to erosion and form distinctive benches. The 

quartzite is overlain by greywackes of a green and grey-green colour. These are 

generally fine grained and very compact with many laminations. They increase in both 

thickness and coarseness towards the south. 

Neither the base nor the top of this formation outcrop occur in this area. The formation 

is slightly fossiliferous yielding graptolites such as Climacograptus, Nemagraptus, 

Glyptograptus and Dicellograptus. These indicate an age of Lower Caradoc. The 

rocks have been metamorphosed producing the sericite, which is much more common 

in the west of the outcrop than in the east. A suite of basic and igneous rocks has been 

intruded into the formation, coarse gabbros occur in the east, and andesites in the 

south. 

In the LANDSAT MSS false colour composite the formation appears a dark bluish red 

(probably because of the presence of a thin soil supporting vegetation). The outcrop 

has an overall very rough, very coarse texture with a strong directional fabric 

perpendicular to its strike caused by numerous drainage channels. The eastern 

boundary is sharp and well defined possibly indicating a faulted margin. In the SIR-A 

image the outcrop is medium to light toned possibly indicating a fine grained rock and it 

is again the texture fabric is coarse, due to drainage channels perpendicular to strike. 

3.3.2 Silurian Tucunuco Group 

Rocks of Silurian age occur in a north-south trending strip to the east of the Ordovician 
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outcrop, in the form of a asymmetrical syncline cut by east-west faulting. This group 

has been divided into two units which for the purposes of this study have been 

amalgamated. The rocks are dominantly marine sediments and were deposited 

transgressively upon the Ordovician. 

The lower unit of this group reaches a thickness of 435 m in its type locality, and is 

composed of lutites and sandy lutites of greenish colour. The sandy lutite is 

predominant in the upper third of the unit, whilst in the lower two thirds abundant pale 

to dark brown calciferous bands 0.2 - 0.5 metres in thickness occur, which can yield 

well preserved fossils of Wenlockian age. 

The upper unit consists of three parts. The lowest is composed of unfossiliferous 

green lutites with some lenticular intercalations of quartzite (this part is up to 250 m 

thick). The central part is made up of lutites of pale grey-green to dark green colour 

with many sandy intercalations. These intercalations are thinner than in the lower part 

of the formation and can be highly fossiliferous. The top third part of the group 

consists of quartzites and sandy quartzites of maroon colour which alternate with thin 

green lutite bands which yield scarce brachiopods. 

In the LANDSAT MSS standard false colour composite this formation has a pale blue 

to light red colour, and is characterised by relatively subdued topography with medium 

to fine texture and some fabric parallel to strike. The group has well defined 

boundaries in the north and less well defined boundaries in the south on the SIR-A 

image. The texture of this rock group is much more random than that of the Ordovician 

in both the MSS and SIR-A imagery. 

3.3.3 Devonian Talacasto Formation 

The lower part of the formation is composed of calcilutites of grey-green to greenish- 

red colour, with intercalations of fine brown and green sand. In some localities 

intercalations of conglomerates and calcareous, fossiliferous concretions occur. The 

presence of an abundant marine fauna in the older rocks of this formation give a lower 

Devonian age to the rocks. The middle part of the formation is composed 

predominantly of lutite which has a grey-blue colour and reaches a thickness of 400 m. 

The upper part of the formation is composed of finely stratified lutite, limestones and 

sandstones of greenish grey colour. The lutites alternate with fine sandstones and 

greywackes, of light grey colour and reach a thickness of up to 200 m. These upper 

beds have a scarce fossil content because of the increasing continentality of the 
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depositional environment. The overall thickness of Devonian sediments in this test site 

is some 1000 m. 

The LANDSAT false colour composite shows this formation to be light blue in colour, 

indicating little vegetation. The formation has a very coarse, medium texture with little 

discernible fabric. In the SIR-A image the formation has very indistinct boundaries and 

very variable tone ranging from very pale to very dark. The texture is coarse dominated 

by the reflections from drainage channels. 

3.3.4 Tertiary El Corral Formation 

The Tertiary sediments of this test site occur in a basin to the west of the Yerba Loca 

mountain range. The lowest part comprises reddish-violet fanglomerates composed of 

fragments of extrusive igneous rocks, especially andesites. Lenticular beds derived 

from Ordovician grey limestone and crystalline basement complex occur in places. In 

the basal levels some sandstones interbedded with tuffs occur, these diminish rapidly in 

the upper levels. Beds of gypsum are also present in places. The presence of a 

brownish-green lutite sequence yielding a gastropod fauna which has a Tertiary age is 

noted by Cuerda (1963). The middle and upper units of the formation consist of 

thickly bedded lenticular conglomerates which pass laterally into fine dark brown 

sandstones. The conglomerate is mainly composed of rounded pebbles of crystalline 

basement but in places Ordovician limestones become the chief constituent. 

Because of the scarcity of fossils in this lithology the age of the rocks can not be given 

accurately, however, it is accepted that the lower part of the formation is of Pliocene 

age. 

In the LANDSAT MSS image the Tertiary sediments appear dark because they occur on 

west facing slopes which are not illuminated. Bands 5 and 6 show relatively higher 

reflectance than the other two bands, possible due to presence of ferrous bearing 

minerals or weathering products. The sediments have a very coarse, very rough 

texture, characteristic of conglomerate (see plate 3.1). 

3.3.5 Quaternary Iglesia Formation 

Superficial cover of Quaternary age is of great importance in this region as it is very 

areally extensive. The formation is principally composed of alluvial fans (debris cones) 

and valley alluvium dominated by thickly bedded conglomerates of light green to green 
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yellow colour, composed of rounded pebbles of sandstone and quartzite. The 

formation occurs in fans which flank the mountain belts. 

In the LANDSAT MSS image the formation appears pale blue to pale red and fine 

grained with a smooth homogeneous texture. In the SIR-A image the formation has a 

fine smooth texture with no directional fabric. The formation is light to medium toned 

with distinct boundaries. 
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Table 3.1 Summary of the Geology of Test site 1 
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3.4 Test site 2 Cerro Rojado 

Test site 2 is 100 km west of San Jose de Jachal and is covered by sheet 17c of the 

Argentinian 1:200 000 series of geological maps and by its corresponding bulletin 

Gentili (1972), it updates the earlier work of Frenguelli (1948) and is shown in map 

3.2. The description of lithologies which follows is taken from the bulletin and the 

map. As in test site 1 some five lithologies occur within the test site, ranging in age 

from the Triassic to the Quaternary, these are predominantly sedimentary in origin. 

The physiography of the area is dominated by a mountain chain; the Sierra Morada 

trending north-northwest to south-southeast. Summits reach heights in excess of 1800 

m. The drainage is dominated by the southward flowing Rio del Bermejo and the 

northward flowing Rio del Alto. The Sierra Morada is dominantly composed of 

Triassic strata, and a fault bounded plateau to the east of the Sierra is composed of 

Palaeozoic sediments mantled by Quaternary sediments. The intermediate area is 

covered by Quaternary fluvial sediments. West of the Sierra Morada the ground is 

again mantled by Quaternary sediments which obscure the underlying Tertiary 

sediments. Plate 3.3 is the MSS false colour composite of test site 2, plate 3.4 is the 
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SIR-A of the test site, and plate 3.5 is the TM false colour composite of test site 2. 

  

  
      



Plate 3.3 LANDSAT MSS false colour composite of test site 2, band 7 displyed as red, 

band 5 as green and band 4 as blue. 
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Plate 3.5 LANDSAT TM false colour composite of test site 2, band 7 displayed as red, 

band 5 as green and band 2 as blue 
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Plate 3.5 LANDSAT TM false colour composite of test site 2, band 7 displayed as red, 

band 5 as green and band 2 as blue. 
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3.4.1 Middle Triassic Series 

This unit corresponds with a number of divisions which Frenguelli called "Estratos de 

Ischichuca, Los Rastros and Ischigulasto". The unit constitutes a thick series of 

sediments (over 1500 m in thickness), beginning with a basal conglomerate which lies 

unconformably upon Lower Triassic sandstones. The outcrop forms a major part of 

the Sierra Morada in an anticlinal structure at the centre of this test site. 

The series is composed of two units. The lower unit is composed of a sequence of 

sandstones, sandy conglomerates and conglomerates with a complex bedded texture. 

The basal conglomerate is similar in morphology to an ancient alluvial fan. The 

conglomerate is made up of rounded volcanic clasts, especially basalts and porphyry. 

The larger clasts generally occur towards the base of the series. Towards the upper part 

of the series the member grades into a predominantly sandy lithology with siliceous 

matrix of a grey-green colour. 

In the upper unit, abundant carbonaceous and clay intercalations occur in which the clay 

bands reach thicknesses of up to 500 mm. The carbonaceous bands are in the form of 

sub-bituminous coal seams with a high clay content and a lenticular form. The coal 

seams are not of any commercial value. 

The total thickness of the Middle Triassic in this test site is in excess of 1500 m. 

The formation has a dark reddish to purple colour in the LANDSAT MSS false colour 

composite, with coarse texture. The SIR-A image shows the lithology as medium 

toned. The texture is coarse and in places is formed from V shaped en echelon shapes 

which are due to layover effects, resulting from very steep sided hills facing in the 

direction of the receiver. 

3.4.2 Upper Triassic Series 

The Upper Triassic corresponds to the series which Frenguelli (1948) called "Estratos 

de Gualo". The series forms three subparallel outcrops. The outcrops form an 

extensive asymmetrical fold with an anticlinal structure. The western limb of this fold 

is cut by a major reverse fault which runs north-northwest to south-southeast across the 

region. The fault disturbs Triassic and Tertiary rocks, and in places the Triassic rocks 

have been intruded by basic igneous rocks along the line of this fault and its related 
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subparallel faults. 

The rocks of the Upper Triassic sit concordantly upon the Middle Triassic and pass 

gradually from one to the other, with levels of conglomerate becoming abundant in the 

transition zone. The middle part of series is made up of friable sandy sediments which 

are predominantly brick-red or brown in colour. In general the sediments are fine 

grained, cemented with iron based minerals which give the rocks their distinctive 

colour. Intercalations of strata with a siliceous cement form resistant beds up to 30 m 

thick, massive in character producing a distinctive landform. In the siliceous parts of 

the sequence the reddish colouration changes to a yellowish grey colour. 

In the fold north of Cerro Rajado, the Upper Triassic Series strike is predominantly 

northwest to southeast, with a dip of 30- 40 degrees in a north easterly direction. The 

total thickness of Upper Triassic sediments is in the region of 400 m. 

The formation appears pale yellow to dark yellowish green in the LANDSAT MSS 

false colour composite. The rock displays a coarse, rough texture with some alignment 

perpendicular to strike. In certain places, especially east facing slopes, the texture 

becomes very coarse, being picked out by well defined stream courses. In the SIR-A 

image the formation has very variable grey tone caused by irregular topography and 

giving rise to a very rough texture. The texture on many of the river valleys which cut 

this outcrop being due to the favourable alignment of reflectors toward the radar. 

3.4.3 Tertiary 

The outcrop of the Tertiary trends northwest across the region to the southeast, in the 

form of a major asymmetric syncline. The lower part of the succession is a basal 

conglomerate which lies unconformably upon the rocks of the Upper Triassic with a 

strongly angular unconformity. The upper part of the succession is a series of 

interbedded sandstones, limestones and volcanic tuffs. The sandstones are fine grained 

with a reddish-grey to green colour. The upper part of the succession is made up of 

granular with a scant cement which forms the so called "rotten ground". 

The Tertiary rocks form a girdle to the east of the Sierra Morada mountain range. The 

middle part of the succession is characterised by the presence of sandstones and 

limestones of reddish brown colour. The upper part of the Tertiary is not present in test 

site 2. The total thickness of Tertiary sediments in test site 2 is over 2000 m. 
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In the LANDSAT MSS imagery, the Tertiary rocks appear dark yellowish grey with 
fine smooth texture and some fabric running perpendicular to strike. In places the 
texture becomes much coarser as it is picked out by well defined stream courses. 

3.4.4 Quaternary 

The Quaternary rocks are directly related to the outcrops of rocks in the mountainous 
country, the sediments occur in alluvial fans (or debris cones) and as alluvial cover. On 

the eastern side of the Sierra Morada the sediment is derived from basalt and rounded 

sandstone clasts. On the western side of the Sierra, the debris cones are formed of 

calcareous sediment, with rounded pebbles of limestone. The debris cones are very 

variable in thickness, while the alluvial cover forms thicknesses of 10 to 50 m. 

The debris cones appear light grey to purple with some yellow cones, with the colour 
dependent on the provenance of the parental material. The texture is fine grained, 
homogeneous with a strong salt and pepper effect. 

The texture of the alluvial deposits is fine and smooth on both the LANDSAT MSS 

imagery and the SIR-A imagery. The colour is relatively inhomogeneous Tanging from 

grey purple to yellow and white where saline minerals locally become abundant. 
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Map 3.2 Lithological map of test site 2 
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Table 3.2 Summary of the Geology of test site 2. 
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3.5 Photomorphic Mapping of Lithologies 

The photomorphic attributes of a class may be used to characterise its lithology. In the 

following section some the photo characteristics used by manual interpreters will be 

described and discussed. 

3.5.1 Photomorphic Interpretation of Test site 1 

The formation Yerba Loca (class 5) in test site 1 is composed of sandstones, 

conglomerates and greywackes. These have a dark tone and a very coarse, very rough 

texture. The dark tone is probably due to the presence of the greywackes in the 

sequence. The overall very coarse, very rough texture being due to the resistance to 

physical and chemical weathering of the lithology and its coarse grain size which in turn 

gives the outcrop strong positive relief and hence a rough texture. 

The Tucunuco Group (class 4) is composed of thinly bedded quartzites and green 

siltstones. This lithology is medium toned, the texture has a fine, medium roughness, 

this is due to the moderate resistance to erosion of this lithology giving moderate relief 

and hence only moderate image texture. 
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The Talacasto Formation (class 3) is composed of conglomerates interbedded with fine 

grained red and green sandstones. The lithology has overall a light tone and this is 

probably due to the presence of iron bearing minerals in the rocks which give the rocks 

high reflectance in bands 5 and 6 of the LANDSAT MSS. The texture is very coarse, 

with medium roughness, the coarse texture is due to widely spaced river channels, 

which are in turn due to the well drained nature of the sediments. The medium rough 

texture is a property of the moderate resistance to erosion of the lithology, which gives 

tise to a moderate topographic expression. 

The El Corral Formation (class 2) is an unconsolidated alluvial (mainly conglomeratic) 

sediment which forms alluvial fans. The lithology has overall medium tone which is 

due to it being composed of a mixture of all the consolidated lithologies. The texture is 

relatively fine and smooth, so called 'salt and pepper’ texture. This is caused by a 

lithology made up of rocks derived from a variety of different sources. 

The Iglesia Formation (class 1) is a river valley alluvium which is medium to dark in 

tone and has a very coarse texture. The dark tone is at first somewhat surprising (an 

average medium toned would be expected), but may be due in part to the lithology 

occurring at the base of mountain slopes, where it is at least partly in the shadow of the 

surrounding mountains. 

3.5.2 Photomorphic Interpretation of Test site 2 

The Middle Triassic of test site 2 (class 5) is composed of conglomerates and 

sandstones (composed of intermediate volcanics) interbedded with limestones. The 

lithology has an overall light tone with a medium, smooth texture. The intermediate 

volcanics are likely to have weathered to the bright reds and purples which are 

characteristic of these lithologies. This colouration is due to the break down of their 

ferromagnesian content, and gives the lithology a high reflectance in bands 5 and 6 of 

LANDSAT MSS, and hence the overall relatively light tone. The fine smooth texture 

may be due to the interbedded nature of the lithology, the limestone beds being liable to 

chemical erosion, and hence produce a subdued topography and smooth image texture. 

The Upper Triassic (class 4) is composed of red fine grained sandstones and minor 

basaltic intrusions. The lithology is light toned and the texture is coarse with a medium 

roughness. The high reflectance is probably due to the red sandstones having high 

teflectance in bands 5 and 6 of the LANDSAT MSS, the basaltic intrusions must not 

49



contribute a significant part to the tone, otherwise a much darker lithology would be 
expected. The texture is similar to the Middle Triassic, which is unsurprising, since 

sedimentation continued uninterrupted from the Middle Triassic to the Upper Triassic. 

The Tertiary (class 3) is represented by a light to medium toned series of fine 

sandstones interbedded with limestones and tuffs (of intermediate composition). The 

overall light tone is characteristic of both sandstones and limestones, the tuffs will 

probably cause the slight darkening of this lithology. The texture is fine grained and 

rough which is probably due to the relatively fine grained nature of the sediments and 

their wide compositional differences, giving rise to differential erosion rates and hence 

a rough texture. 

The Quaternary alluvial fans (class 2) are dark toned and very fine, very smooth 

texture. The dark tone is almost certainly due to them occurring at the foot of 

mountains and therefore in their shadow. The fine texture is probably due to the low 

spatial resolution of the imagery, it is also probably an effect of the shadow. 

The Quaternary river alluvium (class 1) is a medium toned lithology with a very coarse 

grained, very smooth texture. The tone is to be expected as it is made up of a mixture 

of all the consolidated sediments in the region. The smooth texture is due to the 

sediment forming on a monotonous peneplain 

3.5.3 Definition of Training Areas 

Five training areas were defined for each of the test sites, one for each class. In addition 

five verification sites (one for each class) were defined for the purpose of measuring the 

classification accuracy (see chapter 5), The training areas and verification areas were 

chosen to be in different parts of the class outcrop. Both training areas and verification 

sites were in the form of large contiguous areas so as to obtain an accurate 

representation of the texture of each class. 

3.6 Summary 

Two test sites in semi arid northwest Argentina have been identified for which 

multisensor data are available. The landscape and lithologies present in both the test 

sites has been described. Test site 1 has a suite of rocks dating from the Palaeozoic, to 

recent alluvium. The test site is dominanted by sedimentary lithologies, but with some 

pyroclastics. Low to medium grade regional metamorphism has affected all lithologies 
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(with the exception of the Quaternary) to a greater or lesser extent. Test site 2 is 

dominated by rocks which are comparatively young in age (Middle Triassic to 

Quaternary). A wide variety of sediments occur and well defined folds are present 

which affect the structure of the lithologies present in this test site. 

The photomorphic attributes of each lithology (that is, the tone and texture of each 

lithology) can be explained in terms of the composition and structure of each lithology. 

For example, alluvial fans which occur in the shadows of mountain belts are likely to 

be darker toned than alluvium occurring in an outwash plain. And coarse grained, 

quartzose sediments are more likely to form coarse textures than fine grained, pelitic 

sediments. 
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Chapter 4 

Image Data 

4.0 Introduction 

The three separate types of satellite imagery used for this study namely LANDSAT 

MSS, TM and SIR-A and their characteristics are described in this chapter. Also 

discussed are the pre-processing steps carried out to produce all the images in the same 

co-ordinate system. The two test sites in northwest Argentina used in this study are 

shown figure 4.1. Finally a principal components analysis is undertaken in each of 

the two test sites and the results are discussed. 

4.1 LANDSAT MSS Data 

The characteristics of LANDSAT MSS are well described in Watkins and Freden 

(1979) and in Short (1982), some points should be noted. The MSS has four bands 

named 4, 5, 6 and 7 on LANDSAT's 1, 2 and 3, but these are called bands 1, 2, 3 and 

4 on LANDSAT's 4 and 5. The bands correspond to the 0.4-0.5 um, 0.5-0.6 1m, 

0.6-0.7 xm and 0.7-1.1 xm regions of the electromagnetic spectrum respectively. The 

instantaneous field of view in all bands is 80 m by 80 m, the pixels are sampled by the 

sensor at the rate of approximately 56 m in the across track direction and 79 m in the 

along track direction. Since the average image is 185 km by 185 km the average 

number of pixels in an image is 3240 in the x direction by 2340 in the y direction. The 

data are quantised to six bits; that is 64 grey levels (a scale of 0 to 63), bands four five 

and six are then scaled to seven bits (0 to 127), while band seven is left as six bit data. 

The LANDSAT MSS scene used for this project was a LANDSAT 2 scene 249/081 

acquired at Sioux Falls, South Dakota on 5th October 1975, with a solar elevation of 44 

degrees and a solar azimuth of 063 degrees. The image is centred on a point 68 degrees 

37 minutes west by 30 degrees 8 minutes south, which covers a large part of north 

west Argentina and northern Chile (see figure 4.2). Plate 4.1 shows a standard false 

colour composite of the full scene (that is, band 4 displayed as blue, band 5 displayed 

as green and band 7 displayed as red). The red area in the scene centre is the city of 

San Jose de Jachal, in the far western part of the image the white snow capped 

mountains of the high Chilean Andes are visible. 

52



Figure 4.1 Location of test sites 
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Plate 4.1 LANDSAT 2 MSS false colour composite of scene 249/081 
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Plate 4.1 LANDSAT 2 MSS false colour composite of scene 249/081 
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4.1.1 Pre-processing of LANDSAT MSS Data 

Because of the sensor characteristics of LANDSAT MSS imagery certain pre- 

processing of the data is necessary. The pre-processing used in this study was of three 

sorts; the first part involved replacing missing lines (or dropped lines). The second part 

of the pre-processing involved making the rectangular pixels of the image square, the 

final part was to deskew the image. 

Missing lines are caused when the MSS sensor fails to record data for part of a 
particular scan line. They can be simply removed by replacing the missing line by the 

average of the pixel above with the pixel below the missing line. Some six missing 

lines had to be removed in this way. To square the image some 900 lines must be 
added (because the average image has 3240 pixels by 2340 lines). It has been 

suggested that the lines may be added by the formula given in equation 4.1 (Hord, 
1982). 

3LI,1N,3LI,1N,2L1,1N,3LI,1N,2LI,1N  equation4.1 

Where LI is a line of image and N is an added line. 

This has the effect of giving the image approximately square pixels with nominal 

dimensions of 60 m by 60 m. This has two advantages, firstly when the image is 
viewed, the horizontal dimension is the same scale as the vertical scale. Secondly the 

60 m pixels can easily be registered with TM imagery which has 30 m by 30 m pixels. 

The second part of the pre-processing, that is the deskewing of the image, is necessary 

because the image takes 25 seconds to acquire and the earth rotates below the sensor so 

that the area imaged on the ground is not a square but a parallelogram. The amount of 

skew is latitude dependent, but at many latitudes the skew is approximately constant, 

and can be modelled by a standard shift. A simple algorithm was used to correct the 

imagery by offsetting each group of 12 lines by an extra pixel. This means that image 

base is a full 270 pixels offset from the top of the image, and the image has a total 

width of 3509 pixels. After this pre-processing the image can be used as a base map at 

scales of up to 1: 250 000 (Mather, 1987). This MSS image was then used as the base 

map on which to coregister the other data sources. 
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4.2 LANDSAT TM Data 

The LANDSAT 5 TM 232/081 used in this study was a quarter scene (quadrant two) 
acquired by EOSAT on 27th April 1986, the location of the TM data are shown in 

figure 4.2. The characteristics of the data are well described in Engel and Weinstein 

(1983) and a special issue of the IEEE transactions of Geoscience and Remote Sensing 

(1984), but some points should be noted here. The sensor has seven bands stretching 

from blue wavelengths of the electromagnetic spectrum to the thermal infra red. The 

sensor includes a band which covers the middle infra red (2.08 um- 2.35 yum). This 

band was placed on the sensor by the recommendation of geologists on the GEOSAT 

working committee, this is because of the clay absorption features which occur in this 

part of the electromagnetic spectrum (Rothery, 1983). The TM data has square pixels 
with a resolution of 30 m in the six reflective bands, that is bands 1 to 5 and band 7: 

band 6 (the thermal infra red band) has a resolution of 120 m. The data are quantised to 

eight bits (0 to 255). The orbit of LANDSAT 5 is similar to the orbit of LANDSAT 2 

in that it is sun synchronous. The altitude of the orbit of LANDSAT 5 is 700 km 

(compared with 900 km for LANDSAT's 1, 2 and 3), the repeat cycle is therefore 16 

days compared with 18 days of LANDSAT 2. 

Malila et al. (1984) listed the following differences of TM data over MSS data acquired 

by LANDSAT's 1, 2 and 3. 

Spatial Specifications 

a) 30 m resolution versus 80 m resolution. 

b) Improved platform stability. 

Spectral Specifications 

a) Narrower spectral bandwidths. 

b) Additional spectral regions (blue-green, middle 

infra red, thermal infra red). 

Temporal Specifications 

a) Repeat cycle of 16 days versus 18 days. 

b) Repeat coverage of overlap zone (seven days 

versus next day). 

Radiometric Specifications 

a) Improved signal to noise ratio. 

b) Increased dynamic range (eight bits versus 

six bits). 
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4.2.1 Geometric Rectification of TM data 

Registration of LANDSAT TM data to MSS was achieved by interpolating the MSS 

onto a 30 m by 30 m grid (so that the pixels of the MSS scene were of the same size as 
the pixels of the TM). A number of control points (common to both images) were then 

selected and registration was achieved using a least squares model of the form 

X=A+Bx+Cy +Dxy equation 4.2 

Y =E + Fx + Gy + Hxy equation 4.3 

where X and Y are the new pixel co-ordinates; x and y are the original pixel co- 

ordinates and A, B, C, D, E, F, G and H are constants. The Tegistration was achieved 

using eight ground control points and this yielded a root mean square (RMS) error of 

0.85 pixels, or about 25 m (see table 4.1). 

Table 4.1 To give the control points for the least squares model for geometric 
rectification of LANDSAT TM to LANDSAT MSS data and the associated errors. 

POINT REALX REALY PREDX PREDY ERROR 

1 209.0 135.0 209.6 135.9 0.5 
3 422.0 121.0 421.9 120.1 
4 389.0 216.0 389.3 271 
5 431.0 232.0 431.0 232.7 
6 234.0 320.0 232.8 319.8 
a 362.0 357.0 362.4 356.2 
8 71.0 327.0 71.5 327.2 S
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RMS ERROR FOR WHOLE SET IS 0.9 PIXELS 

Table 4.2 To give the equation coefficients for the least squares model for geometric 

rectification of LANDSAT TM data to LANDSAT MSS data. 

EQUATION COEFFICIENTS 
x rx 

-29.4 -74.5 
1.0 2,8E-02 
2.6E-02 1.0 
-4,0E-05 -5.8E-05 

This RMS error was felt to be satisfactory in the absence of man made features to use 

as ground control points. The second order model seems to be satisfactory because of 
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the good visual match between the coregistered scenes. A nearest neighbour 

interpolation was used in order to maintain the radiometric fidelity of the data. 

4.3 Radar Data 

The details of radar are probably less well known than those of passive sensors such as 

LANDSAT MSS and TM, but are well described by Trevett (1986), and some points 
should be noted here. The name of the radar data used in this research is Shuttle 
Imaging Radar (or SIR-A) this is a synthetic aperture radar (SAR), which produces 

high resolution images of the earth's surface. The radar generates a high peak 

frequency modulated power signal which is radiated through an array antenna towards 

the surface of the earth. Part of the returned echo is collected by the antenna and 

detected by the receiver, and recorded onto an optical film in the form of a hologram. 

This ‘signal’ film is then processed by an optical correlator where the synthetic aperture 

image is formed. The image is a two dimensional representation of the surface 

scattering, which is a function of the surface physical properties of an object; that is 

slope, roughness and dielectric constant (Sabins, 1978). 

4.3.1 Characteristics of Radar Images 

Visible and near infra red sensors such as LANDSAT MSS and TM provide 

information about the surface composition of surficial material. Thermal infra red 

sensors provide information about the thermal properties of the near surface layer. 

Radar sensors provide information about surface and sub-surface physical properties 

because, radar scattering is strongly controlled by the small scale roughness, surface 

vegetation, and man made structures. The tone of radar images is related to the average 

backscattering cross-section 0; and is given by 

oO = 6 (A,6, P, 6, t1, t2, V) equation 4.4 

where A is the wavelength, 6 is the incidence angle, P is the polarisation of the incident 

wave, is the complex dielectric constant (dominated in most cases by the water 

content and density); t] is the surface roughness; tis the sub-surface roughness and V 

is the complex volume scattering coefficient in heterogeneous media. Because of all 

these variables, the value of the backscattering cross- section is not available for most 

geological materials. In particular the values of V and 12 are the most difficult to 

quantify. 
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Approximate observations can be made about the likely radar response of a material. 

For example, a surface is said to be radar ‘smooth’ if it reflects the incident wave 

specularly in a single direction away from the receiver. A radar ‘rough’ surface is one 

which scatters the energy of an incident wave equally in all directions (diffuse 

scatterer). A surface may be rough for dome wavelengths and smooth for other 

wavelengths. According to the Rayleigh criteria this cross over point from a smooth to 

rough reflector is given by 

h=_2’ equation 4.5 

8sin® 

where h is the scale of irregularities on the surface of the reflector 4 is the wavelength 

(in the case of SIR-A 23 cm) and 6 is the incidence angle of the radar (in the case of 

SIR-A 43 degrees). If we substitute these values into the equation the value of h is 

approximately eight cm, which is in good agreement with the observed occurrences of 

the SIR-A sensor (Elachi et al., 1982). Peake and Oliver (1971) modified the Rayleigh 

criterion to define surfaces that were clearly smooth (dark) from those which are rough 

(bright). 

for a smooth surface S<__h equation 4.6 

25cos 8 

while for a rough surface R2__h equation 4.7 

4.4 cos® 

where S and R are the mean height of the irregularities of the surface. 

4.3.2 Applications of Satellite Radar Data 

The SIR-A experiment was specifically designed for geological applications and data 

were gathered over a number of geologically interesting sites in North Africa, North 

and South America and Central Asia: some of the results were described by Elachi et al. 

(1982). The radar has the advantage over passive sensors in that it can in certain 

favourable circumstances penetrate surficial material (especially if the surface is very 

dry). For example a SIR-A image of the Eastern Sahara Desert in the Sudan showed a 

huge previously unknown drainage system, some 250 km to the east of the Nile and 

flowing to the south rather than the north, this drainage system is covered in by up to 

five metres of sand McCauley et al. (1982). 
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Since radar images are so different from those of data sources in other parts of the 
electromagnetic spectrum, it seems appropriate to use them as an uncorrelated 

dimension in classification. This is not always the case, the radar is very sensitive to 

topography, therefore landforms may play a greater role in classification than surface 

properties. Because this is the case the practice of using coregistered radar data sets to 

modulate the brightness of images has been adopted by many researchers. Blom and 

Daily (1982) use LANDSAT MSS data modulated by SEASAT SAR data; this has the 

effect of sharpening the LANDSAT data. Topographic features are enhanced by the 

radar data, and variations in backscatter due to surface properties control the brightness 

of the colours. This gives the image substantially more lithological information than 

either the MSS on its own or the radar on its own. 

4.3.3 Geometric Rectification of Radar Data 

The radar imagery used in this study was flown on the second space shuttle flight in 

November 1981. The radar had a 23 cm wavelength (L- band), HH polarisation and an 

inclination of 38- 40 degrees with a spatial resolution of 40 m. The data are supplied as 

a photographic roll 125 mm wide and up to 30 m long. The swath width is 50 km 

which corresponds to the 40 m pixel being represented by 100 xm on the image. The 

image was scan digitised by Joyce Loebl using a drum scanning laser digitiser with a 

100 um aperture, Image registration to the MSS base image was by means of least 

squares fit model to common control points. A first order model was used of the type 

given in equations 4.1 and 4.2 in which eight control points were found for each test 

site, an RMS error of 1.2 pixels was found for test site 1 (or about 75 m), and 1.5 

pixels (or 90 m) for test site 2. This type of model seems justified because of the small 

coefficients of xy (of the order of 104 or smaller). The control points for each 

geometric correction is given in tables 4.3 and 4.5, the coefficients of X and Y are 

given in tables 4.4 and 4.6. The RMS error was felt to be satisfactory because of the 

lack of prominent image control points. A nearest neighbour interpolant was used 

because of the rapid spatial variation of grey tone in radar images (its speckle): other 

interpolants such as bilinear were found to produce a very blurred output image because 

of this speckle. 

Table 4.3 To give the control points for the least squares model for geometric 

rectification of SIR-A to LANDSAT MSS data and the associated errors, for test site 1. 

POINT REALX REALY PREDX PREDY ERROR 
1 515.0 584.0 514.9 583.4 0.6 
2 411.0 573.0 470.0 572.9 1.0 
3 518.0 579.0 514.9 578.4 0.6



4 406.0 660.0 405.6 659.4 0.8 
3 1169.0 1079.0 1168.4 1078.4 0.8 
6 1264.0 1001.0 1264.5 1001.4 0.6 

TE 525.0 670.0 527.0 671.8 Bah 

RMS ERROR FOR WHOLE SET IS 1.2 PIXELS 

Table 4.4 To give the equation coefficients for the least squares model for geometric 

rectification of SIR-A data to LANDSAT MSS data, for test site 1. 

EQUATION COEFFICIENTS 

Xx ay) 
2356.5 637.9 

=12 -6,2E-02 
-1.3 0.6 
1.SE-03 -3,5E-04 

Table 4.5 To give the control points for the least squares mcdel for geometric 

rectification of SIR-A to LANDSAT MSS data and the associated errors, for test site 2. 

POINT REALX REALY PREDX PREDY ERROR 
1 231.0 816.0 233.3 815.2 2.4 
2 221.0 815.0 221.7 815.6 0.9 
3 876.0 907.0 875.2 906.6 0.8 
4 873.0 675.0 873.4 675.3 0.5 

oS 173.0 327.0 172.1 326.2 1.2 
6 144.0 388.0 144.9 389.5 1.8 

ih 89.0 612.0 87.9 610.7 17, 
8 151.0 907.0 149.5 907.8 17 

RMS ERROR FOR WHOLE SET IS 1.5 PIXELS 

Table 4.6 To give the equation coefficients for the least squares model for geometric 

rectification of SIR-A data to LANDSAT MSS data, for test site 2. 

EQUATION COEFFICIENTS 
x we 

-575.9 -409.3 
1.0 0.6 

-0.5 13 
-7.7E-05 -1,8E-04 

4.4 Preliminary Analysis of Data 

A preliminary analysis of the data was undertaken by means of principal components 

analysis for each of the two test sites and for the three different data sources. The 

results are given in the following section. 
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Table 4.7 Principal components analysis of the 4 bands of LANDSAT MSS data for 

test site 1 

Variance- covariance matrix 

32.2 47.9 49.6 19.2 

47.9 76.3 79.8 31.7 

49.6 79.8 95.7 39.9 

192 31.7 39.9" 18:6 

Eigen Values Percent of Variance Eigen Vectors 

210.7448 94.61 0.37 -0.49 0.67 0.42 Band 4 

9.4641 4.24 0.59 -0.50 -0.62 -0.12 Band 5 

1,3929 0.62 0.66 0.53 0.29 -0.44 Band 6 

1.1404 0.51 0.27 0.48 -0.29 0.78 Band7 
POU MPC EC3 PCr 

Table 4.8 Principal components analysis of 4 band LANDSAT MSS data and SIR-A 

data for test site 1 

Variance- covariance matrix 

32.2 47.9 49.6 19.2 -6.9 

47.9 76.3 79.8 31.7 -10.3 

49.6 79.8 95.7 39.9 -8.8 

19.2, 31.7 399 186 =2:6 

-6.9 -10.3 -8.8 -2.6 191.4 

Eigen Values Percent of variance Eigen Vectors 

219.05 52.90 0.33 0.17 -0.49 0.67 0.42 Band 4 

183.10 44.22 0.52 0.28 -0.50 -0.62 -0.12 Band 5 

9.42 2.28 0.58 0.33 0.53 0.29 -0.44 Band 6 

139 0.33 0.23 0.14 0.48 -0.29 0.78 Band7 

1.14 0.27 -0.48 0.88 -0.01 0.00 0.00 SIR-A 
PCI PE? PC 3) PC4 PGS 

Table 4.9 Principal components analysis of test site 2 four MSS bands 

Covariance matrix 

30.6 47.1 53.0 19.3 

Aled 153) TESS" “SS 

59:0: WSS; 157.009 52.7 

19:39 951-5’ 52.7 24,7 
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Eigen Values Percent of variance Eigen Vectors 

295.48 90.19 0.27 0.11 0.94 0.19 Band 4 

20.58 6.28 0.60 0.65 -0.16 -0.43 Band 5 

10.45 3:19 0.70 -0.70 -0.11 -0.04 Band 6 

1.09 0:33 0.27 0.27 -0.29 0.88 Band7 
PEIERC2 RCS RC4 

4.10 Principal components analysis of test site 2, four bands of MSS and coregistered 

SIR-A 

Covariance matrix 

30.6 47.1 53.0 19.3 4.4 

47,1 115.3 115.5 51.5 16.8 

53:0 115.5) 157.0! 52-7 18.9 

19:3°0151.5 (52.7 24,7 7 7-8 

44 168 189 7.8 171.4 

Eigen Values _ Percent of Variance Eigen Vectors 

300.98 60.31 0.26 -0.07 0.11 0.94 0.19 Band 4 

165.98 33.26 0.59 -0.12 0.65 -0.16 -0.43 Band 5 

20.58 4.12 0.69 -0.14 -0.70 -0.11 -0.04 Band 6 

10.40 2.08 0.27 -0.05 0.27 -0.29 0.88 Band 7 

1.10 0.22 0.20 0.98 0.00 0.02 0,00 SIR-A 
PC1 PC2; PC3 PC4 PCS 

Table 4.11Principal components analysis of the six reflective TM bands for test site 2 

Covariance matrix 

457.7 235.7 379.8 331.3 550.3 380.5 

235.7 130:6 219.1 193:3 315.7 225.6 

379.8 219.1 400.2 357.6 572.3 427.0 

33103) 193.3 35716) 320.9 5208 387.2 

550.3 315.7 572.3 520.8 1241.9 649.4 

380.5 225.6 427.0 387.2 649.4 497.8 

Eigen Values _ Percent of variance Eigen Vectors 

2674.77 87.58 0.36 0.43 -0.72 0.28 0.23 -0.17 Band 1 

254.99 8.35 0.21 0.21 -0.17 -0.11 -0.54 0.76 Band 2 

103.07 3:37 0.37 0.31 0.18 -0.45 -0.48 -0.55 Band 3 

1597. 0.52 0.33 0.24 0.26 -0.51 0.65 0.29 Band 4 

3.26 0.11 0.64 -0.75 -0.14 -0.03 -0.01-0.01 Band 5 

2.04 0.07 0.41 0.21 0.58 0.67 -0.01 0.04 Band 7 

PCI PC2=PC3: PE+ PCS PCS 
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Table 4.12 Principal components analysis Six reflective bands TM and coregistered 
SIR-A data 

Covariance matrix 

457.7 235.7 379.8 331.3 550.3 380.5 -56.2 

235.7 130.6 21951 193.3 315.7 22516 39:0 

3/98) 219.1 ~ 400.2) 357.6 “572.3) 427.0 73:3 

331.3 193.3 357.6 325.9 520.8 387.2 -66.0 

550.3 315.7 572.3 520.8 1241.9 649.4 -127.9 

380.5 225.6 427.0 387.2 649.4 497.8 -79.2 

-56.2 -39.0 -73.3 -66.0-127.9 -79.2 174.6 

Eigen Values Percent of variance Eigen Vectors 

2689.42 83.30 0.36 0.44 0.13 -0.70 0.28 0.23 -0.18 Band 1 
255.15 7,92 0.21 0.21 0.01 -0.17-0.10 -0.53 0.77 Band 2 
161.33 5.00 0.37 0.31-0.05 0.17-0.45 -0.49 -0.54 Band 3 
101.16 3.13 0.33 0.24-0.05 0.25-0.51 0.65 0.28 Band 4 
15.78 0.49 0.64 -0.75 0.14 -0.13-0.03 -0.01 -0.01 Band 5 
3.21 0.10 0.41 0.21-0.07 0.58 0.67 -0.01 0.04 Band7 
2.02 0.06 -0.08 0.09 0.98 0.18 -0.04 -0.02 0.01SIR 

PCI PC2 PC3 PC4 PCS PC6 PC7 

In both test sites with the MSS data, more than 90% of the scene variance is accounted 

for by the first principal component (PC). In each case this first PC is made up of a 
positive contribution from all four bands, also in both cases the last PC accounts for 

less than 0.5% of the scene variance, this is in accordance with the findings of Chen 

and Collins (1982). Inspection of the imagery shows that the fourth PC is dominated 

by random noise. The principal component of the coregistered MSS and SIR-A images 

shows that addition of the SIR-A band significantly alters the amount of scene variance 

in the first PC. The first PC accounts for only 50 to 60% of the variance, while the 

second PC accounts for 30 to 40% of the variance. The first PC is made up largely of 

the reflected data, while the second PC is dominated by the SIR-A channel. Again the 

final PC consists of random (and therefore uncorrelated) noise. The six band TM first 

PC accounts for slightly less than 88% of the scene variance and is made up of positive 

contributions from all bands. The last three components account for less than one 
percent of the total scene variance and are dominated by noise. The addition of SIR-A 

data has a less marked effect than on the MSS data: the first PC accounts for over 83% 

of variance and again the last three components are dominated by noise.



It can be seen from the eigen vectors that LANDSAT MSS has highly correlated bands, 

this is to be expected because, we have seen in chapter 2 that the bands on LANDSAT 

MSS are poorly positioned for distinguishing geological materials. In test site 1 only 

the first two components are significant, the last two being dominated by noise. The 

first two components are strongly influenced by contributions from bands 5 and 6. In 

test site 2, the first three components are significant, the fourth again being dominated 

by noise. Again the first two components are dominated by a contribution from bands 

5 and 6. The reason for this dominance may be because of the presence of Fe2+ 

(ferrous) minerals (such as, limonite, goethite and haematite) in the surficial layers. 

These minerals have a strong reflectance in bands 5 and 6, and relatively low 

reflectance in bands 4 and 7 of LANDSAT MSS (Drury, 1986a). This theory is further 

supported by the first component of the TM data which has a strong contribution from 

band 5, where the ferrous ion is also strongly reflective. The TM image has bands with 

a lower correlation then the bands of the MSS. This is to be expected, as it has been 

shown that the selection of bands for the TM was taken so that geological materials 

could be distinguished (Henderson and Swann, 1983) 

The addition of SIR-A data makes a significant difference to the distribution to the 

variance of the data set, forming a new uncorrelated component. The striking 

difference of the SIR-A to the MSS is not surprising when it is considered that the MSS 

reflects differences in the surface composition of a material, while the SIR-A is 

reflecting differences in topography, surface roughness and water content (see section 

4.3.1). Therefore, the addition of the SIR-A band, adds a significant amount of 

information to the understanding of these scenes. 

4.5 Summary 

Three different types of satellite data have been described, the pre-processing required 

to produce the data in the same co-ordinate system have been described and discussed. 

Rectification of TM data to MSS data was possible using fewer than ten control points, 

and produced RMS errors of less than a pixel. Rectification of scan digitised SIR-A 

data produced RMS errors of less than two pixels, using fewer than ten control points. 

A preliminary analysis of the data by means of a principal components analysis showed 

that the MSS bands had high correlation. The TM data also had highly correlated 

bands, but much less so than the MSS. Finally, the SIR-A data formed a band that was 

uncorrelated with both the MSS and the TM. 
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Chapter 5 

Image Classification 

5.0 Introduction 

Image classification is a method whereby pixels are assigned to classes (in this case 

lithological classes) by the computer according to the vector which describes each pixel 

in the image. There are two distinct types of image classification, these are 1) 

unsupervised classification and 2) supervised classification. 

5.1 Unsupervised Classification 

Unsupervised classification techniques are based on automatic clustering techniques. A 

pixel represents a vector of measurements (in feature space) of a particular area on the 

ground, these measurements can indicate its reflectance in a particular waveband, its 

topographic height or any other spatially related attribute. Pixels which belong to a 

class will fall into clusters in feature space (if the chosen feature vector discriminates 

between the classes). If each of the clusters in the feature space are associated with a 

lithology then it should be possible to partition (classify) the imagery to produce a 

lithological map. 

The difficulty is defining what is meant by cluster in terms explicit enough for the 

computer. A method of selecting a nucleus and building up around it could be used. 

The problem is the n (the number of pixels) can make this computationally expensive. 

For example, among 1000 pixels there are nearly half a million distances between pairs. 

Kendall (1980) outlines a possible clustering technique which involves the following 

steps:- 

1. Decide on some number of clusters (q), say 20, as an upper limit to the 

number of clusters in which we are interested. 

2. Determine in p-dimensional feature space q cluster centres in some arbitrary 

way, say by spacing them at set intervals. 

3. Consider the pixel values one at a time and allocate them to the nearest 

centre- thus 20 clusters are defined. 
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4. The centre of gravity of each cluster is defined. 

5. The pixels are considered one at a time. A pixel is moved to another cluster 

if such a move reduces the overall sum of deviances of the two clusters. If a pixel is 

moved in this way, the new centre of gravity's are computed and replace the former 

ones. 

6. The set of pixels is rescanned until no observation is moved to a new 

cluster. At this point having arrived at q clusters in such a way that the sum of 

deviances from the centres of gravity cannot be reduced by a pixel moving from one 

cluster to another. 

7. A set of clusters is chosen for merging. Their combination should be such 

that it minimizes the increment in the deviances from their new cluster mean. All pairs 

of clusters are considered, the one chosen has the smallest increment in deviance. The 

calculation then proceeds to q-2, q-3 clusters in turn. At each stage the new cluster 

centres are computed, the distance between cluster centres, the sums of deviances of 

pixels from their respective cluster centres is calculated. 

Thus a solution identifying q, q-1, q-2 etc clusters is defined. Duda and Hart (1973) 

design a clustering algorithm based on this procedure and according to Ramapriyan et 

al. (1985) it has been widely used in remote sensing. The choice of which solution 

best describes the themes in the image has then to be made, and this can be a subjective 

business. The unsupervised approach is often used in unexplored regions where little 

or no ground data are present. It may also be used prior to a supervised classification 

to show the likely position of classes in the feature space and to show whether spectral 

classes coincide with ground cover classes. 

§.2 Supervised Classification 

In supervised classification the interpreter defines training areas for the classifier. Each 

training area should be indicative of one of the themes in the image. The classifier 

calculates statistics from the training areas to find the spectral properties of each of the 

classes in the image. 

There are three commonly used multispectral classifiers these are: (1) the parallelepiped, 

(2) the minimum distance to means, and (3) the maximum likelihood. Recently two 

other different types of classifier have been proposed, these have the merits of being 
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computationally simple, and are the decision tree classifier and the spectral shape 

classifier. 

5.2.1 Parallelepiped Classifier 

This is computationally the simplest and fastest of the commonly used multispectral 

classifiers and according to Curran (1985) is the most popular, The class minimum and 

maximum are calculated in each of the p bands of data. A pixel is assigned to a class if 

it falls within these boundaries in every band (see figure 5.1). 

Figure 5.1 The decision boundaries for the parallelepiped classifier 
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If the lowest value of a pixel in the training area of class C in band k is given by Lowck 

and the highest is given by Highck, then a pixel (i, j) of brightness Bvijk is placed in 

this class, if, and only if 

Lowck < Bvijk < Highck. equation 5.1 

This form of classifier gives rise to a box shaped decision surface (hence the name 

parallelepiped) with the decision surface parallel to the axes. Thus it is possible that a 

rotation of axes, such as a principal components transform or canonical analysis prior 

to classification, might improve the accuracy of the classifier. 

Problems may arise when boxes overlap, these overlaps occur when spectrally similar 

classes have been chosen or when there is a high degree of correlation between the 

bands. Commonly if overlaps occur a pixel is placed in the first class that was defined, 
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though a more satisfactory method might be to reclassify such pixels according to a 

minimum distance rule. 

§.2.2 Minimum Distance to Means Classifier 

This is a computationally relatively simple and widely used classification algorithm 

(Jensen, 1986), Here the mean value of each q classes is calculated for p bands, this 

gives q different points in p- dimensional feature space (the mean vector). A pixel is 

assigned to the class mean to which it is closest. The distance can be the euclidean 

distance or a round the block distance (Swain and Davis, 1978) (see figure 5.2) . 

Figure 5.2 The decision boundaries for the minimum distance to means classifer. _ 
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Computation of Euclidean distance from a pixel (i, j) of brightness Bvijk in band k and 

brightness Bvijl in band | from a mean vector Uckl for class C is given by, 

Dist = V[(Bvijk-tuck)2+(Bvijl-tcl)4. equation 5.2 

A threshold limit which prevents pixels which fall a great distance from the mean can be 

used. This gives the decision boundary a circular shape in two dimensions and a 

spherical shape in three dimensions (see figure 5.2). 

5.2.3 Maximum Likelihood Classifier 

This is the most computationally expensive classifier and usually the most accurate 

(Tomlins, 1981). The mean for each class is calculated and so is the variance- 
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covariance matrix, on the assumption that the data for each class are normally 

distributed. With this information the spread of pixels around the vector can be 

described using a probability function. To classify a pixel X into a class C, the 
maximum likelihood decision rule computes the value Pg the probability of X belonging 

to class C, this is given by, 

Pc. > Pj where i=1,2,3......,.m possible classes 

and 

Pe = [-0.5Loge(det(V,))]-[0.5(X-Mo) (Ve})(X-Mo]. equation 5.3 

where det V¢ is the determinant of the covariance matrix V, and V¢1 is the inverse of the 

covariance matrix, Mc is the mean vector of class C and T is the transpose. Pixels are 

allocated to the class to which they have the highest probability of belonging. 

A threshold can be used to stop pixels with a low probability of belonging to a class 

from being classified. This gives the decision boundary ellipse shape in two 

dimensions (see figure 5.3). 

Figure 5.3 The equiprobablity boundaries of the maximum likelihood classifier. 
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A slight alteration to the maximum likelihood decision rule can be made which takes 

into account the probability of a pixel of a certain class occurring in the scene. For 
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example if a large part of the scene covers the sea, then water can be given a higher 

probability of occurring than some other classes in the image. This is known as the 
Bayes decision rule, in which a pixel is placed into class C if and only if, 

Pac) > Pi(ac) i=1,2,3.....m possible classes 

and 

Pac) = Loge(ac)-[0.5Loge(det(V))]-[0.5(X-M,)(Vel)(X-MQ]. equation 
54 

Thus the rule is identical to the maximum likelihood rule except that it does not assume 

that all classes are equally probable (Hord, 1982). Strahler (1980) uses prior 

probabilities to successfully incorporate the effects of relief and other terrain 

characteristics to improve classification accuracy. 

5.2.4 Decision Tree Classifier 

The decision tree classifier is a computationally simplest of the multispectral classifiers, 
the basic concepts were described by Swain and Hauska (1977), Baur et al. (1981) and 

Belward and DeHoyos (1987). In this classifier the means and standard deviations for 

each training area are plotted for each band, these are called coincident spectral plots 
(see figure 5.4). Decision rules for each class are calculated by simply setting upper 

and lower limits for each class in the most appropriate bands. 

In Figure 5.6, class 4 can be identified by its low mean in band 4, and class 3 can be 
identified by its low means in bands 5 and 7. A set of decision rules can be generated 
which describe all the classes in the image. Unfortunately in most cases the geological 

materials used in this study do not have sufficiently good spectral differences to allow 

simple unambiguous decision rules to be generated. Therefore in an attempt to 

overcome this shortcoming rules were used which employed multiple Boolean 

‘AND's'. Rules of the type given in equation 5.5 were used. 

‘IF B1 < 10 AND B2>20 AND B3 < 15 THEN class= 1' equation 5.5 

where B1, B2 and B3 are the brightness values of any pixel in bands 1, 2 and 3 

respectively. 
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Figure 5.4 Coincident spectral plots for the five class means + one standard deviation, 

LANDSAT MSS and SIR-A of test site 1 
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Figure 5.5 Coincident spectral plots of class means + one standard deviation, 

LANDSAT MSS and SIR-A of test site 2 
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Figure 5.6 Coincident Spectral plots of class means + one standard deviation, 
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The decision rules used in this study are given in Figures 5.7 to 5.9. The decision 

tules can be generated either manually or automatically, and according to Lee and 

Richards (1985) "There may be value in allowing the operator to design the decision 

tree manually". 

Figure 5.7 The decision tree classifier for test site 1 LANDSAT MSS and SIR-A 
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Figure 5.8 decision tree classifier for test site 2 LANDSAT MSS and SIR-A 
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Figure 5.9 decision tree classifier for site 2 using TM data. 
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Belward and Hoyos (1987) test the decision tree classifier for crop cover estimation in 

southern England, they compare the classifier with a conventional maximum likelihood 

classifier (see section 5.2.3). They found that the maximum likelihood classifier had an 

average classification accuracy of 57.2% and took 150 minutes of computer while the 

decision tree classifier achieved an accuracy of 64.8% and took no computer time (it did 

take some 40 minutes to generate the decision rules). An automatic technique might use 

Quinlan's ID3 induction algorithm (Quinlan, 1983). ID3 takes objects of a known 

class (that is, training area data), and produces a decision tree that correctly classifies all 

given classes. There is a strong similarity between decision tree classification 
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techniques and the use of production rule based systems used in the field of artificial 

intelligence. 

§.2.5 Spectral Shape Classifier 

The spectral shape classifier is a computationally inexpensive algorithm which is useful 

for highly dimensioned data sets, such as are becoming increasingly common in remote 

sensing. The spectral shape classifier is described by Pendock (1987), but little work 

has been reported on its effectiveness. 

The basis of this classifier is that each pixel in the image consists of n measurements 

(spectral or textural), and each measurement has one of the three characteristics with 

respect to the other measurements of the same pixel. It is either 1) a local minimum, 2) 

a local maximum or 3) neither a local maximum or minimum (it has an intermediate 

value): this is shown in figure 5.10. These characteristics thus describe the shape of 

the spectral curve for themes within the image. A classification is produced by 

tepresenting these characteristics in an n digit number ternary word (a flow chart for 

the spectral shape classifier is given in appendix 1). 

Figure 5.10 To illustrate the spectral shape classifier. 
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The classification criteria are: 

1) If measurement j is a local maximum, digit number j = 0 

2) If measurement j is a local minimum, digit number j = 2 
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3) If measurement j is a neither a minimum or a maximum, digit number j = 1 

So the spectral shape classifier assigns the ternary number 2102 to our spectral shape in 

figure 5.10 which is 20 as a decimal number. Thus the classifier can simply and 

quickly reduce highly dimensioned data sets to a single number. 

Pendock (1987) uses the classifier as an unsupervised algorithm. The classifier can, 

however, be adapted in the following way, to make it a supervised classifier (Oldfield 
et al., 1988). A histogram is constructed of the spectral shapes for each training area. 
The histogram is normalised by dividing the number of times a spectral shape occurs by 
the number of pixels in the training area. Each pixel in the whole image is then placed 

in the class which has the maximum frequency of occurrence for that pixels spectral 

shape. In this way a large majority of the pixels are classified. The remaining pixels 

can be placed into the nearest histogram occurrence to their peculiar shape. The flow 

chart for this type of classifier is given in Appendix 1. 

An extension of the idea might be to subdivide the intermediate class into positive 

slopes and negative slopes. Thus the spectral shape is represented by an n digit number 

quaternary word. The advantage of this type of classifier is that it is computationally 
efficient, as the number of computations increases linearly with the number of bands. 

5.3 Measurement of Classification Accuracy 

It is necessary to have some idea of what accuracy remote sensing classification maps 

can obtain. For example, the overall classification accuracy of landuse maps should 

generally be 85%, and the accuracy of each of the classes should be similar (Anderson 

et al., 1976). This sort of figure might well also be applicable to lithological maps. 

Perhaps the simplest way of measuring classification accuracy is to compare each of the 

training areas classified compared with its assumed true class. Unfortunately, the 

locations of the training sites are biased by the analyst. Because of this bias, the 

classification accuracy of pixels found in the training sites is generally higher than in the 

remainder of the map. This is hardly surprising since these were the actual data points 

that were used to train the classifier. This method of testing the accuracy seems to have 

little merit. An alternative is to define a number of test locations for each class which 

are not used to train the classifier. It is important that sufficient pixels are defined to 

test the accuracy of each class and also that the test areas are randomly distributed 

78



throughout the image. In order to do this some analysts use random number generators 

to define test sites (Jensen, 1986). 

Most studies employ an error matrix (also called a confusion matrix or a contingency 

table) to graphically show the distribution of error (see figure 5.11). The rows of the 

matrix are the true class, the columns are the class assigned by the classifier. The 

entries in the matrix represent the frequency of true class i being given a class j by the 

classifier. Thus the leading diagonal elements represent correctly classified data, and 

the off diagonal elements of the represent the misclassified data. An important property 

of the error matrix is its ability to show errors of commission (over classification of a 

class) and errors of omission (under classification). The errors of commission are 

horizontal and the errors of omission are vertical. 

Figure 5.11 An Error Matrix 
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A gross classification accuracy (this the most commonly quoted figure) can be obtained 

by dividing the sum of the leading diagonal elements in the matrix by the total number 

of elements in the matrix. 

Thus in figure 5.11 there are 78 + 82 + 62 + 73 + 77 = 372 leading diagonal elements 

out of a total of 500 elements, there is a gross classification accuracy of: 

(372/500)*100 % or 74.4%. equation 5.6 
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Congalton and Mead (1983) suggest a statistic which was originally developed by 

Cohen (1960). This can be derived from the error matrix, and is the kappa or khat 

statistic. This measures the proportionate reduction in error achieved by a classifier as 

compared with the error of a completely random classifier: it has the range of 0 to 1. 

Thus a value of 0.75 would indicate that the classifier was avoiding 75% of the errors 

that a totally random process would have produced. (Lillesand and Kiefer, 1987). This 

test was recommended as a standard for remote sensing data by Rosenfeld and 

Fitzpatrick-Lins (1986). The widespread use of the kappa statistic has been impeded 

by the incorrect formulation of the statistic, Hudson and Ramm (1987) and Congalton 

(1987), and its incorrect coding in the software supplied by Congalton. For these 

reasons the statistic was not used in this study. 

5.4 Image Classification in Geology 

Few studies (if any) have been undertaken on the accuracy of geological maps; but an 

accuracy in the region of say 85-90% would seem to be the minimum acceptable. 

Computer based classification using stratigraphic units in LANDSAT MSS scenes have 

achieved relatively low and generally unacceptable accuracies, typically in the 40-60% 

range in semi-arid terrains (Short, 1984). 

Geological mapping has been undertaken for many decades using stereo aerial 

photography, and accuracy in the region of 80-90% is often achieved especially in arid 

and semi-arid regions (Short, 1982). In many ways a satellite image can be thought of 

as a small scale, low resolution aerial photograph. Hence they cannot pick out certain 

geological details, such as the dip of stratigraphic formations and subunits whose 

thickness are smaller than the spatial resolution of the sensor. A major question 

therefore arises, of what is the accuracy level which can be achieved with satellite 

imagery. 

Siegal and Abrams (1976) in the Coconinno Plateau of Arizona used LANDSAT MSS 

data with supervised and unsupervised classification algorithms, but found consistently 

low accuracy (40-55%) regardless of the method. Siegal, in Siegal and Gillespie 

(1980) found higher accuracy using Thematic Mapper Simulation data because the 

spectral range of these data is better suited to lithological discrimination. 

Limits to the accuracy of classification based solely on spectral properties are because 

of the nature of geological maps; firstly because geological maps depict stratigraphy. 

Remotely sensed images and derivative maps can recognise only relative ages, and then 

80



only if suitable control units such as cross cutting relationships are present. Secondly 

bedrock is usually mapped by extrapolation of surficial outcrops based on structural 

data from the outcrop. Because of the low spatial resolution and the lack stereoscopy 

(except for SPOT and some SIR-B) structural relationships cannot be measured. 

Therefore satellite classification maps can indicate only the distribution of surficial 

material. 

Because of the above limitations, there may be a fundamental upper limit to the 

accuracy obtainable with satellite data. This may be a fundamental nature of the ground 

target (that is, geology). However spectral classifiers do not use all the available 

information about a lithology. Later chapters will show how spatial (textural) and 

contextual information can now be used to mimic the human interpreter and therefore 

possibly increase classification accuracy. 

5.5 Image Classification of Test Sites 

To train and test the classifier in each of the two test sites, a series of training areas and 

test areas for each class were defined (two training areas and two test areas for each 

class). The means, variance-covariance and coincident spectral plots for each class 

were derived from the training area data. The test areas were used to generate error 

matrices to test the classification accuracy of each type of classifier. The normalised 

accuracy is generated by dividing the number of pixels classified as a certain class by 

the total number of pixels in that test area. In this way it is possible to compare small 

test areas (those with few pixels) directly with classes where it is possible to define 

large test areas (those with many pixels). The results of minimum distance, decision 

tree and maximum likelihood classifications are given in tables 5.1 to 5.3. The leading 

diagonal of the confusion matrix (that is the correctly classified pixels), are expressed 

as a fraction of 1.0. Also given in the final column is the overall classification accuracy 

as a percentage. 
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Table 5.1 normalised accuracy (fraction of 1.0) and average classification (%) for test 

site 1. LANDSAT MSS and SIR-A. 

  

  

  

  

  

  

  

  

  

  

  

MINIMUM DISTANCE TO MEANS 

Class 1 Class 2 | Class 3 Class 4 | Class5 | Average 

4 bands 
MSS 0.41 0.67 0.15 0.77 0.08 41.83 

4 bands MSS] 0.38 0.36 0.62 0.50 0.58 42.76 
+ SIR-A 

DECISION TREE 

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

4 bands MSS 
+SIR-A | 0.86 0.33 0.09 0.59 0.36 | 4471 

MAXIMUM LIKELIHOOD 

Class | Class 2 Class 3 Class 4 Class 5 | Average 

4 bands 
Mss 061 0.94 0.26 0.74 0.49 60.70 

4 bands MSS 
+SIR-A 0.64 0.94 0.39 0.76 0.50 64.32                 
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Table 5.2 normalised accuracy (fraction of 1.0) and average classification (%) for test 

site 2, LANDSAT MSS and SIR-A. 

  

  

  

  

  

  

  

  

  

  

  

MINIMUM DISTANCE TO MEANS 

Class | Class 2 Class 3 Class 4 Class 5 | Average 

4 bands 
MSS 0.45 0.66 0.40 0.18 0.37 41.01 

4 bands MSS 
+ SIR-A 0.57 0.46 0.70 0.23 0.37 46.76 

DECISION TREE 

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

4 bands MSS 
+SIR-A | 0.50 0.31 0.86 0.24 0.44 46.84 

MAXIMUM LIKELIHOOD 

Class 1 | Class 2 | Class3 | Class 4 | Class5 | Average 

4 bands 
MSS 0.55 0.49 0.62 0.74 0.60 59.82 

4 bands MSS 
een 0.77 0.54 0.62 0.80 0.69 68.60                   
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Table 5.3 normalised accuracy (fraction of 1.0) and average classification (%) for test 

site 2, LANDSAT TM and SIR-A. 

  

MINIMUM DISTANCE TO MEANS 

  

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

  

  

6 bands 0.73 0.34 0.68 0.44 0.22 48.15 
™ 

0.75 0.43 0.67 0.46 0.25 S117 
6 bands TM 
+SIR-A 
  

DECISION TREE 

  

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

  

6 bands TM 0.38 0.55 0.51 0.44 0.57 49.08 
+SIR-A 
  

MAXIMUM LIKELIHOOD 

  

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

  

6 bands 

  

™ 0.86 0.59 0.41 0.89 0.81 71.14 

6 bands TM 
+SIR-A 0.87 0.58 0.43 0.92 0.81 73.01                   

The best case results for image classification of test 1 using MSS with SIR-A data and 

of test site 2 using both MSS with SIR-A data and, TM with SIR-A data are given in 

maps 5.1, 5.2 and 5.3 respectively, in each case these are maximum likelihood 

classified images. 
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Map 5.1 Maximum likelihood classification of test site 1 using LANDSAT MSS and 

SIR-A data 
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Map S.2 Maximum likelihood classification of test site 2 using LANDSAT MSS and 
SIR-A data 
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Map 5.3 Maximum likelihood classification of test site 2 using LANDSAT TM and 

SIR-A data 
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In test site 1 the minimum distance and the decision tree classifier show disappointing 

results for classes 3 and 5 (both classes are confused with classes 2 and 4). This is 

explained when regard is paid to the coincident spectral plots for these classes (figure 

5.7), which shows these classes have very much higher standard deviations than the 

other three classes in the image. The slight improvement in the accuracy with the 

addition of the SIR-A band is due to the increase in accuracy of these two classes, but 

these gains are at the expense of lowering the accuracy of the other three classes. 

The minimum distance and decision tree classifier for test site 2 perform poorly for 

class 4 (being confused with class 2), with the LANDSAT MSS and SIR-A data, but 

they perform relatively well with the TM data. -Again the reason seems,to be the high 

standard deviation of class 4 in both the MSS and the SIR-A data. The TM shows a 

much lower standard deviation for this class and consequently it has a much higher 

accuracy. Overall the TM performs significantly better then the MSS, with results up 

by between 5 and 10 % for each class. 

The maximum likelihood results for test site 1 shows higher accuracies in all classes 

over the minimum distance and decision tree classifiers (by between 10 and 20 % for 

each class). However, class 3 again shows a disappointingly low result (being 

confused with classes 2 and 4). The addition of the SIR-A adds nearly 4 % to the 

overall accuracy, most of this gain being due to the increase for class 3. 

The maximum likelihood results for the test site 2 using MSS shows higher accuracies 

for all classes over the minimum distance and the decision tree classifiers (again 

between 5 and 10 % for each class). The addition of the SIR-A band also increases 

accuracy by a significant amount (nearly 9 %), the increase being spread over all 

classes. The TM for this test site showed higher accuracies for each class over both the 

MSS and the combined SIR-A and MSS. The addition of the SIR-A to the TM 

increases accuracy by under 2 % 

5.6 Timing of Classifiers 

The timings of each of the classifiers relative to the fastest classifier are given in Figure 

5.11. The fastest classifier is the decision tree classifier, and most of the time for this 

algorithm is taken up by input/output operations. The maximum likelihood classifier 

show a disproportionate increase in time taken for the increase in classification 

accuracy: the seven band maximum likelihood classifier being nearly 60 times slower 

than the decision tree classifier. Caution should be taken when using these figures, as 
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the decision tree classifier requires the interpreter to define the decision rules, a process 

which can be both time consuming and subjective. 

Figure 5.12 Timings against classification accuracy of the various classifiers . 

  

      

80 
© Accuracy 

By 1= 6 band (TM) 
a 

704 4 decision tree 

s 2= 6 band (TM) 
Ss 60-4 minimum distance 
3 3 

Es 1n3 3=7 band (TM+SIR-A) 
50 a5 minimum distance 

4= 6 band (TM) 
maximum likelihood 

40 T T T T T 

9 10, 20 30 40 50 60 5-7 band (TM+ SIR-A) 
Time maximum likelihood 

(expressed as a multiple of the fastest classifier) 

5.7 Summary 

Five different supervised classification algorithms have been described in detail. The 

results of these classifiers on the two study sites show that the addition of SIR-A to 

multispectral image data such as MSS or TM can significantly improve the classification 

accuracy. In terms of accuracy the minimum distance and decision tree classifier 

perform poorly when compared with the maximum likelihood classifier. The maximum 

likelihood classifier, however, is very much more expensive computationally than 

either the minimum distance or the decision tree classifier. This may be of less 

importance as new, faster processors (possibly with parallel architecture) become 

available. 
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Chapter 6 

Texture 

6.0 Introduction 

The compositional data conveyed by the single pixel of a sensor does not carry enough 

information to uniquely identify the lithology at that point. For example, a sandstone 

and a granite may have similar mineralogical compositions: quartz, feldspar and a mafic 

(often a mica), and can therefore have similar spectral characteristics, but they are very 

different lithologies. The regular bedding and strong, regular jointing of a sandstone 

give rise to a different texture to the strongly, irregularly jointed granite, therefore the 

tock types can be distinguished. Furthermore, rocks that are lithologically similar have 

dramatically different weathering characteristics and therefore they have quite different 

surface spectral signatures. On the other hand rocks that are dissimilar may have 

similar photomorphic weathering characteristics (Shih, 1983). Therefore it is desirable 

to use more information than just the spectral data to discriminate rock types. Texture 

is an important characteristic of many types of imagery. This is particularly so in the 

case of geological remote sensing using LANDSAT MSS data which, as was shown in 

section 2.4.1 has poorly positioned spectral bands to discriminate lithologies. In this 

chapter discrimination and measurement of textural features will be described. 

Texture can be seen in all types of images, from those derived from satellite down to 

microscopic images of rock thin sections. However, despite the importance of image 

texture no precise definition exists. A dictionary definition of texture might be 

"something composed of closely interwoven elements". This definition has some 

merits and gives some insight into the nature of texture. Blom and Daily (1982) define 

image texture as 'the spatial variation of image tone..', a similar definition is given by 

Haralick et al. (1973) who goes on to say that ‘textural features contain information 

about the spatial distribution of tonal variations’. Therefore, even though no precise 

definition of texture exists, some insight into the nature of this property can be obtained 

by these rule of thumb descriptions. There is no need to precisely define the property 

in order to assign some measure to it. Intuitively some understanding of texture is 

given by simple adjectives used to describe it such as, coarseness, smoothness or 

roughness. 

Two approaches to texture analysis have been followed, namely structural analysis and 

statistical analysis. The former depends on finding certain textural primitives (texels) 

and using these texels to cover (or tessellate) a region of an image (Ballard and Brown, 

1982). Statistical techniques use a wide variety of statistical models in order to quantify 
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the amount and type of texture present in an image. Structural analysis has proved to 

be useful in regular or man-made textures such as tiling or cloth or brickwork, where 

relatively simple texels are present and they tessellate a plane in a relatively simple 

fashion. In natural textures such as images from satellites, statistical techniques are 

more widely used than structural techniques. This is because the structural primitives 

are not easily modelled and their tessellation is complex. 

6.1 Textural Properties 

Several separate properties of texture can be measured and according to Tamura et al. 

(1978) these include:- 

1) Coarseness; this is perhaps the most fundamental property of texture and 

received much of the early investigation, for example Rosenfeld and Troy (1970) and 

Hayes et al. (1974). Sometimes texture is simply meant as the coarseness, when two 

textures differ only in scale the magnified one is said to be coarser. 

Coarseness is related to the spatial frequency, those textures rich in high spatial 

frequencies are called fine textured. Those textures rich in low spatial frequency are 

named coarse textures (see figure 6.1). 

Figure 6.1 Fine and coarse textures 

Fine Texture Coarse Texture 

  

2) Roughness; this is the property related to the total energy of changes in the 

grey levels of the image. A low energy texture (smooth) will have small amplitude grey 

level changes, while a high energy texture (rough) will have high amplitude grey level 

changes (see figure 6.2). 
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Figure 6.2 Smooth and rough textures 
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3) Directionality; this is a property over a given region, it involves both the 

element shape and placement rules. The orientation of the texture pattern does not 

matter. That is, two patterns which differ only in the orientation should have the same 

degree of directionality. Figure 6.3 shows a directional and a non-directional texture 

pattern. 

Figure 6.3 Directional and non-directional texture. 
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Many different statistical texture measures have been suggested and the following 

  

section describes some of them, especially those which have been applied to remotely 

sensed images. 
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6.2 First Order Texture Measures 

With first order texture measures the pixel (i, j) being considered is directly replaced by 

some measure of the pixels around it. The properties are calculated in a small kernel in 

an exactly analogous way to a convolution filtering. Measures may include mean, 

variance, skewness and kurtosis etc. Kernel sizes are usually small (rarely larger than 

thirteen by thirteen) and the kernel is invariably square. 

Irons and Petersen (1981) compute the local properties in a three by three pixel window 

for eleven texture measures from each of the four LANDSAT MSS bands. However 

using an unsupervised clustering technique they were unable to associate any of the 

classes with terrain types in the image. Hsu (1977) and Hsu (1978) use 23 texture 

measures for land use mapping of digitised aerial photography. He claims an accuracy 

in the region of 85-90%. Trendl (1972) uses a laplacian filter to create a texture band. 

Maurer (1974) uses several first order texture measures on digitised colour aerial 

photographs in an attempt to discriminate land use types: he concludes that very high 

accuracies possibly over 95% may be possible. Shih and Schowengerdt (1983) claim 

success for first order texture measures. Blom and Daily (1982) use mean and variance 

measures on co-registered SEASAT synthetic aperture radar (SAR) and LANDSAT 

MSS data. They find the technique useful for increasing classification accuracy. Farr 

(1983) shows that from SAR imagery, band pass filtering techniques can be used to 

derive geomorphological information related to drainage density and slope. 

6.3 Textural Edgeness 

Rosenfeld and Troy (1970) and Rosenfeld and Thurston (1971) conceive of texture not 

in terms of spatial frequency but in terms of edge per unit area. Rosenfeld and 

Thurston use the Roberts gradient (the sum of the absolute value of the differences 

between diagonally opposite neighbouring pixels). Thus a measure of the texture for 

any sub-image can be obtained by computing the Roberts gradient image for the sub- 

image, and from it determining the average value of the gradient in the sub-image. 

Trendl (1972) measures edgeness by filtering the image with a three by three averaging 

filter and a three by three laplacian filter. The two values of tone and roughness 

obtained from the low and high frequency filtered image can be used as textural 

features. 
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6.4 Fourier Transform 

As previously stated the texture coarseness of an image is related to the spatial 

frequency. The Fourier transform can be used for texture analysis because it is a 

technique which measures the spatial frequency of an image. 

Fourier transforms can be performed both optically and digitally. Gramenopoulos 

(1973) recognises terrain types using ERTS-1 MSS imagery of an arid area, and claims 

an accuracy in the region of 80%. Ramapriyan (1972) uses spatial frequency analysis 

to examine remotely sensed data. Lendaris and Stanley (1969) use the power spectrum 

of black and white photography to differentiate between two land use classes: man- 

made and non man-made in which they claim an accuracy of 98.8%. Indebetouw and 

Bernado (1981) use an optical Fourier transform using a coherent light source. The 

light source used has a relatively simple spectra: each line of the spectra is used to 

highlight a particular spatial frequency in the image. Thus textures corresponding to 

certain spatial frequencies are highlighted. Blom and Daily (1982) filter images in the 

Fourier domain and use these as textural bands. They claim that these increase the 

classification accuracy of their classifier. Evans and Stromberg (1983) use a low pass 

filtered image followed by a Fourier transform to produce textural bands from SIR-A 

data of San Rafael Reef, Utah. They use classification maps based on topography and 

surface roughness to provide a means of relating these parameters to lithology and 

geomorphology. 

6.5 Second Order Texture Measures 

There are a number of texture measures which have been described as second order, 

that is the texture measure is computed from an intermediate texture feature. Second 

order texture measures include the autocorrelation function, the grey level run length 

matrix (GLRLM), the so called neighbouring grey level dependency matrix (NGLDM), 

and the spatial grey level dependency matrix (SGLDM). 

6.5.1 Autocorrelation 

The autocorrelation function is a feature which measures the size of the texel. The 

autocorrelation function can be understood with the aid of a simple thought experiment 

(Haralick, 1979). Imagine two image transparencies on top of one another illuminated 

with a uniform light source. Measure the average light transmitted by the 

transparencies. Now rotate one transparency relative to the other and measure the 

transmitted light as a function of rotation. A graph of these measurements is the two- 
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dimensional autocorrelation. The autocorrelation is closely related to the power 

spectrum; they are Fourier transforms of one another. 

If the texels of an image are relatively large, then the autocorrelation will drop off 

slowly with distance. If the texels of the image are small, the autocorrelation will drop 

off quickly. The autocorrelation function will fall and rise in a periodic manner. 

6.5.2 Grey Level Run Length Matrix 

A grey level run is defined as a set of consecutive co-linear pixels having the same grey 

level value. The length of the run is the number of pixels in the run. For a given image 

or sub-image, a grey level run length matrix can be computed in four different 

directions. The matrix element (i,j) specifies the number of times that the image 

contains a grey level j of run length i pixels, see figure 6.4. 
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Figure 6.4 The four grey level run length matrices which can be calculated from an 
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This type of texture measure was described by Galloway (1975), who suggested five 

different measures of texture which can be computed from these run length matrices 
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(see appendix 2). Some advantages of this method include the fact that the number of 

calculations is directly proportional to the number of pixels in the image and only two 

lines of the image need to be held in core at any one time. Galloway illustrated that an 

accuracy of about 83% for six land use classes (taken from digitised aerial 

photography) was possible using this method. 

6.5.3 Neighbouring Grey Level Dependency Matrix 

The NGLDM was first suggested by Sun and Wee (1983), it measures the number of 

neighbouring pixels with the same grey level as the pixel being examined. The whole 

of the image array is scanned and an intermediate array shown in figure 6.5 is 
constructed which has a description of each grey level and the number of equal valued 

neighbours that pixel has. Thus in figure 6.5 the (3, 3) position of the image has a 
value of five, it has one nearest neighbour of value five, so the intermediate array is 
assigned a value of (5, 1) at this position. A two dimensional histogram is then 

constructed which shows the NGLDM number against grey level. A large value of the 

NGLDM number in the two dimensional histogram means a smooth image, while a 

small value of the NGLDM number in the histogram means a rough texture. 
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Figure 6.5 Computation of the NGLDM 
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Sun and Wee (1983) describe five texture measures analogous to those of Galloway 

(1975), which can be calculated from the NGLDM. The advantages of the NGLDM 

are two-fold, firstly the measures are angularly independent (they change little under 

rotation of the image). Secondly, as the features are invariant under linear grey level 

transformation, it is possible to identify two images which have the same texture but 

different grey tone. Sun and Wee claim a classification accuracy of 79.4% for one 

texture feature, and an accuracy of 85.0% using two of these texture measures. Little 

work has been performed on the effectiveness of this texture measure, possibly because 

of its computational complexity and possibly because the measure may be noise 

sensitive. 
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6.5.4 Spatial Grey Level Dependency Matrix 

The SGLDM method, also known as the co-occurrence method was first described by 

Haralick et al. (1973). This is a method which measures the co-occurrence of a pixel of 

brightness i, against some neighbouring pixel of brightness j. Thus the (i, j)th pixel in 

the co-occurrence matrix is the number of times a grey level value i occurs adjacent toa 

grey level j in the sub-image (see figure 6.6). The co-occurrence matrix is square with 

dimensions Ng by Ng, where Ng is the number of grey levels in the image. 
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Figure 6.6 The four nearest neighbour (d=1) co-occurrence matrices 
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The matrix can be measured for immediately adjacent pixels in any one of four 

directions (see figure 6.6), or can be measured for pixels separated by two or more 

pixels, again in multiple directions. However, since texture by its very nature is a local 

property, it does not seem helpful to measure the co-occurrence of pixels separated by 

distances of more than a few pixels because their semi-variance and hence there textural 

value must be low. 

Smooth textures will have large values close to the main diagonal of the matrix as 

similar grey levels occur next to each other in smooth textures. Rough textures will 

have high values far from the leading diagonals as very dissimilar grey levels occur 

next to each other. Some fourteen texture measures were described by Haralick (these 

are analogous to those described by Galloway (1975)) but according to Brunner and 

Veck (1985) only five of these measures are in common usage. A full list of these is 

given in Appendix 3, but they include the following which are commonly used. 

1) Angular Second Moment, this is the simple sum 

2D (pli, j))2 Equation 6.1 

hind 

it is smallest when all entries are small that is when all the entries are equally probable. 

It is largest when one entry is non zero and all the rest are zero. Thus with an image of 

white noise where all grey level values are equally probable it will give a small value. 

Fine textures will produce smaller values than coarse textures. 

2) Entropy, this refers to the concept of entropy drawn from information theory, not 

true entropy, though the two have the same formula. It measures the degree of 

dispersion of the co-occurrence matrix, being largest when all the values of the co- 

occurrence matrix are equal and smallest when they are unequal. It is calculated by the 

following formula. 

-D 2pli,j)1og(pti, j)) Equation 6.2 

Tied 

Neither the entropy nor the angular second moment is sensitive to whether the co- 

occurrence matrix has high values close to, or far from, the main diagonal of the 

matrix, they are affected only by the spread of values in the whole matrix. Therefore 

they cannot distinguish coarse texture from fine textures. 

3) Contrast, this weights the matrix element with its squared distance from the main 

diagonal. The value of the function is large when there are large entries far from the 
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diagonal, and small when all zero elements of the matrix are close to the main diagonal. 

When all grey level values are equal the contrast becomes zero, this corresponds well 

with the definition of contrast, which states that a region with no variation has zero 

contrast. Contrast is calculated by the following equation: 

Ng-1 Ng Ng 

2nAd 2pli,j)) Equation 6.3 
nsO) tea, jsi 

4) Inverse Difference Moment, this is similar to contrast but the elements are weighted 

according to an inverse value of the absolute value of i-j, with an added factor to 

prevent the function having possible zero denominators. It is small for an area with 

fine texture, and large for an area with coarse texture. It is given by the following 

formula: 

yy 1 p(i,j) Equation 6.4 

bed het Cis )2 

where N= |i-j|, and p(i,j) is the value of the (i, j)th position of the co-occurrence 

matrix. 

Haralick and Shanmugan (1973) used the SGLDM to characterise the texture present in 

digitised photomicrographs of five different reservoir sandstones. They trained the 

classifier using 143 samples; then on a further 100 samples they tested the accuracy of 

the texture measure. They found that 89 sandstones were placed in the correct 

sandstone class. Haralick and Bosley (1973) and Haralick and Shanmugan (1974) 

used combined spectral and textural data (derived from the SGLDM) for classifying 

land-use types in ERTS MSS (LANDSAT MSS) image of Monterrey, California. 

They found a correct classification rate of 83% for their seven land use classes. Chen 

and Pavlidis (1979) used the SGLDM in conjunction with a split and merge algorithm 

in order to segment a digitised photograph into textural similar areas. Using 

LANDSAT MSS imagery Anon (1979) used the SGLDM to classify sandstones which 

may be associated with uraniferous mineralisation. They found that the third principal 

component of the imagery had the lithological textural information which they were 

seeking. Shanmugan et al. (1981) used the SGLDM to characterise textures present in 

SEASAT SAR imagery. This was found to be a useful technique in spite of the fact 

that the image blocks used for calculate the co-occurrence matrix had nearly the same 

mean and standard deviation. Saraph and Inamadar (1982) use the SGLDM for various 

geological and land cover sites in the Goa region of India. They state that it is a useful 

tool for the geological interpretation of textures. 
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6.6 Fractal Based Texture Measures 

Pentland (1984) describes the use of fractal based texture measures, The fractal 

dimension of a surface corresponds quite closely with the intuitive notion of roughness. 

Thus if a set of three dimensional relief models were created with the same three 

dimensional relief but with varying fractal dimension, then an increase in roughness 

would be seen. Pentland used the Brodatz textures (Brodatz, 1966) for establishing the 

usefulness of fractal based texture measures. Using 16 by 16 non-overlapping 

subregions a classification accuracy of 84.4% was obtained, as compared with 65% for 

correlation statistics. 

6.7 Comparison of Texture Measures 

With the bewildering variety of texture measures that are available it becomes necessary 

to carefully chose the ones which will probably be the most effective for the particular 

textures being studied. Two papers have addressed the problem of comparing texture 

algorithms. In an empirical comparison of first order statistics, second order statistics 

and Fourier features, Weszka et al. (1976) find that both first and second order 

statistics perform better than Fourier features. They use a data set consisting of 54 

digitised aerial photographs with nine land use classes and 180 LANDSAT MSS image 

samples belonging to three geological terrain types. Good classification results were 

obtained on terrain samples representing the geological classes. This confirms the 

usefulness of texture features for geological remote sensing with satellite data, even in 

the absence of any spectral information. The study finds that the first and second order 

texture features perform equally well. They explain the apparent ineffectiveness of the 

Fourier transform method as being due to the transform treating the image as being 

periodic, even if it is not. Thus the transforms of terrain samples have high and low 

values in the horizontal and vertical directions arising from discontinuities between the 

left and right columns, and the top and bottom rows of the sub-image. The transform 

therefore does not satisfactorily model the important attributes of texture coarseness and 

texture roughness and hence achieves very limited success. 

Conners and Harlow (1980) make a theoretical comparison of texture algorithms. This 

study shows that the first and second order measures used are innately more powerful 

than the Fourier texture measures. They also state that second order texture measures 

are more powerful than first order texture measures. They say the reason that Weszka 

et al. (1976) do not find this to be the case was because they use only five texture 

features which can be derived from the SGLDM, rather than the dozen or more that 
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could be used. They also find that of the second order texture measures the SGLDM 
method is more powerful than the GLRLM method. Two reasons for this are that:- 

1) The GLRLM is very sensitive to noise, as any noise will tend to break up the 
run length into arbitrary lengths and therefore give an incorrect measure of texture. 

2) The GLRLM does not measure the very important second order probabilities 
of the form P(i, j) i=j; that is the edge transition information. 

Ulaby et al. (1986) use SAR imagery to compare various texture algorithms. They find 
that first order texture measures combined with tonal measures achieve a maximum 
classification accuracy of 72% for land cover types, but that this level of accuracy was 
obtainable only at the cost of significantly degrading the spatial resolution of the 

imagery. In contrast, second order statistics provided a classification accuracy of 88% 

with only a slight decrease in the spatial resolution of the imagery. A second study 
shows that the use of second order texture measures for five forest types improves 
classification accuracy from 75% for tonal data only, to 93% for tonal and textural data 

together. 

The results show that Fourier features perform poorly compared with first and second 
order measures. Conners and Harlow (1980) show that second order texture measures 

perform better than first order texture measures, and this is further underlined by Ulaby 

et al. (1986). Conners and Harlow also show that the SGLDM texture measure is 

theoretically a more powerful second order texture measure than the GLRLM texture 

measure. 

6.8 Results of Texture Analysis 

During the course of this study four different types of texture measure were 
investigated for each of the two test sites (see chapter 4 for the description of each test 
site) these were: 1) first order measures, 2) edge measures, 3) grey level run length 

measures, and 4) spatial grey level dependency measures. Texture analysis was 

undertaken on the LANDSAT MSS and TM data, not the SIR-A data. This is because 

of the strong speckle on the radar data which would give rise to poor results using such 

simple statistical models. In each case three texture features were used to describe the 

texture of each image. The texture measures were derived by reference to the 

coincident spectral plots (figures 5.6 to 5.8) using the band of LANDSAT (MSS or 

TM) data which showed both the least atmospheric influence and the greatest separation 

of classes in each test site. The assumption was made that these bands would show the 

greatest separation of texture types. In each case it was found that the longest 
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wavelength available had these attributes, in the case of the MSS this was band 7 (near 

infra red 0.8 jm to 1.1 jm) and in the case of the TM it was band 7 (middle infra red 

2.08 um to 2.35 [im) . 

1) First order texture measures; the three features used were a) the mean, b) the 

variance, and c) the logarithm of the variance. These three features were chosen for 

their simplicity of calculation. 

2) Edge texture measures; the three features used were derived from 

convolution filtering of the input image, they were a) Sobel (magnitude only), b) 

Prewitt (direction only), and c) the Roberts gradient. These features were chosen 

because of their common use in digital image processing (Rosenfeld and Thurston, 

1971 and Sutton and Hall, 1972). 

3) Grey level run length; five different features in four different directions were 

suggested by Galloway (1975) which could be derived from this texture measure. To 

reduce the dimensionality of the data set the four different directions were averaged to 

produce a generalised run length matrix. This reduces the dimensionality by a factor of 

four and produces a generalised matrix. Because direction is dependent on the frame of 

reference (that is the direction it is viewed from), whereas texture is not dependent on 

this, therefore, a rotated texture should give the same texture measure as one which has 

not been rotated. The optimum three features were selected by performing a minimum 

distance to means classifier (because of its efficiency and because of the singular 

matrices produced by the relatively small training areas) using every combination of 

three out of the five texture features and finding the maximum accuracy. The results 

were as follows: 

Test Sitel MSS Test Site 2 MSS 

1, Long Run Emphasis 1. Short Run Emphasis 

2. Grey Level Nonuniformity 2. Grey Level Nonuniformity 

3. Run Length Nonuniformity 3. Run Percentage 

Test Site2 TM 

1. Short Run Emphasis 

2. Long Run Emphasis 

3. Run Length Nonuniformity 

It is interesting to note that no one texture feature occurs in all three sets of imagery. 
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4) With the Spatial grey level dependency measures, there are many variables 

which can be altered. These include, the number of grey levels, the direction, the 

distance over which it is computed, and the fourteen features which Haralick et al. 

(1973) described. For the sake of convenience in terms of length of calculation and 

storage, the number of grey levels was restricted to 16 (giving 16 by 16 output array 

from a 8 by 8 input array). As in the case of the run length measure the average of four 
directions was used to produce a generalised co-occurrence matrix. It was decide that 

only distance one (nearest neighbour) features would be investigated, since it was felt 

that texture by its very nature is a local property, and hence distant neighbours should 

have little influence on the texture. A minimum distance to means classifier (for the 

reasons given earlier) was used on every three band combination of thirteen of the 

fourteen texture measures (maximal correlation coefficient was not investigated) to find 

the optimum band combination. The results were as follows. 

Test Site 1 MSS Test Site 2 MSS 

1, Angular Second Moment 1, Angular Second Moment 

2. Contrast 2. Inverse Difference Moment 

3. Difference Entropy 3. Sum Entropy 

Test Site 2 TM 

1, Angular Second Moment 

2. Entropy 

3. Difference Entropy 

It is interesting to note that in each case the angular second moment (ASM) was judged 

to be among the best three features for all types of imagery in both test sites. Also in 

each case at least one entropy based feature is present. This means that both the 

coarseness of the texture (derived from the ASM) and the roughness of the texture 

(derived from the entropy based features) are being measured. 

In the tables 6.1 to 6.9 the following nomenclature is used to denote the texture 

measures investigated. FOT are first order texture measures (mean, variance, logarithm 

variance); EDGE are edge based texture features (Sobel, Prewitt, Roberts); GLRLM are 

three texture features based on the GLRLM (see previous discussion for which features 

are used); SGLDM are three texture features based on the SGLDM (see previous 

discussion for which features were chosen). 
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Table 6.1 classification accuracies for test site 1, using the minimum distance rule with 

MSS, texture bands and SIR-A data. 

  

Class 1 Class 2 Class 3 Class 4 | Class5 | Average 

  

  

  

  

  

  

  

4 bands MSS 
+ EDGE 0.84 0.58 0.12 0.48 0.39 48.12 

4 bands MSS 
. EDGE+SIR-A| 9.74 0.55 0.58 0.35 0.34 51.06 

4 bands MSS 
+ FOT 0.74 0.19 0.49 0.29 0.49 48.32 

4 bands MSS 
+ FOTISIR-AY 0.95 0.19 0.49 0.29 0.49 48.32 

4 bands MSS 
+GLRLM 0.76 0.93 0.29 0.16 0.45 51.89 

4 bands MSS 
ILGLRLM+SIR-A| 9.75 0.86 0.38 0.20 0.48 52.16 

4 bands MSS 
+ SGLDM 0.23 0.71 0.39 O11 0.66 42.06 

  

4 bands MSS 
l+/SGLDM+SIR-A| 0-23 O71 0.47 0.60 0.60 42.36                   

In test site 1, in all but one case, the addition of texture measures to the minimum 

distance classifier has a small effect of increasing the accuracy of the classifier over the 

same classifier using only tonal properties (Table 6.1). The exception being the 

SGLDM features which actually decrease accuracy by some 6%. The addition of SIR- 

A data has a much greater effect in increasing classification accuracy the texture 

measures. 
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Table 6.2 classification accuracies for test site 1, spectral shape classifier, using 

LANDSAT MSS data, SIR-A data and texture data. 

  

Class 1 Class 2 Class 3 Class 4 | Class 5 | Average 

  

4 bands MSS 
.3EDGE+SIR-A| 9.08 0.78 0.01 0.91 0.19 39.82 

  

4 bands MSS 
+3 FOT+sIR-A| 0.90 0.83 0.02 0.98 0.09 | 5631 
  

4 bands MSS 
LGLRLM+SIR-A| 0-10 0.83 0.00 0.97 0.09 | 40.22 
  

4 bands MSS 
LSGLDM+SIR-A| 0.54 0.86 0.01 0.89 0.12 49.09                   

The spectral classifier performs poorly for first order and edge based texture measures 

for test site 1 (Table 6.2), but it performs relatively well for second order texture 

measures. The SGLDM based features prove to be the most accurate, achieving results 

which are superior to those of the minimum distance to means classifier. In most cases 

the classifier classifies two or three classes very well, but it is unable to classify all five 

classes with any degree of consistency. It is able to discriminate classes 2 and 4 

consistently well and classes 3 and 5 consistently poorly. 
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Table 6.3 classification accuracies for test site 1 using maximum likelihood rule for 
spectral data and minimum distance rule for texture data. 
  

  

  

  

  

  

  

  

  

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

4 bands MSS 
+ EDGE 0.61 0.94 0.26 0.75 0.48 60.64 

4 bands MSS 
 EDGE+SIR-A| 0.64 0.94 0.39 0.76 0.50 64.32 

4 bands MSS 
+ FOT 0.63 0.94 0.26 0.72 0.47 60.15 

4 bands MSS 
5 ai 0.64 0.94 0.39 0.75 0.49 64.26 

4 bands MSS 
+GLRLM 0.61 0.94 0.27 0.48 0.50 55.90 

4 bands MSS 
Veveiaisip 0064 | 054 0.39 0.65 050 | 6236 

4 bands MSS 
: ADT 0.60 0.94 0.24 0.76 0.51 61.12 

4 bands MSS 
cpu ered 0.64 0.94 0.39 0.76 0.50 64.40                   
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Map 6.1 Maximum likelihood classification of test site 1 using LANDSAT MSS and 

SIR-A data, with SGLDM data classified according to minimum distance rule. 
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In the case of the maximum likelihood classifier it was not possible to simply add the 

texture bands to the tonal classifier because of the small size of the training areas used, 

this gave rise to singular matrices for the texture features because of the 8 by 8 pixel 

blocks used as the basis of the texture measures. Therefore a modified maximum 

likelihood rule was used. Thresholds were placed on the classifier so that pixels with a 

low probability of belonging to any class were left unclassified. These unclassified 

pixels were then, using only textural features placed in a class according to minimum 

distance rule. The assumption behind this is that the textural information is taken from 

a small region around each pixel and is therefore more representative than the tonal 

features which have proved inconclusive. 

The maximum likelihood results for test site 1 are given in table 6.3, they show that the 

addition of texture features in the way previously described has little or no effect to the 

classification accuracy. Classification accuracy is not increased in any case by an 

amount which could be described as significant; the GLRLM features in fact decrease 

accuracy by some 5%. The best case is the addition of SGLDM texture measures and 

SIR-A data, this is shown in Map 6.1. 

Table 6.4 classification accuracies for minimum distance algorithm for test site 2 
  

  

  

  

  

  

  

  

  

Class 1 Class 2 Class 3 Class 4 Class S | Average 

eo wees ||" S0 0.64 0.58 0.16 038 | 45.30 

eae ode | fo77 054 | 0.15 039 | 4536 

4 bands MSS 
eee 0.15 0.47 0.63 0.08 049 | 41.31 

Se | Poa 0.85 0.64 0.10 0.49 | 45.55 

Bee ons 073 0.38 0.67 045 | 4221 

Weeceere el C54 078 0.39 0.08 053 | 46.23 

OB oanen|e075 020 | 0.15 033 | 35.61 

ernie a ro4e) ml ea7s 020 | 0.26 035 | 39.66                 
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The classification accuracy for test site 2, using LANDSAT MSS and SIR-A data, 

again shows a slight decrease using texture measures for the minimum distance 

algorithm (Table 6.4). Again the SGLDM features lower the accuracy by a significant 

amount. Interestingly addition of SIR-A to the texture features increase the accuracy, 

this is the reverse of the case found when the SIR-A data is added to just the tonal 

features. 

Table 6.5 classification accuracies for test site 2, spectral shape classifier using 

LANDSAT MSS data, SIR-A data and texture data. 

  

  

  

  

              

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

4 bands MSS 
.3EDGE+SIR-A| 0-10 0.53 0.93 0.13 0.04 | 3460 

4 bands MSS 
+3 FOT+SIR-A}] 0.19 0.56 0.00 0.04 0.87 33:27 

4 bands MSS 
GLRLM+SIR-A) 9.50 0.94 0.00 0.00 0.57 40.14 

4 bands MSS 
SGLDM+SIR- 4 0.34 075 0.34 0.54 0.24 4480       

The results for the spectral shape classifier in test site 2 are given in table 6.5. They 
show that second order texture measures perform better than first order and edge based 

texture measures. Again the SGLDM based features perform better than the GLRLM 

based features. The classifier seems able to discriminate just two classes with any 
consistency, these are classes 2 and 5. In the best case example with the SGLDM 

texture features, the classification accuracy is comparable with the minimum distance to 

means classifier, furthermore it is able to distinguish all classes at greater than 20% 

accuracy (20% is what a random number generator would achieve). 
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Table 6.6 classification accuracies for test site 2 LANDSAT MSS and SIR-A data using 
maximum likelihood rule for spectral data and minimum distance rule for texture data. 

  

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

  

  

  

  

  

  

  

  

4 bands MSS 
+ EDGE 0.55 0.46 0.63 0.72 0.62 59.34 

4 bands MSS mt 
+ EDGE+SIR-A| 0.77 0.54 0.61 0.80 0.70 68.38 

4 bands MSS 
+ FOT 0.56 0.47 0.62 0.71 0.62 59.58 

4 bands MSS . 
+ FOT+SIR-A | 0.77 0.53 0.62 0.80 0.70 68.53 

4 bands MSS 
+GLRLM 0.56 0.55 0.62 0.41 0.60 50.27 

4 bands MSS w 
/GLRLM+SIR-A] 0.77 0.55 0.62 0.65 0.70 65.94 

4 bands MSS 
+ SGLDM 0.54 0.46 0.63 0.73 0.62 59.61 

4 bands MSS = 
HSGLDM+SIR-A| 9.77 0.54 0.62 0.86 0.70 68.60                   

The addition of texture according to a minimum distance to means algorithm to the 
maximum likelihood classification of test site 2 using LANDSAT MSS data does not 
significantly alter the classification accuracy (Table 6.6). The best case is the addition 
of the SGLDM based texture features and SIR-A data, but the increases in accuracy are 
almost negligible, this best case is given in map 6.2. 
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Map 6.2 Maximum likelihood classification of test site 2 using LANDSAT MSS and 

SIR-A data, with SGLDM data classified according to minimum distance rule. 
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Table 6.7 Minimum distance to means classifier test site 2, using LANDSAT TM, SIR- 

A and texture data. 

  

  

  

  

  

  

  

  

  

Class 1 Class 2 | Class 3 Class 4 Class 5 | Average 

6 bands TM 
+3 EDGE 0.77 0.65 0.55 0.56 0.29 56.37 

6 bands TM 

}3EDGE+SIR-A| 9.77 0.65 0.55 0.57 0.29 56.53 

6 bands TM 
+3 FOT 0.73 0.32 0.80 O51 0.28 52.70 

6 bands TM 
+3 FOT+SIR-A| 0.75 0.40 0.80 0.53 0.31 55.65 

6 bands TM 
+GLRLM 0.60 0.26 0.52 0.88 0.48 54.91 

6 bands TM 
LGLRLM+SIR-A| 9-60 0.27 0.52 0.89 0.48 54.99 

6 bands TM 
+ SGLDM 0.64 0.44 0.77 0.82 0.58 65.14 

6 bands TM 
LSGLDM+SIR-A| 0-65 0.44 0.77 0.83 0.58 65.16                   
The addition of texture data to the minimum distance to means classifier for the TM data 

of test site 2 shows significant increases in the accuracy for all texture features (Table 

6.7). Increases in accuracy occur for all classes and particularly for class 2, which 

previously had an accuracy of 34%. The largest increases in accuracy occur for the 

SGLDM based texture features (over 14% increase), while the lowest increase is for the 

GLRLM based features. Interestingly the addition of SIR-A data does not increase the 

classification accuracy of the LANDSAT TM and texture measures. It appears that 

most of the increase in accuracy of the textural features is the same increase that would 

be caused by the radar data. 
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Table 6.8 results for spectral shape classifier LANDSAT TM data with SIR-A and 

texture 
  

  

  

  

  

Class 1 Class 2 Class 3 Class 4 Class 5 | Average 

6 bands TM 
.3EDGE+SIR-A}] 0.06 0.82 0.50 0.55 0.04 38.14 

6 bands TM 
+3 FOT+SIR-A] 9.00 0.86 0.63 0.23 0.03 34.95 

6 bands TM 
/GLRLM+SIR-A| 0.72 0.19 0.23 0.00 0.27 28.22 

6 bands TM 
KSGLDM+SIR-A] 9.10 0.71 0.73 0.86 0.04 49.16                   

The results of the spectral shape classifier for the TM, radar and texture data are given 

in table 6.8, these show that the classifier generally produces poor results. Again (as in 

all previous cases) the SGLDM features produce the highest accuracy while the 

GLRLM features produce the lowest accuracy. In the case using the SGLDM 

measures, the overall accuracy is comparable with minimum distance results. Good 

accuracy is achieved for classes 2, 3 and 4, while classes 1 and 5 have very low 

accuracies, class one being confused largely with class 2 and class 4 being confused 

with class 5 

Table 6.9 Maximum likelihood classifier for test site 2 using LANDSAT TM, SIR-A 

and texture data. 
  

  

  

  

  

  

  

Class | Class 2 Class 3 Class 4 Class 5 | Average 

6 bands TM 
+3 EDGE 0.92 0.64 0.41 0.93 0.85 75.14 

6 bands TM 
.3EDGE+SIR-A) 0-93 0.63 0.42 0.95 0.87 76.02 

ds TM 
See 0.91 0.61 0.29 0.93 078 70.20 

6 bands TM 
ler aewesin wn 092 0.58 0.29 0.93 0.80 | 70.65 

bands TM 
uu SCEOM 0.95 0.69 0.42 0.95 0.89 | 77.73 

6 bands TM 
 eecuiSteT OSS 0.66 0.42 0.96 060 | 78.10                 
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The TM for test site 2 has the same training areas as the MSS for test site 2, since the 

TM has pixels twice the size as the MSS each training area has twice as many pixels. It 

was therefore 
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Map 6.3 Maximum likelihood classification of test site 2 using LANDSAT TM, SIR-A 

and SGLDM texture data. 
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possible to simply add the texture bands to the maximum likelihood classifier in just the 

same way as adding spectral bands (except in the case of first order texture measures). 

The results are given in table 6.9. In the case of both the edge texture measures and the 

SGLDM texture measures significant increases in the classification accuracy are 

achieved (in the case of SGLDM this increase is of the order of over 6%). The 

GLRLM based features perform poorly when compared with the other texture 

measures. The best case occurs for six bands of TM with SGLDM texture measures 

and SIR-A data, this is shown in map 6.3. 

6.9 Timings of Classifiers 

The timings of classifiers with texture measures added relative to the accuracy is given 

in figure 6.4. The timings are given relative to the fastest classifier (the minimum 

distance) which took some 130 seconds on the VAX 8650 processor. The results 

show that the spectral shape classifier performs poorly when compared with the 

minimum distance or maximum likelihood, having lower accuracy than both and taking 

1.5 times longer to calculate than the minimum distance classifier. The maximum 

likelihood classifier has a significantly higher accuracy than the minimum distance 

algorithm, but the classification time is increased by over 100 fold. 

Figure 6.7 Timings versus accuracy for supervised classifiers using six bands of TM 

and SIR-A data and three SGLDM texture features 
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6.10 Summary 

Several texture measures have been described which have been used in digital image 
processing. These texture features have received relatively little attention in the field of 
remote sensing. A review of literature has shown that second order texture measures 

are both theoretically and experimentally more powerful than first order or Fourier 

based texture measures. 

The results from the Spectral shape classifier have been reported in this chapter, and 

have shown that in favourable circumstances this classifier can produce results which 

are comparable with the minimum distance to means classifier. In circumstances where 

the texture measures used in the classifier are poor, the results of the classifier are 

relatively disappointing. 

Results for the TM show that in most cases the addition of texture measures does 

significantly increase the classification accuracy. The highest increase in classification 

accuracy being due to the second order SGLDM based texture measures (increases in 

accuracy of some 15% are reported). However, results for the LANDSAT MSS data 

show only small gains in accuracy, and in certain cases small falls using texture 

features. Furthermore, it was found that second order texture measures performed 

poorly when compared with first order texture measures. This is in direct contradiction 

with the literature but is probably due poor spatial resolution of the imagery used. The 

results for the TM are in agreement with the literature, the difference with the results for 

the MSS are therefore probably due to the increased spatial resolution of the TM over 

the MSS and also to the better positioning of the spectral bands on the TM sensor for 

discriminating lithology. It is probable that the resolution of the MSS is too low to 

discriminate distinctive textures in the lithologies of each test site with a near infra red 

band. 
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Chapter 7 

Contextual Analysis 

7.0 Introduction 

Whereas texture refers to the spatial variation within a contiguous group of pixels, the 
context of a pixel refers to its spatial arrangement with pixels in the remainder of the 
scene. Thus contextual classification of any pixel can potentially involve the use of any 
other pixel or group of pixels in the image (Gurney and Townshend, 1983). 
Contextual information is not only pixel based property, it can also be a region based 
Property, that is groups of pixels can be said to be out of context with their 
Surroundings. Context conveys information about the size, shape and position of a 
pixel or group of pixels in an image. Human photo-interpreters have long exploited 
context very thoroughly using their knowledge of the world to increase the accuracy of 
classification. However, context has been defined in very imprecise terms and has 
received relatively little investigation. Furthermore, it is not immediately obvious 
which procedures utilise contextual information. 

To take a geological example it might be expected that a sandstone class in an image 
will occur near other sedimentary rocks, and further away from igneous or 
metamorphic rocks. Clearly this will not always be true, but it is a useful piece of 
knowledge about the distribution of lithology in the real world. Similarly isolated 
pixels of one class completely surrounded by pixels of another class can be thought of 
as out of context with their surroundings. 

A contextual decision rule can be applied at three different times to imagery, these are: 
prior to classification, in which case the spectral or textural properties of the other 
pixels can be considered. Secondly at the time of classification of the data, in which 
case the probability of a neighbourhood of pixels is taken into account, Finally 

contextual features can be used on data which has already been classified, and this is 
also known as spatial post processing. An example might be that some preliminary 
classification which is amended by some iterative technique, a process known as 

relaxation. 

7.1 Contextual Properties 

According to Gurney and Townshend (1983) there are four different types of spatial 

(contextual) relationship . These are: 
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1) Distance. Measures that take into account distance are Telatively common, 

they work on the assumption that a pixel is likely to be associated with pixels of its own 

class and that isolated pixels which are separated by some distance from an object of 

their own class are likely to be misclassified. For example a pixel of water surrounded 

by other water pixels is more likely than a pixel of water surrounded by land. 

2) Direction. Directional contextual operators work on the assumption that 

pixels are likely to be associated with pixels separated by some angular direction or are 

less likely to be associated with pixels at some angular direction. Both distance and 

direction can be applied to single pixels or objects and therefore these properties can be 

used either before or after classification. 
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Figure 7.1 Types of contextual relationship (after Gurney and Townshend, 1983) 
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3) Connectedness. Connectedness is a property of objects which are normally 

associated with each other in an image. An example of connectedness might be a lava 

flow occurring immediately adjacent to a volcanic centre or a debris cone occurring at 

the break of slope at the base of a mountain range (see figure 7.1). 

4) Containment. Containment is a property of objects which can be found to 

contain or, are contained by other objects. An example of containment might be an area 
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of lake surrounded by an area of shore deposits, this type of arrangement is especially 
common around playa lakes where seasonal flooding followed by droughts causes 
large rises and falls in lake area. Connectedness and containment apply to objects only 
and therefore can only, be used after some form of initial classification; that is after 
objects have been recognised and assigned to a particular class. 

To these four properties perhaps two others should be added, namely, size and shape. 
These can be particularly important in certain remote sensing images, especially where 

the scale of the image is known with a high degree of certainty. A simple geological 

example of size as a contextual operator, might be the volcanic centres seen in the 

LANDSAT MSS image of northern Chile used by Oldfield and Elgy (1987) these are 
comparatively large (greater than 100 pixels in size), thus if a small number of pixels 
are assigned to this class than they could be said to be out of context. Generally the 

strictly reconnaissance geological units being classified in LANDSAT MSS imagery are 
unlikely to have a small areal outcrop, and such an approach is likely to be useful. Size 

is an example of a contextual feature which can only be measured an initial 

classification procedure. 

The same volcanic vents have a distinctive circular to sub-circular shape, and these are 

surrounded by radial lava flows which have lobate shape peripheries. A further 

geological example of shape would be alluvial fan which almost always have a 

characteristic fan or conical shape. Furthermore, the three dimensional shape of an 

alluvial fan is even more characteristic. Objects can display two properties of shape, 
the first is the overall shape of the boundary, that is whether it is rough or smooth in 

outline. Secondly there is the overall body shape of the object. For example, a 

volcanic vent with radial lava flows will normally have a very irregular (rough) 

boundary, while an ephemeral lake will have a much smoother boundary, both the lake 

and the volcano often have a overall circular body shape. However, boundary pixels 
have the lowest likelihood of being correctly classified, therefore the roughness of an 

object is not a property which is likely to yield very much information about the object. 

The overall body shape is important and a 'fuzzy' representation of the shape, possibly 

in the form: is one dimension much greater than the other dimension of an object, or is 

it fan shaped or circular. It might be possible to model the shape of these features (for 

example in the way described by Davis, 1973) and thereby to increase the classification 

accuracy. However, many cases the measurement of shape requires a stereoscopic data 

set to give the three dimensional properties of the shape. Therefore, shape based 

contextual measures will become very important with stereoscopic satellite data, such as 
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SPOT, they are less useful for non-stereoscopic data, such as LANDSAT MSS and 

SIR-A used in this study, therfore no shape features were modelled. 

7.2 Contextual Algorithms 

A variety of contextual classifiers and reclassifiers are available which can provide 

improvements in accuracy beyond those achieved by simple 'per pixel’ classifiers. 

Most pixel based reclassifiers are based on the use of windows of varying sizes similar 

to low pass filters. A widely based assumption is that pixels of a given class are likely 

to be surrounded by pixels of the same class. This assumption is made by Thomas 

(1980) and by Rothery (1983). 

Wharton (1982) uses a simple mode filter (also known as a majority filter, Mather, 

(1987)) as a contextual post classifier, this is simply the most commonly occurring 

class in a N by M window, (where N and M are odd integers). In figure 7.2, where 

N=M=3, with four possible classes (1, 2, 3 and 4), the vector of component 

frequencies (that is the histogram) corresponding to the given window is 5 of class 1, 3 

of class 2, 0 of class 3, 1 of class 4. 

Figure 7.2 The mode filter (after Wharton, 1982) 
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The central pixel in figure 7.2 therefore remains a 1, since it is the most commonly 

occurring pixel in the window. This is an example of a contextual rule that can take 

place both before or after the classification procedure. Wharton claims that the 

inclusion of this postclassification filter improves the classification accuracy by up to 

20% for his study, using high resolution aerial photography. 

The median filter can be thought of as a simple smoothing contextual filter, as it 

removes isolated stray pixels which often tend to clutter classified images. These 

isolated pixels represent small scale variations or noise, which tend to lead to loss of 

general detail and are therefore undesirable on thematic maps. The advantage of the 

median is that it has an edge preserving effect as well as a smoothing effect, therefore 
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well defined edges are little altered. The effect of such filtering is investigated by 

Oldfield and Elgy (1987). 

Davis and Peet (1977) use a smoothing technique based on the size of the classified 

objects in the image. For example, all connected regions in the image are identified, 

and any region smaller than a certain size are declassified (see figure 7.3). Thus in the 

example a minimal area of five pixels was chosen as minimum class size, the pixels of 

class three (enclosed by the dotted line) do not form a sufficiently large region and are 

therefore declassified. The pixels can then be reclassified according some form of 

mode filter as described above. This is a somewhat crude example, as different size 

thresholds could be set for each class depending on the prior knowledge on the size of 

the object being sought. 

Figure 7.3 The minmal area replacement filter (after Davis and Fleet, 1977) 
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Related to the idea of a minimal area replacement is the idea that the largest errors of 

classification occur at the edges or boundaries of objects. Therefore a simple contextual 

tule would be to replace all boundary pixels and label them as unclassified. In figure 

7.4 the area enclosed by the shading is a boundary area, where the boundary is 

interleaved and clearly misclassification is likely. A contextual operator could find all 

edge and boundary pixels and replace them as unclassified. This form of contextual 

rule would have the additional effect of replacing all isolated pixels. Following the first 

sweep to remove boundary pixels, the pixels could be reclassified according to some 

mode rule, as in the case of the minimal area replacement method. 
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Figure 7.4 The boundary pixels which would be declassified by the contextual 

boundary rule. 
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Thomas (1980) uses a simple ‘gravitational’ model using a pixel's nearest four 

neighbours after the classification procedure. This process reduces the classification 

noise which might occur due to the variable range of spectral signatures of an object, 

and due to the occurrence of mixed pixels (mixels) at the edge of objects. 

Figure 7.5 To show the nearest neighbour matrix surrounding pixel 5. The ground 

level dimensions for squared MSS and for TM are given (after Thomas, 1980) 
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The proximity function Fj for each pixel is separately calculated by the following 

formula, only the non diagonal (even numbered) pixels are used. 

RS Donde, For i=2,4,6,8 equation 7.1 

1 a5)? 

where dS is the ground distance (30 m for TM and 60 m for squared MSS data) 

between the centre of the ith pixel and the centre of the Sth pixel (see figure 7.5), Qc 
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and 45) are weightings for the ith and Sth pixels respectively. If the ith pixel has been 

classified into the jth class then qq takes the value of two, otherwise it takes the value 

of zero. If the central pixel has been classified into the jth class, then qs) (the central 

pixel) takes the value of two, otherwise it takes the value of one. The function is 

evaluated over i for each j, the results are compared. The central pixel is reclassified as 

a member of the class jmax corresponding to the maximum value of the proximity 

function. Thus the pixel is classified by a distance criterion, the model is in the form of 

a distance weighted inverse square law, hence the term gravitational is applied. 

Tilton et al. (1982) and Swain et al. (1981) use a p dimensional context array which 

contains maximum likelihood probability functions of the surrounding (p-1) pixels. 

They derive the optimal class by finding an unbiased estimate of the context function; 

that is they find the maximum likelihood function not just for one pixel, but also for the 

surrounding pixels. Yu and Fu (1983) note that the spectral information surrounding a 

pixel is correlated with the central pixel being considered; this is called semi-variance 

(Curran, 1987). Yu and Fu use this spatial correlation to develop a recursive contextual 

classification. Haralick and Joo (1986) assign pixels to a class according to a large 

sized context array around the pixel being examined. The algorithm takes the form of a 

recursive neighbourhood operator involving a top down and a bottom up scan of the 

image. They claim that this increases classification accuracy by between three and eight 

percent. These are all examples of contextual rules which take effect at the time of 

classification. 

It should be noted that there is a basic difference between statistical classifiers used 

prior to classification, from those used before or during the classification process. 

Before classification the image is represented by a statistical vector which defines some 

physical value of that pixel, such as its reflectance in a particular waveband. After 

classification the pixel is represented by a label which describes to which class a pixel 

has been assigned, or the likelihood of it belonging to that class. Therefore post- 

classification contextual analysis is a logical operation rather than a mathematical 

operation, whilst preclassification processing is a mathematical operation rather than a 

logical operation. This study has concentrated on logical operations because they are 

closer than are mathematical operations to the way a manual photo-interpreter uses 

contextual features. 
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7.3 Results of Contextual Analysis 

In this section the results of contextual operators on the classification accuracy are 

given. In tables 7.1 to 7.10 the following nomenclature is used to describe the data 

used: FOT, first order texture measures (mean, variance and log variance). Edge, edge 

based texture measures (Roberts, Sobel and Prewitt). GLRLM, grey level run length 

based texture measures (see chapter 6 for which features were used in each test site), 

SGLDM, spatial grey level dependency matrix based texture measures (see chapter 6 

for which features were used in each test site). 

129



Table 7.1 contextual postclassification processing of minimum distance and decision 

tree analysis classifier results for Test site 1 

  

Minimum Distance To Means 

Median Mode 
Grav | Edge | Mina 

3 by 3{5 by 5|7 by 7|3 by 3}5 by 5]7 by 7] ity rea 

  

  

  

4 bands MSS] 43.56 | 43.67] 43.53 | 43.32] 44.76 | 42.01 | 42.76 | 44.84 | 43.53 

  

4 bands MSS 
esinek 44.57 | 44.87} 47.01 | 45.46] 48.97 | 51.82 | 42.65 | 48.14 | 45.88 

  

4 bands MSS 
+ 3 Edge [56.09 |60.42 16278 |5487 156.70 |57.66 | 48.45 |56.65 |52.91 
  

4 bands MSS 
3 Edge+SIR| 61-38 |65.44 |67.44 |60.82 | 63.94 |6480 |51.06 | 62.41 |56.75 
  

4 bands MSS 
+3 FOT 45.21 | 47.01 |53.37 | 43.48 | 43.34 | 42.28 | 44.12 | 45.00 | 44.26 

  

ds MSS Ly sor. Sig [4875 [48.81 |50.10 | 47.60 | 46.26 | 45.33 | 48.50 | 48.77 | 48.42 
  

4 bands MSS 
L's GLRLM [5420 |55.49 56.66 |54.49 |56.18 |57.49 |52.84 155.13 152.63 
  

4 bands MSS 
LGLRLM+SIR| 94-76 | 56.27 | 56.75 |54.53 155.30 | 55.10 | 53.13 | 55.30 | 53.30 

  

4 bands MSS 
 scLpM — |42.34 [42.88 | 43.34 | 41.97 | 42.52 | 42.91 | 42.44 | 42.42 | 42.47 
  

4 bands MSS 
bSGLDM+SIR| 42-91 | 43.27 [44.71 | 42.59 | 42.86 | 43.81 | 42.87 | 42.64 | 42.71 

  

Decision Tree 

  

4 bands MSS 
+ SIR 48.06 | 48.76 | 49.64 | 47.39 | 49.63 |50.50 | 45.22 | 48.65 | 46.22                         
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Table 7.2 contextual postclassification processing results of spectral shape classifier 

results for test site 1 using MSS, SIR-A and texture data. 

  

Spectral Shape Classifier 

Median Mode 
Grav | Edge | Mina 

3 by 3}5 by 5|7 by 713 by 35 by 5]7 by 7] ity rea 

  

  

  

4 bands MSS pe 
. 3 Edge+SIR| 39-76 | 39.59] 39.88 | 41.91] 41.05 | 40.44 | 39.48 | 42.14 | 42.33 

  

4 bands MSS e 
3 FOT + SIR |57.92 | 58.90 |59.10 ] 56.31] 59.01 |59.36 | 56.42 |60.34 158.59 

  

4 bands MSS 
GLRLM+S1R| 40-38 | 40.18 | 40.05 | 40.46 139.91 |39.40 |39.17 | 42.68 |4151 
  

4 bands MSS 
LSGLDM+SiR | 50-48 [50.45 |50.23 }50.38 | 49.81 | 49.39 | 49.02 |52.13 |51.28                     
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Table 7.3 contextual postclassification processing results of maximum likelihood 
classifier of MSS, SIR-A and texture data for test site 1 
  

Maximum Likelihood Classifier 

Median Mode 
Grav | Edge | Mina 

3 by 3|5 by 5}7 by 7/3 by 3/5 by 5|7 by 7} ity ea 

  

  

  

4 bands MSS] 65.44 | 66.10}64.84 | 68.06] 69.76 | 68.80 | 59.57 ]68.70 | 63.97 

  

4 bands MSS 
+ SIR-A 69.87 | 71.40] 70.77 | 71.03}72.16 |71.17 |63.29 |72.54 | 68.64 

  

4 bands MSS 
+3 Edge |65.34 |65.92 |64.41 |68.03 |69.71 168.68 159.50 |68.53 163.86 

  

4 bands MSS 
L's Bdge-siR | 69-87 [71.34 |70.66 |71.03 |72.16 |71.11 |63.29 |72.50 |68.64 
  

4 bands MSS 
ar 66.41 |68.48 167.66 168.21 | 70.62 |69.87 159.24 169.11 }64.20 

  

4 bands MSS 
L's FOT + SiR [69-98 [71.61 |71.11 [71.13 [7221 |71.31 |6326 |72.54 |68.60 
  

4 bands MSS 
Le GUREM 59.99 | 60.49 |58.99 162.55 | 64.41 |63.95 |54.95 |62.80 | 59.17 

  

4 bands MSS 
+k GLRLM+SIRI 68.39 | 70.52 |69.81 | 70.19 |71.27 |69.84 161.61 |71.85 | 67.58 

  

4 bands MSS 
+3SGLDM_ | 66.74 |67.52 | 66.36 |69.00 |70.77 | 69.54 | 59.96 | 69.53 | 64.63 

  

4 bands MSS 
KSGLDM+SIR| 70.12 |71.62 |70.97 |71.29 |72.66 |71.69 | 63.33 |72.62 | 68.90                         
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Map 7.1 Optimal product for test site 1 using maximum likelihood classified MSS and 

SIR-A tonal and textural data followed by a 5 by 5 mode filter 
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Class 2 Conglomerate 

Class 4 Sandstone/Siltstone 

O 
O 
ao Class 3 Conglomerate/Sandstone 

4 
i Class 5 Conglomerate/Greywackes     
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Table 7.4 contextual postclassification processing of maximum likelihood classifier 

results, MSS, SIR-A and texture data for test site 2. 

  

Maximum Likelihood Classifier 

Median Mode 
Grav | Edge | Mina 

3 by 3|5 by 5]7 by 7]3 by 3)5 by 5]7 by 7] ity rea 

  

  

  

4 bands MSS} 40.73 | 39.24] 38.12 | 41.88 | 42.34 | 43.47 | 40.85 | 39.74 | 41.25 

  

4 bands MSS 
+ SIR-A 48.78 | 49.47] 48.74 | 48.35] 49.54 | 49.90 | 47.08 | 47.75 | 47.67 

  

4 bands MSS 
+3Edge | 47-29 | 45.65 | 44.61 | 47.30 | 48.58 | 46.26 | 44.78 | 48.31 | 46.88 

  

4 bands MSS 
. 3 Edge+SIR| 47-25 | 44.00 | 40.65 | 46.26 | 45.50 | 45.10 | 44.06 | 46.93 | 46.15 
  

4 bands MSS 
+3FOT | 41.65 | 42.50 | 43.30 | 40.71 | 39.49 | 38.10 | 42.07 | 40.43 | 41.45 
  

4 bands MSS 
|} 3 FOT + SIR | 45-74 | 46.62 | 47.37 | 45.12 | 44.43 | 43.73 | 45.97 | 44.79 | 45.65 

  

4 bands MSS 
1. 3 GLRLM | 41.97 | 41.35 | 41.37 | 42.89 | 43.18 | 43.92 | 42.53 | 41.68 | 42.30 
  

4 bands MSS 
}GLRLM+SIR| 49-86 | 45.24 | 44.88 | 46.30 | 46.88 | 47.58 | 46.08 | 45.78 | 46.27 

  

4 bands MSS 
+3SGLDM | 35.04 | 35.08 | 35.19 | 34.49 | 34.05 | 34.00 | 35.57 | 34.41 | 35.48 

  

4 bands MSS 
:SGLDM+SIR | 38-78 | 38.19 | 39.98 | 37.97 | 37.21 | 37.04 | 38.66 | 38.30 | 39.45 

  

Decision Tree 

  

4 bands MSS esiR [49:44 [51.33 153.32 | 48.57 | 49.81 150.31 | 46.50 | 47.44 | 47.32                         
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Table 7.5 contextual postclassification processing results of spectral shape classifier for 

test site 1 using MSS, SIR-A and texture data. 

  

Spectral Shape Classifier 

Median Mode 
Grav | Edge | Mina 

3 by 3{5 by 5] 7 by 7|3 by 35 by 5|7 by 7| ity rea 

  

  

  

4 bands MSS iz 
. 3 Edge+SIR| 32:38 | 31.45]31.45 | 32.87] 30.99 | 29.63 | 33.92 | 33.02 | 34.25 

  

4 bands MSS 
3 FOT+SIR |32.37 |31.61 | 31.09 | 31.83)31.50 | 31.44 | 32.80 | 32.01 | 32.67 

  

4 bands MSS 
GLRLM+SIR 39.24 | 37.97 | 37.23 |38.92 | 38.11 |38.10 | 38.00 | 39.30 | 39.79 

  

4 bands MSS 
+ SGLDM+SIR | 43-67 | 43-48 | 43.29 | 42.74 | 42.57 | 42.08 | 42.76 | 44.35 | 44.48                       
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Table 7.6 contextual postclassification processing results of maximum likelihood 
classifier results MSS, SIR-A and texture data for test site 2 
  

Maximum Likelihood Classifier 

Median Mode 
Grav | Edge | Mina 

3 by 3{5 by 5|7 by 7]3 by 3/5 by 5}7 by 7] ity rea 

  

  

  

4 bands MSS} 63.66 | 64.36]64.90 | 65.80/66.81 |68.59 |59.90 | 64.99 | 63.02 

  

4 bands MSS 
+ SIR-A 72.42 | 72.78|72.29 | 73.25| 74.67 |75.25 167.10 |74.00 |71.85 

  

4 bands MSS 
+ 3 Edge 63.13 |63.59 |64.13 |65.55 |66.85 | 68.54 |59.39 165.00 163.37 

  

4 bands MSS 
I+ 3 Edge+SIR| 72:20 |72.69 |72.38 | 72.63 |73.99 | 74.37 | 66.73 |73.86 |71.86 

  

4 bands MSS 
+3 FOT 63.92 164.62 |65.18 | 65.61 | 66.95 | 69.38 159.54 165.19 |63.24 

  

4 bands MSS 
+ 3 FOT + SIR] 72:56 |73.13 | 72.42 |73.27 |74.74 |75.22 |67.02 |74.18 |71.90 
  

4 bands MSS 
eicuRuM 50.58 | 50.78 | 50.70 |52.50 |52.81 |54.72 | 50.36 |51.52 |51.42 

  

4 bands MSS 
LGLRLM+SIR| 7028 171.75 |71.44 7222 |75.09 |75.06 |o455 17252 |69.56 
  

4 bands MSS 
+3 SCLDM 63.69 |64.61 |65.42 |65.38 |66.61 | 68.54 | 59.67 | 65.47 | 63.24 

  4 bands MSS 
L SCLDM=S1R|7339 |72.97 172.36 |73.21 |7464 |76.51 167.08 17408 |71.94                       
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Map 7.2 Optimal product for test site 2 using maximum likelihood classified MSS and 

SIR-A tonal and textural data, followed by a7 by 7 mode filter 

  

  

  

    

    

LEGEND 

Alluvium 

Alluvial Fan 

Sandstone/limestone 

Fine Sandstone 

Coarse Sandstone/Conglomerate 
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Table 7.7 contextual postclassification processing results of minimum distance to 

means and decision tree classifier of TM, SIR-A and texture data for test site 2 
  

Minimum Distance To Means 

Median Mode 
Grav | Edge | Mina 

3 by 3}5 by 5|7 by 7|3 by 3|5 by 5]7 by 71 ity ren 

  

  

  

6 bands TM [48.95 | 49.60/50.31 | 52.14]54.16 |56.91 | 48.15 [52.11 | 50.38 

  

6 bands TM 
+ SIR-A 52.18 | 52.95} 54.04 | 55.05] 57.94 |60.04 [51.17 |54.94 | 53.27 

  

6 bands TM 
ee 60.81 |63.93 | 65.70 | 64.92 |68.81 171.50 |56.36 | 63.87 | 60.09 

  

6 bands TM 
|. 3 Edge+SIR| 60.97 | 63.90 |66.01 |65.17 |68.88 71.69 |56.53 |63.81 | 60.39 
  

6 bands TM 
+3 FOY 54.65 |55.96 |56.52 | 56.70 | 59.26 | 60.80 | 52.70 | 57.13 | 55.59 

  

6 bands TM 
3 FOr « SIR 57.95 |59-41 [60.34 [59:73 |62.91 |6439 |55.66 | 60.52 | 58.46 
  

6 bands TM 
+ 3 GLRLM | 59.91 | 58.47 | 60.06 | 56.42 | 57.42 |58.76 |54.91 |57.09 155.71 

  

6 bands TM 
LGEREMISIR 57.08 |58.44 | 60.30 | 56.52 |57.47 | 58.93 |54.99 |57.22 |55.80 

  

6 bands TM 
= 3 soLpM {68.01 |71.08 |73.16 | 68.35 |71.71 |74.12 |65.14 | 69.09 | 67.12 
  

6 bands TM 
Veo nniieTR 68.07 |70.95 | 73.08 | 68.32 |71.69 |74.16 | 65.15 | 69.01 | 67.08 

  

Decision Tree 

  

ds TM 
ee 51.76 | 51.44 | 51.10 | 55.36 156.15 |57.20 | 49.08 | 53.36 | 51.32                         
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Table 7.8 contextual post classification processing of spectral shape classifier results, 

using TM, SIR-A and texture data 
  

Spectral Shape Classifier 
  

Median Mode 
  

3 by 3 Sby 5 7by7 3 by 3 aby 5. 7 by 7| 
Grav 
ity 

Edge Mina 
rea 

  

6 bands TM 
+ 3 Edge+SIR 42.90 45.42 46.62 41.11 42.46 43.26 38.14 41.55 39.62 

  

6 bands TM 
3 FOT + SIR 35:86 36.54 35.91 $5.71 34.90 34.04 3495 34.37 34.70 

  

6 bands TM 
+GLRLM+SIRI 28.79 29,17 29.09 29.85 30.91 3127 28.22 29.33 28.50 

  

6 bands TM 
*SGLDM+SIR     50.84 52.55     53.78   50.48   51.95   52.82   49.18   50.32   49.79     

Table 7.9 contextual postclassification analysis of maximum likelihood results for TM. 

SIR-A and texture data of test site 2 
  

Maximum Likelihood Classifier 
  

Median Mode 
  

3 by 3 S by 5 7by7| 3 by 3 5 by 5 7 by 7 
Grav 
ity 

Edge Mina 
rea 

  

6 bands TM 76.85 78.47 78.85 76.93 78.16 78.87 70.71 77.34 7455 

  

6 bands TM 
+SIR-A TAS 78.65 80.29 TES 78.27 79.06 7301 7749 75.38 

  

6 bands TM 
+ 3 Edge 78.70 80.27 81.19 7877 79.90 80.54 714 79.56 Ay 

  

6 bands TM 
+ 3 Edge+SIR 78.88 80.00 80.72 78.88 v9F2 80.14 76.02 81.17 7775, 

  

6 bands TM 
+ 3 GLRLM 74.60 76.39 77,57 7489 76.12 76.99 70.20 75.18 72.62 

  

6 bands TM 
+GLRLM+SIR 74.42 76.28 Char 7457 76.53 77.05 70.36 75.16 72.90 

  

6 bands TM 
+3 SGLDM 79.87 80.52 81.32 79.87 80.36 80.43 Chel Ss 80.23 79.00 

  

6 bands TM 
+SGLDM+SIR     80.11 80.69     81.42   80.52   80.34   80.29   TIA   80.36   TINS     
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Map 7.3 Optimal product for test site 2 using maximum likelihood classified TM and 

SIR-A data tonal and textural measures, followed by a7 by 7 median filter 

  

  

LEGEND 

Class 1 Alluvium 

Class 2 Alluvial Fan 

Class 3 Sandstone/limestone 

Class 4 Fine Sandstone 

H
E
R
E
S
 

Class 5 Coarse Sandstone/Conglomerate     
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Table 7.10 contextual analysis of Swain and Tilton maximum likelihood classification 
  

Contextual Maximum Likelihood 

Median Mode 
Grav | Edge | Mina 

3 by 3[5 by 5]7 by 7]3 by 3]5 by 5]7 by 7] ity rea 
Test Site 1 

  

  

  

  

4 bands MSS|74.98 | 76.03|76.31 |74.14 |74.37 |73.97 |72.54 |75.18 |74.02 

  

4 bands MSS 
+ SIR-A 78.93 | 80.31] 80.57 |77.88 | 78.53 | 77.46] 76.47 |79.09 |78.08 

  

Test Site 2 
  

4 bands MSS/67.23 |67.95 | 68.36 |67.72 |68.54 | 69.29 |67.27 | 68.49 | 67.43 

  

4 Bands MSS 
SSiR-A 73.80|74.28 |7454 | 74.23 |73.78 |74.05 |73.58 |75.02 174.38 

  

6 bands TM |77.89 |78.60 | 79.36 |77.77 |78.38 | 78.85 | 77.39 |78.29 |77.53 

  

6 bands TM 
+SIR-A 78.16 |78.91 | 79.56 |77.98 |78.39 |78.82 |77.59 |78.45 | 77.68                         

The following points can be noted from tables 7.1 to 7.9, using contextual spatial post 

processing techniques. In nearly all cases, the use of such techniques increases the 

classification accuracy; the exception being cases where the initial accuracy is very low 

(for example some of the spectral shape classifier results, tables 7.2 and 7.5). The best 

contextual operators appear to be the simplest, such as the median or mode filter. 

Increases in the accuracy for the 7 by 7 median or mode filter are as high as 8%, and 

average in the region of 5%. Increases in the accuracy of the edge replacement and 

minimal area replacement are as high as 6%, and average about 4%. The gravity filter 

produces increases in the region of 1 to 2%. The larger the size of the window used for 

these operators, generally the greater the increase in accuracy. For example the 5 by 5 

filter increases accuracy by about 2% more than a 3 by 3, and the 7 by 7 filter increases 

the accuracy by about 1% more than a 5 by S window. The larger increase in accuracy 

given by the larger kernel windows appears to be because larger windows produce 

more smoothing than smaller windows and greater reduction of isolated ‘out of context’ 

areas. 
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The gravitational filter described by Thomas (1980) performs poorly when compared 

with other contextual features, it would appear that more work needs to be carried out 

on the use of appropriate thresholds for this operator. 

The minimal area replacement method of Letts (1979) and the boundary replacement 

methods work reasonably well, with the boundary replacement method consistently out 

performing the minimal area replacement method. The reason for this method working 

well are probably two fold: firstly isolated pixels which probably represent some form 

of noise in the data are declassified. Secondly, boundary pixels which usually consist 

of pixels from two or more classes, that is they are mixed pixels (or mixels) and are 

declassified. Therefore, the likelihood of these pixels being assigned the true class 

according to per pixel features is relatively small. All post classification contextual 

features (especially the boundary replacement method) use information from the local 

neighbourhood to increase the likelihood of these mixels being placed in their correct 

class. 

The best results obtained for the contextual operators used in this research for 

LANDSAT MSS and TM in each of the two test sites is given in maps 7.1, 7.2 and 

7.3. These show that for each study area that the classified output has a much 

smoother appearance than either of the classifications shown in chapters 5 and 6 for the 

corresponding test site. As expected isolated pixels have been removed and the output 

generally appears much more like the lithological maps given in the lithological maps 

3.1 and 3.2. 

The contextual algorithm suggested by Swain (1979) differs from the other contextual 

features tested here (see table 7.10), in that it takes place at the classification stage not 

after classification. It is therefore possible to carry out further contextual 

postclassification processing. The results for this operator work well compared with all 

the other contextual features tested. In the case of test site 1, this contextual feature 

using LANDSAT MSS and SIR-A data followed by median filtering, produces the 

highest accuracy of any band combination for this test site. 

A note of caution should be sounded here, as the increase in accuracy noted may be 

more apparent than real. The verification areas used to test the accuracy of the 

classifications utilised large areas which were all of one class. Clearly any technique 

which removes isolated pixels from such areas will increase the accuracy whether the 

removal is justified or not. A case in point are the pixels which are classified as 

alluvium in test site 2 in the south of the image (see plates 6.3 and 7.3). This alluvium 
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is not shown on the geological map, and its removal or reduction by contextual 

postclassification techniques would no doubt increase the classification accuracy. 

However, there is good reason to believe that alluvial cover is present in this area as a 

large river system (which is shown on the map) passes through the exact spot where 

the alluvial cover is shown on the output classified image. 

7.4 Summary 

Simple contextual techniques have been described. These simple techniques emulate 

some of the contextual features used by the manual interpreter of imagery in that they 

remove pixels which are out of context with their surroundings. The contextual 

operators achieve this by taking account of the size, and position of pixels of a certain 

class in the image. This not only gives rise to higher classification accuracies, it also 

improves the overall visual appearance of the output classified image. 

Slightly more complex contextual features which measure the shape of certain classes 

(for example alluvial fans have characteristic shapes) have not been evaluated. This is 

because only non stereoscopic data was available, therefore the true shape could not be 

measured and also because the shape of an object is dependent on the its boundary 

pixels, these pixels are the ones that have the lowest likelihood of being correctly 

classified. Therefore boundary shape properties are not useful. Properties that 

measure fuzzy attributes of the overall shape may be useful, especially using 

stereoscopic data where the true shape of an object can be measured. 
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Chapter 8 

Identification of Lithology 

8.0 Introduction 

A primary objective of image processing is to discriminate objects within scenes and 

thereby identify them. Accordingly, an image must first be segmented into regions that 

correspond to objects in the scene, and then the objects must be identified. Two levels 

are thus apparent, the low level processing stage mainly concerned with segmentation, 

which has been discussed in the first part of this work. Secondly, there is a high level 

stage devoted to the interpretation of the scene. Clearly, the second part of this process 

is more likely to be successful if the first part of the process is successful. This is why 

the most accurate classification of the image was so thoroughly investigated in the first 

part of this work. In this chapter a method is outlined in which tentative names can be 

given to the lithologies discriminated in the previous chapters. This is precisely the 

way that manual interpretation of imagery is carried out by an expert photo-interpreter. 

8.1 Knowledge Based Systems 

High level image interpretation or computer vision techniques are part of the field of 

Artificial Intelligence (AI). The knowledge from a number disciplines can be 

represented by a set of rules; these are called production rules (Nazif and Levine, 

1985). Production rules can then be used to build Expert Systems, the rules are 

expressed in the form of "IF 'X' is true, AND ‘Y’ is true, THEN 'Z’ is true. For 

example, IF the rock is sedimentary AND its predominant mineral is calcite, THEN 

the rock is limestone. In this example the rules are formed by the ‘if then’ statement 

and the goal (the lithology) is found as a consequence of the rule. Rules of this sort 

have the major advantage over other forms of knowledge representation in that they are 

modular entities which can be altered without affecting the structure of the system. 

Therefore the rules can be increased incrementally as our knowledge about an object 

increases, without a major restructuring of the knowledge base. 

According to Basden (1984) the advantages of an Expert System are threefold. 

Firstly, they have a flexible expression, that is they are able to incorporate ‘rules of 

thumb’ that experts tend to use, as well as more formal expertise. Secondly, they use 

human-like processing, that is they operate at a level, and in terms and concepts that a 

user can feel affinity with, they can therefore be easily understand by experts who are 

not computer literate. Finally, Expert Systems can handle uncertainty and even 
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contradictory evidence in a human-like way. The benefits of automatic interpretation 

are two fold. Firstly, consistency; machine processing means that an the interpretation 

will not be subject to the variations which are caused by dufferent interpreters. 

Secondly, knowledge can be incorporated from a wide range of experts so that multiple 

interpretation of the imagery is possible. This is extremely valuable, because as was 

stated in chapter 1 the rate of data production now far outstrips the possibility of human 

interpretation. 

Previous work by Tailor et al. (1986) describe the design of a knowledge based system 

for understanding remotely sensed images. Kanal et al. (1983) also describe the design 

of an expert system for remotely sensed imagery, they pay particular attention to the 

extraction of cartographic features from the data. They discuss the types of knowledge 

that must be modelled in remote sensing, such as the external factors which produce the 

structure seen in the imagery. They also discuss multisensor registration and the 

resolution of conflicting evidence. Goldberg et al. (1983) uses a production rule based 

expert system for the analysis of multitemporal LANDSAT imagery to analyse a 

forested region in Newfoundland, Canada. They show the value of this system as the 

system was able to identify both highly discernible, and more subtle forest changes. 

These results were verified correct by ground data. Erickson and Likens (1984) 

describe an expert system capable of producing a preliminary land cover classification 

from an unsupervised classification of LANDSAT MSS and other ancillary data, such 

as topographic data. Venable et al. (1985) use a rule based system to improve an image 

segmentation by segmented region merging. Perkins et al., (1985) uses the Lockhead 

Expert System (LES) to interpret digitised aerial photography. It makes use of multiple 

goals and multiple rule sets to determine the best label for each region. They make use 

of contextual knowledge of the type 'cars are likely to be found adjacent to roads’, they 

find that this significantly improves the classification accuracy. 

8.2 Recognition Of Lithological Materials 

In this study the rules that an expert geological photo-interpreter would use to identify 

lithologies are described. Some points about the identification of lithology in remote 

sensing images must be borne in mind. Just as the field geologist, who bases his 

subdivisions of lithology on hand specimens, uses more generalised rock divisions 

than a petrographer using microscopic examination of the rocks. So the photogeologist 

or remote sensing expert must use more generalised units than the field geologist. The 

detail and the lithologies that can be mapped from satellite data are therefore 

reconnaissance divisions only. 
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According to Allum (1966) the following general data must be recorded prior to detailed 

analysis of the lithology. 

1) The recognition of the climatic environment (for example, very active, active, 

inactive). 

2) The recognition of areas of outcrop. 

3) The type and amount of vegetation cover. 

3) The recognition of areas of superficial deposits. 

5) The recognition of the strike of the outcrop. 

6) The study of lineaments transverse to outcrop, to see if they are faults, 

dykes, joints or combinations of these. 

For a particular rock, some or all of the following data must be recorded. 

1) The image tone of the rock relative to the adjacent rocks. 

2) The resistance to erosion of the rock body relative to adjacent units. 

3) The boundary of the rock body. 

4) The topographical expression of the whole rock body. 

5) The joint pattern (if any). 

6) The fault pattern (if any). 

7) The drainage pattern. 

8) The bedding or the relic bedding lineaments. 

9) The foliation lineaments. 

10) The regional geological environment. 

8.2.1 Recognition of Sedimentary Rocks in Imagery 

In this study because of their predominance, work concentrated on the recognition of 

sedimentary rock types. As was shown in chapter 3, the physiography and hence the 

photomorphic character of each test site was heavily influenced by the lithology. 

According to Lillesand and Kiefer (1987) the main attributes that distinguish 

sedimentary rocks are there bedding, jointing and resistance to erosion, these all 

produce diagnostic textural attributes. 

Generally sediments are recognised by their layered appearance, this can frequently be 

observed even in LANDSAT MSS data. This layering is represented by variation in 

both the relief and tone of the lithology. In most cases it is possible to differentiate 

between metamorphosed and unmetamorphosed sediments. One of the results of 

metamorphism is to make the individual beds of a sequence more nearly equal in their 
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resistance to erosion. Sandstone has prominent bedding especially when interbedded 

with shale. In arid areas there is seldom residual soil cover because the sand which 

would form such a soil is removed by wind erosion. In humid areas residual soil cover 

of one to two metres on sandstones are common, depending on the grain size of the 

sandstone. Horizontally bedded sandstone forms bold massive topography, flat topped 

hills, steep hillsides and coarse drainage systems with V- shaped gullies. The rock is 

normally medium to light toned, and is sometimes reddish. A dense tree cover over 

sandstone in humid areas is common. 

Shale does not have bedding visible on either satellite imagery or small scale aerial 

photography. The resistance to erosion is low and, shale is relatively impermeable, so 

most groundwater runs of the surface causing extensive erosion and a very fine 

drainage pattern. Residual soils are normally less than one metre thick and are high in 

silt and clay content so are therefore fine grained and homogeneous in texture. In arid 

climates minutely dissected terrains with steep sided narrow gullies are common. In 

humid climates hills are gently sloping, softly rounded. Dendritic drainage is common 

and the overall effect is a characteristic very fine texture. 

Limestone in arid climates has a mottled light tone often with some reddening. Few 

surface streams occur because of its permeability, giving the rock a very coarse, 

smooth texture. In humid climates numerous roughly circular sink holes occur with 

centripetal drainage which give the outcrop a mottled appearance. 

8.2.2 Recognition of Superficial Deposits in Imagery 

For photogeological purposes superficial cover is conventionally classified as either 

residual or transported (Allum, 1966). Transported superficial cover is recognised by 

its almost total blanketing effect on the underlying geology. Its association of the cover 

with its means of transport, its association with diagnostic landforms (such as scree 

slopes, sand dunes or meander belts). Finally, transported superficial cover is 

recognised by well defined, sharp boundaries. Residual cover on the other hand, 

(which includes laterites, bauxites and soil) does not completely blanket the geology, 

because it is formed by the in situ weathering of the underlying rocks. No means of 

transport for the cover type can be recognised. Residual cover has gradational 

boundaries with the underlying lithology. On satellite imagery it is virtually impossible 

to delineate residual cover accurately, therefore little effort was expended in recognising 

this class. 
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Sand dunes have excellent internal drainage, and are frequently being eroded by wind 

action and therefore do not support much vegetative cover. Loess forms generally an 

undulating surface with roughly parallel crests, very often dissected by many streams 

and gullies, giving a very fine textured appearance. 

Fluvial deposits such as alluvial fans occur adjacent to steep slopes where streams 

discharge into areas of subdued relief. Fans (which are funnel or fan shaped) generally 

have coarsest material at their apex and finest material at their base, texture is generally 

fine grained except where the drainage is prominent. Flood plains are relatively flat and 

level with small downstream slope. Complex patterns of tone are present reflecting the 

variety of soil and moisture conditions which can exist. In arid areas flood plains are 

often stained white by the presence of precipitated water soluble salts carried by the 

river. 

8.3 Design of a Knowledge Based System 

The first stage in the production of a knowledge based system is to decide on which 

attributes are used in the manual interpretation of the lithology from satellite imagery. 

Once these attributes have been decided upon some form of measuring these attributes 

should be found. Once the attributes have been measured the system should convert 

these measures into some form which would be recognisable to a manual interpreter. 

For example a lithology might have an average reflectance in all bands of 65, but this 

conveys little information to the observer. However, if the average reflectance were 

described as being dark, or light then this would convey meaning. The problem arises 

here that many attributes are measured on a relative scale not an absolute one. For 

example, a sandstone outcrop is normally said to be light toned, but in a scene 

dominated by dark toned basalts it would be described by manual interpreters as being 

light toned. Such ‘fuzziness’ in an attribute can be modelled in a knowledge based 

system by allowing margins for error in the assignment of an attribute to an object. 

Using two dimensional satellite imagery, it was decided to measure the following three 

attributes which are used by manual interpreters to identify lithology: 1) average tone; 

2) texture roughness; and 3) texture coarseness. An experiment was carried out to 

determine whether these attributes could be used with simple production rules to 

identify the sedimentary lithologies used in each of the two test sites. For the sake of 

being able to compare results directly the experiment concentrated on the LANDSAT 

MSS imagery. 
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The overall tone of each lithology was calculated by simply adding the brightness value 

of each pixel in bands 4, 5 and 7 (the bands used to produce a standard false colour 

composite), belonging to each class and dividing this by the number of pixels in that 

class. A classified image was used to give the distribution of each class type, in each 

case the maximum likelihood classifier image, with the highest accuracy following 

contextual processing was used. In test site 1 the image used was the Swain and Tilton 

(1981) maximum likelihood classification, followed by 7 by 7 median filter; and in test 

site 2 the image used was the maximum likelihood classifier using four bands of MSS 

and three SGLDM texture measures, followed by a7 by 7 mode filter. 

To test the texture of each class, SGLDM based measures were chosen because, though 

these measures were not successful for increasing the classification accuracy, they 

probably provide better information over the much larger areas covered by each 

lithology, rather than the small 8 by 8 blocks used in the classifiers. Two texture 

features were selected, firstly the angular second moment (ASM) (to measure texture 

coarseness) and secondly entropy (to measure texture roughness). It was shown in an 

earlier experiment, that the ASM was the most consistently used texture feature 

employed to measure texture coarseness, while measures based on entropy were 

chosen in each case to measure texture roughness. 

Using test site 1 to train the system the boundaries given in table 8.1 were chosen to 

define different states of tone and texture. 

Table 8.1 Results of tone and texture coarseness boundaries decided upon by using test 

site as a control area. 
  

  

        

Tone Coarseness Roughness 

Spi Very Dark | 55 - Very Coarse 45 -| Very Smooth 

55- 60) Dark 55- 60) Coarse 46- 50) Smooth 

61- 65} Medium 61- 65] Medium 51- 55} Medium 

65- 70) Light 66- 70} Fine 56- 60) Rough 

70 + Very Light | 70+ Very Fine 60+] Very Rough         
Having decided upon these somewhat arbitrary boundaries, the expected attributes of a 

wide variety of rock types were programmed. The look up table (LUT) of lithologies 

used to identify objects in the imagery are given in table 8.2. The attributes are based 

on those given by Allum (1966) and Lillesand and Kiefer (1987). 
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Table 8.2 Look Up Table of Lithology Used to Identify Objects Discriminated in this 

  

  

  

  

  

  

  

  

  

  

  

Study. 

Tone (Coarseness Roughness Lithology 

Medium/ ery coarse | Very rough conglomerate 
Light 

Medium/ conglomerate/ 
Light \Very coarse Rough sandstone 

Medium/ sandstone/ 
Light Very coarse Medium conglomerate 

Medium/ 
Light Coarse Rough coarse sandstone 

Medium/ 
Light Coarse Smooth limestone 

Dark Medium Rough shale 

Medium Medium Medium sandstone 

Medium Fine Rough Alluvial fan 

Medium Fine Smooth Alluvium 

Dark Fine Medium Siltstone/ 
sandstone       

Table 8.3 Results of Lithological Identification of Test Site 1 
  

  

  

  

  

  

True Class Classified As 

Class 1 Alluvium Alluvium 

Class 2 Conglomerate Conglomerate 

Class 3 Conglomerate and Sandstone Alluvium 

Class 4 Silstones, Fine Sandstones Coarse Sandstones 

Class 5 Conglomerates Conglomerate 
  

Table 8.4 Results of Lithological Identification of Test Site 2 
  

  

  

  

  

        True Class Classified As 

Class 1 Alluvium Alluvium 

Class 2 Alluvial Fan Conglomerate 

Class 3 Fine Sandstone Coarse Sandstone 

Class 4 Fine Sandstones Coarse Sandstones 

Class 5 Coarse Sandstones Coarse Sandstones 
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The results show that in this simple example the production rules were capable of 

assigning the correct classes to three out of five lithologies in each test site. These 

results are moderately encouraging, as the misclassifications are not very different from 

the true classes. However, it should be remembered that the lithologies are described at 

only the reconnaissance level. No detail is given about the composition and distribution 

of the variation of rock types in each class. Furthermore, in each example only a fairly 

limited number sedimentary and superficial of rock types were present, therefore the 

knowledge represented in the system is rather limited, the overall model of lithologies 

was relatively simple. The system needs testing in a much more complexly structured 

area, and with a much greater number of lithologies, before any strong conclusions can 

be drawn as to the merit of this type of system. The rules could be made more complex 

by adding weightings to each attribute depending on its importance. For example a 

certain spectral signature such as limonite will identify it in MSS data. Therefore such a 

spectral signature could be used to identify limonite without any other attributes being 

measured. 

A manual interpreter would normally use stereoscopic data to identify bedding dip and 

amount, as well as a variety of other structural details. Without stereoscopic data, only 

a limited success could be achieved in identifying lithology. 

8.4 Summary 

It has been shown that simple production rules can be used to store the knowledge used 

by an expert photo-interpreter. Production rules are relatively simple to program, but 

somewhat arbitrary values must be assigned to attributes measured from the image; 

such as texture coarseness, and roughness. In this very simple example, using 

sedimentary and superficial cover types, a limited amount of success was achieved in 

assigning lithology names to classes in the imagery. The results are by no means 

conclusive, and much work must be done with other examples before a working 

system can be designed. However, these initial results are moderately encouraging. 

The limitations of this knowledge base are firstly, on the lack of generality of the 

attributes used, a coarse texture in this image might be a fine grained texture in an 

adjacent scene. Secondly the system has not been tested in a sufficient number of cases 

to produce confidence limits on the ability to consistently recognise lithology. 
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Chapter Nine 

Discussion 

This study has aimed to use remotely sensed data to map lithology of a semi arid region 

of northwest Argentina. Satellite remote sensing data from three different sources was 

available for this study: these were LANDSAT MSS, TM and SIR-A imagery. The 

methodology applied was to simulate as far as possible by use of computer, the 

methods employed by a geologist manually interpreting satellite imagery with the aim of 

producing a lithological map. The photogeologist uses three different attributes to map 

lithology, these are: firstly tonal features (that is colour), these give compositional about 

the lithology. Secondly he uses textural features (spatial variation), these give 

information about the jointing and bedding (if any) of the lithology and its relative 

resistance to erosion. Finally he uses contextual features (the size, shape and position 

of objects) to eliminate unlikely occurrences of a lithology. Work has involved 

modelling these three attributes to produce optimal classification products. 

Geological maps contain a wealth of structural features, (such as faults, dip and 

direction of dip of bedding) and chronological information, this is in addition to 

lithological detail which they provide. The photogeologist is in favourable 

circumstances, capable of producing reconnaissance geological maps containing some 

or all of this structural detail (only relative chronological information can be obtained 

from remote sensing data). Structural details, however, can only be produced from 

stereoscopic data, and therefore LANDSAT or SIR-A imagery can not be used to 

produce 'true’ geological maps (LANDSAT can produce some stereoscopic data in the 

overlapping part of adjacent images, but this area is small, and the vertical exaggeration 

is relatively weak). Therefore this work has concentrated on the production of a 

lithological map from these data. 

The SPOT satellite is capable of generating three dimensional irnages at nearly all 

latitudes. Therefore with SPOT data it will be possible to map structural features and 

thereby produce a 'true’ geological map. Stereoscopic data allows the production of 

topographic information, and the addition of this is likely to increase the classification 

accuracy. Many geological phenomenon produce their own characteristic topographical 

features, for example fault guided valleys, or ridges caused by dykes. Topographic 

data is very likely to be useful for delineating such features and is therefore one step 

toward the production of more accurate lithological maps, and possibly ‘true’ 

geological maps. 
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It was shown in the first part of this work, that the positioning of the spectral bands of 

the sensors on LANDSAT MSS are comparatively poor for the discrimination and 

identification of geological materials. This is because the bands for LANDSAT MSS 

were chosen for the maximum differentiation of vegetation, not geological materials 

(Henderson and Swann, 1976). Limonite is the only commonly occurring mineral 

which can be uniquely identified in LANDSAT MSS data, because of an iron 

absorption band which occurs in the near infra red. It was also noted that the middle 

infra red is a promising area of the electromagnetic spectrum for the discrimination of 

certain types of lithological material, because of an absorption feature caused by Al-OH 

and Mg-OH bond bending and stretching vibrations for layered silicates. Therefore, 

the presence or absence of clay minerals can be determined in this part of the 

electromagnetic spectrum (Siegrist and Schnetzler, 1980 and Rothery, 1985). The 

LANDSAT TM sensor which has spectral bands in the middle infra red would be 

expected to better discriminate lithology. It is interesting to note that the band 7 of TM 

which covers the middle infra red region was placed on the TM sensor at a very late 

stage on the insistence of GEOSAT (a committee of geological remote sensing experts). 

The superior positioning of spectral bands for the TM sensor was shown in this study: 

the coincident spectral plots for test site 2 (figures 5.4 to 5.7) show that the LANDSAT 

MSS could only poorly differentiate between the lithologies present while, bands 5 and 

7 of the TM sensor (the middle infra red bands) provided much better separation of 

classes. 

It was further noted that the thermal infra red may potentially be the most exciting 

region of the spectrum for geological remote sensing. Silicate minerals have distinctive 

absorption features in this part of the spectrum (restrahlen bands), and these bands 

occur in different positions for different silicates, depending on the bonding of the 

silicate lattice. The potential exists for sensors such as TIMS (a multiband thermal 

sensor), for example where the rock surface is well exposed, (such as in desert 

environments) to identify bulk silicate compositions of many lithological materials. 

Silicate materials are particularly important, because it is estimated that over 90% of all 

crustal materials are composed of silicates. However, there are complications, as even 

small amounts of vegetation and other surface materials can cause anomalous spectral 

tesponses. Some work is currently being carried out on the use of so called ‘agent 

orange algorithms’ or software defoliants (Fraser and Green, 1987). The idea behind 

these algorithms is the removal of vegetation effects from the data in order to better 

delineate the position of rock outcrops. It may be possible that such algorithms coupled 

with data collected in the middle and thermal infra red will for the first time make it 
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possible to discriminate, and also possibly even identify, the composition of most 

geological materials. 

Mineral composition is only a part of lithological identification, for example a granite 

and a sandstone can have fairly similar mineral compositions:- quartz, feldspar and a 

mafic (Commonly a mica), but they are clearly very different lithologies. Radar data 

provides important lithological information which is complementary to the 

compositional information conveyed by passive sensors (such as LANDSAT MSS or 

TM). Radar gives information about the physical properties of a lithology such as its 

surface roughness, subsurface roughness and its complex dielectric constant. Radar 

data are to a large extent dominated by the attitude and orientation of topographic slope 

to the antenna, therefore it is useful to pick out structural details such as faulting, 

jointing and bedding. It is also useful for discriminating between wet and dry materials 

because of its dependence on the complex dielectric constant, which to a first order 

approximation is dominated by the water content. Therefore radar may be useful for 

discriminating a well drained lithology such as limestone from a poorly drained 

lithology such as a limy mudstone. As radar is dependent on subsurface roughness, it 

can in certain favourable circumstances (arid conditions), penetrate the surface and 

therefore reveal lithological information about shallowly covered classes. This is 

particularly useful for penetrating the sort of thin veneers, such as desert varnish, 

which can obscure rock outcrops in LANDSAT images of arid environments. Finally 

radar is very useful for differentiating the grain size of sediments, especially when the 

incidence angle of the radar is high, as is the case with the SIR-A data used in this 

study (Stone and McBean, 1987). At high incidence angles the topography has a much 

smaller influence on the returning beam, therefore surface and subsurface roughness 

(which are related to the grain size) more strongly influence the radar return. 

Blom and Daily (1982) carried out experiments to combine the complementary aspects 

of radar and passive multispectral data. They used coregistered LANDSAT MSS and 

SEASAT data, the radar data modulating the brightness of the image at every point. 

They claim this significantly improves the visual appearance of the imagery. 

Experiments using a similar, coregistered MSS and SIR-A data set in this study 

showed a similar visual improvement, mainly caused by the increased texture in 

previously homogeneous regions, and strong radar shadow giving a pseudo three 

dimensional effect. However, it was found that this increased texture gave rise to 

greater within-class variation, which in turn led to lower classification accuracy for 

supervised classification techniques. 
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The SIR-A data used in this study was successfully co-registered to the LANDSAT 

MSS data with a first order least squares to polynomials fit, having under 10 control 

points. This model seems justified because of the small coefficients of xy: of the order 

of 105 or smaller. Nearest neighbour resampling was used, this has the advantages of 

being computationally efficient and preserving the radiometric characteristics of the 

data. This is important in the case of radar, with its strong speckle, because other 

tesampling methods would produce excessive blurring of the data. Principal 

components analysis of the coregistered LANDSAT and radar data sets showed the 

radar to be uncorrelated with either the MSS or TM data. The first principal component 

of the combined data set was found to be dominated by the red and near infra red 

bands, it is believed that this is due to the presence of ferrous minerals such as limonite 

and haematite. The second component was dominated by the radar clata. 

Radar data sets will become routinely available during the 1990's with the launch of 

ERS-1 and RADARSAT, it will be interesting to investigate the potential of multi- 

polarisation, multi-look angle and multitemporal radar data sets for geological mapping. 

Much work remains to carried out on the processing of radar data for geological 

mapping. 

Topographic data need not be produced by a remote sensing device, it can be input 

from contoured maps and interpolated onto a regular grid to form a ancillary data set, 

and if topographic data is available then in most cases it should be used. This brings in 

the whole area of geographical information systems (GIS), which store spatially related 

data sets from a large number of sources. The sources of available data for a geological 

GIS include: multisensor imagery, magnetic data, gravity data, geochemical data, 

seismic profiles, airborne geophysical data and borehole records. The data are stored in 

a relational database which can be interrogated to show for example, the most likely site 

for the occurrence of a certain mineral deposit or the optimal positioning of an oil well. 

GIS are very powerful tools for exploration work, clearly with all the available data the 

number of combinations becomes impractical for efficient manual interpretation. The 

GIS therefore offers the potential for storing and interrogating data both efficiently and 

quickly. Remotely sensed data are among the most important data input to GIS . 

The primary means of semi-automatically producing a lithological map from digital 

remote sensing data is to use supervised classification techniques, Using a variety of 

these techniques it was found that the classification accuracy for LANDSAT MSS data 

was unacceptably low. The addition of SIR-A data significantly improved this 

classification accuracy - by nearly 10 % in some cases. The results for the TM data 
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showed significant increases in the classification accuracy over both the MSS and the 

combined MSS and SIR-A data sets, the addition of SIR-A data made comparatively 

little difference to the accuracy of the TM. The improvement of the TM over the MSS 

was as expected, as was shown the TM showed much better discrimination of lithology 

than either the MSS or the SIR-A, especially in its middle infra red bands. 

It was found that the maximum likelihood classifier produced results 10 to 15% higher 

than either the decision tree classifier or the minimum distance to means classifiers. In 

the case of the decision tree classifier the separability of classes was so poor that 

multiple AND's were used to define class decision boundaries. Classification 

accuracies for the LANDSAT MSS combined with SIR-A data were found to be in 

close agreement with those reported in the literature, that is in the range of 40 to 60% 

(Siegal and Abrams, 1976 and Short, 1984). Accuracies for TM data were in the range 

of 50 to 70%, these accuracies are still unacceptably low except for the crudest 

reconnaissance purposes. 

The spectral shape classifier is a new type of classifier first described as an 

unsupervised technique by Pendock (1987). The classifier can be used as a supervised 

classifier by building histograms of the spectral shapes for each of the training areas. 

Each pixel is placed in the class which its spectral shape most closely resembles. One 

of the advantages of the spectral shape classifier is that it is numerically simple. Results 

show that generally the classifier produced disappointing classification accuracies, 

normally being able to distinguish only two or three classes. However, the results for 

TM data with added SGLDM texture bands did produce an acceptable result. 

Therefore, it is probable that if data were obtained that better discriminates the 

lithologies in the scene, then the spectral shape classifier would be able to perform at 

least as well as other forms of supervised classifiers. The spectral shape classifier may 

become of increasing interest because of its computational simplicity, as more highly 

dimensioned remote sensing data sets become available in the next few years. 

Textural features are very important in the photogeological interpretation of images, 

especially when spectral features are insufficient to discriminate lithology. The jointing 

and or bedding relationship allied to the resistance to erosion of the lithology gives rise 

to its texture. For example, as has been stated, granite and sandstone can have almost 

identical bulk mineral compositions and therefore may have very similar spectral 

characteristics. However, granite is characterised by a well developed irregular joint 

set, while sandstone is characterised by strong, regular bedding and jointing, each 

gives rise to a characteristic texture. Therefore, experiments were carried out in this 
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study using textural analysis techniques to increase the classification accuracy achieved 
with supervised algorithms. 

A review of literature showed that second order texture measures were both 

theoretically and empirically more powerful than first order measures, because they take 

account of the change of texture within a texel. Two important textural properties of 

texture can be recognised. These are: firstly, coarseness (related to the spatial 

frequency), which is a measure of the overall size of the texel. And secondly, 

roughness (related to the spatial amplitude), which is the a measure of the internal 

variability of the grey tones that make up the texel. Second order measures can 

potentially measure both texture coarseness and roughness, whereas first order 

measures can only measure texture roughness. A third attribute of texture is 

directionality, few measures have been described that can measure this property. It 
would seem desirable that a texture measure be developed that can measure this attribute 

as many geological phenomena, such as bedding, drainage patterns, dyke swarms, 

faulting, and folding all produce directional textures. 

With TM data the addition of texture bands did significantly increase the classification 

accuracy, and the second order texture measures were found to be superior to first 

order measures, with the SGLDM measures producing the best results. However, in 

the case of LANDSAT MSS data the classification accuracy was not improved 

significantly by the addition of texture data. Furthermore, the second order measures 

performed less well than simple first order texture measures. The difference between 

the results for the MSS and the TM appears to be due to two factors. Firstly the texture 

measures for the TM were carried out on a middle infra red band which showed good 

discrimination of lithology, while for the MSS texture features were generated from a 

near infra red band which showed less spectral discrimination of lithology. Therefore, 

it would be expected that textural features would be better shown by the TM than the 

MSS. Secondly and possibly more importantly, the spatial resolution of the TM is more 

than twice as great as the MSS data. The texture of a rock surface is determined by the 

topography of the surface, which is in turn related to the lithology. If the topography 

of an area varies on a smaller scale than the spatial resolution of the imagery then the 

data will be unable to discern the texture of the lithologies. It is probable that the 

resolution of LANDSAT MSS is too low to measure the distinctive textures of the 

lithologies in the two test sites and therefore was unable to significantly improve the 

overall classification accuracy. 
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Contextual rules, those which use the spatial relationships of a pixel or an object, and 

which are extensively used by manual interpreters in classification, were investigated in 

this study. Three different types of contextual operator can be used: those that work 

prior to classification, those that work at the time of classification, and those that work 

after an initial classification. Preclassification contextual rules are essentially 

mathematical processing techniques related to noise reduction, and smoothing 

operations. Postclassification techniques are essentially logical operations (working on 

class labels rather than pixel numbers) which relate the size, position and shape of 

objects in the image, they are therefore analogous to contextual rules used by manual 

interpreters. Work in this study, therefore concentrated on this type of post 

classification operator. 

In a large majority of cases contextual operators were able to improve the accuracy of 

classification, the exception being those cases where the initial accuracy of the classifier 

was very low. Interestingly, the simple operators, such as median and mode filter, out 

performed more complex operators such as the gravitational model or minimal area 

replacement. These findings are in accord with some of the experimental work carried 

out by Quegan and Rye (1987). Contextual operators not only increase the 

classification accuracy, they also produce a more subjective enhancement in the visual 

appearance of classified images, making them less noisy and generally more like 

thematic maps. 

The improvement in classification accuracy produced by contextual features may be 

more apparent than real. As was noted in a previous chapter the areas classified as 

alluvium and not shown on the lithological map, in the bottom right of test site 2, in 

both the MSS and the TM probably belonged to this class. Contextual processing 

reduced the size of these apparently misclassified objects and therefore increase the 

apparent classification accuracy by actually making the classification worse. In this 

case the addition of topographic data would have shown the classification to be correct. 

This is an example of the remote sensing data being more accurate than the presently 

available lithological map. It is therefore also an example of where a GIS could 

potentially update the existing lithological map. 

In the final part of the work high level image recognition techniques were adopted in 

order to emulate the methods used by a photo-interpreter to identify classes in the 

image. In this simple example, a variety of sedimentary lithologies were placed in a 

look up table. A class was given a label belonging to a lithology if it fulfilled three 

criteria, these criteria were based on: tone, texture roughness and texture coarseness 
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(these are widely used attributes used in manual interpretation). A set of production 

Tules were used to represent the knowledge used by a manual interpreter. Results 

showed that in this very limited example that three out of five lithologies were correctly 

identified. Considerable work remains to be done to extend the knowledge base used 

in this work so that a much wider variety of lithologies and environments. Work must 

be also carried on less arbitrary boundaries for the attributes used, many more attributes 

‘must be used in identifying the lithology if a system is to truly mimic a human 

interpreter. 

Expert Systems also have a major role to play in GIS and remote sensing. Fisher and 

Wilkinson (1985) use a knowledge-based system coupled to a GIS to automatically 

extract and label linear features in remotely sensed data. Knowledge-based systems can 

also be used to incorporate contextual knowledge of the sort ‘cars are likely to be found 

adjacent to roads’ (Perkins et al., 1985), they find that using such simple rules 

considerably improve the initial classification. A geological example of this might be'a 

lava flow is likely to be adjacent to a volcanic centre’. Therefore the twin fields of 

Artificial Intelligence and GIS are inextricably linked to the field of geological remote 

sensing. 

159



Chapter 10 

Conclusions 

The objectives of this research are to produce a lithological map by means of digital 

processing of remotely sensed satellite data. Throughout, regard has been paid to the 

methods employed by a photogeologist to manually produce a lithological map from the 

same data set, and to model these methods. 

It has been shown that the positioning of spectral bands on the LANDSAT MSS sensor 

are poor for lithological discrimination. This leads to generally low accuracies for 
supervised classification techniques using only LANDSAT MSS data. The positioning 

of spectral bands in the middle infra red on the TM sensor are a significant 
improvement over the MSS sensor. This leads to better class discrimination and hence 

significantly higher classification accuracies for TM data. 

Registration of SIR-A radar data to MSS and TM data was achieved using less than ten 
control points. Using SIR-A data to modulate the the brightness of the MSS data 

produced a subjective visual enhancement of the imagery. This was achieved by 
adding textural detail to previously homogeneous regions, and by adding strong 

shadow, which produces pseudo-relief. It was found that modulation of the MSS 

imagery by the SIR-A data produced increases in the standard deviation of classes, and 
therefore reduced classification accuracy. Principal components analysis showed that 
the SIR-A band had a very low correlation with the MSS and TM data. The addition of 

SIR-A data as an uncorrelated channel to the MSS and TM data significantly improved 

the classification accuracy of the supervised classifiers, and therefore the radar data 

must contain complementary lithological information to the MSS and TM data. 

Four different types of supervised classifier were tested, namely: the minimum distance 

to means, the decision tree, the spectral shape, and the maximum likelihood classifiers. 

Classification accuracies were in the range of 40 to 60% for the MSS and SIR-A data 

and in the region of 50 to 70% for the TM and SIR-A data, The maximum likelihood 

classifier consistently produced accuracies 10 to 15% greater than either the decision 

tree or minimum distance to means classifier. However, the increase in accuracy of the 

maximum likelihood classifier was at the expense of greatly increased computation 

time. The spectral shape classifier, which is a new type of supervised classification 

technique, has the advantage of being computationally simple. The time of calculation 

was found to be almost identical to that of the minimum distance to means classifier. 

Results for the spectral shape classifier were generally relatively disappointing, it being 
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able to distinguish only two or three consistently classes. This was probably due to the 

ambiguous spectral signatures of the classes. It was felt that the classification 

accuracies for all the supervised classifiers were unacceptably low and that further 

attributes used by manual interpreters should be modelled. 

Texture is an important feature used by manual interpreters to identify lithology, 

because the spatial attributes of a lithology can be distinctive, even when the spectral 

response is ambiguous. Because of this a variety of texture measures were 

investigated. Three properties of texture can be recognised, these are coarseness, 

roughness and directionality. All commonly occurring classifiers measure either 

coarseness and/or roughness, none measure directionality. A texture measure that 

measured directional properties would be desirable because many geological textures 

have a strong directional component. 

For the TM data, texture measures were able to improve the classification accuracy. 

However, in the case of the LANDSAT MSS data, texture measures failed to 

significantly improve the accuracy of classification. It was found that a six band TM 

data set with three bands of texture and a SIR-A band was over 100 times 
computationally more expensive than a minimum distance to means classifier using the 

same bands of data. For the TM data, second order measures were found to be 

superior to first order texture measures; the SGLDM based measures proving the most 

effective, with increases in classification accuracy of up to 15%. The differences 
between results for the MSS and the TM data are related to two causes. Firstly, the 

MSS has poorer spectral separation of lithology than the TM sensor, this means the 
MSS is unable to display the lithological textures. Secondly and probably more 

importantly, the MSS spatial resolution is less than half that of the TM, therefore the 

MSS may not be able to resolve the distinctive textures of the lithologies. 

The classification accuracies using tonal and textural features were still comparatively 

low, therefore some of the contextual features used by manual interpreters were 

modelled. Context is a spatially related property that is extensively used by manual 

interpreters to identify objects in images. Contextual properties include the sizes, 

positions and shapes of objects. Contextual features such as size and position can 

(after some initial classification has taken place) be incorporated into classification 

algorithms. They can include simple low pass filters such as the median or mode, or 

they can be modelled by more complex operators such as gravitational models or small 

area replacement. It was found that simple median and mode filters produced better 

results than the more complex operators, and generally the larger the size of the kernel, 
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the greater the improvement in the classification accuracy. Contextual post 

classification filtering was also found to improve the visual appearance of classified 

imagery by removing small isolated areas of pixels, completely surrounded by pixels 

belonging to other classes. Contextual features that measure shape properties were not 

used but are likely to be especially useful with stereoscopic data sets. 

Finally, a method was investigated using production rules to identify lithology in the 

imagery, following the low level classification procedures investigated in the earlier 

parts of the work. In the very simple situation in the two test sites, three out of five 

lithologies were correctly identified. Much work remains to be carried out on the 

effectiveness of such a knowledge based system in more complex situations with a 

greater variety of lithologies. This is a fertile area of research which can be investigated 

now that fourth generation languages are available. 
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Appendix 1 Flow Chart of the Spectral Shape Classifier 

    

Start 

DO J=1,1SY HERE 

DOT 1, ISX ISX size in X direction 
ISY= size in Y direction 
N= the number of bands 
NC=the number of classes 

Read 

Read in image Image 

DOJ=1, ISY     

  DO I=1, ISX 

  

   
    

  

       

  

Does Pixel Belong NO 
toa Training area 

C=class 

Does pixel belong 
to a training area 

  

  

  

  

  

      

        

  

  

Add to accumulator PIXC(C)=PIXC(C)+1 

— coal CALL SUB SPECSHAPE 

Qa a 
DOM =1,N 

vy 

Suey ey sum=sum+VAL(M)*3**(M-1) 

y 

Store ternary STORE(C,PIX(C))=sum 

words 

-<—_ —-- -____-_ 
[gee eee DOK ENG 

YO J = 1, PIX(C)   
OWL F1, MAX    

      
    

Find position to place as 
in histogram DOES STORE(K,J) =1 

S=STORE(K,J)     
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Accumulate 
histogram HIST(K,S)=HIST(K,S)+1 

vy 
Normalise INHIST(K,J)=HIST(K,J)/PIX(K), 

histogram 

DOJ =1, ISY 
—$—$_$_______ 
¢——____—_______ 

DOI =1, ISX 

Md 
Calculate spectral 

shape CALL SUB SPECSHAPE 

Hq ——_________ 
DO M=1, NC 

Does spectral shape NO 
value belong toa 

class 

YES 

PAL=NHIST(M,sum) 

Find the maximum IS(PAL.GT.MAXVAL) 
value 

YES 

MAXVAL=PAL 

Classify according CLASS=M 
to maximum value 

175



SUBROUTINE SPECSHAPE 

IS band 1 less than band2 na 

YES} VAL(1)=0 

     
NO 

Sonsneraaid >" 5 

  

IS band N less than 
band N-1 

  

  

IS band K less than 
band K-1 

YES 

IS band K greater than 
band K-1 

YES 

  

VAL(1} 

b=1   
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Appendix 2 

The five texture features which were suggested by Galloway (1975), which can be 

calculated from the grey level run length matrix. 

Where: 

p(i, j) is the (i, j)th entry in the given run length matrix. 

Ng is the number of grey levels in the image. 

Nr is the number of different run lengths that occur. 

P is the number of pixels in the image. 

1, Short Run Emphasis 

Ng_Nr Ng Nr 

RFI =>, Le, n/X Lei 
is] j=l iel jel 

2. Long Run Emphasis 

Ng_Nr Ng Nr 

RF2=), Dipti, )/2 Lee i) 
i=l j=l ie] jel 

3. Grey Level Nonuniformity 

Ng Nr Neg_Nr 

rr3=¥ (2 po.9)/2 Dow 
isl j=l isl jel 

4, Grey Level Nonuniformity 

Ng Nr Ng Nr 

rra= (2 pt. p)*/2 LG) 
jel i=l imi j=l 

5. Run Percentage 

Ng Nr 

RFS => DpG, /P 
i=l jel 

Wie



Appendix 3 

The fourteen texture measures described by Haralick et al. (1973), where: 

pi, j) is the (i, j)th entry in a normalised grey tone spatial dependence matrix. 

px(i) is the ith entry in the marginal probability matrix obtained by summing 

the rows of p(i, j), = : pd, j). 

Ng is the number of grey levels in the image. 

1) Angular Second Moment 

ASM= 2D (pGii))? 
ie 

2) Contrast 
Ng-1 Ng Ng 

cON=Ze? { Yeap} 
isl jel 

where n= Ii-jI 

3) Correlation 
i 

COR=DGpG.D-1,Ly 
O,Sy 

where [1,, [ly, 0, and 6, are the means and standard deviations of p, and py 

4) Sum of Squares (Variance) 

ss=L Li-w*paii) 
inj 

5) Inverse Difference Moment 

IDM=, 1 pi) 
ij 14+¢-j2 
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6) Sum Average 
2N} 

SA=Zipxy() 
i=2 

7) Sum Variance 
2N;j 

SV=D6-SE)P yo 
i=2 

8) Sum Entropy 
2N; 

SE=>Pewy(DIOELPaai) 
i=2 

9) Entropy 

E=LLplislog rt) 
ei 

10) Difference Variance 

DV= variance of py 

11) Difference Entropy 
Ng-1 

DE= z Px-y@log{p,y(i)} 
ix 

12) and 13) Information Measures of Correlation 

12= - 
max{HX,HY} 

13 = (1-exp[-2.0(HXY2-HXY)])°> 

where HXY=-»-plij)log(p(i,i)) 

HX and HY are entropies of px and py 

HXY1 =- > plis)log(p,@py@) 

HXY2= -LXp,WpyDlog(PxDpy@ 
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