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Summary 

The geometrically non-linear analysis of plane frames is studied using the finite element 
technique. Stiffness matrices for a constituent prismatic member are first formulated 
from both derived and approximate displacement functions, the axial force being 
considered both constant and flexurally dependent. 

Both direct and Newton-Raphson type iteration methods are invoked as solution 
methods, the latter being used in the tangential stiffness matrix approach. 

The development is then extended to the study of non-prismatic frames. The use of 
derived functions in this case proved intractable and formulation was based on the 
derived functions for the geometrically linear behaviour of a non-prismatic member, this 
being an approximation to the true non-linear descriptions. 

Again direct and Newton-Raphson iteration techniques are used for solution. 

In addition to nodal loading, the effect of distributed and non-nodal loading is described, 
this being reduced to the application of equivalent fixed-end forces. 

Supporting experimental work is presented for frames composed of both prismatic and 
tapered members to assess the accuracy of the theoretical solutions with respect to both 
deflections and bending moments, these tests indicating generally that axial forces should 
be considered as flexurally dependent. It can be noted that the literature survey showed 
very little experimental work of this nature. 

Several examples are presented to demonstrate the range of problems appertaining to the 
theoretical developments, of particular note being those describing the behaviour of 
frames containing initial imperfections. 

Further recommendations for study are given, these including the examination of plastic 
behaviour in conjunction with geometrically non-linear effects. 
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Historical Review and 

Literature Survey. 
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1.1. Historical Review. 

The concepts of framework analysis emerged during the period of 1850 to 1875 

predominantly through the work of J.C.Maxwell, A.Castigliano and O.Mohr. At this 

time the concepts of matrices were also being introduced and defined by Silvester, 

Hamilton and Caley. Their work became the foundation of matrix structural analysis, 

although it was not to find practical application for nearly 80 years. 

Between 1875 and 1920, little progress was made in the development of theory and the 

analytical techniques subsidiary to matrix structural analysis. This was no doubt due 

mainly to the practical intractability of solving algebraic equations with more than a few 

unknowns. For the structures of primary interest in this period, trusses and frames, an 

analytical approach based on member forces as unknowns was universally employed. 

Analytical techniques such as the principle of polygon of forces, free-body diagrams, 

method of joints, method of sections, etc were employed where the unknowns were the 

axial forces in the members. 

About 1920, as a result of work by Maney in the U.S.A. and Osterfeld in Denmark, the 

basic ideas of a truss and framework analysis approach based on displacement 

parameters as unknowns took form. It was Maney who in 1915 presented the Slope 

Deflection method (1) as a general procedure to be used in the analysis of rigid jointed 

structures. The method involved the setting up of a number of simultaneous equations 

with unknowns taken as angular rotations and displacements at each joint. The solution 

of these equations enabled the moments and shear forces to be evaluated at each joint. It 

was this work that represents the forerunner of matrix structural analysis of today. 

However severe limitations on the size of problems that could be analysed still remained 

as the work involved in solving the simultaneous equations became prohibitive on large 
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structures. 

This problem was overcome in 1932, when Hardy Cross introduced the Moment 

Distribution (2) method. This method made feasible the solution of problems of a 

greater order of complexity than the most sophisticated problems treatable by prior 

approaches. The method was simple to use and gave the results in a tabulated form. 

This process became the staple method of structural framework analysis for the next 25 

years. 

Today, both Slope Deflection and Moment Distribution are useful for the analysis of 

small problems as an aid in visualising behaviour, but they are primitive in power 

compared to computer methods and have been superseded by them in the solution of 

large complex problems. 

The association between the mathematical concepts of matrix theory and the engineering 

concepts of structural analysis appeared in the 1930's through the work of Frazer, 

Duncan and Collar (), The liaison developed erratically through the 1940's, but there 

was no motivation for a firm union of the two concepts until the birth of the digital 

computer in the 1950's. Individuals who foresaw the impact of computers on both 

theory and practice then undertook the codification of the well established framework 

analysis procedures in the format best suited to the computer. 

Two important publications on the association of these concepts were those of Argyris 

and Kelsey (3) and Turner, Clough, Martin and Topp (4) These publications wedded 

the concepts of framework analysis and continuum analysis and cast the resulting 

procedure in matrix format. This led to the first Finite Element techniques where the 

slope deflection equations were formulated in matrix format. However further 
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development of finite elements took form with 2 and 3D continua being considered. 

With further advancement in both computer technology and software, Finite Element 

techniques (5,6,7,8) are now the most versatile and most widely used methods in 

structural analysis today. This has also enabled further complex behaviour to be studied 

where previously the mathematics ware either too complex or the simultaneous 

equations impossible to solve. 

The literature survey which concludes this chapter is presented in two sections, the first 

being concerned with the stability of frames with prismatic sections and the second with 

the stability of frames with tapered ( non-prismatic ) sections. Both are discussed 

separately below for clarity. 

1.2. Prismatic Sections. 

During the 1950's and 1960's the stability of frames was studied intensively and 

several well known texts (9,10,11,12) were published to reflect this interest. 

Several research papers were published (13,14,15,16,27) in the mid 1960's to early 

1980's concerned with the geometrically non-linear behaviour of frameworks. 

However it was only in the late 1960's that the matrix method of solution was first 

widely used in framework analysis and several texts have been published 

(17,18,19,20,21) ince then: 

It was Hartz (22) who first applied the standard work-based finite element process to a 

simple beam subjected to both flexural and axial load and produced stiffness matrices to 

23



show non-linear behaviour. The method, using an approximation to the deformed 

geometry of the structure, produces results similar to those obtained by the standard 

stability functions (12) which were developed earlier (23). The relationship between 

the axial force and the lateral deflections induced in the member due to bending was not 

considered and hence there was no direct linkage between the axial and flexural 

stiffness matrices. 

Bunce and Brown (24) divided the frame into several small elements and and employed 

an alternative numerical method of finite deflection analysis. They used Dynamic 

Relaxation techniques where the static problem is represented by a fictional dynamic 

problem with viscous damping. This enabled easy solution and avoided the use of 

stability functions. However, because large number of elements need to be considered, 

it involves a large amount of data input and computer time. 

Harald et al (25) developed stiffness matrices using the stability (s and c ) functions 

and produced similar results to those produced by Majid (12). However he also 

developed further components which could be added to the existing stiffness matrix to 

represent a plastic hinge. The method is useful in investigating plastic bending 

behaviour but again axial and flexural behaviour are considered independently of each 

other. 

Zienkiewicz (49) took the study of geometric non-linearity further by using the work 

process to develop the ‘tangential stiffness matrix’ for the study of plate stability. The 

text extended the previous work done by producing matrices which add on to the 

existing flexural and axial stiffness matrices and coupled the two independent portions. 

The formulation was such that the solution can be ideally effected using the 

Newton-Raphson technique. Further to this Wood and Zienkiewicz (26) produced a 
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general modified tangential stiffness matrix for one dimensional elements such as arches 

and axisymmetric shells. 

Chajes and Churchill (27) took the work of Wood and Zienkiewicz (26) and applied it 

to the simple prismatic beam member using a cubic deflection function. They produced 

the tangential stiffness matrixfor the non-linear axial and flexural behaviour of beams, 

and showed how the Newton-Raphson technique can be adapted to obtain an iterative 

solution. They developed three matrices, ie the simple linear matrix and two extra 

additions, these being dependent on the axial force in the member and the lateral 

deflections induced in the structure. The tangential stiffness matrix is formed from a 

combination of all three matrices. 

1.3. Non-prismatic Sections. 

From the literature survey it was noticed that although much work had been carried out 

on the geometrically non-linear behaviour of individual beams and columns, relatively 

little appertained to the stability of frames composed of tapered ( non-prismatic ) 

members and hardly anything on the use of finite elements to study this behaviour. 

From the 1950's to late 1970's various authors developed the linear analysis of 

non-prismatic sections. Moment distribution techniques 39) were employed to find the 

behaviour of non-prismatic members in frames. Also much work was done on the 

stability (29,30,31,32,33,34,35) of non-prismatic beams, columns and beam-columns. 

Simultaneously research was being carried out into the stability of frames composed of 

tapered members (36,37,38) employing the standard slope deflection technique to 

obtain the solutions. 
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It is only recently that, with the rapid development of computer technology, the matrix 

method can be used effectively in the study of framework stability. During the 1970's 

some progress was made in the application of the finite element technique to both the 

linear and non-linear analysis of frames incorporating non-prismatic sections. 

Just (49) used the exact and approximate deflection profiles and the standard finite 

element method to develop flexural and axial stiffness matrices to represent the linear 

behaviour of non-prismatic members in frames. He also developed equivalent fixed end 

shears and moments for loads which were not applied at the nodes of the element.This 

paper set the foundation for his next paper (41) where the method was further extended 

to box and I-sections respectively. Further equivalent nodal loads were developed for 

uniformly distributed loads and triangular loads and several examples evaluated to show 

the versatility of the matrices developed. 

Brown (42) and Karabalis(43) presented the linear flexural and axial matrices produced 

by Just (40,41) but using the approximate cubic deflection function to represent the 

deflected form of the non-prismatic section.This procedure, although simple to 

formulate, requires that the frame be divided into smaller elements and hence takes up 

much computer storage and time. However the results showed that for design office 

use, the accuracy and the convergence obtained for the approximate stiffness matrices 

is adequate with a small number of elements. 

Recently Karabalis and Beskos (44) used the approximate, cubic, deflection profile and 

developed stiffness matrices to represent geometric non-linear behaviour. This again 

requires that the framework be sub-divided into smaller elements and hence the need for 

large amount of data preparation and computer time. 
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1.4. Scope of Work. 

Although non-prismatic members can be approximated by a number of stepped 

prismatic elements, such an approximation may require a considerable quantity of data 

preparation and computer time. Hence there exists a strong motivation to obtain accurate 

stiffness matrices for both prismatic and non-prismatic elements for geometrically 

non-linear analysis. 

An understanding of prismatic members is a prerequisite to the understanding of 

non-prismatic members, and therefore a general study of the geometrically non-linear 

behaviour of prismatic members is first presented. Both the ‘equilibrium method' and 

‘work method' are presented so that the reader may become fully aquainted with the 

principles of the finite element method. 

For the prismatic section, the exact linear and corresponding exact non-linear deflection 

profiles are employed to develop the flexural and axial stiffness matrices respectively. 

The development leads to a solution procedure in which the load vector is progressively 

modified, a technique which appears not to have been considered in previous research. 

The results from this method are considered to represent most closely the non-linear 

behaviour of prismatic frames and the accuracy of the more approximate techniques is 

assessed by comparison with it. Similarly for the non-prismatic section approximate 

and exact deflection functions are used to derive the matrices for linear and non-linear 

behaviour. 

Further to this the equivalent nodal forces (for uniformly distributed loading and inter 

joint loading ) are presented for both prismatic and non-prismatic sections. 
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A brief outline is given of the main program and the development of useful routines 

which were employed in setting up the stiffness matrices. Also efficient, time saving, 

solution routines are presented which were used in the program. 

Supporting experimental work is described with details of instrumentation. Several 

examples are presented to show both the versatility of the program and the finite 

element method in non-linear analysis, and also to examine the effect of non-linear 

behaviour in practical complex frameworks. 
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Chapter 2 

Introduction to the Finite 

Element Method. 

2



As outlined in chapter 1, the development of computer technology has enabled 

systematic analytical techniques involving large numbers of equations to be applied to 

the solution of continuum problems of great complexity and of these methods the finite 

element method is perhaps the most versatile at the present time. 

The method is similar to the finite difference method in as much as the continuum is 

divided into a mesh and equations set up at every node, but differs from it in the manner 

in which the continuum is modelled. Whereas in the method of finite differences the 

governing differential equations of the continuum are replaced by difference equations 

which enable nodal equations to be constructed, in the finite element method the 

continuum is divided into a number of elements, each of these elements being connected ; 

to its neighbours at the nodes, as shown in Fig. 2.1. 

Boundary of object 

  

to be studied. Typical element 

Typical nodal 
point. 

7 

X 

Fig. 2.1. Illustration Showing System 
Of Elements And Nodal Points. 
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In a structural problem, the determination of the force/displacement characteristics of a 

single element, ie by the obtaining of its stiffness properties, enables equilibrium 

equations to be set up at each node from which the nodal displacements may be 

obtained. Once these displacements have been obtained the nodal forces and stress 

distributions throughout the model can be obtained by back substitution into the original 

force/displacement relationships. 

The method thus consists of the determination of the stiffness characteristics of the 

element and this may be obtained via the displacement field of the element. Generally 

this profile is either impossible or impractical to obtain exactly and therefore must be 

assumed. 

This inherent approximation means that the stiffness characteristics of the element are 

themselves approximate and must be obtained via a work formulation with a suitable 

choice of displacement profile. The effect of the approximation on the accuracy of the 

analysis can be reduced by finer subdivision of the continuum. 

Although the finite element method is primarily understood in relationship to 2 and 3D 

continua, the method can be equally well applied to essentially one dimensional 

structures. In this case, since the displacements are functions of one variable only, it is 

possible to obtain precise formulations which are not dependent upon subdivision for 

their accuracy. 

Indeed because of this ability to determine the displacement field exactly, the derivation 

of the stiffness matrix when applied to one-dimensional elements can be obtained from 

direct equilibrium and can be much more concise compared with the standard work 

process used with approximate displacement functions. 

ay



To illustrate the process using derived functions and to compare it with the standard 

work process, the derivation of the bending and axial stiffness matrices for the straight 

prismatic beam shown in Fig. 2.2 will be presented using both methods. 
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Fig 2.2. Straight Beam Showing Positive 
Values of Nodal Forces. 

2.1. Equilibrium Method. 

As previously mentioned this method depends on the ability to obtain the precise manner 

in which the element deforms and if this can be achieved, then the exact stiffness matrix 

can be obtained in a particularly precise manner. The advantage of an exact solution is 

that no increase in accuracy ensues on subdivision of the element and hence large 

elements can be used, thus reducing the amount of data required. 
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Construction of the Flexural Stiffness Matrix [K,] for a Straight Prismatic Beam. 

2.1.1. Formulation of Lateral Deflection Function, 

Consider the equilibrium of an element of length dx from Fig.2.2. 

  

  

dx 
i >       

Rotational equilibrium of the element gives; 

and since for vertical equilibrium, S is constant; 

dM dS _ 
pee Re Sea re gee As gan AW aly dag v ede es (2.2) 
dx? dx 

Thus on application of the equation of simple bending, 

av 
Vi ee ee av Te act sss (2:3) 

2 
dx 

and assuming EI to be constant, equation (2.2) may be expressed as; 
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Successive integration of (2.4) yields the deflection profile of the beam as; 

V =a, + a,x +a,x” +a,x° eocccccccccocons 2.) 

Hence the lateral deflection function is a cubic polynomial in which aj, a5, a3, a, are the 

constants of integration, and from this function the flexural stiffness matrix can be 

formed ( It should be noted from the derivation above that any contribution to bending 

from the axial loads is ignored and thus the treatment appertains to linear behaviour, that 

is where the displacements are considered to tend to zero ). 

2.1.1.2. Calculation of Nodal Displacements from the Arbitrary Constants { a}. 

In order that the displacements can be uniquely determined in terms of the nodal 

displacements, the four arbitrary constants {a,} must be written in terms of the four end 

displacements namely v,,0,,v,,8, where 0 is the slope of the member and is given by; 

g=Na at ee ie ee ae. (2.6) 
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or in matrix form as 

6=[0 1 2x 3x2] a 

a, 

ag 

a4 

On substituting the boundary conditions at both nodes, the following matrix ensues; 

vi 120.050. Ifa, 

Ge 10rd. 0 Oey a, 
V» hr L2 L3 a Ree ee eagle a 

8, @ 120. 3h a, 

ie {A,} =[C,]{a,} 

which upon inversion gives; 

P
e
 

Se 
e
e
 

i 

So cS
 So 

oN
 
2
 

Va
 

SN has
 Bee e eae ee enenes 

            
ay -3 -2 2 zl Vo 

be 5 Ee ke 

ay Aa ee 1) | 8, 
5 2 3 Z 

ey Oe A - Ps \ / 

ie {a,} = [C,]1(A,) 

Thus the four arbitrary constants are expressed in terms of the four nodal 

displacements. 
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2.1.1.3. Relationship Between Stress Resultants and Nodal Displacements {A,1. 

From the equation (2.3) 

2 
M=EI ot 

dx 

and from equation (2.1) it follows that 

aC 

S xe EI es de (2.9) 
dx 

Then on differentiating the displacement function and substituting the result into (2.3) 

and (2.9), the stress resultants M and S can be obtained in terms of the nodal 

displacements thus:- 

{s = EI\0 0 0 -6 | {a, 
0 0 2 -6x}) a, 

Ag 
a4 

However since the arbitrary constants can be expressed in terms of the nodal 

displacements (2.8) the above can be written as; 

    

S -12 “6 12 -6 
L3 L? L3 L2 

oe EI -6+ 12, -4+ 6, Ondze 4+ 6, 8, 

L2 L3 . L2 L2 L3 I. L2 * teu ee (2 10) 
M : 

Vy 

6, 

\ 
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2.1.1.4. Formulation of Stiffness Matrix [K,1. 

Since equilibrium is satisfied at all sections of the beam, the values of the nodal stress 

resultants must be numerically equal to the nodal external forces. At node 2 these values 

are of the same sign whereas at node 1 they are of opposite sign as shown in Fig. 2.3. 

oe 
1 

Nodal Stress Nodal External 
Resultants. 

Fig 2.3, Diagram Showing Stress Resultants and 
External Forces for Beam in Flexure. 

Thus applying this reasoning to equation (2.10), and substituting x=0 and x=L at nodes 

1 and 2 respectively, the relationship between the nodal forces and nodal displacements 

is given by:- 
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8; -12EI -6EI 12EI -6El| |v, 

L3 L2 L3 L2 

M, 6EI 2EI GEI 4EI| |6, 

L2 L L2 L 
\ } mel es \ / 

ie {P,}=[K,]{A,} 

where [ K,] is the flexural stiffness matrix of the member, this matrix being 

symmetrical about the leading diagonal. 

2.1.2. Construction of the Axial Stiffness Matrix [ K,] for a Prismatic Bar. 

The axial stiffness matrix can be formed in the same way as the bending stiffness matrix. 

Consider the equilibrium of a length 5x of the beam as shown in Fig. 2.4. 

ee ee —y———— * 

ie ee 
Nodal External 

y a nt Forces 

, 
Fig 2.4. Diagram Showing Stress Resultants and 

External Forces for Axially-loaded Bar. 
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Horizontal equilibrium requires that; 

dP 
a re a ais eee (2.52) 

Ignoring any moment effect from the axial force, Hooke's Law gives; 

du 
P=EA et a ey 8 AIR eat ncos ss enenen: (243) 

Hence from (2.12) and (2.13) ; 

2 

=0 ee eee (2.14) 
dx 

which upon integration gives the axial displacement function:- 

u=4, 7 gx eee eeeeersens (2. ¥5) 

Hence following steps similar to those described in sections (2.1.2) and (2.1.4) and 

referring to the sign convention shown in Fig. 2.4 yields 

ie {P,} = [K,]{A,) 

Again the symmetry of the matrix should be noted. 
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2.1.3. Combined Stiffness Matrix for Flexural and Axial Behavior. 

Combining the two matrices for axial and bending effects produces; 

E 

Yo 4 tee ee Uy 
ro > 

0 0 12EI y. 

            
M, OD.” See” Any 0, 

L2 i. 

S. 0) TIRE 6B. 4287 V» 

L3 te. ate 

M, O-%,0 - GEL. “2H .6E) 4El)) 9, 
Zz 2 \ Po ' eee LI\ | 

ie {P} = [K]{A} 

in which it can be noted that the axial and flexural matrices are independent. The 

co-efficients in the matrix [K] are the same as those in the well known Slope Deflection , 

equations showing that the exact solution, within the confines of simple bending theory, 

is obtained using the finite element procedure provided the deflection function is a true 

representation of the behaviour of the element. 
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2.2. Work Method. 

In many cases it is impossible or impracticable to obtain the precise mode of deformation 

of an element, and in such cases it is necessary to resort to the use of an approximation 

to the displacement profile. 

The use of such approximations naturally implies that equilibrium will not be satisfied at 

every point of the structure and hence equality of nodal forces and stress resultants is not 

obtained. The equilibrium method of the previous section thus cannot be used and 

recourse must be made to a work process in which only overall equilibrium of the 

element is obtained. 

Such a process is the Rayleigh-Ritz (46) method in which the result that at equilibrium 

the total potential energy in the element is a minimum is used or alternatively the 

equivalent result that at equilibrium the total virtual work done by the system is zero. 

The application of work-based procedures entails more calculations than the equilibrium 

method, but this is often offset by the simpler functions involved. 

Once approximate displacement functions are used, the resulting stiffness matrices are 

also approximate and hence the accuracy if the solution will depend on the subdivision 

of the structure. 

The process may be demonstrated by considering the formulation of the flexural 

stiffness matrix for a tapered rectangular beam ( Fig 2.5 ) using the function for a 

prismatic member, ie; 

ES 2 3 Vv =a, + a,x + a,x + 4x 
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This function is an approximation to the true form and hence a stiffness matrix based on 

this function must be obtained by work methods. 
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Fig 2.5.Tapered Beam Showing Positive 

Ne f N: For 

2.2.1. Construction of Flexural Stiffness Matrix | K,_] for a Straight Tapered 

R lar B f Constant Br ; 

Since the deflection profile is assumed to take the form; 

ae 2 3 Vv =a, + aX + a,x + a,x 

the relationship between the nodal displacements and arbitrary constants is identical to 

that presented by equation (2.8). 
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2.2.1.1. Relationship Between Strains and Nodal Displacements. 

Assuming that only bending strain occurs, ie, neglecting shear effects, 

{e=[0 0 2 6x ]{a,) =[A](ay 

Thus upon substituting (2.8) 

{€,} =[A JIC) 7{4,} =[ B1{A,} se eseesceseecces (2.18) 

where, after performing the multiplication; 

ok + 6x ext 2. 
a i t

t
n
 [B]=[-6+12x | -4+ & 

bf ole: Lawes n
e
 

2.2.1.2. Relationship Between Stress Resultants {o} and Strains {€}. 

The relationship between the stresses and the strains at any point is given by; 

{o,} =[D ]{e,} =[ DIL B {A,} CPE iy Ee (2.19) 

where {0,} is simply the bending moment M and [ D ] is the elasticity matrix, which for 

a beam is simply the flexural rigidity EI. For a prismatic beam this is a constant, 

whereas for a tapered member it is a function of x due to the variation of second moment 

of area I along the length. 
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Consider the rectangular beam of varying depth t, and constant breadth b, as shown in 

Fig 2.6. 

~
 <
 

  

  

      
Fig 2.6. Tapered Beam Showing a General Depth 

at Distance x, 

At a section distance x from end 1 , the depth of the beam is 

t, =t,+(t-t)x eeeeeer rere eee (27:20) 

L 

and the second moment of area is given by; 

I. =b(t, +x) SSPE EY (221) 

12 

where 

>= 1-t, 

L 
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Hence it is seen that the elasticity matrix is a function of x of the form 

[D]=Eb (t,+ ox) seseecedsececccs 22) 

12 

2.2.1.3. Formation of Stiffness Matrix | K, 1. 

At equilibrium the total virtual work done in the system is zero. By applying a virtual 

nodal displacement {5A} to the system and denoting the corresponding nodal 

forces by the vector {P}, 

External virtual work ={SA}T{P} steers tees eeeees (2-33) 

and 

: + 
Internal virtual work -| {de,} {o}dx 

Since {5€,} =[ B ]{5A,} then; 

Internal virtual work = | (OR ipligldes 3 06 Sige, (2.24) 

Thus equating equations (2.23) and (2.24) gives 

{P} -{ Ble ee ee eke (2.25) 
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Substituting equation (2.19) into (2.25) gives, 

eT (P= (SY IDIBI Ala. ga eak oe (2.26) 
0 

and hence the stiffness matrix is given by 

[K] = | PB IpIBidk ce ee (2.27) 

It should be noted that the above result is also the general result used for 2 and 3D finite 

element analysis. Hence the flexural stiffness matrix of the tapered beam will be given 

by substituting the respective values of [B] and [D] into expression (2.27). 

2.2.1.4.Construction of Axial Stiffness Matrix [ K ] for a Tapered Rectangular Beam. 

Assumption of the axial deflection profile, 

U = as + acx 

and following steps (2.2.2) to (2.2.3) gives for the axial case, 

[B]= it BLS Re. os 6 (2 38) 

be 4 

In this case [D] becomes EA where the cross sectional area A is a linear function of x. 

Thus 

[D]=Eb(t, + ox ) ee ce se eeeceesece (L529) 
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and hence substituting (2.28) and (2.29) into (2.27) and evaluating gives the axial 

stiffness matrix. 

2.2.1.5. Combined Stiffness Matrix for Flexural and Axial Behaviour. 

Combination of the flexural and axial matrices developed gives the equations:- 

(P,) | Ky, (u,) 

            
M, On -oe Re Ke 8, 

S, D> 0 Kay Ka Ras v2 

M, mM Be Bee Bee Bee \e 
wien one oS aw 

ie {P) = EK {A} 

where 

K,, = Ky) =-K, = Eb(2t, + OL) 
2L 

Ky33 = AC 12t,3 + 186t,2L + 14.4971, L? + 4.2¢°L? ) 

Kyg = AC 6t,3L + 66t,2L? + 4.267t, L? +1.26°L* ) 
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Ky4= M43? + 36t,2L? + 1.697t,L4 + 0.40°L5 ) 

Ks3 = -Ky3 Ky4=-Ky Ks5 = Ky, 

Koy = A 6,3L + 120t,2L? + 10.297t,L? + 30°L4 ) 

Ko, = A( 2t3L? + 36t,2L? + 2.667t,L* + 0.89°L> ) 

Kgs = -Kgg 

Keg = (43? + 96t,2L3 + 7.697, L4 + 2.29°L? ) 

>=(t-t i =Eb 
L 12L3 

Again it should be noted that the stiffness matrix is symmetrical about the leading 

diagonal. Also if t, = t,, that is the beam is prismatic, then $ = 0 and the stiffness matrix 

becomes the same as that in equation (2.17). 

It should be noted that the stiffness matrix is an approximation of the tapered member, 

and the accuracy of solution converges to the exact result with increase in the number of 

elements employed. If the exact displacement function for a tapered beam is formulated, 

then the precise stiffness matrix is obtained where accuracy is independent of 

subdivisions. 

Again it is seen that both the axial and flexural stiffness matrices are independent of each 

other and can be formulated individually. 
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2.3. Summary of the Two Methods. 

2.3.1.Equilibrium Method. 

a) Formulation of the axial and lateral deflection function u=u(x), v=v(x). 

b) Calculation of the nodal displacements from the arbitrary constants [C]". 

c) Relationship between stress resultants and nodal displacements [H] 

d) Formulation of Flexural Stiffness matrix [K,]. 

e) Construction of Axial Stiffness matrix [K,]. 

f) Combined Stiffness matrix for Flexural and Axial behaviour [K]. 

2.3.2.Work Method. 

a) Assumption of the axial and lateral deflection function u=u(x), v=v(x). 

b) Calculation of the nodal displacements from the arbitrary constants [C]"!. 

c) Relationship between strains and nodal displacements [B]. 

d) Relationship between Stress and Strain [D]. 

e) Formulation of Flexural Stiffness matrix [K,]. 

f) Construction of Axial Stiffness matrix [K,]. 

g) Combined Stiffness matrix for Flexural and Axial behaviour [K]. 
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PART A. 

Geometrically Non-Linear Analysis of 

Prismatic Sections. 
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Chapter 3. 

Matrix Formulation. 
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In chapter 2 the finite element process as applied to beams was illustrated with reference 

to geometrically linear behaviour, that is the deflections were considered to tend to zero 

and hence the equilibrium equations could be legitimately written in the undeformed 

geometry of the structure. Such considerations lead to a proportional relationship 

between the applied forces and the deflections induced. 

In reality the deflections, although usually small, have finite values and thus a more 

accurate assessment of behaviour will be attained if the equilibrium equations are set up 

in the deformed state of the structure. Thus if the member is subjected to both lateral and 

axial forces, the deflections will be dependent on both the lateral forces and on the axial 

forces, whereas in linear behaviour axial forces have no effect on the flexural 

action.Such considerations predict a non-linear relationship between loads and 

deflections. 

Non-linear behaviour of this nature is known as geometrical non-linearity as distinct 

from material non-linearity in which the non-linear relationship occurs primarily between 

stress and strian. 

Geometrically non-linear analysis is essential if the elastic stability of structures is to be 

investigated, a simple example of this being the prediction of the elastic critical, or Euler, 

load of a strut. 

The development of the finite element process to examine geometrically non-linear 

behaviour has been investigated by a number of authors (9,10,11,12,17,18,20,21) and 

this chapter is concerned with the description of these, together with the further 

developments made to this topic by the author, as applied to prismatic members. 
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As in the case of linear analysis, formulation of the stiffness matrices for the examination 

of non-linear behaviour can be divided into; 

a) equilibrium methods, in which the derivation is obtained via derived 

displacement functions, and 

b) work methods in which assumed functions are utilized. 

Throughout this thesis it is assumed that the material possesses a linear relationship 

between stress and strain during the structural behavior, that is that Young's modulus is 

constant, and also that deflections are sufficiently small to allow the simple theory of 

bending to be invoked. 

3.1.Equilibrium Method. 

As described in Chapter 2 these methods, although shorter than the work procedures, 

depend upon the formulation of the precise mode of deformation of the member. Two 

stiffness matrices will be developed, each having the same flexural portion but differing 

in the treatment of the axial force component. The assumptions and limitations imposed 

in each of these formulations will be discussed during the development. It should be 

noted that the axial force can be either in compression or tension and hence the derivation 

will be carried out seperately for each case. 
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3.1.1.Non-linear Stiffness Matrix with Mutually Independent Flexural and Axial 

Components for Member in Compression. 

With reference to a prismatic beam subjected to nodal axial and shearing forces and to 

nodal bending moments, as shown in Fig 3.1, consider the equilibrium 

M, 
V Deformed State 

Le) 

a 5x be 

P, ae eX   

  

  

of an element of this member in its deformed state as shown in Fig 3.2. 

M+6M 

  

5x 

  

Fig 3.2. Dia howing the Element in it 
Deformed State in Compression. 
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It is assumed that the displacements are small enough to allow the approximations 

cos(dv/dx) = 1 and sin (dv/dx) = (dv/dx) to be validly made. Hence the axial and 

shearing forces with respect to the deformed member axis may be considered to take the 

values of those forces with respect to the undeformed member axis as depicted in Fig 

Saas 

Consideration of rotational equilibrium of this element gives; 

dM ,dv 
S=- oa FP Pe dar ag na Ma. ag tpt tthe £34) 

dv 
Substituting the relationship M = EI art, ie equation (2.3), gives 

dx 

d’v dv 
5 Bl es, ie cack aay (3.2) 

dx 

and since for vertical equilibrium, S is constant; 

4 2 ds dv _dv 
Ge 

that is 

dy P dv 

Cats 4 
dx ax 

which upon successive integration yields the lateral deflection profile of the beam as; 

V =a; + ax + a3 SiN OX + a4 COS OX Naw ee ett FEC [S20 
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where 

a. = V(P/EI) 

Differentiation of the deflection equation gives the slope, 8, of the member as; 

dv ; 
8 = — =a7+ a3 COS OX - a4 Sin Ax 

dx 

Following the procedure explained in Chapter 2 for the equilibrium method, the 

flexural stiffness matrix of the non-linear member can be formulated. 

The square matrix relating the nodal displacements to the arbitrary constants is first 

obtained as; 

iD 

Ql 

ee 

o 4   

  

ie 

0 0 a 

a 0 

sin aL cos aL 

acosaL -a sin aL   —- 

(A,} = [C,]fa,} 
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which upon inversion gives, 

jain od 

ea Cir Cyp Cig Cry 

2 Fac Cy Cy G3 Cy 

a3 Cy, Go G3 Cy 

a4 Cy Can Caz Cay 

i "6. 

ie {a,} =(C,)1{A,} 

        

  

  
where 

C,,= aC,, = a - o2L cos QL - sin aL 

Xr 

Ch =-Cy = QL cos aL - sin aL 

x 

Cy3 = Cog = Cg = Cy = -Cyg = -00C4 = a (1 - cos oF ) 
x 

x 

Coy = -Cyg = C5 -O1C, = or'sin 

nr 

and 

= 20 (1-cos aL )- o7L sin aL 

of



Following the derivation given in section (2.1.3) and using the relationships; 

dv 

  

dv .dv 
M= EI —— and S =- ie P a gives: 

dx dx 

S 0 -P 0 0 
re {a,} 

M 0 0 -Psinox -Pcosax 

fm 

= | } a et ie Om cee ered aS At sail pt ln 4q------— 
-P sin ox Cy, | -P sin 0x Cyy | -P sin ox Cyg, -Psinox Cy, | | ®, 

-P cos @x C,, | -P cos ax Cy, ' _P cos ox Cyl -P cos ox Cy > 
Loe | | : 

2 

8, 

Ke     
since {a,} = a {A,}.The flexural stiffness matrix can now be written directly 

following the arguments presented in 2.1.4 giving the non-linear flexural matrix [K,] as; 

S} Vi 

M, 0, 

a ee eee eer Nd ee NU oa ee ce hc weg ee ce (3.5) 

S, V2 

M, 0, 
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where 

K,, = Ks, = -K,3 = Po sin aL, 

rX 

Ky, = Keg = PL sin aL - aL cos aL ) 

x 

Ky, =P. Cab - sin aL ) 

and 

A =20(1-cos aL) -o?L sin aL 

It should be noted that this matrix is symmetrical about the leading diagonal as in the 

linear case but now is also dependent on the axial force P. 

If it is assumed that the axial force depends only on the displacements, u, then the axial 

force/displacement relationship may be obtained from P = EA ( du/dx), as in the linear 

case, and the complete stiffness matrix containing both flexural and axial components 

will become; 
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or more compactly 

where 

ee 
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This matrix, produced in a different manner, has been described in the subject literature 

(47,48,22,12) ; 

If the axial force is tensile rather than compressive, the bending displacement profile will 

be slightly different. Apart from this, the derivation of the stiffness matrix is similar to 

that for the compressive case and is described in the following section. 

3.1.2. Non-linear Stiffness Matrix with Mutually Independent Flexural and Axial 

Components for Member in Tension. 

Consider the equilibrium of a deformed element of a member in flexure and in tension as 

shown in Fig 3.3. 

  

Fig 3.3, Diagram Showing the Element in its 
Deformed State in Tension. 
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Consideration of rotational equilibrium of this element gives; 

Sant Pe De ities 9h «as « (3.7) 

Substituting equation (2.3) into (3.7) gives; 

3 

s=-BIS%+p& iin Bh (3.8) 
dx 

Since vertical equilibrium requires that S be constant; 

S =o 4 pot =o 
dx dx 

that is 

aver dy 2) 
TB 

where 

a = V(P/ED) 

Thus 

a & hi nh 
Pe neer ea QX + a4 sinn &x 
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The matrix [C,] relating the nodal displacements to the arbitrary constants is thus; 

1 LE sinh ak cosh aL 

0 1 acoshaL asinhaL     
and its inverse is; 

Cy Cy. Cy3 Cy 

where 

C,, = &Cy) = 7L sinh aL - a cosh aL + 
r 

Cy, = -Cy, = aL cosh QL - sinh aL 

a 

r 

Cy4 = -Cay = Sinh aL -oL 
h 
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C;, =0C,,=-Cy =-0C), = -0"sinh OL 

and 

A =2a(1-cosh aL )+ QL sinh aL 

Following the steps given in section 3.1.1 produces the combined flexural and axial 

stiffness matrix as; 

              

{ eae ie P, \ Ky fu, \ 

Py Ky, Ky S Uy 

S; 0-0 Ry vy 
oe \ ? achasseeens (3 10) 

M, P08 Ky @, 

(M2 0 0 Ke Key Bes Bee a 
7. ee a ke 

{P} = [K]{A} 

where 

Ky, = Ky) =-K,, = EA 
rs 

Dit 

r 

r 
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Ky, = K¢ =P (sinh aL - aL cosh aL ) 

Xr 

Ke, = P-CoL - sinh aL ) 
r 

and 

A =2a(1-cosh aL ) + a2L sinh aL 

Again the matrix is symmetrical about the leading diagonal and is dependent on the axial 

force P. 

3.1.3. Limitations of the Linear Matrices so far Described. 

A close examination of the nature of these matrices reveals that, since the axial and 

flexural components are mutually independent, their use is strictly limited to situations in 

which the axial force and deflections remain independent of any flexural behaviour. 

In reality very few situations of this nature occur. Usually, the finite lateral deflections 

cause a modification to the axial forces and displacements so that the flexural and axial 

effects are not independent. 

This can be demonstrated very simply by considering a pin-ended member under a lateral 

load as depicted in Fig 3.4. 
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Fig 3.4 Diagram Showing Member under 

Lateral Loading. 

Since the pins are fixed positionally, the lateral displacement of the member causes the 

member to lengthen, thus inducing axial strain and hence a tensile force. Since there are 

no displacements, u, along the x axis, the axial effects must be a function of the lateral 

displacement, v. 

Generally the nodes of the members of a frame are not fixed in position and hence u 

displacements do occur. Thus in general the axial strain is composed of two 

components, one due to u displacements, as already discussed, and the other due to 

lateral displacements, v. 

3.1.4.Modification of Axial Strain Expression due to Finite Lateral Displacements. 

To effect the calculation of a more precise axial strain expression, consider an element dx 
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of a member displaced and deformed to a new length ds as shown in Fig 3.5. 

  

  

  

      
    

K Vv 
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et 
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Fig 3.5. Diagram Showing Element Deformation 
Due to Axial and Lateral Displacements. 

By Pythagorus' Theorem; 

Ae x I a a Se, eS eons anes (3.11) 

and from the figure above; 

iy ee ac eg when te sees aN s (3:42) 

ie dx = du + dx 
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Squaring (3.12) gives; 

dx? = du2 + 2 du dx + dx? 

and thus from (3.11) 

ds? = du? + 2 du dx + dx? + dv” 

Hence 

ds2 - dx2 = 2 du dx + du2 + dv” Perc woet ess occu (3:43) 

ie 

  

sy} 2 
2 2 du__1) {du 

ds - dx na) #..}{( + 

The term in the square bracket is known as the strain component and hence 

ds*- dx? =2€, dx? Saale whee oe te (3.14) 

where 
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which upon neglecting terms in (du/dx) as very small in comparison with the other 

terms becomes; 

It should be noted that when the lateral deflections tend to zero then the strain 

simply tends to the expression 

» R|
 

3.1.5. Non-Lin iffness Matrix with led Flexural and Axial Components. 

Use of the strain expression, 3.15 together with the equilibrium process, enables a more 

precise non-linear stiffness matrix, applicable to general frame problems, to be 

formulated. The difference between this new matrix and that described in 3.1.1 lies in 

the modification to the axial force equations which will now include effects due to lateral 

displacements. The flexural stiffness matrix already obtained remains unaltered. 

Applying Hooke's Law to equation (3.15) gives; 
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Since P is constant along the element, integration of equation (3.16) gives; 

2 
dx 

  

i 
5 

a du EA | {dv 

[normal Stace Bef 
° 0 

ie 

& 

Zz 
EA EA | {dv 

Pa eae “3 {$2} ax 
° 

Noting from Fig 3.1 that P, = -P and P, = P; 

2: 

dx + FA (ay- up) 

  

L 

p,--FA Se 
ee, RAM 

0 

and 

2 
EA 

dx + ae (Ups Oy) 

  

EL 

pee 
oS Ae 

0 

The first terms in equations (3.19) and (3.20) represent the modification to the axial 

force due to lateral deflections and can be calculated in terms of the four lateral 

nodal displacements as described below. 
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3.1.6.Formulation of Lateral Deflection Effects on Axial Force for Member in 

Compression. 

The term 

L 

=| 
0 

in equations (3.18), (3.19) and (3.20) can be formulated as follows in terms of the 

lateral nodal displacements. 

Equation (3.4) can be expressed in matrix form as; 

6 =H =f 0 1 a@cosax -asin ax J{a,} 

which, since {a,} = [C,]1{A,}, can be written 

ay [ Cy, + C40 cos ox - Cy, sin ox | Cy) + C390 cos Ox - Cyy0t sin ox | 

C53 + C330 cos Ox - Cy, sin Ox | Cz, + C4 cos ax - Cy, sin ax | es 

} 8, 

ie 
8, 

71



Writing Gy for (Cy + Cx & cos Ox - C4, O& sin Ox ) this may be expressed as; 

dv=[ G, G, G, G, Ifv, 
dx 

ie W-=Gy,+G,0, +G,v,+G,8, 

which upon squaring gives; 

dv \? = G, (G,v, + G6, + G3v, + G,8, )vy 

be, + G, (G,v, + G,8, + Gav, + G,8, ) 8, 

+ G, (G,v, + G8, + Gav, + G,8, ) Vy 

+ G, (G,v, + G28, + G3v. + G49, ) 8, 

It is thus necessary to evaluate G,,G, giving 

Gy Gu = CoyCon + (Coy Gon + ComCon ) & COS Ox 

(Ci Cigs th a oy) 0. SiN OR tO, 0087 

2 Dees 
~ (CayCay + CoCan ) O° Sin Ox cos Ox + CyCoy O sin?ax 
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Integration of G,,G,, and subsequent multiplication by EA/2L gives; 

QuQn= Sr |, GvGndx 

where 

Qu Qn = BAY SomGon + Comyn + ComOon- sin aL 
2 he 

$60 CH £GaC. M comal:-1 ja Ce ie + or sin a 
2L 4 8L 

+ OC Coy Cun t+ Cay Can cos 2aL -1) + CayyCun ge? - ot sin 20 
8L 

4 a 
Gass vee tenses ( 3323 ) 

Thus the term Q,,Q,, may be expressed in terms of the nodal displacements as; 

[Q, (Quy, +Q,6, + Q,v, + Q,8,) ] v, 

+[Q, (Q,v; + Q,8, + Qzv, + Q,8, )1 9, 

+[Q3 (Qiv, + Q,8, + Q,v2 + Q48, ) ] v2 

+[Qy(Qyv, + Q,8, + Qv, + Q,8, ) ] 6, 

or in matrix form 

PAL AD AB RA-1 ly, 

7



Hence from equations (3.19) and (3.20) the relationship between the axial force and the 

axial and lateral displacements becomes; 

  

  

    

  

P, EA EA, Al +A2- -A3=A4].(u, | 
oe ee i 

P, uy 
-EA EA Al A2 A3 A4 

L L v1 
< ys Sea sees (3.25) 

9, 

MQ 

8 
2 

The complete force/displacement relationships may then be written as; 

( P \ SN ( u,\ 

P, NX Us 

S 
S, 7 ‘ 

< - ‘ : 4 oat (3.26) 
M, 1 

0 * 
Ss, 

0, 
\ M, y oe Vi \ ) 

            
where the flexural matrix is that given in equation (3.5). 
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It can be seen that the combined stiffness matrix is no longer symmetrical and that the 

axial force in the member is dependent on the lateral as well as the axial displacements. It 

will be seen later in Chapter 4 that a special solution routine can be developed in which 

symmetry is restored by a modification to the left hand force vector. 

3.1.7. Formulation of Lateral Deflection Effects on Axial Force for Member in 

Tension. 

Following steps similar to those presented in the previous section but using the 

deflection profile for a deformed member in tension, the following result analogous to 

equation (3.23) is obtained. 

QuQu = a Com Coy + (Com Can- t+ CsyCon-) sinh aL 
2 2L 

# (Cj One tC pion cosh OL -1)+ Cay Coy ( o + a sinh at 
2L = 8L 

$ Of Cy Care + CoCo d( cosh 20L- 1) + CapCiny (« sinh 201 + a} 
8L | Bin 4 

from which the coupling portion of the stiffness matrix can be obtained. 
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3.2.Work Methods. 

As discussed in chapter 2 derived deflection profiles may be impossible to obtain or may 

contain complexities which cause intractability in their use. Thus it is often either 

necessary or convenient to use approximate displacement functions and formulate the 

stiffness matrix using a work process. 

In this section two work-based stiffness matrices will be developed based on the 

polynomial displacement functions for a linear prismatic beam namely; 

oa 2 3 
V =a, + a)X + a3x + a4x 

and 

uU= as + a¢x 

The first of these is a matrix in which flexural and axial components are considered 

independent, this being the basis of the derivation of the matrices described in section 

3.1.1, while the second is a more realistic matrix in which the effect of finite lateral 

displacements on axial behaviour is taken into account. 
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3.2.1.Non-linear Stiffness Matrix with Mutually Independent Flexural and Axial 

Components. 

If, as is inherent in the derivations presented in section 3.1.1 and 3.1.2, it is assumed 

that the axial force in the member is not significantly affected by the lateral 

displacements, then this force may be considered to be dependent only on the 

displacements u along the x-axis, and to remain unchanged during lateral displacements. 

Consider again the increment of the axially loaded beam under flexure depicted in Fig 

3.2 ( or Fig 3.3 ) and reproduced again below in Fig 3.6. 
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Fig 3.6. Dia Showing the Element in its 
Deformed State in Compression. 

If virtual nodal flexural displacements {5A,} are applied to the beam, then the internal 

virtual work is composed of that done by the bending moment distribution during virtual 

rotation of the beam together with the virtual work done by the axial force P during the 

extension of the beam caused solely by the virtual lateral displacements. 
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Consideration of the virtual work done by the bending moment will, by following the 

derivation given in section 2.2.5, yield the flexural stiffness matrix, [K,], of a linear 

prismatic beam, relating nodal lateral forces to the corresponding displacements, ie; 

          

ae ie 
(s,) [a2 v1 | 

L3 

M, 6EI  4EI oe 0, 

< L2 , M c . 

S, ony, sent” 12EI V5 
L3 L2 L3 

M,| | SEL 2El -GEL 4EI|| ®, 
ce 12 i: 12 i: \ ) 

{P,} = [K,]{A,} 

while the virtual work done by the constant axial force P leads to an additional flexural 

stiffness matrix dependent on P, and known as the ‘initial stress matrix’, which can be 

formulated in the following manner. 

Noting that the axial strain due to lateral displacement is; 

2 

2 
1 {dv 

dx 
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the internal virtual work done by P during virtual lateral displacements is; 

L 

2 
1{dv 

: Lies J 

while the external virtual work is given by equation (2.23), that is 

(3A,}7(P) 

Thus 

: ig 

(5a) (P)=P 5| Hen Jax 

es ‘dv dv 
P| S(t) RE ET (3°25) 

; _ dQ 
Since 8Q= dg dq. 

Now since the lateral displacement function is assumed to be; 

2 3 
V +a, + a,x + a,x + a,x 

the value of (dv/dx) can be obtained in terms of the nodal displacements {A,} by 

substitution of equation (2.8) into equation (2.6) giving; 

19)



ae 1-4x+3x*| ee Vv; 

dot ie de Le ei be 

8, 

a 

8, 

which may be expressed more shortly as; 

BEG, Gy G,GrHAPSIGHA seers (3.26) 

Thus equation (3.25) becomes, on reordering of terms; 

T M 7, {34,} 1P)=P [ (84,} [ofic)(a,} ex 
0 

from which 

L T (P}={ [GT PIG]{4,} dx 
0 

=[ K, I{A,} Re castereedseae (3.27) 

where [K,] is the initial stress matrix. 
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Calculation of expression (3.27) yields this additional relationship between {P} and 

  

{A} as; 

a eT he 
S; 6P Vi 

Si & 

M, ager © ¥ 8, 
=e. 15 M , seen cas (3.28) 

Sy SOEs (eb ae Vo 

a 10." 5h 

M, be he AR aaa ee 
10 30 10. “15 J     
ie (P,} =[Kg]4,) 

Hence the total stiffness matrix, including both flexural and axial effects, becomes 

or {P}=[Ky+K,]{A} 

where [K,] is the axial stiffness matrix described in Chapter 2. 

Hence the flexural component of the total stiffness matrix is dependent on the axial force 

in a similar manner to that in the matrix presented in equation (3.6). 

While here applied to the solution of beam problems, this form of derivation was first 

introduced by (45,47) for the non-linear behaviour of plates and shells. 
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3.2.2.Non-linear Stiffness Matrix with Coupled Flexural and Axial Components 

( Tangential Stiffness Matrix ). 

The development of the previous section contains assumptions which, as discussed in 

section 3.1.3, do not describe the actual nature of the axial strain. As already shown a 

more accurate expression for this is; 

- du , 1 (dv) 
¥ dx. 2. 4dx 

and hence this extra second term effect should be considered if a more realistic 

assessment of non-linear behaviour is to be made. The development contained in this 

section allows for this extra term and, as will be shown, leads to an extension of the 

matrix developed in the previous section. This method produces a symmetrical matrix 

known as the Tangential Stiffness Matrix, which does not explicitly relate forces to 

displacements but from which such relationships can be obtained. 

3.2.2.1.Relationship Between Strains and Nodal Displacements. 

Again letting the displacement functions be assumed as; 

Zz 3 
V=a,;taxtax +ax 

u=as + acx 
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the values of the axial and flexural strains; 

~ du. Fidv - 
fa” ax * 2 \dx 

e dv 
E,= “a 

can be obtained by differentiation in terms of the arbitrary constants and then via 

equation (2.8) in terms of the nodal displacements. Thus, noting from equation (3.26), 

that 

e =(G]{A,} eas (3.30) 

and that hence 

2 

7(f| =5PIG}{A,} Sy ue (3.31) 

the expression for the strains may be written 

e, 1dvG, 
2 dx 

&, -4+6x 

i t2 

  

1dvG, 
2 dx 

6-12x 

[2 i 
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ldvG, 
2 dx 

  

   



that is 

{e} = [B(A)]{A} Dice tus eetatee (3.32) 

where [B(A)], the matrix relating the strains to the nodal displacements, is dependent on 

the nodal displacements themselves due to the inclusion of the term (dv/dx). 

3.2.2.2. Relationship Between Stress Resultants and Strains. 

Since the stresses and hence the stress resultants are linearly related to the strains, the 

relationship between these quantities is given by; 

that is 

{o} = [D]{e} 

or, from equation (3.32); 

{o} = [D][B(A)]{A} ec ce cer ccccccees (3.33) 
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3.2.2.3. Formulation of Tangential Stiffness Matrix. 

Consideration of external and internal virtual work yields; 

a. 

External virtual work = {8A} (P} 

Internal virtual work = { featea) ax 
0 

Hence by the principle of virtual work ( see section 2.2.) 

T oe 
{sa} P)= | Loran ax 6 eee mee nee (3.34) 

Se, 

Thus in order to obtain the relationship between {P} and {A} it is necessary to express 

{5e] in terms of {5A} thus allowing the virtual displacements to be eliminated from both 

sides of equation (3.34). 

From equation (3.32) since [B(A)] is a function of {A}, application of virtual 

displacements will cause virtual strains 

{de} = [B(A)] {5A} + [SB(A)]{A} Ween sigeagce seses (3755) 

by virtue of the product rule for differentiation. 
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Hence in order to obtain a relationship between {de} and {5A} it is necessary to equate 

the second term of equation (3.35) to a term in which the vector {A} is replaced by 

{5A}, and this may be accomplished in the following manner. 

Writing equation (3.32) as; 

{€} =| B,> Bo |A, 

Be 0.) 
a 

where 

| i 

[B,*] = lavG, 11d 2! 1dvG,;! 1dvG, 
‘aide. 0 dx i 2dx 

ele 7 

tC 

[By] = [-6+ 12x} -4+6x! 6-12x!-2+6x 
ee Pets Lots Loo td 

it is seen that 
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by virtue of the constancy of the coefficients in [B)*] and [Bo°]. 

Now from the expression for [B,°] above, it can be seen that; 

sa, {A,} = [By {54,} 

and hence equation (3.35) can be written 

B,> By ||8A,} | B,> 0} ]5A, 

(8e} = : 
Bo 0 {I6A,| {0 0] | 8A 

a 

2B,> Bg i 

Bye 0 | dA 
L a 

Thus on substituting equation (3.33) and (3.36) into equation (3.34) and eliminating the 

vector {5A}T the relationship between the external forces {P} and the nodal 

displacements {A} is 

p= { Bro B(A)| {A} dx 

ie {P}=[K]{A} 
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On performing the various matrix operations, the stiffness matrix [ K] in equation (3.37) 

can be seen to be non-symmetric and hence equations (3.37) are not amenable to solution 

by standard procedures based on matrix symmetry. 

However it can be shown (26,45,47) that a matrix [ K, ] such that 

{dP} =[ Ky ]{dA} peaticas aut sd (3.38) 

is symmetrical, and this matrix, for reasons that will become apparant in Chapter 4, is 

known as the tangential stiffness matrix. 

The symmetrical properties of the matrix [ K, ] means that its use enables standard 

symmetrical solution routines to be utilised, rather than the more cumbersome 

non-symmetrical procedures that would be required for the treatment of matrix [ K ]. 

The matrix [K.-] will now be derived and a description of its use left until Chapter 4. 

From equation (3.33) and (3.37) the nodal forces may be expressed as 
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Since both [ B ] and {o} are functions of the nodal displacements 

| [dB] {o} ax + [ [BT (ao) ax 

=[K,]{ dA} 

Now 

{do} = [D]{de} = [D][B}]{dA} 

and hence 

=| ao) ox + [Toa 

Noting from equation (3.36) that [ B ] may be written as 

[B]= + = [Bo] + [B,] 

By? 0 0 0 
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and hence that [dB] = [dB] 

| (B] [D][B] ax = [ (ede) U(BdxBdl 

TK Mer te ei svelentevens (3.43) 

where 

kq=| Bd DIBIax 

and 
L 

T 7 7 KU | (dreds ed's ed Dla 
0 

The first term in equation (3.41) can be written, through equation (3.42), as 

L ‘ 7 

2 { [aBr] {o} dx 
0 

which can in turn be expressed through equation (3.30) and (3.32) as; 

| ‘(oP IG} {8a,} ax 

where P is the axial force in the member. 
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This expression may thus be written as 

[K, ]{5A,)} 

where 

[Kd= [ LEIGH Ssh: Pe es oe tsk de (3.44) 

Hence equation (3.39) may be written; 

{dP} =[ K, ]{dA} 

where 

[K,]=[K)+K,+K, ] Serer reer errr sy (3.45) 

It can be noted that [ Ko ] is the linear stiffness matrix for a prismatic member while 

[ K, ] is the initial stress matrix derived in the previous section and given explicitly by 

equation (3.28). 

Thus to form the complete tangential stiffness matrix [ K, ] it is only necessary to 

evaluate [ K, ] and to superimpose this on the stiffness matrix [ Kp + K, | given in 

equation (3.29). 
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3.2.2.3.1. Evaluation of [ K, _]. 

The matrix [ K, ], known as the initial displacement matrix, is composed of three 

portions as shown in equation (3.43). Thus [ K, ] may be written 

[K, J=[K,]+(K,]+(K,] 

where 

Kj={ Bi DBI 

ikJ= | Bu DIBdex 

Kj=[ By DIBge 

Inspection of [ K, ] and [ K; ] shows that; 

[K, ]"’=[K,] 

and thus the composition of [ K, ] may be reduced to two matrices so that; 

[KL ]=(K,]+(K,]™+[K)] 
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Substitution of the constituent matrices [ By J, [ D ] and [ B, ] and subsequent integration 

yields the matrices [ K, ] and [ K, ] as; 

where 

    

Po '-Al EAD KS aA | 

0 0 HOA AD © Aa Ad 

b30.1: 0% 0.0 0 
[K, ]= | 

C2010 we 0-8 
! 

ee 0. 2G 

0 04 (i220 ea 8 0 

Bes wEbe. 
nea Sit G01 2+ 9 | 

  

EA] 1 20 1 |B 
2 - FA Fee ag v2 35 8 

aioe rl 
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and 

[K,]= ; BY Ph Or na eh (3.47) 

    
where 

2 3 
; 62.2; 12 IPye ASI 2 - 181, Ol 2 
pee ete da) Ae Mf AM 

1s oL 2 Di ora ae 94 : 
pan ta| Bake 2 apse Eas eds SE anys a 

Py 4L° SL <lIbs au” j 
By= pal Meads nase aus 40573 905 Bae aend 

B,, =-B,,, Bs. = -By,, By3= By 

B Jay toliy2 a.) Met : he 

a 12 352s eS. OR 
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2 3 3 4 5 
i Bo 3L a, 2: Ti 30a 
ot ee ee 

By =- By 

2 3 3 4 5 
a 2h 2 18L 2b 0g 1k as 

ba BA| ea ge Lag 35 a3 + 14 ayagt 14 “| 

and 

a = 9, 

3 Z 3 1 
as= --5Vv,-79 +—3V2-- 8 | pee eee 4 

2 1 4 1 
ag=| Vy +—39,-v2t 9 ee i L2 4 

Thus the matrix due to large deflections may be written 

0 fe 
D0 

at ] 
-Al Al1B,, ‘y 

[K, ]= a i ee (3.48) 
-A2 A2i B,, By 

t 
-A3 A3, Bz, Bz, Baz 

; | -A4 A4 By, By Big Bay       

a



It should be noted that the complete tangential stiffness matrix [ Ky ] is dependent on the 

deflections of the joints of the structure and also that it exhibits symmetry about the 

leading diagonal. 

3.3. The Displacement Transformation Matrix. 

Up till now the displacements at the ends of each member have been written in terms of 

their components with respect to the local member axes. Generally, because of the 

arbitrary orientation of the constituent members of a frame, it is necessary to express 

these local displacements in terms of displacements relative to a common global 

coordinate system, thereby enabling displacement compatibility between adjacent 

members to be achieved. Thus the displacements must be 'transformed' from the local 

system into the global system (5,49), 

Consider a member ( i - j ) of a rigid-jointed plane frame with local axes x, y in which 

the displacements are u, v, respectively and toa global coordinate system in which the 

displacements are X, Y as shown in fig 3.7. 
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Displacement of 
member i - j 

>
<
 

  

  

    
Fig. 3.7. General Deformation of Member. 

After deformation joint i moves to a new position, i’, this displacement having 

components u,,v; in the local axis and X;, Y; in the global axis, as shown in fig 3.8. 

a 

4 

  

      ¢ 4 
Fig. 3.8. Displacement Components. 

97



By a standard transformation of axis, u;, v; can be expressed in terms of X; and Y; thus; 

u; = X; cos a + Y; cos B 

v; = - X; cos B + Y; cos @ 

or, in terms of directional cosine notation; 

u; =X, 1+ ¥;m, 

v,=% 1+ ¥,m, 

The rotation 0. is invariant under the transformation. The similar transformation at joint j 

is of exactly the same form as that at i. Hence the displacement transformation for 

member (i - j) can be written as; 

aN 1 

eS ll = 3 SS
 

- 
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or, on writing the local displacements in the order used in the development of the 

stiffness matrices; 

            
Q, Ge al 0 I aod i, (3.49) 

y, D0 1. a Oe 

\2 Oc 560 O60 Oe \ 9 
J J i Coan J 

ie {A} = [A]{X} 

where [A] is the displacement transformation matrix and {X} is the global displacement 

vector. 

3.4. Formulation of the Global Stiffness Matrix. 

Just as the joint displacements must be expressed in terms of displacement components 

in a global set of axes so that compatibility may be attained, it is necessary to transform 

similarly the nodal forces into global components to facilitate joint equilibrium 

requirements. 
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Consider again a member ( i - j ) subjected to nodal forces in both the local and global 

system as shown in fig 3.9. 

  

  

Y Mop y M 

ja Fy 

\ t 
M F 

M, Y2 
a |! a 

xT 

ng ns f > xX > xX 
Fy; 

Local System lobal tem 

Fig 3.9. Forces in Local and Global 
Coordinate System. 

Because the force and displacement systems are formally identical, the transformation of 

the force components in the local system to those in the global system must be of the 

form; 

OPE oe Oa ee eo aes Bates oe (3.50) 

where [A] is the displacement transformation matrix and {P} and {L} are the vectors of 

the nodal force components in the local and global system respectively. On writing these 

vectors in full, equation (3.50) becomes; 
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The relationship between the nodal force and displacement components in the global 

coordinate system can now be constructed to give the global stiffness matrix. 

From the relationship 

{P} =[ K ]{A} 

which relates the nodal forces and the displacements in the local system, using equation 

(3.49) and (3.50) one may write 

{L} =[A}'(P} =[AT'LK]{A) 

=[AJ'[ K][A]{X} seu caved Naas desis (3,51) 
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Now it is easily shown that; 

[A}'=[A]" 

and hence equation (3.51) may be expressed as; 

(L}=([AJT KIA I{X} 

or 

LSS 1 oe ere a (3.52) 

where [ S ] is the global stiffness matrix relating the force and displacement components 

in the global coordinate system. 
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Chapter 4. 

Construction of Stiffness Matrices 

and Methods of Solution. 
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This chapter will discuss in detail, the sub-routines employed in the computer programs 

to construct the stiffness matrices and to solve the resulting equations. Firstly the 

routines for setting up the overall stiffness matrix will be described and secondly an 

insight into the solution techniques employed will be presented. 

4.1. Construction of the Global Equations for the Structure. 

4.1.1.Linear Element. 

It is convenient to begin a discussion of the construction of the overall equations of the 

system by illustrating such construction with reference to the prismatic element 

undergoing linear behaviour, the local stiffness matrix of which is given in equation 

Gilt. 

On performing the triple multiplication [AT][K][A], equation (3.52), and 

systemmatically reordering the elements of the vectors, the global stiffness matrix [S] is 

obtained. This matrix relating the nodal external forces on a member in the global system 

to their corresponding displacements is, for the member shown in fig 4.1. 

104



  

Fig 4.1. Diagram mete Nodal ete a 
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in which the elements are; 

a-PAr 12EI 2 
£2 > 2 

oe a I2ET 2 
Le? a 

EA 12EI 
Seean F ldo + —z- Mgn,y 

L 

gece e= El ny, 
i iE 

p= 4EL _2El 
mas” 5 a 

It can be noted that the global stiffness matrix [S] is symmetrical about the leading 

diagonal and hence only the lower triangle needs to be considered. This symmetry is an 

extremely useful property as it enables storage to be reduced and allows for relatively 

simple solution routines. 

The equations presented in expression (4.1) can be more generally and compactly 

expressed in terms of their nodal i and j components for every member of the frame as; 
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where the sub-matrices Si: Si jo Sie Si S.. are the contributions of each end of the member 

to the overall stiffness matrix of the structure.The location of these sub-matrices for 

each element in the overall stiffness matrix of the structure is governed by the values of 

the subscripts i and j respectively. 

To clarify this construction procedure consider two elements a and b, with nodes ( i-j ) 

and ( j-k ) respectively, of a framework structure as shown in fig 4.2. 

  

; 

E L=< Ri Yj 

re E 
(Fy 

=< Fj 

Mi 
ah 6 

L,=4 0 
X Lo 

in which typical external nodal forces are applied at joints i, j, k respectively. 

On construction of the overall structural stiffness matrix, it is seen that the locations of 

the various components of the two members in the matrix will be as shown in fig 4.3 in 
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which the subscripts a and b refer to the members a and b respectively. 
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Fig 4.3. Construction of Overall Stiffness Matrix 

Continued similar systematic superposition of the stiffness contributions for every other 

member of the frame results in the formation of the complete set of global equations, 

which can be expressed briefly as 

Ee) =f 5, et Bets sree os cues (4.2) 

where the suffix T implies that the matrices apply to the complete structure. 

Further details of this construction procedure may be found in the various standard text 

on matrix analysis (5,49,58) 
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4.1.2. Non-linear Element. 

Of the four non-linear elements presented, three, namely those described in section 

(3.1.1), (3.1.2) and (3.2.2.3), contain stiffness matrices that are symmetrical about the 

leading diagonal. Hence the construction of the equations pertaining to those elements 

follows the same procedure as that described in section (4.1.1) above. 

The stiffness matrix for the non-linear element obtained from the derived exact function 

and including interactions between the flexural and axial effects is, however 

non-symmetrical. Since every other element produces symmetry in the stiffness matrix, 

it is convenient to rearrange the equations of this fourth non-linear element so that it too 

exhibits symmetry, thus allowing the same solution routine to be employed for matrices 

constructed from any element form. 

The symmetry of this derived ‘interactive’ element can be carried out in the following 

manner. Consideration of the local element given in equation (3.22) shows that the 

stiffness matrix is composed of two portions, a symmetrical component comprising 

independent flexural and axial matrices and a non-symmetrical 'coupling' component. 

Transformation into global coordinates is achieved by firstly rewriting the local nodal 

displacements, occuring within the unsymmetrical component of the matrix, in terms of 

the global nodal displacements and then performing the triple multiplication [A]"[K][A]. 

The resulting global stiffness matrix can now itself be separated into symmetrical and 

non-symmetrical components producing the global equations:- 
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Ce | [zt -zn2 -2N3 -2N7 -zN10 -zn8| Xx, 
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de, f Yu 0476 0440 0 0-0 8, 
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where 

2 

A =2a0(1-cosaL)-a Lsin aL a = Vv (P/EI) 

and 

ZN1 = Al 11, ZN2 = Al lm, 

ZN3 = A2 1, ZN4 = A2 m, 

ZN5 = Al mJ, ZN6 = Al mm, 

ZN7 = A4 m, ZNB8 = A4 1, 

ZN9 = A311, ZN10 = A3 1m, 

ZN11 = A3 mJ, ZN12 = A3 mm, 

where it should be noted that the coefficients Al, A2, A3, A4 are here described in terms 

of displacements in the local coordinate system. 

Hence by transferring the un-symmetrical components to the left hand side, symmetry of 

the stiffness matrix is restored, the equations taking the form; 

Foy [ai 22-23-27 -zN10 -zN8 | x, Ta s , 

Ry “INS -IN6 -7N4 -ZN11 -ZN12 -2N7] | y, cb S Y Y, 

A te ea MOH ale (4.3) 
Ro | at 2N2 IN} IND ZN10 ZNB X) “|-a-c-d a X 

R, ZNS ZN6 ZN4 ZN11 ZNI2 ZN7 | | y, c-b-e c b Y, 

Bie te) 0 a) 8, eect eek] 8,         
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This process obviously requires a modification of the left hand vector which will be 

dependent on the nodal displacements. 

It can be noted that the symmetrical portion of this matrix is the complete stiffness matrix 

obtained for the non-linear element, which was formulated from derived functions, but 

in which the interactions between the flexural and axial matrices were excluded (sections 

3.1:1 and 3.1.2 ): 

4,2.Imposition of Known Displacements. 

The solution of a structural problem cannot proceed until sufficient boundary conditions 

have been imposed to define a datum from which the displacements can be measured. 

These boundary conditions consist of prescribed displacements at selected nodes, and 

although the values of these displacements are usually zero, corresponding to complete 

restraint, non-zero values can also be prescribed, these corresponding to perhaps known 

settlements. 

The manner in which a prescribed zero displacement can be applied is by simply 

replacing the elements of the row and column corresponding to the displacement by 

zeros, leaving however the leading diagonal term unchanged. The corresponding load 

term is also made equal to zero. This process is illustrated in fig 4.4 where the 

displacements 8 and x, are prescribed as zero, and where it can be noted that symmetry 

of the stiffness matrix is still preserved. 
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Fig 4.4. Method of Imposing Zero Displacements. 
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This technique can only be used to impose zero displacements and hence if non-zero 

values are prescribed a separate procedure must be followed. While precise insertion of 

prescribed values can be implemented, an approximate but very satisfactory method 

consists of multiplying the leading diagonal corresponding to the prescribed 

displacement by a large number, eg 102°. Similarly it is necessary to replace the 

corresponding load by the product of the modified leading diagonal and the prescribed 

displacement. Thus considering an original equation; 

in which the o values represent the displacement, and 9, = y is prescribed, the 
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modification described above will alter the equation to; 

K;; * 100 y = Kj;, + Kyid) + + Ky * 107° Ot + Kio 

Since all the terms on the right hand side except K,, * 10”° o, are small, it can be seen 

that , must be approximatly equal to y. Again the preservation of symmetry in the 

stiffness matrix may be noted. 

4.3. Solution of Linear Equations. 

Once the structural equations have been constructed and the boundary conditions 

imposed, the displacement vector can be obtained directly via inversion of the stiffness 

matrix as long as the elements of the matrix are constants. Thus from equation (4.2); 

{Ly} = [Sp]{Xp} 

the vector {X,-} is obtained from; 

{Xp} = [Sp] {Lp} 
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A number of techniques both direct and iterative are available for performing this 

inversion (5:59,5 1,52) the most popular of these being perhaps the direct methods of 

Gaussian elimination 9,51) and Cholesky decomposition (52) Gaussian elimination 

may be applied to both symmetrical and non-symmetrical matrices, while the Cholesky 

procedure only applies to matrices of symmetrical form. With matrices which are 

symmetrical and positive definite the Cholesky method is more economical in storage 

than the Gauss procedure and thus, since only such matrices are encountered in the 

thesis, this method of solution was chosen. 

Once the nodal displacements have been determined, the nodal forces in each member 

can be found by back substitution of the deflections into the member equations. 

4.3.1. Cholesky Decomposition Method. 

This method consists of rewriting the equations set 

{Ly} an [Sp] {Xp} 

into the form 

{Lp} = (U}[U]{X7} 

where [U] is an upper triangular matrix and [U]", its transpose, is a lower triangular 

matrix. 
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Thus letting 

[U]{X,} ={ Y} csevececeaeeecs (4.4) 

the vector {Y} can be found from 

{Ly} = [UI"{Y} 

and hence {X,-} obtained from equation (4.4) that is 

{Xp} =[UP{Y} 

The inverse of the matrix [U] or [U]! is obtained via a simple systematic procedure due 

to the triangular characteristics of [U]. The algebraic details of the procedure are well 

documented (52), providing a comprehensive description. 

4.4. Solution of Non-linear Equations. 

In the treatment of geometrical non-linearity the coefficients of the stiffness matrix have 

been shown to depend on the axial force in the element and also on the nodal 

displacements themselves. Hence in order to obtain solutions to non-linear problems, 

clearly iterative techniques must be employed. The nature of these procedures will 

depend on the form of element used to model the non-linear behaviour and thus it is 

necessary to describe the solution techniques for each element separately. 
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4.4.1. Elements obtained from Equilibrium and Work Processes in which Axial and 

Flexural Effects are Independent ( Section 3.1.1, 3.1.2 and 3.2.1 ) 

The solution of frames using these elements entails performing an initial linear analysis 

using the element described in section 2.1 through which the axial forces in each element 

are obtained. These axial forces are then used to obtain the non-linear flexural stiffness 

matrices described in sections (3.1.1), (3.1.2) and (3.2.1) which are functions of the 

axial force in the member. Thus a second analysis may be performed which includes the 

effects of the axial forces. It would appear that further iterations are illogical since the 

axial forces are considered to be independent of the lateral.displacements as explained in 

section (3.1.4). Hence the solution process using these elements should be considered 

complete after one iteration. 

4.4.2. Element obtained from Equilibrium in which Axial and Flexural Effects are 

Coupled ( Section 3.1.5 and 3.1.6 ). 

Analysis using this element is expected to produce the most accurate results. In this case 

the non-linear equations contain both the axial force in the member and the nodal flexural 

displacements. A first approximation to these forces and displacements can again be 

found by performing a linear analysis. If these results are substituted into the non-linear 

equations, a process which involves modification of the load vector ( equation 4.3 ), and 

a second analysis carried out, a closer approximation will be obtained. Such iteration can 

then be continued until the difference between two successive sets of displacements is 

acceptably small. Hence solution using this element should be considered one of 

continued iterations. 
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4.4.3. Element Formulated Through a Tangential Stiffness Matrix (Section 3.2.2 ). 

As shown in equation (3.38a), at equilibrium the relationship between external and 

internal forces is given by 

L 

(P) =| [B) {0} a 

which may be expressed as 

y(S) = [BT (o} a iP} =.0 

since the internal force term is a function of the nodal displacements {5}. 

If an approximate displacement vector {6} is obtained, then v6.) will not be equal to 

zero but may be related to w(5_, ,) = 0 by the equation 

wb,n)=8)+{%) 98,0 d5 |, 

WS nui) = Wb) + Kr, {48,} =0 

where 

64175, + 45, Meio anes tie (4.5) 

and [K,] is the tangential stiffness matrix. 
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Thus 

As, =. [Ky]! w6,) ees eee sicened (4 f 6) 

The solution process thus becomes (45). 

a) Perform a linear analysis to obtain {5)}. 

b) Hence determine Wp). 

c) Calculate [K7]p using {55} and the axial force in the member. 

d) Calculate Ad, from equation (4.6). 

e) Determine 5, as 5, + Ab, from equation (4.5) 

Repeat steps b) to e), using the next 6 for each cycle, until AS_ becomes acceptabl 
n n y 

small. 

This process is thus again one of continual iteration. It can be noted that in essence the 

procedure is that of the Newton-Raphson method (50). The formulation of the 
L T 

internal forces , ie { [B] {o} dx, is given in Appendix 2 
0 
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4.5. Flow Charts for Programs. 

The descriptions of the solution processes given in the last section may be conveniently 

summarised through the medium of flow charts. Two flow charts are presented, these 

being for the two methods involving continual iterations. The corresponding flow charts 

for the simpler one-step iteration procedure can easily be deduced from those given.The 

programs were written in FORTRAN 3,54) and is listed in Appendix 3. 

4.5.1.Exact Solution using Coupling Factors. 
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4.5.2. Tangential Stiffness Matrix. 
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Chapter 5. 

Treatment of Non-Nodal and 

Distributed Loading. 
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In the developments presented so far the external loading has been considered to consist 

of point loads applied at the nodes of the structure. In many practical instances the 

external loading may be of non-nodal or distributed form and hence, in order to be able 

to apply the processes so far developed, such loadings must be presented in the form of 

equivalent nodal loads. 

The procedure for obtaining this equivalent loading will firstly be developed for the case 

of a non-nodal point load and the result obtained then used to determine the equivalent 

nodal forces due to distributed loading. 

5.1. Non-nodal Point Load. 

To find the nodal forces equivalent to a unit lateral point load, consider such a load 

applied to a beam in a structure a distance x from node 1 as shown in fig 5.1(a). The 

effect of this load may be considered equivalent to the sum of two components as shown 

in fig 5.1 (») (c) where it is seen that the nodal forces producing the same nodal 

displacements as the unit load are numerically equal to the fixed end forces produced by 

the load. 
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(c) 

Fig 5.1. Decomposition of Effect of Non-nodal 
Point Load. 

Considering the application of virtual displacements and equating the virtual work done 

by the external forces gives 

1.5v, = 1.6v, + P,du, + P,du, + S,dv, + M, 690, + S,6v, + M,60, 
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Hence 

dv, - bv, =6v, =[ P, P, S; M,; S, M, ] 6u, 

du, 

dv, 

58, 

dv, 

88, 

ie 8v, = {P}™{5A} 

or 

Sv, = {5A}"{P} 

where it should be noted that v, is the displacement profile produced by the nodal 

loadings. 

Now using a general form of lateral displacement function 

Vee 1 Fo), 00.40 0 1) far) 

    
ie v, = (N]{a)} = [NIIC}*(4) 
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it is seen that 

or 

by 

Application of this result to the lateral displacement function 

Bat 2 Re rr hI He 2 Megs g wa V, = a, + ax + a3x* + a4x (5.4) 

yields the values of the equivalent nodal forces {P} as 

      

ge) aa ee) 

pe 

M, x-2 x*+1x3 

i L2 
(p} =< 4 . ese seccvosceces (5.5) 

S5 oe re 
iL 

M, pea 
J 3 ye Ue   
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while for the functions 

oe a tAk + Be SIX FO, COS OR ge Settee ieseri (5.6) 

and 

Vo~ 8, + a.k-+ 8, sinh OX + 4, COSR OX tte tte Os 

the equivalent nodal forces are given by 

S; Cy, + Cx + C, sin ax + C,, cos ax 

M, Cyp + Cypx + Co sin ax + Cy cos Ox 
{P} = eg ie pn Sc ee i meee VS cme emo om Ras sities Ss (5.8) 

S, C13 + Cy3x + Cy, sin ax + Cy, cos Ox 

M, Cy4 t+ Cyyx + Cyy sin ax + Cy, cos ox 

and 

S, C,, +C,,x + C,, sinh ax + Cy, cosh ax 

M, Cy + Cyx + Cy, sinh ax + Cy, cosh Ox 
{P} ‘ad EAE ee ei ead: aay cr oe aoa sg oe (5.9) 

S, Cy3 + Cx4x + C3, sinh ax + C,, cosh ax 

M, Cy4 + Cyyx + Cay sinh ax + C,, cosh ax 

respectively. 
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The equivalent nodal forces due to a unit axial point load applied within the length of the 

beam can be formed by an analogous procedure using the appropriate axial displacement 

function. 

5.2. Distributed Loading. 

The equivalent nodal forces due to distributed loading can be found from the previous 

result by considering the distributed loading p per unit run to be equivalent to a 

succession of point loads each of magnitude p.dx. 

Thus the equivalent nodal forces due to a uniformly distributed lateral load covering the 

whole span, L, can be written, from equation (5.3) as; 

a iT 

(P) =p [ {otcr’ ee (5.10) 

Applying this result to the cubic displacement function given by equation (5.4) gives the 

result; 
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/ 

fs, ) 1-3 x*4+2 3) (i . 

L2 L3 2 

M, . x-2 x*+1x° pL? 

L L? 12 
{P} = =p Z ax Ne a tsiees cesses (5 11) 

3 a - 2 pL 
Borie. TF 2 

M, -1x?+1x -pL? 
A be 12 

ke 3 MS 
      

while for the functions given in equation (5.6) and (5,7) the equivalent nodal forces are; 

(SV oC at IFC), (cos ety + sino C2 
4 a a 

Mj} |LC,.+L?C,- C,(cosaL-1) +sinoL C, 

2 a a 

= P\ . (5.12) 
LC,,+L?C,,- C,,(cosal-1) +sinal C, 

2 Oo a 

S, 

MJ j{LC,,+L?C,,- C,,(cosoL-1) +sinoL Cy, 

Mihi S 2 0. Gow         
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and 

respectively. 

    

2 a a 

2. a a 

LC,3+L?C,, - C,,(coshaL-1) +sinhaL C,, 

2 Oo a   
2 a a 

/ 
LC, +L2C,, - Cy,(cosh aL - 1) + sinhoL C,, ) 

LC, +L2C,,- Cy(coshaL-1) +sinh ol C,, 

”-++(5,13) 

  LCyy +L? Cy - C,,(cosh aL - 1) + sinh aL Cy, 
/ 

Again the equivalent nodal forces for a uniformly axially distributed load covering the 

span may be found similarly, as can those for other forms of uniform or non-uniform 

loadings. 
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5.3. Example of the Effect of Axial load_on Fixed End Moments. 

Consider the fixed ended beam below with a variable axial force and a moving lateral 

non-nodal point load. 

” W 

pA) { 

x 

V/
/7
 

my 

Li
e 

  

Letting 

where 

  ( Euler's buckling load for a fixed ended beam ) 

then plotting (M,/ WL ) against x gives the following graph. 
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5.4. Modification to the Program. 

As the non-nodal forces can be expressed in equivalent nodal form, all that is required in 

the program is an additional sub-routine in which these equivalent nodal forces are 

transformed from local coordinates to global coordinates, and added on to the existing 

load vector of the structure. 
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PART B. 

Gometrically Non-Linear Analysis of 

Non-Prismatic Sections. 
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Chapter 6. 

Matrix Formulation. 
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The increasing performance required of modern frameworks, especially with regard to 

increase in span, has produced the impetus to seek greater efficiency in the use of shape 

and material in the design of structures. 

The use of prismatic members automatically means that if a variation of bending moment 

exists in a member, then a proportion of the length of the element may be substantially 

understressed and hence not used efficiently. In order to attain greater efficiency, 

therefore, such elements could be tapered so that a more uniform distribution of stress 

occurs along the length of the member. This method of producing greater material 

efficiency is now becoming quite popular although manufacturing costs are higher when 

compared with those for prismatic sections. 

In this chapter, therefore, attention is concentrated on the development of stiffness 

matrices for both linear and non-linear behaviour as applied to tapered sections. Firstly 

the exact linear stiffness matrix for a generally non-prismatic member obtained from 

derived displacement functions is presented, and then developed for specific 

cross-sectional shapes, and secondly the intractability of applying derived functions to 

the solution of non-linear tapered structures is demonstrated. 

The development of approximate stiffness matrices based on work methods is then 

presented for the non-linear behaviour of non-prismatic sections, similar to those 

described in chapter 3 for prismatic sections. 
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6.1. Formation of the Exact Stiffness Matrix for Geometrically Linear Behaviour of a 

Prismatic Beam. 

As presented previously for the linear prismatic beam ( section 2.2 ), the complete 

stiffness matrix relating nodal forces to nodal displacements is composed of independent 

axial and flexural portions, and these components will be developed separately. 

6.1.1. Development of the Flexural Stiffness Matrix. 

Consider a general non-prismatic section member depicted in Fig 6.1 with the nodal 

forces shown. 

—
 
><

 

  

    

    
Fis. 6.1. Tapered Beam Showing Positive 

“Values of Nodal forces, 

138



The stress resultants on an element of length dx of this beam is shown in Fig 6.2 below. 

M+ 6M 

  

  

< 5x 

Dee 
>       

Fig 6.2. Stress Resultants on Element. 

6.1.1.1. Formulation of Lateral Deflection Function. 

As for the prismatic beam, rotational equilibrium of the element gives; 

Intergrating (6.2) with respect to x gives; 

M=b, +b,x 

where b, and b, are the constants of integration. 
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From the simple theory of bending 

2 

  

d M=EI(x)—~ o.. peee (6.4) 
dx 

where I, the second moment of area of the section, is a function of x. 

Thus substituting (6.3) into (6.4) and rearanging gives; 

A b b dv * M 1 2x 
dx2 E I(x) ae I(x) 75 I(x) 

or, assuming E to be constant; 

2 
dv a3 dai 
ie Se fe wat RI ge al ee ee (6.5) 

dx? I(x re I(x) 

by bo 
where a3= a and a4g= E 

Further integration gives; 

OY OS dala by odx ag # ee (6.6) dx = or 3 na ) 4 I(x) Ae eccccecccccces . 

and 

v=ajt+ax ta; friseorn fsa ae (6.7) 

thus giving the exact description of the beam displacement within the confines of the 

simple theory of bending. 
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6.1.1.2. Calculation of Nodal Displacements from the Arbitrary Constants {a, }. 

As the procedure is similar to that described in chapter 2, only the results will be 

presented. Substituting the nodal conditions into equations (6.6) and (6.7), the following 

matrix relationship ensues; 

  

in which; 

      

ay 

a2 1 Nee Saas ee (6.8) 

ay 

ay 

ea [lel 

to [é5)* 
be thasetnscad$un (6.9) 
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Inversion of (6.8) produces; 

ay CH Cio C3 Cig] [M1 

nm GaGa Se Koel | 8 4 
Waced cesses see ( 6-1 0) 

Be i ee ee ne 

      Ay} 1Cy Cyn Caz Cag] {8 

(a,} = (C,]1{4,) 

where the elements of fe are given in appendix 1 and reference 40. 

6.1.1.3. Relationship Between Stress Resultants and Nodal Displacements. 

From equation (6.5) 

2 

M=EI(@x) “= [ag+ayx] oe (6.11) 
dx j 

and from equation (6.1) it follows that 

d°v 
9 = 38 la Roache eee (6.12) 

dx 

or 

S=-Ea, She nehostscassee (6.13) 
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Combining (6.11) and (6.13) gives 

Nn oS
 Oo oS
 

' —
 

2
 

ats 

M O520 19 =p as 
Pe eeeccccesccens (6.14) 

a4 

But {a,} =[C,]7{A,} and hence 

s = Og Ral * Coen “Cac Cay - 
ius tha eaters ed striae ede 

M Coy +X Cay 1 Cap + x Cyg 1 Cag +X Cag t Coy +x Cay 8, 
; Ce aN ede Na (6.15) 

2 

8, 

ie {P,} =[H]{4,) 

6.1.1.4. Formulation of Stiffness Matrix | K,,1. 

Since equilibrium is satisfied at all sections of the beam, the values of the nodal stress 

resultants must be numerically equal to the nodal external forces as described in section 

(2.1.2). Thus considering equilibrium of the external and internal nodal forces and noting 

that they are of the same sign at node 2 and of opposite sign at node 1 the relationship 

between the external nodal forces and the displacements is given by; 
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FE 

            

ee | | Ee 
Cy \ Cp" "| ake Cy, vy 

Saye ire: Sead | Cy ergs 8; 
ie NS ~-~—-K >~(6.16) 

| | 1 
“Cay | Cup Cy | Cag "3 
pe er Pen. peti 

patil Caps oie Get EBay COC % 

    

S; Ky, Vy 

M, ES S 8, 
os mae M 

S, Ks, Key Kes V2 

M, Key Ray OR Ke iy, 

ie (P,} = [K,]{A,} 

After some manipulation it can be shown that 

E L 

Ky=-Kg=Kg=Ca=-Ca=-Co=5 f x dx 

L 
Kg=-Cn=-Cy=-Co=5 X Ox 

0 

L 

Ky=-Co=p [ xX dx 
0 

Ks4= Ky, 

E L 

Kg=-Kg=Cu=5 f (L-x) X dx 

E L 

Ky=Cy= x (L-x) X dx DJ 
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L 

Keg=CutlCu= 5 f (L-x)?X dx 
0 

where 

ae 
I(x) 

D= fxaf exac- (J fixxa) 

v. 

and 

[K,,] is the flexural stiffness matrix and is symmetrical about the leading diagonal. 

6.1.2. Construction of the Axial Stiffness Matrix [K,] for a Non-prismatic Bar. 

The axial stiffness matrix can be formed in a similar manner to that for the bending 

stiffness matrix. Considering the equilibrium of a length 5x of the beam as shown in Fig 

6.3. 

P+ 4y > P yp 

ae eee 
Nodal External 

y ee Forces 

is 
Fig 6.3. Diagram Showing Stress Resultants 

and Nodal Forces, 

it is seen that; 

dP 
a CE ee Wi oe oe Si Ue ee a (6.17) 
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Ignoring any moment effects from the axial force, and noting that the cross-sectional area 

is a function of x, Hooke's Law gives; 

r = BA(x) A (6.18) 

where u is the axial displacement. 

Hence differentiating (6.18) with respect to x and substituting in (6.17) gives; 

  

2 dP _ du, (dA(x)\ du | _ gat| aotte( : )a 

  

dx 

or 
2 

Ata) SH + (BO) ce — 0 ee (6.19) 2 dx /dx 
dx 

Integration of (6.19) with respect to x gives the axial displacement function as; 

1 
u=a5t+ vf ane «teeth 5 0 (6.20) 

Hence following steps (6.1.1.2) to (6.1.1.4) and referring to the sign convention shown 

in Fig 6.3 the following result is given:- 

Py er R El py my eee ia Ke. (6.21) 

ie (P,} =[K,](A,} 
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where 

ge 

= | xy 

Again the symmetry of the matrix should be noted. 

6.1.3. Combined Stiffness Matrix for Flexural and Axial Behaviour. 

Combination of the flexural and axial equations yields the complete stiffness matrix 

relating the six nodal forces to the corresponding displacements, thus:- 

            

P Ky uy 

P, Ky, Ky Wu 
co ee 

$i, 1 307 x. 5 vy; 
< ya | Ty x . deseees (6.23) 

M, OF he Kaos 0, 
I 

i 

S; 0 0, Ks; Ks, Kes v3 
| 

| 
™ 0 0: Key Key Kes Keg 

or {P} =[K]{A} 

The above relationships represent linear behaviour of a general non-prismatic section, the 

individual elements being evaluated from I(x) and A(x) of the beam under consideration. 

It should also be noted that the stiffness matrix is symmetrical about the leading diagonal 

and that the flexural and axial sub-matrices are mutually independent of each other. 
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A close study of the above stiffness matrix shows that the elements can be calculated 

from four simple integral evaluations. From sections 6.1.1.4 and 6.2 and letting 

ey a 
| a5 Ao [ras a-1 

oy = og _ 
[risart im * I, 

where A(x) and I(x) represent the variation of the cross-sectional area and second 

moment of area along the section respectively,the combined stiffness matrix may be 

written as; 

E 
Mutha?" A) 

B= 

Ky =-Kg=Kg= 5 (Id 

E - 

Kg= -Ky= pit) 

Ke=-Ke=5[L(Ij-1] 

Ka=5[L(l)-1 

Ke= =| L*(I) - 20 (1,)+ I 
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where E = Young's Modulus and 

ee 
D=(IoI-(I,) 

6.1.4. Formulation of 'Exact' Flexural Stiffness Matri for R ngular and 

I-sections. 

The general results derived in the previous sections will now be applied to the specific 

cases of tapering rectangular and I-section beams. 

6.1.4.1. Rectangular Section. 

Consider a rectangular beam with constant breadth b and varying depth as shown in Fig 

6.4; 

>
 <
 

  

  

  

      
Fig 6.4. Tapered Beam Showing a General Depth 

at Distance x.   
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From the geometry of the tapered section, at a distance x from the origin; 

td 
nat rr )x 

Bites ale ge eRe ie ee (6.24) 

y=(27*) 

Now it is possible to express the second moment of area and the cross-sectional area in 

  

where 

  

terms of the depth at distance x as 

b 3 

I= 75( t+ yx) 

A,= b(t, +x) 

Hence using the two expressions, the four integrals presented in section (6.1.3) can be 

evaluated, giving 

  

  

ne b(ty- t) 

-  6L(t2- t}) 

eae btit5 

ae 
I,= 2 

bt, t3 

t 
' 12 nH) (3t2- t1) ; : 

b(ty- ty) (12° ty) 215 
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which can be substituted into the standard results given in the previous section to obtain 

the stiffness matrix coefficients. 

6.1.4.2. I-section. 

Consider a beam with constant breadth b and the section shown below in Fig 6.5; 

aaa 
hy—>}| }e- 

  

yt: ox 

    

  

Fig 6.5. Showing typical I-section. 

From the figure above it can be seen that the second moment of area can be expressed as; 

I(x) = | btg-(b - hy} t,- 2hy) 

where 

t, =t, + Ox 

Rearranging the above expression gives 

  

3 

/- b-hy\3 Ie =5 ell 5 | etn 
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b- ba 

Letting E=| 

Ix) =[ t- 8 (t- 2nd] 

and expanding and evaluating the general integrals (59) gives; 

  

ve kat 2 L t= | aye 7,2 [a] | 28311 +K)m-(1- Pp 

  

‘ 2 
we x - 2: ib t,L <s 

i= | aso bKE ae [2v3u-p]-[2 lt 
0 

fa ; Lo a 2 
b= «= - | 3t+ 2V3 K |1-K)p-(1+K+K | 

Oe oh aha eae ee 

4{ ub HL ;, 
Seige oP tow ty gece 

    

  

    

where 

2 
atz + bty+ Cc 

T= log Spe ees 

at; + bt; +c 

2 
at) + bty+¢ [ (1 - K) ty + Kk] 

at; + bt; +c [( 1 - K) t+ Kk} 

  p = log 

    

ae 2at> +b -{ 2at;+b 

Peet aeKK 13 Kk 
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and 

a=1+K+K?2 b=-Kk(1+2K) c = K2k? 

k = total flange depth 

7s 
K= 2) where g = b - total web thickness 

The axial stiffness matrix may be calculated similarly by noting that the cross sectional 

area may be written as; 

A, = 2bh¢+ hy ty + Ox - 2h] 

which upon rearranging gives 

A, =0,+0,x cine Steet eee (6.26) 

where 

>, = 2bh + hyfy- 2hh, 

$= hyo 
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Hence performing integration as in previous section gives; 

It can be noted that this formulation applies also to the box section where h,, represents 

the combined thickness of the webs. 

6.1.5. Formulation of Stiffness Matrix for a General Shape of Section. 

The analysis given in (6.1.4) will now be developed to enable the stiffness matrix for 

any idealised section to be obtained. The construction of the values of Ap, Ip, I,, and I, 

for shapes other than those of the simplest geometrical form can become extremely 

tedious. Even the I-section as seen above, one of the most common of structural forms, 

exhibits a high complexity of analysis (41), 

Because of this it is considered practical to use an approximation to the true form by 

assuming that the variation of the section properties (39) may be expressed as 

ee ae) a a ee (6.25a) 

aS re ee (6.25b) 
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where A,, I, are the cross-sectional and second moment of area at node 1 and; 

to-t pled 

where t,, t, are the section depths at nodes 1 and 2 respectively, assuming linear 

variation of depth. 

The form of equation (6.25) is thus seen to be the same as that for the rectangular 

section.The exponents m and n can be found from the conditions at node 2 where x 

equals L.Thus 

le 

Thus 

ee ("7 
m= —-— and 

log (‘%) Ps log (‘%) 

155



Using equations (6.25) and performing the necessary integrations gives the values of 

Ao» h, L, L, as; 

sortie] 
i 

In= L 2 i 
0 Iir( Yn) ty 

  

2 2n Ln 
I L 1 Ne a & i: 1 

tee Lee aun) tt, 1-n)\t, 2-n)(1-n 
I,r 

3 3-n 2-n dion 

onl) eal) l-cal®™ 2 oe 3-n)j] \t, 2-n){\t; 1-n)]\t 

where 

r=0/L 

It can be observed that when m equals 1 and n equals 1, 2 or 3 this formulation is invalid 

due to the infinite nature of some of the terms. These values of exponents correspond to 

section properties which result in simpler formulations, eg, for m equals 1, n equals 3 

the section is one of tapering rectangular form as discussed previously. 

It should be noted that all the stiffness matrices developed so far in this chapter apertain 

to linear behaviour, ie where any axial effects on the flexural behaviour are ignored. 
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6.2. Formulation of Exact Deflection Function for Non-linear Behaviour. 

As already shown in chapter 3, it is in principle possible to derive the exact deflection 

profiles for a beam from equilibrium considerations. In this section the exact flexural 

deflection profile for a geometrically non-linear, tapered rectangular section will be 

derived. 

6.2.1. Formation of Lateral Deflection Function. 

Consider a non-prismatic rectangular beam of constant breadth b and of depth varying 

linearly from t, to t, under an axial compressive force P at both ends. 

MENS 

—_— P——— Ou 

      

  

Fig 6.6. Non-prismatic Member Under Axial 

Loading, 
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Consider an element of length 5x in its deformed state under this compressive load; 

M+ 5M 

eer iF 
5x 

  

  . 
Fig 6.7, Diagram Showing the Element in its 

Deformed State in Compression. 

Rotational equilibrium gives; 

dM dv _ 
aot Pa 0 

ie 
dM dv 

SS ae eee eceeseeesence (O27) 

But S is constant throughout the element and thus; 

dS dM 
Sea 
dx dx2 dx? 

Substitution of equation (6.4) gives; 

  

4 cee 
d'v P2dv ae EI@ —=0 Ce ee eee (6.28) 
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where the second moment of area I(x) is now a function of x whereas in chapter 3 it was 

taken as constant. 

2 

Letting q = ge then; 

dx 

  

where from fig. 6.6, 

is xX 
t=t) e 

Hence substitution into (6.30) gives; 

Se ad 3 b wo=T3() “6 
Substituting this result into equation (6.29) produces; 

Q
 

o
r
 

Sees 
P 

2. Bl, 

| F
=¥)

 
Ww 

Ww 

& * 

or 

£4417 x?q=0 Oe (6.31) 
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where 

The solution of equation (6.31) can be written in terms of Bessel functions (55,56), 

thus; 

q = a3x”J, (2) +a4x” Y,@) 

where z = 2k x and J,(z) and Y,(z) are Bessel functions of order one and of the first 

and second kind respectively which may be written (55,56) as; 

Zz 1 fz) 1 z\" 1 z\° 
Ij @=5 1-3(3) + sar (5) -sar(3) Eee 

Y, (2) -2[ riod) uo 2-4] -2(2) ¢ 1+1 v1 | 

5 7 
Pore) (144414 %+%)- arar(3) bi +Ath+ltKheKrr)e... | 

y being Euler's constant ( 0.5772°- ) 
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Double integration of equation (6.31a) will yield the lateral deflection profile as; 

Wy ay Foe Fark) EK) 8s Seer teah outa (6.32) 

It is apparent that continuation of this process, although in principle able to produce a 

precise stiffness matrix, is practically not viable owing to the complexities involved and 

the approximations that would occur due to curtailment of the series. 

A more fruitful avenue to pursue is thus one based on work processes in which 

approximate but simpler deflection functions are used. The relevent procedures have 

already been described in chapter 3 with regard to prismatic beams, the results there 

being obtained via the linear prismatic deflection functions. It would appear logical, 

therefore, when applying the work methods to non-prismatic beams, to base the 

derivations on the linear non-prismatic functions. As for the prismatic sections, two 

stiffness matrices will be developed, the first assuming that the axial force is independent 

of the flexural deformations, and the second taking the effects of flexural deformations 

on the axial forces into account, a procedure that leads to the tangential stiffness matrix. 

  

As described in Chapter 3 the effect of geometrical non-linearity assuming that the axial 

forces do not depend on the flexural deformations can be studied by simply adding the 

initial stress matrix [K,] to the flexural stiffness matrix. 
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Using the flexural and axial deflection functions for a general non-prismatic beam, that 

iS; 

V=a,taxta3 Jf rdstooes J rise Riis Xion (6.7) 

1 
u=as5t vf nie So's celsletusiscaes (6.20) 

the flexural, axial, and initial stress matrices can be computed. 

The flexural and axial matrices have already been presented in sections (6.1.1) and 

(6.1.2). It thus only remains to determine the initial stress matrix. Two sections will be 

considered, firstly the rectangular section and secondly the general section in which the 

section properties are represented by power functions. 

6.3.1.Rectangular Section. 

The form of the initial stress matrix [K,] has already been given in chapter 3 as; 

aT IKJ= f Pe oie ike eee re (6.33) 
0 

where [G] is found from the lateral deflection function. 
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Differentiation of the deflection function for v (equation 6.7) gives the slope 8 as 

dv 1 x 
a= Genres { ghyanon fis 

which can be written more compactly as 

@=[0 1 f(x) g(x) ]{a,s 

For a rectangular section 

I(x) =2 (4+ gx) 

7r ty 
where here o = a and hence 

1 -6 

1 

and 

    

eee 

soo f (hse 6 ty -- . 12 

bd (ti+ox) bo (t+ 0x) 

_ -6( t+ 26x ) 
ae 2 

bd (t+ ox ) 
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Multiplication of (6.35) by (Car (equation 6.10) produces 

G'= [6 GG, G,| v, 

    
ie [G]{A,} 

where the four elements of [G] are of the form 

Ga= Cont f(x) Cam + g(x) Om 

Thus an element of [K,] which may be written as 

L 

K,_=P f G,,G,dx 
0 

becomes after substitution of G,, and G, ; 

L 

Ke Pf { omen f(x) ( CoCs'+ C2Com ) a Ce 

0 

8%) ( Ca Can + CaCam ) + Fx) 80%) ( C3mCan + CapC am ) 

+ £00)" CanCin > dX a (6.38) 
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Hence [K,] can be incorporated using a simple routine and the non-linear stiffness 

matrix [K] formulated to produce the matrix equations 

emir 308 ite =O) =} 3 te eas ving yy aaa. (6.39) 

It should be noted that as before this matrix is symmetrical about the leading diagonal. 

Also as before [K,] and[Ko] are the matrices due to linear behaviour developed in section 

(6.1) above. 

6.3.2. General Section (Power Function). 

As shown in previous sections the second moment of area of any section may be 

conveniently expressed by the approximation; 

n 

I(x) =1,(1 + ox ) 

where n is dependent on the shape of the cross-section. Using this second moment of 

area in the derivation of [K,], the same result is obtained as equation (6.38) above except 

that f(x) and g(x) are given as; 

ln 

Fey = kl tee) 
1,0(1-n) 
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ya fitex)” Ctoe)” 
119(2-n) 1,9 1-n) 

g( 

The results are valid for all values of n except for n = 1,2 and 3 as discussed previously. 

6.4. Non-linear Stiffness Matrix with Coupled Flexural and Axial Components 

n iffness M 

As demonstrated for prismatic beams, a more accurate assessment of non-linear 

behaviour is attained by use of the expression for axial strain 

oar, Lavy 
dK OA ax 

where the second term is the component due to lateral deflections. This extra expression 

leads to further stiffness coefficients which will add on to the existing expressions 

shown in equation (6.39) above. 

6.4.1.Relationship Between Strains and Nodal Displacements. 

Again writing the lateral and axial displacement functions as; 

Veaytax tay J rag dsaeen fre haan (6.7) 
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and the values of the axial and flexural strains as; 

- = du, 1 fav)” 
a dx 2\dx 

dv 

and by following a similar procedure as before and formulating [C]"! the slope can again 

be written as 

& =f G, G, G3 G,]{A, =[G]{A,) 

where 

Gm = Cant f(x) Can + 8(%) Cam 

and the strain/displacement relationships as; 

    

} 
e, [deGe LduGs. “ihdy G, ekdvG, 1s Jacl 

2 dx 2 dx 2 dx 2 dx m A(x) mA(x 

= 8, 

e. Cy taC,, Gtx, Cat+xC, C+xC,, 0 0 

I(x) I(x) I(x) I(x) V> 

‘o,/ 
{e} =[ B(A) ]{A} 

Uy 

it } 
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where 

. Lin('% | 
m= —_——_ 

~ b(ta- ty) 

for a rectangular section. 

6.4.2. Relationship Between Stress Resultants and Strains. 

The relationship between the stresses and strains is given by the expression; 

{o} = [D]{e} 

where 

It can be noted that [D] is now a function of x and not constant as in chapter 3. 

6.4.3. Formulation of Tangential Stiffness Matrix. 

From section (3.2), and using the nomenclature described there, 

(K,] = [K,] + [K,]" + [K,] 
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where 

c= f pe ipa yex 

pKa f [Bf IB Je 

and 

  

0 0 

[Bo] cs 

Cy, +xCy, Cy +xCyy 
I(x) I(x) 

ldvG, ldvG, 
2 dx 2 dx 

[By] = 

0 0 

CyztxC,, Cy +xC, 0 0 

ldvG, 

I(x) 

2 dx 

0 
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I(x) 

ldvG, 

-1 1 
m A(x) m A(x) 

  

0 0



6.4.3.1. Evaluation of [K, ]. 

Substitution of the constituent matrices [Bo], [D] and [B,] and subsequent integration 

yields the matrices [K,] and [K,] as; 

    

fy 6 Al ee RS aa 

0.6 | Ad cc RO RAF AA 

iad. we an 36. eG 
[K,]= eee ee ee ee ee ene (6.40) 

0 OO 0 6 

> 0 D0 0 

G20 0 oO 0 

where 

Ay== J . (Cart g0)Can + £0Cq) ay 

. ( B(x)Coy + (Xx) Cup + FOB) | a3 

+ ( £(x)Co, + f(x) g(x)Cy, + f(x) Ca) a, > dx 
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and 

where 

    

0 

0.0 

O-- 0:8, S 

[K,]= MC ek eg ee. aaa (6.41) 
0 Be py ee 

i 

0 0 { Bs) Bs. B33 

| 

0 0 By By By By, 

L 
iz 

Boat | EA,9@ G,G,dx 
0 

which upon expansion yields; 

L 

Bim=E | { b u| ¥, + £(%) Y2+ g(x) ¥3+ fx) "Y¥4+ f(x) g(x) Y5+ s0)"¥6| ay” 

+2 f(x) bt, 

  

¥1 + fx) ¥2+ g(x) ¥3+ fx) "Y4+ f(x) g(x) Y5+ a(x)" y6| a2 a3 

+ 2 g(x) bt, 

  

1 + £0) Yo+ 8(X) ¥3 + fx) 74+ £0) g(x) 15+ s(s)"y6| ap Ay 

  

+ £(x)"b tel ¥, + £lx) ¥p+ BX) ¥3+ fx) -Y¥4+ £(%) B(x) ¥5+ g)°y6| ay. 

+ g(x) b i. 

  

¥, + f(x) ¥2+ g(x) ¥3+ f(x) "Y¥4+ f(x) g(x) 5+ sw)"4] a ba 
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where 

t,= ( t,+ o X ) 

11 = Com Con ¥2= (Com Cn+ Con Cm) ¥3= ( Cam Cant Con Cam) 

Y4= C3mCan tS ha ( C3m Cant Caq Cam } ¥6= Cam Can 

and f(x) and g(x) are given above. 

As can be seen the expression is very complex in nature and further integration is tedious 

and intractable. 
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h 1; 

Treatment of Non-Nodal and 

Distributed Loading. 
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To formulate the equivalent nodal loads for a non-prismatic section, a similar procedure 

is followed to that shown in Chapter 5. Again two common examples will be discussed, 

ie, the inter joint loading and the uniformly distributed load. 

Although already presented in Chapter 5, the two results obtained for the point loading 

and the UDL are rewritten below, ie; 

<P}=< [N] cr} ae (7.1) 

for a unit inter-joint point load and 

£P}=p i; < EN ]CCT} ax oe. (7.2) 

for a uniformly distributed load p per unit length. 

Also as only the linear flexural deflection profile is being used it is this which is 

employed in the determination of the equivalent nodal loadings, ie; 

1 
V,=a,;+ax+t ag foo fideo ban (7.3) 
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or 

Vv, = fr Me, T(x) 2(x)| ay 

= [N]{a,} = [N][C,}1{A} 

7.1. Point load. 

Evaluation of equation (7.1) produces; 

S; Ch, + C,)x + C3, R,(x) + Cy, R,(x) 

My} | Cyp + Cox + Cop Ry (x) + Cy Ro(x) 
{P} = ES Be rim Nas Ne ce a Mia ee ee ea tee (7.4) 

S2 Cy3 + Cogx + Cag Ry(X) + Caz Ro(X) 

M, Cy, = C,4x ~ C34 R(x) + Cy, R,(x) 

where R, (x)= |rayenen Ro (x) = | rises 

Y n 
and I(x) = a t, + Ox for rectangular section and 1,( 1 + ox ) for the general 

power series respectively, the values of $ taking on their respective values. 
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7.2. Uniformly Distributed Loading. 

Evaluation of equation (7.2) gives; 

    

(x Cy, + (x22) Coy + Cay Ry) + Cy Ry 

XCyo + (x?/ 2) Cop + Cay Ry (x) + Cy Ry (x) 

x Cyy + (x2 / 2) Cog + Cag Ry (x) + Cuz Ro) 

    x Cig + (x7 / 2) Coy + Cag Ry) + CyyRy 00) 

eee eee eeeseceee 

where ei fs and R > (x) [ffs and I(x) is the same as in 

section (7.1) above. 
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PART C. 

Results, Discussions 

and Conclusions. 
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Chapter 8. 

Experimental Verifications. 
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In this section the results obtained from the several stiffness matrices developed in 

previous chapters will be compared and the experimental work carried out to assess their 

veracity presented. Also, in the theoretical analyses, several examples will be given to 

show the versatility of the programs developed and their application to practice. 

However before this, a brief discussion on experimental methodology and the objectives 

of the experimental work will be presented. 

8.1. Description of Experimental Work. 

8.1.1. Experimental Objectives. 

In the literature survey, no detailed experimental work on the non-linear behaviour of 

frames was found, especially on those incorporating tapered elements. It was thus 

necessary to perform structural tests in order to assess the accuracy of the theoretical 

solutions obtained. 

There were two objectives to be considered in the experimental techniques employed; 

a). Measurement of relatively large non-linear deflections with a minimum 

application of loading. 

b). Measurement of surface strains for calculating the moments and axial forces 

induced in the framework. 
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After some consideration a frame was designed which would fit the above objectives and 

produce a significant amount of deformation without excessive loading and also a 

reasonable difference between linear and non-linear behaviour. For consistency three 

frames of prismatic and three frames of non-prismatic members were constructed and the 

dimensions are given below in fig. 8.1. 

  
      

Breadth of all 
sections is 50 mm 

560 

3mm Taper from 
300 section (3-6) mm 

es i rs — 

“If CLL / to SSE? 

pate 150 | 150 

(a) Prismatic (b) Non-prismatic 

Fig. 8.1. Diagram of the two Experimental 
Frames Considered 

The frames were constructed from (50x 3) and (50x 6) mild steel sections, the 

( 50 x 6 ) being machined down linearly to 3mm to produce the taper. Both frameworks 

were welded using standard techniques and complete working drawings are presented in 

appendix 4. Mild steel was chosen as the material of the frames since it is linearly elastic 

over a wide loading range and also because of its negligible creep characteristics at 

ambient temperatures. 
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8.1.2. Determination of Elasticity Modulus (E). 

To obtain a satisfactory correlation between the theoretical and experimental results it 

was necessary to measure the value of Young's Modulus for the material. This was done 

firstly by use of the arrangement shown in fig 8.2 and Plate 8.1 and secondly by the 

standard (97) tensile test. The first test, fig 8.2, consists of a speciman of mild steel from 

which the frames were constructed, of length 1m and of rectangular section ( 50 x 6 ), 

resting on knife edge supports and loaded by means of dead weights. The central 

deflections were recorded with a dial gauge of 100 divisions per mm. 

Hence using the four point bending test, and by measuring the load against the central 

deflection of the beam, the modulus of elasticity can be evaluated. 

  

  

  

W W 

- 5 qi» 

FF Oe 

a — Om 

Depthof —.. 
é =m section 6mm 

Breadth of — 59mm 
0 Q section 

BMD 

Wa Wa 

Fig 8.2. Four Point Bending Test for Determination 
of Young's Modulus. 
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Plate. 8.1. The Four Point Bending test apparatus. 
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Application of Macauley's Method (2) gives the result; 

y= 8H 
) aL 

Nn 
where W is the magnitude of each of the point loads and 3 is the central deflection. 

Hence 

  

Thus the modulus of elasticity can be determined by evaluating the gradient (¥ ) of the 

load against deflection graph. 

8.1.2.1. Flexural Results for material of Prismatic Section. 

  

LOAD (Kgf) 
W 

0.5 1.0 13 2.0 fia 3.0 

  

5 (mm) 1.648 | 3.73 | 6.064 | 8.126} 10.11 | 12.38                   

NB To convert Kgf to N, multiply Kgf by 9.81 

Table 8.1. Table of Load and Deflection for Prismatic 
Frame Material. 
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  4.0 

Note 

Lo
ad
 

(K
gf

) 

1 Kgf=9.81N 

  

  

7 T as 

0 5 10 15 

Central deflection (mm) 

  
Graph 8.1. Load v Central Deflection for Prismatic Frame Material. 

Use of equation (8.1) and the gradient of the straight]ine graph above gives 

E = 223 KN/mm?. 

8.1.2.2. Flexural Results for material of non-prismatic Section. 

  

  

LOAD (Kg) | 9 2.0 | 40 6.0 |. 80-1100 
W 

§ (mm) 0 20021 5:85 4° $76 1:11.631" 14:52                 
  

Table 8.2. Table of Load and Deflection for Non-prismatic 
Beam Material. 
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Graph 8.2. Load v Central Deflection for Non-prismatic Frame Material. 

Evaluation of equation (8.1) gives E = 240 KN/mm?. 

8.1.2.3. Tensile Results fe i imens. 

Similarly the standard tensile test, to BS118, was carried out to evaluate the stress/strain 

characteristics of the material and to find the lower and upper yield stresses. The design 

and drawings of the specimens are presented in Appendix 4. 
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PRISMATIC NON-PRISMATIC 
FRAME MATERIAL | FRAME MATERIAL 

Sealed 279.5 274.8 

Se a 263.4 257.6 

Posto KN/mm? 232.3 245.7         
  

Table 8.3. Results from the Tensile Tests of steel specimens. 

Because of the very small difference between the values of Young's Modulus obtained 

from the tensile and flexural tests, the values obtained from the flexural tests were used 

in the theoretical analyses. 
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8.1.3. Method of Testing. 

Before testing the frames several FLA-3-11, electrical resistance strain gauges of 3mm 

length were attached to both faces of salient members of the framework. Due to the 

symmetry of the frames, strain gauges were fixed on only one half of the framework and 

the layout of the gauges is shown in fig 8.3. 

Strain gauges 

3 

Welded joints EO eH) 
20mm al    

  

20mm 

20mm       

  4F
 

ar
 

Fig. 8.3. Strain Gauge Positioning. 

All strain gauges were fixed 20mm from the welded joints, a distance considered 

sufficient so that any effects caused by the welding could be assumed to be negligible. 

A special rig was designed onto which the frameworks could be bolted at the base to 

prevent any movement whilst testing, as shown in fig 8.4. 
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Fixing Bolts a 

fees, 
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| | 
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pee Base of Testing 
Rig. 

  

      

  

      
      

Fig. 8.4. Method of fixing of Test Frames 
to base of Rig, 
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This was considered to represent complete fixity of the supports. 

The framework was loaded vertically downwards at the apex using a hydraulic ram. To 

ensure accurate load readings, a calibrated proving ring was employed and this was fixed 

to the ram to prevent movement during testing. Also, to enable the load to be applied 

along the apex, a steel capping piece was placed on the crown of the framework as 

shown in fig 8.5. 

Proving ring. 
ce it 

Z 
Saeeoe Steel capping piece 

  

    

Frame. 

Fig 8.5. Diagram showing method of load application. 

This prevented any movement of the hydraulic ram during loading and also enabled apex 

loading to be accurately attained ( Plate 8.2 ). 

The load was applied in 200N increments and deflections produced. by the loading were 

measured using standard deflection dial gauges (100 divisions per mm), these being 

considered adequate for the accuracy required in the testing. The deflection gauges were 
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placed at the three joints as shown in Fig 8.6 below. 

  
Fig. 8.6.Showing Positioning of 

Dial Gauges. 

Plate 8.2 shows the complete arrangement of the apparatus with the strain recorder and 

extension box. 

The bending moments at the points of application of the strain gauges were obtained 

from the strain gauge readings in the following manner. 

Consider two gauges a, b, either side of a section of depth d. The strains, €, in each of 

these gauges will be produced from a combination of axial strain and flexural strain and 
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hence the results can be expressed as 

€.= Ena t 

€4= Cacia ~ fou 

from which E gece Can be isolated. 

Now using the results from the simple bending theory, namely 

M 
I 70]

 tr
 

it follows that the bending moment M can be expressed as; 

2 El 
M=—>— ten 
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Plate 8.2. Arrangement of Apparatus with Strain Recorder. 
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The results obtained for deflections and bending moments will be presented separately 

for the prismatic and non-prismatic sections to facilitate ease of reading, the terminology 

used in previous chapters being simplified as follows for ease of understanding of the 

results:- 

Linear ( L ) = the analysis where the effect of axial force on flexural action is 

ignored. 

Constant Axial = the analysis where the effects of the axial forces on the flexure are 

Force (CAF) considered but where the axial & flexural matrices are independent 

of each other and are obtained from equilibrium considerations. 

Tangential ( T ) = the tangential stiffness matrix in which the effects of axial forces 

and large deflections are incorporated in an approximate work 

process. 

Coupled ( C ) = the refined stiffness matrix obtained from equilibrium 

considerations in which the axial effect is dependent on 

flexural action (coupled) due to a deflections. 

Axial strain given by €,= - seit al: 

Stepped = used for non-prismatic frame only. The non-prismatic member is 

Coupled (SC) represented by a number of prismatic portions. Analysis is by the 

‘coupling’ ( C ) procedure above. 

(E)= Experimental Results. 
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8.2. Prismatic Frame Results. 

The results from the various theoretical analyses are compared with those obtained from 

experiment, these being shown in figs 8.8 to 8.12. 

It can be noted that the results from the coupled (C) and Tangential (T) matrices are 

indistingushable on the graph and hence for comparison the results are shown in Table 

8.4 and 8.5. 
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8.2.1. Discussion. 

In the simple geometrically - linear analyses in which the effect of axial force on lateral 

behaviour is ignored and the deflections may be considered to tend to zero, the 

load/deflection and load/bending moment relationships are represented by straight lines. 

The flexural displacement function describing such behaviour is given by the cubic 

polynomial. 

iat 2 3 V=a, + a,X + a,x + a,x 

On considering the effect of axial force on lateral behaviour, equilibrium considerations 

produce the lateral deflection functions 

V =a, + 4X + a, SIN OX + a, COS AX 

for a member in compression and 

v=a, + a,x + a, sinh Ox + a, cosh Ox 

for member in tension where 

a. = V( P/EI ) 
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The use of these deflection functions produces flexural stiffness matrices which are 

functions of the axial forces in the member. Examination of figures 8.8 and 8.9 show the 

deviation from the linear results that occurs on consideration of axial effects on flexure. 

It is seen, in particular from fig 8.8, that the use of the coupled (C) formulation agrees 

most closely with the experimental deflections and that the use of the simpler constant 

axial force (CAP) matrix can significantly underestimate the deflections produced. 

Use of the tangential stiffness matrix (T) produced results comparable with the coupled 

(C) matrix without any member subdivision. However whereas the coupled (C) matrix 

required only one iteration to give acceptable results, the tangential stiffness matrix 

required about ten iterations for convergence, and hence the coupled (C) formulation 

appears to produce a more economical solution with respect to computer time. 

Comparison of results for bending moment ( Fig 8.10 to 8.12 ) showed very little 

difference between the various non-linear matrices used although there was substantial 

agreement with the experimental values. These results suggest that alteration of the axial 

strain produces little change in the curvature expression. 

Although the elastic critical load can be computed this is probably only of theoretical 

interest. In reality the frame would have begun to exhibit plasticity at loads substantially 

below the elastic critical and thereafter would not be conforming to the assumption of 

material elastic behaviour. Based on the experimentally-determined value of the lower 

yield stress it was foundthat the first plastic hinge should form at a load of 0.85KN and 

that plastic collapse occured at a load of 1.8KN, a value far below the elastic critical load 

of 2.9KN as computed from the coupled (C) matrix. It is seen that if indeed plasticity 

commenced at 0.85KN, the effect on deflections is small, although some limit to the 

moment capacity appears to be intimated at joint 2 and 3 ( fig 8.11 and 8.12 ) in the 

region of this load. 
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8.3. Tapered Section Results. 

It was shown in chapter 6, that the exact derivation of the non-linear deflection function 

involved Bessel functions and was hence discontinued. Similarly the tangential stiffness 

matrix for the tapered section, which should produce results similar to those for the 

coupled matrix, was unwieldy and considered capable of producing significant rounding 

errors. A simpler technique was to approximate the tapered beam by sub-division into 

several prismatic elemental steps. This will enable the use of the coupled (C) matrix 

already developed and hence the acurate investigation of the geometrically non-linear 

behaviour of non-prismatic sections. 

To estimate the number of prismatic elements that would adequately represent a tapered 

section, a tapered cantilever was linearly analysed exactly and by using a stepped 

procedure. From figure 8.13 below, it can be seen that the accuracy increases with 

increase in the number of prismatic elements employed. 
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Fig 8.13. Showing Increasing Accuracy with Number of Elements Employed 
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It is seen that using ten elements per member will produce an adequate result. 

The theoretical and experimental results obtained for the tapered frame are presented in 

figs 8.14 to 8.18, the theoretical results for non-linear behaviour being obtained from the 

constant axial force matrix derived from the linear deflection function for a tapered 

member and from the stepped prismatic technique discussed above. 
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8.3.1. Discussion. 

As seen in the case of the prismatic frames, the geometrically linear load/displacement 

and load/bending moment analyses obtained from the derived function 

v=ajtaxta, [dyenocrs [iano 

are represented by straight lines from which no information regarding elastic instability 

can be obtained. 

Geometrically non-linear behaviour was examined using the constant axial force matrix 

and a stepped prismatic beam technique, the former being derived from the linear 

displacement function above via a work process and the latter using the refined coupled 

(C) matrix derived for prismatic sections via equilibrium considerations with each 

member subdivided into 10 components. 

The theoretical results for the tapered frame show a similar pattern to those for the 

prismatic structure, namely that solutions using the axial strain expression 

a de® 
du , 1 (dv 

dx 

are preferred to those in which the flexural component in the expression is omitted. 

It can be noted that the experimental deflections appear to be up to about 20% larger than 

the most refined of the theoretical analysis although the experimental bending moments 

show a far closer correlation. Such discrepancies may in part be due to the effects of the 
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machining in the manufacture of the tapered frames by which some curvature may have 

been introduced into the members. 
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Chapter 9. 

Applications to Framework 

Behaviour. 
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In the previous chapter, the veracity of the theoretical results was established by 

comparison with direct experiment. In this chapter a range of problems in which 

considerable non-linear effects can occur will be briefly investigated using the matrices 

previously developed in order to demonstrate the the versatility of the approach and to 

illustrate the effects that geometrical non-linearity can produce. The examples that will 

be discussed are the behaviour of multi-storey frames loaded to the elastic critical load, 

the effect of a gantry crane load on the members of a prismatic and non-prismatic pitched 

portal, and the response of initial imperfections to increasing load in a plane frame. 

9.1. Comparative Behaviour of Multi-storey Frames. 

9.1.1. Load/Deflection Characteristics with Point Loads. 

To examine the effect of storey behaviour in geometrical non-linear analysis, the two 

frames composed of prismatic members shown in fig 9.1 were solved under progressive 

increase of load using the refined coupled (C) matrix obtained from derived deflection 

functions. 
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Fig 2:1, Multistorey Frames under Study, 

The members of the frames were of I-section form with the dimensions and sectional 

properties as shown in fig 9.2, E, A, and I being Young's modulus, cross-sectional area 

and second moment of area respectively. 
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The loading applied to the frames is shown in fig 9.3 in which the horizontal load Q is 

maintained at a constant value and the vertical loads P increased up to the elastic critical 

value, ie when the determinant of the stiffness matrix becomes zero and the structure 

loses all its stiffness. 
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The effect of increasing the vertical loads is assessed by plotting the ratio of the 

horizontal force Q to the horizontal deflection produced at its point of application 8, ie 

Q/5, against the load P, as shown in fig 9.4. 
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It is seen that the elastic critical load for the two-storey frame is 22.0KN, obtained when 

6 is infinite or Q/d is zero, whereas that for the four-storey frame is only 15.9KN. It can 

also be seen that the reduction of stiffness of the frames increases as the critical load is 

approached. For comparison similar results obtained from linear analyses are also given 

showing the importance of non-linear considerations in structures of this form. 

The deflection and bending moment distributions for the frames at two levels of load P 

are presented in fig 9.5. 
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9.1.2. Load/Deflection Characteristics with Uniformly Distributed Loading. 

In addition to the analysis of the frames described above under point loads, the frames 

were also solved using the coupled (C) procedure when the uppermost beam was 

subjected to a progressively increasing u.d.1. as shown in fig 9.6. 

rare KN/m 

  

  

  

  

            WS) YA. ff; Lie 

Fig 9.6. Erames Uniformly Distributed Loading, 

The results from these analyses are presented in fig 9.7 as plots of the distributed load 

against the vertical deflection induced at the left uppermost corner. 
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Fig 9.7. Load/Deflection Characteristics for 2 & 4 Storey Frames. 
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Again it can be seen that the elastic critical load for the four-storey frame is lower than 

that for the two-storey frame, these values being 2700KN/m and 1125KN/m 

respectively. For comparison a linear analysis and also an analysis based on the constant 

axial force (CAP) matrix for a prismatic member are presented for the two-storey frame 

showing the importance of the consideration of flexural effects on the axial forces in 

non-linear investigations. 

Deflection and bending moment distributions for the two frames are presented in fig 9.8 

for two levels of load. 
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9.2. Analysis of Pitched Portal Frames subjected to High Column loads via a 

an ané. 

Two pitched portal frames were examined, one being composed of prismatic and the 

other of tapered I-section members. Both linear and non-linear behaviour was considered 

and the results compared. 

9.2.1. Frame compo f Prismatic I-sections. 

The geometry and loading of the frame is shown in fig 9.9 in which W represents a 

crane load that can move across the span of the portal thus subjecting the columns to 

variable axial forces at the eaves points. 
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beam ch iA 
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30m 
<4 >       
Fig 9.9. Typical Workshop Portal Frame 

with Column Loadings, 
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The material and sectional properties for the two columns and the two sloping beams are 

the same as those for the columns and beams in the examples of section 9.1. 

Fig 9.10 shows the variation of the vertical and horizontal deflections at the apex with 

position of the crane load for both linear and non-linear behaviour, the latter being 

obtained by the refined coupling (C) matrix, while figs 9.11 and 9,12 depict the linear 

and non-linear deflections and bending moments in the frame for three positions of the 

load. 
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9.2.2. Frame composed of Tapered I-sections. 

The geometry and loading of the frame is as described in section 9.2.1 and is shown in 

fig 9.13. The sectional geometry of the members is shown in fig 9.14, the depth of each 

constituent member varying linearly from 0.4 to 0.8m. 
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Fig 9.14. Dimensions of I-section. 
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The variation of apex deflection with load position is shown in fig 9.15 for both linear 

and non-linear behaviour, where the linear behaviour is obtained via the derived 

displacement function for an I-section and the non-linear behaviour from a stepped 

prismatic process using the coupled (C) matrix for prismatic members with each member 

divided into 10 increments. 

Fig 9.16 and 9.17 show the linear and non-linear deflection and bending moment 

distributions throughout the frame for three load positions. 
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9.3. Effects of Initial Imperfections on the Non-linear behaviour of Pitched Portal 

Frames. 

The effect of lack of straightness or geometrical imperfections on the behaviour of 

slender structures is readily examined using the matrices in which the axial strain is 

expressed as; 

du} 
MF aes 

ie 

dx 

  

In this section a brief introduction will be given to the effect of lack of straightness and to 

imperfections in constructional geometry. 

9.3.1. Effect of Lack of Straigh in Prismatic Frame. 

The effect of defects in the straightness of members will be illustrated by consideration 

of the prismatic frame used in the experimental work described in Chapter 8 in which 

one of the column members exhibits assumed initial deformations at the centre of 5mm 

and 10mm. The geometry of the structure together with the initial geometrical defects and 

the loading are shown in fig 9.18. 
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Fig. 9.18. Frame composed of Prismatic Sections with 
Imperfections in Column Members. 

The frame was analysed both linearly and non-linearly using both the refined coupled 

(C) matrix and the constant axial force matrix (CAF) and the changes in the vertical 

deflections at the apex on increase of load are shown in fig 9.19. It is seen that relatively 

small defects of this nature produce a large decrease in the elastic critical load. 
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Fig 9.20 shows the deflection and bending moment distribution in the frame at the level 

of load indicated for the defect-free frame and for the frame exhibiting the initial 10mm 

column deformation. 
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9.3.2. Effect of Constructional Tolerances. 

Although not specifically stated in Chapter 8, it was noticed that the eaves nodes of the 

tapered framework used in the experimental work were slightly displaced outwards by 

about 10mm from their ideal positions. It was thus considered appropriate to analyse this 

frame with these initial constructional tolerances taken into account. 

The frame together with its defects and loading is shown in fig 9.21and the effect of 

these defects is shown in fig 9.22 where the change in vertical apex deflection with 

respect to increase of load is presented. 
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The non-linear analyses, performed using the stepped prismatic approach using the 

coupled (C) matrix with each member subdivided into ten prismatic elements, show that 

although the initial defects tend to reduce the elastic critical load, their effect is not as 

pronounced as the effect of lack of straightness of the members. 

The deflection and bending moment distributions in the frame with and without defects 

are presented in fig 9.23 for the level of load indicated. 
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In reality both initial imperfections and constructional tolerances are present in 

frameworks and their effect on structural behaviour is thought worthy of further 

research. 
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Chapter 10. 

Summary, Conclusions and 

Future Work. 
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10.1. Summary. 

The displacement method of analysis has been applied extensively and with great success 

to the solution of geometrically linear frame problems and it was thus natural that this 

procedure should be attempted for the investigation of geometrically non-linear 

structures. However the effect of geometrical non-linearity appears largely to have been 

studied using the assumption of constant axial force, an assumption which does not 

strictly allow investigation of progressive non-linear behaviour. 

In order to examine such effects, it was necessary to construct the relevent 

force/displacement relationships ie the stiffness matrices, for members exhibiting 

non-linear behaviour, and this was carried out using the finite element procedure. 

Since the displacements of a one-dimensional member are given by the solution of an 

ordinary differential equation, it is shown that for such a structural element the exact 

displacement profile may be obtained, and the standard work-based finite element 

procedure curtailed due to the satisfaction of equilibrium at every point in the member. 

The resulting stiffness matrix is thus exact in the sense that there is no increase in 

accuracy upon subdivision of the member. 

The first stage of this research was to employ this curtailed process using the derived 

displacement functions of an isolated member to produce firstly the exact non-linear 

stiffness matrix assuming constant axial force, and then to extend this to produce a more 

refined but more complex matrix capable of a more realistic assessment of geometrical 

non-linearity. 

In addition to these exact formulations, approximate polynomial functions were also 

used to produce a tangential stiffness matrix for comparison purposes ( the use of the 
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tangential stiffness matrix finds application in the geometrically non-linear behaviour of 

plates where exact displacement functions cannot in general be found). 

10.2. Conclusions. 

For easy presentation of the conclusions the prismatic and non-prismatic members will 

be discussed separately. 

10.2.1. Frames with Prismatic Members. 

The finite element method of analysis provides a systematic procedure for the 

development of the force/displacement relationships of structural elements, the final form 

of the stiffness matrix being dependent on the form of displacement function used. 

Generally the displacement functions of the elements have to be assumed, but in the case 

of elements whose displacements are a function of only one variable, as in the case of 

beam-columns, the displacement function can in principle be determined exactly. The use 

of such as functions has two fundamental advantages; firstly the resulting stiffness 

matrix is exact within the confines of the governing differential equations and hence no 

increase in accuracy ensues on subdivision of the element, and secondly the matrix may 

be formulated from simple equilibrium principles rather than the more lengthly 

work-based procedure which must be used with assumed functions. 

The investigation of frames composed of prismatic elements showed that by assuming 

that the axial forces in the members were only dependent on the axial displacements, ie 
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by assuming that the axial strain was given by 

the loss of stiffness on increase of load was underestimated, implying an overestimate of 

the elastic critical load. This is shown by comparison with results obtained using the 

more refined expression for axial strain, ie; 

  

and with the experimental results for deflections, which may be favourably compared. 

Comparison of the results using the refined derived function formulation and the 

tangential stiffness matrix approach using the approximate polynomial functions showed 

that very similar results were obtained from both matrices. However it was found that 

whereas the formulation using the derived functions required only one or two iterations 

to obtain an acceptable deflection estimate, that using the tangential stiffness matrix 

required many more. This may be due to the fact that the derived function formulation 

operates using direct iteration whereas the Newton- Raphson technique is used with the 

tangential stiffness matrix method. 

It is noted that although the deflection results obtained using the two expressions for 

axial strain showed a distinct difference, very little variation was shown in the bending 

moment results, implying little variation in the curvature of the members. This 

observation appears surprising and it is suggested that further work should be carried out 

on different frame configurations in order ascertain whether or not such results occur 

generally. 
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10.2.2. Frames with Non-prismatic Members. 

The investigations undertaken for prismatic frames were further extended to the analysis 

of frames composed of non-prismatic sections. 

Firstly it was envisaged that the development of exact equilibrium-based matrices 

formulated using derived functions could be both intractable and impracticable and 

indeed this was found to be the case, the exact formulations being expressed in terms of 

Bessel functions which involved the calculation of series with associated rounding 

errors. 

Thus examination of the behaviour of non-prismatic frames was undertaken using 

work-based methods with approximate displacement functions. In the work on prismatic 

frames, the work-based stiffness matrices for geometrically non-linear behaviour were 

obtained using the polynomial displacement functions which represent linear prismatic 

behaviour exactly. It was thus considered logical to use for the non-linear investigations 

of non-prismatic members the derived displacement functions for linear non-prismatic 

members. These derived functions were used to construct both the non-linear stiffness 

matrix in which the axial force is assumed to be dependent only on the axial displacement 

and also the tangential stiffness matrix. Although the former matrix was formulated 

successfully, development of areas of the tangential stiffness matrix were found to be 

unwieldy and intractable regarding practical implementation. 

Thus in addition to results obtained using the approximate constant axial force element 

referred to above, non-prismatic behaviour was also investigated using a stepped 

prismatic element approach in which the non-prismatic members of the frame were 

subdivided into a number of prismatic elements of differing section properties. The 

resulting model was solved using the derived function prismatic stiffness matrix using 
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the refined axial strain expression,ie; 

This stepped prismatic element technique produced, on adequate subdivision, results 

which compared favourably with experimental results and as expected represented a 

more accurate model than the matrix based on the assumption of constant axial force. 

However because of the necessity for subdivision the amount of data preparation and 

computer storage may become large and the economy of such a procedure must be 

balanced against the nature of the results required. 

10.2.3. Practical examples of Geometrically Non-linear Behavi 

The effect of geometrical non-linearity was examined for a number of common practical 

examples in which both point and distributed loading was considered. 

Firstly the effect of overall slenderness was considered with reference to two- and 

four-storey prismatic frames subjected to point and uniformly distributed loads showing 

how the critical load is reduced with increase in the number of storeys. 

Secondly a pitched roof portal frame was described in which a gantry crane could move 

from one side to the other, thus inducing high column loads at the ends of the travel. 

Both prismatic and tapered sections were considered in this example which is typical of 

those in which the effects of stability should be considered in design. 

Thirdly the important practical situation of lack of straightness was considered with 

reference to a pitched portal frame where it was seen that the load-carrying capacity of 
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the frame was reduced dramatically by virtue of a relatively small amount of initial 

straightness. In the examples presented it is seen that an initial lack of straightness of 

10mm in the centre of one of the 300mm vertical legs of a 560mm high portal produced a 

reduction in the critical load of the order of 30%. In contrast initial joint displacements at 

the eaves of the portal causing the legs of the portal to be slightly inclined to the vertical 

produced only a small reduction in the collapse load. 
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10.3. Recomendations for Future Research. 

1) The small amount of work carried out in this thesis into the effect of initial 

imperfections is sufficient to show that this important practical topic may now be 

investigated in depth using the sophisticated non-linear matrix with coupled axial and 

flexural components developed in this thesis. 

2) Further the use of connected straight elements may be used to examine the 

geometrically non-linear behaviour of arches or structures comprising curved 

members. Such an idealisation is shown in Fig 10.1. 

Idealisation into 
straight s ent 

Fig 10.1, Showing idealisation of curved members. 

  

Indeed this may be the only viable finite element method to treat arch behaviour as it 

is most probable that solutions attempted using curved elements may be either 

intractable or impossible to obtain. 
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3) In this thesis all the frames considered have been rigid jointed. In practice situations 

can occur where some nodes are in fact hinges. Perhaps the most important of these 

situations are those occuring in the elastic-plastic behaviour of frames constructed 

from ductile materials, for example mild steel. On loading of such a frame beyond 

the elastic limit the progressive formation of plastic hinges occurs and thus a rigid 

jointed frame is transformed into a frame containing an increasing number of hinges 

until plastic collapse occurs. Such behaviour cannot be studied using the matrices 

developed here as they stand, but they could be developed to take into account such 

hinge conditions. 

Consider the simple frame shown in Fig 10.2. 

Plastic 
hinge 

  

  
Gor 

Fig 10.2. Showing frame with plastic hinge. 

Upon formation of the hinge shown both the right hand leg and the beam contain a 

hinge at one end. The modified flexural stiffness matrix for such a member does not 

now contain four nodal displacements but only three since the moment at the hinge is 
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known. This modification can be shown by considering a member (1-2) of a linear 

frame, the standard force/displacement relationship being 

No <s, p= Ki3 Ky3 Ky V2 

ie Ki Kyq Kyq Kay io             w
w
 

If end 1 is pinned, then M, is zero and the second equation becomes; 

0 = Kj Vv, + Ky 9, + Ky; v. + Ky, 8, 

ie 

8,= -¢-(Kyvi+Kgvo+ K 40, 

Ky 

Substituting 8, into the above matrix and rearranging gives 
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4) 

5) 

    

  

KyKy KyKy 
Ma=( Ku es }vit( Kae ke Vot 

  

or in matrix form 

              

ie the (4 x 4) matrix is reduced to a (3 x 3). Similar results can be obtained if the 

hinge is at end 2. The fixed end moments and forces can also be modified by the 

presence of a hinge if it is desired to treat distributed loading. 

Although this brief description has been illustrated by means of a linear member, it is 

possible that the geometrically non-linear behaviour of frames containing hinges may 

be similarly developed. 

Although only plane frames have been considered in this thesis, the possibilities of 

extending this work for the treatment of space frames is obvious. Such an extension 

will mean investigation of the additional aspects of geometrical non-linearity, namely 

lateral and torsional instability effects. 

The combination of the beam elements developed in this thesis with geometrically 

non-linear plate elements would enable the non-linear behaviour of stiffened plate 
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6) 

structures to be investigated. 

It is hoped that the geometrically non-linear analysis of frames composed of both 

prismatic and non-prismatic elements which has been developed in this thesis and 

incorporated in a computer package will be a useful addition to structural engineering 

knowledge. 
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oool 
0002 
0003 
QO004 
00905 
0006 
0007 
0008 
0009 
0010 
Oo1l 
o012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
002 
0025 
0026 
002 
6025 
d029 
O00 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
00350 
Oost 
0052 
6033 
0054 
60355 
0056 
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DOUBLE PRECISION XK(100), ¥(100), Xx(100), YY(100}),L(100), CACIC 

w
w
 

mK 
Ke 

HK 
K
K
 K
O
 

XM1i(100 

INTEGER KR(100), UR(100), IDOF (300) 

), XM2(100) 

WRITE(4, 4000) 
PRINT#, !------~-------- = nnn 
PRINT#, ” 

CB(100),CL¢100), CM( 100), £E1(100), EA(100), TT( 100), 

A(1G60), B8(100),C(100),D(100), £(100),F (100), 6100), 

$(300, 300),LL‘/300),P (100), @Q@(100), W100), V(100), 

SS(100), MA(100), MB( 100), U(100), BB( 300}, CW( 100), 

SW( 100), MEM(4, 4), FOR(4),CC(4, 4), @(04, 43, Wi (300), 

W2(300), R1 (300), R2(300), ZZ(300), A1 (100), A2(100), 

AMDA(100), WAS2(300), A3(100), A4(100),P1(100),P2(100), 

CT11(100), CT22(100), CT32( 100), CT33(100), CT42(100), 

CT43(100), CT44(100),LX (300), UDL (100), XL¢300), XLX(300), 

PRINT#, ‘THIS PROGRAM IS FOR THE ANALYSIS OF PLANE FRAMEWORK 

PRINT#, ‘WITH THE USE OF FINITE ELEMENT TECHNIQUES. ’ 

PRINT#, ’ f 

PRINT#, ‘THE FINAL PRINTOUT GIVING THE JOINT DEFLECTIONS, MEP 

PRINT, ‘DIRCETIONAL COSINES AND FORCES. ‘ 

PRINT#, ‘ ‘ 

PRINT#, !----------- nnn nnn nn 
PRINT#, ’ 
PRINT#, ‘ENTER 1 TO CONTINUE’ 
READ#, Z 
WRITE(&, 4000) 

OPEN(6, FILE=’PRISRES ‘, STATUS= ‘NEW’, ERR=10000) 

OPEN(5, FILE=’PRISINPUT ‘, STATUS= ‘OLD’, ERR=10000) 

WRITE(&, 2000) 
READ(S, #3. NJ 
WRITE(&, 2100)NJ 
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0058 I=1 
0059 10 READ(5, #)X(I), Y(I), IDOF(3#1-2), IDOF(3#I-1), IDOF(3#I), 
0060 * XLX (3#I-2), XLX(3¥I-1), XLX(3#I) 
0061 TF ct LT ONU)Y 07a, 15 
0062 IF (I. EQ NJ) GOTO Zo 
0063 15 I=I+1 
0064 GOTO 10 
0045 20 CONT INUE 
0066 
0067 I=1 
0068 22 XL¢I)=XLX¢I) 
0069 IF (1.LT. (3#NJ)) GOTO 25 
0070 IF (I. EQ. (3#NJ)) GOTO 27 
0071 25 I=I+1 
0072 GOTO 22 
0073 27 CONTINUE 
0074 
0075 I=1 
0076 a1 WRITE (6, 2200)1, X(I), Y(I) 
0077 IF ¢1.LT.NJ) GOTO 32 
0078 IF (I. E@.NJ) GOTO 33 
0079 32 I=I+1 
0080 GOTO 31 
0081 33 CONT INUE 
0082 
0083 WRITE (4, 2300) 
0084 
0085 I=1 
0086 34 WRITE(&, 2400) I, IDOF(3*1-2), IDOF(3*I-1), IDOF(3#1) 
0087 if) 7LTONJ) GOTO 35 
008s IF (1.E@.NJ) GOTO 36 
0089 35 I=I+1 
0090 GOTO 34 
0091 36 CONTINUE 
0092 
0093 WRITE(6, 2500) 
0094 
0095 I=1 
0094 a7 WRITE (4, 260031, XLX(3¥1-2), XLX(3¥I-1), XLX(3#I) 
0097 IF (1.LT.NJ) GOTO 38 
0098 IF (1.EQ@.NJ) GOTO 39 
0099 38 I=I+1 
0100 GOTO 37 
0101 39 CONTINUE 
0102 
0103 READ(5, *)NM 
0104 WRITE(6, 2700) NM 
0105 
0106 I=1 
0107 40 READ(5, #)KR(I), UR(I), EL(1), EACI), UDL(T) 
0108 c 
0109 e CALCULATION OF MEMBER LENGTH L(1) 
0110 t 
O1i1 LOT HC CCX CUR CT) )-XCKRCT) ) #82) 40 (Y(UROT) )-YCKROT)) #2) ) HC 
0112 WRITE(6, 2800)1,KR(1), UR(I), LOT) 
0113 
0114 c 
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0115 c CALCULATION FOR DIRECTIONAL COSINES FOR MEMBER I 

0114 Cc 

O17 IF (Y(UR(I)). GT. YCKR(I))) GOTO 50 

0118 IF (Y(UR(I)). LT. YCKR(I))) GOTO 60 

OES IF (Y¥(UR(I)). EQ. YCKR(I)))> GOTO 70 

0120 IF (X(JUR(1I)). E@. XCKR(I))) COTO 80 

012i IF (X(JUR(1)). E@. XCKRCI)). AND. YCUR(I) >. LT. YCKR(CI) 2) GOTO 85 

0122 90 AA=(X(CURCT) )-XCKRCT) 

0123 O=(Y(URCI))-YCKRCI))) 

0124 CACI)=AA/L(1) 

0125 CB(T)=O0/L (1) 
0126 GOTO 90 

0127 60 AA=(X(UR(I))-XCKRCI)) > 

0128 O=(YCKRC I) )-Y¥CURCT))) 

0129 CACT)=AA/L(T) 

0130 CB(T)=-O/L(1) 

0131 GOTO 70 
0132 70 CACT)=1 
0133 CB(I)=0' 
0134 GOTO 70 
0135 BO CACI)=0 
0136 CB(I)=1 
0137 GOTO 70 
0138 85 CACT)=0 
0139 CB¢(h)=-1 

0140 GOTO 90 
0141 90 CL(1I)=-CB(I) 
0142 CM(I)=CACT) 

0143 Cc 
0144 Cc NON-NODAL FORCES 

0145 Cc 
0146 S1=UDL(1)#L(1)/2 
0147 XML CL) =UDEC Ip ee CL) eE C1) 7 12 

0148 S2=S1 
0149 XM2(1)=-XMiC(T) 

0150 
0151 FX1=S1#CB(I) 

0152 FY1=S1i*CM(T) 
0153 XML CID =XM1¢1) 
0154 FxX2=S2eCB( 1) 
0155 FY2=S2*CM (I) 
0156 XM2¢1)=XM2¢1) 

0157 

0158 XL(3#KR (1)-2)=XL(3*KR(1)-2)+FX1 

Q159 XL(¢34#KR(1)-1)=XL(S#KR(1)-1)+FY1 

01460 XL(3#KR (I) }=XLC3#KR CIT) 2 +XM1i 01) 

0161 XL(3#JR (1)-2)=XL(S#UR(1)-2)+FX2 

0162 XL(3#UR(1)-1)=XL(G#UR(I)-1) +FY¥2 

0163 XL(3#UR (1) )=XL(3#JUR (CI) +XM201) 

0144 C 
0165 Cc CALCULATION OF THE GLOBAL STIFFINESS MATRIX FOR MEMBER I 

0164 C 
0167 ACI) =((EACI) /L C1) ) 8 (CACT) ##2) + CC LQHED (T/C LCT) #83) HCCL OT) 

0168 BCI)=((EACI)/L(1) )#(CBCI) ##2) + (C1QRET (IT) / (LCT) #S) DRC CMT! 

0149 UU=((EACT)/L(1)) #CACT) #CBC(T)) 
0170 VV= (CL DHEI(C IY / (LCT) #83) # (CLOT) 2 RCCM(T))) 

O171 CCT) =UU+VV 
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29-Jul-1988 19:55: 12%1$DUA3: (BAWAGS INONPRIS. FOR: 60 

0172 DCI)=(S#EI (I) /(L 01) ##2) #CLOT) 

6173 ECI)=(O#EI CI) /(L C1) ##2) ) CMC) 
0174 FCI)=(4#EI(I)/L¢I)) 
0175 @(1I)=(F(1)/2) 
0176 c 
0177 e CALCULATION OF THE OVERALL STIFFINESS MATRIX FOR 

0178 c MEMBER 
0179 c 
01806 S((3#KR(I)-2), (B#KR(1)-2) =S((3#KR(1)-2), (B#KR(I)-2) +AC1) 

0181 S((3#KR(1)-1), (B#KR(I)-1) =S( (B#KR(I)-1), (G#KR(1)-1)94+B(1) 

0182 S((3#KR(1)-1), (Q#KR(1)-2) )=SC(S#KR(1)-1). (G#KR(T)-2))4+C(1) 

0183 S((B#KR(1)), (Q#KR(1)) )=SC(B#KR(1)), (Q#KRCI) D+F CI) 

0184 S((B#KR(I)), (Q#KR(1)-1)) =S((B#KRCI)), (Q#KR(I)-1)+EC1) 

0185 S((B¥#KR(1)), (Q#KR(I)-2)) =S((S#KR(1)), (3#KR(1)-2))4+DC1) 

0186 S((3#JUR(1)-2), (B#UR(1)-2) }=S((3#JR(1)-2), (G4#IR(I)-2))+ACT) 

0187 S((QG#JUR(1)-1), (B#UR(I)-1))=S((3#JUR(1)-1), (G#JR(I)-1)94+BC(1) 

0188 S((3#JUR(1)-1), (B#JR(1)-2) )=S¢(3#IUR(1)-1), (B#JR(I)-2))4+C(1) 

0189 S((B#JUR(1)), (B#UJRCI)) )=S¢(3#UR(1)), (Q#UR (I) )4F C1) 

0190 S((3#UR(1)), (B#UR(I)-1))=SC(S#UR(I)), (BH#IR(I)-1))-ECT) 

O19i S((B#UR(1)), (B#UJR(I)-2))=S((3#UR(1I)), (B#JR(I)-2))-D(T) 

0192 S((3#JUR(1)-2), (Q#KR(1)-2) =S((B#JUR(1)-2), (3#KR(1)-2)-ACT) 

0193 S((3#UR(I)-2), (B#KR(I)-1))=S((34JUR(1)-2), (G#KR(I)-1))-C(T) 

0194 S((3#JUR(1)-2), (B#KR(1)))=S¢(3#UR(1)-2), (3#KR(I)))-DCT) 

0195 S((34#JUR(1)-1), (G#KR(1)-2) )=S((34UR(1)-1), (B#KR(1)-2))9-CC(I) 

0196 S((3#UR(1)-1), (Q#KR(I)-1) )=S((B#UR(I)-1), (G#KR(I)-1))9-BC( I) 

0197 S((3#JUR(I)-1), (G#KR(I)) )=SC(B#UR(I)-1), (Q#KR(I)))-ECT) 

0198 S((3#UR(1)), (Q#KR (I) -2) =SC(B#UR(1)), (BRKRCI)-2))4DC1) 

0199 S((B#UR(1)), (B#KR(1)-1) =SC(SG#URCI)), (QRKARCII-1))+EC1) 

0200 S((B#UR(1)), (Q#KR(1)))=S¢(S#UR(1)), (B#KR(1) 29467) 

O201 IF (I.LT.NM) GOTO 100 
0202 IF (I. EQ@.NM) GOTO 110 
0203 i100 I=I+1 
0204 GO0TG 40 
0205 110 CONTINUE 
0206 
0207 WRITE(4&, 2900) 
0208 
0209 Il=1 
0210 iti WRITE(&, 3000) I, EI( 1), EACT) 
O211 IF 1.07. 0M)..00TO 112 
0212 IF (I. EQ@.NM) GOTO 113 
0213 112 I=I+1 
0214 GOTO 111 
0215 113 CONT INUE 
0214 
0217 READ(5, #) ICON 
0218 PRINT#, $ 2 eet te enna = ’ 
0219 PRINT*, ‘ PROGRAM RUNNING ’ 
0220 PRINT#, 600 eae et ee er me ‘ 

0221 PRINT*, ’ 
0222 PRINT*, ‘ 
0223 PRINT#, é 
0224 PRINT#, ’ . 
0225 PRINT, 
0226 PRINT#, ‘ : 
0227 PRINT#, ’ ‘ 

4 a 0228 PRINT*, 
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0229 PRINT#, ’ , 
0230 PRINT*, ‘ ‘ 
0231 PRINT*, ’ ' 
0232 S 
0233 C RESTRAINT BOUNDARY CGONDITIGNS FOR MATRIX 

0234 Cc 
0235 I=i 
0234 114 LL¢T}=khG2) 
0237 Te (I. LT. (3aNJ)).°C0OTO 115 
0238 IF (I. £Q@. (3#NJ)) GOTO 116 
0239 415 I=I+1 
0240 GOTO 114 
0241 116 CONTINUE 
0242 
0243 I=1 
0244 121 IF (IDOF(I).EQ@.0) GOTO 122 
0245 IF (IDOF(I).£@.1) GOTO 123 
0246 122 S(I, 1)=S(1, 1) #1. OE20 
0247 LL(I)=SC1, 1) *#IDOF(I) 
0248 123 IF (1. EQ@.3#NJU) GOTO 124 
0249 I=I+1 
0250 GOTO 121 
o251i 124 CONTINUE 
0252 
0253 
0254 ce 
0255 c DECOMPOSITION 
0256 c 
0257 
0258 Jad 
0259 1460 J=J+1 
0260 I=J-1 
0261 170 I=I+1 
0262 IF (I.EQ@.J) GOTO 210 
0263 K=0 : 
0264 SUM=0 
0265 180 K=K+1 
0264 IF (K.NE. J) GOTO 190 
0267 IF (K.EQ@. J) GOTO 200 
0268 190 SUM=SUM+(S(1,K)#S(U, K)) 
0269 GOTO 180 
0270 200 S(I,J)=(S¢1, J)-SUM)/S(U, J) 
0271 GOTO 245 
0272 210 K=0 
0273 SUM=0 
0274 220 K=K+1 
0275 IF (K.NE. J) GOTO 230 
0276 IF (K.EQ@.J) GOTO 240 
0277 230 SUM=SUM+(S( 1, K) ##2) 
0278 GOTO 220 
0279 240 SI, 1)=€(S¢1, 1)-SUM) ##0. 5) 
0280 245 IF (I. NE. (3#NJ)) GOTO 170 

o281 IF (1. EQ. (3*NJ)} GOTO 250 
0282 250 IF (J. NE. (3#NJ)) GOTO 160 
0283 IF (J. EQ. (S#NU)} GOTO 260 
0284 260 CONTINUE 
0285 
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0286 Cc 
0287 Cc FORWARD SUBSTITUTION 

0288 
0289 C 
0290 T=] 
0291 263 BB(I)=LL(1) 

0292 IF (I. LT. (3#NJ)) GOTO 264 

0293 IF (1. EQ. (3#NJ)) GOTO 267 

0294 264 I=I+1 
0295 GOTO 263 
0296 267 CONTINUE 
0297 I=0 
0298 270 I=I+1 
0299 J=0 
0300 SUM=0 
0301 280 J=J+1 

0302 IF (I.£@.4¥) GOTO 290 

0303 SUM=SUM+BB(J)#S (1, J) 

0304 GOTO 280 

0305 290 BB(I)=(BB(I)-SUM)/S(1,1) 

0306 IF (I. NE. (3#NJ)) GOTO 270 

0307 IF (I. £Q@. (3¥NJ)) GOTO 300 

0308 300 CONT INUE 

0309 
0310 c 

O311 Cc BACK SUBSTITUTION 

0312 Cc - 

0313 
0314 T=(3#NJ) +1 
0315 310 I=I-1 
0316 J=(QG¥NJU) +1 
0317 SUM=0 
0318 320 J=J-1 
0319 IF (1.EQ@. J) GOTO 330 
0320 SUM=SUM+S(J, 1} #BBCU) 

O321 GOTG 320 

0322 330 BB(I)=(BB{(1)-SUM)/S(T, I) 

0323 IF (I.NE.1) GOTO 310 
0324 IF (I. E@.1) GOTO 340 
0325 340 CONT ENUE 
0326 
0327 c 
0328 C MEMBER FORCES P,.S,M1, M2. 

0329 c 
0330 
0331 I=1 
0332 380 FNi=-( (EACI)/L(1I))#CACI) #BB(G#KR(I)-2)) 

0333 FN2@=-( (EACI)/L¢1))#CB( 1) *BB(3#KR(1)-1)) 

0334 FN3=( (EAC E)/L(1)) #CACT) #BB(3#JUR(1)-2)) 

0335 FN4=((EACI)/L¢(1) #CBC I) #BB(G#JR(I)-1)) 

0336 Pi(1I)=FNi+FN2+FN3+FN4 

0337 FN5S=-( (12#E1 (I) /(L (01) #3) ) #CL (1) *#BB(S*KR(T)-2)) 

0338 FN6=—( (12#E1 (1) / (LCT) ##3)  #CM( I) #BB(S#KR(T)—-1)) 

0339 FN7=—( (6#EI (1) /(L C1) ##2) ) #BB(S*KR(T))) 

0340 FNS@=(CIQREI CI) /(L C1) ##3) CLC I) #BB(G#UR(I)-2)) 

0341 FNG=((C1QHEI CIS /(L C1) ##3) HCMC I) #BB(G#UR(I)-1)) 

0342 FNiO=—((6#EL(1)/(L C1) ##2) )#BBCG#UR(I))) 

STO Te re 
PS as Loy eh a          era posn eye sag es oe oe  
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0343 SS(1)=FNS+FN&+FN7+FNS+FN9+FN10 
0344 FNL1=((O#EL (1) /(L C1) ##2) )#CL CT) #BB(S#KR(I)-2)) 
0345 FNi2=((O#EI (I) / (LCL) #*2) )#CM( 1) #BB(S#KR(I)-1)) 
0346 FNIB=((4#EI(1)/L(1))*BB(3#KR(I))) 
0347 FNi4=-( (G#EI(1)/(L (1) #¥#2) )#CL (1) *#BB(S#UR(1)-2)) 
0348 FNIS=—( (O#ET (1) /(L(1)##2) )#CM( 1) #BB(S#UR(1)-1)) 
0349 FN16=((2#EI(1)/L(1))#BB(3#UR(T))) 
0350 MAC1)=—(FN11+FN12+FN1S+FN144FN1S4+PN16) +(UDL (I) #L (1) #L(1)/12 
0351 FNI7=( (O#EI (I) /(L(1)##2) )#CL( 1) #BB(S#KR(I)-2)) 
0352 FNiG=( (G#EI (1) /(L C1) #2) )#CM( 1) #BB(3#KR(I)-1)) 
0353 FNi9=((2#EI(1)/L(1))*#BB(3#KR(I))) 
0354 FN2O0=—( (6#E1(1)/(L (1) ##2) )#CL( 1) #BB(3#UR(1)-2)) 
0355 FN21=-((6#EI (1) /(LC1) ##2) )#CM(1) #BB(S#UR(I)-1)) 
0354 FN22=( (4"E1(1)/L(1)) #BB(3#UR(1))) 
0357 MB(1)=FN17+FN18+FN1 9+FN20+FN21+FN22-(-UDL (1) #L (1) #L(1)/12) 
0358 IF (1. LT.NM) GOTO 390 
0359 IF (1.E@.NM) GOTO 400 
0340 390 I=I+1 
0341 GOTO 380 
0362 400 CONTINUE 
0343 
0364 WRITE(&, 3100) 
03465 WRITE(4, 3150) 
0346 WRITE(6, 3175) 
0347 WRITE(6, 3180) 
0368 
0349 I=1 
0370 410 WRITE (4, 3200)1, CA(1), CB( I), CL(1), CM(T) 
0371 IF (1. LT.NM) GOTO 420 
0372 IF (1. EQ@.NM) GOTO 430 
0373 420 I=I+1 
0374 GOTO 410 
0375 430 CONT INUE 
0376 
0377 WRITE (4, 3300) 
0378 
0379 I=1 
0380 440 WRITE (6, 3400) I, BB(3#I-2), BB(3#I-1), BB(3#I) 
0381 IF (1. LT. NJ) GOTO 450 
0382 IF (1.E@.NJ) GOTO 440 
0383 450 I=I+1 
0384 GOTO 440 
0385 460 CONTINUE 
0386 
0387 WRITE(4, 3500) 
0388 
0389 I=1 
0390 470 WRITE (6, 3600)1, SS(1), PL (1), MACI), MB(T) 
0391 IF (1.LT.NM) GOTO 480 
0392 IF (1.EQ@.NM) GOTO 490 
0393 480 I=I+1 
0394 GOTO 470 
0395 490 CONTINUE 
0396 
0397 WRITE (4, 3700) 
0398 
0399 c 
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COUPLINGFACTORS 

0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
0408 
0409 
0410 
0411 
0412 
0413 
0414 
0415 
0416 
0417 
0418 
0419 
0420 
0421 
0422 
0423 
0424 
0425 
0426 
0427 
0428 
0429 
0430 
0431 
0432 
0433 
0434 
0435 
0436 
0437 
0438 
0439 
0440 
0441 
0442 
0443 
O444 
0445 
0446 
0447 
0448 
0449 
0450 
0451 
0452 
0453 
0454 
0455 
0456 
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900 

910 

920 
930 

940 
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955 

997 
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NON-LINEAR ANALYSIS STARTS HERE (CONSTANT AXIAL FORCE) 

J=0 
J=J+1 
I=J-1 
I=I+1 
if, te, eo 
S(I,J)=0 
GOTO 530 
S(I, 1)=0 
IF (i NE 
i Cie 
IF. (J..NE 
IE. Ai. eo 

28-Sep-1988 16:51: O5VAX FORTRAN V4. 8-276 

29-Jul-1988 19:55: 12$1$DUA3: CBAWAGSINONPRIS. FOR; 60 

.J) GOTO 

. (3#NJ) ) 

. (3*#NJ)) 

. (3#NJ)) 

. (B#NU)) 

920 

GoTo 
GOTO 
GoTo 
GoTo 

910 
240 
900 
950 

  

CONTINUE 

I=1 
XLCI}=XLXCT) 
IF (I.LT. (3#NJ)) GOTO 555 
IF (I. EQ. (3#NJ)) GOTO 957 
I=I+1 
GOTO 552 
CONTINUE 

CALCULATION OF THE LOCAL STIFFINESS MATRIX 

FOR A NON-LINEAR MEMBER 

I=1 
IF (PY¢(T).€@.0) COTO 970 
TP. P11). 17, 0). COTO. 964 
IF (P11), GT. 0) GOTO.566 

Pi Git=-F 1 Cl? 
WCIT)=( (PIC I) /EI( I) )##O. 5) 
QQCT =WCT)#L(T) 
CW(T}=COS(QGQ(T)) 
SWCIS=SIN(QQCT))- 
VC I) =-W( 1) #((QQ( 1) #SWK 1) + (28 CWI) )-2) 
CTI1(CI)=EACI)/LET) 

CTAQ(I)=(PLCT) #WC IT) RWC IT) SWOT) ZV CT) ) 

CTBQACT)=(PIC LT) #WC 1) #C1-CW(ID DZV(T)) 

CT3B(1I)=(P1¢1) #(SWCT)-(QQ( 1) #CW(T)))/VCT)) 

CT42(1)=CT32(1) 
CT43C1)=(PICI)#(QQ(T)-SWCT) 2 /VC1)) 
CT44(1)=CT33CI) 

NON-NODAL LOADING SUBROUTINE 

VN=(2#W( IT) #(1-CWC ID) )-CWCITD HWC TD #L CT) SWOT) 
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29-Jul-1988 19:55: 12$1$DUA3: CBAWAGSINONPRIS. FOR; 60 

0457 CNLL=(WC IT) -CWC TD RWCT DRL CI) #SWCOT)D- CWC) RCWCT) DO /ZVN 

0458 CNLi2=( (WCL) #L C1) #CWC(1) )-SWC1)) /VN 

0459 CNi3=(WC1)#Ci-CW(1T)))/VN 

0460 CN14=(SWC1)-(WCT)#L01)2)0/7VN 

0461 CN2Q1=W( 1) #WC1)#SWC1) /VN 

0462 CN22=CNi3 

0463 CN23=-CN21 
0444 CN24=CNi3 

0465 CN31=-CN21/WCT) 

0446 CNS2=CNLI/WCT? 

0467 CN33=CN21/W(1> 

0448 CN34=-CNi3/W(T) 

0449 CN41=CNi3 
0470 CN42=-CN1i2 
0471 CN43=-CN1i3 

0472 CN44=-CN14 

0473 
0474 SNN1i=(LC1)#CN11)+(CN214#L¢ 1) #L (1) 7/2) 

0475 SNN2=(CN31#(1-CWC1))/WCT) )+(CN41#SW(T) /WCT) ) 

0476 Si=UDL(1)#(SNN1+SNN2) 

0477 SNN3=(L(1) #CN12)+(CN2@2#L (1) #L¢(1)/2) 

0478 SNN4=(CN32#(1-CW( 1) )/WC1) )+(CN42#SW(T)/WC1)) 

0479 XM1i(1I)=UDL (1) #(SNN3+SNN4 ) 

0480 SNN5=(L(1)#CN13)+(CN238L (I) #L(1)/2) 

0481 SNN6=(CN33#(1-CW( 1) )/WC1) )+¢CN43#SW(T) /WOT) 

0462 S2=UDL (1 )# (SNNS+SNN6) 

0483 SNN7=(L(1)#CN14)+(CNO4#L (I) #L (1) 72) 

0484 SNNSB=(CN34#(1-CWL1)) /WOT) + 0CN44#SW( 1) /WOT)) 

0485 XM2¢(1)=UDL¢1)#*#(SNN7+SNNB >} 

0486 c 
0487 Cc CONVERSION TO GLOBAL COORDINATES 

0488 c 
0489 FX1=S1#CB(1) 

0490 FY1=S1#CMC(T) 

O497i XMICI)=XMiCT) 

0492 FX2=S2xCB(1) 
0493 FY2=S2xCM( 1) 
0494 XM2(01)=XM2(T) 

0495 XL(B#KR (CI) -2)=XL(3*KR(1)-2)+FX1i 

0496 XL(3#KR (1) -1)=XL(S#KR (C1) -1)+FY1 

0497 XL(3#KR (C1) )=XL(S#KR (C1) )+XM1 01) 
0498 XL(3#JR(1)-2)=XL(3#JUR(1)-2)+FX2 

0499 XL(3#JUR(1)-1)=XL(3#JUR(1)-1)+FY2 

0500 XL(3#JUR (1) )=XL(3#JUR (1) )+XM201) 

O3501 
0502 BiG) Pi Cr) 
0303 GOTO $72 

0304 
03505 
03506 966 WCIT)=C(PICI)/EIT CI) )##0. 5) 
0507 QQCII=WC TI) #LCT) 
0308 CWCI}=COSH(QQ(T)) 

0509 SWCI)=SINH(QQ(1I)) 

6510 VCT) =(ORWCED #(1-CWCT) 4+ ¢QQCT HWCTD#SWCT)) 

0511 CTL1¢(1I)=EACI)/LAIT)D 

OSi2 CTZACT)=(PLCT #W(C TD #WOTD RSWOTD/VCT)) 

0513 CTBQCI)S-( PLC Td #WC TD #C1-CWCTD DO /VCTDD 
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0514 
0515 
O516 
O17, 
0518 
0519 

- 0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0528 
0529 
0530 
0531 
0532 
0533 
0534 
0535 
0536 
0537 
0538 
0539 
0540 
OS41 
0542 
0543 
0544 
0545 
0546 
0547 
0548 
0549 
0550 
ossi 
0552 
0553 
0554 
0555 
0556 
0557 
0558 
0559 
0560 
0561 
0562 
0563 
0564 
03545 
0546 
0567 
0568 
0569 
0570 

  

e
s
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CT33B(1)=-(P1¢1)#(SW(1)-(QQCT)#CWCT)D))/VCT)) 

CT42¢(1)=CT32¢1) 

CT43(1)=-(Pi(1)#(QQ(1)-SW(1))/V(T)) 

CT44( 1) =CT33¢1) 

NON-NODAL LOADING SUBROUTINE 

CNL1=((WC1) #WC1) #L C01) #SWCT))-CWCT) CWC) D4W0TD DO /V0T) 

CNI2Z=((W(L) #L (1) *#CW(T))-SWCT) D/VCT) 

CN1I3=(W(1T)#(1-CW(1)) 71) 

CN1i4=(SW(T)-(WCT) #L¢1)))/V0T) 

CN21=-(W(I) #WC 1) #SWCT)/V C1) D 

CN22=CN1i3 

CN23=—-CN21 

CN24=CN13 

CN31=-CN21/W(I) 

CNS32=CN11/W(T) 

CN33=CN21/W(T) 
‘CN34=-CN13/W(1) 
CN41=CN1i3 
CN42=-CN12 
CN43=-CN13 
CN44=-CN14 

SNN9=(L(1)*#CNL1)+(CN2Q1#L (IT) #L¢1)/2) 

SNN10=(CN31#(CW(I)-1)/W( 1) )+(CN41#SWCT)/WCTD) 

S1=UDL (1)#(SNN9+SNN10) 

SNN11=(L(1) #CNi2)+(CN22*L(1)#L¢(1)/2) 

SNN12=(CN32#(CWLI)-1)/W( 1) +0 CN42#SW(T)/WCT)) 

XM1¢1)=UDL(1)#(SNNL1+SNN12) 

SNNiZ=(L(1)#CN13)+(CN23#L (I) *#L¢1)72) 

SNN14=(CN3Q#(CWCI)-1)/WCT) )+(CN438#SWCT) /WCT)) 

S2=UDL(1)#(SNN13+SNN14) 

SNN15=(L(1) #CN14)+(CN24#L (IT) *#L¢1)/2) 

SNN16=(CNS34%(CW(1)-1)/WC1) )+(CN44#SW(0T) /WCT)) 

XM2(1T )=UDL(1)#(SNN1I5+SNN16) 

CONVERSION TO GLOBAL COORDINATES 

FX1=Si#CBC(T) 
FY1=Si#CM(T) 
XMICI)=XM1¢1) 
FX2=S2xCB( I) 
FY2=S2#CM( I) 
XM2(1)=XMe2¢(I) 

XL(3#KR (1 )-2)=XL(S#KR CT) -2) +FX1 

XL(S3#KR(1)-1)=XL(3#KRCI)-1)+FY1 
XL(3#KR (1) )=XL(3#KR C1) 24+XM1i CT) 

XL(3#JUR(1)-2)=XL(3#UR(1)-2)4+FX2 
XL(3#JR(1)-1)=XL(3#JUR(1)-1)+FY2 
XL(3#JUR (I) )=XL(3#UR (1) )+XM201) 

GOTO 572 
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29-Jul-1988 19:55: 12¢1$DUA3: CBAWAGSINONPRIS. FOR: 60 

0571 570 CTA1L(I)=EACID/LOD)D 
0572 CT22(1)=128EI (1) /(L C1) ##3) 
0573 CT32(1)=6#E1(1)/(L C1) ##2) 
0574 CT33(1)=4#EI(1)/LC1) 
0575 CT42(1)=CT32¢1) 
0576 CT43(1)=2#E1(1)/L (1) 
0577 CT44(1)=CT33(1) 
0578 
0579 
0580 c 
osei ¢ CALCULATION FOR GLOBAL STIFFINESS MATRIX FOR 
0582 c THE NON-LINEAR CASE 
0583 c 
0584 
0585 572 ACI) =(CTILC I) #CACI) #CACT) 24° CT22¢1) #CL (1) #CL (I>) 
0586 B(I)=(CT11(1) #CB( 1) #CB( 1) )+(CT22¢1) #CM( 1) #CM(I)) 
0587 CCIV=(CTILC I) #CACT) #CB(1) )+(CT22¢1) #CL (1) #CM(I) ) 
0588 D(1)=(CT32(1)#CL¢1)) 
0589 E(I1)=(CT32(1)¥CM(1)) 
0590 F(1)=(CT33(1)) 
0591 G(1)=(CT43(1)) 
0592 
0593 c 
0594 C GLOBAL STIFFNESS MATRIX 
0595 c 
0596 
0597 
0598 S((Q#KR(1)-2), (B#KRO1)-2))=S( (3#KRCIT)-2), (B#KR(1)-2) )4+ACT) 
0599 S((B#KR(1)—-1), (B#KR(I)-1))=S¢(Q#KRC(I)-1), (3#KRC1)-1))+BC(1) 
0600 S((G#KR(1)-1), (3#KRC1)-2))=S¢(B#KR(1T)-1), (3#KR¢1)-2))4C(1) 
0601 S((BeKR (I) ), (B#KR(1)) 2 =S((3#KR(1)), (B#KRC1)) 4F (1) 
0602 S((S#KR(1)), (B#KR(T)-1))=S((B#KR(1)), (B#KR(1)-1) 4E(1) 
0603 ” S((3#KR(1)), (3#KR(1)-2) )=S¢(G#KR(I)), (3#KR(1)-2))+D¢1) 
0604 S((3#UR(1)-2), (3#UR(1T)-2))=S¢ (3#UR(IT)-2), (3#UR(1)-2))+A(T) 
0605 S((3#UR(1)-1). (B#UR(1)-1))=S¢(3#UR(1)-1), (3#UR(1)-1))+B(1) 
0606 S((B#UR(1)-1), (B#UR(1)-2))=S¢(3#UR(I)-1), (3#JR(1)-2)4C¢1) 
0607 S((3#UR(1)), (BHUR(I)) )=S((S#UR(T)), (B#UR(T)))4F C1) 
0608 S((3#UR(1)), (BeUR(I)—-1))=S((G#UR(1)), (B#UR(1)-1))-E(T) 
0609 S((B#UR(1)), (B#UR(1)-2))=S¢((G#UR¢1)), (3#UR(I)-2) )-D(T) 
0610 S((3#JUR (1)—-2), (B#KR(1)-2) )=S( (G#UR(I)-2), (3#KR (12-2) -ACT) 
O411 S((3#UR(1)-2), (B¥KR(I)-1))=S(0(3#UR(T)-2), (3#KRC1)-1) ¥-C(T) 
0612 S((3#UR(1)-2), (B#KR(1)))=S¢(G#UR(I)-2), (3#KRCT)) )-DCT) 
0613 S((3#UR(1)—-1), (B#KR(I)-2) }=S((3#UR(1)-1), (S#KRC1)-2)-C(T) 
0614 S((3#UR(1)-1), (Q#KR(1)-1))=S((3#UR(1)-1), (3#KR(I)-1)9-B(T) 
0615 S((3#UR(I)-1), (B#KR(I)))=S¢(B#UR(1)-1), (3#KRCT)) )-ECT) 
0616 S((3#UR (1) ), (3#KR (12-2) )=S((G#UR(1)), (B#KR(1)-2))+D¢1) 
0617 S((3#UR(1)), (B#KR(1)-1))=S((G#URC1)), (BeKR(1)-1) 4801) 
0618 S((3#UR(1)), (Q#KR(1)))=S¢(S#UR (1), (B#KR(1)) +601) 
0619 IF (I.LT.NM) GOTO 575 
0620 IF (I. EQ@.NM) GOTO 580 
0621 575 I=I+1 
0622 COTO 540 
0623 580 CONTINUE 
0624 
0625 C 
0626 C RESTRAINTS CONDITIONS 
0627 c 
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0628 I=1 

0629 o77 LL(I)=XL¢T) 

0630 IF (I.LT. (G#NJ)) COTO 378 

0631 IF. (1, EQ. (S*#NJ)) COTO 379 

0632 978 I=I+1i 
0633 GOTO 577 
0634 979 CONTINUE 

0635 
0636 I=1 

0637 981 IF (IDOF(1I).EQ@.0) GOTO 583 

0638 IF (IDOF(I). £Q@.1) GOTO 585 

0639 283 S(I,1)=S(1I,1)#1. OE20 

0640 LL(I)=S(1, 1)#IDOF (I) 

0641 985 IF (I. EQ. 3#NJU) GOTO 590 

0642 I=I+1i 
0643 GOTO 58i 
0644 9970 CONTINUE 

0645 
0546 Cc 
0647 c CHOLESKYS SOLUTION ROUTINE 

0648 c 
0649 c 
0650 c DECOMPOSITION 

0651 Cc 
0652 
0653 N=3#NJ 
0654 J=0 
0655 600 J=J+1 
0656 I=J-1i 
0657 610 I=I+1 
0658 IF (I. EQ@. J) GOTO 650 
04659 K=0 
0440 SUM=0 
0641 620 K=K+i 
0662 IF (K.NE. J) GOTO 630 
0663 IF (K.EQ@. J) GOTO 640 
0564 630 SUM=SUM+(S(1, K) #S¢J, K)) 

0565 GOTG 620 
0666 640 S(T, J=(S¢1, J)-SUM)/50U, J) 

0667 GOTO 690 
0668 650 K=0 
0669 SUM=0 
0670 660 K=K+1 
0671 IF (K.NE.J) GOTO 670 
0672 IF (K.E@. J) GOTO 680 
0673 670 SUM=SUM+(S(1,K)##2) 
0674 GOTO 660 
0675 680 S(I,1)=¢€(S¢1, 1)-SUM) ##0. 5) 
0676 5970 IF (I. NE.N) GOTO 610 
0677 IF (I.EQ@.N) GOTO 700 
0678 700 IF (J.NE.N) GOTO 600 
0479 IF (J.EQ.N) GOTO 710 
0680 710 CONTINUE 
0681 
0682 Cc 
0683 Cc FORWARD SUBSTUTION 

0684 c 
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0685 
04686 
0687 
0688 
0689 
0490 
0691 
0692 
0693 
0694 
0695 
0696 
0697 
0698 
0699 
0700 
0701 
0702 
0703 
0704 
0705 
0706 
0707 
0708 
0709 
0710 
O74) 
0712 
0713 
0714 
0715 
0716 
0737 
0718 
O719 
0720 
0721 
0722 
0723 
0724 
0725 
0726 
0727 
0728 
0729 
0730 
0731 
0732 
0733 
0734 
6735 
0736 
0737 
0738 
0739 
0740 
0741 

TAS 

Tee 

717 

720 

730 

740 

730 

2
.
0
)
 

760 

770 

780 

778 

1
0
°
0
8
 

792 

I=1 
22 (I)V=CL Cr) 
fe C2. N) GOTO 729 
IF (1.EQ@.N) GOTO 717 

I=I+1 
GOTO 713 
CONTINUE 
1=0 
I=I+1 
J=0 
SUM=0 
J=J+1 
IF (1. EQ.) GOTO 740 
SUM=SUM4+7Z (JU) #SCT, J) 

GOTO 730 
ZZ¢(1)=(ZZ¢1)-SUM)/S(1, 1) 
IF (I.NE.N) GOTO 720 
IF (I. EQ@.N) GOTO 750 
CONT INVE 

BACK SUBSTITUTION 

I=N+1 
I=I-1 
J=N+1 
SUM=0 
J=J-1 
IF (I.E@.JU) GOTO 780 
SUM=SUM4S (JU, 1) #Z2(J) 
GOTO 770 
ZZ(1)=(Z2Z(1)-SUM)/S(1, 1) 
IF (I.NE.1) GOTO 760 
IF (1. €@.1) GOTO 790 
CONTINUE 

MEMBER FORCES P.S, M1, M2. 

I=1 
FN1i=-(CT22¢1) #CL(1)#ZZ(3#KR(1)-2)) 

FN2=—(CT22(1) #CM( I) #ZZ(3#KR(T)-1)) 

FNS=-(CT3G2(¢1)#ZZ(3#KR(I))?) 
FN4=(CT22(1) #CL (1) #ZZ(3#UR(I)-2)) 

FN5=(CT22¢1) #CM( 1) #ZZ(3#JR(IT)-1)) 

FN6=—-(CT42°¢1)#ZZ(3*UR(I))? 
SS (1)=FN1+FN2+FN3+FN4+FNS+FNG 
FN7=—(CT32( 1) #CL(1)#ZZ(3#KR(1)—-2)) 

FNG=—(CT32°¢ 1) #CM( 1) #ZZ(3#KR(T)-1)) 

FN9=—(CT33(1)#ZZ(3*KR(1))? 

FN10O=(CT32(°1) #CL(1)#ZZ(3#UR(T)-2)) 

FN11=(CT32( 1) #CM(1)#ZZ(3#UR(I)~-1)) 
FN1i2=-(CT43¢(1)#ZZ(3#IR(1))) 

MA (1) =(FN7+FNS+FNO+FNIOFFNIL+FNi2) +XM1(T)
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0742 FN13=—(CT42(1)#CL(1)#ZZ(3*KR(1)-2)) 

0743 FN1i4=—(CT42(1) #CM(I)#ZZ(3*KR(I)-1)) 

0744 FNiS5S=-(CT43(1)#ZZ(3*KR(I))) 

0745 FNI6=(CT42(1)#CL (1) #Z2Z(G#JR(I)-2)) 

0746 FNiI7=(CT42( 1) #CM( 1) #ZZ(3#UR(T)-1)) 

0747 FNi8=—(CT44(1)#ZZ(3#URCI)) >) 

0748 MB (I) =—(FNIS+FN14+FN1S+FN16+FNi7+FN18)—-(XM201) ) 

0749 FN1I9=—(CT11(1) #CACTI) ®ZZ(3*#KRC1I)-2)) 

0750 FN2ZO=-(CT1i1¢ 1) #CB(I)#ZZ(3#KRCI)-1)) 

0751 FN21=(CT1I1( 1) *#CACI) #ZZ(3#UR(I)-2)) 

0752 FN22=(CTIi( 1 *#CB(I)*#ZZ(3#JR(I)-1)) 

0753 P¢(1}=FNi9+FN20+FN21+FN22 

0754 IF (1.LT.NM) GOTO 813 

0755 IF (I. EQ@.NM) GOTO 814 

07356 813 I=I+1 
07357 GOTO 792 
0738 814 CONTINUE 

0759 
0760 WRITE(&, 3800) 
0761 WRITE(6, 3180) 

0762 
0763 I=1 

0764 900 WRITE(&, 3200)1, CA(I), CB( 1), CL( I), CM(I? 

07465 IF (I. LT.NM) GOTO 910 

0766 IF (1. EQ@.NM) GOTO 920 

0767 910 I=I+1 
0768 GOTO 700 
0749 920 CONT INVE 

0770 
0771 WRITE( 4, 3300) 

0772 
9773 T=1 

0774 930 WRITE(6, 3400) 1, ZZ(3%1-2), ZZ(G¥I-1), ZZ(3#T) 

0775 IF ¢I.LT.NJ) GOTO 940 

0776 IF ¢(I1.EQ@.NJ) GOTO 950 

0777 940 T=I+1 
0778 GOTO 930 
0779 930 CONT INUE 

0780 
0781 WRITE(&, 3500) 

0782 
0783 I=1 
0784 940 WRITE(4, 3600) 1,SS(1),P¢1),MACI), MBC(T) 

0785 Ther. GNM) GOTOr9/0 
0784 IF (1. EQ@.NM) GOTO 980 

0787 970 I=I+1 
0788 GOTO 960 
0789 980 CONTINUE - 

0790 
Oo771 WRITE(&, 3700) 

0792 
0793 
0794 Cc 

0795 C NON-LINEAR ANALYSIS STARTS HERE (COUPLING FACTORS) 

0796 Cc 
0797 
0798 
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COUPLINGFACTORS 28-Sep-1988 16:51: 05VAX FORTRAN V4. 8-276 

29-Jul-1988 19:55: 12$1$DUA3: CBAWAGSINONPRIS. FOR: 60 

0799 
oso0o 985 I=1 
0801 127% ZZ(1)=XLXC¢I) 
0802 XL(1)=0 
0803 IF (IOLT) (SeNJ)) GOTO 1212 

0804 IF (1. EQ. (B*#NU)) GOTO 1213 

0805 1212 I=I+1 
0804 GOTO 1211 
0807 1213 CONTINUE 
0808 
0809 I=1 
0810 J=1 
oBil 981 S(I, J)=0 
0Bi2 IF (I. NE. (@#NJ)) GOTO 982 

0813 IF (1. EQ. (3#NJ)) GOTO 983 
oB14 982 I=I+1 
0815 COTO 981 
0814 983 IF (J.NE. (34#NU)) GOTO 984 

0817 IF (J. EQ. (3#NJ)) GOTO 986 
0818 984 J=J+1 
0819 I=1 
0820 GOTO 981 
0821 986 CONT INUE 
0822 
0823 
0824 c 
OG25 - « CALCULATION OF THE LOCAL STIFFINESS MATRIX 

0826 Cc FOR A NON-LINEAR MEMBER 
0827 . 
0828 I=1 
0829 990 IF (Pi(1I).EQ@.0) GOTO 1015 
0830 IF (P11): LT. 0) GOTO 993 
0831 te. (P41). OT. 0) COTO 995 
0832 
0833 
0834 993 P1i(I)=-P1i(1) 
0835 WCL)=((P1C1) /EI (I) )##0. 5) 
0836 Q@Q(I)=WC1)#L C1) 
0837 CW(1)=COS(QQ(I)) 
0838 SW(1)=SIN(QGQ(I)) 
0839 VCL)=WC1) #((QQ( 1) #SWC1L) )+(2#CW( 1) )-2) 

0840 GOTO 1500 
os4i 1010 V(I)=-VCT) 
0842 CT11(1)=EACI)/LOI) 
0843 CTOQCII=( PLC 1) #WCT)#W( 1) #SWCO1)/VCT)) 

0844 CTB2Q(1)=( PLC IT) #W(T) #C1-CW( I) /VC1)) 

0845 CTB3(1L)=(P1C 1) #(SW(T)-(QQ(T)#CW(1) 2) /VCT)) 

0846 CT42¢1) =CTS2¢1) 
0847 CT43(1)=(P1(1)#(QQ(1)-SW(1))/VIL)) 
0848 CT44(1)=CT33¢1) 
0849 
0850 C 
ossi Cc NON-NODAL LOADINGS 
0852 e 
0853 
0854 VN=(D#WC 1) #C1-CWCT) ))-CWCT) AWC) #L CT) #SWCT)) 

0855 CNLL=(WCL)—-C(WC IT) #WCTD) #L CT) #SWCT) CWT #CWKT) 2 /VN 

EI IEE IT a I ELIT TET Ee 
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COUPL INGFACTORS 

0856 
0857 
0858 
0859 
0860 
osél 
0862 
0863 
0864 
0865 
0866 
0867 
0868 
0869 
0870 
0871 
0872 
0873 
0874 
0875 
O87& 
0877 
0878 
0879 
o880 
osei 
0882 
0883 
0884 
o8BS 
0886 
0887 
08sss 
0889 
08970 
os7i 
0892 
0893 
0894 
0895 
0896 
0897 
0898 
0899 
0900 
o9701 
09702 
0903 
09704 
Ogos 
0906 
0907 
0908 
0909 
0710 
OF LT 
09712 

995 

1011 

28-Sep-1988 16:51: O5VAX FORTRAN V4. 8-276 

29-Jul-1988 19:55: 12¢1$DUA3: CBAWAGSINONPRIS. FOR: 60 

CNI2Z=((WCI) #L C1) #CW(I) )-SWC(T))/7VN 
CN1i3=(W(1)#(1-CW(I)))/VN 
CN14=(SW(T)-CWCT) #L01)))/7VN 
CN2@1=W(1)#WC 1) #SW( 1) 7VN 

CN22=CN13 
CN23=-CN21 
CN24=CN13 
CN31=-CN21/W( I) 
CNB2=CN11/W(T) 
CN33=CN21/W( TI) 
CN34=-CN13/WC(1) 
CN41=CN13 
CN42=-CNi2 
CN43=-CN13 
CN44=—-CN14 

SNN1i=(L(1)#CN11)4+(CN2Q1#L(I)#L(1)/2) 

SNN2=(CN31#(1-CW(1))/WC1) 4° CN41*#SWCT)/WCT)) 

S1=UDL (1) *#(SNN1+SNN2) 

SNN3=(L¢( I) #CN12)4+(CN22#L (IT) #L¢1)/2) 

SNN4=(CN32#(1-CWC1))/WC1) + (CN42#SWCT) SWOT) 

XM1i (I) =UDL (1) #(SNN3+SNN4 ) 
SNN5=(L (1) #CN13)4+(CN23#L (IT) #L¢1)/2) 

SNN6=(CN33#(1-CWC I) )/WCI) +°CN43#SW0 1) /WCT) 

S2=UDL (1) # (SNNS+SNN6) 

SNN7=(L(1)#CN14)4+(CN24#L (1) #L C01) 7/2) 

SNNS=(CN34#(1-CWC I) > /WC1) )+(CN4S48SW(0TD/WC TDD 

XM2¢1)}=UDL( 1) #(SNN7+SNNB8) 

FX1=S1i*CB(I> 
FY1=S1#¥CM(I) 
XM1¢1T)=XM1 (1) 
FX2=S2xCB (1) 
FY2=S2*CM(1) 
XM2(1)=XM2(1> 

XL(3#KR(1)-2)=XL(S#KR(1)-2)+FX1 
XL(3#KR (I) -1)=XL(S2KR C1) -1)4+FY1 
XL(3#KR (1) )=XL¢G#KR(1T))+XM1 01) 
XL(3#JUR(1)-2)=XL(3#JUR(1)-2)+FX2 
XL(3#JUR(1)-1)=XL(3#UR(1I)-1)+FY2 
XL(3#JUR CI) =XLC3#UR CI) )+XM2(1) 

PACT eee lt?) 
GOTO 1020 

WCI)=C(PLCI)/EI CI) ) ##0. 5) 

Q@QCT=WC I) #L¢T) 
CWC I)=COSH(QQ(I)> 
SWCT)=SINH(GQ(I)> 

V(I)=(2QRWCT HC L-CWCID)D4+(QQC IT HWC IT) #SWCT)) 

GOTO 1700 
CTI1LCI)=EACT)/LCI) 
CT2ACTI=(PACT HW IT) #WCT)#SWCTD/VCT)) 

CTBQCT)=-( PAC 1) #WC IT) eC 1-CWCIDD/VCI)) 

CT3BS(I)=-(P1C1)#(SW(T)—(QQ( 1) #CW(1T))D/VC1)) 

CT42¢(1)=CT3I2¢01) 

 



COUPLINGFACTORS 28-Sep-1988 16:51: O05VAX FORTRAN V4. 8-276 

29-Jul-1988 19:55: 12$1$DUA3: [BAWAGSINONPRIS. FOR; 60 

0913 CT43(1}=-(P1(1)#(QQ(1)-SW( 1) )/VCT)) 

09714 CT44¢1)=CT33¢1) 

o915 
0916 c 
0917 ¢ NON-NODAL LOADINGS 

0918 ¢ 
0919 CNLL=C(WCL) #WCT) SL C1) #SWCO1) -CWCT) RCWCI) D4WC TD /V CT) 

0920 CNIZ=((W(1)#L (1) #CW(1))-SWCI))/VC1) 

0921 CN1iB=(WC1)#¢1-CW(I)))/VC1? 

0922 CN14=(SW(I)-(WCTD#L C1) 2 /VC1) 

6923 CN21=-(WCT) #WC 1) *#SWCI)/VC1)) 

6924 CN22=CNi3 
0925 CN23=-CN21 
6926 CN24=CN13 
6927 CN31=-CN21/W(1) 

0928 CNS2=CN1i1/WC(1) 
0929 CN33=CN21/W( 1) 
0930 CN34=-CN13/W( I) 
0931 CN41=CN1i3 
0932 CN42=-CNi2 
0933 CN43=-CN13 
0934 CN44=-CNi4 
0935 
0936 SNN9=(LC I) #CN11)4+¢(CN21#L¢1I)#L(1) 7/2) 

0937 SNNLO=(CNB1#(CWCI)—-1)/WC1) + 0CN41#SWC 1) /WCT)) 

0938 Si=UDL(1)#(SNN9+SNN1O) 

0939 SGNN11=(L¢1)#CN12)+(CN22#L (1) #L(1)/2) 

0940 SNN12=(CN32#(CWCI)—-1)/WC(1) )+(CN42%SW(1)/WC1)) 

o974i XM1(1)=UDL(1)#(SNN11+SNN12) 

0942 SNN1i3=(L(1)#CN13)+(CN23#L(1)#L(¢1)/2) 

0943 SNN14=(CN33* (CWC I)—-1)/WC1) )+¢(CN43#SW(1)/W( 1) ) 

0944 S2=UDL (1) #(SNN13+SNN14) 

0945 SNN15=(L(1)#CN14)+(CN24#L(1)*L(¢1)/2) 

0946 SNN16=(CN34%(CW(I)-1)/WOT) )4+¢CN444S5SW(1T) /W(T)) 

0947 XM2(1)=UDL(1)}#*(SNNL5+SNN14) 

0948 
0949 FX1=Si#CB(I) 
0950 FY1=S1i#CM(1) 
0751 XM1(I)=XMi (1) 
0952 FX2=S2eCB(1) 
0953 FY2=S2#CM(1) 
0954 XM2(1)=XM2(1) 
0955 
0956 XL (3#KR(I)-2)=XL(3#KR(1)-2)+FX1 
0957 XL (3#KR(1)-1)=XL(3#KR(1)-1)4+FY1 

0958 XL(B#KR(1))=XL¢S#KR (CL) )+XM1 (1) 
0959 XL (3#JUR(1)-2)=XL(3#JR(1)-2)+FX2 
0960 XL (3#UR (12-1) =XL(G#UR(1)-1)4+FY2 
O941 XL (B#JUR (I) )=XL(3#UR (1) +XM2¢1) 
0962 
0943 GOTO 1020 
0964 
0945 1015 CTILCISEACID SLOT) 

0965 CTBA(IVH=L2H#EI (CID / (LCI) ##3) 

0967 CTB2(I)=S#EI (I /(L¢1) ##2) 

09768 CT33(1)=4¥EI(I)/LC1) 
0949 CT42¢(1)=CT32¢1) 
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29-Jul-1988 19:55: 12$1$DUA3: [BAWAGS INONPRIS. FOR: 60 

0970 CT43( I) =2kEI(I)/LCI) 

0971 CT44(1)=CT33(1) 

0972 Cc 
OF73 C CALCULATIGN FOR GLOBAL STIFFINESS MATRIX 

0974 G 

0975 
0976 

0977 1020 ACI) =(CTILC I) ¥CACT) #CACT) 4° CT22¢1) #CL(T) #CL(T) ) 

0978 BCI) =(CT11(1) *CB(1) #CB(1) )+(CT22¢1) #CM( I) #CM(T) ) 

0979 CCL=(CTILC I) #CAC I) #CB( 1) )4(CT22¢1) #CL( I) #CM(I)) 

0980 D(I)=(CT32( 1) #CL¢I)) 

0981 E¢I)=(CTB2CI)#CM(I)) 

0982 F(TI>}=CT33¢1) 

0983 G(1)=CT43(1) 

0784 
o9ss 
0986 S((BRKR(1)-2), (Q#KR(1)-2) )=SC(B#KR(1)-2), (Q#KR(T)—-2))+ACT) 

0987 S((3#KR(I)-1), (BRKR(I)-1))=S¢(S#KR(I)-1), (Q#KRCT)—-1))4+BCT) 

0788 S((BKKR(I)—-1), (G#KR(¢1)-2) =S¢(B#KRCT)-1), (B#KRCI)-2))4+C0T) 

0989 S((B#KR(1)), (BRKRCI)) }=SC(S#KR(I)), (QRKRCI)) D+F CT) 

0990 S((B3¥KR(1)), (Q#KR(IT)-1))=SC(S#KRCI)), (B#KRCID-1) +E CT) 

099i S((B#KR(1)), (B#KR(1)-2))=S((SG#KRCT)), (Q#KR(I)-2)4+DCT) 

09792 S((3#UR(1)-2), (B#UR(1)-2) )=S¢((B#UR(1)-2), (B#UR(T)-2))+ACT) 

0993 S((B#UR(1)-1), (B#URCI)-1) =SCCB#URCIT)-1), (B#URCT)-1))4+BCT) 

0994 S((B#UR(1)—-1), (B#UR(1)-2) =S((B#UR(1)-1), (Q#UR(I)-2))4+C(T) 

0995 S((B#UR(1)), (B#JR(I)))=SC(3#UR (I) ), (Q#UR (1) +F CT) 

0996 S((B#UR(1)), (Q¥UR(I)-1))=S¢(3#UR(T)), (Q#UR(I)-1))-E(T) 

O99 7, S((B#UR(1)), (B¥IRC1)-2))=S¢ (GIR (I), (S#IR(IT)-2))-DC(T) 

0998 §((3#JUR(1)-2), (B#KR(1)-2) )=S¢(3#UR(1)-2), (CB#KR(T)-2))-ACT) 

0999 S((3#UR(1)-2), (B#KR(1)-1) =S((3#UR(1)-2), (B#KR(T)-1))9-CCT) 

1000 S((3#JUR(1)-2), (B#KR(1)))=S((B#UR(1)-2), (S#KRCT)))-DCT) 

1001 S((3#UR(I)-1), (B¥KR(1)-2) )=S((3#UR(1)-1), (Q#KRC1I)-2))9-CC(T) 

1002 S((3#JUR(1)-1), (G#KR(I)-1) =S((3#UR(T)-1), (Q#KRC1)-1))-BCT) 

1003 S((B#UR(I)-1), (B#KR(I)))=SC(G#UR(T)-1), (Q#KRCT)))-ECT) 

1004 S((B#JUR(1)), (Q#KR(1)-2))=S¢(G#IUR(1)), (B¥KR(1)—-2))4+D(T) 

1005 S((B#UR(1)), (B#KRCT)-1))=S((S#UR(1)), (QRKROT)—-1) +E0T) 

1006 S((3#JUR(1)), (Q#KRCI)) )=S((3#UR(IT)), (Q#KR(T) 204607) 

1007 Te. LT..NM) GOTO* 1030 
1008 IF (I. EQ@.NM) GOTO 1040 

1009 i030 I=I+1 
1010 GOTO 990 
1011 1040 CONT INVE 

1012 
1013 
1014 Cc 
1015 Cc RESTRAINTS CONDITIONS 

1016 Cc 
1017 
1018 I=1 . 
Lory 1045 BB(I)=Z2Z2¢(1)+XL(1) 

1020 IF (I. LT. (3#NJ)) GOTO 1046 

1021 IF (1. EQ. (3#NJ)) GOTO 1047 

1022 1046 I=I+1 
1023 GOTO 1045 
1024 1047 CONTINUE 

1025 
1026 T=1 
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1027 1050 IF (IDOF(I). £E@.0) GOTO 1040 

1028 IF (IDOF(I).EQ@.1) GOTO 1070 

1029 1060 S(I, 1)=S¢(1, 1) #1. OE12 

1630 BB(I)=S¢(1, 1)#IDOF(I) 

{O31 IF (1. EQ. (3#NJ)) GOTO 1090 

1032 1070 I=I+1 

1033 GOTO 1050 

1034 1090 CONTINUE 

1035 
1034 Cc 

1037 Cc DECOMPOSITION 

1038 Cc 
1039 J=0 
1040 1100 J=J+1 

1041 I=J-1 
1042 1120 I=I+1 

1043 IF (1. E@.J¥) GOTO 1160 

1044 K=0 
1045 SUM=0 

1046 1130 K=K+1 

1047 IF (K. NE. J) GOTO 1140 

1048 IF (K.EQ@. J) GOTO 1150 

1049 1140 SUM=SUM+(S¢(1,K)#S¢U,K)) 

1050 GOTO 1130 

1051 1150 S(I, J)=(SC1, J)-SUM)/SCU, J) 

1052 GOTO 1195 

1053 1160 K=0 
1054 SUM=0 

1055 1170 K=K+1 

1056 IF (K. NE. J) GOTO 1180 

1057 IF (K. EQ. J) GOTO 1190 

1058 1180 SUM=SUM+(S (1, K) ##2) 

1059 GOTO 1170 

1060 1190 S(I, 1)=((S(1, 1)-SUM) ##0. 5) 

1061 Lot IF (I. NE. (3#NJ)) GOTO 1120. 

1062 IF (1. EQ. (3#NJ)) GOTO 1200 

1063 1200 IF (JU. NE. (3#NJ)) GOTO 1100 

1064 IF (J. EQ. (3#NJ)) GOTO 1210 

1065 1210 CONTINUE 

1046 Cc 
1047 G FORWARD SUBSTITUTION 

1068 c 
1069 I=0 
1070 1220 I=I+1 
1071 J=0 
1072 SUM=0 
1073 1230 J=J+1 

1074 IF. €18G: J) COTO: 1240 

1075 SUM=SUM+BB(J)#S(T, J)? 

1076 GOTO 1230 
1077 1240 BB(1)=(BB(1)-SUM)/S(1I, I) 

1078 IF (I.NE. (34#NJ)) GOTO 1220 

1079 IF (1. EQ. (3#NJ)) GOTO 1250 

1080 1250 CONTINUE 
1081 

1082 C 
1083 Cc BACK SUBSTITUTION 
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1084 C 
1085 
1086 I=(3#NJ) +1 

1087 1260 TA 

1088 J=(GENJU) +1 

1089 SUM=0 

1090 1270 J=J-1 

1091 IF (1. £@.J/) GOTO 1280 

1092 SUM=SUM+5 (J, 1) #BB (J) 

1093 GOTO 1270 

1094 1280 BB(I)=(BB(1)-SUM)/S(1, 1) 

1095 IF (I. NE. 1) GOTO 1260 

1096 IF (1.E@.1) GOTO 1290 

1097 1290 CONTINUE 

1098 
1099 Cc 
1100 Cc MEMBER FORCES P, S. Ml, M2. 

1101 C 
1102 
1103 I=1 

1104 1300 FNi=-—(CT22(1)#CL(1)#BB(3*KR(I)—-2)) 

1105 FN2=-(CT22(1)#CM( 1) *#BB(3#KR(I)-1)) 

1106 FNS=-(CT32(1)#BB(S#KR(I))) 

1107 FN4=(CT22( 1) #CL( 1) *#BB(SG#IR(I)-2)) 

1108 FNS=(CT22(1) #CM( 1) #BB(3#JR(I)-1)) 

1109 FN6=-(CT42(1) *#BB(3#IUR(I))) 

1110 SS(1)=FNi+FN2+FN3+FN4S+FNSOt+FNS 

eit FN7=—(CT32(1)*#CL(1)#BB(3#KR(1)-2)) 

1i12 FNB=-(CT32(1) #CM( 1) #BB(S#KR(T)—-1)) 

1.13 FN9=-(CT33(1)#*#BB(3#KR(I))) 

1114 FN10=(CT32(1)#CL( 1) #BB(3#JR(I)~-2)) 

1115 FN11=(CT32(1)*CM( I) #BB(3#JR(I)-1)) 

1116 FNi2=—(CT43(1)#BB(3#JR(I))) 

LED 7: MA(I)=(FN7+FNS+FN9+FN1OF+FNI1L+FN12)+XM1 CT) 

1118 FN1i3=-(CT42(1)#CL(1)#BB(G#KR(T)-2)) 

129 FN1i4=-(CT42(1)#CM(I)*¥BB(3#KR(I)-1)) 

1120 FNiS=-(CT43(1)#BB(3#KR(T))) 

ii2i FNi6=(CT42(1)#CL(1)#BB(3#UR(1)-2)) 

1122 FN17=(CT42(1) #CM( 1) #BB(S#JUR(1)-1)) 

ti23 FNi8=~—(CT44(1)#BB(3#JR(1I))) 

1124 MB(1L)=—(FNIS+FN14+FNi S+PN16+FN1 7+FNIG)—CXM2CT)) 

1125 FNL9=—(CT11(1)*#CA(I) #BB(3*KR(1I)-2)) 

1126 FN20=—(CT11¢(1)#CBC1)#BB(3#KR(I)-1)) 

1127 FN2Z1=(CTi1(1)#CA(1I)#BB(Q#JUR(1I)-2)) 

1128 FN22=(CT11(1)#CB(I)#BB(G#JR(1I)-1)) 

1129 Pi(1)=(FNI9+FN20+FN21+FN22)+AMDA(T? 
1130 IF (I.LT.NM) GOTO 1310 
1TSt IF (1.EQ@.NM) GOTO 1320 

1132 1a1t90 T=I+1 
1133 GOTO 1300 
1134 1320 CONT INVE 
1135 
1136 IF (ID. LT. ICON) GOTO 1325 

£tS7 IF (ID. £G. ICON) GOTO 1327 

1138 i325 ID=ID+1 
DLs, GOTO ?85 
1140 1327 CONTINUE 

i a aan idle es sar pg on non yenge es ‘i OF rat nm Ee SLITS I I TE AT 
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1141 
1142 WRITE(&, 3950) 

1143 WRITE(&, 3180) 

1144 
1145 I=1 

1146 1330 WRITE(4, 3200)1,CA(1), CB(I), CL(I), CM(T) 

1147 IF (I.LT.NM) GOTO 1340 

1148 IF (I. EQ@.NM) GOTO 1350 

1149 1340 I=I+1 

1150 GOTO 1330 

1151 1350 CONTINUE 

1152 
1153 WRITE(6, 3300) 

1154 
1155 I=1 

1156 1340 WRITE(6, 3400) 1, BB(3#1-2), BB(3#I-1), BB(3*I) 

1157 IF ¢I1.LT.NJ) GOTO 1370 

1158 IF (I. E@.NJ) GOTO 1380 

11o7 1370 I=I+1 
1160 GOTO 1360 
126i 1380 CONT INVE 

1162 
1143 WRITE(46, 3500) 

1164 
1165 I=1 

1166 1390 WRITE(6, 3600)1,SS(1),P1¢1),MACTI), MBC) 

1167 IF (I.LT.NM) GOTO 1400 

1148 IF (I. EQ@.NM>) GOTO 1410 

11469 1400 I=I+1i 
1170 GOTG 1396 
biel 1410 CONT INUVE 

1172 
1173 WRITE(4&, 3700) 
1274 WRITE (4. 3900) 
Lio CLOSE 63) 
1176 CLOSE (6) 
Li2 7 10000 STOP 
1i7s 
Lio 
1180 Cc 
1181 c SUBROUTINE COUPLING FACTORS 

1182 Cc 
1183 
1184 
1185 1500 WiCI)=(CL(1)¥BB(3*#KR(1)-2) )+(CM(1) #BB(S#KRCI)—-1)) 

1186 W2(1)=(CL(1) #BB(3#UR(1)-2))+(CM( 1) #BB(S#UR(I)-1)) 

L167 R1iCI})=BB(GHKR(T) ) 
1188 R2(1)=BB(S¥JR(I1)) 

1189 ‘ 

TL ZO CCli, LI=CCCWCT IHWC) HL OT) #SWCT) + C WOT) RCWC TI) -WOT))/VCT)) 

11971 CCC1, DI=C (SWC TL) -CWCT BLOT) #CWCT) DD /VCT)D 

1192 CC(1, BHCC CWT) CWC) “WOT SVT) 

1193 CCCIRAIHC COWL TD OL 1) )-SWCT 97 V 0122 

1194 CC(2, LI=- CWC IT) HWCT)RSWCTD/V01) 

Livs CC(2, 2)=CC (1,3) 

1196 CC(2,3)=-CC(2, 1) 

397 CC(2, 49=CC (1.3) 

~ ri: eT an PR ee ER, SON v 
ie ee ae ee ee AOS? 

  

PETER RY Ee aya 
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1198 CC(3, 1)=(WCT) #SWCTD/VCT)) 

Pio CC(3, Q=(C CWC) HL OT) #SWCT) 4+CWC I) -1)/V0T)) 

1200 CC(3, 3)=-CC(3, 1) 

1201 CC(3, 4)=(C1-CWC ID) /VCT)) 

1202 €€ (4, 1)=CC (1,2) 

1203 CC(4,2)=(C (WL) #L CT #CWCT) )-SWCT) D/V(T)) 

1204 CC(4,3)=-CC(1, 3) 

1205 CC(4, 4)=( (SWOT) -CWC TD #L C10) 7 0T)) 

1206 
1207 
1208 M=1 
1209 1510 N=1 

1210 1520 CNN1=(CC(2,M)#CC(2,N)/2) 

1211 CNN2@=(¢ (CC (2, M)#CC(3,N))+0CC( 3, M)#CC(2,N) D#SWCTD/(2HL CT)! 

1212 CNNB=(¢ (CC (2,M)#CC(4,N) +000 (4, M) #CC(2,N))#(CWCID-1) 70 28LI 

1213 CNN4=(WCT) WOT) /4)4+¢0 (WOT) #SIN(CQ#WC TALI) /(88L 01D) 

1214 CNNS=(WC1)#W(1)/4)—-C CWC IT #SINCQ#WCT SLI) /(8#L OT) )) 

1215 CNN6=(CC (3, M) #CC (3, N) #CNN4) 

1216 CNN7=((CC(3,M) #CC(4,N))+(CC(4,M)#CC(3,N))) 

1217 CNNS=(COS(2#W(T)#L¢01))-1) 

1218 CNN9=(W(1)/(8#L¢1) ))#CNN7#CNNS 

1219 CNN10=(CC(4,M)#CC(4,N)#CNNS) 

1220 @(M, N)=CNN1+CNN2+CNN3+CNN6+CNNI+CNN1IO 

1221 IF (N.LT. 4) GOTO 1530 

1222 IF (N.EQ@.4) GOTO 1540 

1223 1530 N=N+1 
1224 “GOTO 1520 

1225 1540 IF (M.LT. 4) GOTO 1550 

1226 IF (M. EG. 4) GOTO 1560 

1227 1550 M=M+1 

1228 GOTO 1510 
1229 1540 CONT INUE 

1230 
1231 

1232 CTL1=(QC1, 1) #W1(1))+0QC1, 22#RICT)) 

1233 CT2=(Q(1,3)#W2(1))+(G(1, 4) #R2(T)) 

1234 A1(1)=CT1+CT2 

1235 CT3=(Q(2, 1) #W1(1))+(Q(2, 2) #R1(1)) 

1236 CT4=(Q(2, 3) #W2(1))+(Q02, 4) #R2(1)) 

1237 A2(I)=CT3+CT4 

1238 CT5=(Q(3, 1) #W1(T))+6Q03, 2)#RI(T)) 

1239 CT6=(Q(3, 3) #W2(1))+(Q(3, 4) #R2A(T)) 

1240 A3B(I)=CTS+CTS 

1241 CT7=(Q(4, 1) #W1(1))4+(Q(04, 2)#RICT)) 

1242 CTB=(Q(4, 3)#W2(1))+(QC4, 4) #RACT)) 

1243 A4(1)=CT7+CTS 

1244 GAMA=(A1 (I) #W1 (I) )+(A2CT) #R1I CT) + CAS (1) #W2(T) + (A4(0T) BROT 

1245 AMDA( 1 )=EAC1)#GAMA 

1246 AL(I)=A1(1) #EACT) 
1247 A2(1I)=A2( 1) #EACT) 

1248 AS(I)=A3( 1) #EACT) 
1249 A4(1)=A4 (IT) #EACT) 

1250 
1251 ZNi=A1(1)*#CACI) #CL(1)#BB(S#KR(I)-2) 

1252 ZN2=AL (1) ¥CACI) #CM( 1) #BBCS#KR(I)-1) 

1253 ZN3=A2Z(1) CACTI) #BBC(S#KRCI)) 

1254 ZN4=A2(1) ¥CB( I) #BB(QG#KR(I}) 
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1255 ZN5=A1(1)#CB(I)#CL(1)#BB(3#KR(1)-2) 

1256 ZN6=A1(1)#CB(1)#CM( 1) #BB(3*#KR(I)-1) 

1257 ZN7=A4(1)#CB(1I)#BB(3*UR(I)) 

1258 ZN@=A4(1)#CA(1) ®BB( S#JR(1)) 

1259 ZN9=A3B(1) #CA(I) *¥CL(1) #BB(3*UR(1)-2) 

1260 ZN10=A3(1)#CA(I) #*#CM(1)#BB(3#JR(1)-1) 

1261 7Ni1=A3(1)#CB(1)*#CL(1)#BB(3#JR(1)-2) 

1262 ZN12=A3(1)#CB(1)*CM(1)#BB(S#UR(1I)-1) 

1243 
1264 ZNi3=ZN1i+ZN2+ZN3+ZN9+ZN10+ZN8 

1265 ZN14=ZN5+ZN6+ZN4+ZN11+ZN12+ZN7 

1246 
1247 27Z(3#KR(1)-2)=2Z (3#KR (1)-2)+ZN13 

1268 ZZ(B#KR(1)-1)=ZZ(3#KR(1)-1)+ZN14 

1249 ZZ (3#UR (1) -2)=ZZ(3#JR(1)-2)-ZN13 

1270 2Z(3#JUR(1)-1)=Z2(3*#JR(1)-1)-ZN14 

1271 GOTO 1010 
1272 
1273 
1274 Cc 
1275 Cc SUBROUTINE COUPLING FACTORS FOR TENSION 

1276 g 
1277 
1278 
1279 1700 W1(1)=(CL¢1) #BB(3#KR(I)-2) )+0CM(1) *#BB(3#KR(1)-1)>) 

1280 W2(1)=(CL(1) #BB(3#JUR(1)-2))+(CM( I) #BB(3#JR(1)-1)) 

1281 R1i(1L)=BB(3#KR(1)) 

1282 R2(1)=BB(3*UR(I)) 

1283 
1284 CC(1, L)=C CWT) RWOT) LOI) SWOT) )-CWCT) CWC) FWD) /V0T) 

1285 CCL, DI=CCWCL) HL CT) *#CWCI) )-SW(IT))/VC1) 

1286 CCL, BV=(WEIT) # (1 -CWLI))/VC1)) 

1287 CClt, 4)=(SWET)-CWCT) #L¢1)) 7/01) 

1288 CCO(2, 1) =—- (WIL) #WC TL) #SWCIT)/YC(T)) 

1289 CC(2,e)eCCC4; 3) 
1290 CC(2,38)=-CC(2, 1) 
1291 C6(9, 4).=CC(1 +3) 
1292 CC(3, 2) =-(0C (2, 1) /WU1)) 

1293 CC(3, 2)=(CC(1,1)/WCI)) 

1294 CC(3, 3)=(CC(2, 1) /WET)) 

1295 CC(3, 4)=-(CC(1, 3)/W( 1)? 

1296 COLA; FISCECl. 2) 
1297 CC (4, 2)=-CC (1. 2) 
1298 CC (4, 3)=-CC (1,3) 
1299 CC(4, 4)=-CC (1, 4) 
1300 
1301 
1302 M=1 
1303 1710 N=1 
1304 1720 CNN1=(CC(2,M)#CC(2,N)/2) 

1305 CNN2=(( (CC (2, M) #CC (3, N) #600 (3, M)#CC(2,N))) #SWCT)/(2#L(T) D1 

1304 CNN3=(( (CC (2, M) #CC(4,N) 4°00 (4, M) RCC (2,N)) #CCWCT)-1)7 02 8L 

1307 CNN4=(WCL) #WC1)/4)4+0(WC I) RSINH(28WCT)#L 01) /708*L 01) )) 

1308 CNN5S=—(WCL) #WO1)/4)4+¢ (WC 1) #SINH(2#W (1) #L 01) 0/7 0S8L 01) )) 

1309 CNN6=(CC (3, M)#CC 13, N) #CNN4) 

1310 CNN7=( (CC (3, M)#CC(4,N))4+°¢CC (4, M)#CC(3,N))) 

i311 CNNS=(COSH(2#W(T)#L¢1))-1) 

LET ee ee EE TIE EI EE wie net iree other Doms +m mr tenes Soy Re ot Sawer save ee 
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1312 CNN9=(WC1I)/(8#L (1) ) ) #CNN7#CNNB 

i3i3s CNN10=(CC(4,M)#CC(4,N) #CNN5) 

i314 @(M, N) =CNN1+CNN2+CNNG+CNN6+CNN9+CNNIO 

iSio IF ({N.LT.4) GOTO 1730 

1316 IF (N.EQ@.4) GOTO 1740 

13t7 1730 N=N+1 
1318 GOTO 1720 

1329 1740 IF (M.LT.4) GOTO 1750 

1320 IF (M.EQ@. 4) GOTO 1760 

1321 1750 M=M+1 
1322 GOTO 1710 

1323 1740 CONTINUE 

1324 

1325 CT1=(Q(1, 1) #W1(1))4+(QC1, 2) #R1ICT)) 

1326 CT2=(Q(1,3)#W2(1))4+(Q(1, 4) #R201)) 

1327 A1(I)=CT1+CT2 

1328 CT3=(Q(2, 1) #W1 (1) )4+(Q(2, 2)#RICT)) 

1329 CT4=(Q(2, 3) #W2(1))+(Q(2, 4) #R2ACT)) 

1330 A2(1I)=CT3+CT4 

1331 CT5=(Q(B, 1) #W1(1T))+(Q(3, 2)#RICT)) 

1332 CTS=(Q(3, 3) #W2(1))+(Q(3, 4) #R2CT)) 

1333 ASCI)=CTS+CTS6 

1334 CT7=(Q(4, 1) #W1¢1))+(Q(4, 2)#RICT)) 

1335 CTB=(Q(4, 3) #W201))4+(Q04, 49 #RAC1)) 

1336 A4(1}=CT7+CTS 

1337 GCAMA=(ALC 1) #W1 (C12) +(AQ2CT)#RICT) +( ASC IT) #W2CT) CAS (TRACT) 

1338 AMDACT)=EACI) #GAMA 

1339 ALCIY=ALC I) #EACT) 

1340 A2CI}=A2QC1T #EACT) 

1341 ABSCID=ASBCI} #EACT) 
1342 ASCII =A4( IT #EACT) 

1343 

1344 ZNI=A1(1)*CACI) ¥CL(1)*#BB(3#KR(I)-2) 

1345 ZN2Z=A1(1)#CACI) ¥CM(I)#BB(S*#KR(I)—-1) 

1344 ZN3B=A2(I)#CAC I) #BB(S#KRC(T) ) 

1347 ZN4=A2(1)#CB( 1) #BB(S#KR(I) ) 

1348 ZN5=Ai(1)#CB(1)#CL(1)#BB(S*#KR(I)-2) 

1349 ZNS=A1(1)#CB( 1) #CM(1)#BB(S*#KR(I)-1) 

1350 ZN7=A4(1)#CB( 1) #BB(G#UR(T)) 

1351 ZNB=A4(1)*CAC1) #BB(S*#UR(I)) 

1352 ZN9=A3B(1) #CACT) #CL (1) #BB(Q#UR(1I)-2) 

1353 ZN1O=A3(1)*CAC I) #CM( I) *#BB(3#JR(I)-1) 

1354 ZN1L1=AS(1I)¥CB( I) #CL(1)#BB(G#JUR(1)-2) 

1355 ZN12=A3(1)#CB( 1) *CM(1)*BB(S#JUR(I)-1) 

1356 

£63277. ZN13=ZN1+ZN2+ZN3+ZN9+ZN10+ZN8 

1358 ZN1i 4=ZN5+ZN6+ZN4+ZN1i1+ZN12+ZN7 

1359 

1360 ZZ(3#KR (1 Y-2)=ZZ(3#KR(1)-2)4+ZN13 

1361 ZZ(3#KR(1I)-1)=ZZ(3#KR(1)-1)+ZN14 

1362 ZZ(B#UR (I )-2)=ZZ(3#UR (1) -2)-ZN13 

1363 2Z(3#JUR (1 )-1)=ZZ(3#JR(1I)-1)-ZN14 

1364 GOTO 1011 

1365 Cc 
1366 Cc FORMATION SUBROUTINE 

1367 Cc 
1348 

LE IEEE LENE LTS OA IES A GRR NN OR, SOT EIN ES SY SEN EES ARES, RS eG EP PETE OTE EEE TIAL 

* forte $ RS it . cise? fee ” eine. ws S o.. « wo rss 
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1369 
1370 
1371 
1372 
1373 
1374 
1375 
1376 
1377 
1378 
1379 
1380 
1381 
1382 
1383 
1384 
1385 
1386 
1387 
1388 
1389 
1390 
1391 
1392 
1393 
1394 
1395 
1396 
1397 
1398 
1399 
1400 
1401 
1402 
1403 
1404 
1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 
1415 
1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 

ew, — Nar 

  

2000 FORMAT (48X, 
K
e
 

K
e
 

KR 
K
R
 
e
K
 

KR 
K
K
 

KR 
KR 
K
K
 

R
K
 

K
O
K
 

OK 
KR 

K 48x, 
48x, 
48x, 
48x, 
48x, 
48x, 
48x, 
48x, 
48X, 
48x, 
48x, 
48x, 
48x, 
48x, 
48X, 
38X, 
38x, 
38X, 
38x, 
38X, 
38X, 
38x, 
38x, 

2100 FORMAT (28x, 

e
o
 

we 
e
m
 

me
 

me
 

me
 
ok

 
e
k
 

ke
 

2BX, 
38x, 
38X, 
20x, 
20X, 
20X, 
20X, 
12X, 
12X, 
BX 
PX 
LXo* 
KT 

2200 FORMAT (1X, ’ 
2300 FORMAT (1X, ’ 

m
o
e
 
e
e
 

kK 
e
e
 

Ke 
me 
e
K
 ke 
ok

 
kK 
K
K
 

ST Te Ie Ae 

TX 
ko 
Le 
BX. 
1X) 
1X, ’ 
15X, 
15X, 
15X, 
15X, 
10X, 
10X, 
10X, 
Xe 
Xie 
1X, ! 
1%! 

SO er ESP Pepe aT ee et Kp ED Le re eR Ne core 

28-Sep-1988 16:51: OSVAX FORTRAN V4. 8-276 

‘ oi] 

é te 

‘ fof 

f oak 

‘DDDDD AAAA TTTTT AAAA‘/ 
SDD (De. AL oe T A A‘s 
‘Doe AOR + A A’/ 
‘DD D AAAA T AAAA / 7 
‘DD DAA A a AA A’/ 
‘DD DAA A 1: AA A’/ 
‘DD DAA A ili AA A’/ 
‘DDDDD AA A iL AA A’/ 
/ $f 

é ao 

‘ Cs 

é hf 

‘THE DATA FILE CONTAINS THE INPUT DATA OF THE’/ 

f STRUCTURE, SUCH AS JOINT NUMBERING, JOINT ‘/ 

LOADING & RESTRAINTS. MEMBER POSITION, ’/ 

AND MEMBER PROPERTIES ‘/ 

4 

i 

, sy 

’ “7 

‘ oy) 

, *) 

“THE STRUCTURE HAS’, I2, ’ JOINTS’/ 
(esse eS Se eS SSS SSS / 

é of 

: tif ; 

“JGINT COORDINATES ’/ 
4s eee eee’ / 

é 7 

é fe 

“ALL COORDINATES ARE IN METRES’/ 
‘ “7 

JOINT X-COGORDINATE Y-COORDINATE ’. 

my 

{ T2, f is F6. 2: ‘ “5 Fe 

ad, 

ah 

ef 

ds 

4, 

ne: 

“RESTRAINTS OF JOINTS’/ 
fesse eee Sees / 

, tf 

‘ 1] 

’A "O" DENOTES A RESTRAINT & A’/ 

‘“4" REPRESENTS FREE MOVEMENT ’/ 
‘ oF 

JOINT X-DIR Y-DIR THETA-BILR 7 2/ 
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1426 2400 FORMAT (1X; ’ Ger. Skea e Chea as 

1427 2500 FORMAT(1X, ’ a7 

1428 * ON ee ee eee Le 

1429 * x the 

1430 % LXo4 sth 

1431 * xi? ay. 

1432 + ol ee of 

1433 * LX ai wh 

1434 * 15X, ‘LOADINGS ON JOINTS’/ 

1435 + 15\%) ‘seeesnsesaseeesaa=// 

1436 * TOK at 

1437 % Lok Lf, 

1438 * 10X, ‘ALL LOADS ARE IN KN & KNm‘/ 

1439 * 10x, ’ hs 

1446 % FN a re a oe ee a ae ee es ae ey a 

1441 * 1%."  JGEINT X-DIR We-OTR THETA-DIR |. 

1442 * ae a ae ee ee ae ne a a 

1443 * TX," 1) 

1444 2600 FORMAT(1X, ° {aL aas (Aaa S SED “a°F 

1445 2700 FORMAT(1iX, ’ oe 

1446 * 1X 0 mn nnn re 

1447 % Xa: nee 

1448 % LX. ° of 
1449 * kos od 

1450 % 1X tf, 

1451 % x. CT 

1452 % 38X, ‘THE STRUCTURE HAS’, I2, ’ MEMBERS’/ 

1453 * 99X, (s=sSsHS====SSS=SSSSSSSSS===== ’ of 

1454 * Sox” Of 

1455 * SEX," ty, 

1456 # 14X, ‘MEMBER POSITIONING & LENGTH‘/ 

1457 * 14X, ’sseeeseeSSSsSSSSSSSeSSeSaS= he é 

14538 % 14X, ’ of, 

1459 * 14X, ’ ve 
1440 * 15x,“ ALL “LENGTHS ARE IN METRES “7 

1461 + LOX es. 

1462 3 VX 0 mm ee fd 

1463 * TXi MEMBER JOINT I YVOINT J LENGTH ’/ 

1444 * 1¥) ¢ ose eS ee i 
1465 x 1X,’ 6) 
14464 2B00 FORMAT(I1X, * cael ee S127 < ty Vere" Ar: 

1447 2900 FORMAT (1X, ’ of 

1468 * [X) ? aon an anne nn i, 
1449 * 1X, / my, 
1470 * 1X,’ “y 
1471 aH LX rh 

1472 + 5 es 17, 

1473 us DX 7 of 

1474 + 15X, ‘MEMBER PROPERTIES ‘’/ 

1475 # 15%, (==========S=S======'/ 

1476 * 19K" ef 

1477 % POX: * of 

1478 * 13X. ‘ALL VALUES IN AN & m’/ 

1479 * Tax ot, 
1480 # LM Om ee nn 

‘1481 * Tho MEMBER EI VALUE EA VALUE 

1482 # 1X) (eee een en nen 
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1483 % TK” £) 

1484 3000 FORMAT(1X, ‘ “Tene. (PE LO“2e LE tOoe) 

1485 3100 FORMAT(1X, ‘ af 

1486 % {Xj 4 = a ee ee ee : 

14937 # dG 3 a7, 

1483 # TX ¢ fof 

1489 * 1X ah 

1490 * BONG. aera aaa END OF DAA. se we 

1491 * 20X, ’ 4k 

1492 * 20X, ’ CT 

1493 * 20X, od: 

1494 # 20X, ’ ef 

1495 * 20X, aL 

1496 * 20X, ’ ef 

1497 * 20X, ’ oh 

1498 # 2OX; ’ md 

1499 * 38X, ‘RRRRR EEEEE SSSSS UU ULL Tibi pepoa. 7% 

1500 * gex, “RR. RB: EE Ss Gu Bee ik SS ut 

1501 * SSX; 7RR. REE SS OO Uae i oo cf 

1502 * 38X, “RRRRR EEEEE SSSSS UU VU LL ne SSo5o0/7 

1503 * 3BX, “RRR EE S UU US EE lj S77, 

1504 % 38X, ‘RR RR EE Sey UE iT es 

1505 # BBX. “RRe REE Sal. UU. bl n Ss 

1506 + 38X, “RR R EEEEE SSSSS UUUUU LLLLL T SOSoS 7 

1507 # SOK" fy 

1508 3150 FORMAT (38X, ’ el, 

1509 # BOxXae’ ah 

TrOLO * OK? e7. 

Toll * 44X, ‘THE RESULT SECTION CONTAINS THE’/ 

bis 5 # 44X, DIRECTIONAL COSINES, JOINT od, 

LOLS % 44x, ’ DEFLECTIONS & MEMBER ad 

1514 % 44X, ’ FORCES yd 

1513 # 44x, ’ 7 

1516 + 44X, ‘ cs 

1517 % 298X, ‘ALL DEFLECTIONS *& MEMBER FORCES ARE IN’/ 

1918 + 28x, ‘ METRES/RADIANS, KAN & KNm’/ 

1329 + Zax! es 

1520 * 28x, ’ a2 

152i Si Fise FORMAT (28x, ’ ET ONeE ALR ANAL YS 1 S47 

1522 * OER gt meee ee ee eee eee See eS eS EES! / 

1523 ¥ 28x, ” SLT. 

1524 ¥ 15X, ‘ANALYSIS WITH MUTUALLY INDEPENDENT STIFFNESS ’/ 

1525 * Lox MATRICES IGNORING LARGE DEFLECTIONS ’/ 

1526 * PORK FLY 

1527 3180 FORMAT(15X, ‘DIRECTIONAL COSINES‘/ 

1528 % 15X, (/==SS=S=SSSSSSSSSSs 5 af 

1529 # Moe 
1530 # |X, (-ce ere nn nn nnn nnn ‘y 
1531 * DAD | MEMBER ALPHA BETA LAMDA MUE 7 

1532 * DN oie i a ee eee ee +f, 

1333 + UK Se 

1534 3200 FORMAT(1X,’% ’, 12) ’ VEO. Gin. i iO. re eG on 

1535 3300 FORMAT (1X, ’ 07, 

1534 * 1X) fn ear 7 

1937 % Xs Of 
1538 * Ka af 
1539 * 1X05 tf 

           



COUPLINGFACTORS 

29-Jul-1988 19:55: 1241$DUA3 

1540 * 1 Ge 

1541 * LK 

1542 * 15x, 

1542 + 15X, 

1544 ca 15X, 

1545 * 1XG eS 

1546 * XG 

1547 # Xa! 

1548 * 1X54 

iS49 3400 FORMAT(1X, ’ 

Tove 3500 FORMAT(1X, ’ 

1551 * Xi a! 

1552 * 5X). 

1303 * 1X," 

1554 % a Xa: 

L350 * LX 

1556 * TX, 3 

1557 * 18X, 

13998 * 18X, 

{3359 * 18x, 

15460 % 18x, 

i561 * 10X, 

1562 ¥* 10X, 

15463 * 10X, 

1564 + 1X;.2 

1565 * 1X, * 

1564 % Xs 

1967 % Lae” 

1568 * LX 

15469 34600 FORMAT (1X, ’ 

1570 3700 FORMAT (1X, ’ 

1571 + iXi 

1572 * 1X 

1973 % 1X56 

1574 * DX ey 

1370 + Xa 

1Sfo * LXae 

L377 3800 FORMAT (28X, 

Loyd % 28x, 

Los? * 28x; 

1580 + 28x, 

1581 * 28x, 

1582 * 15X, 

1563 + LOX 

1584 + 15X, 

1585 3900 FORMAT (48x, 

1586 39:96 FORMAT (28X, 

1587 % 28X; 

1588 % 28X, 

1589 * 28%, 

15970 % 28X, 

is7i ¥ 15X, 

i592 * 15X, 

1593 % 15X, 

iS94 4000 FORMAT(1X, ’ 
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