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SUMMARY 

The aims of the project were twofold: 1) To investigate 

classification procedures for remotely sensed digital 
data, in order to develop modifications to existing 

- algorithms and propose novel classification procedures; 
and 2) To investigate and develop algorithms for 

contextual enhancement of classified imagery in order to 

increase classification accuracy. 

The following classifiers were examined: box, decision 

tree, minimum distance, maximum likelihood. In addition to 

these the following algorithms were developed during the 

course of the research: deviant distance, look up table 

and an automated decision tree classifier using expert 

systems technology. Clustering techniques for unsupervised 

classification were also investigated. 

Contextual enhancements investigated were: mode filters, 

small area replacement and Wharton’s CONAN algorithn. 

Additionally methods for noise and edge based 

declassification and contextual reclassification, non- 

probabilistic relaxation and relaxation based on Markov 

chain theory were developed. 

The advantages of per-field classifiers and Geographical 

Information Systems were investigated. 

The conclusions presented suggest suitable combinations of 

classifier and contextual enhancement, given user 

accuracy requirements and time constraints. These were 

then tested for validity using a different data set. A 

brief examination of the utility of the recommended 

contextual algorithms for reducing the effects of data 

noise was also carried out. 
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CHAPTER 1 

1.1 INTRODUCTION 

’*Effort should be concentrated on improvement of 

image processing techniques, in particular 

methods of contextual classification and the 

integration of other georeferenced data sets, to 

make maximum use of available imagery.’ 

(Legg, 1988, report to United Kingdom National Remote 

Sensing Centre on applications of remotely sensed data in 

the United Kingdom) 

1.2 THE PROBLEM 

Classification of remotely sensed images is part of the 

wider topic of pattern recognition and artificial 

intelligence. An image classification algorithm is 

essentially a kind of specialised expert system, fed 

examples (training data), which then uses this information 

to induce rules which are used to classify all the 

image pixels. Different classification algorithms are 

thus analogous to the different production rules used by 

expert systems. 

The classifiers used for remotely sensed data do, however, 

differ in two important aspects from these production 

rules: 

1.They must be capable of handling vast amounts of data 

quickly and efficiently. 
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2.They must be able to cope with the high noise levels 

inherent in such data (in this context ’noise’ is defined 

in section 2.7.1). 

Because of this, remote sensing classifiers have 

concentrated on parametric techniques at individual pixel 

level, usually assuming that the frequency distributions 

of class spectral responses are normal so that the 

spectral response of a class can be modeled using a 

combination of mean, variance and covariance. 

Of the algorithms used here, the majority make the 

assumption that a class’ spectral response can be 

adequately represented by a combination of mean digital 

values (class mean vector), class standard deviations in 

each spectral band of data and class covariances, although 

not all of the algorithms use all these statistics. A 

summary of which statistics are required by which 

algorithm is given in table 8.4. An attempt has also been 

made to apply nonparametric methods to the data (look 

up table and decision tree classifiers). In theory, 

the lack of assumptions about the data _ should 

lead to higher performance classifiers; however, in 

practice the large data storage requirements, the 

characteristics of remotely sensed data (section 2.7), 

and the requirements for many training samples’ to 

accurately represent each class, currently restrict the 

usefulness of these classifiers. 
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The characteristics of remotely sensed data result in 

incorrect classifications, at class boundaries (due to 

the mixed spectral response of these pixels, sometimes 

called mixels) and randomly throughout the image 

(due to random or systematic noise, see section 2.7). 

Assuming a reasonable classification accuracy, these 

areas will be small relative to those of correct class. 

The process of contextual reclassification makes use of 

this assumption to reassign pixels to more appropriate 

classes. 

In its simplest form, a contextual reclassifier can be 

represented by a mode filter passed over the classified 

image (a mode filter returns the most commonly returning 

value over a small area as the central value of that 

area). More sophisticated techniques involve the 

identification and declassification of ’small_ areas’ 

(small areas relative to the overall pattern and 

containing anomalous classes), or the identification of 

noise and boundary pixels from the original imagery by 

means of thresholded high-pass filters and the subsequent 

declassification and reclassification of pixels identified 

as such. 

Another area of contextual enhancement is relaxation 

labeling, where information about autocorrelation is used 

to reclassify all image pixels. In this study, non- 

probabilistic relaxation methods are examined, using 

rank order, minimum distance rules and Markov chain theory 

to enhance classified imagery. 
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An important side effect of contextual enhancement is. the 

generalisation of classified data to a form more suitable 

for map-type output. The noise and ’mixel’ removal process 

may also remove small, correctly classified, areas. This 

can be viewed as a process akin to map generalisation, 

necessary to make maps useful and legible. The generalised 

output better enables the user to view overall trends in 

the data without the distractions of fine detail (which 

will frequently be actually erroneous because of noise). 

The development of geographical information systems and 

their associated digital map data will, in the near 

future, provide users of remotely sensed data with the 

chance to classify images on a per-segment basis, with the 

segments defined using the geographical information 

system. An initial investigation into the potential 

benefits of this is presented here. 

Also presented is a brief study of the relative 

contributions of noise, edges and mixels to classification 

error, using the characteristics of multispectral data to 

enable identification and separation of true edges from 

noise elements. 

1.3 STUDY AREAS 

Four sets of data were used in this study: three Landsat 

Thematic mapper sub-images (see section 1.4), using 

various band combinations, and one Landsat MSS sub-image. 

22



1.3.1 PEAK DISTRICT STUDY AREA 

The study area Secs the Derbyshire Peak District to the 

north and east of Buxton. The area is a square 25.6 by 

25.6 km (1024 by 1024 25m square pixels), with Ordnance 

Survey grid co-ordinate 400000 370000 as the south west 

corner. 

The area has many differing land cover types from urban 

areas (Buxton, Chapel-en-le-Frith) and industry 

(cement works and quarries) to agricultural land, open 

moorland and reservoirs. 

The geology and soils of the area also vary widely. In the 

north the area predominantly consists of a _ series of 

sandstone escarpments, interspersed with shales, allowing 

valley formation. In the south, this gives way to 

limestone, forming an upland plateau, dissected 

occasionally by deep gorges. In the extreme north-west the 

area includes part of the Cheshire plain. 

Terrain is also variable, from areas of high relief in the 

sandstone area, to the flatter limestone areas in the 

south. 

Overall, the area provides an excellent variety of 

conditions suitable for testing classification and 

contextual enhancement algorithms. The only cover’ type 

which is lacking is intensive cropland, based on large 

fields, as occurs in eastern England and East Anglia; 

however, in view of the other suitabilities of this area, 
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this omission was felt to be insignificant. 

In addition to this main data set, three other sets of 

imagery were used in order to test the findings of this 

study. 

1.3.2 SALISBURY PLAIN STUDY AREA 

A three band Landsat TM image and associated training data 

was made available by one of the author’s colleagues. The 

data consisted of a band 4,5,7 composite image, covering 

an area of 512 by 512 pixels, over part of Salisbury 

plain. Ground cover types were defined for natural 

grasslands, farmland, urban areas, woodland and other man- 

made features. 

1.3.3 NORTH WALES STUDY AREA 

A three band Landsat TM image covering an area of North 

Wales and the Cheshire Plain (bands 4,5 and 7) was made 

available to the author. Broad ground-cover classes 

covering urban areas, salt marsh, grassland etc. were 

defined (see section 10.12). 

1.3.4 YEMEN STUDY AREA 

A four band landsat MSS image was made available covering 

a small area of Yemen. Training data was provided by a 

colleague with considerable experience of the geology of 

the area. 
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1.4 SATELLITE SENSORS 

1.4.1 LANDSAT MSS 

The multispectral scanner carried on board Landsats 1-5 

provided data in four spectral bands, corresponding to 

visible green, red, near and mid infra red. Spatial 

resolution was 79 by 56 metres, usually corrected to a 

nominal 80m during processing. Landsat MSS data has been 

available since the launch of Landsat 1 in 1972. For 

further information the reader is directed to the 

textbooks detailed in section 3.2.1. 

1.4.2 LANDSAT THEMATIC MAPPER 

The thematic mapper sensor was carried on NASA’s Landsat 4 

and 5 spacecraft. It represents the ’second generation’ of 

sensors, incorporating many alterations and improvements 

to the multi spectral scanner (MSS) carried on board 

Landsats 1-3, and also Landsats 4 and 5. 

Landsat 4 was launched on 16th. July 1982, Landsat 5 on 

lst. March 1984. Both had a near polar’ sun-synchronous 

orbit, with a repeat cycle of 16 days. 

Thematic mapper scenes cover, in 7 spectral bands, areas 

185 by 185 km on the ground, with 5.4% overlap and 7.3% 

side overlap at the equator, increasing at higher 

latitudes: 
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band wavelength resolution notes 

(um) | (m) 

4 0.45-0.52 30 blue 

2 0.52-0.60 30 green 

3 0.63-0.69 30 red 

4 0.76-0.90 30 near infra red 

5 1.55-1.75 30 near infra red 

6 10.4-12.5 120 thermal infra red 

7 2.08-2.35 30 near infra red 

Imaging is achieved using a scanning mirror, generating 16 

lines per sweep (4 for the thermal band). The data is 

quantised to 8 bits (0-255) reflecting the high 

radiometric sensitivity of the instrument, for a remote 

sensing imaging device. 

1.5 DIGITAL IMAGE PROCESSING 

The images used in this study are digital representations 

of physical images. Each digital image consists of a 

series of ’bands’ representing different parts of the 

electromagnetic spectrum. Each band contains an image of 

surface radiances (or brightness values) for its 

particular part of the electromagnetic spectrum. 

These images consist of a regular grid of 

picture elements (pixels), each represented by a 
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digital number, the value of which is correlated to 

the brightness value of the pixel’s corresponding 

area on the ground. 

The diagram below shows this more clearly: 

  

  

original digital image representing this 

MOOX8 ae 888888 

RN 8°83 1"17 8 

iad 881118 

\ Q ep 4319 

bs x 888888 

Conversion of images into digital format enables computer 

            
processing, since the images now consist of numbers, which 

can be mathematically manipulated. This is the essence of 

digital image processing. 

Remotely sensed images are commonly available in digital 

format, and digital image processing represents an 

‘ important tool to aid their interpretation. 
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’ CHAPTER 2 

AIMS, OBJECTIVES, DEFINITIONS 

The aims and objectives of this study are summarized 

below: 

i.To investigate methods of classification of remotely 

sensed imagery and contextual methods of increasing the 

accuracies of these classifications. 

ii.From these investigations, to provide a series of 

recommended classification procedures, given: a) user 

requirements, and b) the nature of the data to be 

classified. 

2.1 CLASSIFICATION 

In terms of classification, the aims of this study were: 

a) to investigate currently available classification 

algorithms for multispectral remotely sensed data and 

assess the relative benefits of the above algorithms in 

terms of computational speed and the accuracy of the 

classifications produced; 

b) to develop further classification algorithms, and 

also to assess these as described above, and 

c) to investigate newer algorithms suggested recently in 

the literature of remote sensing and the technology of 

expert systems , again assessing these using the criteria 

of computational speed and accuracy. 
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d) To use the data from the above analyses to suggest 

suitable algorithms for use in commonly occurring remote 

sensing problems. 

2.2 CONTEXTUAL ENHANCEMENT 

In terms of contextual enhancement, the aims were to 

investigate and develop algorithms to: 

a) produce higher eee accuracies from the 

output of the classifiers used in section 2.1; 

b) generalise imagery to make it more suitable 

for presentation as thematic maps. 

c) compare the algorithms in terms of accuracy increases 

and computer time expended in producing these increases. 

d) investigate any relationship between initial classifier 

and subsequent contextual enhancement algorithm and 

recommend suitable pairings of these to be used under 

differing circumstances. 

2.3 CLUSTERING 

Under the heading of clustering the aims were to assess 

the usefulness of unsupervised classification algorithms 

for image classification and suggest suitable situations 

for their use. 
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2.4 PER-SEGMENT CLASSIFICATION 

Under the heading of per-segment classification the 

segment identifier examined was the field boundary and the 

aim was to examine potential benefits to be obtained 

from classification on a per-field basis, rather than 

the currently prevailing per-pixel methods. 

2.5 EFFECT OF NOISE AND EDGES ON CLASSIFICATION 

Under the heading of noise and edge effects the aim was to 

assess the relative contributions of noise and _ edge 

pixels (pixels whose spectral response is a mixture of 

those for differing cover types) to error rates in 

classification of remotely sensed imagery. 

2.6 FUTURE STUDY 

A further consideration was made of how current and future 

development in Information Technology may affect 

approaches to image classification in land and water 

studies. Here the aim was to discuss and identify areas 

for future study, notably {a's fields of ‘artificial 

intelligence and geographical information systems, as 

applied to classification of remotely sensed data. 

2.7 SOME DEFINITIONS 

Zeied NOISE 

Noise, in terms of classification of satellite imagery can 

be defined broadly as any characteristic of a pixel or 
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image area which causes an incorrect classification to 

take place. 

More specifically, the methods described and developed in 

this thesis are concerned with the removal of the effects 

of two types of noise: 

The effects of noise on imagery are discussed by Ehlers 

(1985), who presents methods for estimating image signal 

to noise ratios in images containing unknown noise levels. 

2.7.1.1 RANDOM NOISE 

Random noise is defined here as anomalous pixel values 

dedaia” Oy. for example, transmission errors bateeen 

satellite and receiving station or magnetic tape defects. 

Such noise can commonly be seen as part of remotely sensed 

data as individual pixels, or groups of pixels which 

*clash’ with their surroundings when displayed. 

2.7.1.2 SYSTEMATIC NOISE 

A common occurrence of this type of noise is Landsat MSS 

*sixth line banding’. This type of noise is defined as 

that caused by the physical properties of the sensing 

device, thus for scanning systems such as Landsat MSS and 

TM banding occurs, whilst for push-broom sensors, such as 

the scanner on board the SPOT satellite, vertical striping 

occurs. These effects are due to the arrays of multiple 

sensors containing transducers which are not quite 

identical. For example, in the case of MSS, slight 

differences in the calibration of the six sensors making 
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up the array for one waveband of data will result in a 

repeated discrepancy of digital values every six lines of 

the image. 

2.7.2 NOISE, ACCURACY AND GENERALISATION 

There is a complex relationship between noise, 

classification accuracy and generalisation, which can be 

broadly defined in terms of scale: at large scales it is 

important to show high-frequency variation, whereas at 

small scales it is often desirable to suppress this high 

frequency information in order to show a more general 

picture, which is more suitable for interpretation of 

significance. 

2.7.3 CONTEXT AND TEXTURE 

Context is defined here as the relationship between the 

class of a pixel and the classes of its neighbouring 

pixels, over a region of an image. this differs from the 

broader definition of context which includes all 

information, of whatever type, relevant to the 

classification of a pixel. 

Texture, as applied to remotely sensed data, has a similar 

definition to the first given above for context, but here 

the relationship is between the digital values, not the 

class labels. Context could, perhaps, be seen as a special 

case of texture. Some contextual reclassification 

algorithms are similar to the calculations for texture 

measures, for example, neighbouring grey level 
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dependencies (Golton, 1987) are similar in context to the 

Markov relationships described in section 10.3.4. 
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CHAPTER 3 

LITERATURE REVIEW 

3.1 INTRODUCTION 

Image classification is covered in many subject areas 

which are often seen as separate. Restricting study to 

within the remote sensing literature will limit the 

information available. Only too often the remote sensing 

Gcaunity duplicates work done elsewhere, or discovers new 

techniques long after they have become commonplace tools 

in other fields, such as artificial intelligence, pattern 

recognition, robot vision and medical physics. 

This can often be justified by the nature of remotely 

sensed data. It is very different from the data used in 

other fields, and introduces many problems unique to 

itself which hinder successful implementation of 

algorithms developed elsewhere. Essentially, remotely 

sensed data is high-volume, low-precision (even in the 

case of so-called ’high radiometric precision’ sensors, 

such as Landsat Thematic Mapper, whose data is quantised 

to 256 grey levels - eight bit precision), prone to noise 

and poor radiometric resolution, whereas data used in 

other fields is either: high-precision, low-volume and 

consequently better suited to processing using 

conventional algorithms and computer architecture; or, for 

example in the case of robot vision, the problems are 

addressed by developing special processing architecture. 
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Another feature is that most vision work has been 

concerned with single sensor (black/white) imagery. 

3.2 TEXTBOOKS 

3.2.1 REMOTE SENSING 

There are many general textbooks covering remote sensing 

in varying degrees of detail and complexity. Good general 

overviews are provided at a basic level by Curran (1985), 

Barrett and Curtis (1982) and Drury (1987), and in more 

detail by Mather (1987), Swain and Davis (1978) and 

Lillesand and Kiefer (1979). For a thorough coverage of 

all aspects. of remote sensing, the reader is referred to 

the second edition of the Manual of Remote Sensing (Vol, 1, 

eds: Simonett and Ulaby, 1983. Vol.2, eds: Estes and 

Thorley, 1983). 

There are also a number of textbooks covering specific 

applications of remote sensing. Notable amongst these is 

Drury (1987) covering geological remote sensing. 

3.2.2 IMAGE PROCESSING 

There are also several textbooks, aimed at the remote 

sensing community, dealing with image processing. An 

excellent overview is provided by Schowengerdt (1983). 

Mather (1987) also contains much detail on image 

processing, for remote sensing applications. 
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Golton (1987) provides a good review of digital image 

processing algorithms, covering non remote sensing topics 

as well as those more closely related to this field. 

Duda and Hart (1973) provide an excellent synopsis of 

image classification algorithms, not limited to the 

statistical pattern recognition techniques covered by the 

remote sensing texts, whilst cluster analysis is covered 

by Anderberg (1973). 

The two papers by Jupp, Strahler and Woodcock (1988, 1989) 

provide a good mathematical and theoretical background to 

structures within digital images. 

3.3 GEOMETRIC AND RADIOMETRIC CORRECTION 

In order to relate easily remotely sensed data to maps, 

and enable classifier training operations, geometric 

correction of the imagery is necessary. The usual methods 

of estimating transformation equations by least squares 

fitting of polynomials using ground control points are 

covered by the textbooks (Mather (1987), Swain and Davis 

(1978)). 

Choosing suitable ground control points is vital: to 

producing accurately registered images. Davison (1986) 

details the ground control point selection criteria used 

by the UK National Remote Sensing Centre. The paper also 

describes a technique for automatically locating control 
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points on imagery, where multiple images must be 

corregistered. — 

From time to time alternatives to the conventional 

polynomial models are suggested in the literature, for 

example, piecewise correction (Swain and Davis, 1978). 

Recently Goshtasby (1988) has suggested the use of spline 

surfaces, enabling corresponding points to be registered 

exactly. The technique, however, is extremely sensitive to 

incorrect ground control point registration, since it fits 

a surface honouring all control points; for this reason, 

least squares fitting to global polynomials may still be 

of more use with remotely sensed data, since’ this 

technique is more tolerant of incorrect control point 

location. 

Bergeson, Batson and Kieffer (1985) present results 

showing that Landsat TM data is entirely suitable for 

accurate mapping at scales of up to 1:100,000, but that 

geometric distortion is unacceptable at scales of 1:24,000 

and larger. Colvocoresses (1986) also describes the use of 

Landsat TM for 1:100,000 scale mapping. 

Radiometric correction of imagery is a problem limited to 

remotely sensed data. It is necessary either when: 

a) absolute physical values (e.g. bi-directional 

reflectance of a surface) are to be calculated from the 

image pixel values, 

or 
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b) Multitemporal and/or multisensor data are to be 

directly compared with each other. 

Occasionally, there may also be a _ requirement for 

radiometric correction where there is a problem of within- 

scene variation, caused either by sensor characteristics, 

or variations in atmospheric effects across the scene. 

Steven and Rollin (1986) provide a good overview of the 

needs for such correction, and describe a technique for 

correcting imagery taken by several airborne’ scanners 

(Daedalus airborne thematic mapper, in this case). 

Forster (1984) covers band ratioing techniques compared to 

methods for calculating reflectances using Landsat Multi- 

Spectral Scanner data with particular reference to urban 

data. 

Robinove (1982) details the corrections necessary to 

convert Landsat Multi-Spectral Scanner digital values to 

their equivalent physical values. The paper covers’ the 

sensors carried on board Landsat 1,2 and 3, however, the 

calculations are similar for the more recent sensors, only 

the constants (provided in the paper for each instrument) 

requiring alteration. 

A comprehensive review of the effects of radiometric 

variation on classification is provided by Duggin (1985) 

who lists the following factors as affecting the final 

brightness value recorded by a sensor: 
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i) Passage of radiation to target through the atmosphere. 

ii) Reflection at the target. 

iii) Passage from target to detector through the 

atmosphere. 

iv) The effect of the detector itself. 

vy) The effects of unresolved cloud and haze. 

vi) The effects of random and systematic errors in the 

recording of radiance levels. 

The paper also notes that discrimination of a target by a 

classifier may be better for some sun-target-sensor 

geometries than for others. 

A thorough review of the radiometric correction techniques 

used by the Canada Centre for Remote Sensing (CCRS) is 

provided by Ahern et al (1987), ranging from simple 

destriping algorithms to absolute radiometric calibration 

of the data. 

Royer et al (1987) detail techniques for rescaling 

satellite data to radiometrically match the data from 

other satellite sensors. 

A review of the major types of radiometric correction as 

applied to satellite data in the visible and infra-red 
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parts of the electromagnetic spectrum is provided by 

Tiellet (1986) who lists the following: 

radiometric calibration and de-striping 

radiometric correction of Lambertian scenes 

atmospheric considerations 

topographic considerations 

view-angle considerations 

reflectance models 

as important for radiometric correction of remotely sensed 

data. 

The paper concludes that the type of radiometric 

correction to be performed on a data set must be 

appropriate to the study being performed. 

3.3.1 TOPOGRAPHIC EFFECTS 

Topography can play an important role in affecting the 

spectral response of cover types: 

Hall-Konyves. (1987) examines the effect of sun angle on 

terrain with slopes of less than 15 degrees using Landsat 

MSS and TM data. Significant effects are reported only for 

pasture land, whilst agricultural land and forestry are 

reported to show minimal topographic effects. 

The variation of sun and look angle effects on spectral 

response over different spectral regions and wavebands is 

described by Stohr and West (1985). They report that the 
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shorter wavelengths are most affected by sun-target-sensor 

geometry. 

3.4 ACCURACY ASSESSMENT 

Assessing the accuracy of thematic maps (ie classified 

imagery in this case) is an area of the literature fraught 

with contradiction. Almost every assumption made about the 

data, in order for the statistical tests to be valid, 

seems to be broken by remotely sensed data. For this 

reason, a variety of accuracy assessment methods have been 

proposed. 

Techniques for accuracy assessment are also used in 

photointerpretation. Congalton and Mead (1983) propose 

using discrete multivariate analysis of error matrices. 

Although the paper is based on designing a_ sampling 

strategy to produce desired map accuracies within 

stipulated confidence limits, the techniques can be 

reversed to estimate accuracies and confidence limits for 

given sampling fractions. 

Hord (1976) proposes a method for calculating a _ single 

*figure of merit’ to assess the accuracy of a 

classification, using a statistical sampling procedure. 

The method determines the accuracy, based on the following 

criteria: 

1. Classification accuracy 

2. Boundary line placement 

3. Control point placement 
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Hay (1979) introduces the concept of stratified sampling 

to test land use map accuracy. Five problems are 

identified in assessment of accuracy: 

1. What proportions of all decisions are correct? 

2. What proportion of the allocation to a category is 

correct? 

3. What proportion of the true category is correctly 

allocated? 

4. Is a category overestimated or underestimated? 

5. Are the errors randomly distributed? 

The minimum sample size required to answer these questions 

is given as 50 points (pixels). Questions 1-4 are 

addressed using binomial theory, whilst question 5 is 

answered using Poisson frequencies. 

Aronoff (1982) addresses classification accuracy from a 

user’s approach, emphasising the probability of rejecting. 

an accurate map against the probability of accepting an 

inaccurate one "(termed producer’s ‘lls consumer’s' risk 

respectively). The paper also stresses the expense to 

users: of time consuming checking procedures, and 

suggests the use of quick and efficient accuracy 

assessment strategies. 

Card (1982) compares simple random sampling, using known 

map category marginal frequencies to improve estimates of 

thematic map accuracy (ie relative areas of each map 

category). 
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Ginevan (1979) points out shortcomings in statistical 

procedures (proposed prior to 1979), and suggests the use 

of acceptance sampling procedures, combined with the 

binomial probability density function to develop a ’sound 

statistical methodology for map accuracy validation’. 

Aronoff (1985) proposes the use of a minimum accuracy 

atic, defined as the ’lowest expected accuracy of a 

thematic map, given an observed accuracy test result and 

the user-selected consumer risk’, and provides tables to 

enable selection of suitable accuracy tests at various 

confidence levels and consumer risks. 

A coefficient of agreement is suggested as a measure of 

classification accuracy by Rosenfeld and Fitzpatrick-Lins 

(1986). This is derived from a confusion matrix, but takes 

non-diagonal elements into account, as well as those along 

accuracy assessment methods detailed in the remote sensing 

literature. 

Maxwell (1976) covers the application of multivariate 

system analysis to assessment of classification accuracy. 

Accuracy assessment techniques can, in theory, be used to 

attempt correction of misclassification. Chrisman (1981) 

introduces Tenenbein’s double sampling method for 

correcting errors in probabilities, in order to adjust 

area estimates, calculated from classified data, to 

represent more accurately ground conditions. 
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Bradbury and MacDonald (1986) contrast per-point with per- 

field sampling frames, describing the use of arbitrarily 

defined classes to enable testing of algorithms. 

Harrison, Dunn and White (1989) examine the effects of 

small sample size and site and the relative performances 

of stratified, random and systematic sampling on the 

accuracy assessment of classified Landsat Thematic Mapper 

imagery. They conclude that: 

i) A large number of small sample sites gives a more 

representative accuracy figure. 

ii) Systematic sampling is to be recommended because of 

its operational advantages. 

iii) Any gain in efficiency will vary with cover type and 

sampling efficiency. 

Performance analysis of various classification algorithms 

to determine their utility for large-area forest mapping 

is detailed by Yool et al (1986). Differences in 

accuracies between different classification algorithms 

were attributed to variations in the sensitivities of the 

algorithms to spectral variations caused by: background 

Sa at acicas differential illumination and spatial pattern 

by species. 

The paper discusses some of the problems of bias involved 

in the selection of training and test data, and concludes 

that the ’results emphasise the complexity between land- 

cover regime, remotely sensed data and the algorithms used 
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to process these data’. 

Spatial autocorrelation analysis is used by Congalton 

(1988a) to aid design of optimum sampling schemes for 

accuracy assessment. Whilst in another paper (Congalton 

1988b) the author compares simple random sampling, 

stratified sampling, cluster sampling, systematic sampling 

and stratified systematic unaligned sampling using 

autocorrelation analysis, finding random sampling to 

usually provide the best estimate of classification 

accuracy. 

3.5 CLASSIFICATION 

Techniques for classification of remotely sensed digital 

data are well established, and covered thoroughly in the 

literature. Recommended texts are: Mather (1987) and Duda 

and Hart (1973). 

Occasionally new classification algorithms have been put 

forward, or brought to the attention of the remote sensing 

community. Examples include: the binary decision tree 

(Belward and DeHoyos, 1987); the spectral shape classifier 

(Pendock, 1987); linear discriminant analysis (Tom and 

Miller, 1984); temporal trend analysis (Engvall, Tubbs and 

Holmes, 1977) and a spectral knowledge based approach 

(Wharton, 1987). 

Another aspect of recent research into classification 

techniques involves improving existing algorithms = 

usually by developing faster versions. Examples of this 
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include: Mather (1985) who shows how the maximum 

likelihood algorithm may be made more efficient (and 

therefore faster), and Bryant (1989) who shows how the 

nearest neighbour (otherwise known as minimum distance) 

algorithm can be speeded up. 

Several texts are devoted to clustering and cluster 

analysis: recommended is the book by Anderberg (1973). 

Occasionally this subject is dealt with in the remote 

sensing literature; for example Holley and Parker (1973), 

which demonstrates how clustering algorithms can be 

adapted for use with remotely sensed data. 

A further area covered by published papers is that of 

comparing algorithms in terms of ’usefulness’ for 

classifying remotely sensed data. Common themes are both 

speed (computational efficiency) and accuracy and 

these are covered by Mather (1985), Belward and DeHoyos 

(1987), Wasrud and Lulla (1985) and Booth and Oldfield 

(1989). Gong and Howarth (1990) describe a Mahalanobis 

distance classifier. 

Saraf and Cracknell (1989) describe the use of linear 

discriminant and profile analysis on airborne thematic 

mapper data to distinguish areas of geochemical anomaly by 

geobotanical effects. The paper also discusses the use of 

linear discriminant and profile analysis to identify 

spectral bands providing best discrimination of vegetation 

types. 
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A fast maximum likelihood classifier, implemented in 

hardware, is described by Settle and Briggs (1987). 

Clustering in order to segment clouds is described by 

Seddon and Hunt (1985), who recommend the use of principal 

components analysis prior to clustering. An iterative 

minimum-distance based algorithm was employed as the basis 

of the clustering. The AMOEBA program, with particular 

emphasis on clustering, is described by Bryant (1990). 

Two papers by Wang Ru-Ye (1986a and 1986b) describe 

different approaches to automated decision tree design, 

one using a splitting algorithm to define the clusters, 

the other a merging algorithm. 

Csillag (1986) describes a comparison between a supervised 

maximum likelihood and a change-vector based classifier, 

based on separability measures as a measure of accuracy. 

The paper also describes the use of ISODATA for clustering 

- an iterative nearest neighbour algorithm (Fukunga, 

1972), however this paper reports little correlation 

between the separability of classes, as’ measured by 

separability indices, and classifier accuracy. 

An attempt at providing a conceptual framework to describe 

multidimensional feature space and the relative positions 

of different ground cover classes is made by the ’Tasseled 

Cap’ analogy (Kauth and Thomas, 1976). 

Piecewise, linear binary classification rules (decision 

trees) are proposed for classifying remotely sensed data 
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by Lee (1985), who cites their use as an inexpensive 

classifier for multitemporal data sets. 

The use of clustering to partition images of clouds is 

discussed by Pairman and Kittler (1986), who found minimum 

distance clustering to be ineffective for this purpose. 

The minimum distance (nearest neighbour) algorithm is 

presented in modified form to account for ’generalised 

Gaussian clusters’ and population differences between 

clusters. The authors state that: 

’Problems occur (with the nearest neighbour algorithm) 

where the assumptions of clusters with approximately equal 

variances and populations are not satisfied by the data.’ 

Two modifications to the nearest neighbour rule are 

suggested: 

i) taking each cluster’s covariance into account (see 

notes on the ’Deviant Distance’ classifier in section 

4,302) 

ii) population weighting of the distance measure. 

A methodology for evaluating the performance of 

classifiers is given by Hudson (1987), who describes the 

use of contingency tables to evaluate the effectiveness of 

different classification algorithms on landsat MSS data 

for mapping forest types. The paper concludes that 

supervised classifiers were found to be superior to 

unsupervised types, with the maximum likelihood algorithm 

found to be best. Seasonal variation of vegetation was 
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found to have more effect on classification accuracy than 

the algorithm used to perform the classification. 

The nearest neighbour algorithm was found to be a better 

classifier than the maximum likelihood algorithm for 

classification of agricultural Landsat TM data by Ince 

(1987), who cites the nonparametric nature of the nearest 

neighbour rule as being better suited to classification of 

this kind of data. 

The use of fuzzy logic for image segmentation is discussed 

by Cannon et al (1986), who describe a nonparametric 

clustering algorithm, based on the fuzzy c-means 

algorithm. This involves two stages: 

i)clustering using fuzzy c-means 

ii)merging these clusters using a similarity measure 

3.5.1 GROUND DATA 

In order to train supervised classifiers, and to test the 

accuracy of all classification algorithms it is necessary 

to collect some form of reference data. 

Curran and Williamson (1985) detail the problems of 

obtaining accurate ground data for remote sensing, 

concluding that the ground data used in a remote sensing 

study will often be less accurate than the remotely sensed 

data. Sampling schemes are reviewed, and the following 

criteria are proposed to help in the choice of an 
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appropriate sampling scheme: 

i) The number of ground resolution elements to be sampled. 

ii) The number of samples to be taken per ground 

resolution element. 

iii) The area of samples within a ground resolution 

element. 

iv) Any processing of samples taken. 

v) The personnel available in the field to carry out the 

sampling. 

The paper concludes that: 

i) The spatial variability of the terrain must determine 

the appropriate sampling strategy. 

ii) Sensor errors can contribute greatly to data 

inaccuracy. 

iii) Unwanted variability in ground data can be attributed 

to the spatial variability of the terrain. 

Buttner, Hajos and Korandi (1989) suggest that 

improvements in classification accuracy can be brought 

about by improving the quality of training data. The paper 

describes various methods of processing training data 

prior to classification. These techniques are now 

beginning to be applied within commercial image processing 

systems (ERDAS press release on version 7.4 of this 

package, 1990). 
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3.6 SEGMENTATION 

Image segmentation has recently become an area of intense 

activity within the field of remote sensing. Allan (1986) 

suggests that classification accuracy could be increased, 

whilst at the same time the data required could be 

_ reduced if image segmentation could be carried out. 

before classification, either by using existing boundary 

maps or from the imagery itself. 

Saarikoski (1988) provides a good overview of segmentation 

techniques currently being investigated. Technical detail 

of apecsine techniques is given by: Cross, Mason and Dury 

(1988) (split and merge); Hyde, Fullwood and Corrall 

(1985) (region extraction, border placement and 

information-integrating techniques) and DiZenzo (1983) (an 

overview of advances in image segmentation up to 1983). 

A common theme, stressed particularly by Saarikoski 

(1988), is that of the non-trivial nature of the task of 

accurately segmenting the often noisy remotely sensed 

data. Much of tile paper deals with the possible increases 

in classification accuracy to be derived from segmented 

images, whilst covering research into achieving this 

segmentation practically. Allan (1986) and Booth, Chidley 

and Collins (1989) look beyond the solution of this 

problem to the practicalities of per-field classification. 

The use of other spatial data, geographical information 

systems and digital maps are also proposed to circumvent 
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the segmentation problen. 

3.7 ARTIFICIAL INTELLIGENCE 

The remote sensing community has long been excited by the 

prospect of artificial intelligence improving consistency 

of interpretation and freeing operators from routine and 

_ mundane tasks. Much has been written on potential uses of 

artificial intelligence: Smith (1984) suggests uses in 

geographical problem solving; Lesk (1986) discusses the 

implications for database handling and Lenat (1986) covers 

this field from the viewpoint of computer software. 

Fiegenbaum (1988) details numerous applications of expert 

systems in industry and commerce, providing a _ highly 

readable account of state-of-the-art expert systems and 

their uses. 

Peacegood (1985) describes a prototype expert system to 

assess the likelihood of the presence of an aquifer in a 

remotely sensed scene, based around the proprietary expert 

system shell Sage. It is proposed that such expert systems 

could guide inexperienced data users in image 

interpretation, whilst use of such systems to emulate 

human-like reasoning for image interpretation is 

suggested. The use of proprietary expert system shells is 

advocated in order that: ’the task of writing one (be) 

eased considerably’. 

Schreier and Lavkulich (1979) describe what, with 

hindsight, would now be looked upon as an Expert or 
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Geographical Information System, combining data from 

Landsat imagery, aerial photographs, topographic maps, 

- laboratory results and ground survey reports in order to 

classify off-road trafficability (the ability of terrain 

to support vehicle movements) in Northern Canada. This 

early system exhibited the following important features: 

1.Combination of spatially related data sets, from 

different sources. 

2.The use of information available only for small areas 

within the whole study area to maximise reliability where 

possible, whilst still enabling decisions to be made from 

smaller data for other areas. 

3.The identification of data sets providing maximum 

information by use of factor analysis. 

Wang and Newkirk (1988) describe the use of a combination 

of image processing and artificial intelligence techniques 

for highway network extraction. Low-level processing was 

carried out using per-pixel techniques, whilst 

interpretation was carried out using an expert system. 

Using a knowledge base and inference engine an accuracy of 

87.7% was achieved for classification of highways in rural 

areas on Landsat TM imagery. 

The use of artificial intelligence in the form of 

*Knowledge-Based Aerial Image Understanding Systems’ is 

discussed by Matsuyama (1987), who introduces a model for 

expert systems for image processing. The paper concludes 
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that expert systems must not only ’understand’ image 

processing techniques, but that they must also 

’understand’ the objects which they are analysing in order 

to work effectively. 

A knowledge-based system for automatic interpretation of 

aerial images of suburban scenes is described by Nicolin 

and Gabler (1987), with emphasis placed on knowledge 

representation and control strategy. 

The application of artificial intelligence to geographical 

information systems, and in particular their user 

interfaces, methods of spatial data representation and the 

utilisation of spatial data is reviewed by McKeown (1987) 

The use of a-priori knowledge as an aid to interpretation 

of radar data is described by McGuinness (1988). 

Two expert systems, developed by the Canada Center for 

Remote Sensing, are described by Goodenough et al (1987). 

These are ’Analyst Advisor’ and ’Map Image Congruency 

Evaluation’, based on the expert system shell RESHELL, and 

written in Prolog. The former system is designed to advise 

users of remotely sensed data on appropriate image 

processing techniques, whilst the latter approaches the 

techniques of photointerpretation. The paper describes the 

representation of knowledge as a series of rules and 

frames and discusses methods of interfacing Prolog with 

the Fortran image processing routines in use at the 

centre. The paper concludes that: ’remote sensing is a 
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valid application area for the technology of knowledge- 

based systems’. 

For a fuller description of the application of Artificial 

Intelligence techniques in the field of remote sensing and 

land-use planning, the reader is directed to the work by 

Pooley (1988), which was carried out contemporaneously 

with this work. 

3.8 CONTEXTUAL RECLASSIFICATION AND SPECTRAL MIXING 

Contextual reclassification is defined as the _ process 

whereby a pixel’s class is modified according to its 

neighbours. . The simplest form of contextual 

reclassification is the use of a mode filter (which 

replaces the centre pixel of a template area with the most 

frequently occurring pixel label within this template) on 

a classified image (Rothery, 1982, Townshend, 1986). In 

this case small areas tend to be replaced by the 

regionally dominant class, effectively removing the 

pixels which have been incorrectly classified due to 

noise and/or edge effects in the original image. This 

tendency to remove small areas results in some 

correctly classified pixels (those representing small 

areas on the ground) also being removed; a process 

akin to cartographic generalisation. 

A similar, but more specifically targeted, contextual 

reclassification algorithm is’: that: of small area 

replacement (Letts, 1979). In this method, contiguous 

areas containing less than a specified threshold number of 
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pixels are ’declassified’, and subsequently reclassified 

according to their neighbouring pixels (those still 

classified). This reclassification can be on the basis of 

*nearest classified neighbour’, or ’modal class of n 

nearest classified neighbours’. 

A variation on this technique is to try to identify noise 

and boundary pixels on the original imagery. This is 

achieved by first passing a suitable edge detector over 

the image (eg Roberts, Sobell or Laplacian high pass 

filters), thresholding this to separate the image into 

edges/non-edges, declassifying the pixels identified as 

edges, then applying one of the above récinawittchnion 

algorithms to the declassified image. The thresholding may 

be done by trial and error, or some automatic solution can 

be applied (see sections 5.2.2 to 5.2.2.2.4). 

Another technique is that of Relaxation Labeling, where 

the image is reclassified according to the probabilities 

of a pixel and its neighbours belonging to each class 

(DiZenzo et al, 1987a, 1987b, Mohn et ‘al, 1987, Smith et 

al, 1981, Kittler and Illingworth, 1985). This 

probabilistic relaxation is an extension of the maximum 

likelihood classification algorithm to cover a 

neighbourhood, rather than single pixels. Because the 

algorithm is extremely slow to implement for large 

neighbourhoods, attention has focused on iterative 

implementation over small neighbourhoods, best results 

being achieved after several iterations. 
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To try to overcome the time problems caused _ by 

probabilistic velelatton: non-probabilistic methods have 

been investigated, for example modifying the minimum 

distance classifier in a similar manner to the maximum 

likelihood algorithm above, but classifying according to 

distances to means, rather than probabilities. Another 

alternative is to use ranked classes for each pixel, since 

rank order of classes can be calculated rather faster than 

the actual probabilities using an equation derived 

from the maximum likelihood probability estimate (Mather, 

1985). 

The image can be contextually reclassified using Markov 

chain theory to model the spatial autocorrelation of the 

class map (Kittler and Foglein, 1984). This is possible 

using the image itself, however, research suggests that it 

is more effective to estimate the transition probability 

matrix from field data, rather than the ’noisy’ classified 

image (see sections 5.2.1.4.3.1.2, 8.5.2.1, 8.5.2.3 and 

10.3.4). This method also has the added advantage 

of estimating the distance beyond which a _ pixel has 

no influence on its neighbours (the order of the chain). 

This distance could be used to set the size of mode 

filter window to be used, since the process of Markov 

relaxation is rather slow. 

The autocorrelation distance could also be estimated by 

constructing a semivariogram for each class (see fig.3.1). 
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Fig.3.1 Semivariogram estimation of class autocorrelation 

distance. 

Notes: 

1.Because distances can only be measured in whole pixels, 

the semivariogram becomes a bar chart. 

2.Beyond the autocorrelation distance, the frequency of 

occurrence of similarly classified pixels to the central 

pixel will not be zero, but at a level approximating the 

overall frequency of occurrence for the class over the 

whole image. 

The principles behind the use of transition probabilities 

for contextual classification of clouds are described by 

Kittler and Pairman (1985), who applied these to AVHRR 

data. The paper states that: 

"The Bayes classifier (maximum likelihood) exhibited a 

problem common to all simple pixel classifiers, that of 

yielding noisy labeling. The effect of using...the 
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transition probability classifier has been to clean up 

noisy boundaries between classes’. 

It should be noted, however, that a significant difference 

exists between this technique and the Markov relaxation 

technique (section 5.2.4.3), since Kittler and Pairman’s 

algorithm is applied before classification, rather than 

after, as is the case with Markov relaxation. 

A contextual reclassifier, bearing some resemblance to 

textural classifiers, has been suggested by Wharton 

(1982). The so-called CONAN algorithm works by first 

creating a new ’frequency of occurrence’ image, the bands 

of whitch have values according to each class’ frequency of 

occurrence over ann by n window. The classifier is then 

*retrained’, using the same areas, on this new image, and 

the classification rerun on this. The result is an 

extremely efficient and relatively fast contextual 

reclassification. 

Another contextual reclassification algorithm, and the 

most important in terms of integration with geographical 

information systems, is the per-field classifier. This has 

long been considered desirable (Allan, 1986), but the non- 

trivial task of extracting regions from remotely sensed 

imagery has precluded its widespread use. The development 

of digital mapping and geographical information systems 

now enables field boundaries to be extracted from maps, 

and classification to take place ona field by field 

basis. This classification can either be on a modal basis 
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(the field’s modal class is returned to every pixel within 

the field), or on a statistical basis (the overall most 

probable class is assigned to every pixel in the field). 

The increases in the amount of data to be processed in 

recent years led Chiou (1984) to examine the use of simple 

descriptors for classification of hyperdimensional 

remotely sensed spectral data. The results of this reveal 

contextual properties of vegetation, soils and crops. The 

simple descriptor. is also proposed as a method of 

displaying multidimensional data in pseudocolour using RGB 

colour space. 

Thomas (1980) derives a distance-decaying contextual 

influence model using analogy with gravitational 

attraction. This ’proximity function’ was found useful in 

removing noise from classified data. 

Rhode (1978) discusses the use of image stratification to 

allow two differing classes, with similar spectral 

characteristics, but occurring in different contexts, to 

be correctly classified. 

Merchant (1984) proposes a strategy for image 

classification which ’seeks to emulate important aspects 

of visual image interpretation’ (notably context). The 

paper also proposes the use of spatial post-processing for 

map generalisation. 

Gurney and Townshend (1983) introduce the use of 

contextual information into classification. They 
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categorise contextual procedures into those applied to raw 

or classified data, those applied to individual pixels or 

’objects’ (groups of similarly classified pixels), and 

those working on the form of spatial relationships between 

pixels. These methods are compared with existing ’per- 

point’ classifiers. 

Some of the effects of mixed pixels on classification are 

discussed by Birnie (1986), who cites the evidence of a 

comparison of ground radiometry with Landsat MSS data to 

suggest that a mixing of spectral classes within a pixel 

is responsible for alteration of the pixel’s expected 

spectral response. 

An attempt to isolate the effects of mixed pixels from the 

classification of spectrally pure pixels is presented by 

Irons et al (1985) in a paper discussing potential 

differences between the Landsat MSS and TM sensors. A 21% 

decrease in classification accuracy was reported when 

mixed pixels were included in the classification. The 

paper concludes with the following points: 

i) there is a need to develop new approaches to 

classification, which are able to take advantage of the 

high spatial resolution of Landsat TM. 

ii) the effect of spatial resolution on accuracy depends 

on the classification algorithm used: the maximum 

likelihood classifier being cited as unable to exploit the 

benefit of TM’s 30m resolution over the 80m resolution of 

MSS data. 
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iii) increased resolution ’clarifies shapes, sharpens 

boundaries and alters the textural appearance of classes’, 

thus facilitating manual photointerpretation. 

The paper also refers to the use of texture analysis for 

image classification (see section 3.10). 

Another paper concerned with the effects of spectral 

mixing and ground cover on classification is that by 

Batista, Hixon and Bauer (1985), in which the most 

important variable affecting classification of Landsat MSS 

data was found to be field size: a broad relationship 

between field size and accuracy (larger fields, higher 

accuracy), being found to exist. 

The use of probabilistic relaxation (see section 5.2.4.1) 

to improve the output from maximum likelihood classifiers 

is described by Harris (1985). The iterative technique 

used was found to initially boost classification accuracy, 

but: swith increasing numbers of iterations the 

classification accuracy dropped. The paper also notes the 

computational expense involved in the use of iterative 

techniques. 

Pre-classification filtering is described by Atkinson, 

Cushine and Townshend (1985) who report increases in 

classification accuracy with Landsat TM data when a mean 

or median filter is passed over the imagery prior to 

classification. The paper also notes that the filter size, 

relative to the spatial extent of classes is important. 
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The use of contextual measures, derived from classified 

imagery is discussed by Murphy (1985) who used a 3 by 3 

operator to generate two measures: 

i) The number of classes within the patch 

ii) The frequency of occurrence of classes within the 

patch 

These measures were then used as extra bands for further 

multispectral processing. 

3.9 LAND COVER MAPPING IN UPLAND AREAS 

The use of satellite data for land cover mapping is well 

established. Botkin et al. (1984) describe the techniques 

applied to vegetation monitoring, providing a useful 

introduction to the field for non-specialists in remote 

sensing. The agricultural applications of remote sensing 

are discussed thoroughly by Taylor (1985), whilst Forster 

(1985) covers the problems peculiar to the application of 

remote sensing to the monitoring of urban areas. 

Morton (1986) and Weaver (1987) detail the use of remotely 

sensed data for mapping upland vegetation in the United 

Kingdom, the former using Landsat Multi-Spectral Scanner 

data, the latter Daedalus Scanner (Airborne Thematic 

Mapper) data. Both authors provide valuable insight into 

the problems of using such data for this purpose. 

The theoretical advantages of Landsat Thematic Mapper data 

over Multi-Spectral Scanner data are discussed thoroughly 
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by Toll (1985), who also provides a good description of 

the Thematic Mapper sensor. 

Forest mapping is dealt with by Malila (1980) who suggests 

the application of change vector analysis to this problen. 

The problems of vegetation surfaces being continua of 

changing relative occurrences of vegetation type are 

described by Wood and Foody (1989), who suggest mapping of 

vegetation as a series of probability surfaces for each 

vegetation class, rather than as discrete blocks of single 

classes. 

3.10 TEXTURE 

Golton (1987) defines texture analysis as the ’study of 

the relative amplitudes of a number of adjacent pixels in 

order to obtain information on the type of surface on 

view’. Two uses of texture analysis are given: 

classification and edge definition. The paper also 

mentions human vision modeling, and notes that most 

texture analysis has concentrated on single-band, eaeey 

than multispectral data. The following texture measures 

are described: 

Edge density measure - a measure of average grey-scale 

gradient over a small image patch. 

Structural measures - describing detailed shapes of small 

regions: only really useful for two-tone images. 

Difference measures - can be calculated from a histogram 
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of the magnitude of differences between pixels, separated 

by a chosen distance from each other for an image region. 

Maximum/minimum measures - directional measures, based on 

the number of local extrema present in an image patch. 

Run-length measures - the number of linearly consecutive 

pixels having the same digital value, averaged over an 

image region, measured in different directions. 

Co-occurrence measures - an estimate of the probability of 

one grey level occurring at a distance of d from another 

grey level, calculated from a matrix of co-occurrences of 

grey levels (this is similar to Markov relaxation, 

described in section 5.2.4.3). Golton (1987) states that 

14 different texture measures have been derived from co- 

occurrence matrices, but that some textures which can be 

readily segmented by eye cannot be differentiated using 

these measures. 

Neighbouring grey level measures - calculated from a tally 

matrix for the number of times each pixel in a given area 

has n pixels of the same value at a given distance. This 

is a directionally independent form of run-length 

encoding. Several texture measures have been derived from 

these matrices. 

Frequency spectrum measures - using two dimensional power 

spectra over small areas (Golton (1987) uses 8 by 8 and 32 

by 32 pixel areas), usually Fourier transforms are used, 

but Golton (1987) states that ’Walsh and Slant transforms 
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have been equally useful in land use classification’. 

Rank correlation measure - based on pattern matching 

tests. Pixel values for each image area are sorted by 

digital number into rank order, to form a vector which is 

then compared to reference pattern rank vectors for class 

assignment. 

The paper by Haralick, Shanmugan and Dinstein (1973) 

describes the use of texture for image classification. 

They describe human vision as being made up of spectral, 

textural and contextual features, but that ’when a small- 

area patch has a.wide variation of features of discrete 

gray tone, the dominant property of that area is texture’. 

In order to quantify texture the spatial grey level 

dependency matrix is suggested, calculated for a 

*resolution cell’ (ie a patch over which texture is to be 

measured). This matrix can then be used to calculate 14 

different texture measures. When used for classification 

of Landsat MSS imagery an accuracy of 83.5% was reported, 

compared to 74-77% accuracy when using tonal features 

alone. The paper notes that there is a trade-off between 

resolution cell size and processing time, and that cell 

size should be determined by autocorrelation of data (see 

sections 3.8 and 5.2.3.1) 

A simple example of the use of textural information is 

provided by Gong and Howarth (1990) who describe the use 

of a Laplacian filter derived image as an extra band for 

multispectral classification. 
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Wang and He (1990) describe a statistical method of 

texture analysis, in which images are broken down into a 

series of ’texture units’ which are used to describe the 

image by means of its ’texture spectrum’, which can then 

be used for classification or filtering. 

Thomas (1981) describes the use of subtractive box 

filtering, after histogram equalisation, to enhance image 

texture for subsequent visual interpretation. The paper 

describes the main role of textural information as an aid 

to visual image interpretation. 

The use of Fourier transforms to classify periodic 

textures is described by Excell et al (1989). Spatial 

frequency distributions were used to distinguish between 

dust clouds and desert, but were found to be poor at 

distinguishing between clouds and fields. 

Majumdar and Bhattacharya (1988) describe the application 

of the Haar transform for extraction of linear and 

anomalous patterns within images. The paper states that 

the transform performs well at this task and is 

computationally inexpensive. 

Gordon and Phillipson (1986) describe a texture 

enhancement technique to help in the separation of orchard 

and forest areas using satellite data. The technique 

involved: 
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i) passing a 3 by 3 pixel absolute difference filter (ie 

sum of differences, ignoring sign, between central pixel 

and its eight neighbours) over Landsat Thematic Mapper 

bands 3 and 4. 

ii) ratioing of the output images from i) to reduce the 

effects of edges. 

iii) separating the ratioed image by density slicing into 

orchard and non-orchard areas. 

The binary image produced by iii) was then used as a 

selective mask to adjust prior probabilities used by a 

supervised maximum likelihood classifier, increasing the 

classifier’s accuracy. 

The use of edge-density measure for land use mapping from 

Simulated Landsat TM data is discussed by Hlavka (1987), 

who used a 31 by 31 pixel moving window to calculate these 

measures over the imagery. The inclusion of texture 

measures in automated classification procedures was found 

to produce a worthwhile improvement in classification 

kovdpacn Hlavka (1987) calculated the edge densities 

using the following steps: 

i)edge enhancement 

ii)thresholding to produce a binary image 

iii)convolution filtering to produce local edge density 

measures, 

Use of the Fourier transform for texture analysis is 

discussed by Stromberg and Farr (1986). The technique was 
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found to be successful when applied to both synthesised 

imagery and synthetic aperture radar imagery used for 

geological interpretation. 

Textural processing of remotely sensed data will not be 

further covered by this thesis. The interested reader is 

directed to the work of Oldfield (1987), which was carried 

out in parallel to the work presented here. 

3.11 GEOGRAPHICAL INFORMATION SYSTEMS 

A pilot geographical information system, linking non- 

satellite and remotely sensed data, developed by the 

MaCaulay institute of soil research, the National Remote 

Sensing Centre and Grampian Regional Council is described 

by Young (1986). The paper reports that the study was a 

success, but that the user interface for geographical 

information systems must be improved before they can 

become an operational tool. 

A review of developments in geographical information at 

the Natural Environment Research Council’s Thematic 

Information Service (NUTIS) is provided by Jackson and 

Mason (1986). Stress is placed on data management and 

efficient data query. The paper describes knowledge based 

image segmentation (see chapter 7, section 7.3), and 

mentions the use of an expert system for map and graphic 

output. 

In discussing Intelligent Knowledge Based Systems (IKBS) 

and Integrated Geographic Information Systems (IGIS) 
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Jackson and Mason state: 

*These developments in turn should open up new 

opportunities in the field of remote sensing by improving 

the accuracy of image classification through the use of 

IGIS supported contextual and IKBS based classification 

procedures.’ 

Singh and Dwivedi (1986) describe the combination of 

information from several different data sources: Landsat 

MSS interpretations, lithological, topographical and 

?other collateral data’ to produce a 1:250,000 scale soil 

map for an area of northern India. they report an accuracy 

figure of 93.3% for soil landscape boundary definition. 

The use of ancillary data - a digital terrain model - to 

improve classification accuracy is described by Jones, 

Settle and Wyatt (1988). Slope and aspect information from 

the model were used to stratify the image prior to 

classification, however the paper does not comment on the 

effects of this stratification on classification accuracy. 

A ’Relational Image-Based GIS’ is described by Qiming Zhou 

(1989). This comprises two data sets: a spatial, image- 

based database and an aspatial data base. The paper 

discusses the problems of integrating these data sets. 
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CHAPTER 4 

CLASSIFICATION © 

4.1 INTRODUCTION 

Classification is the process whereby digital images are 

split into areas of different classes on the basis of the 

characteristics of their component pixels. Commonly, . 

classification techniques are used to ’recognise’ the 

spectral characteristics (spectral signatures) of these 

classes, and assign each pixel to the class which its own 

spectral characteristics most closely resemble. 

The techniques can be divided into supervised and 

unsupervised. For supervised techniques, the operator 

is required to define ’training areas’ (areas of 

known class), which are used to provide the necessary 

statistics for classitvcation..in this. case, tie 

significance of each class is known (ie what it 

represents on the ground), so the resultant 

classification can be used immediately as a thematic map. 

Unsupervised classification attempts to use the structure 

of the data in order to divide the image into classes. 

Most techniques are a form of spectral clustering. These 

methods have the advantage of enabling classification of 

an image without the need for time consuming training 

however, after classification each class must be 

correlated with a class on the ground. Unsupervised 

methods have the theoretical advantage that they are 

Ck



capable of extracting all distinguishable classes from 

the imagery. They do, however, have practical problems, 

not least being their large memory requirements and 

their slow operation in the case of iterative procedures. 

4.2 TRAINING FOR SUPERVISED CLASSIFICATION 

Supervised classifiers require statistics, generated from 

example data, to classify imagery. These are usually 

calculated from training data (areas of known class 

defined on the image). 

Such areas should ideally contain a large number of pixels 

(greater than 50, Hay, 1979), and be representative of the 

class’ spectral response throughout the image. For this 

reason, it may be desirable to define more than one 

training area per class, in different parts of the image. 

Alternatively, widely separated pixels could be chosen at 

random, and their ground classes determined by field 

visits. This method, although statistically valid, cannot 

be recommended due to time constraints; for example, 50 

pixels (the bare minimum) for 10 classes requires at least 

500 site inspections, not accounting for the problems 

associated with finding sufficient pixels to cover 

uncommon cimeiée (see section 3.4 for other references to 

training data). 

4.3 CLASSIFICATION ALGORITHMS 

The algorithms described here are all *per-pixel’ 

classifiers, relying on the spectral characteristics of 
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individual pixels in isolation to identify the correct 

class. Other classifiers exist, those listed being the 

ones used for this study. 

4.3.1 BOX CLASSIFIER 

The box, or parallelepiped, classifier is the simplest 

classification algorithm commonly applied to multispectral 

digital image data. The algorithm divides feature 

space (the hyperdimensional space defined when each band 

(?feature’) of an image is used as an orthogonal 

graph axis for plotting the positions of each pixel) 

into a series of ‘howe? whose upper and _ lower 

limits are set using training statistics for each 

spectral band. The Sieeai ies iS “thus =a series “of 

IF...THEN rules (sometimes termed ’ production rules’ 

in je the artificial intelligence literature), for 

example: 

IF band 1 value is greater than a and less than b 

AND Hendad value is greater than c and less than d 

THEN the pixel is in class x 

Band 1 

  

  

Pa 
  

Sa area classified 
as class A 

        a b Band 2 

Fig.4.1: to illustrate the box classifier 
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In practice the limits are often set in terms of 

standard deviations about the training area mean values in 

order to exclude outlying data points. 

Although the algorithm is fast, it suffers from two major 

drawbacks: 

1.Class clusters are rarely box-shaped within feature 

space. 

2.Overlap can occur between adjacent class boxes leading 

to ambiguous class values. 

The complexity of the box shape can be increased, 

attempting to avoid these problems. Essentially, the 

algorithm splits the class boxes into smaller boxes, as 

in Fig.4.2, attempting to avoid overlap by more closely 

modeling the shape of the clusters. 

Band 1 

  

  

  

  

  

            e g A Band 2 

Fig.4.2: to illustrate an improved box classifier 

In this case the limits for class x are best summarised in 

a table: 
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' Table 4.1: class limits for the modified box classifier 

Class limits 

Band 1 Band 2 

Box Lower Upper Lower Upper 

1 a b e g 

2 d f g 
3 c d g h 

An important aspect of this type of classifier is that it 

can be implemented in real time for three bands using 

hardware look up tables. 

4.3.2 MINIMUM DISTANCE CLASSIFIER 

This algorithm assigns pixels to the class to which they 

are closest in feature space. Each class is assigned a 

mean vector from training data, consisting of the mean 

digital values of the training data in each band. The 

distance of any pixel from this mean vector is commonly 

calculated in one of two ways - either using Pythagoras’ 

theorem, to give the Euclidean distance, or using the 

?round the block’ method. Fig.4.3 shows these for She two 

: ; Band 1 
dimensional case. 

d Class X mean 

a ; 
Pixel vector   ] 

a D Band 2 

Fig.4.3: to illustrate the minimum distance classifier 
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The distances from the pixel to class x’s mean vector are 

calculated by: 

Round the block: (!b-a!+!d-c! ) 

Euclidean: ((b-a)2 + (d-c)2)9-5 

(where ! ! indicates that the sign is ignored) 

The pixel to mean vector distance is calculated for each 

possible class, then the pixel is assigned to the class 

for which the shortest distance has been calculated. 

A problem with this algorithm is its inability to take 

class eiobabi lity densities into account. The maximum 

likelihood algorithm (see section 4.3.5) uses the class 

probability density function to model changes in 

probability in feature space, however, this is time 

consuming. A simpler approximation can be achieved 

by dividing distances through by the associated class 

standard deviations, hence the title: ’deviant distance’ 

algorithm. The previous equations thus become: 

(ib-a!) + (!d-c!) 

By *. 

and 

{(b-a)? + (d-c)2}9-5 

ey 2 

where S84 and So are the standard deviations of classes 1 

and 2 respectively, obtained from training data. 
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For reduction of computational expense, the square root 

need not be taken, since this will not affect the rank 

order of the calculated distances. 

This results in distances rescaled for each individual 

class, roughly approximating the probability density 

functions for the classes. In other words, distances for 

class n are rescaled according to the variation of class n 

in each spectral band, whilst distances for class m are 

rescaled according to the variation of class m in each 

spectral band. 

4.3.3 DECISION TREE CLASSIFIER 

The tendency towards higher spatial and spectral 

resolution of remotely sensed data has led to the 

investigation of classification algorithms based on the 

expert systems approach. Such algorithms rely on the idea 

that only limited band combinations are necessary to 

discriminate between one class and its ’background’. The 

decision tree classifier is an attempt to produce an 

accurate classification whilst minimising the amount of 

data which must be examined to classify each pixel. 

The first stage is to produce co-incident spectral plots 

for all classes in all bands from training data. These 

plots are then used to identify which bands may be used to 

discriminate between which classes. 
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Class 3 } pene aceon 
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  Class 1 ’ 

Class 2 : 

Class 3 + 

¢ dg ct” - Band 2 DN 

    
        

Fig.4.4: co-incident spectral plots for the decision tree 

classifier 

eine: if a pixel’s value lies between a and b on band i, 

it can be assigned to class 1, whereas if its value lies 

between c and d in band 2, it can be assigned to class 3. 

With greater complexity, if the pixel’s value lies between 

c and f in band 1, then it can either belong to class 2 or 

3, but not to class 1. If it lies between g and h in band 

2, then it can either belong to class 1 or 2-DUutenot «to 

class 3. The full tree then becomes: 

IF value is greater than a and less than b in band 1 

. THEN the pixel is assigned to class 1 

otherwise 

IF value is greater than c and less than d in band 2 

THEN the pixel is assigned to class 3 

otherwise 

IF value is greater than e and less than f in band 1 

AND value is greater than g and less than h in band 2 

THEN the pixel is assigned to class 2 

otherwise 

the pixel remains unclassified 
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4.3.3.1 AUTOMATION OF TREE DEFINITION 

The most important barrier to the widespread use of the 

decision tree classifier is the time and effort which must 

be expended in deriving the tree from class statistics and 

coincident spectral plots. Moreover, different operators 

are likely to produce different trees, depending on their 

own preferences and experience (eg nhinimising the number 

of bands to be used, maximising the theoretical accuracy 

and so on). Different trees will give different 

classifications, therefore the decision tree algorithm 

will suffer from inconsistency. 

Inconsistency has been highlighted by Fiegenbaum (1988) as 

a key problem which artificial intelligence can attack and 

remove. Artificial intelligence tools, in the shape of 

expert systems, are already available to address’ the 

problems of decision tree design. 

The inferencing capabilities of some expert systems are 

ideal for designing decision trees. Data can be fed into 

these systems, sine then infer the decision rules. In the 

case of decision tree definition, the data comes from the 

training areas, and the inferred rules are the ’nodes’ of 

the tree. 

It should be noted at this point that not all expert 

systems are suitable for the purpose of designing a 

decision tree. The following criteria must be borne in 

mind: 

79



1.The expert system should have a suitable ’inference 

engine’ for the purpose. It must be able to use integer 

variables (ie the digital values in each band), and to 

infer trends in the data, rather than simply building up a 

look up table from the training data. 

2.The expert system must be able to handle ’clashes’ 

caused by noisy data, whilst still inferring useful rules. 

(There is considerable potential for duplication of 

spectral signatures between pixels in training areas of 

different classes. ) 

3.The expert system must be able to handle sufficiently 

large amounts of data. In this case, a typical requirement 

would be: 10 classes, 6 bands (variables), and 200 pixels 

(cases) per training area: 12,000 8-bit integers. 

4.3.4 LOOK UP TABLE AND SPECTRAL SHAPE CLASSIFIERS 

A common response to classification problems in the field 

of artificial intelligence is to store, for each possible 

combination of variables, the appropriate class to which 

to assign an object. 

For small, noise-free data sets this is an attractive 

proposition, since each case (combination of values) can 

be examined and a suitable classification decision made. 

The next time this combination is encountered, the 

classifier only has to look up the previous decision. Such 

a classifier is thus capable of ’learning’ to identify 

classes. 
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Applying this to remote sensing reveals two major 

problems: ’the curse of dimensionality’ (Duda and Hart, 

1973) and problems of noise inherent in the large, low- 

precision data sets generated by remote sensing devices. 

The first problem partially solves itself, since remotely 

sensed - images, despite potentially containing many 

thousands of different pixel vectors (for Thematic Mapper: 

280 million million possible band/value combinations, 

excluding the thermal band), generally contain only a_ few 

thousand different vectors (Mather, 1985). The actual 

storage requirements for the look up table can thus’ be 

reduced to manageable proportions using techniques such as 

hash coding. 

It should be noted, however, that the increases in data 

volumes for remotely sensed data in recent years have 

reduced the usefulness of such techniques. 

The problem of incorrect pixel values (described in 

section 2.7.1) is not so easily addressed. Imagery can be 

smoothed prior to classification in an attempt’ to 

reduce this, however, genuine high frequency variation 

may also be suppressed. 

4.3.4.1 SPECTRAL SHAPE CLASSIFIER 

The spectral shape classifier (Pendock, 1988) is, in fact, 

a data compression technique, enabling multi-band data 
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sets to be quickly classified by look up table or density 

slicing. 

The algorithm assigns a unique number to each spectral 

response shape, producing just one band of data from 

  
  

Digital yalue 

¢ 

local d 3 
local intermediate minimum 
maximum point 

a 

b 

wayelength 

Fig.4.5: to illustrate the spectral shape algorithm 

For any point on the spectral response curve shown in 

Fig.4.5, the point can be described as a local maximum, 

local minimum or an intermediate point. Thus, A is a local 

maximun, B a local minimum and C an _ intermediate 

point. This can be approximated in the discrete band case 

as: 

1.Local Maximum: if band value is greater than the values 

of its two adjacent spectral bands. 

2.Local Minimum: if band value is less than the values of 

its two adjacent spectral bands. 

3.Intermediate point: all bands not fulfilling 1 or 2 

above. 
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If the values 0,1 or 2 are used to represent each state, a 

*ternary’ (base 3) number can be generated for each 

pixel’s spectral shape. In the diagram above, this might 

be: 

A=0 

=1 

giving ternary 12, which can be converted to decimal as 5. 

4.3.4.2 OVERALL REFLECTANCE 

The problem of storing a large look up table can be 

reduced to within manageable proportions by compressing 

the data into fewer bands. The Spectral Shape algorithm 

(section 4.3.4.1) attempts this, as would principal 

components) analysis followed by discarding less 

significant components (see section 4.5). Another 

method of doing this is to produce an -overall 

brightness’ image by summing the values of a pixel in each 

band to produce just one band. This single band is then 

ideal for look up table classification, which, being a 

simple density slice, can be implemented in hardware. 

4.3.5 MAXIMUM LIKELIHOOD CLASSIFIER 

None of the previously described classification algorithms 

is capable of taking the probability density function of a 

class in feature space into account. 
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Assuming that a class’ pixels are normally distributed in 

feature space, the maximum likelihood classifier estimates 

the probability density function for each class from 

training data. Pixels are then assigned to the class to 

which they are most likely to belong. This can improve 

upon the previously described classification algorithms, 

as described below: 

Frequency _ 

class mean yalues (assuming normal 
dlstributlon) 

  

  

  

de 3 C digital value. 

Fig.4.6: to illustrate the maximum likelihood classifier 

In Fig.4.6, A and B are the class means for class 1 and 2 

respectively. A minimum distance classifier will place the 

decision boundary equidistant from the means at C. As can 

be seen, this will incorrectly aaglied class 2 wavele te 

class 1. 

The maximum likelihood algorithm, on the other hand, 

calculates its decision boundary to be at D, using the 

probability density functions of the two classes. This 

position of the boundary gives the classification with the 

minimum error. 
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The algorithm is unfortunately susceptible to data noise 

and, more importantly, distributions other than normal. 

For example, skewed and bimodal distributions occur 

frequently in remotely sensed data. This is, however, a 

problem common to all parametric classifiers which have to 

make assumptions about the data to which they are applied. 

4.3.5.1 IMPLEMENTATION 

The probability density functions for each class can be 

estimated from the class variance-covariance matrix, which 

can itself be estimated from training data. 

These form the basis of the discriminant functions, which 

are used to assign pixels to classes. These functions take 

the form: 

gi(x)=P(x/wi)P(wi) 

where: 

gi(x)=the probability that pixel x belongs to class i. 

P(x/wi)=the probability of x belonging to class i, 

calculated using the probability density function. 

P(wi)=the a-priori probability of any pixel belonging to 

class i. 

P(x/wi) can be estimated by: 

B(x/wi)=(1/L{2pi}°* 918i )exp(-0.5{ [x-Gi]?}/18il?) 

where: 

Si=estimated variance of class i 
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fii=estimated mean of class i 

Sfudua Yeectinated probability of pixel x belonging to 

class i 

expanding this into n dimensions gives: 

(8.5 
B(x/wi)=(1/[{2pi}fa/2hiEri) 

exp(-0.5{trans[x-ui]*[E]~!*[x-ui]}) 

where: 

E=variance-covariance matrix 

x=pixel vector 

ui=mean vector for class i 

trans(n)=transpose of vector n 

Thus, to calculate class probabilities, the variance- 

covariance matrix is first estimated, inverted and its 

determinant calculated. The only part of the equation 

which must be repetitively calculated for each pixel is: 

exp(-0.5{trans[x-ui]*[E]~/*[x-ui]}) 

the rest of the equation being constant for any given 

variance-covariance matrix. 

The calculations can be further reduced, since all that is 

actually required to assign pixels to classes is a set of 

values in the same rank order as the probabilities. Such 

techniques are detailed by Mather (1985, 1987). 
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4.4 CLUSTERING 

Clustering is "generally used in remote sensing as. an 

unsupervised classification technique. Most ’unsupervised’ 

classifiers require several parameters to be supplied by 

the operator, such as: number of clusters (classes); 

threshold distances and probabilities, before 

classification. 

In order to make a reasonable guess at the values of these 

parameters, the operator must have a detailed knowledge of 

the scene to be classified. For this reason, the term 

?semi-supervised’ might be more appropriate. 

At best, an unsupervised classifier will extract all 

>spectral’ classes (those classes which can _ be 

distinguished by their image spectral response), which 

must be matched with their corresponding ground classes. 

In practice, the time required to produce such an optimum 

classification often precludes the use of clustering 

techniques in remote sensing. 

4.4.1 TWO PASS CLUSTERING 

A fast method of clustering, involving only two passes 

through the data, is implemented by generating an n- 

dimensional histogram on the first pass through the data 

(n is the number of spectral bands in the image). Cluster 

centres are then identified as local maxima within the 

histogram. On the second pass each image pixel is assigned 
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to a cluster according to a proximity function (usually 

nearest neighbour). 

As data dimensionality increases the storage capacity 

required by the program increases, until coarsening the 

radiometric resolution (for example reducing 8 bits of 

precision (256 grey levels) to 7 bits (127 grey levels) by 

dividing all values by 2) or hash coding must be 

considered to enable implementation of the algorithm. 

4.4.2 ITERATIVE CLUSTERING 

A less memory intensive clustering algorithm relies on the 

assumption that, given an appropriate number of clusters, 

repetitive classification, recalculating the cluster 

centres after each pass through the data, will eventually 

result in cluster membership converging to stationarity. 

This is the essence of Forgy and Jancey’s algorithm, 

detailed in Anderberg (1973), and the commonly used 

ISODATA program for unsupervised classification of 

remotely sensed data. 

In practice, this involves making a first guess at cluster 

centres, or taking random pixels from the image as 

*seeds’, classifying the image (by nearest neighbour 

rule), recalculating the cluster mean vectors using the 

new cluster membership and reclassification of the image 

using these new class vectors. Convergence can be checked 

for by comparing subsequent classifications. In an ideal 

case this would occur when no pixels change class between 
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iterations, however in practice, a threshold must be set 

to allow for noise within the data. 

4.5 DIMENSION REDUCTION TECHNIQUES 

Duda and Hart (1973) describe ’the curse of 

dimensionality’, whereby increases in the amount (number 

of bands) of data used in a classification result in 

disproportionately large increases in the computational 

expense of the classification. 

The paper by Fusco and Trevese (1985) discusses the 

correlation between adjacent spectral bands in the context 

of using data from such bands to reconstruct missing data 

within satellite images. If, as suggested in this paper, 

adjacent spectral bands are correlated then by careful 

band selection an image containing a reduced number of 

spectral bands can be used for classification without too 

great a drop in accuracy. 

Computational expense can, therefore, be reduced by 

lowering the number of bands to be processed. Techniques 

for such data reduction fall into two categories: 

discarding the least useful bands from the data set, or 

processing the data to produce a smaller data set 

containing as much of the original information as 

possible. 

An examination of stepwise discriminant functions for band 

selection is provided by Labovitz (1985). The levels of 

separability achieved using such discriminant functions 
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was found to be sub-optimal. The paper also examines the 

effect of spacing in training samples, finding that 

autocorrelation of training samples often leads to 

overestimation of accuracy. 

4.5.1 A BRIEF REVIEW OF DIMENSION REDUCTION TECHNIQUES 

Canas and Barnett (1985) report on the use of principal 

components analysis to retain as much information in three 

new bands generated from all four bands of landsat MSS 

data as possible, whilst reducing subsequent processing 

times by approximately one quarter. Figures quoted 

indicate that 98% of the total variance of the original 

four data ands was retained in the first three principal 

components (although variance and information content 

cannot always be equated). They describe principal 

components analysis as: ’a systematic means of reducing 

the dimensionality of multichannel image data’, and 

recommend the application of this technique to other 

satellite image data in addition to the landsat MSS data 

used. 

Singh and Harrison (1985) also applied principal 

components analysis to Landsat MSS data, but they 

recommend that the components are standardised , since 

this was found to increase signal-to-noise ratio and image 

enhancement. They noted, however, that: ’whether 

standardisation is desirable is, in the ultimate analysis, 

to be decided on non-statistical grounds’. 
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The application of principal components analysis to 

multitemporal classification is described by Jiaju (1988), 

who cites the removal of calibration requirements for 

multitemporal data as an advantage of the technique which 

enables more effective classification of multitemporal 

data. 

The technique of discarding redundant information. is 

covered in the review article by Thomas et al. (1987), 

which addresses the problem of: ’which channels contain 

the best information to separate the classes of interest 

to the user?’. 

The paper attempts to solve this problem by examination of 

class statistical profiles, which are used to derive a 

number of multi-channel separability indices, giving some 

indication of the probable effectiveness of different band 

combinations for class separations (see section 4.3.3). 

The separability indices recommended in the paper are 

summarised in table 4.2. 

Table 4.2 Separability indices used by Thomas et al 

(1987). 

Separability Optimum conditions for use 

Index 

Divergence classes tending towards homogeneity 

limited number of bands in use 

Transformed as for divergence, but more suitable 
Divergence where many bands are in use 

Bhattacharyya less homogeneous classes, limited 

Distance number of bands in use 

Transformed as Bhattacharyya distance, but more 

Bhattacharyya suitable where many bands are in use 

Distance 
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Michaelis (1988) describes the use of band covariance 

matrices to determine whether Landsat Thematic Mapper data 

contains redundant information. The paper also describes 

the use of principal components analysis to reduce the 

number of bands of data to be processed. 

Schrier and Lavkulich (1979) used factor analysis to 

identify data components containing maximum information 

content, describing the use of this technique on a data 

set containing many varied data types (see section 3.7). 

A separability measure termed ’ellipsoid volume’ is 

described by Sheffield (1985) who applies this to the task 

of choosing the optimum three bands from a multi-band data 

set for image classification. The paper includes a Basic 

program to calculate the measure. 

4.5.2 DIVERGENCE AND SEPARABILITY MEASURES 

Thomas et al (1987) describe a separability index as a 

measure which attempts: ’to define the relative 

feasibility of (a) pixel being a member of class A whilst 

also being a member of class B, and vice-versa’. 

Divergence is described as the integral of the likelihood 

ratio for a pixel belonging to one class as opposed to any 

other class. In other words, if a graph were to be drawn 

showing the difference between the likelihood of a pixel 

belonging to its most probable class (calculated by the 

maximum likelihood rule, see section 4.3.5) and the 

probability of it belonging to any other class for all 
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possible pixel values, and the area under the curve 

calculated, the result would be the divergence of that 

particular band from which the values were taken (see 

figs4c7); 

Probability of pixel 
belonging to class n, 

  

    

The area under the curve 
Is the divargance for class 
nin the band used. 

    
Digital value of pixel, 

Fig.4.7 An interpretation of divergence. 

Thomas et al (1987) suggest improving the divergence 

calculation to enable easier identification of the point 

at which sufficient separability of classes has been 

achieved to give a satisfactory classification. This is 

termed the transformed divergence, and is achieved by 

introducing a saturating form to the expression for 

divergence. For broader class probability distributions 

the Bhattacharyya distance is recommended as an index of 

class separability (Thomas et al (1987) eqn.32), and again 

a saturating form is introduced into the equation to give 

a transformed Bhattacharyya distance. 

A comparison of four separability measures is given by 
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Mausel, Kramer and Lee (1990): transformed divergence, 

Jeffreys-Matusita distance, Bhattacharya distance and 

divergence. They tested the band combinations suggested by 

these indices against all possible four channel 

combinations of their data set, finding transformed 

divergence and Jeffreys-Matusita distance to be the best 

indicators of class separability, and therefore accuracy. 

4.5.3 PRACTICAL APPLICATIONS 

As discussed in section 4.3.3, some rationale for 

discarding redundant information, whilst still retaining 

reasonable class separability is desirable. This is 

especially true in situations where computational expense 

must be minimised. 

Section 4.3.3 describes band selection by examination of 

co-incident spectral plots to assess class separability. 

The class separability indices discussed in section 4.5 

may provide a more theoretically sound basis for band 

selection. 

It must be remembered, however, that discarding data is. 

carried out in many cases with the objective of reducing 

computational expense. If the method used to determine 

which bands of data to retain and which to discard is 

itself computationally expensive, then the user of the 

data might be better off retaining all bands, giving 

maximum separability, or referring to established 

*traditions’ within the remote sensing community to decide 

on which bands to use for a particular task. 
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4.5.3.1 CALCULATION OF DIVERGENCE 

Thomas et al (1987) give an expression for divergence as 

follows: 

es =1yinl 

#1/2 tr (Vj~t4V571)(U;-U5)(U4-U5)7 

where: 

Dij is the divergence of class i from class j across all 

chantieiee 

V; is the variance-covariance matrix for class i across 

all channels 

V; is the variance-covariance ehpix for class j across 

all channels 

U; is the mean vector for class i across all channels 

U; is the mean vector for class j across all channels 

tr indicates the trace of a matrix (sum of the leading 

diagonal elements). 

From this equation, it can be seen that for any band 

combination, all that is required to calculate divergence 

for each class pair is the variance-covariance matrix for 

that pair and the mean vectors of the two classes. 

4.5.3.2 EXAMPLE OF THE USE OF DIVERGENCE 

Thomas et al (1987) describe two applications of 

divergence: 

i) to identify class pairs which are poorly separated by 

any band combination - usually with a view to using 
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additional bands to improve classification accuracies. 

ii) to recommend a reduced number of bands for 

classification, whilst maintaining a high level of 

accuracy, in order to reduce computer overheads. 

The following example describes the calculation of 

divergence for two 3-band data sets, presents the results 

of these calculations, and discusses the practical 

implications of these results. 

4.5.3.2.1 DATA SETS AND CALCULATION 

Two of the data sets used elsewhere in this study were 

selected for divergence calculation. Unfortunately these 

consisted of only three bands of data each, and so the use 

of divergence to determine the theoretical optimum three- 

band combination for visual analysis from a multi-band 

data set cannot be discussed here. For full explanation of 

this technique the reader is directed to the paper by 

Thomas et al (1987), which describes such a study. 

The data sets were: Landsat TM of an area of North Wales 

and Landsat MSS of an area of Yemen, both of which are 

described in section 8.1.1. The mean vectors for each 

class and the variance-covariance matrices were those 

calculated by the maximum likelihood classification 

algorithm described in section 4.3.5). 
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Divergences for each class pair were then calculated using 

the equation given in section 4.5.2.1. These are set out 

in table 4.3 below. 

Table 4.3 inter-class divergences calculated for two 3- 

band data sets 

North Wales 

Class j 

Class i 

1 2 3 4 5 6 7 
2 5006.5890 

3 2949.2900 252.5379 

4 3032.3280 94.5350 105.2883 

5 19705.5900 1476.6310 2706.3410 2643.0790 

6 . 11682.5000 1091.0140 832.5231 1382.8270 1657.8410 

7 17838.8900 1087.9340 2803.4910 2279.1420 822.3004 3198.0220 
8 11861.2100 432.1631 896.2335 917.3776 216.0645 635.4537 793.8749 

Yemen 

Class j 

class i 

1 2 3 4 5 6 4 

2 50.0232 

3 61.2144 247.4882 

4 1024.1350 635.2363 1865.3920 

5 627.7104 373.5067 1241.3630 351.8843 

6 385.9738 266.9448 807.5260 804.3631 116.4684 

7 561.8875 518.7795 917.9494 1348.6990 340.9630 84.2851 

8 780.1611 900.3976 994.1033 2475.3750 960.7924 417.3784 139.7164 

4.5.3.2.2 DISCUSSION 

The results of maximum likelihood classifications of these 

data sets are summarised in the confusion matrices in 

table 4.4 below. 
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Table 4.4 Confusion matrices for maximum likelihood 

classifications. 

North Wales data set 

Classified as ------ > 

U 1 2 3 4 5 6 i 8 

1 0.4038 Le 0 ie Ue 0. 0. 0. 4040. 

2 0. Os7 309% 0. a O% 0. 6. 0. 370. 

3 0. 0. io el Soe aL O20. 0. 2 209. 

4 0. O03. 5. o. 1ORe 0; 0. 0% aie 170. 

5 0. Os 34, 0. 0. De 0. 0. .18,: 54. 

26 0; Os 0s Oy 0. OF 9898." 0: 0. SHEE 

7 0. One a2 Oe 4. 0. 0. 0. 4. ae OO. 

8 0. O57 64 2s ee 0. 0. 0. 447, D20% 

O.4038". 541," 201.122. a. 109... 10.469. 

Normalised accuracy: 95.27% 

Yemen data set 

Classified as ------ 

U ih 2 3 4 5 6 it: 8 

1 Otel kal A Oc 0ob.. 712, 1594. 0818. 324% 0 - 4040. 

2 0. On Gee ol. Ode OO eel Oe © bles 0 010. 

c 0 ral 2; Zi Sel Gs wae gue Ole ae Be 0 sa09le 

4 Oe. 24. Bee EB tig: NO AON 0. 0. 0 ees 

5 0. Oe OF os A Alig 0. ifs 0 alas 

6 0. 0% O: OF erie Divide ee OL s 0 ea St 

7 0. 0. 0. 0. le Pera On wate 0 Ma oOs 

8 0. 0, 0. Ge 1006 coy aloes! 1 oon 0 oa 

0.7% 56. 6. 640.1080.1785.1231. 697. Ole 

Normalised accuracy: 2.26% 

For the North Wales data set the applications of ° 

divergence can be seen clearly: classes which can be 

discriminated easily using the three bands available have 

high divergence values (for example class 1 and classes 

5,6,7 and 8) these correlate with extremely low 

occurrences of misclassification within these class pairs 

(shown in the contingency table); classes which may 

require. the. addition. of,.further “bands to. aid 

discrimination have low divergence values (for example 
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classes 2 and 4 and classes 2 and 8), these values 

corresponding to low values in the contingency table. 

For the Yemen data the picture is less clear. There is 

some correlation between low divergence values and inter 

class mis-classification, but this relationship is largely 

obscured by the poor classification accuracy. 

4.5.3.2.3 CONCLUSIONS 

The results presented above lead to the conclusion that, 

where a data set is suited to multispectral classification 

(as is the case with the North wales set) then divergence 

can provide a useful preview of the probable results of a 

maximum likelihood classification. Divergence can thus be 

used to aid in optimum band selection without the 

necessity of performing numerous classifications of the 

data. 

For data sets which are unsuited to multispectral 

classification, such as the Yemen data set above, 

divergence can be of little use and alternative methods of 

classification should be examined. 

4.6 EFFECTS OF TERRAIN ON REMOTELY SENSED DATA 

Since the data used in this study consists of pixel 

brightness values from surfaces illuminated by the sun, 

the effects of sun-surface-sensor geometry and the 

interactions between surfaces and incoming radiation at 

different angles and wavelengths are important. 
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Although no attempts were made to compensate for the above 

interactions within the test data sets, the reader should 

be aware that variations in spectral response due to 

terrain represent a potential source of classification 

error. The following notes refer the interested reader to 

two papers on this subject. 

Pinter et al (1987) examine the effects of terrain, 

illumination angle and sensor view angle on the 

reflectance characteristics of wheat, using a field 

radiometer. They conclude that these factors greatly 

influence the reflectance characteristics of this land- 

cover type. This variation in reflectance characteristics 

was found to still be present even after band ratioing the 

data. 

Kay and Barnsley (1989) examine the effects of sensor view 

angle on multispectral classification accuracy. Although 

concerned with changes in sensor attitude, their results 

would also seem to be valid for terrain effects (since 

both sensor angle and terrain affect the sensor-surface 

geometry), although tall, vertical vegetation on a slope 

will undoubtedly have a different spectral response to 

similar vegetation when viewed from an angle. They 

conclude that: ’the effect (of differing sensor angle) 

makes the consistent classification of land cover 

types...extremely difficult’. 
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CHAPTER 5 

CONTEXTUAL RECLASSIFICATION 

5.1 INTRODUCTION 

This chapter describes the various methods which have been 

used in contextual enhancement of classified remotely 

sensed data. A critical appraisal of these methods is__ 

given and proposals are made for improved techniques. 

There are many reasons why a classified image may be 

imperfect or incorrect. Two of the most commonly occurring 

reasons are spectral inseparability of ground classes and 

the introduction of ’noise’ into the image by any 

combination of sensor characteristics, atmospheric effects 

and data transmission errors (see section 2.7.1). 

Spectral inseparability of ground classes must often be 

accepted as an unfortunate fact. Even if the classes 

are theoretically separable, given specific growth stages 

and season, the likelihood of being able to obtain a 

suitable image of the area at a suitable date is low. 

Legg (1988), in a study of the suitability of Landsat 

Multi-Spectral Scanner data for agricultural monitoring in 

the United Kingdom, reports a likely figure of one 

suitable image per three years for any part of the United 

Kingdom. In many cases, just one image is insufficient to 

accurately identify all classes, and multitemporal data 

must be used (Belward and DeHoyos, 1987). The chances of 
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obtaining this sort of coverage will be even lower’ than 

those for a single scene. 

The noise problem is easier to address’ by image 

processing. In cases of systematic noise (for 

example, Multi-Spectral Scanner 6th line _ banding), 

statistical routines can be used effectively. In the case 

of random noise the broad group of techniques known as 

contextual processing can be employed. 

Context, as applied to remotely sensed digital imagery, is 

simply the relationship between single pixels and their 

neighbouring pixels. Intuitively, it can be seen that 

certain classes are unlikely to occur next to or within 

areas of other classes, for example deciduous woodland is 

unlikely to occur within areas of upland moor. Also, 

small areas differing from their surroundings may be the 

result of incorrect classification, due to noise within 

the data, rather than their presence on the ground, or 

their inclusion on a finished map may be inappropriate to 

the scale of the map (ede Sections 5S<l.1- and 2: 7.2)’. 

5. bs 1 ACCURACY AND SCALE 

Accuracy of classification is not easily defined. For land 

cover classification, an accurate classification at one 

scale might show only two classes, for example ’sea’ and 

?land’. At a slightly larger scale this might be 

subdivided to give ’sea’,’farmland’ and ’urban area’. 

Increasing scale would increase the number of classes 
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required for an ‘accurate’ classification. At the largest 

scales, for example, a field containing a crop could even 

be subdivided into ’hedges’,’crop’, ’weeds’ and ’bare 

soils. 

This problem of defining what is ’accurate’ is further 

compounded by the requirements of the user of the final 

classification. The terms *producers- ’ and ’users- 

accuracy’ have been mentioned by Aronoff (1982, section 

3.4 of this thesis). For the author’s purposes an 

*accurate’ classification is defined as a classification 

which closely resembles the requirements of its user, at 

the scale and detail level required. 

5.1.1.1 GENERALISATION 

The paper by Bryukhanov (1985) provides an important 

insight into the meaning of the term ’generalisation’, 

when applied to satellite imagery: 

’The term "generalisation" was introduced at about the 

time of the first (satellite images), to describe a number 

of specific properties of images communicated from space. 

Conceptually the term denotes scale generalisation 

achieved through a process that naturally brings together 

small units of geologic content to produce larger units. 

’The generalisation process is one that diminishes spatial 

ground resolution while generally expanding (satellite 

image) area coverage.’ 

When applied to land cover classification, this implies 
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the amalgamation of small areas of differing class 

replacing thabe with larger areas of homogeneous class. 

For example, the merging of pixels classified as ’road’, 

*grass’ and ‘hedge’ to form a larger area with the class 

name ’agricultural grassland’. 

Bryukhanov (1985) goes on to describe the levels of 

generalisation achieved for different spatial and 

radiometric resolutions of satellite data. A complex 

relationship between map scale, viewing distance and data 

resolution is also developed, which can then be used to 

calculate the optimum level of detail to be included in a 

map. 

5.2 CONTEXTUAL ENHANCEMENT ALGORITHMS 

5.2.1 MODE FILTERING 

Of the many smoothing filters available for use on 

remotely sensed data, the mode filter is the only type 

which can be successfully applied to classified imagery 

(the median filter is sometimes quoted as acceptable, but 

will tend to be biased towards classes which have labels 

(values on the image) lying in the middle of the range of 

classes, since it returns the middle class value when 

these are arranged in numerical order). 

A classified image consists of an array of pixels, whose 

values represent particular classes, thus adding up these 

class numbers and taking their average for an n by n patch 

of pixels will give a meaningless result. A modal filter, 
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however, will return the class value of the most 

frequently occurring class within the patch. It can thus 

be used to smooth imagery after classification. 

5.2.2 SMALL AREA REPLACEMENT 

In theory, noise and anomalous classifications will occur 

in small groups of pixels, or single pixels, differing 

from the surrounding overall pattern. An intuitively 

simple method of noise removal is to identify homogeneous 

regions containing less than a predetermined number of 

pixels (commonly 8), then reclassify these areas according 

to their context. 

Unfortunately, a true small area identification algorithm 

is extremely expensive computationally (Oldfield, 1988), 

since for each pixel a search must be made for all of its 

similarly classified neighbours, then a search for all of 

the similarly classified neighbours of these, and so on, 

making sure that no pixel is counted more than once, until 

either the threshold number of similarly classified pixels 

is reached or no further similarly classified neighbours 

are found. If the latter is the case, then all the 

similarly classified neighbours found up to this point can 

be declassified. 

A good approximation, however, is achieved by applying a 

threshold to a square patch: if the patch contains less 

than the threshold number of pixels of similar class to 

the central pixel, then the central pixel is declassified. 
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5.2.2.1 EDGE AND NOISE DETECTION 

Edges appear in remotely sensed imagery where adjacent 

pixels differ from each other to a greater extent than is 

common in the image. Such edges usually occur at the 

boundaries between ground cover types. In many cases, the 

actual boundary on the ground will occur within an image 

pixel. Ths. Will - result Vin? a eicelt & a pixel 

whose spectral response is a mixture of those for 

different cover types. In these cases, the resultant 

spectral response may cause the classification algorithm 

to assign the pixel to an incorrect class. For this 

reason, it is desirable to identify alan’ pivele and to 

reclassify these according to their context. 

In the case of noise, random or systematic anomalies exist 

in the image. These can often be identified as single 

pixels or small groups of pixels differing from the 

*background’. Edge detection algorithms can also be used 

to identify noise for this reason. Unfortunately, in some 

cases, these ’noise’ pixels may actually represent true 

ground conditions. Without site inspection, it is 

impossible to identify such areas, so a compromise must be 

reached where such areas are ’generalised’ out, to produce 

a classification approximating to the overall picture at 

whatever scale the end product is required. 

Ehrich (1977) states that: 

’Much of our knowledge of edge detection comes from 
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artificial intelligence investigations in which image 

conditions are not particularly severe’ 

going on to define boundaries as edges between areas of 

relatively uniform texture. This paper provides a good 

review of edge detection literature in the fields of: 

perception theory; biomedical image analysis and terrain 

analysis. The paper notes that *serious noise levels’ 

often cause difficulties and describes edges within 

Landsat images as falling into two categories: 

i) Short and curved (difficult to find) 

ii) Long and of low curvature or straight (easier to find, 

when noise levels are low) 

The paper also describes edge detection using matched 

filters, allowing line growing from segments detected by 

this method. 

The relationship between scale and edges is also 

discussed: ’A large variety of types (of lineament) may 

exist at several different scales.’ 

A knowledge-based approach for lineament extraction is 

described by Parikh (1986), using low-level operators 

(filters) to detect edges, followed by interpretation by 

high-level decision processes, which are able to set off 

further low-level processing. The paper also refers to the 

two types of edges discussed by Ehrich (1983), and also 

mentions the possibility of: 

i) Combination of image data with ancillary data, such as 
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geological or topographic maps. 

ii) Collection and codification of geological expertise in 

a form suitable for automatic processing. 

The paper mentions the computational effort involved in 

such approaches, proposing the use of a massively parallel 

processor, and suggests the use of ’minimum cost-path 

algorithms’ for achieving specific objectives. 

A five step convolution procedure to produce directionally 

enhanced images is described by Moore (1983), as a method 

of reducing ’controversy’ when edges are defined by human 

operators. The methodology advocated cab tice Os 

i) Generating a low spatial frequency image with an 

averaging function. 

ii) Extraction of directional data by means of a 

convolution filter. 

iii) Smoothing the directional data using an average or 

tangent function. 

iv) Further smoothing the data by extracting directional 

trends in the tails of the image histograms. 

v) Adding the enhanced directional trends to the image. 

Frequency domain filtering, instead of convolution 

filtering described in section 5.2.2.1.1, is described in 

the paper by Duggin, Rowntree and Odell (1988). 

5.2.2.1.1 HIGH PASS FILTERING 

A high pass (edge detection) filter is a filter which 
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enhances high frequencies in an image, boosting the high 

frequency information in the image relative to the low 

frequency information. 

For a 3 by 3 pixel filter kernel, a filter leaving the 

image 

unchanged is: 

(1) or 
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and a filter allowing the low frequency information to 

pass is given by: 

cia 3 1/9 1/9 1/9 
1/9 9 324 or 178 178.1/9.°-(2) 

Ak 1/9 1/9 1/9 

A high pass filter can be created by subtracting (2) from 

(1): in other words removing the low frequency information 

from the image to give: 
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Any filter which accentuates the difference between a 

pixel and its neighbours will enhance the high frequency 

components of an image. A good example of such a filter, 

based on theory, is the Laplacian edge detector: 
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This has been found to be an excellent filter to use for 

*>sharpening’ images. 
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The filters so. far described are capable of enhancing or 

detecting high frequency information (detection = filter 

alone, enhancement = filter result added back to the 

original image), but can provide no information on the 

*direction’ of the detected edges. To estimate edge 

direction, orthogonal filter pairs have been used, such as 

the template edge detectors shown below: 

Roberts 

02-1 -1°20 

de O51 

Sobel 

2 ok ei Qe ok 

0:0, <0 =a Or 2S 

-1 -2 -l ade OVS 

Prewitt 

DL Slee e 

Tso -1 -2 1 

-1 -1 -1 Said te er FL 

Each filter pair is used to find the magnitude of an edge 

in two orthogonal directions. The direction of the edge 

vector can then be resolved as shown in Fig.5.1. 

A 

  . 

Fig.5.1 Calculation of vector direction 
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The combined magnitude, c, is given by: 

c=(a" + p29: (Pythagoras) 

and the direction angle, ®@, by: 

@=arctan(a/b) 

In the case of the Prewitt and Sobel filters these values 

can be returned to the position of the central pixel, 

however, the Roberts filter presents the problem that none 

of the four pixels can be described as ’central’. In this 

case an arbitrary pixel position must be chosen from the 

four possibilities available. In this study, the top left 

position was chosen. 

Estimation of edge direction can be taken a step further 

by using the technique of template matching (Golton, 

1988), where a series of templates (usually 8 at 0, 465, 

90... degrees to each other) are applied to the image to 

ascertain the direction of edges. 

5.2.2.1.2 AUTOMATIC THRESHOLDING OF EDGE DETECTOR OUTPUT 

The automatic threshold generator applied to the data uses 

an automatic threshold selection method based upon a 

simple image model to choose an appropriate threshold for 

dividing the image into object and background. 

In this case, object refers to the edges, and background 

the rest of the image. 
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5.2.2.1.3 DIFFERENTIATION OF NOISE AND EDGES 

In theory, random noise, affecting individual bands 

separately, can be differentiated from true edges, which 

will occur at the same positions in each band, due to 

correlation between adjacent spectral bands. 

If an edge detector is passed over all n bands of an image 

and the results thresholded to give edge and non-edge 

pixels, then ior pudine pixel values in each band (0 or 

1) are summed over the n bands, the result will be an 

image showing the likelihood of pixels being edge, noise 

or neither. 

True edge pixels will tend to exist in all bands (in the 

case of close spectral bands, showing high inter-band 

correlation (see section 4.5 and Fusco and Trevese, 1985), 

as is the case with Landsat Thematic Mapper bands 1-5 and 

7, used here), whereas noise will tend only to occur 

in single bands. On summation, the closer the result 

for a pixel to n, the more likely it is to be a true 

edge pixel, whilst pixels with non-zero values smaller 

than n are more likely to represent the locations of 

random noise. A value of zero will represent’ the 

location of a non-edge, non-noise 

pixel. 
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5.2.2.2 RECLASSIFICATION 

To complete the contextual processing sequence, once 

small areas and noise pixels have been declassified, 

using any of the previously mentioned algorithms, they 

can be reclassified according to their context. This 

implies a reclassification scheme based on neighbouring, 

classified pixels. 

§.2.2.2.1 NEAREST NEIGHBOUR 

The simplest reclassification technique searches from an 

unclassified pixel to discover its nearest classified 

neighbour. The pixel is then assigned to the same class as 

this. An efficient search algorithm can be used which 

stores a list of co-ordinates, relative to the 

unclassified pixel, to search, in order of increasing 

distance. The search is stopped as soon as a classified 

pixel is encountered. 

5.2.2.2.2 MODE OF NEAREST N NEIGHBOURS 

An extrapolation of the above technique finds the nearest 

n classified neighbours of an unclassified pixel and 

assigns the modal class of these to the unclassified 

pixel. This technique is less susceptible to any noise 

remaining in the declassified image. 
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5.2.2.2.3 MODAL CLASS OF N BY N PATCH 

This, “is effectively a selective mode filter. When an 

unclassified pixel is encountered the algorithm returns 

the modal class of ann by n pixel patch centred on the 

unclassified pixel. The algorithm is fast, but care must 

be taken to choose an appropriate patch size: too small 

and some areas will remain unclassified; too big and the 

image will be overgeneralised, and the time required by 

the algorithm will increase drastically. 

5.2.2.2.4 EFFICIENT SEARCHING FOR NEAREST NEIGHBOURS 

For efficient implementation of the nearest neighbour 

reclassification algorithms, a fast method for finding a 

pixel’s nearest classified neighbours is necessary. 

The simplest method to implement by computer, that of 

calculating the distance to the target pixel from every 

other classified image pixel, then searching through these 

to find the shortest distance, is impossibly slow to 

implement over large images. For example, a 1024 by 1024 

pixel image, with, say 10% unclassified pixels will 

require about 922*922 separate distance calculations for 

each of 102 unclassified pixels: 86,708,568 calculations. 

Clearly, the search must be reduced. One method is_ to 

limit the search to a (relatively) small patch, centered 

on the target pixel, and search as before. For, say, a 101 

by 101 pixel patch, with on average 10% of the pixels 

within the image unclassified, as before, the number of 

114



calculations becomes 91*91 pixels searched for each of the 

102 unclassified pixels: 844,662 calculations, and much 

more feasible. 

The method does, however, have two drawbacks: 

1.Some pixels may remain unclassified in images containing 

few classified pixels: increasing the patch size to cope 

with. this increases the number. of calculations 

dramatically. 

2.Many pixels could probably be classified by pixels much 

closer than half the size of the patch - in this case a 

great many calculations are ’wasted’ examining pixels much 

further away than the nearest neighbour. 

The technique used here to keep calculations to a minimum 

is to carry out an ordered search, outwards from the 

central pixel, until a classified neighbour is 

encountered. The search is then terminated. 

In this case, only the absolute minimum number of pixels 

is examined. 

The problem of designing an ordered search algorithm 

remains, however. This has been overcome in this case by: 

1.Calculating the distances of all pixels in a large patch 

from the centre of the patch, and storing these in an 

array, together with the co-ordinates of the pixels 

(relative to the central pixel). 
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2.Array elements are then sorted, according to distance 

order, using a Shell sort algorithm (Press, 1986). The 

distance-ordered co-ordinates are then written to a file. 

3.Any algorithm requiring ordered searching can now read 

in this file of search co-ordinates, and examine the 

pixels indicated by the list in order, until a classified 

neighbour is encountered. When this occurs, the algorithm 

can move on to the next unclassified pixel and restart the 

search from the ’top’ of the list. 

The author has not encountered any reference to this type 

of ordered search algorithm in the literature. 

5.2.3 WHARTON’S CONAN ALGORITHM 

This algorithm (CONtextual ANalysis), developed by Wharton 

(1982) falls somewhere between context and texture 

analysis. It requires a classified image as input, but 

reassigns pixels to new classes according to a_  texture- 

like measure of class frequency calculated for an n by n 

pixel patch. 

The algorithm can be split into two parts: first, a mode 

filter type of operator is passed over the image, but, 

instead of returning the modal class, the class frequency 

histograms are saved, forming a temporary image of nclass 

bands, where nclass is the number of classes. This 

temporary frequency image is used as the subject of 

another classifier, in this case minimum distance, which 

is trained using the same areas as before. The whole image 
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is then reclassified by this, classifying pixels according 

to their context, rather than their spectral properties. 

5.2.3.1 PATCH SIZE AND STORAGE REQUIREMENTS 

Experiments elsewhere in this study, using mode filters 

and Markov relaxation, suggest that the autocorrelation 

function for classified imagery of this type decays to 

zero at a distance somewhere between six and ten pixels 

from a central pixel. The implication of this for 

Wharton’s CONAN algorithm, is to suggest that the ideal 

patch size should lie between 13 by 13 pixels (approximate 

maximum distance of 6 pixels) and 21 by 21 pixels 

(approximate maximum distance of 10 pixels). This leads, 

however, to serious speed implications (the larger the 

patch, the slower the algorithm), therefore 9 by 9 and 15 

by 15 pixel patches were tried. The former size represents 

a compromise to increase speed, whilst the latter is the 

largest size enabling the frequency values to be stored as 

BYTE (8 bit unsigned integer) variables, saving memory 

space (15*15=225, 8 bit integers can cover 0-255, 

therefore values up to 255 can be stored). 

An alternative method of estimating autocorrelation 

distances, by semivariogram estimation, is discussed in 

section 3.8. 
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5.2.4 RELAXATION 

Relaxation is a technique whereby classified imagery can 

be reclassified according to contextual information 

obtained from the original classification. Relaxation is 

often applied iteratively, but it must be realised that 

the technique can only be successful when it is applied to 

a reasonably accurate classification, since the technique 

assumes that the majority of image pixels are correctly 

classified, and can therefore be used as the basis of 

classification modification. 

5.2.4.1 PROBABILISTIC RELAXATION 

Essentially this involves calculating the probability of 

membership of each class for each image pixel, then 

assigning class labels according to the most probable 

class within an n by n pixel patch centered on the pixel 

to be classified. 

A maximum likelihood classifier can be modified to produce 

these results, but various short-cuts to enhance the speed 

of the algorithm (Mather, 1985) must be sacrificed in 

order to calculate actual probabilities. The algorithm 

thus becomes extremely slow to implement. 

5.2.4.2 RELAXATION BASED ON THE MINIMUM DISTANCE 

CLASSIFIER 

Probabilistic relaxation techniques require a 

classification algorithm which actually calculates class 

probabilities. As noted earlier, the maximum likelihood 
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algorithm, in its practical form (as used in this study 

and described by Mather (1987)), does not actually 

calculate true probabilities; merely a series of values 

which have the same rank order as the probabilities. True 

probabilistic relaxation is, therefore, extremely 

computationally expensive: there is scope for the 

development of relaxation algorithms which do not deal in 

probabilities, but use other, less expensively calculated, 

statistics. 

The computationally inexpensive minimum distance algorithm 

is presented here as a possible solution to this problen, 

in two forms: distance based and rank based. 

5.2.4.2.1 DISTANCE BASED 

For each pixel, the feature-space distances from each 

class mean centre are calculated, and summed over a 3 by 

3 pixel patch (ie over the pixel’s 8 nearest neighbours). 

The pixel is then assigned to the class which has 

the ‘smallest summed distance associated with it. This 

provides a relaxation across the patch. 

5.2.4.2.2 RANK BASED 

For this, the ranks of distances for each class are 

calculated on the basis of nearest=1, furthest=nclass, 

where nclass is the number of classes, for all pixels in 

the patch (3 by 3 was used in this case, as above). They 

are then summed, and the class with the lowest summed rank 

is assigned to the central pixel. This technique could 

ike,



equally easily be applied to the maximum likelihood 

algorithm, in the form used here, since this also is 

capable of modification to give ranked classes. 

5.2.4.3 MARKOV RELAXATION 

First order Markov chains represent a method for modeling 

the effects of autocorrelation. Essentially, from a 

tally matrix of adjacencies, obtained either in the 

field, or from the image itself, the probabilities of a 

pixel of class (a) occurring at a distance d pixels from 

a pixel of class (b) can be calculated. In this way, 

relaxation can be refined to include a distance 

weighting function for classification modification. 

The order of the chain can also be used to set boundaries 

for filtering operations. For an image with Markov 

adjacency order n, then any reclassification or contextual 

operations can be confined to within a 2ntl by 2n+tl 

square patch (ideally a circular patch, diameter 

2n+1), since pixels a greater distance than this apart 

will be uncorrelated. 
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5.2.4.3.1 IMPLEMENTATION 

Figure 5.2 summarises the steps necessary to complete this 

algorithn. 

  

Estimation of tally matrix 

  

  

Normalise tally matrix to give transition 

  

probabilities 

  

Multiply transition probability matrix by itself 
until convergence is reached, thus calculating the 
probabilities of each class occurring at any distance 
from any other class       

  
  

For every pixel in the image calculate and sum the 
probabilities of the occurrence of each class at this 
location 
  

  
  

Reclassify the pixel according to the most probable 
class       

Fig.5.2 Markov relaxation. 

5.2.4.3.1.1 TALLY MATRIX 

The first stage of the process is to construct an 

adjacency tally matrix, either from the classified image, 

or from ground data. Entries are made for the neighbours 

of each pixel as in Fig.5.3 below: 

Pixel class 

1 2 3 4 

iL 

Neighbour 2 

class 3 

4 

Fig.5.3 format of tally matrix 
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5.2.4.3.1.2 TRANSITION PROBABILITY MATRIX 

The tally matrix is next converted to show the 

probabilities of neighbours occurring in each class pair 

by dividing each element of each row by the total for that 

row. In this case the matrix is symmetrical about its 

leading diagonal, since the probabilities of class n 

occurring next to class m and vice-versa are equal. In 

other cases, notably in modeling changes of state over 

time (time series analysis), this may not be the case 

(for example, the probability of lunch’ occurring 

after ‘breakfast’ is much higher than that for 

*breakfast’ occurring after ’lunch’). 

5.2.4.3.2 CALCULATION OF SUBSEQUENT TRANSITION 

PROBABILITIES 

The probability of a pixel of class m having a neighbour 

of class n at a distance of x pixels away from the pixel 

can be calculated by multiplying the transition 

probability matrix by itself x times (in other words 

raising it to the power of x). The elements of this matrix 

then represent the probabilities that a pixel of class n 

will occur at a distance x from a pixel of class m. 

5.2.4.3.3 CONVERGENCE 

Eventually, a distance will be reached when the 

probabilities of the pixel belonging to any class 

must no longer differ significantly from each other, in 

other words, the central pixel ceases to affect the 
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probabilities of class membership of its neighbours 

beyond this distance. This is the limit of autocorrelation 

for this class and may be used to determine the 

theoretical optimum size of contextual filters. 

5.2.4.3.4 AUTOCORRELATION MODELING 

The transition probability matrices up to the convergence 

of probabilities can be used to model the autocorrelation 

function for a classified image, and therefore as part. of 

a relaxation scheme to contextually reclassify the image. 
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CHAPTER 6 

USE OF AN EXPERT SYSTEM TO AID MULTISPECTRAL 

CLASSIFICATION 

As discussed in sections 3.7 and 6.4, expert systems 

with induction and inferencing capabilities can be used 

as suitable tools for defining decision trees for 

classification, and for classifying multispectral remotely 

sensed data. 

An example is Super Expert, a proprietary system for IBM 

PCs and compatibles, from Intelligent Terminals Ltd. 

This expert system has an induction engine, based on 

Quinlan’s ID3 algorithm (Intelligent Terminals Ltd. 1986), 

which will accept example data on an integer scale. 

Any ’supervised classification’ procedure can be described 

as an induction engine, in that examples are presented to 

the ’induction’ engine which goes on to produce a set of 

rules to be used in classification. It is the mathematics 

of the rule induction mechanism which changes from one 

method to another. One advantage of the ID3 type of 

algorithm, or other pattern matching algorithms, is that 

they make few assumptions about the nature of the data and 

therefore data on various scales including numeric and 

categorical can be mixed. 

This chapter contains an example of the use of Super 

Expert for multispectral classification. 
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6.1 USE OF SUPER EXPERT 

(Please see chapter 8 for a description of the data sets 

used). 

6.1.1 PEAK DISTRICT DATA SET 

Super Expert requires example data from each class in 

order to infer the decision rules. In this case, this was 

obtained from the training data heer by the other 

classifiers. Super Expert was set up to accept’ the 

attributes shown in table 6.1: 

Table 6.1: attributes used by Super Expert 

integer integer integer integer integer integer decision 

band1 band2 band3 band4 band5 band6 Class 

23 24 3 uf 15 3 "class8" 

127 110 123 78 96 54 "class3" 

2 1 4 23 34 6 "class5" 

(Note: ’band6’ refers to TM band 7, since TM band 6 data 
was not available. ) 

where ’bandl-band6’ are the digital values in each of the 

6 Thematic Mapper spectral bands used, and ’Class’ can be 

any of the classes defined by the training data (see 

section 8.4). 

The example data can be stored in an ASCII file, with the 

suffix .TXT, containing records in the following format: 

b1,b2,b3,b4,b5,b7,"class descriptor" 

(where bl-b5 and b7 are the digital values in each of the 

6 TM bands used) 
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A short Fortran program was written to extract training 

data in this format from the image files stored on the Vax 

cluster. Because Super Expert is not designed explicitly 

for use with large data sets such as those used in remote 

sensing, the number of examples had to be restricted to 40 

per class. This data was then transferred to the PC via 

Kermit and loaded into Super Expert. 

Super Expert requires an ASCII text file, consisting of 

records in the format given in section 6.1. This 

corresponds to the Fortran-77 format: 

’ ? ’ ’ 3 m9 amy DM pieeyy ig NG ig siete oo ce ee ANS 

where: 

m is the number of digits required for each integer value 

n is the number of characters used for the class 

descriptor 

A text file where each record has this format can be 

directly read into Super Expert, but only if the file 

suffix is ’.TXT’. This file is imported into Super Expert. 

A decision rule was then induced by Super Expert (by 

typing !) from these examples and is shown in Fig..63:1. 
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Fig.6.1 Decision rule from 40 examples per class. 

band4 

< 64 : bandl 
< 74 : bandd 

<3.°50)4 band? 

C-¥22.: Classi 

>= 22 : class4 

>= 50 : band4 
< 45 : band6 

< 22353 hands 

< 68 : class4 
>= 68 : class5 

>= 23 : class7 
>= 45 : band3 

<* 292%, Class) 
>= 32 : band2 

< 29 : class7 

>= 29 : class8 

>= 74 ; bandd 

<i = pandL 

<< 76.3 pand4 

< 41: class3 

>= 41 : band4 
< 46: class8 

>= 46 : class3 

>= 76 : class3 

>= 77 : bandi 

oie > .band2 

< 30 : class7 

>= 30 : class8 

>= 91; class3 

>= 64 : bandi 

<2. 19'5s band) 

< 86 : class10 

>= 86 : class9 

>= 79 : bandl 

< 104 : class6 

>= 104 : band2 

<<; 58: class3 

>= 58 : class2 

Explanation of this diagram, showing the tree in the same 

format as Super Expert’s output, can be obtained by the 

following interpretation of the first six lines: 

If the pixel’s value in band 4 is less than 64 and the 

pixel’s value in band 1 is less than 74 and the pixel’s 

value in band 5 is less than 50, then, if the pixel’s 

value in band 2 is less than 22, the pixel is assigned to 
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class 1, otherwise, if the pixel’s value in band 2 is 

greater than or equal to 22, the pixel is assigned to 

class 4. 

A rule was also induced using 25 examples per class, 

which is omitted here for clarity. Both rules were tested 

as described below. 

‘These rules were then encoded in Forthan on the Vax 8650 

cluster as a series of IF...THEN...ELSE statements, using 

the decision tree shell discussed elsewhere. The resultant 

classifiers were then applied to the study area data and 

normalised accuracies calculated. Contingency tables and 

accuracies for these classifications, generated using the 

verification data used elsewhere in this study (see 

section 8.4), are given in tables 6.1, 6.2 and 6.3. 

In addition, the accuracy figure for the manually derived 

decision tree classifier, described elsewhere in this 

study, is also given to provide a comparison of 

automatically and manually derived decision rules. 

6.1.2 NORTH WALES DATA SET 

A similar procedure was carried out using the North Wales 

Thematic Mapper data. This time only three bands were used 

(TM bands 4,5 and 7), and only eight classes were defined. 

A manually derived decision tree was not constructed. 

128



  

6.1.3 YEMEN DATA SET 

The three band (MSS bands 1,2 and 4, or 3,5 and 7, 

depending on notation) Landsat MSS data for Yemen was also 

used, again with eight classes defined. A manual tree was 

not derived for this data set. 

6.1.3.1 SUN WORKSTATIONS: DATA FILES 

The program mentioned in section 6.1.1 was also used on 

the Sun workstation where the data sets were situated, 

however, the unix command ’unix2dos’ had to be run on the 

text files before they were suitable for use by Super 

Expert on the PC. This program adds suitable DOS end-of- 

record markers to Sun created files. 

6.1.4 RESULTS 

Summarised results are presented in table 6.2. Contingency 

tables are presented in the appendix. 

Table 6.2, SUMMARY OF ACCURACIES AND TIMINGS 

Table 6.2a PEAK DISTRICT DATA SET 

rule derived normalised time (sec) 
from accuracy % to derive tree 

25 examples 65.13 560 

40 examples 66.63 1160 

co-incident 

spectral 58.23 - (manually defined tree 

plots approximate time: 1 

hour) 
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Table 6.2b NORTH WALES DATA SET 

Normalised accuracy (%) 
25 examples 92.58 

40 examples Slats 

Table 6.2c YEMEN DATA SET 

Normalised accuracy (%) 
25 examples 24.15 
40 examples 41.56 

6.2 DISCUSSION 

The advantages of the expert systems approach to the 

design of decision trees are demonstrated when the 

classification accuracies for the manually derived tree 

are compared with those produced by the trees generated by 

Super Expert. For the Peak district data set the. 

automatically generated trees outperformed the manually 

derived tree by approaching 8%, using less training data. 

The time involved is also shorter for the expert systems 

approach, since the operator no longer has to grapple with 

statistics and co-incident' spectral plots. Another 

advantage of this is the consistency which automatic tree 

design brings to decision tree classification. 

The reduction in the amount of training data required to 

produce a satisfactory classification when using an expert 

system may well be a useful factor in remote, inaccessible 

areas, where field data is expensive to gather, but it 

must be remembered that currently available micro- 

computer based expert systems, such as Super Expert, 

cannot handle the large amounts of training data 

routinely used in remote sensing. 
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For the North Wales data set very high accuracies were 

produced by the decision trees. These accuracies were 

produced by relatively simple tree structures (35 and 43 

nodes for the 25 example tree and the 40 example tree 

respectively), however, for the Yemen data complex trees 

were produced (81 nodes, plus one clash and 100 nodes, 

plus two clashes for the 25 example tree and the 40 

example tree respectively). These complex trees gave low 

accuracy figures. 

This is probably a result of the spectral structure of the 

classes with which the expert system is presented: if a 

class fe a uniform spectral riwiotde: then the tree 

definition algorithm is well suited to differentiating 

that class from other classes. If, on the other hand, 

there is little similarity between a class’ pixels, a 

complex tree will result. 

This version of Super Expert is not an ideal tool for 

classifying remotely sensed data: as mentioned above, 

large data volumes cannot be handled’ iui the tree derived 

had to be recoded for use on a more powerful processor. 

This experiment does, however, show the potential of an 

expert system, properly designed for use with remotely 

sensed data, for rapid and consistent design of decision 

trees. 

With the increasing desire to include data from _ sources 

other than remote sensing in classification schemes, 

expert systems may provide a useful form of classifier. 
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Super Expert allows ’don’t care’ values to be inserted 

into the examples before rules are inferred. This could 

prove extremely useful in cases where spectral information 

must be overridden by other data, for example in 

classification of areas where suitable map data is 

available: if an area is classified adequately on the 

map, then spectral information need not be consulted. 

It should be noted that the trees induced using 40 

etna ice per class showed similar structures to those 

induced using 25 examples, those from 40 examples merely 

exhibiting higher levels of IF THEN nesting, reflecting 

the greater variations provided by more examples. 

6.3 CONCLUSIONS 

The use of an expert system is preferable to manual 

methods of decision tree definition where classes are 

spectrally homogeneous, since accuracy is improved, 

preparation time is reduced and consistency is achieved. 

In situations where class spectral responses are of a less 

homogenous nature (for example, the Yemen data set), 

complex trees of little merit are derived. 

This version of Super Expert is not an ideal expert system 

for remote sensing purposes, but points the way towards 

similar systems able to handle the high data volumes 

necessary for efficient use with remotely sensed data. 
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6.4 SOME NOTES ON THE APPLICABILITY OF ARTIFICIAL 

INTELLIGENCE TECHNIQUES TO MULTISPECTRAL CLASSIFICATION 

6.4.1 CLASSIFICATION AS RELATED TO PATTERN RECOGNITION AND 

EXPERT SYSTEMS 

Image classification may, at first, seem an ideal area for 

the application of expert systems. Training data is used 

to derive a series of rules which, when applied to the 

imagery, allow it to be subdivided into different classes. 

Moreover, the use of expert systems allows information 

from sources other than remotely sensed data to be 

integrated into the classification procedure. 

The nature of remotely sensed data, however, may require 

the user to think again: expert systems derive their rules 

on the basis that all information supplied is true; they 

are generally geared to working with small, controlled 

data sets. The low precision, high volume nature of 

duokaly sensed data implies that some of the information 

sent to the expert system will be untrue: a case in point 

being the effects of noise in isiagery; leading to training 

areas which contain unrepresentative pixels. 

This ’all information is true’ approach is implemented by 

the look up table classifier (although clashes between 

classes are taken into account). The poor performance of 

this algorithm highlights the effects of applying noise 

sensitive techniques to inherently noisy data. 
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A more useful approach to the use of expert systems for 

remote sensing is to bring in knowledge based rules after 

classification. The contextual algorithms used here are, 

in fact, examples of this, relying on the knowledge that 

remotely sensed data is noisy, but has high levels of 

spatial autocorrelation. 

6.4.2 GEOGRAPHICAL INFORMATION SYSTEMS 

The increasing availability of computerised spatial data 

(for example the Soil Survey of England and Wales’ Land 

Information System (LANDIS), Ordnance Survey digital maps 

and the forthcoming 1991 UK census) will lead to great 

potential for the use of expert systems. Unreliable, but 

comprehensive, remotely sensed data can be augmented by 

other, more reliable (but restricted in terms of 

coverage), data sets, to which expert systems are much 

better suited. Remote sensing will thus become only one 

input to a fully integrated Spatial Information System 

(see chapter 7 for further notes on GIS). 
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CHAPTER 7 

GEOGRAPHICAL INFORMATION SYSTEMS AND IMAGE SEGMENTATION 

7.1 THE IMPACT OF GEOGRAPHICAL INFORMATION SYSTEMS ON 

IMAGE CLASSIFICATION 

The development of Geographical Information Systems, 

enabling rapid processing of spatial data has great 

potential in the field of land cover EYinei fickeicn, In 

the near future, most sources of data complementary to 

that obtained by remote sensing will become available in 

GIS-compatible format (for example: digital maps and 

spatially related databases), which will be either 

directly compatible with remotely sensed data (raster 

GIS), or easily converted to suitable format (vector GIS: 

vector to raster conversion being relatively easy, 

compared to raster to vector). 

This information will remove a great deal of frustration 

from users of remotely sensed data: regions of interest 

can be quickly extracted from digital maps and relevant 

ancillary data can instantly be called upon from spatial 

databases (for example: soils; relief; aspect; map 

category), avoiding much tedious digitisation work which 

would have to be carried out at present. 

The use of GIS will also allow contextual classification 

to use a broader definition of ’context’, as opposed to 

the currently applied limited definition of 

*characteristics of immediately adjacent pixels’, for 
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example, the paper by Drayton et al (1989) describes the 

use of population data, from UK census records, combined 

with remotely sensed data to increase the accuracy of 

urban classifications using per-pixel algorithms. 

7.2 EXAMPLE CASE STUDY: NOTTINGHAMSHIRE 

A brief example will enable the reader to envisage some of 

the savings ‘which GIS cans bring. to... the -faeld. ‘of 

operational remote sensing. 

7.2.1 INTRODUCTION 

Much of Nottinghamshire’s water supply is drawn from 

boreholes into a large sandstone aquifer to the north of 

the city of Nottingham. There is currently some concern 

over the nitrate levels in the water, raised by 

application of fertilisers to the agricultural land 

overlying the aquifer which are washed into the aquifer by 

rainfall. 

Figures have been calculated to give average nitrate 

contribution per unit area for specific crops grown in the 

area, however, a complete ground survey of crops over the 

whole area would be too costly to undertake. For this 

reason the use of Landsat Thematic Mapper data was 

examined. 
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7.2.2 METHOD 

The necessary stages of the study are shown in table 7.1 

below, and the benefits which could be realised by use of 

GIS are noted. 

Table 7.1 Comparison of GIS with conventional methodology 

OPERATION 
OF GIS 

classification 

isolation of 

aquifer 

calculation of 

areas under 

each crop 

multiplication 

of areas by 

nitrate potential 

production of 

final map 

METHOD USED 

supervised maximum 

likelihood 

frame grab of 

map, followed by 

manual boundary 

digitisation 

custom written 

routine, or by 

hardcopy and 

planimeter 

by hand or 

spreadsheet 

ink-jet colour 

plot 
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POTENTIAL BENEFITS 

removal of non- 
agricultural 
areas prior to 

classification. 

per-field 

classification 

use of available 

digital 
geology map: 

faster with more 

accurate 

registration of 
data sets. 

area calculation 

routine available 

routine available 

labeling can be 
added from 

existing data. 
Better 

classification 
gives superior 

product.



7.2.3 CONCLUSIONS 

As can be seen, the use of GIS in this project would have: 

1.Significantly decreased the time spent on trivial tasks. 

2.Increased the accuracy of the end products. 

3.Improved the quality and presentation of any hardcopy 

output. 

7.3 IMAGE SEGMENTATION AND PER-SEGMENT CLASSIFIERS 

The contextual classification algorithms discussed 

previously have concentrated on noise removal and_ small 

area replacement. A further type of contextual Oincal thet 

relies on the properties of remotely sensed imagery. 

Because of the autocorrelation between adjacent pixels, 

and because real ground conditions usually result in 

homogeneous areas of similar class, then if these areas 

can be identified and a classification based on the whole 

area applied, the classification accuracy may be 

increased. 

Barnsley et al (1989) describe the use of map data for 

segmentation of images prior to classification, enabling 

the definition of different prior probabilities to a 

maximum likelihood classifier, according to image segment. 

The paper reports improvements in urban classification 

accuracy from the use of this technique. 

The use of map data would be particularly useful in 

agricultural areas, where the fields provide a framework 
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for segmentation and subsequent classification. 

7.3.1 MANUAL SEGMENTATION 

Despite the necessity of manually defining segments on the 

imagery involved, this is the simplest method of dividing 

imagery into meaningful, homogeneous segments prior to 

classification. Using this method it is also possible to 

use information other than that from remote Canute In 

the UK, for example, the Ordnance Survey 1:25,000 series 

of maps show urban areas, woodland, water features. and 

field boundaries, which could all be used to reduce 

classification error, or to avoid the need for 

classification altogether in some cases (particularly 

water and urban areas, which can be defined from the map 

alone). Unfortunately, owing to the infrequency of 

revision of the field boundaries shown on these maps, 

their utility may be questionable. 

Field boundaries provide an ideal framework for image 

segmentation. If an image is partitioned into fields, and 

classified on a per-field, rather than a per-pixel basis, 

then classification accuracy can be increased, since the 

final classification will be more robust in terms of its 

noise rejection abilities (Allan, 1986). 

If maps with field boundaries are unavailable, then it may 

still be possible to partition the image on this basis. It 

is possible to identify individual fields on Landsat 
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imagery by eye. 

THis). start leaves the problem of actually providing a 

*map’ of segments which can be used by the classification 

algorithms. In the future this may not be a problen, 

since Ordnance Survey digital maps should become more 

generally available, from which fields could be extracted. 

At present, however, the boundaries must be added to 

either imagery or digitised maps. This can be simply, if 

slowly, done using interactive image/graphics 

software, with a minimum requirement that the package 

to be used allows: 

1.Boundary definition, and 

2.Region filling within these boundaries. 

For this task, software used for interactive definition of 

training areas may be suitable. 

7.3.2 AUTOMATIC SEGMENTATION 

Automatic image segmentation is possible, although at high 

computational expense. Methods used can be split into two 

“categories: those which segment the imagery on the basis 

of boundaries/edges found by techniques such as_ high-pass 

filtering; and those which work on the principle of 

combining similar neighbouring pixels to form homogeneous 

regions. Of this latter type, a subset relies on comparing 

the texture of adjacent areas, whilst another’ subset 

amalgamates pixels on the basis of spectral similarity. 

Basically these latter techniques are similar to 
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classification algorithms, but with added spatial 

constraints. 

7.3.2.1 AUTOMATIC SEGMENTATION BASED ON EDGE-DETECTION AND 

REGION GROWING 

The following method of automatic image regionalisation 

was tried by the author during this study, but little 

success was achieved. 

7.3.2.1.1 METHOD 

The method consisted of the following stages: 

i) Edge detection, using a Laplacian detector (section 

5.2.2.1.1) - the results of which were thresholded to 

*edge’ and ’non-edge’ pixels (section 5.2.2.1.2). 

ii) Calculation of the distance of all ’non-edge’ pixels 

from their nearest ’edge’, using the ordered search 

technique detailed in section 5.2.2.2.4. 

iii) Identification of local maxima within the distance 

image produced by step ii. 

iv) Region growing, using the local maxima as seeds for 

outward growth, until each image pixel was assigned to a 

region. 

(23.2.le2 DISCUSSION 

The technique was not found to produce satisfactory image 

regionalisation. The author suggests the following reasons 

141



for this lack of success: 

i) The edges defined by the use of a thresholded filter as 

the first stage of the process may have been unsuited to 

the task of defining boundaries between homogeneous 

regions. 

ii) Outward growth of the regions from local maxima did 

not take region size into account - a simple decision, 

based on minimum distance to region centres (local maxima) 

was used. 
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CHAPTER 8 

MATERIALS AND METHODS 

8.1 IMAGE PROCESSING 

Image processing for the Peak District scene was carried 

out using a combination of an IBM PC-AT based image 

processing system: (the ITS-30) - and a cluster of two’ DEC 

Vax 8650 minicomputers. Tasks requiring visual 

interpretation of the imagery were carried out on the PC 

based = system, whilst the rest of the image 

processing was done on the Vax cluster. 

Transfer of data between the two systems was via the 

software communications package Kermit; a time-consuming 

procedure, although the availability of an Ethernet Local 

Area Network will remove this bottleneck in the near 

  

  

Vax disk storage 
9 Colour 

monitor 
  

  

  

  Vax 8850 cluster   
  

  

Tape drive                    
Fig.8.1: Overview of the image processing facilities used 

Table 8.1 overleaf shows the breakdown of how each system 

was used. 
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Table 8.1: Breakdown of system use 

system process 

IBM PC defining training areas 
display of False Colour Composite 
and classified images 
defining Ground Control Points for geometric 
correction 
production of hard copy 

Vax Cluster geometric correction 
classification 
contextual enhancements 
accuracy estimation 
image manipulation (subsampling, extraction) 
statistical routines 

For the North Wales and Yemen data sets, image processing 

was carried out using ERDAS software, running under UNIX 

on a Sun 386i workstation. 

8.1.1 SOFTWARE 

The IBM PC based software consists of commercially 

available software, written in C. In addition to this, 

some routines were specially written to enable files from 

the Vax to be displayed by the system, and for system 

files to be written to the PC hard disk in a form suitable 

for transfer to the Vax. 

All image processing software on the Vax cluster was 

written by the author in Fortran-77 (using DEC’s compiler) 

specifically for the project. Part of this software was 

converted to run under UNIX on the Sun 386i for use on the 

North Wales and Yemen data by the author. Subroutines for 
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Shell sort and matrix manipulation were used from the 

following sources: 

Numerical Recipes, Press,W.H. (1986) (Shell sort) 

Statistics and Data Analysis in Geology, Davis,J.C. (1973) 

(matrix operations) 

8.1.2 DATA 

Four data sets were used (see section 1.3). Imagery of the 

UK Derbyshire Peak District was used to test all the 

algorithms, whilst the other three data sets (North wales, 

salisbury and Yemen) were used to further test selected 

algorithms after initial testing using the Peak District 

data. These latter data sets were supplied to the author 

by colleagues, therefore their exact content, for example 

the criteria used to define training data, was less well 

known than for the Peak District data. For this reason it 

is felt that greatest emphasis should be placed on the 

results for the Peak District study area, with the results 

for the other data sets serving as a useful cross- 

reference. 

The author would like to express thanks to colleagues at 

Aston University and the Robertson Group ple for allowing 

the use of the three additional data sets in this study. 

8.1.3 FIELDWORK 

It was necessary to undertake much fieldwork to obtain 

accurate training and verification data for the Peak 
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District data set. This was carried out over a period of 

six days during March 1988. 

Visits were made to suitable sites throughout the area 

which were photographed, enabling accurate location of 

suitable training areas, and the annotation of these on to 

Ordnance Survey 1:25,000 scale maps of the area. It was 

also necessary to return to some areas to enable accurate 

recording of along-transect Bacar types for markov 

relaxation, which was also achieved by the photographic 

method outlined above (see section 5.2.4.3.2). 

8.2 GEOMETRIC CORRECTION - PEAK DISTRICT 

The raw image data was read on to the Vax cluster as six 

files of approximately 4,000 by 3,000 pixels each. From 

these a rough area 1,500 by 1,500 pixels was extracted 

from each band, centred on the study area. This subscene 

was used to provide the data for geometric correction, 

producing a 1024 by 1024 pixel extract with 25 by 25 metre 

pixels covering the study area. 

Correction was carried out using a least squares fit to a 

polynomial of the form: 

x=atbX+cY+dXY (1) y=etfX+gY+hxY (2) 

where: 

a-h are coefficients 

(x,y) are the old image pixel co-ordinates 

(X,Y) are the new image pixel co-ordinates 
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The equation coefficients, ground control points and the 

resultant errors are shown in table 8.2. 

Table 8.2: Parameters for geometric correction for Peak 
District image 

EQUATION COEFFICIENTS. 

X ny: 

-88.24609 273.8955 
0.8136215 -0.1979294 
0.1978970 0.8099709 

-4.5262277E-06 -4.8801303E-07 

POINT REAL X REAL Y PREDICTED X PREDICTED Y ERROR 

1 94.0000 845.0000 94.1648 844.7307 0.3158 
2 115.0000 904.0000 115.6681 904.7001 0.9677 
3 147.0000 761.0000 146.6721 760.6548 0.4761 
4 243.0000 1031.0000 242.4660 1030.6981 0.6134 
5 962.0000 660.0000 961.9591 660.6709 0.6721 
6 1009.0000 726.0000 1009.0871 725.3714 0.6346 
7 149.0000 469.0000 148.8365 469.2608 0.3078 
8 495.0000 242.0000 494.0186 241.9474 0.9828 
9 522.0000 322.0000 523.4440 321.3442 1.5860 

10 634.0000 443.0000 633.6382 443.5960 0.6972 

RMS ERROR FOR WHOLE SET IS: 0.8096696 (approximately 0.81) 

The image was resampled using the nearest neighbour 

algorithm to preserve radiometric fidelity. Pixels were 

resampled from the original 30 by 30 metres to 25 by 25 

metres, since a 25 metre pixel is equivalent to a 1 

millimetre square on a 1:25,000 scale map, and this 

enables rapid conversion from pixel to map co-ordinates 

and vice-versa. 

The ten points used were chosen from an initial set of 16 

points, being the largest subset of points providing a 

root mean square error of less than one pixel. 

Point selection was carried out by computing the transform 

equations for the set of points, calculating the RMS error 
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(see section 82. 2% and removing the point with the 

highest individual error (if the overall RMS error was 

Orcite than 1.0), then re-computing the transform 

equations, using the new, smaller, set of points. This 

process was continued until an RMS error of less than 1.0 

was achieved. 

The use of this order of transformation, giving rotation, 

translation and scaling, was felt to be adequate for the 

data sets. 

8.2.1 RMS ERROR 

The RMS (Root Mean Square) error is calculated as the 

square root of the sum of the squared deviations of X and 

Y (ie the difference between actual and predicted X,Y co- 

ordinates). 

The Salisbury data set was supplied corrected to the 

Ordnance Survey’s national grid, whilst the Yemen and 

North wales data were not geometrically corrected. 

8.3 RADIOMETRIC CORRECTION 

Radiometric correction was not attempted on the imagery 

used. Since no physical parameters were required from the 

data, and only one scene was used, the original data was 

felt to be satisfactory. 

Extension of the classification to adjacent scenes, 

however, would almost certainly require some form of 

radiometric calibration between scenes: in the simplest 
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case, dark pixel subtraction (Booth, 1987) would be 

adequate. 

8.4 TRAINING DATA AND ACCURACY ASSESSMENT 

8.4.1 DEFINITION OF TRAINING AREAS 

The geometrically corrected 1024 by 1024 pixel scene for 

the Peak District was split into 4 512 by 512 pixel 

quadrants, to enable display at full resolution on the 

PC based image processing system. Training areas for 

each class’ were defined interactively, using the 

?image classification’ software package available with 

this system, on each quadrant. Files containing these 

areas were then transferred to the Vax for subsequent 

processing. 

With the intention of splitting these areas into two sets 

(training and verification areas), at least 200 pixels 

were chosen for each class (Hay (1979) recommends at least 

50 pixels per class for testing classification accuracy). 

For the other data sets suitable training and verification 

areas were supplied with the images. 

8.4.2 TRAINING AREAS AND CLASSES - PEAK DISTRICT 

Ten classes were chosen as representative of the ground 

cover in the study area. These are given in table 8.3: 
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Table 8.3 Classes chosen to represent the Peak District 

study area 

Class number Description Notes 

A water mostly reservoirs 

2 quarry limestone or sand 

3 urban towns/villages 
4 coniferous woodland 

3 broad-leaf woodland 

6 bracken 

7 black moor (heather) 
8 white moor (grasses) 
9 Agriculture (pasture) 
10 Agriculture (better pasture) 

It should be noted that these arbitrary classes were not 

meant to provide an accurate classification of the area at 

any specific level of detail, but to enable the comparison 

of different classification algorithms on a common basis. 

Homogeneous areas for each class were identified from a 

combination of Ordnance Survey map data (at scales of 

1:25,000 and 1:50,000), oblique terrestrial photography 

and field notes made during visits to the area. This 

information was transferred to the Ordnance Survey 

1:25,000 maps of the area to enable rapid identification 

of areas suitable for training and verification. 

8.4.3 SPLITTING 

The four quadrants were recombined to form a 1024 by 1024 

pixel image on the Vax cluster. The areas of known class 

were then split into two equal sets: one for training the 

classifiers; the other for testing their accuracy. This 

was achieved by splitting the image into two, taking 

alternate pixels, ina ‘’check’ pattern to form the two 

images, and filling in the remainder with zeros (see 
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Fig.8.2). 

original training verification 

de eo ed. ip o 2 4 
556"4-7. 76 6 8 5 a 
0-10) 11.12 9 Ta 10 eg, 

1314.15 16 14 16 1 15 
17,18 19.20 L7. 19 18 20 

Fig.8.2 Splitting of areas of known class into training 
and verification areas 

8.4.3.1 NOTE ON ACCURACY IMPLICATIONS 

The autocorrelation of the imagery will lead to the two 

sets of data comprising pixels with very similar vectors, 

despite being made up of entirely different pixels. Two 

observations have been made about this situation (Swain 

and Davis, 1978): 

1.Use of the same (or very similar) areas to test accuracy 

as those used to train the classifier will result in 

accuracy estimates which are higher than those occurring 

in reality. 

2.I1f the accuracy estimates from training data are 

significantly different than those from verification data, 

then the choice of training data is poor. 

These two conflicting observations make it difficult to 

justify any accuracy assessment technique as_ being 

*superior’ to another. Fortunately in this case, only 

relative accuracy figures are required. It should, 

however, be noted that all accuracy estimates given should 

only be used to compare different algorithms, and should 

not be taken as truly representative of the performance of 
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the individual classifiers. 

8.4.4 OTHER DATA SETS 

The training and verification data was supplied with the 

data sets. The data consisted of separate training and 

verification data, for representative cover types for 

these areas. 

8.4.5 DERIVATION OF TRAINING AND VERIFICATION STATISTICS 

Training areas were defined for 10 classes, representative 

of cover types in the Peak District, using the ITS-30 

PC based image processing system. These were then saved 

as image files and sent via the Kermit 

communications software package to Aston University’s 

DEC Vax 8650 cluster where all subsequent processing 

took place. 

8.4.5.1 SPLITTING OF TRAINING AND VERIFICATION AREAS 

Testing classification accuracy using training data is not 

considered to provide an accurate estimate of accuracy 

(Swain and Davis, 1978). To provide a more accurate 

estimate, Duda and Hart (1973) suggest the process of 

?leaving one out’, where one pixel is removed from the 

training data prior to classification, then its actual 

class is compared with the class to which it has been 

assigned. This is carried out for each training area pixel 

in turn, eventually arriving at a figure for correct and 

incorrect assignments, from which percentage accuracy can 

be calculated. Unfortunately, in the case of remotely 
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sensed data, where there may be several thousand training 

pixels, the time required to carry out such an accuracy 

assessment reduces this method to being of theoretical 

interest only. In the case of per-pixel classifiers, the 

calculations could be reduced to only those pixels 

contained within the training sets, as set out below: 

i) Extract a single pixel from training data. 

ii) Calculate class statistics for classification using 

remaining training pixels. 

iii) Assign the single pixel to a class according to the 

classification rules derived from the statistics. 

iv) Check the single pixel’s assigned class against its 

true class (from training data). 

v) Update accuracy figure using result of this test 

(accuracy = number of correct pixels/total number of 

pixels tested). 

vi) Return to step i, and continue until each pixel in the 

training set has been tested. 

In the case of contextual algorithms, the neighbouring 

classified pixels are used to reclassify pixels, therefore 

the above method could only be applied if the whole image 

were to be classified for each combination of extracted 

pixel and remaining training data, since, in theory the 

class of every image pixel is related to the class of 

every other image pixel. 
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A more practical, yet less satisfactory, solution is to 

have two separate sets of ground data: one used to 

train the classifier; the other to assess its accuracy 

by use of a contingency table (sometimes called a 

confusion matrix). Duda and Hart (1973) point out that the 

use of this method will, in fact, lower the theoretically 

achievable classifier accuracy, since it is deprived of 

half of the potential training data, but this must be 

accepted if time constraints preclude the ’leaving one out 

method’. 

Having defined the training areas for this study, a method 

of splitting them into two separate sets of training and 

verification areas was necessary for subsequent accuracy 

assessment. This was achieved by taking every other pixel 

from the full training areas image for actual classifier 

training, whilst the remaining pixels were used to assess 

the classification accuracy. 

8.4.6 CONTINGENCY TABLES 

The contingency table is a device for summarising the 

accuracy of a classification. In simplest forn, it 

consists of a tally table of actual class (from ground 

data) against assigned class (the class to which the 

classification algorithm has assigned the pixel). The 

matrix is easier to interpret if the class order is the 

same on both axes, since the leading diagonal values 

relative to the other entries quickly give a ’feel’ of the 

classification’s accuracy: 
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classified as 
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Where U represents any unclassified pixels. 

The column for unclassified pixels is optional, since in 

many cases Classifiers are designed to assign all pixels 

to a class, leaving no image pixels unclassified. 

The higher the values on the leading diagonal relative to 

the values in the other cells, the more accurate the 

classifier. The simplest method of calculating the 

classification’s accuracy is to sum the leading diagonal 

elements to give the total number of pixels correctly 

classified, then express this as a percentage of the sum 

of all the matrix elements. This is the normalised 

classification accuracy. 

This only gives an accuracy figure for the whole matrix. 

If individual class accuracies are required then the 

matrix must be normalised on a per-column or a_ per-row 

basis. Here each row fal OR Me element is expressed as a 

fraction of the relevant row or column total. Thus, 

expressed by rows, the matrix now shows proportions of 

ground data correctly or incorrectly classified, whereas, 

expressed by column, the matrix shows the proportions of 

image pixels assigned to correct or incorrect classes. 

If areal estimates are required, these figures can be 

applied as correction factors to the class pixel totals 
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for the image (Chrisman, 1981). 

The figures quoted throughout this study are overall 

normalised accuracies. 

8.4.7 CONFIDENCE LIMITS FOR ACCURACY ESTIMATES FROM 

CONTINGENCY TABLES 

The normalised accuracy figure derived earlier represents 

the proportion of samples correctly allocated to a class: 

proportion correct = c/n 

number of pixels correctly classified in area Q ul 

3 it} total number of pixels in area 

This is also known as the sampling fraction, and 

confidence limits for this can be derived from statistical 

tables, given n. A suitable table is included in Pearson 

and Hartley (1966). 

A problem with the tables is that the values of n for 

which they are drawn up tend to be relatively small. The 

tables in Pearson and Hartley (1966) cover n=8 to n=1,000. 

Unfortunately for this study the value of n is nearer 

8,000 when overall classification accuracies are 

calculated. 

Another method of estimating these confidence limits is to 

use the binomial standard error formula: 

SE = (P.Q/N)9°9 

SE standard error (%) 
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P = percentage of classifications correct 

Q = percentage of classifications incorrect 

N = number of pixels in sample 

If confidence limits must be estimated for any of the 

accuracies quoted in this study, then use of Pearson and 

Hartley’ s* table 41; with a value of 1,000. for nas 

recommended for the following reasons: 

1.the resultant confidence limits will be reasonably 

narrow (+/-<5% in most cases), but will provide a ’safety 

factor’ to guard against inaccurate results. 

2ethe nature of the verification areas, close to _ the 

training areas may lead to over high estimates of 

classification accuracy. 

Alternatively, Snedecor and Cochran’s formula, given by 

Baines (1988) can be used. This calculates the 95% 

confidence interval and is given as: 

P+/- = 1.96(P*Q/N)°°° + 50/N 

where: 

P+/- is the percentage range of accuracies at 95% 

confidence. 

P is normalised accuracy (%) 

Q is given by 100-P 

N is the number of samples 
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8.5 NOTES ON IMPLEMENTATION OF THE ALGORITHMS 

8.5.1 DERIVATION OF CLASS STATISTICS FROM TRAINING DATA 

Table 8.4 below lists the classification algorithms 

together with the necessary statistics required to be 

calculated from training data to use the algorithms. 

Table 8.4 Statistics required by classifiers 

Algorithm Class means Class standard Variance-— Coincident 
deviation covariance spectral 

matrix plots 

ML yes no yes no 

DD yes yes no no 

M D yes no no no 

Box . yes yes no no 

Dat yes yes no yes 

LUT no no no no 

M L = Maximum Likelihood 

D D = Deviant Distance 

M D = Minimum Distance 

D T = Decision Tree 

LUT = Look Up Table 

8.5.1.1 NOTES 

1.Co-incident spectral plots cannot be drawn without class 

means and standard deviations. 

2.The look up table classifier is nonparametric, requiring 

no assumptions to be made about the shapes of the class 

frequency distributions, therefore no statistics are 

required. 

3.The Box classifier could be modified as ’min-max’ 
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requiring class minima and maxima rather than means and 

standard deviations. 

8.5.2 MARKOV RELAXATION 

8.5.2.1 DERIVATION OF MARKOV TRANSITION PROBABILITY MATRIX 

FROM MAP AND TRAINING DATA 

Estimating the transition probabilities from one class’ to 

another using an existing classification is prone to the 

effects of noise. Ideally, to minimise this, the 

transition probabilities should be obtained direct from 

field data. This raises the problems of designing a 

sampling scheme which is both quick and accurate in terms 

of the transition probabilities estimated. Two methods 

were investigated for this study: stratified random 

sampling and along-transect sampling. Of these, transect 

sampling was selected as the most practical method, for 

the following reasons: 

1.Stratified random sampling requires detailed knowledge 

of a large area, or repeated visits to pixel locations 

chosen by the sampling. 

2.For small, relatively unimportant, classes (for example 

bracken) a great deal of time can be wasted attempting to 

find sufficient points within these classes. 

3sIt owas felt: that the field “data was insufficiently 

accurate to be used for stratified random sampling (which 

requires sub-pixel locational accuracy). 
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8.5.2.2 ALONG TRANSECT SAMPLING 

This sampling Puathcd, either along random or carefully 

selected ’representative’ transects, provides a quick 

method for generating neighbour tally matrices from which 

estimates of transition probability matrices can be 

calculated. 

The first stage of the process is to define a_ transect 

across the study area. It is important to try to avoid 

introducing any directional bias into the data at this 

stage - ideally some random element should be used to 

choose transects: in this case north-south and east-west 

Ordnance Survey 1:25,000 map grid lines were randomly 

selected in this case as being convenient and relatively 

unbiased in their positioning. Run lengths of each cover 

type are then recorded in the sequence in which they 

occur (in this case, using 1:25,000 maps, annotated with 

field data, the lengths were recorded in millimetres, 

since one millimetre at 1:25,000 scale represents 25 

metres on the ground, which is the resampled pixel size of 

the imagery). 

For example: 

10(2) -25(¢7) 91(8)... 

represents 10 mm of class 2, followed by 25 mm of class 7, 

followed by 91 mm of class 8. From this a tally matrix of 

neighbours can be made up, as shown in Fig.8.3. 
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Fig.8.3 Tally matrix 

(Note: the matrix is symmetrical about the leading 

diagonal, therefore only half has been shown for clarity.) 

From this tally matrix, the data can be normalised to give. 

the transition probability matrix, as explained in section 

5.2.4.3.1.2. 

8.5.2.3 DERIVATION OF MARKOV TRANSITION PROBABILITY MATRIX 

FROM IMAGE DATA 

In some cases it may not be possible to obtain enough 

field data to estimate the transition probability matrix. 

In this case, in order to use the Markov relaxation 

technique, the matrix must be estimated from the 

classified imagery. In doing this, it is assumed that the 

noise levels (incorrect classifications) are small 

relative to the correct classifications. If this is the 

case, then a tally matrix terived from neighbour 

statistics for pixels in the classified image will 

approximate the true transition probability matrix for the 

data after normalisation. 

For this study, the tally matrix was created by examining 

the ’right hand’ neighbour of each image pixel (with the 

exception of pixel 1024 in each line, whose right hand 

neighbour was not present). The relevant cell of the tally 

matrix was incremented by 1 for each pixel, then, after 
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this was completed, the two ’halves’ (either side of the 

matrix) were summed, reflected element by reflected 

element, to produce a symmetrical matrix, since, in this 

case class noon the right of class m was considered to 

be the same as class m on the right of class n. 

The matrix was then normalised. 

The ’quality’ of the estimated transition probability 

matrix from this method will depend on the quality of the 

classification used to produce the matrix. Given that the 

tally table produced from a 1024 by 1024 pixel image will 

contain 1023*1024 entries, then there will be scope to 

remove pixels whose class is dubious before generating the 

tally table, hopefully further reducing the error. 

8.5.2.4 TALLY MATRIX FROM FIELD DATA 

The tally matrix, estimated from the map and field data 

transects, for the class adjacency statistics of the area 

to be used by the Markov enhancement algorithm is given in 

Fig.8.4. Because the matrix is reflected along the 

principal diagonal, it is only necessary to show half the 

matrix. 
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Fig.8.4 Tally matrix derived from field data 

8.5.3 SIMULATION OF PER-FIELD CLASSIFIER 

In order to assess the value of developing per-field 

classifiers, a simulation study was devised. 

The projected classifier would assign all pixels within a 

field to their modal class. To simulate this, training 

data was used to provide a realistic selection of 

classified pixels from each class. These pixels were then 

divided into groups of 100, each group representing a 

*field’. This was done for 100 fields for each of the 10 

classes. The modal class of each field was obtained, and 

compared with the correct class. Accuracy was assessed as: 

1.Number of correctly classified fields/total number of 

fields 

2.Number of correctly classified pixels/total number of 

pixels 

where 1 represents the per-field classifier’s performance, 

and 2 the performance of an ordinary per-pixel classifier, 

given the same data set. 
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Training areas were used to define the appropriate mixture 

of correct and mis-classified pixels for each class. These 

were identified using both sets of training and 

verification areas used to train and test the per-pixel 

classification algorithms. 

For each training area (of each class), the classes to 

which each pixel was assigned by. the classifiers were read 

into an array, noting the totals for each area. These were 

then split into ’fields’ of 100 pixels (starting at array 

element 1 each time the number of pixels chosen exceeded 

the number of array entries). The classifier accuracy and 

the per-field accuracies were calculated as above. 

8.5.4 THRESHOLDED HIGH-PASS FILTERS 

8.5.4.1 CHOICE OF IMAGE BAND FOR HIGH-PASS FILTERING 

An arbitrary decision was made to use the band with the 

largest dynamic range for the filtering operations. 

Results are presented in table 8.5 showing the minimum and 

maximum values for each band on the image. the dynamic 

range is also given. 

Table 8.5 Dynamic range of spectral bands 

Thematic Mapper minimum maximum dynamic 

band value value range 

it 61 87 26 

2 2k 4] 20 

a 18 48 30 

4 30 111 81 

5 Zi, 116 89 

1 5 53 48 
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8.6 ALTERATIONS TO EXISTING ALGORITHMS AND NEW ALGORITHMS 

Many of the alzofithes used for this study were developed 

specifically for the project, whilst others represent 

novel modifications to techniques already in general use 

by the remote sensing community. The list below attempts 

to summarise the algorithms developed and implemented in 

code by the author during the course of this research 

and briefly detail the differences (where 

appropriate) from conventional algorithms in use. 

8.6.1 LOOK UP TABLE CLASSIFIER 

Because -of the often high dimensionality of remotely 

sensed data it is rarely possible to store a_ sufficiently 

large look up table for classification of these data sets, 

although the DEC Vax used for this study is able to store 

8 byte integers (Fortran INTEGER*8, 64 bits). Mather 

(1985) employs hash coding to enable a look up table 

to be stored as part of the maximum likelihood 

algorithm. The use of look up tables has not, however, 

been naporead for classification of remotely sensed data 

directly from spectral information. 

8.6.2 DECISION TREE CLASSIFIER 

Belward and deHoyos (1987) detail the use of binary 

decision trees for classification of remotely sensed data. 

This study differs from their research in two respects: 

firstly, the manually defined tree was not limited to 

binary decisions, and secondly, in the application of 
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expert systems technology to tree definition, which has 

not previously been reported. 

8.6.3 DEVIANT DISTANCE CLASSIFIER 

This represents a simple modification to the more usual 

minimum distance algorithn. 

8.6.4 ITERATIVE NEAREST NEIGHBOUR CLUSTERING 

The ISODATA algorithm represents a frequently used example 

of this type of classifier applied to remotely sensed 

data. 

8.6.5 SMALL AREA REPLACEMENT BY THRESHOLDED EDGE DETECTORS 

The use of edge detection filters to define ’small areas’ 

for reclassification by their context has not _ been 

reported, workers generally preferring to identify such 

areas on classified imagery by means of pixel counting 

algorithms. 

8.6.6 NON-PROBABILISTIC RELAXATION 

Work on relaxation labeling to date has concentrated on 

extension of the maximum likelihood algorithm to cover | 

local areas. Presented here is an algorithm based on the 

minimum distance classifier which either uses. locally 

summed distances or ranks to relax the classification. 
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8.6.7 MARKOV RELAXATION 

The Markov chain model for relaxation of classified 

imagery has been developed specifically for this research. 

8.6.8 WHARTON’S CONAN ALGORITHM 

The classification procedure used here differs from that 

used by Wharton (1982). In this case a simple minimum 

distance algorithm is applied, representing a significant 

decrease in computational expense. 

8.7 APPLICABILITY OF CONTEXTUAL ENHANCEMENTS TO OTHER 

AREAS 

In order to assess the generality of the conclusions of 

this study, those algorithms found to be most effective on 

the Peak District data were applied to a different data 

set. The details of this test are set out below. 

8.7.1 AREA AND IMAGERY 

The test area is part of the United Kingdom Salisbury 

plain, consisting of small towns, agricultural areas, 

woodland and natural grasslands. Landsat Thematic Mapper 

data for 1985 was available for this area, with a_ series 

of training areas defined as part of a separate research 

project within the Remote Sensing Unit. I am grateful to 

Mr. John McGuire for making this data available. 
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8.7.2 IMAGE PROCESSING 

The data cansingael of a geometrically corrected 512 by 512 

pixel image, stored on the optical disk system of the PC- 

based ITS-30 image processor. In order to keep file 

transfer between the Vax cluster and this system to a 

minimum, the classification of the data was carried out 

using the ITS-30. The following classifiers were applied, 

using bands 3,4 and 5 of the data: 

Box classifier 

Minimum distance classifier 

Maximum likelihood classifier 

The classified images, and training data were then 

transferred to the Vax cluster, where overall accuracies 

were calculated and the contextual enhancements, detailed 

in table 8.6 were carried out. 

Table 8.6 Classifiers and contextual enhancements 

classifier contextual enhancement 

box 9 by 9 mode filter 

9 by 9 CONAN 

small area replacement (8,5) 

minimum distance 9 by 9 mode filter 

9 by 9 CONAN 

small area replacement (8,5) 

maximum likelihood 9 by 9 mode filter 

9 by 9 CONAN 
Markov relaxation (tally matrix from 

image) 

Notes: (8,5) indicates declassification of areas of 8 

pixels or less, followed by reclassification by mode of 5 

nearest classified neighbours. 

168



  

8.8 ALGORITHM IMPLEMENTATION 

The algorithms used in this study were coded by the author 

in Fortran-77, either from published descriptions of the 

algorithms or from the author’s own ideas, with the 

exception of the use of published routines for such 

operations as matrix manipulation and data sorting (see 

section 8.1.1) and some commercial software (see section 

Cal. 

The reasons for coding the algorithms were as follows: 

i) At the start of the project the availability of 

proprietary image processing software could not be 

guaranteed. 

ii) It was envisaged that some coding of algorithms would 

be necessary, even if full use were to be made of existing 

image processing software. To this end it was felt that 

experience in coding the simpler image processing 

algorithms would be of great value during the latter 

stages of the project. 

iii) Certain computationally expensive algorithms would 

place too great demands on existing image processing 

software and hardware. Thus the use of the University’s 

central computing facilities was desirable. 

Whilst not attempting to describe all the algorithms in 

detail, or to list the source code of each program, this 

section is provided to describe some of the features 

common to these programs. 
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8.8.1 DATA STRUCTURES 

Satellite images consist of large numerical arrays. As 

supplied on magnetic tape, and as stored by computer these 

images are made up of a series of records, each of which 

usually represents one line of image data (in some cases 

these records are ’blocked’ to contain several lines of 

data, or the data structure is different, for example band 

interleaved by pixel or pixel pair data, however, the 

author will confine this discussion to band sequential, 

unblocked data in an attempt to avoid unnecessary 

complication). All the data used in this study was either 

supplied in this format, or converted to it, before 

processing. 

This file structure lends itself in the case of 8-bit or 

7-bit (stored in the lower 7 bits of 8-bit integers) data 

to reading on a line by line basis by programs such as the 

one below: 

PROGRAM EXAMPLE 

Cc 

C An example of how to read an image one line at a time C 
from Fortran 

C 

BYTE IN(1024) ,OUT(1024) 

Cc 

OPEN(10, FILE=’ INFILE.DAT’ ,STATUS=’ OLD’ , FORM= 
& ’*UNFORMATTED’ ) 

OPEN(11,FILE=’OUTFILE.DAT’ ,STATUS=’ NEW’ , FORM= 
& ’UNFORMATTED’ ) 

DO I=1,100 
READ(10)IN 
DO J=1,1024 
OUT(J)=IN(J) 
ENDDO 
WRITE(11)OUT 
ENDDO 

STOP 
END 
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This program will read the first 100 lines from a file 

called INFILE. DAT, which has a line length of 1024 pixels 

per line. It will then copy the input array IN byte by 

byte into another array OUT which is then written to the 

file OUTPUT.DAT. 

The BYTE variable type can also be replaced by INTEGER*1 

or LOGICAL*1 if this type is not recognised by the 

compiler in use. 

Unfortunately, some unix systems do not store their data 

files as discrete records. In this case, the easiest way 

to access individual pixels within files from Fortran is 

to open the image files as direct access read, with a 

record length of one byte, then combine the individual 

bytes into line records within the program. Despite its 

slowness, the author was forced to modify his programs in 

this way when faced with data processing on the Sun 

workstation for the Yemen and North Wales data sets. 

Individual pixels can be accessed within byte arrays as 

‘inal idual array elements, however care must be taken in 

the case of eight bit data, which is often interpreted as 

signed seven bit data by the compiler, causing values 

greater than 127 to become negative. A statement similar 

tO; 

IF(1I.LT.0)I=1+256 

will solve this problem, where I is the integer value of 

the pixel byte. A similar statement can be used to reverse 
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this: 

IF(I.GT.127)I=I-256 

For per pixel and per line operators, the above method of 

reading an image one line at a time is sufficient, however 

for some applications (for example box filters) it becomes 

desirable to hold several lines of an image in the 

computer’s memory at once. This can be achieved by 

declaring n BYTE arrays (one for each of n lines, where n 

is the linear dimension of an n by n pixel box) then: 

i) Replacing the contents of each line’s array by the 

contents of the next line’s array and: 

ii) Reading the next line of the image into the nth array. 

This results in a moving strip of n lines stepping through 

the image (a special case is necessary at the top of the 

image to ensure that all line arrays are always full). 

Some algorithms (for example, those requiring spatial 

searching) require that the whole image is held in memory. 

This can be achieved by use of n by m byte arrays (n=No. 

of lines, m=No.of pixels), filled one line at a time from 

file. This method was not used universally because of the 

restrictions on image size introduced by having to hold 

such large arrays. 
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8.8.2 SUBROUTINE LIBRARIES 

Two subroutine libraries were available for possible 

inclusion in the programs: the NAG subroutine library, and 

the SPIDER routines. Of these, the former consists largely 

of mathematical functions, for example matrix 

manipulation, which could be taken from other readily 

available sources (see section 8.8.1), whilst the latter 

is a specific image processing library. The SPIDER 

algorithms were not used, however, for two reasons: 

i)The algorithms are almost exclusively single-band 

operators and therefore unsuited to multispectral 

processing. 

ii)The time factor involved in using even simple 

subroutines from the library (since most routines call 

further routines, which call further routines, and so on) 

often results in it being faster to write an image 

processing program from scratch. 

Had the emphasis of this thesis been on texture, rather 

than context, the SPIDER routines would have been 

invaluable. the interested reader is directed to Oldfield 

(1987) for further notes on their application to textural 

image processing. 
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CHAPTER 9 

RESULTS 

9.1 PEAK DISTRICT DATA SET 

The results of the experiments are a_ series of 

accuracy/time pairs. For each algorithm, or variation of 

the algorithm, the classification accuracy was estimated, 

using the verification pixels. The Vax 8650 CPU time used 

to produce each classified image was noted (this is the 

*charged CPU time’ figure from the log file created by 

running the program as a non-interactive batch job). 

9.2 CLASSIFIERS 

Results are presented for the following classification 

algorithms, using the same training data, with accuracies 

calculated using the same verification data: 

Maximum Likelihood 

Deviant Distance 

Minimum Distance 

Box 

Decision Tree 

Look Up Table 

In the case of the box classifier, limits of 2 standard 

deviations on either side of the class mean reflectance in 

each band were set. Beyond these limits the pixels 

remained unclassified. 
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The decision tree classifier 

was designed to use only three out of the six available 

bands (Thematic Mapper bands 1, 4 and 5). These bands 

were selected because, on inspection of the co-incident 

spectral plots, they appeared to be capable of 

distinguishing between all the classes in the training 

data. Alternative, and less subjective, methods of band 

selection (for example, the use of divergence) are 

discussed in section 4.5. 

Results are given for two versions of the look up table 

classifier. For the zero thresholded version, all table 

entries were used in classification. For the thresholded 

(threshold set to 10) version, any table entries 

containing less than the threshold value were deleted 

before classification. 

Since all the classifiers require some kind of statistics 

to be generated from the training data before they can be 

run, this time is included in the CPU time figures. 

The look up table classifier was applied to the overall 

brightness image as well as to the spectral shape image. 

9.3 CONTEXTUAL ENHANCEMENTS 

The classifiers listed above provide a useful variety of 

classification accuracies to test the effectiveness of the 

contextual enhancement algorithms used here. For this 

reason, each algorithm was tested on each classified 

image, and accuracy/time pairs are again listed. 
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The following contextual algorithms were applied to the 

classified imagery: 

9.3.1 MODE FILTERS 

3 by 3 pixel patch 

5 by 5 pixel patch 

7 by 7 pixel patch 

9 by 9 pixel patch 

11 by 11 pixel patch 

13 by 13 pixel patch 

9.3.2 SMALL AREA REPLACEMENT 

areas containing 1 or less pixels declassified, followed 

by reclassification by: 

nearest classified along line neighbour 

modal class of 9 by 9 pixel patch 

nearest classified neighbour 

modal class of nearest five classified neighbours 

areas containing 4 or less pixels declassified, followed 

by reclassification by: 

nearest classified along line neighbour 

modal class of 9 by 9 pixel patch 

nearest classified neighbour 

modal class of nearest five classified neighbours 

areas containing 8 or less pixels declassified, followed 
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by reclassification by: 

nearest classified along line neighbour 

modal class of 9 by 9 pixel patch 

nearest classified neighbour 

modal class of nearest five classified neighbours 

9.3.3 THRESHOLDED HIGH PASS FILTERS 

filters run on band 5 of the unclassified image: 

3. by 3 pixel Prewitt filter, automatically thresholded. 

Pixels set to 1 declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 

3 by 3 pixel Prewitt filter, automatically thresholded. 

Pixels set to 1 and any pixels within a radius of 2 pixels 

of these declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 

2 by 2 pixel Roberts filter, automatically thresholded. 

Pixels set to 1 declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 

2 by 2 pixel Roberts filter, automatically thresholded. 
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Pixels set to 1 and any pixels within a radius of 2 pixels 

of these declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 

filters run on the classified image: 

3 by 3 pixel Prewitt filter, automatically thresholded. 

Pixels set to 1 declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 

3 by 3 pixel Prewitt filter, automatically thresholded. 

Pixels set to 1 and any pixels within a radius of 2 pixels 

of these declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 

2 by 2 pixel Roberts filter, automatically thresholded. 

Pixels set to 1 declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 

2 by 2 pixel Roberts filter, automatically thresholded. 

Pixels set to 1 and any pixels within a radius of 2 pixels 

of these declassified. Reclassified by: 

nearest classified neighbour 

modal class of nearest five classified neighbours 
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9.3.4 MARKOV RELAXATION 

relaxation using tally matrix estimated from classified 

image relaxation using tally matrix estimated from ground 

data 

9.3.5 WHARTON’S CONAN ALGORITHM 

based on 9 by 9 pixel patch 

based on 15 by 15 pixel patch 

9.3.6 NON-PROBABILISTIC RELAXATION 

The two non-probabilistic relaxation algorithms were 

modified versions of the minimum distance classifier. 

Results are presented here for: 

relaxation based on summed pixel vector-class mean 

distances over a 3 by 3 pixel patch 

relaxation based on summed class ranks over a 3 by 3 pixel 

patch 

In addition to these experiments, the Markov relaxation 

algorithm was applied to the maximum likelihood image for 

a second iteration, as recommended by proponents “of 

probabilistic relaxation techniques. The results were not, 

however, considered sufficiently successful to continue 

the experiment to cover the other classified images. 
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9.4 ASSESSMENT OF RELATIVE CONTRIBUTIONS OF NOISE AND 

EDGES TO CLASSIFICATION ERRORS 

Applying the theory described earlier for separating noise 

and edges, the classified images were reclassified 

according to the following rules: 

noise pixels removed; reclassification by nearest 

classified neighbour 

edge pixels removed; reclassification by nearest 

classified neighbour 

noise and edge pixels removed; reclassification by nearest 

classified neighbour 

The accuracies after these steps are given for each 

classifier. 

9.5 CLUSTERING 

9.5.1 HISTOGRAM CLUSTERING 

The histogram clustering algorithm, described earlier, was 

applied to the six bands of the geometrically corrected 

Thematic Mapper image. Training data for each class was 

then used to determine which class each cluster could be 

most closely associated with (the class containing the 

highest proportion of a cluster’s pixels). The clustered 

image was then passed through a look up table, reassigning 

each cluster to its associated class. Normalised 
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accuracy was calculated as for the supervised techniques 

on the resultant image. 

9.5.2 ITERATIVE CLUSTERING 

The iterative, nearest neighbour, clustering algorithm, 

with 10 clusters, was applied to the output of the minimum 

distance classifier to investigate possible improvements 

by ’fine-tuning’ the classification. Results are presented 

after 1, 2 and 3 iterations. 

9.6 SIMULATED PER-FIELD CLASSIFIER 

A per-field classifier, with fields accurately defined by 

geographical information systems techniques, was simulated 

using training and classified data from all the 

classifiers. The results of this are presented in a 

*before and after’ format, all accuracies having been 

calculated directly from the data, without contingency 

tables. 

9.7 NOTES ON CONFIDENCE LIMITS FOR ACCURACY ESTIMATES 

Many different methods have been proposed for assigning 

confidence limits to the accuracy estimates obtained from 

contingency tables (see literature review and chapter 8). 

Calculations are presented here for the 95% confidence 

limits on the lowest unenhanced classification and the 

highest contextually enhanced accuracies achieved, using 

Snedecor and Cochran’s formula, given by Baines (1988). 
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Eel 95% CONFIDENCE LIMITS FOR LOWEST UNENHANCED 

CLASSIFICATION ACCURACY 

Snedecor and Cochran’s formula is given as: 

P+/- = 1.96(P#Q/N)9*> + 50/N 

where: 

P+/- is the percentage range of accuracies at 95%- 

confidence. 

P is normalised accuracy (%) 

Q@ is given by 100-P 

N is the number of samples 

For the decision tree classifier (accuracy 58.23%): 

P+/- = 1.96*(58.23*41.77/8084)9°> + 50/8084 

= 1.08 (to 27deco. pl.) 

Therefore, at the 95% confidence interval, the accuracy 

lies between 57.15 and 59.31%. 

9.7.2 95% CONFIDENCE LIMITS ON HIGHEST CONTEXTUALLY 

ENHANCED ACCURACY 

For the maximum likelihood classifier and Markov 

relaxation, with transition probabilities estimated from 

field data (accuracy 96.39%): 

P+/- = 1.96*(96.39*3.61/8084)9°5 + 50/8084 

='.0,09' .(to.2g dec. pi.) 
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Therefore, at the 95% confidence interval, 

lies between 96.30 and 96.48%. 

the accuracy 

Table 9.1: Summary - greatest reductions in error 

classifier accuracy 
% 

maximum 92.22 

likelihood 

deviant 87.06 

distance 

minimum 80.07 

distance 

box 66.12 

decision 58.23 

tree 

look up 59.81 

table 

algorithm 

% 

Markov 96.39 

relaxation 

small area 92.55 

replacement 

Markov 90.50 

relaxation 

small area 91.66 

replacement 

_ Markov 82.47 
relaxation 

Markov 60.98 

relaxation 

9.8 RESULTS FOR OTHER AREAS 

accuracy reduction 
in error % 

53.60 

42.43 

52.33 

75.38 

58.03 

0.03 

In order to further test the more successful algorithms 

listed above, they were applied to three other data sets. 

The results for these data sets are summarised in table 

9.2 below and full results are presented in appendix A. 
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Table 9.2 Summary results for other areas. 

9.2a Salisbury data set 

classifier accuracy % decrease in 

and enhancement error due to 
enhancement 

box 38.69 - 

9 by 9 mode 36.96 (-2.82) 
9 by 9 CONAN 37.95 (-1.21) 
SAR (8,5) Olean (-2.20) 

minimum distance 93.99 - 

9 by 9 mode 99.51 91.85 
9 by 9. CONAN 99.68 94.68 
SAR(8,5) 99.89 98.17 

maximum likelihood 96.94 - 

9 by 9 mode 99.40 80.39 
9 by 9 CONAN 99.58 SO.27 
Markov relaxation 79.90 (-556.86) 

9.2b North Wales data set 

classifier accuracy best accuracy 

(%) contextual (%) 
enhancement 

maximum 95.27 9*9 CONAN 98.27 

likelihood 

minimum 95.45 9*9 CONAN 97.452 

distance 

deviant 94.04 - - 

distance . 

9.2c Yemen data set 

classifier accuracy best accuracy 

(%) contextual (%) 
enhancement 

maximum 54.38 SAR (8,1) 70.06 
likelihood 

minimum 31.94 9*9 mode 45a013 

distance 

deviant ee - - 

distance 
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in error 

(%) 

63.42 

41.10 

reduction 

in error 

(%) 

34.37 

12.15



  

CHAPTER 10 

DISCUSSION 

10.1 CLASSIFICATION 

10.1.1 ACCURACY 

Of the algorithms investigated, the maximum likelihood 

algorithm is undoubtedly capable of producing the most 

accurate results. This suggests that the assumptions 

necessary in the application of Bayesian and Gaussian 

probability theory (and particularly that of normally 

distributed deviations of reflectances about the class 

mean reflectance) are, at least approximately, correct 

when applied to the samples of remotely sensed data 

used. 

The potential problems of multi-modal classes are 

outweighed by the algorithm’s ability to accurately 

determine the classes of marginal pixels. 

Second in terms of accuracy came the two classifiers based 

on the minimum distance rule. 

The drawback of the minimum distance algorithm is that it 

is unable to take into account differences in the ’spread’ 

of class distributions - it assumes that a pixel at 

feature space distance d from two or more class means is 

equally likely to belong to each class, whereas the class 

distributions may be such that the true class membership 

. likelihoods at this distance are very different. 

Attempting to enable such comparisons by dividing 
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distances by their associated class standard deviations in 

each band before calculating the final feature space 

distances (the ’deviant distance’ algorithm) does not 

truly enable modeling of class probability density 

functions, as does the maximum likelihood algorithm. The 

results presented here, however, do show a_ significant 

improvement over the basic minimum distance algorithm. The 

results of such classifications (minimum distance and 

deviant distance) would certainly be of use for quick 

assessments of the effectiveness of training areas before 

more rigorous (and time consuming) classification using 

the maximum likelihood rule. 

The box classifier is probably the most commonly available 

classification algorithm on image processing systems. The 

results for this algorithm show it to be reasonably 

effective, producing accurate classifications when the box 

boundaries are set to produce a small box (+/-1 or 2 

standard deviations from the class means). This accuracy 

is at the expense of high levels of unclassified pixels, 

lying outside the boxes in feature space. As will be shown 

later, this tendency to leave pixels unclassified instead 

of assigning them to incorrect classes is a virtue when 

contextual post-processing is to be carried out. It is 

therefore concluded that the box classifier alone is 

unlikely to produce classifications of sufficient accuracy 

to merit its use, but may be useful as either a ‘building 

block’ for subsequent contextual processing or as a ’quick 
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look’ facility to assess the potential effectiveness of a 

maximum likelihood classification using the same training 

areas. 

The decision tree classifier has been put forward as_ the 

answer to the problems of processing large, multi-temporal 

data sets efficiently (Belward and DeHoyos, 1987). The 

algorithm also has a great deal in common with expert 

systems. It does, hovered. require much time to be spent 

determining suitable decision boundaries’ before the 

algorithm can be implemented, and the accuracies achieved 

here using single-date imagery are not really high enough 

to merit its use. In the UK, Legg (1988) has shown that 

the possibility of obtaining multitemporal imagery for 

crop classification and monitoring, to which the 

properties of the decision tree classifier are ideally 

suited, is small. Unless expert systems technology is used 

to determine tree structure, avoiding time and effort on 

behalf of the operator, the decision tree classifier 

cannot be recommended for use with remotely sensed data. 

It is difficult to present a definitive conclusion for the 

look up table classifier. On one hand, to enable its use 

currently on multidimensional data _ sets, so many 

compromises must be made in order to be able to store and 

search the table (discarding bands, coarsening radiometric 

resolution) that any benefits from the algorithm’s lack of 

parametric assumptions about the data are hidden. On the 

other hand, when an effective solution is encountered (the 
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overall brightness image) the classifier can be most 

effective (75% accuracy was achieved using this image). 

The other problem with this algorithm is that it ’learns’ 

from the training data: if a table entry does not occur in 

this data, then any similar pixels in the image cannot be 

classified without resort to another algorithm. The more 

table entries possible, the more training data will be 

required to cover these entries. 

To some extent, the appropriateness of a classification 

algorithm depends on the task in hand. For  land-cover 

mapping, the accuracy must be as high as possible, for all 

classes. Some applications, however, may only require 

accurate mapping of one class type, which may easily be 

differentiated by one of the faster algorithms. In this 

case all the algorithms were able to accurately classify 

the water areas: for a task such as reservoir monitoring, 

it may be cheaper to divide the image only into water and 

non-water classes, using a fast algorithm. 

10.1.2 TIMING 

There is a strong correlation between the accuracy 

produced by a classifier and the time it takes to produce 

the classification. The most accurate classifier, the 

maximum likelihood algorithm, is also the slowest. The 

relationship is not linear: in order to gain an extra few 

percent accuracy a disproportionately long time must be 

spent on image processing. Thus, any study using 

classified remotely sensed data must be examined from the 
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standpoint of the desirable classification accuracy, 

weighed against budgetary implications. For ’one off’ 

classifications, where obtaining, correcting and other 

processing oof imagery may be time consuming, the 

additional processing time required by the maximum 

likelihood algorithm may only represent a small proportion 

of the total time to be spent on the project. The use of 

the maximum likelihood algorithm can therefore be 

justified more easily than for routine classification of, 

say, meteorological satellite data. In this case regular 

commitment of computer resources to time consuming 

classification algorithms may be undesirable, and slightly 

poorer classification accuracies can be accepted. 

The look up table classifier is particularly susceptible 

to variations in the information content of the input 

data. For the spectral shape image, accuracies were 

relatively poor (59%), whilst for the overall brightness 

image the accuracy was increased to 73%. Clearly trouble 

must be taken over feature selection to optimise the 

results from this algorithm, which has the great advantage 

over the other algorithms studied of being nonparametric. 

A listing of the look up table mapping for the overall 

brightness image might provide useful clues for multimodal 

classes, and subsequent splitting of training areas. 

10.2 CONTEXTUAL ENHANCEMENT 

The advantages of subsequent enhancement of classified 

imagery can be split into two sections: the improvements 
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in classification accuracy to be gained and the useful 

generalisation to produce more ’map like’ end products. 

The latter is difficult to quantify, so comments will be 

restricted to subjective impressions from visual analysis 

of ’before and after’ images. 

10.2.1 GENERALISATION 

A classified image, no. watter how accurate the algorithm 

used to produce it, never looks like a map. Boundaries are 

ill-defined and the image has a ’speckled’ appearance due 

to mis-classified pixels within areas which a map would 

show as homogeneous. 

Simple *’contextual smoothing’ can be achieved’ by 

application of a mode filter. In this study, sizes of 

patch from 7 by 7 to 11 by 11 pixels were found to be most 

effective, and initial use of a 9 by 9 patch is 

recommended. 

10.2.2 ACCURACY IMPROVEMENT 

The results show that contextual post-processing 

algorithms can significantly improve the accuracies of 

classified images. Not all algorithms were successful in 

this respect, and again there would seem to be a 

disproportionate increase in processor time needed to 

produce slightly greater enhancements than those produced 

by simpler algorithms. 
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Another important feature of these algorithms is their 

need for good classifications in the first place. Most 

rely on the assumption that the classified pixels used to 

contextually reclassify the image have been correctly 

classified. For this reason classifiers such as the 

tightly constrained box algorithm, where *difficult’ 

pixels are often left unclassified often enable larger 

increases in accuracy to be obtained. The opposite often 

occurs in the cases of algorithms which assign all pixels 

to a class on the basis of nearest (minimum distance) or 

most likely (maximum likelihood) class. In these cases a 

significant number of incorrectly classified pixels is 

Shean used in the reclassification process, leading to 

further erroneous classification. 

The following section deals more specifically with the 

results obtained from the individual algorithms, or 

categories of algorithms where they can conveniently be 

grouped. 

10.3 CONTEXTUAL ALGORITHMS 

10.3.1 MODE FILTERS 

With the exception of their application to the spectral 

shape and look up table classified image the application 

of mode filters consistently raised the accuracy of the 

classified Saabolt consuming relatively low amounts of CPU 

time in the process. The choice of patch size has an 

effect on the improvements obtained: a gradual increase in 

improvement is obtained with increasing patch size, until 
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a peak is reached, after which accuracy drops again 

slowly. In thid study, this peak patch size was found to 

lie between 7 by 7 and 11 by 11 pixels. Since the 

algorithm requires relatively little time to run it is 

suggested that a suitable strategy is to start at a 7 by 7 

pixel filter and incrementally increase the size of window 

by 2 (the smallest increment possible) until a slight 

decrease in accuracy is obtained. The image produced by 

the previous filter should then be used. 

10.3.2 SMALL AREA REPLACEMENT 

The thresholded declassification algorithms and associated 

reclassifiers are susceptible to the quality of their 

input (classified imagery). This quality is not 

necessarily reflected in the classification accuracy. In 

this case it is the box classified image which benefits 

most from the application of the technique (91% 

accuracy achieved with areas of up _ to 8 pixels 

declassified and subsequent nearest neighbour 

reclassification). 

Of the three reclassification algorithms investigated, the 

use of a 9 by 9 pixel selective mode filter unsurprisingly 

produced poor results where large unclassified areas were 

present, owing to its inability to find classified pixels 

in these areas. Surprisingly there seems to be little 

difference between the fast nearest along line neighbour 

search, and the true ordered search nearest neighbour 

algorithms, and taking the mode of the nearest 5 
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neighbours has a barely perceptible effect. Theoretically 

a true outward search for neighbours must be more robust, 

however the results presented here suggest that it may be 

possible to save time by using the along-line search 

method. 

Generally the improvements in accuracy increase with 

increasing threshold - the larger the areas declassified, 

the better the reclassified accuracy. The algorithm 

presented here is incapable of being extended beyond 9 

pixel areas, since it uses a 3 by 3 pixel window. True 

small area identifiers require the use of extremely time 

consuming ’structured walk’ algorithms (Oldfield, 1988) 

and are not investigated here. 

10.3.3 THRESHOLDED HIGH PASS FILTERS 

10.3.3.1 ON UNCLASSIFIED IMAGERY 

The declassification of imagery based on noise and edges 

detected by high pass filters on the raw imagery produces 

similar results to the small area replacement algorithms 

discussed above. There seems little to choose between the 

two filters used here (Roberts and Prewitt), despite their 

differing window sizes. 

Increasing the number of declassified pixels by including 

all pixels within a threshold radius (2 pixels in this 

case) from the edge or noise pixels in the 

declassification scheme has an adverse effect on 

classification accuracy. This consistently reduced the 
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final accuracy figures. 

The time required to run the algorithms is similar to the 

small area replacement algorithms discussed earlier. 

No experimentation was carried out with threshold levels: 

the automatic algorithm was used throughout. It was felt 

that additional time spent experimenting with different 

threshold levels would be impractical in operational 

situations. 

10.3.3.2 ON CLASSIFIED IMAGERY 

Applying the same techniques to classified imagery 

produced similar (although slightly higher) accuracies to 

those above. Experience from the previous experiments led 

to not trying either different filters or distance 

thresholding in this case. 

Again it was with the box classified imagery that the 

greatest improvements in accuracy were achieved, implying 

that this algorithm is able to accurately classify all but 

the most ‘difficult’ of pixels, which can subsequently be 

classified by contextual techniques. 

10.3.4 MARKOV RELAXATION 

The two methods of estimating the class transition 

probability matrix: from field data and from the image 

were both investigated. By far the most successful 

implementation of the algorithm results from use of the 

field data estimated transition probability matrix. In the 
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case of the maximum likelihood classified image, use of a 

transition probability matrix estimated from the 

classified image itself actually resulted in a 17% drop in 

accuracy. This aside, and with the exception of the poorly 

performing spectral shape and look up table classifier, 

the algorithm produced higher accuracies than those for 

the classifiers alone with both estimates of transition 

probability matrix. 

Alone among the contextual algorithms mentioned so far, 

the Markov relaxation technique was able to better the 

performance of a 9 by 9 modal filter on the maximum 

likelihood image. This was achieved, however, at the 

expense of a great deal of extra processing time. 

Once again, the results for the box classified image show 

a great deal of improvement. For this reason it was 

decided to try an iterative implementation of the 

algorithm on this image. 

For the transition probability matrix estimated from the 

image, a slight improvement in accuracy (less than 0.5%) 

was achieved on the second iteration, followed by a slight 

drop in accuracy (again less than 0.5%) on the third 

iteration, however, by the second iteration there were no 

pixels in the verification area classified as class 5 

(broad leaf woodland), and class 6 (bracken) had similarly 

disappeared on the third iteration. The consistency of the 

accuracy figures shows that the classification of some 

classes was being improved upon considerably, at the 
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expense of other classes. 

When the technique was applied using the transition 

probability matrix estimated from the field and map data 

the results were similar (0.5% accuracy increase, with the 

loss of class 5). 

Because of the effectiveness of the technique, it is felt 

that the al goritie is useful despite its slowness. In 

cases where the maximum accuracy is desired from a 

classification it would seem to be appropriate to choose a 

maximum likelihood classifier, followed by Markov 

relaxation, with transition probabilities estimated from 

field data. 

Despite the accuracy achieved with the box classified 

image, it is still possible to achieve similar, or higher, 

accuracies in less time, using a maximum likelihood 

classifier, followed by a mode filter. 

10.3.5 WHARTON’S CONAN ALGORITHM 

This algorithn, borrowing from textural processing, 

presents several differences to those algorithms discussed 

above: 

1.It can be implemented relatively quickly. 

2.It does not, in theory, rely on the accuracy of the 

previous classification. 

3.It does not deal with adjacency or proximity functions 

for reclassification. 

196



  

Point 2 requires further explanation: the algorithm uses 

the training areas used by the preceding classifier to 

estimate the relative proportions (numbers of pixels in an 

n by n pixel patch) of each class occurring for each true 

class over an n by n pixel patch. Thus it is theoretically 

possible that a classified image where all pixels of one 

class have been misclassified as other classes in 

cbnetant proportion can be reclassified: the 

reclassification being such that all n by n pixel patches 

containing this proportion of the two classes will have 

their central pixels assigned to the correct class. This 

theory is borne out to some extent in practice. The 

decision tree classified image’s accuracy was increased by 

22% when the algorithm was applied over a 15 by 15 pixel 

patch (58.2% before to 80.6% after), however’ the 

classification accuracy of the spectral shape and look up 

table classified image was decreased by application of the 

algorithm. 

The algorithm was tested using 9 by 9 and 15 by 15 pixel 

patches, results seeming to indicate that poorer initial 

classification accuracies could be improved more by use of 

the larger patch size, whilst the better classifications 

responded more favourably with the 9 by 9 pixel patch. For 

the maximum likelihood classified image the results 

obtained were similar to the best achieved using mode 

filters, in approximately the same times. Choice between 

the two algorithms here would have to depend on_ such 

7unmeasurables’ as operator preference and the ’look’ of 

197



  

the end product. In many cases this choice may be academic 

since commercial digital image processing systems are 

unlikely to have implementations of the CONAN algorithm 

available. 

With the exception of the box classified image and the 

look up table and spectral shape image, the algorithm 

performed similarly to the Markov relaxation algorithm, 

accuracies being slightly lower (of the order of 1-2%), 

which, given the considerable time savings available from 

the use of CONAN, may be acceptable in some circumstances. 

10.4 RELATIVE CONTRIBUTION OF NOISE AND EDGES’ TO 

CLASSIFICATION ERRORS 

This experiment consistently identified the pixels classed 

as ‘noise’ to have the most detrimental effect on 

classification, greater accuracies being achieved by 

reclassification of these pixels than either 

reclassification of ’edge’ pixels or of both edge and 

noise pixels. This suggests that many of the edge pixels 

identified were classified ee hand ii and were important 

during reclassification to act as correctly classified 

neighbours. 

Only the box and decision tree classified images benefited 

from the experiment, the rest of the images had their 

accuracies reduced. This method of edge and _ noise 

detection cannot, therefore, be recommended, despite its 

theoretical elegance. 
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10.5 NON-PROBABILISTIC RELAXATION 

The two algorithms investigated, based on the minimum 

distance classifier, produced similar results to their 

parent algorithm, but in a considerably longer time. The 

accuracies were about 1% higher than those for the minimum 

distance classifier alone (80.1% [minimum distance alone], 

81.3% and 81.4% [non-probabilistic relaxation]). 

There seems little difference between using ranked classes 

compared to actual distances, with the ranked class 

version coming out slightly more accurate (81.4% compared 

COUSL. 3%) 

10.6 SIMULATION OF PER-FIELD CLASSIFIER 

Intuitively, the usefulness of a classifier able to assign 

whole fields to single classes would seem high, 

particularly in agricultural areas. Definition of 

*fields’, by complex algorithms, from the image data is a 

non-trivial task, and a great deal of effort has been 

expended eouarda’ this goal. dn “the UK -someof the 

necessary field boundary information has been readily 

available for many years: the boundaries are shown on 

Ordnance Survey maps of 1:25,000 scale, although, as noted 

in section 7.3.1 the utility of this information may not 

be as high as would at first appear to be the case. 

This study has concentrated on the potential benefits 

to be obtained from per-field classifiers, assuming 

that a method of field extraction will shortly be 
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available. 

The results of this study are, unfortunately, 

inconclusive. Whilst the accuracies for three of the 

classifiers increased to 100% (deviant distance, minimum 

distance and box), the accuracies of the other classifiers 

dropped considerably (by 9% for the maximum likelihood and 

decision tree algorithms, and 50% for the spectral shape 

and look up table classified image). 

In view of the ’quick’ nature of this experiment, and the 

encouraging improvements to some of the classifiers, it is 

felt that a comprehensive study of per-field classifiers 

should be undertaken, the scope of which is beyond this 

study. Some suggestions for this are included in the 

*future study’ section. 

10.7 CLUSTERING 

Unsupervised techniques for image classification suffer 

from the drawback of only being able to extract ’spectral 

classes’ from the imagery, which may not correspond to the 

> informational classes’ required on the final map. 

Assigning the spectral classes to informational classes 

seems unlikely to provide a classification of great 

accuracy, as the results show. 
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10.7.1 ITERATIVE NEAREST NEIGHBOUR CLUSTERING 

The iterative clustering algorithm provided images of 

steadily decreasing accuracy with each iteration, when the 

image classes were mapped to corresponding informational 

classes. These drops in accuracy were linked to the 

merging of small, but important, classes (such as water) 

with their nearest large spectral classes (in this case, 

water pixels gradually became associated with coniferous 

woodland). It would thus seem that the biggest failing of 

the algorithm is its inability to cope with small, or 

spectrally close classes. 

This algorithm is used by ISODATA package, although this 

was not used here. 

10.7.2 HISTOGRAM CLUSTERING 

The accuracy produced (after spectral class to 

informational class mapping) of 77.25% by this algorithm 

was encouraging. The lack of any class 5 (broad-leaf 

woodland) again highlights the inability of the clustering 

algorithms to identify small or spectrally indistinct 

classes, which a supervised algorithm can, to some extent, 

be forced to identify. 

The relatively fast speed of this algorithm, however, 

enables its use as a preliminary exploratory measure for 

use before attempting classification of imagery using 

time-consuming supervised techniques such as the maximum 

likelihood algorithm. 

201



  

10.8 CONTEXTUAL ENHANCEMENT AND QUANTITATIVE ANALYSIS 

Despite the increases in calculated accuracy obtained by 

the use of contextual enhancement routines, images 

produced by this method are not recommended for further 

quantitative analysis for the following reasons: 

1.The generalisation (ie improvement) is largely 

subjective and visual. The original classification 

represents the most accurate image from which to obtain 

areal estimates. 

2.The more processing carried out on the data, the higher 

the risk of compounding errors produced by earlier 

processing stages. 

3.Accuracy increases calculated may be due to definition 

of block training areas. The contextual algorithms tend to 

block up classifications, therefore the calculated 

accuracies increase. 

10.9 SUITABILITY OF ALGORITHMS FOR USE WITH OTHER DATA 

The importance of integrating other forms of digital 

spatial data with remotely sensed data is increasing. 

Because of the assumptions made about remotely sensed data 

by many classification algorithms these algorithms may be 

unsuited to use on such augmented data sets. This section 

sets out some of the considerations which must be taken 

into account when using such data sets. 
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10.9.1 CLASSIFICATION 

Additional data sets present three barriers to use of 

parametric classifiers: 

1.There may be incomplete coverage by these data sets 

2.Data values may be labels or categories rather than 

points on an interval scale 

3.Resolution may be coarser than the remotely sensed data. 

In the case of incomplete data coverage a classifier must 

be capable of making decisions based on the available 

data: conventional parametric algorithms (maximum 

likelihood, minimum distance, box) are unable to function 

in such cases. 

The presence of label data renders the concepts of feature 

space meaningless, and again conventional parametric 

classifiers cannot be used. 

Coarse resolution of additional data sets presents a more 

subtle problem: the data is useful, but’ the poor 

resolution reduces its locational accuracy. In cases_ such - 

as this the data would ideally be used to _ provide 

background information whilst placing greatest reliance on 

high resolution data. 

These three points suggest that a change of thinking is 

required if additional data is to be successfully 

integrated with remotely sensed imagery. As has been’ seen 

earlier, the use of expert systems can address’ these 

problems: additional decision rules can be developed for 
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cases where some data is missing, and label data can be 

accommodated as ’logical’ variables. 

10.10 APPLICABILITY OF RESULTS TO DIFFERENT AREAS 

This study has been limited in its scope in terms of 

geographical area, limiting the types and patterns of land 

cover to those occurring within the study area. The 

following notes briefly cover. lie use of the Gigetithas 

and techniques developed during this study in general 

terms. It is felt that the overall pattern of results is 

broadly representative of the techniques and 

algorithms in general, although individual results should 

be viewed with caution and in the context of the study as 

a whole. 

10.10.1 SUPERVISED CLASSIFICATION 

The effectiveness of any spectrally based classification 

algorithm is limited by the spectral separability of the 

classes which the algorithm has to identify. In addition 

to this, sensor characteristics, particularly spatial and 

radiometric resolution, also affect the quality of the 

final classification. If classes are not spectrally 

distinct, given the limitations of the data in use, then a 

per-pixel classifier cannot hope to produce accurate 

results. 
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* 10.10.2 CONTEXTUAL ENHANCEMENT 

  

As mentioned above, sensor characteristics often preclude 

accurate identification of classes at a per-pixel level. 

Mostly this results in classifications where most of the 

image pixels have been correctly assigned, but whose 

accuracies are lower than is desirable. Contextual 

_ enhancement of such classifications represents a _ useful 

tool for identification and reclassification if the 

incorrectly assigned pixels. 

10.11 TIMING IN THE CONTEXT OF A PROJECT 

Figure 10.1 graphically illustrates the diminishing 

benefits obtained with increased time spent on 

classification. This does not tell the whole story, 

however, since the nature of any remote sensing project 

will affect the practicality of applying certain 

classifiers. The following notes attempt to clarify this 

statement. 

Fig.10.1 Normalised accuracy vs. processing time 
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Notes: 

ML maximum likelihood classifier 

DD deviant distance classifier 

MD minimum distance classifier 

BOX box classifier 

MAR Markov relaxation 
Cc Wharton’s CONAN algorithm 
SAR small area replacement 

M mode filter 

10.11.1 DATA ACQUISITION 

The time spent in acquiring the data in many remote 

sensing projects can be considerable. Field surveys can 

take weeks or months, and even the acquisition of the 

remotely sensed data from its suppliers may take some 

time. In this context, a full day’s processing to produce 

a Markov enhanced, maximum likelihood classification may 

become insignificant. On the other hand, if data is 

immediately or routinely available (for example, 

meteorological satellite data), such lengthy processing 

times may be undesirable. 

10.11.2 DATA VOLUME 

Another factor affecting the suitability of certain 

algorithms is the volume of data which must be processed. 

As an example: the United Kingdom is covered by 

approximately 40 Landsat Thematic mapper scenes, each of 

which contains approximately 25 1024 by 1024 pixel areas 

as used for this study. Taking a day for processing each 

1024 by 1024 extract (maximum likelihood followed by 

Markov relaxation) gives a total processing time in excess 

of three years. In cases such as this it is clearly 

impractical obtain the highest possible accuracies, and 
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some compromise between speed and accuracy must’ be 

reached. 

10.12 EFFECT OF NOISE ON CLASSIFICATION AND 

CONTEXTUAL ENHANCEMENT ALGORITHMS 

In order to assess the robustness of the recommended 

classifiers and contextual enhancement algorithms when 

presented with noisy data, an experiment was performed 

where random noise was added to the image data and 

classifier performance monitored. 

10.12.1 METHOD 

Random numbers were added to each image band’s data as 

follows: 

(1) 0 or 1 added, bias towards 0, representing only mildly 

noisy data. 

(2) 0,1,2,3 or 4 added, bias towards 0, representing 

moderately noisy data. 

(3) Numbers between 0 and 10 added, representing very 

noisy data. 

The same training areas that were used in the main. study 

were used to generate the statistics used by the 

classifiers listed in table 10.1 below. These algorithms 

were then applied to the altered data. 

* 

Small area replacement and Markov relaxation were then 

applied to the resultant classified imagery, the resultant 

accuracies are given in table 10.1. 
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Table 10.1 below shows the normalised accuracies produced 

by the selected algorithms: 

Table 10.1 Accuracies of classifiers and contextual 

enhancements when applied to noisy data 

algorithm normalised accuracy 
unaltered mildly moderately very 

data noisy noisy noisy 

data data data 

box 66.12 65.05 62.36 60.74 
plus SAR 91.66 9142 91.87 87.91 

deviant 

distance 87.06 87.04 78.86 85.02 
plus SAR 92.55 925 Sil 86.11 91.90 

max like S222 OT GL 89.83 86.24 

plus Markov 96.39 96.52 96.14 94.52 

10.12.2 DISCUSSION 

10.12.2.1 CONFIDENCE LIMITS 

The 95% confidence intervals for these accuracy figures 

were calculated in chapter 9 as lying between 1% 

(accuracies around 60%) and 0.1% (accuracies around 95%). 

To ensure a reasonable safety factor in assessing these 

results, changes in accuracy of less than 1% will be 

considered insignificant. This effectively means that the 

slight increases in accuracy achieved by some of the 

algorithms when applied to noisy data can be attributed to 

chance, rather than genuine increases in classifier 

performance. 
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10.12.2.2 TRENDS 

The overall trend of the results is for the classification 

accuracies to decrease with increasing noise. The 

accuracies of the contextually enhanced classifications, 

however, decrease at a slower rate than those for their 

associated per-pixel classifiers. The one anomaly to this 

trend is the results for the deviant distance. classifier, 

whose accuracies actually increased when applied to the 

very noisy data. It must be assumed, however, that this 

increase occurred by co-incidence, rather than because of 

any special properties of the algorithm. 

The Markov tase iin algorithm, when applied to the 

maximum likelihood classified image consistently boosted 

the classification accuracy: accuracies dropping by only 

2% with increasing noise, compared to over 6% for the 

maximum likelihood classifier alone. 

10.12.3 CONCLUSIONS 

The experiments show, for this particular data set, that 

although all classifiers are affected adversely by noisy 

data, the contextual enhancement algorithms proposed in 

this study are less susceptible to noise than existing 

per-pixel classifiers. The use of such contextual 

algorithms is therefore recommended where data signal to 

noise ratios may be poor, and the combination of the 

maximum likelihood classifier with Markov relaxation would 

seem to be particularly useful in reducing the adverse 

effects of noise. 
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10.13 APPLICATION TO OTHER AREAS 

10.13.1 SALISBURY DATA SET 

Before commenting on the contextual enhancements, it 

should be noted that the box classification algorithm used 

in this case differs from that used in the main study. In 

this case the algorithm is ’min-max’, in. other words the 

decision boundaries are set as the lowest and highest 

values for each class in each band, obtained from training 

data. Since means and standard deviations are not 

calculated this is a very fast version of the box 

classifier. It does, however, have the drawback that 

anomalous pixels within training areas can adversely 

affect classification accuracy. In this case the resultant 

accuracy was extremely low because: 1) the -urban’ 

training data contained a wide variety of spectral 

responses, and, 2) this class was assigned a low label 

number - the algorithm works by checking for class 

membership in the numerical order of class labels until a 

positive result; once this has occurred no further classes 

are checked. 

It should also be noted that the accuracies given were 

calculated from the areas used to train the classifiers. 

For this reason, they are rather higher than would be 

expected (Swain and Davis, 1978). 
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10.13.1.1 BOX CLASSIFIER 

Contextual entiencessnk of a classification of such low 

accuracy as this cannot be expected to produce significant 

improvements in accuracy. The results presented here bear 

this out, with all the enhancements tried producing slight 

decreases in accuracy. 

10.13.1.2 MINIMUM DISTANCE AND MAXIMUM LIKELIHOOD 

CLASSIFIERS 

The results for these classifications agree with the 

results presented in the main study. Given a reasonably 

accurate classification, contextual enhancement can 

significantly decrease any errors present. 

It was felt that not enough was known of the study area to 

enable estimation of transition probabilities by the 

author. Markov relaxation was, therefore, limited to 

estimating these from the classified image itself, 

producing similar results to those presented in the main 

study: a drop in accuracy. 

10.13.2 NORTH WALES DATA SET 

The results for the North Wales data set are broadly 

similar to those achieved with the Peak District data set. 

These two areas contain a similar range of ground cover 

types, although large areas of estuarine land and sea 

exists for the North Wales data set, which is not present 

in the Peak District scene. 
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Image processing for this and the Yemen data set was 

carried out a the commercially available Erdas 

software, running on a Sun 386i workstation under Unix, up 

to the classification stage. Post-classification 

processing was carried out using the same programs as for 

the Peak District imagery. These programs were modified to 

run under Unix using. Sun 1.1.1 Fortran (a compiler for 

Fortran-77, see section 8.8.1 for further details). 

10.13.3 YEMEN DATA SET 

This was the only non-Thematic Mapper data set used in 

this ‘study, and the most difficult for which to obtain 

satisfactory training data - this being derived from 

photointerpretations. 

The contextual results resemble those for the 

classification algorithms which produced lower accuracies 

when applied to the Peak District data, in that contextual 

processing was not found to be of benefit. 

The poor classification accuracies are the single most 

likely factor to have caused the poor performance of the 

contextual algorithms. The reader should therefore be 

aware that the application of post processing is unlikely 

to improve poor classifications (see chapter 11). 

Image processing for this data set was carried out as 

detailed in section 10.13.2. 
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10.14 COSTS 

The, cost: of implementing the algorithms is directly 

related to the computer time to execute them. This must, 

however, be seen in the context of the continuing decrease 

in cost of CPU time in real terms, 

constant improvement in processor power. 

brought about by 

Based on a CPU charge of £15 per hour, costs for the 

algorithms used in this study are given in table 10.2, 

when applied to the Peak District 1024 by 1024 by 6 band 

data set. 

Table 10.2 Costs of algorithms 

algorithm 

box 

classifier 

minimum 

distance 

maximum 

likelihood 

9 by 9 

mode filter 

Small area 

replacement 

CONAN 

Markov 

relaxation 

cost @ £15 per hour CPU time, and 

£30 per hour operator time 

CPU 

0.70 

1.20 

24.00 

1.50 

0.25 

2.00 

19.00 
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operator 

15 

15 

15 

30 

Total cost 

(£) 

15.70 

16.20 

39.00 

1.50 

0.25 

2.00 

49.00



  

CHAPTER 11 

CONCLUSIONS 

11.1 INTRODUCTION 

The aims of this study were set out in chapter two, and 

were divided into two sections. Section 11.2 will deal 

with the investigation of classifiers and contextual 

santeaedt (aim i), whilst section 11.3 will cover the 

recommendations resulting from the study (aim ii). 

11.2 INVESTIGATION 

In response to aim i (chapter 2) the following 

classification methods were investigated: 

Box classifier 

Minimum distance classifier 

Deviant distance classifier 

Maximum likelihood classifier 

Decision tree classifier (manually defined) 

Decision tree classifier (expert system defined) 

Look up table classifier (based on overall brightness 

image) 

Look up table classifier (based on spectral shape 

algorithm) 

Histogram clustering 

Nearest neighbour clustering 

All algorithms were tested on Landsat Thematic Mapper 

imagery of the Derbyshire Peak District, whilst those 
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algorithms producing highest accuracies were additionally 

tested on three other data sets: Salisbury and North Wales 

(Landsat Thematic Mapper) and Yemen (Landsat Multi 

Spectral Scanner). 

Also in response to aim i, the following contextual 

enhancements were investigated: 

Mode filters 

Small area replacement 

Wharton’s CONAN algorithm 

Markov relaxation 

Non-probabilistic relaxation 

Per-segment classification 

All algorithms, with the exception of per-segment 

classification, were tested on the Peak District data set 

(using the output from the classifiers above). The 

algorithms achieving the highest accuracies were also 

tested on the three other data sets. 

Comparison of the algorithms above was carried out on the 

basis of the following criteria: 

i) classification accuracies achieved 

ii) speed of operation (both computer and operator time) 

iii) consistency of results where the algorithms were 

tested on the additional data sets 

From these comparisons the recommendations set out in 

section 11.3 below have been derived. 
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11.3 RECOMMENDATIONS 

Aim ii of the study was to provide a series of recommended 

classification algorithms for use with remotely sensed 

data. These were determined according to: a) user 

requirements (accuracy levels desired, time available) and 

b) the nature of the data (dimensionality, spectral 

homogeneity of classes etc.). These recommendations are 

set out below: 

11.3.1 CLASSIFIERS AND CLUSTERING 

These algorithms can be split into two types: 

1.Quick and moderately accurate algorithms, useful for 

rapid exploration of data before more computationally 

expensive classification. 

Recommended algorithms in this category are: 

i.Histogram clustering 

ii.Box classifier 

iii.Look up table classifier using the overall brightness 

image. 

iv.Decision tree classifier, designed by expert system. 

2.Slower, more accurate classifiers, for operational 

classification, where the highest accuracies must be 

achieved. 
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Recommended algorithms in this category are: 

i.Maximum likelihood classifier 

ii.Deviant distance classifier 

The reasons for not recommending the other algorithms 

examined are as follows: 

11.3.1.1 MINIMUM DISTANCE 

The deviant distance algorithm represents a simple and 

computationally inexpensive improvement over this 

algorithn. 

11.3.1.2 MANUALLY DEFINED DECISION TREE 

This algorithm was found to be not particularly accurate 

and the time penalties incurred in designing the tree were 

prohibitive. 

11.3.1.3 LOOK UP TABLE CLASSIFIER ON SPECTRAL SHAPE IMAGE 

This combination of algorithms gave poor accuracy figures, 

although it could become more useful with more spectral 

bands. 

‘11.3.1.4 ITERATIVE NEAREST NEIGHBOUR CLUSTERING 

This algorithm was found to be slow, offering no 

significant benefits over histogram clustering. 
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11.3.2 CONTEXTUAL ENHANCEMENTS 

The algorithms listed below were found to be most 

effective at increasing the accuracies of classified 

images: 

1.Markov relaxation, with transition probabilities 

estimated from field data. 

2.Small area replacement, ideally with an area threshold 

of 8 pixels for declassification. 

3.Wharton’s CONAN algorithm. 

4.Mode filters. 

The algorithms respond in slightly different ways to 

different data. For the best results the following 

conditions for use should be observed if possible: 

11.3.2.1 MARKOV RELAXATION 

This algorithm should be used when time is unimportant. It 

was found to be capable of achieving maximum accuracy with 

the maximum likelihood algorithm. The algorithm may not be 

available to an operator, precluding its use. 

11.3.2.2 SMALL AREA REPLACEMENT 

This algorithm should be used when time limits are 

important, but high accuracy levels must be achieved. The 

larger the size of threshold area for declassification, 

the slower the algorithn. 
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11.3.2.3 WHARTON’S CONAN ALGORITHM 

This is a good algorithm to use when time is short, but it 

may not be available to an operator. 

11.3.2.4 MODE FILTERS 

These are the most likely algorithm to be available on a 

commercial image processing system at present. They are 

recommended for improving the presentation of the output 

image, particularly when hard copy is to be made. 

11.3.3 RECOMMENDED CLASSIFIER AND CONTEXTUAL ENHANCEMENT 

PAIRINGS 

The following pairings of classifier and contextual 

enhancement algorithm were found to produce the highest 

accuracies in this study (table 11.1): 

Table 11.1; Pairings of classifier and enhancement 

algorithm producing highest accuracies 

classifier contextual enhancement 

maximum likelihood Markov relaxation 

deviant distance small area replacement 

minimum distance Markov relaxation 

box small area replacement 

decision tree Markov relaxation 

look up table Markov relaxation 

Note: these are results from the specific image and 

training data used here. Their use as a _ general 

indication of suitable algorithm pairings is recommended 

only with caution. Operators should experiment and use 

their own experience to determine pairings suitable for 

use in their own sphere. 
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11.3.4 PAIRINGS NOT RECOMMENDED 

The following contextual enhancement algorithms are not 

recommended: 

1.Markov relaxation, with transition probabilities 

estimated from the classified imagery. 

This:: 7s susceptible to the noise that the algorithm ‘is 

attempting to remove. 

2.Thresholded edge filters, followed by reclassification 

of pixels identified as edges. 

This is a circuitous and insufficiently effective 

algorithm. The theory is convincing, but in practice the 

performance is poor. 

3.Non-probabilistic relaxation. 

These algorithms performed quite well, however the 

algorithms recommended above managed to perform equally 

well in less time. 

11.3.5 PER-FIELD CLASSIFIERS 

These are recommended for areas where boundary data is 

readily available. They represent a promising area for 

future research. 
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11.3.6 CLASSIFICATION ACCURACY AND COMPUTATIONAL EXPENSE 

11.3.6.1 SUMMARY 

Table 11.2 below sumarises the recommended classification 

procedures, determined from this study, for different 

routine applications of remotely sensed data. 

Table 11.2: Recommended classification procedures 

application 

quick look/’ exploration’ 
(no ground data) 

as above, but with 

ground data 

rapid land-cover map 

production 

high-quality map 

production 

production of 

classified images 

for,; statistical 

analysis 

11.3.7 FUTURE STUDY 

recommendations 

histogram clustering 

box classifier, or decision 

tree classifier, designed 

by expert system 

box classifier, followed by 

small area replacement or 

a mode filter 

maximum likelihood 

classifier, followed by 

Markov relaxation, with 

transition probabilities 

estimated in the field 

maximum likelihood alone 

(contextual enhancement 

is a form of generalisation 

reducing the accuracy 

of aerial estimates etc.) 

Two important areas for future study in the field of 

classification and enhancement are: 

1.The development of techniques integrating remote sensing 

with geographical information systems. 

2.An assessment of the potential of expert systems for 

classification of remotely sensed data.



  

Geographical information systems represent a rapidly 

developing area of spatial information processing. Much 

data, complimentary to remotely sensed material, is, or 

will shortly become, available in geographical information 

system-compatible format (for example: Ordnance Survey 

maps; the 1991 UK census; the Soil Survey of England and 

Wales’ land information system  [LANDIS]). This 

information, in combination with spectral reflectance data 

provided by remote sensing, will provide a most powerful 

tool for terrestrial monitoring in the near future. 

With the increase in available information, mentioned 

above, will come a need for faster, more efficient data 

processing. Expert systems, able to infer decision rules 

from example data, are a possible answer to these needs. 

Such tools would enable fast identification of relevant 

attributes, followed by rule generation to distinguish 

different classes. This would provide accurate 

classifications using the minimum of data required, 

something a human operator would be unable to match with 

any degree of consistency. 

Expert systems with inference engines capable of handling 

the large, low-precision data sets provided by remote 

sensing are a prerequisite for any further work in this 

field. 
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11.3.7.1 PER-FIELD CLASSIFIERS 

The area of per-field classification, with the advent of 

geographical information systems and digital map data, is 

an important one for future study. Topics which should be 

addressed are: 

1.Derivation and extraction of ’fields’ from geographical 

information and digital map data. 

2.Investigation of appropriate per-field classifiers; both 

in terms of the classification algorithms themselves and 

the algorithms used to average these classifications over 

individual fields. 

3.Investigation of the parts of each field to use for 

classification: should boundary pixels be avoided; should 

anomalous areas be removed? 

11.4 RELATIVE CONTRIBUTIONS OF NOISE AND EDGES’ TO 

CLASSIFICATION ERRORS 

The experiments carried out suggest that noise is a more 

critical factor in impairing the performance of 

classifiers than pixels with mixed spectral response 

occurring at edges (class boundaries). 
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APPENDIX 

RESULTS 

Al LAYOUT 

The results in this appendix are presented as follows: 

Best cases (highest clasification accuracies achieved by 

adjusting parameters) for each classifier-contextual 

enhancement pairing on Peak District Data set (Tables Ala 
and b). 

_Accuracies achieved using the two clustering algorithms 

described in the thesis using the Peak District data set 

(Table A2). 

Results of the algorithms tested on the Salisbury, North 

Wales and Yemen data sets (Tables A3, A4 and A5). 

Confusion matrices for the results in table Al, A3, A4 and 

A5 (Table A6). 

Table Ala: Summary - best. cases for each contextual 

algorithm 

algorithm classifier accuracy % reduction in 

and parameters before after error % 

mode 9 maximum 92022 95.76 45.50 

filter likelihood 

9 deviant 87.06 92.42 41.42 

distance 

gla ninimum 80.07 87.64 37.98 

distance 

if box 7 664.12 11.26 THEN 

al decision 58.23 65.13 16.52 

tree 

3 look up 59.81 59.20 -1.52 

table 

Note: parameter denotes size of patch in pixels 

algorithm classifier accuracy % reduction in 

and parameters before after error % 

small area 8,5 maximum 92.22 95.83 46.40 

replacement likelihood 

8,5 deviant 87.06 927,05 42.43 
distance 
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algorithm classifier accuracy % reduction in 

and parameters before after error % 

small area 8,5 minimum 80.07 86.32 SL.36 

replacement distance 

8,5 box 66.12 91.66 13038 

4,5 decision 58.20 79.34 50.54 

tree 

4,L look up 59.81 60.22 1202 

table 

Notes: first parameter indicates maximum size of area 
declassified in pixels, second indicates number of nearest 
classified neighbours used in reclassification. L 
signifies use of nearest along-line classified neighbour. 

algorithm classifier accuracy % reduction in 
and parameters before after error % 

thresholded maximum 9222 93.20 12.60 

edge filter likelihood 

deviant $7.06 88.61 11.98 
distance 

ninimum 80°07: 7° 83<60 BET 
distance 

*1 = box 66612 89.00 61.00 

*2 decision O8% 2c 79.30 50.44 

tree 

look up 59.81 60.47 1.64 

table 

Notes: all Roberts filter + automatic thresholding on 
classified image, with reclassification by mode of nearest 

five neighbours, except: *1:Prewitt filter + automatic 

thresholding on band 5 of original image, with 

reclassification by mode of nearest five neighbours, and 

*2:Prewitt filter + automatic thresholding on classified 
image, with reclassification by mode of nearest five 

neighbours. 

algorithm classifier accuracy % reduction in 

and parameters before after error % 

Markov M maximum 92.22 96.39 53.60 

relaxation likelihood 

M deviant 87.06 92.10 38.95 

distance 
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algorithm classifier accuracy % reduction in 
and parameters before after error % 

Markov M minimum 80.07 90.50 deco 
relaxation distance 

M*2 box 66.12 90270 12.90 

19 decision 58523 82.47 58.03 

tree 

I6 look up 59.81 60.98 0.03 

table 

Notes: M signifies relaxation based on transition 
probabilities estimated from map and field data, M¥*2 
indicates two iterations of this, I signifies use of the 
classified image to estimate transition probabilities, the 
figure after this indicating the order of the chain 
derived from these. 

algorithm classifier accuracy % reduction in 
and parameters before after error % 

Wharton’s 9 maximum 92.22 95.68 44,47 
CONAN likelihood 
algorithm 

15 deviant 87.06 91.62 35.24 
distance 

15 minimum 80.07 89.16 45.61 
distance 

oe. box 66,42 86.45 60.00 

15 decision 58.23 80.59 Dsaod 

tree 

15 look up 59.81 55.95 -9.60 
table 

Notes: the figures indicate the size of the patch used in 
pixels. 
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Table Alb: Accuracies and times for all algorithms (Peak 
District Data Set) 

classifier enhancement accuracy time 

% seconds 

maximum none OB 22, 5670.42 
likelihood 

3 by 3 mode 94.64 5915.3S 
5 by 5 mode 95.48 5936.39 
7 by 7 mode 95.62 5968.55 
9 by 9 mode OF. 1.0 6001.89 
11 by 11 mode 95.19 6050.38 
13 by 13 mode 94.53 O12 1 54 
15 by 15 mode 93.89 6173.05 

SAR 1 plus: 

NAL neighbour YZe13 5699.52 
‘mode of patch 92.46 5890.73 

NN 92.16 Di soe 40 
mode of 5 NN’s 92.16 5828.27 

SAR 4 plus: 
NAL neighbour 92.02 5699.52 

mode of patch 92.83 5890.73 

NN 92.52 5733.40 
mode of 5 NN’s 92.59 5828.27 

SAR 8 plus: 

NAL neighbour 99.45 5699.52 

mode of patch 83.10 5890.73 

NN 95.60 5733.40 
mode of 5 NN’s 95.83 5828.27 
Prewitt on B5, 

auto threshold, 

declassification 

plus: 

NN S213 5795.76 

mode of 5 NN’s 92.55 5886.63 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 85.39 5820.20 

mode of 5 NN’s 84.76 5911.07 

Roberts on B5, 

auto threshold, 
declassification 

plus: 

NN 92.18 DED 16 
mode of 5 NN’s 92.79 5886.63 
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classifier 

Maximum 

Likelihood 

deviant 

distance 

enhancement 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 

mode of 5 NN’s 

Prewitt on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 
mode of 5 NN’s 

Roberts on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 

mode of 5 NN’s 

Markov 

relaxation 

image (order 7) 
map 
map (2nd itern.) 

CONAN (9 by 9) 
(15 by 15) 

edge/noise 
noise by NN 

edges by NN 

both by NN 

none 

3 by 3 mode 

5 by 5 mode 

7 by 7 mode 

9 by 9 mode 

11 by 11 mode 

13 by 13 mode 

15 by 15 mode 
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accuracy 
% 

86.05 
85.27 

92.27 
92.68 

92.85 
93.20 

75.05 
96.39 
95.72 

95.68 
95.11 

91.54 
89.36 
89.28 

87.06 

89.50 
91 Le 
92.00 
92.42 
92.28 
91.55 
91.03 

time 

seconds 

5820.20 
5911.07 

5795.76 
5886.63 

5795.76 
5886.63 

10285.64 
12351.93 
19033. 44 

6130.28 
6330.94 

337.97 

582.94 
604.33 
636.10 
669.44 
717.93 
789.06 
840.60



  

classifier 

Deviant 

Distance 

enhancement 

SAR 1 plus: 

NAL neighbour 

mode of patch 

NN 

mode of 5 NN’s 

SAR 4 plus: 

NAL neighbour 

mode of patch 
NN 

mode of 5 NN’s 

SAR 8 plus: 

NAL neighbour 

mode of patch 

NN 
mode of 5 NN’s 

Prewitt on B5, 

auto threshold, 

declassification 

plus: 

NN 

mode of 5 NN’s 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 
mode of 5 NN’s 

Roberts on B5, 

auto threshold, 

declassification 

plus: 

NN 
mode of 5 NN’s 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 
NN 

mode of 5 NN’s 
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accuracy 

% 

87.46 
87.52 
87.51 
87.49 

87.77 
88.54 
87.99 
88.16 

92.34 
76.00 
91.77 
92.55 

87.20 
87.52 

83.33 
83.29 

87.18 
87.75 

83.03 
80.24 

time 

seconds 

367.07 
558.28 
400.95 
491.82 

367.07 
558.28 
400.95 
491.82 

367.07 
558.28 
400.95 
491.82 

463.31 
554.18 

487.75 
578.62 

463.31 
554.18 

487.75 
578.62



  

classifier 

Deviant 

Distance 

minimum 

distance 

enhancement 

Prewitt on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 
mode of 5 NN’s 

Roberts on 

classified 
image 

auto threshold, 

declassification 
plus: 

NN 
mode of 5 NN’s 

Markov 

relaxation 

image (order 8) 
map 

CONAN (9 by 9) 

(15 by 15) 

edge/noise 
noise by NN 

edges by NN 

both by NN 

none 

mode 

mode 

mode 

mode 

11 by 11 mode 

13 by 13 mode 

15 by 15 mode 

o
n
n
o
 

o
o
 
o
o
 

S
q
 
S
s
 s

e 

o
n
n
o
 

SAR 1 plus: 

NAL neighbour 

mode of patch 

NN 
mode of 5 NN’s 

SAR 4 plus: 

NAL neighbour 

mode of patch 

NN 

mode of 5 NN’s 
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accuracy 

% 

87.58 
88.29 

88.01 
88.61 

91.66 
92.10 

91.60 
91.63 

86.43 
84.48 
84.40 

80.07 

83.14 
85.29 
86.33 
87.02 
87.64 
87.53 
87.59 

80.20 
80.18 
80.16 
80.18 

80.38 
81.90 
80.70 
81.14 

time 

seconds 

463.31 
554.18 

463.31 
554.18 

5658.16 
7019.48 

197.83 
998.49 

287.21 

532.18 
553.57 
585.34 
618.68 
66017 
738.30 
789.84 

316.31 
507.52 
350.19 
441.06 

316.31 
507.52 
350.19 
441.06



classifier enhancement accuracy time 

% seconds 

Minimum SAR 8 plus: 

Distance NAL neighbour 86.18 3 LGico 

mode of patch 64.87 HOT oe 
NN 85.89 300.19 
mode of 5 NN’s 86.32 441.06 

Prewitt on B5, 

auto threshold, 
declassification 
plus: 

NN 79, 60 412.55 
mode of 5 NN’s 80.31 503.42 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 74.57 436.99 
mode of 5 NN’s 74.60 527.86 

Roberts on B5, 

auto threshold, 

declassification 

plus: 

NN 19.75 AV2) 55 
mode of 5 NN’s 80.67 503.42 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 74.54 436.99 
mode of 5 NN’s 74.42 527.86   
Prewitt on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 80.78 412.55 
mode of 5 NN’s 82.04 503.42 

Roberts on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 82.02 412.55 

mode of 5 NN’s 83.60 503,42 
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' classifier 

Minimum 

Distance 

box 

enhancement 

Markov 

relaxation 
image (order 9) 
map 

CONAN (9 by 9) 
(15 by 15) 

edge/noise 
noise by NN 

edges by NN 

both by NN 

none 

3 by 3 mode 

5 by 5 mode 

7 by 7 mode 

9 by 9 mode 

11 by 11 mode 

13 by 13 mode 

15 by 15 mode 

SAR 1 plus: 

NAL neighbour 

mode of patch 

NN 
mode of 5 NN’s 

SAR 4 plus: 

NAL neighbour 

mode of patch 

NN 
mode of 5 NN’s 

SAR 8 plus: 
NAL neighbour 

mode of patch 

NN 

mode of 5 NN’s 

Prewitt on B5, 

auto threshold, 

declassification 

plus: 

NN 

mode of 5 NN’s 
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accuracy 
% 

85.28 
90.50 

87.44 
89.16 

79.35 
SOS 
77.75 

66.12 

69.00 
70.99 
71.26 
71.03 
69.57 
68.21 
66.74 

87.47 
75.20 
87.44 
87.93 

87.65 
69.1 
87.57 
88.40 

82.52 
40.93 
91.43 
91.66 

88.10 
89.00 

time 

seconds 

6396.34 
6968.72 

747.07 
947.73 

164.98 

409.95 
431.34 
463.11 
496.45 
544.94 
616.07 
667.61 

194.08 
385.29 
227.96 
318.93 

194.08 
385.29 
227.96 
318.93 

194.08 
385.29 
227.96 
318.93 

290.32 
381.19



classifier enhancement accuracy time 

% seconds 

Box as above, but 

declassification 

of pixels within 
a radius of 2, 

plus: 

NN 82.03 314.76 
mode of 5 NN’s 81.95 405.63 

Roberts on B5, 

auto threshold, 

declassification 

plus: — 

NN 88.04 ZI. 3S 
mode of 5 NN’s 88.77 381.19 

as above, but 

declassification 

of pixels within 

a. radius, of: 2, 

plus: 

NN : 82.52 314.76 
mode of 5 NN’s 1543 405.63 

Prewitt on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 88.23 290.32 
mode of 5 NN’s 88.67 381.19 

Roberts on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 87.78 290.32 
mode of 5 NN’s 88.83 381.19 

  
Markov 

relaxation 

image (order 13) 87.46 6274.11 
itn.2 (order 10) 88.46 12955.62 

itn.3 (order 9) 88.62 19064.75 
itn.4 (order 10) 88.24 25746. 26 
map 90.33 6846.49 

1tnhw2 90.70 13528.00 
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classifier 

Box 

decision 

tree 

enhancement 

CONAN (9 by 9) 
(15 by 15) 

edge/noise 

noise by NN 

edges by NN 

both by NN 

none 

3 by 3 mode 

5 by 5 mode 

7 by 7 mode 

9 by 9 mode 

11 by 11 mode 

13 by 13 mode 

15 by 15 mode 

SAR 1 plus: 

NAL neighbour 

mode of patch 

NN 

mode of 5 NN’s 

SAR 4 plus: 

NAL neighbour 

mode of patch 

NN 

mode of 5 NN’s 

SAR 8 plus: 

NAL neighbour 

mode of patch 

NN 
mode of 5 NN’s 

Prewitt on B5, 

auto threshold, 

declassification 

plus: 

NN 

mode of 5 NN’s 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 
mode of 5 NN’s 

248 

accuracy time 

ie seconds 

84.87 624.87 

86.45 825.50 

88.09 - 

84.40 - 

85.60 - 

5Sc23 69.45 

Cis Lt. 314.42 

63. te 3oD.oL 

64.84 367.58 

65.10 400.92 

65°13 449.41 

64.47 520.54 

64.28 572.08 

"7.30 98.55 

68.01 289.76 

77.87 Tae a 

78.19 Base oU 

eke 3 98.55 

59.48 289.76 

78.20 1o2. 40 

79.34 225080 

13:87 98.55 

27.05 289.76 

bUs56 132.43 

78.39 223600 

77.39 194.79 

78.29 285.66 

72.85 aLo.ed 

72.43 310.10



  

classifier 

Decision 

Tree 

look up 

table 

enhancement 

Roberts on B5, 

auto threshold, 

declassification 

plus: 

NN 
mode of 5 NN’s 

as above, but 

declassification 
of pixels within 

@-Paagius of. 25 

plus: : 

NN 

mode of 5 NN’s 

Prewitt on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 

mode of 5 NN’s 

Roberts on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 

mode of 5 NN’s 

Markov 

relaxation 

image (order 9) 
map 

CONAN (9 by 9) 
(15 by 15) 

edge/noise 
noise by NN 

edges by NN 

both by NN 

none 
(on spec. shape) 
(on o. bright. ) 

3 by 3 mode 

5 by 5 mode 

7 by 7 mode 
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accuracy 
% 

77.78 
79.07 

71.46 
70.95 

78.38 
79.30 

77.24 
78.59 

82.47 
81.46 

72.92 
80.59 

717.29 
75.80 
75.72 

59.91 
73.59 

59.20 
58.44 
57.76 

time 

seconds 

194.79 
285.66 

219.23 
310.10 

194.79 
285.66 

194.79 
285.66 

6178.58 
6750.96 

529.31 
729.37 

5.48 
5.48 

250.45 
271.61 
303.61



  

classifier 

Look up 

Table 

enhancement 

9 by 9 mode 

11 by 11 mode 

13 by 13 mode 

15 by 15 mode 

SAR 1 plus: 
NAL neighbour 

mode of patch 

NN 
mode of 5 NN’s 

SAR 4 plus: 
NAL neighbour 

mode of patch 

NN 

mode of 5 NN’s 

SAR 8 plus: 

NAL neighbour 

mode of patch 

NN 

mode of 5 NN’s 

Prewitt on B5, 

auto threshold, 

declassification 

plus: 

NN 

mode of 5 NN’s 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 
mode of 5 NN’s 

Roberts on B5, 

auto threshold, 
declassification 

plus: 

NN 
mode of 5 NN’s 

as above, but 

declassification 

of pixels within 

a radius of 2, 

plus: 

NN 
mode of 5 NN’s 

250 

accuracy 

57. 
57. 
56. 
56. 

59. 
59. 
59. 
59. 

60. 
59. 
59. 
60. 

o7. 
48. 
44, 
57. 

59. 
60. 

53. 
52. 

59. 
60. 

54. 
52. 

% 

27 
05 
69 
02 

88 
83 
82 
79 

22 
14 
98 
09 

20 
12 
41 
79 

85 
25 

56 
67 

90 
16 

29 
82 

time 

seconds 

336.95 
385.44 
456.67 
508.11 

34.58 
225.79 
68.46 

159.33 

34.58 
225.79 
68.46 

159.33 

34.58 
225.79 
68.46 

139.33 

130.82 
221.69 

155.26 
246.13 

130.82 
221.69 

155.26 
246.13



  

classifier enhancement accuracy 

% 

Look up Prewitt on 

Table classified 
image 

auto threshold, 
declassification 
plus: 

NN 60.08 
mode of 5 NN’s 60.25 

Roberts on 

classified 

image 

auto threshold, 

declassification 

plus: 

NN 60.00 
mode of 5 NN’s 60.47 

Markov 

relaxation 

image (order 6) 60.98 
map 59.91 

CONAN (9 by 9) 46.88 
(15 by 15) 55.95 

edge/noise 
noise by NN 58.92 

edges by NN Die 09 

both by NN 56.95 

non-probabilistic 

relaxation: 

by rank - 81.43 

by distance - 81.32 

Notes: 

Spec. shape = spectral shape classifier 

O. bright = overall brightness image 
SAR = small area replacement 

NAL = nearest along line 
NN = nearest neighbour 
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time 

seconds 

130.82 
221.69 

130.82 
221.69 

4074.72 
6687.49 

465.34 
666.00 

711.78 
711.78



  

Table A2a Iterative nearest neighbour clustering 

iteration normalised accuracy 

% 

0 80.07 (minimum distance) 
x 67.58 

2 65.69 

3 63.76 

Table A2b: Histogram clustering 

normalised accuracy (%): 77.25 

Table A2c: Simulated per-field classifier 

classifier 

maximum likelihood 

deviant distance 

minimum distance 

box 

decision tree 

look up table 

% accuracy 

alone 

99.90 
99.00 
99.40 
99.60 
99.90 
90.00 

per-field 

90.00 
100.00 
100.00 
100.00 
90.00 
40.00 

Table A3: RESULTS FOR SALISBURY DATA SET 

classifier 

and enhancement 

box 

9 by 9 mode 

9 by 9 CONAN 

SAR (8,5) 

hinimum distance 

9 by 9 mode 
9 by 9 CONAN 
SAR(8,5) 

maximum likelihood 

9 by 9 mode 

9 by 9 CONAN 
Markov relaxation 

accuracy % decrease in 

38.69 
36.96 
37.95 
37.35 

93.99 
99.51 
99.68 
99.89 

96.94 
99.40 
99.58 
79.90 

error due to 

enhancement 
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Table A4: RESULTS FOR YENEN DATA SET 

Classifier 

Minimum 

Distance 

Maximum 

Likelihood 

Table A5: RESULTS FOR NORTH WALES DATA SET 

Classifier 

Deviant 

Distance 

Minimum 

Distance 

Maximum 

Likelihood 

Contextual Enhancement 

9*9 CONAN 

Markov Relaxation (9) 

Small Area Replacement 

(8,1) 

9*9 Mode Filter 

9*9 CONAN 

Markov Relaxation (9) 

9*9 Mode Filter 

Small Area Replacement 

(8,1) 

Contextual Enhancement 

Small Area Replacement 

(8,1) 

Markov Relaxation (10) 

9*9 Mode Filter 

9*9 CONAN 

Small Area Replacement 

(8,1) 

Markov Relaxation (10) 

9*9 Mode Filter 

9*9 CONAN 
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Accuracy (%) 

35.53 

26.69 

41.98 

43.86 

45.13 

2.26 

63.31 

64.27 

67.44 

70.06 

Accuracy (%) 

94.08 

95.45 

95.98 

96.52 

97.02 

97.32 

95.27 

97.02 

97.52 

97.91 

98.27



  

Table A6: Confusion matrices for selected classifications 

Table A6a: Peak District Data Set 

Confusion matrix for Maximum Likelihood Alone 

Classified as ------ > 

U i 2 3 4 5 6 7 8 9 10 

1 0: 764. 0. iiss 0% 0 0. 0. 0. 0. 0.785. 

2 0. O11 73. Ze 0. 0. 0; 0. 2: ie OAL Es, 

3 0. O52 2b. 125 GO; alc 0% On hoe Ze er tas 

4 0. 0. 0. Dia Yous 4. On. saltes 0. 0. 0.1008. 

5 0. 0. 0. 8; Sui wote O05... 10; 412. 0. O.. 262. 

6 0. 02,059. Osc: 70. O.. 5 47, 0. 6. 0. 0. 112. 

7 OF 0: 0, 0%, Vig 860.7% 0,1. 0006 210s GO; 0.1467. 

8 0; 0. OF 7 O.. <223< oe 6241335060354. 0.1650. 

9 0. 0. 0. 6. 0. 0. 0. On. 15% 448 3 1 000. 

10 0. 0. 0% i 0. On 0. 0. 0. Soc doe O4O6 

0. 784.1253. 760. 986. 550. 49.1416.1399- 542. .345. 

Normalised accuracy is 92.21920 % 

Confusion matrix for Minimum Distance Alone 

Classified as ------ > 

U 1 2 3 4 5 6 ik 8 9 10 

il 0. °785;, O% oe 0, 0: OO. 0. 0. 0. 0.5785. 

2 0. 0.1059. des 0. Of 11 0. 6. 0. (Oe Ea EY Ay 

3 0. 0 Oe 01 0. 1057 84s. 10% Siiei89. C; OC Li 

4 0. oN 0% 0.979. aa 0. . 25% 0. 0. 0.1008, 

5 0. 0 0. Te Oe e's 0.2639. 1 0. 5-262. 

6 GC. 0. 0. 0. 0. Oe. dds 0% iL 0. On, ole 

7 0% 0 0. Onr= 24.7384. 0.1053. 6. 0% 0.1467. 

8 0. 0 00°: Gils 21-5298. abit > 375. “901: 131s 0.1650. 

9 0. 0: 0. 0. 0. 0. 54 0. 28..° 465. 6.215066 

10 0. 0. 05 0. 0. OF 0: 0. 6. 0 S01 046% 

QO. 788.1059. 639.1036. 986. 394.1200.1038. 605. 339. 

Normalised accuracy is 80.07175 % 

Confusion matrix for Deviant Distance Alone 

Classified as ------ > 

U il 2 3 4 5 6 7 8 9 10 

O.. 784. 0. 0. i. 0. 0. 0; 0. 0. 0. 785. 

0. 0.1169. Bs 0. 0; ae 0. 6. 0. Oorli. 

0. OO. GOAL 0. 5 0. eee 95% 0. Oc ener: 

De De 0. 4. 936. 0. 0.68. 0. 0. 0.1008. 

0. 0. Oss 41, 0; -.18%7. OS 30. 4. O% O. 262% 

0. 0. 0. Of 105% 0. he 0% Oo Tie 

Os: 22s 10.7 160. Ovi260, 7.15. 0, 0.1467. 

QO. 163; 5. 103, 6.355. L2Zi. its 0.1650. 

: 0. 0. Or 0; OF. 0; 109. 396, i DOG. 

U3 0. 0, 0. 0; 0. 0. Oe 6. Le Caner OF 0.4 

Os; 784.1185." 882.7952. bab. 112.1404, b480, 404, 324. 

Normalised accuracy is 87.06086 % 
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Confusion matrix for Box classifier (+/- 2 sd) alone 

U 
171. 
120. 
517. 
224. 
229. 
33. 

388. 
595. 
140. 

10 +64. 
2481. 

O
C
O
O
N
O
T
P
W
D
H
H
 

Classified as ------ 

meres 
Gtk.) 0: 

0.1057. 
O. a1, 
or 0. 
Oo s0e 
Oe 
ies OS 
0... 20. 
Oa 0, 
be 0. 

614.1058. 

3 
0. 
0. 

222. 
1. 

els 
0. 
2. 

15. 
0. 
0. 

241, 
Normalised accuracy is 

Confusion matrix for 

spectral shape image. 

U 
0. 
2. 
0. 
0. 
0. 
0: 
0. 
0 
0 

S
O
O
O
N
A
D
N
H
L
 
O
D
E
 

e
 0. 

ae 

4 5 
0. 0. 
0. 0. 
0. 0. 

756. 0. 
0. 26. 
0. 0. 
0. 74. 
0, dB. 
0. 0. 
i 0. 
756. 119. 

66.11826 

LUT classifier 

Classified as ------ 

1 2 
179. 0. 
11.1093. 

ls 1. 
2. 0. 
0. 0. 
One 2095 
0. 0. 
0. 0. 
3. 0. 
ke 0. 

(97.1153. 

3 
0. 

13. 
107. 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

120. 
Normalised accuracy is 

4 
0. 

20. 
13. 

903. 
us 
0. 
0. 
0. 

76. 
336. 

1349. 
59.9084 

o
o
o
0
o
q
c
o
o
c
o
q
c
o
o
c
u
 

6 7 8 
0. 0. 0. 
0. 0. 0. 
0. 0. 31. 
ee 0. 
0. 2. 4. 

76. 0. 3. 
0., 982. .21. 
0. 5.1016. 
0. 0. 41. 
0. 0. 6. 

76.1016.1122. 
% 

7 8 
0. 6. 
0. 38. 

103. 542. 
136° 710%. 
LO 19 
0. 53. 

376.1091. 
83.1567. 

104. 305. 
: 0. 9. 

49.3872. O
O
 
O
t
 
o
o
 
.
0
 

OC 
O
O
 

© 
6
 

7 
% 

9 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

325. 
5. 

330. 

0. 
0. 

18. 
0. 

42. 

10 
O. 785. 
0.1177. 
Ose TL. 
0.1008. 
0. 262. 
O. 112. 
0.1467. 
0.1650. 
0. 506. 

271. 346. .. 
271. 

(zero threshold), on 

10 
0. 785. 
OQ. 1177. 
0. 771. 
0.1008. 
0. 262. 
0. 112. 
0.1467. 
0.1650. 
0. 506. 
0. 346. 
0. 

Confusion matrix for manually defined Decision Tree alone 

_
 

co
 

co 

305. 
198. 
115. 
68. 
22. 

406. 
418. 
185. 
227. 

1978. 

S
O
O
 
O
N
D
 

N
S
 
W
 
D
S
 

Classified as ------ 

u 2 
760, 0. 

0. 813. 
g-. Ue 
0. oO. 

oO. 
0. 70. 
0. oO. 
Oc." 0, 
0, 0, 
a. 

750. 813. 

3 
0. 
0. 

390. 
0. 
Ls 
0. 
0. 

21. 
0. 
0. 

412. 
Normalised accuracy is 

4 5 
1. 0. 
0. 0. 
5. 4. 

20a. ale 
0. 171. 
0. 0. 
5. 169. 

14, 195. 
0. 0. 
0. 0. 

6 it 8 
Us 0. 0. 
49. 0. 8. 
1. 0. 173. 
0. 620. 0. 
0. 19. 3. 

89. 0. 1. 
O. 865. 22. 
0. 32. 962. 
0. 0. 20. 
0. 0. 3. 

277. 560. 139.1536.1192. 
58.22613 
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% 

9 
0. 
2. 
0. 
0. 
0. 
0. 
0. 
8. 

301. 
2% 

313. 

10 
0. 785. 
0.1177. 
Os EL. 
0.1008. 
0. 262. 
0. 112. 
0.1467. 
0.1650. 
0. 506. 

114. 346. 
114.



  

brightness image 

U 
Lore OF 
mtn 
Oe Ol 
4 0. 
5. ie 
So Oy 
tee 0% 
Bo <0. 
9 '0. 
HOO 

1 
784. 

8. 
0. 
1. 
0. 
0. 
0. 
0. 
0. 
0. 

Confusion matrix for look up table classifier 

Classified as ------ > 

2 3 4 5 6 7 8 9 
0. 0. fe 0% 0. 0% 0% 0. 

1144, 0: oe On. 14. OX Ve 07 
oe 395 rye Os: FLO. Ail oe Gi. 0. 
0. 0. 903. 0. 0. 104, 0. 0. 
UO. 09% 0. 0. 0. 202; 0. OF 
5, 0. 0. Oe. 96. Oe On 
OQ. 40... 65. 0. 0.1354. 0. 0. 
0. 265. 48 Of 247.1003. 0. 
0% 3. Os Cet I 0. 466. 0. 

j 05:20: 0. 0% 0. Ov 59% OX 
Ze NOG TOL. 1936. 991% QO. 5132, 2079.1607. 0. 

73.58981 % Normalised accuracy is 

10 
0. 
0. 

127. 
0. 
0. 
0. 
0. 

106. 
. 36. 
267. 
536. 

on overall 

785. 
1177. 
771. 

1008. 
262. 
112. 

1467. 
1650. 
506. 
346. 

Confusion matrix for Maximum Likelihood + Markov relaxation from 
map and ground data 

U 
Lee 0% 
ey 
3. 0. 
Ae <0) 
De Ue 
OF 0% 
GeO. 
Br .0% 
Sen 
LOV0% 

0. 
Normalised accuracy is 

Confusion 

U 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. S
C
O
M
O
N
A
O
T
N
F
P
W
N
H
H
 

—
 

iL 
784. 

0. 
0. 

o
o
o
c
o
m
n
o
o
 

789. 

Classified as ------ 

2 3 4 5 
0. 1. 0: 0. 

1177. 0. 0. 0. 
OF alls 0. 0. 
0. 0.1008. 0. 
0. 3. 3. 235. 

65. 0. 0; 0. 
0. 0. 0. 0. 
0. 0. 0. 118. 
0. Q. 0. 0. 
0. 0. 0. 0. 

1242. 775.1011. 353. 
96. 38793 

6 a 8 
On. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 0.) 47. 

15. 0. 25. 
0.1467. 0. 
0. 17.1483. 
0. 0. 0. 
0. 0. 0. 

15.1484.1525. 
% 

O
o
O
N
n
N
P
 
O
O
O
O
”
 

wo
 

dS
 

506. 

10 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

785. 
Luis 
ti 

1008. 
262. 
112. 

1467. 
1650. 
506. 

O. 346. 346. 
544. 346. 

matrix for Minimum Distance + Markov relaxation 
map and ground data 

1 
785. 

0. 
0. 
0. 
0. 
5. 
0. 
0. 
0. 
0. 

Classified as ------ 

2 3 4 
0. 0. 0. 

1170. 0. 0. 
0. 740. 0. 
0. 0.1008. 
0. iL 1. 
0. 0. 0. 
0. 0. 0. 
De Leeds 
0. 0. 0. 
0. 0. 0. 

172. 
0. 

92. 
173. 

0. 
0. 

6 7 8 
0. 0. 0. 

the 0. 0. 
0. 0. 31. 
0. 0. 0. 
0. 79. 9. 

106. 0. 1. 
0.1374. 1. 

90. 148.1109. 
0. 0. 0. 
0. 0. 0. 0. 

0. 790.1170. 757.1023. 437. 203.1601.1151. 606. 
Normalised accuracy is 

256 

90.49976 % 

10 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

346. 
346. 

from 

785. 
1177. 
171. 

1008. 
262. 
112. 

1467. 
1650. 
506. 
346.



  

Confusion matrix for Maximum Likelihood + 9*9 mode filter 

Classified as ------ > 

U 1 2 3 4 5 6 

0. 784, Te Ee 0: 0. 0. 

0. OAT 0 0; 0; 0. 

7 8 9 10 
1 0 0. 0. 0. .785; 
2 0. 0; 0. ORT. 
3 0: 0. ORBITS 0. 0. 0. 0. 0. 0. On ah. 
4 0. 0. 0. 0.1008. 0. 0. 0% 0% 0. 0.1008. 
5 0. 0; 0. ee 0; 260, 0. OO: 0. O% 0. 262 
6 0. A. 350% 0% 0. On 36; Osse2t, 1s Oe lis. 
iG 0; Or 0. 0. OF 8. 0.1459. Og 0. 0.1467. 
8 0. Os 0. O% 03.5226; 0. Oeto9o.e eo 1. 0.1650. 
9 0. Ox 0. 0. 0; Ue O's Oe OF: 506% 0...006- 
0 (Oe 0% 0. On Ose aeOe 0. 0. 0. 0.2346 346. 

0. 788.1227. 773.1008. 495. 36.1459.1414. 538. 346. 

Normalised accuracy is 95.75705 % 

1 

Confusion matrix for box classifier + Small area replacement 
(8,5) 

Classified as ------ > 

U iL Z 3 4 5 6 7 8 9 10 

i 0. 696. 0. 0% OF OL 10. QO. Lone OO, 0; 785% 

2 0. Oe nits. 0 0; 0. 0. 0. 0. 0. OOLET, 

3 0. 0. 0 2568 Os 0. 0. 0. OF Les Oo Cas 

4 0. OF 0. O.. 975% 0. OR Ly ON 0; 0.1008. 

5 0% 0. 0. OF 38. 0. 0. OseZanr Bi O72 262). 

6 0; ike 0. 0. O% 0. Soe Our. 23, On O07 112), 

tL 0. OF 0; 0. 0. 0. Ox Tab 5. 2 2% 0. OF LAG. 

8 0. 0. 0. O 0. 0. O70: 300% 600) 0. 0.1650. 

9 0. 0. 0. Ox Oi: 0. 0. 0% e505. O., 506. 

10 0. 0. 0. 0. 0% 0. 0. Ue 0. 0346. 73465 

OF 697.1174 568, 1013. 0.) = 98-°1506, 197727625. 3463 

Normalised accuracy is 91.66254 % 

Confusion matrix for deviant distance + Small area replacement 

(8,5) 

Classified as ------ > 

U 1 Oe 4 5 6 if 8 9 10 

l O/35. 0. 0. ue 0. Os 0. 0. 0. 0.7780. 

2 0. Oot i. GO: Os 0. QO. 0; Oi. OF Ona l G7 

3 0. 0. 0. 7419. OO 0. 0% One Os 0. Oe ti: 

4 On 0; 0. 0. 996. 0: Oe Sie. 0. Ox 0.1008. 

5 Os 0. Oe ale OF ios 0. OO. 3 30; 0. 0. 262. 

6 0; 0. 0. 0. 0. OS. LOT: Os 5. 0. Onli 2. 

7 0 0. 0. 11. O< «59; Usts62s. vos 0. 0.1467. 

8 G. 0. OF. Shes On eke 0. 147.. Loree 0. 0.650% 

9 0% 0. Or Oi 0. U7 O% Os. .69, A374 Q. 506. 

10 0; On 0% 0% 0. 0. 0. O 4, Outda2e One 

0; 785.1177...803. 996. 507107, 1441. 1489. 437 © 349. 

Normalised accuracy is 92.65215 % 
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Confusion matrix for box classifier + 15*15 CONAN 

U 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. S

C
O
M
O
N
A
O
N
L
W
N
H
H
 

—
 

Classified as ------ 
1 

708. 
0.117 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

2 
0. 
4. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

3 
0. 
0. 

597. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

0. 708.1174. 597. 
Normalised accuracy is 

4 5 
OS anes 

0. 174. 
912. 96. 

0. 262. 
Gs. Lbs 

0. 544. 
0. 10, 
0. 8. 

912.1402. 
85.50223 

6 7 8 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 

69. 0. 32. 
0.1250. 0. 
0. 0.1106. 
0. 0. 0. 
0. 0. 0. 

69.1250.1138. 
% 

Confusion matrix for box classifier + Markov relaxation 

second iteration 

U 
LOR 
Zs 40% 
baz (0) 
4 0% 
0: 4.0. 
6. 30, 
Gee. 
8 0. 
94250: 
One. 

0. 

Classified as ------ 

1 
122. 

0.117 
0. 

. 

o
o
o
 

©
 
6
 
o
 
6
 

731.117 

2 
0. 
Te 

o
o
o
o
q
o
o
c
o
c
o
c
o
 

Le 

3 
0. 
0. 

- 640. 
0. 
0. 
0. 
0. 

103. 
0. 
0. 

4 5 
0. 0. 
0. 0. 
0. 0. 

997. 0. 
26. 0. 
0. 0. 
0. 0. 
Oss 33. 
0. 0. 
0. 0. 

743.1023. 33. 
Normalised accuracy is 

Confusion matrix for box classifier + 15*15 CONAN 

U 
doe O's 
2 60. 
3 Ue 
A 40% 
320% 
Oy 4 Or 
Loe Os 
me. OY 
9 Oe 

10 OL 
0. 

90.69768 

Classified as ------ 

1 
708. 

0.117 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

708.117 

2 
0. 
4. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
4. 

3 
0. 
0. 

597. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

597. 
Normalised accuracy is 

4 5 
0... tT. 
0. 3. 
O. 174. 

942.°:. 96, 
0. 262. 
Gs. kes 
0. 217. 
0. 544, 
0. 10. 
0. 8. 

912.1402. 
85.50223 
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6 it 8 
0. 0. 63. 
0. 0. 0. 
0. 0. 131. 
O,:° 11. 0. 
Ore e122. 228% 

68. 0. 35. 
0.1455. 12. 
0. 93.1421. 
0. 0. 0. 
0. 0. 0. 

68.1571.1886. 506. 346. 
% 

Gov: 7 8 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 

69. 0. 32. 
0.1250. 0. 
0. 0.1106. 
0. 0. 0. 
0. 0. 0. 

69.1250.1138. 
% 

9 10 

0. 0.2785. 

0. OCT. 

0. OC CTE 

0; 0.1008. 

0. 0; 3262; 

0. Oeil 25 

0. 0.1467. 

0; 0.1650. 

496. 0. 506. 

Wie 3306 340% 

496. 338. 

(map), 

9 10 

OF OF 785% 

G. . Oat: 
0. cca rele 

0: 0.1008. 

P20. 369, 
Oo. 0, ae 
0. 0.1467. 
0; ° 6. 1650; 

506. 0. 506. 

0. 346. 346. 

9 10 

0; 0. 185. 

O Oye a li A fe 

Os Os Tail. 

0. 0.1008. 

0, 0.262. 

oe 0.412. 

0. 0.1467. 

O; 0.1650. 

496, 0. 506. 

0373382346. 

496. 338.



  

Confusion matrix for box classifier + edge declassification and 
reclassification 

Classified as ------ > 

U iT 2 3 4 5 6 7 8 9 10 
1 O. 723. 0. 0. 0. 0. 0. Or 49 13. 05°785. 
2 0. OF1T74, as 0. 0. 0. 0. 0. 0. OFT. 
3. Os 0; 0-637. 0. 0. 0. Cee 33% Te Oe tal < 
4 0. 0; 0; 3. 969. Ls OQ. 234s 0. ie 0.1008. 
5 0. 0. 0. if 4. 169. 0.2:-18.2468. uEx OF E2O2. 
6 0. OF 0. 0. OF 0. LOB 0. 4, 0% 0.112. 
(oe. 0. 0. 6. O57 Tbr. 0. 1266.5 744. 0. 0.1467. 
8 0; 0. Oe Tl: O«.66.. OMe O71 376. 0. 0.1650. 
92 Nh 0. O. 0. 0. OF Oe 5% 449. 0. 506. 

10 O% 0. 0. OF 0. 0. Ue Oc abe. 10. 3245 346% 
OQ. 729.1174.: 727. 973. .487,° 108.1355.1738. 475.324. 

Normalised accuracy is 89.00297 % 

Confusion matrix for manually derived Decision Tree + Markov 
relaxation, order 9, transition probabilities estimated from 
classified image 

Classified as ------ > 

U if 2 3 4 5 6 4 8 9 10 
di Ons 85K Oi 0. 0; 0. O* 0% 0. 0. 0. 785. 
2 0. OcLIG7. Oi. OF 0. 3. 0. The 0. Oa la RY A Ae 
3 0. 0. On 636; 2. 0. ke 0.2063. 0. 0. iA 
4 0. 0. 0. 0.325% 0. 0. £643. “tO. 0: 0.1008. 
5 0. 6; 0. Ze 0%. 109: Os 12a 30. 0; 0. 262. 
6 0. 6. 0. a 0; Onn OT. Os say Lie 0.222. 

i, 0. 0. QO. tes (16, OK OL 1409: sie 0. 0.1467. 
8 0. 0. Le A008 26.7 116. de ot elo0De es 24. 0.1650. 
9 (Oe 0. 0% Ox 0. 0. 0% 0 3. BD0ds 0. 506. 

10 0. 0. 0. 0. le 0; O% 0. 9. OF Oar S46. 
O--4/91 1168. 680% 369,235. 9 95.23401542% 527... 337. 

Normalised accuracy is 82.47155 % 

Confusion matrix for look up table classifier + Markov 
relaxation, order 6, transition probabilities estimated from 
classified image. 

Classified as ------ > 

U 1 2 3 4 5 6 7 8 9 10 

aL 037784. 0. de: 0. 05 0: 0. 1, 0. On 185 

2 0. O. 15s ig Oi Or Os 0. a Re 0. OATH & 

3 0. 0. Oe 945 0. 0. Oot 61.616. 0. Os 1, 

4 0. We 0. 0. 993. 0. 0. Oe 720% 0. 0.1008. 

5 0. 0. 0; 0. 0% 0; Of: 465 “214. 0. 0; 262, 

6 0. Ob S135 0. 0. 0; G O's" 89K 0. OF: 192% 

ff 0. 0. 0. 0. OF 0. OF 306.1160, Os 0.1467. 

8 0: 0 0. 0. 0. Oi 0... 62.1588. 0; 0.1650. 

9 0. 0 Or Ox 60% 0. UF Oo. 3604 0. 0, 506; 

10 0. 0. 0. Oy 646% 0% 0. 0; 0. 0. 0.0. °346. 

0.6 78451248. 95.1389. ae: 0. 560.4008. 0; Oe 

Normalised accuracy is 60.98466 % 
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Confusion matrix for decision tree 

SuperExpert: 40 examples per class. 

Classified as ------ > 
U i 2 3 4 5 6 7 

1 0.--508. 07. OR eis 0. 0. 0. 
2 0. 0, 4020.¢ 157. 0. 0. 0. 0; 
3 0. 0. alco 10% 4. 0. 4, 
4 Oeil 0. 0. 948. Ls 0. ie 
5 Or 0. 0. 95 e102 65% 0.4173: 
6 0. 0. 0, a2. 0. . 0. 0. 
7 Oc 26, 0. 0.2500. 147% 0s 789. 
8 0. 0; 03 620% 2625-835 On tS, 
9 0. 0. QO; 741. 0. ie 0. 0. 

105.0; 0. 0. Oho Oe. + Os (0% 0. 
0. 591.1022.1699.1808. 301. 0.1155. 

Normalised accuracy is 66.63 % 

Confusion matrix for decision tree 

SuperExpert: 25 examples per class. 

Classified as ------ > 

U iL 2 3 4 5 6 7 
1 0; 508; 0. OF 200. 0% 0. 0. 
2 0. 1 105). 704,, D:. Oe oo. 0. 
3 0: Oi Ds OOO. Laie 8: Se ela 
4 OS 70 Ge 0. 0. 944. (te 0. 1 
5 Oy 0. 0. 6. Bare FT; On 79s 
6 i. Oi, 0. Oi OF OA ad a Bi BP O; 
7 0:0 0. Le des 6825 On:657 . 
8 0. (Oe Oe 9S 480 114 2G 198. 
9 0% OF, 0: 0. Oz TD ywl2.9)s 0. 

10 0% 0. 0. 0. GQ; Oe 6. 0. 
0. 580.1110. 693.1412. 882. 745.1046. 

Normalised accuracy is 690.13 % 

Table A6b: YEMEN DATA SET 

9*9 Conan on Maximum Likelihood Classifier 

Classified as ------ > 

1 2 5 4 5 6 7 8 
1 Oj: 2 55% 07 0. 0. 0. iL; Oe 
2 0. Oni e 2a koa O52 803 0. On 
3 0. 0. On6222 0. 0. 0. 0. 
4 0; 0. 0. 0. 108. 0. Ga2ee0 22 
5 0. 0% 0. 4. 034878%. 163. 03 
6 0. 0. 0. 0. 0. 0. 208, ..62' 
t 0. 0. 0. 0. 0. Os) 15220. 
8 Or 0. 0: 0. ah 0. ae 3 

O. O54. «23. 260... 209. 958.1067 % 307; 
Normalised accuracy is Ho.di2i. 2 
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derived 

8 
0; 

9 

0. 
20. 
0. 
5. 

0. 
0. 
0. 
0. 

89. 
386. 

0. 
475. 

604. 
5, 

638. 

derived 

H
e
r
e
 

O
N
 

©
 

©
 

o
o
r
o
o
w
 

681. 
10. 366. 

53. 
867. 463. 

9 Total 

TL se: Sir 
22 159% 
0.2222. 
0... 762. 
1.1046. 
05-320% 
OF. 231, 

7902435. 
53% 

by 

10 

6. 

0. 

0. 

5. 
43. 

341. 
395. 

by 

C
F
O
S
 

0
'
O
:
0
,
o
.
0
 

>
 

nh oc ao
 

286.



  

9*9 CONAN on Minimum Distance Classifier 

Classified as ------ > 

a iz 3 4 5 6 7 8 9 Total 

1 On bee 0. 0. 0. 0. Oz 4. Me eile 

Z 0. 0: O. 045.2 15;,..° 49, Os Oe ce4 To 59: 

3 0. 0. On 221. Ls 0. 0. 0. Omer 22a 

4 0. 0. diy 0. -.84. Og 4264252. OR yar 

5 0. 0. 0. O...268. Betas 0. 0.1046. 

6 0. 0% 0. 0. 0. 0. O14; 6. O32. 

f 0; Os ie QO. 0. O. 15122 3807 O21 2a. 

8 OK 0. 0; 9. 22. 0. a ili Listes 

Oe ba UG AOL se S00... Do. 16016, 43.40 40% 

Normalised accuracy is 26.6949 % 

Deviant Distance Classifier 

Classified as ------ > 

1. 2 3 4 5 6 7 8 9 Total 
it 0. 46. Ze 0. 3s Za 23 as Oe obi, 
2 Oe Thee 73. 20 3% 5. 0. OF (ATE 159% 
3 0: Oz OS 1OOe oe lao bO 0. 0. 8. 2222 
4 ‘Oe hs Oss 3-96." 149. S385... 160% 0. noe. 
5 0; 0. eee Oh HO09e 388. D2 « 1.1046. 
6 0% 0. 0. 0. ance Ulead. 15. 0: 23205 
7 0. 0. 0. Cig Stee alos. 00 Of273d'. 
8 ‘Ole ore lie 5: aR Dis 0. QO. 0 2.30% 

G.8 00, 100.) 2528. 0101. (25.1080. 363.2460. 
Normalised accuracy is 42.4082 % 

Markov Relaxation (order 9) on Maximum Likelihood 
Classifier 

Classified as ------ > 

1 2 3 4 5 6 7 8 9 Total 

1 On 08. 0. 0. OF 1 4, 0, Oe 2 oa 

ie 0. Oe20. ee te al, 0. 0. OF159, 

3 0. 0. OF 222: 0. 0. 0. CO; OFR222, 

4 Oe. 20% 0. Oc, 54. 274, 2634. 0. 0.7.62. 

5 0. D. 0% 0. 01006; 440. 0. 0.1046. 

6 Os 0. 0. Oz QO: 0.7320. 0. OF 320: 

7 0. 0. 0; 0. 03 0. 285. 146, et Zoe 

8 0% 0. 0: OF On 34. ls 0; O59 358 

Ove 022° 20... 229. - 55.1246, 1084..146, 0. 

Normalised accuracy is 64.2655 % 
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Markov Relaxation (order 

1 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

O
N
I
N
O
N
P
 

W
H
Y
 

eH
 

2 
52. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

52. 

Classified as 

3 4 
0. 1. 
0. 31. 
0. 222. 
0. 0. 4 
0. ee 
0. 0. 
0. 0. 
0. 13. 
0. 2674: --7 

Normalised accuracy is 

5 6 7 8 
0. 2. 2. 0. 
0. 128. 0. 0. 
0. 0. 0. 0. 
0. 110. 605. 1. 
8. 545. 463. 0. 
0. 0. 320. 0. 
0. Ose220,, 710. 
0. 21. Le 0. 
8. 806.1612. 17. 
41.9845 % 

Maximum Likelihood Classifier Alone 

1 
L250" 
2 40% 
a) eae 
AY 0. 
DU 
5. 0; 
Hon Oe 
8. 0 

0. 

2 
11. 
0. 

12. 
24. 
0. 
0. 
0. 
9. 

56. 

Classified as 

3 4 
Oe OSl Ok 
G...* <3. 36 
2. So td 
Be Oat kook 
0. 2. 
0. Osi 
0. 0. 
0. 6. 15 
6. 640.108 

Normalised accuracy is 

5 6 ic 8 
2.1594. 818. 374. 
o-. GOs 163. 77% 
Det ae P20. as 
Be es 0. 0. 
Va als, 0. 1. 
in Sevens 7 Ol. 
1. Dots MNOS noe 
5. 25. 192. 133. 
0.1785.1231. 697. 
2.25660 % 

9) on Minimum Distance Classifier 

9 Total 

Os 57. 

QO. .159% 

OF 2225 

0.87.62. 

0.1046. 

Os-2320; 

OeeZol. 

On a0 

0. 

9 Total 

0.4040. 
0.370. 
OF 209% 
Dies a AD) 
On. 254. 
0. 297. 
Ovn.35. 
On. 520; 
0. 

9 by 9 Mode Filter on Maximum Likelihood Classifier 

C
A
O
 

rP 
W
M
H
 

oO
 

0. 
O; 

2 
56. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

56. 

Classified as 

3 4 
0. 0. 

21. 6. 
0. 222. 
0. Oe 11 
0. 0. 
0. 0. 
0. 0. 
0. 0. 

21. 
Normalised accuracy is 

5 6 if 8 
0. 0. ee 0. 
1. 131. 0. 0. 
0. 0. 0. 0. 
9... 37. 584. 22. 
0.1018. 28. 0. 
0. 0. 253. 67. 
0. 0. 10. 221. 
OF 31. 1. 3. 

228. 120.1217. 877. 313. 
67.4435 % 
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9 Total 

One Dit. 
0. 159). 
Oe 9222 
On 162% 
0.1046. 
0.320, 
0.231" 
0.45006 
0.



  

Minimum Distance Classifier Alone 

B
A
O
T
N
L
w
W
D
N
H
e
E
 

So 
. 

0. 

Oz 

Normalised accuracy is 

2 
44, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

44, 

Classified as ------ 

3 
3. 

19. 
0. 
0. 
0. 
0. 
0. 
2. 

24. 

4 5 6 
0. 5. 0. 

31. 7. 102. 
169. 35. 18. 
16. 143. 89. 
38. 143. 392. 
0. 4. 6. 
0. 18. 20. 
9. 4, 20. 

7 
2. 
0. 
0. 

323. 
387. 
222. 
or 

0. 
263. 359. 647.1053. 

37.5353 % 

8 
3. 
0. 
0. 

191. 
86. 
88. 
74. 
0. 

442. 

9 Total 

Devo 7% 

0. 159% 

05222. 

Oe 162i 

0.1046. 

Ose o20. 

OLeZ3 Ve 

Osean 

0% 

9 by 9 Mode Filter on Minimum Distance Classifier 

iL 
i 0% 
2 Ole 
oo U3 
Bin 0% 
oF 0. 
620. 
ine? Oke 
8.808 

0. 
Normalised accuracy is 

2 
53. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

53. 

Classified as ------ 

3 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

4 5 6 
3. 0. 0. 
32. 0. 127. 

222. 0. 0. 
OF 19, 780. 
OQ, 259. 553K 
0. 0. 0. 
0. 0. 0. 

il. WS 2aie 

7 
1. 
0. 
0. 

533. 
434, 
320. 
180. 

Li 

— 
2 

o
 

°
o
.
0
c
0
0
 
o
o
 

@
 

51. 
0’; 

268. 139. 782.1469. 121. 
45.1271 % 

SAR (8,1) on Maximum Likelihood Classifier 

1 

0. 
0. 
0. 
0. 

0. 

0. 

0. 

C
O
N
O
N
P
 

W
D
M
 

rH
 

Oye 

2 
57. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

57. 

Classified as ------ 

o
o
o
o
o
c
o
w
o
w
 

23% 
Normalised accuracy is 

4 5 6 
0. 0. 0. 

13. 0. 123. 
220. 0. 2. 

0. 222. 43. 
2. 0.1000. 
0. 0. 0. 
1. 0. 0. 
0. 0. 27. 

236. 222.1195. 
70.0565 

263 

7 
0. 
0. 
0. 

497. 
44, 

270. 
38. 
4. 

853. 
% 

o
o
o
o
c
;
*
c
o
o
 

50. 
192. 

4, 
246. 

9 Total 

ON OF: 

0. 159. 

Osea? 

OD 162. 

0.1046. 

Os 2320. 

0. 2al. 

OV B85" 

0% 

9 Total 

Oe 20'h. 

Oect59, 

Oe 222% 

On Toa 

0.1046. 

O.o20'. 

Osco 

Ouse 

0.



  

SAR (8,1) on Minimum Distance Classifier 

C
A
M
M
P
 

w
D
 

Classified as 

Ht 2 3 4 
Wis Obs Fo0% 1. 
0. O«.. 14.2 78s 
0. Oe .0,< 821, 
0. 0.28.0; 0. 
Ue Dei Ck, 0. 
0. Os 0% 0. 
0. OF: .0. 1. 
0. Oe OF 4. 
Oc 604514. 248, 

_ Normalised accuracy is 
186. 

5 6 7 8 
0. 0. ie 0. 
0. 126. 0. 0. 
0. 1. 0. 0. 

96. 0. 666. 0. 
89. 533. 424. 0. 
0. 0. 320. 0. 
0. 0. 227. 3. 
PoC OR Ske es 

686.1642. 3. 
43.8559 % 

Table A6c: North Wales Data Set 

9 by 9 CONAN on Minimum Distance Classifier 

O
A
D
 

P
 
w
D
 

Classified as 

1 2 3 4 
0.4040. 0. 0. 
0. 0. 370. 0. 
0. 0. 0. 209. 
0. 0. 130. 2. 
0. 0. 0. 0. 
0. 0. 0. 0. 
0. 0. 0. 0. 
0. 0. 0. 0. 
0.4040. 500. 211. 

Normalised accuracy is 

9 by 9 CONAN on Maximum Likelihood Classifier 

O
N
O
 

W
H
F
 

Classified as 

1 2 3 4 
0.4040. 0. 0. 
0. 0. 370. 0. 
0. 0. 3°0.°.209.. 
0. 0. 10. 4. 
0. 0. 34. 0. 
0. 0. 0. 0. 
0. 0. Ses 1. 
0 On 3.02 0. 
0.4040. 425. 214. 

Normalised accuracy is 
156. 

se eee > 

5 6 i 8 
0. 0. 0. 0. 
0. 0. 0. 0. 
0. 0. 0. 0. 
Te 0. 1. 0. 
0. 54, 0. 0. 
0. On Sites 0. 
0. 0. One con. 
0. 0. 0. 0. 
Tee GR OBEY 24 
97.3248 % 

5 6 7 8 
0. 0. 0. 0 
0. 0. 0. 0. 
0. 0. 0. 0. 

0. 1. On 
0. 0. 0. 0 
1. 0. 96. 0. 
0. 0. 0. 10. 
0.) 0. 0. 0 

0. OT 80, 
i 98.2712 % 

264 

- 520. 

9 Total 
0. 2-57. 

Oe 159; 
037-2223 
0. 762. 
0.1046. 
0.2320. 
Orr23t. 
0.9995. 
0. 

9 Total 

0.4040. 
0: 3370. 
O27 209%, 
Ue LZ0. 
0.7.54; 
0.9%, 

TAs 635. 
520. 520. 
534; 

9 Total 

0.4040. 

0. 870% 

0. 209. 

O.: U0; 

20%: ood, 

Oni 97. 

Lane oboe 

a0. 

653.



  

Deviant Distance Classifier Alone 

Classified as ------ > 

1 2 3 4 5 6 i” 8 9 Total 
1 0.4039. et On 0, 0:3 0. 0; 0.4040. 
2 0. On. 362. OF 4. 0. 0. Os Lo hOs 
3 0. 0. 2. LOG. 1. 0.3734. 0. 6.:.209. 
4 0. 0.21182 2 AG. 0. 0. 0. 4. 170. 
5 0. 0. 0. UF Ow 253. 0% 0. ee 4, 
6 0. 0. 0. 4, 0. 0.22:93% 0; OesraSi. 
7 De On. 24, 1 0; 0% a bes a Os. 30. 
8 0. O. aks 0: Ls 0. 0: 0. 408. 520. 

0.4039. 618s. 17a, 52. .5397 128 be 426% 
Normalised accuracy is 94.0855 % 

Markov Relaxation (Order 10) on Maximum Likelihood 
Classifier 

Classified as ------ > 
1 2 a 4 5 6 i 8 9 Total 

il 0.4040. 0; G. 0. OZ 0. 0. 0.4040. 
2 i: Ois8 3,70) 0. 0. 0. Of 0. Qs: 370 
3 Dy Oy Oe-209: 0% 0. 0. 0 0 209. 
4 Os 00 24. Be 12s 0. 0. Ors AO. 
5 0. O05. 424. 0. 0. 0. 0 0. . S0ee ro4- 
6 OF 0. 02 4, 0. O° '+93.. 0. (Bssgat He 
7 0. 0 ic 3% 0; 0. Be 0. URS e/a i tS Ta 
8 0. 0. 0. 0. 0. 0 0% 0.:-520% 520. 

0.4040.) 4310) 229." 127. 0535593 0. 583. 
Normalised accuracy is 972.5250" % 

Markov Relaxation (Order 10) on Minimum Distance 
Classifier 

Classified as ------ > 

i 2 3 4 5 6 C 8 9 Total 
1 0.4040. 0. 0. 0. 0 0. O: 0.4040. 
2 0. O52 370% Oz 0. O. 0. 0. Oe 50% 
3 Oe 0. O209% 0. Oe 0% O% Os" 209.. 
4 OF 0...145. 5° 6s 0. O's 0. ae 2705 
5 0. OF 0. 0. Os 54; 0. Oz On O44 
6 0: 0. 0: 2 O% OF tO. O'. Oe2997. 
7 0. 0. 0. Oe 0: Or OG: Oe SO ee Oo Dn 
8 On 0. 0. 0. 0. aR Obs 05° 520. #520. 

0.4040. 515. 216. 16. 54. 95. O..: 569% 
Normalised accuracy is 96.5241 % 
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Maximum Likelihood Classifier Alone 

ib 2 
1 0.4038. 
20. 0. 
7 Us 0. 
4 0. 0. 
D0 0. 
63-058 0. 
tele 0. 
Gee 0. 0. 

Classified as 

3 
1. 

359. 
1. 

57. 
34. 
0. 

25. 
64. 

4 
0. 
0. 

185. 
2. 
0. 
8. 
4, 
2. 

0.4038. 541. 201. 

Normalised accuracy is 

646 
{ae 
ae ue 
i Oy 

108... 0. 
0:62 75: 
a 6; 
C70, 
foe 

190. 5s 
95.2684 

Maximum Likelihood Classifier plus 

O
N
O
o
n
P
P
 
W
H
E
 

o
o
o
o
o
o
°
c
o
r
 

a
 

oO
o 

we
 

o
o
o
o
q
o
c
o
$
c
o
T
r
 

. 

Classified as 

3 
0. 

370. 
0. 

He 
32. 
0. 

15. 
0. 

4 
0. 
0. 

209. 
6. 
0. 
1. 
3. 
0. 

0.4040. 434. 219. 

Normalised accuracy is 

e
 

>
 

o
O
o
 

©
:
 
6
1
 
O
 

oa 
O
r
a
 

145. 

. 

e 

° 

. 

* 

. 

6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
7 97.9072 

Minimum Distance Classifier Alone 

1 2 
1 0.4040. 
2%. 05 0. 
3.0 0. 
430% 0. 
oO. & 20), 0. 
6: 40% 0. 
ae Di 0. 

Bo 0. 0. 
0.4040. 509. 189. 

Classified as 

3 
0. 

343. 
3. 

102. 
0. 
0. 
7. 

54, 

4 
0. 
0. 

176. 
3. 
0. 
6. 
2. 
2. 

Normalised accuracy is 

5 6 
0. 0. 
6. 0. 
ies 0. 

63. 0. 
Oe. 1s 
0. 0. 
0. 0. 
4, 0. 

74. “51. 
95.4504 
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0. 
89. 
0. 
0. 

109. 
% 

8 
0. 
6. 
0. 
0. 
0. 
0. 
4. 
0. 

10. 

9 Total 

0.4040. 

ss Oe. 

209. 

Se c00., 

106 04. 

0.) 97. 

Bue Le 

447.2520. 

469. 

9 by 9 Mode Filter 

wo 
o
o
m
o
r
c
o
c
o
°
c
”
w
n
n
 

91. 
Le 
0. 

ii7. 

o
o
o
o
°
o
c
e
0
 

o
o
 
O
m
 

O
n
N
n
N
o
c
o
O
o
O
r
F
O
o
O
 om 

21. 
0. 

24. 

9 Total 

0.4040. 
OF:370. 
0. 209. 
1 AO 
2204. 
0. FT. 

VP 355 
5208, 520. 
560. 

9 Total 

0.4040. 
20.2310. 

4, 209. 
2.0. 
Laver! 
0. 233,97. 
A aor 

460. 520. 
491,



Minimum Distance Classifier plus 9 by 9 Mode Filter 

Classified as ------ > 

1 2 3 4 5 6 1% 8 9 Total 

1 0.4040. 0. OF 0. 0. 0. 0. 0.4040. 

2 0. O23 705 0% OF 0. 0. 0. 02370). 

3 0. 0. 0. 209. 0. 0. 0, 0: Oe 209). 

4 0. 0. 130% eee nods 0. as 0. Le LOG 

5 0. 0. 0's 0. 0.354. 0. 0. O54, 

6:4.°-0% 0. 0. 0. 0. 0. 297, 0. 0.2397. 

7 0. 0. 0. abe 0. 0. Oe LOG 24600 35) 

8 0. 0. 0. Os 0. 0. 0. Ox 520.4520. 

0.4040: 500. 217... sl b4. 98. 10m ad. 

Normalised accuracy is 97.0155 % 

Small Area Replacement (8,1) on Maximum Likelihood 

  

Classifier 

Classified as ------ > 

1 2 3 4 5 6 « 8 9 Total 
1 0.4040. 0. 0% 0. 0. 0. 0. 0.4040. 
2 0. 0. 310%. 0. 0. 0. 0. ON Oeear0. 
3 0. 0. O23 200), 0, 0. 0. 0. 0. 200% 
4 0. Oc 32 cose 95. 0. on OF eg 14 70% 
5 0. 0.735). 0. 0% OX 0: 0, 9s = 704. 
6 0. 0. 0. OF 0. Oe OF 0. Oc. 97; 
7 0. QO; 0. 0. Q;, GO 0. On oD SOs 
8 Oi Oe 0. 0. 0. 0. 0. 0. 5207 520. 

0.4040, 24372235. 95. 0.100% 0. 588. 
Normalised accuracy is 97.0155 % 

SAR (8,1) on Minimum Distance Classifier 

Classified as ------ > 

a 2 3 4 5 6 7 8 9 Total 
1 0.4040. OR 0% 0% 0% 0. OF 0.4040. 
2 0. Oi 3de6 0. 0 0. OF OF L705 
Oo .05 0. 0. 209. 0. Or 0. Oe 0. 209; 
4 Oe OR Ot oe Loe Loe Ox oe ys Cc e sil. 
5 0. 0. 0. 0. On. 5A. 0: 0. O.es 54. 
6 0,2 8 0. Zs 0. 0. 95. 0; O97 
7 Or 0; OF Oy 03 0. 0. 00 oon ook 
8 0. Opes AE 0% OF 0. 0. 0. 508. °520. 

0. 40407496... 220. 4°10,0 04. 298. 0} 566. 
Normalised accuracy is 95.9782 % 
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