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SUMMARY

Physically based distributed models of catchment hydrology are likely to be made
available as engineering tools in the near future. Although these models are based on
theoretically acceptable equations of continuity, there are still limitations in the present
modelling strategy. Of interest to this thesis are the current modelling assumptions
made concerning the effects of soil spatial variability, including formations producing
distinct zones of preferential flow.

The thesis contains a review of current physically based modelling strategies and a
field based assessment of soil spatial variability.

In order to investigate the effects of soil nonuniformity a fully three dimensional model
of variably saturated flow in porous media is developed. The model is based on a
Galerkin finite element approximation to Richards equation. Accessibility to a vector
processor permits numerical solutions on grids containing several thousand node
points.

The model is applied to a single hillslope segment under various degrees of soil spatial
variability. Such variability is introduced by generating random fields of saturated
hydraulic conductivity using the turning bands method. Similar experiments are
performed under conditions of preferred soil moisture movement. The results show
that the influence of soil variability on subsurface flow may be less significant than
suggested in the literature, due to the integrating effects of three dimensional flow.
Under conditions of widespread infiltration excess runoff, the results indicate a greater
significance of soil nonuniformity. The recognition of zones of preferential flow is
also shown to be an important factor in accurate rainfall-runoff modelling.

Using the results of various fields of soil variability, experiments are carried out to
assess the validity of the commonly used concept of 'effective parameters’. The
results of these experiments suggest that such a concept may be valid in modelling
subsurface flow. However, the effective parameter is observed to be event dependent
when the dominating mechanism is infiltration excess runoff.

Key words:  Finite element, Computer modelling, Rainfall-runoff, soil variability,
soil moisture.
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1.1 GENERAL

Control and management of the behaviour of water has always been of paramount
importance to mankind. Devastating events such as floods and droughts necessitate
the need to accurately describe the rainfall-runoff process. Such an understanding is
also vital to predict the hydrological impact of man's changes to the environment and
thus control any detrimental effects. Clearly it is impossible to make predictions of the

hydrological cycle using the prototype, therefore models of the rainfall-runoff process

are required.

Over the past decade a vast number of rainfall - runoff models have been developed
and tested. These models are now becoming more complex and, according to the
model authors, more accurate. However, even the most complex rainfall-runoff
models show limitations due to a number of unresolved problems in modelling certain

hydrological processes.

Hydrological models are formulated for various reasons, the principle purposes can be

categorized as follows.

(i) Forecasting - Specific models may be used to obtain forecasts of extreme

hydrological events, such as floods.

(i) Operational simulation - Models may be used as decision making aids in water

resources planning by evaluating the consequences of several alternative planning

strategies.

(iii) Data fill-in and record extension - Synthetic data generation from a hydrological

model may be used to provide missing values or extend an observed record.
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(iv) Research - Hydrological models may be used to provide a greater understanding

of the real system, if the model is assumed to be a reasonable descriptor of the

real world processes.

This study is primarily concerned with using a hydrological model in the context of the
latter category to examine the effects of certain phenomena on hillslope hydrology. In

doing so an assessment of the limitations of current modelling techniques can be made.

1.2 THE HILLSLOPE HYDROLOGICAL CYCLE

Detailed descriptions of the complex hillslope hydrological processes can be found in
many texts, in particular the classical work by Kirkby (1978). The current concept of

the hillslope hydrological cycle can be briefly described as follows.

Rain that has not evaporated in the atmosphere has a number of possible destinations
upon reaching the Earths surface (see figure 1.1). Rain .falling directly into a stream
adds to the channel flow whereas rain falling away from the channel may be
intercepted by plant and tree leaves, open then to possible evaporation. Alternatively,
the rain can fall on to the ground surface. Water on the soil surface will infiltrate into
the soil in an attempt to reach a lower potential, however, if the rain intensity is higher
than the infiltration capacity of the soil the surplus water will be held in storage on the
soil surface or flow down the hillslope as overland flow. Some infiltrated water will
be taken up by the roots of plants in the soil, the rest will continue its descent until an
impeding layer is reached, for example another soil type. In general, lower soil
horizons are less permeable than surface soils and therefore, depending on the
infiltration rate, some water will be directed along the base of the upper soil horizons
towards the channel. This flow of water is termed throughflow and can arrive at the
stream channel during the storm, hence adding to the storm hydrograph. Under such

conditions throughflow is often termed subsurface stormflow.
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As more water is resisted by the impeding layer a saturated zone builds up in the upper
soil horizons which increases the speed of return to the channel. Should this saturated
zone reach the soil surface water may be directed out of the soil mass as return flow,

hence contributing to the overland flow.

Water that has percolated through the impeding layer, and any number of such layers,
reaches the groundwater table and becomes part of the groundwater system.
Groundwater flow is relatively slow due to the low conductivities of the base soils.

This flow usually provides only base flow to the hydrograph.

The majority of water movement through the saturated-unsaturated soil is matrix flow,
however the existence of large non capillary pores, or macroporesi, has been widely
demonstrated in the literature. Macropores range from small cracks in the soil to large
diameter pipes which are naturally formed. Figure 1.2 shows a section of an observed
pipe in the Wye catchment, Wales (after Gilman and Newson ,1980). Such pores may
cause preferential flow of soil water, allowing rapid transit and thus have a

considerable effect on the storm hydrograph.

The response of the hillslope as a whole is therefore a complex interaction of many sub
processes, which is further complicated by the nonuniformity of the system and the

spatial and temporal variability of inputs.

1.3 MODELS OF HILLSLOPE HYDROLOGY

The idea of being able to model catchment behaviour is not new, in fact the early
empirical models are thought to date back to the 17th Century. Little, if any,

improvements were made until the early 20th Century when the classical model of the

hillslope hydrological cycle was described by R.E. Horton.
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Rainfall-runoff models remained purely empirical until the 1950's when the availability
of digital computers combined with a greater theoretical understanding of the processes

enabled hydrologists to explore various modelling techniques.

There are a number of classifications which can be given to hydrological models. A

model will be associated with at least one of the following categories.

Lumped - treats the processes in terms of average quantities over catchment areas. An
example of one of the first lumped models is the Stanford Watershed Model (Linsey
and Crawford, 1960).

Distributed - treats the catchment as a spatially variable system, for example Eraslan et

al. (1981).

Deterministic - the model inputs and outputs are not subject to the laws of chance.

Stochastic - the model inputs and outputs are subject to uncertainties, that is, not

deterministic.

Black box - the model is based on an appropriate mathematical function, or functions,

which fit the data irrespective of the underlying process which it represents.

Conceptual - the model is designed using various simple empirical concepts describing

the hydrological processes.

Physically based - the model is composed of a series of mathematical equations which

represent the currently acceptable theory of the hydrological cycle.
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Naef (1981) has compared the accuracy of a number of catchment models ranging
from the unit hydrograph to complex conceptual models. Naef stated that a
comparison of the results of these models revealed that none of the models tested
actually described the process accurately since hydrological events could be found to
fit the results of the models, as could events which would not fit the model
simulations. These findings help to explain why the unit hydrograph is still one of the

commonest techniques many years after its original development.

Physically based distributed models represent the latest generation of hydrological
models. The mathematical equations used in these models are based on empirical
relationships, for example Darcy's Law and Manning's equation, but offer the
advantage over simpler models by the fact that parameters of the model are physically

measurable in the field.

An important benefit of physically based modelling is that it allows an improved
understanding of the hydrological behaviour of a watershed. More practical benefits
from physically based models include the ability to analyze the effect of catchment

changes and the capability of predicting the response of ungauged watersheds.

Since simpler models require calibration using previous hydrological records, the
model itself is only valid if changes are not made to the system. Such changes include
forest management, urbanization and agricultural changes. Physically based models
allow the effects of these changes to be examined by the alteration of the model
parameters. The physical significance of the model parameters within a physically
based model also permit the modelling of ungauged catchments without the need for
long records of hydrological data. Physically based models further allow the inclusion
of pollutant and sediment transport equations in a distributed manner and therefore

investigations into effects such as the dispersion of localized pollutant sources can be

carried out.

SC



The main limitations of physically based models can be categorized as follows.

(1)  Computer limitations
(i) Scarcity of data

(ili) Inadequacies in representing the real system

Limitations of types (i) and (ii) have restricted the few physically based modelling
studies to research applications, although computer limitations are likely to diminish in

future studies due to the rapid growth in computer technology.

Limitations of type (iii) include the assumptions made during the development of the
governing equations, such as fluid incompressibility in the case of surface flow. Ata
more fundamental level, type (iii) limitations include the mis-representation of the
actual mechanisms. For example, assuming sheet flow behaviour of overland flow is
merely a conceptualized approximation to the real case of localized surface flow
through rills and gullies over the soil surface. A further example of such a limitation,
which is of interest to this study, is the assumption made in current models about the
nonuniformity of soil properties over a catchment. The spatial and temporal variability
of soil properties has been demonstrated by many field studies, however, limitations
of type (ii) have, at present, precluded the inclusion of such effects in physically based
models. The normal approach is to assume representive soil properties over areas of
the flow domain, thus treating the distributed system in a lumped manner. However,

there is little, if any, theoretical justification for such an assumption.

A further inadequacy in representing the real system lies in the way areas of preferred
flow caused by natural soil pipes are treated. Again scarcity of data and limited
hydrological understanding of the phenomenon has forced the same lumping process

to be adopted to account for distinct zones of rapid soil water movement.



1.4 OBJECTIVES

The objectives of this study are twofold. Firstly, using a detailed physically based
model of hillslope hydrology, developed for the purpose of this study, an investigation
of the effects of soil spatial variability and zones of preferential flow on hillslope
runoff generation can be made. Conclusions can then be drawn regarding the
importance of such conditions in catchment modelling. Secondly, using the results of
these numerical simulations, an assessment can be made of the validity of lumping

physically based model parameters to represent various geomorphological phenomena.

1.5 OUTLINE OF THE THESIS

In order to define the problem in greater detail, Chapter 2 provides a review of the
equations and principles used in physically based models of individual processes. A
number of complete physically based catchment models are described and the problem
of model calibration is addressed. In addition, a field assessment of soil spatial
variability is made, including the results of a field measurement programme carried out

for this thesis.

For the necessary hydrological simulations a three dimensional variably saturated flow
model, based on the finite element method, is presented in Chapter 3, together with

the results of a model verification test.

By considering two distinct dominating mechanisms of runoff generation, applications
of the model to a single hillslope segment for various degrees of soil nonuniformity are

provided in Chapter 4. Chapter 5 includes similar experiments under conditions of

preferred soil water movement.
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Using the results from Chapters 4 and 5, the question of the validity of lumping model

parameters is addressed in Chapter 6 by assessing the suitability of 'equivalent'
uniform soils representing a nonuniform formation. Finally, conclusions regarding

the suitability of current modelling techniques and implications towards future

modelling are presented in Chapter 7.
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Chapter 2

- Physically based modelling

of catchment hydrology



Physically based models offer distinct advantages over simpler models, although there
still exists a number of unresolved problems in the modelling of catchment hydrology.
In applications to real systems, unavailability of data at a sufficiently fine spatial and
temporal resolution and the correctness of the adopted descriptive equations present

great threats to the suitability of current physically based modelling strategies.

2.1 MODELLING STRATEGY

Since the flow processes occuring within a catchment vary in space and time, the ideal
physically based modelling strategy would be to solve acceptable continuum equations
in a transient three dimensional system. At present such an approach is limited to small
scale problems due to the immense computer requirements. It is therefore necessary to
make certain simplifying assumptions about the hydrological processes within a
catchment. Such assumptions lead to the reduction of the number of space dimensions
in which the equations vary, such as one dimensional channel flow. The result is then a
set of interacting one, two or three dimensional components each representing particular
flow domains within the catchment. Figure 2.1 demonstrates such an approach. The
catchment in this case is discretized into a series of hillslope and channel segments. By
selecting the location of each hillslope segment such that each of its boundaries is either
‘a channel segment, a catchment divide or a line normal to topographical contours, it

may be possible to represent surface and subsurface flows within a hillslope using one

or two dimensional equations.
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2.1.1 Model equations

2.1.1.1 Soil water flow

The movement of water through soil under conditions of variable saturation is described

by (see for example Pinder and Gray, 1977),

V. (K K (y).Vh) - {Qg_f) (a+nB)+C(\u)}B_\¢_/ =0 (2.1)
n ot
where, K = saturated hydraulic conductivity tensor

K, = relative hydraulic conductivity (0 < K. < 1)

y = pressure head

h = hydraulic head

6 = moisture content.

n = porosity

compreséibility of the medium

R
il

B = water compressibility

t = time -

C = specific moisture capacity = d6(y)/ ovy.

K_. 0 and C are nonlinear functions of \ and for each soil type there exists two main
T

curves for each function (wetting and drying). An infinite number of scanning curves



B . e

will lie between th : .
€8¢ two main curves, representing a transition from a wetting to a
drying state or vi : S ' .
5 ce versa. This scanning is termed hysteresis and can be due to a

number of reasons including; soil swelling and shrinking, entrapped air and the 'ink

bottle effect' (Hillel, 1971, p 67).

Under unsaturated conditions, the effect of the compressibility of the medium and
water 1s usually neglected due to the more dominating effects of moisture content

variation (see for example Brutsaert and El-Kadi, 1984). The resulting equation is

often called Richards equation, after Richards (1931).

In the saturated zone equation (2.1) is linear since for y > 0 it is normally assumed that
Ki(wW=1C(y)=0and 6 (y)=n.

2.1.1.2 Surface flow

Overland and channel flow may be described by the one dimensional form of the St.

Venant equations (see for example Freeze, 1978). Assuming a rectangular channel,

the equations of continuity and momentum, respectively, are,

8_y+y§y+v§z+v_y§13—r-qi=0 (2.2a)
ot ox ox Box B
@_\_/+val/+g(§¥-so+sf)+y_(rB+qi)=O (2.2b)
ot ox ox By
where: v = velocity

x = distance along channel

depth of flow

<
il



r = effective rainfall
B = channel width

g = acceleration due to gravity

= lateral inflow

=
!

S, = bed slope

S¢ = friction slope (obtained from Manning's or Chezy's formulae).

Equations (2.2) can be simplified to various degrees, for example, the diffusion model

assumes that,

(dy-S,+S) =0
ot

Further simplification can be obtained using the kinematic wave assumption, that is,

The kinematic wave formation results in equations (2.2) being described by just one

equation,
dy + 19 Bay™) -r-q =0 (2.3)
ot B ox B
where: oa = \_/_S_Q
nman
m = 573 for turbulent flow
n__ = Manning's number.

man
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A further advantage of the kinematic model is that only one boundary condition is
required. In general, however, it is recognized that the complete (dynamic wave)
equations are usually required to describe channel flow. The kinematic assumption is
most appropriate for flow in steep channels or on steep slopes. Woolhiser and Ligget

(1967) have shown that such an approximation is valid providing that a factor K is

greater than 10,

where: K = S L

0 "0
H F?
L, = lengthof plane
H, = normaldepth
F, = Froude number = v / Jgh
v, = velocity atnormaldepth Hy = Q_,,, /H,

Qi = maximum outflow rate = r_, L/

T = maximum rainfall rate.

For example, consider the case of surface flow on a 100 metre, 1 in 500 slope,
Manning's number equal to 0.025 and rainfall rate equal to 20 millimetres per hour.

The calculated value of K in the above equation is then 392.5.

In practice it has been well recognized that the condition suggested by Woolhiser and
Ligget is generally true for overland flow and the kinematic model has been used in

numerous overland flow studies, for example Overton (1971), Smith and Woolhiser

(1971), Aparcio and Berezowky (1982).



2.1.1.3 Interception and ¢vapotranspiration losses

Interception losses may be described in terms of leaf area index (area of leaf cover +
area of ground), see for example Jensen (1979). This percentage of precipitation
which is retained by the plant surface may then evaporate or later drain to the soil

surface. A comparison of a number of interception models can be found in Eriksson

and Grip (1979).

The calculation of evapotranspiration is usually performed by determining the potential
evapotranspiraéion which is then combined with soil plant characteristics and soil
evaporation relationships to determine the actual evapotranspiration loss. A number of
techniques are available (Saxton, 1981) and in general, the availability of data governs
the choice of model. A comparison of the results of several evapotranspiration models

is presented in Keller (1979).

2.1.2 Solving the individual equations of flow

Due to the complexity of the governing equations no analytical solutions exist without
further simplifying the equation. Numerical solutions are therefore required. The
most popular numerical techniques are the finite difference and the finite element

methods, both of which lead to a set of algebraic equations which can be solved given

initial and boundary conditions.
2.1.2.1 Variably saturated flow

2.1.2.1.1 Finite Difference Methods (FDM)

This technique is discussed extensively elsewhere, for example Remson et al. (1971)

and will therefore not be described herein.



The first numerical models of multi-dimensional variably saturated flow were

formulated using the FDM, Rubin (1968) being one of the pioneers in this field.

Rubin solved Richards equation for drainage of a block of soil and for horizontal
infiltration into dry soil. For the latter case the Kirchoff integral transformation was

also employed as he found that solving the equation in its original form could not

account for the high nonlinearity of this example.

Rubin's work has been followed by numerous other variably saturated models using
the FDM, for example Todsen (1973), Hornung and Messing (1979), Gillham et al.
(1979), Vauclin et al. (1979) and Reeder et al. (1980). Remson et al. (1971) has
provided an extensive list of earlier models using the FDM and Haverkamp and
Vauclin (1981) have carried out a comparative study of the finite difference solution of

three forms of Richards equation.

Freeze (1971) developed a thrée dimensional model of a groundwater basin including
the unsaturated zone and coupled this model with a channel flow model (Freeze,
1972a,b). Freeze used the Line Successive Over Relaxation technique to solve the
resulting finite difference equations. His model was applied to hypothetical
catchments and rigorous tests were undertaken in order to examine the effects of
different parameters and conditions. Freeze's model was the first of a very small

number of models that, even under hypothetical conditions, have incorporated the full

equations for variably saturated flow.

Rovey (1975) presented a similar model to that of Freeze and its application to a forty

mile reach of the Arkansas valley of south eastern Colorada, USA.

A two dimensional finite difference model based on Richards equation, also similar to

Freeze's model, has been developed by Akan and Yen (1981). The main area of
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application of this model has been in infiltration modelling and to date, simulations of

real events using this model are not evident in the literature.

The integrated finite difference method (IFDM) is considerably different to the usual
FDM in that an arbitrary grid can be used. The method has been adopted for use in
groundwater modelling since the early 1960's (Tyson and Weber, 1964; Cooley,
1971; Thomas, 1973). Narasimhan and Witherspoon (1976) developed a variably
saturated flow model using the IFDM and then extended the model to account for flow

in variably saturated deformable media (Narasimhan and Witherspoon, 1977, 1978;
Narasimhan et al., 1978a).

In the IFDM each node is associated with a subregion, as in figure 2.2. A mass
balance over each subregion is then made by integrating equation (2.1) over all
subregions. These integrals are then approximated as a finite sum of finite differences.
The IFDM has not been widely used in hydrology compared with the FDM and FEM.
This is probably due to its requirement for a carefully designed mesh so that the
boundary of the subregion of a node point corresponds to a series of perpendicular
bisections of lines joining the node point and its surrounding nodes (see figure 2.2).

Such a procedure is identical to the formation of Thiessen polygons for rainfall

mapping.
2.1.2.1.2 The Finite Element Method (FEM)

Soon after the finite element method was introduced as a structural analysis method in
the early 1960's, it was realized that the method could be used as a general technique
for approximating the solution of partial differential equations. Initially the FEM relied
on a variation principle and the Rayleigh-Ritz method was directly associated with the

FEM. The problems that can be solved using the Rayleigh-Ritz method, however,

represent a subsection of those solvable by a much more general method - the Method

of Weighted Residuals (MWR). The MWR itself is a general class of tehniques: the
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Collocation, Least Squares, Subdomain and Galerkin's methods being the most
commonly used (Pinder and Gray, 1977). In particular Galerkin's method has
received much attention in the study of the hydrological processes. The major
advantages of the FEM over the FDM are the ability to use higher order
approximations, the ease of discretizing complex domains and the ease with which
boundary conditions are introduced into the solution. Faust and Mercer (1980) have

discussed the advantages and disadvantages of both methods.

The first stage of the procedure is to discretize the region into elements, the shapes of
which are determined by node points (see figure 2.3). The variable of interest is
approximated over the region by a series of products of the node point values and a

corresponding interpolation function (also called a basis or shape function).

By substituting the series into the original differential equation, there will be some

error between the exact and approximated solution. That is, if,

is the original differential equation, where L is a differential operator, u is the

unknown variable and f is a known function. Then the residual R is equal to,

where { is the approximated variable. The MWR essentially weights this residual over
the region R. In the Galerkin's method the weights are chosen to be the interpolating

functions.
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Figure 2.3 Domain discretization using finite elements.
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The resulting equation is of the form,

[RwjdR=0 i=1,2,..n
R

where w; is the weighting function and n is the number of node points.

The FEM therefore approximates the solution by an integral approach, whereas the

FDM utilizes a differential approach.

The simplest form of the FEM results from the use of linear interpolation functions and
simple element shapes. The only advantages of using a more complex shape, for
example curvilinear triangles, is that an irregular region can be approximated with
greater accuracy. This is of minor importance over large areas, as in the case of
hydrological simulation, and therefore, the triangular and rectangular elements (for two

dimensional equations) have become standard elements in this field.

The use of complex shape functions, for example cubic, is of more importance,
particularly in the unsaturated zone. This is due to the high nonlinearity of the

governing partial differential equation.

Neuman (1972, 1973) was one of the first to apply the FEM to flow in variably
saturated porous media. Neuman applied Galerkin's method over the spatial

derivatives using linear interpolation functions and a finite difference scheme to

approximate the time derivatives.
Neuman's work was followed by many applications of similar models to two

dimensional variably saturated flow problems. Examples include; Bruch (1976),

Hayhoe (1978), Cusham et al. (1979), Yeh (1980), Gureghian (1981), Marino
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(1981), Orlob and Ghorbanzadeh (1981), Zaslavsky and Sinai (1981), Stauffer and
Job (1982), Herrling and Leisman (1984), and Lam and Fredlund (1984).

Due to the high nonlinearity of the governing equations of unsaturated flow, numerical
problems, such as instability, may arise in a crude approximation to the complex
system. Also unsaturated flow problems require large amounts of computing
resources since the nonlinearity necessitates an iterative solution together with fine
spatial and temporal discretization. Such economic considerations have led to various
enhancements to the basic FEM. Modifications have been reported in Narasimhan et
al. (1978b), Nieber (1980), Hromadka and Guymon (1980, 1981), Hromadka et al.
(1981), Cooley (1983), Huyakorn et al. (1984) and Milly (1984).

More fundamental investigations have been carried out in studies of the effect of the
inclusion of hysteresis in finite element models of variably saturated flow. Examples

include; Pickens and Gillham (1980), Nieber and Walter (1981), and Milly (1982).

The hysteresis of the 6(y) function is usually expressed as a relationship between the

boundary wetting and drying curves and the pressure head history, see for example

Mualem (1974). Hysteresis in the K () relationship is usually neglected. The studies

mentioned have demonstrated that hysteresis can have a considerable effect, however,
immense data requirements have prohibited the inclusion of such effects in applications

under real conditions.

2.1.2.1.3 The Boundary Element Method (BEM)

The BEM was developed during the mid 1970's from much work on integral
equations and the FEM. The theory behind this method will not be discussed here but
can be found in a number of texts, for example Brebbia and Walker (1980) and Ligget

and Lui (1983), the latter reference being specifically orientated towards analyzing

flow through porous media.
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Application of the BEM reduces the dimension of the problem and is therefore best

suited to multi-dimensional problems. The resulting conductance matrix is full in
comparison with the sparse structure in the FEM. The FEM, however, is more

attractive in the study of anisotropic and nonlinear problems such as unsaturated flow.

A combination of both methods is possible, for example by approximating saturated
flow by the BEM and the unsaturated flow region by the FEM (see figure 2.4),
although this approach, as yet, has not received attention in modelling of catchment

hydrology.

2.1.2.2 Saturated groundwater flow

By assuming strictly horizontal flow, a two dimensional form of equation (2.1), under

saturated conditions, is normally adopted for models of aquifers.

Numerous solutions to saturated flow problems exist using the FDM (see for example
Trescot et al., 1972; McDonald and Harbaugh, 1984) and the FEM (see for example
Pinder and Frind, 1972; Jovic, 1977; Fog et al., 1979) . Dillon and Ligget (1983),
amongst others, have formulated boundary element approximations to the governing
equations. A review of the various solution methods can be found in Faust and
Mercer (1980). The choice of numerical technique generally depends upon the

individual preference of the model author.

2.1.2.3 Channel flow

To date, the commonest method of solution of the one dimensional St. Venant
equations is the four point implicit finite difference approximation, for example

Samuels and Price (1979). The FEM appears to offer no advatange over this

technique (Fread, 1981).
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The finite element method, however, is popular in the modelling of two dimensional
problems, for example Samuels (1983), Hosseinipour and Amein (1984) and three
dimensional unsteady flow, for example King (1985). Models such as these are only
considered when a large amount of information is required, such as the modelling of

estuaries, or when very irregular channel geometry is evident.

2.1.2.4 Overland flow

Many solutions of overland flow problems are presented in the literature. Both the
FDM (for example, Brakensiek, 1966; Smith and Woolhiser, 1971) and the FEM (for
example, Aparcio and Berezowsk, 1976; Taylor, 1976; Kawahara and Yokayama,
1980) have been utilized.

As in the case of channel flow modelling, finite element analysis of the one
dimensional problem appears to offer no advantage over the FDM.

2.2 COMPLETE CATCHMENT MODELS

There have been numerous modelling studies of the individual components of

catchment hydrology. Although several models of coupled components exist, only a

small number have received applications to real world situations, in particular on the

catchment scale.

2791 The Finite Element Storm Hydrograph Model (FESHM)

The FESHM (Ross et al., 1979; Shantoltz et al., 1981; Heatwole et at, 1982) has been

developed for application to catchments where Hortonian infiltration excess overland
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flow dominates the storm hydrograph. Under such conditions subsurface flow is
assumed to play a minor role and infiltration loss into the soil is the only recognition of

the soil zone. Such losses are accounted for in the FESHM using the empirical Holtan

equation (Holtan, 1961).

In the FESHM, model parameters are allowed to vary over the catchment by
discretizing the watershed into land units having individual soil mapping and land use
characterisitics. These areas are termed Hydraulic Response Units (HRU) (Li et al.,
1977). A second discretization, independant of the first, is then performed in which
the watershed is divided into finite elements for surface flow routing using the one
dimensional kinematic wave model. Specifying precipitation inputs to the HRU's,
infiltration excess is calculated knowing the current soil water state in each HRU.
These values of overland flow recharge are then averaged over each finite element to

provide boundary conditions to the finite element surface flow routing algorithm.

Figure 2.5 demonstrates the above discretization procedure for an application of the
FESHM to Powells Creek, Virginia, USA (after Contractor et al., 1980). In this case
the watershed is divided into 65 HRU's and flow routing is carried out on a finite

element grid consisting of eight overland flow elements and four channel elements.

By treating catchments as ungauged, and then relying on measured model parameters,
the FESHM has shown some success under conditions of large flood events, when the

underlying assumptions of infiltration excess are reasonable.

2.2.2 Systéme Hydrologique Européen (SHE)

A collaboration of the Danish Hydraulic Institute, SOGREAH (France) and the
Institute of Hydrology (UK) has produced the Sytéme Hydrologique Européen (SHE)

physically based hydrological model (Jonch-Clausen, 1979; Beven et al., 1980).

47



dew NYH (q) ‘dewr Juswaja Jrur] () .AowoC ‘Te 12 10J0BNUO)) 131)E ‘PIYSIAB A HIIID) S,J[9MOJ JO UONeZNAISIg G'Z angig

(a) ::

JUSWIS[3 MO]} [dUURYD-ED / F
JUSW2]3 MO} PuEelIaA0-€0




As shown in figure 2.6, the basic structure of the SHE mode] is an interaction of a two
dimensional surface rectangular grid and a subsurface rectangular grid. Overland flow
and channel flow are modelled on the surface grid using a simplified form of the St.
Venant equations. The subsurface grid represents a single layer unconfined aquifer.
An interaction between the surface flow components and the saturated groundwater
component is allowed via a series of one dimensional vertical columns representing
unsaturated soil water movement (Abbott et al., 1979). All flow equations are

approximated using the FDM.

The SHE model recognizes interception and evapotranspiration losses (Jensen and

Jonch-Clausen, 1981) and when appropriate, snowmelt (Morris and Godfrey, 1979).

Although the SHE model is intended to be used on grids of up to 2000 node points in
the horizontal grids and 30 nodes in the vertical (Beven et al., 1980), the structure of
the model does not permit fine resolution for areas of surface saturation close to
channels, or for conditions when lateral unsaturated soil water movement is important.
The applications of the SHE model are then best suited to cases where widespread
infiltration excess overland flow occurs, as in the FESHM, or when regional

groundwater movement is important.

A very similar model, in structure, to the SHE model is PREDIS (Gilding, 1983)
which is under development by the Delft Hydraulic Laboratory, Netherlands.
PREDIS allows recognition of both confined and unconfined aquifers which, as in
SHE, are linked to the surface components using a vertical unsaturated flow model.

The soil water equations in PREDIS are approximated using the FEM.
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2.2.3 The Institute of Hydrology Distributed Model (IHDM)

The Institute of Hydrology, UK has developed the IHDM (Beven and Morris, 1986)
in a different framework to that of the SHE model in order to allow finer resolution at
the hillslope scale. This permits the effects of hillslope divergence and convergence
and the spread of local areas of saturation close to channels to be accounted for. In
particular, the IHDM attempts to account for both vertical and downslope movement of
water in unsaturated soils. The IHDM is therefore most suitable for the the modelling

of upland catchments.

The process of catchment discretization in the IHDM is very similar to that of the
FESHM 1in that the underlying structure is a series of hillslope segments providing
inflow to a network of channel segments. Surface flow is accounted for using finite
difference solutions to the kinematic wave equations, and when appropriate, the
complete St. Venant equations are adopted for a more accurate description of channel

flow.

Soil water flow is modelled in a two dimensional (vertical) slice using a finite element
approximation to Richards equation. Also included in the THDM are

evapotranspiration, interception and snowmelt components.

The latest version of the ITHDM has only recently been completed and sensitivity
analyses are being carried out on the complete model (Rogers et al., 1985). The

intended use of the ITHDM is in the investigation of the effects of land-use changes and

the predictions of the responses of ungauged catchments.
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2.3 MODEL CALIBRATION

The development of model structure and solution strategy poses a minor problem in
comparison to the application of the model to real world problems. Several physically

based modelling studies have failed to produce accurate descripions of observed

events.

One problem lies in the validity of the model equations used, one such possible source
of error being the assumption of Darcian flow through soils, particularly when non

capillary pores (macropores) are evident in the soil.

Macropores exist in various forms, ranging from small cracks in drying soils and
wormholes to large diameter naturally formed pipe networks. The formation of these
large pores can be governed by many factors, including soil flora and fauna, shrinking

and swelling of the soil and soil erosion (Beven and Germann, 1982).

The importance of flow within macropores has been recognized by field studies (see
for example JQnes, 1971; Ehlers, 1975; Newson and Harrison, 1978; Gilman and
Newson, 1980; Hammermesler et al., 1982); experimental investigations (for example
Bouma and Dekker, 1981; Germann and Beven, 1981) and simplified theoretical
studies (for example Scotter, 1978; Edwards et al., 1979; Beven and Germann,
1981; Bouma et al., 1982). However, due to the lack of suitable flow theories, the
existence of macropores has received little attention in the modelling of catchment
hydrology. Using current hydraulic theory the location and properties of individual
macropores are required if a deterministic simulation is to be performed. This is

clearly impractical, if not impossible, even for small scale simulations.
The occurence of macropores in soil has been used as an explanation for a number of

unsuccessful simulations in previous physically based modelling studies, for example

Jayawardena (1975), Beven (1975) and Mohsenisaravi (1981).

co



The model of Jayawardena (1975) accounted for surface soil water movement using a
one dimensional (downslope) kinematic wave equation. The complete model was
applied to two upland catchments in mid Wales and a number of recorded events were
simulated. Insufficient data was available in the field and therefore Jayawardena
intended to base model parameters on suitable values for the soil types present in the
catchments. One such model parameter, the saturated hydraulic conductivity,
estimated by Macfarlane (1969) for peat soils to lie within a range of 1077 to 0.38 cm/s

was adjusted by Jayawardena to lie within 1.0 and 10 cm/s in an attempt to account for

macropores in the soil.

Although a number of observed events were satisfactorily simulated using
Jayawardena's model, several predicted events were grossly in error. Clearly if such
adjustment of model parameters is necessary, the model appears to have little physical

resemblance to the real system.

The model of Beven (1975), which was probably a forerunner to the IHDM, was
applied to the East Twin Catchment, UK. Beven attempted to choose ‘best’
parameters to fit the observed hydrographs. Close agreement between simulated and
observed events was not obtained. By comparing predicted and recorded soil moisture
profiles it was evident that not enough water was being lost from the hillslope during
the simulations. Beven concluded that the influence of macropores within the soil

layer was probably a major contribution to the poorly simulated hydregraphs.

Mohsenisaravi (1981) attempted to simulate subsurface flow hydrographs on a single
hillslope of the Pine Creek Watersheds, Idaho, USA. Mohsenisaravi used the two
dimensional variably saturated flow model of Neuman et al. (1974) which was based
on the original work of Neuman (1973) and included an evapotranspiration
component. Mohsenisaravi calibrated this model from a series of events taken from

one years records, the model was then applied to a number of storms during the next



two years. Mohsenisaravi found that the saturated hydraulic conductivity of the soil

was the most influential mode] parameter and once calibrated the model failed to

provide results of sufficient accuracy, suggesting a possible time dependence of the

hydraulic conductivity. The causes of such time dependency could include the effects

of decaying flora and the formation of macropores.

A further problem of predicting hydrological events using physically based models lies
in the data requirements of such a model. In theory, since the model equations are
solved on a grid of node points, each node point or nodal area may be associated with
a model parameter, such as the saturated hydraulic conductivity. Therefore, the spatial
(and temporal) variability of model parameters can be described. However, since such
information is unlikely to be available , the current modelling practice assumes that
areas of the flow domain can be represented by constant parameter values, implying

that some ‘equivalent parameter' can be used.

2.3.1 TField evidence of soil spatial variability

Field evidence of spatial variability of soil properties, in particular the saturated
hydraulic conductivity, has been demonstrated by many studies. Myers (1967) has
shown considerable variation of soil hydraulic properties across a 200 m hillslope site

" using infiltrometer data.

Significant variation in unsaturated hydraulic conductivity has been shown by
Stockton (1971) and Carvallo et al. (1976). Stockton's observations were based on a
series of measurements at a depth of 50 cm over a 40 ha site of Pima Clay Loam. A

much smaller study area (0.01 ha) was used in the investigation by Carvallo et al.

(1976).

The probability density function for hydraulic conductivity has been shown, in
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Table 2.1  Some published statistical parameters for lognormal frequency

distributions of hydraulic conductivity (K in cm/s)

Source

uan Gan
Law (1944) -10.046 0.433
-11.221 0.884
-12.205 0.814
Rogowski (1972) -7.162 1.5
-5.968 0.9
-8.533 1.0
-6.653 1.6
Nielsen (1973) -8.786 1.01
Smith (1978) -1.403 0.504
Sharma et al (1980)" -7.289 0.659
Russo and Bresler (1981b) -5.964 1.015

+ Based on final infiltration rate.




general, to be log normal. Law (1944) was one of the first to propose such a
distribution using core data from an oil field reservoir. Other field studies verifying
such a distribution for hydraulic conductivity or related infiltration properties include
Rogowski (1972), Nielsen et al. (1973), Baker and Bouma (1976) and Babalola
(1978). Further evidence is also provided in Freeze (1975). A number of published

estimates of spatial variability of hydraulic conductivity are presented in table 2.1.

There appears to be little agreement in the literature about the amount of spatial
correlation of soil hydraulic properties. Smith (1978) measured porosity and saturated
hydraulic conductivity on two 30 m transects, samples being taken at 0.3 m intervals.
The correlograms of Smith suggested little spatial correlation. Also no obvious pattern
in the distribution of infiltration parameters with respect to position has been observed

by Sharma et al. (1979) and Mapa (1984).

Experimental data from Vierra et al. (1981) and Russo and Bresler (1982) has
suggested significant variance structure extending to tens of metres. Measurements of
soil properties such as clay content and pH, along a 3 km transect, by Webster and
Cuanalo (1975) have implied the possiblity of correlation at distances of hundreds of

metres.
2.3.1.1 Eastergrounds study

In order to obtain more information of the variability of soil hydraulic properties within
a single hillslope, a series of measurements were made on the Easterground field of the
Slapton Wood Catchment (Troake and Walling, 1983; Trudgill, 1983) during March

1985. Topographic variation in the field is shown in figure 2.7. The site is

approximately 1.5 ha in size.

Using a single ring infiltrometer (Burt, 1978) a series of 72 soil surface infiltrometer

plots were selected, 32 of which were placed on a triangular grid (see figure 2.7). The
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remaining 40 plots were located along a 50 m transect between the mid points of 4 and

5 and 8 and 9 (figure 2.7).

At each infiltrometer site readings were taken of infiltration rates with time until a near

steady infiltration rate was observed.

There are several mathematical expressions describing vertical infiltration, for example
Green and Ampt (1911), Philip (1957) and Holtan (1961). For this study, the widely

recognized Philip's equation was used. Philip's equation can be written in the form,

i=A+Bt12 (2.4)
where: i = inflltration rate at time t
A = final infiltration rate

il

Sorptivity = constant

A least squares fit of equation (2.4) to the observed data was made in order to obtain
values of the final infiltration rates over the field. An example of such a fit is shown in

figure 2.8. The calculated final infiltration rates for the 72 plots are tabulated in

appendix 1.

Analysis of the 32 final infiltration rates over the field show a normal distribution of
In (A) with mean In (A) = -7.776 (A in c/s) and a standard deviation of 1.282 at the
80 % confidence level (see figure 2.9). It has been suggested in the literature that the
value of A in Philip's equation lies between one third and two thirds of the saturated
hydraulic conductivity of the surface soil (see for example Youngs, 1968; Philip,

1969). An appropriate estimate of the mean saturated hydraulic conductivity is then

8.4 x 10 ™4 cmy/s.
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Variation of .
on 9 In (A) along a 50 m transect is shown in figure 2.10. Significant noise is

evident. The autocorrelation at various lags 1 may be evaluated using

n-t
pL: —-1— Z(Yi-Yi)(Yiﬂ_?i-ﬂ)
n-t i=1
n-1 n-1
1 T L B (Y, - Y )P
n-1 i=1 n-i i—_-]_

n-1
where: Y. = 1 ZYi

n-i i=1

n-1
Y, =1 Z Yi+L

L

Y = In(A)

n = number of data points

Inspection of the correlogram (figure 2.11) reveals little variance structure which is

further demonstrated by the inclusion of the 95% confidence limits for a purely

random Process.

The soil in the Easterground field is very stoney (Butcher, 1986) and the soil surface
has received considerable compaction from grazing animals and the many previous

field studies. These two factors help to explain the insignificant variance structure

observed.
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A series of undisturbed soil cores were also taken along a different transect in the field
and at two locations at various depths. However, the very stoney nature of the soil

made it extremely difficult to measure reasonable estimates of saturated hydraulic

conductivity in the laboratory.

Butcher (1986) has measured infiltration rates at various depths in the Eastergrounds
field which have shown a distinct increasing trend with soil depth. This demonstrates

the heavily compacted nature of the soil surface.

2.4 SUMMARY AND CONCLUSIONS

Current physically based modelling strategy involves the simulation of the complex
interaction of individual hydrological processes using theoretically acceptable
continuum equations. The governing equations of flow are usually presented in the
form of partial differential equations which require a numerical solution to specific
boundary and initial conditions. Methods such as the FDM and FEM have been

popular for the modelling of such processes.

Application of sub process models, in particular those representing variably saturated
flow, to real systems have received limited success. Phenomena such as soil spatial
and temporal variability and non-capillary soil moisture movement are generally
neglected in any physically base.d framework. There is ample evidence of soil spatial
variability in the literature including suggested frequency distributions of individual
properties. Extent of variability has been shown to vary between soil types and sites,
s the amount of recorded variance structure. Several field investigations,

so too ha

including the one carried out for this thesis, have found little, if any, autocorrelation of

soil properties, whereas others have reported significant correlation between properties

over tens of metres. There is a need for more site investigations such as these to
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provide sufficient information to evaluate the likely extent of soil variability. It is clear

that the influence of such variability must be investigated in order to assess the

limitations of current models. Moreover, complete catchment models are becoming

available to practicing engineers without forewarning of the oversimplification of the

hydrological systems.
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Chapter 3

A three dimensional finite element
model of variably saturated flow in

porous media



3.1 INTRODUCTION

In order to carry out a detailed analysis of the effects of soil spatial variability it was
necessary to develop a three dimensional model of variably saturated flow. Although
the development of such a model is a relatively simple extension of two dimensional
analysis, several problems have restricted such an approach in applications to real
situations. The computing requirements (both storage and processing time) for a three
dimensional solution are considerably greater than a two dimensional model, in
particular where a large portion of the flow domain is unsaturated, since the nonlinear
governing equations require an iterative solution. A further restriction lies in the data
preparation required for three dimensional grids, such as mesh geometry, initial

conditions and boundary conditions.

As stated in 2.2.2.1, the finite difference model of Freeze (1971) was probably the
first fully three dimensional solution to the problem of variably saturated flow through

porous media, albeit under hypothetical conditions.

The FEM has received attention in the modelling of three dimensional saturated
groundwater movement, for example Gupta and Tanji (1976). More recently, Frind

and Verge (1978) presented a finite element solution to three dimensional

saturated-unsaturated flow.

The model of Frind and Verge was applied to a real system in a study of groundwater

movement within the Whiteshell Nuclear Research Establishment .site, Manitoba,

Canada. The computing requirements of their study suggest that three dimensional

modelling of groundwater basins is a practical option. However, in such an

application detailed modelling of unsaturated flow is not required and thus any

unsaturated elements merely serve as a link between surface inputs and saturated

oroundwater flow. This is clearly demonstrated in Frind and Verge's study since the
[=4
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element size i
§ are 1n the order of hundreds of metres in plan and several metres with

- depth. These values are at least an order of magnitude greater than those required in

detailed unsaturated flow modelling.

It is worth drawing attention to the three dimensional groundwater transport model of
Babu and Pinder (1984). In their model a finite element-finite difference scheme was
employed in the three space dimensions. The approach was based upon a
horizontal-vertical splitting algorithm in which the horizontal plane was treated using
finite elements and finite differences were used to approximate the vertical flow. The
mesh layout in such a fo;xnulaﬁon appears to restrict the application of this model,
furthermore, the stability of the method under conditions of predominantly unsaturated

flow is yet to be demonstrated. -

3.2 SOLUTION STRATEGY

Neglecting compressibility effects and assuming isotropic conditions, equation (2.1)

can be written,

K, 3(K, dy) + K, 3(K, ay) + K, 3 (K dy) + K, 9K, -
ox  ox dy  dy dz oz oz
(3.1

Coy =0
ot

The value of \ over the region R is approximated by,

n

Wiyt = Wyzh) =, ¥ Nikxy2)
i=1



where n is the number : . .
of node points and N; are the interpolation functions.

Applying Galerkin's method (2.1.2.1.2) to equation (3.1) at a given instant in time,

n
JTOR, 9K 3 )+ Ko a(K, @) + K, 9(K, 3 )} wN, +
R ox  0x dy oy oz oz i=1
n
K, 9K, IN;dR - 3 dy; [CN;dR =0 j=12,.n (3.2)
oz i=1 ¢ R

Where the time derivatives of the nodal values of oy, / dt have been defined as

weighted averages over R, that is,

dy, = [C ayN;dR
ot R ot
| jCdeR
R

The use of this weighting process has been termed mass lumping and was first used in

unsaturated flow modelling by Neuman (1972) to improve convergence of the

solution. The method has also been employed in other nonlinear problems, for

example heat flow (Becker et al., 1974).
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The application of Green's theorem to equation (3.2) reduces the order of the

integrand. Green's theorem can be written in the form,

jcpvzedR = -jvmve)dR + [oVev ds
R R S

Where v is the outward normal to the boundary S.

Equation (3.2) then becomes:

n n n
- [N TKK, N + 3N KK N + Ny T KK, ON; } y; R
R ox i=l ox dy i=1 dy oz i=l 0z
n
+ VNS - Y 3y [CNdR - [ ®,K, aNjaR =0 (33)
S i=1 ot R oz
i,j=12,.n

Where the second term in equation (3.3) has been obtained from Darcy's law and V is

the velocity of the flow entering the system.

If the shape functions N are chosen such that,

-5 Jo

R ¢ K

TN




where e and se are the number of elements and surface elements respectively. R€is the

region of element e and $° is the surface of boundary element se.

Equation (3.3) then becomes,

Ay Y, + F _g%fj =Q -5

(3.4)
i,j = 1,2,..n
where,
Ay = ZKS JKr ?EIi @dee + EKS J‘Kf QE\_Ii a_l\_deRe
e Re Ox Ox e Re Oy Oy
LYK, K, AN, N are (3.52)
e RE oz oz
(3.5b)
€
Fj = 8 ¥ [CN:dR
e Re
3.5¢)
Q=3 JVNase (
se  ge
e (3.54)
5= T [
e Re oz

8. in equation (3.5b) is the Kronecker delta.
ij
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The basic linear isoparametric element shape was selected for this study.
Unfortunately analytical solutions to the integrals in equations (3.5) cannot be found

for such elements therefore numerical integration is required. In order to carry out the

integrations a transformation from global (X,y,z) coordinates to local (g,n,() is made

(see figure 3.1).

The integrals then become,

1 1 1

A. = EJ’ j %, - ((ON;ON; + AN;aN; + N, N, )l Ildeands  (.6a)

e -1 -1 -1 ox ox ay ay 3 oz ‘
111
Fy= 8,3 [ [ [oN[Jldedndg (3.6b)
e -1 -1 -1
111
- 3 [ | [k N [Jldeandd (3.6¢)
e -1 -1 -1 0z

where J is the Jacobian of the coordinate transformation.

The numerical integration scheme adopted is Gauss quadrature using four points in the

predominant direction of flow, which is vertical. By gvaluating the unsaturated soil

properties K () and C(y) at each Gauss point, a good representation of the variation
T

of these functions within each element is achieved. This has been demonstrated in a

number of two dimensional finite element studies, in particular Nieber (1980).
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Figure 3.1a Three dimensional isoparametric element in local coordinates.

Ficure 3.1b Three dimensional isoparametric element in global coordinates.
g .
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Since m G i :
auss points are required to exactly integrate a polynomial of degree 2m - 1,

in this study cubi 1ati .
y IC variation of the terms in equations (3.6a-c) is assumed in two

directions of flow and linear variation in the third

The resulting elemental contributions to equation (3.4) become

4

A =K, Y K (wf (3N, 3N + INON, +ONaN, ) 1JIW, W, W1, (37w)

g=1 0x 0x oJy dy 9z oz

4
Fye =2C(Wg){Ni|JlWSWnW€}g i=]

g=1

(3.7b)
Fye =0 i#]
Be = K, 3 K (v { N I W, W, W1, (3.7¢)
oz

where W, W, and W, are the weight coefficients at each Gauss point g.

The linear basis functions are given by ,

N (1+E€i)(1+ﬂﬂi)(1+CCi)

=1
1 —
8

therefore,

aN, = e (1+nm) (1+85)
o€ 8
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ON; = In(1+ee)(1+LC)
3 l

ON; = 1§ (1+eg)(l+nm,)
oL 3

The derivatives of the basis functions with respect to the global coordinate system are

obtained using the Jacobian matrix,

Q_I:Ii aNx

ox Jc

IN; = 3" oN;

ady on

oN; a_N i

oz Gl
where,

- 7
ox dy oz
oe oe oe

] = ox dy 0z
o on on
é’f ay 0z
3 18 le

For elements of arbitrary shape it is necessary to evaluate J ' and | J| at each Gauss

point of each element. However, for simple element shapes computer requirements
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b . _
can be reduced. Consider the parallelapiped element of constant width x, in figure

3.2. It 1s easily shown that the Jacobian is constant throughout the element and is

given by,

J = 1 x& 0 0 i
2
0 N wet
0 0 7€
and - -
lJ' = _1_)(‘331‘32e
8

Therefore, by employing an element shape index and given the geometric properties
we, x&, y®and z°, an array of the derivatives of the basis functions with respect to the
global coordinates can be formed for each element shape. Furthermore, the local
element matrices in equation (3.7) can be evaluated a priori for saturated elements
without significant increase in computer storage, provided the number of element

shapes is low

Discretization in time is performed using a fully implicit backward difference scheme

of the form:
( Aijk+1/2 + 1 Fijk+1/2 ) ij+1 - Qik+1/2 - Bik+1/2 + }—Fijk+1/2 ij (3.8)
Aty Aty
ij = 1,2,...n

: in k+1 _ ¢k : . .
Where k refers to a point K in time and Aty = 77" - t% Evaluating the coefficients at

half the time step (k+1/2) in equation (3.8) 1 carried out in order to under relax the

system (Neuman, 1973).

- L
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At the beginning of each time step, the values of y¥*/2 are predicted by extrapolation

from the previously calculated values, using,

Wik+1/2 - Wik + ﬁl_( (Wik . Wik-l ) k<3 (3.93)
24t
Wik+1/2 = ‘Vik +J log ., - log t, 1 ( yk- yEl) k>3 (3.9b)

log t, -logt, ,

Equation (3.8) is the solved for \yk*l at all nodes. These values are then averaged with

\yk using,

Wik+1/2 — l( Wik + Wik+1 ) k=1 (3103)
2

log bee1 - log %

The cycle continues until satisfactory convergence is achieved. Equation (3.9b) was
used by Huyakorn et al. (1984) to improve convergence rates. Experience has shown

that log based time also enhances convergence when determining nodal pressure heads

at mid time steps (equation, 3.10b).

The solution of the simultaneous equations in equation (3.8) represents a major portion

f the computational effort. Frind and Verge (1978) presented two schemes in their
O 1

three dimensional model, Gaussian elimination and Cholesky factorization. Frind and
ee ’



Verge compared the efficiencies of the two methods and suggested the Gaussian
elimination to be the best choice under most conditions. The Gaussian elimination
algorithm used by Frind and Verge (1978) is that of Neuman et al. (1974). This was
claimed, by Frind and Verge, to take advantage of the sparseness of the conductance
matrix A, by bypassing operations on the zero terms. A slightly modified version of
the Cholesky algorithm of Felippa (1975), which adopts envelope (or skyline) storage
of the conductance matrix A, was found to be more efficient for this study. In
particular, a number of operations within this method can be represented by hardware
vector functions of computers with vector processing architecture such as the CDC
Cyber 205. For example, rather than bypassing zero terms along a series of
bandwidth calculations, the operation is treated as a single vector operation thus

utilizing the greater speed of the vector processor.

Having determined the values of yX+1 at all nodes, the nodal fluxes Q[+1/2 can be

obtained explicitly from equation (3.8). The mass balance of the solution is greatly
improved by such a procedure rather than calculating boundary fluxes using estimated
hydraulic conductives and potential gradients, as in for example Beven (1975). In
order to calculate the nodal fluxes, the relevant elements of the conductance matrix A
need to be stored before solving the system of equations. Clearly if the entire matrix is
duplicated as in two dimensional models such as Neuman (1972), there will be a

significant waste of computer resources. For this reason. a compact form of the

conductance matrix is utilized for nodal flux calculations.

To reduce computational effort domain restriction method is adopted as follows.

After the second iteration of each time step, all nodes that have converged to a

specified tolerance become prescribed head nodes for the remainder of that time step.

Therefore areas of the flow domain not affected by the wetting front are not included in

the solution of the equations. The method is not as sophisticated as that of Stauffer



and Job (1982) but, unlike their procedure, vector processor instructions can be
utilized.

Due to inadequate spatial and temporal discretization and the high nonlinearality of the
unsaturated soil properties, convergence problems may occur resulting in oscillation
about the solution. This tendency has been noted in particular when elements change
from an entirely unsaturated state to a partially saturated state. Techniques to combat
such oscillation are presented in the literature, in fact the under relaxation of equation
(3.8) described earlier is for this purpose. Cooley (1983) suggested a method of
determining damping parameters to maintain stability of the solution. This technique
was tested together with Cooley's backward difference scheme. Little, if any,
advantage was evident from employing such an approach and it was felt that the under
relaxed system in equation (3.8) was the most attractive strategy. As in Beven
(1975), if oscillations do occur the average of the nodal values . at two successive

iterations is used as an estimate of the solution.

Various functional relationships for unsaturated soil properties are suggested in the
literature. For example Gillham et al. (1976) adopted a hyperbolic cosine function,
Frind and Verge (1978) used a cubic spline representation and Beven and Morris
(1986) used the Brooks and Corey relationships (Brooks and Corey, 1964). In this

study the relative hydraulic conductivity is represented in the following form,

K (y) = @
a+|yP

where a and b are constants.

QN




The following ;
g relationships ar
hips are used to represent the moisture content and specific

moisture capacity functions
b

B(y) = eres +( es - eres ) A

A+]\4;|B

Cly)= (6,-6_) AB|y[B!

Ies

(A+|\y|3)2

6(y) =6, (1+Py-yy?)

Clw) =86, (B-2vy)

6(W)=95(1+[3\y)

Cy)=6.p

where,

Gres — residual moisture content

AB B YV, = constants.

Q1

(3.11a)
v sy

(3.11b)

(3.12a)
Y, Sy < 0

(3.12b)

(3.13a)
y 20

(3.13b)




A small non- - - P
SMéil non-zero specific moisture capacity in the saturated zone (equation, 3.13b)
implies recognition of the soil matrix compressibility. Beven and Morris (1986) stated

that the inclusion of such a property within the TEIDM has improved the stability of the
variably saturated flow equations.

Values of A, B and 6 can be obtained by fitting equation (3.11a) to experimental

data. By selecting a value of f in equation (3.13b) y and V_ can be obtained from

equations (3.12) to ensure a continuous functional relationship.

Hysteresis of the unsaturated soil properties is not included in the current form of the
model since the necessary data is unlikely to be available. However, the

implementation of hysteretic relationships within the code is straightforward.

At the end of each time step an approximation of the continuity error over the domain

is obtained using the following multiple integral,

At n
E=F [ [ 90ddre - Ay Qs (3.14)
e R O ot i=1

Using a four point Gauss quadrature integration scheme, equation (3.14) is estimated

by,

n
4
- AU2 (3.15)
- oy t+8t) - 80y D) { | T | We Wy Wi kg - At > Q
E 2 2( (Wg g 1

e g=1

ok )




A percentage continuity error is then evaluated as,

n
E . = 100xE/ At Y Qravz

i=1

If the calculated percentage error E cont 18 greater than a specified value then the time

step size is automatically reduced for the next time step. During the simulation, the

value of At is also allowed to vary in magnitude depending upon the number of
iterations during the previous time step. Thus too large a step length requiring many
iterations and an excessive number of time steps which are too small are eliminated.
The basic structure of the described algorithm is shown in figure 3.3. A listing of the

code, written in FORTRAN 200, is provided in appendix 2.

3.3 MODEL VERIFICATION

The finite element method has been shown to be suitable for solving the equations of
variably saturated flow under ideal conditions, by numerous previous studies.
However, each individual model requires evidence of verification. The example

presented herein is a water table recharge problem.

The data is taken from the results of an experimental and numerical study presented in
Vauclin et al. (1979). The flow domain is shown in figure 3.4 and consists of a

rectangular slab (dimensions 3m x 2m x Scm) of fine river sand.
The height of the water table is initially 65cm above the base of the slab. Recharge to

the water table is provided by a constant flux of 14.8 cm/hr applied to the upper

boundary of the flow domain.
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Read mesh geometric data

v

Read initial and boundary conditions

;

Extrapolate nodal values of y! and y* to obtain y<*2 |«

l

For each element form local matrices and add to global system

l

Form condensed matrices for boundary flux determination

'

Solve finite element equations for new estimate of \pk“ at all nodes

y

Determine unknown boundary fluxes

!

Modify conditions on seepage faces

l

Check direction of boundary fluxes - set nodal
pressure heads to zero if surface runoff occurs

|

A

Figure 3.3 Flow chart for the finite element algorithm
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Are the convergence

specifications satisfied ?

Apply domain restriction

;

Interpolate nodal values of w* and y**! to obtain better estimate of Y2

» Mass continuity calculations

.

Calculate delayed surface fluxes

Is another time

step required ? Stop

Read in new boundary conditions for next time step if applicable

Figure 3.3 (continued)
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The initial and boundary conditions are:

® Yy = 65-z 0< x< L 0 < z< 115 t=0

(11) Vv = 6.8-0.494z 0< x< L 115<z < D t =0

(i1i) h=ho X =L 0 z< h0 t>0

@iv) dh _ g 0< x< L z=0 t>0
0z

(v) ch =0 x =0 0< z< D t>0
0x

(vi) -Kodh = q 0< x< d z=D t>20
0z

(vii) och =0 d< x< L z=D t>20
oz

(viii) ¢h = 0 x =L z. < z< D t>0
ox

(ix) h =z x =L hy <z < z t>0

where z is the height of the seepage face.

Conditions (i) and (ii) are taken from the experimental readings of Vauclin et al.
Condition (ii) demonstrates that the initial conditions are not static over the entire flow

domain. Conditions (viii) and (ix) refer to the seepage face at the right-most

boundary.

The unsaturated soil characteristics are given by:

A+|yB

8(y) =6, v 20
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K, (v)

I
b
<
A

(=

a+ |yl
Kr (W) = 1 Vo2 0
where:

6, = 03cmcem’!

A = 40x10%cm??®

B = 29

a = 299x10%cm’

b = 5.0

The saturated hydraulic conductivity is assumed constant throughout the flow domain

and is equal to 35.0 c/hr.

Vauclin et al. (1979) simulated the problem numerically in two stages. Until the
wetting front reached the water table, the governing equations were only solved in the
unsaturated zone. The method used was a combined Kirchoff transformation/finite

difference scheme as used by Rubin (1968). The finite difference grid dimensions

adopted were Ax = Az = 10cm and At = 10s.

For time greater than 1.75 hours, the complete flow domain was solved using a finite
difference scheme without the Kirchoff transformation. An iteration tolerance of 0.01
cm and a mesh consisting of 396 nodes were employed. Variable time steps were
used in the second stage of the simulation, the size of the step length being determined

from a stability equation. Values in the order of 20s appear to have been used for this

stage of the numerical study.
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In order to solve the same problem using the finite element method, a 3D finite element
mesh consisting of 130 elements was used (figure 3.5). The eight hour simulation
period was discretized into eighty seven time steps which varied between 6s and 600s.
An average of 3 to 4 iterations per time step were required to satisfy an iteration
tolerance of 0.01 cm. The entire simulation required 13.5 minutes CPU time! on the

DEC VAX 11/750 at Aston University's Computer Centre.

The water table positions calculated using the finite element scheme together with the

experimental results are shown in figure 3.6. Close agreement is evident.

Figure 3.7 illustrates the change in outflow, inflow and storage of water within the soil
mass with time from both the experimental findings and the finite element scheme.
The volume of storage was obtained from the integral in equation (3.14). Overall the

numerical results are in close agreement with the experimental observations.

In order to verify the simulation of flow in the third (minor) dimension, the same
problem was analyzed using identical spatial and temporal discretization with two
Gauss points per element, as opposed to four, in the predominant direction of flow.
Similar, but less accurate, results were obtained . However, in the intended
application of the model much smaller potential gradients are likely to be encountered

in the third dimension.

It is important to note that much coarser spatial and temporal discretization was
possible using the described finite element formulation in comparison with the finite
difference method adopted by Vauclin et al. (1979). Frind and Verge (1978) reported
similar findings in a comparison of their model with the finite difference model of
Freeze (1971). Freeze discretized a small groundwater basin into 8788 node points

t Clearly the CPU time would be considerably less if a two dimensional equivalent
code was used.
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Figure 3.7 Comparison of experimental and numerical volumetric observations. V1
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i indicates volume of water
indi lume of water entering the slab, V2 indica
iad\lgitgesth‘}: slllab and V3 indicates change in storage. Symbols represent
experimental results from Vauclin et al. (1979).
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and needed 200 time steps to simulate a 47 hour period. The model of Frind and
Verge, using a simpler integration scheme than the methods presented here, solved the
same problem using 400 finite elements and 13 time steps. Frind and Verge (1978)

concluded that the implicit nature of the finite element scheme permitted such a coarse

discretization.

3.4 SUMMARY AND CONCLUSIONS

A model of three dimensional flow in variably saturated porous media has been
developed based on the Galerkin's approximation to the finite element method. The
model utilizes four point Gauss quadrature integration which permits a more accurate
representation of the nonlinear system in comparison to linear finite element or finite
difference schemes. A number of operations within the algorithm have been
programmed in the explicit vector syntax of CDC's FORTRAN 200. In doing so the
portability of the code is removed, although it is felt that such manufacturer extensions

are likely to be standard features of future versions of the FORTRAN language.

Verification of the model was carried out using the experimental data of a water table
recharge problem presented in Vauclin et al. (1979). Close agreement between
observed and predicted responses was evident. Furthermore, the FEM scheme
adopted permitted coarser spatial and temporal discretization, in comparison to the

finite difference analysis of the same problem also presented in Vauclin et al. (1979).
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Chapter 4

The hydrological effects of

soil spatial variability
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The evidence of spatial variability of soil properties, in particular the hydraulic
conductivity, is now well established. However, the influence of such variability on
hydrological processes has not been fully assessed but may help to explain the limited
success of a number of previous physically based modelling studies. The majority of
studies examining the effect of spatial variability have concentrated on generalized flow
domains, little work has been carried out specifically directed towards soil moisture
movement on hillslopes. Furthermore, the fully three dimensional variably saturated

transient system has not been examined.

4.1 PREVIOUS INVESTIGATIONS

Previous analyses of spatial variability have followed two distinct paths in the literature.
One approach is to derive analytical expressions describing the moments (means,
variances, covariances) of the output variables, such as hydraulic head, given the

moments of the soil property distribution.

The second approach utilizes Monte Carlo simulations which have a wider range of
applicability than the analytical approach since under numerous conditions, analytical
descriptions of the output moments cannot be found. Furthermore, Monte Carlo
analysis allows the entire probability distribution of the output variables to be

ascertained.

4.1.1 Analytical investigations
Bakr et al. (1978) analyzed steady state, saturated groundwater flow in a statistically

homogeneous, isotropic media. The hydraulic conductivity was treated as a stochastic

process in an infinite domain. Bakr et al. first considered the case of unidirectional
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saturated steady flow, that s,

d[Kx) da] = 0
dx dx

where K (x) is the saturated hydraulic conductivity at any point x and h is the hydraulic

head. By expressing the variables in the above equation in terms of a mean and a

perturbation,
h=h+h h = E{h} E{h} = 0
InKs= Y+Y Y = E{lnKg E{Y} = 0

and expanding the governing equation (neglecting products of the perturbations) Bakr et
al. were able to use spectral analysis to analytically derive variance and covariance
expressions for the resulting hydraulic head distribution. A comparison of these
expressions for one and three dimensional flows in an infinite domain shows that the
variance of hydraulic head in a three dimensional system is only 5 per cent of that in the

corresponding one dimensional case.

Gutjhar and Gelhar (1981) enhanced the method used by Bakr et al. (1978) to

investigate steady saturated flow in finite domains.

Other investigations of steady state, saturated flow in spatially variable media, using
perturbation methods, include Dagan (1982a) in a study of conditional simulation.
Such an approach involves conditioning field measured values of the variable field, the
remaining values in the field are then allowed to fluctuate randomly. Mizzel et al.
(1982) have also used a combination of perturbation and spectral analysis to study two
dimensional steady flow in a confined aquifer. Analytical solutions to the problem of

unsteady saturated flow are presented in Dagan (1582b).
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Unsaturated flow in spatially variable fields was investigated by Bresler and Dagan
(1983a) using approximate flow equations for unsteady unidirectional flow (Dagan and
Bresler, 1983). Their analytical solutions were based on perturbation methods, which

were extended further to study one dimensional solute transport (Bresler and Dagan,

1983b).

Yeh et al. (1985a) studied the effect of soil variability on steady, unsaturated flow in an
infinite domain. Unlike the earlier work of Bresler and Dagan (1983a), Yeh et al.
accounted for autocorrelation in the spatially variable media. In this study the functional

representation of unsaturated conductivity was,

K, (y) = exp (-oy)

after Gardner (1958), where a is a parameter representing the relative rate of decrease

of hydraulic conductivity with increasing pressure head. Assuming o constant, Yeh et

al. compared head variances under one and three dimensional flows. Their results

showed that for small oA, where A is a measure of the variance structure of the
hydraulic conductivity distribution, there was a considerable difference between the

head variance in the one and three dimensional system, as in the saturated case (Bakr et

al., 1978). For large values of oA, which may be associated with coarse textured soils,

similar variances of hydraulic head were reported for one and three dimensional flows.

Yeh et al. (1985b) extended their study to account for anisotropic soils with variable c.

All of the analytical investigations discussed so far have been based on perturbation
techniques. A limitation of this approach is that since high order terms of the
fluctuations are neglected in the expanded series representing the governing equations

of flow, then large amplitude problems, that is domains of high variability, cannot be
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studied. Cusham (1983), Gelhar and Axness (1983) and Gutjhar (1984) discussed the
validity of the perturbation method. Anderson and Shapiro (1983) have compared
‘exact’ Monte Carlo results with analytical equations based on perturbation methods for
unidirectional, steady state unsaturated flow. Their results suggested that, even under
conditions of large variability, perturbation methods may be appropriate. However,
Anderson and Shapiro recognized that their one dimensional study has serious

limitations and that the same conclusions may not arise from multidimensional analyses.

It is worth noting an alternative method of analyzing spatial variability for transient
saturated groundwater flow presented in Sagar (1978) and Dettinger and Wilson
(1981). The method does not produce analytical expressions describing the moments
of the output variables, these values are obtained by forming a series of equations
approximating the flow equations, using some numerical procedure such as finite
.elements. The solution of these stochastic equations is then obtained by Taylor
expansion around the expected values and independent variables. Since the Taylo;
| series is truncated at some level, this method has the same limitation as the previously
described techniques, as the results can only be assume’d’/’exact' for fields of low

variability.

4,1.2 Monte Carlo investigations

Monte Carlo analysis allows specific bounded domain problems to be studied. The
flow domain is discretized into a series of discrete homogeneous blocks of different soil
properties. The values assigned to each block are taken from frequency distributions of
specified moments. By applying the same problem to a number of realizations of soil
variability, the uncertainty of all the output variables can be extracted, if the number of
realizations is considered large enough. Since numerical methods are normally required
to solve each flow problem, large amounts of computing resources are invariably

needed. This method has the advantage that, unlike perturbation and similar
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techniques, there are no restrictions on the extent of variability considered, also the

results of Monte Carlo simulations are more easily interpreted.

Probably the earliest example of a Monte Carlo analysis of the effect of soil spatial
variability, is that of Warren and Price (1961). They used a finite difference model of
saturated groundwater flow to investigate the influence of several possible frequency
distributions of hydraulic conductivity. The investigations were limited to steady state

quasi-linear and quasi-radial flow geometries and to a transient quasi-radial flow

system.

Freeze (1975) examined the effect of nonuniformity of hydraulic conductivity on one
dimensional, steady state, saturated flow. Freeze used the analytical solution to this
boundary value problem, within a Monte Carlo analysis. He recognized more realistic
variabilities of soil properties that those used by Warren and Price (1961). An example
of Freeze's results is shown in figure 4.1. This demonstrates the influence of the
variability of hydraulic conductivity on the uncertainty in hydraulic head throughout the
one dimensional column. Freeze's results suggested that nonuniformity could have a
significant effect on groundwater hydrology, although Freeze (1975) admitted that
limiting the study to one dimensional analysis could be partially responsible for such
claims. In the same work, Freeze also investigated the multivariate problem of one
dimensional transient consolidation. Hydraulic conductivity, porosity and media
compressibility values for each homogeneous block were generated from suggested
frequency distributions. Freeze concluded from the results of the transient simulations
that the variances of the soil property distributions are just as important as the mean

values as an index property for nonuniform soils.

Smith and Freeze (1979a) extended the work of Freeze (1975) by examining the effect
of autocorrelation of hydraulic conductivity in a Monte Carlo study of one dimensional,
steady state, saturated flow; under the same conditions as the earlier study of Freeze.

Autocorrelated properties were generated by a simple nearest neighbour method
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Figure 4.1 Influence of the standard deviation cy( y=log;K,) of the hydraulic
conductivity distribution on the standard deviation S, of the predicted
hydraulic head distribution throughout a 100 centimetre vertical column,

after Freeze (1975).
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(Bartlett, 1975). Using realistic descriptions of the nonuniformity, calculated values of
the standard deviation of hydraulic head were as high as thirty per cent of the difference

in head throughout the soil column.

Recognizing the possible limitations of a one dimensional study, Smith and Freeze
(1979b) analyzed the effect of spatial variability of hydraulic conductivity on two
dimensional steady flow. A comparison of the variability of hydraulic head in their one
and two dimensional studies showed a reduction in the standard deviation of slightly
less than one half for the two dimensional system. Such a small reduction conflicts
with the analytical results reported in Gelhar (1976), who found an order of magnitude
difference in one and two dimensional flow in an infinite domain, although Smith and
Freeze recognized that the small difference suggested in their study is probably due to

the bounded nature of the flow domain.

Using algebraic infiltration models, Smith and Hebbert (1979) carried out Monte Carlo
simulations in a study of the effect of random distributions of soil properties on the
resulting distribution of ponding times and infiltration rates. Smith and Hebbert
generated a large number of homogeneous soil blocks from a random distribution of
hydraulic conductivity. A constant rainfall event was then applied to each soil block
independently. Therefore, no hydrological interaction of soil blocks was permitted.
Furthermore, aﬁtocorrelation of the hydraulic conductivities was neglected. Smith and
Hebbert presented the composite mean infiltration pattern for a range of variation of soil
properties under two different rainfall intensities. Their results suggested that under
low rainfall intensity, random variability of soil properties can have a significant effect
on the resulting hydrological response. The conclusions of Smith and Hebbert's study,

however, are restricted to events characterized by the Hortonian mechanism.
The study presented in Freeze (1980) is unarguably the most important analysis to date,

of the effect of spatial variability on hillslope flow process. Freeze adopted a

'stochastic - conceptual' analysis of the response of a hypothetical quasi-three
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dimensional hillslope.

The hillslope in plan was discretized into 200 soil blocks, each 10m square. When
rainfall was applied to each block the infiltration rate was determined, using algebraic
equations, at each time step of the event. The rainfall excess was then evaluated and
routed directly to the channel, assuming constant overland flow velocity. Channel flow

was treated in the same manner as overland flow.

One complete Monte Carlo experiment of Freeze involved the simulation of one
hundred events, each consisting of sixty time steps. For each experiment, surface
topography, hydraulic conductivity, porosity and a soil moisture storage parameter
were generated using the algorithm of Mejia and Rodriguez-Iturbe (1974). These four
stochastic processes were generated with specific autocorrelations, although cross
correlation of the soil properties was neglected. For each independent event antecedant
conditions and external storm properties, such as duration and intensity were generated.
An autocorrelated rainfall intensity pattern was tﬁen generated for each time step of the

event.

Freeze's study did not recognize subsurface storm flow, although base flow was
incorporated in a simplified manner by recognizing the elevation of a generated water
table. The incorporation of a water table position in Freeze's study allowed both
Hortonian and Dunne mechanisms of overland flow to occur during an event.

However, Freeze admitted that :

" .. the transient propogation of this water table ri;e into adjacent elements
is not considered; the moisture conditions in the soil column of each element

are considered independently”.

In fact. this is a serious limitation of Freeze's experiments, since, although
autocorrelation of soil properties is recognized, the localizing of a highly correlated

spatial structure is not simulated due to the independent nature of Freeze's calculations.

102



Freeze carried out several investigations on different permutations of the 'major’

underlying statistical distributions, for example increasing the variance of the hydraulic

conductivity distribution, other parameters remaining fixed. By comparing the resulting

hydrograph distributions of several experiments, Freeze concluded, that Hy the mean

of the log transformed hydraulic conductivities, Oy, the standard deviation and o, an

autocorrelation parameter, have a significant influence on the hydrological response of

the hillslope. Freeze suggested that the order of importance of these statistical

parameters is Hy» Oy, Oy In particular, for conductivity fields with high mean values,

a large variance of the distribution can have a striking effect due to the inclusion of areas
of conductivity less than the rainfall intensity, although for low mean conductivity
distributions, the results shown in Table 2 of Freeze (1980) demonstrate that the
autocorrelation of the distribution is just as important as the variance. However, since
Freeze's soil block calculations were evaluated independently, it is difficult to see how
autocorrelation of soil properties can have such an effect. A possible explanation is that
each Monte Carlo experiment of Freeze used a single realization of spatial variability, an

analysis of multiple realizations in Freeze's study may remove any 'chance’ effects.

Beven (1983) has investigated the effect of spatial variability of hydraulic conductivity
within the semi-distributed, variable contributing area model TOPMODEL (Beven and
Kirkby, 1979). The model was applied to a representation of a 3.25 km? catchment
under various uncorrelated distributions of saturated hydraulic conductivity. Beven
examined the effect of variability on different catchment scales and concluded that only

at the small catchment scale or hillslope scale will the pattern of variability have a

significant effect on runoff generation.

A number of experiments on the effect of variability in a small sloping soil block

representing a single hillslope segment have been performed by Sai (1983). The
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‘hillslope’ was 1.83 m long, 1.22 m deep and 0.13 m wide. A two dimensional
(vertical slice) finite element model was used to compare the effect of hydraulic
conductivity distributions on the hydraulic head field produced by transient variably
saturated flow. Sai investigated changes in mean, variance and autocorrelation of the
conductivity distributions but limited his study to only six permutations of these
statistical parameters. Sai restricted his study to low variability under a small range of
mean conductivity (0.713 cm/min - 0.813 cm/min) and further failed to consider
multiple realizations of the underlying statistical distributions. Sai concluded that under
the conditions examined, changes in mean and variance of the conductivity patterns
have only a significant effect at long times, when steady state conditions are
approached. Changes in autocorrelation had little effect on the resulting hydraulic head

distribution, even under steady flow.

El-Kadi and Brutsaert (1985) have also examined hydraulic conductivity variability in a
two dimensional flow domain. They applied a transient two dimensional model of
saturated flow (neglecting vertical flow), based on the linearized form of the
Boussinesq equations, to a hypothetical study of the drainage of an unconfined aquifer.
Using Monte Carlo simulations, El-Kadi and Brutsaert analyzed the effect of various
conductivity distributions on the resulting water table elevations and outflow rates.
Analysis of the results of the multiple realizations showed that the variability of the
water table elevations and outflow rates were significantly affected by the degree of
variability of the hydraulic conductivity and were functions of time, although the
variability of the outflow rate relative to the mean flux remained virtually constant
throughout the simulation period. A comparison of the results of various degrees of
autocorrelation between the conductivity values by El-kadi and Brutsaert, demonstrated
that increasing the correlation increases the uncertainty of the output variable.

However, the effects of such changes were not as large as those produced by changes

in the variance of conductivity distribution.
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4.1.3 Summary

Several investigations of the effect of spatial variability of hydraulic conductivity on
various hydrological processes are evident in the literature. The two distinct methods of
such analyses are analytical derivations and Monte Carlo simulation, the advantages of
which have been discussed. Various degrees of complexity of groundwater movement
have been studied, ranging from one dimensional, steady state, saturated flow to three
dimensional, steady, unsaturated flow and two dimensional, transient, variably
satm";ated soil water movement. Also, a number of studies on overland flow generation
within spatially variable fields are presented in the literature. Very little work has been
carried out on specific flow domains, in particular, hillslope runoff generation.
Furthermore, the fully three dimensional, transient, variably saturated flow problem has
not been examined, even in a generalized system. It is clear that increasing the number
of spatial dimensions of groundwater analysis will reduce the effect of soil spatial
variability, since the restriction of flow in localized low conductivity areas in one or two
dimensional systems will be reduced. This reduction has been demonstrated by several
investigators, although implications of such a reduction in hydrological modelling have

not been fully assessed.

4.2 THE EFFECTS OF SPATIAL VARJIABILITY OF SATURATED
HYDRAULIC CONDUCTIVITY ON THE RESPONSE OF A
SINGLE HILLSLOPE SEGMENT

In order to investigate the effects of soil spatial variability on hillslope runoff
generation, it was decided to concentrate the experiments on a hypothetical straight
hillslope. In doing so, the effects of topographic variation (Freeze, 1972b) and slope
divergence or convergence (Beven, 1977) would not be encountered and thus more

general conclusions could be drawn from the results of the investigation.



The geometry of the hillslope selected for this study is shown in figure 4.2. The

hillslope is 150 metres wide and 100 metres long. An isotropic soil, 1 metre thick, lies

on an impermeable 1 in 6 slope.

Faces ABFE, EFGH, and DCGH are also considered impermeable. ABCD is a
potential seepage face, the pressure head along AD being prescribed as atmospheric.
Under certain conditions the water table will rise to the surface of the soil layer. If this
occurs the pressure head is set to zero, neglecting a small depth of surface flow caused
by the the onset of surface saturation. During the simulation of a rainfall event, all node
points of the finite element mesh on the soil surface (face BCGF) have prescribed flux
values. These values are reduced automatically in the finite element code if surface

saturation or infiltration excess overland flow occurs.

In order to solve the boundary value problem, the hillslope was discretized into 3024
node points and 2380 elements (figure 4.3). Due to the immense data requirements of
such a mesh, a code was developed to generate the necessary information for the finite

element code.

4.2.1 Soil properties

It was originally intended to extend the hypothetical investigation to a real hillslope,
namely the Eastergrounds field of the Slapton Wood catchment described in 2.3.1.1,
therefore unsaturated soil-water properties resembling those in the Eastergrounds field
were used for this study. Soil moisture characteristics were made available® for a silty
clay loam at Loworthy Farm, Slapton, which was considered very similar to the soil in

the Eastergrounds site. Using aleast squares algorithm the functional form of the

T N Coles (1985). Personal communication
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retention curve in equation (3.11a) was fitted to the data (figure 4.4). Rewriting

equation (3.11a),

O¥)=6_,+(8,-6_) A

A+|\HB

re

the best fit parameters were:

6, = 0.57cm’®cm?
— 3 -3

Gres = 0.245 cm’cm

A = 19248 cm!?247

= 1.247

It is important to note that the unrealistically high value of residual moisture content was
selected to fit the data over a range of suction values likely to be encountered throughout

the simulations.

The values of B, yand y in equations (3.12) were evaluated to be 1.745 x 105 cml,

0.1702 cm™? and -3.382 x 103 cm respectively, which produce a constant value of

specific moisture capacity, in the saturated zone, equal to 1.0 x 10 cmL.

Unfortunately data describing the unsaturated hydraulic conductivity characteristic was
not available for the same soil. It was decided to use the permeability model first
proposed by Childs and Collis-George (1950) to produce a functional form of the

unsaturated hydraulic conductivity corresponding to the previously described soil

moisture curve.
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The effective saturation, Se, is defined as:

S. =8-S, = A (4.1)

where: S = saturation

w2
i

residual saturation = 6 /8
IcS S

Note that the second equality in equation (4.1) only refers to the functional relationship

as given in equation (3.11a).

Assuming the soil to consist of capillaries of various radii r, the effective pore size

density function s () is given by (Brutsaert, 1966):

s,() = dS(r) = BdrPB! (4.2)
dr (d + rB)?

where: d = 0.1498
A

That is, given the soil moisture characteristics, the corresponding pore size distribution

can be determined via equation (4.2). This distribution for the given retention curve is

shown in figure 4.5.
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Adopting a series - parallel permeability model, the intrinsic permeability, k, is given by
(Brutsaert, 1968):

k(W) =[062(1-5)2/81.K(y) _ (4.3)
where:
S.(y) S.(y)
k'(w) = 24%B [ SC(W) J'XZIB - X)—2IB dx - Jx(2+B)/B a- x)-2/B dx ]
0 0

and the intrinsic permeability is related to the hydraulic conductivity by:

k(\V) = KS KI(W) _}i
Y

where: 7y is the specific weight of water

K is the viscosity of water.

To obtain the relative hydraulic conductivity curve, equation (4.3) was evaluated at

various values of  using numerical integration. The resulting relationship is shown in

figure 4.6.

It is interesting to note that the calculated value of k in equation (4.3) at saturation is
equal to 5.08 x 10" cm? which corresponds to a saturated hydraulic conductivity of
4.98 x 10 cm/s (at 20°C), which compares well with the mean hydraulic conductivity

of 8.4 x 10 cmm/s for the Eastergrounds field suggested in 2.3.1.1.

113



Ol

"drysuone[ax A)iAnONpuod OINEIPAY pajeInjesun pajewnisy 9y 2mSry

wo up‘p

G- OlL- 0§G-

001~

006G-

114



In order to describe the relative hydraulic conductivity in a functional form, a least

squares fit was made of the equation,

Kr(\lf) = a
a+ |yl®

The 'best’ parameters were evaluated as:

14.752 ¢m®957
b = 0.957

S
It

4.2.2 Generation of hydraulic conductivity fields

There are several techniques available for the generation of multidimensional random
fields. Matrix models describe the field only at specified discrete points, one such
model is the nearest neighbour method (Whittle, 1954; Bartlett, 1975) which has been
used in a number of Monte Carlo simulations of hydrological processes. A less
expensive and more popular method is based on multidimensional spectral analysis of
random fields such as Mejia and Rodriguez-Iturbe (1974). Recently, Mantoglou and
Wilson (1982) have demonstrated that a different technique, the turning bands method,

may be more attractive for Monte Carlo simulations in hydrology.

The turning bands method (TBM), which was first introduced by Matheron (1973), is
based on representing a multidimensional field as a sum of a series of unidimensional
processes. The generation procedure for a two dimensional field is shown
diagramatically in figure 4.7. In the twé dimensional case, lines are generated along a

series of uniformly distributed direction vectors u within the unit circle of arbitrary

origin. A discrete unidimensional process having zero mean and covariance function

c(t) is generated along each line i, where 7 is the coordinate along that line. For each
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Figure 4.7 The generation of a two dimensional field using the turning bands

method.
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point in the two dimensional field an orthogonal projection is made onto the line i. The
value of the discrete process is then assigned to the corresponding location in the two

dimensional field. The procedure is repeated for L lines such as i. The value of the

generated field at point N with location vector X is then evaluated as:

L

}\,S(XN) = _L Z}\'l (XN'ui)
VL i=1

where A, (Xy.u,) is the value of the discrete process.

The mean of the generated process is zero. Mantoglou and Wilson (1981) have shown

the relationship between the line covariance function ¢(T) and the generated covariance

function for isotropic and anisotropic fields.

In order to produce correlated conductivity fields, a code based on the TBM was made
available by the Institute of Hydrology, UK. The code produces a random field in three
dimensions, two space and one time. For the purpose of this study the vertical space

dimension z was represented by the time axis. An isotropic field was generated in the

x-y plane by specifying a specimen distance ry and the autocorrelation at that distance
pxy(rs). The correlation function generated obeys power. law decay, that is p(r) is

proportional to r*, where is a specified constant. A specimen distance was also

required in the z axis (zy) together with a correlation at that distance (p,(zy)).

Examples of two realizations of conductivity fields are shown in figures 4.8 and 4.9.

The statistics of these fields, in terms of the log transformed values (Y =In K) are; Hy

_ 02 cmymin, 62 = 0.5, & = 1.0, p, (10m) = 0.7, p, (0.1m) = 0.8.
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Uncorrelated random fields were generated using a standard random number generator
(Numerical Algorithms Group routine GOSDDF). It is recognized that these fields will
not be strictly uncorrelated due to the finite size of the elements used in the numerical

simulations, however, for the remainder of this study the term uncorrelated will be

used.

4.2.3 Initial conditions

Initial values of pressure head at all nodes in the finite element mesh are required prior
to solving the transient problem. Clearly the commonly used assumption of static
conditions is not valid if the hillslope exhibits soil spatial variability. Furthermore,
under such conditions the soil will be under extremely high suctions at the top of the
slope and, as was noted by Beven (1975), only a small portion of the hillslope may
effect the generation of subsurface flow. Another possible initial condition is the
assumption that the soil has reached ‘'field capacity' over the entire slope. Again such
conditions are invalid for a highly variable soil, also the unsaturated characterisitics
used in this study would define a very dry state for the 'field capacity'. An alternative
approach, which was used for this investigation, is that of steady state conditions. In
order to produce a steady state simulation the nodal values of pressure head at the soil
surface were predefined. Equation (3.4), with time dependent terms omitted, was then
solved to obtain the pressure head distribution over the hillslope. Therefore, prior to
the transient simulation, a steady state run was made for each realization of a hydraulic
conductivity field. The predefined surface pressure head values used throughout the
remainder of this chapter follow a linear decrease from -80 to -550 cm water. An

example of a steady state solution is shown in figure 4.10 for a uniform homogeneous

soil with hydraulic conductivity equal to 0.1 cm/min.
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424 The response to a single event

The hypothetical deterministic event selected for this part of the study consisted of 5
hours of drainage followed by 8 hours constant rainfall intensity equal to 0.00667
cm/min (4 mm/hr) which preceded 10 hours of drainage. The inital 5 hour drainage
period was included to filter out the effects of the inital conditions, which can have a

dramatic effect on the resulting discharge hydrograph (see for example Beven, 1975).

Due to the immense computing requirements of three dimensional analysis it was
impossible to perform complete Monte Carlo experiments, in fact in describing his own

model, Freeze (1980) remarked,

"These calculations do not consist of a numerical solution of the three
dimensional boundary value problem representing transient, saturated -
unsaturated, subsuface flow on a hillslope. The computer time required for
such an approach in a Monte Carlo analysis would be much too large".

Rather than carrying out several hundred Monte Carlo simulations, it was decided to
only consider ten realizations of the underlying variability. The limitations of such a
restriction are recognized, however it is felt that a suitable comparison of different

variabilities could be drawn from the results.

Instead of limiting the investigation to a single mechanism of runoff generation, as in
several previous studies, a range of mean hydraulic conductivities was chosen in order
to allow two distinct mechanisms to volumetrically dominate the storm hydrograph,

namely subsurface stormflow and Hortonian overland flow.

In order to route surface flow a simple travel time approach was adopted, for which a
constant overland flow velocity was assumed. Unless otherwise stated, a value of 250

cny/min (0.042 m/s) was used for the simulations presented in this study. This value



lies within the range suggested by Emmet (1978). Travel times of channel flow were

neglected because the majority of streamflow is likely to travel the 150 metre reach

during a typical time step of several minutes.

For each realization of a given variability, output was produced in the form of two
hydrographs, subsurface flow and total (subsurface plus surface) flow and pressure
head distributions at selected times. In order to compare the results of each distribution
two numerical quantities were used to characterize the hydrographs, these were g, the
peak flow and Q, the volumetric flow. Each realization required approximately 1000
seconds of CPU time on the CDC Cyber 205 at the University of Manchester Regional
Computer Centre using an explicitly vectorized form of the code. Running the code
entirely on the scalar processor required approximately five timesmore CPU time.
Equivalent central processing times on a DEC VAX 11/750, which is often regarded as
a standard unit of computer power was approximately 18 hours, demonstrating the
restrictions of fully three dimensional analysis. The average value of the mass balance

error in equation (3.15) of all these simulations was approximately 0.002 per cent.
4.2.4.1 High permeability soils

Three mean hydraulic conductivity values were selected for analysis of predominantly
subsurface flow responses, these were 0.05, 0.1 and 0.2 cm/min. The subsurface flow

hydrograph results of nine experiments on uncorrelated distributions are presented in

table 4.1. Referring to this table, (3 is the arithmetic mean of ten realizations, SQ is the

standard deviation and CVQ is the coefficient of variation. Table 4.2 shows the

corresponding total flow hydrograph results. No overland flow occured in cases G, H

and I, the results of these cases have therefore been omitted from table 4.2.

The results in table 4.1 and 4.2 show little variation with respect to the mean peak or

volumetric flow for all cases. A comparison of the responses of the nonuniform cases
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with the corresponding results for the uniform cases in table 4.1 suggests that spatial
variability has little effect on subsurface flow generation in an uncorrelated media. The

net effect in all cases is increasing peak and volumetric flows with increasing

variability.

By referring to tables 4.1 and 4.2 it can be seen that the sensitivity of total flow to GYz

is dependent on the mean hydraulic conductivity (). In particular, the peak total flow

of the nonuniform cases D, E and F are significantly greater than the respective value
for the uniform case C. This is due to the fact that for the event selected, a hydraulic
conductivity of 0.1 cm/min is just greater than a threshold value for a uniform
homogeneous media. Below this threshold, surface saturation occurs and overland

flow is generated (as in case A).

Figure 4.11 shows the range of subsurface flow hydrographs for case E. It is clear
from this diagram that there is little difference between the results of the ten realizations
at any given time. This is further demonstrated in figure 4.12 which shows the changes
in the coefficient of variation of total flow with time. It can be seen from this diagram
that during the two drying periods, the coefficient of variation is roughly constant, this

is in agreement with the findings of El-Kadi and Brutsaert (1985) in their study of

aquifer drainage. After the onset of rainfall at t = 5 hours, CV, increases slightly due to

the variations in the response times of the ten realizations. After a steady decrease, a

sharp peak in CV is produced just before the cessation of rainfall at t = 13 hours. This

dramatic increase in CV q is caused by the onset of surface saturation and hence overland

flow for several of the realizations.

The results of five experiments on correlated media are presented in tables 4.3 and 4.4.

For all cases, the autocorrelation parameters (see section 4.2.2) are, o = 1.0 and

126




Discharge
(min)

(%)

2Y%]

50

Time (hrs)

Figure 4.11 Range of subsurface flow hydrographs for case E. Solid line indicates mean
hydrograph, dotted line indicates mean % one standard deviation.

Time (hrs)

Figure 4.12 Change in the coefficient of variation of total flow with time for case E.
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ny(lOm) =0.7. Cases J, K, M and N refer to conductivity fields where p,(0.1m) =

0.8. Case L has a greater autocorrelation in the vertical axis (p,(0.5m) = 0.8).

A comparison of the peak and volumetric flows for correlated and uncorrelated media
suggests that the mean values of ten realizations are less sensitive to the extent of

correlation than to the amount of variability. For example, referring to table 4.1, a 100

per cent change in O (cz;_ses D and F) produces a 2.5 per cent change in the peak

subsurface flow, whereas, the difference between the same result for the highly
correlated media of case J and the uncorrelated soil of equal variance (case D) is only
0.5 per cent. The influence of the degree of correlation on mean flows is also

demonstrated by comparing the results of Case K within the greater correlated Case L.

The hydrograph variance of the ten realizations is significantly increased for the

correlated cases. A comparison of tables 4.1 and 4.3 shows that the coefficients of

variation of subsurface flow (CVq and CVQ) differ by nearly an order of magnitude.

The range of subsurface flow hydrographs can be seen in figures 4.13 and 4.14 for
cases K and N respectively. The total flow hydrograph range for case K is also shown
in figure 4.15. The sensitivity of runoff variation to the extent of autocorrelation is due -
to the fact that areas at the base of the hillslope make a greater contribution to the overall
response than do upslope regions. Since in a highly correlated media one may expect to
find a large region of the base of the slopc. displaying soils of low (or high)
conductivity, the entire hillslope will behave similar to a homogeneous hillslope of low
(or high) permeability. Therefore, several realizations of soil variability will include a
wider range of responses with increasing autocorrelation of soil properties. As the

degree of correlation decreases, the effect of variability is averaged out, as shown by

the results in tables 4.1 and 4.2.
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Figure 4.13 Range of subsurface flow hydrographs for case K. Solid line indicates mean
hydrograph, dotted line indicates mean * one standard deviation.
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Ficure 4.14 Range of subsurface flow hydrographs for case N. Solid line indicates mean
hyiirograph, dotted line indicates mean T one standard deviation.
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The effect of soil variability on pressure head distribution is shown in figures 4.16 and

4.17. Figure 4.16 is a contour map of the mean pressure head () at the soil surface
for case E, averaged over the ten realizations, at the end of the rainfall period (t =13
hours). Figure 4.17 is the corresponding map for the correlated case K. Both maps
show little difference from the uniform homogeneous result (figure 4.18), the
uncorrelated case being closest in agreement. The majority of fluctuations along
contour lines in figures 4.16 and 4.17 and indeed those presented in the remainder of
this study, would be expected to diminish if the number of realizations were increased,
and the finite element mesh were made finer (allowing much smoother transitions for

the contouring routine).

The variability of head, expressed as the standard deviation (Sw) is shown in figure

4.19 for case K at time t = 13 hours. It was noticed that this variability changed

_considerably throughout the event. At the end of the 10 hour drainage period (t = 23

hours), S\v was calculated to be less than 4.0 cm at any point more than 20 metres

away from the base of the slope. The variation in y over the soil surface for the same
case at time t = 23 hours is shown in figure 4.20, which is virtually identical to the

corresponding map for the uniform field (figure 4.21).

Figure 4.22 shows the variation of pressure head, at a constant depth of 20 cm from the
soil surface, at the end of the storm, for a single realization from case E. The equivalent
diagram for a single realization from the correlated case K is shown in figure 4.23. As
expected, there is a significant difference between the two results. The equipotentials of
the uncorrelated field generally appear as random fluctuations from parallel lines,
whereas the effect of large areas of low hydraulic conductivity resisting water

movement can be seen in the corresponding diagram for the correlated field (figure

4.23).
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4.2.4.2 Low permeability soils

In order to investigate the effect of spatial variability of hydraulic conductivity on runoff
generation dominated by infiltration excess overland flow, five conductivity fields of
different structure were defined (cases O, P, Q, R and S). All cases possess a mean
conductivity of 0.005 cm/min (= 3/4 rainfall intensity). The results of the five cases ar¢
presented in tables 4.5 and 4.6. Cases P and Q are uncorrelated distributions, Cases R
and S have a correlation structure identical to the high permeability fields J, K, M and N

defined in 4.2.4.1.

It can be seen from these results that, as in the high permeability soils, increasing the
variability of the soil has a general effect of increasing the average peak and volumetric
flows. The autocorrelation of the soil also has the same effect as noted in 4.2.4.1, that
is, increasing the amount of spatial correlation produces a result equivalent to increasing

the variability of the soil. However, this effect is considerably greater for the low

permeability soils. The spread of results, quantified by the values of CV and CVq in

tables 4.5 and 4.6 are also substantially greater than those reported earlier. Taking the

results of Cases H, Iand M (Ky = 0.2 cm/min) from tables 4.1 and 4.4 for comparative

purposes, a change in GYZ from 0.25 to 0.5 produces an increase in volume of total

flow by 1.13 per cent. For the same mean conductivity, the increase in volume of total
flow produced by the change from an uncorrelated to a correlated structure, of the same
variance, is 3.24 per cent. The corresponding calculations for the low permeability
soils in table 4.6 reveal increases by 7.91 per cent and 26.26 per cent respectively.
That is, the sensitivity of total flow to spatial variability is seven times more for the low
permeability soils. The higher sensitivity is due to the nature of the dominating runoff
ce in the case of infiltration excess overland flow, the variability of soil

mechanism sin

properties over the surface of the hillslope will control the extent of surface runoff,
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although the finite size of the soil blocks, used in studies such as this, leads to an over
emphasis of the importance of surface soil variability. Also, since subsurface flow is
directly affected by the restriction of soil water recharge from the surface, then both
surface and subsurface flows are, to some extent, controlled by two dimensional

variability, thus the averaging out effect noted in the case of high permeability soils is

less apparent.

The range of total flow hydrographs produced for cases Q and S are shown in figures
4.25 and 4.26 (note the change of vertical scale in figure 4.26). The effect of variability
can be seen by comparing these hydrographs with the result from the uniform case O

(figure 4.24).

It is worth noting that in all of the previously presented hydrographs there appears to be
little if any time delay after the cessation of rainfall to the peak of subsurface flow, even
for soils of very low saturated hydraulic conductivities. For the soil properties used
herein, a significant time delay was not evident for hydraulic conductivities greater than
0.001 crm/min. The effect of soil-water properties, such as porosity, on subsurface

flow peak time delays is discussed in Beven (1975).

The time dependence of the coefficient of variation of subsurface flow for case S is

shown in figure 4.27. As with the high permeability soils, CVq gradually decreases

during the drainage periods, in fact d(CV q)/dt appears virtually constant during the
drying stages and equal for the two periods. After an average time delay of 2.5 hours
from the beginning of the storm to the onset of subsurface flow, CV g rises to maximum

at about t = 9 hours, which characterizes the average time at which the water table has
risen to the soil surface at the base of the slope. Any return flow produced by this
surface saturation is routed as overland flow, the subsurface flow hydrograph therefore

reaches a limiting value and thus CV,, decreases with time.
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Figure 4.28 Change in the coefficient of variation of total flow with time for case S.
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ioure 4.28 sh iati .
Figure shows the variation of CV_ for total flow with time. The onset of overland

flow can be seen clearly to occur at about t = 6 hours. The sharp peak at approximately

t = 13.5 hours indicates the variation in the recession of the hydrographs at the end of

the storm.

The variation of S,, over the soils surface for case S at the end of the rainfall period is

shown in figure 4.29. The values are approximately double those presented in figure

4.19 for the high permeability case K. The difference between the coefficient of

variation of pressure head (CV,) for the two cases is greater still since the soil surface

is much drier in the high permeability soils.

The variation of pressure head at a depth of 20 cm from the soils surface at t = 13 hours
for a single realization of case Q (uncorrelated) is presented in figure 4.31, figure 4.30
is the corresponding diagram for the uniform case O. The effect of spatial variability is
more striking that that noted for the high permeability soils (cf. figure 4.22).

The effect of spatial variability on pressure head contours at various depths for an

individual realization from the correlated case S can be seen in figures 4.32 to 4.34.

The significant variations in  at the soils surface (figure 4.34) showing distinct local
peaks of high suction, becomes less apparent at greater depths. At a depth of 64 cm
(figure 4.32) the equipotentials show gradual trends, caused by the correlated structure
of the soil. A comparison of figure 4.34 and the corresponding diagram for the

uniform field (figure 4.35) demonstrates clearly two completely different responses of

the same event.
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43 SUMMARY AND CONCLUSIONS

The majority of earlier investigations of the effect of soil spatial variability have limited
their analyses to one or two dimensional flow domains. This investigation is the first
to be directed towards the problem of three dimensional variably saturated flow in a
spatially variable media and has concentrated on assessing the effect of such variability
on hillslope runoff generation, which has direct implications towards the current form

of physically based models of catchment hydrology.

Suitably realistic soil properties were adopted for this study, including a range of
statistical parameters of the log normal hydraulic conductivity distribution, suggested in
the literature. Random fields of conductivity were generated within a hypothetical
hillslope using the turning bands method (4.2.2) and the response of the hillslope to a
single event was evaluated for several fields, using the three dimensional finite element

model described in Chapter 3.

The increase in the amount of computing resources required for fully three dimensional
analysis posed severe restrictions on the experiments carried out. The main restriction
was that of a rather crude Monte Carlo analysis based on only ten realizations of

possible hydraulic conductivity fields, the limitations of which have been discussed.

Two distinct mechanisms of hillslope runoff generation have been addressed. In the
first case, categorized by high permeability soils, subsurface flow volumetrically
dominates the hydrograph. Sharp peaks of the hydrograph may be caused by the onset
of overland flow, due to rising of the water table to the soil surface. In the second

category, low permeability soils lead to infiltration excess overland flow dominating

the hydrograph.
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For soils of high permeability, the effect of spatial variability was less significant than
originally anticipated. The overall response of the entire hillslope appears to integrate
the effects of three dimensional variability, in particular for uncorrelated media. Ina
highly correlated soil, the variability of the hydrograph peak was recorded to be as high
as 12 per cent of the mean peak flow, although this figure is likely to be reduced
somewhat with an increased number of realizations in the Monte Carlo analysis. The
variability of flows was shown to be highly dependent of time during the wetting
period. During the periods of drainage the coefficient of variation of fluxes followed a
steady decline, in agreement with the results of EI-Kadi and Brutsaert (1985). The

variability of head over the flow domain has also been shown to be dependent of time.

In the case of low permeability soils, the effect of spatial variability is more striking.
The coefficient of variation of the hydrograph peak was approximately 22 per cent for
the highly correlated soils, that is nearly double the figure recorded for the high
permeability case. The variance of head was also shown to be considerably greater for
soils of low hydraulic conductivity. The effect of correlation of the soil properties was
also shown to be of greater significance, both on the hydrograph and the head

distribution, under conditions of widespread infiltration excess runoff.

The investigation has been limited to a single rainfall event, therefore, generalized
conclusions cannot be drawn from these results. Furthermore, the effect of spatial
variability in soils of different soil-water characteristics needs to be assessed.
Nevertheless, it is felt that the results of this study have shown that the effect of soil
spatial variability on hillslope runoff generation may be less significant than suggested
in the literature. Under conditions of high autocorrelation of soil properties the effects
of spatial variability may be striking. However, a number of previous field
investigations have reported insignificant variance structures. For such cases the effects

of uncertainty in measured parameter values will probably outweigh the consequences

of spatial variability
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Chapter 5

The hydrological effects of

zones of preferential flow
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The occurrence of naturally formed pipes within the soil matix has been recognized by
several authors. The consequences of water movement in such areas of preferred

flow, however, has in general remained neglected within models of catchment

hydrology.

5.1 PREVIOUS INVESTIGATIONS

The phenomenon of natural soil pipes is evident in various soil types and has been
shown to occur in both humid climates, for example Jones (1971) and semi-arid or
arid climates, for example Parker (1963). Several theories describing the formation of
soil pipes have been postulated, these include formation due to the erosive action of
high velocity subsurface flow. This is likely to occur in highly permeable soils, such
as peats, under steep hydraulic gradients. The susceptibility to cracking of peat soils
during dry periods has also been suggested as a possible mechanism of pipe
formation. Devegetation and burrowing of animals are also recognized as contributory

factors.

The size of pipes range from several millimetres to over one metre in diameter. Pipes
in the peaty soil of the Plylimon Catchments, Wales form extensive networks of a
globally discontinous nature (Atkinson, 1978). Recorded flow velocities in these
pipes have shown to be three orders of magnitude greater than flow through the soil
matrix. Similar observations are also noted in Mosely (1979). The influence of soil
pipes is clearly dependent on the location of the pipe. Connections at both ends of the
pipe to the soil surface may lead to a flashy response to storm conditions, wheras an
isolated macropore may have little effect on the storm hydrograph. Surface

connections of the pipe may not necessarily be the pipe itself, Jones (1975), among

others, has identified cracks in the soil connecting pipes to the soil surface.
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Very few studies have attempted to investigate the influence of soil pipes in a
theoretical framework. Gilman and Newson (1980) optimized a simple, four
parameter, linear reservoir pipeflow model at various locations in the Nant Gerig
catchment, Wales, for a number of recorded pipe discharge hydrographs. The
variation of their optimized parameters, both spatially and temporally, suggests that

current hydraulic theory may be inadequate to describe such a phenomenon, even if the

exact location of individual pipes were known.

Barcelo and Nieber (1981) investigated the signficance of pipe flow on a hypothetical
hillslope segment. The matrix flow was analyzed using a two dimensional (vertical
slice) model of variably saturated flow. Using the steady state tile drain formula after
Kirkham (1949), Barcelo and Nieber compared the response of a single soil pipe
located at two positions under two different rainfall events. The hillslope of their
study measured 5 metres long, 1 metre deep and 1 metre wide. The size of the
constant diameter pipe was 2 metres long with a diameter of 0.051 metres. Barcelo
and Nieber admitted that, using the said tile drain formula, the only mechansim
considered for the generation of pipe flow was that of seepage from a surrounding
saturated matrix. Vertical recharge to the pipe was therefore neglected. Their results
showed that increasing the rainfall application rate or decreasing the elevation of the
pipe increased the relative significance of the soil pipe. Increased pipe response with
decreased elevation is a direct consequence of the form of the tile drain formula used.

The maximum effect of pipe flow, under the conditions examined, was to increase the

peak of the hydrograph by one hundred per cent.

Barcelo and Nieber (1982) extended their earlier work by investigating the contribution
of a pipe network to the response of a hillslope segment. In order to model the
movement of water through the soil matrix, a two dimensional (in plan) approximation
was adopted neglecting any time delay associated with infiltration. The location of the

pipe network in Barcelo and Nieber's hypothetical hillslope is shown in figure 5.1.
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The network is situated at mid depth of a 1 metre deep soil bed. Flow through the soil

pipes was described using the same formula as in their earlier work.

A comparison of the runoff hydrographs resulting from the piped and unpiped
hillslope under the same conditions is shown in figure 5.2. Referring to this diagram,
it can be seen that the network makes a significant contribution to the storm
hydrograph. The resulting soil moisture distributions in the hillslope, presented in

Barcelo and Nieber (1982), also show considerable differences between the piped and

unpiped hillslopes.

5.2 INVESTIGATION PROCEDURE

There are several possible schemes for examining preferential flow on hillslope runoff
generation. One possible approach is to synthetically generate a number of individual
pipes (or networks) within a hillslope segment. For example, each pipe may be
expressed in terms of a length, average diameter, orientation and position. A suitable
method is then required to couple the pipe flow to the conditions of the soil matrix. By
using the sink (or source) terms in the governing equations of matrix flow, the
influence of each pipe may be expressed as an average loss (or gain) of flux to the
node points of the matrix flow system. Several problems are apparent with this
approach. Firstly, due to the lack of suitable theory, assumptions of serious
limitations are needed in order to route the flow of water through the soil pipes, as was
noted in Barcelo and Nieber (1981). Secondly, it may be necessary to perform a large
number of realizations of the given stochastic process in order to evaluate the average
effect of the underlying pipe network distribution. Finally, problems of numerical
instability are almost inevitable due to the coupling of the two flow processes. Barcelo

and Nieber noted conspicuous oscillations of the pipe flow hydrograph in their

analysis of a single pipe (see figure 6.11 of Barcelo and Nieber, 1981). These

problems are largely resolved when examining fissured flow in saturated media, the
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problem is clearly more complex when dealing with unsaturated flow.

A second possible approach is to discretize the flow domain in such a way that groups
of relatively small finite elements represent natural pipes in the soil. By prescribing
very high permeabilities to these 'pipe elements', the effect of areas of preferred flow
may be ascertained without the need of a coupled solution. However, instabilities of
the finite element solution may arise due to significant difference of soil types at 'pipe’
boundaries. Furthermore, a finite element mesh consisting of a large number of nodes

would be required for an analysis of this type, data preparation time would also be

considerable.

An alternative method, used for this study, is to consider distinct global trends of
permeability over the flow domain. By specifying some functional form of the
hydraulic conductivity distribution, an area of high permeability may be introduced
into an ‘otherwise homogeneous soil. In fact such a representation is similar to the
'seepage lines', or 'percolines’, observed by Bunting (1961) in which downslope

movement of the water is concentrated.

Adopting the same hypothetical hillslope segment as in section 4.2, the form of the
trend in hydraulic conductivity used was that of increasing permeability towards the
centre of the slope. Variation with depth was also included - increasing towards mid
depth followed by a decline to the base of the slope. Added to a general increase in
permeability down slope, a three dimensional functional representation of the trend in

hydraulic conductivity was required. Using a linear variation downslope and an

exponential decline in the other two space dimensions, the functional form adopted

was,

K, (x,,2) = Ko * (K pax (V) - Ko) €XP (-oX - BZ) (5.1)




where K, 1s the saturated conductivity of the soil surrounding the area of preferred

flow o and f are constants defining the decay of permeability. X and Z are shifted

coordinate axes givenby X =x-(x_ .. /2)andZ = z- (z_, /2) (refer to figure 4.2

for the location of the x, y, z axes). Since K_, (y), the maximum hydraulic

conductivity at the centre of the slope, is taken as a linear function, it can be

represented by,

Kmax(Y) = Kz - (K2 - Kl) -Z—

¥ max

where K, is the saturated hydraulic conductivity aty = 0, X =0,Z =0 and K, is the

corresponding value aty =y ., X = 0,Z=0.

Therefore, by selecting values of a, B, K, K; and K,, a three dimensional variation

in hydraulic conductivity is achieved. An example of a conductivity surface defined in

equation (5.1) is shown in figure 5.3 for variation in the x-z plane at the base of the

slope, with parameters o = 0.0307 m?, B = 27.6310 m2, K, = 0.05 cm/min, Ko =

5.0 crm/min.

In order to compare the effects of this area of preferred flow with those noted in a

spatially variable field in section 4.2 a random component of specified variance was
added to the log transformed value of K(x,y,2)in equation (5.1). Two conductivity
fields were studied, cases T and U, the parameters Of which are presented in table 5.1.

If the areas of preferred flow were omited from these cases, then both fields would be

\dentical to that of case B in section 4.2.4.1, that is, b, = 0.05 cm/min, Gy? = 0.25.




&R
KL

G
IR
NS

99909999
YINI99904.90,
XX

%
KRR
‘%%%“&"

B35S
s
K

X
%
WY55%
5

¢
907
V925
KKK
OMO}M

< <O

5
5
N

e

‘%‘00
LD
%%ﬂﬁﬂ&

%

AR

9999,

%%

in cm/min

i
%
N Z55%
W 5%
SR

PSS SSS

9
$

O

Y%
)
K

<@ggg§§g§§§%?
K

%

06

X,inm

9
5

Z,in m

the base of the slope. Refer to text for the parameters of the field.

Figure 5.3 Variation in saturated hydraulic conductivity over the (x-z) plane at
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As in the previous analysis, ten realizations were generated for each field, examples of
the variation over the slope at mid soil depth can be seen in figures 5.4 and 5.5 for
cases T and U respectively. Referring to these diagrams, it can be seen that the
variation across the slope is much more gradual in case U, in comparison with that of

T, although the increase in permeability is greater in case T.

The initial conditions and storm event adopted were those used in the earlier study (see

section 4.2). Hydrographs and pressure head distributions, were obtained from the

finite element solution for analysis of results.

5.3 DISCUSSION OF RESULTS

The results of ten realizations of each conductivity distribution are presented in tables

59 and 5.3 for subsurface flow and total flow hydrographs respectively. For

comparison, the results from section 4.2.4.1 for cases A (fy = 0.05 cm/min, ch =

0.0)and B (Ky = 0.05 cm/min, GYZ = 0.25) are also included.

The values in table 5.2 show that the zone of preferred flow in case T causes an
increase in peak subsurface flow by 28 per cent, in relation to case B. The
corresponding increase in peak total flow, however, is an order of magnitude smaller
(table 5.3). This is due to the reduced area of surface saturation in the preferred flow

case, although it is interesting to note that both conductivity fields retain sumlar surface

conductivity values. The overall effect of the area of high conductivity is to increase

the volume of total (subsurface plus surface) runoff by approximately 30 per cent.

The zone of preferential flow in case U, affects the resulting hydrographs to a lesser

extent. In fact, in comparison with case B, the peak total flow rate is reduced by

nearly 5 per cent as a result of the more widespread area of high permeability.
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It is also evident from the figures presented in tables 5.2 and 5.3 that there is little

difference between the results of each realization, the variability of hydraulic
conductivity within the highly permeable area apparently has little effect on the
variation of results. The mean hydrographs for cases T and U are shown in figures
5.6 and 5.7 respectively. Figures 5.8 and 5.9 show the corresponding hydrographs
for cases A and B respectively. A comparison of these diagrams reveals little
difference in the overall shape of the hydrogaphs. A slightly steeper rising limb of the
subsurface hydrograph is noticeable in the cases of preferred flow. The reduced

volume of surface runoff is also clearly visible.

The effect of the area of high permeability on the resulting pressure head distribution
can be seen in figures 5.10 to 5.12 at various depths for a single realization of case T
at the end of the rainfall period. Near the soil surface (figure 5.10) the moisture tends
to move towards the centre of the slope as the surrounding low permeability soil
impedes vertical flow. Towards the bed of the soil layer (figure 5 .12) the situation
changes. Water now moves away from the centre of the slope as a result of the
impeding layer at the base of the high conductance zone. The position of the water
table near the surface of the soil (contour 19 in figure 5.10) distinguishes the
contributing areas of surface runoff at this stage of the event. For comparison of the

uniform distribution, figure 5.13 shows the pressure head distribution at a constant

depth of 16 centimetres at the end of the storm.

The effect of impeded flow is more noticeable in the map of equipotentials over a

vertical slice located 80 metres from the base of the slope (figure 5.14). Together with

the corresponding map of pressure head distribution (figure 5.15), the movement of

water discussed can be seen clearly. It must be noted that these vertical slice contour

maps are subject to some error due to the few data points used in the contour

generating algorithm. The area of high conductivity apparently affects the movement

of moisture to a lesser extent towards the base of the slope (figure 5.16).
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Figure 5.6 Mean hydrograph response for case T. Solid line indicates subsurface flow,
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Contour maps of the pressure head distribution at two depths at the end of the period

of rainfall are shown in figures 5.17 and 5.18 for a single realization of case U. The
result of the more widespread area of preferred flow can be seen clearly in these
diagrams. It is interesting to note that a comparison of figures 5.17 and 5.10, which
are based on identical realizations of the hydraulic conductivity distribution in the areas
of low permeability, reveals that the zone of preferred flow has a limited influence to
the mid-third of the domain, since outside this area the equipotentials are virtually

identical.

A significant result, evident from the comparison of figures 5.19 and 5.20 which
show the pressure head distribution at equal depths at the end of the event (t =23
hours) for cases T and B respectively, is that the area of high permeability has little
influence on the moisture profiles at distances over 30 meters away from the base of
the slope. The discharge in case T at this time, however, is 34 per cent greater than
that of case B, which demonstrates the significance of the high permeabilities near the

base of the slope in case T.

54 SUMMARY AND CONCLUSIONS

Very few studies have attempted to assess the importance of zones of preferential flow
on hillslope runoff generation using numerical simulation. It is recognized that the

conditions analyzed herein are somewhat artificial, however, it is felt that the results

provide further evidence that areas of preferred flow, in the form of natural soil pipes

or associated with 'percolines’ (Bunting, 1961), may exert a significant influence on

the runoff rate and volume from a hillslope. The resulting moisture profiles within the

hillslope were also found to be considerably different from those attributed to

homogeneous soil permeability formations.
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Clearly a more detailed analysis is required under various event conditions. The effect
of zones of preferential flow within different soil types and hillslope geometry also
needs addressing. Perhaps the results of more field studies may permit an
investigation based on observed data. However, if one is to analyze flow through
natural soil pipes using current hydraulic theory then vast quantities of information are

required from the field in order to assess parameters such as pipe friction factors.

As in the case of soil spatial variability, an important question arises with respect to .the
validity of current catchment modelling techniques. Is it justifiable to represent areas
of the flow domain using equivalent model parameter values? In the context of this
chapter, can a single hillslope, showing distinct areas of high permeability, be
represented by a hillslope of uniform homogeneous soil properties? The following

chapter addresses such questions.




Chapter 6 |

Effective parameters




The concept of effective (or equivalent) parameters is of fundamental importance in

catchment modelling. Practical applications of current physically based models rely on
the assumption that areas of the flow domain can be represented by some equivalent
model parameter. However there is little (if any) theoretical evidence supporting such
an approach. Of particular interest is the validity of effective saturated hydraulic

conductivities as many previous modelling studies have demonstrated the high

sensitivity of this model parameter.

6.1 PREVIOUS STUDIES OF EQUIVALENT HYDRAULIC
CONDUCTIVITY

The simplest and one of the earliest examples of effective hydraulic conductivity
determination is presented in Cardwell and Parsons (1945). They considered three
basic situations of soil heterogeneity by representing a square block of soil as a
composition of four srriailler square blocks, two of which have a hydraulic conductivity
of K1 and the other two a hydraulic conductivity of K2. Figure 6.1 shows the
possible anaﬁgements of such a system. Under saturated conditions, if a pressure
drop from left to right causes fluid movement, then it is easily shown that the
equivalent hydraulic conductivity for the first case (figure 6.1a) is equal to the
arithmetic mean of K1 and K2. Similarly, the response of the composite block in
figure 6.1b can be represented by the harmonic mean of K1 and K2. The calculation
of the effective hydraulic conductivity for the oblique flow case in figure 6.1c is not as
straightforward. Cardwell and Parsons, using an electrical analogy experiment,

showed that the equivalent value for this case lies between the harmonic and arithmetic

means. Their experimental results are shown in figure 6.2. Cardwell and Parsons

failed to notice that their electrical analogy results are close to the geometric mean of

K1 and K2 (see figure 6.2). In fact for this condition of heterogeneity, the geometric

mean appears to be a suitable equivalent parameter.
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Figure 6.1 Cases (a), (b) and (¢) of a soil block composed of
four squares having two different permeabilities.
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By considering the general case of a block of porous medium containing any number

of different conductivities and any type of directional variation, Cardwell and Parsons
demonstrated that the equivalent hydraulic conductivity still lies between the harmonic
and arithmetic means of the individual block values. Based on a similar arrangement

of permeability cells, Marshall (1962) has developed an expression for the equivalent

permeability of heterogeneous media.

The results of the Monte Carlo simulations of Warren and Price (1961), on steady state

groundwater flow, have suggested that the geometric mean (KG) of the individual

block hydraulic conductivities is capable of representing the nonuniform system.
Freeze (1975) disputed these claims in his analysis of transient, one dimensional
saturated flow and concluded that, under such conditions, an equivalent uniform

media is undefinable.

Analyzing steady flow using spectral perturbation methods, Gutjhar et al. (1978)
developed analytical expressions for effective hydraulic conductivities under log

normal distributions. They have shown that, for problems of low amplitude, the

effective conductivity of a two dimensional system is equal to K, the value for the

three dimensional case being slightly larger.

Dagan (1979) has also suggested that the geometric mean of the conductivity
distribution is the best estimate of the effective hydraulic conductivity in two

dimensional steady uniform flow. Dagan’s equivalent parameter for three dimensional

flow was close to K for media of low variability, although an effective conductivity

over four times larger than K was found 0 be suitable for large amplitude cases.

The results of the Monte Carlo analysis of two dimensional steady saturated flow by

Smith and Freeze (1979b) showed that a geometric mean conductivity may only be




suitable under strict conditions such as uniform flow. For more realistic situations K

was found to underestimate the flow predicted by the stochastic solution

In their study of vertical infiltration Dagan and Bresler (1983) and Bresler and Dagan
(1983a) demonstrated that effective parameters may only be meaningful under certain
restrictive conditions such as steady flow. Difficulties in selecting an equivalent
uniform porous medium under conditions of unsteady vertical infiltration are also

reported in the earlier work of Russo and Bresler (1981a)

Yeh et al. (1985a) presented analytical expressions for the effective conductivity of

three dimensional steady unsaturated flow. For soils of low variability, KG appeared

to be a suitable equivalent parameter. Larger values, however, were found to be
appropriate for fields of greater nonhomogeneity. The findings of Yeh et al. thus
compl iment the earlier conclusions of Dagan (1979) with respect to saturated

groundwater movement.

In 2 Monte Carlo analysis of the drainage of an unconfined aquifer, using a two
dimensional saturated flow approximation, El-Kadi and Brutsaert (1985) noted that the
effective hydraulic conductivity was a function of time. For small times, using the

geometric mean as an equivalent parameter, the outflow of the aquifer was consistently
underestimated, although IzG was found to be suitable for large times. Variability of

effective parameters for unsteady saturated flow had been suggested earlier by Dagan
(1982b) using analytical expressions based on perturbation analysis. Dagan had

concluded that, for the case of constant head initial conditions, the initial effective

conductivity is equal to the arithmetic mean of the log normal distribution. After some

time. termed the relaxation time, the effective conductivity is reduced to a value

corresponding to that at steady state. Example calculations by Dagan (1982b) showed

that typical values of the relaxation time for three dimensional flows are likely to be in

the order of several minutes.




A summary of the findings of the several studies discussed is presented in table 6.1.
The inequality term (>) shown in this table refers to cases of high variability. The

geometric mean of the log normal distribution appears to be a suitable estimate of an

effective parameter for most systems examined. This is not surprising as KG is the

arithmetic mean of the log transformed conductivities. Difficulties in determining an
equivalent uniform medium for one dimensional unsteady flows are apparent.
However, for multidimensional unsteady flows, which are clearly of more practical

interest, effective parameters appear plausible.

Effective parameters for problems of multidimensional variably saturated flow are
clearly lacking in the literature. The applicability of effective parameters to soils
showing distinct zones of preférential flow, as discussed in Chapter 5, has also not

received attention.

6.2 APPLICABILITY OF EFFECTIVE PARAMETERS FOR
HILLSLOPE RUNOFF GENERATION

In order to assess the validity of effective parameters in physically based mpdels of
hillslope hydrology, the following two part procedure was adopted. (i) Taking a
single realization of soil variability from the cases described in Chapter 4 and 5,
attempt to select a suitable equivalent uniform porous medium for a given event. (ii)

Changing the initial conditions and event, determine whether the selected effective

hydraulic conductivity remains valid.

It is important to note the idea used within this study of determining effective

parameters for single realizations of spatial variability. Previous studies, such as those

discussed earlier in section 6.1 have addressed the problem of effective parameters to

describe the average response of a given Systerm, that is, the expected result. In
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Table 6.1 ~ Summary of findings of several previous studies of effective parameters
S Effective hydraulic
ource Flow system conductivity (K. )

Cardwell and Parsons (1945) 2D steady saturated K = K G
Warren and Price (1961) 3D steady saturated K g = K G

(low variability)
Gutjhar et al (1978) 2D steady saturated K =Kg

3D steady saturated K2 KG
Dagan (1979) 2D steady saturated Ko = KG

3D steady saturated Kefr2 KG
Smith and Freeze (1979b) 2D uniform steady Kegr = KG

saturated '
Yeh et al (1985a) 3D steady unsaturated K. =Kg
Freeze (1975) 1D unsteady saturated not definable
Russo and Bresler (1981a) 1D unsteady unsaturated not definable
Bresler and Dagan (1983a) 1D unsteady unsaturated not definable
El-Kadi and Brutsaert (1985) 2D unsteady saturated Keir=Kg

(at large times)
Dagan(1982b) 3D unsteady saturated K> Kg

(at large times)
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practice, it is this single realization which we wish to model since it respresents a

single real hillslope or aquifer (Beven, 1981). With reference to the values of mean
subsurface flow responses in tables 4.1, 4.3 and 4.5, it can be seen that the effective

parameter for a collection of multiple samples is slightly greater than the geometric

mean of the hydraulic conductivities (given by the population mean },LY), thus agreeing

with previous analyses of three dimensional systems. This result is not strictly true,
however, for the total flow hydrograph, as can be seen clearly by the results presented
in table 4.6 for the low permeability cases. For these cases, increasing the extent of
variability increases the amount of surface runoff thus lowering the effective

conductivity. The importance of this result will be discussed later in this chapter.

The discussion of results will be separated into three sections, corresponding to the
three conditions presented in the preceeding two chapters. These conditions are spatial
variability in high permeability soils (section 4.2.4.1), spatial variability in low
permeability soils (section 4.2.4.2) and soils showing distinct areas of preferred flow
(section 5.3). The event used for the first part of the investigation procedure (event 1)
is identical to that used earlier (see sections 4.2.3 and 4.2.4). For the second part of
the experiment the initial condtions are described by the steady state solution obtained
by prescribing the pressure head at the soil surface node points as a linear decrease
from -90 cm at the base of the slope to -340 cm water at the top of the slope. The
deterministic rainfall event consists of 5 hours of rainfall at an intensity of 3 mm per
hour, followed by 3 hours of 8 mm per hour rainfall which precedes 12 hours of
drainage. The 'total rainfall of this second event is thus 39 mm which is slightly greater
than that of event 1 (32 mm). The main difference between the two events is the much

wetter antecedent conditions and the short duration higher intensity rainfall, which

together lead to the likelihood of the onset of surface runoff in all soils examined.

Although the equivalent porous medium simulations do not require three dimensional

analysis, since the movement of water only occurs in a two dimensional plane, the
b
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computing costs prohibited the use of an efficient search algorithm to determine the
'best' effective parameter. Instead, the volume of the runoff hydrograph was taken as
the output variable to be matched and after selecting an approximate effective

conductivity, using the results of approximately one hundred two dimensional

simulations, a limited search of the parameter space was made.

6.2.1 Effective parameters for high permeability soils

A total of sixteen realizations from cases B to N in section 4.2.4.1 were selected in
order to determine suitable effective parameters. Since in all these cases overland flow
was seen to occur during the latter stage of the rainfall period, it was decided to attempt
to match the subsurface flow volume and then determine the suitability of the effective
conductivity in reproducing the peak total (subsurface plus surface) flow. The ‘best’
parameters are shown in table 6,2 tagether with the population statistics of the various

cases. In this table, E1 refers to example 1 from case E, E2 to example 2 and so on.

The error of each effective parameter simulation was evaluated by four quantities:
subsurface flow peak and volumetric errors and total flow peak and volumetric errors.

Each error was expressed as a percentage using,

Percentage error = 100% X f-f
f

where f is the peak or volumetric flow produced by the nonuniform case and f is the

corresponding value for the uniform simulation. Table 6.3 shows the matching errors

of the event 1 simulations using the effective parameters in table 6.2. It can be seen

from the values of table 6.3 that, for most cases, matching the volume of subsurface

flow produces a reasonable effective conductivity for the total flow hydrograph. The

effective parameters for the uncorrelated realizations E1, E3 and F2 show the greatest

1 0Q




Table 6.2  Effective hydraulic conductivities for selected realizations from cases

(B-N)
Case
uY ' 0'Yz Keff

(cm/min) (cm/min)

B1 0.05 0.25 0.05197

El 0.10 0.50 0.10304

E2 0.10 0.50 0.11118

E3 0.10 0.50 0.09891

F1 0.10 1.00 0.11929

F2 0.10 1.00 0.10055
H1 0.20 0.25 0.21323
11 0.20 0.50 0.22159
2 0.20 0.50 0.19948
1 0.10 0.25 0.09358
2 0.10 0.25 0.11882
K1 0.10 0.50 0.09412
K2 0.10 0.50 0.13051

M1 0.20 0.25 0.31794

N1 0.20 0.50 0.39065

N2 0.20 0.50 0.18914
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Table 6.3 ~ Matching errors using effective parameters for cases (B-N) for event (1)
Subsurface flow Total flow
Case Peak error | Volume error Peak error Volume error
(%) (%) (%) (%)
B1 0.887 0.042 1.421 0.405
El 4.495 0.007 14.264 0.185
E2 -0.360 0.022 0.575 0.032
E3 3.663 0.007 12.908 0.362
F1 0.314 -0.054 1.285 -0.039
F2 6.537 0.009 21.094 0.498
H1 -0.325 -0.011 -0.325 -0.012
I1 0.886 0.004 0.886 0.004
12 1.649 0.006 1.649 0.006
J1 0.281 -0.020 -1.700 1.454
12 0.815 -0.007 1.127 -0.004
K1 1.219 -0.024 3.258 2.423
K2 1.874 0.011 1.874 0.011
M1 0.374 -0.034 0.374 -0.034
N1 0.329 0.035 0.329 0.035
N2 2.040 -0.022 6.202 0.171
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errors in reproducing the peak total flow. The 21.094 per cent error in peak flow for

case F2 corresponds to a difference of 11.72 I/min (= 1.172% rainfall intensity)
between nonuniform and uniform simulations. The unsuccessful matching of these
uncorrelated cases is due to the effective conductivities being close to the threshold
conductivity discussed in 4.2.4.1. For example, an effective conductivity of 0.1006
cm/min does not produce overland flow for this event, whereas the nonuniformity of
case F2, taken from a sample with a mean of 0.1 cm/min, yields a peak surface runoff
of 8.65 Umin. The influence of this threshold hydraulic conductivity is further
demonstrated by the relatively successful effective parameters for the uncorrelated

cases B1, H1, I1 and I2.

It is also clear from the results in table 6.3 that increasing the variability of the field

reduces the applicablilty of the selected effective parameters, albeit to a minor extent.

The total flow hydrographs for cases El, E3, K1 and N2 with the corresponding
responses of uniform cases are shown in figures 6.3 to 6.6 respectively. It can be
seen from these diagrams that the equivalent parameters are suitable throughout most

of the event, any discrepancy occuring at the hydrograph peak.

Adopting the effective conductivities for event 1, the matching errors for event 2 are
shown in table 6.4. The relatively low percentage €rrors displayed in this table
suggest that the equivalent medium properties selected for event 1 remain suitable
under the entirely different conditions of event 9 The maximum peak total flow error
in table 6.4 is -3.409 per cent, for case N2, which is equivalent to a difference in
flows of 11.72 I/min ( = 5.86% maximum rainfall intensity). A comparison of the

total flow hydrographs for case N2 and the selected effective parameter is shown in

figure 6.7. As before, the effective value appears suitable throughout much of the

event, in particular during the drying stages.
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Table 6.4 ~ Matching errors using effective parameters for cases (B-N) for event (2)
Subsurface flow Total flow
Case Peak error | Volume error Peak error Volume error
(%) (%) (%) (%)
B1 -0.867 -0.255 0.367 -0.439
El 0.419 0.315 0.009 -0.576
E2 1.514 0.007 1.730 -0.582
E3 -0.264 0.554 1.382 -0.004
F1 2.043 -0.229 -0.362 -0.764
F2 0.223 0.903 2.589 0.726
H1 1.218 -0.294 -1.419 -0.907
11 1.796 -0.416 3.170 -1.025
12 0.397 0.500 -0.832 0.815
J1 0.883 1.395 0.339 0.878
J2 1.021 0.350 0.657 -0.072
K1 2.749 2.334 -0.165 1.305
K2 1.744 0.609 0.250 -0.736
M1 0.073 -1.213 0.782 -1.699
N1 -2.767 -1.868 -2.670 -2.741
N2 2.991 1535 -3.409 2.246
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The harmonic (Ky), geometric (K¢) and arithmetic (K ) means of the hydraulic

conductivity values for each of the sixteen stochastic fields are shown in table 6.5

For most cases, the effective parameter (K ) is greater than the geometric mean of the

distribution. This agrees with the conclusion of previous analyses on simpler flow
systems. In four cases (J2, K2, M1 and N1) the effective conductivity is greater than
the arithmetic mean. These four cases are examples of highly corfelated media and
demonstrate the effect of large areas of high conductivity near the base of the slope on

the resulting equivalent permeability.

Increasing the variability or autocorrelation of the stochastic field appears to amplify

the difference between —KG and K ¢, although specific trends cannot be evaluated due

to the limited number of realizations examined. The most notable result is the fact that
under the two events examined, effective parameters were found to be generally

suitable under various fields of spatial variability.

6.2.2 [Effective parameters for low permeability soils

Five realizations from cases P to S were selected for analysis of effective parameters

under conditions of infiltration excess flow. Adopting the same procedure as the

previous investigation on high permeability soils, attempts were first made to

determine effective values capable of reproducing the volume of subsurface flow.

However, since in the examples presented in this section overland flow dominates the

hydrograph, the procedure was repeated using the volume of the total flow hydrograph

as the matching factor. Conclusions regarding the suitability of effective parameters

for both flow types could then be drawn from the results.

The effective hydraulic conductivities for the five cases are shown in table 6.6 together

n statistics of the conductivity fields. Within this section, P1 refers

with the populatio
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Table 6.5

Sample properties for individual realizations from cases (B-N)

Case Kete Ky Kg K,

(crm/min) (cm/min) (cm/min) (cm/min)
B1 0.05197 0.04416 0.05013 0.05690
El 0.10304 0.07824 0.10029 0.12855
E2 0.11118 0.07851 0.10041 0.12841
E3 0.09891 0.07835 0.10004 0.12773
F1 0.11929 0.06149 0.10057 0.16450
F2 0.10055 0.06137 0.10005 0.16311
Hl1 0.21323 0.17736 0.20057 0.22683
11 0.22159 0.15702 0.20081 0.25681
12 0.19948 0.15670 0.20007 0.25545
J1 0.09358 0.08533 0.09513 0.10646
32 0.11882 0.08184 0.09161 0.10256
K1 0.09412 0.07469 0.09319 0.11626
K2 0.13051 0.07050 0.08835 0.11072
M1 0.31794 0.19434 0.21826 0.24512
N1 0.39065 0.17942 0.22630 0.28543
N2 0.18914 0.14938 0.18637 0.23253
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Table 6.6  Effective hydraulic conductivities for selected realizations from cases

Case

(cm/min)

Keff
(cm/min)

P1
R1
S1
S2
PP1

RR1
RR2

SS1
SS2

0.005

0.005
0.005

0.005
0.005

0.005

0.005
0.005

0.005
0.005

0.50

0.25
0.25

0.50
0.50

0.50

0.25
0.25

0.50
0.50

0.00546

0.00760
0.00411

0.00908
0.00380

0.00465

0.00430
0.00342

0.00445
0.00250




to example 1 of case P, using the subsurface flow hydrograph volume as the output

varable of interest as before and PP1 refers to the same case analyzed using the roral

flow hydrograph volume. It can be seen from the values of K. in table 6.6 that there

, . or _
is a considerable difference between the two effective parameters of a given field.

The matching errors for the ten effective conductivities for event 1 are displayed in
table 6.7. A further five cases PP1' to SS2' were also examined. These refer to
identical soil properties of cases PP1 to SS2 but differ in the magnitude of surface
runoff velocity used to route overland flow. A velocity of 30.0 cm/min was used for
these five cases, which corresponds to a likely value on vegetated slopes (see for
example Newson and Harrison, 1978; Beven et al., 1984). The overland flow
velocity of 250.0 cm/min adopted for the other ten case is more charcteristic of
unvegetated slopes. Since the only difference in the responses of case PP1 and PP,
etc is the surface flow routing, the total flow rate is the only output variable affected.

Thus, only the matching errors of peak total flow are recorded in table 6.7 for cases

PP1' to SS2'

The unsuitability of reproducing both subsurface flow and total flow hydrographs
using a single equivalent porous medium can be seen from the large errors reported in
table 6.7. The magnitude of these errors is much greater than those noted earlier in

the case of high permeability soil. For example, the 34.724 per cent peak total flow

error for case S2 is equivalent to a difference in flow rates of 61.78 U/min (= 6.178%

rainfall intensity).

The different results of the two types of effective parameters are demonstrated further

in figures 6.8 and 6.9 for cases S2 and SS2 respectively. Matching the subsurface

flow in figure 6.8 clearly fails to reproduce the time of onset and rate of the surface

runoff. Further examples of effective parameter results for cases PP1 and SS1 are

shown in figures 6.10 and 6.11 respectively. The underestimation of subsurface flow

rates caused by reducing the effective conductivity to produce greater overland flow
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Table. 6.7

Matching errors using effective parameters for cases (P-S) for event (1)

Case

Subsurface flow

Total flow

Peak error
(%)

Volume error
(%)

Peak error
(%)

Volume error
(%)

P1

R1
R2

S1
S2

PP1

RR1
RR2

SS1
SS2

PP1'

RRYT
RR2'

SS1
SS2°

1.634

-1.821
-1.172

-3.160
-6.621

16.236

35.954
16.140

49.242
18.716

-0.788

-0.696
0.395

-0.239
0.594

15.115

34.572
20.710

48.040
30.104

14.604

13.428
28.494

23.198
34.724

7.4717

0.215
4.585

3.597
1.297

4.063

2.813
9.825

1.497
-0.533

16.563

16.172
29.305

23.784
41.115

1.723

-1.040
2.589

0.774
3.693
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volumes can be seen clearly in figure 6.11.

Using the same effective parameters, the matching errors for event 2 are shown in
table 6.8. The suitability of reproducing the volume of subsurface flow for cases P1
to S2 is indicated by the low errors reported. However, the effective conductivities for
cases PP1 to SS2' fail to provide reasonable estimates of subsurface and surface flow
quantities. In these cases the subsurface flow hydrograph is consistently
underestimated and the surface flow hydrograph is consistently overestimated. The
greater flow rates produced in event 2 imply a greater significance of the percentage
errors in table 6.8. For example, the percentage error of -15.420 for case SS2 refers
to a difference in peak total flow of 255.44 I/min (= 12.772% maximum rainfall
intensity). This underestimation of total flow is shown clearly in figures 6.12 to 6.14.
Examples of effective parameter solutions for the low surface runoff velocity case

SS2' are shown in figures 6.15 and 6.16 for event 1 and 2 respectively.

The overestimation of surface runoff using effective hydraulic conductivities
determined from a lower intensity storm can be explained by considering the range of
conductivities, in a given distribution, which contribute to the generation of overland
flow. For event 1 the effective parameter will lie within a certain range shown as the
shaded region of the frequency distribution in figure 6.17a. For the higher intensity
storm of event 2 the range of contributing permeability values increase (figure 6.17b).

Thus the effective conductivity is underestimated, resulting in an overestimation of

surface runoff.

The sample properties for the individual realizations from cases P to S are shown in

table 6.9. As in the case of high permeability soils, an effective hydraulic conductivity

greater than the geometric mean of the distribution is required to reproduce the

subsurface flow hydrograph volumetrically. However, in order to estimate the total

flow hydrograph, an effective parameter much less than the geometric mean is

required. The justification of single effective parameter values is not apparent.
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Table 6.8 ~ Matching errors using effective parameters for cases (P-S) for event (2)
Subsurface flow Total flow
Case Peak error | Volume error Peak error | Volume error

(%) (%) (%) (%)

P1 2.331 -0.081 5.581 9.943

R1 -1.077 0.559 36.137 44.473

R2 -8.875 1.289 -1.069 3.732

S1 -0.180 1.817 47.326 57.771.

S2 -27.381 0.437 -0.891 4.487

PP1 16.820 14.842 -8.243 -13.8%4

RR1 36.082 35.932 -14.202 -19.643

RR2 9.662 20.771 -12.745 -15.517

SS1 50.921 50.230 -23.309 -31.377

SS2 41.519 32.336 -15.420 -20.353

PP1 -9.136

RRT' -17.011

RR?2' -1.222

ST -24.398

SS2' -6.429
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Table 6.9  Sample properties for individual realizations from cases (P-S)

Case Keff. Ky K, K,
(cm/min) (cm/min) (cm/min) (cm/min)
Pl 0.00546 0.00393 0.00502 0.00642
R1 0.00760 0.00486 0.00546 0.00613
R2 0.00411 0.00364 0.00404 0.00449
S1 0.00908 0.00449 0.00566 0.00714
S2 0.00380 0.00300 0.00370 0.00456
PP1 0.00465 0.00393 0.00502 0.00642
RR1 0.00480 0.00486 0.00546 0.00613
RR2 0.00342 0.00364 0.00404 0.00449
SS1 0.00445 0.00449 0.00566 0.00714
SS2 0.00290 0.00300 0.00370 0.00456
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6.2.3 Effective parameters for soils showing zones of preferential flow

One realization from each of cases T and U was chosen for determination of effective
parameters. Matching the subsurface flow hydrograph volume, the equivalent
conductivities were found to be 0.09104 and 0.07743 cm/min for cases T1 and Ul
respectively. The effective values show significant deviation from the mean

conductivity of the soil surrounding the area of preferred flow (= 0.05 cm/min).

The matching errors for cases T1 and U1 for event 1 are presented in table 6.10. The
zone of high permeability in case T1 has clearly more effect than that of Ul , the
10.365 per cent peak total flow error is equivalent to a difference of 7.77 l/min
between uniform and nonuniform responses. The total flow hydrographs for the two
realizations together with the corresponding effective parameter results are shown in
figures 6.18 and 6.19. The subsurface flow repsonses using the equivalent
| permeabilities compare well with the results of the nonuniform slopes. However,
increasing the equivalent conductivity to account for the area of preferred flow clearly
reduces the quantity of surface runoff and delays the time of onset of surface

saturation.

Table 6.11 displays the matching errors of the hydrographs for event 2. Surprisingly
the subsurface flow responses to the uniform slopes show significant error, unlike the
cases discussed in the previous two sections. The subsurface flow rates are

consistently underestimated by the effective parameters, although an overestimation of

surface runoff reduces the errors of the total flow hydrograph. The total flow

hydrographs for case T1 and the suggested equivalent medium are shown in figure

6.20. The responses compare favourably. Such close agreement would not be

expected under a rainfall intensity approximating the conductivity of the soil

surrounding the area of preferred flow, as under such conditions considerable surface

runoff originating from infiltration €Xcess would be produced on the nonuniform
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Table 6.10 Matching errors using effective parameters for cases (T,U) for event ¢!
Subsurface flow Total flow
Case Peak error | Volume error Peak error Volume error
(%) (%) (%) (%)
T1 0.560 -0.008 10.365 4327
Ul 1.004 -0.018 -0.095 2.520

Table 6.11 Matching errors using effective parameters for cases (T,U) for event (2)
Subsurface flow Total flow
Case Peak error Volume error Peak error Volume error
(%) (%) (%) (%)
T1 11.427 11.390 -2.517 6.417
Ul 5.355 5.100 -0.088 2.294
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slopes. Overland flow generated on the uniform soil would be limited to a confined

area of surface saturation at the base of the slope.

6.3 SUMMARY AND CONCLUSIONS

Previous studies of effective parameters have directed attention to simplified
generalized flow domains, such as steady saturated groundwater movement.
Investigations of three dimensional variably saturated flow in porous media are not
evident in the literature. Furthermore, analyses of hillslope flow processes using
effective parameters are scarce, although the results of such studies are clearly
important if current physically based modelling techniques of catchment hydrology are

to be recognized as practical tools.

Investigations of groundwater movement have suggested that the geometric mean of a
log normally spatially distributed saturated hydraulic conductivity field provides a
reasonable estimate of an equivalent uniform property. Although a greater value may
be necessary for stochastic fields of high variability. The time dependent nature of

effective permeabilities has also been postulated for unsteady flow systems.

There are two major differences between the analysis presented herein and in previous
studies. Firstly, the complexity of the flow domain under investigation, in terms of
the number of spatial dimensions and flow processes recognized, is much greater than
those investigated earlier. Secondly, the concept of effective parameters of single
realizations, representing individual soil formations, adopted in this study has

previously been overlooked.

Using the results from various hydraulic conductivity fields presented in Chapters 4
and 5, attempts were made to select suitable equivalent soil properties capable of

reproducing the response to a single event. In the case of high permeability soils,




effective parameters were found to give reasonable estimates under a variety of
hydraulic conductivity fields. These values were also shown to be suitable for a
completely different event. For low permeability soils, characterized by the
domination of the hydrograph by surface runoff, a single effective parameter was not
found to be capable of reproducing both subsurface and surface flow hydrographs.
Matching the subsurface flow, in this case, consistently underestimated the surface
runoff, matching the total flow hydrograph underestimated the subsurface flow
response. Application of the selected effective parameters to a second event revealed

the event dependency of the equivalent properties.

The event dependent nature of the effective parameters was also noted in the case of
soils displaying distinct zones of preferred flow, although the matching errors reported

in this case were much smaller than those for the low permeability soils.

The results of this study therefore suggest that under nonuniform homogeneous soil
formations, the subsurface flow response to a single hillslope may be represented by
that of a single effective hydraulic conductivity. The value of this effective parameter
may not be thained explicitly from the statistics of the distribution, although it is
likely to be greater than the geometric mean of the log normally distributed
conductivity field. In fact such a result is not surprising as lumped conceptual models
have shown to work well in many cases. For inhomogeneous soils such as those
showing localized areas of high conductance, effective parameters may not be

appropriate. Further investigations are clearly required.

In the case of low permeability soils, single effective parameter values appear invalid
for the modelling of both flow processes. Under conditions of infiltration excess flow
a minimum of two parameters may be necessary to reproduce both peak flows and low

base flows.
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Chapter 7

Conclusions

71 A



7.1 INTRODUCTION

Over the past decade much attention has been devoted to the development of

distributed physically based models of catchment hydrology. A number of these
models, such as the Systéme Hydrologique Européen (SHE) and the Institute of
Hydrology Distributed Model (IHDM), have now reached the testing stage and will
soon be available for industrial applications. The ability to simulate responses of
ungauged catchments is only provided within a physically based framework, however
physically based models require vast amounts of data and computing resources in
comparison to earlier generations of catchment models. Loage and Freeze (1985) have
recently demonstrated that physically based models may not have any advantage over
simpler models on gauged catchments. .In fact, unless investigating the effects of
catchment changes, the relative inexpensive costs and familiarity of less complex
models offer distinct advantages on gauged catchments. Physically based models,
therefore, can play a useful role in the engineering and hydrological societies,
however, several limitations are inherent with the current physically based modelling

strategy.

Ample evidence of soil spatial variability is presented in the literature, the incorporation

of which is permissible in physically based models, although immense data

requirements have at present restricted the use of this information. It is generally
assumed that areas of the flow domain can be represented by some equivalent soil
property (or effective model parameter). Along similar lines, treating nodal areas of
the model grid as homogeneous zones is based on the assumption that the model
equations developed at the micro scale are valid at the model grid scale. In the case of
the SHE model this may be in the order of 250 m x 250 m. Empirical equations such

as Darcy's Law may not be valid at the model grid scale, orindeed at the micro scale.
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In a discussion of the validity of current modelling techniques, Beven (1986) remarked
that,

"For now, it is sufficient to conclude that the current generation of
distributed physically based models are lumped conceptual models".

The use of Darcy's Law also requires thorough justification if one is to attempt to
model catchments composed of soils containing macropores or displaying distinct

areas of preferred flow through natural soil pipes.

72 IMPLICATIONS FOR CURRENT PHYSICALLY BASED
MODELLING

This study set out to investigate the applicability of current physically based modelling
techniques on two related phenomena, namely soil spatial variability and zones of
preferential flow. The investigation was carried out at the hillslope scale to assess the
effects of soil spatial variabilty and preferential flow on hillslope hydrology and then
determine whether the concept of effective model parameters can be justified at this

scale.

In order to carry out the necessary hydrological simulations a fully three dimensional
model of variably saturated flow through porous media was developed. The model is
based on the Galerkin approximation of the finite element method and allows detailed
analysis of the complex hillslope hydrological processes. Accessibility to the vector
processor of a CDC Cyber 205 supercomputer permitted numerical solutions on grids
containing several thousand node points. A hypothetical hillslope segment was
developed for the purpose of this study, soil properties of the hillslope were based on

measured values of real soils.
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There are many studies in the literature on the effect of spatial variability of soil
properties, in particular saturated hydraulic conductivity, on groundwater flow. Using

either Monte Carlo simulation or analytical expressions based on perturbation

methods, various degrees of complexity have been previously analyzed. It is clear
from the results of these investigations that increasing the number of spatial -
dimensions of the flow problem reduces the effect of any soil nonuniformity, although
analyses of three dimensional flow domains are scarce. The study of spatial variability
of hydraulic conductivity presented herein is the first to examine three dimensional
unsteady flow in variably saturated media. Moreover, the specific application to
hillslope hydrology is more directly related to the problem of catchment modelling than

several previous studies of generalized flow domains.

Adopting a suitable range of statistical parameters (means, variances and
autocovariances) of hydraulic conductivity fields suggested by previous field studies, a
number of random fields were generated within the hillslope using the turning bands
method. The response of the hillslope to a single deterministic event was then

evaluated for several realizations of a given stochastic field. Operational costs of the

three dimensional analysis limited the number of realizations to ten, which gave a

reasonable impression of the variation of responses.

Two distinct mechanisms of hillslope runoff generation were addressed. In the first
case, categorized by relatively high permeability soils, the effects of spatial variability
were slight. Significant differences between individual realization responses were
only noted in highly correlated media. Much greater effects were evident in the case of
low permeability soils, for which the discharge hydrograph was dominated by surface
runoff. The variability of hydraulic head throughout the soil mass was also shown to
be considerably larger for low permeability soils. In both cases the variation of runoff
between realizations was noted to be time dependent. Limiting the study to a single
deterministic event restricts the generality of the results presented herein, however it

appears that under conditions of high permeability the effects of spatial variability are
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likely to average out over the flow domain. In the case of low permeability soils, the
variance and autocovariance of the soil formation are important model parameters.
Increasing the autocorrelation of the hydraulic conductivity distribution in both high

and low permeability soils had an effect equivalent to increasing the variance.

The phenomenon of zones of preferential flow was addressed in Chapter 5. Very few
studies have attempted to assess the importance of such zones either in the form of
natural soil pipes or areas of very high permeability. Barcelo and Nieber (1981) have
shown that a single soil pipe within a hypothetical hillslope segment may have a
significant effect on the resulting subsurface flow hydrograph. The validity of the pipe
flow equation used in their study raises some doubt. In addition, the hydrological
interaction of the soil mass and pipe was simplified to the extent that only recharge

from the saturated soil matrix was considered.

A number of possible approaches to the problem of determining the effects of zones of
preferential flow were postulated. The most suitable was found to be similar to that
used in the study of soil spatial variability. By specifying some functional form of a
hydraulic conductivity distribution, an artificial zone of high permeability was
introduced into an otherwise homogeneous soil. Such a representation is comparable
to the ‘percolines’ observed by Bunting (1961). Using the same hillslope segment and
event conditions as in the earlier study of soil variability, two different three
dimensional fields of high hydraulic conductivity were investigated. Introducing a
random component to these trends, ten realizations of each distribution were

simulated, although little difference between the results of each realization was

observed.

In comparison with the results from the nonuniform homogeneous formations,
introducing an area of high permeability had a maximum effect of increasing the peak
subsurface flow by 28 per cent. However, the effect on total runoff was less

significant due to the reduction in surface runoff in the case of preferred flow. The
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total volume of runoff was increased by approximately 30 per cent. Little effect on the
shape of the discharge hydrograph was noted in both cases. The area of high
permeability had a much greater influence on the moisture profiles within the soil

mass. Significant variation in moisture content with depth demonstrated the effect of

an impeding layer of low conductivity at the base of the slope. Such an effect was
only observed near the centre of the hillslope, the zone of preferred flow apparently
had little area of influence. As expected, the effect of preferred flow was more
significant during the wetting stage of the event, moisture profiles at distances over 30
metres from the base of the slope at the end of the ten hour drainage period were

similar to those in the homogeneous field.

The general conclusion drawn from this short study of zones of preferential flow is
that such a phenomenon makes a significant contribution to hillslope hydrology. Over
simplification of the hillslope processes in current physically based models may

produce erroneous predictions.

Using the results from the studies of soil variability in Chapters 4 and 5, the concept of
equivalent uniform hillslopes was investigated in Chapter 6. Previous studies of
groundwater movement have suggested the suitability of effective soil properties,

although analyses have been limited to relatively simple flow systems. Furthermore,

specific studies of effective parameters in catchment modelling are not evident in the
literature. By investigating the representation of an individual realization of soil
variability by a uniform hillsope, as used in current modelling techniques, it is felt that
the results presented herein are likely to be of greater practical value than previous

multi-realization analyses of generalized flow domains.

The study of equivalent hillslopes was separated into sections referring to three types
of soil formations, which were high mean permeability soils, low mean permeability
soils and soils displaying zones of high conductivity. In the first case, characterized

by subsurface flow domination of the hydrograph, effective permeabilities were found
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to be suitable for a single deterministic rainfall event. Generally, errors in producing
the hydrograph from a hillslope of nonuniform soil properties were found to be

relatively small, any major differences arising at the onset of surface runoff in the

nonuniform fields. In order to test the suitability of the selected uniform properties, a

comparison of the responses of an entirely different event was made. Both subsurface

and surface flow (produced by surface saturation) hydrographs were represented
successfully for this second event. The determination of suitable effective parameters,
given a priori estimates of the field variability is clearly important if accurate
predictions are to be made on real catchments. A comparison of the effective values
and the properties of the represented stochastic fields, however, revealed the
complexity of the problem. In general, the equivalent hydraulic conductivities were
found to be greater than the geometric mean of the log normally distributed block
conductivities, agreeing with the results of previous investigations. Specific
relationships between the effective parameters and the sample properties could not be

evaluated due to the limited number of realizations under examination.

For the case of low mean permeability soils, characterized by the domination of the
runoff hydrograph by infiltration excess overland flow, single effective parameters
were not capable of reproducing both subsurface and surface flows. An equivalent

property selected to match the volume of subsurface runoff from the first event was

found to be reasonably consistent for the second event. However, for both events the
total flow was underestimated in all cases. Attempts to use the volume of total runoff
as the matching factor also proved unsuccessful. The effective parameter simulations
in this case were found to consistently underestimate the subsurface flow, moreover,
the event based dependency of such an effective hydraulic conductivity was
demonstrated. A comparison of the effective parameter values with the sample
properties for each realization revealed that, as in the case of high permeability soils,
the effective subsurface flow parameters were greater than the geometric mean
conductivity. The effective total flow parameters, however, were much less than the

geometric mean, in fact, for the first event, the harmonic mean conductivity provided a




betier estimate. The results clearly demonstrate that, in the case of infiltration excess
flow dominating the hydrograph, single effective parameters are inappropriate in
current physically based models. Under such conditions one may be able to reproduce
a number of observed events using effective model parameters, although the accuracy
of the simulations of sub processes will be in doubt. One may then discover grossly

erroneous predictions during other hydrological events.

In the case of soils showing zones of preferred flow, effective parameters for
subsurface flow responses were shown to be event dependent, unlike the previous
soils examined. The area of high conductivity is more significant under high intensity
storms thus increasing the magnitude of the required effective conductivity. In doing
so the amount of surface runoff is underestimated. Therefore, as in the case of low
permeability soils, reasonable predictions of observed events may only be expected

under similar conditions if single effective parameters are to be used.

Further work is required to assess the effect of soil variability under various conditions
for a number of soil types. Investigations at the catchment scale would also provide
useful information. In fact, under the guidance of the author, the model described in

Chapter 3 is currently being used at Princeton University, USA for such a study.

73 IMPLICATIONS FOR FUTURE PHYSICALLY BASED
MODELLING

If one assumes the applicability of effective parameters in the modelling of hillslope
runoff generation, the determination of such values is clearly of practical concern. If
historic records exist for a catchment then these may be used to determine effective
parameters for inclusion within a rainfall runoff model such as the IHDM. Since the
effective parameters so derived may bear no formal relationship to the soil properties

measured in the field, the rainfall runoff model cannot be considered to be physically
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based. Using a more detailed model, such as that used throughout this study, one may
be able to determine the formal relationships between the effective parameters of the

conceptualized model and the field measured properties.

If the hydrological regime of a catchment is changed then modelling the response of
that catchment using historical data is much more difficult. If relationships between
effective and measured parameters are established, as described above, then the same

relationships may hold for the new regime.

In applying physically based models to ungauged catchments, the determination of
effective properties poses greater problems. One may find that under certain
conditions of spatial variability the mean of several field measurements provide a
suitable effective parameter. Nevertheless, it appears unlikely that single hydrological
predictions from physically based models will provide design information of suitable
accuracy for future engineering works. There will undoubtably be uncertainty in these
predictions. If the extent of uncertainty can be evaluated and is shown to be
reasonably small then models based on the physics of the catchment may provide

useful design tools.

Data is now becoming available (see for example Rawls et al., 1983; Cosby et al.,
1984) relating soil properties, including variances, to textural classes. Knowledge of
the various soil textures within a catchment may then be able to provide estimates of
the model parameters. .Using the uncertainty of the model parameters, methods such

.as that of Rosenbleuth (1975) could be used to determine the uncertainty in model

predictions.

This study has shown that effective parameters may not be appropriate in the
modelling of hillslope runoff generation when infiltration excess surface runoff is a
dominating mechanism, although the occurrences of such a process are likely to be

isolated to a minority of catchments. Under such conditions a minimum of two
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effective parameters are necessary if accurate predictions of both subsurface and

surface flows are required. One possible solution to this problem is to form a

composite hydrograph from a number of simulations. For example, combining the

results of two independent simulations, obtained for uniform soils of different
properties, is likely to provide less error in the predicted overall response than using a
single simulation. If the nature of the spatial variability were known a priori then

suitable properties of the uniform media may be selected according to the probability

distribution, for example, K, = ¢ for the case above. The combination of the

multiple simulations would clearly require calibration from previous records. In
addition, the stationarity of the combination function is necessary if future predictions
are to be made. Such an approach undermines the true to life nature thought to exist in
current physically based models, although future research into ideas such as this is

required before these models can be accepted as engineering tools.

There is also serious doubt about the validity of representing real soils containing

macropores with a matrix flow model. Sloan and Moore (1984) suggest that a simple
storage model based on the kinematic assumption is more suitable than a Richards . 1
equation formulation for modelling subsurface stormflow through soils containing

macropores, due to the rapid response of the former model. However, adopting such

an approach conceptualizes the model further.

It appears unlikely in the short term that equations of greater theoretical justification
will be made available to hydrological modellers. By exploring possible enhancements
to the present modelling strategy in conjuction with applications to real catchments we
must quantify the future role of current physically based models and assess the

economic viability of using such models as engineering tools.

~



The increasing availability of high speed computer hardware will permit large scale

applications of physically based models to real world problems. In addition, data
bases such as those provided by remote sensing techniques are likely to be invaluable

sources of information for future studies. The potential for further research is there, it

should be capitalized upon.
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Table Al.1 Variation of final infiltration rates over Eastergrounds field

Infiltrometer Final infiltration
plot rate A (x10™ cm/s) ILnA
1 2.332 0.847
2 15.038 2.711
3 0.801 -0.222
4 8.230 2.108
5 21.447 3.066
6 7.707 2.042
7 0.851 -0.161
8 1.829 0.604
9 1.108 0.103
10 8.562 2.147
11 11.762 2.465
12 13.261 2.585
13 4.033 - 1.395
14 6.961 1.940
15 6.265 1.835
16 4.750 1.558
17 0.517 -0.660
18 6.179 1.821
19 0.168 -1.784
20 15.985 2.772
21 2.130 0.756
22 1.906 0.645
23 1.675 0.516
24 13.062 2.570
25 18.171 2.900 4
26 6.728 1.906
27 27.512 3.315
28 4921 1.594 ¢
29 36.959 : 3.610
30 1.375 0.318
31 1.448 0.370
32 1.242 0.217
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Table A1.2 Final infiltration rates along 100 metre transect

Infiltrometer Distance from Final infiltration
plot plot 4 rate A LnA
(m) (x10% cm/s)

4 0.00 8.230 -7.103
33 10.00 3.313 -8.012

5 20.00 21.447 -6.145
34 30.00 1.909 -8.564

6 40.00 7.707 -7.168
58 41.25 14.110 -6.563
57 42.50 1.778 -8.635
56 43.75 1.941 -8.547
55 45.00 13.763 -6.588
54 46.25 9.828 -6.925
53 47.50 0.682 -9.593
52 48.75 1.112 -9.104
35 50.00 3.744 -7.890
51 51.25 0.907 -9.308
50 52.50 0.933 -9.280
49 53.75 7.513 -7.194
48 55.00 1.472 -8.824
47 56.25 2.145 -8.447
46 57.50 3.259 -8.029
45 58.75 0.917 -9.297

7 60.00 0.851 -9.372
38 61.25 4.345 -7.741
39 62.50 1.220 -9.011
40 63.75 2.046 -8.494
41 65.00 1.740 -8.656
42 66.25 1.391 -8.880
43 67.50 4.056 -7.810
44 68.75 0.283 -10.473
36 70.00 2.295 -8.219
59 71.25 4.695 -7.664
60 72.50 1.872 -8.583
61 73.75 0.669 -9.612
62 75.00 1.389 -8.882
63 76.25 1.888 -8.575
64 77.50 0.247 -10.602
65 78.75 0.493 -9.918

8 80.00 1.829 -8.607
66 81.25 1.548 -8.773
67 82.50 1.955 -8.540
68 83.75 0.404 -10.117
69 85.00 2.891 -8.149
70 86.25 6.956 -7.271
71 87.50 1.170 -9.053
72 88.75 5.568 -7.493
37 90.00 7.464 -7.200

9 100.00 1.108 -9.108
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This appendix contains the listings of three computer files: (i) the finite element code

(VSAT3D), (ii) an example mesh data generation program (INDAT), (iii) the
necessary data file for INDAT.

VSAT3D is written in CDC's FORTRAN 200 and will thus only operate on the CDC
Cyber 205. The main data source for this code is provided by first executing INDAT
which will operate on any ANSI FORTRAN 77 system. Further information of the
data requirements of VSAT3D can be found in the COMMENT statements of the

listing.

Copies of both source codes on magnetic tape or diskette may be obtained by writing
to either of the two addresses below. A scalar version of VSAT3D, written in ANSI

FORTRAN 77, is also available.

ton University

Ilustration removed for copyright restrictions




Listing of VSAT3D
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OO0OO0O0000000000000000000000000

O0OO000000000000000000

PROGRAM VSAT3D (INPUT, OUTPUT, TAPE1l, TAPE2, TAPES, TAPE7, TAPES,
*TAPES, TAPE4=INPUT, TAPE3=0UTPUT)

————— PROGRAM VSAT3D, JULY 1986 VERSION. USING FOUR POINT GAUSS
————— QUADRATURE IN VERTICAL DIRECTION FOR THREE DIMENSIONAL
————— ISOPARAMETRIC ELEMENTS USING ELEMENT INDEX

————— THE SIZE OF BS MUST BE AT LEAST S$*NUMNP + NUMA + NUMEL

————— + 97*NUMSH + 22*MAX (1, NUMNFQ) .
————— THE SIZE OF IBS MUST BE AT LEAST 1 + 2*NUMNP + 10*NUMEL +
————— MAX (1, NSEEP) * (2 + MAX(1,MAXS)) + 18*MAX (1, NUMNFQ).
————— THE SIZE OF EACH ARRAY IN COMMON/MAT/ MUST BE AT LEAST NUMMAT.
————— PROGRAM MAIN SCALARS :-—

NUMA SIZE OF ARRAY A

NUMNP NUMBER OF NODE POINTS

NUMEL NUMBER OF ELEMENTS

NUMMAT NUMBER OF SOIL TYPES

NSEEP NUMBER OF SEEPAGE FACES

NDIM MAX (1, NSEEP)

MAXSP MAX (1, MAXIMUM NUMBER OF NODES ON A SEEPAGE FACE)

NUMSH NUMBER OF ELEMENT SHAPES

NUMNFQ NUMBER OF BOUNDARY NODES WITH NON-ZERO FLUX

NQ MAX (1, NUMNFQ)

HED JOB TITLE

SUBHED JOB SUBTITLE

MAXIT MAXIMUM NUMBER OF ITERATIONS PER TIME STEP

MAXIT2 MAXIMUM NUMBER OF ITERATIONS PER TIME STEP BEFORE
REDUCTION IN TIME STEP

INTBAL CONTINUITY CHECK INTERVAL

INTPRIN NODE INFORMATION PRINTOUT INTERVAL

INTQPR NODAL FLUX INFORMATION PRINTOUT INTERVAL

DT INITIAL TIME STEP

DTMAX MAXIMUM TIME STEP

DTMIN MINIMUM TIME STEP

TMAX TIME AT END OF SIMULATION
TOL ITERATION TOLERANCE
DTQS TIME INTERVAL FOR SURFACE FLOW ROUTING (DTQS .LE. DTMIN)

DELMAX MAXIMUM POSSIBLE DELAY TIME OF SURFACE FLUXES

————— PROGRAM ARRAYS :-

A CONDUCTANCE ARRAY

B RHS OF FE EQUATION

AFLUX COMPACT CONDUCTANCE ARRAY FOR FLUX CALCULATIONS
BFLUX RHS FOR FLUX CALCULATIONS

c DUMMY ARRAY

D F MATRIX IN FE EQUATION

DUMY DUMMY ARRAY

P NEW PRESSURE HEAD VALUES

Pl OLD PRESSURE HEAD VALUES

X, Y, 2 COORDINATES OF NODE POINTS

Q UNKNOWN FLUXES

QX SPECIFIED FLUXES

DET DETERMINANT FOR EACH ELEMENT SHAPE

DINT DERIVATIVES AT EACH GAUSS POINT OF EACH SHAPE

CELEM HYDRAULIC CONDUCTIVITY FOR EACH ELEMENT
DELAY DELAY TIMES OF EACH SURFACE NODE
KODE CODE FOR EACH NODE POINT

= -2 POTENTIAL SEEPAGE FACE

= (0 SPECIFIED FLUX




OO0000000000000000000000000Q0

OO0 000aQ0n

= 1 SPECIFIED HEAD
= 2 SEEPAGE FACE

KX ELEMENT CORNER NODES AND SOIL TYPE

NP NODE NUMBERS FOR SEEPAGE FACES

NSP NUMBER OF NODES ON EACH SEEPAGE FACE
KODES DIRECTION OF FLOW AT EACH SEEPAGE FACE

= -1 FLOW DIRECTED OUT
- 1 FLOW DIRECTED IN

LD INDEX FOR CONDUCTACE MATRIX
NODEQ INDEX FOR COMPACT CONDUCTANCE MATRIX
QSDEL DELAYED SURFACE FLUXES

UNSATURATED SOIL PROPERTIES (MAT COMMON BLOCK)

THETA (PSI)=RESID+ (POR-RESID) *ATHET/ (ATHET+ (-PSI) “"BTHET) (PSI < PSIL)
THETA (PSI)=POR* (1+PSI*BETA-GAMMA*PSI*PSI) (PSIL < PSI < 0)
KREL (PSI) =APERM/ (APERM+ (-PSI)~BPERM) (PSI < 0)

————— INPUT FILES :-—

UNIT 1 UNFORMATTED FILE FROM DATA GENERATION PROGRAM

UNIT 4 FORMATTED JOB DATA

UNIT S FORMATTED HYFRAULIC CONDUCTIVITY DATA

UNIT 8 UNFORMATTED INITIAL PRESSURE HEAD DISTRIBUTION OR
RESTART DATA

————— OUTPUT FILES :-

UNIT 2 FORMATTED PRESSURE HEADS AT SELECTED TIMES
UNIT 3 TIME STEP INFORMATION (MAIN OUTPUT FILE)
UNIT 7 UNFORMATTED FILE FOR RESTART DUMP

UNIT 9 FORMATTED DISCHARGE DATA

PARAMETER (NBS=682500, NIBS=48500)

CHARACTER*80 HED, SUBHED

COMMON BS (NBS) , IBS (NIBS)

COMMON /MAT/POR(1l),RESID(1),ATHET(1),BTHET(1),APERM(1},
*BPERM (1) ,BETA (1) ,GAMMA (1) ,PSIL(1)

————— INITIALIZE ARRAYS

DO 5 I=0,NBS-1,65535
LENGTH=MIN (NBS-I, 65535)
BS (I+1;LENGTH)=0.0
CONTINUE

DO 7 I=0,NIBS~1,65535
LENGTH=MIN (NIBS-I, 65535)
IBS (I+1; LENGTH) =0
CONTINUE

NERR=0

IFAIL=0

REWIND 1

READ (1) NUMA, NUMNP , NUMEL, NUMMAT, NSEEP, NDIM, MAXSP, NUMNFQ, NQ,
*NUMSH, HED, SUBHED

————— EVALUATE DIMENSIONS FOR REAL ARRAYS

N1=1+NUMA
N2=N1+NUMNP
N3=N2+18*NQ
N4=N3+NQ
NS=N4+NUMNP
N6=N5+NUMNP
N7=N6+NUMNP
N8=N7+NUMNP




10

20

110
120

N9=N8+NUMNP
N10=NS+NUMNP
N11=N10+NUMNP
N12=N11+NUMNP
N13=N12+NQ
N14=N13+NQ
N15=N14+NUMSH
N16=N15+96*NUMSH
N17=N16+NUMEL

——EVALUATE DIMENSIONS FOR INTEGER ARRAYS

I1=1+NUMNP
I2=I1+10*NUMEL
I3=I2+NDIM*MAXSP
I4=I3+NDIM
IS=I4+NDIM
I6=I5+NUMNP+1

——CHECK DIMENSIONS OF ARRAYS IN BLANK COMMON

NBSC=N17+NQ
NIBSC=I6+18%NQ
IF (NBSC .GT. NBS) THEN
WRITE (3,10) NBS,NBSC
FORMAT(//1H ,'-————————- ERROR IN SIZE OF BS~———=——=—=—= ',
*/1H , 'ARRAY SIZE IS',I10/1H ,'ARRAY SIZE SHOULD BE',I1l0)
STOP 'DIMENSION ERROR'
END IF
IF (NIBSC .GT. NIBS) THEN
WRITE (3,20) NIBS,NIBSC
FORMAT (//1H , ' ==—==m——m—m ERROR IN SIZE OF IBS—~————-——-',
*/1H ,"ARRAY SIZE IS',I10/1H ,'ARRAY SIZE SHOULD BE', I10)
STOP 'DIMENSION ERROR'
END IF
CALL SETUP (BS(1),BS(N1),BS(N2),BS(N3),BS(N4),BS(N5),BS(N6),
*BS (N7),BS (N8) ,BS (N9) ,BS(N10) ,BS(N11) ,BS(N12),BS(N13),BS(N14),
*BS (N15) ,BS (N16),BS(N17),IBS(1),IBS(I1),IBS(I2),IBS(I3),IBS(I4),
*IBS (I5), IBS(I6), NUMNP, NUMA, NUMEL, NUMMAT, NSEEP, NDIM, MAXSP, NUMNFQ,
*NQ, NUMSH, HED, SUBHED, NERR, IFAIL)
IF (NERR .NE. 0) WRITE (3,110) NERR
IF (IFAIL .NE. 0) WRITE(3,120) IFAIL
FORMAT (//1H , 'NERR =',13)
FORMAT (//1H , 'IFAIL =',I7)
IF (NERR .GT. 0) STOP'TOLERANCE ERROR'’
IF (IFAIL .GT. 0) STOP'CONDUCTANCE MATRIX IS SINGULAR'
IF (IFAIL .LT. 0) STOP'CONDUCTANCE MATRIX IS INDEFINITE'
STOP
END




20

33
35

40

50

——SETS THE DIMENSIONS OF ALL ARRAYS IN BLANK COMMON.

—--CALL SUBROUTINES FOR EACH TIME STEP UNTIL TIME TMAX IS REACHED,
~~OUTPUT CAN THEN BE SENT TO AN UNFORMATTED FILE FOR RESTARTING
--PURPOSES LATER ALSO AT TIME TMAX FORMATTED OUTPUT IS SENT ON
—=—UNIT 2 FOR LATER INVESTIGATION OF RESULTS.

SUBROUTINE SETUP (A,B,AFLUX,BFLUX,C,D,DUMY,P,P1,X,Y,Z,Q, QX,DET,
*DINT, CELEM, DELAY, KODE, KX, NP, NSP, KODES, LD, NODEQ, NUMNP, NUMA, NUMEL,
*NUMMAT , NSEEP, NDIM, MAXSP, NUMNFQ, NQ, NUMSH, HED, SUBHED, NERR, IFAIL)

PARAMETER (NQSDEL=2000)

CHARACTER*80 HED, SUBHED, HED1*3

DIMENSION A (NUMA),B(NUMNP),AFLUX (18,NQ),BFLUX (NQ), C(NUMNP),

*D (NUMNP) , DUMY (NUMNP) , P (NUMNP) , P1 (NUMNP) , X (NUMNP) , Y (NUMNP) ,

*Z (NUMNP) , Q (NQ) , QX (NQ) ,DET (NUMSH) ,DINT (3, 8, 4, NUMSH} ,

*CELEM (NUMEL) , KODE (NUMNP) , KX (10, NUMEL) , NP (MAXSP,NDIM) ,NSP (NDIM),
*KODES (NDIM), LD (0 :NUMNP) , NODEQ (18, NQ) , DELAY (NQ) , QSDEL (NQSDEL)
COMMON /MAT/POR(1) ,RESID(1),ATHET (1) ,BTHET (1),APERM(1),

*BPERM (1) ,BETA (1) ,GAMMA (1) ,PSIL(1)

-~READ JOB PARAMETERS

READ (4,10) HED1

FORMAT (A)

IF (HED1 .EQ. 'RES') GO TO 40

HED1="'XXX"'

READ (4,20) MAXIT,MAXIT2, INTBAL, INTPRIN, INTQPR
FORMAT (515)

MAXIT2=MIN (MAXIT, MAXIT2)
READ (4, 30) DT, DTMAX, DTMIN, TMAX, TOL
READ (4,30) DTQS, DELMAX

FORMAT (8E10.3)

IF (DTQS .GT. DTMIN) DTQS=DTMIN

—--CHECK ON SIZE OF QSDEL ARRAY

NDELAY=INT (DELMAX/DTQS)+1

I=INT (TMAX/DTQS) +NDELAY

IF (I .LE. NQSDEL) GO TO 40

WRITE (3,35) I,NQSDEL

FORMAT (1H , '—~~—==———————— ERROR IN QSDEL ARRAY SIZE-—————=——=—— !
*1———t/1H , 'ARRAY SIZE IS',I8/1H ,'ARRAY SIZE SHOULD BE', I8)
STOP

WRITE (3,50) HED, SUBHED,NUMNP, NUMEL, NUMMAT, NUMNFQ, NUMSH,

* INTBAL, INTPRIN, MAXIT, TOL

FORMAT (1HO, 20X,A/1H ,20X,A///

*1H , 'NUMBER OF NODE POINTS-——————-- v,14/7/
*1H , 'NUMBER OF ELEMENTS-——————==="— ',14//
*1H , 'NUMBER OF MATERIALS——-——=—~=="— v,14//
*1H , '"NUMBER OF BOUNDARY FLUX NODES-"',I4//
*1H , 'NUMBER OF ELEMENT SHAPES--———- v,14//
*1H , 'CONTINUITY CHECK INTERVAL-———-= ',14//
*1H , 'OUTPUT INTERVAL-———====""=="""= v,14//
*1H , 'MAX NUMBER OF ITERATIONS--———- ',14//
*1H , 'ITERATION TOLERANCE-———======= ',E10.3//)
--READ DATA

READ (5,10) HED
READ (5, 60) (CELEM (N) ,N=1, NUMEL)
FORMAT (5E15.6)




65

115

READ (1) X,Y,Z,Q,QX,DET,DINT, DELAY, KODE, KX, NP, NSP, KODES, LD,
*NODEQ, POR, RESID, ATHET, BTHET, APERM, BPERM, BETA, GAMMA, PSIL

WRITE (9, 65) HED, SUBHED

FORMAT (1H ,20X,A/1H ,20X,A/1H ,5X, 'TIME', 9X, 'QSUB’,

*9X, 'QSUR', 9X, 'QTOT"', 9X, ' STOT ', 9X, ' QTOT ')
IF (HED1 .EQ. 'RES') GO TO 250

REWIND 8

READ (8) P

P1 (1;NUMNP)=P (1;NUMNP)

~-SET UP FOR TIME INTEGRATION

QSDEL (1;NQSDEL)=0.0

TINT=0.0

QINCUM=0.0

QOUTCUM=0.0

LA=1

TIME=DT

IPRINT=1

IQPRINT=1

IBAL=1

WRITE (3,80) HED,SUBHED,TIME, LA

FORMAT (/////20X,A/20X,A//40X, 'TIME=',E13.5,5X, 'TIME STEP =',
KT 4 /40K, ' HEXAKKhFhhkhkk kAR KK KA K KA K KK KAKKKKKKKK KKK 1 / /)

—--FORM AND SOLVE EQUATIONS

ITER=0

CALL FORSOL (A,B,AFLUX,BFLUX,C,D,DUMY,P,P1,Z,Q,QX,DET, DINT,
*CELEM, DETLAY, QSDEL, KODE, KX, NP, NSP, KODES, LD, NODEQ, NUMNP,
*NUMA, NUMEL, NUMMAT, MAXIT, INTBAL, INTPRIN, NSEEP, NDIM, MAXSP, NUMNFQ,
*NQ, NUMSH, NERR, IFAIL, 1A, TIME, DT,DT1, ITER, QIN, QOUT, TOL, IBAL,

*TPRINT, INTQPR, IQPRINT, NQSDEL, DTQS, TINT)

IF (NERR .GT. 0) GO TO 160

IF (IFAIL .NE. O0) RETURN

~~OUTPUT INFLOW AND OUTFLOW RESULTS

QINCUM=QINCUM+QIN
QOUTCUM=QOUTCUM+QOUT
WRITE (3,115) QOUTCUM, QINCUM

IF SOLUTION HAS NOT CONVERGED JUMP OUT OF LOOP

IF ERROR IN EQUATION SOLVER ROUTINE THEN RETURN

FORMAT (///1H ,'CUMMULATIVE OUTFLOW FROM CATCHMENT IS~--',6E13.5//
*1H , 'CUMMULATIVE INFLOW INTO CATCHMENT IS---',El13.5///)

IF (ABS(TIME-TMAX) .LE. 0.001*DT) GO TO 160

--SET UP FOR NEW TIME STEP

LA=LA+1
IBAL=IBAL+1
IPRINT=IPRINT+1
IQPRINT=IQPRINT+1
DT1=DT

~--REDUCE TIME STEP IF
—— (1) UNSATISFACTORY CONVERGENCE
-~ (2) RESTARTED WITH NEW CONDITIONS

IF (ITER .GE. MAXIT2 .OR. NERR .LT. 0 .OR. HED1

DT=0.5*DT
IF (DT .LT. DTMIN) DT=DTMIN

.NE.

'XXX') THEN




160

170

180

185

190

220

230

270
290

300

370

390

400

ELSE

DT=1.4%DT
IF (DT .GT. DTMAX) DT=DTMAX
END IF

IF ((TIME+DT) .GT. TMAX .OR. ABS(TMAX-TIME-DT) .LT. 0.2%DT) THEN

DT=TMAX-TIME

TIME=TMAX .
ELSE .

TIME=T IME+DT

END IF

HED1='XXX"

NERR=0

GO TO 70

IF (IPRINT .NE. 0) THEN

WRITE (3,170)
FORMAT (/////1HO,4(1H ,' NODE',4X, 'HEAD',SX, 'PSI 'y //)
DUMY (1;NUMNP) =P (1; NUMNP) +Z (1; NUMNP)
WRITE (3,180) (N,DUMY (N),P (N),N=1,NUMNP)
FORMAT (I8,2E12.5,I7,2E12.5,1I7,2E12.5,17,2E12.5)

END IF

WRITE (2,185) HED, SUBHED, NUMNP, TIME

FORMAT (1H ,20X,A/1H ,20X,A/1H , 'NUMBER OF NODE POINTS =',I5/
*1H , 'TIME =',E10.3)

WRITE (2,190) (N,KODE(N),P (N),N=1,NUMNP)

FORMAT (16,15,E12.5,215,E12.5,2I5,E12.5)

IF (NERR .GT. 0) GO TO 230

READ (4, 220) HED1

FORMAT (A)

IF (HED1 .EQ. 'END') RETURN

IF (HED1 .EQ. 'CON') GO TO 270

REWIND 7

WRITE (7) MAXIT,MAXIT2, INTBAL,INTPRIN,DT,DTMAX, DTMIN, TOL, TIME,
*QINCUM, QOUTCUM, LA, IPRINT, IBAL, INTQPR, IQPRINT, TINT, DTQS, NDELAY
WRITE(7) P,P1,Q,0QX,QSDEL,KODE

RETURN

~~RESTART AND READ IN NEW BOUNDARY CONDITIONS

READ (8) MAXIT,MAXIT2,INTBAL, INTPRIN, DT, DTMAX,DTMIN, TOL, TIME,
*QINCUM, QOUTCUM, LA, IPRINT, IBAL, INTQPR, IQPRINT, TINT, DTQS, NDELAY
READ (8) P,P1,Q,QX, QSDEL, KODE

READ (4,290) TMAX, DTMAX1

FORMAT (2E10.3)

I=INT ( (TMAX-TIME) /DTQS) +NDELAY

IF (I .GT. NQSDEL) GO TO 33
I1=INT ( (TIME-TINT) /DTQS)

DO 300 I=1,NDELAY

J=I1+I

QSDEL (I) =QSDEL (J)
NVEC=NQSDEL-NDELAY

QSDEL (NDELAY+1;NVEC) =0.0
TINT=TIME

IF (DTMAX1 .GT. 0.0) DTMAX=DTMAX1
FORMAT (I5,E20.6)

NODQX=0

READ (4,370) N,VALUE

IF (N .LT. 1) GO TO 130
NODQX=NODQX+1

NODE=NODEQ (1, NODQX)

IF (N .GT. NODE) GO TO 400

OX (NODQX) =VALUE

GO TO 390

END

ITYZR
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C>>>>>>>>>>>>>>>>>>>>>>>>>>>FORSOL SUBROUT INE<<KLLLLLLLLLLLLLLLLLLLLLLLLKL

SUBROUTINE FORSOL (A,B,AFLUX,BFLUX,C,D,DUMY,P,P1,%,Q,QX,DET,DINT,
*CELEM, DELAY, QSDEL, KODE, KX, NP, NSP, KODES, LD, NODEQ, NUMNP , NUMA,
*NUMEL, NUMMAT , MAXIT, INTBAL, INTPRIN, NSEEP, NDIM, MAXSP , NUMNFQ, NQ,
*NUMSH, NERR, IFAIL, LA, TIME, DT, DT1, ITER, QIN, QOUT, TOL, IBAL, IPRINT,

*INTQPR, IQPRINT, NQSDEL, DTQS, TINT)
PARAMETER (TOL2=0.01)

DIMENSION A (NUMA),B(NUMNP) ,AFLUX (18, NQ) , BFLUX (NQ) , C (NUMNP) ,

*D (NUMNP) , DUMY (NUMNP) , P (NUMNP) , P1 (NUMNP) , Z (NUMNP) , Q (NQ) , DELAY (NQ) ,
*DET (NUMSH) , QX (NQ) , DINT (3, 8, 4, NUMSH) , CELEM (NUMEL) , KODE (NUMNP) ,

*KX (10, NUMEL) , NP (MAXSP, NDIM) , NSP (NDIM) , KODES (NDIM) , LD (0 :NUMNP) ,
*NODEQ (18, NQ) ,ALOC (8, 8) ,BLOC (4) , DLOC (4) , LM(8) ,PLM (8) , QSDEL (NQSDEL)

COMMON /MAT/POR(1),RESID(1l),ATHET (1) ,BTHET (1), APERM (1)},
*BPERM (1) ,BETA (1) ,GAMMA (1) ,PSIL (1)

—~—-EXTRAPOLATION OF P VALUES

IF (LA .EQ. 1) GO TO 6
T3=TIME-0.5*DT
T2=TIME-DT
DTIT=LOG10 (TIME/T3) /LOG10 (TIME/T2)
IF (LA .LT. 4) THEN
DTT=0.5*DT/DT1
ELSE
T1=T2-DT1
DTT=LOG10 (T3/T2) /LOG10 (T2/T1)
END IF
DUMY (1;NUMNP) =P (1; NUMNP) +DTT* (P (1; NUMNP) ~P1 (1; NUMNP) )
P1 (1;NUMNP) =P (1; NUMNP)
P (1; NUMNP) =DUMY (1; NUMNP)

~~CHECK FOR MODIFICATION OF SURFACE FLUXES

DO 9 I=1,NUMNEQ
NOD=NODEQ (1, I}
IF (KODE (NOD) .EQ. 1) THEN
IF (Q(I) .GE. QX(I)) THEN
Q(I)=0.0
KODE (NOD) =0
END IF
ELSE IF (KODE (NOD) .EQ. O .AND. P(NOD) .GE. 0.0) THEN
P (NOD)=0.0
P1 (NOD)=0.0
KODE (NOD) =1
END IF
CONTINUE

~—INITIALISE ARRAYS

IF (LA .EQ. 1) GO TO 25
B(1;NUMNP)=0.0

D (1;NUMNP)=0.0

DO 20 I=0,NUMA-1,65535
LENGTH=MIN (NUMA-I, 65535)
A(I+1;LENGTH)=0.0
CONTINUE
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FORMS EQUTIONS IN AX=B FORM AND SOLVES. MODIFIES CONDITIONS ON
SEEPAGE FACES, REPEATS UNTIL REQUIRED TOLERANCE IS ACHIEVED.

FOR EACH ELEMENT ADD LOCAL SYSTEM OF EQUATIONS TO GLOBAL SYSYTEM.




c
2

wm

30

31

M=1
POROS=POR (1)
ATHETA=ATHET (1)
BTHETA=BTHET (1)
BMINUS=BTHETA-1.0
APOR2=BTHETA*ATHETA* (POR (1) -RESID (1))
APERMM=1.0/APERM (1)
BPERMM=BPERM (1)
BETAM=BETA (1)
GAMMAM=GAMMA (1)
PSILM=PSIL (1)
SMCF IX=BETAM*POROS
DO 50 N=1,NUMEL
IF (KX (9,N) .NE. M) THEN
M=KX (9, N)
POROS=POR (M)
ATHETA=ATHET (M)
BTHETA=BTHET (M)
BMINUS=BTHETA-1.0
APOR2=ATHETA*BTHETA* (POR (M) ~RESID (M) )
APERMM=1.0/APERM (M)
BPERMM=BPERM (M)
BETAM=BETA (M)
GAMMAM=GAMMA (M)
PSILM=PSIL (M)
SMCF IX=BETAM*POROS
END IF
DO 30 I=1,8
LM (I) =KX (I,N)
PLM (I) =P (LM(I))
ISHAP=KX (10, N)
DETL=DET (ISHAP)
CSATM=CELEM (N) *DETL
CALL LOCAL (ALOC,BLOC,DLOC,PLM,DINT(1,1,1, ISHAP),6POROS,
*ATHETA, BTHETA, BMINUS , APERMM, BPERMM, APOR2,, BETAM, GAMMAM, PSILM,
*SMCFIX)
DO 31 L=1,4
BLOCI=BLOC (L) *CSATM
DLOCI=DLOC (L) *DETL
I1=LM (L)
I2=1M (L+4)
B(I1)=B(I1)+BLOCI
B(I2)=B(I2)+BLOCI
D(I1l)=D(I1)+DLOCI
D(I2)=D(I2)+DLOCI
DO 33 L=1,8
I=IM (L)
LDI=LD (I)
DO 32 LL=1,8
K=I-IM (LL)
IF (K .GE. 0) A(LDI-K)=A(LDI-K)+ALOC (L,LL)*CSATM
CONTINUE
CONTINUE
CONTINUE

~-FORM EFFECTIVE MATRIX EQUATION

DTR=1.0/DT

D (1; NUMNP) =D (1;NUMNP) *DTR

B (1;NUMNP) =D (1; NUMNP) *P1 (1;NUMNP) -B (1; NUMNP)
DO 70 N=1, NUMNP

LDN=LD (N)

A (LDN) =A (LDN) +D (N)

-—ADD CONTRIBUTION OF A AND B TO AFLUX AND BFLUX

IAN




DO 100 N=1, NUMNFQ

NOD=NODEQ (1, N)

IF (KODE(NOD) .LT. 1 .OR. KODE (NOD) .GT. 2) THEN
B (NOD) =B (NOD) +QX (N)

ELSE

LDN=LD (NOD)
AFLUX (1, N)=A (LDN)
BFLUX (N) =B (NOD)
B (NOD) =B (NOD) +Q (N)
DO 80 I=2,18
NODI=NODEQ (I, N)
IF (NODI .LT. 1) GO TO 100
IF (NODI .LT. NOD) THEN
LDI=LDN-NOD+NODI

ELSE
LDI=LD (NODI) -NODI+NOD
END IF
80 AFLUX (I, N)=A (LDI)
END IF
100 CONTINUE
c
Commm ADJUST B VECTOR FOR FIXED HEAD NODES
c
IF (ITER .GE. 1) THEN
WHERE (KODE (1;NUMNP) .GT. 0) B(1;NUMNP)=C(1;NUMNP)
ELSE
WHERE (XKODE (1;NUMNP) .GT. 0) B(1;NUMNP)=P (1;NUMNP)
END IF
c
Co—m SOLVE EQUATIONS
c
CALL SKYSOL (A,B,DUMY,P,XODE,LD, NUMNP, NUMA, IFAIL) E
IF (IFAIL .NE. 0) RETURN
c
Cromms DETERMINE UNKNOWN BOUNDARY FLUXES
c
DO 200 N=1,NUMNFQ
NOD=NODEQ (1, N)
IF (KODE (NOD) .LT. 1 .OR. KODE(NOD) .GT. 2) GO TO 200
QON=AFLUX (1, N) *P (NOD) ~BFLUX (N)
DO 150 I=2,18
NOD=NODEQ (I, N)
IF (NOD .LT. 1) GO TO 180
150 QN=QN+AFLUX (I, N) *P (NOD)
180 Q (N) =ON
200 CONTINUE
ITER=ITER+1
c
Commmmm MODIFY CONDITIONS ON SEEPAGE FACES
c
DO 500 I=1,NSEEP
ICHECK=0
NS=NSP (I)
NOD=0
DO 480 J=1,NS
N=NP (J, I)
400 NOD=NOD+1

IF (N .GT. NODEQ(1,NOD)) GO TO 400
IF (KODE (N) .NE. ~2) GO TO 4530

IF (P(N) .LT. 0.0) ICHECK=1l

IF (ICHECK .GT. 0) GO TO 480
KODE (N) =2

P (N)=0.0

P1(N)=0.0

GO TO 480
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450

IF (KODE(N) .NE. 2) GO TO 480

IF (ICHECK .GT. 0) GO TO 470

IF ((Q(NOD) .LT. 0.0 .AND. KODES(I) .LT. 0) .OR.
(Q(NOD) .GT. 0.0 .AND. KODES(I) .GT. 0)) GO TO 480

470 KODE (N) =—2
Q (NOD)=0.0
ICHECK=1
480 CONTINUE
500 CONTINUE
c
o CHECK FOR MODIFICATION OF SURFACE FLUXES
c
DO 530 I=1,NUMNFQ
NOD=NODEQ (1, I)
IF (KODE (NOD) .EQ. 1) THEN
IF (Q(I) .GE. QX(I)) THEN
Q(1)=0.0
KODE (NOD) =0
END IF
ELSE IF (KODE(NOD) .EQ. O .AND. P (NOD) .GE. 0.0) THEN
P (NOD) =0.0
P1 (NOD)=0.0
KODE (NOD) =1
END IF
530 CONTINUE
c
Cmmm—m ITERATE TO IMPROVE SOLUTION
c
IF (ITER .EQ. 1) GO TO 538
D (1;NUMNP) =C (1; NUMNP)
C(1; NUMNP) =VABS (P (1; NUMNP) ~C (1;NUMNP) ; C (1; NUMNP) )
NODMAX=Q8SMAXT (C (1;NUMNP) ) +1
EP SLON=C (NODMAX)
WRITE (3,535) ITER,EPSLON,NODMAX
535 FORMAT (//1H , 'MAXIMUM CHANGE IN PRESSURE HEAD DURING ITERATION',
*I3,' WAS',E13.5,' AT NODE',I8)
IF (EPSLON .LE. TOL .OR. ITER .GE. MAXIT) GO TO 540
c
Cmmmmm CHECK FOR OSCILLATION ABOUT SOLUTION
c
IF ((EPSLON-EPSLON1) .LT. -1.0E-4 .OR. ITER .EQ. 2) GO TO 537
WHERE ((P(1;NUMNP) .LT. 0.0 .AND. D(1;NUMNP) .GT. 0.0) .OR.
* (P (1;NUMNP) .GT. 0.0 .AND. D(1;NUMNP) .LT. 0.0))
P (1; NUMNP) =0.0
P1 (1;NUMNP)=0.0
OTHERWISE
P (1; NUMNP) =0.5% (P (1; NUMNP) +D (1; NUMNP) )
END WHERE
WRITE (3, 536)
536  FORMAT (1H ,20X, ' *******x**JARNING FORCED CONVERGENCE****** %' /)
NERR=-1
GO TO 540
c
Cmmmm= DOMAIN RESTRICTION SECTION
c
537 IF (ITER .EQ. 2) THEN
WHERE (C(1;NUMNP) .LE. TOL2 .AND. KODE (1;NUMNP) .EQ. 0)
* KODE (1;NUMNP)=4
END IF
538  C(1;NUMNP) =P (1;NUMNP)
c
Cmmmmm INTERPOLATE P VALUES TO GET ESTIMATE OF P AT K+1/2
c

IF (LA .EQ. 1) THEN
P (1; NUMNP) =0.5* (P (1; NUMNP) +P1 (1; NUMNP) )

ELSE

¥




P (1;NUMNP) =P (1;NUMNP)+DTIT* (P1 (1;NUMNP)-P (1; NUMNP))
END IF

C————- GO TO START FOR NEXT ITERATION

EPSLON1=EPSLON
GO TO 10

WHERE (KODE (1;NUMNP) .EQ. 4) KODE(1;NUMNP)=0

Crmm—m CONTINUITY CALCULATIONS

542

545

546

580

585

588

590

IF (IBAL .EQ. INTBAL) THEN
WRITE (3,542) ITER
FORMAT (////1H , 'CONTINUITY CALCULATIONS AT ITERATION', I3/
TH e e e e /)
CALL CONTIN (P,P1,Q,QX,DET,KODE, KX, NODEQ, NUMNP, NUMEL, NUMMAT,
NUMNFQ, NQ, NUMSH, DT, STOT, QTOT)
IBAL=0

END IF

PRINT RESULTS

IF (IPRINT .EQ. INTPRIN) THEN
WRITE (3, 545)
FORMAT(/////1H0,4(1K ,' NODE',4X,'HEAD',6 9%, 'PSI 'Y //)
DUMY (1; NUMNP) =P (1;NUMNP)+2Z (1; NUMNP)
WRITE (3,546) (N,DUMY(N),P (N),N=1, NUMNP)
FORMAT (I18,2E12.5,17,2E12.5,17,2E12.5,1I7,2E12.5)
IPRINT=0
END IF
THALF=TIME-0.5*DT
IF (IQPRINT .EQ. INTQPR) THEN
WRITE (3, 580) TBHALF
FORMAT (////1H , 'NODAL FLUXES AT TIME',E13.5/1H ,6(1H ,' NODE',
3X, 'DISCHARGE ')//)
J=0
N=0
N=N+1
IF (N .GT. NUMNFQ) GO TO 588
J=J+1
IF (Q(N) .NE. 0.0) THEN
PLM(J) =Q (N)
LM (J) =NODEQ (1, N)
ELSE
J=J-1
END IF
IF (J .LT. 6) GO TO 585
WRITE (3,590) (LM(I),PLM(I),I=1,J)
J=0
IF (N .LT. NUMNFQ) GO TO 585
FORMAT (I8,E13.5,17,E13.5,17,E13.5,17,E13.5,17,E13.5,17,E13.5)
IQPRINT=0
END IF
T2=TIME-TINT
T1=T2-DT
QSIN=0.0
QIN=0.0
QSUB=0.0
QSUR=0.0
DO 800 I=1,NUMNEFQ
QIN=QIN+QX (I)
QI=Q(I)
NOD=NODEQ (1, I)

SEEPAGE FACE FLOW ADDED TO SUBSURFACE FLOW (QSUB)
THEN CHECKS ARE MADE ON FLOW TYPES OF ALL NON-FIXED

2AZ




760

820

850

900

FLUX NODES WITH KODE=1

IF (KODE (NOD) .EQ. 2) THEN

QSUB=QSUB-QI

ELSE IF (KODE (NOD) .EQ. 1) THEN

OXI=QX (I)
TDEL=DELAY (I)

I1=INT ((T1+TDEL) /DTQS) +1
I2=INT ( (T2+TDEL) /DTQS)
DO 760 II=I1,I2
QSDEL(II)=QSDEL(II)+QXI-QI
IF (QI .GT. 0.0) QSIN=QSIN+QI

ELSE

QSIN=QSIN+QX (I)

END IF
CONTINUE

I1=INT (T1/DTQS)+1

I2=INT (T2/DTQS)
QSUM=0.0
DO 820 I=I1,I2

QSUM=QSUM+QSDEL (I)
QSUR=QSUR+QSUM/REAL (I2~I1+1)

QOUT=QSUB+QSUR

WRITE (9, 850) THALF,QSUB, QSUR,QOUT, STOT, QTOT

FORMAT (E14.5,5E13.5)

WRITE (3, 900) QSUB, QSIN, QSUR, QOUT, QIN

FORMAT (///1H , 'TOTAL SUBSURFACE OUTFLOW IS ',E19.5//1H ,

*'TOTAL SOIL INFLOW IS

* 'RUNOFF IS

',E19.5///1H , 'TOTAL SURFACE
',E19.5///1H , 'TOTAL OUTFLOW IS

*E19.5///1H , 'TOTAL INFLOW IS',13X,E19.5//)
IF (EPSLON .GT. TOL .AND. ITER .GE. MAXIT .AND. NERR .EQ. 0)

*NERR=1
RETURN
END
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CH>>>55555>>>>5>>>5>>>>>>>TOCAL SUBROUTINE<<<KLLLLLLLLLLLLLLLLLLLLLLLLLLLKL

Commm—m EVALUATES LOCAL MATRIX EQUATION FOR ELEMENT N

SUBROUTINE LOCAL (ALOC,BLOC,DLOC,PLM,DINTL,POROS,ATHETA,
*BTHETA,BMINUS,APERMM,BPERMM,APORZ,BETAM,GAMMAM,PSILM,SMCFIX)
DIMENSION ALOC(8,8),BLOC(4),DLOC (4),PLM(8),DINTL(3,8,4)
COMMON /BASIS/ SHAP (4, 4)

ALOC(1,1;64)=0.0

DO 25 I=1,4

BLOC (I)=0.0

25 DLOC(I)=0.0
c
C———— LOCP ON GAUSS POINTS
c
DO 1000 K=1,4
PK=0.0
DO 100 I=1,4
100 PK=PK+SHAP (I,K) * (PLM(I)+PLM(I+4))
IF (PK .LT. PSILM) THEN
PKM=-PK

RELK=1.0/(1.0+APERMM*PKM* * BPERMM)

THET=1.0/ (ATHETA+PKM**BTHETA)

SMC=APOR2*PKM* *BMINUS*THET *THET
ELSE IF (PK .LT. 0.0) THEN

PKM=-PK

RELK=1.0/ (1.0+APERMM*PKM* * BPERMM)

SMC=POROS* (2 .0*GAMMAM*PKM+BETAM)
ELSE

RELK=1.0

SMC=SMCFIX
END IF

DO 700 I=1,8

DO 600 J=I,8

SUM=0.0
DO 550 L=1,3

550 SUM=SUM+DINTL (L, I,K) *DINTL (L, J,K)
600 ALOC (I, J)=ALOC (I, J)+SUM*RELK
700 CONTINUE

DO 800 I=1,4
800 DLOC (I)=DLOC (I)+SHAP (I,K) *SMC

DO 950 I=1,4
850 BLOC (I)=BLOC (I)+DINTL (3, I,K)*RELK
1000 CONTINUE
C -
Crmm—— ADD VALUES TO SYMMETRICAL LOCAL ARRAYS
c

DO 1200 I=2,8
DO 1100 J=1,I-1
1100 ALOC (I, J)=ALOC(J,I)
1200 CONTINUE
RETURN
END




o}
o}

COE5535533333>>>>>>>>>>>>>>>>SKYSOL SUBROUT INE<\<<<<<<<<<<<<<<<<<<<<<<<<<

Cmmm—— FACTORISE AND SOLVE EQUATIONS USING METHOD FROM FELLIPA(1975)

SUBROUTINE SKYSOL (A, B, DUMY,P,KODE, LD, NUMNP, NUMA, IFAIL)
DIMENSION A (NUMA), DUMY (NUMNP), LD (0:NUMNP) , B (NUMNP) ,P (NUMNP),
*KODE (NUMNP)

REAL TVEC(2)

BIT BVEC(1)

DESCRIPTOR TVEC, BVEC

DATA EPSMAC/5.688E-14/

Crm—= COMPUTE SQUARED LENGTHS OF UNCONSTRAINED ROWS

IF (KODE(1) .LT. 1) THEN
DUMY (1)=A (1) *A (1)

ELSE
DUMY (1)=0.0

END IF

DO 1000 I=2,NUMNP

IF (KODE(I) .GT. 0) THEN
DUMY (I)=0.0

ELSE
II=LD(I)
DUMY (I)=A(II)*A(II)
M=II-I
K=MAX (1,LD (I-1)-M+1)
L=I-1
NVEC=L—-K+1
ASSIGN TVEC(1l), .DYN. NVEC
ASSIGN TVEC(2), .DYN. NVEC
ASSIGN BVEC(1l), .DYN. NVEC
BVEC (1) =KODE (K;NVEC) .LT. 1
TVEC (1) =A (M+K; NVEC) *A (M+K; NVEC)
TVEC (2) =Q8VMASK (TVEC (1) ,0.0,BVEC (1) ; TVEC (2))
DUMY (I)=DUMY (I)+Q8SSUM (TVEC(2))
TVEC (1) =DUMY (K;NVEC) +TVEC (1)
DUMY (K;NVEC) =Q8VCTRL (TVEC (1) ,BVEC (1) ; DUMY (K;NVEC) )
J=L+1

800 FREE
END IF
1000 CONTINUE

Co—mmm FACTORISE

IF (KODE(l) .GT. 0) GO TO 1500
TOLROW=EPSMAC*SQRT (DUMY (1))
IF (A(l) .LE. 0.0) IFAIL=-1
IF (ABS(A(1l)) .LT. TOLROW) IFAIL=1
IF (IFAIL .NE. 0) RETURN
A(l)=1.0/A(1)
1500 DO 4000 J=2, NUMNP
IF (KODE(J) .GT. 0) GO TO 4000
JJI=LD (J)
D=A (JJ)
JMJ=LD (J~1)
JK=JJ-JIMJ
KU=JK-1
IJK=J-JK
DO 2000 K=1,KU
I=IJK+K
DUMYK=0.0
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IF (KCDE(I) .GT. 0) GO TO 2000

ITI=LD(I)

M=MIN(II-LD(I-1),K)~-1

IJ=JMJ+K

IF (M .EQ. 0) THEN
DUMYK=A (IJ)

ELSE

DUMYK=A (IJ)} -Q8SDOT (A (II-M; M) , DUMY (K-M; M) )
END IF
A (IJ)=DUMYK*A(II)

2000 DUMY (K) =DUMYXK
c
Crmm—= COMPUTE DIAGONAL ELEMENT D
c
D=D-Q8SDOT (A (JMJ+1;KU) , DUMY (1;KU))
c
Cm—r= SINGULARITY TEST
c
TOLROW=EPSMAC*SQRT (DUMY (J) )
IF (ABS(D) .GT. TOLROW) GO TO 2500
IFAIL=J
RETURN
2500 A(JJ)=1.0/D
c
Commmm POSITIVE DEFINITNESS CHECK
c
IF (D .GT. 0.0) GO TO 4000
IFAIL=-J
RETURN
4000 CONTINUE
c
Commmm END OF FACTORISATION SECTION
c
P (1; NUMNP) =B (1; NUMNP)
c
Comm RHS MODIFICATION
c
DO 5000 I=1, NUMNP
IF (KODE(I) .LT. 1) GO TO 5000
II=LD(I)
BI=B(I)
IF (BI .EQ. 0.0) GO TO 5000
K=I-II+LD(I-1)+1
DO 4500 J=K, NUMNP
IF (KODE(J) .GT. 0) GO TO 4900
JJ=LD (J)
M=J-I
IF (M .LT. O0) THEN
P(J)=P (J)-A(II+M)*BI
ELSE
IJ=JJ-M
IF ((IJ-LD(J-1)) .GT. 0) P(J)=P(J)-A(IJ)*BI
END IF
4900 CONTINUE
5000 CONTINUE
c
Commee FORWARD SUBSTITUTION PASS
c

IF (KODE(l) .GT. 0) P(1)=0.0
DO 5500 I=2, NUMNP
IF (KODE(I) .LT. 1) THEN

II=LD(I)

IMI=LD (I-1)+1

M=II~-IMI

P (I)=P (I)-Q8SDOT (A (IMI;M),P(I-M;M))
ELSE
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7000

P(I)=0.0
END TIF
CONTINUE

SCALING PASS

DO 6000 I=1, NUMNP
II=LD(I)
P(I)=A(II)*P(I)

BACK SUBSTITUTION PASS

DO 7000 I=NUMNP,2,-1
IF (KODE(I) .LT. 1) THEN
II=LD(I)
M=II-LD(I-1)-1
PI=P (I)
P(I-M;M) =P (I-M;M)-A(II-M;M)*PI
ELSE
P (I)=B(I)
END IF
CONTINUE
IF (KODE(1l) .GT. 0) P(1)=B(1l)
RETURN
END

AR




c
COO>DOO>>D>OD>>DD>>>>>>>>>>>>>CONTIN SUBROUTINEKKLLLLLLLLLLLLLLLLLLLLLLLLKL

Crmmmmm EVALUATES CONINUITY CHECK OVER ENTIRE MESH USING FOUR POINT GAUSS
C————- QUADRATURE.

C

c

SUBROUTINE CONTIN (P,P1,Q,QX,DET,KODE, KX, NODEQ, NUMNP, NUMEL, NUMMAT,
*NUMNFQ, NQ, NUMSH, DT, STOT, QTOT)

DIMENSION P (NUMNP),P1 (NUMNP), Q(NQ), QX (NQ), DET (NUMSH) ,

*KX (10, NUMEL) , KODE (NUMNP) , NODEQ (18, NQ) , PLM(8) ,P1LM(8)

COMMON /MAT/POR(1) ,RESID(1),ATHET(1),BTHET (1),APERM(1),

*BPERM (1) ,BETA (1) ,GAMMA (1) ,PSIL (1)

COMMON /BASIS/ SHAP (4, 4)

Cmm—— DETERMINE NET SOIL FLUX

QTOT=0.0
DO 5 I=1,NUMNEFQ
NOD=NODEQ (1, I)
IF (KODE (NOD) .GT. 0) THEN
QTOT=QTOT+Q (I)
ELSE
QTOT=QTOT+QX (I)
END IF
5 CONT INUE
QTOT=QTOT*DT
STOT=0.0D0

C———== LOOP ON ELEMENTS TO DETERMINE CHANGE IN STORAGE OVER TIME DT

M=1
POROS=POR (1)
ATHETA=ATHET (1)
BTHETA=BTHET (1)
RESIDM=RESID (1)
BETAM=BETA (1)
GAMMAM=GAMMA (1)
PSILM=PSIL (1)
ATHPOR=ATHETA* (POROS—-RESIDM)
DO 100 N=1,NUMEL
IF (KX(9,N) .NE. M) THEN
M=KX (9,N)
POROS=POR (M)
ATHETA=ATHET (M)
BTHETA=BTHET (M)
RESIDM=RESID (M)
BETAM=BETA (M)
GAMMAM=GAMMA (M)
PSILM=PSIL (M)
ATHPOR=ATHETA* (POROS~RESIDM)
END IF
DO 30 I=1,8
II=KX(I,N)
PLM(I)=P (II)
30 P1LM(I)=P1(II)
ISHAP=KX (10, N)

Cmmmmmm— LOOP ON GAUSS POINTS
DETK=DET (ISHAP)
DO 70 K=1,4

PK=0.0
P1K=0.0
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40

160
170
180

DO 40 I=1,4
PR=PK+SHAP (I,K)* (PLM(I)+PLM(I+4))
P1K=P1K+SHAP (I,K)* (P1LM(I)+P1LM(I+4))
IF (PK .LT. PSILM) THEN
THET=RESIDM+ATHPOR/ (ATHETA+ (~PK) **BTHETA)
ELSE IF (PK .LT. 0.0) THEN
THET=POROS* (1.0+BETAM*PK~GAMMAM*PK *PK)
ELSE
THET=POROS* (1.0+BETAM*PK)
END IF
IF (P1K .LT. PSILM) THEN
THET1=RESIDM+ATHPOR/ (ATHETA+ (-P1K) **BTHETA)
ELSE IF (P1K .LT. 0.0) THEN
THET1=POROS* (1.0+BETAM*P1K-GAMMAM*P1K*P1K)
ELSE
THET1=POROS* (1.0+BETAM*P1K)
END IF
STOT=STOT+ (THET-THET1) *DETK
CONTINUE
CONTINUE

—-CALCULATE ERRORS

PMB=0.0

IF (ABS(QTOT) .LT. 1.0E-22) GO TO 170

PMB=100.0* (STOT-QTOT) /QTOT

WRITE(3,160) PMB

FORMAT (1H , 'MASS CONTINUITY ERROR IS',E13.5, '"PERCENT')
WRITE(3,180) STOT,QTOT

FORMAT (1H , 'NET CHANGE IN STORAGE IS',E13.5,

*! NET INFLOW IS',E13.5)

RETURN

END




C>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>BLOCK DATA<KLLLLLLLLLLLLLLLLLLLL LL Lk
Cm——= PROVIDES DATA FOR COMMON BLOCK BASIS

BLOCK DATA

PARAMETER (E=0.125,RT=0.57735026918963,SX=1.0/6.0, R=SX+RT*0.25,
*S=SX—RT*O.25,T=1.0/l2.0,U=(l.O+RT)/8.0,V=(1.0—RT)/8.0)

COMMON /BASIS/ SHAP (4, 4)

DATA SHAP/R,T,S,T,T,R,T,S,S,T,R,T,T,S,T,R/

END

e




Listing of INDAT

s i




PROGRAM INDAT (INPUT, OUTPUT, TAPE1l, TAPE4=INPUT, TAPE3=0UTPUT)

cC
Crmm= PROGRAM INDAT, JULY 1986 VERSION. GENERATES DATA FOR
Cmmmom—— VSAT3D FOR ANY ELEMENT SHAPE AND DUMPS ON UNFORMATTED FILE
Cmmm—m USING ELEMENT SHAPES
cC
Cr—=== THE SIZE OF BS MUST BE AT LEAST S5*NUMNP + 97*NUMSH
C——m—= + 3*MAX (1,NUMNFQ) + MAX (1, NUMFX) .
C
C—w= THE SIZE OF IBS MUST BE AT LEAST 1 + 2*NUMNP + 10*NUMEL +
Cr—me MAX (1,NSEEP) * (2 + MAX(1,MAXS)) + 18*MAX(1l,NUMNFQ) + MAX (1, NUMFX) .
C
Cmm——= THE SIZE OF EACH ARRAY IN COMMON/MAT/ MUST BE AT LEAST NUMMAT.
C
PARAMETER (NBS=500000, NIBS=100000)
CHARACTER*80 HED, SUBHED
COMMON BS (NBS) , IBS (NIBS)
COMMON /MAT/POR(1) ,RESID(1),ATHET (1) ,BTHET (1), APERM (1),
*BPERM (1) ,BETA (1), GAMMA (1) ,PSIL (1)
C |
Cr———= INITIALIZE ARRAYS ]
o}
DO 5 I=1,NBS
5 BS(I)=0.0
DO 10 I=1,NIBS
10 IBS(I)=0
READ (4,20) HED
READ (4,20) SUBHED

20 FORMAT (A)

READ (4,30) NUMNP,NUMEL, NUMMAT, NSEEP, MAXS, NUMNFQ, NUMFX, NUMSH
30 FORMAT (8I5)

NDIM=MAX (1, NSEEP)

MAXSP=MAX (1, MAXS)

NQ=MAX (1, NUMNFQ)

NX=MAX (1, NUMFX)

Cm—m= EVALUATE DIMENSIONS FOR REAL ARRAYS

[e]

N1=1+NUMNP
N2=N1+NUMNP
N3=N2+NUMNP
N4=N3+NUMNP
N5=N4+NUMNP
N6&=N5+NQ
N7=N6+NQ
N8=N7+NUMSH
N9=N8+96*NUMSH
N10=NS+NQ

Cmmmm EVALUATE DIMENSIONS FOR INTEGER ARRAYS

I1=1+NUMNP

I2=I1+10*NUMEL

I3=I2+NDIM*MAXSP

I4=I3+NDIM

I5=I4+NDIM

I6=I5+NUMNP+1

I7=I6+18*NQ

CALL SETUP (BS(l),BS(N1l),BS(N2),BS(N3),BS(N4),BS (NS5),BS(N6),
*BS (N7) ,BS (N8) ,BS (N9) ,BS(N10) ,IBS (1l),IBS(I1l),IBS(I2),IBS(I3),
*IBS(I4),IBS(IS),IBS(I6),IBS(I7),NUMNP, NUMEL, NUMMAT, NSEEP, NDIM,
*MAXSP, NUMNFQ, NUMFX, NQ, NX, NUMSH, HED, SUBHED)

STOP

END
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C
C>>>55555>>>55555>55>5>>>>>>>SETUP  SUBROUTINELKLLLLLLLLLLLLLLLLLLLLLLLLLLKL

Com—— SETS THE DIMENSIONS OF ALL ARRAYS IN BLANK COMMON.

SUBROUTINE SETUP (P,P1,X,Y,Z,Q,QX,DET,DINT,DELAY, QXX, KODE, KX, NP,
*NSP, KODES, LD, NODEQ, NODEX , NUMNP , NUMEL, NUMMAT, NSEEP, NDIM, MAXSP,
*NUMNFQ, NUMFX, NQ, NX, NUMSH, HED, SUBHED)

CHARACTER*80 HED, SUBHED

DIMENSION P (NUMNP) ,P1 (NUMNP), X (NUMNP),b Y (NUMNP),b Z (NUMNP), Q (NQ),

*QX (NQ) ,DET (NUMSH) , DINT (3, 8, 4, NUMSH) , KODE (NUMNP) , KX (10, NUMEL) ,
*NP (MAXSP,NDIM) , NSP (NDIM) ,KODES (NDIM) , LD (0:NUMNP) , NODEQ (18, NQ),
*NODEX (NX) , DELAY (NQ) , QXX (NX)
COMMON /MAT/POR(1),RESID(1),ATHET(1),BTHET (1), APERM(1),
*BPERM (1) ,BETA (1) ,GAMMA (1) ,PSIL (1)
WRITE (3,50) HED, SUBHED, NUMNP, NUMEL, NUMMAT, NUMNFQ, NUMFX, NUMSH
50 FORMAT (1HO, 20X,A/1H ,20X,A///
*1H , 'NUMBER OF NODE POINTS—-——————— ',I4//
*1H , 'NUMBER OF ELEMENTS-————=—=—=——— ‘,I4//
*1H , '"NUMBER OF MATERIALS=—=——==——==- ',I4//
*1H , 'NUMBER OF NODE POINTS WITH'/
*1H , '"UNKNOWN FLUX--——————————————— ',I14//
*1H , 'NUMBER OF NODE POINTS WITH'/
*1H , 'FIXED FLUX-————————m——— e ',I4//
*1H , 'NUMBER OF ELEMENT SHAPES-—--- v,14//)
c ‘
C-————READ AND GENERATE DATA |
c {

CALL GENDAT (X,Y,Z,Q,0Q0X,DELAY, OXX, KODE, KX, NP, NSP, KODES, LD, NODEQ, :

*NODEX, NUMNP, NUMEL, NSEEP, NDIM, MAXSP , NUMNFQ, NUMFX, NQ, NX, NUMSH) :
CALL OUTDAT (X,Y,Z,Q,0Q0X,DET,DINT,DELAY, KODE, KX, NP, NSP, KODES, LD,
*NODEQ, NUMNP, NUMEL, NUMMAT, INT, NSEEP, NDIM, MAXSP, NUMNFQ, NQ, NUMSH)

c
Cm——— OUTPUT DATA TO UNFORMATTED FILE
c %
NUMA=LD (NUMNP) |
REWIND 1
WRITE (1) NUMA, NUMNP, NUMEL, NUMMAT, NSEEP, NDIM, MAXSP, NUMNFQ, NQ,
*NUMSH, HED, SUBHED
WRITE (1) X,Y,Z,Q,0QX,DET,DINT,DELAY,KODE, KX, NP, NSP, KODES, LD, NODEQ,
*POR, RESID, ATHET, BTHET, APERM, BPERM, BETA, GAMMA, PSIL
o
o p—— OUTPUT BLANK COMMON REQUIREMENTS
c

NBS=9*NUMNP+NUMA+NUMEL+22*NQ+97*NUMSH
NIBS=1+2*NUMNP+10*NUMEL+NDIM* (2+MAXSP) +18*NQ
WRITE (3,100) NBS,NIBS

100 FORMAT(///1H , 'BLANK COMMON REQUIREMENTS'/1H ,'—-————————m——v ',
KO e e — */1H ,'THE SIZE OF ARRAY BS IN VSAT3D MUST RBE’,
*' AT LEAST',I10/1H ,'THE SIZE OF ARRAY IBS IN VSAT3D MUST RE',
** AT LEAST',I9)
RETURN
END
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C>>>>>>>>>>>>>>>>>>>>>>>>>>>>SUBROUT INE OUTDAT<<<KKLLLLLLLLLLLLLLLLLLLLLL
C

R INPUTS DATA FOR EACH MATERIAL TYPE AND OUTPUTS ALL DATA TO
C—=mmm FORMATTED FILE ALSO GENERATES JACOBIAN DATA FOR EACH GAUSS POINT.
c

c

SUBROUTINE OUTDAT (X,Y,Z,Q,QX,DET,DINT,DELAY,KODE,KX,NP,NSP,KODES,
*LD,NODEQ,NUMNP,NUMEL,NUMMAT,INT,NSEEP,NDIM,MAXSP,NUMNFQ,NQ,
*NUMSH)

DIMENSION X(NUMNP),Y(NUMNP),Z(NUMNP),Q(NQ),DELAY(NQ),
*DET(NUMSH),DINT(3,8,4,NUMSH),KODE(NUMNP),KX(lO,NUMEL),
*LD(O:NUMNP),NODEQ(18,NQ),NP(MAXSP,NDIM),NSP(NDIM),
*KODES(NDIM),QX(NQ),RINV(3,3)

COMMON /MAT/POR(l),RESID(l),ATHET(l),BTHET(l),APERM(l),
*BPERM(l),BETA(l),GAMMA(l),PSIL(l)

COMMON /BASIS/ DSHAP (3, 4, 4)

Com—m= MATERIAL PROPERTIES :
c

WRITE (3, 20)
20 FORMAT (///1H , '"MATERIAL PROPERTIES ARE'//)

DO 40 M=1, NUMMAT
READ (4, 30) POR(M),ATHET(M),BTHET(M),RESID(M),APERM(M),BPERM(M)
30 FORMAT (6E10. 3)
READ (4, 35) BETA (M) , GAMMA (M) , PSIL (M)
35 FORMAT (3E10. 3)
40 WRITE (3, 50) M, POR (M) ,ATHET (M) , BTHET (M) , RESID (M), i
*APERM(M),BPERM(M),BETA(M),GAMMA(M),PSIL(M)
50 FORMAT (1H , 'MATERIAL *,I3//1H , 'POROSITY ',E13.5/1H ,

* ' ATHETA ',E13.5/1H , 'BTHETA ',E13.5/1K , 'RESID M.C.',

*E13.5/1H , 'APERM ',E13.5/1H , 'BPERM ',E13.5/1H ,

*'BETA', 6X,E13.5/1H , 'GAMMA ',E13.5/1H , 'LIMIT PSI ',

*E13.5///) |
C ¢
[o—— BOUNDARY FLUX DATA i
c

IF (NUMNFQ .LT. 1) GO TO 82

WRITE (3, 55)

55 FORMAT (1H , 'BOUNDARY FLUX NODES'//1H ,' NODE',

*5X, 'INITIAL VALUE', 40X, 'NODES CONNECTED TO', 36X, 'DELAY TIME'/
*1H ,8X, 'UNFIXED', 7X, 'FIXED')
DO 65 N=1, NUMNFQ
WRITE (3, 61) NODEQ(l,N),Q(N),QX(N),(NODEQ(I,N),I=2,18),DELAY(N)
61 FORMAT (16,2E12.4,17,16I5,E12.4)
65 CONTINUE

C
C————= SEEPAGE FACE INFORMATION .
C
82 IF (NSEEP .LT. 1) GO TO 100

WRITE (3, 83)
83 FORMAT(///1H , 'SEEPAGE FACE INFORMATION'/)

DO 90 I=1,NSEEP

WRITE (3,87) I,NSP(I),KODES(I)
87 FORMAT (///1H , 'SEEPAGE FACE NUMBER---',I5, 15X,

* 'NUMBER OF NODES———==—= 1,15, SEEPAGE FACE CODE-———~ ',

*I5/1H , 'NODE NUMBERS')

NS=NSP (I)

WRITE (3,88) (NP (J,I),J=1,NS)
88 FORMAT (14X,16,1715)

90 CONTINUE
c
Cr——— NODE POINT INFORMATION




1C0 WRITE (3, 110)

110 FORMAT (////1H , 'NODAL POINT INFORMATION'///1H ,°' NODE NO.',S5X,
*'KODE', 7X, 'X', 14X, 'Y', 14X, '2'//)
DO 190 I=1, NUMNP

1390 WRITE (3,200) I,KODE(I),X(I),Y(I),Z(I)

200 FORMAT (2I10, 3E15.6)

Cr———= ELEMENT INFORMATION %W

WRITE (3, 330)
330 FORMAT(////1H , 'ELEMENT INFORMATION'///1H , 'ELEMENT', 34X, 'CORNER',
*' NODES', 32X, 'MATERIAL',SX, ‘SHAPE NO.'//)
DO 395 N=1,NUMEL
WRITE (3,390) N, (KX(I,N),I=1,10)
390 FORMAT (I6,I15,7I8,2I14)
395 CONTINUE

C—m- EVALUATE JACORIAN INFORMATION FOR ELEMENT SHAPES

DO 700 N=1, NUMSH
READ (4, 400) XE,YE, ZE
400 FORMAT (3E10. 3)

WE=YE/6.0

DET (N) =XE*YE*ZE*0.25

XE=2.0/XE

YE=2.0/YE

2E=2.0/ZE

IF (WE .NE. 0.0) THEN
TE=-0.50*YE*ZE*WE

ELSE i
TE=0.0 L
END IF ;
UE=YE-TE i
VE=YE+TE ;
.
o EVALUATE DN/DX,DN/DY,DN/DZ ARRAYS AT EACH GAUSS POINT FOR FOUR }
Coom— POINT SCHEME |
Cc 5
RINV(1,1)=XE :
RINV(2,1)=0.0
RINV(3,1)=0.0
RINV(1,2)=0.0
RINV (2,2)=YE
RINV(3,2)=0.0
RINV(1,3)=0.0
RINV (2, 3)=TE
RINV (3, 3)=ZE
o}
Cr—m= LOOP ON GAUSS POINTS
Cc
DO 600 K=1,4
DO 500 I=1,4
DO 490 J=1,3
SUM=0.0
DO 480 L=1,3
480 SUM=SUM+RINV (J,L) *DSHAP (L, I, K)
490 DINT(J,I,X,N)=SUM
500 CONTINUE
DO 550 I=1,4
DINT(1,I+4,K,N)=-DINT(1,I,K,6 N)
DINT (2,1+4,K,N)=DINT(2,I,K,6N)
550 DINT (3,I+4,K,N)=DINT(3,I,K,N)
600 CONTINUE
700 CONTINUE
RETURN
END




C
C

C>>>>>>>>>>>>>>>>>>>>>>>>>>SUBROUTINE GENDAT <K<K LLLLLLLLLLLLLLLL KL LLLL

Cmmm—m GENERATES DATA

SUBROUTINE GENDAT (X,Y,Z,Q,QX, DELAY, OXX, KODE, KX, NP, NSP, KODES, LD,
*NODEQ, NODEX, NUMNP, NUMEL, NSEEP, NDIM, MAXSP , NUMNFQ, NUMEX, NQ, NX,
*NUMSH)

DIMENSION X (NUMNP),Y (NUMNP),Z (NUMNP) , Q (NQ) , QX (NQ) , DELAY (NQ) ,
*KODE (NUMNP) , KX (10, NUMEL) , NP (MAXSP, NDIM) , NSP (NDTM) , KODES (NDIM) ,
*LD (0:NUMNP) , NODEQ (18, NQ) , NODEX (NX) , XX (16) , YY (24) , 22 (10) , IDUM (28) ,
*NODD (4) , NODL (4) , QXX (NX)

DATA 22/0.0,12.5,25.0,37.5,50.0,62.5,75.0,87.5,97.5,100.0/

YY (1)=0.0

YY (2)=5.0

YY (3)=170.0

YY (4)=335.0

YY (5)=500.0

DO 2 I=6,24

2 YY (I)=YY (I-1)+500.0

XX (1)=0.0

DO 3 I=2,16

3 XX (I)=XX (I-1)+1000.0

SLOPE=1.0/6.0

NNX=16

NNY=24 ,

NNZ=10 z

NEX=NNX-1 |

NEY=NNY-1 ]

NEZ=NNZ-1

NXY=NNX*NNY

NXZ=NNX*NNZ

NYZ=NNY*NNZ

Cmmm— GENERATE X,Y AND Z COORDS

(@]

N=0
DO 120 K=1,NNY
YYK=YY (K)
ZDATUM=YYK*SLOPE
DO 110 J=1,NNX
XXJI=XX (J)
DO 100 I=1,NNZ
N=N+1
X (N) =XXJ
Y (N) =YYK
100 Z (N)=2Z (I)+2ZDATUM
110 CONTINUE
120 CONTINUE

Comm— GENERATE ELEMENT NODE NUMBER ARRAY KX

NMUL=NNX*NNZ
N=0
DO 420 I=1,NEY
DO 410 J=1,NEX
NFACT=J*NNZ+NMUL* (I-1)
DO 400 K=1,NEZ
N=N+1
KX (1,N) =NFACT+K
KX (2,N)=KX (1,N)+NX2Z
KX (3,N)=KX(2,N)+1
KX (4,N)=KX (1,N)+1
KX (5,N) =KX (1,N)~-NNZ




KX (6,N)=KX (2,N)~NNZ
KX (7,N)=KX(6,N)+1
KX (8,N)=KX (5,N)+1
RX (9,N) =1

400 CONTINUE

410 CONTINUE

420 CONTINUE

Crm——= GENERATE ELEMENT SHAPE INDEX

K=0
DO 450 I=1,NEY
IF (I .EQ. 1) THEN
I1=1
I2=2
I3=3
ELSE IF (I .LT. 5) THEN
Il=4
I2=5
I3=6
ELSE
I1=7
I2=8
I3=9
END IF
DO 440 J=1,NEX
DO 430 N=1,7
K=K+1
430 KX (10,K)=I1
K=K+1
KX (10,K)=I2
K=K+1
KX (10,K)=I3 ¢
440 CONTINUE
450 CONTINUE

Cr———= ZERO KODE VECTOR

DO 600 I=1,NUMNP
600 KODE (I) =0

C-—--——EVALUATE LD THE POSITION VECTOR FOR ARRAY A
Cc
LD (0)=0
LD (1)=1
DO 700 I=2,NUMNP
MAXD=0
DO 680 N=1,NUMEL
ICHECK=0
NMIN=NUMNP
DO 670 L=1,8
IF (KX(L,N) .EQ. I) ICHECK=l
IF (XKX({(L,N) .LT. NMIN) NMIN=KX(L,N)
670 CONTINUE
IF (ICHECK .EQ. 0) GO TO 680
II=I-NMIN
IF (II .GT. MAXD) MAXD=II
680 CONTINUE
LD (I)=LD(I-1)+MAXD+1
700 CONTINUE

Cc

Co—rmm= GENERATE NON-FIXED FLUX VALUES AND CONDENSED NODE
Cr——== NUMBERING ARRAY NODEQ

c

DO 703 I=1,NUMNFQ
DO 702 J=1,18
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702

703

705

710

711
712

713

715

720

725
730

735
740

800

NODEQ (J, I) =0
CONTINUE
KK=0
K=0
DO 710 I=1,NNX
DO 705 J=1,NNZ-1
RKK=KK+1
K=K+1
Q(K)=0.0
KODE (KK) =—2
NODEQ (1, K) =KK
K=K+1
Q(K)=0.0
RK=KK+1
NODEQ (1, K) =KK
CONTINUE
DO 712 I=1,NNY-1
KK=NNZ+NXZ*I
DO 711 J=1,NNX
K=K+1
Q(K)=0.0
NODEQ (1, K) =KK
KK=KK+NNZ
CONTINUE
DO 790 I=1,NUMNFQ
DO 713 J=1,28
IDUM (J) =0
CONTINUE
NOD=NODEQ (1, I)
K=0
DO 730 N=1,NUMEL
DO 715 J=1,8
IF (KX (J,N) .EQ. NOD) GO TO 720
CONTINUE
GO TO 730
DO 725 L=1,8
KXLN=KX (L, N)
IF (KXLN .EQ. NOD) GO TO 725
K=K+1
IDUM (K) =KXLN
CONTINUE
CONTINUE
DO 740 L=1,27
II=IDUM(L)
DO 735 K=L+1,28
IF (IDUM(K) .GE. II) GO TO 735
II=IDUM(K)
IDUM (K) =IDUM (L)
IDUM (L) =II
CONTINUE
CONTINUE
K=1
DO 750 L=1,28
IDL=IDUM (L)
IF (IDL .EQ. O .OR. IDL .EQ. NODEQ(K,I)) GO TO 750
K=K+1
NODEQ (K, I) =IDUM(L)
CONTINUE
CONTINUE

~ASSIGN TIME DELAYS TO DELAY ARRAY

DO 800 I=1,NUMNFQ

QX (I)=0.0
NODE=NODEQ (1, 1I)

DELAY (I)=Y (NODE) /30.0




c
C——=— GENERATE NODEX AND QX FOR FIXED FLUX NODES
c

Q1=0.5/240.0

K=0

DO 900 I=1,NUMFX

K=K+NNZ

QXX (I)=0.0

900  NODEX(I)=K
DO 1000 N=1,NUMEL
ICHECK=0
DO 920 J=1,8
KXJIN=KX (J, N)
L=0
910 L=L+1
IF (KXJN .EQ. NODEX (L)} GO TO 915
IF (L .LT. NUMFX) GO TO 910
GO TO 920
915 ICHECK=ICHECK+1
NODD (ICHECK) =KXJN
NODL (ICHECK) =L
920 CONTINUE
IF (ICHECK .LT. 4) GO TO 1000
N1=NODD (1)
N2=NODD (2)
N3=NODD (3)
N4=NODD (4)
KMAX=MAX (X (N1) ,X (N2) ,X (N3),X (N4))
KMIN=MIN (X (N1),X (N2),X(N3),X (N4))
YMAX=MAX (Y (N1),Y (N2),Y (N3),Y (N4))
YMIN=MIN (Y (N1),Y (N2),Y (N3),Y(N4))
OSCALE=Q1* (XMAX-XMIN) * (YMAX—-YMIN) ;
DO 930 I=1,4 £

L=NODL (I)
930 OXX (L) =QXX (L) +QSCALE ;
1000 CONTINUE {
c |
C———ne ASSIGN FIXED FLUX VALUES TO Q ARRAY i
c .

DO 1010 I=1,NUMFX
NODE=NODEX (I)
NOD=0
1005 NOD=NOD+1
IF (NODEQ(1,NOD) .LT. NODE) GO TO 1005
QX (NOD) =QXX (I)
1010 CONTINUE

c
Cmmm SEEPAGE FACE DATA
c
DO 1100 I=1,NSEEP
K=NNZ* (I-1)
KODES (I)=-1
NSP (I)=NNZ-1
DO 1050 J=1,NSP(I)
K=K+1
NP (J,I)=K
1050 CONTINUE
1100 CONTINUE
RETURN
END
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C
CESSEEE5555555555S5555 55555555 >BLOCK DATACKLCLLLLLLLLLLLLLLLLLLLLLLLLLLLL

C——m—- PROVIDES DATA FOR COMMON BLOCK RASIS

BLOCK DATA

PARAMETER (RT=0.57735026918963,3X=1.0/6.0,R=SX+0.25%RT,
*S=8X~0.25%RT, T=1.0/12.0, U= (1.0+RT) /8.0, V=(1.0-RT) /8.0)

COMMON /RASIS/ DSHAP (3, 4,4)

DATA DSHAP/R,-U,-U,T,U,-V,s,V,V,T,-V,U,T,-U,-V,R,U,-U,T,V,U,S, -V,
*v,$,-v,-v,T,V,-U,R,U0,U0,T,-U,V,T,-V,-0,S,V,-V,T,U,V,R,-U, U/ ;
END |
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3840 3105
0.57
1.754E-05

1000.
1000.

1000

0
0

.0
1000.
1000.
1000.
1000.
1000.
1000.

ool oo oG]

TRANSIENT

MESH (7))

1 16 9 528
1924.8 1.247
1.702E-01-3.382E-05
5.0 12.5

5.0 10.0

5.0 2.5

165.0 12.5
165.0 10.0
165.0 2.5
500.0 12.5
500.0 10.0
500.0 2.5

384

9
0.245

263

14.7516

SIMULATTION
UNITS IN CENTIMETRES AND MINUTES

0.9569
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List of symbols

Listed below are the most commonly used symbols. Other symbols are defined where
they appear in the text.
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Parameter of relative hydraulic conductivity function.
Parameter of relative moisture content function.
Final infiltration rate.

Coefficient of finite element matrix A.

Parameter of relative hydraulic conductivity function.

Parameter of relative moisture content function.
Coefficient of finite element vector B.
Specific moisture capacity.

Coefficient of variation of flow rate.

Coefficient of variation of volume of flow.

Coefficient of variation of pressure head.

Element number.

Expected operator.

Function.

Frequency.

Coefficient of finite element matrix F.
Hydraulic head.

Perturbation of h.

Node number.

Infiltration rate.

Jacobian of the transformation from global to local coordinates.

Determinant of J.

Intrinsic permeability.

Effective hydraulic conductivity.
Relative hydraulic conductivity.
Saturated hydraulic conductivity.
Saturated hydraulic conductivity tensor.

Arithmetic mean of block hydraulic conductivities.
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Geometric mean of block hydraulic conductivities.

Harmonic mean of block hydraulic conductivities.

Differential operator.
Number of node points.

Shape function for node i.

Discharge rate.
Mean discharge rate.

Volume of discharge.
Coefficient of finite element vector Q.

Mean volume of discharge.
Pore radius.

Region.

Residual.

Region of element e.
Pore size density function.
Boundary surface.

Effective saturation.

Standard deviation of flow rates.
Standard deviation of flow volumes.
Residual saturation.

Standard deviation of pressure head values.

Boundary surface of element e.
Time.

Function.

Weight coefficient for Gauss quadrature.
Weight coefficient for Gauss quadrature.

Weight coefficient for Gauss quadrature.

Horizontal axis.

Horizontal axis.
Ln (K) or Ln (final infiltration rate).

Vertical axis.

Autocorrelation parameter of the variation of Y.

Parameter of relative moisture content function.
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Parameter of relative moisture cont/éﬁtfuinc
Local coordinate axis.

Local coordinate axis.

Local coordinate axis.

Moisture content.

Residual moisture content.

Saturated moisture content.

Function.

Mean of Y.
Autocorrelation of In(K) in x-y plane.

Autocorrelation of In(K) in z axis.
Autocorrelation at lag 1.

Variance of Y.
Function.
Pressure head.

Nodal pressure head.
Air entry pressure head.

Mean pressure head.
Increment.

Laplace operator.




