Geometrically Non-linear Analysis of Plane Frames Composed of Prismatic and Tapered Sections.

Gurinder Singh Bawa

Doctor of Philosophy

The University of Aston in Birmingham December 1988

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior, written consent.

GEOMETRICALLY NON-LINEAR ANALYSIS OF PLANE FRAMES COMPOSED OF PRISMATIC AND TAPERED SECTIONS.
 Gurinder Sy Singh Bawa
 Doctor of Philosophy.

1988

Summary

The geometrically non-linear analysis of plane frames is studied using the finite element technique. Stiffness matrices for a constituent prismatic member are first formulated from both derived and approximate displacement functions, the axial force being considered both constant and flexurally dependent.

Both direct and Newton-Raphson type iteration methods are invoked as solution methods, the latter being used in the tangential stiffness matrix approach.

The development is then extended to the study of non-prismatic frames. The use of derived functions in this case proved intractable and formulation was based on the derived functions for the geometrically linear behaviour of a non-prismatic member, this being an approximation to the true non-linear descriptions.

Again direct and Newton-Raphson iteration techniques are used for solution.
In addition to nodal loading, the effect of distributed and non-nodal loading is described, this being reduced to the application of equivalent fixed-end forces.

Supporting experimental work is presented for frames composed of both prismatic and tapered members to assess the accuracy of the theoretical solutions with respect to both deflections and bending moments, these tests indicating generally that axial forces should be considered as flexurally dependent. It can be noted that the literature survey showed very little experimental work of this nature.

Several examples are presented to demonstrate the range of problems appertaining to the theoretical developments, of particular note being those describing the behaviour of frames containing initial imperfections.

Further recommendations for study are given, these including the examination of plastic behaviour in conjunction with geometrically non-linear effects.

KEY WORDS

GEOMETRICAL
NON-LINEAR
FRAME
PRISMATIC
NON-PRISMATIC
STIFFNESS
MATRIX

$2 \sqrt{3}$

To the Almighty ONE, my Parents, Brother and Sister.

Acknowledgements.

I wish to express my sincere gratitude to Doctor D.J.Just for his supervision, encouragement and unfailing interest throughout the course of this work and during the writing of this thesis, for which I am indebted and much appreciated.

I would also like to thank the University of Aston in Birmingham and the Department of Civil Engineering for providing the finance and research studentship for this study.

Finally, I am most grateful to my very kind parents for their moral support through my studies and wish to thank my family for their encouragement.

List of Contents

Page
Title Page 1
Summary 2
Dedications 3
Acknowledgements 4
List of Contents 5
List of Figures 13
List of Graphs \& Tables 16
Nomenclature 17
CHAPTER 1 - Historical Review and Literature Survey. 20
1.1. Historical Review. 21
1.2. Prismatic Sections. 23
1.3. Non-prismatic Sections. 25
1.4. Scope of Work. 27
CHAPTER 2 - Introduction to the Finite Element Method. 29
2.1. Equilibrium Method. 32
2.1.1. Construction of the Flexural Stiffness Matrix for Straight Prismatic Beam. 33
2.1.1.1. Formulation of Lateral Deflection Function. 33
2.1.1.2. Calculation of Nodal Displacements From Arbitrary Constants. 34
2.1.1.3. Relationship between Stress Resultants \& Nodal Displacements. 36
2.1.1.4. Formulation of Stiffness Matrix. 37
2.1.2. Construction of the Axial Stiffness Matrix for a Prismatic Bar. 38
2.1.3. Combined Stiffness Matrix for Flexural \& axial Behaviour. 40
2.2. Work Method. 41
2.2.1. Construction of Flexural Stiffness Matrix for a Straight
Tapered Rectangular Beam of Constant Breadth. 42
2.2.1.1. Relationship between Strains and Nodal Displacements. 43
2.2.1.2. Relationship between Stress Resultants and Strains. 43
2.2.1.3. Formation of Stiffness Matrix $\left[\mathrm{K}_{\mathrm{b}}\right]$. 45
2.2.1.4. Construction of Axial Stiffness Matrix $\left[\mathrm{K}_{\mathrm{a}}\right]$ for a Tapered Rectangular Beam. 46
2.2.1.5. CombinedStiffness Matrix for Flexural \& Axial Behaviour. 47
2.3. Summary of the Two Methods. 49
2.3.1. Equilibrium Method. 49
2.3.2.Work Method. 49
PART A - Geometrically Non-linear Analysis of Prismatic Sections. 50
CHAPTER 3 - Matrix Formulation. 51
3.1. Equilibrium Method. 53
3.1.1. Non-linear Matrix with Mutually Independent Flexural \& Axial Components for Member in Compression. 54
3.1.2. Non-linear Matrix with Mutually Independent Flexural \& Axial Components for Member in tension. 61
3.1.3. Limitations of the Non-linear Matrices so far Described. 65
3.1.4. Modification of Axial Strain Expression due to Finite Lateral Displacements. 66
3.1.5. Non-linear Stiffness Matrix with Coupled Flexural \& Axial Components. 69
3.1.6. Formulation of Lateral Deflection Effects on Axial force for Member in Compression. 71
3.1.7. Formulation of Lateral Deflection Effects on Axial force for
Member in Tension. 75
3.2. Work Methods. 76
3.2.1. Non-linear Stiffness Matrix with Mutually Independent Flexural \& Axial Components. 77
3.2.2. Non-linear Stiffness Matrix with Coupled Flexural \& Axial Components (Tangential Stiffness Matrix). 82
3.2.2.1.Relationship between Strains \& Nodal Displacements. 82
3.2.2.2.Relationship between Stress Resultants and Strains. 84
3.2.2.3. Formulation of Tangential Stiffness Matrix. 85
3.2.2.3.1. Evaluation of $\left[\mathrm{K}_{\mathrm{L}}\right]$. 92
3.3. The Displacement Transformation Matrix. 96
3.4. Formulation of the Global Stiffness Matrix. 99
4.1. Construction of Global Equations for the Structure. 104
4.1.1. Linear Element. 104
4.1.2. Non-linear Element. 109
4.2. Imposition of Known Displacements 112
4.3. Solution of Linear Equations. 114
4.3.1. Cholesky Decomposition Method. 115
4.4. Solution of Non-linear Equations. 116
4.4.1. Elements obtained from Equilibrium and Work Processes in which Axial \& Flexural Effects are Independent. 117
4.4.2.Elements obtained from Equilibrium in which Axial \& Flexural Effects are Coupled. 117
4.4.3.Element Formulation Through a Tangent Stiffness Matrix. 118
4.5. Flow Charts for Programs. 120
4.5.1. Exact Solution using Coupling Factors. 120
4.5.2. Tangential Stiffness Matrix. 121
CHAPTER 5 - Treatment of Non-nodal \& Distributed Loading. 123
5.1. Non-nodal Point Load. 124
5.2. Distributed Loading. 129
5.3. Evaluation of Fixed end Moments. 132
5.3. Modification to the Program. 134
PART B - Geometrically Non-linear Analysis of Non-prismatic Sections. 135
CHAPTER 6 - Matrix Formulation. 136
6.1. Formation of the Exact Stiffness Matrix for Geometrically Linear Behaviour of a Non-prismatic Beam. 138
6.1.1. Development of the Flexural Stiffness Matrix. 138
6.1.1.1.Formulation of the Lateral Deflection Function. 139
6.1.1.2. Calculation of Nodal Displacements from the Arbitrary Constants. 141
6.1.1.3. Relationship between Stress Resultants and Nodal Displacements. 142
6.1.1.4. Formulation of Stiffness Matrix $\left[\mathrm{K}_{\mathrm{b}}\right]$. 143
6.1.2. Construction of the Axial Stiffness Matrix $\left[\mathrm{K}_{\mathrm{a}}\right]$ for a Non-prismatic Bar. 145
6.1.3. Combined Stiffness Matrix for Flexural and Axial Behaviour. 147
6.1.4. Formulation of Stiffness Matrix for Rectangular and I-sections. 149
6.1.4.1. Rectangular Section. 149
6.1.4.2. I-section. 151
6.1.5. Formulation of Stiffness Matrix for a General Shape of Section. 154
6.2. Formulation of Exact Deflection Function for Non-linear Behaviour. 157
6.2.1. Formation of Lateral Deflection Function. 157
6.3. Formulation of Non-linear Stiffness Matrix with Mutually Independent Flexural \& Axial Components. 161
6.3.1. Rectangular Section. 162
6.3.2. General Section (Power Function). 165
6.4. Non-linear Stiffness Matrix with Coupled Flexural and Axial Components (Tangential Stiffness Matrix). 166
6.4.1. Relationship Between Strains and Nodal Displacements. 166
6.4.2. Relationship Between Stress Resultants and Strains. 168
6.4.3 Formulation of Tangential Stiffness Matrix. 168
6.4.3.1. Evaluation of $\left[\mathrm{K}_{\mathrm{L}}\right]$. 170
CHAPTER 7 - Non-nodal Loadings for Non-prismatic Sections. 173
7.1. Point Loads 175
7.2. Uniform Distributed Loadings. 176
PART C-Results, discussions and Conclusions. 177
CHAPTER 8 - Experimental Verifications. 178
8.1. Description of Experimental Work. 179
8.1.1. Experimental Objectives. 179
8.1.2. Determination of Elasticity Modulus (E). 181
8.1.2.1. For Prismatic Sections. 183
8.1.2.2. For Non-prismatic Sections. 184
8.1.2.3. Tensile Results for Material Specimens. 185
8.1.3. Method of Testing. 187
8.2. Prismatic Section Results. 194
8.2.1. Discussion. 202
8.3. Tapered Section results. 204
8.3.1. Discussion. 211
CHAPTER 9 - Application to Framework Behaviour. 213
9.1. Comparative Behaviour of Multi-storey Frames. 214
9.1.1. Load/Deflection Characteristics with Point Loads. 214
9.1.2 Load/Deflection Characteristics with UDL. 221
9.2. Analysis of Pitched Portal Frames subjected to High Column Loads via a Gantry Crane. 225
9.2.1. Frame composed of Prismatic I-sections. 225
9.2.2. Frame composed of Tapered I-sections. 230
9.3. Effects of Initial Imperfections on the Non-linear Behaviour of Pitched Portal Frames. 235
9.3.1. Effect of Lack of Straightness in Prismatic Frames. 235
9.3.2. Effect of Constructional Tolerances. 240
CHAPTER 10 - Summary, conclusions and Future work. 245
10.1. Summary. 246
10.2. Conclusions. 247
10.2.1. Frames with Prismatic Members. 247
10.2.2. Frames with Non-prismatic Members. 249
10.2.3. Practical examples of Geometrically Non-linear behaviour. 250
10.3. Recommendations for Future Research. 252
REFERENCES. 257
APPENDICES.
Appendix 1
Appendix 2
Appendix 3
Appendix 4

List of Figures.

2.1. Illustration Showing System of Elements and Nodal Points.
2.2. Straight Beam Showing positive Values of Nodal Forces.
2.3. Diagram Showing Stress Resultants and External Forces.
2.4. Diagram Showing Stress Resultants and Nodal Forces.
2.5. Tapered Beam Showing Positive Values of Nodal Forces.
2.6. Tapered Beam Showing a General Depth at Distance x.
3.1. Diagram Showing the Nodal Forces on the Deformed Member.
3.2. Diagram Showing the Element in its Deformed State in Compression.
3.3. Diagram Showing the Element in its Deformed State in Tension.
3.4. Diagram Showing Member under Lateral Loading.
3.5. Diagram Showing Element Deformation Due to Lateral Displacements.
3.6. Diagram Showing the Element in its Deformed State in Compression.
3.7. General Deformation of Member.
3.8. Displacement Components.
3.9. Forces in Local and Global Coordinate System.
4.1. Diagram showing Nodal External Forces to Their corresponding Displacements.
4.2. Diagram Showing Joint External Nodal Loadings.
4.3. Construction of Overall Stiffness Matrix and Formation of Global Equations.
4.4. Method of Imposing Zero Displacements.
5.1. Decomposition of Effect of Non-nodal Point Load.
6.1. Tapered Beam Showing positive Values of Nodal Forces.
6.2. Stress Resultants on Element.
6.3. Diagram Showing Stress Resultants and Nodal Forces.
6.4. Tapered Beam Showing a General Depth at Distance x.
6.5. Showing typical I-section.
6.6. Non-prismatic Member Under Axial loading.
6.7. Diagram Showing the Element in its Deformed State in Compression.
8.1. Diagram of the two Frames Considered in Experiment.
8.2. Showing Four point Bending Test.
8.3. Strain Gauge Positioning.
8.4. Showing the fixing of test Frame to base of rig.
8.5. Diagram showing Metal Fitment.
8.6. Showing Positioning of Dial Gauges.
8.7. Arrangement of apparatus with Strain recorder.
8.8.Load/Deflection for Frame composed of Prismatic Sections.
8.9. Load/Deflection for Frame composed of Prismatic Sections.
8.10. Load/Moment at Joint 1 for Prismatic Sections.
8.11. Load/Moment at Joint 2 for Prismatic Sections.
8.12. Load/Moment at Joint 3 for Prismatic Sections.
8.13. Convergance of Solution as Number of Elements Increases.
8.14. Load/Deflection for Frame composed of Tapered Sections.
8.15. Load/Deflection for Frame composed of Tapered Sections.
8.16. Load/moment at Joint 1 for Tapered Sections.
8.17. Load/moment at Joint 2 for Tapered Sections.
8.18. Load/moment at Joint 3 for Tapered Sections.
9.1. Multistorey Frames under Study.
9.2. Sectional properties of Beams and Columns.
9.3. Frames showing System of Loadings.
9.4. Reduction in Stiffness with increase of Loading for two- and four storey frames.
9.5. Deflection and Moment Diagram.
9.6. Frames with Uniformly Distributed loadings.
9.7. Load/Deflection Characteristics for 2 and 4 Storey Frames.
9.8. Deflection and Moment Diagram.
9.9. Typical Workshop Portal Frame with Column Loadings.
9.10. Showing Horizontal and vertical deflections at Apex as Crane moves across span for Prismatic Frame.
9.11. Frame Deflection as Crane Load moves from one Column to the other.
9.12. Frame Joint Moments as Crane Load moves from one Column to the other.
9.13. Typical workshop Portal Frame with tapered members.
9.14. Dimension of I-section.
9.15. Showing Horizontal and vertical deflections at Apex as Crane moves across span for Tapered Frame.
9.16. Frame Deflection as Crane Load moves from one Column to the other.
9.17. Frame Joint Moments as Crane Load moves from one Column to the other.
9.18. Frame composed of Prismatic Sections with Imperfections in Members.
9.19. Graph of Load/Deflections due to Imperfections.
9.20. Deflections and Moments of Frame with Member Imperfections.
9.21. Frame Composed of Tapered Members with initial Joint Displacements.
9.22. Graph of Load/Deflection due to initial Joint Displacements.
9.23. Deflectiona and Moments of Frame with Joint Imperfections.
10.1. Showing the Idealisation of curved members.
10.2. Showing Frame with plastic hinge.

List of Graphs.

8.1. Load v Centeral Deflection for Prismatic Material.
8.2. Load v Centeral Deflection for Non-prismatic Material.

List of Tables.

8.1. Table of load and Deflection for Prismatic Frame Material.
8.2. Table of load and Deflection for Non-prismatic Frame Material.
8.3. Results from the Tensile Test.
8.4. Tabulated Results for the Coupled Stiffness Matrix.
8.5. Tabulated Results for the Tangential Stiffness Matrix.

Nomenclature.

Roman Alphabet.

a Arbitrary Constant.
$x \quad$ Horizontal Axis.
y Vertical Axis.
u Axial Deformations.
v Lateral Deformations.
L Length of Element.
M Moments.
S Shear Force.
E Modulus of Rigidity.
A Cross-sectional Area.
I Second Moment of Area.
P Axial Force.
t Depth of Tapered Beam.
b Breadth of Tapered Beam.
ds Deformed Length of Element.
W Load.
$h_{f} \quad$ Thickness of Flange.
$h_{w} \quad$ Thickness of Web.

Matrices.

[A] Displacement Transformation Matrix.
[B] Relationship between strains and Nodal displacements.
[C] Relationship between arbitrary constants and Nodal displacements.
[D] Relationship between stress resultants and strains.
[H] Relationship between stress resultants and Nodal displacements.
[K] Relationship between Nodal forces and Nodal displacements.
[S] Relationship between Global Nodal forces and Global Nodal displacements.

Vectors.
\{a\} Arbitrary Constants.
$\{\Delta\} \quad$ Nodal Displacements.
\{P\} Nodal Forces.
$\{\varepsilon\} \quad$ Strains
$\{\sigma\} \quad$ Stress Resultants.
\{L\} Global Forces.
$\{\mathrm{X}\} \quad$ Global Displacements.

Suffices.

a Axial Behaviour.
b Flexural Behaviour.
0 Linear Stiffness Matrix.
s Initial Stress Matrix
L Large Deflection Matrix.

Chapter 1

Historical Review and

Literature Survey.

1.1. Historical Review.

The concepts of framework analysis emerged during the period of 1850 to 1875 predominantly through the work of J.C.Maxwell, A.Castigliano and O.Mohr. At this time the concepts of matrices were also being introduced and defined by Silvester, Hamilton and Caley. Their work became the foundation of matrix structural analysis, although it was not to find practical application for nearly 80 years.

Between 1875 and 1920, little progress was made in the development of theory and the analytical techniques subsidiary to matrix structural analysis. This was no doubt due mainly to the practical intractability of solving algebraic equations with more than a few unknowns. For the structures of primary interest in this period, trusses and frames, an analytical approach based on member forces as unknowns was universally employed. Analytical techniques such as the principle of polygon of forces, free-body diagrams, method of joints, method of sections, etc were employed where the unknowns were the axial forces in the members.

About 1920, as a result of work by Maney in the U.S.A. and Osterfeld in Denmark, the basic ideas of a truss and framework analysis approach based on displacement parameters as unknowns took form. It was Maney who in 1915 presented the Slope Deflection method ${ }^{(1)}$ as a general procedure to be used in the analysis of rigid jointed structures. The method involved the setting up of a number of simultaneous equations with unknowns taken as angular rotations and displacements at each joint. The solution of these equations enabled the moments and shear forces to be evaluated at each joint. It was this work that represents the forerunner of matrix structural analysis of today. However severe limitations on the size of problems that could be analysed still remained as the work involved in solving the simultaneous equations became prohibitive on large
structures.

This problem was overcome in 1932, when Hardy Cross introduced the Moment Distribution (2) method. This method made feasible the solution of problems of a greater order of complexity than the most sophisticated problems treatable by prior approaches. The method was simple to use and gave the results in a tabulated form. This process became the staple method of structural framework analysis for the next 25 years.

Today, both Slope Deflection and Moment Distribution are useful for the analysis of small problems as an aid in visualising behaviour, but they are primitive in power compared to computer methods and have been superseded by them in the solution of large complex problems.

The association between the mathematical concepts of matrix theory and the engineering concepts of structural analysis appeared in the 1930's through the work of Frazer, Duncan and Collar ${ }^{()}$. The liaison developed erratically through the 1940's, but there was no motivation for a firm union of the two concepts until the birth of the digital computer in the 1950 's. Individuals who foresaw the impact of computers on both theory and practice then undertook the codification of the well established framework analysis procedures in the format best suited to the computer.

Two important publications on the association of these concepts were those of Argyris and Kelsey (3) and Turner, Clough, Martin and Topp ${ }^{(4)}$. These publications wedded the concepts of framework analysis and continuum analysis and cast the resulting procedure in matrix format. This led to the first Finite Element techniques where the slope deflection equations were formulated in matrix format. However further
development of finite elements took form with 2 and 3D continua being considered.

With further advancement in both computer technology and software, Finite Element techniques $(5,6,7,8)$ are now the most versatile and most widely used methods in structural analysis today. This has also enabled further complex behaviour to be studied where previously the mathematics ware either too complex or the simultaneous equations impossible to solve.

The literature survey which concludes this chapter is presented in two sections, the first being concerned with the stability of frames with prismatic sections and the second with the stability of frames with tapered (non-prismatic) sections. Both are discussed separately below for clarity.

1.2. Prismatic Sections.

During the 1950's and 1960's the stability of frames was studied intensively and several well known texts $(9,10,11,12)$ were published to reflect this interest.

Several research papers were published $(13,14,15,16,27)$ in the mid 1960's to early 1980's concerned with the geometrically non-linear behaviour of frameworks. However it was only in the late 1960's that the matrix method of solution was first widely used in framework analysis and several texts have been published $(17,18,19,20,21)$ since then.

It was Hartz ${ }^{(22)}$ who first applied the standard work-based finite element process to a simple beam subjected to both flexural and axial load and produced stiffness matrices to
show non-linear behaviour. The method, using an approximation to the deformed geometry of the structure, produces results similar to those obtained by the standard stability functions ${ }^{(12)}$ which were developed earlier ${ }^{(23)}$. The relationship between the axial force and the lateral deflections induced in the member due to bending was not considered and hence there was no direct linkage between the axial and flexural stiffness matrices.

Bunce and Brown ${ }^{(24)}$ divided the frame into several small elements and and employed an alternative numerical method of finite deflection analysis. They used Dynamic Relaxation techniques where the static problem is represented by a fictional dynamic problem with viscous damping. This enabled easy solution and avoided the use of stability functions. However, because large number of elements need to be considered, it involves a large amount of data input and computer time.

Harald et al ${ }^{(25)}$ developed stiffness matrices using the stability (s and c) functions and produced similar results to those produced by Majid (12). However he also developed further components which could be added to the existing stiffness matrix to represent a plastic hinge. The method is useful in investigating plastic bending behaviour but again axial and flexural behaviour are considered independently of each other.

Zienkiewicz ${ }^{(45)}$ took the study of geometric non-linearity further by using the work process to develop the 'tangential stiffness matrix' for the study of plate stability. The text extended the previous work done by producing matrices which add on to the existing flexural and axial stiffness matrices and coupled the two independent portions. The formulation was such that the solution can be ideally effected using the Newton-Raphson technique. Further to this Wood and Zienkiewicz ${ }^{(26)}$ produced a
general modified tangential stiffness matrix for one dimensional elements such as arches and axisymmetric shells.

Chajes and Churchill (27) took the work of Wood and Zienkiewicz ${ }^{(26)}$ and applied it to the simple prismatic beam member using a cubic deflection function. They produced the tangential stiffness matrixfor the non-linear axial and flexural behaviour of beams, and showed how the Newton-Raphson technique can be adapted to obtain an iterative solution. They developed three matrices, ie the simple linear matrix and two extra additions, these being dependent on the axial force in the member and the lateral deflections induced in the structure. The tangential stiffness matrix is formed from a combination of all three matrices.

1.3. Non-prismatic Sections.

From the literature survey it was noticed that although much work had been carried out on the geometrically non-linear behaviour of individual beams and columns, relatively little appertained to the stability of frames composed of tapered (non-prismatic) members and hardly anything on the use of finite elements to study this behaviour.

From the 1950's to late 1970's various authors developed the linear analysis of non-prismatic sections. Moment distribution techniques ${ }^{(39)}$ were employed to find the behaviour of non-prismatic members in frames. Also much work was done on the stability $(29,30,31,32,33,34,35)$ of non-prismatic beams, columns and beam-columns. Simultaneously research was being carried out into the stability of frames composed of tapered members $(36,37,38)$ employing the standard slope deflection technique to obtain the solutions.

It is only recently that, with the rapid development of computer technology, the matrix method can be used effectively in the study of framework stability. During the 1970's some progress was made in the application of the finite element technique to both the linear and non-linear analysis of frames incorporating non-prismatic sections.

Just ${ }^{(40)}$ used the exact and approximate deflection profiles and the standard finite element method to develop flexural and axial stiffness matrices to represent the linear behaviour of non-prismatic members in frames. He also developed equivalent fixed end shears and moments for loads which were not applied at the nodes of the element. This paper set the foundation for his next paper ${ }^{(41)}$ where the method was further extended to box and I-sections respectively. Further equivalent nodal loads were developed for uniformly distributed loads and triangular loads and several examples evaluated to show the versatility of the matrices developed.

Brown ${ }^{(42)}$ and Karabalis ${ }^{(43)}$ presented the linear flexural and axial matrices produced by Just $(40,41)$ but using the approximate cubic deflection function to represent the deflected form of the non-prismatic section. This procedure, although simple to formulate, requires that the frame be divided into smaller elements and hence takes up much computer storage and time. However the results showed that for design office use, the accuracy and the convergence obtained from the approximate stiffness matrices is adequate with a small number of elements.

Recently Karabalis and Beskos ${ }^{(44)}$ used the approximate, cubic, deflection profile and developed stiffness matrices to represent geometric non-linear behaviour. This again requires that the framework be sub-divided into smaller elements and hence the need for large amount of data preparation and computer time.

1.4. Scope of Work.

Although non-prismatic members can be approximated by a number of stepped prismatic elements, such an approximation may require a considerable quantity of data preparation and computer time. Hence there exists a strong motivation to obtain accurate stiffness matrices for both prismatic and non-prismatic elements for geometrically non-linear analysis.

An understanding of prismatic members is a prerequisite to the understanding of non-prismatic members, and therefore a general study of the geometrically non-linear behaviour of prismatic members is first presented. Both the 'equilibrium method' and 'work method' are presented so that the reader may become fully aquainted with the principles of the finite element method.

For the prismatic section, the exact linear and corresponding exact non-linear deflection profiles are employed to develop the flexural and axial stiffness matrices respectively. The development leads to a solution procedure in which the load vector is progressively modified, a technique which appears not to have been considered in previous research. The results from this method are considered to represent most closely the non-linear behaviour of prismatic frames and the accuracy of the more approximate techniques is assessed by comparison with it. Similarly for the non-prismatic section approximate and exact deflection functions are used to derive the matrices for linear and non-linear behaviour.

Further to this the equivalent nodal forces (for uniformly distributed loading and inter joint loading) are presented for both prismatic and non-prismatic sections.

A brief outline is given of the main program and the development of useful routines which were employed in setting up the stiffness matrices. Also efficient, time saving, solution routines are presented which were used in the program.

Supporting experimental work is described with details of instrumentation. Several examples are presented to show both the versatility of the program and the finite element method in non-linear analysis, and also to examine the effect of non-linear behaviour in practical complex frameworks.

Chapter 2

Introduction to the Finite Element Method.

As outlined in chapter 1, the development of computer technology has enabled systematic analytical techniques involving large numbers of equations to be applied to the solution of continuum problems of great complexity and of these methods the finite element method is perhaps the most versatile at the present time.

The method is similar to the finite difference method in as much as the continuum is divided into a mesh and equations set up at every node, but differs from it in the manner in which the continuum is modelled. Whereas in the method of finite differences the governing differential equations of the continuum are replaced by difference equations which enable nodal equations to be constructed, in the finite element method the continuum is divided into a number of elements, each of these elements being connected to its neighbours at the nodes, as shown in Fig. 2.1.

Fig. 2.1. Illustration Showing System Of Elements And Nodal Points.

In a structural problem, the determination of the force/displacement characteristics of a single element, ie by the obtaining of its stiffness properties, enables equilibrium equations to be set up at each node from which the nodal displacements may be obtained. Once these displacements have been obtained the nodal forces and stress distributions throughout the model can be obtained by back substitution into the original force/displacement relationships.

The method thus consists of the determination of the stiffness characteristics of the element and this may be obtained via the displacement field of the element. Generally this profile is either impossible or impractical to obtain exactly and therefore must be assumed.

This inherent approximation means that the stiffness characteristics of the element are themselves approximate and must be obtained via a work formulation with a suitable choice of displacement profile. The effect of the approximation on the accuracy of the analysis can be reduced by finer subdivision of the continuum.

Although the finite element method is primarily understood in relationship to 2 and 3D continua, the method can be equally well applied to essentially one dimensional structures. In this case, since the displacements are functions of one variable only, it is possible to obtain precise formulations which are not dependent upon subdivision for their accuracy.

Indeed because of this ability to determine the displacement field exactly, the derivation of the stiffness matrix when applied to one-dimensional elements can be obtained from direct equilibrium and can be much more concise compared with the standard work process used with approximate displacement functions.

To illustrate the process using derived functions and to compare it with the standard work process, the derivation of the bending and axial stiffness matrices for the straight prismatic beam shown in Fig. 2.2 will be presented using both methods.

Fig 2.2. $\frac{\text { Straight Beam Showing Positive }}{\text { Values of Nodal Forces }}$ Values of Nodal Forces.

2.1. Equilibrium Method.

As previously mentioned this method depends on the ability to obtain the precise manner in which the element deforms and if this can be achieved, then the exact stiffness matrix can be obtained in a particularly precise manner. The advantage of an exact solution is that no increase in accuracy ensues on subdivision of the element and hence large elements can be used, thus reducing the amount of data required.

Construction of the Flexural Stiffness Matrix $\left[\mathrm{K}_{b}\right]$ for a Straight Prismatic Beam.

2.1.1. Formulation of Lateral Deflection Function.

Consider the equilibrium of an element of length $d x$ from Fig.2.2.

Rotational equilibrium of the element gives;

$$
\begin{equation*}
S=-\frac{d M}{d x} \tag{2.1}
\end{equation*}
$$

and since for vertical equilibrium, S is constant;

$$
\begin{equation*}
\frac{d^{2} M}{d x^{2}}=\frac{d S}{d x}=0 \tag{2.2}
\end{equation*}
$$

Thus on application of the equation of simple bending,

$$
\begin{equation*}
\mathrm{M}=\mathrm{EI} \frac{\mathrm{~d}^{2} \mathrm{v}}{\mathrm{dx}^{2}} \tag{2.3}
\end{equation*}
$$

and assuming EI to be constant, equation (2.2) may be expressed as;

$$
\frac{d^{2} \mathrm{M}}{\mathrm{dx}^{2}}=\mathrm{EI} \frac{\mathrm{~d}^{4} \mathrm{v}}{\mathrm{dx}^{4}}=0
$$

ie

$$
\begin{equation*}
\frac{d^{4} v}{d x^{4}}=0 \tag{2.4}
\end{equation*}
$$

Successive integration of (2.4) yields the deflection profile of the beam as;

$$
\begin{equation*}
v=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} \tag{2.5}
\end{equation*}
$$

Hence the lateral deflection function is a cubic polynomial in which $a_{1}, a_{2}, a_{3}, a_{4}$ are the constants of integration, and from this function the flexural stiffness matrix can be formed (It should be noted from the derivation above that any contribution to bending from the axial loads is ignored and thus the treatment appertains to linear behaviour, that is where the displacements are considered to tend to zero).

2.1.1.2. Calculation of Nodal Displacements from the Arbitrary Constants $\left\{\mathrm{a}_{\mathrm{b}}\right\}_{.}$

In order that the displacements can be uniquely determined in terms of the nodal displacements, the four arbitrary constants $\left\{a_{b}\right\}$ must be written in terms of the four end displacements namely $\mathrm{v}_{1}, \theta_{1}, \mathrm{v}_{2}, \theta_{2}$ where θ is the slope of the member and is given by;

$$
\begin{equation*}
\theta=\frac{d v}{d x}=a_{2}+2 a_{3} x+3 a_{4} x^{2} \tag{2.6}
\end{equation*}
$$

or in matrix form as

$$
\theta=\left[\begin{array}{lllll}
0 & 1 & 2 x & 3 x^{2}
\end{array}\right] \begin{array}{ll}
a_{1} \\
& \\
& \\
& \\
& \\
& a_{2} \\
& \\
& \\
& \\
&
\end{array}
$$

On substituting the boundary conditions at both nodes, the following matrix ensues;

$$
\begin{gather*}
\left\{\begin{array}{l}
\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
\end{array}\right\}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & L & L^{2} & L^{3} \\
0 & 1 & 2 L & 3 L^{2}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\} \tag{2.7}\\
\text { ie }\left\{\Delta_{b}\right\}=\left[C_{b}\right]\left\{a_{b}\right\}
\end{gather*}
$$

which upon inversion gives;

$$
\left\{\begin{array}{c}
\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{3}{2} & \frac{-2}{2} & \frac{3}{L^{2}} & \frac{-1}{L} \\
\frac{L^{2}}{2} & \frac{1}{2} & \frac{-2}{L^{3}} & \underline{1} \\
L^{3} & L^{2} & L^{3} & \underline{L^{2}}
\end{array}\right\}\left\{\begin{array}{c}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\} \\
\text { ie }\left\{a_{b}\right\}=\left[C_{b}\right]^{-1}\left\{\Delta_{b}\right\}
\end{array}\right.
$$

Thus the four arbitrary constants are expressed in terms of the four nodal displacements.

2.1.1.3. Relationship Between Stress Resultants and Nodal Displacements $\left\{\Delta_{2}\right\}$.

From the equation (2.3)

$$
\mathrm{M}=\mathrm{EI} \frac{\mathrm{~d}^{2} \mathrm{v}}{\mathrm{dx}^{2}}
$$

and from equation (2.1) it follows that

$$
\begin{equation*}
S=-E I \frac{d^{3} v}{d x^{3}} \tag{2.9}
\end{equation*}
$$

Then on differentiating the displacement function and substituting the result into (2.3) and (2.9), the stress resultants M and S can be obtained in terms of the nodal displacements thus:-

$$
\left\{\begin{array}{l}
\mathrm{S} \\
\mathrm{M}
\end{array}\right\}=\mathrm{EI}\left[\begin{array}{cccc}
0 & 0 & 0 & -6 \\
0 & 0 & 2 & -6 x
\end{array}\right]\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}
$$

However since the arbitrary constants can be expressed in terms of the nodal displacements (2.8) the above can be written as;

2.1.1.4. Formulation of Stiffness Matrix $\left[\mathrm{K}_{\mathrm{b}}\right]$.

Since equilibrium is satisfied at all sections of the beam, the values of the nodal stress resultants must be numerically equal to the nodal external forces. At node 2 these values are of the same sign whereas at node 1 they are of opposite sign as shown in Fig. 2.3.

Fig 2.3,Diagram Showing Stress Resultants and External Forces for Beam in Flexure.

Thus applying this reasoning to equation (2.10), and substituting $x=0$ and $x=L$ at nodes 1 and 2 respectively, the relationship between the nodal forces and nodal displacements is given by:-

$$
\left.\left\{\begin{array}{l}
S_{1} \\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & \frac{-12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
\frac{6 E I}{L^{2}} & \frac{4 E I}{L} & \frac{-6 E I}{L^{2}} & \frac{2 E I}{L} \\
\frac{-12 E I}{L^{3}} & \frac{-6 E I}{L^{2}} & \frac{12 E I}{L^{3}} & \frac{-6 E I}{L^{2}} \\
\frac{6 E I}{L^{2}} & \frac{2 E I}{L} & \frac{6 E I}{L^{2}} & \frac{4 E I}{L}
\end{array}\right]\left\{\theta_{1}^{v_{1}} \theta_{2}\right\} v_{2}\right\}
$$

where $\left[K_{b}\right]$ is the flexural stiffness matrix of the member, this matrix being symmetrical about the leading diagonal.

2.1.2. Construction of the Axial Stiffness Matrix $\left[K_{a}\right]$ for a Prismatic Bar.

The axial stiffness matrix can be formed in the same way as the bending stiffness matrix.

Consider the equilibrium of a length δx of the beam as shown in Fig. 2.4.

Fig 2.4.Diagram Showing Stress Resultants and External Forces for Axially-loaded Bar.

Horizontal equilibrium requires that;

$$
\begin{equation*}
\frac{\mathrm{dP}}{\mathrm{dx}}=0 \tag{2.12}
\end{equation*}
$$

Ignoring any moment effect from the axial force, Hooke's Law gives;

$$
\begin{equation*}
P=E A \frac{d u}{d x} \tag{2.13}
\end{equation*}
$$

Hence from (2.12) and (2.13);

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dx}^{2}}=0 \tag{2.14}
\end{equation*}
$$

which upon integration gives the axial displacement function:-

$$
\begin{equation*}
u=a_{5}+a_{6} x \tag{2.15}
\end{equation*}
$$

Hence following steps similar to those described in sections (2.1.2) and (2.1.4) and referring to the sign convention shown in Fig. 2.4 yields

$$
\left\{\begin{array}{l}
P_{1} \tag{2.16}\\
P_{2}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{E A}{L} & -\frac{E A}{L} \\
\frac{-E A}{L} & \frac{E A}{L}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}
$$

$$
\text { ie }\left\{\mathrm{P}_{\mathrm{a}}\right\}=\left[\mathrm{K}_{\mathrm{a}}\right]\left\{\Delta_{\mathrm{a}}\right\}
$$

Again the symmetry of the matrix should be noted.

2.1.3. Combined Stiffness Matrix for Flexural and Axial Behavior.

Combining the two matrices for axial and bending effects produces;

in which it can be noted that the axial and flexural matrices are independent. The co-efficients in the matrix $[\mathrm{K}]$ are the same as those in the well known Slope Deflection equations showing that the exact solution, within the confines of simple bending theory, is obtained using the finite element procedure provided the deflection function is a true representation of the behaviour of the element.

2.2. Work Method.

In many cases it is impossible or impracticable to obtain the precise mode of deformation of an element, and in such cases it is necessary to resort to the use of an approximation to the displacement profile.

The use of such approximations naturally implies that equilibrium will not be satisfied at every point of the structure and hence equality of nodal forces and stress resultants is not obtained. The equilibrium method of the previous section thus cannot be used and recourse must be made to a work process in which only overall equilibrium of the element is obtained.

Such a process is the Rayleigh-Ritz ${ }^{(46)}$ method in which the result that at equilibrium the total potential energy in the element is a minimum is used or alternatively the equivalent result that at equilibrium the total virtual work done by the system is zero.

The application of work-based procedures entails more calculations than the equilibrium method, but this is often offset by the simpler functions involved.

Once approximate displacement functions are used, the resulting stiffness matrices are also approximate and hence the accuracy if the solution will depend on the subdivision of the structure.

The process may be demonstrated by considering the formulation of the flexural stiffness matrix for a tapered rectangular beam (Fig 2.5) using the function for a prismatic member, ie;

$$
v=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

This function is an approximation to the true form and hence a stiffness matrix based on this function must be obtained by work methods.

Fig 2.5.Tapered Beam Showing Positive Values of Nodal Forces.

2.2.1. Construction of Flexural Stiffness Matrix [K_{b}] for a Straight Tapered Rectangular Beam of Constant Breadth.

Since the deflection profile is assumed to take the form;

$$
v=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

the relationship between the nodal displacements and arbitrary constants is identical to that presented by equation (2.8).

2.2.1.1. Relationship Between Strains and Nodal Displacements.

Assuming that only bending strain occurs, ie, neglecting shear effects,

$$
\left\{\varepsilon_{\mathrm{b}}\right\}=\left[\begin{array}{llll}
0 & 0 & 2 & 6 \mathrm{x}
\end{array}\right]\left\{\mathrm{a}_{\mathrm{b}}\right\}=[\mathrm{A}]\left\{\mathrm{a}_{\mathrm{b}}\right\}
$$

Thus upon substituting (2.8)

$$
\begin{equation*}
\left\{\varepsilon_{\mathrm{b}}\right\}=[\mathrm{A}]\left[\mathrm{C}_{\mathrm{b}}\right]^{-1}\left\{\Delta_{\mathrm{b}}\right\}=[\mathrm{B}]\left\{\Delta_{\mathrm{b}}\right\} \tag{2.18}
\end{equation*}
$$

where, after perforrsing the multiplication;

$$
\text { [B] }=\left[\begin{array}{c:c:c:c}
-\frac{6}{L^{2}}+\frac{12 x}{L^{3}} & -\frac{4}{L}+\frac{6 x}{L^{2}} & \frac{6}{L^{2}}-\frac{12 x}{L^{3}} & \frac{-2}{L}+\frac{6 x}{L^{2}}
\end{array}\right]
$$

2.2.1.2. Relationship Between Stress Resultants $\{\sigma\}$ and Strains $\{\varepsilon\}$.

The relationship between the stresses and the strains at any point is given by;

$$
\begin{equation*}
\left\{\sigma_{b}\right\}=[D]\left\{\varepsilon_{b}\right\}=[D][B]\left\{\Delta_{b}\right\} \tag{2.19}
\end{equation*}
$$

where $\left\{\sigma_{b}\right\}$ is simply the bending moment M and [D] is the elasticity matrix, which for a beam is simply the flexural rigidity EI. For a prismatic beam this is a constant, whereas for a tapered member it is a function of x due to the variation of second moment of area I along the length.

Consider the rectangular beam of varying depth t_{x} and constant breadth b , as shown in Fig 2.6.

Fig 2.6.Tapered Beam Showing a General Depth at Distance x .

At a section distance x from end 1 , the depth of the beam is

$$
\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{1}+\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{x}
$$

and the second moment of area is given by;

$$
\begin{equation*}
\mathrm{I}_{\mathrm{x}}=\frac{\mathrm{b}}{12}\left(\mathrm{t}_{1}+\phi \mathrm{x}\right)^{3} \tag{2.21}
\end{equation*}
$$

where

$$
\phi=\frac{t_{2}-t_{1}}{L}
$$

Hence it is seen that the elasticity matrix is a function of x of the form

$$
[D]=\frac{E b}{12}\left(t_{1}+\phi x\right)^{3}
$$

2.2.1.3. Formation of Stiffness Matrix [K_{b}].

At equilibrium the total virtual work done in the system is zero. By applying a virtual nodal displacement $\{\delta \Delta\}$ to the system and denoting the corresponding nodal forces by the vector $\{\mathrm{P}\}$,

$$
\begin{equation*}
\text { External virtual work }=\{\delta \Delta\}^{\mathrm{T}}\{\mathrm{P}\} \tag{2.23}
\end{equation*}
$$

and

$$
\text { Internal virtual work }=\int_{0}^{\mathrm{L}}\left\{\delta \varepsilon_{b}\right\}^{\mathrm{T}}\{\sigma\} \mathrm{dx}
$$

Since $\left\{\delta \varepsilon_{b}\right\}=[B]\left\{\delta \Delta_{b}\right\}$ then;

$$
\begin{equation*}
\text { Internal virtual work }=\int_{0}^{\mathrm{L}}\left\{\delta \Delta_{\mathrm{b}}\right\}^{\mathrm{T}}[\mathrm{~B}]^{\mathrm{T}}\{\sigma\} \mathrm{dx} \tag{2.24}
\end{equation*}
$$

Thus equating equations (2.23) and (2.24) gives

$$
\begin{equation*}
\{P\}=\int_{0}^{\mathrm{L}}[\mathrm{~B}]^{\mathrm{T}}\{\sigma\} \mathrm{dx} \tag{2.25}
\end{equation*}
$$

Substituting equation (2.19) into (2.25) gives,

$$
\begin{equation*}
\{P\}=\int_{0}^{L}[B]^{T}[D][B]\{\Delta\} d x \tag{2.26}
\end{equation*}
$$

and hence the stiffness matrix is given by

$$
\begin{equation*}
[K]=\int_{0}^{L}[B]^{T}[D][B] d x \tag{2.27}
\end{equation*}
$$

It should be noted that the above result is also the general result used for 2 and 3D finite element analysis. Hence the flexural stiffness matrix of the tapered beam will be given by substituting the respective values of $[B]$ and $[D]$ into expression (2.27).

2.2.1.4.Construction of Axial Stiffness Matrix $\left[\mathrm{K}_{\mathrm{a}}\right]$ for a Tapered Rectangular Beam.

Assumption of the axial deflection profile,

$$
u=a_{5}+a_{6} x
$$

and following steps (2.2.2) to (2.2.3) gives for the axial case,

$$
[\mathrm{B}]=\left[\begin{array}{cc}
-\frac{1}{\mathrm{~L}} & \frac{1}{\mathrm{~L}} \tag{2.28}
\end{array}\right]
$$

In this case [D] becomes EA where the cross sectional area A is a linear function of x. Thus

$$
\begin{equation*}
[\mathrm{D}]=\mathrm{Eb}\left(\mathrm{t}_{1}+\phi \mathrm{x}\right) \tag{2.29}
\end{equation*}
$$

and hence substituting (2.28) and (2.29) into (2.27) and evaluating gives the axial stiffness matrix.

2.2.1.5. Combined Stiffness Matrix for Flexural and Axial Behaviour.

Combination of the flexural and axial matrices developed gives the equations:-

$$
\left\{\begin{array}{l}
P_{1} \\
P_{2} \\
S_{1} \\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{lllll}
\mathrm{K}_{11} & & & & \\
K_{21} & K_{22} & S & & \\
0 & 0 & K_{33} & & M \\
0 & 0 & K_{43} & K_{44} & \\
0 & 0 & K_{53} & K_{54} & K_{55} \\
0 & 0 & K_{63} & K_{64} & K_{65}
\end{array}\right] K_{66} .\left\{\begin{array}{l}
u_{1} \\
\text { ie } \quad\{P\}=[K]\{\Delta\}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{11}=\mathrm{K}_{22}=-\mathrm{K}_{21}=\frac{\mathrm{Eb}}{2 \mathrm{~L}}\left(2 \mathrm{t}_{1}+\phi \mathrm{L}\right) \\
& \mathrm{K}_{33}=\lambda\left(12 \mathrm{t}_{1}{ }^{3}+18 \phi \mathrm{t}_{1}{ }^{2} \mathrm{~L}+14.4 \phi^{2} \mathrm{t}_{1} \mathrm{~L}^{2}+4.2 \phi^{3} \mathrm{~L}^{3}\right) \\
& \mathrm{K}_{43}=\lambda\left(6 \mathrm{t}_{1}{ }^{3} \mathrm{~L}+6 \phi \mathrm{t}_{1}{ }^{2} \mathrm{~L}^{2}+4.2 \phi^{2} \mathrm{t}_{1} \mathrm{~L}^{3}+1.2 \phi^{3} \mathrm{~L}^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}_{44}=\lambda\left(4 \mathrm{t}_{1}{ }^{3} \mathrm{~L}^{2}+3 \phi t_{1}{ }^{2} \mathrm{~L}^{3}+1.6 \phi^{2} \mathrm{t}_{1} \mathrm{~L}^{4}+0.4 \phi^{3} \mathrm{~L}^{5}\right) \\
& \mathrm{K}_{53}=-\mathrm{K}_{33} \quad \mathrm{~K}_{54}=-\mathrm{K}_{43} \quad \mathrm{~K}_{55}=\mathrm{K}_{33} \\
& \mathrm{~K}_{63}=\lambda\left(6 \mathrm{t}_{1}{ }^{3} \mathrm{~L}+12 \phi \mathrm{t}_{1}{ }^{2} \mathrm{~L}^{2}+10.2 \phi^{2} \mathrm{t}_{1} \mathrm{~L}^{3}+3 \phi^{3} \mathrm{~L}^{4}\right) \\
& \mathrm{K}_{64}=\lambda\left(2 \mathrm{t}_{1}{ }^{3} \mathrm{~L}^{2}+3 \phi \mathrm{t}_{1}{ }^{2} \mathrm{~L}^{3}+2.6 \phi^{2} \mathrm{t}_{1} \mathrm{~L}^{4}+0.8 \phi^{3} \mathrm{~L}^{5}\right) \\
& \mathrm{K}_{65}=-\mathrm{K}_{63} \\
& \mathrm{~K}_{66}=\lambda\left(4 \mathrm{t}_{1}{ }^{3} \mathrm{~L}^{2}+9 \phi t_{1}{ }^{2} \mathrm{~L}^{3}+7.6 \phi^{2} \mathrm{t}_{1} \mathrm{~L}^{4}+2.2 \phi^{3} \mathrm{~L}^{5}\right) \\
& \phi=\frac{\left(t_{2}-\mathrm{t}_{1}\right)}{\mathrm{L}} \quad \lambda=\underline{E b} \\
& 12 \mathrm{~L}^{3}
\end{aligned}
$$

Again it should be noted that the stiffness matrix is symmetrical about the leading diagonal. Also if $t_{2}=t_{1}$, that is the beam is prismatic, then $\phi=0$ and the stiffness matrix becomes the same as that in equation (2.17).

It should be noted that the stiffness matrix is an approximation of the tapered member, and the accuracy of solution converges to the exact result with increase in the number of elements employed. If the exact displacement function for a tapered beam is formulated, then the precise stiffness matrix is obtained where accuracy is independent of subdivisions.

Again it is seen that both the axial and flexural stiffness matrices are independent of each other and can be formulated individually.

2.3. Summary of the Two Methods.

2.3.1.Equilibrium Method.

a) Formulation of the axial and lateral deflection function $u=u(x), v=v(x)$.
b) Calculation of the nodal displacements from the arbitrary constants $[C]^{-1}$.
c) Relationship between stress resultants and nodal displacements [H]
d) Formulation of Flexural Stiffness matrix $\left[\mathrm{K}_{\mathrm{b}}\right]$.
e) Construction of Axial Stiffness matrix $\left[K_{a}\right]$.
f) Combined Stiffness matrix for Flexural and Axial behaviour [K].
2.3.2.Work Method.
a) Assumption of the axial and lateral deflection function $u=u(x), v=v(x)$.
b) Calculation of the nodal displacements from the arbitrary constants $[\mathrm{C}]^{-1}$.
c) Relationship between strains and nodal displacements [B].
d) Relationship between Stress and Strain [D].
e) Formulation of Flexural Stiffness matrix $\left[K_{b}\right]$.
f) Construction of Axial Stiffness matrix $\left[\mathrm{K}_{\mathrm{a}}\right]$.
g) Combined Stiffness matrix for Flexural and Axial behaviour [K].

PART A.

Geometrically Non-Linear Analysis of
Prismatic Sections.

Chapter 3.

Matrix Formulation.

In chapter 2 the finite element process as applied to beams was illustrated with reference to geometrically linear behaviour, that is the deflections were considered to tend to zero and hence the equilibrium equations could be legitimately written in the undeformed geometry of the structure. Such considerations lead to a proportional relationship between the applied forces and the deflections induced.

In reality the deflections, although usually small, have finite values and thus a more accurate assessment of behaviour will be attained if the equilibrium equations are set up in the deformed state of the structure. Thus if the member is subjected to both lateral and axial forces, the deflections will be dependent on both the lateral forces and on the axial forces, whereas in linear behaviour axial forces have no effect on the flexural action.Such considerations predict a non-linear relationship between loads and deflections.

Non-linear behaviour of this nature is known as geometrical non-linearity as distinct from material non-linearity in which the non-linear relationship occurs primarily between stress and strian.

Geometrically non-linear analysis is essential if the elastic stability of structures is to be investigated, a simple example of this being the prediction of the elastic critical, or Euler, load of a strut.

The development of the finite element process to examine geometrically non-linear behaviour has been investigated by a number of authors $(9,10,11,12,17,18,20,21)$ and this chapter is concerned with the description of these, together with the further developments made to this topic by the author, as applied to prismatic members.

As in the case of linear analysis, formulation of the stiffness matrices for the examination of non-linear behaviour can be divided into;
a) equilibrium methods, in which the derivation is obtained via derived displacement functions, and
b) work methods in which assumed functions are utilized.

Throughout this thesis it is assumed that the material possesses a linear relationship between stress and strain during the structural behavior, that is that Young's modulus is constant, and also that deflections are sufficiently small to allow the simple theory of bending to be invoked.

3.1.Equilibrium Method.

As described in Chapter 2 these methods, although shorter than the work procedures, depend upon the formulation of the precise mode of deformation of the member. Two stiffness matrices will be developed, each having the same flexural portion but differing in the treatment of the axial force component. The assumptions and limitations imposed in each of these formulations will be discussed during the development. It should be noted that the axial force can be either in compression or tension and hence the derivation will be carried out seperately for each case.

3.1.1.Non-linear Stiffness Matrix with Mutually Independent Flexural and Axial Components for Member in Compression.

With reference to a prismatic beam subjected to nodal axial and shearing forces and to nodal bending moments, as shown in Fig 3.1, consider the equilibrium

Fig 3.1. Diagram Showing The Nodal Forces on the Deformed Member.
of an element of this member in its deformed state as shown in Fig 3.2.

Fig 3.2. Diagram Showing the Element in its Deformed State in Compression.

It is assumed that the displacements are small enough to allow the approximations $\cos (d v / d x)=1$ and $\sin (d v / d x)=(d v / d x)$ to be validly made. Hence the axial and shearing forces with respect to the deformed member axis may be considered to take the values of those forces with respect to the undeformed member axis as depicted in Fig 3.2.

Consideration of rotational equilibrium of this element gives;

$$
\begin{equation*}
S=-\frac{d M}{d x}-P \frac{d v}{d x} \tag{3.1}
\end{equation*}
$$

Substituting the relationship $M=E I \frac{d^{2} v}{d x^{2}}$, ie equation (2.3), gives

$$
\begin{equation*}
S=- \text { EI } \frac{d^{3} v}{d x^{3}}-P \frac{d v}{d x} \tag{3.2}
\end{equation*}
$$

and since for vertical equilibrium, S is constant;

$$
\frac{d S}{d x}=-E I \frac{d^{4} v}{d x^{4}}-P \frac{d^{2} v}{d x^{2}}=0
$$

that is

$$
\frac{d^{4} v}{d x^{4}}+\frac{P}{E I} \frac{d^{2} v}{d x^{2}}=0
$$

which upon successive integration yields the lateral deflection profile of the beam as;

$$
\begin{equation*}
v=a_{i}+a_{2} x+a_{3} \sin \alpha x+a_{4} \cos \alpha x \tag{3.3}
\end{equation*}
$$

where

$$
\alpha=\sqrt{ }(\mathrm{P} / \mathrm{EI})
$$

Differentiation of the deflection equation gives the slope, θ, of the member as;

$$
\begin{equation*}
\theta=\frac{d v}{d x}=a_{2}+a_{3} \alpha \cos \alpha x-a_{4} \alpha \sin \alpha x \tag{3.4}
\end{equation*}
$$

Following the procedure explained in Chapter 2 for the equilibrium method, the flexural stiffness matrix of the non-linear member can be formulated.

The square matrix relating the nodal displacements to the arbitrary constants is first obtained as;

which upon inversion gives;

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}=\left[\begin{array}{llll}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & c_{32} & C_{33} & c_{34} \\
C_{41} & C_{42} & C_{43} & C_{44}
\end{array}\right\}\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\} \\
& \text { ie }\left\{a_{b}\right\}=\left[C_{b}\right]^{-1}\left\{\Lambda_{b}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{11}=\alpha C_{32}=\frac{\alpha-\alpha^{2} L \cos \alpha L-\sin \alpha L}{\lambda} \\
& C_{11}=-C_{42}=\frac{\alpha L \cos \alpha L-\sin \alpha L}{\lambda} \\
& C_{13}=C_{22}=C_{24}=C_{41}=-C_{43}=-\alpha C_{34}=\frac{\alpha(1-\cos \alpha L)}{\lambda} \\
& C_{14}=C_{44}=\frac{\sin \alpha L-\alpha L}{\lambda} \\
& C_{21}=-C_{23}=\alpha C_{33}-\alpha C_{31}=\frac{\alpha^{2} \sin \alpha L}{\lambda}
\end{aligned}
$$

and

$$
\lambda=2 \alpha(1-\cos \alpha \mathrm{L})-\alpha^{2} L \sin \alpha \mathrm{~L}
$$

Following the derivation given in section (2.1.3) and using the relationships;

$$
\begin{aligned}
& M=E I \frac{d^{2} v}{d x^{2}} \text { and } S=-E I \frac{d^{3} v}{d x^{3}}-P \frac{d v}{d x} \text { gives; } \\
& \left\{\begin{array}{l}
S \\
M
\end{array}\right\}=\left[\begin{array}{cccc}
0 & -P & 0 & 0 \\
0 & 0 & -P \sin \alpha x & -P \cos \alpha x
\end{array}\right]\left\{a_{b}\right\} \\
& =\left[\begin{array}{c:c:c:c}
-\mathrm{PC}_{21} & -\mathrm{PC}_{22} & -\mathrm{PC}_{23} & -\mathrm{PC}_{24} \\
\hdashline-\mathrm{P} \sin \alpha x \mathrm{C}_{31} & -P \sin \alpha x \mathrm{C}_{32} & -\mathrm{P} \sin \alpha x \mathrm{C}_{33} & -\mathrm{P} \sin \alpha \times \mathrm{C}_{34} \\
-\mathrm{P} \cos \alpha \times \mathrm{C}_{41} & -P \cos \alpha x \mathrm{C}_{42} & -\mathrm{P} \cos \alpha x \mathrm{C}_{43} & -\mathrm{P} \cos \alpha \times \mathrm{C}_{44}
\end{array}\right]\left\{\begin{array}{l}
\mathrm{v}_{1} \\
\theta_{1} \\
\mathrm{v}_{2} \\
\theta_{2}
\end{array}\right\}
\end{aligned}
$$

since $\left\{\mathrm{a}_{\mathrm{b}}\right\}=\left[\mathrm{C}_{\mathrm{b}}\right]^{-1}\left\{\Delta_{\mathrm{b}}\right\}$.The flexural stiffness matrix can now be written directly following the arguments presented in 2.1.4 giving the non-linear flexural matrix $\left[\mathrm{K}_{\mathrm{b}}\right]$ as;

where

$$
\begin{aligned}
& K_{33}=K_{55}=-K_{53}=\frac{P \alpha^{2}}{} \frac{\sin \alpha L}{\lambda} \\
& K_{43}=K_{63}=-K_{54}=-K_{65}=\frac{P \alpha(1-\cos \alpha L)}{\lambda} \\
& K_{44}=K_{66}=\frac{P(\sin \alpha L-\alpha L \cos \alpha L)}{\lambda} \\
& K_{64}=\frac{P(\alpha L-\sin \alpha L)}{\lambda} \\
& \lambda=2 \alpha(1-\cos \alpha L)-\alpha^{2} L \sin \alpha L
\end{aligned}
$$

and

It should be noted that this matrix is symmetrical about the leading diagonal as in the linear case but now is also dependent on the axial force P.

If it is assumed that the axial force depends only on the displacements, u, then the axial force/displacement relationship may be obtained from $\mathrm{P}=\mathrm{EA}(\mathrm{du} / \mathrm{dx})$, as in the linear case, and the complete stiffness matrix containing both flexural and axial components will become;

$$
\left\{\begin{array}{l}
P_{1} \\
P_{2} \\
S_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}\left[\begin{array}{llllll}
\mathrm{K}_{11} & & & \\
\mathrm{~K}_{21} & \mathrm{~K}_{22} & & S \\
0 & 0 & \mathrm{~K}_{33} & \\
0 & 0 & \mathrm{~K}_{43} & \mathrm{~K}_{44} & \\
0 & 0 & \mathrm{~K}_{53} & \mathrm{~K}_{54} & \mathrm{~K}_{55} \\
\text { ie }\{\mathrm{P}\}=[\mathrm{K}][\Delta\}
\end{array}\right]
$$

or more compactly

$$
\left\{\begin{array}{c}
\mathrm{P}_{\mathrm{a}} \tag{3.6}\\
\mathrm{P}_{\mathrm{b}}
\end{array}\right\}=\left[\begin{array}{c:c}
{\left[\mathrm{K}_{\mathrm{a}}\right]} & 0 \\
\hdashline 0 & {\left[\mathrm{~K}_{\mathrm{b}}\right]}
\end{array}\right]\left\{\begin{array}{c}
\Delta_{\mathrm{a}} \\
\Delta_{\mathrm{b}}
\end{array}\right\}
$$

where

$$
\mathrm{K}_{11}=\mathrm{K}_{22}=-\mathrm{K}_{21}=\frac{\mathrm{EA}}{\mathrm{~L}}
$$

This matrix, produced in a different manner, has been described in the subject literature $(47,48,22,12)$.

If the axial force is tensile rather than compressive, the bending displacement profile will be slightly different. Apart from this, the derivation of the stiffness matrix is similar to that for the compressive case and is described in the following section.

3.1.2. Non-linear Stiffness Matrix with Mutually Independent Flexural and Axial Components for Member in Tension.

Consider the equilibrium of a deformed element of a member in flexure and in tension as shown in Fig 3.3.

Fig 3.3. Diagram Showing the Element in its Deformed State in Tension.

Consideration of rotational equilibrium of this element gives;

$$
\begin{equation*}
S=-\frac{d M}{d x}+P \frac{d v}{d x} \tag{3.7}
\end{equation*}
$$

Substituting equation (2.3) into (3.7) gives;

$$
\begin{equation*}
S=-E I \frac{d^{3} v}{d x^{3}}+P \frac{d v}{d x} \tag{3.8}
\end{equation*}
$$

Since vertical equilibrium requires that S be constant;

$$
\frac{d S}{d x}=-E I \frac{d^{4} v}{d x^{4}}+P \frac{d^{2} v}{d x^{2}}=0
$$

that is

$$
\frac{d^{4} v}{d x^{4}}-\frac{P}{E I} \frac{d^{2} v}{d x^{2}}=0
$$

which upon successive integration gives the deflection profile of the beam as;

$$
\begin{equation*}
v=a_{1}+a_{2} x+a_{3} \sinh \alpha x+a_{4} \cosh \alpha x \tag{3.9}
\end{equation*}
$$

where

$$
\alpha=\sqrt{ }(P / E I)
$$

Thus

$$
\theta=\frac{d v}{d x}=a_{2}+a_{3} \alpha \cosh \alpha x+a_{4} \alpha \sinh \alpha x
$$

The matrix $\left[\mathrm{C}_{\mathrm{b}}\right]$ relating the nodal displacements to the arbitrary constants is thus;

$$
\left[C_{b}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \alpha & 0 \\
1 & \mathrm{~L} & \sinh \alpha \mathrm{~L} & \cosh \alpha \mathrm{~L} \\
0 & 1 & \alpha \cosh \alpha \mathrm{~L} & \alpha \sinh \alpha \mathrm{~L}
\end{array}\right]
$$

and its inverse is;

$$
\left[C_{b}\right]=\left[\begin{array}{llll}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & C_{34} \\
C_{41} & C_{42} & C_{43} & C_{44}
\end{array}\right]
$$

where

$$
\begin{aligned}
& C_{11}=\alpha C_{32}=\underline{\alpha}^{2} \frac{L \sinh \alpha L-\alpha \cosh \alpha L+\alpha}{\lambda} \\
& C_{12}=-C_{42}=\frac{\alpha L \cosh \alpha L-\sinh \alpha L}{\lambda} \\
& C_{13}=C_{24}=C_{41}=C_{22}=-C_{43}=-\alpha C_{34}=\frac{\alpha(1-\cosh \alpha L)}{\lambda} \\
& C_{14}=-C_{44}=\frac{\sinh \alpha L-\alpha L}{\lambda}
\end{aligned}
$$

$$
C_{21}=\alpha C_{33}=-C_{23}=-\alpha C_{31}=-\alpha^{2} \frac{\sinh \alpha L}{\lambda}
$$

and

$$
\lambda=2 \alpha(1-\cosh \alpha \mathrm{L})+\alpha \mathrm{L} \sinh \alpha \mathrm{~L}
$$

Following the steps given in section 3.1.1 produces the combined flexural and axial stiffness matrix as;

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{1} \\
P_{2} \\
S_{1} \\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{cccccc}
\mathrm{K}_{11} & & & & \\
\mathrm{~K}_{21} & \mathrm{~K}_{22} & & & \\
0 & 0 & \mathrm{~K}_{33} & & \\
0 & 0 & K_{43} & K_{44} & \\
0 & 0 & K_{53} & K_{54} & K_{55} & \\
0 & 0 & K_{63} & K_{64} & K_{65} & K_{66}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
v_{1} \\
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\} \\
& \{\mathrm{P}\}=[\mathrm{K}]\{\Delta\}
\end{aligned}
$$

where

$$
\begin{aligned}
& K_{11}=K_{22}=-K_{21}=\frac{E A}{L} \\
& K_{33}=K_{55}=-K_{53}=\frac{P \alpha^{2} \sinh \alpha L}{\lambda} \\
& K_{43}=K_{63}=-K_{54}=-K_{65}=\frac{P \alpha(1-\cosh \alpha L)}{\lambda}
\end{aligned}
$$

$$
K_{44}=K_{66}=\frac{P(\sinh \alpha L-\alpha L \cosh \alpha L)}{\lambda}
$$

$$
\mathrm{K}_{64}=\frac{\mathrm{P}(\alpha \mathrm{~L}-\sinh \alpha \mathrm{L})}{\lambda}
$$

and

$$
\lambda=2 \alpha(1-\cosh \alpha L)+\alpha^{2} L \sinh \alpha L
$$

Again the matrix is symmetrical about the leading diagonal and is dependent on the axial force P.

3.1.3. Limitations of the Linear Matrices so far Described.

A close examination of the nature of these matrices reveals that, since the axial and flexural components are mutually independent, their use is strictly limited to situations in which the axial force and deflections remain independent of any flexural behaviour.

In reality very few situations of this nature occur. Usually, the finite lateral deflections cause a modification to the axial forces and displacements so that the flexural and axial effects are not independent.

This can be demonstrated very simply by considering a pin-ended member under a lateral load as depicted in Fig 3.4.

Fig 3.4 Diagram Showing Member under Lateral Loading.

Since the pins are fixed positionally, the lateral displacement of the member causes the member to lengthen, thus inducing axial strain and hence a tensile force. Since there are no displacements, u , along the x axis, the axial effects must be a function of the lateral displacement, v .

Generally the nodes of the members of a frame are not fixed in position and hence u displacements do occur. Thus in general the axial strain is composed of two components, one due to u displacements, as already discussed, and the other due to lateral displacements, \mathbf{v}.

3.1.4.Modification of Axial Strain Expression due to Finite Lateral Displacements.

To effect the calculation of a more precise axial strain expression, consider an element dx
of a member displaced and deformed to a new length ds as shown in Fig 3.5.

Fig 3.5. Diagram Showing Element Deformation Due to Axial and Lateral Displacements.

By Pythagorus' Theorem;

$$
\begin{equation*}
\mathrm{ds}^{2}=\overline{\mathrm{dx}}^{2}+\mathrm{dv} \mathrm{v}^{2} \tag{3.11}
\end{equation*}
$$

and from the figure above;

$$
\mathrm{du}=\overline{\mathrm{dx}}-\mathrm{dx}
$$

ie $\overline{d x}=d u+d x$

Squaring (3.12) gives;

$$
\overline{d x^{2}}=d u^{2}+2 d u d x+d x^{2}
$$

and thus from (3.11)

$$
\mathrm{ds}^{2}=\mathrm{du}^{2}+2 \mathrm{du} d x+\mathrm{dx}^{2}+\mathrm{dv} \mathrm{v}^{2}
$$

Hence

$$
\begin{equation*}
\mathrm{ds}^{2}-\mathrm{dx} \mathrm{x}^{2}=2 \mathrm{du} \mathrm{dx}+\mathrm{du}^{2}+\mathrm{dv}^{2} \tag{3.13}
\end{equation*}
$$

ie

$$
d s^{2}-d x^{2}=2\left[\frac{d u}{d x}+\frac{1}{2}\left\{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d x}\right)^{2}\right\}\right] d x^{2}
$$

The term in the square bracket is known as the strain component and hence

$$
\begin{equation*}
\mathrm{ds}^{2}-\mathrm{dx}^{2}=2 \varepsilon_{\mathrm{x}} \mathrm{dx}^{2} \tag{3.14}
\end{equation*}
$$

where

$$
\varepsilon_{\mathrm{x}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left\{\left(\frac{\mathrm{du}}{\mathrm{dx}}\right)^{2}+\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}\right\}
$$

which upon neglecting terms in (du/dx) as very small in comparison with the other terms becomes;

$$
\begin{equation*}
\varepsilon_{\mathrm{x}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2} \tag{3.15}
\end{equation*}
$$

It should be noted that when the lateral deflections tend to zero then the strain simply tends to the expression

$$
\varepsilon_{x}=\frac{d u}{d x}
$$

3.1.5. Non-Linear Stiffness Matrix with Coupled Flexural and Axial Components.

Use of the strain expression, 3.15 together with the equilibrium process, enables a more precise non-linear stiffness matrix, applicable to general frame problems, to be formulated. The difference between this new matrix and that described in 3.1.1 lies in the modification to the axial force equations which will now include effects due to lateral displacements. The flexural stiffness matrix already obtained remains unaltered.

Applying Hooke's Law to equation (3.15) gives;

$$
\begin{equation*}
P=E A\left[\frac{d u}{d x}+\frac{1}{2}\left(\frac{d v}{d x}\right)^{2}\right] \tag{3.16}
\end{equation*}
$$

Since P is constant along the element, integration of equation (3.16) gives;

$$
\begin{equation*}
\int_{0}^{L} P d x=E A \int_{0}^{L} \frac{d u}{d x} d x+\frac{E A}{2} \int_{0}^{L}\left(\frac{d v}{d x}\right)^{2} d x \tag{3.17}
\end{equation*}
$$

ie

$$
\begin{equation*}
P=\frac{E A}{L}\left(u_{2}-u_{1}\right)+\frac{E A}{2 L} \int_{0}^{L}\left(\frac{d v}{d x}\right)^{2} d x \tag{3.18}
\end{equation*}
$$

Noting from Fig 3.1 that $P_{1}=-\mathrm{P}$ and $\mathrm{P}_{2}=\mathrm{P}$;

$$
\begin{equation*}
P_{1}=-\frac{E A}{2 L} \int_{0}^{L}\left(\frac{d v}{d x}\right)^{2} d x+\frac{E A}{L}\left(u_{1}-u_{2}\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}=\frac{E A}{2 L} \int_{0}^{L}\left(\frac{d v}{d x}\right)^{2} d x+\frac{E A}{L}\left(u_{2}-u_{1}\right) \tag{3.20}
\end{equation*}
$$

The first terms in equations (3.19) and (3.20) represent the modification to the axial force due to lateral deflections and can be calculated in terms of the four lateral nodal displacements as described below.

3.1.6 Formulation of Lateral Deflection Effects on Axial Force for Member in

Compression.

The term

$$
\frac{E A}{2 L} \int_{0}^{L}\left(\frac{d v}{d x}\right)^{2} d x
$$

in equations (3.18), (3.19) and (3.20) can be formulated as follows in terms of the lateral nodal displacements.

Equation (3.4) can be expressed in matrix form as;

$$
\theta=\frac{d v}{d x}=\left[\begin{array}{llll}
0 & 1 & \alpha \cos \alpha x & -\alpha \sin \alpha x
\end{array}\right]\left\{a_{b}\right\}
$$

which, since $\left\{a_{b}\right\}=\left[C_{b}\right]^{-1}\left\{\Delta_{b}\right\}$, can be written

$$
\begin{aligned}
& \left(\frac{d v}{d x}=\left[C_{21}+C_{31} \alpha \cos \alpha x-C_{41} \alpha \sin \alpha x: C_{22}+C_{32} \alpha \cos \alpha x-C_{42} \alpha \sin \alpha x\right.\right. \\
& \\
& \left.: C_{23}+C_{33} \alpha \cos \alpha x-C_{43} \alpha \sin \alpha x: C_{24}+C_{34} \alpha \cos \alpha x-C_{44} \alpha \sin \alpha x\right]\left\{\begin{array}{c}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
\end{aligned}
$$

Writing G_{N} for $\left(C_{2 N}+C_{3 N} \alpha \cos \alpha x-C_{4 N} \alpha \sin \alpha x\right)$ this may be expressed as;

$$
\frac{d v}{d x}=\left[\begin{array}{llll}
G_{1} & G_{2} & G_{3} & G_{4}
\end{array}\right]\left\{\begin{array}{c}
v_{1} \tag{3.21}\\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

$$
\text { ie } \quad \frac{d v}{d x}=G_{1} v_{1}+G_{2} \theta_{1}+G_{3} v_{2}+G_{4} \theta_{2}
$$

which upon squaring gives;

$$
\begin{aligned}
\left(\frac{d v}{d x}\right)^{2}= & G_{1}\left(G_{1} v_{1}+G_{2} \theta_{1}+G_{3} v_{2}+G_{4} \theta_{2}\right) v_{1} \\
& +G_{2}\left(G_{1} v_{1}+G_{2} \theta_{1}+G_{3} v_{2}+G_{4} \theta_{2}\right) \theta_{1} \\
& +G_{3}\left(G_{1} v_{1}+G_{2} \theta_{1}+G_{3} v_{2}+G_{4} \theta_{2}\right) v_{2} \\
& +G_{4}\left(G_{1} v_{2}+G_{2} \theta_{1}+G_{3} v_{2}+G_{4} \theta_{2}\right) \theta_{2}
\end{aligned}
$$

It is thus necessary to evaluate $G_{M} G_{N}$ giving

$$
\begin{aligned}
G_{M} G_{N}= & C_{2 M} C_{2 N}+\left(C_{2 M} C_{3 N}+C_{3 M} C_{2 N}\right) \alpha \cos \alpha x \\
& -\left(C_{2 M} C_{4 N}+C_{4 M} C_{2 N}\right) \alpha \sin \alpha x+C_{3 M} C_{3 N} \alpha^{2} \cos ^{2} \alpha x \\
& -\left(C_{3 M} C_{4 N}+C_{4 M} C_{3 N}\right) \alpha^{2} \sin \alpha x \cos \alpha x+C_{4 M} C_{4 N} \alpha^{2} \sin ^{2} \alpha x
\end{aligned}
$$

Integration of $\mathrm{G}_{\mathrm{M}} \mathrm{G}_{\mathrm{N}}$ and subsequent multiplication by $\mathrm{EA} / 2 \mathrm{~L}$ gives;

$$
\mathrm{Q}_{\mathrm{M}} \mathrm{Q}_{\mathrm{N}}=\frac{\mathrm{EA}}{2 \mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{G}_{\mathrm{M}} \mathrm{G}_{\mathrm{N}} \mathrm{dx}
$$

where

$$
\begin{align*}
Q_{M} Q_{N} & =E A\left\{{\underset{C}{2 M}}_{2}^{C_{2 N}}+\left(C_{2 M} \underline{C}_{3 N}+C_{3 M} \underline{C}_{2 N}\right) \sin \alpha L\right. \\
& +\left(C_{2 M} \underline{C}_{4 N}+C_{4 M} \underline{C}_{2 N}\right)(\cos \alpha L-1)+C_{3 M} C_{3 N}\left(\frac{\alpha^{2}}{4}+\frac{\alpha \sin 2 \alpha L}{8 L}\right) \\
& \left.+\alpha\left(C_{3 M} \underline{C}_{4 N}+C_{4 M} \underline{C}_{3 N}\right)(\cos 2 \alpha L-1)+C_{4 M} C_{4 N}\left(\frac{\alpha^{2}}{4}-\frac{\alpha \sin 2 \alpha L}{8 L}\right)\right\} \tag{3.23}
\end{align*}
$$

Thus the term $\mathrm{Q}_{\mathrm{M}} \mathrm{Q}_{\mathrm{N}}$ may be expressed in terms of the nodal displacements as;

$$
\begin{aligned}
& {\left[Q_{1}\left(Q_{1} v_{1}+Q_{2} \theta_{1}+Q_{3} v_{2}+Q_{4} \theta_{2}\right)\right] v_{1} } \\
+ & {\left[Q_{2}\left(Q_{1} v_{1}+Q_{2} \theta_{1}+Q_{3} v_{2}+Q_{4} \theta_{2}\right)\right] \theta_{1} } \\
+ & {\left[Q_{3}\left(Q_{1} v_{1}+Q_{2} \theta_{1}+Q_{3} v_{2}+Q_{4} \theta_{2}\right)\right] v_{2} } \\
+ & {\left[Q_{4}\left(Q_{1} v_{1}+Q_{2} \theta_{1}+Q_{3} v_{2}+Q_{4} \theta_{2}\right)\right] \theta_{2} }
\end{aligned}
$$

or in matrix form
$\left[\begin{array}{lll}\text { A1 A2 A3 A4 }\end{array}\right]\left\{\begin{array}{c}\mathrm{v}_{1} \\ \theta_{1} \\ \mathrm{v}_{2} \\ \theta_{1}\end{array}\right\}$

Hence from equations (3.19) and (3.20) the relationship between the axial force and the axial and lateral displacements becomes;

$$
\left\{\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right\}=\left[\begin{array}{cccccc}
\frac{E A}{L} & \frac{-E A}{L} & -A 1 & -A 2 & -A 3 & -A 4 \\
\frac{-E A}{L} & \frac{E A}{L} & A 1 & A 2 & A 3 & A 4
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

The complete force/displacement relationships may then be written as;

where the flexural matrix is that given in equation (3.5).

It can be seen that the combined stiffness matrix is no longer symmetrical and that the axial force in the member is dependent on the lateral as well as the axial displacements.It will be seen later in Chapter 4 that a special solution routine can be developed in which symmetry is restored by a modification to the left hand force vector.

3.1.7. Formulation of Lateral Deflection Effects on Axial Force for Member in Tension.

Following steps similar to those presented in the previous section but using the deflection profile for a deformed member in tension, the following result analogous to equation (3.23) is obtained.

$$
\begin{aligned}
Q_{M} Q_{N} & =E A\left\{\frac{C}{2 M}_{2}^{2} C_{2 N}+\frac{\left(C_{2 M}-C_{3 N}+C_{3 M}\right.}{2 L} \underline{C}_{2 N}\right) \sinh \alpha L \\
& +\left(C_{2 M} \underline{C}_{4 N}+C_{4 M}\right. \\
2 L & \left.C_{2 N}\right)(\cosh \alpha L-1)+C_{3 M} C_{3 N}\left(\frac{\alpha^{2}}{4}+\frac{\alpha \sinh 2 \alpha L}{8 L}\right) \\
& +\alpha\left(C_{3 M} \underline{C}_{4 N}+C_{4 M} C_{3 N}-(\cosh 2 \alpha L-1)+C_{4 M} C_{4 N}\left(\frac{\alpha \sinh 2 \alpha L}{8 L}+\underline{\alpha}^{2}\right)\right\}
\end{aligned}
$$

from which the coupling portion of the stiffness matrix can be obtained.

3.2.Work Methods.

As discussed in chapter 2 derived deflection profiles may be impossible to obtain or may contain complexities which cause intractability in their use. Thus it is often either necessary or convenient to use approximate displacement functions and formulate the stiffness matrix using a work process.

In this section two work-based stiffness matrices will be developed based on the polynomial displacement functions for a linear prismatic beam namely;

$$
v=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

and

$$
u=a_{5}+a_{6} x
$$

The first of these is a matrix in which flexural and axial components are considered independent, this being the basis of the derivation of the matrices described in section 3.1.1, while the second is a more realistic matrix in which the effect of finite lateral displacements on axial behaviour is taken into account.

3.2.1. Non-linear Stiffness Matrix with Mutually Independent Flexural and Axial Components.

If, as is inherent in the derivations presented in section 3.1.1 and 3.1.2, it is assumed that the axial force in the member is not significantly affected by the lateral displacements, then this force may be considered to be dependent only on the displacements u along the x -axis, and to remain unchanged during lateral displacements.

Consider again the increment of the axially loaded beam under flexure depicted in Fig 3.2 (or Fig 3.3) and reproduced again below in Fig 3.6.

Fig 3.6. Diagram Showing the Element in its Deformed State in Compression.

If virtual nodal flexural displacements $\left\{\delta \Delta_{b}\right\}$ are applied to the beam, then the internal virtual work is composed of that done by the bending moment distribution during virtual rotation of the beam together with the virtual work done by the axial force P during the extension of the beam caused solely by the virtual lateral displacements.

Consideration of the virtual work done by the bending moment will, by following the derivation given in section 2.2.5, yield the flexural stiffness matrix, $\left[\mathrm{K}_{\mathrm{b}}\right]$, of a linear prismatic beam, relating nodal lateral forces to the corresponding displacements, ie;

$$
\left\{\begin{array}{l}
S_{1} \\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{12 E I}{L^{3}} & & \\
\frac{6 E I}{L^{2}} & \frac{4 E I}{L} & S \\
\frac{-12 E I}{L^{3}} & \frac{-6 E I}{L^{2}} & \frac{12 E I}{L^{3}} \\
\frac{6 E I}{L^{2}} & \frac{2 E I}{L} & \frac{-6 E I}{L^{2}} \\
\frac{4 E I}{L}
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
\theta_{2} \\
\theta_{2} \\
\left.\sum_{b}\right\}=\left[K_{b}\right]\left\{\Delta_{b}\right\}
\end{array}\right\}
$$

while the virtual work done by the constant axial force P leads to an additional flexural stiffness matrix dependent on P, and known as the 'initial stress matrix', which can be formulated in the following manner.

Noting that the axial strain due to lateral displacement is;

$$
\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}
$$

the internal virtual work done by P during virtual lateral displacements is;

$$
\mathrm{P} \int_{0}^{\mathrm{L}} \delta\left[\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}\right] \mathrm{dx}
$$

while the external virtual work is given by equation (2.23), that is

$$
\left\{\delta \Delta_{b}\right\}^{T}\{P\}
$$

Thus

$$
\begin{align*}
\left\{\delta \Delta_{b}\right\}^{T}\{P\} & =P \int_{0}^{L} \delta\left[\frac{1}{2}\left(\frac{d v}{d x}\right)^{2}\right] d x \\
& =P \int_{0}^{L} \frac{d v}{d x} \delta\left(\frac{d v}{d x}\right) d x \tag{3.25}
\end{align*}
$$

Since $\delta Q=\frac{d Q}{d q} \delta q$.

Now since the lateral displacement function is assumed to be;

$$
v+a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

the value of $(\mathrm{dv} / \mathrm{dx})$ can be obtained in terms of the nodal displacements $\left\{\Delta_{\mathrm{b}}\right\}$ by substitution of equation (2.8) into equation (2.6) giving;

$$
\frac{d v}{d x}=\left[\begin{array}{c:c:c:c}
-\frac{6}{L^{2}} x+\frac{6}{L^{3}} & 1-4 x+\frac{3}{L^{3}} & L & L^{2} \\
L^{2} & -\frac{6}{L^{3}} & L & -\frac{2}{2} x+\frac{3 x^{2}}{2}
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

which may be expressed more shortly as;

$$
\frac{\mathrm{dv}}{\mathrm{dx}}=\left[\begin{array}{llll}
\mathrm{G}_{1} & \mathrm{G}_{2} & \mathrm{G}_{3} & G_{4} \tag{3.26}
\end{array}\right]\left\{\Delta_{\mathrm{b}}\right\}=[\mathrm{G}]\left\{\Delta_{\mathrm{b}}\right\}
$$

Thus equation (3.25) becomes, on reordering of terms;

$$
\left\{\delta \Delta_{b}\right\}^{\mathrm{T}}\{\mathrm{P}\}=\mathrm{P} \int_{0}^{\mathrm{L}}\left\{\delta \Delta_{\mathrm{b}}\right\}^{\mathrm{T}}[\mathrm{G}]^{\mathrm{T}}[\mathrm{G}]\left\{\Delta_{\mathrm{b}}\right\} \mathrm{dx}
$$

from which

$$
\begin{align*}
\{P\} & =\int_{0}^{L}[G]^{T} P[G]\left\{\Delta_{b}\right\} d x \\
& =\left[K_{\sigma}\right]\left\{\Delta_{b}\right\} \tag{3.27}
\end{align*}
$$

where $\left[\mathrm{K}_{\sigma}\right]$ is the initial stress matrix.

Calculation of expression (3.27) yields this additional relationship between $\{\mathrm{P}\}$ and
$\{\Delta\}$ as;

$$
\left\{\begin{array}{l}
S_{1} \\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
\frac{6 P}{5 L} & & & \\
\frac{P}{10} & \frac{2 P L}{15} & S_{Y} \\
\frac{-6 P}{5 L} & \frac{-P}{10} & \frac{6 P}{5 L} & \\
\frac{P}{10} & \frac{-P L}{30} & \frac{-P}{10} & \frac{2 P L}{15}
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

$$
\text { ie }\left\{\mathrm{P}_{\mathrm{b}}\right\}=\left[\mathrm{K}_{\sigma}\right]\left\{\Delta_{\mathrm{b}}\right\}
$$

Hence the total stiffness matrix, including both flexural and axial effects, becomes

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathrm{P}_{\mathrm{a}} \\
\mathrm{P}_{\mathrm{b}}
\end{array}\right\}=\left[\begin{array}{c:c}
\mathrm{K}_{\mathrm{a}} & 0 \\
\hdashline 0 & \mathrm{~K}_{\mathrm{b}}+\mathrm{K}_{\sigma}
\end{array}\right]\left\{\begin{array}{l}
\Delta_{\mathrm{a}} \\
\Delta_{\mathrm{b}}
\end{array}\right\} \\
\text { or }\{\mathrm{P}\}=\left[\mathrm{K}_{0}+\mathrm{K}_{\sigma}\right]\{\Delta\}
\end{gathered}
$$

where $\left[\mathrm{K}_{\mathrm{a}}\right]$ is the axial stiffness matrix described in Chapter 2.

Hence the flexural component of the total stiffness matrix is dependent on the axial force in a similar manner to that in the matrix presented in equation (3.6).

While here applied to the solution of beam problems, this form of derivation was first introduced by $(45,47)$ for the non-linear behaviour of plates and shells.

3.2.2.Non-linear Stiffness Matrix with Coupled Flexural and Axial Components (Tangential Stiffness Matrix).

The development of the previous section contains assumptions which, as discussed in section 3.1.3, do not describe the actual nature of the axial strain. As already shown a more accurate expression for this is;

$$
\varepsilon_{\mathrm{x}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}
$$

and hence this extra second term effect should be considered if a more realistic assessment of non-linear behaviour is to be made. The development contained in this section allows for this extra term and, as will be shown, leads to an extension of the matrix developed in the previous section. This method produces a symmetrical matrix known as the Tangential Stiffness Matrix, which does not explicitly relate forces to displacements but from which such relationships can be obtained.

3.2.2.1.Relationship Between Strains and Nodal Displacements.

Again letting the displacement functions be assumed as;

$$
\begin{aligned}
& v=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} \\
& u=a_{5}+a_{6} x
\end{aligned}
$$

the values of the axial and flexural strains;

$$
\begin{aligned}
& \varepsilon_{a}=\frac{d u}{d x}+\frac{1}{2}\left(\frac{d v}{d x}\right)^{2} \\
& \varepsilon_{b}=\frac{d^{2} v}{d x^{2}}
\end{aligned}
$$

can be obtained by differentiation in terms of the arbitrary constants and then via equation (2.8) in terms of the nodal displacements. Thus, noting from equation (3.26), that

$$
\begin{equation*}
\frac{\mathrm{dv}}{\mathrm{dx}}=[\mathrm{G}]\left\{\Delta_{\mathrm{b}}\right\} \tag{3.30}
\end{equation*}
$$

and that hence

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}=\frac{1}{2} \frac{\mathrm{dv}}{\mathrm{dx}}[\mathrm{G}]\left\{\Delta_{\mathrm{b}}\right\} \tag{3.31}
\end{equation*}
$$

the expression for the strains may be written
that is

$$
\begin{equation*}
\{\varepsilon\}=[\mathrm{B}(\Delta)]\{\Delta\} \tag{3.32}
\end{equation*}
$$

where $[\mathrm{B}(\Delta)]$, the matrix relating the strains to the nodal displacements, is dependent on the nodal displacements themselves due to the inclusion of the term ($\mathrm{dv} / \mathrm{dx}$).

3.2.2.2. Relationship Between Stress Resultants and Strains.

Since the stresses and hence the stress resultants are linearly related to the strains, the relationship between these quantities is given by;

$$
\left\{\begin{array}{l}
\mathrm{P} \\
\mathrm{M}
\end{array}\right\}=\left[\begin{array}{cc}
\text { EA } & 0 \\
0 & E I
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{\mathrm{a}} \\
\varepsilon_{\mathrm{b}}
\end{array}\right\}
$$

that is

$$
\{\sigma\}=[D]\{\varepsilon\}
$$

or, from equation (3.32);

$$
\begin{equation*}
\{\sigma\}=[\mathrm{D}][\mathrm{B}(\Delta)]\{\Delta\} \tag{3.33}
\end{equation*}
$$

3.2.2.3. Formulation of Tangential Stiffness Matrix.

Consideration of external and internal virtual work yields;

$$
\begin{aligned}
& \text { External virtual work }=\{\delta \Delta\}^{\mathrm{T}}\{\mathrm{P}\} \\
& \text { Internal virtual work }=\int_{0}^{\mathrm{L}}\{\delta \varepsilon\}^{\mathrm{T}}\{\sigma\} \mathrm{dx}
\end{aligned}
$$

Hence by the principle of virtual work (see section 2.2.)

$$
\begin{equation*}
\{\delta \Delta\}^{\mathrm{T}}\{\mathrm{P}\}=\int_{0}^{\mathrm{L}}\{\delta \varepsilon\}^{\mathrm{T}}\{\sigma\} \mathrm{dx} \tag{3.34}
\end{equation*}
$$

Thus in order to obtain the relationship between $\{\mathrm{P}\}$ and $\{\Delta\}$ it is necessary to express $\{\delta \varepsilon]$ in terms of $\{\delta \Delta\}$ thus allowing the virtual displacements to be eliminated from both sides of equation (3.34).

From equation (3.32) since $[B(\Delta)]$ is a function of $\{\Delta\}$, application of virtual displacements will cause virtual strains

$$
\begin{equation*}
\{\delta \varepsilon\}=[\mathrm{B}(\Delta)]\{\delta \Delta\}+[\delta \mathrm{B}(\Delta)]\{\Delta\} \tag{3.35}
\end{equation*}
$$

by virtue of the product rule for differentiation.

Hence in order to obtain a relationship between $\{\delta \varepsilon\}$ and $\{\delta \Delta\}$ it is necessary to equate the second term of equation (3.35) to a term in which the vector $\{\Delta\}$ is replaced by $\{\delta \Delta\}$, and this may be accomplished in the following manner.

Writing equation (3.32) as;

$$
\{\varepsilon\}=\left[\begin{array}{ll}
B_{L}{ }^{b} & B_{0}^{a} \\
B_{0}^{b} & 0
\end{array}\right]\left\{\begin{array}{l}
\Delta_{b} \\
\Delta_{a}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& {\left[\mathrm{B}_{\mathrm{L}}^{\mathrm{b}}\right]=\left[\begin{array}{l:l:l:l}
\frac{1}{2} \frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{G}_{1} & \frac{1}{\mathrm{dv}} \frac{\mathrm{G}_{2}}{\mathrm{dx}} & \frac{1}{2} \frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{G}_{3} & \frac{1}{2} \frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{G}_{4}
\end{array}\right]} \\
& {\left[\mathrm{B}_{0}^{\mathrm{a}}\right]=\left[\begin{array}{ll}
-\frac{1}{\mathrm{~L}} & \frac{1}{\mathrm{~L}}
\end{array}\right]} \\
& {\left[\mathrm{B}_{0}^{\mathrm{b}}\right]=\left[\begin{array}{ll:l}
\underline{-6}+\underline{12} \mathrm{~L} & \frac{-4}{\mathrm{~L}^{3}} & \mathrm{~L}+\underline{6} \mathrm{~L}^{2} \\
\mathrm{~L}^{2} & \underline{6}-\underline{12} \mathrm{~L} x & -\underline{2}+\underline{L^{3}} \\
\mathrm{~L}^{2}
\end{array}\right]}
\end{aligned}
$$

it is seen that

$$
[\delta \mathrm{B}(\Delta)]\{\Delta\}=\left[\begin{array}{cc}
\delta \mathrm{B}_{\mathrm{L}}^{\mathrm{b}} & 0 \\
0 & 0
\end{array}\right]\left\{\begin{array}{l}
\Delta_{\mathrm{b}} \\
\Delta_{\mathrm{a}}
\end{array}\right\}=\left[\delta \mathrm{B}_{\mathrm{L}}^{\mathrm{b}}\right]\left\{\Delta_{\mathrm{b}}\right\}
$$

by virtue of the constancy of the coefficients in $\left[\mathrm{B}_{0}{ }^{\mathrm{a}}\right]$ and $\left[\mathrm{B}_{0}{ }^{\mathrm{b}}\right]$.

Now from the expression for $\left[\mathrm{B}_{\mathrm{L}}{ }^{\mathrm{b}}\right]$ above, it can be seen that;

$$
\left[\delta \mathrm{B}_{\mathrm{L}}^{\mathrm{b}}\right]\left\{\Delta_{\mathrm{b}}\right\}=\left[\mathrm{B}_{\mathrm{L}}^{\mathrm{b}}\right]\left\{\delta \Delta_{\mathrm{b}}\right\}
$$

and hence equation (3.35) can be written

$$
\begin{align*}
\{\delta \varepsilon\} & =\left[\begin{array}{ll}
\mathrm{B}_{\mathrm{L}}^{\mathrm{b}} & \mathrm{~B}_{0}^{\mathrm{a}} \\
\mathrm{~B}_{0}^{\mathrm{b}} & 0
\end{array}\right]\left\{\begin{array}{l}
\delta \Delta_{\mathrm{b}} \\
\delta \Delta_{\mathrm{a}}
\end{array}\right\}+\left[\begin{array}{ll}
\mathrm{B}_{\mathrm{L}}^{\mathrm{b}} & 0 \\
0 & 0
\end{array}\right]\left\{\begin{array}{l}
\delta \Delta_{\mathrm{b}} \\
\delta \Delta_{\mathrm{a}}
\end{array}\right\} \\
& =\left[\begin{array}{ll}
2 \mathrm{~B}_{\mathrm{L}}{ }^{\mathrm{b}} & \mathrm{~B}_{0}{ }^{\mathrm{a}} \\
\mathrm{~B}_{0}^{\mathrm{b}} & 0
\end{array}\right]\left\{\begin{array}{l}
\delta \Delta_{\mathrm{b}} \\
\delta \Delta_{\mathrm{a}}
\end{array}\right\}=[\overline{\mathrm{B}}]\{\delta \Delta] \tag{3.36}
\end{align*} .
$$

Thus on substituting equation (3.33) and (3.36) into equation (3.34) and eliminating the vector $\{\delta \Delta\}^{\mathrm{T}}$ the relationship between the external forces $\{\mathrm{P}\}$ and the nodal displacements $\{\Delta\}$ is

$$
\{P\}=\int_{0}^{\mathrm{L}}[\widehat{\mathrm{~B}}]^{\mathrm{T}}[\mathrm{D}][\mathrm{B}(\Delta)]\{\Delta\} \mathrm{dx}
$$

$$
\begin{equation*}
\text { ie }\{P\}=[K]\{\Delta\} \tag{3.37}
\end{equation*}
$$

On performing the various matrix operations, the stiffness matrix [K] in equation (3.37) can be seen to be non-symmetric and hence equations (3.37) are not amenable to solution by standard procedures based on matrix symmetry.

However it can be shown $(26,45,47)$ that a matrix [K_{T}] such that

$$
\begin{equation*}
\{\mathrm{dP}\}=\left[\mathrm{K}_{\mathrm{T}}\right]\{\mathrm{d} \Delta\} \tag{3.38}
\end{equation*}
$$

is symmetrical, and this matrix, for reasons that will become apparant in Chapter 4, is known as the tangential stiffness matrix.

The symmetrical properties of the matrix [K_{T}] means that its use enables standard symmetrical solution routines to be utilised, rather than the more cumbersome non-symmetrical procedures that would be required for the treatment of matrix [K]. The matrix $\left[\mathrm{K}_{\mathrm{T}}\right]$ will now be derived and a description of its use left until Chapter 4.

From equation (3.33) and (3.37) the nodal forces may be expressed as

$$
\begin{equation*}
\{\mathrm{P}\}=\int_{0}^{\mathrm{L}}[\widetilde{\mathrm{~B}}]^{\mathrm{T}}\{\sigma\} \mathrm{dx} \tag{3.38a}
\end{equation*}
$$

Since both $[\bar{B}]$ and $\{\sigma\}$ are functions of the nodal displacements

$$
\begin{align*}
\{d P\} & =\int_{0}^{\mathrm{L}}[\mathrm{~d} \widehat{\mathrm{~B}}]^{\mathrm{T}}\{\sigma\} \mathrm{dx}+\int_{0}^{\mathrm{L}}[\widetilde{\mathrm{~B}}]^{\mathrm{T}}\{\mathrm{~d} \sigma\} \mathrm{dx} \\
& =\left[\mathrm{K}_{\mathrm{T}}\right]\{\mathrm{d} \Delta\} \tag{3.39}
\end{align*}
$$

Now

$$
\begin{equation*}
\{\mathrm{d} \sigma\}=[\mathrm{D}]\{\mathrm{d} \varepsilon\}=[\mathrm{D}][\mathrm{B}]\{\mathrm{d} \Delta\} \tag{3.40}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\{\mathrm{dP}\}=\int_{0}^{\mathrm{L}}[\mathrm{~d} \overline{\mathrm{~B}}]^{\mathrm{T}}\{\sigma\} \mathrm{dx}+\int_{0}^{\mathrm{L}}[\widetilde{\mathrm{~B}}]^{\mathrm{T}}[\mathrm{D}][\overline{\mathrm{B}}]\{\mathrm{d} \Delta\} \mathrm{dx} \tag{3.41}
\end{equation*}
$$

Noting from equation (3.36) that [$\overline{\mathrm{B}}$] may be written as

$$
[B]=\left[\begin{array}{ll}
0 & B_{0}{ }^{a} \tag{3.42}\\
B_{0}{ }^{b} & 0
\end{array}\right]+\left[\begin{array}{cc}
2 B_{L}^{b} & 0 \\
0 & 0
\end{array}\right]=\left[B_{0}\right]+\left[B_{L}\right]
$$

and hence that $[\mathrm{d} \overline{\mathrm{B}}]=\left[\mathrm{dB}_{\mathrm{L}}\right]$

$$
\begin{align*}
\int_{0}^{L}[\overline{\mathrm{~B}}]^{\mathrm{T}}[\mathrm{D}][\overline{\mathrm{B}}] \mathrm{dx} & =\int_{0}^{\mathrm{L}}\left(\left[\mathrm{~B}_{0}\right]+\left[\mathrm{B}_{\mathrm{L}}\right]\right)^{\mathrm{T}}[\mathrm{D}]\left(\left[\mathrm{B}_{0}\right]+\left[\mathrm{B}_{\mathrm{L}}\right]\right) \mathrm{dx} \\
& =\left[\mathrm{K}_{0}\right]+\left[\mathrm{K}_{\mathrm{L}}\right] \tag{3.43}
\end{align*}
$$

where

$$
\left[\mathrm{K}_{0}\right]=\int_{0}^{\mathrm{L}}\left[\mathrm{~B}_{0}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{0}\right] \mathrm{dx}
$$

and

$$
\left[\mathrm{K}_{\mathrm{L}}\right]=\int_{0}^{\mathrm{L}}\left(\left[\mathrm{~B}_{0}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{\mathrm{L}}\right]+\left[\mathrm{B}_{\mathrm{L}}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{0}\right]+\left[\mathrm{B}_{\mathrm{L}}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{\mathrm{L}}\right]\right) \mathrm{dx}
$$

The first term in equation (3.41) can be written, through equation (3.42), as

$$
2 \int_{0}^{L}\left[\mathrm{~dB}_{\mathrm{L}}^{\mathrm{B}}\right]^{\mathrm{T}}\{\sigma\}_{\mathrm{dx}}
$$

which can in turn be expressed through equation (3.30) and (3.32) as;

$$
\int_{0}^{\mathrm{L}}[\mathrm{G}]^{\mathrm{T}} \mathrm{P}[\mathrm{G}]\left\{\delta \Delta_{\mathrm{b}}\right\} \mathrm{dx}
$$

where P is the axial force in the member.

This expression may thus be written as

$$
\left[K_{\sigma}\right]\left\{\delta \Delta_{b}\right\}
$$

where

$$
\begin{equation*}
\left[K_{\sigma}\right]=\int_{0}^{L}[G]^{T} P[G] d x \tag{3.44}
\end{equation*}
$$

Hence equation (3.39) may be written;

$$
\{\mathrm{dP}\}=\left[\mathrm{K}_{\mathrm{T}}\right]\{\mathrm{d} \Delta\}
$$

where

$$
\begin{equation*}
\left[K_{T}\right]=\left[K_{0}+K_{\sigma}+K_{L}\right] \tag{3.45}
\end{equation*}
$$

It can be noted that $\left[\mathrm{K}_{0}\right.$] is the linear stiffness matrix for a prismatic member while [K_{σ}] is the initial stress matrix derived in the previous section and given explicitly by equation (3.28).

Thus to form the complete tangential stiffness matrix [K_{T}] it is only necessary to evaluate [K_{L}] and to superimpose this on the stiffness matrix [$\mathrm{K}_{0}+\mathrm{K}_{\sigma}$] given in equation (3.29).

3.2.2.3.1. Evaluation of [$\left.\mathrm{K}_{\mathrm{L}}\right]$.

The matrix [K_{L}], known as the initial displacement matrix, is composed of three portions as shown in equation (3.43). Thus [K_{L}] may be written

$$
\left[K_{L}\right]=\left[K_{1}\right]+\left[K_{2}\right]+\left[K_{3}\right]
$$

where

$$
\begin{aligned}
& {\left[\mathrm{K}_{1}\right]=\int_{0}^{\mathrm{L}}\left[\mathrm{~B}_{0}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{\mathrm{L}}\right] \mathrm{dx}} \\
& {\left[\mathrm{~K}_{2}\right]=\int_{0}^{\mathrm{L}}\left[\mathrm{~B}_{\mathrm{L}}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{\mathrm{L}}\right] \mathrm{dx}} \\
& {\left[\mathrm{~K}_{3}\right]=\int_{0}^{\mathrm{L}}\left[\mathrm{~B}_{\mathrm{L}}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{0}\right] \mathrm{dx}}
\end{aligned}
$$

Inspection of [K_{1}] and [K_{3}] shows that;

$$
\left[\mathrm{K}_{1}\right]^{\mathrm{T}}=\left[\mathrm{K}_{3}\right]
$$

and thus the composition of [K_{L}] may be reduced to two matrices so that;

$$
\left[\mathrm{K}_{\mathrm{L}}\right]=\left[\mathrm{K}_{1}\right]+\left[\mathrm{K}_{1}\right]^{\mathrm{T}}+\left[\mathrm{K}_{2}\right]
$$

Substitution of the constituent matrices $\left[\mathrm{B}_{0}\right],[\mathrm{D}]$ and $\left[\mathrm{B}_{\mathrm{L}}\right]$ and subsequent integration yields the matrices [K_{1}] and [K_{2}] as;

$$
\left[\mathrm{K}_{1}\right]=\left[\begin{array}{cc:cccc}
0 & 0 & -\mathrm{A} 1 & -\mathrm{A} 2 & -\mathrm{A} 3 & -\mathrm{A} 4 \tag{3.46}\\
0 & 0 & \mathrm{~A} 1 & \mathrm{~A} 2 & \mathrm{~A} 3 & \mathrm{~A} 4 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where

$$
\begin{aligned}
& A 1=\frac{E A}{L}\left(\frac{6}{5 L} v_{1}+\frac{1}{10} \theta_{1}-\frac{6}{5 L} v_{2}+\frac{1}{10} \theta_{2}\right) \\
& A 2=\frac{E A}{L}\left(\frac{1}{10} v_{1}+\frac{2 L}{15} \theta_{1}-\frac{1}{10} v_{2}-\frac{L}{30} \theta_{2}\right) \\
& A 3=-A 1 \\
& A 4=\frac{E A}{L}\left(\frac{1}{10} v_{1}-\frac{L}{30} \theta_{1}-\frac{1}{10} v_{2}-\frac{2 L}{15} \theta_{2}\right)
\end{aligned}
$$

and

$$
\left[K_{2}\right]=\left[\begin{array}{cccccc}
0 & & & & \tag{3.47}\\
0 & 0 & & & \\
\hdashline 0 & 0 & B_{11} & & \\
0 & 0 & B_{21} & B_{22} & & \\
0 & 0 & B_{31} & B_{32} & B_{33} & \\
0 & 0 & B_{41} & B_{42} & B_{43} & B_{44}
\end{array}\right]
$$

where

$$
\begin{aligned}
& B_{11}=E A\left(\frac{6}{5 L} a_{2}^{2}+\frac{12}{5} a_{2} a_{3}+\frac{72 L}{35} a_{2} a_{4}+\frac{48 L^{2}}{35} a_{3}^{2}+\frac{18 L^{2}}{7} a_{3} a_{4}+\frac{9 L^{3}}{7} a_{4}^{2}\right) \\
& B_{21}=E A\left(\frac{1}{10} a_{2}^{2}+\frac{2 L}{5} a_{2} a_{3}+\frac{3 L^{2}}{7} a_{2} a_{4}+\frac{2 L^{2}}{7} a_{3}^{2}+\frac{3 L^{3}}{5} a_{3} a_{4}+\frac{9 L^{4}}{28} a_{4}^{2}\right) \\
& B_{22}=E A\left(\frac{2 L}{15} a_{2}^{2}+\frac{2 L^{2}}{15} a_{2} a_{3}+\frac{4 L^{3}}{35} a_{2} a_{4}+\frac{8 L^{3}}{105} a_{3}^{2}+\frac{11 L^{4}}{70} a_{3} a_{4}+\frac{3 L^{5}}{35} a_{4}^{2}\right) \\
& B_{31}=-B_{11}, \quad B_{32}=-B_{21}, \quad B_{33}=B_{11} \\
& B_{41}=E A\left(-\frac{11}{10} a_{2}^{2}-\frac{6 L^{2}}{35} a_{2} a_{4}-\frac{4 L^{2}}{35} a_{3}^{2}-\frac{3 L^{2}}{7} a_{3} a_{4}-\frac{9 L^{4}}{28} a_{4}^{2}\right)
\end{aligned}
$$

$$
B_{42}=E A\left(-\frac{L}{30} a_{2}^{2}-\frac{L^{2}}{15} a_{2} a_{3}-\frac{3 L^{3}}{35} a_{2} a_{4}-\frac{2 L^{3}}{35} a_{3}^{2}-\frac{11 L^{4}}{70} a_{3} a_{4}-\frac{3 L^{5}}{28} a_{4}^{2}\right)
$$

$$
\mathrm{B}_{43}=-\mathrm{B}_{41}
$$

$$
B_{44}=E A\left(\frac{2 L}{15} a_{2}^{2}+\frac{2 L^{2}}{5} a_{2} a_{3}+\frac{18 L^{3}}{35} a_{2} a_{4}+\frac{12 L^{3}}{35} a_{3}^{2}+\frac{13 L^{4}}{14} a_{3} a_{4}+\frac{9 L^{5}}{14} a_{4}^{2}\right)
$$

and

$$
\begin{aligned}
& a_{2}=\theta_{1} \\
& a_{3}=\left(-\frac{3}{L^{2}} v_{1}-\frac{2}{L} \theta_{1}+\frac{3}{L^{2}} v_{2}-\frac{1}{L} \theta_{2}\right) \\
& a_{4}=\left(\frac{2}{L^{3}} v_{1}+\frac{1}{L^{2}} \theta_{1}-\frac{2}{L^{3}} v_{2}+\frac{1}{L^{2}} \theta_{2}\right)
\end{aligned}
$$

Thus the matrix due to large deflections may be written

$$
\left[\mathrm{K}_{\mathrm{L}}\right]=\left[\begin{array}{llllll}
0 & & & & \tag{3.48}\\
0 & 0 & & & \\
\hdashline-\mathrm{A} 1 & \mathrm{~A} 1 & \mathrm{~B}_{11} & & \\
& & & \\
-\mathrm{A} 2 & \mathrm{~A} 2 & \mathrm{~B}_{21} & \mathrm{~B}_{22} & & \\
-\mathrm{A} 3 & \mathrm{~A} 3 & \mathrm{~B}_{31} & \mathrm{~B}_{32} & \mathrm{~B}_{33} \\
-\mathrm{A} 4 & \mathrm{~A} 4 & \mathrm{~B}_{41} & \mathrm{~B}_{42} & \mathrm{~B}_{43} & \mathrm{~B}_{44}
\end{array}\right]
$$

It should be noted that the complete tangential stiffness matrix [K_{T}] is dependent on the deflections of the joints of the structure and also that it exhibits symmetry about the leading diagonal.

3.3. The Displacement Transformation Matrix.

Up till now the displacements at the ends of each member have been written in terms of their components with respect to the local member axes. Generally, because of the arbitrary orientation of the constituent members of a frame, it is necessary to express these local displacements in terms of displacements relative to a common global coordinate system, thereby enabling displacement compatibility between adjacent members to be achieved. Thus the displacements must be 'transformed' from the local system into the global system $(5,49)$.

Consider a member ($\mathrm{i}-\mathrm{j}$) of a rigid-jointed plane frame with local axes x, y in which the displacements are u, v, respectively and to a global coordinate system in which the displacements are X, Y as shown in fig 3.7.

Fig. 3.7. General Deformation of Member.

After deformation joint i moves to a new position, i^{\prime}, this displacement having components $\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$ in the local axis and $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$ in the global axis, as shown in fig 3.8.

Fig. 3.8. Displacement Components.

By a standard transformation of axis, $\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$ can be expressed in terms of X_{i} and Y_{i} thus;

$$
\begin{aligned}
& u_{i}=X_{i} \cos \alpha+Y_{i} \cos \beta \\
& v_{i}=-X_{i} \cos \beta+Y_{i} \cos \alpha
\end{aligned}
$$

or, in terms of directional cosine notation;

$$
\begin{aligned}
& u_{i}=X_{i} l_{p}+Y_{i} m_{p} \\
& v_{i}=X_{i} 1_{q}+Y_{i} m_{q}
\end{aligned}
$$

The rotation θ_{i} is invariant under the transformation. The similar transformation at joint j is of exactly the same form as that at i . Hence the displacement transformation for member ($\mathrm{i}-\mathrm{j}$) can be written as;

or, on writing the local displacements in the order used in the development of the stiffness matrices;

$$
\left\{\begin{array}{l}
u_{i} \\
u_{j} \\
v_{i} \\
\theta_{i} \\
v_{j}
\end{array}\right\}=\left[\begin{array}{cccccc}
1_{p} & m_{p} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1_{p} & m_{p} & 0 \\
\theta_{q} & m_{q} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & l_{q} & m_{q} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\}\left\{\begin{array}{l}
X_{i} \\
Y_{i} \\
\theta_{i} \\
\theta_{j} \\
X_{j} \\
Y_{j} \\
\text { ie }\{\Delta\}=[A]\{X\}
\end{array}\right\}
$$

where $[A]$ is the displacement transformation matrix and $\{X\}$ is the global displacement vector.

3.4. Formulation of the Global Stiffness Matrix.

Just as the joint displacements must be expressed in terms of displacement components in a global set of axes so that compatibility may be attained, it is necessary to transform similarly the nodal forces into global components to facilitate joint equilibrium requirements.

Consider again a member ($\mathrm{i}-\mathrm{j}$) subjected to nodal forces in both the local and global system as shown in fig 3.9.

Local System

Global System

Fig 3.9. Forces in Local and Global
Coordinate System.

Because the force and displacement systems are formally identical, the transformation of the force components in the local system to those in the global system must be of the form;

$$
\begin{equation*}
\{\mathrm{P}\}=[\mathrm{A}]\{\mathrm{L}\} \tag{3.50}
\end{equation*}
$$

where $[\mathrm{A}]$ is the displacement transformation matrix and $\{\mathrm{P}\}$ and $\{\mathrm{L}\}$ are the vectors of the nodal force components in the local and global system respectively. On writing these vectors in full, equation (3.50) becomes;

The relationship bitween the nodal force and displacement components in the global coordinate system can now be constructed to give the global stiffness matrix.

From the relationship

$$
\{P\}=[K]\{\Delta\}
$$

which relates the nodal forces and the displacements in the local system, using equation (3.49) and (3.50) one may write

$$
\begin{align*}
\{L\} & =[A]^{-1}\{P\}=[A]^{-1}[K]\{\Delta\} \\
& =[A]^{-1}[K][A]\{X\}
\end{align*}
$$

Now it is easily shown that;

$$
[\mathrm{A}]^{-1}=[\mathrm{A}]^{\mathrm{T}}
$$

and hence equation (3.51) may be expressed as;

$$
\{\mathrm{L}\}=[\mathrm{A}]^{\mathrm{T}}[\mathrm{~K}][\mathrm{A}]\{\mathrm{X}\}
$$

or

$$
\begin{equation*}
\{L\}=[S]\{X\} \tag{3.52}
\end{equation*}
$$

where [S] is the global stiffness matrix relating the force and displacement components in the global coordinate system.

Chapter 4.

Construction of Stiffness Matrices and Methods of Solution.

This chapter will discuss in detail, the sub-routines employed in the computer programs to construct the stiffness matrices and to solve the resulting equations. Firstly the routines for setting up the overall stiffness matrix will be described and secondly an insight into the solution techniques employed will be presented.

4.1. Construction of the Global Equations for the Structure.

4.1.1.Linear Element.

It is convenient to begin a discussion of the construction of the overall equations of the system by illustrating such construction with reference to the prismatic element undergoing linear behaviour, the local stiffness matrix of which is given in equation (2.17).

On performing the triple multiplication $\left[\mathrm{A}^{\mathrm{T}}\right][\mathrm{K}][\mathrm{A}]$, equation (3.52), and systemmatically reordering the elements of the vectors, the global stiffness matrix [S] is obtained. This matrix relating the nodal external forces on a member in the global system to their corresponding displacements is, for the member shown in fig 4.1.

Fig 4.1. Diagram showing Nodal External Forces to Their corresponding displacements.
where;

$$
\left\{\begin{array}{l}
\mathrm{F}_{\mathrm{X} 1} \tag{4.1}\\
\mathrm{~F}_{\mathrm{Y} 1} \\
\mathrm{M}_{1} \\
\mathrm{~F}_{\mathrm{X} 2} \\
\mathrm{~F}_{\mathrm{Y} 2} \\
\mathrm{M}_{2}
\end{array}\right\}=\left[\begin{array}{cccccc}
\mathrm{a} & & & & \\
c & b & & \mathrm{~S} & \\
d & e & f & & \mathrm{M} \\
-a & -c & -d & a & & \\
-c & -b & -e & c & b & \\
d & e & g & -d & -e & -f
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
y_{1} \\
\theta_{1} \\
x_{2} \\
y_{2} \\
\theta_{2}
\end{array}\right\}
$$

$$
\{\mathrm{L}\}=[\mathrm{S}]\{\mathrm{X}\}
$$

in which the elements are;

$$
\begin{aligned}
& a=\frac{E A}{L} l_{p}^{2}+\frac{12 E I}{L^{3}} l_{q}^{2} \\
& b=\frac{E A}{L} m_{p}^{2}+\frac{12 E I}{L^{3}} m_{q}^{2} \\
& c=\frac{E A}{L} l_{p q}+\frac{12 E I}{L^{3}} m_{p} m_{q} \\
& d=\frac{6 E I}{L^{2}} l_{q} \quad \quad e=\frac{6 E I}{L^{2}} m_{q} \\
& f=\frac{4 E I}{L} \quad g=\frac{2 E I}{L}
\end{aligned}
$$

It can be noted that the global stiffness matrix $[\mathrm{S}]$ is symmetrical about the leading diagonal and hence only the lower triangle needs to be considered. This symmetry is an extremely useful property as it enables storage to be reduced and allows for relatively simple solution routines.

The equations presented in expression (4.1) can be more generally and compactly expressed in terms of their nodal i and j components for every member of the frame as;

$$
\left\{\begin{array}{l}
L_{i} \\
L_{\mathrm{j}}
\end{array}\right\}=\left[\begin{array}{ll}
\mathrm{S}_{\mathrm{i}} & \mathrm{~S}_{\mathrm{ij}} \\
\mathrm{~S}_{\mathrm{i}} & S_{\mathrm{ij}}
\end{array}\right]\left\{\begin{array}{l}
X_{\mathrm{i}} \\
X_{\mathrm{j}}
\end{array}\right\}
$$

where the sub-matrices $\mathrm{S}_{\mathrm{ii}}, \mathrm{S}_{\mathrm{ij}}, \mathrm{S}_{\mathrm{ij}}, \mathrm{S}_{\mathrm{ij}}$ are the contributions of each end of the member to the overall stiffness matrix of the structure.The location of these sub-matrices for each element in the overall stiffness matrix of the structure is governed by the values of the subscripts i and j respectively.

To clarify this construction procedure consider two elements a and b, with nodes ($\mathrm{i}-\mathrm{j}$) and ($\mathrm{j}-\mathrm{k}$) respectively, of a framework structure as shown in fig 4.2.

Fig 4.2. Diagram Showing Joint External Nodal Loadings.
in which typical external nodal forces are applied at joints $\mathrm{i}, \mathrm{j}, \mathrm{k}$ respectively.

On construction of the overall structural stiffness matrix, it is seen that the locations of the various components of the two members in the matrix will be as shown in fig 4.3 in
which the subscripts a and b refer to the members a and b respectively.

Fig 4.3. Construction of Overall Stiffness Matrix and Formation of Global Equations.

Continued similar systematic superposition of the stiffness contributions for every other member of the frame results in the formation of the complete set of global equations, which can be expressed briefly as

$$
\begin{equation*}
\left\{\mathrm{L}_{\mathrm{T}}\right\}=\left[\mathrm{S}_{\mathrm{T}}\right]\left\{\mathrm{X}_{\mathrm{T}}\right\} \tag{4.2}
\end{equation*}
$$

where the suffix T implies that the matrices apply to the complete structure.

Further details of this construction procedure may be found in the various standard text on matrix analysis $(5,49,58)$.

4.1.2. Non-linear Element.

Of the four non-linear elements presented, three, namely those described in section (3.1.1), (3.1.2) and (3.2.2.3), contain stiffness matrices that are symmetrical about the leading diagonal. Hence the construction of the equations pertaining to those elements follows the same procedure as that described in section (4.1.1) above.

The stiffness matrix for the non-linear element obtained from the derived exact function and including interactions between the flexural and axial effects is, however non-symmetrical. Since every other element produces symmetry in the stiffness matrix, it is convenient to rearrange the equations of this fourth non-linear element so that it too exhibits symmetry, thus allowing the same solution routine to be employed for matrices constructed from any element form.

The symmetry of this derived 'interactive' element can be carried out in the following manner. Consideration of the local element given in equation (3.22) shows that the stiffness matrix is composed of two portions, a symmetrical component comprising independent flexural and axial matrices and a non-symmetrical 'coupling' component.

Transformation into global coordinates is achieved by firstly rewriting the local nodal displacements, occuring within the unsymmetrical component of the matrix, in terms of the global nodal displacements and then performing the triple multiplication $[A]^{T}[K][A]$. The resulting global stiffness matrix can now itself be separated into symmetrical and non-symmetrical components producing the global equations:-
where for the prismatic member exhibiting non-linear behaviour under compression;

$$
\begin{aligned}
& a=\frac{E A}{L} 1_{p}^{2}+\frac{P \alpha^{2} \sin \alpha L}{\lambda} 1_{q}^{2} \\
& b=\frac{E A}{L} m_{p}^{2}+\frac{P \alpha^{2} \sin \alpha L}{\lambda} m_{q}^{2} \\
& c=\frac{E A}{L} l_{p} m_{p}+\frac{P \alpha^{2} \sin \alpha L}{\lambda} l_{q} m_{q} \\
& d=\frac{P \alpha(1-\cos \alpha L)}{\lambda} l_{q} \\
& f=\frac{P(\sin \alpha L-\alpha L \cos \alpha L)}{\lambda}
\end{aligned}
$$

where

$$
\lambda=2 \alpha(1-\cos \alpha \mathrm{L})-\alpha^{2} \mathrm{~L} \sin \alpha \mathrm{~L} \quad \alpha=\sqrt{ }(\mathrm{P} / \mathrm{EI})
$$

and

$$
\begin{array}{ll}
\mathrm{ZN} 1=\mathrm{A} 1 \mathrm{l}_{\mathrm{p}} \mathrm{l}_{\mathrm{q}} & \mathrm{ZN} 2=\mathrm{A} 1 \mathrm{l}_{\mathrm{p}} \mathrm{~m}_{\mathrm{p}} \\
\mathrm{ZN} 3=\mathrm{A} 21_{\mathrm{p}} & \mathrm{ZN} 4=\mathrm{A} 2 \mathrm{~m}_{\mathrm{p}} \\
\mathrm{ZN} 5=\mathrm{A} 1 \mathrm{~m}_{\mathrm{p}} 1_{\mathrm{q}} & \mathrm{ZN} 6=\mathrm{A} 1 \mathrm{~m}_{\mathrm{p}} \mathrm{~m}_{\mathrm{q}} \\
\mathrm{ZN} 7=\mathrm{A} 4 \mathrm{~m}_{\mathrm{p}} & \mathrm{ZN} 8=\mathrm{A} 41_{\mathrm{p}} \\
\mathrm{ZN} 9=\mathrm{A} 3 \mathrm{I}_{\mathrm{p}} 1_{\mathrm{q}} & \mathrm{ZN} 10=\mathrm{A} 31_{\mathrm{p}} \mathrm{~m}_{\mathrm{q}} \\
\mathrm{ZN} 11=\mathrm{A} 3 \mathrm{~m}_{\mathrm{p}} 1_{\mathrm{q}} & \mathrm{ZN} 12=\mathrm{A} 3 \mathrm{~m}_{\mathrm{p}} \mathrm{~m}_{\mathrm{q}}
\end{array}
$$

where it should be noted that the coefficients A1, A2, A3, A4 are here described in terms of displacements in the local coordinate system.

Hence by transferring the un-symmetrical components to the left hand side, symmetry of the stiffness matrix is restored, the equations taking the form;

This process obviously requires a modification of the left hand vector which will be dependent on the nodal displacements.

It can be noted that the symmetrical portion of this matrix is the complete stiffness matrix obtained for the non-linear element, which was formulated from derived functions, but in which the interactions between the flexural and axial matrices were excluded (sections 3.1.1 and 3.1.2).

4.2.Imposition of Known Displacements.

The solution of a structural problem cannot proceed until sufficient boundary conditions have been imposed to define a datum from which the displacements can be measured. These boundary conditions consist of prescribed displacements at selected nodes, and although the values of these displacements are usually zero, corresponding to complete restraint, non-zero values can also be prescribed, these corresponding to perhaps known settlements.

The manner in which a prescribed zero displacement can be applied is by simply replacing the elements of the row and column corresponding to the displacement by zeros, leaving however the leading diagonal term unchanged. The corresponding load term is also made equal to zero. This process is illustrated in fig 4.4 where the
displacements θ_{i} and x_{k} are prescribed as zero, and where it can be noted that symmetry of the stiffness matrix is still preserved.

Fig 4.4. Method of Imposing Zero Displacements.

This technique can only be used to impose zero displacements and hence if non-zero values are prescribed a separate procedure must be followed. While precise insertion of prescribed values can be implemented, an approximate but very satisfactory method consists of multiplying the leading diagonal corresponding to the prescribed displacement by a large number, eg 10^{20}. Similarly it is necessary to replace the corresponding load by the product of the modified leading diagonal and the prescribed displacement. Thus considering an original equation;

$$
\mathrm{F}_{\mathrm{i}}=\mathrm{K}_{1 \mathrm{i}} \phi_{1}+\mathrm{K}_{2 \mathrm{i}} \phi_{2}+\cdots \cdots \cdots \cdots+\mathrm{K}_{\mathrm{ii}} \phi_{\mathrm{i}}+\cdots \cdots \cdots \cdots \cdots+\mathrm{K}_{\mathrm{ik}} \phi_{\mathrm{k}}
$$

in which the ϕ values represent the displacement, and $\phi_{\mathrm{i}}=\psi$ is prescribed, the
modification described above will alter the equation to;

$$
\mathrm{K}_{\mathrm{ii}} * 10^{20} \psi=\mathrm{K}_{1 \mathrm{i}} \phi_{1}+\mathrm{K}_{2 \mathrm{i}} \phi_{2}+\cdots+\mathrm{K}_{\mathrm{ii}} * 10^{20} \phi_{\mathrm{i}}+\cdots+\mathrm{K}_{\mathrm{ik}} \phi_{\mathrm{k}}
$$

Since all the terms on the right hand side except $\mathrm{K}_{\mathrm{ii}} * 10^{20} \phi_{\mathrm{i}}$ are small, it can be seen that ϕ_{i} must be approximatly equal to ψ. Again the preservation of symmetry in the stiffness matrix may be noted.

4.3. Solution of Linear Equations.

Once the structural equations have been constructed and the boundary conditions imposed, the displacement vector can be obtained directly via inversion of the stiffness matrix as long as the elements of the matrix are constants. Thus from equation (4.2);

$$
\left\{\mathrm{L}_{\mathrm{T}}\right\}=\left[\mathrm{S}_{\mathrm{T}}\right]\left\{\mathrm{X}_{\mathrm{T}}\right\}
$$

the vector $\left\{\mathrm{X}_{\mathrm{T}}\right\}$ is obtained from;

$$
\left\{\mathrm{X}_{\mathrm{T}}\right\}=\left[\mathrm{S}_{\mathrm{T}}\right]^{-1}\left\{\mathrm{~L}_{\mathrm{T}}\right\}
$$

A number of techniques both direct and iterative are available for performing this inversion $(5,50,51,52)$, the most popular of these being perhaps the direct methods of Gaussian elimination $(50,51)$ and Cholesky decomposition ${ }^{(52)}$. Gaussian elimination may be applied to both symmetrical and non-symmetrical matrices, while the Cholesky procedure only applies to matrices of symmetrical form. With matrices which are symmetrical and positive definite the Cholesky method is more economical in storage than the Gauss procedure and thus, since only such matrices are encountered in the thesis, this method of solution was chosen.

Once the nodal displacements have been determined, the nodal forces in each member can be found by back substitution of the deflections into the member equations.

4.3.1. Cholesky Decomposition Method.

This method consists of rewriting the equations set

$$
\left\{\mathrm{L}_{\mathrm{T}}\right\}=\left[\mathrm{S}_{\mathrm{T}}\right]\left\{\mathrm{X}_{\mathrm{T}}\right\}
$$

into the form

$$
\left\{\mathrm{L}_{\mathrm{T}}\right\}=[\mathrm{U}]^{\mathrm{T}}[\mathrm{U}]\left\{\mathrm{X}_{\mathrm{T}}\right\}
$$

where $[\mathrm{U}]$ is an upper triangular matrix and $[\mathrm{U}]^{\mathrm{T}}$, its transpose, is a lower triangular matrix.

Thus letting

$$
\begin{equation*}
[\mathrm{U}]\left\{\mathrm{X}_{\mathrm{T}}\right\}=\{\mathrm{Y}\} \tag{4.4}
\end{equation*}
$$

the vector $\{\mathrm{Y}\}$ can be found from

$$
\left\{\mathrm{L}_{\mathrm{T}}\right\}=[\mathrm{U}]^{\mathrm{T}}\{\mathrm{Y}\}
$$

and hence $\left\{\mathrm{X}_{\mathrm{T}}\right\}$ obtained from equation (4.4) that is

$$
\left\{\mathrm{X}_{\mathrm{T}}\right\}=[\mathrm{U}]^{-1}\{\mathrm{Y}\}
$$

The inverse of the matrix $[\mathrm{U}]$ or $[\mathrm{U}]^{\mathrm{T}}$ is obtained via a simple systematic procedure due to the triangular characteristics of [U]. The algebraic details of the procedure are well documented ${ }^{(52)}$, providing a comprehensive description.

4.4. Solution of Non-linear Equations.

In the treatment of geometrical non-linearity the coefficients of the stiffness matrix have been shown to depend on the axial force in the element and also on the nodal displacements themselves. Hence in order to obtain solutions to non-linear problems, clearly iterative techniques must be employed. The nature of these procedures will depend on the form of element used to model the non-linear behaviour and thus it is necessary to describe the solution techniques for each element separately.

4.4.1. Elements obtained from Equilibrium and Work Processes in which Axial and Flexural Effects are Independent (Section 3.1.1, 3.1.2 and 3.2.1)

The solution of frames using these elements entails performing an initial linear analysis using the element described in section 2.1 through which the axial forces in each element are obtained. These axial forces are then used to obtain the non-linear flexural stiffness matrices described in sections (3.1.1), (3.1.2) and (3.2.1) which are functions of the axial force in the member. Thus a second analysis may be performed which includes the effects of the axial forces. It would appear that further iterations are illogical since the axial forces are considered to be independent of the lateral displacements as explained in section (3.1.4). Hence the solution process using these elements should be considered complete after one iteration.

4.4.2. Element obtained from Equilibrium in which Axial and Flexural Effects are Coupled (Section 3.1.5 and 3.1.6).

Analysis using this element is expected to produce the most accurate results. In this case the non-linear equations contain both the axial force in the member and the nodal flexural displacements. A first approximation to these forces and displacements can again be found by performing a linear analysis. If these results are substituted into the non-linear equations, a process which involves modification of the load vector (equation 4.3), and a second analysis carried out, a closer approximation will be obtained. Such iteration can then be continued until the difference between two successive sets of displacements is acceptably small. Hence solution using this element should be considered one of continued iterations.

4.4.3. Element Formulated Through a Tangential Stiffness Matrix (Section 3.2.2).

As shown in equation (3.38a), at equilibrium the relationship between external and internal forces is given by

$$
\{\mathrm{P}\}=\int_{0}^{\mathrm{L}}[\widetilde{\mathrm{~B}}]^{\mathrm{T}}\{\sigma\} \mathrm{dx}
$$

which may be expressed as

$$
\psi(\delta)=\int_{0}^{\mathrm{L}}[\overline{\mathrm{~B}}]^{\mathrm{T}}\{\sigma\} \mathrm{dx}-\{\mathrm{P}\}=0
$$

since the internal force term is a function of the nodal displacements $\{\delta\}$.

If an approximate displacement vector $\left\{\delta_{n}\right\}$ is obtained, then $\psi\left(\delta_{n}\right)$ will not be equal to zero but may be related to $\psi\left(\delta_{n+1}\right)=0$ by the equation

$$
\psi\left(\delta_{n+1}\right)=\psi\left(\delta_{n}\right)+\left(\frac{d \psi}{d \delta}\right)_{n} \Delta \delta_{n}=0
$$

ie

$$
\psi\left(\delta_{n+1}\right)=\psi\left(\delta_{n}\right)+\left[K_{T}\right]_{n}\left\{\Delta \delta_{n}\right\}=0
$$

where

$$
\begin{equation*}
\delta_{n+1}=\delta_{n}+\Delta \delta_{n} \tag{4.5}
\end{equation*}
$$

and $\left[\mathrm{K}_{\mathrm{T}}\right]$ is the tangential stiffness matrix.

Thus

$$
\begin{equation*}
\Delta \delta_{\mathrm{n}}=-\left[\mathrm{K}_{\mathrm{T}}\right]_{\mathrm{n}}^{-1} \psi\left(\delta_{\mathrm{n}}\right) \tag{4.6}
\end{equation*}
$$

The solution process thus becomes ${ }^{(45)}$;
a) Perform a linear analysis to obtain $\left\{\delta_{0}\right\}$.
b) Hence determine $\psi\left(\delta_{0}\right)$.
c) Calculate $\left[\mathrm{K}_{\mathrm{T}}\right]_{0}$ using $\left\{\delta_{0}\right\}$ and the axial force in the member.
d) Calculate $\Delta \delta_{0}$ from equation (4.6).
e) Determine $\delta_{1}=\delta_{0}+\Delta \delta_{0}$ from equation (4.5)

Repeat steps b) to e), using the next δ_{n} for each cycle, until $\Delta \delta_{n}$ becomes acceptably small.

This process is thus again one of continual iteration. It can be noted that in essence the procedure is that of the Newton-Raphson method ${ }^{(50)}$. The formulation of the internal forces, ie $\int_{0}^{\mathrm{L}}[\widetilde{B}]^{T}\{\sigma\} \mathrm{dx}$, is given in Appendix 2

4.5. Flow Charts for Programs.

The descriptions of the solution processes given in the last section may be conveniently summarised through the medium of flow charts. Two flow charts are presented, these being for the two methods involving continual iterations. The corresponding flow charts for the simpler one-step iteration procedure can easily be deduced from those given.The programs were written in FORTRAN $(53,54)$ and is listed in Appendix 3.

4.5.1. Exact Solution using Coupling Factors.

4.5.2. Tangential Stiffness Matrix.

Chapter 5.

Treatment of Non-Nodal and

Distributed Loading.

In the developments presented so far the external loading has been considered to consist of point loads applied at the nodes of the structure. In many practical instances the external loading may be of non-nodal or distributed form and hence, in order to be able to apply the processes so far developed, such loadings must be presented in the form of equivalent nodal loads.

The procedure for obtaining this equivalent loading will firstly be developed for the case of a non-nodal point load and the result obtained then used to determine the equivalent nodal forces due to distributed loading.

5.1. Non-nodal Point Load.

To find the nodal forces equivalent to a unit lateral point load, consider such a load applied to a beam in a structure a distance x from node 1 as shown in fig 5.1(a). The effect of this load may be considered equivalent to the sum of two components as shown in fig 5.1 (b) (c) where it is seen that the nodal forces producing the same nodal displacements as the unit load are numerically equal to the fixed end forces produced by the load.

Fig 5.1. Decomposition of Effect of Non-nodal Point Load.

Considering the application of virtual displacements and equating the virtual work done by the external forces gives

$$
1 . \delta \mathrm{v}_{\mathrm{a}}=1 . \delta \mathrm{v}_{\mathrm{f}}+\mathrm{P}_{1} \delta \mathrm{u}_{1}+\mathrm{P}_{2} \delta \mathrm{u}_{2}+\mathrm{S}_{1} \delta \mathrm{v}_{1}+\mathrm{M}_{1} \delta \theta_{1}+\mathrm{S}_{2} \delta \mathrm{v}_{2}+\mathrm{M}_{2} \delta \theta_{2}
$$

Hence

$$
\delta \mathrm{v}_{\mathrm{a}}-\delta \mathrm{v}_{\mathrm{f}}=\delta \mathrm{v}_{\mathrm{x}}=\left[\begin{array}{lllllll}
P_{1} & P_{2} & S_{1} & M_{1} & S_{2} & M_{2}
\end{array}\right]\left\{\begin{array}{c}
\delta \mathrm{u}_{1} \\
\delta \mathrm{u}_{2} \\
\delta \mathrm{v}_{1} \\
\delta \theta_{1} \\
\delta \mathrm{v}_{2} \\
\delta \theta_{2}
\end{array}\right\}
$$

$$
\text { ie } \delta \mathrm{v}_{\mathrm{x}}=\{\mathrm{P}\}^{\mathrm{T}}\{\delta \Delta\}
$$

or

$$
\begin{equation*}
\delta \mathrm{v}_{\mathrm{x}}=\{\delta \Delta\}^{\mathrm{T}}\{\mathrm{P}\} \tag{5.1}
\end{equation*}
$$

where it should be noted that v_{x} is the displacement profile produced by the nodal loadings.

Now using a general form of lateral displacement function

$$
\begin{array}{rlllll}
v_{x}=\left[\begin{array}{llllll}
1 & x & F_{1}(x) & F_{2}(x) & 0 & 0
\end{array}\right]
\end{array}\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}
$$

$$
\text { ie } \quad v_{x}=[N]\{a\}=[N][C]^{-1}\{\Delta\}
$$

it is seen that

$$
\delta \mathrm{v}_{\mathrm{x}}=\left\{[\mathrm{N}][\mathrm{C}]^{-1}\right\}\{\delta \Delta\}
$$

or

$$
\begin{equation*}
\delta \mathbf{v}_{\mathrm{x}}=\{\delta \Delta\}^{\mathrm{T}}\left\{[\mathrm{~N}][\mathrm{C}]^{-1}\right\}^{\mathrm{T}} \tag{5.2}
\end{equation*}
$$

Thus on comparison of equations (5.1) and (5.2) the equivalent nodal forces are given by

$$
\begin{equation*}
\{\mathrm{P}\}=\left\{[\mathrm{N}][\mathrm{C}]^{-1}\right\}^{\mathrm{T}} \tag{5.3}
\end{equation*}
$$

Application of this result to the lateral displacement function

$$
\begin{equation*}
v_{x}=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} \tag{5.4}
\end{equation*}
$$

yields the values of the equivalent nodal forces $\{\mathrm{P}\}$ as

$$
\{P\}=\left\{\begin{array}{l}
S_{1} \tag{5.5}\\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
1-\underline{3} x^{2}+\underline{2} x^{3} \\
L^{2} \\
x-\underline{2} x^{3}+\frac{1}{L^{2}} x^{3} \\
L \\
\frac{3}{L^{2}} x^{2}-\underline{2} x^{3} \\
L^{3} \\
\frac{-1}{L} x^{2}+\frac{1}{L^{2}} x^{3}
\end{array}\right\}
$$

while for the functions

$$
\begin{equation*}
v_{x}=a_{1}+a_{2} x+a_{3} \sin \alpha x+a_{4} \cos \alpha x \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{x}=a_{1}+a_{2} x+a_{3} \sinh \alpha x+a_{4} \cosh \alpha x \tag{5.7}
\end{equation*}
$$

the equivalent nodal forces are given by

$$
\{P\}=\left\{\begin{array}{l}
S_{1} \tag{5.8}\\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{l}
C_{11}+C_{21} x+C_{31} \sin \alpha x+C_{41} \cos \alpha x \\
C_{12}+C_{22} x+C_{32} \sin \alpha x+C_{42} \cos \alpha x \\
C_{13}+C_{23} x+C_{33} \sin \alpha x+C_{43} \cos \alpha x \\
C_{14}+C_{24} x+C_{34} \sin \alpha x+C_{44} \cos \alpha x
\end{array}\right\}
$$

and

$$
\{P\}=\left\{\begin{array}{l}
S_{1} \tag{5.9}\\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{l}
C_{11}+C_{21} x+C_{31} \sinh \alpha x+C_{41} \cosh \alpha x \\
C_{12}+C_{22} x+C_{32} \sinh \alpha x+C_{42} \cosh \alpha x \\
C_{13}+C_{23} x+C_{33} \sinh \alpha x+C_{43} \cosh \alpha x \\
C_{14}+C_{24} x+C_{34} \sinh \alpha x+C_{44} \cosh \alpha x
\end{array}\right\}
$$

respectively.

The equivalent nodal forces due to a unit axial point load applied within the length of the beam can be formed by an analogous procedure using the appropriate axial displacement function.

5.2. Distributed Loading.

The equivalent nodal forces due to distributed loading can be found from the previous result by considering the distributed loading p per unit run to be equivalent to a succession of point loads each of magnitude p.dx.

Thus the equivalent nodal forces due to a uniformly distributed lateral load covering the whole span, L, can be written, from equation (5.3) as;

$$
\begin{equation*}
\{\mathrm{P}\}=\mathrm{p} \int_{0}^{\mathrm{L}}\left\{[\mathrm{~N}][\mathrm{C}]^{-1}\right\}^{\mathrm{T}} \mathrm{dx} \tag{5.10}
\end{equation*}
$$

Applying this result to the cubic displacement function given by equation (5.4) gives the result;

$$
\{P\}=\left\{\begin{array}{l}
S_{1} \tag{5.11}\\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=p \int_{0}^{L}\left\{\begin{array}{l}
1-\frac{3}{L^{2}} x^{2}+\underline{2} L^{3} \\
x-\frac{2}{L^{3}} x^{2}+\frac{1}{L^{2}} x^{3} \\
\frac{3}{L^{2}} x^{2}-\frac{2}{L^{3}} x^{3} \\
-\frac{1}{L} x^{2}+\frac{1}{L^{2}} x^{3}
\end{array}\right\} d x=\left\{\begin{array}{c}
\frac{p L}{2} \\
\frac{p L^{2}}{12} \\
\frac{p L}{2} \\
-\frac{p L^{2}}{12}
\end{array}\right\}
$$

while for the functions given in equation (5.6) and $(5,7)$ the equivalent nodal forces are;
and
respectively.

Again the equivalent nodal forces for a uniformly axially distributed load covering the span may be found similarly, as can those for other forms of uniform or non-uniform loadings.

5.3. Example of the Effect of Axial load on Fixed End Moments.

Consider the fixed ended beam below with a variable axial force and a moving lateral non-nodal point load.

Letting

$$
\rho=\frac{P}{P_{e}}
$$

where

$$
P_{e}=\frac{4 \pi^{2} E I}{L^{2}} \quad \text { (Euler's buckling load for a fixed ended beam) }
$$

then plotting ($\mathrm{M}_{\mathrm{F}} / \mathrm{WL}$) against x gives the following graph.

Variation in FEM for Member with Axial and Moving Lateral Loading

Position of Lateral Point Load (m)

5.4. Modification to the Program.

As the non-nodal forces can be expressed in equivalent nodal form, all that is required in the program is an additional sub-routine in which these equivalent nodal forces are transformed from local coordinates to global coordinates, and added on to the existing load vector of the structure.

PART B.

Gometrically Non-Linear Analysis of Non-Prismatic Sections.

Chapter 6.

Matrix Formulation.

The increasing performance required of modern frameworks, especially with regard to increase in span, has produced the impetus to seek greater efficiency in the use of shape and material in the design of structures.

The use of prismatic members automatically means that if a variation of bending moment exists in a member, then a proportion of the length of the element may be substantially understressed and hence not used efficiently. In order to attain greater efficiency, therefore, such elements could be tapered so that a more uniform distribution of stress occurs along the length of the member. This method of producing greater material efficiency is now becoming quite popular although manufacturing costs are higher when compared with those for prismatic sections.

In this chapter, therefore, attention is concentrated on the development of stiffness matrices for both linear and non-linear behaviour as applied to tapered sections. Firstly the exact linear stiffness matrix for a generally non-prismatic member obtained from derived displacement functions is presented, and then developed for specific cross-sectional shapes, and secondly the intractability of applying derived functions to the solution of non-linear tapered structures is demonstrated.

The development of approximate stiffness matrices based on work methods is then presented for the non-linear behaviour of non-prismatic sections, similar to those described in chapter 3 for prismatic sections.

6.1. Formation of the Exact Stiffness Matrix for Geometrically Linear Behaviour of a Prismatic Beam.

As presented previously for the linear prismatic beam (section 2.2), the complete stiffness matrix relating nodal forces to nodal displacements is composed of independent axial and flexural portions, and these components will be developed separately.

6.1.1. Development of the Flexural Stiffness Matrix.

Consider a general non-prismatic section member depicted in Fig 6.1 with the nodal forces shown.

Fig. 6.1. Tapered Beam Showing Positive Values of Nodal forces.

The stress resultants on an element of length δx of this beam is shown in Fig 6.2 below.

Fig 6.2. Stress Resultants on Element.

6.1.1.1. Formulation of Lateral Deflection Function.

As for the prismatic beam, rotational equilibrium of the element gives;

$$
\begin{equation*}
S=-\frac{d M}{d x} \tag{6.1}
\end{equation*}
$$

and since for vertical equilibrium, S is constant;

$$
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dx}}=-\frac{\mathrm{d}^{2} \mathrm{M}}{\mathrm{dx}}=0 \tag{6.2}
\end{equation*}
$$

Intergrating (6.2) with respect to x gives;

$$
\begin{equation*}
\mathrm{M}=\mathrm{b}_{1}+\mathrm{b}_{2} \mathrm{x} \tag{6.3}
\end{equation*}
$$

where b_{1} and b_{2} are the constants of integration.

From the simple theory of bending

$$
\begin{equation*}
M=E I(x) \frac{d^{2} v}{d x^{2}} \tag{6.4}
\end{equation*}
$$

where I , the second moment of area of the section, is a function of x .

Thus substituting (6.3) into (6.4) and rearanging gives;

$$
\frac{d^{2} v}{d x^{2}}=\frac{M}{\operatorname{EI}(x)}=\frac{b_{1}}{\operatorname{EI}(x)}+\frac{b_{2} x}{\operatorname{EI}(x)}
$$

or, assuming E to be constant;

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}=\frac{a_{3}}{I(x)}+\frac{a_{4} x}{I(x)} \tag{6.5}
\end{equation*}
$$

where $a_{3}=\frac{b_{1}}{E}$ and $a_{4}=\frac{b_{2}}{E}$.

Further integration gives;

$$
\begin{equation*}
\frac{d v}{d x}=\theta=a_{2}+a_{3} \int \frac{1}{I(x)} d x+a_{4} \int \frac{x}{I(x)} d x \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v=a_{1}+a_{2} x+a_{3} \iint \frac{1}{I(x)} d x d x+a_{4} \iint \frac{x}{I(x)} d x d x \tag{6.7}
\end{equation*}
$$

thus giving the exact description of the beam displacement within the confines of the simple theory of bending.

6.1.1.2. Calculation of Nodal Displacements from the Arbitrary Constants $\left\{a_{b}\right\}$.

As the procedure is similar to that described in chapter 2 , only the results will be presented. Substituting the nodal conditions into equations (6.6) and (6.7), the following matrix relationship ensues;

$$
\left\{\begin{array}{c}
\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
1 & 0 & G_{1} & H_{1} \\
0 & 1 & g_{1} & h_{1} \\
1 & L & G_{2} & H_{2} \\
0 & 1 & g_{2} & h_{2}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\} \tag{6.8}\\
\left\{\Delta_{b}\right\}=\left[C_{b}\right]\left\{a_{b}\right\}
\end{array}\right.
$$

in which;

$$
\begin{array}{ll}
g_{1}=\int_{0}\left(\frac{1}{\bar{I}(x)}\right) d x & g_{2}=\int_{L}\left(\frac{1}{\mathrm{I}(x)}\right) d x \\
h_{1}=\int_{0}\left(\frac{x}{I(x)}\right) d x & h_{2}=\int_{L}\left(\frac{x}{I(x)}\right) d x
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{G}_{1}=\int_{0}\left(\frac{1}{\mathrm{I}(\mathrm{x})}\right) \mathrm{dxdx} & \mathrm{G}_{2}=\int_{\mathrm{L}} \int_{0}\left(\frac{1}{\mathrm{I}(\mathrm{x})}\right) \mathrm{dxdx} \\
\mathrm{H}_{1}=\iint_{0}\left(\frac{\mathrm{x}}{\mathrm{I}(\mathrm{x})}\right) \mathrm{dxdx} & \mathrm{H}_{2}=\int_{\mathrm{L}} \int\left(\frac{x}{\mathrm{I}(x)}\right) d x d x
\end{array}
$$

Inversion of (6.8) produces;

$$
\begin{gathered}
\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}=\left[\begin{array}{llll}
C_{11} & c_{12} & c_{13} & C_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
c_{41} & c_{42} & c_{43} & c_{44}
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\} \\
\left\{a_{b}\right\}=\left[c_{b}\right]^{-1}\left\{\Delta_{b}\right\}
\end{gathered}
$$

where the elements of $\left[C_{b}\right]^{-1}$ are given in appendix 1 and reference 40.

6.1.1.3. Relationship Between Stress Resultants and Nodal Displacements.

From equation (6.5)

$$
\begin{equation*}
\mathrm{M}=\mathrm{EI}(\mathrm{x}) \frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dx}^{2}}=\mathrm{E}\left[\mathrm{a}_{3}+\mathrm{a}_{4} \mathrm{x}\right] \tag{6.11}
\end{equation*}
$$

and from equation (6.1) it follows that

$$
\begin{equation*}
S=-E I(x) \frac{d^{3} v}{d x^{3}} \tag{6.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{S}=-\mathrm{E} \mathrm{a}_{4} \tag{6.13}
\end{equation*}
$$

Combining (6.11) and (6.13) gives

$$
\left\{\begin{array}{l}
S \tag{6.14}\\
M
\end{array}\right\}=E\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & x
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}
$$

But $\left\{a_{b}\right\}=\left[C_{b}\right]^{-1}\left\{\Delta_{b}\right\}$ and hence

$$
\begin{gather*}
\left\{\begin{array}{l}
S \\
M
\end{array}\right\}=\mathrm{E}\left[\begin{array}{c:c:c:c}
-\mathrm{C}_{41} & -\mathrm{C}_{42} & -\mathrm{C}_{43} & -C_{44} \\
\hdashline C_{31}+\mathrm{xC}_{41} & \mathrm{C}_{32}+\mathrm{xC}_{42} & C_{33}+\mathrm{xC}_{43} & C_{34}+x C_{44}
\end{array}\right]\left\{\begin{array}{c}
\mathrm{v}_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\} \ldots \tag{6.15}
\end{gather*}
$$

6.1.1.4. Formulation of Stiffness Matrix [K_{b}].

Since equilibrium is satisfied at all sections of the beam, the values of the nodal stress resultants must be numerically equal to the nodal external forces as described in section (2.1.2).Thus considering equilibrium of the external and internal nodal forces and noting that they are of the same sign at node 2 and of opposite sign at node 1 the relationship between the external nodal forces and the displacements is given by;

$$
\left\{\begin{array}{l}
\mathrm{s}_{1} \\
\mathrm{M}_{1} \\
\mathrm{~s}_{2} \\
\mathrm{M}_{2}
\end{array}\right\}=\left[\begin{array}{c:c:c:c}
\mathrm{C}_{41} & \mathrm{C}_{42} & \mathrm{C}_{43} & \mathrm{C}_{44} \\
\hdashline-\mathrm{C}_{31} & -\mathrm{C}_{32} & -\mathrm{C}_{33} & -\mathrm{C}_{34} \\
\hdashline-\mathrm{C}_{41} & -\mathrm{C}_{42} & -\mathrm{C}_{43} & -\mathrm{C}_{44} \\
\hdashline \mathrm{C}_{31}+\mathrm{LC}_{41} & \mathrm{C}_{32}+\mathrm{LC}_{42} & \mathrm{C}_{33}+\mathrm{LC}_{43} & \mathrm{C}_{34}+\mathrm{LC}_{44}
\end{array}\right]\left\{\begin{array}{c}
\mathrm{v}_{1} \\
\theta_{1} \\
\mathrm{v}_{2} \\
\theta_{2}
\end{array}\right\} \cdots\left(\begin{array}{l}
\text { (6.16) }
\end{array}\right.
$$

$$
\text { ie }\left\{\begin{array}{l}
S_{1} \\
M_{1} \\
s_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
K_{33} & & \\
K_{43} & K_{44} & S_{Y} \\
K_{53} & K_{54} & K_{55} & M \\
K_{63} & K_{64} & K_{65} & K_{66}
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

$$
\text { ie }\left\{\mathrm{P}_{\mathrm{b}}\right\}=\left[\mathrm{K}_{\mathrm{b}}\right]\left\{\Delta_{\mathrm{b}}\right\}
$$

After some manipulation it can be shown that

$$
\begin{aligned}
& K_{33}=-K_{53}=K_{55}=C_{41}=-C_{41}=-C_{4 B}=\frac{E}{D} \int_{0}^{L} x d x \\
& K_{43}=-C_{31}=-C_{33}=-C_{42}=\frac{E}{D} \int_{0}^{L} x X d x \\
& K_{44}=-C_{32}=\frac{E}{D} \int_{0}^{L} x^{2} x d x \\
& K_{54}=K_{43} \\
& K_{63}=-K_{65}=C_{44}=\frac{E}{D} \int_{0}^{L}(L-x) X d x \\
& K_{64}=C_{34}=\frac{E}{D} \int_{0}^{L} x(L-x) X d x
\end{aligned}
$$

$$
\mathrm{K}_{66}=\mathrm{C}_{34}+\mathrm{LC}_{44}=\frac{\mathrm{E}}{\mathrm{D}} \int_{0}^{\mathrm{L}}(\mathrm{~L}-\mathrm{x})^{2} \mathrm{Xdx}
$$

where

$$
X=\frac{1}{I(x)}
$$

and

$$
D=\int_{0}^{L} X d x \int_{0}^{L} x^{2} X d x-\left(\int_{0}^{L} x X d x\right)^{2}
$$

$\left[\mathrm{K}_{\mathrm{b}}\right]$ is the flexural stiffness matrix and is symmetrical about the leading diagonal.

6.1.2. Construction of the Axial Stiffness Matrix $\left[\mathrm{K}_{\mathrm{a}}\right]$ for a Non-prismatic Bar.

The axial stiffness matrix can be formed in a similar manner to that for the bending stiffness matrix. Considering the equilibrium of a length $\delta \mathrm{x}$ of the beam as shown in Fig 6.3.

Fig 6.3. Diagram Showing Stress Resultants
and Nodal Forces.
it is seen that;

$$
\begin{equation*}
\frac{\mathrm{dP}}{\mathrm{dx}}=0 \tag{6.17}
\end{equation*}
$$

Ignoring any moment effects from the axial force, and noting that the cross-sectional area is a function of x , Hooke's Law gives;

$$
\begin{equation*}
P=E A(x) \frac{d u}{d x} \tag{6.18}
\end{equation*}
$$

where u is the axial displacement.

Hence differentiating (6.18) with respect to x and substituting in (6.17) gives;

$$
\frac{d P}{d x}=E\left[A(x) \frac{d^{2} u}{d x^{2}}+\left(\frac{d A(x)}{d x}\right) \frac{d u}{d x}\right]=0
$$

or

$$
\begin{equation*}
\mathrm{A}(\mathrm{x}) \frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dx}^{2}}+\left(\frac{\mathrm{dA}(\mathrm{x})}{\mathrm{dx}}\right) \frac{\mathrm{du}}{\mathrm{dx}}=0 \tag{6.19}
\end{equation*}
$$

Integration of (6.19) with respect to x gives the axial displacement function as;

$$
\begin{equation*}
u=a_{5}+a_{6} \int \frac{1}{A(x)} d x \tag{6.20}
\end{equation*}
$$

Hence following steps (6.1.1.2) to (6.1.1.4) and referring to the sign convention shown in Fig 6.3 the following result is given:-

$$
\left\{\begin{array}{l}
\mathrm{P}_{1} \tag{6.21}\\
\mathrm{P}_{2}
\end{array}\right\}=\frac{\mathrm{E}}{\varphi}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right\}
$$

$$
\text { ie }\left\{\mathrm{P}_{\mathrm{a}}\right\}=\left[\mathrm{K}_{\mathrm{a}}\right]\left\{\Delta_{\mathrm{a}}\right\}
$$

where

$$
\varphi=\int_{0}^{L} \frac{1}{A(x)} d x
$$

Again the symmetry of the matrix should be noted.

6.1.3. Combined Stiffness Matrix for Flexural and Axial Behaviour.

Combination of the flexural and axial equations yields the complete stiffness matrix relating the six nodal forces to the corresponding displacements, thus:-

$$
\begin{aligned}
& \text { or }\{P\}=[K]\{\Delta\}
\end{aligned}
$$

The above relationships represent linear behaviour of a general non-prismatic section, the individual elements being evaluated from $\mathrm{I}(\mathrm{x})$ and $\mathrm{A}(\mathrm{x})$ of the beam under consideration. It should also be noted that the stiffness matrix is symmetrical about the leading diagonal and that the flexural and axial sub-matrices are mutually independent of each other.

A close study of the above stiffness matrix shows that the elements can be calculated from four simple integral evaluations. From sections 6.1.1.4 and 6.2 and letting

$$
\begin{array}{ll}
\int_{0}^{\mathrm{L}} \frac{1}{\mathrm{~A}(\mathrm{x})} \mathrm{dx}=\overline{\mathrm{A}}_{0} & \int_{0}^{\mathrm{L}} \frac{1}{\mathrm{I}(\mathrm{x})} \mathrm{dx}=\overline{\mathrm{I}}_{0} \\
\int_{0}^{\mathrm{L}} \frac{\mathrm{x}}{\mathrm{I}(\mathrm{x})} \mathrm{dx}=\overline{\mathrm{I}}_{1} & \int_{0}^{\mathrm{L}} \frac{\mathrm{x}^{2}}{\mathrm{I}(\mathrm{x})} \mathrm{dx}=\overline{\mathrm{I}}_{2}
\end{array}
$$

where $\mathrm{A}(\mathrm{x})$ and $\mathrm{I}(\mathrm{x})$ represent the variation of the cross-sectional area and second moment of area along the section respectively,the combined stiffness matrix may be written as;

$$
\begin{aligned}
& K_{11}=-K_{21}=K_{22}=\frac{E}{\left(\bar{A}_{0}\right)} \\
& K_{33}=-K_{53}=K_{55}=\frac{E}{D}\left(\bar{I}_{0}\right) \\
& K_{43}=-K_{54}=\frac{E}{D}\left(\bar{I}_{1}\right) \\
& K_{44}=\frac{E}{D}\left(\bar{I}_{2}\right) \\
& K_{63}=-K_{65}=\frac{E}{D}\left[L\left(\bar{I}_{0}\right)-\overline{\mathrm{I}}_{1}\right] \\
& K_{64}=\frac{E}{D}\left[L\left(\overline{\mathrm{I}}_{1}\right)-\bar{I}_{2}\right] \\
& K_{66}=\frac{E}{D}\left[L^{2}\left(\overline{\mathrm{I}}_{0}\right)-2 L\left(\overline{\mathrm{I}}_{1}\right)+\overline{\mathrm{I}}_{2}\right]
\end{aligned}
$$

where $\mathrm{E}=$ Young's Modulus and

$$
\mathrm{D}=\left(\overline{\mathrm{I}}_{0} \overline{\mathrm{I}}_{2}\right)-\left(\overline{\mathrm{I}}_{1}\right)^{2}
$$

6.1.4. Formulation of 'Exact' Flexural Stiffness Matrices for Rectangular and I-sections.

The general results derived in the previous sections will now be applied to the specific cases of tapering rectangular and I-section beams.

6.1.4.1. Rectangular Section.

Consider a rectangular beam with constant breadth b and varying depth as shown in Fig 6.4;

Fig 6.4.Tapered Beam Showing a General Depth at Distance X.

From the geometry of the tapered section, at a distance x from the origin;

$$
\begin{align*}
t_{x} & =t_{1}+\left(\frac{t_{2}-t_{1}}{L}\right) x \\
& =t_{1}+\gamma x \tag{6.24}
\end{align*}
$$

where

$$
\gamma=\left(\frac{\mathrm{t}_{2}-\mathrm{t}_{1}}{\mathrm{~L}}\right)
$$

Now it is possible to express the second moment of area and the cross-sectional area in terms of the depth 2 ! distance x as

$$
\begin{aligned}
& I_{x}=\frac{b}{12}\left(t_{1}+\gamma x\right)^{3} \\
& A_{x}=b\left(t_{1}+\gamma x\right)
\end{aligned}
$$

Hence using the two expressions, the four integrals presented in section (6.1.3) can be evaluated, giving

$$
\begin{aligned}
& \bar{A}_{0}=\frac{L\left[\ln \left(t_{2} / t_{1}\right)\right]}{b\left(t_{2}-t_{1}\right)} \\
& \bar{I}_{0}=\frac{6 L\left(t_{2}-t_{1}\right)}{b t_{1}^{2} t_{2}^{2}} \\
& \bar{I}_{1}=\frac{6 L^{2}}{b t_{1} t_{2}^{2}} \\
& I_{2}=\frac{12}{b\left(t_{2}-t_{1}\right)^{2}}\left[\frac{\ln \left(t_{2} / t_{1}\right)}{\left(t_{2}-t_{1}\right)}-\frac{\left(3 t_{2}-t_{1}\right)}{2 t_{2}^{2}}\right]
\end{aligned}
$$

which can be substituted into the standard results given in the previous section to obtain the stiffness matrix coefficients.

6.1.4.2. I-section.

Consider a beam with constant breadth b and the section shown below in Fig 6.5;

Fig 6.5. Showing typical I-section.

From the figure above it can be seen that the second moment of area can be expressed as;

$$
\mathrm{I}(\mathrm{x})=\frac{1}{12}\left[\mathrm{bt}_{\mathrm{x}}^{3}-\left(\mathrm{b}-\mathrm{h}_{\mathrm{w}}\right)\left(\mathrm{t}_{\mathrm{x}}-2 \mathrm{~h}_{\mathrm{f}}\right)^{3}\right]
$$

where

$$
\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{1}+\phi \mathrm{x}
$$

Rearranging the above expression gives

$$
I(x)=\frac{b}{12}\left\{t_{x}^{3}-\left[\left(\frac{b-h_{w}}{b}\right)^{1 / 3}\left(t_{x}-2 h_{f}\right)\right]^{3}\right\}
$$

Letting $\xi=\left(\frac{b-h_{w}}{b}\right)^{1 / 3}$

$$
\mathrm{I}(\mathrm{x})=\left[\mathrm{t}_{\mathrm{x}}-\xi\left(\mathrm{t}_{\mathrm{x}}-2 \mathrm{~h}_{\mathrm{f}}\right)\right]^{3}
$$

and expanding and evaluating the general integrals ${ }^{(59)}$ gives;

$$
\begin{aligned}
& \bar{I}_{0}=\int_{0}^{L} \frac{1}{I(x)} d x=\frac{2}{b K^{2} k^{2}}\left(\frac{L}{t_{2}-t_{1}}\right)[2 \sqrt{ } 3(1+K) \mu-(1-K) \rho] \\
& \bar{I}_{1}=\int_{0}^{L} \frac{x}{I(x)} d x=\frac{2}{b K k}\left(\frac{L}{t_{2}-t_{1}}\right)^{2}[2 \sqrt{3} \mu-\rho]-\left(\frac{t_{1} L}{t_{2}-t_{1}}\right) \bar{I}_{0} \\
& \left.\bar{I}_{2}=\int_{0}^{L} \frac{x^{2}}{I(x)} d x=\frac{2}{b(1-K)\left(1+K+K^{2}\right)}\left(\frac{L}{t_{2}-t_{1}}\right)^{3}[3 \tau+2 \sqrt{3} K \mid 1-K) \mu-\left(1+K+K^{2}\right) \rho\right] \\
& -2\left(\frac{t_{1} L}{t_{2}-t_{1}}\right) \bar{I}_{1}-\left(\frac{t_{1} L}{t_{2}-t_{1}}\right)^{2} \bar{I}_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& \tau=\log \frac{a t_{2}^{2}+b t_{2}+c}{a t_{1}^{2}+b t_{1}+c} \\
& \rho=\log \left(\frac{a t_{2}^{2}+b t_{2}+c\left[(1-K) t_{1}+K k\right]^{2}}{a t_{1}^{2}+b t_{1}+c\left[(1-K) t_{2}+K k\right]^{2}}\right) \\
& \mu=\tan ^{-1}\left(\frac{2 a t_{2}+b}{\sqrt{3 K k}}\right)-\tan ^{-1}\left(\frac{2 a t_{1}+b}{\sqrt{3 K k}}\right)
\end{aligned}
$$

and

$$
a=1+K+K^{2} \quad b=-K k(1+2 K) \quad c=K^{2} k^{2}
$$

$$
\mathrm{k}=\text { total flange depth }
$$

$$
\mathrm{K}=\left(\frac{\mathrm{g}}{\mathrm{~b}}\right)^{1 / 3} \text { where } \mathrm{g}=\mathrm{b} \text { - total web thickness }
$$

The axial stiffness matrix may be calculated similarly by noting that the cross sectional area may be written as;

$$
A_{x}=2 b h_{f}+h_{w}\left(t_{1}+\phi x-2 h_{f}\right)
$$

which upon rearranging gives

$$
\begin{equation*}
\mathrm{A}_{\mathrm{x}}=\phi_{1}+\phi_{2} \mathrm{x} \tag{6.26}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi_{1}=2 b h_{f}+h_{w} t_{1}-2 h h_{w} \\
& \phi_{2}=h_{w} \phi
\end{aligned}
$$

Hence performing integration as in previous section gives;

$$
\overline{\mathrm{A}}_{0}=\frac{1}{\phi_{2}}\left[\ln \left(\frac{\phi_{1}+\phi_{2} \mathrm{~L}}{\phi_{1}}\right)\right]
$$

It can be noted that this formulation applies also to the box section where h_{w} represents the combined thickness of the webs.

6.1.5. Formulation of Stiffness Matrix for a General Shape of Section.

The analysis given in (6.1.4) will now be developed to enable the stiffness matrix for any idealised section to be obtained. The construction of the values of $\overline{\mathrm{A}}_{0}, \overline{\mathrm{I}}_{0}, \overline{\mathrm{I}}_{1}$, and $\overline{\mathrm{I}}_{2}$ for shapes other than those of the simplest geometrical form can become extremely tedious. Even the I-section as seen above, one of the most common of structural forms, exhibits a high complexity of analysis (41).

Because of this it is considered practical to use an approximation to the true form by assuming that the variation of the section properties ${ }^{(39)}$ may be expressed as

$$
\begin{align*}
& A_{x}=A_{1}(1+\phi x)^{m} \tag{6.25a}\\
& I_{x}=I_{1}(1+\phi x)^{n} \tag{6.25b}
\end{align*}
$$

where A_{1}, I_{1} are the cross-sectional and second moment of area at node 1 and;

$$
\phi=\frac{\left(t_{2}-t_{1}\right)}{t_{1} L}
$$

where t_{1}, t_{2} are the section depths at nodes 1 and 2 respectively, assuming linear variation of depth.

The form of equation (6.25) is thus seen to be the same as that for the rectangular section. The exponents m and n can be found from the conditions at node 2 where x equals L.Thus

$$
\begin{aligned}
& A_{2}=A_{1}\left(1+\frac{t_{2}-t_{1}}{t_{1}}\right)^{m}=A_{1}\left(\frac{t_{2}}{t_{1}}\right)^{m} \\
& I_{2}=I_{1}\left(1+\frac{t_{2}-t_{1}}{t_{1}}\right)^{n}=I_{1}\left(\frac{t_{2}}{t_{1}}\right)^{n}
\end{aligned}
$$

ie

$$
\left(\frac{A_{2}}{A_{1}}\right)=\left(\frac{t_{2}}{t_{1}}\right)^{m} \quad \text { and } \quad\left(\frac{I_{2}}{I_{1}}\right)=\left(\frac{t_{2}}{t_{1}}\right)^{n}
$$

Thus

$$
m=\frac{\log \left(A_{2} / A_{1}\right)}{\log \left(t_{2} / t_{1}\right)} \quad \text { and } \quad n=\frac{\log \left(I_{2} / I_{1}\right)}{\log \left(t_{2} / t_{1}\right)}
$$

Using equations (6.25) and performing the necessary integrations gives the values of $\mathrm{A}_{0}, \mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}$ as;

$$
\begin{aligned}
& A_{0}=\frac{L}{A_{1} r(1-m)}\left[\left(\frac{t_{2}}{t_{1}}\right)^{1-m}-1\right] \\
& I_{0}=\frac{L}{I_{1} r(1-n)}\left[\left(\frac{t_{2}}{t_{1}}\right)^{1-n}-1\right] \\
& I_{1}=\frac{L^{2}}{I_{1} r^{2}}\left[\frac{1}{(2-n)}\left(\frac{t_{2}}{t_{1}}\right)^{2-n}-\frac{1}{(1-n)}\left(\frac{t_{2}}{t_{1}}\right)^{1-n}+\frac{1}{(2-n)(1-n)}\right] \\
& I_{2}=\frac{L^{3}}{I_{1} r^{3}}\left\{\frac{1}{(3-n)}\left[\left(\frac{t_{2}}{t_{1}}\right)^{3-n}-1\right]-\frac{2}{(2-n)}\left[\left(\frac{t_{2}}{t_{1}}\right)^{2-n}-1\right]+\frac{1}{(1-n)}\left[\left(\frac{t_{2}}{t_{1}}\right)^{1-n}-1\right]\right\}
\end{aligned}
$$

where

$$
\mathrm{r}=\phi / \mathrm{L}
$$

It can be observed that when m equals 1 and n equals 1,2 or 3 this formulation is invalid due to the infinite nature of some of the terms. These values of exponents correspond to section properties which result in simpler formulations, eg, for m equals 1 , n equals 3 the section is one of tapering rectangular form as discussed previously.

It should be noted that all the stiffness matrices developed so far in this chapter apertain to linear behaviour, ie where any axial effects on the flexural behaviour are ignored.

6.2. Formulation of Exact Deflection Function for Non-linear Behaviour.

As already shown in chapter 3, it is in principle possible to derive the exact deflection profiles for a beam from equilibrium considerations. In this section the exact flexural deflection profile for a geometrically non-linear, tapered rectangular section will be derived.

6.2.1. Formation of Lateral Deflection Function.

Consider a non-prismatic rectangular beam of constant breadth b and of depth varying linearly from t_{1} to t_{2} under an axial compressive force P at both ends.

Fig 6.6. Non-prismatic Member Under Axial Loading.

Consider an element of length $\delta \mathrm{x}$ in its deformed state under this compressive load;

Fig 6.7. Diagram Showing the Element in its Deformed State in Compression.

Rotational equilibrium gives;

$$
\frac{d M}{d x}+S+P \frac{d v}{d x}=0
$$

ie

$$
\begin{equation*}
S=-\frac{d M}{d x} \cdot P \frac{d v}{d x} \tag{6.27}
\end{equation*}
$$

But S is constant throughout the element and thus;

$$
\frac{d S}{d x}=\frac{d^{2} M}{d x^{2}}+P \frac{d^{2} v}{d x^{2}}=0
$$

Substitution of equation (6.4) gives;

$$
\begin{equation*}
\frac{d^{4} v}{d x^{4}}+\frac{P}{\operatorname{EI}(x)} \frac{d^{2} v}{d x^{2}}=0 \tag{6.28}
\end{equation*}
$$

where the second moment of area $I(x)$ is now a function of x whereas in chapter 3 it was taken as constant.

Letting $\mathrm{q}=\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dx}^{2}}$ then;

$$
\begin{equation*}
\frac{d^{2} q}{d x^{2}}+\frac{p}{E I(x)} q=0 \tag{6.29}
\end{equation*}
$$

But $\mathrm{I}(\mathrm{x})$ can be written as;

$$
\begin{equation*}
\mathrm{I}(\mathrm{x})=\frac{\mathrm{bt} \mathrm{t}_{\mathrm{x}}^{3}}{12} \tag{6.30}
\end{equation*}
$$

where from fig. 6.6,

$$
t_{x}=t_{1}\left(\frac{x}{a}\right)
$$

Hence substitution into (6.30) gives;

$$
I(x)=\frac{b t_{1}^{3}}{12}\left(\frac{x}{a}\right)^{3}=I_{1}\left(\frac{x}{a}\right)^{3}
$$

Substituting this result into equation (6.29) produces;

$$
\frac{d^{2} q}{d x^{2}}+\frac{p}{E I_{1}} \frac{a^{3}}{x^{3}} q=0
$$

or

$$
\begin{equation*}
\frac{d^{2} q}{d x^{2}}+k^{2} x^{3} q=0 \tag{6.31}
\end{equation*}
$$

where

$$
\mathrm{k}^{2}=\frac{\mathrm{Pa}^{3}}{E \mathrm{I}_{1}}
$$

The solution of equation (6.31) can be written in terms of Bessel functions $(55,56)$, thus;

$$
\begin{equation*}
q=a_{3} x^{05} J_{1}(z)+a_{4} x^{0.5} Y_{1}(z) \tag{6.31a}
\end{equation*}
$$

where $\mathrm{z}=2 \mathrm{kx}^{-0.5}$ and $\mathrm{J}_{1}(\mathrm{z})$ and $\mathrm{Y}_{1}(\mathrm{z})$ are Bessel functions of order one and of the first and second kind respectively which may be written $(55,56)$ as;

$$
\begin{aligned}
& J_{1}(z)=\frac{z}{2}\left[1-\frac{1}{2}\left(\frac{z}{2}\right)^{2}+\frac{1}{2!3!}\left(\frac{z}{2}\right)^{4}-\frac{1}{3!4!}\left(\frac{z}{2}\right)^{6}+\ldots .\right] \\
& Y_{1}(z)=\frac{2}{\pi}[\gamma+\log (z / 2)] J_{1}(z)-\frac{2}{\pi z}-\frac{1}{\pi}\left[\frac{z}{2}-\frac{1}{2}\left(\frac{z}{2}\right)^{3}(1+1+1 / 2)\right] \\
& {\left[+\frac{1}{2!3!}\left(\frac{z}{2}\right)^{5}(1+1 / 2+1+1 / 2+1 / 3)-\frac{1}{3!4!}\left(\frac{z}{2}\right)^{7}(1+1 / 2+1 / 3+1+1 / 2+1 / 3+1 / 4)+\ldots .\right]}
\end{aligned}
$$

Double integration of equation (6.31a) will yield the lateral deflection profile as;

$$
\begin{equation*}
\mathrm{w}=\mathrm{a}_{1}+\mathrm{a}_{2} \mathrm{x}+\mathrm{a}_{3} \mathrm{~F}_{1}(\mathrm{x})+\mathrm{a}_{4} \mathrm{~F}_{2}(\mathrm{x}) \tag{6.32}
\end{equation*}
$$

It is apparent that continuation of this process, although in principle able to produce a precise stiffness matrix, is practically not viable owing to the complexities involved and the approximations that would occur due to curtailment of the series.

A more fruitful avenue to pursue is thus one based on work processes in which approximate but simpler deflection functions are used. The relevent procedures have already been described in chapter 3 with regard to prismatic beams, the results there being obtained via the linear prismatic deflection functions. It would appear logical, therefore, when applying the work methods to non-prismatic beams, to base the derivations on the linear non-prismatic functions. As for the prismatic sections, two stiffness matrices will be developed, the first assuming that the axial force is independent of the flexural deformations, and the second taking the effects of flexural deformations on the axial forces into account, a procedure that leads to the tangential stiffness matrix.

6.3. Formulation of Non-linear Stiffness Matrix with Mutually Independent Flexural and Axial Components.

As described in Chapter 3 the effect of geometrical non-linearity assuming that the axial forces do not depend on the flexural deformations can be studied by simply adding the initial stress matrix $\left[\mathrm{K}_{\sigma}\right]$ to the flexural stiffness matrix.

Using the flexural and axial deflection functions for a general non-prismatic beam, that is;

$$
\begin{align*}
& v=a_{1}+a_{2} x+a_{3} \iint \frac{1}{I(x)} d x d x+a_{4} \iint \frac{x}{I(x)} d x d x \tag{6.7}\\
& u=a_{5}+a_{6} \int \frac{1}{A(x)} d x \tag{6.20}
\end{align*}
$$

the flexural, axial, and initial stress matrices can be computed.

The flexural and axial matrices have already been presented in sections (6.1.1) and (6.1.2). It thus only remains to determine the initial stress matrix. Two sections will be considered, firstly the rectangular section and secondly the general section in which the section properties are represented by power functions.

6.3.1.Rectangular Section.

The form of the initial stress matrix $\left[\mathrm{K}_{\sigma}\right]$ has already been given in chapter 3 as;

$$
\begin{equation*}
\left[\mathrm{K}_{\sigma}\right]=\int_{0}^{\mathrm{L}}[\mathrm{G}]^{\mathrm{T}} \mathrm{P}[\mathrm{G}] \mathrm{dx} \tag{6.33}
\end{equation*}
$$

where $[\mathrm{G}]$ is found from the lateral deflection function.

Differentiation of the deflection function for v (equation 6.7) gives the slope θ as

$$
\begin{equation*}
\theta=\frac{d v}{d x}=a_{2}+a_{3} \int \frac{1}{I(x)} d x+a_{4} \int \frac{x}{I(x)} d x \tag{6.34}
\end{equation*}
$$

which can be written more compactly as

$$
\theta=\left[\begin{array}{lll}
0 & 1 & f(x) \tag{6.35}\\
& g(x)
\end{array}\right]\left\{a_{b}\right\}
$$

For a rectangular section

$$
\mathrm{I}(\mathrm{x})=\frac{\mathrm{b}}{12}\left(\mathrm{t}_{1}+\phi \mathrm{x}\right)^{3}
$$

where here $\phi=\frac{t_{2}-t_{1}}{L}$ and hence

$$
f(x)=\int \frac{1}{\mathrm{I}(\mathrm{x})} d x=\frac{-6}{\mathrm{~b} \phi\left(\mathrm{t}_{1}+\phi \mathrm{x}\right)^{2}}
$$

and

$$
\begin{align*}
g(x)=\int \frac{x}{I(x)} d x & =\left(\frac{6 t_{1}}{b \phi^{2}\left(t_{1}+\phi x\right)^{2}}-\frac{12}{b \phi^{2}\left(t_{1}+\phi x\right)}\right) \\
& =\frac{-6\left(t_{1}+2 \phi x\right)}{b^{2}\left(t_{1}+\phi x\right)^{2}} \tag{6.36}
\end{align*}
$$

Multiplication of (6.35) by $\left[\mathrm{C}_{\mathrm{b}}\right]^{-1}$ (equation 6.10) produces

$$
\theta=\left[\begin{array}{llll}
\mathrm{G}_{1} & \mathrm{G}_{2} & \mathrm{G}_{3} & \mathrm{G}_{4}
\end{array}\right]\left\{\begin{array}{l}
\mathrm{v}_{1} \tag{6.37}\\
\theta_{1} \\
\theta_{2}
\end{array}\right\}
$$

ie $[G]\left\{\Delta_{b}\right\}$
where the four elements of [G] are of the form

$$
\mathrm{G}_{\mathrm{m}}=\mathrm{C}_{2 \mathrm{~m}}+\mathrm{f}(\mathrm{x}) \mathrm{C}_{3 \mathrm{~m}}+\mathrm{g}(\mathrm{x}) \mathrm{C}_{4 \mathrm{~m}}
$$

Thus an element of $\left[\mathrm{K}_{\sigma}\right]$ which may be written as

$$
K_{\sigma_{m}}=P \int_{0}^{L} G_{m} G_{n} d x
$$

becomes after substitution of G_{m} and G_{n};

$$
\begin{align*}
K_{\sigma_{m}}= & P \int_{0}^{L}\left\{C_{2 m} C_{2 n}+f(x)\left(C_{2 m} C_{3 n}+C_{2 n} C_{3 m}\right)+f(x)^{2} C_{3 m} C_{3 n}\right. \\
& +g(x)\left(C_{3 m} C_{4 n}+C_{3 n} C_{4 m}\right)+f(x) g(x)\left(C_{3 m} C_{4 n}+C_{3 n} C_{4 m}\right) \\
& \left.+g(x)^{2} C_{4 m} C_{4 n}\right\} d x \tag{6.38}
\end{align*}
$$

Hence $\left[\mathrm{K}_{\sigma}\right]$ can be incorporated using a simple routine and the non-linear stiffness matrix $[\mathrm{K}]$ formulated to produce the matrix equations

$$
\{\mathrm{P}\}=[\mathrm{K}]\{\Delta\}=\left[\begin{array}{c:c}
\mathrm{K}_{\mathrm{a}} & 0 \tag{6.39}\\
\hdashline 0 & \mathrm{~K}_{0}+\mathrm{K}_{\sigma}
\end{array}\right]\left\{\begin{array}{l}
\Delta_{\mathrm{a}} \\
\Delta_{\mathrm{b}}
\end{array}\right\}
$$

It should be noted that as before this matrix is symmetrical about the leading diagonal. Also as before $\left[\mathrm{K}_{\mathrm{a}}\right]$ and $\left[\mathrm{K}_{0}\right]$ are the matrices due to linear behaviour developed in section (6.1) above.

6.3.2. General Section (Power Function).

As shown in previous sections the second moment of area of any section may be conveniently expressed by the approximation;

$$
I(x)=I_{1}(1+\phi x)^{n}
$$

where n is dependent on the shape of the cross-section. Using this second moment of area in the derivation of $\left[\mathrm{K}_{\sigma}\right]$, the same result is obtained as equation (6.38) above except that $f(x)$ and $g(x)$ are given as;

$$
f(x)=\frac{(1+\phi x)^{1-n}}{I_{1} \phi(1-n)}
$$

$$
g(x)=\frac{(1+\phi x)^{2 n}}{I_{1} \phi(2-n)}-\frac{(1+\phi x)^{1-n}}{I_{1} \phi(1-n)}
$$

The results are valid for all values of n except for $\mathrm{n}=1,2$ and 3 as discussed previously.

6.4.Non-linear Stiffness Matrix with Coupled Flexural and Axial Components (Tangential Stiffness Matrix).

As demonstrated for prismatic beams, a more accurate assessment of non-linear behaviour is attained by use of the expression for axial strain

$$
\varepsilon_{\mathrm{a}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}
$$

where the second term is the component due to lateral deflections. This extra expression leads to further stiffness coefficients which will add on to the existing expressions shown in equation (6.39) above.

6.4.1.Relationship Between Strains and Nodal Displacements.

Again writing the lateral and axial displacement functions as;

$$
\begin{equation*}
v=a_{1}+a_{2} x+a_{3} \iint \frac{1}{I(x)} d x d x+a_{4} \iint \frac{x}{I(x)} d x d x \tag{6.7}
\end{equation*}
$$

$$
\begin{equation*}
u=a_{5}+a_{6} \int \frac{1}{A(x)} d x \tag{6.20}
\end{equation*}
$$

and the values of the axial and flexural strains as;

$$
\begin{aligned}
& \varepsilon_{a}=\frac{d u}{d x}+\frac{1}{2}\left(\frac{d v}{d x}\right)^{2} \\
& \varepsilon_{b}=\frac{d^{2} v}{d x^{2}}
\end{aligned}
$$

and by following a similar procedure as before and formulating $[\mathrm{C}]^{-1}$ the slope can again be written as

$$
\frac{\mathrm{dv}}{\mathrm{dx}}=\left[\begin{array}{llll}
\mathrm{G}_{1} & \mathrm{G}_{2} & \mathrm{G}_{3} & \mathrm{G}_{4}
\end{array}\right]\left\{\Delta_{\mathrm{b}}\right\}=[\mathrm{G}]\left\{\Delta_{\mathrm{b}}\right\}
$$

where

$$
\mathrm{G}_{\mathrm{m}}=\mathrm{C}_{2 \mathrm{~m}}+\mathrm{f}(\mathrm{x}) \mathrm{C}_{3 \mathrm{~m}}+\mathrm{g}(\mathrm{x}) \mathrm{C}_{4 \mathrm{~m}}
$$

and the strain/displacement relationships as;
where

$$
m=\frac{L \ln \left(t_{2} / t_{1}\right)}{b\left(t_{2}-t_{1}\right)}
$$

for a rectangular section.

6.4.2. Relationship Between Stress Resultants and Strains.

The relationship between the stresses and strains is given by the expression;

$$
\{\sigma\}=[D]\{\varepsilon\}
$$

where

$$
[\mathrm{D}]=\left[\begin{array}{cc}
\mathrm{E} \mathrm{~A}_{\mathrm{x}} & 0 \\
0 & E I_{x}
\end{array}\right]
$$

It can be noted that [D] is now a function of x and not constant as in chapter 3 .

6.4.3. Formulation of Tangential Stiffness Matrix.

From section (3.2), and using the nomenclature described there,

$$
\left[\mathrm{K}_{\mathrm{L}}\right]=\left[\mathrm{K}_{1}\right]+\left[\mathrm{K}_{1}\right]^{\mathrm{T}}+\left[\mathrm{K}_{2}\right]
$$

where

$$
\begin{aligned}
& {\left[\mathrm{K}_{1}\right]=\int_{0}^{\mathrm{L}}\left[\mathrm{~B}_{0}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{\mathrm{L}}\right] \mathrm{dx}} \\
& {\left[\mathrm{~K}_{2}\right]=\int_{0}^{\mathrm{L}}\left[\mathrm{~B}_{\mathrm{L}}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{B}_{\mathrm{L}}\right] \mathrm{dx}}
\end{aligned}
$$

and

$$
\left[B_{0}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & \frac{-1}{m A(x)} & \frac{1}{m A(x)} \\
C_{31}+\mathrm{xC}_{41} & {\underset{C}{32}}^{C_{23}+\mathrm{xC}_{42}} & \mathrm{C}_{33}+\mathrm{xC}_{43} & \frac{C_{34}+\mathrm{xC}_{44}}{\mathrm{I}(\mathrm{x})} & 0 & 0 \\
\mathrm{I}(\mathrm{x}) & \mathrm{I}(\mathrm{x}) & & &
\end{array}\right]
$$

$$
\left[\mathrm{B}_{\mathrm{L}}\right]=\left[\begin{array}{llllll}
\frac{1}{2} \frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{G}_{1} & \frac{1}{2} \frac{\mathrm{dv} \mathrm{G}_{2}}{} \frac{1}{\mathrm{dx}} \frac{\mathrm{dv} G_{3}}{2 \mathrm{dx}} & \frac{1}{2} \frac{\mathrm{dv} G_{4}}{2 \mathrm{dx}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

6.4.3.1. Evaluation of $\left[\mathrm{K}_{\mathrm{L}}\right]$.

Substitution of the constituent matrices $\left[\mathrm{B}_{0}\right],[\mathrm{D}]$ and $\left[\mathrm{B}_{\mathrm{L}}\right]$ and subsequent integration yields the matrices $\left[\mathrm{K}_{1}\right]$ and $\left[\mathrm{K}_{2}\right]$ as;

$$
\left[\mathrm{K}_{1}\right]=\left[\begin{array}{cc:cccc}
0 & 0 & -\mathrm{A} 1 & -\mathrm{A} 2 & -\mathrm{A} 3 & -\mathrm{A} 4 \tag{6.40}\\
0 & 0 & \mathrm{~A} 1 & \mathrm{~A} 2 & \mathrm{~A} 3 & \mathrm{~A} 4 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where

$$
\begin{aligned}
A_{N} & =\frac{E}{m} \int_{0}^{L}\left\{\left(C_{2 n}+g(x) C_{3 n}+f(x) C_{4 n}\right) a_{2}\right. \\
& +\left(g(x) C_{2 n}+g(x)^{2} C_{3 n}+f(x) g(x) C_{4 n}\right) a_{3} \\
& \left.+\left(f(x) C_{2 n}+f(x) g(x) C_{3 n}+f(x)^{2} C_{4 n}\right) a_{4}\right\} d x
\end{aligned}
$$

and

$$
\left[\mathrm{K}_{2}\right]=\left[\begin{array}{cccccc}
0 & & & & \tag{6.41}\\
0 & 0 & & & & \\
\hdashline 0 & 0 & \mathrm{~B}_{11} & & S_{Y} \\
0 & 0 & B_{21} & B_{22} & & \\
0 & 0 & B_{31} & B_{32} & B_{33} & \\
0 & 0 & B_{41} & B_{42} & B_{43} & B_{44}
\end{array}\right]
$$

where

$$
B_{m n}=\int_{0}^{L} E A_{x} \theta^{2} G_{m} G_{n} d x
$$

which upon expansion yields;

$$
\begin{aligned}
\mathrm{B}_{\mathrm{mn}} & =\mathrm{E} \int_{0}^{\mathrm{L}}\left\{\mathrm{bt}_{\mathrm{x}}\left(\gamma_{1}+\mathrm{f}(\mathrm{x}) \gamma_{2}+\mathrm{g}(\mathrm{x}) \gamma_{3}+\mathrm{f}(\mathrm{x})^{2} \gamma_{4}+\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \gamma_{5}+\mathrm{g}(\mathrm{x})^{2} \gamma_{6}\right) \mathrm{a}_{2}{ }^{2}\right. \\
& +2 \mathrm{f}(\mathrm{x}) \mathrm{b} \mathrm{t}_{\mathrm{x}}\left(\gamma_{1}+\mathrm{f}(\mathrm{x}) \gamma_{2}+\mathrm{g}(\mathrm{x}) \gamma_{3}+\mathrm{f}(\mathrm{x})^{2} \gamma_{4}+\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \gamma_{5}+\mathrm{g}(\mathrm{x})^{2} \gamma_{6}\right) \mathrm{a}_{2} \mathrm{a}_{3} \\
& +2 \mathrm{~g}(\mathrm{x}) \mathrm{b} \mathrm{t}_{\mathrm{x}}\left(\gamma_{1}+\mathrm{f}(\mathrm{x}) \gamma_{2}+\mathrm{g}(\mathrm{x}) \gamma_{3}+\mathrm{f}(\mathrm{x})^{2} \gamma_{4}+\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \gamma_{5}+\mathrm{g}(\mathrm{x})^{2} \gamma_{6}\right) \mathrm{a}_{2} \mathrm{a}_{4} \\
& +\mathrm{f}(\mathrm{x})^{2} \mathrm{~b} t_{\mathrm{x}}\left(\gamma_{1}+\mathrm{f}(\mathrm{x}) \gamma_{2}+\mathrm{g}(\mathrm{x}) \gamma_{3}+\mathrm{f}(\mathrm{x})^{2} \gamma_{4}+\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \gamma_{5}+\mathrm{g}(\mathrm{x})^{2} \gamma_{6}\right) \mathrm{a}_{3}^{2} \\
& \left.+\mathrm{g}(\mathrm{x})^{2} \mathrm{~b} \mathrm{t}_{\mathrm{x}}\left(\gamma_{1}+\mathrm{f}(\mathrm{x}) \gamma_{2}+\mathrm{g}(\mathrm{x}) \gamma_{3}+\mathrm{f}(\mathrm{x})^{2} \gamma_{4}+\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \gamma_{5}+\mathrm{g}(\mathrm{x})^{2} \gamma_{6}\right) \mathrm{a}_{4}^{2}\right\} \mathrm{dx}
\end{aligned}
$$

where

$$
\begin{array}{lll}
\mathrm{t}_{\mathrm{x}}=\left(\mathrm{t}_{1}+\phi \mathrm{x}\right) & \\
\gamma_{1}=C_{2 m} C_{2 n} & \gamma_{2}=\left(\mathrm{C}_{2 \mathrm{~m}} \mathrm{C}_{3 \mathrm{n}}+\mathrm{C}_{2 \mathrm{n}} \mathrm{C}_{3 \mathrm{~m}}\right) & \gamma_{3}=\left(\mathrm{C}_{2 m} C_{4 n}+C_{2 n} C_{4 m}\right) \\
\gamma_{4}=C_{3 m} C_{3 n} & \gamma_{5}=\left(C_{3 m} C_{4 n}+C_{3 n} C_{4 m}\right) & \gamma_{6}=C_{4 m} C_{4 n}
\end{array}
$$

and $f(x)$ and $g(x)$ are given above.

As can be seen the expression is very complex in nature and further integration is tedious and intractable.

Chapter 7.

Treatment of Non-Nodal and Distributed Loading.

To formulate the equivalent nodal loads for a non-prismatic section, a similar procedure is followed to that shown in Chapter 5. Again two common examples will be discussed, ie, the inter joint loading and the uniformly distributed load.

Although already presented in Chapter 5, the two results obtained for the point loading and the UDL are rewritten below, ie;

$$
\begin{equation*}
\{\mathrm{P}\}=\left\{[\mathrm{N}][\mathrm{C}]^{-1}\right\}^{\mathrm{T}} \tag{7.1}
\end{equation*}
$$

for a unit inter-joint point load and

$$
\begin{equation*}
\{\mathrm{P}\}=\mathrm{p} \int_{0}^{\mathrm{L}}\left\{[\mathrm{~N}][\mathrm{C}]^{-1}\right\}^{\mathrm{T}} \mathrm{dx} \tag{7.2}
\end{equation*}
$$

for a uniformly distributed load p per unit length.

Also as only the linear flexural deflection profile is being used it is this which is employed in the determination of the equivalent nodal loadings, ie;

$$
\begin{equation*}
v_{x}=a_{1}+a_{2} x+a_{3} \iint \frac{1}{I(x)} d x d x+a_{4} \iint \frac{x}{I(x)} d x d x \tag{7.3}
\end{equation*}
$$

or

$$
\begin{array}{llll}
v_{x}=\left[\begin{array}{lll}
1 & x & f(x) \\
g(x)
\end{array}\right] & \left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}
\end{array}
$$

$$
=[\mathrm{N}]\left\{\mathrm{a}_{\mathrm{b}}\right\}=[\mathrm{N}]\left[\mathrm{C}_{\mathrm{b}}\right]^{-1}\{\Delta\}
$$

7.1. Point load.

Evaluation of equation (7.1) produces;

$$
\{P\}=\left\{\begin{array}{c}
s_{1} \tag{7.4}\\
M_{1} \\
s_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{l}
c_{11}+C_{21} x+C_{31} R_{1}(x)+C_{41} R_{2}(x) \\
c_{12}+C_{22} x+C_{32} R_{1}(x)+C_{42} R_{2}(x) \\
c_{13}+C_{23} x+C_{33} R_{1}(x)+C_{43} R_{2}(x) \\
C_{14}+C_{24} x+c_{34} R_{1}(x)+c_{44} R_{2}(x)
\end{array}\right\}
$$

where $R_{1}(x)=\iint \frac{1}{I(x)} d x d x, R_{2}(x)=\iint \frac{x}{I(x)} d x d x$
and $I(x)=\frac{b}{12}\left(t_{1}+\phi x\right)^{3}$ for rectangular section and $I_{1}(1+\phi x)^{n}$ for the general power series respectively, the values of ϕ taking on their respective values.

7.2. Uniformly Distributed Loading.

Evaluation of equation (7.2) gives;

$$
\{P\}=\left\{\begin{array}{l}
S_{1} \\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{l}
x C_{11}+\left(x^{2} / 2\right) C_{21}+C_{31} R_{1}^{\prime}(x)+C_{41} R_{2}^{\prime}(x) \\
x C_{12}+\left(x^{2} / 2\right) C_{22}+C_{32} R_{1}^{\prime}(x)+C_{42} R_{2}^{\prime}(x) \\
x C_{13}+\left(x^{2} / 2\right) C_{23}+C_{33} R_{1}^{\prime}(x)+C_{43} R_{2}^{\prime}(x) \\
x C_{14}+\left(x^{2} / 2\right) C_{24}+C_{34} R_{1}^{\prime}(x)+C_{44} R_{2}^{\prime}(x)
\end{array}\right\} \cdots \cdots \cdots \cdots \cdots(7.5)
$$

where $R_{1}^{\prime}(x)=\iiint R_{1}(x) d x$ and $R_{2}^{\prime}(x)=\iiint R_{1}(x) d x$ and $I(x)$ is the same as in
section (7.1) above.

PART C.

Results, Discussions
 and Conclusions.

Chapter 8.

Experimental Verifications.

In this section the results obtained from the several stiffness matrices developed in previous chapters will be compared and the experimental work carried out to assess their veracity presented. Also, in the theoretical analyses, several examples will be given to show the versatility of the programs developed and their application to practice.

However before this, a brief discussion on experimental methodology and the objectives of the experimental work will be presented.

8.1. Description of Experimental Work.

8.1.1. Experimental Objectives.

In the literature survey, no detailed experimental work on the non-linear behaviour of frames was found, especially on those incorporating tapered elements. It was thus necessary to perform structural tests in order to assess the accuracy of the theoretical solutions obtained.

There were two objectives to be considered in the experimental techniques employed;
a). Measurement of relatively large non-linear deflections with a minimum application of loading.
b). Measurement of surface strains for calculating the moments and axial forces induced in the framework.

After some consideration a frame was designed which would fit the above objectives and produce a significant amount of deformation without excessive loading and also a reasonable difference between linear and non-linear behaviour. For consistency three frames of prismatic and three frames of non-prismatic members were constructed and the dimensions are given below in fig. 8.1.

Fig. 8.1. Diagram of the two Experimental
Frames Considered

The frames were constructed from (50×3) and (50×6) mild steel sections, the (50×6) being machined down linearly to 3 mm to produce the taper. Both frameworks were welded using standard techniques and complete working drawings are presented in appendix 4 . Mild steel was chosen as the material of the frames since it is linearly elastic over a wide loading range and also because of its negligible creep characteristics at ambient temperatures.

8.1.2. Determination of Elasticity Modulus (E).

To obtain a satisfactory correlation between the theoretical and experimental results it was necessary to measure the value of Young's Modulus for the material. This was done firstly by use of the arrangement shown in fig 8.2 and Plate 8.1 and secondly by the standard ${ }^{(57)}$ tensile test. The first test, fig 8.2 , consists of a speciman of mild steel from which the frames were constructed, of length 1 m and of rectangular section (50×6), resting on knife edge supports and loaded by means of dead weights. The central deflections were recorded with a dial gauge of 100 divisions per mm .

Hence using the four point bending test, and by measuring the load against the central deflection of the beam, the modulus of elasticity can be evaluated.

Fig 8.2. Four Point Bending Test for Determination of Young's Modulus.

Plate. 8.1. The Four Point Bending test apparatus.

Application of Macauley's Method ${ }^{(2)}$ gives the result;

$$
\chi=\frac{W}{\delta}=\frac{8 \mathrm{EI}}{a \mathrm{~L}^{2}}
$$

where W is the magnitude of each of the point loads and δ is the central deflection.

Hence

$$
\begin{equation*}
\mathrm{E}=\frac{\chi \mathrm{aL}^{2}}{8 \mathrm{I}} \tag{8.1}
\end{equation*}
$$

Thus the modulus of elasticity can be determined by evaluating the gradient (χ) of the load against deflection graph.
8.1.2.1. Flexural Results for material of Prismatic Section.

LOAD (Kgf) W	0.5	1.0	1.5	2.0	2.5	3.0
$\delta(\mathrm{~mm})$	1.648	3.73	6.064	8.126	10.11	12.38

NB To convert Kgf to N, multiply Kgf by 9.81

Table 8.1. Table of Load and Deflection for Prismatic Frame Material.

Graph 8.1. Load v Central Deflection for Prismatic Frame Material.

Use of equation (8.1) and the gradient of the straight line graph above gives $\mathrm{E}=223 \mathrm{KN} / \mathrm{mm}^{2}$.

8.1.2.2. Flexural Results for material of non-prismatic Section.

LOAD (Kg) W	0	2.0	4.0	6.0	8.0	10.0
$\delta(\mathrm{~mm})$	0	2.90	5.85	8.76	11.63	14.52

Table 8.2. Table of Load and Deflection for Non-prismatic Beam Material.

Graph 8.2. Load v Central Deflection for Non-prismatic Frame Material.

Evaluation of equation (8.1) gives $E=240 \mathrm{KN} / \mathrm{mm}^{2}$.

8.1.2.3. Tensile Results for material Specimens.

Similarly the standard tensile test, to BS118, was carried out to evaluate the stress/strain characteristics of the material and to find the lower and upper yield stresses. The design and drawings of the specimens are presented in Appendix 4.

	PRISMATIC FRAME MATERIAL	NON-PRISMATIC FRAME MATERIAL
Upper yield Stress.N$/ \mathrm{mm}^{2}$	279.5	274.8
Lower yield Stress.N/mm	263.4	257.6
Modulus of Elasticity. $\mathrm{KN} / \mathrm{mm}^{2}$	232.3	245.7

Table 8.3. Results from the Tensile Tests of steel specimens.

Because of the very small difference between the values of Young's Modulus obtained from the tensile and flexural tests, the values obtained from the flexural tests were used in the theoretical analyses.

8.1.3. Method of Testing.

Before testing the frames several FLA-3-11, electrical resistance strain gauges of 3 mm length were attached to both faces of salient members of the framework. Due to the symmetry of the frames, strain gauges were fixed on only one half of the framework and the layout of the gauges is shown in fig 8.3.

Fig. 8.3.Strain Gauge Positioning.

All strain gauges were fixed 20 mm from the welded joints, a distance considered sufficient so that any effects caused by the welding could be assumed to be negligible.

A special rig was designed onto which the frameworks could be bolted at the base to prevent any movement whilst testing, as shown in fig 8.4.

Fig. 8.4. Method of fixing of Test Frames to base of Rig.

This was considered to represent complete fixity of the supports.

The framework was loaded vertically downwards at the apex using a hydraulic ram. To ensure accurate load readings, a calibrated proving ring was employed and this was fixed to the ram to prevent movement during testing. Also, to enable the load to be applied along the apex, a steel capping piece was placed on the crown of the framework as shown in fig 8.5 .

Fig 8.5. Diagram showing method of load application.

This prevented any movement of the hydraulic ram during loading and also enabled apex loading to be accurately attained (Plate 8.2).

The load was applied in 200 N increments and deflections produced by the loading were measured using standard deflection dial gauges (100 divisions per mm), these being considered adequate for the accuracy required in the testing. The deflection gauges were
placed at the three joints as shown in Fig 8.6 below.

Fig. 8.6. Showing Positioning of Dial Gauges.

Plate 8.2 shows the complete arrangement of the apparatus with the strain recorder and extension box.

The bending moments at the points of application of the strain gauges were obtained from the strain gauge readings in the following manner.

Consider two gauges a, b, either side of a section of depth d . The strains, ε, in each of these gauges will be produced from a combination of axial strain and flexural strain and
hence the results can be expressed as

$$
\begin{aligned}
& \varepsilon_{\mathrm{a}}=\varepsilon_{\text {axial }}+\varepsilon_{\text {fexure }} \\
& \varepsilon_{\mathrm{b}}=\varepsilon_{\text {axial }}-\varepsilon_{\text {flexur }}
\end{aligned}
$$

from which $\varepsilon_{\text {fleare }}$ can be isolated.

Now using the results from the simple bending theory, namely

$$
\varepsilon_{\text {fleaure }}=\frac{d}{2 R} \text { and } \frac{M}{I}=\frac{E}{R}
$$

it follows that the bending moment M can be expressed as;

$$
\mathrm{M}=\frac{2 \mathrm{EI}}{\mathrm{~d}} \varepsilon_{\text {feare }}
$$

Plate 8.2. Arrangement of Apparatus with Strain Recorder.

The results obtained for deflections and bending moments will be presented separately for the prismatic and non-prismatic sections to facilitate ease of reading, the terminology used in previous chapters being simplified as follows for ease of understanding of the results:-

Linear $(\mathrm{L})=$ the analysis where the effect of axial force on flexural action is ignored.

Constant Axial = the analysis where the effects of the axial forces on the flexure are Force (CAF) considered but where the axial \& flexural matrices are independent of each other and are obtained from equilibrium considerations.

Tangential $(T)=$ the tangential stiffness matrix in which the effects of axial forces and large deflections are incorporated in an approximate work process.

Coupled (C) = the refined stiffness matrix obtained from equilibrium considerations in which the axial effect is dependent on flexural action (coupled) due to large deflections.
Axial strain given by $\varepsilon_{a}=\frac{d u}{d x}+\frac{1}{2}\left(\frac{d v}{d x}\right)^{2}$

Stepped $=$ used for non-prismatic frame only. The non-prismatic member is
Coupled (SC) represented by a number of prismatic portions. Analysis is by the 'coupling' (C) procedure above.
$(\mathrm{E})=\quad$ Experimental Results.

8.2. Prismatic Frame Results.

The results from the various theoretical analyses are compared with those obtained from experiment, these being shown in figs 8.8 to 8.12 .

It can be noted that the results from the coupled (C) and Tangential (T) matrices are indistingushable on the graph and hence for comparison the results are shown in Table 8.4 and 8.5.

Fig 8.8. Load/Deflection for Frame composed of Prismatic Sections

Horizontal Deflection at Eaves (mm)
(Experimental results presented are the average of readings of dial gauges $1 \& 3$)

Fig 8.9. Load/Deflection for Frame composed of Prismatic Sections

Moments at Joint 1 (KNmm)

Fig 8.10. Load/Moment at Joint 1 for Prismatic Frame

Moment at Joint 2 (KNmm)

Fig 8.11. Load/Moment at Joint 2 for Prismatic Section

Moment at Joint 3 (KNmm)

Fig 8.12. Load/Moment at Joint 3 for Prismatic Frame

LOAD (KN)	Vertical deflection (mm)	Horizontal deflection (mm)	Moment at joint 1 (KNmm)	Moment at joint 2 (KNmm)	Moment at joint 3 (KNmm)
0	0	0	0	0	0
0.2	1.0453	1.9452	3.97	3.95	3.94
0.4	2.1976	4.0166	8.16	8.13	8.10
0.6	3.4723	6.2255	12.59	12.55	12.52
0.8	4.8882	8.5911	17.29	17.25	17.21
1.0	6.4659	11.1246	22.28	22.24	22.21
1.2	8.2337	13.8437	27.62	27.59	27.55
1.4	10.2219	16.7821	33.32	33.30	33.28
1.6	12.4688	19.9511	39.45	39.45	39.45
1.8	15.0274	21.6441	46.30	46.10	46.13

Table 8.4.Tabulated Results for the Coupled Stiffness Matrix.

LOAD (KN)	Vertical deflection (mm)	Horizontal deflection (mm)	Moment at joint 1 $($ KNmm $)$	Moment at joint 2 $($ KNmm $)$	Moment at joint 3 $($ KNmm $)$
0	0	0	0	0	0
0.2	1.0450	1.9474	3.97	3.95	3.94
0.4	2.1969	4.0260	8.17	8.13	8.10
0.6	3.4715	6.2486	12.61	12.53	12.50
0.8	4.8862	8.6330	17.32	17.24	17.17
1.0	6.4645	11.1949	22.35	22.24	22.14
1.2	8.2310	13.9533	27.71	27.58	27.45
1.4	10.2182	16.9432	33.46	33.29	33.13
1.6	12.4642	20.1896	39.63	39.42	39.25
1.8	15.0220	23.4005	46.36	46.06	45.84

Table 8.5.Tabulated Results for the Tangential Stiffness Matrix.

8.2.1. Discussion.

In the simple geometrically - linear analyses in which the effect of axial force on lateral behaviour is ignored and the deflections may be considered to tend to zero, the load/deflection and load/bending moment relationships are represented by straight lines. The flexural displacement function describing such behaviour is given by the cubic polynomial.

$$
v=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

On considering the effect of axial force on lateral behaviour, equilibrium considerations produce the lateral deflection functions

$$
v=a_{1}+a_{2} x+a_{3} \sin \alpha x+a_{4} \cos \alpha x
$$

for a member in compression and

$$
v=a_{1}+a_{2} x+a_{3} \sinh \alpha x+a_{4} \cosh \alpha x
$$

for member in tension where

$$
\alpha=\sqrt{ }(P / E I)
$$

The use of these deflection functions produces flexural stiffness matrices which are functions of the axial forces in the member. Examination of figures 8.8 and 8.9 show the deviation from the linear results that occurs on consideration of axial effects on flexure. It is seen, in particular from fig 8.8, that the use of the coupled (C) formulation agrees most closely with the experimental deflections and that the use of the simpler constant axial force (CAP) matrix can significantly underestimate the deflections produced.

Use of the tangential stiffness matrix (T) produced results comparable with the coupled (C) matrix without any member subdivision. However whereas the coupled (C) matrix required only one iteration to give acceptable results, the tangential stiffness matrix required about ten iterations for convergence, and hence the coupled (C) formulation appears to produce a more economical solution with respect to computer time.

Comparison of results for bending moment (Fig 8.10 to 8.12) showed very little difference between the various non-linear matrices used although there was substantial agreement with the experimental values. These results suggest that alteration of the axial strain produces little change in the curvature expression.

Although the elastic critical load can be computed this is probably only of theoretical interest. In reality the frame would have begun to exhibit plasticity at loads substantially below the elastic critical and thereafter would not be conforming to the assumption of material elastic behaviour. Based on the experimentally-determined value of the lower yield stress it was foundthat the first plastic hinge should form at a load of 0.85 KN and that plastic collapse occured at a load of 1.8 KN , a value far below the elastic critical load of 2.9 KN as computed from the coupled (C) matrix. It is seen that if indeed plasticity commenced at 0.85 KN , the effect on deflections is small, although some limit to the moment capacity appears to be intimated at joint 2 and 3 (fig 8.11 and 8.12) in the region of this load.

8.3. Tapered Section Results.

It was shown in chapter 6, that the exact derivation of the non-linear deflection function involved Bessel functions and was hence discontinued. Similarly the tangential stiffness matrix for the tapered section, which should produce results similar to those for the coupled matrix, was unwieldy and considered capable of producing significant rounding errors. A simpler technique was to approximate the tapered beam by sub-division into several prismatic elemental steps. This will enable the use of the coupled (C) matrix already developed and hence the acurate investigation of the geometrically non-linear behaviour of non-prismatic sections.

To estimate the number of prismatic elements that would adequately represent a tapered section, a tapered cantilever was linearly analysed exactly and by using a stepped procedure. From figure 8.13 below, it can be seen that the accuracy increases with increase in the number of prismatic elements employed.

Fig 8.13. Showing Increasing Accuracy with Number of Elements Employed

It is seen that using ten elements per member will produce an adequate result.

The theoretical and experimental results obtained for the tapered frame are presented in figs 8.14 to 8.18 , the theoretical results for non-linear behaviour being obtained from the constant axial force matrix derived from the linear deflection function for a tapered member and from the stepped prismatic technique discussed above.

Vertical Deflection at Apex (mm)

FIG 8.14. Load/Deflection for Frame composed of Tapered Sections

Horizontal Deflection at Eaves (mm)
(Experimental results presented are the average of readings of dial gauges $1 \& 3$)
FIG 8.15. Load/Deflection for Frame composed of Tapered Sections

Moment at Joint 1 (KNmm)

Fig 8.16. Load/Moment at joint 1 for Tapered Frame

Moment at Joint 2 (KNmm)

Fig 8.17. Load/Moment at Joint 2 for Tapered Frame

Moment at Joint 3 (KNmm)

Fig 8.18. Load/Moment at Joint 3 for Tapered Frame

8.3.1. Discussion.

As seen in the case of the prismatic frames, the geometrically linear load/displacement and load/bending moment analyses obtained from the derived function

$$
v=a_{1}+a_{2} x+a_{3} \iint \frac{1}{I(x)} d x d x+a_{4} \iint \frac{x}{I(x)} d x d x
$$

are represented by straight lines from which no information regarding elastic instability can be obtained.

Geometrically non-linear behaviour was examined using the constant axial force matrix and a stepped prismatic beam technique, the former being derived from the linear displacement function above via a work process and the latter using the refined coupled (C) matrix derived for prismatic sections via equilibrium considerations with each member subdivided into 10 components.

The theoretical results for the tapered frame show a similar pattern to those for the prismatic structure, namely that solutions using the axial strain expression

$$
\varepsilon_{\mathrm{a}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}
$$

are preferred to those in which the flexural component in the expression is omitted.

It can be noted that the experimental deflections appear to be up to about 20% larger than the most refined of the theoretical analysis although the experimental bending moments show a far closer correlation. Such discrepancies may in part be due to the effects of the
machining in the manufacture of the tapered frames by which some curvature may have been introduced into the members.

Chapter 9.

Applications to Framework

Behaviour.

In the previous chapter, the veracity of the theoretical results was established by comparison with direct experiment. In this chapter a range of problems in which considerable non-linear effects can occur will be briefly investigated using the matrices previously developed in order to demonstrate the the versatility of the approach and to illustrate the effects that geometrical non-linearity can produce. The examples that will be discussed are the behaviour of multi-storey frames loaded to the elastic critical load, the effect of a gantry crane load on the members of a prismatic and non-prismatic pitched portal, and the response of initial imperfections to increasing load in a plane frame.

9.1. Comparative Behaviour of Multi-storey Frames.

9.1.1. Load/Deflection Characteristics with Point Loads.

To examine the effect of storey behaviour in geometrical non-linear analysis, the two frames composed of prismatic members shown in fig 9.1 were solved under progressive increase of load using the refined coupled (C) matrix obtained from derived deflection functions.

Fig 9.1. Multistorey Frames under Study.

The members of the frames were of I-section form with the dimensions and sectional properties as shown in fig 9.2, E, A, and I being Young's modulus, cross-sectional area and second moment of area respectively.

Column Beam

	COLUMN	BEAM
EI $\left(\mathrm{KNm}^{2}\right)$	195734.13	258555.38
EA (KN)	2055000	2205000

Fig 9.2. Sectional Properties of Beams and Columns.

The loading applied to the frames is shown in fig 9.3 in which the horizontal load Q is maintained at a constant value and the vertical loads P increased up to the elastic critical value, ie when the determinant of the stiffness matrix becomes zero and the structure loses all its stiffness.

Fig 9.3. Frames showing System of Loadings.

The effect of increasing the vertical loads is assessed by plotting the ratio of the horizontal force Q to the horizontal deflection produced at its point of application δ, ie Q / δ, against the load P , as shown in fig 9.4.

Horizontal force Q remains Constant throughout

Fig 9.4. Reduction in Stiffness with increase of Load for two- and fourstorey Frames.

It is seen that the elastic critical load for the two-storey frame is 22.0 KN , obtained when δ is infinite or Q / δ is zero, whereas that for the four-storey frame is only 15.9 KN . It can also be seen that the reduction of stiffness of the frames increases as the critical load is approached. For comparison similar results obtained from linear analyses are also given showing the importance of non-linear considerations in structures of this form.

The deflection and bending moment distributions for the frames at two levels of load P are presented in fig 9.5.

Fig 9.5. Deflections and Moment Diagram.

9.1.2. Load/Deflection Characteristics with Uniformly Distributed Loading.

In addition to the analysis of the frames described above under point loads, the frames were also solved using the coupled (C) procedure when the uppermost beam was subjected to a progressively increasing u.d.l. as shown in fig 9.6.

Fig 9.6. Frames Uniformly Distributed Loading.

The results from these analyses are presented in fig 9.7 as plots of the distributed load against the vertical deflection induced at the left uppermost corner.

Vertical Deflection at the left uppermost corner

Fig 9.7. Load/Deflection Characteristics for $2 \& 4$ Storey Frames.

Again it can be seen that the elastic critical load for the four-storey frame is lower than that for the two-storey frame, these values being $2700 \mathrm{KN} / \mathrm{m}$ and $1125 \mathrm{KN} / \mathrm{m}$ respectively. For comparison a linear analysis and also an analysis based on the constant axial force (CAP) matrix for a prismatic member are presented for the two-storey frame showing the importance of the consideration of flexural effects on the axial forces in non-linear investigations.

Deflection and bending moment distributions for the two frames are presented in fig 9.8 for two levels of load.

Deflection Profile
udl $=\frac{400 \mathrm{KN} / \mathrm{m}}{800 \mathrm{KN} / \mathrm{m}} \overline{-\ldots-\cdots}$

Bending Moment Diagram

Fig 9.8. Deflections and Moment Diagram.

9.2. Analysis of Pitched Portal Frames subjected to High Column loads via a Gantry Crane.

Two pitched portal frames were examined, one being composed of prismatic and the other of tapered I-section members. Both linear and non-linear behaviour was considered and the results compared.

9.2.1. Frame composed of Prismatic I-sections.

The geometry and loading of the frame is shown in fig 9.9 in which W represents a crane load that can move across the span of the portal thus subjecting the columns to variable axial forces at the eaves points.

Fig 9.9. Typical Workshop Portal Frame with Column Loadings.

The material and sectional properties for the two columns and the two sloping beams are the same as those for the columns and beams in the examples of section 9.1.

Fig 9.10 shows the variation of the vertical and horizontal deflections at the apex with position of the crane load for both linear and non-linear behaviour, the latter being obtained by the refined coupling (C) matrix, while figs 9.11 and 9,12 depict the linear and non-linear deflections and bending moments in the frame for three positions of the load.

Horizontal Deflection y Crane Position

Fig 9.10. Showing Horizontal and Vertical Deflections at Apex as Crane moves across the Span.

(b)

(c)

Fig 9.11. Frame Deflection as Crane Load moves from one Column to other.

Crane $=7490 \mathrm{KN}$
Load
Moments in KNm Moments in KNm
(b)

(c)

Fig 9.12. Frame Joint Moments as Crane Load moves from one Column to other.

9.2.2. Frame composed of Tapered I-sections.

The geometry and loading of the frame is as described in section 9.2.1 and is shown in fig 9.13. The sectional geometry of the members is shown in fig 9.14, the depth of each constituent member varying linearly from 0.4 to 0.8 m .

Fig 9.13.Typical Workshop Portal frame with Tapered members.

Fig 9.14. Dimensions of I-section.

The variation of apex deflection with load position is shown in fig 9.15 for both linear and non-linear behaviour, where the linear behaviour is obtained via the derived displacement function for an I-section and the non-linear behaviour from a stepped prismatic process using the coupled (C) matrix for prismatic members with each member divided into 10 increments.

Fig 9.16 and 9.17 show the linear and non-linear deflection and bending moment distributions throughout the frame for three load positions.

Horizontal Deflection v Crane Movement

Fig 9.15. Showing Horizontal and Vertical Deflections at Apex as Crane moves across the Span.

(b)
0.34

(c)

Fig 9.16. Frame Deflection as Crane Load moves from one Column to other.

Fig 9.17. Frame Joint Moments as Crane Load moves from one Column to other.

9.3. Effects of Initial Imperfections on the Non-linear behaviour of Pitched Portal Frames.

The effect of lack of straightness or geometrical imperfections on the behaviour of slender structures is readily examined using the matrices in which the axial strain is expressed as;

$$
\varepsilon_{\mathrm{a}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}
$$

In this section a brief introduction will be given to the effect of lack of straightness and to imperfections in constructional geometry.

9.3.1. Effect of Lack of Straightness in Prismatic Frame.

The effect of defects in the straightness of members will be illustrated by consideration of the prismatic frame used in the experimental work described in Chapter 8 in which one of the column members exhibits assumed initial deformations at the centre of 5 mm and 10 mm . The geometry of the structure together with the initial geometrical defects and the loading are shown in fig 9.18.

Breadth of all sections is 50 mm

All Dimensions in mm .

Fig. 9.18. Frame composed of Prismatic Sections with Imperfections in Column Members.

The frame was analysed both linearly and non-linearly using both the refined coupled (C) matrix and the constant axial force matrix (CAF) and the changes in the vertical deflections at the apex on increase of load are shown in fig 9.19. It is seen that relatively small defects of this nature produce a large decrease in the elastic critical load.

Vertical Deflection at Apex (mm)

Fig 9.19. Graph of Load/Deflections due to Imperfections

Fig 9.20 shows the deflection and bending moment distribution in the frame at the level of load indicated for the defect-free frame and for the frame exhibiting the initial 10 mm column deformation.

Fig 9.20. Deflections and Moments of Frame with Member Imperfections.

9.3.2. Effect of Constructional Tolerances.

Although not specifically stated in Chapter 8, it was noticed that the eaves nodes of the tapered framework used in the experimental work were slightly displaced outwards by about 10 mm from their ideal positions. It was thus considered appropriate to analyse this frame with these initial constructional tolerances taken into account.

The frame together with its defects and loading is shown in fig 9.21and the effect of these defects is shown in fig 9.22 where the change in vertical apex deflection with respect to increase of load is presented.

Fig 9.21. Frame Composed of tapered Members with initial Joint Displacement.

Fig 9.22. Graph of Load/Deflection due to Initial Joint Displacements

The non-linear analyses, performed using the stepped prismatic approach using the coupled (C) matrix with each member subdivided into ten prismatic elements, show that although the initial defects tend to reduce the elastic critical load, their effect is not as pronounced as the effect of lack of straightness of the members.

The deflection and bending moment distributions in the frame with and without defects are presented in fig 9.23 for the level of load indicated.

Fig 9.23. Deflections and Moments of Frame with Joint Imperfections.

In reality both initial imperfections and constructional tolerances are present in frameworks and their effect on structural behaviour is thought worthy of further research.

Chapter 10.

Summary, Conclusions and
Future Work.

10.1. Summary.

The displacement method of analysis has been applied extensively and with great success to the solution of geometrically linear frame problems and it was thus natural that this procedure should be attempted for the investigation of geometrically non-linear structures. However the effect of geometrical non-linearity appears largely to have been studied using the assumption of constant axial force, an assumption which does not strictly allow investigation of progressive non-linear behaviour.

In order to examine such effects, it was necessary to construct the relevent force/displacement relationships ie the stiffness matrices, for members exhibiting non-linear behaviour, and this was carried out using the finite element procedure.

Since the displacements of a one-dimensional member are given by the solution of an ordinary differential equation, it is shown that for such a structural element the exact displacement profile may be obtained, and the standard work-based finite element procedure curtailed due to the satisfaction of equilibrium at every point in the member. The resulting stiffness matrix is thus exact in the sense that there is no increase in accuracy upon subdivision of the member.

The first stage of this research was to employ this curtailed process using the derived displacement functions of an isolated member to produce firstly the exact non-linear stiffness matrix assuming constant axial force, and then to extend this to produce a more refined but more complex matrix capable of a more realistic assessment of geometrical non-linearity.

In addition to these exact formulations, approximate polynomial functions were also used to produce a tangential stiffness matrix for comparison purposes (the use of the
tangential stiffness matrix finds application in the geometrically non-linear behaviour of plates where exact displacement functions cannot in general be found).

10.2. Conclusions.

For easy presentation of the conclusions the prismatic and non-prismatic members will be discussed separately.

10.2.1. Frames with Prismatic Members.

The finite element method of analysis provides a systematic procedure for the development of the force/displacement relationships of structural elements, the final form of the stiffness matrix being dependent on the form of displacement function used.

Generally the displacement functions of the elements have to be assumed, but in the case of elements whose displacements are a function of only one variable, as in the case of beam-columns, the displacement function can in principle be determined exactly. The use of such derived functions has two fundamental advantages; firstly the resulting stiffness matrix is exact within the confines of the governing differential equations and hence no increase in accuracy ensues on subdivision of the element, and secondly the matrix may be formulated from simple equilibrium principles rather than the more lengthly work-based procedure which must be used with assumed functions.

The investigation of frames composed of prismatic elements showed that by assuming that the axial forces in the members were only dependent on the axial displacements, ie
by assuming that the axial strain was given by

$$
\varepsilon_{\mathrm{a}}=\frac{\mathrm{du}}{\mathrm{dx}}
$$

the loss of stiffness on increase of load was underestimated, implying an overestimate of the elastic critical load. This is shown by comparison with results obtained using the more refined expression for axial strain, ie;

$$
\varepsilon_{\mathrm{a}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}
$$

and with the experimental results for deflections, which may be favourably compared.

Comparison of the results using the refined derived function formulation and the tangential stiffness matrix approach using the approximate polynomial functions showed that very similar results were obtained from both matrices. However it was found that whereas the formulation using the derived functions required only one or two iterations to obtain an acceptable deflection estimate, that using the tangential stiffness matrix required many more. This may be due to the fact that the derived function formulation operates using direct iteration whereas the Newton- Raphson technique is used with the tangential stiffness matrix method.

It is noted that although the deflection results obtained using the two expressions for axial strain showed a distinct difference, very little variation was shown in the bending moment results, implying little variation in the curvature of the members. This observation appears surprising and it is suggested that further work should be carried out on different frame configurations in order ascertain whether or not such results occur generally.

10.2.2 Frames with Non-prismatic Members.

The investigations undertaken for prismatic frames were further extended to the analysis of frames composed of non-prismatic sections.

Firstly it was envisaged that the development of exact equilibrium-based matrices formulated using derived functions could be both intractable and impracticable and indeed this was found to be the case, the exact formulations being expressed in terms of Bessel functions which involved the calculation of series with associated rounding errors.

Thus examination of the behaviour of non-prismatic frames was undertaken using work-based methods with approximate displacement functions. In the work on prismatic frames, the work-based stiffness matrices for geometrically non-linear behaviour were obtained using the polynomial displacement functions which represent linear prismatic behaviour exactly. It was thus considered logical to use for the non-linear investigations of non-prismatic members the derived displacement functions for linear non-prismatic members. These derived functions were used to construct both the non-linear stiffness matrix in which the axial force is assumed to be dependent only on the axial displacement and also the tangential stiffness matrix. Although the former matrix was formulated successfully, development of areas of the tangential stiffness matrix were found to be unwieldy and intractable regarding practical implementation.

Thus in addition to results obtained using the approximate constant axial force element referred to above, non-prismatic behaviour was also investigated using a stepped prismatic element approach in which the non-prismatic members of the frame were subdivided into a number of prismatic elements of differing section properties. The resulting model was solved using the derived function prismatic stiffness matrix using
the refined axial strain expression, ie;

$$
\varepsilon_{\mathrm{a}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{1}{2}\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)^{2}
$$

This stepped prismatic element technique produced, on adequate subdivision, results which compared favourably with experimental results and as expected represented a more accurate model than the matrix based on the assumption of constant axial force. However because of the necessity for subdivision the amount of data preparation and computer storage may become large and the economy of such a procedure must be balanced against the nature of the results required.

10.2.3. Practical examples of Geometrically Non-linear Behaviour.

The effect of geometrical non-linearity was examined for a number of common practical examples in which both point and distributed loading was considered.

Firstly the effect of overall slenderness was considered with reference to two- and four-storey prismatic frames subjected to point and uniformly distributed loads showing how the critical load is reduced with increase in the number of storeys.

Secondly a pitched roof portal frame was described in which a gantry crane could move from one side to the other, thus inducing high column loads at the ends of the travel. Both prismatic and tapered sections were considered in this example which is typical of those in which the effects of stability should be considered in design.

Thirdly the important practical situation of lack of straightness was considered with reference to a pitched portal frame where it was seen that the load-carrying capacity of
the frame was reduced dramatically by virtue of a relatively small amount of initial straightness. In the examples presented it is seen that an initial lack of straightness of 10 mm in the centre of one of the 300 mm vertical legs of a 560 mm high portal produced a reduction in the critical load of the order of 30%. In contrast initial joint displacements at the eaves of the portal causing the legs of the portal to be slightly inclined to the vertical produced only a small reduction in the collapse load.

10.3. Recomendations for Future Research.

1) The small amount of work carried out in this thesis into the effect of initial imperfections is sufficient to show that this important practical topic may now be investigated in depth using the sophisticated non-linear matrix with coupled axial and flexural components developed in this thesis.
2) Further the use of connected straight elements may be used to examine the geometrically non-linear behaviour of arches or structures comprising curved members. Such an idealisation is shown in Fig 10.1.

Fig 10.1. Showing idealisation of curved members.

Indeed this may be the only viable finite element method to treat arch behaviour as it is most probable that solutions attempted using curved elements may be either intractable or impossible to obtain.
3) In this thesis all the frames considered have been rigid jointed. In practice situations can occur where some nodes are in fact hinges. Perhaps the most important of these situations are those occuring in the elastic-plastic behaviour of frames constructed from ductile materials, for example mild steel. On loading of such a frame beyond the elastic limit the progressive formation of plastic hinges occurs and thus a rigid jointed frame is transformed into a frame containing an increasing number of hinges until plastic collapse occurs. Such behaviour cannot be studied using the matrices developed here as they stand, but they could be developed to take into account such hinge conditions.

Consider the simple frame shown in Fig 10.2.

Fig 10.2. Showing frame with plastic hinge.

Upon formation of the hinge shown both the right hand leg and the beam contain a hinge at one end. The modified flexural stiffness matrix for such a member does not now contain four nodal displacements but only three since the moment at the hinge is
known. This modification can be shown by considering a member (1-2) of a linear frame, the standard force/displacement relationship being

$$
\left\{\begin{array}{l}
S_{1} \\
M_{1} \\
S_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{llll}
\mathrm{K}_{11} & & & \\
\mathrm{~K}_{12} & \mathrm{~K}_{22} & S_{Y} & \\
\mathrm{~K}_{13} & \mathrm{~K}_{23} & \mathrm{~K}_{33} & \\
\mathrm{~K}_{14} & \mathrm{~K}_{24} & \mathrm{~K}_{34} & \mathrm{~K}_{44}
\end{array}\right]\left\{\begin{array}{l}
\mathrm{v}_{1} \\
\theta_{1} \\
\theta_{2}
\end{array}\right\}
$$

If end 1 is pinned, then M_{1} is zero and the second equation becomes;

$$
0=K_{12} v_{1}+K_{22} \theta_{1}+K_{23} v_{2}+K_{24} \theta_{2}
$$

ie

$$
\theta_{1}=-\frac{1}{K_{22}}\left(K_{12} v_{1}+K_{23} v_{2}+K_{24} \theta_{2}\right)
$$

Substituting θ_{1} into the above matrix and rearranging gives

$$
\begin{aligned}
& S_{1}=\left(K_{11}-\frac{K_{12}^{2}}{K_{22}}\right) v_{1}+\left(K_{13}-\frac{K_{12} K_{23}}{K_{22}}\right) v_{2}+\left(K_{14}-\frac{K_{12} K_{24}}{K_{22}}\right) \theta_{2} \\
& S_{2}=\left(K_{13}-\frac{K_{12} K_{23}}{K_{22}}\right) v_{1}+\left(K_{33}-\frac{K_{23}^{2}}{K_{22}}\right) v_{2}+\left(K_{34}-\frac{K_{23} K_{24}}{K_{22}}\right) \theta_{2}
\end{aligned}
$$

$$
M_{2}=\left(K_{14}-\frac{K_{12} K_{24}}{\mathrm{~K}_{22}}\right) v_{1}+\left(\mathrm{K}_{34}-\frac{\mathrm{K}_{23} \mathrm{~K}_{24}}{\mathrm{~K}_{22}}\right) \mathrm{v}_{2}+\left(\mathrm{K}_{44}-\frac{\mathrm{K}_{24}^{2}}{\mathrm{~K}_{22}}\right) \theta_{2}
$$

or in matrix form

$$
\left\{\begin{array}{l}
s_{1} \\
0 \\
S_{2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
\mathrm{N}_{11} & & & \\
0 & 0 & S_{Y} \\
N_{13} & 0 & N_{33} & M \\
N_{14} & 0 & N_{34} & N_{44}
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
0 \\
\theta_{2}
\end{array}\right\}
$$

ie the (4×4) matrix is reduced to a (3×3). Similar results can be obtained if the hinge is at end 2. The fixed end moments and forces can also be modified by the presence of a hinge if it is desired to treat distributed loading.

Although this brief description has been illustrated by means of a linear member, it is possible that the geometrically non-linear behaviour of frames containing hinges may be similarly developed.
4) Although only plane frames have been considered in this thesis, the possibilities of extending this work for the treatment of space frames is obvious. Such an extension will mean investigation of the additional aspects of geometrical non-linearity, namely lateral and torsional instability effects.
5) The combination of the beam elements developed in this thesis with geometrically non-linear plate elements would enable the non-linear behaviour of stiffened plate
structures to be investigated.
6) It is hoped that the geometrically non-linear analysis of frames composed of both prismatic and non-prismatic elements which has been developed in this thesis and incorporated in a computer package will be a useful addition to structural engineering knowledge.

References

1) John Case \& A.H.Chilver
2) W.T.Marshall \& H.M.Nelson
3) J.H.Argyris \& S.Kelsey
4) M.J.Turner, R.W.Clough, H.C.Martin \& L.J.Topp.
5) K.H.M.Bray, P.C.L.Croxton \& L.H.Martin.
6) W.M.Jenkins.
"Strength of Materials \& Structures".
Arnold Books. Second Edition.
"Matrix Analysis of Structures".
Arnold Books. 1976.

"Matrix \& Digital Computer Methods
in Structural Analysis"
McGraw-Hill Book Co. 1969

7) Y.K.Cheung \& M.F.Yeo.
8) H.B.Harrison.
9) S.P.Timoshenko \& J.M.Gere.
10) M.R.Horne \& W.Merchant.
11) P.A.Kirby \& D.A.Nethercot.
12) K.I.Majid.
13) F.W.Williams.
"A Practical Introduction to Finite Element Analysis".

Pitman Books. 1979.
"Computer Methods in Structural Analysis".

Arnold Books. 1973.
"Theory of Elastic Stability".
McGraw-Hill Books. 1961.
"The Stability of Frames". Pergamon Press. 1965.
"Design for Structural Stability". Constrado (Publishing) Ltd. 1979.
"Matrix Methods of Analysis \& Design by Computers (Non-linear Structures)". Butterworth Books. 1972.
"An approach to the Non-linear behaviour of the members of a Framework with Finite Deflections".
J.Mech. \& App. Mech. Vol. 17. 1964.
14) J.M.Daviss.
"Collapse \& Shakedown Loads of Plane Frames".
J.of Struct Div. ASCE. June 1967.
15) F.Mazzolani, A.Di.Carlo \&
M.Pignataro
16) M.Eisenberger \& V.gorbanos.
17) R.H.Gallagher, Y. Yamada \& J.T.Oden.
18) J.T.Oden, Y. Yamamoto \& R.W.Clough.
"Recent Advances in Matrix Method of Structural Analysis \& Design". USA-Japan Seminar on Matrix Methods Part 2. 1972.
"Post-buckling Behaviour of Elastic Frame Structures".

Ph.D Univ. of Arizona. USA. 1981.
20) J.R.Hanachi.
"Non-linear Elastic Frame Analysis by
Finite Elements".
Ph.D Michigan State Univ.USA. 1981.
21) P.A.Mendis \& P.L.Darvall.
"Computer Method for Stability Analysis of Plane Frames".

Research Report, Monash Univ. USA. 1985.
22) B.J.Hartz.
"Matrix Formulation of Structural Stability Problems". J.of Struct Div. ASCE. Dec. 1965.
23) R.K.Liversley \& D.B.Chandler.
24) J.W.Bunce \& E.H.Brown.
25) H.S.Harung \& M.A.Millar.
"Stability Functions for Structural Frameworks".

Manchester University Press. 1956.
"The Finite Deflection of Plane Frames". J.of Struct Div. ASCE. July. 1972.
"General Failure Analysis of Skeletal Plane Frames".
J.of Struct Div. ASCE. June. 1973.
26) R.D.Wood \& O.C.Zienkiewicz.
27) A.Chajes \& J.E.Churchill.
28) S.Z.Al-Sarraf.
29) J.M.Gere \& W.O.Carter.
30) C.G.Culver \& S.M.Preg.
31) C.V.Girijavallabhan.
32) S.Kitiporchai \& N.S.Trahair.
"Geometrically Nonlinear Finite Element Analysis of Beams, Frames, Arches \& Axisymmetric Shells".

Computers \& Structures, Vol. 7. 1977.
"Nonlinear Frame Analysis by Finite Element Methods".
J.of Struct Div. ASCE. June. 1987.
"Elastic Stability of Frameworks". PhD. Univ. of Liverpool. UK. 1964.
"Critical Buckling Loads for Tapered Columns".
J.of Struct Div. ASCE. Feb. 1962.
"Elastic Stability of Tapered Beam-Columns".
J.of Struct Div. ASCE. Feb. 1968.
"Buckling Loads of Non-uniform Columns".
J.of Struct Div. ASCE. Nov. 1969.
"Elastic Stability of Tapered I-beams".
J.of Struct Div. ASCE. March. 1972.
33) Fogel \& Ketter.
34) Butler \& Anderson.
35) Prawel \& Lee.
36) E.J.Krynicki \& Z.E.Mazurkiewicz.
37) S.Wang \& S.Z.Al-Sarraf.
38) C.K.Wang.
39) J.M.Gere.
"Elastic Strength of Tapered Columns".
J.of Struct Div. ASCE. Oct. 1962.
"The Elastic Buckling of
Beam-Columns".
Welding Journal. June. 1963.
"Bending \& Buckling Strength of Tapered Structural Members".

Experimental Mechanics. May 1969.
"Frames of Solid Bars of varying Cross-sections".
J.of Struct Div. ASCE. Aug. 1964.
"Frames of Solid Bars of varying Cross-sections".
J.of Struct Div. ASCE. Feb. 1965.
"Stability of Rigid Frames with Non-uniform Members".
J.of Struct Div. ASCE. Feb. 1967.
"Moment Distribution".
Van Nostrand Books.New York. 1962.
40) D.J.Just.
41) D.J.Just.
42) C.J.Brown.
43) D.L.Karabalis.
44) D.L.Karabalis \& D.E.Beskos.
45) O.C.Zienkiewicz.
"Analysis of Plane Frames of Linearly varying Rectangular Sections". Synopsis. The Structural Engineer. 1975.
"Plane Frameworks of Tapered Box and I-sections.
J.of Struct Div. ASCE. Jan. 1977.
"Approximate Stiffness Matrix for Tapered Beams". J.of Struct Div. ASCE. Dec. 1984.
"Approximate Stiffness Matrix for
Tapered Beams (Discussions)".
J.of Struct Div. ASCE. Dec. 1984.
"Static, Dynamic \& Stability Analysis of Structures Composed of Tapered Beams".

Computers \& Structures Vol 16. 1983.
"The Finite Element Method".
McGraw-Hill Books. 1977.
46) E.Hinton \& D.R.J.Owen.
47) O.C.Zienkiewicz.
48) J.M.Gere \& W.Weaver.
49) B.Nath.
50) C.F.Gerald.
51) M.F.Rubinstein.
52) R.C.Coates, M.G.Coutie, F.K.Kong.
53) D.M.Monro
"An Introduction to Finite Element Computations".

Pineridge Press. 1979.

"The Finite Element Method in Structural \& Continuum Mechanics".
McGraw-Hill Books. 1967.

"Analysis of Framed Structures".
Van Nostrand Books.New York. 1965.
"Fundamentals of Finite Elements for Engineers". Pitman Press. 1974.
"Applied Numerical Analysis".
Addison-Wesley Publishing Co. 1978.
"Matrix Computer Analysis of Structures".

Prentice Hall Inc. 1966.
"Structural Analysis".
Nelson Press. 1972.
"Fortran 77"
Arnold Books. 1982.
54) Digital
55) C.J.Tranter.
56) K.A.Stroud.
57) British Standard Institution.
58) R.K.Livesley.
59) D.J.Just.
"VAX User Manual"
Digital Publishings. 1985.
"Bessel Functions with some Physical Applications". Pitman Press. 1968.
"Engineering Mathematics Part 2". Longman Press. 1984.
"Tensile Testing of Metals (including aerospace materials) BS118". 1987.
"Matrix Methods of Structural Analysis" Pergamon Press. 1969.
private correspondance

Appendix 1.

Inversion of $\left[C_{b}\right]$ for Taper.

For Tapered Section.

$$
[C]^{-1}=\left[\begin{array}{lll}
\mathrm{C}_{11} & \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{14} \\
\mathrm{C}_{21} \mathrm{C}_{22} & \mathrm{C}_{23} \mathrm{C}_{24} \\
\mathrm{C}_{31} \mathrm{C}_{32} \mathrm{C}_{33} & \mathrm{C}_{34} \\
\mathrm{C}_{41} & \mathrm{C}_{42} & \mathrm{C}_{43} \\
\mathrm{C}_{44}
\end{array}\right]
$$

where

$$
\begin{aligned}
& C_{11}=\frac{\left(G_{2} h_{2}-H_{2} g_{2}\right)+\left(H_{2} g_{1}-G_{2} h_{1}\right)+L\left(g_{2} h_{1}-g_{1} h_{2}\right)}{D} \\
& C_{12}=\frac{\left(G_{2} H_{1}-G_{1} H_{2}\right)+L\left(G_{1} h_{2}-H_{1} g_{2}\right)}{D} \\
& C_{13}=\frac{G_{1}\left(h_{1}-h_{2}\right)-H_{1}\left(g_{1}-g_{2}\right)}{D} \\
& C_{14}=\frac{\left(G_{1} H_{2}-G_{2} H_{1}\right)+L\left(H_{1} g_{1}-G_{1} h_{1}\right)}{D} ; \quad C_{21}=\frac{g_{1} h_{2}-g_{2} h_{1}}{D} \\
& C_{22}=\frac{g_{2}\left(H_{1}-H_{2}\right)-h_{2}\left(G_{1}-G_{2}\right)}{D} ; \quad C_{23}=-C_{21} \\
& C_{24}=\frac{g_{1}\left(H_{2}-H_{1}\right)-h_{1}\left(G_{2}-G_{1}\right)}{D} ; \quad C_{31}=\frac{h_{1}-h_{2}}{D} \\
& C_{32}=\frac{H_{2}-H_{1}-L h_{2}}{D} ; \quad C_{33}=-C_{31} ; \quad C_{34}=\frac{H_{1}-H_{2}+L h_{1}}{D} \\
& C_{41}=\frac{g_{2}-g_{1}}{D} ; C_{42}=\frac{G_{1}-G_{2}+L g_{2}}{D} ; \quad C_{43}=-C_{41} \\
& C_{44}=\frac{G_{2}-G_{1}+L g_{1}}{D}
\end{aligned}
$$

and

$$
\begin{aligned}
D= & \left(G_{1} h_{1}-H_{1} g_{1}\right)+\left(H_{1} g_{2}-G_{1} h_{2}\right)+\left(G_{2} h_{2}-H_{2} g_{2}\right) \\
& +\left(H_{2} g_{1}-G_{2} h_{1}\right)+L\left(g_{2} h_{1}-g_{1} h_{2}\right)
\end{aligned}
$$

Appendix 2.

Calculation of Internal forces for Tangential Stiffness Matrix.

$$
P=\int_{0}^{L}[\bar{B}]^{\top}\{\sigma\} d x .
$$

On araluaters gives;

$$
\begin{aligned}
S_{1}=\frac{E A}{70} & \left\{\frac{9}{L^{3}}\left(v_{1}-v_{2}\right)\left[8\left(v_{1}-v_{2}\right)^{2}+3 L\left(v_{1}-v_{2}\right)\left(\theta_{1}+Q_{2}\right)+L^{2}\left(\theta_{1}^{2}+\theta_{2}^{2}\right)\right]\right. \\
& \left.+\frac{1}{4}\left[3 \theta_{1} \theta_{2}\left(\theta_{1}+\theta_{2}\right)-\left(\theta_{1}^{3}+\theta_{2}^{3}\right)\right]\right\} \\
& -\frac{E A}{10 L^{2}}\left(u_{1}-u_{2}\right)\left[12\left(v_{1}-v_{2}\right)+L\left(\theta_{1}+\theta_{2}\right)\right] \\
& +\frac{E I}{L^{2}}\left[12\left(v_{1}-v_{2}\right)+6 L\left(\theta_{1}+\theta_{2}\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
M_{1}=\frac{E A}{280} & \left\{\frac{3}{L^{2}}\left(V_{1}-V_{2}\right)\left[12\left(V_{1}-V_{2}\right)\left(V_{1}-V_{2}+L \theta_{1}\right)+L^{2}\left(\theta_{2}^{2}+2 \theta_{1} \theta_{2}-\theta_{1}^{2}\right)\right]\right. \\
& \left.+L\left[\theta_{1}^{2}\left(8 \theta_{1}-3 \theta_{2}\right)+\theta_{2}^{2}\left(2 \theta_{1}-\theta_{2}\right)\right]\right\} \\
& -\frac{E A}{30 L}\left(u_{1}-u_{2}\right)\left[3\left(V_{1}-V_{2}\right)+L\left(4 \theta_{1}-\theta_{2}\right)\right] \\
& +\frac{E I}{L^{2}}\left[6\left(v_{1}-V_{2}\right)+2 L\left(2 \theta_{1}+\theta_{2}\right)\right]
\end{aligned}
$$

$$
S_{2}=-S_{1}
$$

$$
\begin{aligned}
M_{2}=\frac{E A}{280} & \left\{\frac{3}{L^{2}}\left(v_{1}-v_{2}\right)\left[12\left(v_{1}-v_{2}\right)\left(v_{1}-v_{2}+L \theta_{2}\right)+L^{2}\left(\theta_{1}^{2}+2 \theta_{1} \theta_{2}-\theta_{2}^{2}\right)\right]\right. \\
& \left.+2\left[\theta_{2}^{2}\left(8 \theta_{2}-3 \theta_{1}\right)+\theta_{1}^{2}\left(2 \theta_{2}-\theta_{1}\right)\right]\right\} \\
& -\frac{E A}{30 L}\left(u_{1}-u_{2}\right)\left[3\left(v_{1}-v_{2}\right)+L\left(\theta_{2}-\theta_{1}\right)\right] \\
& +\frac{E I}{L^{2}}\left[6\left(v_{1}-v_{2}\right)+2 L\left(\theta_{1}+2 \theta_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
P_{1}= & -\frac{E A}{30 L^{2}}\left[18\left(V_{1}-V_{2}\right)^{2}+3 L\left(V_{1}-V_{2}\right)\left(\theta_{1}+\theta_{2}\right)+L^{2}\left(2 \theta_{1}^{2}-\theta_{1} \theta_{2}+2 \theta_{2}^{2}\right)\right] \\
& +\frac{E A}{L}\left(u_{1}-u_{2}\right) .
\end{aligned}
$$

$$
P_{2}=-P_{1} .
$$

```
Appendix 3.
Listing of Computer Program in FORTRAN.
```

28-Sep-1988 16: 51: 05VAX FORTRAN V4. 8-276
29-Jul-1988 19:55: 12 \$1 ${ }^{\text {\$DUA3: [BAWAGS]NONPRIS. FOR; } 60 ~}$

0001

THIS PROGRAM IS TO ANALYSE LARGE CIVIL ENGINEERING
PLAIN FRAMES WITH THE USE OF FINITE
=====================================
ELEMENT TECHNIQUES
====================

BY

=

G. S. BAWA VERSION 1. 1

DOUBLE PRECISION $X(100), Y(100), X X(100), Y Y(100), L(100), C A(10$ $C B(100), C L(100), C M(100), E I(100), E A(100), T T(100)$, $A(100), B(100), C(100), D(100), E(100), F(100), G(100)$, $S(300,300), L L(300), P(100), Q Q(100), W(100), V(100)$, $S S(100), M A(100), M B(100), U(100), B B(300), C W(100)$, $\operatorname{SW}(100), \operatorname{MEM}(4,4), \operatorname{FOR}(4), \operatorname{CC}(4,4), Q(4,4), \operatorname{Wi}(300)$, $W 2(300), R 1(300), R 2(300), Z Z(300), A 1(100), A 己(100)$, $\operatorname{AMDA}(100), \operatorname{WKS2}(300), A 3(100), A 4(100), P 1(100), P 2(100)$, CT11(100), СT22(100), СT32(100), СT33(100), CT42(100), CT43(100), CT44(100), LX(300), UDL(100), XL(300), XLX(300), XM1 (100), XME(100)

INTEGER $\operatorname{KR}(100), \operatorname{JR}(100), \operatorname{IDDF}(300)$
WRITE $(6,4000)$
PRINT*, '
PRINT*, '
PRINT*, 'THIS PROGRAM IS FOR THE ANALYSIS OF PLANE FRAMEWORK PRINT*, 'WITH THE USE OF FINITE ELEMENT TECHNIQUES.'
PRINT*,'
PRINT*, 'THE FINAL PRINTOUT GIVING THE JOINT DEFLECTIONS, MET
PRINT*, 'DIRCETIONAL COSINES AND FORCES.'
PRINT*,'
PRINT*,'
PRINT*,'
PRINT*, 'ENTER 1 TO CONTINUE'
READ*, Z
WRITE (6,4000)
$\operatorname{OPEN}(6, F I L E=$ 'PRISRES', STATUS $=$ 'NEW', $E R R=10000$)
OPEN(5,FILE $={ }^{\prime}$ PRISINPUT', STATUS $={ }^{\prime}$ OLD',$E R R=10000$)
WRITE (6, 2000)
$\operatorname{READ}(5, *), \mathrm{NJ}$
WRITE (6,2100) NJ

$$
I=1
$$

WRITE(6, 2600)I, XLX(3*I-2), XLX(3*I-1), XLX(3*I)
IF (I.LT. NJ) GOTO 38
IF (I.EQ. NJ) GOTO 39
$\mathrm{I}=\mathrm{I}+1$
GOTO 37
continue
$\operatorname{READ}(5, *) \mathrm{NM}$
WRITE (6, 2700)NM
$\mathrm{I}=1$
$\operatorname{READ}(5, *) \operatorname{KR}(I), \operatorname{JR}(I), E I(I), E A(I), U D L(I)$
CALCULATION OF MEMBER LENGTH L(I)
$L(I)=(((X(J R(I))-X(K R(I))) * * 2)+((Y(J R(I))-Y(K R(I))) * * 2)) * * C$
WRITE(6, 2800)I, KR(I), JR(I), L(I)

COUPLINGFACTORS 28-Sep-1988 16: 51: 05VAX FORTRAN V4. 8-276 29-JU1-1988 19:55:12\$1\$DUA3: [BAWAGS]NONPRIS. FOR; 60

0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137

CALCULATION FOR DIRECTIONAL COSINES FOR MEMBER I
C

```
50
```

60

70

80

85

90
C
c
c

C
c
C

```
IF (Y(JR(I)).GT. Y(KR(I))) GOTO 50
IF (Y(JR(I)).LT. Y(KR(I))) GOTO 60
IF (Y(JR(I)).EQ. Y(KR(I))) GOTO 70
IF (X(JR(I)).EQ. X(KR(I))) GOTO 80
IF (X(JR(I)).EQ. X(KR(I)).AND.Y(JR(I)).LT.Y(KR(I))) GOTO }8
AA=(X(JR(I))-X(KR(I)))
O=(Y(JR(I))}-Y(KR(I))
CA(I)=AA/L(I)
CB(I)=0/L(I)
GOTO 90
AA=(X(JR(I))-X(KR(I)))
O=(Y(KR(I))}-Y(JR(I))
CA(I)=AA/L(I)
CB(I)=-0/L(I)
gOTO 90
CA(I)=1
CB(I)=0
GOTO 90
CA(I)=0
CB(I)=1
GOTO 90
CA(I)=0
CB(I)=-1
GOTO 90
CL(I)=-CB(I)
CM(I)=CA(I)
```

NON-NODAL FORCES
$51=\mathrm{UDL}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2$
$\mathrm{XM1}(\mathrm{I})=\mathrm{UDL}(\mathrm{I}) * L(\mathrm{I}) * L(\mathrm{I}) / 12$
$\mathrm{S} 2=51$
$\operatorname{XM2}(I)=-X M 1(I)$
$\mathrm{FX} 1=\mathrm{S} 1 * \mathrm{CB}(\mathrm{I})$
FY1 $=$ S1*CM(I)
XM1 (I) $=\mathrm{XM} 1$ (I)
FX2=S2*CB(I)
FY2 $=52 * C M(I)$
$X M 2(I)=X M 2(I)$
$X L(3 * K R(I)-2)=X L(3 * K R(I)-2)+F X 1$
$X L(3 * K R(I)-1)=X L(3 * K R(I)-1)+F Y 1$
$\mathrm{XL}(3 * \mathrm{KR}(\mathrm{I}))=\mathrm{XL}(3 * \mathrm{KR}(\mathrm{I}))+\mathrm{XM1}(\mathrm{I})$
$X L(3 * J R(I)-2)=X L(3 * J R(I)-2)+F X 2$
$\mathrm{XL}(3 * J R(I)-1)=\mathrm{XL}(3 * J R(I)-1)+F Y 2$
$\mathrm{XL}(3 * J R(I))=\mathrm{XL}(3 * J R(I))+X M 2(I)$

CALCULATION OF THE GLOBAL STIFFINESS MATRIX FOR MEMBER I
$A(I)=((E A(I) / L(I)) *(C A(I) * * 2))+((12 * E I(I) /(L(I) * * 3)) *(C L(I)$ $B(I)=((E A(I) / L(I)) *(C B(I) * * 2))+((12 * E I(I) /(L(I) * * 3)) *(C M(I)$ $\mathrm{UU}=((\mathrm{EA}(\mathrm{I}) / \mathrm{L}(\mathrm{I})) * \mathrm{CA}(\mathrm{I}) * \mathrm{CB}(\mathrm{I}))$
$V V=((12 * E I(I) /(L(I) * * 3)) *(C L(I)) *(C M(I)))$
$C(I)=U U+V V$
C
C
C
C

```
D(I)=(6*EI(I)/(L(I)**2))*CL(I)
E(I)=(6*EI(I)/(L(I)**E))*CM(I)
F(I)=(4*EI (I)/L{I))
G(I)=(F(I)/2)
```

C CALCULATION OF THE OVERALL STIFFINESS MATRIX FOR MEMBER
$S((3 * K R(I)-2),(3 * K R(I)-2))=S((3 * K R(I)-2),(3 * K R(I)-2))+A(I)$ $S((3 * K R(I)-1),(3 * K R(I)-1))=S((3 * K R(I)-1),(3 * K R(I)-1))+B(I)$ $S((3 * K R(I)-1),(3 * K R(I)-2))=S((3 * K R(I)-1),(3 * K R(I)-2))+C(I)$ $S((3 * K R(I)),(3 * K R(I)))=S((3 * K R(I)),(3 * K R(I)))+F(I)$ $S((3 * K R(I)),(3 * K R(I)-1))=S((3 * K R(I)),(3 * K R(I)-1))+E(I)$ $S((3 * K R(I)),(3 * K R(I)-2))=S((3 * K R(I)),(3 * K R(I)-2))+D(I)$ $S((3 * J R(I)-2),(3 * J R(I)-2))=S((3 * J R(I)-2),(3 * J R(I)-2))+A(I)$ $S((3 * \operatorname{JR}(I)-1),(3 * J R(I)-1))=S((3 * J R(I)-1),(3 * J R(I)-1))+B(I)$ $S((3 * J R(I)-1),(3 * J R(I)-2))=S((3 * J R(I)-1),(3 * J R(I)-2))+C(I)$ $S((3 * J R(I)),(3 * J R(I)))=S((3 * J R(I)),(3 * J R(I)))+F(I)$ $S((3 * J R(I)),(3 * J R(I)-1))=S((3 * J R(I)),(3 * J R(I)-1))-E(I)$ $S((3 * J R(I)),(3 * J R(I)-2))=S((3 * J R(I)),(3 * J R(I)-2))-D(I)$ $S((3 * J R(I)-2),(3 * K R(I)-2))=S((3 * J R(I)-2),(3 * K R(I)-2))-A(I)$ $S((3 * J R(I)-2),(3 * K R(I)-1)\}=S(\langle 3 * J R(I)-2),(3 * K R(I)-1))-C(I)$ $S((3 * J R(I)-2),(3 * K R(I)))=S(\{3 * J R(I)-2\},(3 * K R(I)))-D(I)$ $5((3 * J R(I)-1),(3 * K R(I)-2)\}=5((3 * J R(I)-1),(3 * K R(I)-2))-C(I)$ $S((3 * J R(I)-1),(3 * K R(I)-1))=S((3 * J R(I)-1),(3 * K R(I)-1))-B(I)$ $S((3 * J R(I)-1),(3 * K R(I)))=S(\{3 * J R(I)-1),(3 * K R(I)))-E(I)$ $S((3 * J R(I)),(3 * K R(I)-2))=S((3 * J R(I)),(3 * K R(I)-2))+D(I)$ $S((3 * J R(I)),(3 * K R(I)-1))=S((3 * J R(I)),(3 * K R(I)-1))+E(I)$ $S((3 * J R(I)\},(3 * K R(I)))=S\{(3 * J R\{I)),(3 * K R(I)))+G(I)$ IF (I.LT. NM) GOTO 100 IF (I. EQ. NM) GOTO 110

$$
I=I+1
$$

GOTO 40
CONT INUE
WRITE (6, 2900)

$$
I=1
$$

WRITE(6, 3000)I, EI(I), EA(I)
IF (I.LT. NM) GOTO 112
IF (I.EQ. NM) GOTO 113
$\mathrm{I}=\mathrm{I}+1$
GOTO 111
113 CONTINUE
$\operatorname{READ}(5, *) \operatorname{ICON}$
PRINT*, '
PRINT*, '
PRINT*, "
PRINT*, ,
PRINT*, ' ,
PRINT*, ,
PRINT*, ,
PRINT*, ,
PRINT*, ,
PRINT*,' '
PRINT*, ' ,

PRINT*, ,
PRINT*, ,
PRINT*, ,
$\stackrel{c}{c}$
RESTRAINT BOUNDARY CONDITIONS FOR MATRIX
$\mathrm{I}=1$
114 LL(I) $=\mathrm{XL}$ (I)
IF (I.LT. (3*NJ)) GOTO 115
IF (I.EQ. (3*NJ)) GOTO 116
$\mathrm{I}=\mathrm{I}+1$
GOTO 114
CONTINUE
$\mathrm{I}=1$
121 IF (IDOF(I).EQ. O) GOTO 122
IF (IDOF(I).EQ. 1) GOTO 123
$\mathrm{S}(\mathrm{I}, \mathrm{I})=\mathrm{S}(\mathrm{I}, \mathrm{I}) * 1$. OE 20
$\mathrm{LL}(\mathrm{I})=\mathrm{S}(\mathrm{I}, \mathrm{I}) * \mathrm{IDOF}(\mathrm{I})$
IF (I.EQ. $3 * N J$) GOTO 124
$\mathrm{I}=\mathrm{I}+1$
GOTO 121
CONTINUE

DECOMPOSITION

```
J=0
J=J+1
I=J-1
I=I+1
IF (I.EQ. J) GOTO 210
K=0
SUM=0
k=k+1
IF (K. NE. J) GOTO 190
IF (K.EQ. J) GOTO 200
SUM=SUM+(S(I,K)*S(J,K))
GOTO 180
S(I,J)=(S(I,J)-SUM)/S(J,J)
GOTO 245
k=0
SUM=0
k=k+1
IF (K.NE. J) GOTO 230
IF (K.EQ. J) GOTO 240
SUM=SUM+(S(I,K)**2)
GOTO 220
S(I,I)={(S(I,I)-SUM)**0.5)
IF (I.NE. (3*NJ)) GOTO 170
IF (I.EQ. (3*NJ)) GOTO 250
IF (J.NE. (3*NJ)) GOTO 160
IF (J.EQ. (3*NJ)) GOTO 260
CONTINUE
```

0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342
c
c FORWARD SUBSTITUTION
c
$263 \quad \begin{aligned} & I=1 \\ & B B(I)=L L(I)\end{aligned}$
IF (I. LT. (3*NJ)) GOTO 264 IF (I. EQ. ($3 * \mathrm{NJ}$)) GOTO 267 $\mathrm{I}=\mathrm{I}+1$ goto 263 CONTINUE I=0 $\mathrm{I}=1+1$ $J=0$ Sum $=0$
280 $\mathrm{J}=\mathrm{J}+1$
IF (I.EQ. J) GOTO 290 SUM=SUM+BB(J)*S(I, J) goto 280
$\mathrm{BB}(\mathrm{I})=(\mathrm{BB}(\mathrm{I})-\mathrm{SUM}) / \mathrm{S}(\mathrm{I}, \mathrm{I})$ IF (I. NE. ($3 * N \mathrm{NJ}$)) GOTO 270 IF (I.EQ. ($3 * \mathrm{NJ}$)) GOTO 300 continue
c
c back substitution
c

310	$\mathrm{I}=\mathrm{I}-1$
	$J=(3 * N J)+1$
	SUM $=0$
320	$J=J-1$
	IF (I. EQ. J) GOTO 330

SUM=SUM+S(J, I)*BB(J)
goto 320
$B B(I)=\{B E(I)-S U M\} / S(I, I)$
IF (I. NE. 1) GOTO 310 IF (I.EQ. 1) GOTO 340 CONTINUE

C

C
C

MEMBER FORCES P,S,M1,M2.
$\mathrm{I}=1$
380
FNi $=-((E A(I) / L(I)) * C A(I) * B B(3 * K R(I)-2))$
$F N 2=-((E A(I) / L(I)) * C B(I) * B B(3 * K R(I)-1))$
$F N 3=((E A(I) / L(I)) * C A(I) * B B(3 * J R(I)-2))$
FN4 $=((E A(I) / L(I)) * C B(I) * B B(3 * J R(I)-1))$
$\mathrm{P} 1(\mathrm{I})=\mathrm{FN} 1+\mathrm{FN} 2+\mathrm{FN} 3+\mathrm{FN} 4$
FN5 $=-((12 * E I(I) /(L(I) * * 3)) * C L(I) * B B(3 * K R(I)-2))$
FNS $=-((12 * E I(I) /(L(I) * * 3)) * C M(I) * B B(3 * K R(I)-1))$
$\mathrm{FN} 7=-((6 * E I(I) /(L(I) * * 2)) * B B(3 * K R(I)))$
$F N 8=((12 * E I(I) /(L(I) * * 3)) * C L(I) * B B(3 * J R(I)-2))$
FN9 = ((12*EI (I)/(L(I)**3))*CM(I)*BB(3*JR(I)-1))
FN1O $=-((6 * E I(I) /(L(I) * * 2)) * B B(3 * J R(I)))$

```
    SS(I)=FNS+FN6+FN7+FNB+FN9+FN10
    FN11=((6*EI(I)/(L(I)**2))*CL(I)*BB(3*KR(I)-2))
    FN12=((6*EI(I)/(L(I)**2))*CM(I)*BB(3*KR(I)-1))
    FN13={(4*EI(I)/L(I))*BB(3*KR(I)))
    FN14=-((6*EI(I)/(L(I)**2))*CL(I)*BB(3*JR(I)-2))
    FN15=-((6*EI(I)/(L(I)**2))*CM(I)*BB(3*JR(I)-1))
    FN16=((2*EI(I)/L(I))*BB(3*JR(I)))
    MA(I) =-(FN11+FN12+FN13+FN14+FN15+FN16)+(UDL(I)*L(I)*L(I)/12
    FN17={(6*EI(I)/(L(I)**2))*CL(I)*BB(3*KR(I)-2))
    FN18=((6*EI(I)/(L(I)**2))*CM(I)*BB(3*KR(I)-1))
    FN19=((2*EI(I)/L(I))*BB(3*KR(I)))
    FN2O=-((6*EI(I)/(L(I)**2))*CL(I)*BB(3*JR(I)-2))
    FN21=-((6*EI(I)/(L(I)**2))*CM(I)*BB(3*JR(I)-1))
    FN22=((4*EI(I)/L(I))*BB(3*JR(I)))
    MB(I)=FN17+FN18+FN19+FN2O+FN21+FN22-(-UDL(I)*L(I)*L(I)/12)
    IF (I.LT.NM) GOTO 390
    IF (I. EQ.NM) GOTO 400
    I=I+1
    GOTO }38
    CONTINUE
    WRITE(6,3100)
    WRITE(6,3150)
    WRITE(6,3175)
    WRITE(6,3180)
        I=1
    WRITE(6,3200)I,CA(I),CB(I),CL(I),CM(I)
    IF (I. LT. NM) GOTO 420
    IF (I.EQ.NM) GOTO 430
    I}=\textrm{I}+
    GOTO 410
CONTINUE
WRITE(b,3300)
    I=1
440 WRITE (6,3400)I,BB(3*I-2),BB(3*I-1),BB(3*I)
    IF (I.LT.NJ) GOTO 450
    IF (I.EQ.NJ) GOTO 460
    I}=\textrm{I}+
    GOTO 440
    CONTINUE
    WRITE(6,3500)
        I=1
\(\mathrm{SS}(\mathrm{I})=\mathrm{FN} 5+\mathrm{FN} 6+\mathrm{FN} 7+\mathrm{FNB}+\mathrm{FN} 9+\mathrm{FN} 10\)
FN11=((6*EI (I)/(L(I)**2))*CL(I)*BB(3*KR(I)-2))
FN12=((6*EI (I)/(L(I)**2))*CM(I)*BB(3*KR(I)-1))
FN13= ((4*EI (I)/L(I))*BB(3*KR(I)))
FN14 \(=-((6 * E I(I) /(L(I) * * 2)) * C L(I) * B B(3 * J R(I)-2))\)
FN15 \(=-((6 * E I(I) /(L(I) * * 2)) * C M(I) * B B(3 * J R(I)-1))\)
FN16=((2*EI (I)/L(I))*BB(3*JR(I)))
\(\operatorname{MA}(I)=-(F N 11+F N 12+F N 13+F N 14+F N 15+F N 16)+(U D L(I) * L(I) * L(I) / 12\)
FN17= ( (6*EI (I) / (L(I)**2)) *CL(I)*BB (3*KR (I)-2))
FN18=((6*EI (I)/(L(I)**2))*CM(I)*BB(3*KR(I)-1))
FN19=((2*EI (I)/L(I))*BB(3*KR(I)))
FNeO=-( (6*EI (I)/(L(I)**2))*CL(I)*BB(3*JR(I)-2))
FN22 \(=((4 * E I\) (I) \(/ L(I)) * B B(3 * J R(I)))\)
\(M B(I)=F N 17+F N 18+F N 19+F N 20+F N 21+F N 22-(-U D L(I) * L(I) * L(I) / 12)\)
IF (I.LT.NM) GOTO 390
IF (I. EQ. NM) GOTO 400
\(\mathrm{I}=\mathrm{I}+1\)
GOTO 380
CONTINUE
WRITE (6, 3100)
WRITE (6, 3150)
WRITE (6, 3175)
WRITE (6, 3180)
\[
I=1
\]
WRITE(0, 32OO) I, CA(I), CB(I),CL(I), CM(I)
IF (I.EQ.NM) GOTO 430
\(\mathrm{I}=\mathrm{I}+1\)
GOTO 410
CONT INUE
WRITE(6, 3300)
\[
I=1
\]
\(440 \quad \operatorname{WRITE}(6,3400) \mathrm{I}, \mathrm{BB}(3 * \mathrm{I}-2), \mathrm{BB}(3 * \mathrm{I}-1), \mathrm{BB}(3 * \mathrm{I})\)
IF (I. LT. NJ) GOTO 450
IF (I.EQ.NJ) GOTO 460
WRITE( 6,3500 )
\[
I=1
\]
WRITE(6, 3600)I, SS(I), P1(I), MA(I), MB(I)
IF (I.LT.NM) GOTO 480
IF (I.EQ.NM) GOTO 490
\(\mathrm{I}=\mathrm{I}+1\)
GOTO 470
CONTINUE
```

470
480
490

450
460

WRITE (6, 3700) 29-Jul-1988 19:55: 12 \$1\$DUA3: [BAWAGS]NONPRIS. FOR; 60

0400	C	
0401	C	NON-LINEAR ANALYSIS STARTS HERE (CONSTANT AXIAL FORCE)
0402	C	
0403	C	
0404		
0405		$J=0$
0406	500	$J=J+1$
0407		$\mathrm{I}=\mathrm{J}-1$
0408	510	$\mathrm{I}=\mathrm{I}+1$
0409		IF (I.EQ. J) GOTO 520
0410		$S(1, J)=0$
0411		GOTO 530
0412	520	S(I, I) $=0$
0413	530	IF (I.NE. (3*NJ)) GOTO 510
0414		IF (I.EQ. (3*NJ)) GOTO 540
0415	540	IF (J. NE. (3*NJ)) GOTO 500
0416		IF (J.EQ. (3*NJ)) GOTO 550
0417	550	CONTINUE
0418		
0419		$\mathrm{I}=1$
0420	552	XL(I) $=\mathrm{XLX}$ (I)
0421		IF (I.LT. (3*NJ)) GOTO 555
0422		IF (I.EQ. $3 * N J$) GOTO 557
0423	555	$\mathrm{I}=\mathrm{I}+1$
0424		GOTO 552
0425	557	CONTINUE
0426		
0427	C	
0428	C	CALCULATION OF THE LOCAL STIFFINESS MATRIX
0429	C	FOR A NON-LINEAR MEMBER
0430	C	
0431		
0432		
0433		$\mathrm{I}=1$
0434	560	IF (PI(I).EQ. O) GOTO 570
0435		IF (P1(I).LT. O) GOTO 564
0436		IF (P1(I).GT. O) GOTO 566
0437		
0438	564	$\mathrm{P} 1(\mathrm{I})=-\mathrm{P} 1(\mathrm{I})$
0439		$W(I)=((P 1(I) / E I(I)) * * 0.5)$
0440		$Q Q(I)=W(I) * L(I)$
0441		$C W(I)=\operatorname{Cos}(Q Q(I))$
0442		$\mathrm{SW}(\mathrm{I})=\operatorname{SIN}(\mathrm{QQ}(\mathrm{I})$)
0443		$V(I)=-W(I) *((Q Q(I) * S W(I))+(2 * C W(I))-2)$
0444		CT11(I) $=\mathrm{EA}(\mathrm{I}) / \mathrm{L}(\mathrm{I})$
0445		CT22(I) $=(\mathrm{P} 1(\mathrm{I}) * W(\mathrm{I}) * W(\mathrm{I}) * S W(\mathrm{I}) / \mathrm{V}(\mathrm{I}))$
0446		CT32(I) $=$ (P1(I)*W(I)*(1-CW(I))/V(I))
0447		CT33(I) $=(\mathrm{P} 1(\mathrm{I}) *(S W$ (I)-(QQ(I)*CW(I)))/V(I))
0448		CT42(I) $=$ CT32(I)
0449		CT43(I) $=(\mathrm{P} 1(\mathrm{I}) *(Q Q(I)-5 W(I)) / \mathrm{V}(\mathrm{I})$)
0450		CT44(I) =CT33(I)
0451		
0452	C	
0453	C	NON-NODAL LOADING SUBROUTINE
0454	C	
0455		
0456		$V N=(2 * W(I) *(1-C W(I)))-(W(I) * W(I) * L(I) * S W(I))$

0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497
0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513

CN11=(W(I)-(W(I)*W(I)*L(I)*SW(I))-(W(I)*CW(I)))/VN CN12 $=((W$ (I) $) *(\mathrm{I}) * C W(I))-S W(I)) / \mathrm{VN}$
CN1 $3=(W(I) *(1-C W(I))) / V N$
CN14 $=(\mathrm{SW}(\mathrm{I})-(\mathrm{W}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}))) / \mathrm{VN}$
CN21 $=W(I) * W(I) * S W(I) / V N$
CN22=CN13
CN23 $=-\mathrm{CN} 21$
CN24 $=$ CN13
CN31 $=-$ CN21 $/$ W (I)
$\mathrm{CN} 32=\mathrm{CN11} / \mathrm{W}(\mathrm{I})$
CN33 $=$ CN21/W (I)
CN34 $=-$ CN13/W(I)
$\mathrm{CN} 41=\mathrm{CN} 13$
$\mathrm{CN42}=-\mathrm{CN} 12$
CN43 $=-$ CN13
$\mathrm{CN} 44=-\mathrm{CN} 14$
SNN1 $=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 11)+(\mathrm{CN} 21 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)$
SNN2 $=($ CN31*(1-CW(I))/W(I)) $+($ CN41*SW(I)/W(I))
S1 $=$ UDL $(I) *(S N N 1+5 N N 2)$
SNN3 $=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 12)+(\mathrm{CN} 22 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)$
SNN4 $=($ CN32*(1-CW(I))/W(I)) $+($ CN42*SW(I) $/ W(I))$
XM1 (I) $=\mathrm{UDL}(\mathrm{I}) *($ SNN3 + SNN4 $)$
SNN5 $=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 13)+(\mathrm{CN} 23 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)$
SNN6 $=(\mathrm{CN} 33 *(1-\mathrm{CW}(\mathrm{I})) / \mathrm{W}(\mathrm{I}))+(\mathrm{CN} 43 * \mathrm{SW}(\mathrm{I}) / \mathrm{W}(\mathrm{I}))$
S2=UDL (I) * (SNN5+SNN6)
SNN7 $=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 14)+(\mathrm{CN} 24 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / \mathrm{C})$
SNNB $=($ CN34*(1-CW(I))/W(I)) $+($ CN44*SW(I) $/$ W (I) $)$
XM2 (I) $=$ UDL $(I) *(S N N 7+$ SNNB $)$
C
C CONVERSION TO GLOBAL COORDINATES
$\mathrm{FX} 1=\mathrm{S} 1 * \mathrm{CB}(\mathrm{I})$
$F Y 1=51 * C M(1)$
$X M_{1}(I)=X M 1(I)$
FX2 $=52$ * $\mathrm{CB}(1)$
FY2 $=52$ *CM ()
XM2 (I) $=$ XM2 (I)
$\mathrm{XL}(3 * \mathrm{KR}(\mathrm{I})-2)=\mathrm{XL}(3 * \mathrm{KR}(\mathrm{I})-2)+\mathrm{FX} 1$
$X L(3 * K R(I)-1)=X L(3 * K R(I)-1)+F Y 1$
$X L(3 * K R(I))=X L(3 * K R(I))+X M 1$ (I)
$X L(3 * J R(I)-2)=X L(3 * J R(I)-2)+F X 2$
$X L(3 * J R(I)-1)=X L(3 * J R(I)-1)+F Y 2$
$X L(3 * J R(I))=X L(3 * J R(I))+X M 2(I)$
$P 1(I)=-P 1(I)$
GOTO 572

566

```
W(I)=((P1(I)/EI(I))**0.5)
QQ(I)=W(I)*L(I)
CW(I)=COSH(QQ(I))
SW(I)=SINH(QQ(I))
V(I)={2*W(I)*(1-CW(I))}+{QQ(I)*W(I)*SW(I))
CT11(I)=EA(I)/L(I)
CTE2(I)=(P1(I)*W(I)*W(I)*SW(I)/V(I))
CT32(I)=-{P1{I)*W(I)*(1-CW(I)}/V(I))
```


CONVERSION TO GLOBAL COORDINATES
$\mathrm{FX1}=\mathrm{S} 1 * \mathrm{CB}(\mathrm{I})$
FY1=S1*CM(I)
$X M 1(I)=X M 1(I)$
FX2=S2*CB(I)
FYe=S2*CM (I)
$X M 2(I)=X M 2(I)$
$X L(3 * K R(I)-2)=X L(3 * K R(I)-2)+F X 1$
$X L(3 * K R(I)-1)=X L(3 * K R(I)-1)+F Y 1$
$X L(3 * K R(I))=X L(3 * K R(I))+X M 1(I)$
$X L(3 * J R(I)-2)=X L(3 * J R(I)-2)+F X 2$
$X L(3 * J R(I)-1)=X L(3 * J R(I)-1)+F Y 2$
$X L(3 * J R(I))=X L(3 * J R(I))+X M 2(I)$

0571	570	CT11(I) = EA (I)/L(I)
0572		CT22(I) $=12 * E I(I) /(L)$
0573		CT32 (I) $=6 * E I(I) /(L)(I) * 2$.
0574		CT33(I) $=4 * E I(I) / L(I)$
0575		CT42 (I) = CT32 (I)
0576		CT43(I) $=2 * E I(I) / L(I)$
0577		CT44(I) = CT33 (1)

$S((3 * K R(I)-2),(3 * K R(I)-2))=S((3 * K R(I)-2),(3 * K R(I)-2))+A(I)$ $S((3 * K R(I)-1),(3 * K R(I)-1))=S((3 * K R(I)-1),(3 * K R(I)-1))+B(I)$ $S((3 * K R(I)-1),(3 * K R(I)-2))=S((3 * K R(I)-1),(3 * K R(I)-2))+C(I)$ $S((3 * K R(I)),(3 * K R(I)))=S((3 * K R(I)),(3 * K R(I)))+F(I)$ $S((3 * K R(I)),(3 * K R(I)-1))=S((3 * K R(I)),(3 * K R(I)-1))+E(I)$ $S((3 * K R(I)),(3 * K R(I)-2))=S((3 * K R(I)),(3 * K R(I)-2))+D(I)$ $S((3 * J R(I)-2),(3 * J R(I)-2))=S((3 * J R(I)-2),(3 * J R(I)-2))+A(I)$ $S((3 * J R(I)-1),(3 * J R(I)-1))=S((3 * J R(I)-1),(3 * J R(I)-1))+B(I)$ $S((3 * J R(I)-1),(3 * J R(I)-2))=S((3 * J R(I)-1),(3 * J R(I)-2))+C(I)$ $S((3 * J R(I)),(3 * J R(I)))=S((3 * J R(I)),(3 * J R(I)))+F(I)$
$S((3 * J R(I)),(3 * J R(I)-1))=S((3 * J R(I)),(3 * J R(I)-1))-E(I)$
$S((3 * J R(I)),(3 * J R(I)-2))=S((3 * J R(I)),(3 * J R(I)-2))-D(I)$ $S((3 * J R(I)-2),(3 * K R(I)-2))=S((3 * J R(I)-2),(3 * K R(I)-2))-A(I)$ $S((3 * J R(I)-2),(3 * K R(I)-1))=S((3 * J R(I)-2),(3 * K R(I)-1))-C(I)$ $S((3 * J R(I)-2),(3 * K R(I)))=S((3 * J R(I)-2),(3 * K R(I)))-D(I)$ $S((3 * J R(I)-1),(3 * K R(I)-2)\}=S((3 * J R(I)-1),(3 * K R(I)-2))-C(I)$ $S((3 * J R(I)-1),(3 * K R(I)-1))=S((3 * J R(I)-1),(3 * K R(I)-1)\}-B(I)$ $S((3 * J R(I)-1),(3 * K R(I)))=S((3 * J R(I)-1),(3 * K R(I)))-E(I)$
$S((3 * J R(I)),(3 * K R(I)-2))=S((3 * J R(I)),(3 * K R(I)-2))+D(I)$
$S((3 * J R(I)),(3 * K R(I)-1))=S((3 * J R(I)),(3 * K R(I)-1))+E(I)$
$S((3 * J R(I)),(3 * K R(I)))=S\{(3 * J R(I)),(3 * K R(I)))+G(I)$
IF (I. LT. NM) GOTO 575
IF (I. EQ. NM) GOTO 580
$\mathrm{I}=\mathrm{I}+1$
GOTD 560
CONTINUE

0628

 0629 0630 06310632 0633 0634 0635
0636 0637 0638 0639 0640
0641 0642 0643
0644
0645
0646
0647
0648 0649 0650
0651
0652
0653
0654

0655

0656
0657
0658
0659
0660
0661

0662

0663
0664
0665
0666
0667
0668
0669

0670

0671
0672
0673
670
0674
0675680
$0676 \quad 690$
0677
0678
0679
0680
0681
0682
0683
0684
57

578
579
C
$\mathrm{I}=1$

CONTINUE
$\mathrm{I}=1$
581 IF (IDOF (I).EQ. O) GOTO 583 IF (IDOF(I). EQ. 1) GOTO 585
$S(I, I)=S(I, I) * 1$. OE20
$\mathrm{LL}(\mathrm{I})=\mathrm{S}(\mathrm{I}, \mathrm{I}) * \mathrm{IDOF}(\mathrm{I})$
IF (I.EQ. $3 * N J$) GOTO 590 $\mathrm{I}=\mathrm{I}+1$ GOTO 581 continue

CHOLESKYS SOLUTION ROUTINE

DECOMPOSITION

```
```

N=3*NJ

```
```

N=3*NJ
J=0
J=0
J=J+1
J=J+1
I=J-1
I=J-1
I=I +1
I=I +1
IF (I.EQ. J) GOTO 650
IF (I.EQ. J) GOTO 650
K=0
K=0
SUM=0
SUM=0
k=k+1
k=k+1
IF (K.NE. J) GOTO 630
IF (K.NE. J) GOTO 630
IF (K.EQ. J) GOTO \$40
IF (K.EQ. J) GOTO \$40
SUM=SUM+(S(I,K)*S(J,K))
SUM=SUM+(S(I,K)*S(J,K))
GOTO 620
GOTO 620
640 S(I,J)=(S(I,J)-SUM)/S(J,J)
GOTO }69
GOTO }69
K=0
K=0
SUM=0
SUM=0
k=k+1
k=k+1
IF (K.NE. J) GOTO 670
IF (K.NE. J) GOTO 670
IF (K.EQ. J) GOTO 680
IF (K.EQ. J) GOTO 680
SUM=SUM+(S{I,K)**2)
SUM=SUM+(S{I,K)**2)
GOTO 660
GOTO 660
S(I,I)={(S(I,I)-SUM)**0.5)
S(I,I)={(S(I,I)-SUM)**0.5)
IF (I.NE.N) GOTO 610
IF (I.NE.N) GOTO 610
IF (I.EQ.N) GOTO }70
IF (I.EQ.N) GOTO }70
IF (J.NE.N) GOTO 600
IF (J.NE.N) GOTO 600
IF (J.EQ.N) GOTO }71
IF (J.EQ.N) GOTO }71
CONTINUE

```
```

CONTINUE

```
```

c FORWARD SUBSTUTION
$\mathrm{LL}(\mathrm{I})=\mathrm{XL}(\mathrm{I})$
IF (I.LT. (3*NJ)) GOTO 578
IF (I.EQ. (3*NJ)) GOTO 579
$\mathrm{I}=\mathrm{I}+1$
GOTO 577
CONTINUE
CONTINUE

COUPLINGFACTORS
28-Sep-1988 16: 51: O5VAX FORTRAN V4.8-276 29-JU1-1988 19:55:12\$1\$DUA3: [BAWAGS]NONPRIS. FOR; 60

0685
0686 0687 0688 0689 0690 0691 0692 0693 0694 0695
0696
0697
0698 0699 0700 0701 0702 0703
0704 0705 0706 0707 0708 0709 0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741

```
        I=1
        ZZ(I)=LL(I)
        IF (I.LT.N) GOTO }71
        IF (I.EQ.N) GOTO }71
        I=I +1
        GOTO }71
        CONTINUE
        I=0
        I=I +1
        J=0
        SUM=0
        J=J+1
        IF (I.EQ. J) GOTO }74
        SUM=SUM+ZZ(J)*S(I,J)
        GOTO }73
        ZZ(I)=(ZZ(I)-SUM)/S(I,I)
        IF (I.NE.N) GOTO 720
        IF (I.EQ.N) GOTO }75
        CONTINUE
            BACK SUBSTITUTION
760 I=I-1
790 CONTINUE
        C
        C MEMBER FORCES P,S,M1,M2.
```

 I}=N+
    ```
                I}=N+
J=N+1
J=N+1
        SUM=0
        SUM=0
        J=J-1
        J=J-1
    IF (I.EQ. J) GOTO }78
    IF (I.EQ. J) GOTO }78
    SUM=SUM+S(J,I)*ZZ(J)
    SUM=SUM+S(J,I)*ZZ(J)
        GOTO }77
        GOTO }77
        ZZ(I)=(ZZ(I)-SUM)/S{I,I)
        ZZ(I)=(ZZ(I)-SUM)/S{I,I)
        IF (I.NE. 1) GOTO }76
        IF (I.NE. 1) GOTO }76
        IF (I.EQ. 1) GOTO }79
        IF (I.EQ. 1) GOTO }79
            I=1
            I=1
            792 FN1=-(CT22(I)*CL(I)*ZZ(3*KR(I)-2))
            792 FN1=-(CT22(I)*CL(I)*ZZ(3*KR(I)-2))
    FN2=-(CT22(I)*CM(I)*ZZ(3*KR(I)-1))
    FN2=-(CT22(I)*CM(I)*ZZ(3*KR(I)-1))
        FN3=-(CT32(I)*ZZ(3*KR(I)))
        FN3=-(CT32(I)*ZZ(3*KR(I)))
    FN4=(CT22(I)*CL(I)*ZZ(3*JR(I)-2))
    FN4=(CT22(I)*CL(I)*ZZ(3*JR(I)-2))
        FN5=(CT22(I)*CM(I)*ZZ(3*JR(I)-1))
        FN5=(CT22(I)*CM(I)*ZZ(3*JR(I)-1))
        FNG}=-(CT42(I)*ZZ(3*JR(I))
        FNG}=-(CT42(I)*ZZ(3*JR(I))
        SS (I)=FN1+FN2+FN3+FN4+FN5+FNS
        SS (I)=FN1+FN2+FN3+FN4+FN5+FNS
        FN7=-(CT32(I)*CL(I)*ZZ(3*KR(I)-2))
        FN7=-(CT32(I)*CL(I)*ZZ(3*KR(I)-2))
        FNB=-(CT3e(I)*CM(I)*ZZ(3*KR(I)-1))
        FNB=-(CT3e(I)*CM(I)*ZZ(3*KR(I)-1))
        FN9=-(CT33(I)*ZZ(3*KR(I)))
        FN9=-(CT33(I)*ZZ(3*KR(I)))
        FN1O}=(CT32(I)*CL(I)*ZZ(3*JR(I)-2))
        FN1O}=(CT32(I)*CL(I)*ZZ(3*JR(I)-2))
        FN11=(CT32(I)*CM(I)*ZZ(3*JR(I)-1))
        FN11=(CT32(I)*CM(I)*ZZ(3*JR(I)-1))
        FN12=-(CT43(I)*ZZ(3*JR(I)))
        FN12=-(CT43(I)*ZZ(3*JR(I)))
        MA(I)}=(\mathrm{ FN7+FN8+FN9+FN1O+FN11+FN12)+XM1(I)
```

```
        MA(I)}=(\mathrm{ FN7+FN8+FN9+FN1O+FN11+FN12)+XM1(I)
```

```

0742
0743
0744
0745
0746
0747
0748
0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763
0764 0765 0766 0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
```

FN13=-(CT42(I)*CL(I)*ZZ(3*KR(I)-2))

```
    FN14 \(=-(\mathrm{CT} 42(\mathrm{I}) * \mathrm{CM}(\mathrm{I}) * Z \mathrm{Z}(3 * K R(I)-1))\)
    FN15 \(=-(C T 43(I) * Z Z(3 * K R(I)))\)
    FN16 \(=(\mathrm{CT} 42(\mathrm{I}) * C L(I) * 2 Z(3 * J R(I)-2))\)
    FN17 \(=(C T 42(I) * C M(I) * 2 Z(3 * J R(I)-1))\)
    FN18 \(=-(\mathrm{CT} 44(\mathrm{I}) * Z Z(3 * J R(I)))\)
    \(M B(I)=-(\) FN1 \(3+F N 14+F N 15+F N 16+F N 17+F N 18)-(X M 2(I))\)
    FN19 \(=-(\operatorname{CT} 11(\mathrm{I}) * \mathrm{CA}(\mathrm{I}) * Z Z(3 * K R(I)-2))\)
    \(\mathrm{FN} 2 \mathrm{O}=-(\mathrm{CT} 11(\mathrm{I}) * \mathrm{CB}(\mathrm{I}) * Z Z(3 * K R(I)-1))\)
    FN21 \(=(\mathrm{CT} 11(\mathrm{I}) * \mathrm{CA}(\mathrm{I}) * Z Z(3 * J R(I)-2))\)
    FN22 \(=(C T 11(I) * C B(I) * Z Z(3 * J R(I)-1))\)
    \(\mathrm{P}(\mathrm{I})=\mathrm{FN} 19+\mathrm{FN} 20+\mathrm{FN} 21+\mathrm{FN} 22\)
    IF (I. LT. NM) GOTO 813
    IF (I.EQ.NM) GOTO 814
    \(\mathrm{I}=\mathrm{I}+1\)
    GOTO 792
    CONTINUE
    WRITE \((6,3800)\)
    WRITE (6, 3180)
    \(\mathrm{I}=1\)
    900 WRITE(6,3200)I,CA(I),CB(I),CL(I),CM(I)
    IF (I. LT. NM) GOTO 910
    IF (I.EQ.NM) GOTO 920
    \(\mathrm{I}=\mathrm{I}+1\)
    GOTO 900
    CONTINUE
    WRITE (6, 3300)
    \(\mathrm{I}=1\)
\(930 \operatorname{WRITE}(6,3400) I, Z Z(3 * I-2), Z Z(3 * I-1), Z Z(3 * I)\)
    IF (I.LT.NJ) GOTO 940
    IF (I.EQ. NJ) GOTO 950
    \(\mathrm{I}=\mathrm{I}+1\)
    GOTO 930
    CONTINUE
    WRITE (6, 3500)
    \(\mathrm{I}=1\)
    WRITE(6, 3600) I, SS(I), P(I), MA(I), MB(I)
    IF (I. LT. NM) GOTO 970
    IF (I. EQ. NM) GOTO 980
    \(\mathrm{I}=\mathrm{I}+1\)
    GOTO 960
    CONTINUE
    WRITE(6,3700)
        C
        C
        C

\section*{0799} 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824
0825 0826 0827 0828 0829 0830 0831 0832
0833
0834
0835 0836 0837 0838 0839
0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855
```

985 I=1
1211 ZZ(I)=XLX(I)
XL(I)=0
IF (I.LT.(3*NJ)) GOTO 1212
IF (I.EQ.(3*NJ)) GOTO 1213
I=I +1
GOTO 1211
CONTINUE
I=1
J=1
981 S(I,J)=0
IF (I. NE. (3*NJ)) GOTO 982
IF (I.EQ. (3*NJ)) GOTO 983
I= I +1
GOTO }98
IF (J.NE. (3*NJ)) GOTO 984
IF (J.EQ. (3*NJ)) GOTO 986
J=J+1
I=1
GOTO 981
CONTINUE
C CALCULATION OF THE LOCAL STIFFINESS MATRIX
FOR A NON-LINEAR MEMBER
I=1
IF (P1(I).EQ. O) GOTO 1015
IF (P1(I).LT. O) GOTO }99
IF (P1(I).GT. O) GOTO }99
993 P1(I)=-P1(I)
W(I)=((P1(I)/EI(I))**0.5)
QQ(I)=W(I)*L(I)
CW(I)=COS(QQ(I))
SW(I)=SIN(QQ(I))
V(I)=W(I)*((QQ(I)*SW(I))+(2*CW(I))-2)
GOTO 1500
1010 V(I)=-V(I)
CT11(I)=EA(I)/L(I)
CTE2(I)=(P1(I)*W(I)*W(I)*SW(I)/V(I))
CT32(I)=(P1(I)*W(I)*(1-CW(I))/V(I))
CT3*3(I)=(P1(I)*(SW(I)-(QQ(I)*CW(I)))/V(I))
CT42(I)=CT32(I)
CT43(I) =(P1(I)*(QQ(I)-SW(I))/V(I))
CT44(I)=CT33(I)
NON-NODAL LOADINGS

```
\(V N=(2 * W(I) *(1-C W(I)))-(W(I) * W(I) * L(I) * S W(I))\)
CN11=(W(I)-(W(I)*W(I)*L(I)*SW(I))-(W(I)*CW(I)))/VN 29-Jul-1988 19:55:12\$1\$DUA3: [BAWAGS]NONPRIS. FOR; 60

0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912

CN12=((W(I)*L(I)*CW(I))-SW(I))/VN
CN13=(W(I)*(1-CW(I)))/VN
CN14 \(=(\) SW (I) \(-(W\) (I) *L (I) ) )/VN
\(C N 21=W(I) * W(I) * S W(I) / V N\) CN22=CN13
CN23 \(=-\) CN21
CN24=CN13
CN31 \(=-\mathrm{CN} 21 / \mathrm{W}(\mathrm{I})\)
CN32=CN11/W(I)
CN33=CN21/W(I)
CN34 \(=-\) CN13/W (I)
CN41 = CN 13
CN42 \(=-\) CN12
CN43 \(=-\) CN13
CN44 \(=-\) CN1 4
SNN \(=(L(I) * C N 11)+(\) CN2 \(1 * L(I) * L(I) / 2)\)
SNN2 \(=(\) CN3 \(1 *(1-\mathrm{CW}(I)) / W(I))+(\) CN41*SW(I)/W (I) \()\)
S1 \(=\) UDL \((I) *(S N N 1+\) SNN2 \()\)
SNN3 \(=(L(I) * C N 12)+(C N 22 * L(I) * L(I) / 2)\)
SNN4 \(=(\) CN32*(1-CW (I) \() / W(I))+(\) CN42*SW(I) \(/ W(I))\) XM1 (I) =UDL (I)* (SNN3+SNN4)
SNN5 \(=(L(I) * C N 13)+(C N 23 * L(I) * L(I) / 2)\)
SNN6 \(=(\) CN33*(1-CW(I) \() / W(I))+(\) CN43*SW(I) \(/ \mathrm{W}(I)\}\) S2=UDL (I)* (SNN5 + SNN6)
SNN7 \(=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 14)+(\mathrm{CN} 24 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)\)
SNNB \(=(\) CN34*(1-CW(I) )/W(I)) \(+\{\) CN44*SW(I)/W(I) \} XM2 \(\{I)=\) UDL \((I) *(\) SNN \(7+\) SNNB \()\)
\(F \times 1=S 1 * C B(I)\)
FY1=S1*CM(I)
\(X M 1(I)=X M 1(I)\)
FX2=S2*CB (I)
FY2=S2*CM (I)
\(X M 2(I)=X M 2(I)\)
\(X L(3 * K R(I)-2)=X L(3 * K R(I)-2)+F X 1\)
\(X L(3 * K R(I)-1)=X L(3 * K R(I)-1)+F Y 1\)
\(X L(3 * K R(I))=X L(3 * K R(I))+X M 1(I)\)
\(X L(3 * J R(I)-2)=X L(3 * J R(I)-2)+F X 2\)
\(X L(3 * J R(I)-1)=X L(3 * J R(I)-1)+F Y 2\)
\(X L(3 * J R(I))=X L(3 * J R(I))+X M 2(I)\)
\(P 1(I)=-P 1(I)\)
GOTO 1020
\(995 \quad W(I)=((P I(I) / E I(I)) * * 0.5)\)
\(Q Q(I)=W(I) * L(I)\)
\(C W(I)=\operatorname{Cosh}(Q Q(I))\)
\(\operatorname{SW}(I)=S I N H(Q Q(I))\)
\(V(I)=(\Sigma * W(I) *(1-C W\{I)))+(Q Q\{I) * W(I) * S W(I))\)
GOTO 1700
\(1011 \operatorname{CT} 11(\mathrm{I})=E A(\mathrm{I}) / \mathrm{L}(\mathrm{I})\)
CTEe(I) \(=(P 1(I) * W(I) * W(I) * S W(I) / V(I))\)
\(\mathrm{CT} 32(\mathrm{I})=-(\mathrm{P} 1(\mathrm{I}) * W(\mathrm{I}) *(1-\mathrm{CW}(\mathrm{I})) / \mathrm{V}(\mathrm{I}))\)
CT33(I) \(=-(P 1(I) *(S W(I)-(Q Q(I) * C W(I))) / V(I))\)
CT42(I)=CT32(I)

0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944
0945
0946
0947
0948 0949
0950 0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961 0962 0963 0964 0965 0966 0967 0968 0969

CT43(I) \(=-(\mathrm{P} 1(\mathrm{I}) *(\mathrm{QQ}(\mathrm{I})-\mathrm{SW}(\mathrm{I})) / \mathrm{V}(\mathrm{I}))\) CT44(I) \(=\) CT33(I)

C
C
C
NON-NODAL LOADINGS
```

CN11=((W(I)*W(I)*L(I)*SW(I))-(W(I)*CW(I))+W(I))/V(I)
CN12=((W(I)*L(I)*CW(I))-SW(I))/V(I)
CN13=(W(I)*(1-CW(I)))/V(I)
CN14=(SW(I)-(W(I)*L(I)))/V(I)
CN21=-(W(I)*W(I)*SW(I)/V(I))
CN22=CN13
CN23=-CN21
CN24=CN13
CN31=-CN21/W(I)
CN32=CN11/W(I)
CN33=CN21/W(I)
CN34 =-CN13/W(I)
CN41=CN13
CN42=-CN12
CN43=-CN13
CN44=-CN14

```
SNNG \(=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 11)+(\mathrm{CN} 21 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)\)
SNN10 \(=(\) CN31*(CW(I) -1\() / W(I))+(C N 41 *\) SW(I) \(/\) W(I) \()\)
S \(1=\) UDL \((I) *(S N N Y+S N N 10)\)
SNN11 \(=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 12)+(\mathrm{CN} 22 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)\)
SNN12 \(=(\) CN32*(CW(I) -1\() / W(I))+(C N 42 * S W(I) / W(I))\)
XM1 (I) \(=\) UDL \((1) *(S N N 11+\) SNN12)
SNN13 \(=(\mathrm{L}(\mathrm{I}) *\) CN13) \(+(\) CN23*L \((\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)\)
SNN14 \(=(\) CN33*(CW(I)-1)/W(I)) \(+(\) CN43*SW(I)/W(I))
S2=UDL(I)*(SNN13+SNN14)
SNN15 \(=(\mathrm{L}(\mathrm{I}) * \mathrm{CN} 14)+(\mathrm{CN} 24 * \mathrm{~L}(\mathrm{I}) * \mathrm{~L}(\mathrm{I}) / 2)\)
SNN16 \(=(\) CN34*(CW(I) -1\() / W(I))+(\) CN44*SW(I) \(/\) W(I) \()\)
XM2 \((I)=\) UDL \((I) *(S N N 15+\) SNN16)
FX1 \(=51 * C B(I)\)
\(\mathrm{FY} 1=51 * \mathrm{CM}(\mathrm{I})\)
\(X M 1(I)=X M 1(I)\)
FX2=S2*CB(I)
\(\mathrm{FY} \mathrm{F}_{\mathrm{S}}=\mathrm{S} 2 * \mathrm{CM}(\mathrm{I})\)
XM2 (I) \(=\mathrm{XM}\) 2 (I)
\(X L(3 * K R(I)-2)=X L(3 * K R(I)-2)+F X 1\)
\(X L(3 * K R(I)-1)=X L(3 * K R(I)-1)+F Y 1\)
\(\mathrm{XL}(3 * \mathrm{KR}(\mathrm{I}))=\mathrm{XL}(3 * K R(\mathrm{I}))+\mathrm{XM1}\) (I)
\(X L(3 * J R(I)-2)=X L(3 * J R(I)-2)+F X 2\)
\(X L(3 * J R(I)-1)=X L(3 * J R(I)-1)+F Y 2\)
\(\mathrm{XL}(3 * J R(I))=\mathrm{XL}(3 * J R(I))+X M 2(I)\)

GOTO 1020
\(1015 \operatorname{CT} 11(\mathrm{I})=E A(I) / \mathrm{L}(\mathrm{I})\)
CTE2 (I) \(=12 * E I(I) /(L(I) * * 3)\)
CTЗ2(I) \(=6 * E I(I) /(L(I) * * 2)\)
СТЗЗ(I) \(=4\) *EI(I)/L(I)
CT42(I) =CT32(I)

0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1046
1023
1024
1025
1026
1020

CT43(I) \(=2 * E I(I) / L(I)\)
CT44(I) =CT33(I)
CALCULATION FOR GLOBAL STIFFINESS MATRIX
\(A(I)=(C T 11(I) * C A(I) * C A(I))+(C T 22(I) * C L(I) * C L(I))\) \(\mathrm{B}(\mathrm{I})=(\mathrm{CT} 11(\mathrm{I}) * \mathrm{CB}(\mathrm{I}) * \mathrm{CB}(\mathrm{I}))+(\mathrm{CT} 22(\mathrm{I}) * \mathrm{CM}(\mathrm{I}) * \mathrm{CM}(\mathrm{I}))\) \(C(I)=(C T 11(I) * C A(I) * C B(I))+(C T 22(I) * C L(I) * C M(I))\) \(D(I)=(C T 32(I) * C L(I))\)
\(E(I)=(C T 32(I) * C M(I))\)
\(F(I)=C T 33(I)\)
\(G(I)=C T 43(I)\)
\(S((3 * K R(I)-2),(3 * K R(I)-2))=S((3 * K R(I)-2),(3 * K R(I)-2))+A(I)\) \(S((3 * K R(I)-1),(3 * K R(I)-1))=S((3 * K R\{I)-1),(3 * K R(I)-1))+B(I)\) \(S((3 * K R\{I)-1\},(3 * K R(I)-2))=S((3 * K R(I)-1),(3 * K R(I)-2))+C(I)\) \(S((3 * K R(I)),(3 * K R(I))\}=S((3 * K R(I)),(3 * K R(I)))+F(I)\)
\(S((3 * K R(I)),(3 * K R(I)-1))=S((3 * K R(I)),(3 * K R(I)-1))+E(I)\)
\(S((3 * K R(I)),(3 * K R(I)-2))=S((3 * K R(I)),(3 * K R(I)-2))+D(I)\)
\(S((3 * J R(I)-2),(3 * J R(I)-2))=S((3 * J R(I)-2),(3 * J R(I)-2))+A(I)\)
\(S((3 * J R(I)-1),(3 * J R(I)-1))=S((3 * J R(I)-1),(3 * J R(I)-1))+B(I)\)
\(S((3 * J R(I)-1),(3 * J R(I)-2))=S((3 * J R(I)-1),(3 * J R(I)-2))+C(I)\) \(S((3 * J R(I)),(3 * J R(I)))=S((3 * J R(I)),(3 * J R(I)))+F(I)\)
\(S((3 * J R(I)),(3 * J R(I)-1))=S((3 * J R(I)),(3 * J R(I)-1))-E(I)\)
\(S((3 * J R(I)),(3 * J R(I)-2))=S((3 * J R(I)),(3 * J R(I)-2))-D(I)\)
\(S((3 * J R(I)-2),(3 * K R(I)-2))=S((3 * J R(I)-2),(3 * K R(I)-2))-A(I)\)
\(S((3 * J R(I)-2),(3 * K R(I)-1))=S((3 * J R(I)-2),(3 * K R(I)-1))-C(I)\)
\(S((3 * J R(I)-2),(3 * K R(I)))=S((3 * J R(I)-2),(3 * K R(I)))-D(I)\)
\(S((3 * J R(I)-1),(3 * K R(I)-2))=S((3 * J R(I)-1),(3 * K R(I)-2))-C(I)\)
\(S((3 * J R(I)-1),(3 * K R(I)-1))=S((3 * J R(I)-1),(3 * K R(I)-1))-B(I)\)
\(S((3 * J R(I)-1),(3 * K R(I))\rangle=S(\{3 * J R(I)-1),(3 * K R(I)))-E(I)\)
\(S((3 * J R(I)\},(3 * K R(I)-2))=S(\{3 * J R(I)\},(3 * K R(I)-2))+D(I)\)
\(S((3 * J R(I)),(3 * K R(I)-1))=S((3 * J R(I)),(3 * K R(I)-1))+E(I)\)
\(S((3 * J R(I)),(3 * K R(I)))=S((3 * J R\{I)),(3 * K R(I))\rangle+G(I)\)
IF (I.LT.NM) GOTO 1030
IF (I.EQ. NM) GOTO 1040
\(\mathrm{I}=\mathrm{I}+1\)
GOTO 990
CONT INUE

RESTRAINTS CONDITIONS

\section*{\(\mathrm{I}=1\)}
\(B B(I)=Z Z(I)+X L(I)\)
IF (I.LT. (3*NJ)) GOTO 1046
IF (I.EQ. (3*NJ)) GOTO 1047
\(\mathrm{I}=\mathrm{I}+1\)
GOTO 1045
CONTINUE
\(I=1\)
\begin{tabular}{|c|c|c|}
\hline 1027 & 1050 & IF (IDOF (I).EQ. O) GOTO 1060 \\
\hline 1028 & & IF (IDOF(I).EQ. 1) GOTO 1070 \\
\hline 1029 & 1060 & \(S(I, I)=S(I, I) * 1 . O E 12\) \\
\hline 1030 & & \(\mathrm{BB}(\mathrm{I})=\mathrm{S}(\mathrm{I}, \mathrm{I}) * \operatorname{IDOF}(\mathrm{I})\) \\
\hline 1031 & & IF (I. EQ. (3*NJ)) GOTO 1090 \\
\hline 1032 & 1070 & \(\mathrm{I}=\mathrm{I}+1\) \\
\hline 1033 & & GOTO 1050 \\
\hline 1034 & 1090 & CONTINUE \\
\hline 1035 & & \\
\hline 1036 & C & \\
\hline 1037 & C & DECOMPOSITION \\
\hline 1038 & C & \\
\hline 1039 & & \(J=0\) \\
\hline 1040 & 1100 & \(J=J+1\) \\
\hline 1041 & & \(\mathrm{I}=\mathrm{J}-1\) \\
\hline 1042 & 1120 & \(\mathrm{I}=\mathrm{I}+1\) \\
\hline 1043 & & IF (I.EQ. J) GOTO 1160 \\
\hline 1044 & & \(\mathrm{K}=0\) \\
\hline 1045 & & SUM \(=0\) \\
\hline 1046 & 1130 & \(\mathrm{k}=\mathrm{k}+1\) \\
\hline 1047 & & IF (K. NE. J) GOTO 1140 \\
\hline 1048 & & IF (K. EQ. J) GOTO 1150 \\
\hline 1049 & 1140 & SUM \(=\) SUM + (S \((1, K) * S(J, K)\) ) \\
\hline 1050 & & GOTO 1130 \\
\hline 1051 & 1150 & \(S(I, J)=(S(I, J)-S U M) / S(J, J)\) \\
\hline 1052 & & GOTO 1195 \\
\hline 1053 & 1160 & \(\mathrm{K}=0\) \\
\hline 1054 & & SUM \(=0\) \\
\hline 1055 & 1170 & \(\mathrm{K}=\mathrm{K}+1\) \\
\hline 1056 & & IF (K. NE. J) GOTO 1180 \\
\hline 1057 & & IF (K. EQ. J) GOTO 1190 \\
\hline 1058 & 1180 & SUM \(=\) SUM \(+(S(I, K) * * 2)\) \\
\hline 1059 & & GOTO 1170 \\
\hline 1060 & 1190 & S(I, I) \(=((S(I, I)-S U M) * * 0.5)\) \\
\hline 1061 & 1195 & IF (I. NE. (3*NJ)) GOTO 1120 \\
\hline 1062 & & IF (I.EQ. (3*NJ)) GOTO 1200 \\
\hline 1063 & 1200 & IF (J. NE. (3*NJ)) GOTO 1100 \\
\hline 1064 & & IF (J.EQ. \((3 * N J))\) GOTO 1210 \\
\hline 1065 & 1210 & CONTINUE \\
\hline 1066 & C & \\
\hline 1067 & C & FORWARD SUBSTITUTION \\
\hline 1068 & c & \\
\hline 1069 & & \(\mathrm{I}=0\) \\
\hline 1070 & 1220 & \(\mathrm{I}=\mathrm{I}+1\) \\
\hline 1071 & & \(J=0\) \\
\hline 1072 & & SUM \(=0\) \\
\hline 1073 & 1230 & \(J=J+1\) \\
\hline 1074 & & IF (I. EQ. J) GOTO 1240 \\
\hline 1075 & & SUM=SUM+BB (J)*S(I, J) \\
\hline 1076 & & GOTO 1230 \\
\hline 1077 & 1240 & \(\mathrm{BB}(\mathrm{I})=(\mathrm{BB}(\mathrm{I})-\mathrm{SUM}) / \mathrm{S}(\mathrm{I}, \mathrm{I})\) \\
\hline 1078 & & IF (I.NE. (3*NJ)) GOTO 1220 \\
\hline 1079 & & IF (I.EQ. (3*NJ)) GOTO 1250 \\
\hline 1080 & 1250 & CONTINUE \\
\hline 1081 & & \\
\hline 1082 & c & \\
\hline 1083 & c & BACK SUBSTITUTION \\
\hline
\end{tabular}
```

1084
1085
1086
1087
1088
1 0 8 9
1090
1091
1092
1093
1094
1095
1 0 9 6
1 0 9 7
1098
1099
1100
1101
1102
1103
1 1 0 4
1 1 0 5
1 1 0 6
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1 1 2 6
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1325
IF {ID.LT. ICON) GOTO 1325
IF {ID.LT. ICON) GOTO 1325
llol
1140
1327
I=1
1300 FN1=-(CT22(I)*CL(I)*BB(3*KR(I)-2))
FN2=-(CT2e(I)*CM(I)*BB(3*KR(I)-1))
FN3=-(CT32(I)*BB(3*KR(I)))
FN4={CT22(I)*CL(I)*BB(3*JR(I)-2))
FN5=(CT22(I)*CM(I)*BB(3*JR(I)-1))
FNG=-(CT42(I)*BB(3*JR(I)))
SS(I)=FN1+FN2+FN3+FN4+FN5+FN6
FN7=-(CT32(I)*CL(I)*BB(3*KR(I)-2))
FNB=-(CT32(I)*CM(I)*BB(3*KR(I)-1))
FN9=-(CT33(I)*BB(3*KR(I)))
FN10=(CT32(I)*CL(I)*BB(3*JR(I)-2))
FN11=(CT32(I)*CM(I)*BB(3*JR(I)-1))
FN12=-(CT43(I)*BB(3*JR(I)))
MA(I) =(FN7+FN8+FN9+FN10+FN11+FN12) +XM1 (I)
FN13=-(CT42(I)*CL(I)*BB(3*KR(I)-2))
FN14=-(CT42(I)*CM(I)*BB(3*KR(I)-1))
FN15=-(CT43(I)*BB(3*KR(I)))
FN16=(CT42(I)*CL(I)*BB(3*JR(I)-2))
FN17={CT42(I)*CM(I)*BB(3*JR(I)-1))
FN18=-(CT44(I)*BB(3*JR(I)))
MB (I) =-(FN13+FN14+FN15+FN16+FN17+FN18)-(XM2(I))
FN19=-(CT11(I)*CA(I)*BB(3*KR(I)-2))
FN2O=-(CT11(I)*CB(I)*BB(3*KR(I)-1))
FN21=(CT11(I)*CA(I)*BB(3*JR(I)-2))
FN22=(CT11(I)*CB(I)*BB(3*JR(I)-1))
P1(I)=(FN19+FN20+FN21+FN22)+AMDA(I)
IF (I.LT. NM) GOTO 1310
IF (I.EQ.NM) GOTO 1320
1310 I= I+1
GOTO 1300
1320 CONTINUE

```

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

WRITE (6, 3950)
\[
\text { WRITE }(6,3180)
\]
\[
I=1
\]

1330 WRITE(6,3200)I,CA(I),CB(I),CL(I),CM(I)
IF (I. LT. NM) GOTO 1340
IF (I. EQ. NM) GOTO 1350
\(\mathrm{I}=\mathrm{I}+1\)
GOTO 1330
CONTINUE
WRITE \((6,3300)\)
\[
I=1
\]
\(1360 \quad \operatorname{WRITE}(6,3400) \mathrm{I}, \mathrm{BB}(3 * \mathrm{I}-2), \mathrm{BB}(3 * \mathrm{I}-1), \mathrm{BB}(3 * \mathrm{I})\)
IF (I.LT. NJ) GOTO 1370
IF (I.EQ. NJ) GOTO 1380
\(1370 \quad \mathrm{I}=\mathrm{I}+1\)
GOTO 1360
1380 CONTINUE
WRITE(6, 3500)
\[
\mathrm{I}=1
\]
\(1390 \operatorname{WRITE}(6,3600) \mathrm{I}, \mathrm{SS}(\mathrm{I}), \mathrm{P} 1\) (I), MA(I), MB(I)
IF (I. LT. NM) GOTO 1400
IF (I.EQ.NM) GOTO 1410
\(\mathrm{I}=\mathrm{I}+1\)
GOTO 1390
CONT INUE
WRITE (6, 3700)
WRITE (6, 3900)
CLOSE (5)
CLOSE (6)
STOP
c
C
C

1500
\(\mathrm{W} 1(\mathrm{I})=(\mathrm{CL}(\mathrm{I}) * \mathrm{BB}(3 * \mathrm{KR}(\mathrm{I})-2))+(\mathrm{CM}(\mathrm{I}) * \mathrm{BB}(3 * \mathrm{KR}(\mathrm{I})-1))\)
\(\mathrm{W} 2(\mathrm{I})=(\mathrm{CL}(\mathrm{I}) * \mathrm{BB}(3 * \mathrm{JR}(\mathrm{I})-2))+(\mathrm{CM}(\mathrm{I}) * \mathrm{BB}(3 * J R(\mathrm{I})-1))\)
\(R 1(\mathrm{I})=\mathrm{BB}(3 * \mathrm{KR}(\mathrm{I}))\)
\(\mathrm{R} 2(\mathrm{I})=\mathrm{BB}(3 * J R(\mathrm{I}))\)
\(C C(1,1)=(((W(I) * W(I) * L(I) * S W(I))+(W(I) * C W(I))-W(I)) / V(I))\)
\(C C(1,2)=((S W(I)-(W(I) * L(I) * C W(I))) / V(I))\)
\(C C(1,3)=\{((W(I) * C W(I))-W(I)) / V(I))\)
\(C C(1,4)=(((W(I) * L(I))-S W(I)) / V(I))\)
\(C C(2,1)=-(W(I) * W(I) * S W(I) / V(I))\)
\(\operatorname{CC}(2,2)=\operatorname{CC}(1,3)\)
\(\operatorname{cc}(2,3)=-\operatorname{cc}(2,1)\)
\(\operatorname{CC}(2,4)=\operatorname{CC}(1,3)\)
```

CC(3,1)=(W(I)*SW(I)/V(I))
CC(3,2)=(((W(I)*L(I)*SW(I))+CW(I)-1)/V(I))
CC}(3,3)=-\operatorname{CC}(3,1
CC(3,4)=((1-CW(I))/V(I))
CC}(4,1)=CC(1,3
CC(4,2)=(((W(I)*L(I)*CW(I))-SW(I))/V(I))
CC(4,3)=-CC(1,3)
CC(4,4)=((SW(I)-(W(I)*L(I)))/V(I))

```

\section*{\(M=1\)}
```

1510 N=1

```
\(1520 \quad C N N 1=(C C(2, M) * C C(2, N) / 2)\)
\(\operatorname{CNN} 2=(((\operatorname{CC}(2, M) * C C(3, N))+(\operatorname{CC}(3, M) * C C(2, N))) * S W(I) /(2 * L(I))\)
CNN3 \(=(((\operatorname{CC}(2, M) * C C(4, N))+(\operatorname{CC}(4, M) * C C(2, N))) *(C W(I)-1) /(2 * L\)
CNN4 \(=(W(I) * W(I) / 4)+((W(I) * S I N(2 * W(I) * L(I))) /(8 * L(I)))\)
CNN5 \(=(W(I) * W(I) / 4)-((W(I) * S I N(2 * W(I) * L(I))) /(8 * L(I)))\)
CNNG \(=(C C(3, M) * C C(3, N) * C N N 4)\)
CNN7 \(=((\operatorname{CC}(3, M) * C C(4, N))+(C C(4, M) * C C(3, N)))\)
\(\mathrm{CNNB}=(\operatorname{COS}(2 * W(I) * L(I))-1)\)
CNNG \(=\) (W (I) \(/(8 * L(I))) * C N N 7 * C N N 8\)
CNN1O \(=(C C(4, M) * C C(4, N) * C N N 5)\)
\(Q(M, N)=\) CNN \(1+\) CNN \(2+\) CNN3 + CNN6 + CNN + CNN 10
    IF (N.LT. 4) GOTO 1530
    IF (N.EQ. 4) GOTO 1540
    \(\mathrm{N}=\mathrm{N}+1\)
    GOTO 1520
    IF (M. LT. 4) GOTO 1550
    IF (M. EQ. 4) GOTO 1560
    \(M=M+1\)
    GOTO 1510
    CONTINUE
    \(C T 1=(Q\{1,1) * W 1(1))+(Q\{1,2\} * R 1(1))\)
    \(C T 2=(Q(1,3) * W 2(I))+(Q(1,4) * R 2(I))\)
    \(\mathrm{A} 1(\mathrm{I})=C T 1+C T 2\)
    CT3 \(=(Q(2,1) * W 1(I))+(Q(2,2) * R 1(I))\)
    \(C T 4=(Q(2,3) * W 2(I))+(Q(2,4) * R 2(I))\)
    \(\mathrm{A} 2(\mathrm{I})=\mathrm{CT} 3+\mathrm{CT} 4\)
    \(C T 5=(Q(3,1) * W 1(I))+\{Q(3,2) * R 1(I))\)
    \(C T 6=\{Q(3,3) * W 2(I))+(Q(3,4) * R 2(I))\)
    A3(I) \(=\) CT5 C CT6
    \(C T 7=(Q(4,1) * W 1(I))+\{Q(4,2) * R 1(I))\)
    \(C T B=(Q(4,3) * W 2(I))+(Q(4,4) * R 2(I))\)
    A4 (I) \(=\) CT7+CTB
    GAMA \(=(A 1(I) * W 1(I))+(A 己(I) * R 1(I))+(A 3(I) * W 2(I))+(A 4(I) * R 2(I\)
    \(\operatorname{AMDA}(I)=E A(I) * G A M A\)
    \(A 1(I)=A 1(I) * E A(I)\)
    \(A 2(I)=A 2(I) * E A(I)\)
    \(A 3(I)=A 3(I) * E A(I)\)
    \(A 4(I)=A 4(I) * E A(I)\)
    \(Z N 1=A 1(I) * C A(I) * C L(I) * B B(3 * K R(I)-2)\)
    \(Z N 2=A 1(I) * C A(I) * C M(I) * B B(3 * K R(I)-1)\)
    \(Z N 3=A 2(I) * C A(I) * B B(3 * K R(I))\)
    \(Z N 4=A 2(I) * C B(I) * B B(3 * K R(I))\)

1255 1256 1257 1258 1259 1260
1261

\section*{1262}

1263
1264
1265
1266
1267
1268
1269

\section*{1270}

1271
1272
1273 1274 1275 1276 1277 1278 1279 1280 1281
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
1305
1306
1307
1308
1309
1310
1311
```

ZN5=A1(I)*CB(I)*CL(I)*BB(3*KR(I)-2)
ZNG=A1(I)*CB(I)*CM(I)*BB(3*KR(I)-1)
ZN7=A4(I)*CB(I)*BB(3*JR(I))
ZNB=A4(I)*CA(I)*BB(3*JR(I))
ZNG =A3(I)*CA(I)*CL(I)*BB(3*JR(I)-2)
ZN1O=A3(I)*CA(I)*CM(I)*BB(3*JR(I)-1)
ZN11=A3(I)*CB(I)*CL(I)*BB(3*JR(I)-2)
ZN12=A3(I)*CB(I)*CM(I)*BB(3*JR(I)-1)

```

ZN13 \(=\) ZN1 + ZN2 + ZN3 + ZN9 + ZN1 \(0+2 N 8\)
ZN14 \(=\) ZN5 + ZN6 \(6+\) ZN4 + ZN1 \(1+\) ZN12 + ZN7
\(Z Z(3 * K R(I)-2)=Z Z(3 * K R(I)-2)+Z N 13\)
\(Z Z(3 * K R(I)-1)=Z Z(3 * K R(I)-1)+Z N 14\)
\(Z Z(3 * J R(I)-2)=Z Z(3 * J R(I)-2)-Z N 13\)
\(Z Z(3 * J R(I)-1)=Z Z(3 * J R(I)-1)-Z N 14\) GOTO 1010

SUBROUTINE COUPLING FACTORS FOR TENSION
\(W 1(I)=(C L(I) * B B(3 * K R(I)-2))+(C M(I) * B B(3 * K R(I)-1))\) \(W 2(I)=(C L(I) * B B(3 * J R(I)-2))+(C M(I) * B B(3 * J R(I)-1))\)
\(R 1(I)=B B(3 * K R(I))\)
\(R 2(I)=B B(3 * J R(I))\)
\(C C(1,1)=((W(I) * W(I) * L(I) * S W(I))-(W(I) * C W(I))+W(I)) / V(I)\)
\(C C(1,2)=((W(I) * L(I) * C W(I))-S W(I)) / V(I)\)
\(C C(1,3)=(W(I) *(1-C W(I)) / V(I))\)
\(C C(1,4)=(S W(I)-(W(I) * L(I))) / V(I)\)
\(\operatorname{CC}(2,1)=-(W(I) * W(I) * S W(I) / V(I))\)
\(\operatorname{CC}(2,2)=\operatorname{CC}(1,3)\)
\(\operatorname{CC}(2,3)=-\operatorname{CC}(2,1)\)
\(\operatorname{CC}(2,4)=\operatorname{CC}(1,3)\)
\(\operatorname{CC}(3,1)=-(\operatorname{CC}(2,1) / W(I))\)
\(\operatorname{CC}(3,2)=(\operatorname{CC}(1,1) / W(I))\)
\(\operatorname{CC}(3,3)=(\operatorname{CC}(2,1) / W(I))\)
\(\operatorname{CC}(3,4)=-\{C C(1,3) / W(I)\}\)
\(\operatorname{CC}(4,1)=\operatorname{CC}(1,3)\)
\(C C(4,2)=-C C(1,2)\)
\(\operatorname{CC}(4,3)=-\operatorname{CC}(1,3)\)
\(\operatorname{CC}(4,4)=-\operatorname{CC}(1,4)\)
\(M=1\)
\(N=1\)
\(\operatorname{CNN} 1=(\operatorname{CC}(2, M) * C C(2, N) / 2)\)
\(\operatorname{CNN} 2=(((\operatorname{CC}(2, M) * C C(3, N))+(\operatorname{CC}(3, M) * C C(2, N))) * S W(I) /(2 * L(I))\)
\(\operatorname{CNN}=\{((\operatorname{CC}(2, M) * C C(4, N))+(C C(4, M) * C C(2, N))) *(C W(I)-1) /(2 * L\)
CNN4 \(=(W(I) * W(I) / 4)+((W(I) * S I N H(2 * W(I) * L(I))) /(8 * L(I)))\)
CNN5 \(=-(W(I) * W(I) / 4)+((W(I) * S I N H(2 * W(I) * L(I))) /(8 * L(I)))\)
CNNG \(=(C C(3, M) * C C(3, N) * C N N 4)\)
\(\operatorname{CNN} 7=((\operatorname{CC}(3, M) * \operatorname{CC}(4, N))+(\operatorname{CC}(4, M) * \operatorname{CC}(3, N)))\)
CNNB \(=(\operatorname{COSH}(2 * W(I) * L(I))-1)\)

1312
1313 1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368

CNN9 \(=(W(I) /(8 * L(I))) *\) CNN7*CNNB CNN1O \(=\{C C(4, M) * C C(4, N) * C N N 5)\) \(Q(M, N)=\mathrm{CNN} 1+\mathrm{CNN} 2+\mathrm{CNN} 3+\mathrm{CNN} 6+\mathrm{CNN} 9+\mathrm{CNN} 10\) IF \(\langle N . L T .4\rangle\) GOTO 1730 IF \(\{N . E Q .4\}\) GOTO 1740
1730 \(N=N+1\) GOTO 1720
IF (M. LT. 4) GOTO 1750 IF (M.EQ. 4) GOTO 1760 \(M=M+1\) GOTO 1710 CONTINUE
\[
C T 1=(Q(1,1) * W 1(I))+(Q(1,2) * R 1(I))
\]
\[
C T 2=(Q(1,3) * W 2(I))+(Q(1,4) * R 2(I))
\]
\[
A 1(I)=C T 1+C T 2
\]
\(C T 3=(Q(2,1) * W 1(I))+(Q(2,2) * R 1\) (I) )
\(C T 4=(Q(2,3) * W 2(I))+(Q(2,4) * R 2(I))\)
\(\mathrm{A} 2(\mathrm{I})=\mathrm{CT} 3+\mathrm{CT} 4\)
\(C T 5=(Q(3,1) * W 1(I))+(Q(3,2) * R 1(I))\)
\(C T 6=(Q(3,3) * W 2(I))+(Q(3,4) * R 2(I))\)
A3(I) \(=\) CT5+CT6
\(C T 7=(Q(4,1) * W 1(I))+(Q(4,2) * R 1(I))\)
\(C T B=(Q(4,3) * W 2(I))+(Q\{4,4) * R 2(I))\)
A4(I) \(=\) CT7+CT8
\(\operatorname{GAMA}=(A 1(I) * W 1(I))+(A 2(I) * R 1(I))+\{A 3(I) * W 2(I))+(A 4(I) * R 2(I)\) \(\operatorname{AMDA}(I)=E A(I) * G A M A\)
\(A 1(I)=A 1(I) * E A(I)\)
\(A 2(I)=A 2(I) * E A(I)\)
\(A 3(I)=A 3(I) * E A(I)\)
\(A 4(I)=A 4(I) * E A(I)\)
\(Z N 1=A 1(I) * C A(I) * C L(I) * B B(3 * K R(I)-2)\)
\(Z N 2=A 1(I) * C A(I) * C M(I) * B B(3 * K R(I)-1)\)
\(Z N 3=A 2(I) * C A(I) * B B(3 * K R(I))\)
\(Z N 4=A 2(I) * C B(I) * B B(3 * K R(I))\)
\(Z N 5=A 1(I) * C B(I) * C L(I) * B B(3 * K R(I)-2)\)
\(Z N 6=A 1(I) * C B(I) * C M(I) * B B(3 * K R(I)-1)\)
\(\mathrm{ZN} 7=\mathrm{A} 4(\mathrm{I}) * \mathrm{CB}(\mathrm{I}) * \mathrm{BB}(3 * J R(I))\)
\(Z N 8=A 4(I) * C A(I) * B B(3 * J R(I))\)
ZN9 \(=A 3(I) * C A(I) * C L(I) * B B(3 * J R(I)-2)\)
\(Z N 10=A 3(I) * C A(I) * C M(I) * B B(3 * J R(I)-1)\)
\(Z N 11=A 3(I) * C B(I) * C L(I) * B B(3 * J R(I)-2)\)
\(Z N 12=A 3(I) * C B(I) * C M(I) * B B(3 * J R(I)-1)\)
\(\mathrm{ZN} 13=\mathrm{ZN} 1+\mathrm{ZN} 2+\mathrm{ZN} 3+\mathrm{ZNS}+\mathrm{ZN} 1 \mathrm{O}+2 \mathrm{NB}\)
ZN1 \(4=\) ZN5 + ZN6 + ZN4 \(+Z N 11+Z N 12+Z N 7\)
\(Z Z(3 * K R(I)-2)=Z Z(3 * K R(I)-2)+Z N 13\)
\(Z Z(3 * K R(I)-1)=Z Z(3 * K R(I)-1)+Z N 14\)
\(Z Z(3 * J R(I)-2)=Z Z(3 * J R(I)-2)-Z N 13\)
\(Z Z(3 * J R(I)-1)=Z Z(3 * J R(I)-1)-Z N 14\)
GOTO 1011
FORMATION SUBROUTINE


COUPLINGFACTORS 29-Jul-1988

1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482



COUPLINGFACTORS 29-JU1-1988 19:55: 12\$1\$DUA3: [BAWAGS]NONPRIS. FOR; 60

\section*{Appendix 4.}

Working Drawings of Test Specimens.



```

