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SUMMARY

This thesis presents an investigation into the application of methods of uncertain reasoning
to the biological classification of river water quality.

Existing biological methods for reporting river water quality are critically evaluated, and
the adoption of a discrete biological classification scheme advocated. Reasoning methods
for managing uncertainty are explained, in which the Bayesian and Dempster-Shafer calculi
are cited as primary numerical schemes.

Elicitation of qualitative knowledge on benthic invertebrates is described. The specificity
of benthic response to changes in water quality leads to the adaption of a sensor model of
data interpretation, in which a reference set of taxa provide probabilistic support for the
biological classes. The significance of sensor states, including that of absence, is shown.
Novel techniques of directly eliciting the required uncertainty measures are presented.

Bayesian and Dempster-Shafer calculi were used to combine the evidence provided by the
sensors. The performance of these automatic classifiers was compared with the expert's own
discrete classification of sampled sites. Variations of sensor data weighting, combination
order and belief representation were examined for their effect on classification performance.
The behaviour of the calculi under evidential conflict and alternative combination rules was
investigated.

Small variations in evidential weight and the inclusion of evidence from sensors absent
from a sample improved classification performance for Bayesian belief and support for
singleton hypotheses. For simple support, inclusion of absent evidence decreased
classification rate. The performance of Dempster-Shafer classification using consonant
belief functions was comparable to Bayesian and singleton belief.

Recommendations are made for further work in biological classification using uncertain
reasoning methods, including the combination of multiple-expert apinion, the use of
Bayesian networks, and the integration of classification sofiware within a decision suppor
system for water quality assessment.

Keywords:  Bayes, Dempster-Shafer Reasoning, Knowledge Rlicitation,
Riological Surveillance, River Water Quality.
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Chapter 1

Introduction

1.1 Background

The biological assessment of river water quality is an activity requiring skill and expertise,
relying on the knowledge and experience of practitioners in the field. In practice, biological
survey data must be reduced via indices or score systems to summary form suitable for use
by managers or decision makers. Some of these procedures use statistical techniques to give
quality measures that are often viewed as objective. Others, such as biotic indices, draw on
theoretical and experiential knowledge of the ecology of aquatic organisms and their
responses to changes in water quality. For this latter approach the available knowledge is
usually incomplete, relationships are inexact, and the conclusions should therefore reflect
the inherent uncertainty. So far, this has been ignored for biotic indices, which historically
have been designed for ease of use and arithmetic simplicity.

Artificial intelligence is an area of study concerned with using computational
methods for solving problems that apparently require human intelligence. Probabilistic and
related uncertain reasoning methods are a branch of artificial intelligence that provide
mathematically coherent procedures by which imprecise and uncertain knowledge can be
integrated and used to make rational and 'fair' decisions in some narrow domain.

This project and thesis encompass a detailed investigation of the application of these
techniques for the biological classification of river water quality. It is a multifaceted and
exploratory study into problems of defining and classifying water quality, the modelling and
representation of benthic sensor data as probabilistic knowledge, the elicitation of this
knowledge from an expert in the field, and the behaviour and performance of numerical

decision algorithms in this domain.

1.2  Role of Uncertain Reasoning

Human experts can reason and make decisions when faced with uncertain facts, an ability
that partly underpins their expertise. According to Hart (1989): "much of the skill in
judgement lies in weighing up the relative merits of data, facts, guesses and hypotheses, etc.
and using a plausible line of reasoning with them". In assessing biological river water

quality, the prime source of data is the biotic communities themselves. The problem to be

14



solved, following a plausible line of reasoning, is to determine the biological quality of the
river water.

The reasoning systems developed in this study attempt to emulate the expert’s ability
to decide the quality of river water from samples of benthic invertebrate communities. In
this regard, they too must reason under uncertainty. Incompleteness in benthic data arises
from errors in the sampling process, integrity of the sample data, effects of seasonality or
local conditions on occurrence and distribution of the taxa, and the sensitivity to varying
levels of river water quality. Natural variations exist in the susceptibility to pollutants of
individual animals and between different populations. Gaps in knowledge of deeper causal
mechanisms (for example sensitivities to different pollutants, or predator-prey relationships)
affecting most benthic organisms will also contribute to uncertainty. Aquatic communities
are not part of a predictable, deterministic environment: rather they are subject to stochastic
events (Jeffries and Mills, 1990).

The systems described in this dissertation improve on the traditional use of biotic
indices and score systems in several ways. First, they are mathematically coherent
procedures for manipulating uncertain information, which allow rational decisions to be
made regarding river water quality. Secondly, they encode ecological knowledge directly
elicited from an expert in the field of biological surveillance. This knowledge models the
occurrence of taxa across a range of water qualities and the importance of different levels
of abundance, including the use of information provided by the absence of taxa. Thirdly,
water quality is reported in terms of a discrete classification, mirroring the NWC chemical
classes. It is argued in this thesis that discrete systems are more effective for communicating

information on water quality.

1.3 Research Objectives

The major objectives of this research project were to:

(1) review methods of biological surveillance and critically appraise classification
schemes used for reporting river water quality

(i)  construct, via a process of knowledge acquisition and consultation with an
acknowledged expert in the field of biological surveillance, a model of the
interpretation of benthic data in terms of a biological classification scheme

(iii)  investigate the application of uncertain reasoning calculi to emulate the expert's

ability to classify river water quality by interpreting benthic data
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(iv)  develop computer programs that incorporate decision algorithms for automating
biological classification, which could be used as part of an overall decision support
system for biological surveillance of river water quality

(v) investigate by a programme of computational experiments the performance of the

various calculi in matching the expert's classification.

1.4 The BERT System

Aston University has through its former Applied Hydrobiology Section (Department of
Biological Sciences) a wide experience of teaching and research into the biological
surveillance of rivers. Bert Hawkes, for many a years a Reader within this section and now
with the Department of Civil Engineering, has contributed numerous scholarly papers and
articles on the subject. His expertise in this field is widely acknowledged. The originator
of this project, Bill Walley, for many years a senior tutor in Civil Engineering at Aston
University, foresaw the possibilities of applying artificial intelligence techniques to this
domain. To this end he initiated the setting up of a studentship for research into this area.

The work described in this thesis is one part of a more ambitious project to design
and develop a knowledge-based system for assessing river pollution, in which biological
methods would play a major role. The aims of this system, called BERT (Benthic Ecology
Response Translator), were to identify (i) the spatial and temporal changes of pollution in
rivers, (ii) the types and likely concentrations of pollutants and (iii) the most likely sources
of pollutants (Walley ef al., 1992b).

Originally, the work done as part of this studentship was directed towards the
development of this overall system. One possible design for the system developed by the
author is briefly described in Chapter 8. However, the BERT system as originally conceived
has yet to be realised, since the direction of the project changed from the development of
this overall system to one focusing on the use of uncertain reasoning methods in the domain
of biological surveillance.

The work undertaken in this project relates to the use of methods of uncertain
reasoning to classify river water quality from benthic invertebrate data, referred to in this
thesis as the direct interpretation of the source data. While the computer software'

developed during this project to automate this process of classifying river water quality

] . . .
These software systems are referred to as “automatic classifiers”.
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from benthic data could be adapted to form one part of the overall BERT system, its main
purpose was facilitate an experimental investigation of the use of uncertain reasoning
methods in this domain. Most of the software development took place within the
LEONARDO expert-system shell (Creative Logic, 1992), and could be easily integrated

within the BERT decision-support system as originally conceived.

1.5 Organisation of the thesis

Biological methods of river water quality assessment and their role in river management are
discussed in Chapter 2. Here the meaning of the term "water quality" as used for rivers and
freshwater bodies is considered, followed by a review of the theoretical foundations of
biological surveillance and its relation to chemical monitoring. The chapter includes a
critical evaluation of the many schemes for reporting and summarising biological river
water quality, and a discussion of the current trend for incorporating biological quality
measures in British river quality surveys.

The need for representing uncertain information in human expertise 1s reviewed 1n
Chapter 3. The close association between methods for managing uncertainty and those of
decision making is discussed. The primary numerical unreasoning scheme, Bayesian theory,
is discussed with reference to its simplified representation and to the growing interest in
Bayesian networks, which represent the most powerful expression of probabilistic methods
to date. Rival schemes important in expert system technology are also reviewed, with
particular attention paid to the Dempster-Shafer theory of evidence, a generalisation of the
Bayesian calculus, and possibility or “fuzzy-set” theory.

In chapter 4, the main knowledge elicitation work undertaken in cooperation with
the domain expert is described. Benthic taxa of particular value for indicating water quality
were selected, and ecological knowledge on the benthic organisms was acquired. After
reviewing various techniques for eliciting measures of uncertainty, the processes used for
deriving the likelihoods of occurrence of the sensors across the quality classes and for
representing these as discrete probability distributions are described in detail.

The construction of benthic sample data sets from invertebrate records in described
in Chapter 5. Data was classified by the domain expert in terms of the discrete biological
classes, and provided the reference against which the performance of the automatic
classifiers could be assessed.

Chapters 6 and 7 contain the results of the automatic classifications and analyses of
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the computational aspects of the use of the uncertain reasoning calculi, weighting of
evidence, evidential conflict resolution and belief representation. Decision mechanisms for
summarising the output from the automatic classifiers, which allow a comparison with the
expert's assessment, are discussed in Chapter 6. Results from the Bayesian and the
Dempster-Shafer calculus in which evidential support for the classes is represented as
Bayesian belief are evaluated. The results using the Dempster-Shafer theory of evidence,
in which belief is represented in two ways that are quite distinct from Bayesian belief, are
analysed in Chapter 7.

In Chapter 8, the potential for uncertain reasoning methods in future work for
biological surveillance is discussed. The integration of biological classification software
within an overall decision support system for river pollution is considered. Requirements
for the consensus of expert opinion for adopting a system of discrete biological classes, the
agreement of abundance levels and sensor states, and the combination of probability
distributions produced by multiple experts, are discussed. Finally, the thesis is concluded
in Chapter 9.

The appendices contain material to support the main text. These include, for
reference, the NWC class definitions, probability distributions (elicited and derived) of the
benthic sensors, details of two Dempster-Shafer evidence combination schemes, a cross-
reference table of classification experiments referenced in the text, and a comprehensive

glossary and list of abbreviations.
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Chapter 2
Biological Assessment of River Water Quality

2.1 Introduction

The purpose of this chapter is to consider biological methods of water quality assessment
and their role in river management. The meaning of water quality is examined, and
considered in its context of environmental quality, with physical, chemical and also
biological dimensions. The nature and role of biological classification systems for reporting
river water quality are considered in detail. Finally, the advantages of discrete biological

classification are described.

2.2 River Management and Water Quality

2.2.1 Major river uses

Rivers are the most important freshwater resource, supporting a multiplicity of uses from
the supply of drinking water to land irrigation and waste disposal. Rivers and the corridors
of land through which they flow provide a major wildlife resource and as such are enjoyed
for their aesthetic and recreational value also. Inevitably, the various uses of the river can
lead to a conflict of interests. The use of river water upstream for instance, must not lead
to a serious degradation of quality and quantity for those downstream. Rivers have a dual
role in acting as channels of disposal for municipal and industrial wastes and supplying
water: such services must be provided at economic cost, while satisfying exacting quality
standards. Therefore, the management of rivers is a complex problem with social, economic
and political dimensions beyond its scientific aspects (Hawkes, 1979b).

River management has been defined as "regulating water quantity or quality so as
to ensure (1) the most economic use of an available resource, and (2) conservation of the
natural environment" (Chandler, 1970). The second provision is seen by Chandler to be of
paramount importance. Conservation of the natural environment not only ensures the
continuity of flora and fauna that may otherwise be eradicated, but also allows for the
provision of the various uses. Others recognise that while certain rivers should be selected
for conservation, the pristine quality of many rivers must inevitably be affected by human
activity; it is however in our best interests to minimise this influence (Hawkes, 1979b).

Assessments of river water quality need to embrace these dual roles of management,
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those of the river as a natural resource and amenity, and the several uses of the water.

2.2.2 Defining river water quality
The complexity of factors that affect and determine river water quality precludes a simple
definition. Hellawell (1977) considers that water quality is "difficult to define, impossible
to measure absolutely and, as an abstract concept, very subjective". Subjectivity may be
avoided by relating water quality to water use, so that by adopting appropriate criteria
its quality may be judged to be high or low. This however, assumes that adequate criteria
for the particular use can be determined. Use-related definitions of water quality are
therefore relative: water regarded to be of acceptable quality for one purpose, for instance
in the cooling of power stations, may not be acceptable for another, e.g. for potable
supply. Multi-purpose uses of the water further complicate definitions of water quality
(Hellawell, 1978).

A river, like any freshwater body, can be characterised by its hydrological, physico-
chemical and biological components, and a complete water quality assessment requires

appropriate monitoring of all three. According to Meybeck et al. (1992):

- The quality of the aquatic environment can be defined as (i) a set of concentrations, specifications, and
physical partitions of inorganic and organic substances, and (ii) the composition and state of aquatic biota
found in a water body.

- Pollution of the aquatic environment means the introduction by man, directly or indirectly, of substances or
energy which result in such deleterious effects as (i) harm to living resources, (ii) hazards to human health,
(iii) hindrance to aquatic activities including fishing, (iv) impairment of water quality with respect to its use
in agricultural, industrial and often economic activities, and (v) reduction of amenities.

Since changes to river hydrology affect plant and animal communities, such modifications
could be deemed as pollution under this second definition, either as a reduction of an
amenity or by harming aquatic habitats. These two definitions together therefore incorporate
the three major components of freshwater quality. Descriptions of quality can include
quantitative measurements (for instance, physical and chemical characteristics of the water,
sediments, organic matter, and so on) and qualitative and semi-quantitative descriptions of
the state of the biota (Meybeck e al., 1992).

Physical, chemical and biological methods are therefore required to measure the
parameters that define aquatic-environmental quality. Concern for water quality issues

arises when one or more of Man's requirements of the resource are affected. Physico-
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chemical attributes of water (acidity, salinity, hardness, suspended solids, etc.) are of
primary interest where water is abstracted for domestic or industrial supply. If the river
water 1s used for fisheries or conservation, the main issue is the ecological health of the
river. The latter is best measured by biological surveillance methods, which directly assess
the state of the biota and can indirectly monitor physico-chemical characteristics of the

water and the effect of physical changes to river systems.

2.3 Biological Methods of River Water Quality Assessment

2.3.1 Effects of pollutants on biological communities

According to Jeffries and Mills (1990) all pollutants are characterised by their resultant
degradation of ecosystems, and a consequent reduction in the quality of the aquatic
environment. These changes produce a variety of effects on aquatic organisms. Observation
of the state of these organisms can provide information on a large range of water quality
issues. These include the effects of discharging pollutants into rivers, assessments for
particular uses (e.g. fisheries) and monitoring the effects of physical changes in the river
corridor (e.g. afforestation, canalisation or impoundment).

Discharges of polluting substances in rivers have been extensively studied for their
effect on biological communities. Organic enrichment is the commonest source of pollution,
arising from the introduction of domestic sewage, urban runoff, industrial effluents and
farm wastes into the aquatic environment (Mason, 1991). It is important for lotic waters
such as rivers, owing to their use as channels of waste disposal. Pollution by organic matter
is complex, involving the aggregation of various factors such as oxygen depletion, toxicity
from ammonia and sulphur compounds and the presence of suspended solids (Hynes, 1960).
Each of these factors can have far-reaching effects. Suspended solids, for example, often
result in reduced photosynthesis due to the decreased levels of light, interference with the
feeding of animals that use filtration, and degradation of the substratum, affecting all
animals dependent upon this habitat (Warren and Doudoroff, 1971). Organic pollution thus
has consequences for both the physico-chemical characteristics of the aquatic environment
and the biota that depend upon it.

The effects of a severe organic discharge into a river have been described by Hynes
(1960). The putrescible wastes are oxidised and decomposed by microorganisms that
rapidly increase in number, exerting a biological oxygen demand (BOD) which results in

the oxygen sag characteristic of organic enrichment. There are also marked and clearly
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identifiable changes in the benthic communities. Invertebrates that cannot tolerate the low
oxygen concentrations are depleted and eventually eliminated, replaced by those that can
benefit from the increased food and reduced competition and predation. Individuals of such
species may therefore increase rapidly in numbers, while overall the numbers of species
may decline, reducing community diversity. As purification proceeds, a succession of taxa
dominate, in response to the nutritional and oxygen content of the water: e.g. Oligochaeta,
Hirudinea and Chironomidae at different stages of self-purification after severe organic
loading (Hawkes and Davies, 1971).

With toxic pollution the observed biological response is simpler: a reduction in
abundance and diversity. However some species may benefit from the elimination of
predators and competitors more susceptible to certain poisons. Certain taxa which are
sensitive to organic pollution (for instance stoneflies) are tolerant of acid or metal pollution

(Hawkes, 1964).

2.3.2 Benthic macroinvertebrates for biological assessment
2.3.2.1 Advantages of benthic macroinvertebrates
Ideally the response of the entire aquatic community to environmental stress should be
studied, since all react to various kinds of pollution. (Hynes, 1960). This is unrealistic for
several reasons, among them the limitation of resources and minimal knowledge of the
physiological responses of most species, so that particular 'indicator organisms' - those that
provide an indication of the quality of their environment - are used in practice (Hellawell,
1978). Of the major taxonomic groups used as biological indicators of pollution, including
bacteria, algae, protozoa, macroinvertebrates and fish, the most popular are the benthic
macroinvertebrates, those living on or in the river bed (Hawkes, 1981). Some typical
invertebrates used for biological surveillance are shown in Figure 2.1.

The popularity of these organisms for surveillance' is due to several reasons. Many
species have low mobility and long life spans, factors that render them valuable for finding

polluting discharges and for integrating local changes in water quality over time. Qualitative

" The terms ‘surveillance’ and ‘monitoring’ are used interchangeably in this discussion, but in the
literature on water quality they have precise definitions. Useful operational definitions for the assessment of
the aquatic environment are: monitoring - long-term, standardised measurement, observation, evaluation and
reporting of the aquatic environment in order to define status and trends; survey - a finite duration, intensive
programme to measure, evaluate and report the quality of the aquatic environment for a specific purpose;
surveillance - continuous, specific measurement, observation and reporting for the purpose of water quality
management and operational activities (Meybeck e al., 1992)
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sampling is easy due to their ubiquity and abundance, while the availability of good
taxonomic keys for the macroinvertebrates makes identification less onerous than that for
other groups. Specific ecological requirements are generally well known, as are their

responses to different types of pollutant (Metcalfe, 1989; Hawkes, 1980; Hellawell, 1978).

2.3.2.2 Effect of local conditions

Against these advantages are the difficulties involved in quantitative sampling of the
benthos, the seasonal occurrences of certain major phyla (e.g. the insecta), and the influence
of physical factors such as the velocity of the stream current and the condition of the river
substratum, both of which strongly influence the nature of the biocenoses. These physical
factors are normally regarded as "non water-quality criteria" with respect to the various
uses, and illustrate the importance of accounting for local conditions when using the biota
for quality assessment (Hawkes, 1981). Although different river habitats, distinguished
largely by these physical site parameters will support dissimilar biocenoses, the water from
these different habitats may have identical physico-chemical characteristics, and may
therefore be suitable for the same range of uses after abstraction.

This qualification is clearly important in the biological surveillance of pollution
when interpreting the state of the benthic communities, which will differ according to river
biotope. Sensitivity to local conditions may be viewed as a limitation to the method: in
practical terms it means that due recognition must be paid to their influence (Hawkes, 1978;
Hynes, 1960; Friedrich ef al., 1992). Riffles, generally fast-flowing waters with stony,
eroding substrata, are the preferred locations for benthic surveillance of river water quality.
Riffle communities are more responsive to changes in water quality and are more readily
sampled.

By recognising the differences in communities arising from the natural characteris-
tics of the biotopes, the quality of the aquatic environment as indicated by the biota may be
used as a pointer to the quality of the water itself, and to the range of uses for which it is

suitable.

2.3.3 Biological surveillance and chemical analysis
Reference has been made to a perceived limitation of biological surveillance, namely the
sensitivity to local conditions. A more genuine limitation of biological surveillance using

macroinvertebrates lies in the inability of the method to detect harmful pathogens or trace
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chemicals, which require specific bacteriological or chemical tests (Hawkes, 1974). Thus,
water from a river that is of good environmental quality may be suitable for most purposes,
but not necessarily suitable for abstraction for potable supply. Chemical tests are also
required to identify polluting substances exactly, although biological methods can
distinguish between organic and toxic pollution. Effluent quality too requires information
on allowed concentrations, which cannot be directly measured by biological methods.
Chemical procedures are therefore necessary for several areas of pollution and water-quality
assessment. Their historical importance in the field of sewage treatment, dating from the
work of the Royal Commission on Sewage Disposal in the early part of the century,
probably accounts for their predominance in the practice of water-quality assessment
(Hynes, 1960).

Physico-chemical tests are routinely used in pollution control surveys, involving an
appreciable range of criteria (Hawkes, 1974). Of the many analyses employed, certain tests
relate particularly to sewage treatment, notably biological oxygen demand, dissolved
oxygen content of the water, and measurements of phosphates and nitrogen in various
forms. These criteria still form the basis of river water quality classification in England and
Wales (National Rivers Authority, 1991a). Traditional chemical monitoring programmes
are likely to continue to play a major role in the management of water quality (Martin,
1993).

It 1s generally recognised that biological and chemical methods are complementary
in this field (Hawkes, 1979b). Despite this however, and any intrinsic limitations of
biological surveillance, there remain several aspects of water-quality assessment in which
biological methods excel, and in which chemical tests are deficient. The latter have been
criticised in that they yield only indirect information on the state of the biota after stress
from pollution, an essentially biological phenomenon. In assessing the damage to aquatic
life by toxic pollution for instance, measurements of toxicity levels commonly use standard
organisms (such as Gammarus pulex), kept in carefully controlled laboratory conditions and
subject to controlled doses. Problems arise from applying the results of such tests to biotic
communities in the environment (Jeffries and Mills, 1990).

Biological surveillance directly examines the effects of water quality changes on
aquatic life. The biota act as continuous sensors, reacting to past and present fluctuations
in quality parameters and integrating changes over time. Because of this, the frequency of

sampling for pollution surveys can be reduced. For chemical tests, sampling frequency must
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be much higher, since they measure conditions at the time of testing and can miss extreme
conditions such as discharges of pollutants, if these happen to occur between samples.
Effective chemical testing, with the associated statistical processing of data, involves a
considerable workload for water authorities (Hawkes, 1979b). Biological methods may
detect unknown or unusual pollutants that would otherwise be overlooked by chemical tests,
which, on economic grounds, can only deal with a small number of determinants.

For these reasons some authors have suggested that biological methods should
assume more prominence in water quality assessment, or even form the backbone of
surveillance programmes (Hynes, 1960; Hawkes, 1979b). In fact, these methods are now

an integral part of water quality assessment (De Pauw and Hawkes, 1993).

2.4 Classification of River Water Quality

2.4.1 Purpose of data reduction
The methods of biological surveillance can be used in several applications, from general
environmental surveys to the monitoring of the effects of specific discharges or changes to
river hydrology, for example. The purposes of the particular survey largely determine the
sampling effort and therefore the amount of resulting data, which then require processing
and interpretation. Biological data from surveillance programmes is reduced or condensed
to summary form suitable for decision-makers (usually non-biologists) who have
responsibility for water-quality management at regional or national levels (Mason, 1991;
Hellawell, 1978).

Certain authors have doubts concerning the efficacy of biotic indices for indicating
biological water quality (for instance Mason (1991) and Hynes (1970)). Nevertheless, the
existence of numerous schemes devised for summarising biological water quality suggests

that they have a useful role in water quality assessment and management.

2.4.2 Evolution and design of biological assessment methods

The various systems have been extensively reviewed by Hellawell (1977, 1978, 1986),
Hawkes (1977, 1979a), Washington (1984) and Persoone and de Pauw (1979). Recently,
Metcalfe has presented both the historical development and the current state of European
bio-assessment systems that use the benthic macro-invertebrates, identifying three main
categories from the huge number of indices now in existence: the saprobic, diversity and

biotic approaches (Metcalfe, 1989). This categorisation forms the basis of a recent
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comparison of biological assessment methods (de Pauw and Hawkes, 1993), and is adopted
here for the following review, along with a further category of statistical methods. Given
the enormous quantity of schemes in existence, the review is restricted to a small subset of

the most important schemes.

2.4.2.1 Saprobic approach

Different groups or species show different responses to pollution, with each species
preferring a definite range of environmental conditions: a phenomenon that facilitates the
biological classification of rivers (Chandler, 1970). For some species this range can be very
narrow. One of the earliest biological classification schemes for surface waters was the
saprobic system introduced at the turn of the century by Kolkwitz and Marsson (1908,
1909). This was based on the idea of zones of organic enrichment of a river, each of which
had an associated aquatic community indicative of varying degrees of water quality. The
system suggests that the zones correspond to different levels of the self-purification or
saprobity of the water: the polysaprobic zone represents the severest level of pollution
immediately downstream of the organic load, with recovery occurring in the a-meso-
saprobic followed by the 3-mesosaprobic stage. The oligosaprobic zone represents full
recovery to the "appropriate, natural community for the river channel as it stands
downstream" (Jeffries and Mills, 1990).

Zones are characterised by certain indicator species, chemical conditions and the
nature of the water. Since the indicator species are associated with particular zones,
comparison of the species list from a sample with the indicator species occurring in the four
zones allows one to classify the river water into quality categories (Friedrich et al., 1992).
The Saprobic Index based on this classification allows the species lists to be condensed to
a single number showing the saprobic zone at the sampling site.

Variations of the index exist due to several workers (Pantle and Buck (1955),
Zelinka and Marvan (1961) and Sladecek (1973)). Of particular significance is the concept
of "saprobic valency" introduced by Zelinka and Marvan to represent the likelihood of
species occurrence across five saprobic zones (the additional xenosaprobic zone
representing a higher quality than oligosaprobic). An expert (or a group of experts) allocates

the valencies for particular species - a subjective exercise relying on experience of the
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ecological ranges in which they occur.’
”

Table 2.1 Examples of saprobic valencies of benthic invertebrates

Aston University
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“Source: Sladecek (1973)
e

Table 2.1 shows examples of valencies for the five saprobic zones of selected benthic
invertebrates. Note that certain taxa occur across three or more zones, while others are
"concentrated" in two adjacent zones. The latter are considered of high "indicator value".
Sladecek (1973) incorporated the concept of valency into "s values" representing the
preferred saprobic zone of a species, and utilised abundance-levels and indicator value for

the Extended Saprobic Index:

§ == (2.1)

Here, S is the overall saprobic index, n is the number of species in the list, 4, is the
abundance-level of species i, s, is a value corresponding to the preferred saprobic zone of
the species, and g, is a weighting factor representing the value of the species as an indicator.

The saprobic system is demanding in terms of required taxonomic information.
Organisms must be identified to species level, and their occurrence in each of the river
classification zones for a particular region must be known so that they can be assigned to
a preferred saprobic zone for purposes of calculation. The system is clearly designed for
detection of organic pollution using indicator species: community responses such as loss

of diversity, which are characteristic of toxic pollution, are not directly accounted for.

2 See Sladecek (1973) for an objective method for assigning saprobic valencies.
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However, in spite of severe criticisms of the saprobic system (e.g. Hynes (1960)), it has
found favour in Continental Europe, forming the basis of several indices. Recently, it has
been extensively revised to incorporate practical experience and the results of physico-
chemical analyses. It now forms part of a standardised and integrated system of water

quality classification in Germany (Friedrich, 1990).

2.4.2.2 Biotic approach®

Trent Biotic Index

The Trent Biotic Index (TBI) is based on the number of defined groups of taxa present in
relation to six “key” organisms: Plecoptera, Ephemeroptera, Trichoptera, Gammarus,
Asellus, tubificid worms and/or red chironomid larvae. As with the saprobic system, this
behaviour corresponds to the effects of increasing organic enrichment (Woodiwiss, 1964).
The TBI incorporates a measure of diversity (via the number of "groups" present, and by
the numbers of species within the identified "key" organisms). However, it does not account
for abundance-levels either within the groups or within the key organism species. Thus, the
unexpected presence of a single individual of a sensitive species can affect the index

disproportionately (Chandler, 1970; Mason, 1991).

Chandler Score

In addressing this limitation Chandler introduced a score system in which five abundance-
levels were identified: these were used to weight the score of indicator species-groups, with
pollution-sensitive species scoring higher than those more tolerant to organic enrichment,
and with increasing abundance within groups receiving greater or lesser weight depending
on tolerance to organic pollution. Measures of absolute abundance were rejected due to
associated sampling errors; subjective assessments of abundance however were deemed to
be of sufficient accuracy when several samples are taken from the same station during the
year. With the incorporation of abundance-levels, the Chandler score indicates the
biological condition of the river via the diversity and abundance of the invertebrate fauna.
Unlike the TBI however, the score is continuous: it is claimed that these features clearly
illustrate differences of diversity and abundance between stations, and eliminate

"borderline" class assessments.

3 Strictly, the saprobic system is a biotic approach. The categorisation adopted here is that of

Metcalfe (1989) and de Pauw and Hawkes (1993).
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BMWP Score

The TBI and Chandler score have been largely superseded in Britain by the BMWP
(Biological Monitoring Working Party) score. This was designed to be simple to use, with
a requirement of taxonomic identification only to family level. It was to be a "surveillance
tool" allowing the monitoring of temporal trends in biological water quality at a site, as
opposed to regional spatial trends (Chesters, 1980). However, its use in the national river
survey of 1980 for England and Wales inevitably invited comparisons between rivers
achieving different scores, in spite of zonal or geographical dissimilarities (Hawkes, 1978).

Groups of invertebrate families are assigned points out of 10 depending on their
intolerance to organic pollution. The score is calculated by identifying animals to family
level and accumulating the equivalent points for each 'scoring' taxon in the sample. If a
BMWP family is already represented in the sample score the further occurrence of taxa
belonging to that family does not add anything to it. Furthermore the most tolerant taxon
within the scoring group is selected for awarding points as a means of militating against
over-optimistic assessments of quality.

The BMWP score is dependent on sample size and therefore sampling effort. By
dividing the score by the number of scoring taxa, the ASPT (Average Score per Taxon) is
derived which is independent of sample size and less influenced by seasonal factors which
can influence the BMWP score. Metcalfe (1989) reports a study by Murphy (1978) in which
BMWP score and TBI values were reduced at headwater sites, which, as will be clear from
the discussion on diversity, may more accurately reflect the physical conditions present
rather than water quality. By converting to ASPT, the values obtained were then
commensurate with the high quality water of such streams.

The ASPT is less sensitive to toxic pollution. However, the use of both scores in
tandem may have some merit, by indicating the type of pollution. Low ASPT and BMWP
scores occurring together point to organic enrichment, whereas low BMWP coupled with
a high ASPT suggests physical or toxic environmental stress (de Pauw and Hawkes, 1993).

The use of the BMWP score as a spatial indicator of quality trends is problematic
where markedly different faunal communities occur due to particular geographical or
physical conditions. The benthic communities of upland rivers for instance, are inherently
different from lowland rivers, even though the water may be of comparable chemical
quality. A low-scoring lowland river might be thought of as being "biologically inferior" to

a high-scoring upland river, even though the communities for both types may be
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"appropriate and natural”". According to de Pauw and Hawkes (1993) "river benthic

invertebrates are only of value as indicators of river water quality when considered in the

context of the biotope in which they were found."

Lincoln Quality Index

The specific problem of geographical influences on the BMWP score was addressed by
Extence et al. (1987) who wished to use biological methods directly for water quality
management. They devised the Lincoln Quality Index (LQI), based on the BMWP and
ASPT scores, with the intention of producing a simple index which provided freshwater
quality data to operations managers in the Anglian Water Authority. The impetus to derive
a new index came from such considerations and the desire to combine information provided
by both the BMWP and ASPT scores. Essentially, this information is represented in a way
that is readily understandable, and which avoids the need for qualifying explanation.

The LQI requires that sample sites are pre-classified as either habitat-rich riffles, or
habitat-poor riffles/pools, the latter receiving enhanced ratings to 'compensate’ for their
inherently sparser communities. Standard sampling techniques are used, from which the
BMWP and ASPT scores are calculated. Ratings for bands of BMWP and ASPT scores are
assigned according to the site type: the rating values and the score-bandings were derived
from analysis of the data in the Anglian region. Table 2.2 shows the standard ratings X and

Y (parameters for the calculation of the LQI) for habitat-rich riffles; enhanced ratings are

Table 2.2 Lincoln Quality Index ratings for BMWP and ASPT scores

Aston University
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Quoted ratings X and Yare for habitat-rich riffles. See text for explanation. Source: Extence ef al. (1987)
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used for habitat-poor riffles and pools.

The overall quality rating is the average of X and Y, which is then used to derive the
LQI itself. An overall rating of 6 or better yields an LQI of A (excellent quality); ratings of
1V or lower are LQI H or I: very poor quality. The X and Y ratings chosen have the effect
of limiting high ASPT and BMWP scores. If low BMWP and high ASPT (or vice versa)
occur together, the higher rating X or Y promotes a correspondingly higher LQL

This approach is novel in that it attempts to directly account for faunal differences
in habitat type. A similar idea was considered for the BMWP system, but not actually
incorporated (Hawkes, 1979a). According to Mason (1991), the LQI system "provides a real

attempt to make good management use of routine biological surveillance data".

2.4.2.3 Diversity approach
In general, good quality waters will support diverse communities, including a proportion
of species sensitive to pollution. Grossly-polluted communities tend to have low diversity,
with a high proportion of pollution-tolerant taxa. Diversity indices attempt to quantify this
phenomenon mathematically by combining data on species abundance into a single number.
There are several different formulations of diversity indices, extensively reviewed
by Washington (1984) and Hellawell (1977). Early formulations were found to be
unsatisfactory due to their dependence on sample size and their failure to express the
relative importance of different species within the community, unlike those derived from
information theory. The use of information theory indices in the analysis of biological water
quality was advocated by Wilhm and Dorris (1968) who considered them to be superior in

expressing community diversity. Wilhm and Dorris derive a diversity index D:

N. N,
D= -y — log,— (2.2)

T N N
where N, = number of individuals in the ith. species, N = total number of individuals in all
s species.® Other current diversity indices are reviewed by Washington (1984).
Communities may be considered to be unstressed if they exhibit high diversity, in
which there are a large number of species each represented by few individuals (Hellawell,

1986). A change in the benthic community's diversity index will in theory signal a change

* This formula quoted by Wilhm and Dorris is in fact an approximation of Brillouin's diversity index,
but is usually referred to in the literature as the Shannon-Wiener (or Shannon-Weaver) index.
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in water quality, since the structure (as summarised by a diversity index derived from
information theory) will be altered by environmental stress due to pollution. However, the
practical application of diversity indices for water quality assessment requires caution.
While a high diversity index generally indicates good quality water, the converse may not
be true: a low diversity index may be due to other factors apart from poor water quality.
Adverse physical conditions in fast-flowing streams will reduce diversity, often to very low
levels, even though chemical water quality may be good.

Diversity indices have been described as insensitive to changes in water quality, and
exhibiting poor site discrimination (Metcalfe, 1989). Green (1979) has more fundamental
objections. He argues that there is not a meaningful relationship between diversity indices
and community structure, and questions whether “a diversity index is the most efficient and
biologically interpretable way to summarize biological data”. Simple indices such as
number of species are considered more biologically meaningful measures than the complex
information-theory indices (Green, 1979).

The idea of environmental stress for communities affected by organic enrichment
is problematic, since certain species will benefit from the increased nutrients and in these
conditions cannot be considered under stress. However it is considered that diversity indices
may be used to measure physical and toxic pollution because of the general stress imposed

on the entire community (Hawkes, 1977).

2.4.2.4 Statistical methods

Classification and ordination methods derived from multivariate statistics have been applied
to benthic community data for the purposes of environmental surveillance. A common
technique is that of cluster analysis performed on Jaccard similarity coefficients to identify
'affinities' between invertebrate groups (Jaccard, 1912; Hellawell, 1977). By associating
these groups with site physical and chemical data, causal factors that determine the
distribution of the invertebrates may themselves be recognised. Brooker (1984) considers
that these methods offer a powerful means of identifying environmental change. One of the
more important developments in river water quality assessment in Britain in recent years
has been the use of such techniques to predict the composition of benthic communities from
the physical and chemical characteristics of freshwater sites, and to classify the sites from
their fauna. Because of its significance, it is considered here in some detail.

The work has been described in several papers, including Armitage et al. (1983),
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Wright ef al. (1988), Armitage (1989) and Wright er al. (1989), while a good overview is
given by Metcalfe (1989). It relates to an extensive research programme which was carried
out over several years by the FBA, and subsequently the IFE, in which a large number of
unpolluted sites covering the whole of Britain were surveyed for macroinvertebrate fauna.
The result of this work was a comprehensive database of taxa lists and environmental and
physical parameters for the sites.

The sites were clustered into site groups from their constituent fauna, using a
multivariate technique known as TWINSPAN (Hill, 1979). Once the groups were defined
in this way, discriminant analysis was used to differentiate between the groups of the basis
of their environmental characteristics, which were chosen as the discriminating variables.
Statistical tests showed that there was a good fit between the environmental features and the
site groupings (Wright ef al., 1989).

The analysis will classify new sample sites into one of the groups. The frequency
of occurrence of each species within each group is determined by examining the taxonomic
database to discover the proportion of sites at which a given species or family occurs. This,
combined with the probability of the new site belonging to a particular group, yields the
probability of capture of species at the site, under the standardised sampling conditions.
Thus, the method involves the classification of new sites and the prediction of faunal
composition.

A software package called RIVPACS (River Invertebrate Prediction and
Classification System) has been written to automate this analysis (Wright e al., 1989). It
accepts physical and chemical variables for a freshwater site and outputs the probability of
the site belonging to one or more of the groups, and the predicted fauna in order of
decreasing probability. Initially, 28 environmental parameters were used for prediction, but
these were reduced, by stepwise multiple discriminant analysis, to subsets of the original.
Some of these reduced sets consisted of combinations of physical and chemical variables;
others used solely physical parameters in an attempt to predict benthic communities at sites
possibly subject to chemical pollution.

The programme has been extended to produce benthic community predictions at
family-level, and to predict BMWP score, number of scoring taxa and ASPT using multiple
regression equations (Wright ez al., 1989). With this predictive ability, RIVPACS highlights
deviations from reference conditions as indicative of possible environmental stress. This

property has been used in a practical application of the biological surveillance of river water
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quality. For instance, in Wright et al. (1988), the authors used the system to detect organic
pollution in a river by monitoring three sites, one upstream and two downstream of a
sewage treatment plant. The environmental parameters for the sites generated the expected
BMWP families, so that the ratio of observed: expected number of families were derived
for each station. The exercise was repeated for species prediction and ASPT. It was found
that the ratios of the derived quantities decreased from the upstream control site to the site
downstream of the organic discharge, recovering at the site furthest downstream.
Comparison of predicted and actual species lists was also of particular value in emphasising
the loss of taxon richness.

The introduction of RIVPACS has had an important bearing on river quality

classification in Britain, as will be discussed in the next section.

2.4.3 Discrete biological classification schemes for river water quality

2.4.3.1 Discrete and continuous schemes

By definition "to classify" means to "arrange in classes; assign to a class" (Allen, 1990). In
his article on river zonation Hawkes considers that classification "enables items to be placed
into classes the members of which have definable characteristics in common" (Hawkes,
1975). Ideally, the classification system will encompass all the likely conditions to be
encountered in its domain, for example, the range of water qualities in Britain. The number
of classes in the scheme must be chosen with some care. Too few classes results in a coarse
system that will be insensitive to important changes in quality and therefore of limited
practical use. With a large number of classes (and therefore more class boundaries), the
chances of misclassification error increase (due to sampling error, for instance).

In contrast to the discrete classification approach, water quality may be measured
as a continuous rather than a discrete variable. Both variants have been used in the quality
classification of rivers, with some systems incorporating aspects of both. For instance, the
saprobic systems are based on a notion of "zones of organic enrichment”, with the presence
or absence of indicator organisms coupled with chemical characteristics of the site
determining the zone. Additionally however a single figure, the saprobic index, may be
derived. One assumes that both the discrete zone and the numerical value were useful for
summarising river water quality using the saprobic approach.

Other schemes adhere to one classification mode. The Trent Biotic Index

(Woodiwiss, 1964) was designed partly to eliminate unbounded estimations of quality at
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the top end.” Woodiwiss considered this to detract from the ability of the Index to
communicate information on river quality to managers or non-biologists effectively.
However the Index, which originally consisted of 10 classes was extended later to 15 to
increase the sensitivity of the scheme to the good-quality range of waters (Hawkes, 1979a).
European derivatives of the TBI are also discrete classification-based schemes, the Belgian
Biotic Index (BBI) being related to quality classes within very narrow bands (de Pauw and
Hawkes, 1993). Similarly the Lincoln Quality Index (Extence et al., 1987) is expressed as
a class letter (A to I).

Continuous quantification schemes such as the score systems of Chandler and the
BMWP both incorporate indirect expressions of diversity, in that theoretically unstressed
communities will consist of many species, leading to potentially very high scores. Diversity
indices, specifically designed to express these attributes of biological community structure,
are also continuous measures.

It may be significant that bio-assessment schemes that have been most criticised in
the field, apart from any theoretical reservations, are those that are not class-based, such as
the BMWP score and diversity indices. It would appear that discrete-classification schemes
are more easily understood and allow better communication of biological information for
management purposes. In this context the discrete classification of river quality is perceived

as a valuable exercise.

2.4.3.2 History of discrete classification schemes in Britain
Biological classification was used as part of the first official national river survey of
England and Wales in 1970, to supplement the established chemical classification. For the
biological assessment, waters of four distinct quality classes (A to D) were defined in terms
of the fauna they were likely to support, with class A being of the highest quality. A
comparison of the biological and chemical classifications “failed to show the agreement
...which was considered necessary before biological data could be used to report on river
water quality on a national scale” (National Rivers Authority, 1991b).

However, the survey illustrated an important aspect of biological surveillance that
needs to be accounted for in any system employed on a wide scale. The biological survey

was carried out for rivers that have markedly different physical characteristics, particularly

> The author interprets this as a reference to continuous schemes such as the Chandler or BMWP
scores. In practise however, these scores have do have fixed upper limits.
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current velocities. Thus the slow-flowing rivers of East Anglia were predominantly graded
to be of lower biological quality than their corresponding chemical class, by virtue of the
fauna chosen to define the biological classes (Department of the Environment, 1972).
Invertebrates characteristic of the rhithron zone, and associated with high quality waters in
the adopted classification, are less unlikely to be found in the potamon waters of the low-
lying East Anglian rivers (Hawkes, 1975).

A discrete biological-classification scheme was used by Severn-Trent Water for their
1987/88 report on the biological quality of rivers in their region. As with the 1970 national
survey, the river classes were defined in terms of the biota. For example, class 1A
(biological) is defined:

Good water quality with high dissolved oxygen and water velocity giving rise to habitats suitable for a diverse
fauna with stoneflies, mayflies and caddis flies in high numbers.

The reported biological classes are then used to detect deviations from the chemical classes.
However, biological sampling data is summarised using the BMWP and ASPT scores,
which are then categorised into six grades labelled Unsatisfactory to Excellent (Severn-
Trent Water, 1988). A similar biological class system was employed by Yorkshire Water
Authority (YWA)® and its successors, referring to classes Bla to B4, parallelling the
National Water Council (NWC) classes.

2.4.3.3 Introduction of NWC classes

The NWC classes introduced in the late 1970s were to provide both an absolute measure
of river quality and a means of reporting trends. The classes were defined in terms of the
levels of determinands needed to protect the more important uses of the river, such as
fisheries and abstraction for potable water supply (see Appendix Al). As more uses were
introduced, each accompanied by standards and EC-directives, there was growing concern
that the ability to measure absolute quality would disappear, since not all uses apply to all
rivers. In response to this concern a working group within the water industry recommended
that a classification scheme be specifically defined to measure absolute quality: this has

been accepted by the NRA (National Rivers Authority) who have proposed a new general

¢ Reference will be made to this body throughout this thesis, although it no longer exists, and also
to the National Rivers Authority (Northumbria and Yorkshire Region), the successor of the Yorkshire Water
Authority. The NRA is itself now part of the Environment Agency. Similarly, the National Water Council no
longer exists.
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classification system for rivers, besides new use-related classes that will replace the old
NWC system. These schemes follow from the imposition of Statutory Water Quality
Objectives under the 1989 Water Act for specified bodies of water in England and Wales
(National Rivers Authority, 1991a). Clearly some merit is seen in reporting river quality
from two distinct but complementary perspectives: that of the "health" of the river, in terms

of a general class, and that of the uses for which the river can be put.

2.4.3.4 Recent developments in River Water Quality classification

The NRA's proposed use-related classes are defined in relation to recognised uses of the
water, such as abstraction for potable water supply, water contact activity, fisheries,
harvesting of fish, abstraction for industrial and agricultural use. Of particular interest is the
introduction of two new uses that relate to the integrity of aquatic ecosystems: a "general
ecosystem" for all controlled waters and a "special ecosystem"”, for designated sites which
“have special requirements for nature conservation” (SSSIs, for example). Here the
conservation of the water for aquatic life becomes an amenity, for which quality standards
may be employed to judge whether a stretch of water is suitable for the stated use. It is
noteworthy also that, except for the two ecosystem uses, all other uses are associated with
classes defined entirely by physico-chemical determinants (National Rivers Authority,
1991b).

The general ecosystem classification evolved in part from the extensive work carried
out by the FBA (and subsequently the IFE) in the development of REVPACS. The results
of this work were used by the NRA to make a biological assessment of Britain’s rivers in
the 1990 national survey, during which physico-chemical data and biological samples were
collected for nearly 9000 sites. Twelve environmental variables (which previous testing had
shown to yield good predictive ability) were used to predict BMWP, ASPT and total
numbers of taxa: these could then be compared with the actual values obtained from
sampling. For each of the three parameters (BMWP score, taxa number and ASPT) a ratio
of observed to expected results was calculated to produce three Ecological Quality Indices:
EQI (BMWP-score), EQI (number of taxa) and EQI (ASPT). Ranges of the three EQIs
were then defined corresponding to biological classes A to D (Sweeting et al., 1992). Using
this system, a biological classification of Britain’s rivers was conducted.

It is recognised however that biological classification and chemical classification

produce two quite different measures of water quality. As a means of combining the two
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into a single system, it has been suggested that the EQI (ASPT) could act as a "biological
override" to the chemical classification. This would allow a chemically-classed river to be
upgraded or downgraded depending o the biological quality suggested by the EQI (ASPT)
(National Rivers Authority, 1991b).

Since then, the British Government has issued its own proposals building on those
outlined by the NRA. Draft Regulations have been produced to set up a new system of
classifying river quality in England and Wales (Department of the Environment, 1992,
1993). The regulations deem that the NRA's proposed "general ecosystem" Use class does
not meet certain criteria of simplicity, efficiency and enforceability. Instead, the cornerstone
of the new Use Classes system is the introduction of the "Fisheries Ecosystem" classifica-
tion for general water quality, allowing the setting of targets for river quality objectives for
fish and aquatic ecosystems. Many determinants used to define the NWC classes are
employed, along with additional parameters such as dissolved copper and zinc - six classes
FEI to FE6 are thus defined.

A separate General Quality Assessment (GQA) for the five-yearly national surveys
is proposed to give "an objective measure of how river quality is changing over time". The
Government considers that while biological monitoring techniques are acknowledged to be
an important part of the GQA, they are not sufficiently developed to allow inclusion in the
statutory scheme. The GQA would include four types of assessment: a chemical
classification A to F (directly comparable to the Fisheries Ecosystem Use Classes), a
biological classification (A to E) based on the EQI, and similar classes for aesthetic and
nutrient status. Therefore the current position is to view biological assessment as an
important tool for water quality monitoring, but given the fact that there is not a clear
relationship between chemical and biological parameters, the chemical and biological
assessment of river quality should be carried out separately and in parallel, rather than to

use biological overrides in chemical classification (Department of the Environment, 1992).

2.4.4 Critique of Biological Classification Schemes

Both biological and chemical analyses are required to monitor the quality of the aquatic
environment, and are therefore complementary techniques. Surveillance of the biota reveals
direct information on the biological quality of that environment, and indirect information
on the physico-chemical characteristics of a major component: water itself. Chemical and

biological sampling and the subsequent processing of the data commits an appreciable
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amount of water authorities' time and resources. Therefore examining current classification
methods is reasonable, and to ask if they use the available data to maximum effect. This is

particularly true for biological methods, since some biologists still view with suspicion the

necessary data reduction that occurs in producing summary reports despite arguments for
biological input to decision-making. As Extence et al. (1987) have argued, a quality index
should "utilise as much information as possible from a sample".

The bio-assessment methods considered can be criticised on (i) their underlying
philosophy, (ii) the physical design of the classification scheme and (i1i) their use of the
sample data. From within the first viewpoint the schemes could be divided into two broad
categories: those based on the saprobic/biotic approach, in which expert knowledge on key
benthic organisms have a central role in their formulation, and the statistical/community-
structure approach that effectively seeks to eliminate subjectivity as far as possible. These
attributes of subjectivity or objectivity (or the lack or them) associated with these schemes
have each been used to criticise those in opposing categories. For instance, diversity indices
devised as quantitative measures of community structure (developed in response to
perceived limitations in subjective interpretation) have been faulted in respect of the fact
that they do not use autecological knowledge (Hawkes, 1979a).

Biotic systems are useful as indices of organic pollution, provided due account is
paid to local conditions at the sample site. Their success is perhaps surprising given the
simplicity of their formulation, a consequence of the requirement that these systems should
also be easy to use. An overview of important limitations of biotic indices has been given

by Walley et al. (1992a). In this section those limitations relating to the use of data are

considered in some more detail here.

The significance of varying levels of abundance of individual species or taxa is not
acknowledged by some schemes. The popular BMWP score for instance takes no account
of taxa abundance (unlike the earlier Chandler score) and is affected by sample size and
seasonal factors. Abundance with each group is not accounted for by the Trent Biotic Index,
although it does refer to absent species.

The Lincoln Quality Index (Extence et al., 1987) is essentially a reworking of the
BMWP score and ASPT, although one that incorporates the effects of habitat differences
on taxa richness. Extensions to the saprobic system due to Sladecek (1973) and Zelinka and
Marvan (1961) are significant in their acknowledgement that biota can exist across a range

of water qualities (the saprobic zones), with zonal preferences represented by saprobic
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valency. In this respect the extended saprobic system stands apart from other bio-assessment
methods.

Diversity indices based on information theory are mathematically sound but their
acceptance as measures of environmental stress under organic enrichment is not universal,
although they appear to have validity for conditions of toxic or physical pollution. Perhaps
the most promising of the quantitative approaches is the advanced statistical model of
RIVPACS, which has considerable potential for the biological surveillance of river water
quality (Wright ef al., 1988). A 'black-box' model such as RIVPACS cannot be interrogated
for cause and effect, although many associations between the variables can be explained
(Armitage, 1989). Its role as a decision-support tool for river water quality has yet to be
fully exploited, although undoubtedly it has promoted the use of biological methods in this
area.

The design of classification systems was also examined noting that, within Britain
and Europe, discrete-classification schemes have certain advantages as descriptors of
chemical and biological dimensions of river quality when compared with continuous score

systems.

2.5 Summary

This chapter has examined in detail the definitions of river water quality and pollution, and
reviewed the theoretical foundations of biological surveillance and its relation to chemical
monitoring. The many schemes for reporting and summarising the biological dimensions
of river water quality have been critically evaluated, and current developments for
incorporating biological quality measures in British river quality surveys have been
described.

Classification schemes are useful in reporting regional or national trends in river
quality, and as such have a role to play in the management of water resources. As quality
control standards extend beyond regional and national boundaries to pan-national levels
(e.g. European Union directives on surface water and ecological quality) the means by
which water quality is measured and reported will assume greater importance. Without this
concise and summarised data the detection of temporal and spatial trends in surface water
quality would be lost in the mass of chemical and biological data collected annually from
thousands of samples.

Rivers, our most important freshwater resource, provide for a range of needs, in
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which abstraction for supply and waste disposal sit alongside recreation, amenity, fisheries
and conservation. Currently, the ecological quality of surface water is being promoted as
a proposed directive from the European Union, one that takes into consideration the "quality
of the shore, the banks, the sediment and the environment around rivers" and the water itself
(Collins, 1993). Increasingly, water quality issues are viewed within the context of the
overall quality of the aquatic environment. This can be monitored via three principal media:
the water itself, particulate matter (organic and inorganic) and living organisms. Of these,
benthic invertebrate communities are the most widely-used for assessing biological quality.

In England and Wales discrete classification systems have been used for reporting
chemical water quality and will be employed for proposed use-related classes. Although
discrete biological classification has, and continues to be used by certain water authorities
such schemes have not formed part of national river surveys since 1970. The Biological
Monitoring Working Party in developing its score system could not at the time recommend
the adoption of a biological classification scheme (Department of the Environment, 1980).
Currently therefore, there is not a nationally-recognised biological classification system in
Britain.

Nonetheless it is argued here that given the benefits of a discrete class-based system
for reporting river water quality, a discrete biological classification scheme could provide
an effective means of reporting biological river water quality. Since chemical and biological
methods are accepted as complementary in the field of river water quality control, it seems
appropriate that the biological classes mirror the current NRA classes for river water

quality, which use chemical determinants.
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Chapter 3

Management of Uncertain Reasoning

3.1 Introduction

The purpose of this chapter is to review various procedures for handling uncertainty, and
emphasise the close association of uncertain reasoning with decision theory. After an
overview of the various methods, in which it is argued that numerical schemes are required
to deal with uncertainty adequately, the Bayesian and Dempster-Shafer calculi are described
in some detail. A rationale for focusing on these two procedures is presented. An important
alternative theory to rival to the Bayesian and Dempster-Shafer calculi is presented:
approximate or “fuzzy” reasoning. The chapter concludes by comparing the knowledge-

based methods of uncertain reasoning with the artificial neural network paradigm.

3.2 Uncertain Reasoning and Decision Theory

Reasoning is closely allied to the process of decision making. If our knowledge about some
problem is incomplete, deciding some course of action may be difficult or impossible, or
we may make bad decisions. In practice, human decision makers constantly deal with
inadequate information when making decisions: a condition that we call "uncertainty"”. To
manage this problem, human beings or automated reasoning systems must therefore reason
under uncertainty (Giarratano and Riley, 1989).

Uncertain reasoning has attracted much attention recently regarding its use in
artificial intelligence, a field of study concerned with performing computational tasks that
apparently require human intelligence (Tanimoto, 1990). Artificial intelligence encompasses
many areas of study, from robotics, artificial neural systems, natural language processing
to expert systems, which in the mid-1980's were still described as its "most visible and
fastest growing branch" (Bonissone and Tong, 1985). Since expert systems are computer
programs that emulate the human expert's ability to decide (Giarratano and Riley, 1989),
much of the following literature review on uncertainty and uncertain reasoning deals with
its management within expert systems.

Definitions of an expert system include "... a computer system that is designed to
help people with tasks involving uncertainty and imprecision, and which require judgement

and knowledge" (Hart, 1989) or simply "machines which reduce uncertainty" (Graham and
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Jones, 1988). Henrion ef al. (1991) in a review of decision analysis and expert systems,
have argued that both disciplines share common goals. Both seek to improve human
decision making by formalising knowledge so that it is open to automated reasoning. It is
this aspect of uncertainty management rather than the structure and operation of expert
systems that primarily concerns us here.

Uncertainty in reasoning systems arises from four main sources: unreliable
information, imprecise descriptive languages, inference with incomplete information, and
the aggregation of information from multiple sources (Bonissone, 1987). For the first
source, uncertainty may be present in the data due to human error or errors of measurement,
or may occur due to weak implications between a rule's premise and its conclusion. In this
case, the degree of correlation is normally quantified by a numerical factor, as will be seen
later. The second source arises from the ambiguity of natural language and the difficulty of
formalising rules from it. Approximate reasoning derived from fuzzy logic offers a partial
solution to this problem. The fourth type occurs when knowledge from multiple experts or
sources is combined. Such knowledge may be contradictory, so that the system requires

some mechanism for resolving conflict.

3.3 An Overview of Uncertainty Management Schemes

Schemes for dealing with uncertainty in reasoning systems may be divided into two broad
categories: numeric and non-numeric. Numerical approaches include Bayes' theorem and
its modified odds-likelihood formulation, confirmation theory as used in MYCIN’
(Shortliffe and Buchanan, 1985), Dempster-Shafer theory (Shafer, 1976), and fuzzy
reasoning (Zadeh, 1988). These methods allow the‘use of a calculus to combine and
propagate the evidence through the reasoning process, and provide a mechanism for
decision making.

Non-numeric methods such as Cohen's theory of endorsements (Cohen, 1985) are
employed when uncertainty arises from incomplete information. They are considered
inadequate to handle imprecise information because they lack measures by which
confidence levels can be assigned (Bonissone, 1987). Shafer (1987) suggests that the
inspiration for non-numeric methods derives partly from a prejudice against numerical

forms of computation in artificial intelligence that originally eschewed "number-crunching"

7 An early celebrated expert system for diagnosing microbial infections.
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and dealt in symbolic computation. This prejudice he suggests is waning, while interest in
probability ideas and numerical uncertainty management is growing. As will become
apparent, this thesis is concerned with determining the relative likelihood of competing
hypotheses: this requires real numbers to be associated with uncertainty. Consequently the
main focus of attention in this survey will be on numerical methods, and non-numeric
schemes will not be considered further.

The numerical methods reviewed here are the historically-important Bayesian
theory, the Dempster-Shafer theory of evidence, and an important alternative theory based
on fuzzy logic. Of necessity the reviewed methods are a tiny subset of the entire panoply
of available numerical schemes. Shafer and Pearl (1990) have produced a collection of
important papers relating to this field. A comprehensive overview of the techniques has

been given by Grzymala-Busse (1991).

3.4 Bayesian Decision Methods

3.4.1 Simplified Bayesian formulation

Probability theory offers a sound logical model for dealing with uncertainty: indeed some
assert that it is the only satisfactory description and that alternative methods are unnecessary
(Lindley, 1987; Cheeseman, 1985). The classical or a priori definition of probability is
given by the proportion of cases in which a given event occurs, so that for example the
probability of obtaining a one from throwing a fair die is 1/6. However, other interpretations
have emerged since the foundation of the theory. In the objectivist interpretation an
experimental or a posteriori approach is adopted in which the probability of an event
occurring is derived from observing the frequency of its occurrence out of a large number
of possible outcomes. For the subjectivist interpretation, from which Bayesian theory is
derived, a probability is a number in the range zero to one (inclusive) which expresses an
individual's confidence in the truth of a proposition.

Subjective probability is a personal belief that will depend on information currently
available. Furthermore, two different individuals may hold different degrees of confidence
in the truth of a particular proposition (Ng and Abramson, 1990). The key difference
between the two interpretations is that while objective probabilities are assigned to
repeatable events, subjective probabilities are employed in situations where events are not
necessarily reproducible. In this case empirical or frequency data may not exist and the

expert's opinion on the likelihood of an event occurring must be sought. An example of
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such an event may be that of finding oil at a new site, or a stock-market “crash” occurring
next year. Such events, for which empirical data may not exist or which is too expensive
to collect, are nevertheless of interest to decision makers and expert system builders. Where
probability theory is used to represent expert knowledge, as in expert systems, subjective
belief is the appropriate interpretation®.

A personal belief is conditioned on the information available to the individual, i.e.
the belief in a proposition given some background knowledge. If the assessor has prior
information s, his belief in the event 4 given the existence of s may be expressed as P(4 ‘s).
On observing new evidence B, he may revise his belief in 4 to P(4 ’ B,s), where B,s denotes
the conjunction of event B and background evidence s. Bayesian theory provides a
consistent framework for updating beliefs in the light of new evidence. The updating
mechanism is Bayes' rule, which written in terms of hypothesis /, and evidence e is (Duda

et al., 1976):

_ P (e|H)P(H)

P(H|e) o

3.1)

where the a priori probability P(H) for the hypothesis / is modified by the occurrence of

e to produce the a posteriori conditional probability P(H|e). This is the likelihood of
hypothesis H based on some evidence e, or the degree of belief.

To understand this notion of likelihood, it is helpful to express Bayes' rule in the
odds-likelihood form. Odds are used for conveniently interpreting likelihoods as expressed
by conditional probabilities. For example, if the likelihood of an event is 95%, then the odds
on the event happening are 0.95 / (1 - 0.95) = 19 to 1. Some people find odds more
meaningful than probabilities, although the same information is conveyed (Giarratano and

Riley, 1989). Writing the above rule in terms of —/, the negation of /, and defining the

prior odds on H as

O(H) = P(H)/P(—H) (3.2)

the posterior odds on H to be

O(Hl|e) = P(H|e)! P(—H|e) (3.3)

% See however Sucar ez al. (1993) who demonstrate the use of objective probabilities in expert
systems.
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and the likelihood ratio as

L, = P(e|H)/P(e|~H) (3.4

Bayes' Rule becomes:

O(H|e) = L _(e|H)O(H) 3.5)

The prior odds O(H) measures the prospective support for A, without any evidence (or the
evidence of "background knowledge" alone), while L, is the retrospective support for /
given the observation of e (Pearl, 1987). The likelihood ratio is also known as the /ikelihood
of sufficiency, so called because if L, = o, P(e | H)y=1and P(e’ﬂH) =0, and so e 1s sufficient
for concluding that / is true (Johnson and Keravnou, 1985). Its value must be supplied by
a human expert, or derived from information so provided. It is also possible that the expert

may wish to express a subjective opinion of the effect on / given the absence of e. Here the

odds-likelihood form is expressed using the likelihood of necessity L,, defined analogously
to L, but in terms of —e.

For N pieces of evidence €', ..., ¢" the combined belief in H would be expressed as
O(H|e'e?,...e™) = L (e',..,e"|H)O(H) (3.6)

(Pearl, 1987). This equation is problematic in that it requires knowing the conditional
probabilities of the mutual occurrence of each set of evidence for hypothesis / and its
negation —/. It is rendered tractable by a fundamental assumption in Bayesian theory: that

of conditional independence. If P(e'|e?H) = P(e |H) then e'and e?are said to be

H) = P(e'| H) x P(¢*| H),

conditionally independent given H. This can be written as P(e',¢’

so that for each piece of evidence
N
Ple'e? eV H)Y = [[ P(e*|H). (3.7)
k=1
If the evidence is also conditionally independent under —H (the negation of H)
N
P(ele? e |~H) = HP(ek}ﬂH) (3.8)
k=1

SO we can write
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N
O(H|e'e? ..e™y = O[] L(e*|H) (3.9)
k=1

where L (e*| H) is the likelihood ratio for each set of evidence. This formula also provides
for incremental updating as evidence e is presented: as O(H) becomes O(H ‘ e), the posterior
odds become the prior odds for the next iteration.

The requirement for conditional independence under —# with / 1s demanding and
may not be reasonable if ~H entails other states of the world. Pearl (1987) gives an example
in which evidence e from a set of alarm sensors supports the hypothesis / that a house has
been burgled, so that ~H corresponds to the state of no burglary. The evidence from the
sensors is conditionally independent under both H and —H if they are affected by factors
solely concerned with their function of detecting intrusion, and not by external factors such
as power failure, malfunction, or some other catastrophic event (e.g. an explosion).
However, a more reasonable assumption would be that the sensors are indeed affected by
such factors. By accounting for these factors in a refined space of hypotheses, evidence from
the detectors may be properly regarded as conditionally independent.

Thus, rather than two hypotheses, the domain of interest may often be more
appropriately modelled by a set of n hypotheses H, that are mutually exclusive and

exhaustive, 1.e.

P(H,H) =0, i#] (3.10)

and
ZP(Hi) =1 (3.11)

After observing N sets of evidence that are conditionally independent with respect to each

H,, the overall belief in the ith hypothesis is (Bonissone, 1987)

N
P(H) - I P(e*|H)
P(H e, . e") = ke (3.12)
Y P(el,..,e"|H)P(H,)
i=1

Thus the scheme requires N x n conditional probabilities and » - 1 prior probabilities to
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compute the overall probability distribution over the hypotheses. If no prior knowledge is
available, the prior probability for each of the n hypothesis is 1/n by the Principle of
Indifference.

In practise the denominator of the above equation may be determined from the fact
that the left-hand side sums to unity over i since the hypotheses are exhaustive, and
therefore may be regarded as a normalising constant (Pearl, 1987). Thus, we can rewrite this

as

N
P(H |e',...e”) = constant x P(H) - [] P(e*|H)) (3.13)
k=1

which is similar to the odds-likelihood formulation of Bayes' rule for a single hypothesis.
The multi-hypothesis case can also be expressed in the odds-likelihood formulation
using the Modified Bayesian Rule (Bonissone, 1987). For this each piece of evidence &*

must be conditionally independent under —~H, and H,, i.e.

N
Pele?. e ~H) =[] P(e*|~H) (3.14)
k=1

However Pearl (1982) points out that conditional independence with respect to the
negations of the hypotheses is normally violated (i.e. P(e',e’| ~H)  P(e'|~H) P(¢*| ~H)).
Furthermore, the elicitation of the P(e*| ~H) is not a natural mental task. If =H is subsumed
within an enlarged multi-hypothesis space, Bayes' rule can be given solely in terms of the
H, rather than their negations, as in Pearl's formulation. In other words, the multi-

hypothesis model can be developed solely in terms of the /A, rather than —H,, thereby

making any references to odds unnecessary.

3.4.2 Rule-based and graphical representations

3.4.2.1 Problems with the simplified formulation

Both the single hypothesis and multi-hypothesis model are part of the simplified Bayesian
formulation, in that they are based on two simplifying assumptions of (1) mutual exclusivity
and exhaustiveness and (2) conditional independence of the evidence. The model is well
suited to diagnostic tasks in which the hypotheses represent some proposition whose
likelihood we wish to determine (e.g. bacteriological infection, existence of oil below

ground, quality of river water at a site) which are supported or refuted by evidence as

49



various symptoms or observations (e.g. morphology of infecting organism, seismic survey
results, presence or absence of benthic taxa). Figure 3.1 shows a belief network represent-
ing the simplified Bayesian formulation in which a single hypothesis node H representing
n mutually exclusive and exhaustive hypotheses that lead to a set of observations or
evidence e'...e™. The absence of arcs between the items of evidence is a consequence of the
assumption of conditional independence, i.e. each observation is independent of another

given any one of the hypotheses H..

Hypothesis
h
A » | 2 « - a
e e e e S e e
1 2 3 4 5 6
Evidence

Figure 3.1 Belief network for simplified Bayesian formulation

However the simplified Bayesian formulation has been criticised because of its two key
assumptions, which are regarded by some to be too restrictive. Szolovits and Pauker (1978)
m their examination of medical diagnostic reasoning consider that the hypotheses in most
clinical situations are neither exhaustive nor mutually exclusive. Performing Bayesian
calculations in a hypothesis space that is not exhaustive lead to incorrect posterior
probabilities, while insisting on mutual exclusivity requires the creation of hypotheses
corresponding to every possible combination of diseases. In fact the authors maintain that
clinical decision making in the medical domain requires a judicious mixture of probabilistic
and categorical reasoning: the use of rules that lead to unambiguous and explicit

judgements.

3.4.2.2 Rule-based systems

Rule-based representations of knowledge are the most familiar and popular structures for
building expert systems for several reasons. Rules are normally easy to write, provide a
highly visible representation of the expert's knowledge, and can be added incrementally to

the knowledge base. Hierarchical relationships between rules can be encoded, facilitating
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explanations of conclusions by "tracing back" rules fired by other rules. Production rules
are moreover considered to mirror the human cognitive process (Shadbolt, 1989).

Rules encoded as unqualified IF.. THEN statements (i.e. if the antecedent holds, the
consequent is true, with absolute certainty) do not however reflect the inherent uncertainty
in human knowledge. To cope with uncertain reasoning, some early rule-based expert
systems such as PROSPECTOR and MYCIN extended the deterministic approach to
incorporate numerical degrees of truth between a rule’s premise and its conclusion,
effectively to weaken the connection between its antecedent and consequent (Bonissone,
1987). A typical rule from MYCIN, developed for diagnosing bacterial infections, illustrates
this approach (Buchanan and Shortliffe, 1985):

IF: 1) The stain of the organism is gram positive, and
2) The morphology of the organism is coccus, and
3) The growth conformation of the organism is chains
THEN: There is suggestive evidence (.7) that the identity of the organism is streptococcus

The strength of the evidence supporting a particular hypothesis is weighted here by a
certainty factor. In this, as with all numerical schemes for handling uncertainty, the
individual beliefs are combined to decide their joint effect. Rather than arriving at a
categorical decision regarding a hypothesis in an exact reasoning scheme, several

hypotheses are supported to differing degrees.

3.4.2.3 Problems with rule-based representations

A consequence of reasoning with certain rules is that once the truth of a proposition has
been asserted it cannot be changed by other facts, i.e. the logic with which the system
reasons is monotonic. This property facilitates the modularity of the system, by which
means rules can be added incrementally to the knowledge base. However according to
Shafer (1987) "the introduction of probabilities into production rules does not square well
with the modularity we want these rules to have", so that rule-based representations have
problems in dealing adequately with uncertainty.

Consider for example the inference network shown in Figure 3.2 in which
observations of evidence ¢, are used to measure support for the hypotheses H,. Here the
intermediate evidence (e.g. ¢, , ¢, , €5) can be thought of as hypotheses to be supported by
underlying evidence (e,, ¢5). As this underlying evidence is accumulated, the appropriate

production rules are fired and posterior probabilities are calculated, propagating through the
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network via the inference links towards the sought hypotheses H..

H, H2 H
K
i % ¢ ¥ A
e, e, e,
% 4 % 4
e e
4 5 V
- N %
e, e e, e,

Figure 3.2 Rule-based inference network (after Duda ef al., 1976)

Problems arise both in eliciting the conditional probabilities associated with these rules and

propagating them through the network. In the first case the expert may be able to supply

rules for probabilities P(esles) or P(esieg) but be unable to do so for P(es|eyne,). In other
words, a joint-probability distribution may not be available for all the variables, leading to
inconsistent probabilities. On the other hand the conditional probabilities may effectively
constrain the expert's knowledge. The joint probability’ of e, and e, is fixed by the prior
probabilities P(eg) and P(e,), since

P(e,Ney) = P(ey) Pleg)[ Ples leg)P(eq|ey)

v P(mes|eg) P(mes]ey)] s

This means that the expert is not free to supply the joint probability if this is known, since
it is predetermined by the prior probabilities. A similar problem arises in the specification
of L, and L,, the likelihoods of sufficiency and necessity discussed previously. In
PROSPECTOR, the experts were asked to supply these values rather than probabilities.

However an expert is not able to estimate L, and L, freely, whatever his own judgements

A joint probability distribution is one in which the probabilities of a set of random variables are
defined for all values of the variables.
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may dictate, since these quantities are dependent:

1 - L P(e|—H) \
T T Pleom) (3.16)

This relation follows from the definitions of L, and L,. The problem here is that while the
observation of evidence e may be considered to support hypothesis H, the absence of e may
not necessarily be viewed by the expert as disconfirming H. In other words, while L, may
be > 1, in the expert's view L, may be equal to 1, in which case the absence of e makes no
impact on his judgement regarding the likelihood of /. Such an opinion however would be
inconsistent with the conditional probabilities as expressed by equation (3.16). If the
evidence itself is uncertain, this inconsistency leads to further problems when propagating
probabilities, which can be significant for long chains of inference. To overcome this
difficulty the PROSPECTOR system used ad hoc adjustments to the propagation formula.

A more important problem lies in the way probabilistic knowledge is represented.
In diagnostic systems, rules are generally encoded in the direction of evidence to the
hypotheses: if e then H (with probability x). With this structure reasoning predictively is
difficult: if H obtains, what is the likely effect (i.e. what findings would we expect?). In
Bayesian reasoning expert knowledge is often elicited to express this causality, but
combined in such as way as to effect a diagnosis. Thus the conditional probabilities P(e (H)
linking cause (the hypothesis) to effect (the evidence) are combined via Bayes' rule to
produce diagnostic support for A given all the available evidence.

Problems also arise due to the effects of multiple causes. Figure 3.3 shows an
example from Pearl (1988). If a burglar alarm sounds, there is a high probability that it was
caused by an attempted burglary. However, the alarm may also be triggered by an
earthquake. Independent evidence for such an event, such as a report in the newspapers or
on radio should reduce support for the burglary hypothesis by "explaining away" the alarm
sound. While special rules can be written to mirror this effect, they effectively encode
inference procedures rather than domain knowledge. In contrast to this, probabilistic
methods can represent this knowledge more naturally, and allow for both diagnostic and

predictive inference.
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Figure 3.3 Independent evidence of an earthquake (the radio report) "explains away" the
alarm, thereby reducing support for the burglary (from Pearl (1988)).

An inference network as depicted in Figure 3.2 is determined by the underlying rule set,
rather than any causal relationship between assertions.® As argued above it is usual to
gather evidence at the root of the network as support for intermediate hypotheses, which in
turn lend support for the sought top-level hypotheses. Thus, probability propagation is
effectively one-way. Attempts to incorporate causal relationships characterised by
uncertainty into rule-based systems leads to overly-complex inference networks that obscure
the relationships between assertions. Neapolitan (1990) argues that the modelling of
complex probabilistic relationships, a task that is apparently quite natural to humans, is

neither feasible nor reasonable using a rule-based approach.

3.4.2.4 Bayesian graphical methods

The limitations of both the simple Bayesian formulation and rule-based representations
discussed above have led to recent interest in graphical methods. In decision analysis, an
increasingly popular method of modelling problems characterised by uncertainty 1s via the
use of influence diagrams, graphical representations of uncertain and decision variables that
explicitly depict probabilistic dependence and independence. These diagrams are networks
of nodes, representing probabilistic or deterministic variables and directed arcs that
represent the relationships between them. Chance nodes, depicted as circles or ovals on

influence diagrams, represent states of the world that are uncertain. They correspond to

propositions (random variables) in the problem.

4 The term assertion is used as a generic term for both evidence and hypotheses in an inference
network.
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While these directed, acyclic graphs may be formally described and evaluated, their
popularity stems largely from the clarity with which they can depict and elicit qualitative
knowledge concerned with decision problems (Shachter, 1986). Where the diagram
involves only random variables (chance nodes), it is called a Bayesian or belief network
(Pearl, 1986a) or causal or independence network (Neapolitan, 1990). The term causal is
useful in distinguishing this technique from inference networks. In belief or causal
networks, the arcs link cause and effect, whereas with inference networks the arcs link
evidence to hypothesis.

Belief networks are a method of probabilistic reasoning that have recently been the
focus of a considerable research effort: see Charniak (1991) for a comprehensive list of
references. An example of a single-layer network was given in Figure 3.1, corresponding
to the simplified Bayesian formulation discussed above. A richer knowledge scheme is
represented by Figure 3.4 that illustrates the different kinds of independence in a network.
The source variables a and ¢ have no predecessors and are therefore marginally (i.e.
unconditionally) independent. Variables b and d are conditionally independent given their

common predecessor ¢, while e is conditionally independent of a and ¢ given b and 4, its

Aston University

Content has been removed for copyright reasons

H ~ T ~ - - -

Figure 3.4 Independence relations in a belief network. Given knowledge of ¢, variables b
and d are conditionally independent (from Henrion et al. (1991))

immediate predecessors. The independencies depicted in the belief network also illustrate

localised effects between variables: the effects of one variable on a distant variable can only

propagate along the influence arcs.

3.4.2.5 Evaluating belief networks

Probabilities assigned to the random variables in a belief network form a joint-probability
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distribution uniquely defined as the product of the individual distributions for each random
variable, themselves equal to the variable’s conditional probability given its predecessors.

Thus, the joint distribution for the network of Figure 3.4 can be written as:

P(a,b,c,d,e) = P(e|b,d)P(b|a,c)P(d|c)P(c)P(a) (3.17)

Once a belief network is constructed, it can be used to interpret input data, on the basis of
equation (3.17). A set of variables corresponding to the data is instantiated, and the effect
propagated through the network to evaluate the new probabilities of a set of variables
designated as the hypotheses. Evaluation of a network therefore consists of calculating
every node’s conditional probability from the evidence available.

Unfortunately this evaluation becomes infeasible for networks of more than about
10 nodes, since the computation is exponential in the number of variables and is said to be
NP-hard.® If however the network is singly-connected, with no more than one path between
any pair of nodes, then exact solutions are possible. Multiply-connected networks, which
obtain in most realistic applications, can be solved exactly if transformed into their
equivalent singly-connected graphs. Usually however such networks require approximate
solutions to the conditional probabilities: the reader is referred to Henrion (1988, 1990) for
a detailed description of these.

Advocates for belief networks in uncertain reasoning cite several benefits. On the
practical side large-scale belief networks have been recently constructed for knowledge-
intensive applications with some success: examples include the commercial INTELLIPATH
system for the diagnosis of lymph node diseases and MUNIN for diagnosis of neuromuscu-
lar disorders, and many more applications are envisaged (Horvitz ez al., 1988). Theoretically
the approaches of decision analysis and probabilistic reasoning can be integrated via the use
of influence diagrams to express both uncertain knowledge and the utility of decisions to
be made under uncertainty. Furthermore, the graphical nature of this knowledge
representation promotes clarity and comprehension of the decision problem. Belief
networks and influence diagrams explicitly depict dependence and independence between
variables. Reasoning in networks may be in any direction: causal (or predictive), diagnostic,
or intercausal, overcoming a particular drawback of rule-based inference that is usually from

evidence to hypothesis, and requires special rules to deal with inter-causal effects.

5 Non-deterministic, Polynomial time.
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Drawbacks include the problems of achieving exact solutions, and the approxima-
tions required for representing multiply-connected graphs as singly-connected (Shafer,
1987). Charniak (1991) acknowledges a single satisfactory algorithm for all network types
may not exist. Moreover, the knowledge acquisition task for building belief networks
should not be underestimated. The independence assumptions in Bayesian networks follow
from a causal interpretation, i.e. the arcs linking the nodes are from cause to effect. Thus,
constructing a network requires the expert to be familiar with the cause and effect
relationships among all the variables, and to be able to identify the direct cause of each

variable (Neapolitan, 1990).

3.5 Dempster-Shafer Calculus

3.5.1 Introduction to Dempster-Shafer theory

Several alternative formalisms for uncertainty reasoning, such as certainty-factors, have
been devised in response to perceived problems with Bayesian theory. One such alternative
that has received substantial attention as a viable and practical non-Bayesian reasoning
method is Dempster-Shafer or Belief theory, a system for manipulating degrees of belief
that do not require assumptions about the prior probabilities of hypotheses under
consideration (Tanimoto, 1990). If we have very little evidence for a proposition, we can
accord little or no belief to the proposition and its negation. The calculus is therefore more
general than the Bayesian approach.

Gordon and Shortliffe (1985a) have commended the method for its ability to closely
model diagnostic reasoning and to distinguish between uncertainty, or lack of knowledge,
and indifference. The theory moreover has a firm mathematical foundation, emerging from
the study of multi valued mappings by Dempster (1967) and developed into a theory of
evidence by Shafer (1976). This contrasts with the essentially ad hoc nature of certainty
factors (Gordon and Shortliffe (1985a), Giarratano and Riley (1990)). The theory has found
practical uses in a variety of applications, including the analysis of sleep disorders (Principe
et al., 1989), aircraft target identification by multiple sensors (Bogler, 1987), computer
vision systems (Andress and Kak, 1987), surface cover classification in remote sensing
(Pendle and Franklin, 1992), foreign exchange-rate forecasting (Ip and Wong, 1991) and
forecasting and marketing management (Cortes-Rello and Golshani, 1990).

In the following discussion the basic ideas of the theory are explained in terms of

a model of river water quality classification using biological data. Five classes Bla,
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B1b,B2,B3,B4 are adopted, parallelling the chemical classification currently used by the
National Rivers Authority in England and Wales and ranging from unpolluted waters (Bla)
to grossly polluted (B4).° As with probability theory, Dempster-Shafer reasoning assumes
a fixed set of mutually exclusive and exhaustive hypotheses (corresponding to the sample
space S) known as the frame of discernment @ containing the exhaustive set of
propositions in the domain of interest. In our case this is the set of biological water classes:
thus ® = {B1a,B1b,B2,B3,B4}.

Each hypothesis in © corresponds to a one-element subset (called a singlefon).
However in D-S reasoning the term /ypothesis is normally used in an enlarged sense, since
one can allocate belief to all the possible subsets of ® (the "power set") totalling 2191 in

number, in contrast to the ’@’ hypotheses of the Bayesian sample space. Thus for a frame

Bla,B1b,B2,B3,B4

B1a,Blb,B2 B3 Bla,B1b,B2,B4 B1a,B2,B3,B4 Bla,B1b,B3,B4 B1b,B2,B3,B4

— -

i
; . . 5 |

B1a,BibB2 Bla,Blb,B3 Bla,Blb,B4 B1a,82,B3 B1a,B2,B4 BlaB3,B4 B1Ib,B2,B3 BIb,B2,84 BIb,B3,B4 B2,B3,B4
- - - - - : ; o

-~ -
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Bla,Blb  BlaB2 Bla,B3 Bla,B4 B1b,B2 Bib,B3 Bib,B4 B2,B3 B2,B4 B3B4
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Bla Blb B2 B3 B4

Figure 3.5 The subsets of the set of water quality classes

with five elements, there are 2° = 32 subsets, including the null set z. Figure 3.5 shows the
power set for the frame of discernment formed from the set of biological water quality
classes {B1a,B1b,B2,B3,B4}.

The subsets can be viewed as corresponding to various propositions of diagnostic

6 Gee discussion in Chapter 2 on discrete biological classification.
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interest in the power set. As an example, the proposition 'Poor Quality water' could be
represented by the two-element subset {B3,B4}, while its complement —~{B3,B4}
corresponds to the three-element subset {Bla,B1b,B2} representing the proposition not
Poor Quality water' or perhaps 'Good to Fair Quality water'. In Dempster-Shafer reasoning
evidence against an hypothesis is equivalent to evidence supporting the complement of that

hypothesis, avoiding the use of negative numbers as in the certainty-factor model (Gordon

and Shortliffe, 1985).

3.5.2 Basic probability assignments

A number m in the range [0,1] known as the basic probability assignment (bpa) is used to
represent the degree to which some evidence supports the various propositions. Formally,
a basic probability assignment is a function that maps each element of the power set into

a real number in [0,1], 1.e.

m: 29 - [0,1] (3.18)

Further, since the null set o is the hypothesis known to be false, m(2) = 0, and the total mass

across the power set assigned by an item of evidence must sum to unity:

> mA) =1 (3.19)

Ace2°

Note that only those propositions for which supporting evidence is available need be
assigned a probability mass: if further evidence is unavailable the remaining support need
not be committed to any particular subset of the frame: it can instead be assigned to the
environment ©. As an example, consider that one piece of evidence from a sampled site
results from observing that the freshwater shrimp Gammarus pulex is present. Allowing for
a certain degree of uncommitted belief, the basic probability assignment suggested by this
evidence may be as follows: m({Bla}) = 0.2, m({B1b}) = 0.5, m({B2}) = 0.1. The
uncommitted belief m(®) is then equal to 0.2 by definition of a bpa. Thus uncertainty can
be explicitly represented by assigning uncommitted belief to ©, rather than to any proper
subset of it. If evidence favours a single subset, say {B1b,B2}, remaining belief can be
assigned to © rather than to the complement of this subset, as would be required in the

Bayesian. Dempster-Shafer's treatment of ignorance is therefore markedly different from

that in probability theory.
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Evidence is thus provided by a reference set of benthic organisms that may be
viewed as sensors, able to report their current state and accordingly assign a measure of
support to the relevant propositions. The inference task then becomes one of integrating
evidence from these disparate, perhaps conflicting sources to produce a report of overall
support for the biological classes. This problem of fusing evidential data from multiple
knowledge sources using Dempster-Shafer reasoning has been examined by Garvey et al.

(1981) and notably Bogler (1987) in an application of aircraft target identification.

3.5.3 Belief functions

One consequence of the flexibility of belief assignment in Dempster-Shafer reasoning is
that different levels of precision, or granularity, of belief parameters may be employed. The
basic probability number m(4) represents the belief committed exactly to the subset 4,
which cannot be subdivided further among any of its subsets. The fofal belief in 4, denoted

Bel(A), is measured by the bpa assigned to 4 and all its subsets, 1.e.

Bel(A) = Y. m(B) (3.20)

BcA

From the above m(4) = Bel(4) for all singletons. The definition is reasonable in that belief
in a set enhances support for its superset. While Bel(4) describes the belief that 4 is
definitely true, the plausibility of 4, Pls(A) represents the belief that 4 could be true, 1.¢. the

degree of belief that would exist if all remaining uncertainty was removed. Thus

Pls(A) = 1 - Bel(—4) (3.21)

In Bayesian reasoning Pls(4) = Bel(4), but in Dempster-Shafer theory it is usual to express
belief in a proposition in terms of the belief interval [Bel(4), Pls(4)] which is usually of
non-zero width. The width of this interval can be regarded as the amount of uncertainty in
a proposition, the degree to which we are unsure whether or not it is true. It is therefore
belief committed by the evidence to neither the hypothesis nor its negation. For some subset
A, this probability mass is associated with all those supersets of 4 which intersect it. If more
specific evidence became available, the mass currently with a superset could be committed

to A, thereby reducing the width of the belief interval and therefore the degree of

uncertainty.
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3.5.4 Combination of belief functions

Support for the various hypotheses arises from observing multiple items of independent
evidence. This support must then be combined in a way that represents the aggregation of
this evidence. In D-S reasoning this combination takes place by Dempster's rule (Shafer,
1976). For two sets of evidence with bpa's m, and m, respectively, Dempster's rule
computes a new bpa representing their combined effect and called the orthogonal sum of
m, and m,. For some proposition Z of ©, m,@m,(Z) is the sum of all products of m,(X) and

myY), where X and Y are subsets of ® whose intersection is Z. Formally,

m®m,(Z) = Y, m(X)m,(Y)/(1-x)

i (3.22)
where
= Y
K X%;:@ ml(X) mz( ) (3.23)

K corresponds to the degree of evidential conflict between the two sources. If the sources
do not conflict in any way, x equals zero. If however the sources do not have any sets in
common, the evidence is totally contradictory and x equals unity, so that here the
orthogonal sum given by (3.22) is not defined. Dempster's rule promotes consensus by only
assigning belief to intersecting sets, which represent common elements of evidence. Since
the rule is commutative, the evidence may be combined in any order. Gordon and Shortliffe
(1985b) note the importance of this property in diagnostic reasoning.

A simple example from Boyd et al. (1993) will illustrate Dempster's rule. Suppose
that the presence in a sample of the mayfly Baetis rhodani supports the proposition
{Bla,B1b,B2} to degree 0.6 (m,) while the presence of Lumbriculidae supports {B1b,
B2,B3} to degree 0.7 (m,). What is the net effect of these two items of evidence? The

computation of the orthogonal sum is shown in Table 3.1.
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Table 3.1 Illustration of Dempster's rule for two basic probability assignments

m, ({B1b,B2,B3}) (0.7) | m, (®)(0.3)
m, ({B1a,B1b,82}) (0.6) | {B1b,B2} (0.42) {B1a,B1b,B2} (0.18)
m, (©) (0.4) {B1b,B2,B3} (0.28) 0 (0.12)

The first row of the table shows the first bpa m, in which a belief of 0.4 is left unassigned
to the environment ®. The first column shows the second bpa m,. Set intersections are
shown in the table alongside the numeric mass product. For instance the set intersection of
{B1a,B1b,B2} and {B1b,B2,B3} is {B1b,B2}, while the basic probability number assigned
to this new proposition is 0.6 x 0.7 = 0.42. The orthogonal sum is thus: m,@m,({B1b,B2})
=0.42, m;em,({B1b,B2,B3}) = 0.28, m,em,({Bla,B1b,B2}) = 0.18, m,@m, (©) = 0.12. The
belief functions can then be recovered from the bpas. For example, Be/({B1b,B2,B3}) =
m,@m,({B1b,B2,B3}) + myem,({B1b,B2})=0.42 + 0.28 = 0.7.

3.5.5 Evidential conflict

In the above example, no conflict occurs between the two evidential sources. Consider now
the effect of further evidence arising from the observation that sludge-worms are present
in some numbers, suggesting that the sampled site may be affected by organic pollution.
The bpa induced by this evidence may be as follows: my({B3,B4}) = 0.8, my(®) = 0.2. Here,
the probability mass is focused onto more specific hypotheses (the poorer quality waters)
with a higher degree of certainty. The uncommitted evidence is likewise reduced,
suggesting more confidence in the data quality of this source. However there is a degree of
conflict between this and the previous bpa, as can be seen in the intersection matrix shown
in Table 3.2. It can be seen from the table that in two cases the combining subsets have no
hypotheses in common, i.e. their intersection is the null set. The probability mass associated
with the null set is thus 0.336 + 0.144 = 0.48. However, by definition of a bpa the mass

assigned to the null set must be zero, since this is the false hypothesis.
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Table 3.2 Illustration of Dempster’s rule for conflicting evidence

m, ({B3,B4}) (0.8) | m, () (0.2)
m,@m,({B1b,B2}) (0.42) o (0.336) (B1b,B2} (0.084)

m em,({B1b,B2,B3}) (0.28) | o (0.144) {B1a,B1b,B2} (0.036)
m,em({Bla,B1b,B2}) (0.18) | {B3} (0.224) {B1b,B2,B3} (0.056)
m,em, (©) (0.12) {(B3,B4} (0.096) ® (0.024)

To deal with this apparent anomaly m,em,em {) is set to zero and the remaining
probability numbers are normalised by dividing by the factor (1 - 0.48) = 0.52, as shown for
the following two subsets:

m ®m,®m, ({B3}) = 0.224/0.52 = 0.43
m,Sm,Bm, ({B3,B4}) = 0.096/0.52 = 0.18

The resulting bpa across the subsets sums to unity as required.

3.5.5.1 Problems with Dempster's rule

The process of normalisation in Dempster's rule redistributes the conflicting probability
mass across the "consenting" subsets, in a way that maintains the relative degree of support
for each. Gordon and Shortliffe (1985) note however that this process is accepted by way
of convention rather than by theory, and according to Zadeh can lead to inconsistent
behaviour if the evidence is highly conflicting. As an example (adapted from Zadeh (1984))
consider just three hypotheses regarding the biological quality of river water: (a) very good,

(b) medium and ( c) very poor. Two experts (or sets of evidence) may make the following

assessments:

m(a) = 0.9 my(b) = 0.01 m(c) =
mya) =0  myb) = 0.01 myc) =

The first expert is almost certain that the water is of high quality, that medium quality is
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highly unlikely, and that the proposition of the water being of very poor quality can be
rejected. The second expert's opinion is exactly the opposite. Combining these two

assessments using Dempster's rule results in the following. Since:

K = (0.99 x 0.01) + (0.99 x 0.99) + (0.01 x 0.99) = 0.9999

m(a) = (099 x0 Y/ (1 -x) =0
m(b) = (0.01 x 0.01) / (1 - x) = 0.0001/0.0001 =
m(c) = (0 % 099)/(l -x) =0

This result is counterintuitive. Those hypotheses strongly favoured by one or other of the
experts have been ruled out after this combination, while the proposition that both
considered being highly unlikely is concluded to be certain beyond doubt.

The problem here arises from the fact that the evidence is both highly contentious
and crisp (Zadeh, 1984). Given the high degree of conflict, one should suspect and if
necessary reject one or both sets of evidence. Such a decision could be taken by the
reasoning system or decision maker by monitoring the value of x, the degree of evidential
conflict in combination. Alternatively, the "crispness"” of the evidence may be reduced by
discounting, in which part of the bpa is removed from focal elements (the subsets within
the power set) and reassigned to ©. Given these difficulties certain workers have considered
alternatives or modifications to Dempster's rule, or examined its theoretical justification
(e.g. Voorbraak (1991)). Alternatives to Dempster’s rule for combining biological evidence

are considered in the chapters on the classification experiments.

3.5.6 Representation of belief (Classes of belief function)

One distinguishing feature of Dempster-Shafer reasoning is its flexibility for assigning
belief at different levels of granularity, or specificity, across the power set of hypotheses.
This flexibility however brings its own problems and is a source of criticism from those

who favour Bayesian methods (e.g. Kyburg (1987), Ng and Abramson (1990)). Potentially,

the process of assigning belief can be overwhelming: for the 2181 subsets of the power set,

there is a total of 2 exp 2!°! possible basic probability assignments (Kyburg, 1987). In
practice, an expert or reasoning system employing Dempster-Shafer theory would need to

restrict the number of ways in which probability mass could be distributed by selecting an
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appropriate class of belief function, an approach adopted by Caselton et al. (1988). Once
selected, these belief function classes effectively constrain the possible mass assignments.

Several classes of belief function are considered in later chapters dealing with the
classification experiments: Bayesian belief, singleton support, simple support and consonant

belief. Discussion on their representation and implementation will be delayed until then.

3.6 Possibility Theory

One of the sources of uncertainty is the ambiguity and vagueness of natural language used
by human experts. Examples include expressions such as "cold", "tall" or "very probably".
The need to cope with this imprecision led to a theory of uncertainty proposed by Zadeh
(1978) based on fuzzy logic, itself an extension of fuzzy set theory (Zadeh, 1965).
Possibility theory provides a means by which such imprecise knowledge can be represented
and as such is another mechanism for reasoning with uncertain evidence. Only a brief
outline of possibility theory will be given here as a means of describing its use in evidential
reasoning. For introductory readings see for example Graham and Jones (1988), Barron
(1993).

In contrast to classical set theory where an object (x) either is or is not a member of
a set (A4), fuzzy sets allow partial membership. This degree of membership is represented
by the membership function x,(x) which takes values in the interval [0,1] inclusive. In
classical theory only the two extreme values are allowed: a value of one implies total belief
that the element belongs to the set 4, a value of zero means that is that is does not. For fuzzy
sets, the membership function can be any value in the interval. For example consider the set
(X) of earthquake magnitudes X = [4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5] (Wong et al., 1986). If

A is the fuzzy subset "a moderate earthquake", it may be subjectively characterised as:

A =1[0/45 +02/50 + 0.8/5.5 +

0.95/6.0+ 0.8/6.5 + 0.1/7.0 + 0/7.5] (3.24)

The numerator refers to the membership function of the element in the denominator, so we
see that an earthquake of magnitude 6.0 is highly likely to be considered as moderate,
magnitudes 5.5 and 6.5 are likely to be considered as moderate, while magnitudes 4.5 and

7.5 would certainly not be considered moderate.

Possibility distributions arise from considering the capability that an element

belongs to a set, and therefore are directly related to fuzzy membership functions. So in the
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above example the element representing earthquake magnitude 4.5 cannot belong to the
fuzzy set 4, while it is highly possible that 6.5 does. Note that the possibility of an event is
very different from its probability: while an earthquake of magnitude 6.0 is highly likely to
be considered as moderate (12,(6.0) = 0.95), the probability of such an event occurring is to
be determined from statistical data. To understand this distinction further it must be
remembered that probability theory and related methods such as Dempster-Shafer theory
deal with propositions that are "crisp": either true or false. Exactly one proposition in the
domain of interest will be true, but before evidence is brought to bear we are unsure which
one this is. The propositions themselves are precise: "the river water quality is {B3}",
however it is uncertain how true this proposition is, so a number is associated with the
proposition to express this uncertainty. In fuzzy set theory however, the propositions are
vague: "the earthquake is moderate". Equation (3.24) is not an expression of uncertainty (or
truth): it is an expression of vagueness. Although an earthquake of magnitude 6.0 is highly
likely to be considered moderate, there is no way of finding out for certain whether or not
it belongs to the equivalent fuzzy subset, since there is no uncertainty to remove.
Because of this distinction, the class of problems addressed by fuzzy set theory is
fundamentally different from those dealt with by probability theory and related methods.
In this respect therefore, fuzzy set theory is beyond the scope of this project, which is
concerned with reasoning methods applied to propositions that are definitely either true or
false. It is discussed in this review because of its importance and because there are overlaps
between fuzzy set theory and evidential-reasoning systems. Evidence represented by the

fuzzy sets can be combined to infer some conclusion.

3.7 Comparison with Neural Network approach

This project was one of two investigating the application of techniques from Artificial
Intelligence to the biological classification of river water quality. The related project using
neural networks has been alluded to previously. In this section, a brief review of the
differences in the knowledge representation of expert systems and in artificial neural
networks is given.

Knowledge-based systems provide a means of reaching a decision by categorical
rules or for reasoning with uncertain facts to decide the likelihood of an hypothesis of
interest. Knowledge as production rules, probabilistic dependence relations or conditional

probabilities is explicit, usually obtained from experts. The classifiers developed for this
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project are reasoning systems based on this explicit prior knowledge. To process a larger

set of input variables the knowledge base would need to be expanded. If a Bayesian network
approach was employed, dependence relationships between new nodes and the existing
network would need to be made explicit.

For the neural network approach, the net learns by adjusting the weights connecting
its processing elements in response to input and required output data. Neural networks
exhibit plasticity, in that the net can be retrained even if the number of input elements is
reduced or enlarged. In this respect therefore the neural net approach is more adaptable for
this type of classification problem. Nevertheless the uncertain reasoning approach is
attractive in its explicit representation of quantitative probabilistic knowledge, and for the
several mathematically coherent methods available for reaching decisions under uncertainty.
Ruck (1995) discusses the possibility of combing the two approaches, which can be seen

as complementary. The Bayesian network alternative is considered in Chapter 8.

3.8 Uncertainty Management: Concluding Remarks
This chapter has reviewed several numerical schemes for managing uncertainty, and their
role in artificial intelligence. Bayesian decision methods remain the primary numerical
approach for representing and manipulating uncertainty. They have a sound mathematical
foundation and a wide range of practical applications in expert systems and decision theory.
They can be used in simple inference networks with considerable effect although problems
arise when rule-based inference networks are extended to incorporate uncertainty.
Neapolitan (1990) considers that a mixture of rule-based systems and probabilistic
reasoning is infeasible. However it is recognised that the simplified Bayesian scheme can
be used successfully in small, well-defined problem domains (Szolovits and Pauker (1978)
and Henrion et al. (1991)). Causal or Bayesian networks illustrate their power and potential
for complex domains, but solutions to such networks are generally approximate.
Dempster-Shafer theory is a generalisation of Bayesian theory that allows
considerable flexibility in the representation of uncertain knowledge. In particular it allows
ignorance to be explicitly expressed via the mechanism of uncommitted belief. The theory
has been criticised on the grounds of its complexity and the lack of guidelines for assigning
belief across the power set. As suggested in this chapter however, there are classes of belief

functions corresponding to intuitive representations of evidence that constrain the possible

assignments that can be made.
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An alternative uncertain reasoning paradigm based on fuzzy logic was briefly
reviewed. It was noted that the class of problems addressed by fuzzy set theory is different
from those dealt with probability theory and related methods. The neural network approach

was compared with the knowledge-based approach in the context of the biological
classification problem.

The Bayesian and Dempster-Shafer calculi appear to offer the most mathematically
sound procedures for manipulating and combining numerical degrees of belief in
propositions that are either true or false. Because of this, these methods were selected from

the many in existence for the development of classifiers for biological classification.




Chapter 4

Expert Knowledge Elicitation

4.1 Introduction

This chapter describes the work undertaken to elicit domain knowledge from a leading
expert in the biological assessment of freshwaters. Interviews with the expert are described
in which basic domain concepts are elicited, followed by the selection of key indicator taxa
and the identification of abundance-levels as sensor states. A novel technique for eliciting
probabilistic knowledge corresponding to a taxon’s indication of river water quality is
described in detail. The theory and practice of knowledge acquisition, and particularly the

elicitation of measures of uncertainty, are reviewed.

4.2  Overview of Knowledge Acquisition and Elicitation

Knowledge engineering, the essential process of building an expert system, involves the
acquisition of knowledge, its representation and the selection of inference procedures for
manipulating that knowledge within a computer system. The knowledge encoded in expert
systems may be the expertise from a human expert, or incorporate general knowledge from
the literature. Alternatively, inducing rules implicit in data may be possible, a process

known as machine learning or induction.

4.2.1 Machine Induction

Knowledge engineering is an expensive and time-consuming activity, a fact that provides
the motivating force behind research into machine learning. During the 1980s, research in
artificial intelligence focused on the possibility that computers could somehow synthesise
knowledge themselves. In machine learning, the knowledge base for the domain is derived
from the analysis of a large set of examples that essentially train the system.

A prominent example of a working system based on induced rules was that built by
Michalski and Chilausky (1980) for identifying diseases in soybeans. The inductive
algorithm they developed, AQ11, was presented with a training set of examples consisting
of detailed descriptions of the soybean plants and the expert's diagnosis of their condition.
The resulting expert system was extremely successful in correctly diagnosing new and

unseen samples, and in fact surpassed the expert in performance.
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The ID3" algorithm also uses a training set of examples, described by a series of

attributes and resulting classes, to induce IF. THEN rules for a decision tree. Examples that
are not in the training set can then be classified using the derived rules. Selection of the
attributes and examples is crucial to the procedure: a poorly-derived training set may lead
to invalid rules. An attribute is selected by the algorithm to subdivide the training set,
creating an intermediate node in the decision tree corresponding to a rule. The algorithm
continues iteratively until the tree is complete. A detailed description of ID3 is given by
Michie (1979); a good example is presented by Hart (1989).

Neural networks belong to this class of machine learning methods, but differ in that
knowledge is stored as connection weights between nodes, rather than being represented by
any explicit form such as production rules or frames. In these so-called connectionist
machines, expertise is distributed throughout the network rather than stored locally
(McLelland and Rummelhart, 1986). Neural nets adjust their internal connections in
response to example inputs and required output. When properly trained, the nets can output
correct responses to new input signals. The potential of neural nets lies in their ability to
process massive amounts of sensory input data in applications for which algorithmic
solutions do not exist, and their ability to model relationships between data that are complex

enough to preclude a rule-based approach (Giarratano and Riley, 1989).

4.2.2 Knowledge elicitation

Although there are limits to what the knowledge engineer can learn from written materials
(Open University, 1989), background reading can provide a basic vocabulary of domain
concepts. This literature-based acquisition from documents, such as books, patents, articles,
and reports is often a prerequisite to discussions between the knowledge engineer and the
expert. It is however the process of acquiring knowledge directly from the expert, usually
known as knowledge elicitation, which remains the primary method.

Some techniques available for eliciting knowledge from an expert include the direct
methods of interviews and protocol analysis, and the indirect methods, in which knowledge
is inferred, of the laddered grid, card sort, and repertory grid. Interviews are intended to
reveal the expert's ideas, the relationships between concepts and their organisation, and the

reasoning processes employed for judgement and problem-solving (Open University, 1989).

! Tterative Dichotomiser 3.




According to Cullen and Bryman (1988) the most common technique is that of the

unstructured interview. These are useful for defining the problem or deciding its scope,

providing suggestions for questions at later sessions. Recording interviews on audiotape is
usual; in some situations the sessions are filmed. The interviews are then transcribed for
later analysis. Such interviews have the advantage that the domain expert is more likely to
feel at ease in the relaxed environment furnished by the informal or unstructured interview:
the disadvantages include the production of extensive transcripts and the difficulty, from
the knowledge engineer's viewpoint, of controlling the conversation.

Structured or focused interviews allow rules and ideas to be extracted more
efficiently than the conversational type of interview. Focused discussions are normally
conducted by following some agreed agenda (Ahmad and Griffin, 1991). They can be
viewed as setting a task for the expert, requiring him or her to produce a verbal report,
supported perhaps by diagrams, sketches and so forth.

The 'think aloud' protocol is a means by which the strategy adopted by people
solving actual problems can be studied. While solving some familiar problem, the subject
gives a verbal presentation that is recorded, and analysed in detail. The resulting protocol
analysis for well-defined problems derives a model of the problem about the initial state,
the goal state, and legal operations through the 'state space’ to achieve the goal. Analysing
protocols is extremely difficult, even for very simple problems. For ill-defined problems
(such as those that occur in medical diagnosis), the difficulties are compounded (Open
University, 1989).

Indirect methods derived from psychological studies include: - 'twenty questions',
in which the knowledge engineer suggests some situation and tells the expert to ask
questions about this case, laddered grids used to elicit data for hierarchically-structured
domains such as taxonomies, and card sort, in which cards bearing the names of domain
objects are sorted according to whatever criteria the expert considers appropriate (Hart,
1989). These methods aim to 'bypass the cognitive defences'; they can however, seem
patronising to the domain expert (AIAL 1990).

Burton ef al. (1990) have evaluated four knowledge elicitation techniques for
classification domains: the structured interview, protocol analysis, card sort and laddered
grid. Protocol analysis was the least effective technique. The two indirect techniques, card

sort and laddered grids were useful in providing complementary knowledge to the standard

interview.




4.3 Theory and Methods of Uncertainty Elicitation

4.3.1 Studies in uncertainty estimation

Several authors have examined both the psychological and practical aspects of eliciting
measures of uncertainty. Many studies have been made of calibration: how close an elicited
probability is to its objective value. Weather forecasters for instance, are highly calibrated
in their estimates (Winkler and Murphy, 1968). According to Tonn and Goeltz (1992) a
good probability estimator is one who is both highly calibrated and reliable, i.e. gives
consistent uncertainty measures over a time for an identical set of questions. Note that a
reliable probability assessor can be miscalibrated, i.e. measures may consistently be under-
or overestimated.

To arrive at these estimates, it is believed that people engage in some form of
cognitive problem-solving behaviour. When asked to assess a probability of some event,
the assessor may apply some mental model of the domain knowledge or use a so-called
intuitive approach, in which a measure is given with little conscious thought (Tonn and
Goeltz, 1992). The elicited measure may be in a form that requires transformation or
adjustment to one that can be used in the application intended by the knowledge engineer.
For instance, the assessor may show the probability measure by some mark on a line rather
than a number, according to the elicitation exercise. This may then have to be transformed
by some means specific to the exercise into (say) a probability or odds-value. One graphical
approach is the “probability wheel” in which a probability is obtained "without explicitly
mentioning a number" (Henrion et al., 1991). An adjustment may however still be required
even if the elicited measure is in numerical form.

Another way in which people derive probability measures is to use the so-called
analytic approach involving the use of heuristics in problem-solving. This can take place
in several ways. The assessor may draw analogies between the posed problem and another
(solved) problem, or perhaps has some quantitative knowledge of the event (such as its
frequency of occurrence). Thirdly, the assessor may imagine situations by which the event
under investigation becomes true. An interesting psychological effect of this process is that
the more easily an event can be imagined, the higher its assessed likelihood will be (Tversky
and Kahneman, 1974). This effect was observed during the elicitation exercise carried out
for this project. For instance, the expert often ruled out events as impossible that could
perhaps be more correctly termed has highly improbable. The use of zero or very small

probability measures has implications for uncertain reasoning calculi (see for instance
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Dubois and Prade (1985)).

These and other observations motivated Tonn and Goeltz (1992) to investigate
several hypotheses regarding probability assessment and reliability. These include the
conjecture that the method or the 'measurement scale'” which a person uses to report an
uncertainty estimate will affect its reliability, since a method that promotes an analytic
approach to assessment will be inherently more reliable than one in which a measure is
given intuitively. Secondly, changing the mode of assessment (e.g. from giving 'chances'
or 'odds' to making a mark on some scale) may adversely affect the reliability, since
different problem-solving approaches may be employed. This suggests that a knowledge
engineer should follow a consistent elicitation method or use those that involve the same
problem-solving approach for the expert.

Tonn and Goeltz carried out a comprehensive investigation of these and other
hypotheses by asking questions relating to the occurrence of a wide range of events from
a large sample size of subjects. The subjects were allowed to answer the questions against
three measurement scales: probabilities, chances, and percent of the time. The findings
support the conjectures regarding the modes of uncertainty estimates, and the hypothesis
that estimates for highly probable events are more reliable. Lastly, they suggest that the
same elicitation methods be used with the same set of questions. Tonn and Goeltz's findings
lend support to the methodology employed for the practical elicitation of uncertainty

estimates for the biological classification problem, discussed below.

4.3.2 Words versus numbers

One aspect of the uncertainty assessment problem not directly investigated by Tonn and
Goeltz is the question of whether words or numbers should be used in communication.
Bryant and Norman (1980) and Nakao and Axelrod (1988) in two separate studies
investigated the use of probability estimates in medical science. The studies were motivated
by concerns that serious misunderstanding between professionals may occur in the
communication of words such as 'probable’, 'sometimes’, 'likely’, 'excludes', 'typical’, and so
on, which are intended to convey estimates of the probability of some condition. Bryant and

Norman asked physicians to associate numbers (from zero to one) with a list of 30

expressions of probability. Expressions of low probability had very large ranges due to the

2 Tonn and Goeltz refer to this as the “answer modality”.
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wide variation in the numbers assigned, while only nine expressions, each associated with

high probability of disease, had ranges lower than 0.5. From this study the authors assert
that only numerical probabilities should be used in communication between medical
professionals.

Nakao and Axelrod carried out a similar study using a large sample size of
respondents, and from their findings insist that "verbal expressions of frequency should be
eliminated from medical communications". Budescu ef al. (1988) in an analysis of decisions
based on numerical and verbally expressed uncertainties similarly concluded that

"numerical judgements were significantly superior".

4.3.3 Implications for elicitation of probability distributions

This section presents a brief summary of the above review and its implications for the work
carried out in this project. Results from Tonn and Goeltz’s investigations suggest that a
consistent method for eliciting measures of uncertainty should be adopted; otherwise, the
reliability of the measures will be affected. A method that promotes an analytical approach
to uncertainty estimation will be more reliable than an intuitive approach. Several authors
caution against the use of “imprecise” measures of probability, recommending the use of
numbers rather than words. As discussed in Chapter 3, non-numeric methods of uncertain
reasoning are considered inadequate to handle imprecise information: for this, confidence
levels or degrees of support are required. Therefore, uncertainty elicitation for numerical
reasoning schemes must eventually produce numerical values.

However, probability measures may be elicited via a non-numeric approach, which
would then need to be transformed to numbers if necessary. The knowledge engineer should
be aware however of psychological bias exerted by uncertainty estimators. Events that can
be easily imagined often receive higher assessed likelihoods, whereas events that might
more correctly be described as highly improbable are estimated as impossible.

Later sections in this Chapter describe the development of a graphical method for
eliciting uncertain benthic knowledge as conditional probabilities. The scheme adopts many

recommended approaches discussed here.
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4.4 Interviews with the Expert

4.4.1 Interview arrangements

The knowledge elicitation for this project was conducted as a series of seven interviews
between the domain expert (H.A. Hawkes) and in the role of knowledge engineers W.J.
Walley and the author. The interviews themselves evolved from the more conversational,
unstructured type in the early sessions to those with a more definite focus as particular ideas
were explored. The intention of the early interviews was to gain an overview of the domain
ideas, before turning to the problem of eliciting numerical estimates of probability in later
interviews.

All the interview sessions were recorded onto audiotape to allow transcription and
analysis by the author, and to ensure that information revealed during the sessions was not
later overlooked by the interviewers. Each interview absorbed most of a working day, being
divided into a morning and afternoon session. This arrangement, while clearly demanding
of the expert’s time, meant that the interviews themselves were relaxed and non-intensive.

In transcribing taped interviews to word-processed text, a decision had to be made
regarding how much detail to include in the transcriptions. For the more conversational
discussions, a great deal of transcript is created if the dialogue is reproduced word for word.
Only a small percentage of the transcripts will contain core domain ideas; most of the
conversation involves setting the context for a particular question to be put to the expert.
However, transcribing only part of the conversations to text runs the risk of omitting
important knowledge contained in asides or issues raised apparently out of context, which
with hindsight should have been included. The transcriptions were therefore largely
verbatim, so that the process took in the order of two to three days or more to complete for
the average interview. Transcript length for the more detailed interviews was approximately
twenty or more pages.

Where possible copies of the transcript of the previous interview were presented to
the participants at an interview session, to provide a starting point for discussion.
Alternatively, reports relating to biological surveillance, or lists of benthic taxa would be
used as a catalyst for discussion, in cases where an agenda for the meeting had not been
decided beforehand. In the fifth interview for example, an interim report written by the
author on his understanding of domain concepts was the subject of a detailed response by

the expert.

Besides this verbal elicitation of knowledge, the expert contributed notes, reports,
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drawings of benthic invertebrates, annotated examples of biological classification, and most

notably, graphical depictions of the probability distributions for the indicator taxa. The
elicitation of this graphical data is described in detail below. The author also took part in
a one-day introductory practical session on biological surveillance in the field organised by
Mr. Hawkes.

In the following section extracts from the interview sessions are used to illustrate
how domain ideas central to this project were elicited from the expert. Given the length and
number of the transcripts, this is necessarily a brief overview. Initials WJW and MB refer
to comments or questions from the knowledge engineers W.J. Walley and the author while
HAH refers to the domain expert Mr. H.A. Hawkes. Where not stated, the quotation is from

the expert.

4.4.2 Elicitation of domain concepts

4.4.2.1 Meaning of “water quality”

The participants returned to this issue over several interviews, since it was problematic. In
one session the expert outlined his view of the distinction between “river quality” and
“water quality” in his work with the Biological Monitoring Working Party to produce the

BMWP score system:

“Our terms of reference were first set up by the DoE were [..] in fact to produce a biological method of
surveillance which would provide data on water quality, and, as a group we've rejected this ... what we would
do [was to] produce a system of biological monitoring that would monitor river quality, which is something
different from water quality. River quality is more than water quality ... because you've got water flowing
down a river, engineers come along and put it in a concrete bottom, and all sorts of other things like that: it
alters the quality of the river, markedly, without altering the water quality at all ... so there are subtle
differences between river quality and water quality.”

Or again, in the context of organic pollution:

MB: “Do saprobic zones refer to water quality or river quality?”
HAH: “Water quality generally, but an organic discharge can affect the substratum and thereby affect river
quality.”

The expert also dealt with the relation between sampling effort and the nature of the survey

in question:

“I distinguish between what I call environmental pollution - that's the effect it has on the environment
generally, the aquatic environment, in its effect on the organisms there, and the other pollution which affects
water quality in relation to man's use of that water ... [For instance] you may find that some stoneflies have
disappeared from the river but you can still use it for water supply! The two are not incompatible - but it's a
matter of degree. For the environmental impact, you really need a much more specific and detailed study than
you do for just getting a BMWP score, which tells you what you need to do about your water quality.”
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However, the differentiation between “river water quality” and “water quality” continued

to perplex this author throughout the project, and prompted an investigation of the literature

for clarification. The issues were discussed in some detail in Chapter 2.

4.4.2.2 Discrete classification and saprobic valency
The evolution of discrete classification systems for biological water quality has been
described in Chapter 2 of this thesis. Within the knowledge acquisition sessions, frequent
reference was made to the correspondence of the saprobic zones to gradations of organic
pollution, and to the existence of discrete biological classification systems. Reports of the
biological quality of rivers in the Yorkshire area, dating from the late 1970s, were one of
the subjects of discussion at the second interview. The reports contained examples of the
direct biological classification of benthic samples, in terms of classes Bla,B1b,B2,B3,B4.
It was apparent during discussions that there was also a correspondence between saprobic
zones and discrete biological classes. The idea of saprobic valency, which shows the
likelihood of finding a species in each of the five saprobic zones, is seen to parallel closely
that of numerical belief in the biological classes.

The expert considered the saprobic system useful, but was sometimes concerned
about the assignment of certain values to particular species, and its applicability to British
waters. Referring to the example of the mayfly Baetis rhodani, the expert disagrees with the

saprobic values assigned to it by Continental workers:

“Baetis rhodani [which] is an exceptional mayfly - more tolerant of organic pollution than anything else ... on
the saprobic classification is shown to indicate the best-quality waters - xeno- and oligo-saprobic.”

Despite these reservations, the expert undoubtedly appealed to the system when deriving
the probability distributions for the indicator taxa.'® Observation of this connection during
the elicitation exercise led to a suggestion by the author that the saprobic valencies should
be used directly to obtain the conditional probabilities P(H |e). This suggestion was not
pursued for several reasons. Although the saprobic system is one that has considerable
support in continental Europe it is less popular in Britain. It is based entirely on species-
level data, with no information for taxa at family level or higher. Since identification to
species level is often onerous or impossible, it was felt that it would be undesirable to rely

on an exclusively species-based system. This could preclude the use of data on invertebrates

' The domain expert had previously used the saprobic system in the biological surveillance of
Midlands rivers (Hawkes, 1956).
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at higher taxonomic levels should the indicator group be enlarged in the future. Moreover

the valencies were designed to be used with a system whose method of combining evidence

is essentially ad hoc, in contrast to numerical methods of uncertain reasoning that have
sound mathematical foundations. A prime consideration in the project was to acquire

knowledge from an acknowledged expert in the domain as directly as possible, rather than

appeal to the literature.

4.4.2.3 Importance of abundance levels

The significance of invertebrate abundance in benthic samples was a point emphasised by
the expert on several occasions. For instance, referring to the numbers of a particular taxon
in a sample:

“My appreciation of a sample certainly involves a rough abundance. If there's only one there, it tells you
something quite different than if there's a lot there.”

The expert distinguished levels of abundance:

“It depends on how you’re going to use this abundance. There are two grades: significantly present as I call
it, and abundant.”

This distinction partly justified the refinement of taxa states into “Established” and
“Abundant” (discussed below). Also, the term ‘abundant’ applied to a sample implies

different numbers of individuals for different taxa:

« _with abundance you got to have different values for different taxa ... for Tubificid ‘abundant’ means in
terms of thousands ... where for Planariidae it means units ... if I’ve got 10 in my sample they’re quite abundant
. in relation to what they are in anywhere else ... if I get Tubificid worms in several 100 that’s ... quite common
. so abundance is not just a numerical value”

Within this context the question of evidence suggested by taxa that are absent from a

sample was also discussed:

"I do deal with the absence of things, I look at the things that are present, and what they tell me, and then I
start looking for absences .."

However, 'absent evidence' is not as important as that provided from those taxa present, and

evidence may have different weighting:

"One thing I would emphasise is that the appearance of things that should be there outweighs the absence ...
if things are absent, then you may not have caught them, but if they're there, and they shouldn't be there, then
these are very strong indicators to me. Asellus and leeches in a riffle are very strong indicators of organic

pollution, more than the absence of some species of mayfly."
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4.4.2.4 Selection of Benthic Indicator groups

During an interview session a comprehensive list of all the major benthic invertebrates
previously drawn up was closely examined to identify 'key' indicator taxa: those
invertebrates considered by the domain expert to be of particular value for determining
biological water quality. This reduction was necessary for several reasons. It was agreed
early in the project that the task of eliciting detailed ecological knowledge on all these
invertebrates was impractical given the size of the database. Knowledge on the more rare
or exotic invertebrates was either scarce or absent, and in any case might be of limited
worth for assessing biological quality from sample inspection, since the biota in question
may (for example) have low indicator value. So it was decided to focus on those that were
generally of common occurrence and were of high indicator value.

The selection of small subsets of the invertebrates aided understanding more fully
how the domain expert assessed biological quality from his knowledge of the ecological
requirements of the invertebrates. Various subsets of the complete list were drawn up in
collaboration with the domain expert who then provided his own detailed descriptive
knowledge of the benthic ecology for each taxon. This was to prove a valuable precursor
for the uncertainty estimates later elicited for the classification problem. The following

extract shows some of the detail obtained:

WIW:  “We've talked about getting 10 species that you can talk about - about which you can tell us
something very specific... we'd like to know all there is to know about them.”

HAH: “I wrote down as much as I could about each of them .. is this the sort of information you want?
[Shows handwritten notes prepared]. This is in roughly the order of sensitivity to pollution... Leuctra
fusca is a stonefly, and therefore it's very sensitive - all stoneflies are, that's why I think it's profitable
to look at stoneflies. If I've got stoneflies present, in my stream, I don't need to look much further
because it tells me straight away it's pretty good, and if the other species there don't tell me that, then
there's some explaining to do, but normally I'd expect Gammarus to be present, and caddis, along

with Leuctra.

The presence of Leuctra fusca specifically, being a stonefly, is indicative of good quality water, but
Leuctra fusca is probably one of the most pollution-tolerant, so it's at the ‘edge of the range” - still
very sensitive to pollution, but slightly more tolerant.

Plecoptera are the most sensitive insect order, to organic pollution, usually associated with upland
eroding substrata streams, such streams as stenothermal (low temperature range), oligotrophic
(nutrient-poor, well aerated), that's where you'll find these ... but out of the stoneflies this species
Leuctra fusca is probably one of the most tolerant to organic pollution. But then it's given a saprobic
value of 2.15 - I don't believe that - that's more tolerant than Gammarus. It's too high a value in my
experience in the U.K. Interestingly, according to the FBA, Leuctra fusca was found as far
downstream into lowland rivers as any stonefly, and looking at the distribution of species in this list,
the more tolerant they are of organic pollution, the more likely they are to extend into a lowland river,

because they you'll get low oxygen.”
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These descriptions related to the first indicator group selected, which comprised ten species,

selected by the domain expert on the basis on their indicator value and their "spread" across

the range of water qualities from good to poor. The expert volunteered specific details on

taxa within the group, for example Simulium ornatum:

HAH: .. unlike the others which are dominated by water quality it depends on the bacterial numbers
present in the water, because it sits in the water and strains off the plankton, so water that it rich in
plankton encourages Simulium ornatum, and you find in outflows from eutrophic lakes. The first
thing I’d say about it is it wouldn’t worry me if I didn’t find any - because its occurrence isn’t that
frequent, so its absence isn’t all that significant. On the other hand, in some situations you can get
your net full of them, it’s in the B2 or B3 range.

“Why did you include this particular taxon in this small group?”
“It tells me something about the planktonic concentration of the water, not necessarily in relation to
water quality, although it is classified on the saprobic system”

The domain expert supplemented the verbal descriptions with handwritten notes on each

of the taxa, which are given in the next section.

4.4.2.5 Elicited knowledge on first ten indicator taxa
The following edited descriptions are in note form following the originals supplied by the

domain expert:

(1) Leuctra fusca: Plecoptera - Leuctridae (BMWP score 10)

Plecoptera is the insect order most sensitive to organic pollution. Usually associated with upland eroding
substratum streams, stenothermal, oligotrophic (nutrient-poor), well aerated. L. fusca is probably one of the
most tolerant of the stoneflies to organic pollution. (Quoted saprobic index of 2.15 is probably too high a value
for British conditions). Interesting that according to FBA L. fusca was found as far downstream into lowland
rivers as any stonefly. [Low oxygen in lowland rivers). Presence in lowland streams is an indication of good
conditions, absence of organic pollution. River Ystwyth - Leuctra found to be more tolerant of metal mine
waters (Pb & Zn) than other taxa: crustacea, oligochaeta, leeches & molluscs.

(2) Rhyacophila dorsalis: Trichoptera (Caddis) - Rhyacophilidae (BMWP score 7).

A non-cased caddis. Rhyacophilidae - restriction to fast-flowing waters 80-90 cm/sec. - especially in moss
on rocks. On stones without moss, restricted to lower surfaces. Hence, most common in upland streams.
Rhyacophilidae is sensitive to organic pollution - R. dorsalis probably most tolerant of the family and found
in mildly organically enriched waters but not in waters with any high degree of pollution. Tolerant of high
ammonia concentration. Distinct from net-spinning caddis (e.g. Hydropsyche), therefore less affected by
suspended solids. Active foragers - predators.

(3) Hydropsyche angustipennis: Hydropsychidae (BMWP score 5).

A net-spinning caddis, and therefore susceptible to suspended solids in water, e.g. coal-dust.

Family Hydropsychidae - found in flowing waters - (net feeding) - succession of species of Hydropsyche
downstream but Hydropsyche angustipennis not in this sequence. Sometimes found in lower reaches of large
rivers but also in small streams below outfalls from ponds and lakes. Known tolerance to high temperatures,
low oxygen & low water velocities. Known to increase in numbers in a fair degree of organic enrichment to
assume large populations - most tolerant by far of Hydropsychidae. This species is probably the reason for the
low BMWP score for family. Tolerant of high ammonia (as other caddis).




(4) Gammarus pulex: Gammaridae (BMWP score 6) - Crustacea - Arthropoda.

Freshwater Shrimp. One of the most commonly occurring invertebrates in streams. Typical in riffles and
displaced by the other common crustacean Asellus aquaticus with increasing organic pollution. Sensitive to
quite low oxygen levels, but oxygen pattern determines presence or absence. Gammarus pulex is very sensitive
to ammonia. Thus below polluting sewage effluents low oxygen and high ammonia concentration bring about
a reduction and eventual elimination of the population. Under such conditions Asellus increases in riffles;
hence the proposed Gammarus/Asellus ratio as a measure of organic pollution. Saprobic Index - 0.65. Tolerant
of some toxicants (insecticides) at concentrations suppressing insect populations. Found in waters of
moderately high to low mineral content but never where there is any brackish water influence, e.g. estuaries
or mineral springs - Not in waters consistently below 5.7 pH.

(5) Simulium ornatum: Simulidae (BMWP score 5) - Diptera Larva.

Blackflies. Most tolerant of insects to strong currents - requires current for feeding by straining food from
water flowing over them > 1.2 m/sec (S. damnosum). Encouraged by mildly polluted conditions because of
the increased food available in the nutrient-rich water but where pollution results in heavy slime growths on
stones they are reduced in numbers and eventually eliminated. Needs surfaces for attachment - rocks or
vegetation. When conditions favour the species, assumes large populations. Adult Simulium flies are a
nuisance for man and cattle by biting. In Africa, they are a vector of Onchocercus - African River Blindness.

(6) Lymnaea peregra: Lymnaeidae (BMWP score 3) - Mollusca

Wandering snail. Ubiquitous - probably the most widely distributed invertebrate - from upland to lowland
rivers - more common in lowland rivers. Although found in good quality streams, also found in moderate-to-
high degrees of organic pollution. Saprobic Index 2.0 ( = 2). Most abundant in hard waters but also present
in soft waters. Suited by moderate currents rather than very strong ones. Also found in lentic waters - lakes.

(7) dsellus aquaticus: Asellidae (BMWP score 3) - Crustacea

Water Hog-louse. Tolerant of moderately low oxygen and high ammonia concentrations. Rare or absent from
riffles of good quality streams but may be found in pools in bottom muds. A scavenger, therefore appearance
in riffles a strong indication of organic pollution. Being a scavenger feeding at a low trophic level may assume
large populations under suitable conditions of organic enrichment. More common in lowland rivers.

(8) Erpobdella octoculata: Erpobdellidae (BMWP score 3) - Hirudinea

Leeches. Saprobic Index 3.0. Occurs in a wide range of habitats - lotic & lentic, hard water & soft water. Most
abundant in moderately organically polluted situations. Widely distributed in Britain. Feeds on insect larvae
(chironomids) & worms. Rare or absent in good quality trout streams, probably because of scarcity of food
organisms or because of predation by fish. Invades riffles with increasing organic pollution (Saprophilic), only
eliminated in very organically polluted conditions (e.g. Polysaprobic). More common in lowland rivers.
Require solid hard surfaces for attachment.

(9) Chironomus riparius: Chironomidae (BMWP score 2) - Diptera

Red blood-worms. By virtue of possessing haemoglobin, the larvae are able to exist in very low oxygen
concentrations; experimental evidence suggests they benefit from lower oxygen levels. It feeds by straining
micro-organisms including bacteria from the water. It therefore thrives in organically polluted streams with
low oxygen and high bacterial numbers. It is found most abundantly in organically polluted riffles on silted
streams and stream beds. It invades riffles which are organically polluted, not being found in non-polluted
riffles. Saprobic value 3.65. Its presence in riffles is a strong indication of severe organic pollution. It is
however affected by insecticidal toxicants. It has been used in bioassay studies on insecticides in sewage
effluents after treating the filters with insecticides to control sewage filter flies.

(10) Tubifex tubifex: Tubificidae (BMWP score 1). ‘
Sludge worms. Live in bottom muds of rivers in which they construct tubes. Possess haemoglobin and like C.

riparius able to live in low oxygen conditions. They feed on the organic matter in the mud by ingestion. They
are therefore found most abundantly in organically polluted streams with low oxygen and where the bed has
been covered with an organically-rich deposit. Although most abundant in organically-polluted streams they
may be found in less polluted streams in smaller numbers. In natural (non-polluted) streams they are most
commonly found in the lowland rivers - presumably because of the depositing substratum. Saprobic index 3.8.




4.4.3 Elicitation of probability distributions

4.4.3.1 Overview

Since biological classification involves uncertain reasoning, numerical estimates of the
probabilities associated with the decision problem were sought from the expert. The fourth
and particularly the fifth interviews were concerned with this elicitation. This section
describes the results of this work, and where appropriate illustrates the elicitation process
via extracts from the discussions. The uncertainty measures which were initially sought
from the expert refer to the occurrence of the first ten indicator taxa in riffles, generally fast-

flowing regions of the river with stony substrata.

4.4.3.2 Initial elicitation

Given the dominance of Bayesian analysis in uncertain reasoning, the simplified calculus
was considered first. Whatever form of the simplified method is used (odds-likelihood or
multihypothesis), the conditional probabilities must be directly or indirectly elicited in some
form from the expert. If the odds-likelihood form of Bayes' rule is used, the coefficients of
logical sufficiency and necessity L, and L, can be sought directly. However, it was decided
not to pursue this approach for several reasons. In spite of arguments that the language of
odds gives meaning to probabilistic ideas, it was found from discussions with the expert that
he was no more comfortable with odds than probabilities. Moreover the distinctions
between "chance", "likelihood" and "odds" and similar terms were not clear. Although an
elicitation exercise could have been devised which hid these distinctions from the expert,
there was some apprehension that the uncertainty estimate so elicited could have had an
ambiguous interpretation.

Given these arguments and the fact that odds translate to probabilities directly (and
vice versa) it was determined to maintain a consistent terminology of "likelihood", "chance"
or "probability" as referring to probability values in the elicitation exercises. The question
arises which of the two forms of conditional probabilities should be supplied. According

to Shacter and Heckerman (1987) since P(e ‘ H) represents causal knowledge it is easier to

elicit in diagnostic systems than P(H ] e). This is particularly true if there are many

hypotheses H,. Thus eliciting the probability of observing the symptom given that the
disease is present is easier rather than the converse: if the symptom is observed (e), it may
be caused by many diseases H, whereas a particular disease may produce a specific

symptom. In Bayesian updating the posterior probabilities are obtained from the inverse
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formulation as P(e| H), and these values are normally sought from the expert (Pearl, 1987).

However Dillard (1992) points out that some evidence contributes more naturally
to P(H|e). In discussions with the domain expert it was found that this was true in this
domain: possibly because there are only a small number of competing hypotheses (n = 5).
This was discovered only after some experimentation. Initially both P(H 1 e) and P(e‘H)
were elicited for the ten indicator taxa to compare values and to find out in which mode the
expert preferred to express conditional probabilities.

It was felt that requiring the expert to express numerical values directly was
unreasonable. The expert was therefore asked to associate the verbal expressions "very
likely", "likely", "possibly"”, "unlikely", "highly unlikely" across the range of five water
quality classes for the occurrence therein of each of the ten taxa. These expressions were
later transformed into numerical values in a manner explained below. To simplify the initial
elicitation, the benthic states were considered to exist in two states only: presence and
absence (i.e. e and —e). Probability values for absence were derived from values supplied
for the present state, for which the expert's judgement was sought for the two modes.

To elicit the two numerical judgements of {H,} the expert was asked questions in

the following two forms:

(N given that the evidence (i.e. a particular taxon) is present at a river site, how likely is it that the river
water-quality class is (say) Bla?
and

2) given that the water quality is of class (say) Bla?, what is the likelihood that the taxon is
present/well-established?

For each format, the question is asked for each of the five quality classes. Questions in the
form of (1) clearly elicit P(H |e) while (2) elicits P(e | H). The elicitation of these two modes

for the ten taxa resulted in the verbal expressions given in Tables 4.1 and 4.2.




“

Table 4.1 Initial elicitation of P(H]e) using verbal expressions

Taxon JL Bla Blb B2 B3 B4
Leuctra fusca ll L p U HU HU
Rhyacophila dorsalis WI P L P HU HU
Hydropsyche angustipennis u HU U L U HU
Gammarus pulex u L VL P HU HU
Simulium ornatum ‘l HU U P P HU
Lymnaea peregra “ U p L L U
Asellus aquaticus " HU HU L L U
Erpobdella octoculata " HU HU L L P
Chironomus riparius ﬂ HU HU U p L
Tubifex tubifex HU HU U L VL

Key: HU - highly unlikely; U - unlikely; P - possibly; L - likely; VL - very likely

The likelihoods were scrutinised for their correspondence with saprobic valencies in the
fifth discussion. Although a few indicators showed a close comespondence with their

equivalent valencies, the differences were significant enough 0 &

distributions were independent of the equivalent saprobic valencies. Valencies were not 1n
fact available for two of the indicators: Rhyacophila dorsclis and Hydropsyche

angustipennis.

These verbal expressions were converted to numerical values by arbitrarily assigning

an interval to each within the range 0 - 100 as follows: highly unlikely - 023, u
possibly - 25:55, likely - 55:75, very likely - 75:100. Median values within each interval
were then assigned to the {H,}, i.e. P("HU") = 0.025, P(“U™) = 0.15, PCP7F 0.4, PCLY)
0,65, P("VL") = 0.875. Using this scheme the verbally-expressed probebilities PleiH) for
Leuctra fusca become {0.875,0.65, 0.15,0.025,0.025}. Values for P(H &) were normalised

to sum to unity.
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“
Table 4.2 Initial elicitation of P(e| H) using verbal expressions

Taxon jL Bla Blb B2 B3 B4
Leuctra fusca ‘ll VL L U HU HU
Rhyacophila dorsalis L VL P HU HU
Hydropsyche angustipennis U U L P HU
Gammarus pulex I L VL P HU HU
Simulium ornatum HU U L P HU
Lymnaea peregra U P L L U
Asellus aquaticus HU HU L L U
Erpobdella octoculata HU HU L VL L
Chironomus riparius HU HU L VL L
Tubifex tubifex HU HU U L VL

Key: HU - highly unlikely; U - unlikely; P - possibly; L - likely; VL - very likely

For the odds-likelihood formulation of Bayes' rule, used in the early classification systems
developed in this project, the values of L, and L, must be calculated from the supplied
conditional probabilities. Ideally, the unknown probability P(elﬁH) could be supplied by
the expert. However, the form of the required question: "what is the chance of finding the
evidence given that the quality class is not (say) {B1b}?" was considered too obscure for
the expert to supply a meaningful uncertainty estimate. This probability value can in any

case be determined from the P(e IH ) for each piece of evidence from the relation

S P(e|H)P(H)

P(e|~H) = &= O (4.1)

from which can be derived L, and L, since

_ P(elH) _ 1-Ple|H)
" p(-e|~H) 1-P(e|~H)

L (4.2)
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Using this approach of course avoids the problem in the simplified formulation which can

arise from inconsistent assignments of Z_ and L,. Applying these equations to the numerical
values for the probabilities resulted in L, and L, figures as shown in Table 4.3. The fact that

most of the L, values are non-unity suggests that the absence of taxa is significant.

Table 4.3 L, and L, for first ten taxa derived from verbal expressions

Taxon __Jr Bla B1b B2 B3 B4
Leuctra fusca L, 4.12 2.418 0.38 0.058 0.058
L, 0.16 0.47 1.402 1.69 1.69

Rhyacophila dorsalis L, 1.96 3.18 1.01 0.09 0.09
L, 0.52 0.17 0.98 1.90 1.90

Hydropsyche angustipennis L, 0.48 0.48 3.58 1.64 0.074
L, 1.225 1.225 0.42 0.79 1.47

Gammarus pulex L, 1.96 3.18 1.01 0.09 0.09
L, 0.52 0.172 0.98 1.90 1.90

Simulium ornatum L, 0.08 0.545 4.33 1.88 0.08
L, 1.40 1.17 0.41 0.76 1.40

Lymnaea peregra L, 0.32 1 1.92 1.92 1.92
L, 1.58 1 0.52 0.52 1.58

Asellus aquaticus L, 0.067 0.067 3.05 3.05 0.44
L, 1.54 1.54 0.44 0.44 1.28

Erpobdella octoculata L 0.045 0.045 1.65 2.59 1.65
an 2.16 2.16 0.57 0.18 0.57

Chironomus riparius I L 0.054 0.35 0.35 2.16 3.58
L, 1.79 1.47 1.47 0.5 0.21

Tubifex tubifex L, 0.048 0.30 0.94 1.79 2.85
JE" 2.02 1.65 1.04 0.54 0.18

4.4.3.3 Evaluation of Initial Elicitation
The efficacy of the initial elicitation was reviewed during a particular interview session. The

expert remarked on the difficulties of precise definitions of biological classes, and his use

of biotic indices to confirm his own assessment of quality:
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“I’ve got to remind myself what a B3 and a B4 means ... it’s outside my experience ..most of my surveillance

work .. when I get my survey data, [ work out the indexes as a guide but I look at the data and I immediately
compare it with the data I had before and I'm fairly happy to say whether a thing’s got better or worse. How
much better or worse, then I sometimes have to refer to the indices. I could show you the Don data - last time
there was only one species of mayfly at this station, but this time there are three species of mayfly -

significantly present -.this represents an improvement since last year. This is confirmed by the increasing
values of the TBI, biotic scores ..”

Also, his appeal to the saprobic system did not always help the process of biological
classification. The biological classes imply an increasing degree of organic enrichment from
Bla to B4, but a river biologist normally observes the response of the benthic communities
as levels of organic material in the river decrease due to degradation. The following extract

illustrates his difficulty when attempting to state the “preferred class” of Asellus aquaticus:

“Let me think ... take out Bla and B1b, certainly not B4 ... the reason I’m hesitating [is that] I’ve got to reverse
things in my mind all the time - I’'m used to taking organic pollution in the stages of recovery ... you’ve got
it the other way round!”

Despite these reservations, the expert became comfortable with the use of the discrete
classes after classifying several sets sample data, as described in Chapter 5.

The verbal expressions of likelihood were discussed with the expert to ascertain that
he agreed with the probabilities derived from them. Some modification took place on this

basis. For instance for Lymnaea peregra:

MB: “For Lymnaea peregra the valency is 0 3 4 3 0 - the distribution is “U,P,L,LU “and we calculated
that as 0.1,0.2,0.3,0.3,0.1.”

HAH: “I’d take the two extremes out anyway ... it’s fairly ubiquitous ... it’s tolerant over a wide range of
organic pollution ..I wouldn’t expect to find it very common in Bla, and I wouldn’t expect to find
it present in B4.”

WIW:  “In terms of B1b,B2,B3?”

HAH: “It might be more abundant in B2 because of the nutrient conditions ...”

WIW: “Is B3 going to be lower than B2?”*

HAH: “Not much down.”

The effect of abundance on the distributions was also explored. The following extract

illustrates the effect of abundance on the “preferred class” of Chironomus riparius:

WIW: .. if Chironomus riparius is present you’re pretty confident that it’s a B3 or B4 category, and if it’s
abundant you’re a little more confident that it’s a B4?
HAH: Yes, I think so.

For Lymnaea peregra, its occurrence in abundance also modifies its associated probability

distribution:

WIW: “Can ask you then what difference it would make then if Lymnaea peregra was abundant?”
HAH: “Established at 3, for abundance it’s got to be over 50 ... for most of the primary grazers and

4 A reference to the probability value within the distribution.
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scavengers ... you’ve only got smaller values for the hi

onee gher carnivores, predators and rarely-occurring
species.

WIW: f‘gkay it’s abundant now, you’ve found 60 of them in your net .. it’s still most likely to be a B2 is
it?”

HAH: “Yes.”

WIW:  “Is it more likely that it’s a B2, or is it about the same?”

HAH: “It’s pushed the B2 up more than the others.”

The values of L, and L ,in Table 4.3 were used in the odds-likelihoods Bayesian
formulation for the early classification systems. There were however problems which arose
both from the interpretation of the values supplied by the domain expert and the
methodology. Differences between P(H ‘ e) and P(elH) for the various taxa was either very
subtle (e.g. Simulium ornatum, Chironomus riparius, Tubifex tubifex) or sometimes
nonexistent (Gammarus pulex, Asellus aquaticus). This suggested that the distinction
between the two modes was either unclear or not meaningful, from the expert's perspective.
The expert also admitted finding this mode of elicitation onerous.

Besides the semantic confusion regarding whether P(H‘e) or P(e;H) truly
represented the expert's verbal expression of the uncertainty estimates there was also the
problem of the crude manner in which the expressions were converted to numerical values.
These two major difficulties were tackled together in a way that also incorporated

information on more than two taxon states.

4.4.4 Improvements to Elicitation of Probability Measures

4.4.4.1 Evolution of sensor model

Benthic invertebrates are useful indicators of river water quality since many exhibit a
preferred range of environmental conditions. This association with ranges of river water
quality, the idea of saprobic valency, and the inherent uncertainty of interpreting benthic
data, were all influential in adopting a probabilistic interpretation of benthic response to
changes in water quality. As argued previously, sample data from the river bed can be seen
as sensors of river water quality, like the burglar or fire-alarm sensors used by Pearl (1987)
to describe the multi-hypothesis formulation of Bayes' theorem.

The adoption of this sensor model evolved during the knowledge elicitation sessions
in which the basic domain concepts were acquired. In this respect, the ecological knowledge
provides the rationale for the quantitative approach, in that the probabilistic approach seems
consistent with the qualitative knowledge. For the biological classification decision

problem, the evidence facilitating that decision is provided by a reference set of benthic
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organisms, selected by the expert, which are deemed to exist in several states (discussed

below). For each indicator taxon, discrete probability distributions were obtained which
depict the likelihood of occurrence across the adopted range of water qualities, for each
state. These estimates of uncertainty are the expert’s personal probabilities, emanating from
years of experience and knowledge of the ecological requirements of the benthic organisms.

In view of the inadequacies of the initial elicitation, this sensor model of benthic
response was seen to offer a coherent framework for eliciting the probability distributions.

The process for doing this is described in the following sections.

4.4.4.2 Incorporation of extra taxon states

The previously elicited uncertainty measures refer to only two states of each indicator taxon:
presence and absence. However, it was agreed that information on the abundance of taxa
within samples should be used by incorporating extra taxa states of Rare (present in very
small numbers for that taxon), Established (or Common), Abundant (present in large
numbers for that taxon). These three states together represent the single state of Present.

In set notation the relationship between the states can be written

Rare U Established U Abundant = Present 4.3)

The Absent set is then the complement of {Present}. Membership of each set is "crisp", 1.e.
the sets correspond to discrete states. To extend the sensor analogy, one can imagine
physical probes in the river bed that emit one of four signals: Abundant if the taxon is
present in abundance, Established if the taxon is present in significant numbers but less than
abundant, Rare if the taxon is present in very small numbers that are not significant, and
Absent if the taxon is not detected by the probe. Signals from these probes provide evidence
for one or more of the competing hypotheses to varying degrees. Combination of this
evidence should yield the overall support for the hypotheses as a ranked order.

As suggested by the domain expert, the numbers that determine membership of each
state set may vary from taxon to taxon. When favourable conditions obtain for the sludge
worm Tubifex tubifex, a pollution-tolerant species, they occur in large numbers. Not so for
Ephemeroptera or Plecoptera, even in their preferred clean water conditions. It was
therefore necessary to obtain from the expert the minimum number that determined

membership of the states Established and Abundant for each taxon. These numbers are

shown in Table 4.4 on page 98.
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4.4.4.3 Preferred Mode of Numerical Estimate

After the initial elicitation it was discovered that the expert was more comfortable with

probabilistic information in the form P(H|e), possibly because of the affinity to the saprobic

system. For example:

"I can say with more certainty that 'given that it's there [i.e. a certain species], it came from a certain class
river', rather than 'in that class river, that [species] would certainly be present'."

Subsequent uncertainty elicitation was in this mode only.

Since the P(H,

e) are the posterior probabilities sought by the diagnostic process,
they must be transformed into P(e IH) for use in Bayesian updating. For some evidence ¢/

the relationship is given by Bayes' rule in the form:

P(H)

P(H,|e’) = P(e’ |H)
Y. P(e’ | H) P(H) @9
il

Without information to the contrary, the prior probabilities P(H,) of the n biological classes
can be considered equal.’ This is a reasonable assumption for a small number of classes.

Therefore

P(ej|HI.)

PR = = “5)
ZP(ej]Hk)
k1

Unfortunately the {P(Hi] ¢/)} cannot be converted to {P(¢ |H)} without knowing P(¢ \H)
for at least one H. This means that even if a scheme is devised to elicit the {P(H,|¢)}
without requiring the expert to supply actual numbers, some numerical value must be
supplied for one of the {P(¢/| H)} forj =1 to N sets of evidence. The implications of this

will become more obvious when the elicitation scheme itself is considered.

4.4.4.4 Development of Elicitation Scheme
Since each taxon can exist in one of £ = 1 to s states we theoretically need to elicit n x s
conditional probabilities P(H,| ¢/, ) via some means acceptable to the expert, coupled with

s conditional probabilities P(¢’ .|H, ) in numerical form for each of the N taxa. It was

> In Bayesian theory, this is known as the Principle of Indifference.
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considered that this was too onerous a demand to make of the expert, particularly the

requirement to identify these values for each s = 4 states. Exploratory discussions with the
expert revealed that he could envisage uncertainty estimates in some form for two taxon

states directly: Present and Abundant. From the relation in (4.3), we can write

P(e ! [ HI) = P(ejRare U ej U ejAbundant l Hl) (46)

Present Established

Since the sets are disjoint we have by rearranging (4.6) and assuming P(e;, ) = zero

P(e jEstainshed 1 Hz) - P(e jPresent I Hl) - P(ejAbundam } Hz) (47)

In fact an arbitrary value of P(eg,.|H;) = 0.01 was adopted for all hypotheses H, and
evidence ¢. This was felt justified at the time of elicitation since it was felt that the presence
of invertebrates in very small numbers should have little impact on the classification.

If the expert can supply P(¢ kIHi) for states Present and Abundant, the unknown
conditional probability P(eESmbnshcd‘H,) can be determined from (4.7). Thus the number of
states s’ for which uncertainty elicitation was required was reduced to two for each taxon.
It remained to decide which of the H, would be used to obtain the numerical value P(¢/ |H)
for each of the two states s”. (Recall that at least one numerical value of the {P(¢/ ‘H,.)} is
required to allow conversion between the two probability modes). Again this was
determined via discussions with the expert.

Most of the benthic taxa in the group, particularly those with a strong indicator
value, have a 'preferred’ water quality class, i.e. one in which they are more likely to be
found. For each taxon therefore, the expert was asked to (a) show the preferred class and
(b) to supply numerical values of P(¢/ ’H,) for the two states s’ (i.e. Present and Abundant).
Likewise, the conditional probabilities P(Hl.ief) were required for Present and Abundant

states - Absent and Established values would be calculated as in (4.7). Thus, the expert was

required to supply # x s’ = 10 conditional probability values.

4.4.4.5 Use of graphical pro-forma

Rather than give the required conditional probabilities as verbal expressions a graphical
method was devised by which means the expert could show directly the magnitude of the
uncertainty estimate. This scheme was introduced because of the dissatisfaction felt with
the ad hoc method used to convert the verbal expressions to numerical values, and the

determination to constrain the requirement for direct numerical elicitation. The expert
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expressed the opinion that they were easy to use and that he was comfortable with the task.
This was helped by the fact that he could complete these forms away from the interview
sessions.

Figure 4.1 shows the pro-forma designed for this graphical method. For each taxon
¢ the expert supplies the population numbers at which it can be considered Established and
Abundant. These numbers are specific for each taxon: for example the level at which
pollution-tolerant taxa such as Tubificidae are considered to be Abundant may be quite
different for sensitive species such as Leuctra fusca. Moreover field data for benthic sample
sites often quote the exact numbers of occurring taxa, which for classification purposed
would need to be converted into one of the three states comprising "present". This is

possible if one knows the threshold levels for the two states Established and Abundant.

TAXON:

Established at:

Abundant at:

Present Abundant

Relative likelihhod of class given that

Relative likelihhod of class given that
taxon is Abundant

taxon is Present

i

i
B1a B2 B4

B1b B3

| .
Likelihood that taxon is . 1 Likelihood that taxon is .
Present in i Abundant in
Preferred class: | Preferred class:

* Enter Number as a percentage

Confidence Level in Data [1 - 10}

Figure 4.1 Pro-forma used to elicit uncertainty measures for the indicator taxa

The form contains two blank histograms for Present and Abundant, on which the expert was

asked to mark a horizontal line within each quality class to form a bar, showing the size of
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the uncertainty estimate. Rather than constrain or direct the indication via some arbitrary
scale, the vertical axis was left without a scale as shown, allowing the expert considerable
freedom in deciding the placement of each line within the classes.

The pro-forma refers to 'relative likelihoods' rather than 'probabilities' to reinforce
the notion that the main part of the elicitation exercise is pictorial, rather than numerical.
Unfortunately maintaining this modality for the entire pro-forma was not possible, since as
stated above numerical values for P(¢/ ‘Hprefmd) were required for two states. To help the
expert in this difficult task, the following question was put forward to aid the elicitation of
the numbers: "Given that the river water quality is the preferred class for this taxon, what
are the chances that it is [Present/Abundant] at this site?", or "If you sampled # similar sites,
knowing their quality to be the preferred class for this taxon, what percentage of these
would yield the taxon [Present/Abundant]?"

To understand the difference between the Present and Abundant figures it may help
to consider an example. Consider the sludge worm Tubifex tubifex whose preferred class

is B4. The value of P(ep g

Hy,) supplied by the expert was 90% (i.e. 0.9). The expert was
further asked what proportion of this 90% would find the taxon Abundant, rather than
merely Present. It was thought that 75% of these Present samples would in fact contain the

Hy,)is then 0.75 x 0.9 = 0.675. This

taxon in Abundance. The required figure for P(epungan
was repeated for each of the j = 1 to N taxa in the indicator group.

Transformation of the expert's indications of P(Hi|e’) into numerical values is
straightforward. Recall that the denominator of equation (4.5) can be found for the two

probability modes for the preferred class:

P ( € ‘ Hpreferred )
P (Hpreferred i € )

n
>, P(elH) = (4.8)
i=1

and can be considered a "scale factor" relating the two probability modes. The denominator
of (4.8) is found from measuring the column height for the preferred class. The numerator
can be derived from the numerical values given by the expert for the likelihoods of finding
the taxon in each of the two states s'. Once the scale factor is known, (4.5) can be rearranged
to calculate {P(¢/| H,)} for all i. For completeness, these figures are then used to find the

numerical values of P(H,.| ¢') corresponding to the column heights.
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4.4.4.6 An example of deriving numerical estimates

An example may make this process clearer. From data supplied by the domain expert, the
freshwater shrimp Gammarus pulex has a preferred biological water quality class of {B1b},
with a probability of being Present in these waters of 0.95. Therefore, this taxon has a high
frequency of occurrence. Its probability of being Abundant (occurring in numbers greater
than 50) in {B1b} is 0.7 (approximately three-quarters of all the samples in which the taxon

is Present in fact contain Gammarus in large numbers).

Gammarus pulex

Elicited probabilities

—_— L3
w (=)

Relative Likelihood of Class

Blib B3 B4

B2
Biological Water Class
- PRESENT

Figure 4.2 Results of graphical elicitation of probability measures for Gammarus pulex

ABUNDANT

The column heights for the P(H,l €presen) drawn by the expert are {11,16,10,0,0} (arbitrary
scale) for the 7 = 1 to 5 classes while those for P(H,.IeAbundan,) are {5,25,7,0,0}. These figures
are shown in Figure 4.2. The significance of abundance for class B1b is apparent.
Equation (4.8) is then used to derive the "scale-factor" between the two conditional
probability modes. The numerator is the figure specified by the domain expert, while the
denominator is equivalent to the column height of the preferred quality class. For the state
of Present, the factor is therefore 0.95/16 = 0.06. Thus P(epmscm\HBm) = Column-height{Bla]
x Scale-factor = 11 x 0.06 = 0.66. This is repeated for each H,. The numerical values
corresponding to the histogram indications can then be found from (4.5), where the

H).

denominator is the summation of the P(ep een
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This sequence of operations is carried out for the histograms for the Abundant state,

with the additional requirement of deriving P(eAbundam{Hmkmd) from the two numerical
likelihood values: 0.95 x 0.75 = 0.7. The discrete conditional probabilities P(e,|H,) for all

states k& = 1 to s can then be derived from the P(e, ..., | H) and P (€, on

H)). Those for the

Established state are derived from (4.7), while the Rare state values were assigned an
arbitrary low value. Thus the probability distributions for Rare data are uniform, showing
that this evidence is effectively neutral. The P(e,|H) for the state of Absent is then 1 -
P(Epresers| H):

Figure 4.3 show the derived conditional probabilities P(H|e) for Gammarus pulex
in the states Present, Established, Abundant and Absent. Figure 4.4 shows the equivalent
for P(e| H). Additionally the likelihood ratios {L,} for each sensor state can be derived for
the odds-likelihood formulation of Bayes' rule. Substituting (4.1) into (4.2) we have

_ Ple|H)P(H)
© ) P(e,H)P(H) (4.9)

jei

for some state k.

All the calculations were automated by entering the information from the graphical
pro-forma into a spreadsheet for each taxon in the indicator group. Note that the distribution
for Gammarus pulex reflects the fact that this taxon is more likely to be abundant in B1b
waters due to predation by trout in the higher-quality Bla. Thus, the distributions can

partially embody autecological knowledge. According to the expert:

" _the reason why I've got Gammarus as "Very Likely" there and "Likely" there isn't that the water quality is
worse for Gammarus in a grade Bla river [compared] to a grade B1b river. In a grade Bla river, these a
mostly upland trout streams - there is a predation on Gammarus, which is heavy, by the trout, and therefore
you get few Gammarus there. The trout are less common in the lower quality river, and therefore the
Gammarus don't have any competition ... Things rarely occur in abundance under optimum conditions, because

you have to take competition into account.”
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Gammarus pulex
Derived probabilities

Probability P(H|e)

©
—_

<

BI Blb B2
Biological Water Class

ABUNDANT ABSENT

- PRESENT

Figure 4.3 Numerical values of P(Hle) for states of Gammarus pulex derived from elicited
data

Gammarus pulex

Derived probabilities

1
T 08
)
&
> 0.6
< 0.4
©
o
£ 02

0 , £

Bla B1b B2

Biological Water Class

ESTABLISHED [ll] ABUNDANT | ABsENT

[ prESENT

Figure 4.4 Derived numerical values for P(eH) for several states of Gammarus pulex
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4.4.4.7 Modification and enlargement of the indicator group

During the knowledge acquisition sessions the size and scope of the indicator group were
also considered. Examination of benthic sample data from the Yorkshire Water region®
showed a large proportion contained taxa that were not regularly identified below family
of genus level, which were still considered of high indicator value by the domain expert.
Certain species within the initial indicator group of ten fell into this category: sample data
often referred to the family TUBIFICIDAE rather than the species Tubifex tubifex, while
Leuctra and Rhyacophila were rarely identified below the level of genera. The motivation
for initially considering species-level data was the higher level of information so provided,
however the available sample data that would form the inputs to the classification system
and provide the expert's "reference" classifications meant that a compromise was required,
since the elicited probability distributions for the species could not be adjusted for higher
taxonomic levels. These three species within the indicator group of ten taxa were therefore
replaced by their equivalent genus or family level taxa.

By taking into account the occurrence of the various taxa across a range of sample
data, along with their usefulness as quality indicators, a further ten taxa were added to the
indicator group after consultation with the expert. These were followed by a further twenty-
one to make a total of forty-one taxa in the indictor group, shown in Table 4.4. The order
of presentation order follows that of Maitland (1977). The numbers at which each taxon is
Established and Abundant are given in the table. An indicator taxon occurring in numbers

below the threshold value for Established would be considered in the Rare state.

5 The sample data used for the classification experiments is described in Chapter 5.
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Table 4.4 Set of 41 Indicator Benthic Taxa Selected by Expert

Group

Taxon

i

A {Group Taxon |E l A l
C  |Polycelis nigra 21 10| C |Ephemerella ignita 21 20
C__|Dendrocoelum lacteum | 2| 10| B |Caenis spp. 31 20
C  |Potamopyrgus jenkinsi | 2| 50| C |dmphinemura sulcicollis 21 10
C  |Bithynia tentaculata 21 20| A* |Leuctra spp. 31 20
A |Lymnaea peregra 31 50} C |soperla grammatica 21 10
C  |Planorbis spp. 2| 10] B [HALIPLIDAE 31 20
C  |Ancylus fluviatilis 21 20| C |DYTISCIDAE 21 10
C |Sphaerium spp. 2| 20} C [ELMINTHIDAE 21 10
C  |Pisidium spp. 21 20| B |Sialis lutaria 31 10
A' |TUBIFICIDAE 31200 | A’ |Rhyacophila spp. 31 20
B |LUMBRICULIDAE 51100 | C |Glossosoma spp. 51 50
B |Glossiphonia spp. 2] 10| C |Agapetus spp. 51 50
B |Helobdella stagnalis 21 10y C [POLYCENTROPODIDAE 21 20
A |Erpobdella octoculata |31 20| A |Hydropysche angustipennis 3] 50
C |HYDRACARINA 2|1 20| B |Other HYDROPYSCHIDAE “ | 3| 20
A |Asellus aquaticus 31 50j C [HYDROPTILIDAE 51 50
A |Gammarus pulex 3] 50} C |LIMNEPHILIDAE 21 20
B |Baetis rhodani 31 50y C |CERATOPOGONIDAE 21 10
B |Rhithrogena spp. 31 20| A |Chironomus riparius 51100
C  |Heptagenia spp. 21 10| A [Simulium ornatum 31 50
B |Ecdyonurus spp. 31 20

E: Established at

A: Abundant at

Group B - additional 10 taxa

Group A - initial group of 10 taxa

Group C - extra 21 to form 41 overall

1.Originally Tubifex tubifex

2.Originally Leuctra fusca

3.Originally Rhyacophila dorsalis

4. Other than Hydropsyche angustipennis

”

More detailed tables that summarise the graphical data elicited via the pro-forma for the

forty-one taxa, and a summary of the derived P(H|e), are presented in appendices A2 and

A3.
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4.4.5 Information gain from Abundance

The information content of the probability distributions can be readily seen by calculating
a simple ‘indicator value’ (or [-value) based on the maximum value within the distributions,

divided by the number of non-zero (adjacent) histograms. Thus a strongly ‘peaked’



distribution will have a high indicator value, while a flatter distribution spanning three

classes (for instance) will have low value. This is not dissimilar to the indicator value used
in the saprobic system. Indicator values were calculated for the states of present and

abundant, i.e. directly from the graphically elicited distributions. For most of the indicator

Taxa Indicator Values

{E Present B Abundant |

Value
)
i

Polycelis nigra
Dendrocoelum
lacteum
Potamopyrgus
Jjenkinsi
Lymnaea peregra
Planorbis spp.
Sphaerium spp.
Pisidium spp.
TUBIFICIDAE
LUMBRICULIDAE
Glossiphonia spp.
Helobdella stagnalis
Erpobdella
octoculata
HYDRACARINA

Bithynia tentaculata
Ancylus fluviatil

Taxon

Figure 4.5 Indicator values of probability distributions for states of present and abundant.
(A subset of the indicator group is shown).

group, there is a clear information gain, as measured by the I-value, by taking account of

abundance, as depicted in Figure 4.5.

4.4.6 Value of elicited knowledge

The specificity and detail of this knowledge are considered a valuable resource, in that it is
believed that an exercise of this type has not been conducted before for benthic inverte-
brates. The probability distributions were prerequisite for the classification experiments
described later in this thesis and for a related project in biological classification using neural
networks (Ruck, 1995). The resulting graphical method could be used for other inverte-
brates, or alternatively to calibrate two or more experts’ distributions for particular taxa to
arrive at “consensus” distributions. (This is discussed in more detail in Chapter 8).

Qualitative and quantitative knowledge of particular benthic invertebrates was
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elicited from detailed interviews with an expert in the field of biological surveillance, who

was both cooperative and fully committed to the aims of the project.

4.5 Supplementary Work

4.5.1 Classification of sample data

Benthic data from river surveillance was classified by the domain expert during the
knowledge elicitation sessions. This expert classification is described in Chapter 5.
Prototype classification programs were developed to assess the efficacy of the elicitation
method for obtaining the conditional probabilities and the viability of the probabilistic
approach. This work is described in Chapter 6. However some early results suggested that
use of the directly elicited distributions produced incorrect results under certain conditions.

This problem is considered in the next section.

4.5.2 Adjustment of derived conditional figures
The probability values corresponding to the conditional probabilities were derived by
measuring the heights of the histograms. Examination of Figure 4.2 suggests that,
according to this distribution, there is zero likelihood of detecting Gammarus pulex in
classes B3 and B4 in states Present or Abundant. While this distribution may reflect the
expert's opinion regarding this organism for riffles, it was felt that it may "unfairly" rule out
the hypotheses B3 and B4 as impossible, and that some redistribution of the probability
mass may be required. This conjecture arose after using the distributions from the first ten
indicator taxa in prototype Bayesian classification software. In combining evidence,
hypotheses that had zero support from any one sensor were immediately vetoed, thereby
discounting from consideration support from other sensors. Remaining support was then
often highly focused on one or two quality classes, in a way that did not accord with the
diversity of sensor data provided by the sample.

As discussed in Chapter 3 this phenomenon occurs when combining evidence that
is both "crisp" and highly contentious. The difficulty of dealing with conflicting evidence
is discussed in Chapter 6, but even before detailed experimental work using the uncertainty

estimates it was felt that the elicited distributions may have been too crisp.
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Thus the domain expert may have exerted the psychological bias suggested by Tversky and

22
20
18 -

16 S‘(‘?‘ =
14 - 5

12

10 -

2

%

Bla Bl1lb B2 B3 B4

S N A~ O

Figure 4.6 Construction superimposed on elicited distributions
Kahneman (1974) in which highly unlikely events were ruled as completely impossible,
rather than retain a non-zero probability. The discrete probability distributions based on the

heights of the histograms were therefore adjusted to reduce their crispness, so that

probability mass was redistributed across the five competing classes.

20
18
16
14
12
10 -

Bla B1b B2 B3 B4

© N A~ &

Figure 4.7 Adjusted histogram with heights equal to areas of elicited distributions
This redistribution was carried out using an ad hoc graphical method, in which the P(H[e)
correspond to the mass areas within each quality class under a line connecting the midpoint

of each histogram bar (Figures 4.6 and 4.7). Each bar is considered of unit width. If P; is
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the probability measure derived from measuring the heights of the histograms provided by

the expert for hypotheses H, then the measures P/, corresponding to the areas are:

P4 = 0875P, + 0.125P,, i=1
= 0.125P,, + 075 P, + 0.125P, =234 (4.10)
- 0.125P,, + 0.875P, i=5

These formulae follow from the graphical construction used. The performance of the
classification systems using probability measures based on the "raw data" provided by the

domain expert could then be compared with the adjusted measures using this construction.

4.6 Summary

This chapter has discussed the principles of knowledge acquisition and elicitation for expert
systems, and particularly examined the methods for eliciting measures of uncertainty. The
practical work of knowledge acquisition from an acknowledged expert in biological
surveillance has been described. Elicitation of domain concepts and qualitative knowledge
on benthic invertebrates was carried out over several interviews with the expert. A model
of benthic sensors of biological quality was developed from this qualitative knowledge, of
indicator taxa existing in discrete states of abundance, including absence. In this model,
observation of indicator taxa in these states leads to probabilistic evidence supporting (or
refuting) the biological classes adopted for this decision problem.

A group of benthic invertebrates was selected by the expert during the knowledge
acquisition sessions, which were deemed useful indicators of water quality over the five
biological classes. The methods by which numerical conditional probability distributions
for the indicator taxa were elicited were described, commencing with verbal expressions
of the likelihood of water quality when an indicator is present and the converse. Develop-
ment of a novel graphical method was described in which the distributions for four states
of abundance were incorporated, with a minimal requirement for the expert to specify
numerical values. The method was used to elicit probabilistic knowledge of organic
pollution in riffles as indicated by forty-one benthic taxa. Threshold levels of abundance
specific to each indicator were also elicited and recorded.

This domain knowledge is a valuable resource, and the manner in which is was

elicited is believed to be unique in this field.
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Chapter 5
Expert Classification of Benthic Data

5.1 Introduction

This chapter has two main purposes: one to describe the construction of the benthic sample
data sets, and the second to record the expert’s direct interpretation of that sample data.
Both activities required the close cooperation of the domain expert, who provided access
to the invertebrate data, selected the groups of indicator taxa, and gave his considered
opinion on river water quality where necessary. The expert’s direct interpretation of sample
data underpins the adoption of a discrete biological classification system for river water
quality, since he was called upon to interpret the data with respect to these classes.

The chapter begins with a description of the preliminary data set and the ‘discovery’
of the expert’s use of intermediate classifications. The facility with which the expert
classified restricted sample data gave confidence that the biological classification of river
water quality was a natural mental task. The identification of forty-one key indicator taxa,
and the elicitation of their conditional probabilities for river water quality (described in
Chapter 4), was the starting point for the construction of the Yorkshire Data set described
below. These taxa form a ‘reference set’ against which the expert’s classifications and the
knowledge-based classifications can be made. The strengths and deficiencies of the data set
are evaluated. Several biotic indices are calculated and compared with the biological
classifications. It is suggested that, if the expert’s classifications are taken as a reference,
the large overlap in ranges makes distinguishing gradations in river water quality difficult
if these indices are used.

The difficulties in utilising the NRA Severn-Trent data are discussed. Finally, the

summary highlights the value of the Yorkshire data and the classification of benthic data

by an acknowledged expert.

5.2 Preliminary data

5.2.1 Origin

This data was gathered as part of the knowledge acquisition exercise and to test prototype
classification systems, described in Chapter 6. While the size of the set is too small to allow

any significant conclusions to be drawn from the classification experiments, its importance
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lies in its use to observe the expert’s use of biological classification, the elicitation of
domain knowledge on recovery from organic loading in a river, and the identification of
intermediate classes.

Table 5.1 shows the five samples used to construct the set. The samples were
presented by the expert for discussion at one of the knowledge acquisition interviews, as
representative of ‘typical” benthic samples, and illustrative of important domain ideas. For
instance the samples called ‘PS 3', ‘PS 4" and ‘PS 5' correspond respectively to samples
taken from stations located upstream of an organic effluent, downstream and further
downstream. These last three samples show the principle of self-purification that takes place
in a river in response to organic pollution, a model that is the basis of the saprobic system.
The sample called ‘PS 4' represents a benthic community that has displaced the type of
community that existed upstream of the discharge, being able to take advantage of the

increased nutrients. In ‘PS &', the community has further recovered as purification proceeds.

5.2.2 Classification of preliminary data

The presentation of these samples coincided with the choice of the initial group of ten
indicator taxa for which the expert also supplied discrete probability distributions as “verbal
expressions” of likelihood, discussed in Chapter 4 on Knowledge Elicitation. This
probabilistic knowledge was used to construct simple knowledge bases based on these ten
taxa. To test these ‘automatic classifiers” against the expert’s classification, the preliminary
data set was constructed from the actual samples in Table 5.1 in terms of the ten indicator
taxa. The expert was then presented with the restricted list of sample data and asked to
classify the samples with respect to the discrete biological classes. At this stage the expert
was not told of the identity or source of the restricted samples, although with only five
samples this was hardly an imposition. More onerous was the omission of the full sample
data. The justification for this restriction was to ensure that both the reasoning systems and

the expert were using the same information to classify a sample.
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Table 5.1 Benthic samples used to construct preliminary data set

PS 3!

pPS1
Tubifex tubifex c. 11000 |Polycelis cornuta 7
Helobdella stagnalis 1|Lumbriculidae 19
Erpobdella octoculata T\Piscicola geometra 1!
Asellus aquaticus 20|Gammarus pulex 55
Sialis lutaria 1\Corophium curvispinum 14?
Chironomus riparius 27|Baetis rhodani 32
PS2 Rhitrogena semicolorata 27
1Ancylus Sfluviatilis 8 |Ecdyonurus venosus 15
Bithynia tentaculata 1|\Ephemeralla ignita 12
Lymnaea peregra 10|Ephemera danica 12
Tubifex tubifex 909|Brachytera risi 8
Erpobdella octoculata 96|dmphinemura sulcicollis 21
‘Helobdella stagnalis 1|Capnia bifrons 17
?Asellus aquaticus 582|Leuctra fusca 2
Haliplidae 1|Chloroperla torrentium 1
Hydropysche angustipennis 4\Rhyacophila dorsalis 4
Caenis moesta 11 |Glossosoma boltoni 58
Simulium ornatum 4 |Polycentropus flavomaculatus 3
Chironomus riparius 180|Hydropsyche fulvipes 19
PS4 PS 5! ‘
Tubifex tubifex 1049|Dendrocoelum lacteum 5
Lumbriculidae 13|Tubifex tubifex 62
Helobdella stagnalis 1 |Lumbriculidae 71
Erpobdella octoculata 1|Glossiphonia complanata 4
Erpobdella testacea 2|Helobdella stagnalis 45
Asellus aquaticus 3|Erpobdella octoculata 14,
‘Baetis rhodani 2|Erpobdella testacea 3
Chironomus riparius 187|Gammarus pulex 2
\Prodiamesa olivacea 29\Asellus aquaticus 345 '
Brillia longifurca 47 |Baetis rhodani 16%
Lymnaea peregra 2|Hydropysche angustipennis 241
Chironomus riparius 4
Prodiamesa olivacea 28
Brillia longifurca 29
Simulium ornatum 82
Potamopyrgus jenkinsi '
Lymnaea peregrd 11
Physa fontinalis 8’
Ancylus fluviatilis 2

A__ve_rage numbers per 0.5 min heel sample

1. Source: Manual on Biolo

gical Surveillance using Benthic Macro-invertebrates (Hawkes, 1977).
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The preliminary data set constructed from the five actual samples is presented in Table 5.2.
Samples Prelim 1 to Prelim 5 correspond to the actual samples PS 1 to PS 5 respectively,
but omit reference to taxa not in the indicator group. Recorded underneath each preliminary
sample is the expert’s classification based on this information. In three cases the domain
expett, acting on his own initiative, used intermediate classifications. Originally, he used
plus signs (+ or ++) to show a worsening of water quality from the ‘base class’, minus (- or
--) an improvement.' According to the expert, ‘“++> denoted ‘towards upper limits -
inferior’, while ‘+’ was ‘somewhat inferior’ to the base class that it qualified. Later, in
classifying Severn-Trent NRA benthic data for an associated PhD project (Ruck, 1995) the
expert used a ‘reverse scale’, in which (+) denotes improving quality, (-) worsening quality.
With the original scale, the expert occasionally used double increments (++ or --), for the
reverse scale only single increments were used.

To avoid confusion, and to enforce consistency with this associated later work,

classifications of all the benthic data used in this project are expressed using this ‘reverse

B e e e i

Table 5.2 Preliminary data set with respect to ten indicator taxa

‘ lPrelim 1 |Prelim 2|Prelim 3 [Prelim 4 lPrelim 5
Lymnaea peregra 10 2 2.
Tubifex tubifex ' 11000 909 1049 62
%Erpobdella octoculata 7 96 1 14 |
Asellus aquaticus 20 582 3 345
\Gammarus pulex 55 2
Leuctra fusca 2

Rhyacophila dorsalis * 4

Hydropysche angustipennis 4 19 241
Chironomus riparius 27 180 187 4 |
Simulium ornatum 4 82
Expert's Assessment * | B3| B3 BIbB] B3| B3

1. Later changed to Tubificidae. ~ 2. Later changed to Rhyacophila spp.
3. Using ‘reverse scale’ - see text for explanation.

scale’, although the expert’s use of double increments is maintained. The interpretation of

the expert’s intermediate classifications is an important issue, and is discussed at some

! This would be consistent with the saprobic system in which increasing indices reflect worsening

quality. The issue of scaling is further discussed in Chapter 6.
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length in Chapter 6.

5.2.3 Conclusions: Preliminary data classification

These early classifications showed that the expert was ‘comfortable’ with the idea of
biological classification, adapting it to suit his perception of gradations of river water
quality within classes, and could classify samples based on a restricted list of indicator taxa.
Results from the prototype automatic classifiers (discussed in Chapter 6) suggested that the
probabilistic knowledge obtained from the expert and its use in Bayesian reasoning was
broadly consistent with the expert’s classifications. This gave confidence in the basic
method of eliciting the distributions, and the principle of using ‘key’ indicator taxa to
classify river water quality. As explained in Chapter 4, the knowledge elicitation phase of
the project was extended to improve the methodology of eliciting the distributions via the
use of graphical pro-forma, and the group of indicator taxa increased in size to forty-one.
This took place with the availability of benthic data from the Yorkshire Water region, which

formed the basis of the classification experiments described in Chapters 6 and 7.

5.3 Yorkshire Water data set
5.3.1 Origin

Obtaining a larger set of benthic data was clearly important, first to exercise the expert’s
ability to classify samples of which he had no prior knowledge, and secondly to conduct a
more realistic programme of computational experiments in which decision algorithms based
on methods of uncertain reasoning could be tested on their ability to emulate the expert’s
biological classification. This section describes the work done to construct this data base,
and the descriptive analysis of the sample data.

The author obtained a report by Scientific Services of the Yorkshire Water Authority
(YWA) entitled “Collation of Invertebrate Distribution Records 1971-76" (Yorkshire Water
Authority, 1976). Despite its age, the report contained one of the most comprehensive

surveys of benthic invertebrates for British waters that was available to the author for the

work described in this thesis. According to its preface:

“A large volume of biological data is collected by Y. W.A. Head Office as a result of routine monitoring and

special investigations. Biological monitoring of water quality is becoming increasingly important and the use

of water quality indices based on invertebrate collections 1s undergoing a major international review. The

. . . x M ”
understanding of the communities found in waters of various types 1S vital to this review ..

Data on invertebrate distribution was collected by the YWA and its predecessors smnce
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1956. The data from 1971-76 surveys, and all special surveys since Spring 1971, were
collated by the Authority for a total number of sites of about 1021, including rivers, canals
and still-water sites. Many were sampled at irregular intervals, or once only, and the
presentation of the results of every sample would have produced a very large collation.
Therefore, within the report the data was presented as a single list of taxa for each site with
a note of the number of samples taken. Details of particular samples were also obtained by

the author by visiting the YWA’s Head Office in Leeds.

5.3.2 YWA Sampling and Recording Methods

The vast majority of data to which the report refers were collected by qualitative means,
using an FBA (Freshwater Biological Association) pond net. Twenty standardised ‘kicks’
or the equivalents in ‘sweeps’ were generally used in rivers and ponds, each kick disturbing
an area about 30 x 20 cm. Some smaller streams were sampled with 10 ‘kicks’ or
equivalent. At the time the report was written, data was still being collected on the relative
efficiency of these methods. Some apparent temporal changes were due to sampling
inconsistencies. These problems serve to highlight the information loss and inherent
uncertainty present in biological sampling programmes.

Although numbers of occurring individuals were recorded for each sample, these
were ‘translated’ into a numerical abundance scale for the combined faunal list by the
compilers of the report. The scale was constructed by randomly selecting 100 samples, and
treating all the 800 taxa found therein as identical. The cumulative frequency of taxa
against number of individuals was calculated and plotted, this being a measure of the
number of times taxa were recorded as 1 individual, 1-2 individuals, 1-3 individuals, etc.
irrespective of the identity of each taxon. The plot was then divided into quartiles, with the
top quartile subdivided, resulting in five divisions. These five divisions of cumulative
frequency corresponded to an abundance scale 1-5, in which 1' represented 1 individual per
sample, up to ‘5' representing >200 individuals per sample.

The DoE (Department of the Environment) classifications were given in many cases,
on a 10-point scale from A through A/B, B/A, etc. to D. The range of values was given
where several samples were taken, e.g. A-B, B-D etc. Interestingly, there were several

instances where a surveyor of a particular site had recorded his or her assessment of

biological quality using a system equivalent to the NWC classes, i.e. that adopted in this

work. Unfortunately, these classifications were not included in the collation.
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The compilers recorded their own opinions on the usefulness of various benthic
groups for water quality assessment. The following taxa were found in all rivers and were
deemed to have no value in such analyses: Turbellaria, Sphaeriidae, Oligochaeta, Baetis
vhodani, Dytiscidae, Elmidae, Chironomidae, ‘larger Diptera’ and Ceratopogonidae.
However, at least six species of Oligochaeta were found in heavily polluted (class D)
waters, suggesting that this group “could provide useful quality information at the lower end
of the range”. Plecoptera were “basically confined to the upper reaches of the rivers and
their value in water quality estimation is, we feel, overrated” (Yorkshire Water Authority,

1976).

5.3.3 Presentation of taxonomic lists

The order of presentation in the collation is as ‘Limnofauna Europaea’ (Illies, 1967), which
at the time was the most recent work covering all aquatic fauna. Table 5.3 shows part of
the taxonomic listing. Altogether there are 390 entries in the list, in taxonomic order,
allowing the collation to record benthic data at whatever level of identification was achieved
at sampling. For instance, identification to species level of Dendrocoelum lacteum would
result in an occurrence being recorded against this entry; higher-level identification may
have resulted in the taxon being recorded as an occurrence of Turbellaria.

Sampled sites in the Yorkshire Area were assigned unique numbers by the Authority
and listed in order of major rivers and their tributaries. Since the total number of listed sites
was considerable, a subset was chosen from the rivers Aire and Calder and their tributaries,
in the Western and South-Western Divisions of the region. Sites listed for other rivers such
as the rivers Don and Rother were found to be generally unproductive or were declared to
be badly polluted by toxic materials. These were therefore excluded. However, the chosen
sites within the Aire and Calder catchments are representative of the range of DoE
classifications. Figure 5.1 shows a map of the Calder catchment, taken from recent
information compiled by the NRA (Northumbria and Yorkshire region) on biological water
quality. The map makes reference to biological classes Bla to B4, still in use at the time by

the authority and its successor, the Environment Agency.”

Environment Agency. In an informal trial to
umbria and Yorkshire region, classifications
rsonal communication).

2 . .
. ~~ This data is from Viki Hirst, an ecologist with the
mvestigate the reliability of biological classification in the North 4
of samples by different ecologists were highly correlated (V. Hirst, pe
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5.3.4 Filtering of site data

In order to regularise the taxonomic data for each site, and in preparation for the
classification experiments, the lists were transformed into occurrences of the group of forty-
one indicator taxa selected in conjunction with the domain expert, for which probability
distributions had been elicited. The decision was therefore made, as with the preliminary
data, that both the expert and the classifiers would be classifying sites in response to the
same information. This was felt necessary to allow a meaningful evaluation of classifier
performance: both expert and classifier would classify with respect to the ‘reference’ set of
indicator taxa. However, the quality of the both the original and collated sample data was
such that some filtering was necessary. Clearly, the closer the correspondence between the
report data and the transformed data, the better.

The range of the indicator taxa proved to be reasonably comprehensive, in that
relatively little distortion of the collated site data was required, with the exception of
removing obscure species. Some assumptions had to be made in cases where the ‘nearest’
associated indicator was at a taxonomic level lower than the site taxon, identified perhaps
to order or family level. In several instances references to ‘Oligochaeta’ were taken as
equivalent to Tubificidae, a member of the indicator group. These decisions were made on
a site-by-site basis.

Table 5.4 shows an example of taxonomic data for one River Aire site. The first list
(a) gives the occurrences of all sampled taxa at this site for surveys conducted between 1971
and 1976. This list has been transformed into (b), a table of abundance levels for taxa which
are members of the elicited forty-one indicator group. The suffixes ‘A’,’E’ and ‘R’ refer to
‘Abundant’, ‘Established’ and ‘Rare’, the abundance levels adopted for the knowledge
elicitation exercise described in Chapter 4. Translation from the report’s abundance levels
to those used for the expert’s classification took place according to the following heuristics,
which incorporate the individual threshold values for the indicator taxa:

if YWA-level = 5 then State = Abundant

if YWA-level = 4 and Abundant-threshold >= 50 then State = Established
if YWA-level = 4 and Abundant-threshold <= 20 then State = Abundant
if YWA-level = 3 and Abundant-threshold >= 20 then State = Established
if YWA-level = 3 and Abundant-threshold <= 10 then State = Abundant
if YWA-level = 2 and Abundant-threshold > 20 then State = Rare

if YWA-level = 2 and Abundant-threshold <= 20 then State = Established
if YWA-level = 1 then State = Rare
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Table 5.4 Format of collated Yorkshire Region site taxonomic data

(a) Extract from collated report (b) Filtered data for classification
TURBELLARIA 2 Polycelis nigra E
Potamopyrgus jenkinsi (Smith) 4 Potamopyrgus jenkinsi E
Lymnaea (Radix) pereger (Mull.) 5 Lymnaea peregra A
Planorbis 3 Planorbis spp. E
Planorbis planorbis (L.) + Ancylus fluviatilis A
Planorbis (Bathyophalus) contortus (L.) + Sphaerium spp. A
Planorbis (Gyraulus) albus (Mull.) + Tubificidae E
Ancylus fluviatilis (Mull.) 4 Glossiphonia spp. A
Sphaeriidae 4| |Erpobdella octoculata A
OLIGOCHAETA 41 |Asellus aquaticus E
Glossiphonia complanata (L.) 3 Baetis rhodani E
Glossiphonia heteroclita (L) 2 Elminthidae R
Erpobdella octoculata (L.) 4 Chironomus riparius E
Asellus aquaticus L. 4 13
Baetis rhodani Pict. 2

Elmidae 1

Chironomidae 3

17

River Aire, below Gill Beck. SE 188 395. Site 435F
Number of Samples: 2. DoE Index C

Yorkshire Collation report page: 28.

See text for explanation of abundance levels and filtering.

N

“YWA-level’ refers to the abundance-level used in the cited report (Yorkshire Water
Authority, 1976). In the example shown in T able 5.4, the reference to ‘TURBELLARIA’
in list (a) was interpreted in (b) as Polycelis nigra. This was determined by inspection of
adjacent sites in the collated report, in which occurrences of taxa at an increased level of

identification referred to P. nigra rather than Dendrocoelum lacteum. In agreement with the

domain expert, references to Sphaeriidae were accepted as Sphaerium spp., Chironomidae

as Chironomus riparius, and Elmidae as Elminthidae for all sites.

5.3.5 Comparison with original sample data

Some time after the collated data had been classified by the expert, the author gained access

to the original sample data for several sites within the Aire and Calder catchments to se€

how the combined faunal list were drawn up. The collated report refers to more than one

sample for the majority of the sites; the combined list therefore represents an amalgam of
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individual sample data. The samples were hand-written records on ‘River Survey results
sheets’, in which the surveyor recorded physical details of the site, complete with a sketch,
and a species list. Physical details, which included the composition of the substratum,
confirmed that these were riffle sites. The rigour with which species lists were completed
varies considerably, with some sheets showing actual numbers of individuals, while for
others the numbers are omitted. Taxonomic levels and rigour of identification also varied:
some samples referred to species and to ‘Stoneflies’ or ‘Chironomid larvae’ (for instance)
in the same list.

These observations, coupled with the fact that the original hand-written records are
now somewhat inaccessible, suggests that the collated report provides a more reliable
source of data than the original samples. One advantage of filtering the data from the
collated report is that the ‘information loss’ is contained within the process of data
preparation; the expert is presented with a list of sample data that is regular and consistent
in form. The disadvantage is that the expert is ‘removed’ from the actual sample data as
recorded. As explained this was unavoidable for chronological and logistical reasons. The
sample lists extracted from the collated report represented the best available benthic data

at the time.

5.3.6 Classification of Sample Data

The fifty sites extracted from the collated report were reduced to forty-two by eliminating
those which were (a) an amalgam of a high number of individual samples and (b) those for
which several taxa which were not in the indicator group had to be removed in the process
of data-filtering. The remaining ‘filtered samples’ were then deemed to be representative
of the site data for a range of riffle sites in the Aire and Calder catchments. The domain
expert supplied eleven additional samples from the Midlands area which were transformed
into filtered lists to form a database of fifty-three sites.> Those sites within this database
which were extracted from the collated report are presented 1n Table 5.5. The DoE

biological class (Department of the Environment, 1972) can be used to give a broad

indication of agreement between the classifications of the expert and those of YWA

biologists. This is discussed below.

R . . P i ine the
° This database is subsequently referred to as the Yorkshire Water data set’, notwithstanding

additional Midland sites.
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Table 5.5 Aire and Calder sites within Yorkshire Water Data set

River Site No. Site Details Map ref. DoE Class
Aire 435E Above eff. channel SE 187 388 C
Aire 435F Below Gill Beck SE 188 395 C
Aire 436A Above Gill Beck SE 187 396 C
Aire 438B Tarn SE169393 | C
Aire 438C Charlestown SE 158 386 C
Aire 440A Below Bingley SW SE 126 383 C
Aire 443A Crossflats SE 095 404 B/C
Aire 443C Below R. Worth SE 077 422 B
Aire 448A Cononley SD 995 469 B
Calder 494 Halifax SE 098 219 D/C
Calder 495B Sowerby Bridge SE 059 235 C
Calder Tributary 545F R. Holme SE 152 104 B/C
Calder Tributary | 547B R. Holme Victoria SE 135078 B
Calder Tributary | 553B R. Ribble above Washpitt Mill SE 141 064 A
Calder Tributary | 564 Black Brook SE 099 214 D
Calder Tributary | S566A Black Brook T.P.T.works SE 069 189 C/D
Calder Tributary | 566B Black Brook SE 060 176 B
Calder 576A ? A
Calder 576B ? A/B
Aire Tributary 596A Wyke Beck SE 337 320 D
Aire Tributary 598 Low Beck SE 284 320 D
Aire Tributary 599 Wortley Beck SE 262 319 C/D
Aire Tributary 601A Millshaw Beck SE 279 317 D
Aire Tributary 601B Millshaw Beck SE 278 299 D
Aire Tributary 608A Bradford Beck SE 151 376 D
Aire Tributary 608B Bradford Beck - Hollin Close SE 153 365 D/C
Aire Tributary 610A Red Beck SE 144 363 A
Aire Tributary 611 Clayton Beck SE 109 323 A
Aire Tributary 613 Loadpit Beck SE131386 | A
Aire Tributary 615C Harden Beck SE088378 | B
Aire Tributary 617TB Ellar Car Beck SE 069374 | D
Aire Tributary 618 Morten Beck SE 100409 | A
Aire Tributary 6198 R. Worth Below North Beck SE 063 408 C
Aire Tributary 620A R. Worth Hey Bridge SE 060 402 C
Aire Tributary 620C R. Worth Below S.W. SE045383 | C
Aire Tributary 620D R. Worth Mytholmes SE 039 382 B/C
Aire Tributary 621A R. Worth Providence Lane SE 034 380 A
Aire Tributary 624B R. Worth Haworth SE 035 369 B
Aire Tributary 625 R. Worth Oxenhope SE032354 | B
Aire Tributary 634 Long Dam SD 984 508 A
Aire Tributary 636A Eller Gill Farm SD 990 535 A
Aire Tributary | 640 Embsay Beck SE006533 | BIC
Aire Tributary 624A Bridgehouse Beck SE037380 | C
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sample data was presented to the expert in the form of Table 5.4(b) for each site. The
expert was asked to classify each sample in terms of the discrete biological classes, on the
assumption that (a) the samples were taken from riffles and (b) the type of pollution to
which these sites were subject was organic. He was not shown the DoE classifications for
the Aire and Calder sites.

Given the number of samples, the expert chose to carry out this exercise away from
the interview sessions, although he provided a rationale for his decisions when questioned
about particular examples. As with the preliminary data, the expert used intermediate

classifications where he thought appropriate, using up to two gradations from the ‘base’

Class occurrence - Yorkshire Data
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Figure 5.2 Frequency of biological river water quality classes within Yorkshire Data set
(intermediate classifications).

classes. Representation of the intermediate classes within the 53 sites is shown in Figure

5.2, where the “reverse scale” implies that ‘+ or “++ denote improving quality. Clearly B3

sites are over-represented in the set, but this is commensurate with the predominant

biological quality of the Yorkshire rivers from which the majority of sites are drawn.
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5.3.7 Comparison of Expert’s and other classifications

The DoE classifications for the Aire and Calder sites provide a means of gauging the
correlation between the subjective classifications of the expert and those of YWA biologists
(Figure 5.3). Caution is required however since for the two classification systems (a) the
correspondence between them is unknown and (b) both are ordinal scales, in which the
distance between classes is also unknown. For this data set, class A (DoE) as allocated by

YWA biologists extends from the expert’s Bla to B1b-, with similar ranges for the B, C and

D.
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Figure 5.3 Expert’s Classifications and YWA Biologists” DoE Classifications of Aire and
Calder samples (Note: Distance between classes is unknown).

A more informative comparison is gained from calculating biotic indices for each sample
in the entire data set (i.e. all 53 sites). In carrying out this comparison, the expert’s
classification is taken to be the ‘reference’ measure: i.e. the standard against which the
biotic indices are compared. Mean, minimum and maximum saprobic indices, LQI values,
and Chandler and BMWP scores were calculated and plotted against the expert’s

classifications, expressed in terms of the base biological classes (Figures 5.4t05.7). The

graphs highlight the disparity between discrete and continuous classification schemes. Mean

values for the discrete systems LQI and ASPT (not shown) decline uniformly with

increasing biological quality, or, for the saprobic index, increase. All the indices show a
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large overlap in their ranges, when compared against the reference biological classes. Thus
if the expert classification is taken as the reference, it would be difficult to discern changes

in water quality from these continuous scores.
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Figure 5.6 BMWP scores for the biologi- Figure 5.7 LQI values for the biological
cal classes: Yorkshire Data classes: Yorkshire Data

Several of the samples classified by the expert as B2 were diverse, implying that the
diversity of a sample does not always signify high-quality waters (Figure 5.8). This is
reflected in the large overlap of BMWP scores for Bla, B1b and B2 (Figure 5.6). Sites

classifed around B1b exhibit a higher diversity than those near to Bla. This is consistent

with the expert’s viewpoint that the slight increase in organic enrichment as water quality

decreases from Bla to B1b can promote productivity. After B2, the general trend is for

diversity to decrease.
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Figure 5.8 Diversity of Yorkshire samples, as measured by number of taxa present, plotted
against the expert’s classifications

5.4 Severn-Trent Benthic Data
5.4.1 Origin of data

Towards the end of the project, biological surveillance data from the NRA Severn-Trent
region was made available to the team of researchers at Aston University investigating the
use of AT methods for water quality assessment. The construction of the database of 293
benthic samples from the supplied data, with a detailed description and analysis, was carried
out as part of a related project in biological classification using neural networks (Ruck,

1995). Unlike the collated Yorkshire data, the Severn-Trent database contained physical and

geographic information on each site, and calculated biotic indices (BMWP, ASPT and TBI

scores) for the sample list of invertebrates. The benthic samples were listed at mixed
taxonomic levels, with abundance recorded as present, few, common, abundant and very

abundant.

5.4.2 Problems in data utilisation

It was considered at first by the author that this more comprehensive database would be

suitable for the series of classification experiments using uncertain reasoning methods.

Experiments using subsets of the constructed database were in fact carried out to

supplement the results from the Yorkshire data. However a subsequent analysis of how the
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database was constructed and the samples classified revealed that the NRA data as used in
the classification experiments was markedly different from the Yorkshire data in sev;aral
respects. The forty-one indicator taxa were chosen by the expert from his experience and
knowledge and by scrutiny of representative benthic invertebrate samples. Data from the
Yorkshire region, supplemented by samples from the Midlands, were used both to construct
the Yorkshire data set and expand the group of indicator taxa to forty-one. In this sense, the
construction of the Yorkshire data set was an extension of the knowledge elicitation phase
of the project.

A study of the Severn-Trent data revealed that the frequency of the forty-one taxa,
as chosen by the expert, was lower than expected. To maximise use of the data, the
indicator group was modified to admit new taxa or to adjust the taxonomic level, from (say)
species to family level. For classification, the expert was shown the full sample list, rather
than the abundance levels of the indicator group, as the author originally thought. This
misapprehension arose from the fact that the classification exercise for the Severn-Trent
data was carried out as part of the project using neural networks, and the format in which
the samples were shown to the expert was unknown to the author at the time.

Consequently the output from an automatic classifier whose knowledge is in the
form of probability distributions for the original forty-one indicator taxa cannot be directly
compared with the expert’s classification. As discussed earlier, a decision was made to
present both the automatic classifiers and the expert with the states of the indicator group,
so that both would be using the same information. For the NRA data, the expert’s
classification could be influenced by the presence or absence of taxa outside the indicator
group. For many sites, representation of indicator group taxa within samples was low, even
for Bla and B1b sites. This was not accounted for when running the classification

experiments for samples from the Severn-Trent database.

If time permitted, the Severn-Trent data would allow an investigation of the ability

of the reasoning systems to classify using only the evidence provided by the states of the

indicator taxa, compared with the expert classification of complete, real samples. To make

proper use of the Severn-Trent data, further work would be required to account for the

representation of the indicator group within each sample, and possibly to increase the size
assifiers. For chronological reasons
om the NRA

and composition of the indicator group handled by the cl

this work is outside the scope of this project. Therefore, the results fr

experiments will not be considered further in this thesis.
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5.5 Summary

This chapter has discussed the expert’s use of the biological classification system in the
context of constructing two databases of benthic samples. The classification of preliminary
data, based on just ten indicator taxa, suggested that the expert was content with the practice
of biological classification, adapting it to incorporate gradations of river water quality. The
adoption of a reference set of forty-one indicator taxa coincided with the development of
a more extensive database of benthic samples primarily from the Yorkshire region. The
construction of this database has been described, and a descriptive analysis presented.

Biotic indices calculated for each sample were compared with the expert’s discrete
classifications, which were taken as reference measures of quality. As expected, continuous
score systems such as the BMWP and Chandler scores show a high degree of overlap
between ranges for the expert’s classifications. Although sample diversity showed a general
downward trend, B2 sites showed high diversity, suggesting that this measure in itself was
not enough to convince the expert of high quality.

Data comprising the ‘Yorkshire data set’ form the basis of the classification
experiments described in the following chapters. The data set suffered from several defects,
arising from its storage format (typed reports), incomplete knowledge on sampling methods
and sites, inconsistent or mixed modes of taxonomic identification, and from the
amalgamation of individual sample data. Consequently the data required filtering into a
regular format suitable for classification by both expert and subsequently, automatic
classifiers. The methods for filtering this data were described. The information loss arising
from this data transformation is contained within the filtering process. To make use of other
data sets, a similar filtering process would need to be undertaken before presentation of
samples to a domain expert, or the degree of representation of the indicator group within
each sample would have to be incorporated into the uncertain reasoning model. This
would facilitate an investigation of the ability of the reasoning systems to classify against
the expert’s classification using complete sample data.

Despite its deficiencies the Yorkshire data set is valuable in that it records the

outcome of an important exercise: the biological classification of river water quality based

on invertebrate samples by an acknowledged expert in the field. The subsequent chapters

will demonstrate that decision algorithms based on methods of uncertain reasoning can

emulate the expert’s ability to directly classify biological water quality from benthic

Samples.
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Chapter 6

Classification Experiments - I

6.1 Introduction

This chapter describes the first part of the work undertaken to develop “automatic
classifiers” for river water quality classification. These are computer programs incorporating
decision algorithms drawn from methods of uncertain reasoning which attempt to emulate
the expert’s ability to determine the quality of river water from samples of benthic
invertebrate communities. In this chapter the performance of classifiers in which belief is
represented as Bayesian or singleton support is examined. The effect of varying evidential
weight is investigated in a series of computational experiments, both for emulating the
expert's own weighting of evidence and of managing evidential conflict.

The performance of the classifiers under varying decision and conflict threshold
levels is also tested. The chapter begins with a discussion of the environment within which
the classification computer programs were developed. It then describes the preliminary
systems that formed a pilot study into the use of uncertain reasoning algorithms for
biological classification, and discusses the mechanisms adopted for assessing the

performance of the classifiers.

6.2 Background to experiments

6.2.1 Development environment
Computer programs for automatic classification were developed on a personal computer
initially in both FORTRAN and the LEONARDO expert system shell. This latter system
provides a convenient environment for developing the automatic classifiers, with its
facilities for constructing user-interfaces and the ability to integrate algorithmic, causal and
object knowledge. It was therefore adopted as the primary development platform for most
of the classification experiments. It was also envisaged that the use of this development
environment would allow further development of the BERT expert system.

Knowledge within a LEONARDO application can be represented in several ways:

in the familiar production rule format, and in the case of object knowledge as frames. Every

LEONARDO knowledge base consists of a group of production rules known as the Main

RuleSet which is compiled to produce a list of objects used by those rules. These objects
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can either have values of a certain type (textual, numerical or a list of textual information)
or be associated with procedural or user-interface code. Normally a text object can only
have one value, unless it is the goal of a knowledge base reasoning under uncertainty and
representing multiple hypotheses. In this case the goal object is multi-valued, each value
having an associated certainty in the range 0.0 to 1.0. Procedural knowledge can also be
encoded in much the same way as a conventional subroutine or function. The development
environment allows knowledge bases to be developed rapidly, and the system provides
facilities for effective and convenient user-interface design. The default user-interface can
be extended to include screens and help information written as hypertext customised to

particular requirements.

6.2.2 Early system development

6.2.2.1 Overview

In the early stages of the project the processes of knowledge elicitation and system
development were interactive and essentially concurrent. Simple classification systems were
produced quickly to increase familiarity with Bayesian analysis and to investigate the
efficacy of the elicitation exercise itself, which was still largely exploratory, and the
feasibility of using uncertain reasoning methods for biological classification. This section
describes this preliminary work.

Results from the early classification systems were fed back to the domain expert in
the knowledge acquisition sessions, whose comments helped improve the method of
eliciting the probability distributions and the quality of the data obtained. This cycle was
repeated several times before system development could continue independently of the
knowledge acquisition sessions. Continual liaison with the domain expert was however
necessary to test the performance of the classification systems.

The first decision algorithm considered was the simplified Bayesian method in its
odds-likelihood form. Initially, the requisite likelihoods of sufficiency and necessity

referred to the states of presence and absence for each of the original ten indicator taxa

described in Chapter 4. Among the reasons for choosing the Bayesian odds-likelihood
formulation was the historical prominence of this calculus (as described in Chapter 3)and

the facility for Bayesian reasoning in LEONARDO.
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6.2.2.2 Results for two abundance states

Classifiers executing under LEONARDO?s Bayesian control present multiple values of the
goal object (in this case water quality) in a rank order of certainty for each of the
corresponding five hypotheses, for example: B3(0.98), B4(0.88), B2(0.15), B1b(0.00),
B1a(0.00). The results for the five preliminary data sets are shown below in Table 6.1. Each
item of evidence from the first ten indicator taxa is considered to exist in just two states:
present or absent. As explained in Chapter 5 the expert was asked to grade the samples with
reference to the biological classes Bla to B4. In three cases the domain expert, acting on
his own initiative, used intermediate classifications. Rather than use the rank ordering
produced by LEONARDO, the probability values are shown in order of the classification

system from Bla to B4. Note that the values are unnormalised.
“

Table 6.1 Summary of Preliminary Bayesian classifications for two states

Data ref. | Classifier output Expert

Bla |Bib |B2 |B3 |B4 |Class

Prelim 1 0.00 | 0.00 |0.04 |093 |097 |B3--

Prelim 2 0.00 |0.00 [002 |094 |097 |B3

Prelim 3 098 |0.96 {002 |000 |0.00 |BIb

Prelim 4 0.00 | 0.00 |015 |098 |088 |B3-

Prelim 5 0.00 | 0.00 |094 |092 |0.00 |B3+

Note: System classifications are unnormalised. Expert classifications refer to ‘reverse’ scale, in which (-)
denotes decreasing river water quality, (+) increasing quality. See text for explanation.

d

In Table 6.1 data sets Prelim 3 to Prelim 5 relate to actual results obtained from a biological
assessment of the effect of an organic load being discharged into a river. Prelim 3 refers to

a sample from a station above the discharge, Prelim 4 to a station immediately downstream,

and Prelim S to one further downstream. In these three cases the classifications obtained

from the LEONARDO application were consistent with the expert's assessment.

6.2.2.3 Improved Classifiers using Abundance-levels
o show the feasibility of Bayesian

the method was

At this stage, these results were used primarily t

classification from biological data. The conclusion from this study was that
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feasible and worthy of further development. However as explained in Chapter 4 the manner
in which values of L, and L, were encoded from verbal expressions of likelihood was
unsatisfactory. By means of graphical pro-forma, the domain expert could indicate the
likelihoods of the biological classes given the sensor evidence directly. This evidence was
itself refined from two states of presence and absence to four: rare, established, abundant
and absent.

The Bayesian knowledge bases were modified to incorporate an extended rule set
using these new values for the four sensor states. Table 6.2 shows a summary of results for

the preliminary data using an improved classification system that contains the full rule-set.

PoE e e e e e et e R e )

Table 6.2 Summary of Preliminary Bayesian classifications using abundance-levels

Data ref. Classifier output Expert

Bla |Bib | B2 |B3 |B4 |Class

Prelim 1 0.00 | 0.00 | 000 |094 |097 |B3--

Prelim 2 0.00 |0.00 002 |09 |0.00 |B3

Prelim 3 091 | 097 |0.01 [000 |0.00 |BIlb

Prelim 4 0.00 | 0.00 |0.00 |091 |0.96 |B3-

Prelim 5 0.00 | 0.00 |0.81 |099 |0.00 |B3+

“

6.2.2.4 Effect of adjusting probability distribution

The preliminary experiments also allowed for two separate probability distributions. As
described in Chapter 4 the elicited probability measures for the indicator taxa were adjusted
to form new histograms with redistributed probability mass. The bar heights of these
adjusted histograms correspond to the areas subtended by a line joining the midpoints of the
original bars. The net effect is to reduce the crispness of the derived discrete probability

values. The differences in support for each hypothesis were noticeable, and suggested that

the effect of this adjustment should be investigated.

6.2.2.5 Conclusions from early classifications

The small size of the preliminary data-set precludes any definite conclusions to be drawn

from the pilot study, except to show the feasibility of this approach. However, the results

125




did generate questions deemed worthy of further investigation:

(1) how important was the nature and strength of the evidence as represented by the
probability distributions?
(2) how should the performance of the classifier be assessed?

(3) how should decisions be made regarding the overall classification, i.e. how should one
interpret the results of the classification?

(4) which decision algorithms should be used to combine evidence?

Of particular importance is the interpretation of the output from the classifiers. This is

considered in the next section.

6.3 Decision mechanisms

6.3.1 Intermediate classifications
In interpreting the output from an automatic classifier one has to consider exactly what is
being measured, and with what its performance is being compared. To do this, the expert’s
assessment of river water quality using the biological classes is briefly reexamined. The
biological classification system adopted by the domain expert and the automatic classifiers
is essentially an ordinal or ranked scale of quality measurement in which the intervals
between the classes are unknown. However class Bla is considered “better quality” (or less
organically enriched) than B1b, and so on.

The expert was asked to classify river water quality in terms the biological classes
Blato B4. From the outset however, the expert used intermediate classifications, initially

using '+ or ++' to show degradations in quality from that implied by class boundaries, and

' or --' showing improvements in quality, and the class-boundary values." Thus 'B2+
denoted a classification by the expert of B2 veering towards B3, i.e. poorer quality than B2

itself. This procedure derives partly from the indirect correspondence between this

classification and the saprobic systems in which high-quality waters (e.g. xenosaprobic or

oligosaprobic) receive low numerical values for saprobic indices, and poorer quality waters

(such as mesosaprobic or polysaprobic waters) receive higher values. As employed by both

Slddecek (1973) and Pantle and Buck (1955), the saprobic indices derived from taxa lists

were mapped back to the saprobic zones by the adoption of a linear interval scale

iate classifications was also employed by the Yorkshire Water

] ) ) L
This practice of using intermed humbria and Yorkshire Region) (now the

Auﬂ_mrit}' and is continued by its successors, the NRA (Nort
Environment Agency).
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corresponding to increasing organic enrichment. Indices in the range 1.0 to 1.5 mapped to
the oligosaprobic zone, the range 1.5 to 2.5 to B-mesosaprobic, and so on.

Given this practice and the fact that the biological classification system is a measure
of organic pollution it is tempting to map the expert’s classifications to a linear scale to
compare the intermediate classifications with the automatic classifier output. Such a linear
mapping was in fact carried out in an earlier analysis. The ‘base’ classes Bla to B4 are
weighted by a factor corresponding to increasing organic enrichment, analogously to the
saprobic scale as used by Sladecek, so that the weights for each class are 0,1,2,3,4
respectively. The expert's intermediate classifications were mapped by considering two
increments or decrements (denoted by '++' and '--' respectively) to correspond to river water
quality approximately midway between two classes.

Each incremental indication corresponds to an increment or decrement of 0.2 on this
scale. A classification by the expert of B2- would therefore correspond to an “Expert
Classification Index” (ECI) of 1.8, B3++ to an ECI of 3.4 and so on. In previous work, this
measure was compared directly with the “System Classification Index” or SCI (explained

below) to calculate the mean square error for a classification over 7 samples:

T
MSE =Y |(ECI-SCD) >/ T (6.1)

s=1

where (ECI - SCI), is the difference between the expert's and system's classifications for site
5. This measure was then used to show the deviation of the automatic classifier's decision
from that of the expert. One objection to this approach however is that it assumes the
existence of an interval scale for biological quality, violating the adoption of discrete,
ordinal categories. The MSE or ECI cannot be used if there does not exist a linear

“biological quality scale” underlying the classes. The resolution to this problem is

considered in the next section.

6.3.2 System Classification Index

The Bayesian and Dempster-Shafer theories assign degrees of support, as probability mass,

to the competing propositions within the sample space. Strictly, since these are mutually

. . i e is
exclusive, only one can be true. In practice however we can never know which on

deﬁnitely true unless all uncertainty has been removed and support for all but one

- ) . ith situations in
pProposition reduces to zero. Since this rarely obtains, We need to deal with situatio

127




which rival propositions have non-zero degrees of support after all the evidence has beer
combined.

Consider a situation in which the output from a Bayesian classifier suggests that,
after combining all the available sensor evidence, the support for the classes Bla,
B1b,B2,B3,B4 is (0.0,0.75,0.25,0,0). In this example quality class B1b receives majority
support of 0.75, far exceeding its nearest competitor B2 that receives 0.25. All other classes
receive zero support. The output is essentially a rank-ordered set of probabilities,
normalised to sum to unity, presented as support for each of the quality classes.

On examination of the output, one may adopt a "highest-wins" decision strategy and
consider that the system's classification is simply B1b, dismissing all other alternatives.
While support for B2 is much smaller than B1b however, it is not negligible. Adjacent
hypotheses may receive comparable support, making a "highest-wins" decision mechanism
difficult (in deciding which hypothesis should win) or undesirable (in dismissing plausible
alternatives).

Maintaining parallel chains of reasoning for as long as possible is more important
than deciding when to dismiss one or more of the hypotheses. The ability to support
multiple plausible chains of reasoning is a primary reason for using uncertain-reasoning
methods. Ideally therefore the support for each of the competing hypotheses should
participate in the overall decision by the automatic classifier. Therefore a system
classification index that took account of the support across the competing hypotheses was
designed, which attempted to reflect the expert's own tendency to recognise intermediate
classifications.

For summary purposes only the multihypothesis support from the classifiers can be

expressed via the system classification index (SCI) defined as:

SCI = ), w5, (6.2)

Ac®

where w, is the numerical weight for class 4 in the frame of discernment ©, and S, is the

computed support for that class. The SCI is therefore similar to the calculation of the

saprobic index, with the difference that the later calculates a weighted average of the

support for each saprobic zone. For support of (0.0,0.75,0.25,0,0) the system classification

index is from (6.2): 0 x 0.0 +1x 0.75 +2x 025+ 3x0.0+4x0.0
an be interpreted as a classification

= 1.25, using the

humerical weights given in section 6.3.1. This figure ¢
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close to B1b, between this class and B2.

The SCI index works well for the majority of classifier output in which the
distribution of probability mass is unimodal, which shows a high degree (>3) of kurtosis,
with the skewness varying with the biological class receiving dominant support. Problems
arise for certain rarely-occurring output distributions - those with zero information content,
for example (0.2,0.2,0.2,0.2,0.2) or for bimodal distributions that result in a noncontiguous
rank-ordering of the classes. For example, a distribution (0.4,0.0,0.0,0.2,0.4) results in an
SCIof 2.2, incorrectly assigning this output between classes B2 and B3. These contradictory
or vacuous distributions do not occur often in classifier output, but a simple index was

developed to indicate how much confidence one can have in a classifier’s decision.

6.3.3 Indicator value

An indicator value / was calculated for each classifier output that accounted for the
information content of the distributions and the rank ordering of class support. For a
decision maker, the information content should be high (i.e. it should be clear which of the
classes have majority support), and the first two class ranks in a rank ordering of support
should be contiguous. As an example, the distribution (0.2,0.7,0.1,0,0) has both a high
information content (due to the large degree of support for class B1b) and contiguously
orders the first two ranks: (B1b,B1a,B2,B3,B4). In contrast the distribution (0.4,
0.0,0.0,0.2,0.4) has low content and a rank-ordering (Bla,B4,B3,B1b,B2) in which the
noncontiguous class-support for both Bla and B4 simultaneously is contradictory.

The L-value used for the classifier output distributions was similar to that used for
the indicator taxa, except that a normalisation factor was introduced so that the vacuous
distribution (0.2,0.2,0.2,0.2,0.2) has an -value of unity. This represents the minimum
information state, corresponding to the a priori probabilities assigned to the hypotheses

before any evidence is considered. With the S CI and the decision order, the [-value should

allow a decision-maker to accept or reject the output from a classifier using an uncertain-

reasoning algorithm. Low [-values (say < 10) could be rejected as unsafe classifications.
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6.3.4 Intermediate classification mappings

In an attempt to interpret the SCI in terms of the expert’s intermediate classes, it was
postulated that the latter could be viewed as having partial membership of the ‘base’
piological classes Bla,B1b,B2,B3,B4. This approach is analogous to determining
membership of fuzzy sets (Zadeh, 1965). This contrasts with the original mapping of the
expert’s intermediate classifications to a linear scale which, it was previously suggested, is
unjustifiable for an ordinal classification system. The expert’s use of B1b++ or B2- is
problematical in that while these assessments are between the base classes there is no
indication of their relative position. Improving and degrading quality increments (e.g.
between B1b-- and B2++) may also overlap.

Table 6.3 shows one of many possible membership assignments to the range of
intermediate and base classes. These membership grades are, as with Bayesian methods, a
matter of subjective belief. However, the assignments to (for example) Bla-- and Blb++
are chosen to reflect the fact that distinguishing between a poorer-quality Bla and an
exceptional B1b river site would be difficult. The SCI for single intermediate divisions (e.g.
Bla- or B2+ and so on) resulting from these mappings corresponds to those used in an
associated classification study of NRA Severn-Trent benthic data using artificial neural
networks. The membership grades for each of the base classes are of course unity with
respect to the corresponding class. Using this table, assigning an intermediate class to a
classifier’s output was then possible based on its SCI. This measure was used only for
individual site classifications: the performance over the entire data-set was assessed via

classification rates, explained below.
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Table 6.3 Suggested membership grades for intermediate classifications of
classes. The base classes are {Bla,B1b,B2,B3,B4} ns of the base

Intermedi- Base Biological Class

ate Class | Bla | Blb | B2 | B3 | B4 | scI
Bla 1 0 0 0 0 0
Bla- 0.67| 0.33 0 0 0] 033
Bla-- 0.55| 045 0 0 0] 045
Blb++ 0.451 0.55 0 0 0| 055
Blb+ 0.33| 0.67 0 0 0] 0.67
Blb 0 1 0 0 0 1
Blb- 0| 067 033 0 0] 1.33
Blb-- 0] 0.55] 045 0 0] 1.45
B2++ 0| 045] 0.55 0 0] 1.55
B2+ 0 033] 0.67 0 0] 1.67
B2 0 0 1 0 0 2
B2- 0 0| 0.67] 033 0] 233
B2-- 0 0] 0.55] 045 0] 245
B3++ 0 0] 045] 055 0] 2.55
B3+ 0 0] 033 0.67 0] 2.67
B3 0 0 0 1 0 3
B3- 0 0 0] 067 033 3.33
B3-- 0 0 0] 055( 045] 345
B4++ 0 0 0| 045] 0.55] 3.55
B4+ 0 0 0| 033 0.67| 3.67
B4 0 0 0 0 1 4

e e e B

6.3.5 Classification Rates
For an individual decision problem several indices were used to assess the performance of

a site classification: SCI, I-value, nearest intermediate and whole classification, and the

probability masses and decision order for the five hypotheses. Using these indices, 2

1 1 . . - . ) - .
decision maker can decide, from inspection, whether the classification’s decision was

acceptable or not. To assess the performance of a classifier over the data-set, a criterion was

adopted for deciding whether a classification error had occurred. The empirical error rate

is defined as the number of errors divided by the number of sample cases and the

classification rate as (1 - Error-rate). A successful classification was deemed to occur if

for a particular benthic sample, the expert’s opinion and the classifier’s decision both align

i ] X in assessin
on the same base class. This criterion allows the use of the confusion matrix 1 assessNg

The confusion matrix is identical to the

performance over repeated classifications.
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contingency table used in non-parametric statistics in which the degree of dependence
between the Tows and columns of the table can be determined. This can be seen directly
from inspection of the table, or from the classification rate. Alternatively non-parametric
measures such as Spearman’s rank coefficient can be used to quantify correlation between
the rows and columns of the table.

For a n-class problem, the confusion matrix or contingency table is of dimension »
x n. The number of classification errors is readily determined by summing the off-diagonal
elements in the matrix. A perfect classifier would result in a diagonal matrix, with zero
error rate. The confusion matrix can be used directly in decision making if certain empirical
measures of utility, risk, or cost exist. For instance, one could consider the cost of
misclassification. For a two-class Positive/Negative problem, the confusion matrix has four

elements:

TP FP

6.3
FN TN (©3)

where FN refers to a "False Negative" decision and FP to "False Positive".

For the biological classification problem, the "false negatives" correspond to the
elements to the left and below the diagonal of the confusion matrix. These represent those
cases in which the automatic classifier, based on the sample data, computed the water
quality as poorer than that decided by the expert, i.e. the system erred on the poorer side.
The "false positives" are those above and to the right of the diagonal, corresponding to
system classifications of higher quality than the true class. For most practical problems, the
costs associated with false positives and false negatives will be different. Although this
information for the biological classification problem does not currently exist, one can
envisage how the costs of misclassification may be apportioned. In considering the design
of the BMWP score for instance, the most tolerant taxon within each scoring group is

selected for awarding points towards the overall score, biasing against over-optimistic

quality assessments. This bias would imply that erring on the side of poorer quality is

“safer" than the converse, i.e. the "costs" of misclassifying river water quality higher than

itis being greater than those due to incorrectly downgrading quality.

Thus one could construct a 5 X 5 misclassification cost matrix M reflecting the

higher costs above the diagonal than below, and the fact that costs usually increase with

misclassification. The diagonal elements M are all zero since there is no cost-penalty for
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correct classification. A (fictitious) cost matrix could be as shown in shown in Table 6.4

“

Table 6.4 Form of possible cost matrix for biological classification problem

0345¢6
20345
32034
4 3203
54320

The actual misclassification costs are then computed by:

P oY o
i=1 j=1
where C is the n x n confusion matrix. The figures in Table 6.4 are arbitrary, and in a
practical application of biological classification they would have to be determined
empirically. This method illustrates one other way in which the performance of a classifier

could be assessed.

6.4 Experiments using Bayesian and Singleton-support functions

6.4.1 Representation of Bayesian belief

Classes of belief functions effectively constrain the possible mass assignments in numerical
reasoning schemes. As an example, consider the belief function representing total
ignorance. The so-called vacuous belief function Bel(4d) = 0 (4 # ©) implies that no
information is available regarding the truth of propositions in the power set, apart from the
frame of discernment itself for which Bel(®) = 1. In Bayesian theory ignorance is expressed

using the principle of indifference by assigning an equal distribution of mass across the

singleton hypotheses, although this action is not necessarily devoid of information. The

Dempster-Shafer representation of ignorance is more satisfactory in that none of the subsets
ief function Bel (4;) = 1 implies that
at m(4,)= 1.0 and

of © receive any credence. In contrast, the certain bel
the proposition represented by the subset 4, is true beyond doubt, so th

m(4) =0 for all j =i. If 4, is a singleton, the evidence is completely decisive.

Bayesian belief functions are equivalent to a conventional discrete probability

distribution across the singleton hypotheses H. Therefore
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> m({H}) = 1.0
He0 (6.5)

Also since Bel(4;) = m(4,) for singleton hypotheses, and the width of the belief interval is

zero, we have

m({H;}) = Bel ({H}) = Pls({H}), (6.6)

for all H, € ©. For Bayesian belief functions, Dempster's rule is equivalent to the Bayesian
updating mechanism. Moreover, if a Bayesian belief function is combined with a non-
Bayesian belief function, the resulting function either is Bayesian or does not exist
(Voorbraak, 1990). So any uncertainty in the system that exists beforehand is eliminated

when updated by a Bayesian belief function.

6.4.2 Implementation of Bayesian belief

The assignment of probability mass to the competing hypotheses within the frame of
discernment is dependent on the reasoning algorithm used and the representation of belief.
For Bayesian reasoning, a direct correspondence exists between the probability distributions
and the support for each of the singleton hypotheses, the river water quality classes. Two
variants of the probability distributions were used: one derived directly from the histograms
elicited from the domain expert, and the second obtained by applying a smoothing
adjustment to the distributions. Within the classifiers, an option was provided for the user
to select the form of the distribution. One can use either P(H le) or P(e|H) to assign
Bayesian belief, since the normalising constant in Bayesian updating can be directly

computed by requiring the P(H,|e) to sum to unity over /.

With Bayesian reasoning the representation of belief is essentially that of singleton

support: this therefore largely predetermines the assignment of probability mass. As with

Dempster-Shafer reasoning a degree of evidential discount can be applied to the sensor

evidence. However with Dempster-Shafer reasoning, applying evidential discount € to

singleton support results in uncommitted support residing with the environment, and

likewise support for each singleton is reduced by a factor (1 - €). For Bayesian reasoning

this facility of leaving belief uncommitted does not exist: instead, the effective probability

mass m', for a singleton hypothesis H; given evidential discount € becomes:
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m;=m (1 -€)+e/n 6.7)
for n hypotheses. The effect is to redistribute the probability mass over the singleton sets
similar to the distributions obtained from the area-adjustments. Like this latter adjustment,
the effect of evidential discounts in Bayesian reasoning is to produce a less crisp
representation of the sensor evidence. For € = 0, the support for each hypothesis
corresponds to the probability distribution read from the spreadsheet data; if € = 1, the

sensor evidence contributes no information (m’; = €/n V i), i.e. its evidence is completely

discounted.

6.4.3 Representation of Singleton support

Singleton support is a term used by this author to denote an assignment scheme in which
the frame receives a proportion of probability mass equal to the degree of evidential
discount. This is the amount by which support for each proper subset of © is reduced, the
remaining mass distributed among the singletons. The idea of discount was described in
Chapter 3. It was proposed in Shafer's original treatise for dealing with evidential conflict
(Shafer, 1976). By introducing a discount rate for each proper subset, the "crispness” or
certainty of the evidence for the equivalent propositions is reduced, and the resulting
uncertainty in the system represented by a mass assignment to ©. Consider the Bayesian

belief mass assignment of the form
m({Bla}) = a, m({Blb}) = b, m({B2}) = c,
m({B3})=d, m({B4}) = e

(6.8)

If now m(®) = ¢, then each of the basic probability numbers is reduced in proportion, €.g.

m({Bla}) = a(1-¢), m({Blb})=b(1-¢€). 6.9)

Note that if the discount rate € = 1, the belief function becomes vacuous, with no
information content whereas if € = 0, the mass assignment for the singleton support belief

function reduces to a Bayesian belief function.
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6.4.4 Implementation of Singleton-support functions

As discussed in Chapter 3 the Dempster-Shafer calculus is a generalisation of the Bayesian
approach. If in Dempster-Shafer reasoning a Bayesian belief function? is adopted for
evidence representation, the scheme is equivalent to Bayesian reasoning. Within Dempster-
Shafer reasoning the combination of a Bayesian belief function with a non-Bayesian
function either does not exist or results in a Bayesian function. Therefore the representation
of any one set of evidence as Bayesian belief during the Dempster-Shafer combination
procedure reduces the algorithm to the Bayesian approach even if the remainder of the
evidence is represented as singleton support. This would suggest that one could use the
Dempster-Shafer calculus for both Bayesian and Dempster-Shafer belief representations.
However since evidential discount is treated differently in the two calculi maintaining two
different types of classifiers for singleton support was necessary, one for Bayesian, the other

for Dempster-Shafer.

6.4.5 Effect of probability distribution adjustment

6.4.5.1 Motivation

These experiments were carried out to test the effect of representing the derived probability
distributions for the sensor evidence in each of two modes: one mode directly based on the
original graphical pro-forma elicited from the domain expert, the other corresponding to
the area-adjusted distributions developed as described in Chapter 4. Adjustments to the
probability distributions are equivalent to varying evidential strength by a set amount. The
intent of this investigation was to determine whether this adjustment affected classification

performance.

6.4.5.2 Procedure

Sites from the Yorkshire Water data were used to test the performance of a Bayesian

classifier that could use both modes of the sensor evidence. Rare evidence was discounted

it was of insufficient 'strength’ to influence

ablished and absent

from the classification, on the assumption that
the decision. The remaining evidence, corresponding to abundant, est

taxa and presented to the Bayesian updating algorithm in that order (referred to as “sensor-

state” order) was considered at full strength.

- i idential discount.
A Bayesian belief function can be viewed as singleton support with zero evidentia
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6.4.5.3 Results for data-set
Table 6.5 shows the classification performance over the Yorkshire data using the

probability distributions derived directly from the expert, while Table 6.6 show the

classification obtained by using the adjusted distributions.

—

Table 6.5 Bayesian classification of Yorkshire data using original probability
distributions.

Expert Decision

Bla |Blb |B2 |B3 | B4

Bla || 1 0 0 0 0

Blb 5 6 0 0 0

B3 |[o |0 |1 |18 |2

Classifier Output

B4 0 0 0 1 6

Notes: Rare evidence neutral. Classification rate 75.47%.

~
—
Table 6.6 Bayesian classification of Yorkshire data using adjusted probability
distributions.

Expert Decision

Bla | Blb |B2 [ B3 | B4

Bla || 4 2 0 0 0

Blb || 2 4 1 0 0

B2 0 2 8 1 0

B3 0 0 1 17 |0

Classifier Output

B4 0 0 0 3 8

Note: Rare evidence neutral. Classification rate 77.36%.
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6.4.5.4 Discussion
Using both variants of probability distribution mis-classifications are no greater than one
class either side of the expert’s base class. However the classification over the data set
exhibits a better performance when the distributions are smoothed via area-adjustment. The
difference between the classifications when expressed as ranks is significant at the 5% level.
Classification for good quality (Bla) samples using the original distributions results in a
tendency to downgrade by one class. Overall, the tendency is for the system to err on the
poorer-quality side, which is preferable to overestimating the quality of the sampled site.
The effect of adjusting the probability distributions representing the sensor seems
to support the observations made during the preliminary system development that the
crispness of the original distributions may produce premature decisions. The number of
indicator taxa participating in the decision was recorded for each sample. Once a particular
hypothesis receives 100% support, all remaining evidence within the indicator taxa group
is immediately eliminated. Such decisions are more likely to be reached for highly focused
evidence. The number of participating indicator taxa was less than or equal to 10 for 27 out
of the 53 samples using the original distributions. For the area-adjusted distributions, all of
the forty-one taxa within the indicator group (apart from those whose status was Rare) took

part in the classification decision for each sample.
”

Table 6.7 Evidence combination of indicator taxa for Yorkshire Water site ref. 611
(Original distributions).

Taxon Sensor-state Bia [Blb [B2 B3 B4

Potamopyrgus jenkinsi ESTABLISHED 0.35 0.14 0.30 0.21 0.00
LUMBRICULIDAE ESTABLISHED 000 037 028 (035  0.00
Combined Support 0.00 025 040 0.35 0.0
Baetis rhodani ESTABLISHED 036 [0.18 021 [0.25  ]0.00
Combined Support 000 (022 039 10.39  10.00
Rhithrogena spp. ESTABLISHED 056 044 0.00  ]0.00  10.00

Combined Support 0.00 1.00 0.00 0.00 0.00

Notes: The Bayesian algorithm used the original distributions elicited from the expert.

<—-

icular Yorkshire site (611), classified by

nsidered is the snail

Table 6.7 shows the evidence considered for a part

the expert as excellent biological quality (Bla). The first indicator co
Potamopyrgus jenkinsi in the Established abundance state, which suggests highest support
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for class Bla. After combination with the evidence provided by Lumbriculidae, also
Established at the site, majority support now shifts to B2. Note however that support for
Bla is eliminated: the evidence from Lumbriculidae effectively vetoing any further support
for that class. Although Baetis rhodani when Established is a strong indicator of very good
quality, this hypothesis has been eliminated by previous evidence. The same is true of the
mayfly Rhithrogena spp., whose support is highly focused on classes Bla and B1b when
in the Established state, with support for lower-quality classes being zero. The result of
combining the previous distribution with this new evidence is that a decisive outcome for
class B1b. No further evidence can be considered, so the decision is made with four taxa.

Consider the classification of the same site when the Bayesian classifier is presented
with the adjusted distributions provided by the same set of evidence (Table 6.8). The
smoothing of the original distributions means that support for Bla from Lumbriculidae is
non-zero, although very small. However combination of this evidence with that of Potamo-
pyrgus jenkinsi results in the maintenance of belief in this class, so that the probability
profile after considering sets of evidence is markedly different from that shown in the last
row of Table 6.8. The Bayesian classifier combines in all the 30 sets of evidence from the

indicator group for this site.
S e e

Table 6.8 Evidence combination of indicator taxa for Yorkshire Water site ref. 611
(Adjusted distributions).

Taxon Sensor-state Bla [Blb [B2 B3 B4
Potamopyrgus jenkinsi ESTABLISHED 032 |0.15 0.28 0.22 10.03
LUMBRICULIDAE ESTABLISHED 005 1032 029 [0.30 0.04
Combined Support 002 005 0.08 0.07  0.00
Baetis rhodani ESTABLISHED 036 019 Jo20 j022  10.03
Combined Support 0.12 0.19 0.36 0.32 0.00
Rhithrogena spp. ESTABLISHED 054 040 |0.06  [0.00  10.00
Combined Support 039 048 Jo.12  }0.00 _ 10.00

“

6.45.5 Summary

It appears from the results that varying evidential strength via this adjustment of probability

; i i ief, the
mass does reduce misclassification error for the Bayesian classifier. For Bayesian belief,

probability mass is removed from singletons with higher support and redistributed to

singletons with lower support. If the support for a singleton as suggested by the original

istri : : i i - ort.
distributions is zero, adjusting the distribution will lead to 1t having non-zero supp
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Maintaining non-zero support for propositions throughout the evidential combination
maintains plausible belief for as long as possible until all the evidence from the indicators
have been combined. There is therefore less likelihood of premature decisions with the

adjusted distributions that with the more highly-focused evidence.

6.4.6 Variations in Evidential Strength

6.4.6.1 Motivation
In Chapter 3 it was suggested that the process of directly interpreting the benthic samples
from the river bed is one of probabilistic reasoning, in which the presence or absence of
benthic data provides evidence regarding the state of health of the river. The evidence is
assessed or weighed in some form by the expert and integrated to reach a decision. By
reformulating this decision problem as one of classification under uncertainty, the weighting
and integration of this evidence can be formalised within the decision algorithm used.

Following the experiments in probability distribution adjustment it was realised that
the device of evidential discount allowed finer control over the strength of evidence from
a sensor or class of sensor states. For instance, evidence from sensors in the rare or absent
states could be eliminated completely from evidential combination by using a discount rate
of 1.0. This method also provides a means of contrasting Bayesian and Dempster-Shafer
evidential combination. For singleton support functions, a discount rate of 0.0 reduces a
Dempster-Shafer basic probability mass assignment to the Bayesian probability distribution.
Intermediate values allowed the strength of evidence associated with particular sensor states
to be varied arbitrarily, and to monitor the effect on classification performance.

The effect of varying evidential discount (i.e. strength of evidence) on classification
performance was investigated using both the Bayesian and Dempster-Shafer calculus. To

allow comparison with the Bayesian approach the evidence for this series of tests was

represented as singleton support with varying degrees of discount € depending on the sensor

state. This allows the weight given to the type of evidence to be adjusted, depending on the

confidence one has in the quality of the data (Dillard, 1992).

For instance, if one views evidence provided by the sensor in its abundant state as

a valuable indicator of river water quality, then the discount rate for this evidence would

probably be set near or equal to zero. With values of € equal to zeto or one, the Dempster-

Shafer calculus applied to evidence represented as singleton support should reduce to the

Cr et d
Bayesian calculus. For intermediate values of €, the effect of evidential discount should lea
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to different results between the two calculi, since the Dempster-Shafer approach allows e
(o represent uncommitted belief, a facility absent from the Bayesian method. These series
of tests were intended to investigate the conjecture that the Dempster-Shafer method should
be more robust than the Bayesian approach in dealing with the noise or imprecision inherent
in the biological data, and to investigate the effect of adjusting the weight given to the

sensor state evidence.

6.4.6.2 Absent Evidence

Each test consisted of a combination of discount-rates for the four sensor states. The
evidence was presented to the algorithms in sensor-state order, i.e. Abundant evidence,
followed by Established, Rare and Absent. In this series of experiments, Rare evidence was
completely discounted, i.e. the sensor in this state was viewed as conveying no useful
information regarding the quality of water at the site where it was sampled. Absent
evidence was discounted at various rates between € = 0 and 1 to investigate the conjecture
that this form of evidence, while of less significance that the three present states, was
nevertheless an important factor in the performance of the automatic classification.
Discount rates for evidence corresponding to the sensor states of established and abundant
were kept low, i.e. this data was considered of high quality. Table 6.9 shows data quality

descriptions corresponding to the discount rates (€) used.
a

Table 6.9 Data quality descriptions corresponding to evidential discount rates.

Data quality Discount rate
Certain 0.0

High 0.1-0.2
Good 0.3-04
Fair 0.5-0.6
Poor 0.7-0.8
Uncertain/Ignore 1.0

6

To reduce the number of experimental variables, the area-adjusted mode of probability

distribution representation was used for all the sensor evidence.
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6.4.6.3 Results: Absent Evidence

Table 6.10 shows the classification rates for both calculi in which the evidence is
represented as Bayesian or Singleton support. Where the evidence is Certain (e=0)or
Jgnored (e = 1), singleton support reduces to Bayesian belief. Here Dempster’s rule for
combining evidence is equivalent to Bayes’ updating rule. This is shown by the identical
classification rates for the first two tests. Subsequent tests adopt a nominal discount rate for

Abundant and Established evidence, to maintain non-Bayesian belief functions for the

classifiers using the Dempster-Shafer algorithm.

e

Table 6.10 Variation of classification rates for Bayesian and Dempster-Shafer
algorithms with data quality of Absent evidence.

223

T228

Test ID T221 | T222 T224 | T225 | T226 | T227 T229 | T230°
Decision Algorithm || Bayes| D-S |Bayes| D-S |Bayes| D-S |Bayes| D-S |Bayes| D-S
Classification Rate(%)| 77.36| 77.36| 73.58 | 71.70| 69.81 | 58.49| 67.92] 62.76 | 58.49 | 60.38
Abundant Certain High High High High
Established Certain High High High High
Rare Ignore Ignore Ignore Ignore [gnore
Absent il Certain Good |  Fair Poor Ignore

Note: D-S = Drempswtrerr-Shafer'
e )

The decline in classification rates as Absent evidence is downgraded in quality seems to
support the conjecture that this data may make an important contribution to the performance

of the classification. The reasons for this are discussed below.

6.4.6.4 Discussion
The question arises however why the benthic taxa that are present in the sample do not in

themselves yield good classification results over the entire data-set. Table 6.11 shows the

classification results using the Dempster-Shafer method for Abundant and Established

evidence only (reference T230 in Table 6.10).
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Table 6.11 Dempster-Shafer classification of Yorkshire data. Present data only

Expert Decision

Bla | Blb [ B2 | B3 | B4

Bla |l4 2 o |o |o

Bib 2 |4 |1 Jo Jo

B2 0 2 9 7 0

B3 0 0 0 13 |6

Classifier Output

B4 0 0 0 1 2

Classification rate 60.38%.
T e

The classifier upgrades by one class from the expert’s classification of B3 and B4 sites in
particular. However some of these misclassifications are a result of the need to choose the
maximum probability value as indicative of the decided class when constructing the
confusion matrix. Examination of the performance indicators SC/, I-value and nearest
system class reveal that in fact the agreement between the expert and the classifier is closer
than that suggested by the base class, as used in the confusion matrix. Table 6.12 shows the
output and calculated parameters for the eight B3 sites misclassified. For site 438B, the
system’s intermediate class of B2-- can be interpreted as approximating the expert’s opinion
of B3+, For site 601B, the classifier’s base class output of B4, obtained from considering
the maximum value of the distribution, appears to be a clear misclassification by one class.
Examination of the SCI and the low I-value reveals that this is not a clear-cut decision,

however. The classifier’s intermediate class of B3-- is close to the expert’s B3-.
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Table 6.12 Comparison of classifier output and expert decisions for eight m; )
B3 sites of test ID T230. ght misclassified

Base |Base |[System Classifier Output T
| Class [Class |Interme-
'Site SCI |I-value|Expert |Expert|System |diate BlajBlb| B2 | B3 | B4
; Class ,
ESC |228] 13 |B3+ B3 B2 B2- 0.00{ 0.02] 0.69] 0.29 0.00‘
435F | 2.171 16 |B3++ |B3 B2 B2 0.00{ 0.00] 0.82] 0.17| 0.00
438B | 2.37| 12 |B3+ B3 B2 B2-- 0.00) 0.01} 0.62} 0.37| 0.00
440A | 2.141 16 |[B3+ B3 B2 B2 0.00] 0.01{ 0.84} 0.15] 0.00
443A 1217 16 |{B3++ |B3 B2 B2 0.00{ 0.01f 0.81} 0.18] 0.00
545F 228 11 |B3+ B3 B2 B2- 0.00{ 0.07{ 0.59| 0.33] 0.01
601B | 3.35 9 |B3- B3 B4 B3-- 0.01] 0.02{ 0.07} 0.43| 0.49:
620A |224] 14 |B3++ [B3 [B2  [B2-  [0.00] 0.01] 0.73] 0.26] 0.00

See text for explanation.
R

Yorkshire Water site 440A is characterised by a benthic sample in which the presence of
several taxa suggest support for higher-quality water. The presence of Bithynia tentaculata,
Lymnaea peregra, Planorbis spp. for instance, give dominant support for class B2, with the
distribution for Sphaerium spp. having its maximum value for BIb. It is possible that the
expert gave extra weight to the presence of Tubificidae, Erpobdella octoculata and Asellus
aquaticus beyond that suggested by the individual distributions themselves. The
combination of these taxa together may outweigh, in the expert’s mind, the contribution of
the higher-quality taxa in a way that is not captured by the weighting applied for the

decision algorithms.

The performance of the two calculi is more closely matched than that suggested by

the classification rates over the data-set, in which classifier output is aligned with the

nearest whole class. However, misclassifications also occurred for the very good quality

sites (B1a). Table 6.13 shows comparative performance of the classifiers for a particular

Yorkshire site, 553B, classified by the expert as Bla, i.e. of the highest quality. The

diversity of the sample was doubtless an important factor in this decision. Yorkshire Water

Authority’s own DoE classification of the site is class A. From Table 6.13 it is seen that

. ) ndi _value) of
combination of evidence with increasing discount rates reduces the indicator (/-valu )

the resulting distributions. This results in a shift from support for Bla towards B1b.
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Table 6.13 Compa rison of Bayesian and Dempster-Shafer classifier performance unde
varying data quality. .

| Di_ O] Di o] i o] bi o] b o b ol
Bla 0.61 1| 057 1§ 050 1| 052 1| 040 2| o4s o
BIb 039 2| 041 2l 050 2| 046 2| o050 1| o4s |
B2 0.00 3| 002 3] 001 3| 003 3| 001 3| 003 3
B3 0.00 4| 000 4 000 4| 000 4| 000 4| 000 4
B4 0.00 5| 000 5Jl 000 5| 000 s§ 000 5| 000 s
‘Base Class Bla Bla Blb Bla Blb Blb

Scl 0.40 0.44 0.51 0.51 0.61 0.55
[-value 12 11 9 10 11 9

Int. Class Bla-- Blb++ Blb++ Blb++ Blb+ Blb+
Algorithm Bayes D-S Bayes D-S Bayes D-S
Test ID T223 T224 T225 T226 1227 T228
Abundant High High High
‘Established High High High

‘Rare Ignore I[gnore Ignore

Absent _Good Fair Fair

Site: Reference 553B - River Ribble (Célder Tribu’{ary'),r off Washpitf Mill. Classified by the é)rcpel“['éé Bl a
Key: D, = support for each class; O = decision order.

Differences between the two calculi are apparent under evidential discount. With Bayesian
belief, unit probability mass is redistributed across the hypotheses resulting in a smoothing
of the distribution, whereas using the Dempster-Shafer mass allocation a degree of
uncommitted belief equal to the discount rate € is assigned to the environment 0. In the
latter case, the strength of evidence for each singleton is uniformly reduced by a factor (1-
€).

Table 6.14 illustrates the combination of sensor evidence at a Yorkshire site (611:
Clayton Beck, an Aire tributary) for the two calculi with the same data weighting. In (a) the
environment ® has no role, since no such provision is made in Bayesian methods. In (b),
uncommitted belief resides with ®. This probability mass is available for combination with

new sensor evidence. The difference in the combined support resulting from two sets of

evidence is small. However, the cumulative effect from combining all the available

evidence results in an appreciable difference in the final class support between the two

calculi for the same data quality.
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Table 6.14 Comparison of Bayesian and Dempster-Shafer evidence combination und
evidential discount or

@, lSensol._state | Bla |B1b l B2 l B3 I B4 | 2)
Potamopyrgus jenkinsi ESTABLISHED 032 10151028 022710037 0.00
Effective Support 031 | 0.15]027 {022 |0.05 | 0.00
LUMBRICULIDAE ESTABLISHED 0.05 1032 1029 | 030 | 0.04 | 0.00
Effective Support 0.06 | 031 {028 10.29 | 0.06 | 0.00
Combined Support 0.09 1022 037 031 {001 | 0.00
(a) Bayesian updating. Test ID 225

Taxon Sensor-state | Bla [Bib [ B2 | B3 [ B4 0 |
Potamopyrgus Jjenkinsi ESTABLISHED 032 1 0.15 | 0.28 | 0.22 | 0.03 | 0.00
Effective Support 0.29 | 0.13 | 0.25 | 0.20 | 0.03 | 0.10
LUMBRICULIDAE ESTABLISHED 0.05 1 0.32 1 0.29 | 0.30 | 0.04 | 0.00
Effective Support 0.04 | 0.29 | 0.26 | 0.27 | 0.04 | 0.10
Combined Support 0.12 |1 0.22 | 033 | 0.28 | 0.02 | 0.03

(b) Dempster-Shafer updating. Non-zero belief remains with © after combination. Test ID 226

Examination of the intermediate calculations shows that the cumulative effect of absent
evidence is generally to reinforce the support provided by the established and abundant
sensor evidence, although it has a lower information content. Since the distributions for
absent evidence span the propositions, its effect is to maintain non-zero support for

propositions throughout the evidential combination procedure.

It appears that the representation of belief in both cases as singleton support is the
dominant factor, rather than the calculus used, coupled with the "damping" effect of
absent evidence. The cumulative effect of combining the absent evidence is to reduce the
width of the evidential interval in the Dempster-Shafer case, since the size of the
uncommitted belief assigned to © reduces each time sensor evidence is combined. Thus

singleton support functions become more Bayesian as sensor evidence is successively

combined using Dempster's rule.

6.4.6.5 Established evidence

Evidential strength was also varied for Established eviden
ation when varying the strength of Established evidence.

ce. Table 6.15 summarises the

results of Dempster-Shafer classific
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Table 6.15 Classification rates for varying weighting of Established evidence

| 1230 | 1234 [ T236 | T2361

‘Abundant High | High | High | High .
\Established High | Good | Fair | Poor
Classification rate (%) | 60.38 | 62.26 | 58.49| 62.26

Note: Dempster-Shafer classifiers. Absent and Rare evidence neutral.
“
These differences, which are not significant, suggest that the ‘interference’ effects obtained
by combining discounted evidence mitigate any expected improvement in classifier

performance due to reduced conflict.

6.4.6.6 Rare Evidence

In the series of tests described previously the role of sensor evidence in the Rare state has
been assumed to be neutral, i.e. the effect of this evidence has so far been ignored. This
premise is open to question, since the diversity of sample sites clearly has an influence on
the expert’s classification: usually, but not always, strongly suggesting that the river water
quality is high. The Yorkshire data-set consists of at least fifteen sites that have six or more
taxa recorded as Rare, and in only three sites are taxa there either Established or Abundant
only.

During the knowledge acquisition sessions the expert was generally of the opinion
that evidence from taxa occurring in very small numbers (generally < 3) had to be treated
with caution, since their inclusion in a sample count may be due to inconsistencies in
sampling, errors in collating data, or even due to their drifting from sites upstream.
Consequently, probability distributions were not elicited for taxa in the Rare state.

The effect of Rare taxa could be considered in one of two ways: the added diversity

of the sample could be a weighting factor, or some representation of the evidence in this
was chosen in which Rare

Shafer

state could be adopted. In this experiment, the Jatter option

evidence was seen as a weaker form of Established evidence. The Dempster-

entation, since our uncertainty
f. Two

algorithm is an intuitively attractive mechanism for this repres

in how much weight to accord this evidence can be represented as uncommitted belie

o . : : ‘ counted as
evidential discount regimes were investigated: one 1n which Rare evidence was

4 . . s . » t-
falr‘quality’ Established evidence, the other as ‘poor-quality”. Higher data quality rating
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was considered unjustifiable in the light of how Rare evidence was initially considered

6.4.6.7 Results: Rare Evidence

Inclusion of Rare evidence makes an insignificant difference to the classification rates
across the data-set, or to individual sample classifications, even for samples in which there
were several taxa in the Rare state. Table 6.16 shows the classification rates for three
regimes of data quality. In each case Abundant and Established evidence was considered
of high quality, while Absent evidence was ignored. The confusion matrices for the first and

third case are identical.
—

Table 6.16 Classification rates for varying weighting of Rare evidence

T230 | T2381] T238
Rare Ignore| Fair | Poor
Classification rate (%) | 60.37 | 62.24 | 60.37

Note: Dempster-Shafer classifiers. Absent neutral. Established and Abundant evidence included.
e e

6.4.6.8 Discussion: Rare Evidence

These results support the assumption that Rare evidence can effectively be ignored. From
a computational viewpoint, the combination of the extra evidence makes little difference
to a classifier’s decision. Support for each hypothesis increases asymptotically after several
combinations of evidence. Extra support for a particular class from considering Rare
evidence is offset by contradictory support for competing hypotheses. These results follow

from the probabilistic representation of Rare evidence as a poorer form of Established

evidence. From another viewpoint, taxa that occur in low numbers could be seen as on the

periphery of their ideal habitat, exhibiting a bimodal distribution of support across the

quality classes, with the modes occurring either side of the preferred class. The investigation

of a more accurate probabilistic representation of Rare evidence, involving the elicitation

of distributions specifically for this state, could be an area for future work.

6.4.6.9 Summary: Variation in Evidential Strength

) g - t
The performance of the automatic classifier under evidential discount is naturally dependen

i i icting the
on the composition of the sensor evidence for the site. In this respect predicting

. icular regime of
performance of an uncertain reasoning classifier over a data-set for a partic g
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evidential discount is difficult, but the effects can be understood with reference to individual
sets of evidence. With the Dempster-Shafer calculus the effect of discounting evidence is
complicated by the compensating role of the environment ©, and the decrease in evidential
conflict. As discount is increased for sensor evidence, the strength of that evidence
decreases. For singleton support, this decrease is in direct proportion to the discount rate,
while © receives a correspondingly increased support.

Consider the situation for incoming evidence from a sensor in the Established state,
with an increased discount rate of 0.2 over the nominal 0.1. The combined evidence of
previous sensors will be represented as singleton support, with non-zero probability mass
assigned to ©. The orthogonal sum of these two support functions may result in certain
singletons receiving more support than that received for lower discount rates. This is
because of support arising from the intersections, in Dempster's rule, between © and a
singleton, which results in support for that singleton represented by the mass product. The
reduced evidential strength for the singletons results in a lower conflict mass accumulating
in the null set, and therefore a higher normalisation factor. As normalisation redistributes
probability mass back to the singletons and to ©, the lower conflict ensures that ® continues
to play a role in subsequent sensor readings of supporting all the singletons, if the evidence
is represented as singleton support.

Because of these effects, there is not a straightforward relationship between varying
discount rates and classification performance. Increasing discounts beyond 20% may |
however lead to undesirable results. The indicator values of the sensors become masked by
the tendency to "even out" the support functions as more evidence is combined. If the un-
discounted evidence nominally supports higher-quality classes, discounting shifts support
towards the lower-quality propositions. Since larger support remains with the environment,
the uncertainty in the decision, i.e. the evidential width, is larger.

For nominal discount rates for present data, the results suggest little difference

between the Bayesian and Dempster-Shafer approach. However the divergence between the
reasing evidential discount, since

ed belief it

Bayesian and Dempster-Shafer approach increases with inc
only the latter calculus has a mechanism for dealing with the uncommitt

represents.
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6.4.7 Order of Combination and Decision thresholds

6.4.7.1 Motivation

An important characteristic of diagnostic reasoning is that decisions should be independent
of the order in which evidence is presented. Therefore the automatic classifiers should reach
the same conclusions for a benthic sample if evidence is ordered into sensor states (e.g.
Abundant followed by Established) or if another ordering is used. However, it is possible
that the expert considers benthic data in an "intuitive" order, i.e. those taxa present first,
before appealing to the significance of important taxa absent from the sample. The expert
may not consider every piece of evidence, but instead may decide after observing the
presence or absence of the most important indicators, dismissing conflicting or weak
evidence as extraneous. If this or another order is imposed, there may be no need to consider
the entire set of evidence from the indicator taxa - the expert may be satisfied is the support
for a particular class is say, 85% or 90%.

The decisions reached by the automatic classifiers should be identical for the same
type of belief representation and evidential weight regardless of the order in which the
evidence is presented, if the evidence set is the same and that the decision threshold is at or
very near unity. If however an ordering is imposed, a decision threshold less than unity
should produce a decision when the support for a proposition attains the threshold value,
eliminating any further evidence from consideration. Such a strategy may be adopted by a
human expert or by a reasoning system for a large set of evidence, in that a reduced set of
significant evidence is considered. Rather than consider the entire set, the expert (or
reasoning system) may reach a decision when satisfied that the important evidence has been

considered. This important evidence would naturally be scrutinised first.

6.4.7.2 Procedure

To investigate this conjecture the decision threshold was varied from its default value of

unity for two different orderings. The default or ‘taxonomic” ordering corresponds to the

order in which the indicator taxa are listed within the sample data, that is, in ascending order

of Maitland codes (Maitland, 1977). The second ordering or ‘sensor-state’ corresponds to

t, followed by established, rare and
ed by the domain

the "intuitive" order of considering abundant taxa firs
absent taxa. If as conjectured this corresponds to the ordering impos

expert, one would expect the use of decision thresholds to be more appropriate here.

Three levels of decision thresholds were imposed: definite, high and oW,

150




corresponding to values of 1.0, 0.8 and 0.6, for the two orderings of evidential combination

The classifier reported its decision when the support value for any hypothesis reached the

decision threshold.

72
70
68
66

64

Classification rate (%)

62

60

1 0.8

Decision Threshold

Sensor state order

g@Taxonomic order ;

Figure 6.1 Effect of varying decision threshold on classification rate for two orderings of
evidence combination. ‘Taxonomic ordering’ refers to sensor evidence combined in order
Polycelis nigra to Simulium ornatum, regardless of sensor-state. ‘Sensor-state’ order means
that Abundant evidence was combined first, followed by Established, etc.

6.4.7.3 Results

Figure 6.1 shows the overall classification performance across the Yorkshire data-set. As
expected there is no difference between the classification rates for the taxonomic and
sensor-state ordering for a decision threshold of unity. Reducing the threshold to 0.8 yields
the same classification rate, although the number of indicator taxa that participate in the
classification decision is reduced. The classification of a sample can therefore be obtained
with a reduced evidence set by a small reduction of the decision threshold. The identical
results for taxonomic and sensor-state orderings for a threshold of 0.8 are surprising in that
different numbers of taxa participate in the classification decision for each sample. The
the

differences are not significant enough to alter the ‘base class’ decision due to

Participation of a sufficient number of high-indicator taxa for each ordering.
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6.4.8 Useof Evidential Indicator Value

6.4.8.1 Motivation

Previous tests have involved weighting evidence according to a class of sensor evidence,
i e. according to sensor state (Abundant, Established, Rare or Absent). In this series of tests,
the intrinsic value of each sensor as an indicator of water quality was used to determine the
effect on classifier performance. A suitable value is the ratio of maximum to non-zero
probability value within the distribution. For a probability distribution with zero
information content (e.g. A, = 0.2 V i) the indicator value is unity, while for strong
indicators (such as abundant sensors) the indicator value is usually large. If below a
threshold value, the evidence is not used in the decision process, since it is deemed to be
of little value in that decision. This 1s equivalent to using evidential discount, but on a
sensor-by-sensor basis rather than sensor state. If the sensor's evidence is below the
threshold value, it is discounted entirely. The indicator value was calculated from the
undiscounted probability distribution. Those distributions whose indicator value was greater
or equal to a specified threshold were discounted at a nominal 0.1 to maintain non-Bayesian

belief functions for the Dempster-Shafer classifier.

6.4.8.2 Results

The results confirm those found using Absent data, namely that the inclusion of low-
information sensor evidence improves classifier performance over the data-set. Most Absent
sensor evidence is eliminated when the indicator value is greater or equal to 10, along with
some Established evidence. Table 6.17 shows the classification performance using those
sensors with indicator-values greater or equal to 30. The misclassifications of the B3 sites
are due to the occurrence in those samples of taxa associated with B2 classes. For instance
the Yorkshire site 435F classified by the expert as B3 has Lymnaea peregra, Ancylus
fuviatilis and Sphaerium spp. in the Abundant state, giving strong support for class B2, the

conclusion arrived at by the classifier.

6

Table 6.17 Effect of counting only sensor evidence greater or equal to given ‘Indicator

value’ o | |
[ 1224 1286 105] T286 110 1286 120| 1286 1o

30
Indicator Value 1 5 10 204 |
Classification Rate %_| 71.70] 67.92 L 6038 | 5849 | 2220

- See text for explanation.
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[n one case, a B3 site (494) was seriously mis-classified as Bla. The fauna at this site is
sparse, consisting only of the indicator taxa Ancylus fluviatilis, Tubificidae and Erpobdellq
octoculata, all in the Established state. A high indicator value threshold of 30 eliminated
Tubificidae and Erpobdella octoculata from consideration resulting in a marginal decision
from Ancylus Sfluviatilis for class Bla. The performance over the entire data-set is shown

in Table 6.18.

“
Table 6.18 Classification of Yorkshire data using indicator value of 30

Expert Decision

Bla | Blb [B2 | B3 | B4

Bla || 3 2 1 1 0

Bib || 3 6 3 2 0

B2 0 0 6 9 0

B3 0 0 0 4 3

Classifier Output

B4 0 0 0 5 5

Classification rate 45.28%.
T D RS e

The inclusion of strong indicators only results in premature decisions arrived at by a subset
of the available evidence. As with evidence from absent taxa, including evidence with

lower-information content improves classification performance for the multihypothesis

belief representation of singleton support.

6.4.9 Conflict resolution for singleton support functions

6.4.9.1 Background
This section deals with experiments that attempted to monitor and resolve conflict that

occurs during the accumulation of evidence for and against the propositions corresponding
ination of conflict within the

s. The

to the biological quality of river water. It begins with a reexam

Dempster-Shafer calculus and its monitoring within various computational scheme

. . . : : is then
implication of the choice of a scheme for the order In which evidence 18 presented 1s t

discussed, before considering the results of the experiments themselves.

i i two schemes.
Belief represented as singleton support can be combined using one of
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For pair-wise applications of Dempster's rule between current evidence and incoming sensor
data, any conflict arising from this operation is visible as mass in the null-set, which is reset
to zero by normalising the probability masses assigned to the focal subsets of @ before the
next sensor's data is combined. In using Barnett's scheme, normalisation takes place after
the total evidence for and against the singleton propositions is accumulated.

One clear advantage in using Barnett's scheme is the ability to monitor the total
weight of conflict in combining the sensor data continuously. This total weight of conflict
is lost in using pair-wise applications of Dempster's rule, in which the process of
normalisation redistributes the conflicting mass back to the focal elements between each
combination. The conflict in the pair-wise case is that between the current combined
evidence and the incoming sensor data. If in combining the new evidence the mass of the
null-set is large, a reasoning system can reject it and maintain the support for the
propositions at the state before the incoming data. This rejection of the sensor data can
however be problematical. For very high conflict (i.e. m(o) = 1), the rejection of the
conflicting data is obligatory, since the orthogonal sum then will not be defined. For values
lower than unity the decision to accept or reject the new sensor data can become arbitrary
unless one has further knowledge on the sensor evidence.

One viewpoint may be to consider the evidence as erroneous, like a malfunctioning
electronic sensor, or anomalous, such as the unexpected appearance of taxa normally
associated with poor quality waters in good quality classes. Another viewpoint is to
consider such anomalies as inevitable in freshwater communities subject to stochastic
events. If this viewpoint is adopted, the appearance of certain 'conflicting' taxa should
perhaps be accommodated by the reasoning scheme rather than rejected automatically.’

Since the Dempster-Shafer classifiers for singleton support functions were
implemented using the pair-wise application of Dempster's rule, only the evidential conflict

between existing and incoming sensor data was monitored. The actual degree of conflict
depends on the current belief with the focal propositions and the incoming data, whose
occurrence is dictated both by the ordering scheme and the degree of evidential discount.

For e = 1, the combination will not occur, otherwise the basic probability assignment

corresponding to the sensor evidence will be combined.

e —————

. . : ; jan
A procedure for dealing with evidential conflict in biological ClaSS'lﬁCfl.th}:l (gofro;hceor}lsfi}r,frfilty-
Classifier has been described in Walley ef al. (1992a), in which the sample data 1s checke

: : ification is identified and
P otentially contentious evidence whose inclusion would unduly influence the classification
if N€cessary rejected.
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At a particular moment in time during the combination procedure the conflict
petween the current evidence and the incoming sensor data will depend on the order in
which that data is presented. Taxonomic order of sensor input may exaggerate the conflict
if, for instance, evidence associated with sensors in the absent state is accumulated first,
followed by established or abundant evidence. It is quite possible that incoming sensor
evidence corresponding to present taxa may be highly conflicting with current evidence
accumulated by observing absent taxa; in which case there is a danger of rejecting incoming
sensor data that would otherwise be accepted. Therefore ordering the sensor evidence seems
intuitively more satisfactory so that present data are considered before absent taxa. Any
conflict arising between present taxa then has more significance, and is less likely to result

in poor decisions to reject sensor evidence.

6.4.9.2 An example of conflict monitoring and normalisation

The following example will illustrate the mechanism of con{lict resolution using Dempster's
rule, and show how empirical threshold values can be used to manage conflict. It begins by
examining evidential combination in which the conflict threshold is set to unity, i.e. all
evidence except that which is completely contradictory is combined with existing support
for the propositions. The example shows the intermediate calculations for the classification
of site 610A.. From the list of indicator taxa, the domain expert assessed this site to be of
class Bla, i.e. very good quality.

Evidence is presented for combination in sensor state order, so that abundant
evidence is considered before established evidence. In this example rare and absent
evidence has neutral effect. For each set of evidence, the corresponding discrete probability
distribution for the sensor state is read from a benthic database and presented for

combination. Table 6.19 gives the sensor state and the corresponding discrete probability

distribution across the five quality classes, from which is derived the singleton support

function.

The first row in the table shows the combined support of previous evidence (not

shown) from Potamopyrgus jenkinsi and Pisidium Spp- The freshwater shrimp Gammarus

: ‘ o ¢
pulex in the Established state is considered by the domain expert to be 2 SO indicator 0

Bla quality: this is reflected in the values of P(H,|e) for this sensor state. These values are

ent across the singletons. Here the effective

then used to make the basic probability assignm

= i a basic
Support for each singleton is reduced by a factor (1 - €), where €= 0.1, assigned as
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.
/

PI'Obability number to ©. This "effective support" is shown in the row following the
probability assignment for Gammarus pulex.

M
Table 6.19 Evidential combination and conflict resolution in Dempster-Shafer calculus

@ence iBla|B1b1B2‘B3IB4l@l®‘]

Combined support 034 | 015 | 0.28 | 0.18 | 0.01 ]0.025 ] 0.00
Gammarus pulex 044 | 0.22 | 0.29 | 0.04 | 0.00 | 0.00 |0.00
Eifective support 039 | 020 | 0.26 | 0.04 | 0.00 | 0.10 |0.00
Combined support (unnormalised) 0.18 0.04 | 0.10 | 0.02 | 0.00t | 0.002 | 0.63
Combined support (normalised) 048 | 0.13 | 0.29 | 0.07 | 0.004 | 0.006 | 0.00

—

This retention of uncommitted belief maintains non-zero belief in each singleton between
combinations of evidence. Although Gammarus pulex offers zero support for class B4, the
resultant probability mass after combination and normalisation is non-zero, although very
small. This is important in that subsequent sensor evidence may potentially offer strong
support for B4. If the probability mass for this proposition is non-zero, this subsequent
sensor evidence will have an effect. If the support for the proposition had gone to zero, the
subsequent sensor data would have no effect, precluding their influence on the classification
decision. The sensor data is effectively eliminated, a situation that may be undesirable.
The previous evidence of Potamopyrgus jenkinsi and Pisidium spp. in the
Established state are supportive of class Bla. The combined effect is to reinforce support
for B1b. However because Leuctra spp. is strongly supportive of Bla, the combination
leads to conflict, resulting in mass accumulating in the null set. Normalisation redistributes
this mass back to the focal elements, including the environment ©®. The process of
normalisation also prevents the probability numbers from becoming too small, which
condition can cause computational problems. Note that conflict arises even with supportive

evidence, to the degree of 0.63. Conflicting mass is removed from the null set by

normalisation.

6.4.9.3 Rejection of evidence due to excessive conflict

Table 6.20 shows part of a calculation involving conflicting evidence. Combination of

his site, results in an unchanged

evidence provided by Ceratopogonidae, established at t
.68). The evidence

degree of support for the classes, with Jominant support for Bla (0

) i .88), here
provided by Simulium ornatum however results 12 large degree of conflict (0.88), he
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exceeding the conflict threshold set for this classifier. The evidence s therefore rejected as
inconsistent with the combined support of the previous evidence. For this sample, the
overall decision reached by the classifier when considering only those taxa present was as
that shown as ‘Remaining support’ in the table. Had the conflicting evidence been included
the decision would have been (0.58,0.42,0.00,0.00,0.00). Although the rejection of th;
conflicting evidence has led to a “better’ overall decision, the difference is small, and in fact
in both cases the classifier outputs align on the same base class of Bla. Nevertheless, the
rejection of the indicator associated with poorer-quality waters seems in keeping with the

expert’s opinion of a very good quality sample.
—
Table 6.20 Evidential combination for site 636A by Dempster-Shafer classifier

State of evidence Bla I Blb B2 B3 B4 C) 2
Combined support 0.68 | 0.31 {0.001 { 0.00 | 0.00 | 0.00 |0.00 |
Ceratopogonidae 0.29 | 0.29 | 0.29 | 0.10 | 0.01 | 0.00 |0.00
Effective support 026 | 026 | 0.26 | 0.09 | 0.009 | 0.10 |0.00
Combined support (unnormalised) 0.24 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 ]0.636
Combined support (normalised) 0.68 0.31 0.00 | 0.00 | 0.00 | 0.00 [0.00
Simulium ornatum 0.00 ] 0.065 | 045 | 0425 | 0.06 | 0.00 |0.00
Effective support 0.00 | 0.058 | 0.405 | 0.382 | 0.054 | 0.10 |0.00
Combined support (unnormalised) - - - - - - 0.88
Remaining support 0.68 | 031 | 0.00 | 0.00 | 000 | 0.00 |0.00

Note: Site classified by the domain expert as Bla. The classifier used a conflict threshold of 0.8,
leading to the rejection of evidence from Simulium ornatum.

M

The classification performance over the data-set shows that marginal reductions in conflict

thresholds have, like varying decision thresholds, little effect, suggesting that high levels

of conflict are the norm rather than the exception. This follows from the representation of

benthic data as singleton support or Bayesian belief. Reducing the conflict threshold to 0.6
results in a marked increase in the number of taxa rejected, leading to poor classifier

decisions (Table 6.21).
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Table 6.21 Effect of enforcing conflict threshold on classification performance

1241 1257 | T257M | 1258H | Tasem
‘Conflict Threshold Inf. High Medium | High | Medium
‘Combination Order T T T S S

Classification Rate % | 71.70| 67.92 | 4717 | 71.70 54.71

Notes: Conflict thresholds vary from Infinite (1.0) to High (0.8) and Medium (0.6). The evidence was
presented to the Dempster-Shafer classifier in both Taxonomic (T) and Sensor-state (S) order.

“
6.4.9.4 Discussion: Conflict thresholds

There is suggestive evidence that sensor-state combination yields better classification rates
than taxonomic-order combination when a moderate level of conflict threshold is employed
using the Dempster-Shafer algorithm, lending support to the conjecture that this models the
combination order used by the domain expert. Dempster’s rule deals with highly conflicting
evidence by promoting the overall consensus. However, the order of combination is
important. Since the degree of evidential conflict, as measured by the mass of the null-set,
is a dynamic quantity that is dependant on the previously combined evidence and the
incoming sensor evidence, the conflict level is highly dependent on the particular sample
data. (This follows from the use of pair-wise combinations in Dempster's rule). Altering the
order of combination will produce different dynamic conflict values for each orthogonal
sum, and therefore the imposition of the 'natural' (sensor-state) order of combination should
theoretically lead to better rejection decisions than using the taxonomic order.

For a singleton (or Bayesian) belief representation, the degree of evidential conflict
will inevitably be significant, since simultaneous support for mutually exclusive
propositions is conflicting de facto. The Dempster-Shafer calculus, unlike the Bayesian
approach, allows true evidential discount by allowing for uncommitted belief. Thisis a

mechanism for sustaining support for the propositions, controlling the strength of the

evidence and consequently reducing conflict. However the cumulative effect of combining

alarge evidence set is to reduce the role of @ and render the belief functions more Bayesian.
es with the size of the

ich the

Thus, in evidential reasoning the total degree of conflict increas

evidence set. (This will be apparent in the section on simple support functions in wh

total weight of conflict can be monitored).

. . : uite
On introducing absent evidence, the degree of evidential conflict can become ¢

. ity distributi the
high, in spite of the lower information content. Since the probability distributions Spal
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singletons, the mass products obtained during application of Dempster's rule will inv |
nx(n-1)=20 non-intersecting sets, all equivalent to the null set. However, the inclu(s)ive
of absent evidence does appear to improve classification performance. Thus the occurrencc):n
of conflict should not necessarily imply that sensor data is faulty or should be rejected Th:
Dempster-Shafer calculus promotes a consensus by assigning mass only to intersectin;-g sets
via the device of normalisation. So the calculus manages conflict naturally, whereas the use
of empirical conflict threshold levels may distort this ability to integrate disparate and noisy
sensor data.

If a conflict threshold level is used, it is suggested that it should be set very high for
preventing the combination of totally conflicting evidence. The role of conflict is further

examined in the experiments using simple support functions in Chapter 7.

6.5 Summary

This chapter has described part of the experimental programme conducted to investigate the
biological classification of river water quality using the Bayesian and Dempster-Shafer
calculi. Benthic data from rivers is represented as uncertain evidence supporting the
hypotheses corresponding to these classes, and combined to decide the river quality at a
riffle site. Mechanisms for arriving at these decisions, including the problem of intermediate
classifications and assessing the “strength” of classifier output, have been described in
detail. The role of the contingency table or confusion matrix to assess the performance of
a classification regime over the Yorkshire Water data-set has been discussed.

The experiments described the representation and implementation of evidence as
Bayesian and singleton-support, in which multiple singleton hypotheses are supported
simultaneously by uncertain evidence corresponding to the state of indicator benthic taxa.
Classification rates for both the Bayesian and Dempster-Shafer improved using the adjusted

probability distributions, a device that reduces the likelihood of premature decisions from

highly-focused evidence.

A series of experiments was described in which variations in data quality were

applied to emulate the expert’s own conjectured weighting of benthic evidence. For the
evidence makes a significant

multihypothesis belief representation, the inclusion of absent
the cumulative

difference to classification rates. In spite of its lower information content,

effect of evidence induced by the absence of indicator taxa is to reinforce evidence from

abundant and established taxa, while simultaneously maintaining positive support to
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pl.opositions that would otherwise be vetoed during evidential combination.

The modelling of rare evidence as having neutral effect on the decision was borne
out by the results. However, this may follow directly from the probabilistic representation
used. It is suggested that a more intensive knowledge elicitation exercise specifically for
care taxa may lead to a more realistic representation of their effect on the direct interpreta-
tion of biological quality.

Classification performance, when measured over the data-set, was not affected by
a small reduction in the decision threshold, and was identical for two different combination
orderings. The use of an “evidential indicator” value provided a data-quality index intrinsic
to each sensor’s evidence. Results confirmed observations that the inclusion of evidence
with low-information improves classification performance.

Finally, the computational behaviour of the Dempster-Shafer calculus was
investigated with respect to its ability to handle evidential conflict. The multihypothesis
representation of Bayesian belief and singleton support lead to a high level of conflict,
which is dealt with effectively by Dempster’s rule of combination. Since only totally

contradictory evidence may not be combined, conflict-threshold levels may be set very high.
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Chapter 7

Classification Experiments - II

71 Introduction

The purpose of this chapter is to discuss computational aspects and P

performance for the simple support and consonant belief functions thn | Clasmﬁcatlf)n
function used in the Dempster-Shafer calculus which differ con;ideraljlasées of belief
behaviour to the Bayesian or singleton support functions. The motivatioi 1fn o éﬂd
particular classes of belief function is to constrain the number of possible waor édoptl,ng
probability mass can be assigned within the Dempster-Shafer calculus. This is }Il)z;rilc‘:gclh
true of simple support, in which mass assignments are made to singleton sets and th;};
complements. As in Chapter 6, the calculations of classifications for individual sites are
presented as a means of understanding the behaviour of the Dempster-Shafer calculus for

particular belief representations.

7.2 Simple Support Experiments

7.2.1 Theoretical Background

Gordon and Shortliffe (1985) in their examination of Dempster-Shafer theory concluded the
scheme was well suited to the modular nature of the rule-based MYCIN system. If the
conclusion of a rule is confirmed with strength s, the effect on belief in the subsets of © can
be represented by a bpa with support s focused on a singleton subset 4, the remaining 1 -
s assigned as uncommitted belief to ©. If the rule disconfirms the singleton, the support 18
focused on —4, the complement of 4, with the remaining assigned to © as before. A belief
own as a simple

re7.1).

functi i ' '
on which assigns mass to singleton subsets or their negations is kn

su ; : : i i
pport function and is probably the simplest representation of evidence (see Figu

s negation, evidential combination may be

eveloped by Barnett (1981) and

If moreover the subset is a singleton or it
C M . . .
arried out in linear time using a Computational scheme d
em
ployed by Gordon and Shortliffe (1985) for the MYCIN syste

used ' : ; i
to classify the Yorkshire data-set, a brief summary 18 presented here.

m. Since this scheme was

A more detailed

derivati
rvation of the formulae is given in Appendix A4.
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Confirming B2 Bla Blb 1 le B3 B4 06

Refuting B3 Bla Blb B2 B3 B4 07

0.3

Figure 7.1 Graphical depiction of simple support. Refutation of {B3} is equivalent to
support for ~{B3}, i.e. {Bla,B1b,B2,B4}

7.2.2 Barnett’s Scheme

Consider the problem of accumulating uncertain evidence for and against a particular
singleton hypothesis H; in ®. Assume that m,, m,, .. m, correspond to single support
functions each supporting H,, while my., My, o My correspond to simple support
functions supporting —H,, the complement of H, Recall that if the degree of support 1s s,
this is assigned to the singleton hypothesis, with the remainder 1 - s to the environment. If
the evidence is against [, this is equivalent to support for its negation, in which case s 18
assigned to —H, and the remainder once again left as uncommitted belief with ©. Thus there
are two types of uncertain evidence in this scheme: one in favour of a particular /1, and one
against. In a practical application some of the sensors will give support to the singletons,

while others will weigh against the singletons. When accumulating evidence for and against

a singleton, a particular sensor cannot simultaneously support it and its complement, by the

definition of the simple support function. In this discourse, 1 to k sensors are providing

evidence supporting a singleton, k+1 to k+1 are providing evidence against it.

i in favour of A, so that
Thus m,, m, ... m, represent evidence in favo ,

f = m, (H) = ml@mz@v--@mk (7.1)

while the total weight of evidence against H.is given by

a; = magainsl(Hi> - mkn@mhz@”'@mkd (7.2)

The subscripts refer to each hypothesis H, so that there are 7 of these 'for' and against
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support functions for each of the / = 1...n singleton hypotheses in ©. The combination of
the for and against support functions for each of the H, yield the simple evidence functions

for the n singletons:

e. = f,Da, = ml@mz@m@mk@mm@mhz@---@mkﬁ (1.3)

Combination of evidence often leads to conflict. Defining a factor as K,=(1-af)" which
accounts for this conflict we can define factors p, as the measure of support for H, c the
support against H,, and 7, is the uncommitted belief (i.e. the support for ®), such that p,=
e, (H}) =K f.(1-a).c,=e,({(~H}) = K,a,(1-f)and r,= K, (1 - a)(1 - f). Thus p, +
+r, =1

A simple example may illustrate these ideas. Consider a scenario in which a set of
evidence provides support for the singleton 4, whilst another set supports singleton B. If
these are the only two singletons in the frame of discernment, support for B corresponds to
evidence against 4. Note that the converse is true: from B's perspective the second evidence
set supports it, while the first weighs against it. Thus each sensor reading impacts on both
singletons. Let us focus on the belief in 4. Consider now that the evidence in favour of 4
is f, = my,. = 0.408, that against 4 (due to the support for B) is a, = m,,,, = 0.22. Clearly
the two sets of evidence are conflicting, so that the mass of the null set arising their

combination is

My ® g = fra, = 0408x0.22 = 0.089 (7.4)

Since the mass of the null set must be zero by definition of a bpa, the combined evidence
must be normalised by a factor 1 /(1 - af ), i.e. the factor K defined above. Substituting in
the values for fand a, we have K = 1.098. Therefore the measure of support for 4, p; = K;

£(1-a) =0.35. The form of this equation is seen to combine evidence for and against 4
ct. Continuing, the measure of evidence

lief (neither

while also taking into account the evidential confli
against 4, ¢,= Ka, (1 - f) = 0.14, while the so-called residue or uncommitted be

for or against A) r,= K, (1- a;)( 1 -£)=0.51. Since the combined evidence is normalised,

p,+c, +r =035+0.15+0.51 = 1. Note that this method is equivalent to using the

'intersection table' method illustrated in Chapter 3.

Generally there will be more than two singleton hypotheses (7> 2) so that the size

of the complementary subset ~H;is 7 - 1, where n is the size of ©. When different A, are
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supported, the effect of conflicting evidence becomes more difficult to follow, since support
for the —H, overlap previously supported singletons. Barnett’s scheme allows evidence from
disparate sources to be rapidly combined, provided that this evidence is in the form of
simple support. From the evidence functions overall belief functions for each hypothesis
and its complement can be evaluated, thereby allowing the computation of belief intervals

for each singleton.

7.2.3 Procedure
7.2.3.1 Implementation of Simple Support
In the Dempster-Shafer calculus the belief representation referred to as singleton support
is essentially Bayesian belief with a degree of uncommitted belief. In contrast for simple
support, belief is focused on one particular subset of @, either a single hypothesis or its
complement. Representation of sensor evidence in this manner allows the use of Barnett's
scheme for rapidly combining evidence. For its use in the biological classification scheme,
there is however the problem of mapping the probability distributions which may span the
range of classes to a single focus. The approach taken was, where possible, to use the
maximum value within the probability distribution as the basic probability number whose
focus is the associated singleton.

For the three-singleton example, consider a discrete probability distribution from
sensor evidence e {P(A|e) = 0.2, P(B|e) = 0.6, P(C[e) = 0.2}. Using the distribution as a
guide to making a simple support assignment, a basic probability number m = 0.6 is
assigned to the proposition B, the remainder assigned to the environment ©. For such an
assignment, the main thrust of the sensor evidence is considered to lie with the proposition
that has maximum support within the distribution. In this application of simple support for
present taxa, the support function is said to confirm a particular singleton hypothesis. Note
that the uncommitted belief can contribute to the plausibility of the other two singletons,
heme can

so that the belief for these suggested by the distribution is not discarded. This sc

be considered to be a "direct" use of simple support as a belief representation.
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Dendrocoelum lacteum
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Figure 7.2 Derived probability distribution for Dendrocoelum lacteum in abundant state

Consider for instance the evidence provided by the observation that the sensor Dendro-
coelum lacteum (a flatworm) is abundant at a sampled site. The derived probability
distribution for the sensor in this state is shown in Figure 7.2, in which it is clear that this
evidence provides strong support for quality class B2 (P(H|e) = 0.78). One obvious way to
directly represent this evidence as simple support is to assign the basic probability number
0.78 to the focus {B2}, with the remaining 0.22 assigned to © as uncommitted belief. Thus
this evidence confirms {B2} to the degree given by the maximum value in its probability
distribution.

This method appears intuitively satisfactory for evidence which has "strong
indicator" value, i.e. the support as suggested by the probability distribution is concentrated
on a particular class. If the distribution is less sharply focused, representing the evidence in

this manner is more problematic, particularly if the difference in probability mass values

between the distribution maximum and its nearest competitor is small, since support for

the 'competitor' class is re-assigned to ©. For ubiquitous taxa, i.e. those which give equal

support to two or more classes (for example, Lumbriculidae) the choice of the focus for

arbitrary. One approach, adopted for the Dempster-Shafer

in the distribution for

simple support is somewhat
simple-support classifiers, was simply to choose the median class

ubiquitous taxa as representative of the evidence.
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7.2.4 Using present data only

Evidence from indicator sensors which were present in the Yorkshire Water biological
samples was directly represented as simple support, using the maximum values from the
probability distributions. In general, most of the 41 sensors in the established or abundant
states have sufficiently pronounced profiles to make the choice of the focus straightforward,
The belief combination for the classifications were carried out using Barnett's scheme,
which allows the total weight of evidential conflict to be monitored, in order of sensor-state

(i.e. Abundant evidence, followed by Established).

7.2.4.1 Results

Table 7.1 shows the classification performance over the Yorkshire data-set, when the
evidence is represented as simple support. The poor classification rate is due to 24
misclassifications, although all were within one-class of the expert’s decision. However,
nine B3 sites were upgraded by the Dempster-Shafer classifier to B2. The reasons for this
are similar to those which obtained for singleton support, in that the evidence from several
taxa did suggest strong support for class B2. The classification rate may be compared with
an equivalent classification using evidence represented as singleton support, namely

60.38%.
S e

Table 7.1 Classification of Yorkshire data, with evidence represented as simple support

Expert Decision

Bla | Blb | B2 |B3 | B4

Bla || 4 2 0 0 0

B1b || 2 4 1 0 0

B2 0 2 7 9 0

By lo o |2 [9 |3

Classifier Output

B4 0 0 0 3 5

Notes: Only present data were considered. Classification rate 54.72%.
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One problem that can arise with the Dempster-Shafer calculus is the fact that a decision may
not be point-valued, 1.e. the degree of support for an hypothesis is expressed as the interval
[Belief, Plausibility] which in general has non-zero width. As more evidence expressed as
singleton support is combined, the resulting basic probability assignment becomes
increasingly Bayesian as the evidential width (the degree of belief residing with the
environment) decreases. For simple support, the role of © is enhanced by virtue of the fact
that a single focus receives a basic probability number. Because of this, the final evidential
width for simple support representation is more pronounced than for singleton support,
particularly with few participating taxa.

Figure 7.3 shows the variation of the degree of uncertainty (i.e the width of the
evidential interval) with the number of participating taxa for this test. Using Dempster's
rule, the width of the interval will decrease with each evidential combination, even with
conflicting evidence, an attribute which some workers consider undesirable (Chang and
Kashyap, 1990). As the number of combinations increases, the width will tend to zero,
approaching the Bayesian situation of a point decision. Conversely, if only a small number

of taxa have participated in the decision, the width of the interval will tend to be large.
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uncertainty) tends to decrease with increasing number
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For confirming evidence (as used here), the width of the evidential interval is the same for
all five classes.' Barnett's scheme for combining simple support calculates the support for
and against the singletons. If the evidence is all confirming, any conflicting evidence for a
singleton is embodied in the support for opposing hypotheses. Effectively, the direct
evidence opposing a particular singleton is zero.

Table 7.2 illustrates the result of combining the evidence provided by the Yorkshire
Water sample 619B. Seventeen indicator taxa are present in the sample, although five of
them are in the rare state and have a neutral effect on the decision: thus there are 12 sensors
participating in the decision. The evidence in favour f; of each hypothesis H, in calculated
from equation (7.1), in which each measure of support s, (k=1 to 12) is assigned on the
basis of the probability distribution provided by the sensor state. Using the simple support
assignment, the support s, will be non-zero for hypothesis H, if that hypothesis has the
maximum probability value within the distribution. For instance the mayfly Baetis rhodani

in the abundant state will support B1b to degree 0.525, while the other singletons receive

zero support. The remaining 0.475 is assigned to the environment 0.

' A proof of this is given in Appendix A4 on Barnett’s scheme.
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Table 7.2 Dempster-Shafer simple support ificati .
ite 619B. p pport classification of benthic data from Yorkshire

EVIDENCE
Class |For (f) |Against(a) |Conflict ( X,)

Bla | 0.806794 0 1
Blb | 0.813189 0 1
B2 0.908978 0 1
B3 0.873466 0 1
B4 0 0 1

(a) Evidence for, against, and degree of conflict for each hypothesis (class)

SUPPORT
Class |For (p) |Against (¢ ) [Residue (r)
Bla | 0.806794 0 0.193206
Bib | 0.813189 0] 0.186811
B2 0.908978 0] 0.091022
B3 0.873466 0] 0.126534
B4 0 0 1

(b) Basic probability numbers arising from combining evidence in (a).

INTERNAL/OVERALL CONFLICT
o K KIIK, | logK |log (K. I1K)

26.4182191.0584 191.0584 11.9618 1.9618
( ¢) Conflict values and normalisation factors

BELIEF REPRESENTATION
Class |Belief  |Plausibility |Doubt Uncertainty
Bla |0.158067| 0.195919]0.804081| 0.037853
Blb | 0.164773| 0.202626] 0.797374| 0.037853
B2 0.378009| 0.415862] 0.584138] 0.037853
B3 0.261298| 0.299151 0.700849] 0.037853

B4 010.037853] 0.962147] 0.037853
(d) Resulting belief function parameters after combination of all present evidence

Note: Only taxa which were present in the sample participated in the decision.

The normalisation factor K, for each hypothesis is 1, since the evidence g against each

hypothesis is zero. Thus the measures of support for and against each hypothesis p; and ¢;

are identically equal to /, and g, respectively (Table 7.2). The residue r, associated with the

environment @ for each hypothesis H, is calculated from the fact that p, +¢;+7; = 1. These

Jity assignment for each hypothesis, obtained by

values therefore represent a basic probabi
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pooling the confirming (f) and disconfirming (a,) evidence. These 5 = 5 basic probabilit

assignments must now themselves be combined. The details of this combination arz
described in Appendix A4 which presents Barnett's scheme in detail. During the
combination a factor X is calculated, which is the measure of the conflict between the

singleton hypotheses.

The total weight of conflict in the combination is log(K. 1K) (Barnett, 1981), and
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Figure 7.4 Total weight of conflict versus number of participating taxa for Yorkshire Water
Data set. Simple support functions, present data only.

tends to increase with increasing numbers of participating sensors. Figure 7.4 shows the
variation of the total weight of conflict against numbers of participating taxa for the
Yorkshire Water data-set. Although the uncertainty in the decision decreases with

increasing sensors, the conflict increases with the number of sensors.
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7.2.5 Role of Absent Evidence

7.2.5.1 Representation of evidence

The role of simple support evidence from absent indicator taxa was investi i ‘
the focus is a singleton hypothesis. For evidence provided by the absenc flgated "
two approaches suggest themselves for mass allocation under simple :uo t(:.(: S;r}llsor taxé,
as before, with the maximum value in the distribution being assigned to ‘:: co-rre e ﬁrs't )
focus. This however is also problematic since absent evidence has much less indicasz‘p o
than that provided by the established or abundant sensor states. Figure 7.5 hor o
probability distribution for Dendrocoelum lacteum in the absent state Thc; disst(')'vbVS 'the
clearly has a low information content. This follows from the fact that the .probabilit;l olflttll(l)' n
taxon being absent in any of the classes is high, and therefore its absence signifies litt;:

about the quality of the river water.

Dendrocoelum lacteum

Derived probabilitics

0.08

0.06

Probability P(Hle)

0.04

0.02 |

Bia B1b B2 B3 B4
Biological Class

Figure 7.5 Evidence provided by the probability distribution of Dendrocoelum lacteum
when absent. The distribution has low-information content.

If this method is used, the absent evidence is said to be confirming, since its focus 1s a

singleton hypothesis. The alternative approach is to represent the absent evidence as

disconfirming a singleton hypothesis, equivalent to confirming its complement. Rather than

use the probability distribution for the absent state, using the distribution corresponding to

the complement of this state seemed appropriate, i.e. present, to provide the mass

ually unimodal the choice of the mass value is clear.

assignment. Since the distribution 1S us
probability

te distribution is used to assign a basic

The maximum value of the present-sta
ich shows the

ated focus. Referring to Figure 7.6 wh

number to the complement of its associ
bility mass m =

present-state probability distribution for Dendrocoelum lacteum, the proba
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0.74 is assigned to ~{B2}, i.e. {B1a,B1b,B3,B4}. Thus the absence of this taxon provides

evidence that disconfirms {B2} to this degree.

Dendrocoelum lacteum
_ Derived probabilities
0.8 i T ’ o
07
06
o)
E 0.5
5 ;
-g 03
s ‘ i
S 02
&0
0.1
0
B1a B1b B2 B3 B4
Biological Class

Figure 7.6 Distribution for Dendrocoelum lacteum in the present state.

7.2.5.2 Present and Confirming Absent Evidence

The Yorkshire data samples were classified by a Dempster-Shafer system in which the
evidence was represented as simple support, with absence confirming a singleton
hypothesis. Table 7.3 shows the confusion matrix obtained from this test. The classification
performance for the highest and lowest quality water (Bla and B4) is good, but B1b to B3

sites are consistently misclassified, with a tendency to upgrade from the expert’s opinion

for B1b and B2 sites, a highly undesirable property. A severe misclassification occurred

for one B3 site, with the system classifier grading the site at Bla. Over the entire data-set

the classification rate was 47.17%, with 28 sites misclassified.
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Table 7.3 Classification of Yorkshire data, with evidence re

. presented as simpl
present and confirming Absent data were considered. pl€ support.

Expert Decision

Bla |Blb |B2 |B3 |B4

Blall6 |8 |s |1 |o

Bib o |o |o lo o

B3 |0 |0 |1 |8 |0

Classifier Output

Note: Classification rate is 47.17%.
B T

The poor performance arises from the unsatisfactory method in which the singleton focus
is chosen to represent the simple support assignment. In spite of the low information content
of the absent data, the cumulative effect is to distort the classification, usually towards the
extremes of the quality scale. This bias works to the advantage of sites classified by the
expert as those classes. For Bla sites for example, the absence of those indicator taxa
normally associated with poorer-quality waters reinforces support for Bla, although
marginally. The converse is true for B4 sites. Those taxa occurring in the middle range have
probability profiles such that their absence provides evidence that simultaneously supports
{Bla} and {B4}. In simple support, only one of these foci will receive the basic probability
assignment. Given the small differentiation between any of the singletons for the absent

state, the choice may seem arbitrary.

The example below (Table 7.4) shows the simple support classification of

Yorkshire Water site 621A in which absent evidence is used as confirming evidence. The

support for each singleton hypothesis is large, leading to a high-level of conflict (log(K.II

1 confirming, the support against each hypothesis ¢; is
r Bla

K))=3.94). Since the evidence is a

zero. The accumulation of contradictory evidence leads to a majority decision fo

which however is indefinite (I-value = 9) but is within one class of the expert’s opinion

(B1b).
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Table 7.4 Simple support classification of site 621A usin

Absent evidence

g Present and Confirming

LUMBRICULIDAE

ABUNDANT

Asellus aquaticus ESTABLISHED
Gammarus pulex ABUNDANT Baetis rhodani ESTABLISHED
ELMINTHIDAE ABUNDANT Ephemerella ignita | ESTABLISHED
Lymnaea peregra ESTABLISHED | Leuctra spp. ESTABLISHED
Ancylus fluviatilis ESTABLISHED | DYTISCIDAE ESTABLISHED
Sphaerium spp. ESTABLISHED | Glossosoma spp. ESTABLISHED

(a) Indicator taxa present at the site. (Rare evidence ignored)

EVIDENCE
Class [For (f ) |Against (a) [Conflict ( K,)
Bla | 0.977783 0 1
Blb | 0.928966 0 1
B2 0.933283 0 1
B3 0.933283 0 1
B4 0.929371 0 1

(b) Evidence for, against, and degree of conflict for each hypothesis (class)

SUPPORT
Class |For (p) Against (¢ ) [Residue ()
Bla 0.977783 0{ 0.022217
B1b 0.928966 0| 0.071034
B2 0.933283 0] 0.066717
B3 0.832192 0f 0.167808
B4 0.929371 0] 0.070629

(c) Basic probability numbers arising from combining evidence in (b).

INTERNAL/OVERALL CONFLICT

a

K

KK,

log K

log (K. 11 K))

90.1952

8884.59

8884.59

3.9486

3.9486

(d) Conflict values and normalisation factors

(e) Resulting belief function parameters after combi

—
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BELIEF REPRESENTATION
Class |Belief  |Plausibility [Doubt Uncertainty
Bla | 0.487954] 0.499041 0.500959| 0.011087
Blb | 0.144993 0.156080| 0.843920 0.011087
B2 0.155094| 0.166181 0.843920| 0.011087
B3 0.054983| 0.066070 0.933930| 0.011087
B4 0.145889] 0.156976 0.843024| 0.011087
nation of all present evidence




Overall conflict levels are very high resulting from (a) the number of sets of evidence being
considered and (b) the inherent contradictory nature of the evidence itself. In contrast to
singleton support, where the inclusion of absent evidence improves the classification rate
absent evidence represented as confirming simple support leads to serious misclassiﬁca—,
tions. The mechanism for choosing the focus of support arising from absent evidence may
be improved, but eliminating the arbitrariness of this process is difficult, apart from
ignoring the evidence altogether as ‘unsafe’. Including absent evidence represented as

confirming simple support leads to poorer classification performance than present evidence

alone, and thus this representation is of little value in this context.

7.2.5.3 Present and Disconfirming Absent Evidence

This part of the investigation was to test the hypothesis that the use of disconfirming, rather
than confirming absent evidence should improve classification performance. For
disconfirming absent evidence the focus is the complement of a singleton set, rather than
the singleton itself. Barnett's scheme can also be used for this evidence representation. A
brief example may clarify the idea of disconfirming evidence. Rather than using evidence
provided by the absence of a sensor to support a hypothesis directly, we say that it refutes
it. Thus the absence of Sphaerium spp. refutes (say) {B2}. This can be expressed as a basic
probability assignment m(—{B2}) = s, where s is the degree of support against {B2}, or
conversely, for ~{B2}. Using real numbers, a valid assignment under simple support may
be m,(—{B2}) = 0.3, m,(®) = 0.7, depending on the actual probability profile. The sum of
these is unity, as required by the definition of a bpa. If now the next sensor data is the
abundance of Leuctra spp., a suitable basic probability assignment may be m,({Bla})= 0.6,
m,(®) = 0.4. The orthogonal sum of these two assignments results in bpa whose foci are

—{B2}, {Bla} and .

Pair-wise combinations of disconfirming probability assignments can be expensive

sets and super-sets of a

o ~{BIb}

for processing and storage due to the need to enumerate all the sub

given set. For instance the combination of an assignment to —-{Bla} and one t

N 2 ]
requires the evaluation of the set intersection, in this case (B2,B3,B4}.” Bamnetts scheme

rming and disconfirming evidence in linear time for simple

allows the combination of confi

support functions.

; i jef functions.
? Sucha procedure was in fact required for the implementation of consonant belief
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7.2.5.4 Procedure: Disconfirming Absent Evidence

Samples in the Yorkshire Water data set were classified by a Dempster-Shafer system in
which the evidence was represented as simple support, with absent evidence disconfirming

Evidence was combined using Barnett’s scheme in sensor-state order, using the original
probability distributions as elicited from the domain expert. Even with the use of Barnett’s
scheme, the time taken to classify a particular sample when absent evidence is considered

is appreciable, and is unsuitable for computation in interactive mode.

7.2.5.5 Results

Contrary to expectations the inclusion of disconfirming absent evidence resulted in a
reduction in the classification rate compared with confirming absent evidence (Table 7.5).
The confusion matrix shows misclassification for all except B4 sites, with three Bla sites

were seriously misclassified as B4.
i S e i e e e i e

Table 7.5 Classification of Yorkshire data with evidence represented as simple support.
Present and disconfirming Absent data were considered

Expert Decision

Bia | Blb | B2 [B3 | B4

Bia || 1 0 0 0 0

Blb || 2 1 1 0 0

B2 0 2 2 1 0

B3 0 0 3 7 0

Classifier Output

B4 3 7 4 13 18

Classification rate 35.85%.

J

A consequence of representing evidence as disconfirming is the accumulation of evidence

against hypotheses in the frame of discernment. This contrasts with all-confirming evidence
in which support accrues only for each singleton. Examination of intermediate calculations

for the three Bla sites misclassified as B4 revealed high degrees of internal conflict

resulting from evidence both for and against the same singleton hypothesis.
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Table 7.6 shows intermediate calculations for one of these sites (553B) Support
: , . Suppo

both for and against each singleton produces an internal conflict factor K, associated with
‘ i i

each singleton. The high conflict factor for class Bla results from the fact that there is a

large amount of evidence that both supports and refutes jt. Support p for each hypothesis

is then calculated by combining the = § basic probability assignments represented by f

and a.

“

Table 7.6 Simple support classification of Yorkshire site S53B. Absent evidence dis-
confirms

EVIDENCE
Class |For (f ) |Against (a) |Conflict (K,)
Bla | .954839 990819 | 18.543260
Blb | .803580 .985923 4.813914
B2 555556 .999341 2.248150
B3 .000000 .934031 1

B4 .000000 581818 1
(a) Evidence for, against, and degree of conflict for each hypothesis (class)

SUPPORT
Class [For ( p) Against (¢ ) [Residue (r)
Bla 162562 .829749 .007689
Blb .054453 .932237 .013310
B2 .000822 .998520 .000658
B3 .000000 .934031 .065969
B4 .000000 .581818 418182

(b) Basic probability numbers arising from combining evidence in (a).

M

The overall belief parameters for this example are such that the evidential width is not
1dentical for each singleton hypothesis. Combination of disconfirming evidence leads to
belief residing with subsets of ® which are also supersets of the singletons, i.e. the belief

associated with the complements of the singletons.

7.2.5.6 Use of variable data-quality
g from the absence of an indicator is problematic,

The interpretation of benthic data arisin
ith higher-quality water has

in that in this representation the absence of taxa associated w
quality. However, since higher-

ollution, it would seem reasonable

equal weighting with those of lower- quality taxa are more

likely to be absent from riffles due to factors other than p
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to weight the evidence from their absence less than that of lower-quality taxa. These ideas

were tested via the use of a variable data-quality weighting shown in Table 7.7

“

Table 7.7 Variable data-quality weighting for absent taxa

Simple support focus Bla |BIb |B2 B3 |B4

Data quality of absent evidence Poor | Fair | Good High | Certain

“

This weighting was applied first of all to the Bla sites, five of which were previously
seriously misclassified, and then to the B3 sites to ensure that this weighting had not
resulted in a worsening of classification performance. As before, absent evidence was
represented as disconfirming simple support.

Table 7.8 shows that simple support classification for Bla sites is improved, being
comparable with the situation in which present evidence alone is considered. This supports
the expectation that the absence of higher-quality taxa should be weighted less than poorer-
quality taxa. For the B3 sites, misclassifications to B2 occurs for the same reasons observed
for singleton support: those sites classified by the expert as B3 contained taxa which gave
strong support to B2. This may be interpreted as an inconsistency in expert diagnosis, or,
more likely, the failure of the classifier to capture data weighting induced by certain taxa
occurring together.

The classification of site 547B, a B3 site in the expert’s opinion, exhibits an
interesting phenomenon which occurs due to the combination of evidence which both
confirms and disconfirms singleton hypotheses. Evidence for B3 (f= 0.76) is more than

counterbalanced by evidence against it (@ = 0.92). No evidence either accrues for or against

B4, and yet this receives the overall majority support. This arises from the uncommitted

belief which remains with the environment ®, coupled with the evidence against all the

other hypotheses, resulting in a basic probability mass assignment remaining with B4 (since

(B4 O} =B4).
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Table 7.8 Effect of applying variable weighting to disconfirmin ¢ absent evidence

Expert Decision

Bla B3
Zex:o Variable | Zero Variable
weight | weight weight | weight
= Bla 1 4 0 0
&
8‘ Blb 2 2 0 0
5}
= B2 0 0 1 4
wn
8 |B3 o 0
> 7 7
B4 3 0 13 9

Notes: The test was carried out on Yorkshire Water sites classified as Bla and B3 by the domain expert.
Evidence induced by the absence of taxa associated with higher-quality waters received less weight than
those associated with lower-quality. The weighting was progressively increased from Bla to B4.

P s e e e e

7.2.6 Alternatives to Dempster’s Rule

7.2.6.1 Theoretical Background

As discussed in Chapter 3 Dempster's rule has been criticised for giving counterintuitive
results after normalisation for highly conflicting evidence (Zadeh, 1986). Because of this
phenomenon various workers have considered alternatives or modifications to Dempster's
rule, or examined its theoretical justification (Voorbraak, 1991). Gordon and Shortliffe
(1985) suggest that in combining conflicting evidence the mass of the null set could be

assigned to ©, rather than used to normalise the focal masses. Detailed studies of belief

e been carried out leading to the development

1990). For

combination using conflicting evidence hav

of 'ideal' combination rules (Cheng and Kashyap, 1988; Chang and Kashyap,

evidence expressed in interval form, such as [0.15,0.25] or [0.81,0.9] the rules should not

only satisfy properties such as closure, commutativity, associativity, but also maintain

information on the conflicting nature of the evidence.

Thus, if two sets of evidence are in conflict, the resulting uncertainty mn the

pressed in the original intervals. This is

- Bel(4) for some

combined evidence should be greater than that ex
e, in which the belief interval Pls(4)

not so with Dempster's rul
is combined whether or not the evidence

proposition A4 is progressively reduced as evidence
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before combination was in conflict. Conversely, non-conflicting evidence should reinforce
e

leading to lower uncertainty (and therefore belief intervals) in the combined result. Chang
and Kashyap (1990) have developed a rule (known as the T-R combination rule) which they
claim satisfies the basic axioms and the additional conflict-resolution and reinforcement
properties.

The T-R combination rule is developed using geometric arguments by first
considering the interval [a,b] as a vector in a two-dimensional coordinate System, so that
all evidence can be represented within a triangular region (Figure 7.7). A discrimination
measure is defined to be a + b - 1, the support for the hypothesis H minus the support for
—H, the negation of A. If two sets of evidence have discrimination measures of opposite
signs, they are considered to be in conflict. Geometrically, [a,b] and [c,d] are in conflict if
vectors (a,b) and (c,d) do not fall in the same triangle BCD and ACD in Figure 7.7.
Evidential intervals are mapped to a rectangular region in such a way that one
component of each interval in this region is equal to the discrimination measure, thereby
incorporating a means of detecting and resolving conflict.’ The rectangular maps are then

combined using functions which preserve associativity and commutativity. Finally, the

resulting rectangular co-ordinates are mapped back into the original co-ordinate system to

C (0,1), A (LY

D (0.50.5)

B (0,0) X

. ical intervals.
Figure 7.7 Triangular region used to represent evidence represented as numerical

The intervals are vectors bounded by the region ABC.

- . i sform.
> Mathematically, this procedure 1S known as a homeomorphic tran
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yield the combined evidential interval. Details of the actual rule are given in an appendix

Consider for example a situation in which support for an hypothesis from one piece
of evidence is expressed in interval form as [0.2,0.4], while according to a second set of
evidence the support is [0.7,0.9]. The two sets of evidence are clearly highly conflicting.
Combination of these using Dempster's rule leads to the evidential interval [0.57,0.64], a
decisive result within the range [0.5,1.0] with a width of 0.07, considerably less than those
of the original components. Chang and Kashyap claim that this behaviour is unacceptable.
Their new combination rule would yield an interval of [0.48,0.74]. The T-R rule has the
reinforcing properties of Dempster's rule, but also a property of increasing evidential width

for conflicting components.

7.2.6.2 Procedure

The simple support representation appears to lend itself to Chang and Kashyap's
combination scheme for interval-based evidence, since support of degree s for a singleton
proposition can be expressed in interval form as [s,1]. A Dempster-Shafer classifier was
developed which used simple support functions combined using the T-R combination rule
rather than Dempster's rule as incorporated in Barnett' scheme. The 53 sites of the Yorkshire
Water data were classified using present (established and abundant) evidence under these

conditions.

7.2.6.3 Results
One problem that arises from using this rule is determining the manner in which it is used
in a multi-hypothesis space, and how the evidential intervals can be used to reach a

decision. For the Bayesian and Dempster-Shafer calculi, the probabilities or mass
assignments are normalised to sum to unity. Since the T-R rule has been designed to avoid

normalisation, the evidential intervals for each singleton are unnormalised, as the example

given in Table 7.9 shows.
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Table 7.9 Example of resulting belief function

ple ¢ parameters after combinati i
T e e tion of evidence

BELIEF REPRESENTATION
Class |Belief Plausibility |Doubt Uncertainty
Bla 997514| 1.000000{ .000000| 002486
Blb .999957| 1.000000{ .000000| .000043

B2 367630 1.000000{ .000000 .632370
B3 .367630] 1.000000| .000000 .603550
B4 .000000] 1.000000{ .000000| 1.000000

“
This suggests that the evidence simultaneously gives highly definite support for both Bla
([0.9975,1]) and B1b ([0.999,1]). In this case the decision could be given as Blb+ or
perhaps B1b/Bla for the particular site. To assess the classification performance over the
entire data-set, a "highest-wins" decision mechanism was adopted to select the proposition
with the maximum suppott, as before.

The classification performance over the data-set is shown in Table 7.10. The
decision mechanism forces automatic alignment on a class, corresponding to the criterion
for evaluating the confusion matrix. The error rate is 47.16%, comparable to simple support

in which present and confirming absent data were combined.
i e e e

Table 7.10 Classification of Yorkshire data under T-R combination rule

Expert Decision

Bla | Blb | B2 | B3 | B4

Bla || 5 6 3 0 0

Bibll1 |1 JOo O 0O

B2 0 1 6 10 10

B3 o o 1 |9 |4

Classifier Output

B4 [0 |0 O |2 |4

; ificati 47.16%.
Notes: Only evidence from taxa present in each sample was considered. Classification rate o

s S S

. th
In fact the performance on a sample-by-sample basis 15 better than that suggested by the
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confusion matrix alone. Table 7.11 shows details of the classification decisions for three
Yorkshire sites, which count as misclassifications for purposes of computing the confusion
matrix. For sites 495B and 640, the classifier shows close agreement with the expert’s
classification of B3+ and B1b respectively. However the decision parameters for site 443C
indicate why the T-R combination rule can be problematic for a decision maker: classes Bla

to B3 receive comparable degrees of support.

—

Table 7.11 Decision parameters for three sites considered as misclassified under T-R
combination

Decision Decision M?Decisioﬂ ‘
Di | Oder | Di | Oder | Di | Order

Bla 0.992822i 1 [10.356825) 3 [0.998659) 1

B1b 0.970767: 2 [[0.317105; 4  {10.971 169 3

B2 0.894427; 3 [0.893499; 1 0957605 4

B3 00 4 |0.88655si 2 [|0.99431% 2

B4 0 4 05 0 5
Expert's Classification Blb B3+ B2+
Expert Base Class Blb B3 B2
‘System Base Class Bla B2 Bla
ﬁNearest Rank Bla B2 Bla
SCI 0 2 0
;‘Indicator Value 19 17 19 i
'Site Reference 640 4958 443C |

J

7.2.6.4 Discussion
ple

The behaviour of the T-R rule depends very much on the initial interval. For the sim

support functions, the upper value of the interval is 1, corresponding to the plausibility of

each singleton proposition. (This follows from the fact that, for a particular piece of

evidence, only one singleton or its negation receives support). In this case the plausibility

will always be unity after each T-R combination. For instance the combination of the

intervals [0.7,1.0] and [0.3,1.0] results in [0.9012,1.0]. Ifhowever the second component

[0.796,0.877]. The very different result
_ 1 in the T-R rule derived from

lies in the

is represented as [0.3,0.5], the resulting interval is

arises from the use of a discrimination measure @ +b
rval [a,b] lies. Since [0.3,0.5]

considering which half of the interval [0,1] the inte )
ile [0.3,1.0] has a positive

interval [0,0.5], its discrimination measure is negative, Wh
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measure.

In the case of simple support derived from th . e
the discrimination measures for the intervals wi: Slj: S;z)fii:): blTh}tly ol
reinforcement of evidence using T-R rule combination. Usi o o

- Using Dempster's rule, the
combination of [0.7,1.0] and [0.3,1.0] results in [0.79,1.0], reflecting the slight increase in
information regarding the truth of the proposition afforded by the weak second component
This contrasts strongly with the T-R rule which produces a highly definite resul‘;
approaching absolute certainty. The gradual reinforcement property of Dempster's rule is
desirable and intuitive. For simple support, the form of the evidential intervals derives from
the need to maintain a basic probability assignment. It is possible that this constraint need
not be observed for the T-R combination rule, so that a domain expert may be free to
express belief in a proposition using any sub-interval of [0,1].

The use of the T-R rule is problematical in a multi-hypothesis space since it reflects
internal conflict, i.e. between evidence supporting and refuting the same hypothesis. It is
not clear how this extends to conflict between the various propositions. For a large number
of sensor data, much of which will contain conflicting evidence by supporting exclusive
propositions, Dempster's rule maintains a more consistent probability assignment via the

mechanism of normalisation.

7.2.7 Discussion: Simple Support
The simple support representation of belief in the Dempster-Shafer theory in which belief
is focused on singletons or their complements allows the use of Barnett's scheme for rapid

evidence combination. This is particularly beneficial when combining disconfirming

evidence. For classifications on the Yorkshire Water sites the use of only present data gave

a classification rate of around 55%. The addition of absent evidence, resulted in large

misclassifications, particularly when used as confirming evidence. This contrasts with the

Bayesian or Dempster-Shafer classifiers using singleton support, in which classification

performance over the data-set declined as absent evidence was increasingly discounted.

rformance can be obtained by

This suggests that a better biological classification pe
se indicator taxa present at a site. Apart from the

considering evidence from only tho

resentation embodies evidential discount

computational advantages, the simple support ep
d on a singleton hypothesis, 10

naturally. Unless the entire probability mass can be focuse

r that proposition, there will always be a degree

which case the decision is unanimously fo
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of uncommitted belief assigned to the environment ©. This ensures that conflict can be
managed successfully. The addition of absent evidence decreases the role of ©.

The simple support representation is also attractive from the point of view of
knowledge acquisition of the probability measures. For the Bayesian or singleton support
belief functions, the expert is obliged to supply a discrete distribution across the five
biological classes, a task that can be onerous. For simple support, a domain expert could be
asked to indicate the one quality class with which the benthic sensor state is strongly
associated, and to what degree. This would reduce to stating two probability measures for
the states of established and abundant. This representation is more likely to be successful
for those sensors with pronounced indicator values, i.e. those definitely associated with one
or two adjacent classes. Alternatively, a domain expert could consider the presence of
certain taxa to indicate disconfirming evidence, if those taxa were considered weak or
ubiquitous indicators. In this scenario, the role of disconfirming evidence would arise
without the need to consider absent taxa, which for the simple support representation
distorts the evidence provided by those present.

The investigation of simple support looked at a particular alternative to Dempster's
rule of combination, the so-called T-R combination rule, that appeared at the outset to be
a viable means of combining simple support functions. However because of the nature of
the belief intervals constructed from the basic probability assignments, the combination
procedure over-reinforces evidence. This, coupled with the absence of normalisation to
maintain consistent probability mass across the propositions, makes it difficult to decide the
outcome of the classification using this technique. The performance was judged by choosing
the class with the highest belief as representative of the classification. On this basis, the

classification rate was comparable with simple support in which present and confirming
absent data was included. For classification of an individual site, distinguishing between

support for competing hypotheses may be difficult for a decision-maker.
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73 Classification Using Consonant Belief
73.1 Theory

Bayesian and singleton support functions give simultaneous support to more than one
singleton hypothesis. Although singleton support functions can be decomposed into simple
suppott functions, this is not possible with Bayesian belief. Intuitively, this follows from
the dissonant nature of the Bayesian distribution. No uncertainty is present in the
assignment: all the probability mass is focused on one or more of the singleton hypotheses.
According to Caselton et al. (1988), since these mutually exclusive states are being
simultaneously supported to some degree the Bayesian belief function can be viewed as
inherently contradictory, and the quality of evidence in this form may therefore be suspect.

More confidence may however be associated with evidence that supports several
conclusions in general agreement with each other. Consider the following bpa graphically
depicted as shown in Figure 7.8. The diagram represents the bpa m({Bla,B1b,B2}) =0.7,
m({B1b,B2})= 0.2, m({B2}) = 0.1. The least precise proposition {Bla,B1b,B2} receives
the greatest credence, which diminishes as the propositions become more specific.
Intuitively, the more precise the proposition, the less certain we are about its credibility.
Belief functions that can be structured this way are said to be consonant or resonant (Dong

and Wong, 1986a, 1986b).
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Figure 7.8 Consonant belief function

0.7 0.2 0.1

. ant belief
Formally, if 4,, 4,, A, are elements within the frame of discernment, a conson

function is so ordered that
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Bel ({4,}) < Bel ({4,,4,})< ...< Bel ({4),4,,..,4 %) (1.5)
In the domain of biological classification the observation of the state of one sensor provides
a set of discrete probabilities across each of the singleton hypotheses in the frame of
discernment. Thus, if e 1s the sensor state and H, is the water quality class, the observation
of that state provides the discrete probability distribution p(e |\H)fori=1.n. Adopting a
consonant belief structure for these sample likelihoods allows one to compute the belief

functions for each of the nested subsets (Shafer, 1976):

max
el(4) =1 - — (1.6)
H}.E 0 p(eIH;)

Caselton ef al. (1988) claim that belief functions of this form are appealing for engineering
applications.

Consonant belief functions are closely allied to studies of hierarchical diagnostic
spaces (i.e. those in which hypotheses are related hierarchically). The Dempster-Shafer
scheme is well-suited to modelling diagnostic reasoning in such domains: indeed Gordon

and Shortliffe (1985)

"... are unaware of another model that suggests how evidence concerning hierarchically-related hypothesgs
might be combined coherently and consistently to allow inexact reasoning at whatever level of abstraction 1s
appropriate for the evidence that has been gathered.”

Since Barnett's scheme is available for only singletons and their negations, these same

authors have extended the scheme to develop an approximate method for managing

hierarchical reasoning (Gordon and Shortliffe, 1985). Since then Shafer and Logan (1987)

have developed an exact algorithm for the implementation of Dempster's rule for such

evidence, while Hau (1990) shows that belief functions associated with a hierarchical

hypothesis space are separable. Even in applications where the hypotheses are not naturally

hierarchically-ordered (such as the biological water classes), evidence at different levels of

ition algorithms of Hau and the computational schemes

abstraction can occur. The decompos :
of Barnett (1981) and Gordon and Shortliffe also provide a means of retracting evidence

from faulty or suspect sensor data.
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7.3.2 Procedure

To investigate these 1d.eas the classification of the Yorkshire Water data-set was carried oyt
in which the sensor evidence was represented as consonant belief. Physically, each member
of the power set for the frame of discernment is represented by its characteristic function.
For example the characteristic function for {Bla,B1b,B2,B3,B4} is {1,1,1,1,1} while that
for {B2,B3} is {0,0,1,1,0}. The 1 or 0 therefore denotes whether or not a singleton
hypothesis within the environment © is represented by the particular set. Using this binary
scheme, there are 2 characteristic functions in the power set. This representation allows the
set intersections arising from the application of Dempster's rule to be rapidly determined by
bitwise-and operations between the characteristic functions. For example, consider a mass
assignment to the set {B1a,B1b,B3} and a second to {B1b,B3,B4}. The orthogonal sum of
these assignments will be made to the intersection of these two foci. Representing these by
their characteristic functions, the intersection is {1,1,0,1,0} & {0,1,0,1,1} = {0,1,0,1,0}, i.e.
{B1b,B3}.

For any particular piece of sensor evidence, the consonant sets and the belief
assignment are derived by first assigning the entire belief to the superset that spans the
range of the probability distribution. Evidence with a pronounced indicator value may have
the distribution focused on two or three adjacent classes. A sensor in the abundant state may
have a distribution spanning {B1b,B2,B3}, for which the belief assignment
Bel({B1b,B2,B3}) = 1 follows. The first consonant subset below this superset is found by
eliminating the singleton set with the lowest probability value within the current range. This

process continues until the lowest level is reached, normally at the singleton set situated at

the modal value. At each level, belief is assigned according to equation (7-6).

This scheme also provides a more natural representation for distributions that are

not unimodal, such as those for which evidence suggested by the absent sensors or for

ubiquitous taxa whose probability values are equal across a range of adjacent classes. Ifno

singleton focus can be discerned, belief is assigned to that superset whose associated

probability values are equal.

LEONARDO's list-processing capabilities allow a straightforward implementation

g incoming sensor evidence and existing target sets

of operations between sets representin '
. Duplicate list

s is currently assigned)

(i.e. those focal elements for which a probability mas
aving only those sets that

elements are automatically eliminated between set operations, le

future targets. Normalisation involves removing

are eligible for subsequent operations as
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the null set from the list of target sets and reassigning its mass to the proper focal el

. . oy epe clements.
For the decision the plausibilities of each singleton hypothesis H are obtained b
. . ' ned by
calculating 1 - Bel(~{H}), requiring the summation of the mass assignments associated

with subsets that intersect £,

The classification was carried out for (a) present data and (b) present and absent
data. Indicator taxa whose state was rare was considered to have neutral effect on the
decision. One consequence of the need to enumerate all the supersets that arise from
consonant belief functions which span the frame (as with absent data) is the length of time
to carry out the evidential combinations. The average time to classify a sample using only
present data was in the region of 12 to 15 seconds. This increased dramatically when absent
evidence was also considered, approaching 10 hours® to classify the 53 samples in the set.
Clearly this is not suitable for interactive computing, and the classification was carried out

in batch mode.

7.3.3 Results

Table 7.12(a) shows the classification errors obtained for the Yorkshire Water data set
considering present data only, using consonant belief representation derived from the area-
adjusted distributions. The classification rate of 58.59% compares with the singleton
support classification of 60.38% under the same conditions. When absent evidence is also
considered, the classification rate improves considerably (Table 7.12(b)), and is identical

to the singleton-support classification using area-adjusted distributions.

L onal computer.
* These figures refer to computation times on a 4DX-33MHz pers p
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Table 7.12 Classification of Yorkshire data with evi
belief 1th evidence represented as consonant

Expert Decision

Bla | Blb | B2 | B3 | B4

Bla 2 2 0 0 0

Classifier Output

(a) Evidence from taxa present (only) in each sample was considered. Classification rate 58.59%.

Expert Decision

Bla | Blb |B2 | B3 | B4

Bla | 4 2 0 0 0

Blb || 2 4 1 0 0

B2 0 2 8 1 0

B3 0 0 1 17 10

Classifier Output

B4 0 0 0 3 8

(b) Evidence from taxa present in and absent from each sample was considered. Classification rate
77.36%.

d

7.3.4 Discussion

With the inclusion of data from taxa absent from the sample, the classification performance

is markedly improved, but at considerable computational effort. This results from the need

. . the
to enumerate the hierarchical set of subsets for each piece of evidence and to compute

) ) em
orthogonal sum arising from their interaction with the current focal elements. One probl

served after evidential

with this type of belief representation is that consonance 1s not pre
C in the

idence for a particular site 443
ervation that Potamopyr&us
(Bla,B2,B3},

combination. Consider the combination of ev

Yorkshire Water data set. For the first piece of evidence, the obs

Jenkinsi is established at the site, a consonant set {{B1a,B1b,B2,B3}; b
ey . m the
{Bla’Bz}a{Bla}} can be constructed from the probability distribution derived 1ro
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elicited histograms. The use of the area-adjusted distributions also results in © being part
of the consonant set due to the redistribution of probability mass across the propositions.
Thus, this adjustment exacerbates the problem of subset enumeration.

Combining consonant evidence from Bithynia tentaculata, Lymnaeq peregra and
Ancylus fluviatilis results in mass assignments to 17 subsets of ©), including {B1b}, {B2},
(B3}, {B1b,B2}, {Blb,B3}, {B2B3} and {B1b,B2,B3}. Further evidence from the
presence of Tubificidae, Helobdella stagnalis and Erpobdella octoculata eliminate support
for {B1b} and its supersets. Evidence begins to accumulate towards the lower-quality
classes {B2,B3,B4} and {B3}. Sensor data from Hydracarina, an indicator of good-quality
waters, provides consonant support for {Bla,B1b,B2} and {Bla,B2}. However the
combination of this current support with the target sets results in support only for {B2}, all
other evidence accumulating in the null set. The evidence from this last sensor for the
higher quality {B1b} has no effect since this proposition has been eliminated. Since the
mass of the null set will usually be quite large after many set intersections, normalisation
of belief results in considerable support for the remaining focus {B2}. In this example,
subsequent evidence supporting multiple hypotheses serves only to promote {B2}. The
result is a highly-focused decision for this class, with an I-value of 19.

This phenomenon of promoting the "middle ground" was the basis of Zadeh's
objection to Dempster-Shafer normalisation, and is a common occurrence in the
combination of consonant belief functions. Area-adjustment of the distributions can
exacerbate the problem by promoting those propositions occurring at the intersection of
conflicting evidence. These observations lend support to the idea that the device of
evidential discounts should be used here as in singleton support, to ensure that © prevents

the premature elimination of competing propositions.

7.4 Summary

This chapter has described in detail the experimental programme that investigated two

forms of belief function: simple support and consonant belief. These are distinctly non-

Bayes n jef 1 ent i d for
yesian and allow grealer llexibility in the way belief 1s repres ed and assigne
unce n re ne. T f C rovide heren ination

ion withi domain of
scheme for integrating evidence at different levels of abstraction within the

interest,

e most direct form of basic probability

Simple support functions represent th
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aSSignmen.t' O_ne dlfﬁCl'llty that persists with this method when used for biological
classification 18 the choice of the focal element to receive support, and is particularly
problematic when used to represent evidence from absent taxa. Two variants of assignment
were used for absent evidence: the first to confirm support for a singleton focus, the second
to disconfirm, equivalent to confirming its complement. In contrast to jts use when
represented as singleton support or Bayesian belief, the inclusion of absent evidence
resulted in a degradation of classification rates compared with the consideration of solely
present data.

Contrary to expectation, the use of disconfirming evidence did not enhance
classification rates compared with the inclusion of confirming absent evidence. The
application of variable weighting, in which the absence of higher-quality taxa was weighted
less those associated with poorer-quality waters did however reduce the serious misclassifi-
cations that occurred without weighting.

The investigation of simple support concluded with the use of an alternative to
Dempster’s rule of combination, the T-R rule due to Chang and Kashyap (1990). The rule’s
avoidance of normalisation can lead to large degrees of support simultaneously for rival
hypotheses, which renders the decision process problematic.

Consonant belief functions are intuitively attractive for representing evidence at
levels of abstraction other than singletons or their complements. In computing terms
however, they introduce a level of complexity for which the Dempster-Shafer calculus has
been criticised. The results suggest that, when considered over the Yorkshire Water sites,
the classification performance compares well with the Bayesian or Dempster-Shafer
omputational effort required

classifiers using singleton support, but the considerable extra ¢

for consonant belief combination is not justified.
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Chapter 8

Recommendations for Further Work

8.1 Introduction

This chapter discusses suggestions for further work on biological classification using
uncertain reasoning methods. Within this context a design of a decision support system that
could incorporate automated biological classification and heuristic or model-based
knowledge on biological surveillance is presented. The possibility of combining expert
opinion on probabilistic knowledge of indicator taxa is discussed, and concludes by
identifying Bayesian networks for developing more complex probabilistic reasoning

systems for this domain.

8.2 Decision Support System for River Water Quality
8.2.1 Rationale

The starting point for the work described in this thesis was the possibility of building a
complete decision support system for assessing river pollution. The facility to produce a
classification of biological quality, which has been the focus of this study, would form an
important component of such a system. This section presents an overall design of the so
called BERT (Benthic Ecology Response Translator) system. It begins with an outline
"requirements definition” for the proposed software. Such a definition, for any large
software system, provides a summary and reference for the benefit of both users and

developers regarding the services to be provided by the software.

8.2.2 Outline Requirements Definition

The BERT system is required to help in the interpretation and analysis of data obtained

from biological surveillance at freshwater sites. The system will aid in the identification and

location of pollution incidents which may adversely affect water quality. It will be useful

in the wider role of assessing and managing changes n river water quality at such sites OVer
time. In broad terms, the requirements of the software system are:-
uality at a sample site in terms

(1) it is required to give a diagnosis of the river water q

of a biological classification system

193




(i1) it should identify the type of pollution causing a degradation in river water qualit
. " quali
at a site Y
i) it will detect trends in the river water quality at a site over time

(iv) it will detect quality trends over a river network and reason on the likely Jocation(s)

of incidents of pollution.

8.2.3 Development Environment

Decision-support systems (DSS) typically use a range of software technologies for solving
problems in some domain of interest. Examples include those of the OASIS decision-
support system for modelling ground-water contamination, integrating ground-water models
and chemical and geological databases to form an "expert consultant". A similar paradigm
underpins the RAISON expert system, a software package that uses maps, statistics and
simulation models to investigate a variety of environmental problems including acid rain
and mine effluent (Lam ef al., 1989a, 1989b, 1990).

The LEONARDO development environment allows the developer to include causal,
algorithmic and frame-based knowledge. It permits execution of external programs, access
to spreadsheets and construction of effective user-interfaces. This environment, which was
chosen to develop the biological classifiers, would be suitable for the incremental

development of an overall decision support system.

8.2.4 Incorporation of heuristics

A combination of rule-based and frame-based knowledge could incorporate heuristics for
biological surveillance that could support the automated classification. The automatic

classifiers use data from the indicator group only; within a general decision support

system, information from the entire sample data could be used to supplement the

biological classification to provide "point interpretations”. These could give the user

qualitative descriptions of overall quality and provide reasons for any degradation.

omain expert rules relating to particular benthic taxa

were discovered. The heuristics are formulated here as LEONARDO production rules. For

During conversations with the d

instance:
if Plecoptera are Present
then Water quality is Good
or

if Chironomus riparius is Abundant
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then Organic_pollution is Severe

Such rules allow a user to interrogate the knowledge base to find the reasons for reaching
a particular qualitative decision, by the process of backward chaining. Within a LEO-
NARDO knowledge base, specific rules such as these could be evaluated within frames for
particular benthic invertebrates. Another rule relates to the type of pollution suggested by
the complete absence of insects. As a LEONARDO quantification rule, a possible

formulation is:

for all Insecta
If State: of Insecta is Absent
then Pollution_type includes Insecticide;
Toxic_pollution is Highly Likely

where the values of the objects 'Pollution_type' and "Toxic_pollution' are assumed to be
sought as sub-goals with the knowledge base. Here the class object “Insecta’ is a member
of the superclass Taxon, inheriting its attributes. This could be stored as slots within in a
frame (i.e. the attributes of a benthic taxon), and inherited by all members of that class.
Other rules could deal with absent evidence. The absence of taxa may be caused by
factors other than water quality, such as predation or even sampling error. Presuming that
this data is available during a knowledge-base consultation, the following rule could be used

to decide whether the absence of taxa should be taken into account:

If state: of Taxon is Absent

and predation is Unlikely

and sampling_error is Unlikely

and seasonality: of Taxon is In_Season
Then absence: of Taxon is Significant

The group of indicator taxa could be structured in a knowledge base as a subclass of

Taxon. If the absence of any of the indicators was significant according to this or similar

rule, its evidence could be included in the biological classification decision process.

8.2.5 System services

8.2.5.1 Biological Classification

ification of the river water quality existing at the site

The system will give a biological class ,
ple or choose from an existing sample

for a particular sample. The user may enter a new sam |
[ be stored. The point interpretation

within the database. The results of the interpretation wil .
to decide

. . ; iotic indices,
at a sample site uses the direct interpretation, with calculations of biotic
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the most likely water quality class for the site, and to reason about the most likely f f
orm o

pollution (if any) present.

8.2.5.2 Spatial and temporal trends

The system will report on trends in river water quality at a site over time, by comparing site
point interpretations at different times. Comparison of contemporaneous point interpreta-
tions at different sites over a river network will be used, in association with data on sources
of pollution, to find potential discharges. A combination of reports on spatial and temporal
trends will be used to provide an overall report on river water quality existing over selected

sections of the network.

8.2.6 Database design

The data entities within the BERT system, and their attributes, can be identified as follows:

River network N°., Connectivity (i.e. schematic description of the network), Name.

River N°., Name, { Site N°s }, { Pollution-source N° }, River-network N°.

Pollution source N°, Type [Point/Diffuse], Pollutant-type [Toxic/Organic/Physical], River N°.

Site N°, Name, Map-reference, Position-in-river, Classification [Riffle/Pool], River-zone [Rhithron/Potamon],
River N°, { Sample N°s }.

Sample N°, Date-stamp, Site N°, { Benthic list }, Biotic scores { TBI, Diversity }, Biological Classification,
Point Interpretation.

Taxon Class N°, Name, (Common name), Taxonomic-level, Probability-data for quality-classes, Biotic-score
ratings ( TBI, BMWP score ), Number at which taxon is Abundant/Rare, Response to Organic/Toxic/Physical
pollution.

River I e
Network | ' Pollution Benthic |
. ; . Source | | axon “

consists of - .

| ; e made up of

- Ruver ~

~ has |
R i | [
has |

: Sample

Site | | p l‘

Figure 8.1 Data entities for proposed BERT decision support system

a Kknowledge-based system Of

These entities could be constructed as frame objects within
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These entities could be constructed as frame objects within a knowledge-based syst
ithi -based system or
stored within an external database. Each of these structures could be expanded to store oth,
ore other

attributes of interest. Figure 8.1 shows an entity-relationship model for the data

8.2.7 Functional design
Using the data model developed above, a functional design of the software system was
developed by the author. A structure chart for this design is given in Figure 8.2. The

modular nature of the design lends itself to incremental software development

network
river
poilution BERT network
sources . - . point
site nver interpretation
L pollution
sample . s sources
site {
Py sample '
. INPUT INTERPRET LOCATE
river pollution ! i P . likely
o point v source
network sources . . . .
‘s"e ‘I“P'elﬂ'mn ; ‘ L spatial interpretation
. & sample | likely
' g required ‘ poll§F H ‘ol)uce B
P interpretation &; samm\ " type ' . SPATIAL
’ ! o : i {INTERPRET !
INPUT INPUT required IDENTIFY :
RIVER NET SITE DATA interpretation POLLUTION : )
network ’ i : : - poliution
( site l 7 \ ) \sourc:s river
: GET ; . POINT : . \ poliution  network
H H I i o
y g river ' . INTERPRET | | INTERPRET .: | LOCATE | Wpe
SOURCE !
DEFINE : o R A \
NETWORK : DEFINE \ biological C A
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' {BIOLOG. . CALCULATE.
. k ) CLASSN.. i  |INDICES
DEFINE ' pollution T
RIVER sources | INPUT : \ l
[SAMPLE | : /
- ‘ R { Benthic \'
| DEFINE : \ database |
'POLL. SOURCES |

Figure 8.2 Software structure for proposed BERT decision support system

8.3 Expert consensus and knowledge acquisition

Direct elicitation of the discrete probability distributions for the sensor evidence was

described in Chapter 4. The probability measures Were one expert's opinion of the

probabilities of a set of hypotheses H, given the occurrence of sensor evidence e, for a

i ' i ided
particular set of benthic indicators. Automated reasoning systems use the evidence provi

by this indicator group to arrive at biological classification, whose correctness is judged by

its proximity to the expert's own assessment.

sification using uncertain reasoning methods

or instance, two or more experts n biological

The wider acceptance of biological clas

would require agreement in several areas. F
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surveillance may draw up probability distributions for the same indicator taxon that differ
either in profile or degree. These opinions could be pooled by a variety of techniques
including the linear or logarithmic pools, or Dempster's rule.! Alternatively the use of the
simple support belief representation may ease the process of knowledge elicitation by
requiring the identification of a single 'preferred' biological class for a particular sensor
state. The selection of the indicator taxa could also be optimised for particular regions of
the country based on their frequency of occurrence and indicator value. Thus the indicator
group for East Anglia would differ say, from one associated with an upland area.

There would also need to be agreement on the sensor states. This may differ from
region to region, so that several abundance levels may be identified (e.g. present, few,
common, abundant, very abundant) rather than the three levels of presence identified for
this project during the knowledge elicitation. One important feature of this elicitation was
the realisation that as indicators of river water quality the abundance levels are sensor-
specific, so that for instance the term "abundant” for Plecoptera implies different numbers
of occurrences than for Tubificidae. Thus, these numbers should be identified for each
taxon within the indicator group for the agreed sensor states.

There is also a need to evolve an agreed definition of the biological classes. As
discussed in Chapter 2 water companies have in the past used biological classification in
which the classes are defined in terms of expected fauna. Observations of the actual fauna
are then used to decide the biological class of the sampled site. This however raises the
question of to what degree the observed fauna satisfy the quality standard defined by the
expected fauna for each class, or how anomalies in presence or absence are accommodated.
The approach taken by the RIVPACS project is to use statistical techniques to predict

expected fauna for sites of pristine quality based on environmental variables. Biotic indices

determined from actual fauna are used to detect any departure from the ideal.

For the subjective approach adopted in this project, definitions of biological classes

in terms of expected fauna may need to be agreed before eliciting the probability

distributions that express support for each class. This definition would standardise on

e to account for regional variations. The knowledge

particular conditions, and may hav
quality of riffles, since the fauna for

elicitation for this project has focused on the biological

i r not appear in
these are most sensitive to pollution. Certain types of fauna may howeve pp

ini i distributions has been carried
LA comprehensive survey of the literature on combining probability distributions

out by Genest and Zidek (1986)
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Jowland regions that nonetheless have rivers of good biological quality. Evidence from the
Northumbria and Yorkshire region suggests that biological classifications of siteg by
ecologists are highly correlated, implying that the assessors have a clear mental model of
the classes themselves.?

The probabilistic knowledge elicited from the expert relates to organic pollution in
riffles. There is no theoretical reason why the knowledge elicitation could not be extended
to cover toxic pollution, although this complicates the idea of biological class. The
probability distributions partly define the classes and also encode the degree of support for
them, since this knowledge relates to organic pollution. Therefore the biological classes as
defined here are essentially zones of organic enrichment, like the saprobic zones. Separate

biological classes would probably be required to deal adequately with toxic pollution.

8.4 Richer knowledge structures

The structure of knowledge used for the automated classification has been essentially that
of the one-layer belief network shown in Chapter 3. Here a range of observations is
conditionally independent with respect to the hypotheses that cause them. The assumption
of conditional independence is critical for both the Bayesian and Dempster-Shafer calculi.
For the biological classification problem, the presence or absence of a particular taxon is
independent of the presence or absence of another for some hypothesis H,. Given the range
of interactions that take place within a benthic community, this assumption may not always
be justified.

For the Dempster-Shafer calculus the problem of independence has been considered

by Lingras and Wong (1990). They introduce the idea of dependency functions in which
o bodies of evidence bearing on the same proposition

duce the probability mass allocated

mass assignments are adjusted if tw

are dependent. One side-effect of these functions is to re

for conflicting evidence, thereby avoiding problems that arise due to normalisation In

Dempster's rule. There is no clear guidance however, about how the values of dependency

are determined.

. : f
Bayesian networks provide a means of encapsulating a much richer structure 0
. : ' now the
knowledge and expressing dependence relationships between variables. They are

. sian
subject of considerable research. For biological surveillance, the development of a Baye

i ication from Ms. Viki
2 This evidence relates to the author’s interpretation of a personal commun

Hirst, of the Environment Agency, referred to in Chapter 5.
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network could involve the influence of environmental variables, benthic interacti (
_ _ ' ’ 10ns (e.g,
predatot/prey relationships), trophic states and so on. This would entail a major exercise i
Icise in

knowledge acquisition, but one that could prove frujtful.

8.5 Summary

The uncertain reasoning methods for biological classification could be incorporated as part
of a decision support system for the biological surveillance of river water quality. The
biological classification could be supplemented by heuristics on faunal diversity or
additional benthic knowledge for the entire sample. A specification and preliminary design
for such a system has been presented here, but the knowledge acquisition for and the
development of such a system would entail a major project in its own right.

The chapter concluded by examining several avenues for future research into the use
of uncertain reasoning methods for biological classification. Techniques for combining
probability distributions from several experts were discussed. Indicator taxa would need to
be identified and abundance threshold-levels agreed. The distributions themselves would
be elicited with respect to agreed definitions of the biological classes.

Finally the possibility of using Bayesian networks was discussed. These offer the
possibility of more complex knowledge structures involving uncertain reasoning, but

require intensive knowledge acquisition.
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Chapter 9

Conclusions

9.1 Introduction

In this chapter the contributions of this project as described in this thesis are reviewed, and
the conclusions, drawn from the previous chapters, are presented. It concludes with a

restatement of main recommendations.

9.2 Project Review

The quality of river water and the aquatic environment must be effectively monitored,
reported and controlled. Biological methods have an important role to play in all three of
these activities. The measurement and assessment of river water quality require an
understanding of its meaning and the context in which the term is used. Throughout this
thesis, the term "water quality" or "river water quality" has been understood within the
context of the overall quality of the aquatic environment, with its physical, chemical and
biological dimensions.

Both chemical and biological methods are required adequately to measure the
parameters that define water quality. However, of the three principal media within the
aquatic environment, water, particulate matter and living organisms, the last of these
provide a direct indication of biological quality. Biological surveillance is therefore the

natural methodology for this assessment. Of the many organisms employed for biological

surveillance, the benthic macroinvertebrates associated with the river bed have several

advantages that render them preeminent in this field. The techniques described in the

previous chapters could however in theory be applied to other groups of biota. Despite the

complexity of information inherent in biological data, the need exists to summarise and

d by decision makers and

report biological quality in a form that can be readily understoo
nd on the

the public. The many biotic and diversity indices that exist both in Britain a

Continent attest to this fact.

i ans of communi-
Discrete classification schemes appear o afford a more useful me

nd biological dimensions. Accordin

ribed in this work, 18 advocated for

used in the past by water

; . gly, the use
cating water quality, in both its chemical 2

of a discrete biological classification system, as desc

reporting biological water quality. Such systems have been
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authorities. Their use on a national level would however require considerable eff,
e etfort in

agreeing definitions and accommodating regional variations

The biotic indices incorporate the knowledge and experience of river biologists, For
these, subjective knowledge of (for instance) the conditions preferred by particular
invertebrates is directly employed in the index design. In contrast to community-structure
and diversity indices, the advanced statistical techniques of RIVPACS or artificial neural-
networks adopt a pattern-recognition approach for attaining objective measures of quality.
Currently, statistical techniques have considerable support in that the RIVPACS
methodology is being advocated for deriving an ecological quality index for national river
surveys.

The impetus for this project derives from a view that the subjective and experiential
knowledge of experts in biological surveillance is valuable and can be encoded for
classifying river water quality. The benthic invertebrates are viewed as sensors of river
water quality, whose occurrence in the range of river water qualities is characterised by
uncertainty. This uncertainty can be managed by assigning numerical degrees of belief to
propositions corresponding to the biological classes according to the strength of support
provided by this evidence.

Techniques of uncertain reasoning provide a means by which problems characterised
by uncertainty can be formulated and their information manipulated to reach rational and
reproducible decisions. Of the several numerical reasoning methods, the Bayesian and
Dempster-Shafer calculi provide consistent and mathematically coherent procedures for
manipulating and combining evidence. This project was concerned with using and analysing

these methods to both model biological data as uncertain information and to emulate the

expert's ability to classify river water quality by it.

As part of the knowledge acquisition process, carried out in close cooperation with

the domain expert, a group of indicator taxa deemed to be "reliable witnesses" of river water

lieved to be the first
obability

quality was selected from the large range of benthic taxa. In what is be

knowledge elicitation exercise of this kind for benthic invertebrate data, pr

. ici ' inating in the
distributions for this group were directly elicited using several methods, culminating1

i -level
use of a graphical method developed especially for this work (Chapter 4). Abundance levels

e modelled as discrete sensor sta

d from the elicited distributions.

i tes, each of
for each indicator, including absence, Wer

which had an associated probability distribution derive

: ; om extensive
A database of benthic samples for riffle sites was constructed fr
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invertebrate distribution records in Yorkshire and classified by the expert using the
proposed biological class1ﬁcat1orf system (Chapter 5). Several biotic indices were calculated
for each sample and compared with the expert’s classifications. From the viewpoint of river
water quality management, the large overlap in the ranges of the biotic indices between
classes reduces their discriminatory power for detecting gradations of water quality.

Following the preliminary classification using the Bayesian calculus, an experimen-
tal programme was devised in which the Bayesian and Dempster-Shafer calculi were tested
for their performance in classifying riffle sites using benthic taxa data primarily from the
Yorkshire Region. To allow comparison with the expert's classification, site data was
standardised as abundance levels of indicator taxa so that both the automatic classifiers and
the domain expert used the same information. Decision mechanisms were designed which
accounted for the ranked order of support produced by the Bayesian and Dempster-Shafer
classifiers and allowed comparison with the expert's classification. By considering the
expert's classification as the 'reference’ class, the performance of the automatic classifiers
was assessed.

The preliminary classifications also suggested that the strength of sensor evidence
had implications for evidential conflict and classification performance. In emulating the
expert's ability to classify using biological evidence, an uncertain reasoning classifier may
have to weigh or adjust evidence appropriately before combining it, i.e. some measure of
"data quality" should be applied to the raw sensor data. The effect of varying evidential
strength was investigated both by adjustments to the probability distributions and by
discounting part of the evidence.

The representation of sensor evidence as belief in the various propositions was

investigated. Bayesian belief or so-called singleton support functions correspond to a one-

to-one mapping between the probability distributions afforded by the sensor evidence and

the assignment of probability mass for singleton propositions. Evidential discount can be

used in the Dempster-Shafer calculus to vary the strength of sensor evidence for the

! 1 1 1 cts of
singletons uniformly, to retain uncommitted belief and by that improve the effe

| I I idential di t reduces
evidential conflict and normalisation. For Bayesian belief, evidential discoun

conflict but distorts the sensor evidence provided by the original data. |
s allows a much more flexible representation of

The Dempster-Shafer calculu ‘ f
i ithin the frame 0

evidence, in that belief can be assigned 10 the entire power set withi .

gnment is often constrained

| i ' i i si
discernment. Since this choice can be overwhelming, mass as
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other classes of belief function, that of simple support and consonant belief, were ch
, were chosen

for investigation as the most promising alternative representations of evidence

The performance of the Dempster-Shafer classifiers using the simple support
representation gives acceptable classification performance when using present data only.
Use of absent evidence, whether confirming or disconfirming resulted in poor performance,
The computational behaviour of these algorithms was investigated, particularly with respect

to dealing with evidential conflict.

9.3 Summary and Conclusions

The conclusions from this study are:

1. Uncertain reasoning methods afford a viable means of interpreting biological data
in terms of a biological classification system. Both the Bayesian and Dempster-Shafer
calculi provide mathematically coherent procedures for integrating sensor evidence. The
subjectivity and uncertainty associated with biological data can be used to decide river water
quality.

2. Classification of river water was carried out using evidence provided by a reference
set of benthic organisms considered existing in one of four states, including absence.
Methods for eliciting sensor evidence have been devised which reduce the requirement for
a domain expert to specify numerical belief, which allow probability distributions to be

derived for each sensor state.

3. In using sensor evidence for uncertain reasoning, attention should be paid to the

weighting of the data, its representation as a belief function, the role of evidence provided

by absent sensors and the behaviour of the decision algorithm with conflicting evidence.

4. The performance of Bayesian classifiers was improved by adjustments to the

elicited probability distributions, since this redistribution of probability mass reduces the

possibility of premature decisions before combining all available evidence.

) justin
5. The use of evidential discount provides a more controlled means of adjusting

tween sensor data. For the Demp

) ) ster-Shafer
evidential strength and of managing conflict be

. ; idential discount
calculus using singleton support functions, 2 nominal degree of eviden

. : :of in competing
improves performance by reducing conflict and maintaining plausible belief in comp

hypotheses for as long as possible.
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6. The representation of belief as Bayesian or singleton support allows a perf
ormance

comparison between the Bayesian and Dempster-Shafer calculi. For a nominal evidentia|
: videntia

discount, little difference was observed between the two algorithms. This results from th
: om the

proximity of singleton support to Bayesian belief. In combining evidence from many
sensors, singleton support functions become increasingly Bayesian. Consequently, decisions
produced by Dempster-Shafer classifiers in such circumstances are often point-valued.

7. The inclusion of absent evidence for singleton support belief functions makes a
significant improvement in classification performance, in spite of its lower information
content. The cumulative effect of evidence induced by the absence of indicator taxa is to

reinforce evidence from abundant and established taxa, while simultaneously maintaining

positive support to propositions that would otherwise be vetoed during evidential

.

combination.

8. Classification performance, when measured over the Yorkshire data set, was robust

with respect to reduced decision threshold values for the Bayesian and Dempster-Shafer

classifiers. If such thresholds are applied, the evidence should be ordered by sensor state
such that abundant evidence is considered first, followed by established and then absent
evidence. If both present and absent evidence is considered, the order of combination can
be arbitrary.

9. Rare evidence was not generally assumed to affect the expert's assessment of
biological quality. Results from the automatic classifiers seem to support this premise,

although this may follow from the probabilistic representation of the evidence.

10.  The computational behaviour of the Dempster-Shafer calculus was considered with

respect to its ability to manage evidential conflict from benthic sensors. In using pair-wise

applications of Dempster's rule of combination, the mass of the null-set allows the current

degree of conflict between the incoming data and the combined evidence to be monitored,

so that if necessary the conflicting data can be rejected. The use of empirical conilict

threshold levels can however lead to poor rejection decisions. By leaving some belief

uncommitted with the environment, the Dempster—Shafer calculus deals adequately with all

. 1d
but the most highly conflicting evidence. If conflict threshold Jevels are used, they shou

be set very high.

e support is more clearly non-Bayesian, and

. imum value within
uses evidential discount more naturally than singleton support. The max

1. The representation of belief as simpl

) tates was used t0
the probability distributions for the established and abundant sensor Sta
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assign SUP-pOIJt for the comctdent singleton proposition, and the Temaining mass assigned
to the environment. Barnett's computational scheme used for combining simple support
evidence allows the calculation of the total weight of conflict. Thig parameter increases
approximately linearly with the number of sensors used in the decision process.

12. Simple support functions appear to lend themselves to the use of the T-R
combination rule, an alternative to Dempster's rule. However the use of this alternative in
a multihypothesis space, along with the decision process used to interpret its results is not
clear.

13.  The use of absent evidence for simple support functions is problematic. Its
representation as confirming singleton foci produces poor results, with no improvement if
used to disconfirm by using evidence provided by the present sensor state. The application
of variable weighting, in which the absence of higher-quality taxa was weighted less than
those associated with poorer-quality waters did however reduce the serious misclassifica-
tions that occurred without weighting.

14.  The classification rate using present data alone for simple support was better than
when absent data was included, in contrast to singleton support and Bayesian belief. The
abilities to classify on present data only, coupled with the simplicity of the simple support
representation, and the availability of Barett's scheme for rapidly combining evidence, are
clearly desirable attributes.

15.  Simple support functions offer the possibility of a simpler knowledge elicitation
process for the indicator taxa. A domain expert could be asked to show the degree to which
an indicator supports (or refutes) a single class.

16.  Consonant belief functions are intuitively attractive but their use is costly from a
computational viewpoint. This however may not be a problem, given the increased

availability of computational power. Consonance is not preserved between evidential

at . i I ition arisin
combination, and undesirable effects can arise from reinforcement of proposition arising

i icti heir
from set intersections between evidence that would otherwise be conflicting. The

‘ ' ingleton
performance in the Dempster-Shafer classifiers is however comparable to the single

support functions for the Yorkshire Water data set.

9.4 Closing Remarks

The principal recommendation of this project is to advocate the
gical classification as discussed

further use and investiga-

. . in Chapter 8.
tion of uncertain reasoning methods for biolo
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The sun.phﬁed Bf:lyeman and I.DC.mPSter-Shafer numerical reasoning schemes discussed in
thiS. project pr 0V1de.g00d.dem?10n 31g0.1‘ithms in this context if the data s appropriately
weighted to deal with evidential conflict. The Dempster-Shafer theory of evidence is g
generalisation of the Bayesian method and offers more flexibility in the representation of
evidence. Uncertainty in the evidence can be explicitly modelled as uncommitted belief,
Thus the calculus provides an intuitively attractive framework for integrating and
interpreting biological sensor data that is noisy, imprecise and often conflicting,

The acceptance of these methods for the biological classification of river water
quality requires the adoption of such a classification scheme with its attendant definitions
of expected fauna, an agreed reference set of indicator taxa (which may however vary from
region to region), and an agreed set of sensor states. Such a selection may be guided by the
frequency of occurrence of the taxa in biological surveys.

The modelling of different abundance levels, specific to each sensor, is considered
an important component of biological interpretation. The role of rare evidence should be
investigated further. The occurrence of taxa in very low numbers may be more significant
than assumed here, arising perhaps from particular environmental stress factors with would
therefore have implications for water quality. The knowledge elicitation methods devised
for this project provide a model for which sensor probability distributions can be elicited
or derived. Consideration should be given to combining opinions from multiple experts on
both the occurrence of indicator taxa across the biological classes and their classifications
of sites from benthic data.

The automatic classification software was written within the LEONARDO
environment. This modular nature of this environment lends itself to expanding the

biological classification software to incorporate heuristic knowledge on biological

surveillance, some of which has been acquired from the domain expert while eliciting the

probability distributions. This project was conceived as one part of a much larger and

ambitious scheme to develop a complete decision support system for river water quality

. . . ha
monitoring, including the location of pollution sources. The implementation of suc

| use as well as promoting the importance of

system could have considerable practica

. . . . . . nin .
biological methods and particularly biological classification USIng uncertain reasoning

an networks to model the comple
Id capture the inherent

. xity of benthic
Finally, the use of Bayesl Y

h a network cou

communities should be actively considered. Suc
e. As with all these methods

dependencies and interactions within a rich knowledge structur
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hat model uncertainty and subjectivity,
th

experts is required.

the willing cooperation of an expert or group of
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Appendix A2
Elicited Probability Distributions

Table A2.1 Heights of histograms for each indicator taxon in two states:
Present and Abundant .

Group| Code No. Taxon Bla| Blb| B2| B3| B4 P(e|pref)
3120201 |Polycelis ni ' ~ F
C 3 y nigra 2__. 1]‘_ ]5  27 0 0.100
o mlashokl oo 005
C 3130101 [Dendrocoelum lacteum 0 3| 14 0.100
of 4l 1] o] 000
C 13040301 |Potamopyrgus jenkinsi 141 141 10| s| o 0200
101 191 5 o] o 0.150
C 13040501 |Bithynia tentaculata 0 9120] 21 0 0.100
0l 7l21| o] o o002
A 13070201 |Lymnaea peregra 5. 25 | 300 5 0.500
0] 201 0  0.125
C 13090300 [Planorbis spp. ol 9 0.100
of sir) ] o] 000
C 13100201 |Ancylus fluviatilis 1| 1 u) sf ool 0200
5 111 181 3| O 0.150
C 14030100 |Sphaerium spp. 0. 0.100
0.075
C 14030200 |Pisidium spp.
Al 16030000 |TUBIFICIDAE
B 16060000 {LUMBRICULIDAE
B 17020300 {Glossiphonia spp.
B 17020501 {Helobdella stagnalis
A 17040102 |Erpobdella octoculata
C 19000000 [HYDRACARINA
A 28030101 {Asellus aquaticus
A 28070305 |Gammarus pulex
B 30020105 |Baetis rhodani
B 30030100 |Rhithrogena spp-
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Table A2.1 Heights of histograms for each indicator taxon in two state
st

Present and Abundant
Group| Code No. Taxon Bla| B1b| B2| B3| B4 P(e|pref)
C 30030200 {Heptagenia spp. .
0.200
B 30030400 {Ecdyonurus spp. —
0.500
C 30050101 |Eph 1la igni 2130
emere
P aignita 0.500
30080200 |Caeni —
B aenis spp: 0.500
0.200
C 31020202 Amphinemura sulcicollis 0.200
0.100
A? 31030100 {Leuctra spp. 0.500
, 0.100
C 31050401 [Isoperfa grammatica 0.200
0.100
B 35010000 |HALIPLIDAE 0.100
0.010
C 35030000 |[DYTISCIDAE 0.200
0.040
C 35110000 {ELMINTHIDAE 0.200
0.100
B 36010101 {Sialis lutaria 0.150
0.030
A’ 38010100 |Rhyacophila spp. 0.150
0.015
C 38010200 |Glossosoma spp. 0.200
0.150
C 38010300 |Agapetus spp. 0.200
0.150
0.200
C 38030000 {POLYCENTROPODIDAE -
0.
. . 0.250
A 38050111 |Hydropsyche angustipennis e
: 0.250
B 38050112 |Other HYDROPSYCHIDAE | 0,050
| 020
C 38060000 {HYDROPTILIDAE 0.100
: 0.200
C 38080000 LIMNEPHILIDAE 0.150
| 0200
C 39111111 |[CERATOPOGONIDAE 0.100
| 0900
A 40140215 |Chironomus riparus | 0.630]
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Table A2.1 Heights of histograms for each indic

Present and Abundant

ator taxon in two states:

Group| Code No. Taxon Bla Blb| B2| B3| B4[P(epre
A 40150510 {Simulium ornatum 0 %] 24| 0 0100
L 0] 0]26]24] o] o050

Notes:

FRRAA L4

ili i in sate for its preferred class.
- fers to probability of finding taxon in sa : ,
P'(eip]c?\? ;greeach tzxon refers to ‘Present’ state, second to ‘Abundant’.
First r ) X
4.4 for notes on ‘Group’. .
(Sjeiig?\i)(l)e refers to codes mostly taken from Maitland (1977).
(8] .

212




Appendix A3
Derived Probability Data

Table A3.1 Summary Data Derived from Heights of Elicited
\‘

Established Abundant @ﬁw
[ndicator Taxon Class | P(Hle) P(e[H) Ls | P(Hle) P(eH)| Ls P(Hje) P(ZE;
Polycelis nigra Bla| 021 0.01 1.03 | 0.00 | 000 | 000 | 021 0.99 lLOS3
Blb| 0.28 0.02 1.57 1 041 | 006 | 275 | 0.19 0i93 0‘96
B2 0.38 0.03 2.50 | 056 | 0.08 | 500 | 019 0.90 0.97
B3 0.13 0.01 0.15 1 0.04 1 001 | 015 | 021 0.99 1:0;
B4 0.00 0.00 0.00 | 0.00 | 000 | 0.00 | 021 | 1.00 1.05
Dendrocoelum lacteum Bla | 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 021 1.00 | 1.04

Blb| 0.16 | 002 | 074 | 018 | 0.00 | 089 | 020 | 098 | 101
B2 | 073 | 0.09 | 1098 077 | 001 |13.60 | 019 | 090 | 091
B3 | 011 | 001 | 013 | 0.05 | 000 | 0.19 | 020 | 099 | 102
B4 | 0.00 | 0.00 | 0.00 | 0.00 | 000 | 0.00 | 021 | 100 | 104
Potamopyrgus jenkinsi Bla| 035 | 012 | 215 | 029 | 008 | 167 | 0.18 | 080 | 089
Blb| 0.14 | 0.05 | 068 | 056 | 015 | 5.07 | 018 | 080 | 089
B2 | 030 | 010 | 171 | 015 [ 004 | 069 | 020 | 086 | 097
. B3 | 021 | 007 | 026 | 0.00 | 000 | 0.00 | 021 | 093 | 107
B4 | 0.00 | 000 | 000 | 000 | 000 | 000 | 023 | 1.00 | 118

Bithynia tentaculata Bla| 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 021 1.00 | 1.04
Blb| 0.30 0.04 1.70 | 0.25 | 0.01 | 133 | 020 | 096 | 0.98
B2 0.62 0.08 6.62 | 0.75 | 0.02 | 12.00 | 0.19 | 0.90 | 091
B3 0.08 0.01 0.08 | 0.00 | 0.00 | 000 | 020 | 0.99 | 1.03
B4 | 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 021 | 1.00 | 104

Lymnaea peregra Bla| 0.06 0.07 026 | 000 | 000 | 0.00 | 026 | 093 | 141
Bib | 0.26 0.31 1.40 | 020 | 0.05 | 1.03 | 0.18 | 064 |0.88
B2 0.32 0.38 186 | 051 | 013 | 417 | 0.14 | 0.50 | 0.65
B3 0.30 0.36 043 | 029 | 007 | 160 | 0.16 | 0.57 0.76
B4 0.06 0.07 006 | 0.00 | 000 | 000 | 026 | 093 141

Planorbis spp. B1al 000 | 0.00 | 000 | 000 | 000 | 000 | 021 | 100 1.05
B1bl 033 | 005 | 1.95 | 015 | 001 | 071 | 020 | 09 0.98
52 | 056 | 008 | 504 | 052|002 | 425 | 019 090 | 092
B3 | o011 | 002 | 013 | 033 | 001 | 200 | 020 0.97 | 1.01
B4 | 000 | 000 | 0.00 | 0.00 | 000 | 0.00 021 | 1.00 | 1.0

091
Ancylus fluviatilis 51a] 041 | 016 | 282 | 014 | 004 | 063 | 019 0.80 o2
o6 028 | 011 | 158 | 030 | 0.09 | 1.69 | C.I9 0.80 0.91

52 | 013 | 0.05 | 060 | 049 | 0.15 | 379 019 | 080 |0
007 | 021 | 0.08 | 003 | 035 | 021 091 | 107 |

B3 | 0.17
000 [ o0 | 000 | oo [o00 | 000 | 025 | 10 121
Sphacrium spp. 31al 000 | 000 | 0.00 | 0.00 | 0.00 | 00

1.01
Blb| 0.38 0.03 247 | 0.07 | 0.01 031 | 020 | 096

0.93
B2 0.35 003 | 214 | 051 008 | 415 | 019 0.90 ”
| 037 | 042 | 006 288 | 019 | 092 0.
. 000 | 021 | 1.00 1.06

B3 0.27 0.02
B4 0.00 0.00 0.00 | 0.00 0.00
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Table A3.1 Summary Data Derived from Heights of Elicite
\

d Histo

Established grams
Abundant
Indicator Taxon Class | P(Hle) | P(eH) | Ls PED | PR T Absent
pisidium spp- Bla| 0.29 0.03 166 | 0.0 S| P(He) PlelH) | Ls
: 00 1000 | 000 | 020 | 997 |10
Blb| 023 | 003 | 121 | 03 —— 0 | 097 | 101
: 81 1008 11733 | 019 | 099
B2 | 028 | 003 | 15 90 |09
3 | 019 1002 | 092 | 020 | 095 0.99
B3 | 020 | 0.02 | 024 | 0.00 | 0.00 | 0.00 020 | 098 11
B4 | 000 | 0.00 | 000 | 000 | 00 ‘ 20 1102
B 1 000 | 000 | 021 | 100 | 105
TUBIFICIDAE laj 0.00 | 000 | 000 | 0.00 | 000 [ 000 [ 029 | 100 | 168
Bib] 0.00 | 000 | 000 | 0.00 | 0.00 | 0.00 | 029 | 100 1.63
B2 ] 015 | 011 | 072 | 000 | 0.00 | 0.00 | 026 | 0.89 | 138
Ei 0.58 | 043 | 137 | 013 | 011 | 062 | 013 | 047 | 00
0.27 | 020 | 037 | 087 | 070 | 2600 | 0.03 | 0.0 | 012
LUMBRICULIDAE Bla| 000 | 000 | 0.00 | 0.00 | 0.00 | 0.00 { 034 | 100 | 211
Blb | 037 | 066 | 234 | 012 | 004 | 056 | 0.10 | 030 | 046
B2 | 028 | 050 | 1.54 | 066 | 020 | 771 | 0.10 | 030 | 046
B3 | 035 | 063 | 054 | 022|007 | 113 | 010 | 030 | 046
B4 | 0.00 | 0.00 | 000 | 000 | 000 | 0.00 | 034 | 1.00 | 211
Glossiphonia spp. Bla| 0.00 | 0.00 | 000 | 000 | 0.00 | 0.00 | 023 | 1.00 | 1.16
Bib| 0.00 | 0.00 | 000 | 0.00 | 000 | 000 | 023 | 1.00 | 116
B2 | 067 | 027 | 828 | 081 | 0.13 | 1760 | 0.14 | 060 | 063
B3 | 033 | 013 | 048 | 019 | 0.03 | 091 | 0.19 | 084 | 093
B4 | 000 | 0.00 | 000 | 000 | 0.00 | 0.00 | 023 | 1.00 | 1.16
Helobdella stagnalis Bla| 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 022 | 1.00 | 1.16
Bib| 0.00 | 0.00 | 0.00 | 0.00 | 000 | 000 | 022 | 1.00 | 1.16
B2 | 028 | 014 | 155 | 017 | 001 | 080 | 019 | 085 | 095
B3 | 072 | 036 | 257 | 0.83 | 0.04 | 2000 | 0.13 | 0.60 | 0.62
B4 | 0.00 | 000 | 000 | 000 | 000 | 000 | 022 | 1.00 | 116
Erpobdella octoculata Bla | 0.00 0.00 0.00 { 0.00 | 0.00 | 0.00 | 0.27 1.00 | 149
Blb| 000 | 0.00 | 0.00 | 000 | 0.00 | 000 | 027 | 1.00 | 149
B2 | 036 | 044 | 222 | 022 [ 002 | 111 | 015 | 0.54 | 0.69
B3 | 051 | 063 | 1.06 | 0.74 | 007 | 1133 ] 0.08 | 030 | 033
B4 | 013 | 016 | 0.15 | 0.04 | 0.00 | 018 | 023 | 084 | 118
HYDRACARINA Bla| 042 | 013 | 290 | 024 | 007 | 125 | 018 | 080 0.89
B1b| 0.6 | 005 | 076 | 052 | 0.15 | 440 0.18 | 0.80 | 089
B2 | 042 | 013 | 290 | 024 | 007 | 125 | 0.I8 0.80 | 0.89
55 | 000 | 000 | 000 | 0.00 | 0.00 | 0.00 } 023 1.00 | 118
B4 | 000 | 000 | 000 | 000 | 0.00 000 | 023 | 1.00 | 118
00 | 175
Asellus aquaticus Blal 000 | 000 | 0.00 | 000 | 0.00 | 000 030 | 1 21 1.53
5101 011 | 009 | 050 | 000 | 000 | 000 028 | 0. : _(Hg_
B2 | 033 | 027 | 200 | 070 | 0.63 933 | 0.03 __%_;7_ ——o—;f
B3 | 044 | 036 | 0.80 _0_30._021._”_1——9—11————-———‘-“
000 | 000 | 028 | 091 | 153
B4 | 011 | 009 | 013 | 000 | 5 ~ T
0.12 . | M0
Gammarus pulex Bia| 044 | 051 | 317 | 014 _&%W 0.05 | 007
Bib| 022 | 025 ,_l-_l_L_Qéﬁ_.-le-———-———o'% "0'14 041 | 0.68
52 | 034 | 040 | 208 | 019 1020 | oo ey T )
—— 036 | 1.00 |2
00 | 000 | 000 | 0.00 | 036 L = 4=
B3 | 0.00 | 0.00 _(L_,_——‘——W'W’ 036 | 1.00 |222
B4 | 000 | 000 | 000 | 000 | :
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T/T able A3.1 Summary Data Derived from Heights of Elicited -
ite

Established Abd 15to rams
un
Indicator Taxon Class| P(He) | PeH) | Ls | P(g) p(eiH;nt L Absent
Baetis rhodani Bla| 036 0.75 | 227 | 0.00 | 0.00 0080 P(He) | PelH) | Lg
’ - 00 | 011 | 025

Blb| 0.18 | 037 | 087 | 053 | 038 | 443 | o1 0

B2 | 021 | 044 | 1.09 | 042 | 031 | 202 o‘.n 032

B3 | 025 | 051 | 033 | 0.05 | 0.04 | 021 | ooy 0.:15 -

B B4 | 0.00 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0as 1‘00 o

e hrogena SpP. Bla| 0.56 | 037 | 504 | 074 | 013 | 1120 | o1 0. 3‘3'2
Blb| 044 | 029 | 317 | 026 | 005 | 143 0‘1; 022 o

B2 | 0.00 | 0.00 | 000 | 000 | 0.00 | 0.00 0124 o i

1.00 | 127

B3 0.00 0.00 0.00 | 0.00 ] 0.00 | 0.00 | 024 | 1.00 |1 27

B4 0.00 0.00 0.00 ] 0.00 | 0.00 | 0.00 | 024 | 1.00 | 127

Heptagenia spp. Bla | 0.62 0.10 6.50 | 1.00 ] 0.10 | 0.00 | 0.17 | 0.80 | 081

Blb| 0.38 0.06 | 246 | 0.00 | 0.00 | 0.00 | 020 | 094 | 099
B2 0.00 0.00 | 0.00 | 0.00 | 0.00 | 000 | 021 | 1.00 | 1.07
B3 0.00 0.00 | 0.00 | 0.00 ] 0.00 | 0.00 | 021 | 1.00 | 1.07
B4 0.00 0.00 | 0.00 | 0.00 | 0.00 | 000 | 021 [ 1.00 | 1.07

Ecdyonurus spp. Bla| 0.39 024 | 2.56 | 024 | 0.04 | 126 | 017 | 0.72 | 0.83
Blb | 0.61 0.37 | 625 | 0.76 | 0.13 | 12,67 | 0.12 | 0.50 | 0.54
B2 | 0.00 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 024 | 1.00 | 124
B3 | 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 024 | 1.00 | 124
B4 | 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 024 | 100 [ 124

Ephemerella ignita Bla| 0.16 0.09 0.75 | 0.00 | 0.00 | 0.00 | 0.24 | 091 | 126
B1b| 0.21 0.13 107 | 0.60 | 038 | 6.00 | 0.13 | 0.50 | 0.1
B2 | 042 025 | 2.91 | 040 | 025 | 267 | 013 | 050 |06l
B3 0.21 013 | 027 | 0.00 | 0.00 | 0.00 | 023 | 088 | 120
B4 | 0.00 000 | 0.00 | 0.00 | 000 | 000 | 026 | 1.00 | 144

Caenis spp. Bla| 0.31 0.14 180 | 027 | 007 | 149 | 018 | 0.79 0.90
Blb | 0.69 0.30 387 | 073 | 020 | 1075 | 0.12 0.50 | 0.53
B2 0.00 0.00 000 | 0.00 | 0.00 | 000 | 023 1.00 | 122
B3 0.00 0.00 | 0.00 | 0.00 | 0.00 000 | 023 | 1.00 | 122
B4 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 023 | 100 | 122

Amphinemura sulcicollis Bla| 0.39 0.10 | 2.50 | 0.88 | 0.10 | 2933 0.17 | 0.80 | 0.84
277 | 012 | 001 | 055 | 0.19 088 | 0.94

Blb| 041 0.11
B2 0.21 0.05 1.03 | 0.00 | 0.00 | 0.00 020 | 095 | 103
B3 0.00 0.00 0.00 | 0.00 | 0.00 0.00 | 022 | 1.00 1.10

000 | 000 | 022 1.00 | 1.10

56
Leuctra spp. Bla| 055 | 040 | 492 | 044 | 010 | 320 | 0.1 % 276

S1o | 034 | 025 | 211 | 044 | 010 | 3.0 0.16
022 | 090 | 114

B2 0.10 0.08 046 | 0.11 | 0.03 0.50 =
B3 0.00 0.00 0.00 | 0.00 | 0.00 0.00 | 025 1.00 .
0.00 | 0.00 0.25 | 100 131

B4 0.00 0.00 0.00 | 0.00

54 | 000 | 000 | 000 | 000 -
‘ 00 | 017 | 080 |08 ]
Isoperla grammatica Bla| 045 | 010 | 333 086 | 010 |25 >

0.88
Bib | 047 0.10 | 3.59 0.14 | 002 0.64 "9"1—9-_'—0—98’—'_1-67—-
0.00 | 0.00 0.21 . .

0.02 | 031 | 0.00
B2 | 0.07 | 00_ o Toor |0 [ 108

0.00 | 0.00 21 ]
00 |0 00 | O
B3 | 000 | 000 | 000 | 000 L= n T g0 | 109

B4 | 0.00

0.00 | 0.00 0.00 | 0.00
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Table A3.1 Summary Data Derived fio
*‘x

m Heights of Elic
Abundant

ited Histograms

Established
Indicator Taxon Closs | PHle) | P | L5 [P0 | papn] o T
HALIPLIDAE Bla| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 00 (He) | P(elHy | Ly
Blb| 050 | 009 | 4.00 [ 050 Wﬁ_& | 100 | 1.5 |
B2 | 050 | 009 | 400 W‘WWJ_IL_@L | 09 |
B3 | 0.00 | 0.00 | 000 | 000 | 000 | 00 2'19 090 | 092 |
B4 | 0.00 | 000 | 000 | 000 Wwﬁi&&
DYTISCIDAE Bla| 000 | 000 | om0 | 000 |00 oo 0.22 00 | 105
Bb| 045 | 016 | 323 | 050 | 004 | 400 | 015 (1).00 o
B2 | 045 | 016 | 323 | 050 | 0.04 | 400 | o1g s
B3 | 011 | 0.04 . : 0.80 | 0.85
0.12 | 0.00 | 0.00 | 0.00 | 021
B4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | o 096 | 1.07
p—— s o T : : 00 [ 022 | 100 | 112
ELMIN e 0:10 2; ziz 2(1)5 160 | 018 | 0.80 | 0.86
e e e = 0.0(3) 4.84 | 018 | 080 | 086
: : 03 ] 080 | 021 | 094 | 1.04
B3 | 000 | 0.00 | 000 | 0.00 | 0.00 | 000 | 022 | 1.00 | 1.13
B4 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 022 | 100 | 1.3
Sialis lutaria Bla| 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 021 | 1.00 | 1.07
Blb | 0.00 | 000 | 0.00 | 000 | 000 | 000 | 021 | 1.00 | 107
B2 | 045 | 010 | 321 [ 020 [ 001 | 100 | 019 | 090 |093
B3 | 055 | 012 | 125 | 080 | 0.03 | 1600 | 018 | 085 | 087
B4 | 0.00 | 000 | 000 | 000 | 0.00 | 0.00 | 021 | 1.00 |1.07
Rhyacophila spp. Bla| 041 | 012 | 277 | 027 | 0.01 | 1.48 | 019 | 088 |09
Blb| 047 | 014 | 355 | 054 | 002 | 469 | 018 | 0.85 | 0.89
B2 | 012 | 003 | 055 | 019 | 0.01 | 094 | 020 | 096 | 1.03
B3 | 0.00 | 000 | 000 | 000 | 0.00 | 0.00 | 021 | 1.00 | 1.09
B4 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 000 | 021 | 1.00 | 1.09
Glossosoma spp. Bla| 0.36 0.05 221 | 083 | 0.15 [ 1920 | 0.17 | 0.80 | 0.83
Bib| 064 | 009 | 724 | 017 | 0.03 | 0.83 | 019 | 088 | 0.9
B2 | 0.00 | 000 | 0.00 | 000 | 0.00 | 0.00 | 021 | 1.00 |1.09
B3 | 0.00 | 000 | 000 | 0.00 | 0.00 | 0.00 | 021 | 100 | 109
B4 | 000 | 0.00 | 000 | 000 | 0.00 | 000 | 021 | 100 | 1.09
Agapetus spp. Blal 036 | 005 | 224 | 082 | 015 | 1867 | 017 | 080 | 0.83
510 | 064 | 009 | 714 | 018 | 003 | 086 | 0.19 | 088 | 092
52 | 000 | 0.00 | 000 | 000 | 000 | 0.00 | 021 | 100 | 1OV
53 | 000 | 0.00 | 000 | 0.00 | 000 | 0.00 | 021 | LOO 1.09
32 | 000 | 000 | 000 | 000 | 000 | 000 | 021 | 10O 1.09
POLYCENTROPODIDAE | Bla| 051 | 0.4 | 413 | 035 | 006 | 2.20 0.18 | 080 |08
3161 036 | 010 | 223 | 061 [ 010 | 633 | 08 0.80 | 0.5
52 | 013 | 004 | 062 | 003 | 0.01 | O3 021 | 096 | 1.06
o3 [ 000 | 000 | o0 | 000 [ 000 | 000 | 02 | LB 112
B4 | 0.00 | 0.00 | 000 | 000 0.00 | 0.00 | 022 | 1.00 1.12
Hydropsyche angustipennis | Bla | 0.00 | 0.00 0.00 _9_90___9_0-0-———0—0—(1—-—0—2-2—“—‘(1)‘(9)'2“ "i"(lé—
B1b| 024 | 0.07 | 127 (006 | 001 | 025 | 020 1 PR ey
013 | 1169 | 0.16 | 075 0T
52 | o04s | 013 | 322 | 075 |01 Lo s
1, 098 | 019 | 088 | 096
53 | 031 | 0.09 | 046 | 020 ,9_0.3‘__-——-————;———165‘ 13
B4 | 000 | 0.00 | 0.00 | 000 000 | 000 | 022 | L
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Table A3.1 Summary Data Derived from Heights of Elic;

Established ted Histograms

Abundant
Indicator Taxon Class| P(Hle) | P(eH) | Lg D e T Absent
Other HYDROPSYCHIDAE| Bla | 034 | 010 | 203 | 014 | o1 | o5 T(TL)M
Blb| 066 | 020 | 7.89 | 0.6 2% 1 019 | 089 |

0.05 12500 | 0.16 0
. a5 ]0.
B2 0.00 0.00 | 0.00 | 0.00 0.00 | 0.00 | 022 1.00 0

1.10
EB 0.00 0.00 0.00 [ 0.00 | 0.00 000 ] 022 | 100 |1 10
4 0.00 0.00 0.00 | 0.00 | 0.00 | 0.0 022 1 100 | 110

'HYDROPTILIDAE Blal 037 | 007 | 235 | 019 | 0.04 | 095 | 019 | 08 |os
: . . 88 | 096
BIbl 051 | 010 | 411 | 045 | 010 | 323 | 0.7 | 080 | ogs

B2 0.12 0.02 0.56 1 036 | 008 | 227

020 | 0.89 {097
B3 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.22 1.00 | 112

B4 | 0.00 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 022 | 100 | 100
LIMNEPHILIDAE Bla| 043 | 010 | 301 | 037 | 010 | 232 | 018 | 080 | 087
Blb| 021 | 0.05 | 1.09 | 055 | 0.15 | 491 | 018 | 080 | 087
B2 | 036 | 008 | 221 | 0.08 | 0.02 | 036 | 020 | 089 | 0.99
B3 | 0.00 | 0.00 | 0.00 | 000 | 0.00 | 0.00 | 022 | 1.00 | 114
B4 | 0.00 | 000 | 000 | 0.00 | 000 | 0.00 | 022 | 1.00 | 1.14
CERATOPOGONIDAE | Bla| 029 | 0.10 | 1.64 | 041 | 010 | 276 | 018 | 080 | 089
Bib| 029 | 010 | 1.64 | 041 | 010 | 276 | 0.18 | 0.80 | 0.89
B2 | 034 | 012 | 2.02 | 016 | 0.04 | 078 | 0.19 | 084 | 095
B3 | 008 | 003 | 009 | 002 | 001 | 008 | 022 | 097 | 1.12
B4 | 0.00 | 000 | 0.00 | 0.00 | 000 | 0.00 | 023 | 1.00 | 117

Chironomus riparius Bla| 0.00 0.00 | 0.00 | 000 | 0.00 | 0.00 | 032 | 1.00 | 189
Bib| 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 032 | 1.00 | 189
B2 | 0.10 0.08 | 046 | 0.00 | 0.00 | 0.00 | 030 | 092 | 1.68
B3 0.54 0.41 1.18 | 044 | 049 | 3.11 | 0.03 | 010 | 0.13
B4 | 036 027 | 055 | 056 | 063 | 514 | 0.03 | 010 | 0.13

Simulium omatum Bla| 0.00 0.00 0.00 | 0.00 | 000 | 000 [ 021 | 1.00 | 1.05
Blb | 0.00 0.00 0.00 | 000 | 0.00 | 000 | 021 | 1.00 | 105
B2 0.52 0.05 433 | 052 | 005 | 433 | 019 | 090 | 092
B3 0.48 0.05 092 | 048 | 005 | 3.69 | 019 | 091 0.93
B4 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 021 1.00 | 1.05
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Appendix A4

Barnett's Scheme for Combining Simple Support
Functions

This scheme can be used in Dempster-Shafer reasoning if the evidence can be repr

as support either for a singleton hypothesis or its complement. Accordin ,:(1) Be represented

direct implementation of Dempster's rule for arbitrary belief functions isg not fame':ltatl(lg'gl)

the algorithmic complexity is of exponential order. Barnett's scheme can be ceai? de i

linear time. ted out in
If 5, is degree of support for the singleton hypothesis H, from a sensor j, then the

total support from j = 1 to k sensors for that proposition is: ’

k
fi=1-110 -5 (A1)

=1

This follows from the application of Dempster's rule. If s, is the basic probability number
assigned to a singleton hypothesis, then 1 - s, is assigned to the environment ©. If s, is the
degree of support from a second bpa for the same hypothesis, application of Dempster's rule
results in the following:

i(s,) O(-s)
i(s)) i (s,5,) i(s,-5,8)
01 -5, i (s, -5,5,) 0 (1-5-5-55)
so that
m Omy(H) = 55, + 8 =55 TS 755 “42)

-1 -spd-s)

1

Note that support for ® = 1 - f, If sensors j = k+1 to k+l provide evidence against

hypothesis H, (or support for —H,) then:
+/
a. = 1 - (1 - SI])

! j= +1

==

(A4.3)

e

tepresents the total weight of evidence against the singleton. The supp O;t forv(ili(i:i t;z;el
sensors is 1 - @, The simple evidence function ¢, for hypothesis /1 lit en; =5 simple
the orthogonal sum of £, and a,, according to eqluation (7.3). Thus thete 8
evidence functions for the frame of biological classes o o HN =K
The basic probability numbers arising from this combmzlltlc}n) af: }fzre ;'( lzh((’l} ) a/i)/'['
(1-a), ¢,;=e,({~H})=Ka,(1-f)andr,=¢ @®)=K(l- af),( tf%’ To see tlllis, consider
tepresents the degree of conflict between evidence for and agalnit fo; ~H. Combination of
that £, = s, is the total support for H; and g,=$, 1S the total suppo f

these via Dempster’s rule then results in:

218




i) 2 (5,5,) i(s(1-5))
M Difs,(1-5)) @((1—S1)(1-s))

Because of mass in the null set, each probability number is divided b the normalisati
factor K, = 1 - 5,5, = 1 - fa; 50 that for instance the basic probability 11u1)r/1bee~ ? Ollna}lsatlon
s)l(1 - 5,55), 1.e. p;= K, f; (1 - a)). The results for ¢, and , follow in the salimor o

The result of this combination is » basic proba{)ility assignments (:;ayf *
singleton. These must now be combined using Dempster's rule to form an, ov;'al(;lbeT'Chf
function for each singleton. Dempster's rule is given by equations (3.22) and (3 23e f
which the normalisation factor K = 1 - x, where k represents the degree of conflict l;et\a)/:eelzlll
two basic probability assignments. Barnett derives a general expression for K in terms olf
the basic probability numbers p,, ¢, r, and the overall belief in each singleton:

Bel({H}) = K[pj [1d «r ch} (Ad.4)

J#i J#i

where d, = ¢, + r;, and

K™ = {I]/Id,. Hl + Zpi/di}~ e (A45)

all i all i

For a subset 4 of ® for which [4] > 1 (e.g. ~{Bla}) then

Bel (4) = K( {HdiHpr/di}+{HC,-HH6{,}‘ Hci) (A46)

all i icA ieA i€A all i

Barnett provides a complete derivation. To see how (Ad4.4) and (A4.5) arise consider the

combination of the simple evidence functions €, where i = 1,2

2 2 e

P o (pp,) _L(_PZLEZ)_————————————I—@Q)“'/
¢, 2 (p,cy) _9_(91222__————————:—1—@&)“/
l 2 (py 1) M/

I : ‘on i it follows from the
Since K is the sum of masses whose intersection 1$ not the null set; 1

above table that:
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1 _
K= =ple, + 1)+ pyle, + r) o+ ¢\,

pdy * pydy ey 4 &y +
P P
dd(1+—1+_2)_ (44.7)
1% e
d 4 O

+ 2
Czil + rlrz

1l

1l

for d,-.: ¢, 7, This has the form of (A4.5). From the table the evidence for {1} after
combination is K [p,c? + pirs +16] = K [pd, + rc,] after normalisation. It should b
possible to see how pair-wise combinations of the e, would lead to (Ad.4) )

If the simple support functions all confirm the h
ypotheses H, then the ¢, ar
to zero and K~/ reduces to: n the ¢; are equal

K- :( I, )( |+ Z':pi/r,-) (A4.8)

!

and
Bel ({H}) = K p, Jl;[rj (A49)
Writing
o =1+ %‘ plr, (A4.10)
then
Bel ({H}) = il (A4.11)
r.0

7

Similarly (A4.6) reduces to

c-1_Pi (A4.12)
o r.0o

Bel (—{H}) =

: is H is then PIs({H))-
The width of the evidential interval [Bel, Pls] for a given hypothesis Hi 115 i};irsl f; Se(ice }t% .
Bel({H}) =1 - Bel(~{H}) - Bel({H}) = 1/0, which holds for all smgrte evidence -
evidential width is identical for all singletons if .the‘ smq;le s_l;ppo
confirming. This is not true if some of the evidence 13 disconfirming.
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Appendix A5

T-R Combination Rule for Interval-valyeq Evidence

This rule has been devised by Chang and Kashya

. P (1990) for combining evi .
can be expressed' as an 1n.terva1. They claim it has properties Whicﬁnrlrfllagkzviltdencc? which
suitable for conflicting evidence. The authors test the rule by combining bothpcélégfcll'll‘? -

1cting

and non-conflicting sources, and compare its performance with Dempster's ]
"interval Bayes' rule”. The combination rule was used for the sim le support r IU. - j[he
of the benthic sensor evidence. e pReeseon
For an evidential interval [a,b] (0<a<b<1) regarding an hypothesis H, a discrimi

tion measure A is defined such that if the measure is positive, H is regard,ed as true lil}a-
decision must be made while —H is regarded as true if the measure is negative. Support foi
H varies from a to b while support for —~H varies from (1-b) to (1-a). Defining A to be
(lower limit of support for H) - (lower limit of support for ~H, we have:

A=a“(l—b)=a+b+1 (AS.I)

Two pieces of evidence [a,b] and [c,d] are conflicting if their discrimination measures are
of the opposite signs.

As described in Chapter 8 the interval [a,b] can be represented as a vector in a two-
dimensional co-ordinate system, bounded by a triangle of co-ordinates (0,0), (0,1),(1,1). The
vector (a,b) in the triangular region is mapped by a geometric transform to a vector (,v) in
a rectangular region, shown in Figure AS.1, such that u is equivalent to the discrimination
measure. Intervals in the rectangular region are combined using functions which preserve
associativity and commutativity, and the mapped back to a point (e,f) in the original
triangular space. Then [e,f] is the resulting interval. The transforms and combination
functions are stated here without proof. See Chang and Kashyap for a complete derivation.

B’ v D’ R
LD (0.1 (11
! - e et " R U
' | 1,0
(0.-1) (00 (A )
B’ C

inati The
: ; : the T-R combination rule. T
Figure A5.1 The rectangular region used for formulation of the ion (A,B,C,D) to their

labels A*,B’,C’ and D’ refer to mappings from the triangular regl
equivalent in the rectangular region.
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ansider two inter

Consiaet two intervals [ahbi]a [a2>b7]- [a} b ] transf
2 sV sforms to
2rab [

U, = (a1+bl_1) 2-2q,

u,vy] as follows:-

e if a,>1 -bl
= ~(l-a,-b) 2b, ’ . (A52)
if a,<1 -b,
and
2-2b
v, = SR
2—a1“b1’ if % 21 - bl
) 2a,
a1+b1’ fa <15, (A5.3)
Similarly [a,,b,] 1s ma
2,07 pped to [u,,v,]. The com
2»Va)- ponents are the ined:
"o n combined:
y = 2
1 +uu,
v = 1
- 5 _vl)(l —vz) (AS.4)
(v, - V1V2)4+(V2 _V1V2)4] v
Th :
e (u,v) are then mapped back into the original (a,b):
[e, f] |
(2-v)
L v 1 - (1-v)(1-u®™)
2- : |
u@W o+ 1+ (1-v)(1-u®™)
- 1, if u>0
_ 2-v
I G B o 10 2 -
2 ’ |
u|C 1+ (1w - )
> 1 if u<0
50 that the width of the interval is
(A5.6)

f - el = (1-v)(1 - [ul®)

of the final result 18

i e. the evidential width)
dence, the width

If the evi )
evidence is conflicting, the uncertainty (
conflicting evi

greater tha ..
reduces. n those of the original components. For non-
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Classification experiments referred to in the thesis are ligted hy

Ap

pendix A6

Index of Experiments

Figure in which their results are presented.

ere, along with the Table or

Test Description TestID Thesis Reference Decisif)n Conflict Abundant/ |
Alg'onthm/ Threshold/ {Established/
Belief Ordering/ |Rare/
Representation |Decision  |{Absent
Threshold |Data
Quality |
Bayesian belief- Original distributions| T200_R2 | Tables 6.5, 6.8 Bayes Infinite Certain
Bayesian Sensor-state |Certain
Definite  {Ignore
Certain
B.aygsial.l belief-Area-adjusted| T201_R2 Tables 6.6, 6.8 Bayes Infinite Certain
distributions Bayesian Sensor-state {Certain
Definite  |Ignore
Certain
Variations in evidential strength T221 Table 6.10 Bayes Infinite Certain
Singleton Sensor-state |Certain
Definite  |Ignore
Certain
Variations in evidential strength 1222 Table 6.10 Dempster-Shafer| Infinite Certain
Singleton Sensor-state {Certain
Ignore
Certain
Variations in evidential strength T223 Tables 6.10, 6.13  |Bayes Infinite HJ:gh
Singleton Sensor-state |High
Definite Ignore
Good
r .
Variations in evidential strength T224 Tables 6.10, Dempster-Shafer| Infinite Hfgh
6.13,6.17 Singleton Sensor-state [High
Definite  |Ignore
Good
- T g
Variations in evidential strength T225 Tables 6.10, Bayes Infinite Hfgh
6.13,6.14 Singleton Sensor-state |High
o Definite  |[gnore
Fair
- T |
Variations i identi 226 Tables 6.10 Dempster—Shafer Infinite H%gh
s in evidential strength T2 5136 14-1 ’ Singleton Sensor-state [High
T Definite  |Ignore
Fair
I
// . H
1 Infinite  |High
St ; . . S .
Variations in evidential strength T227 Tables 6.10, 6.13 gi?gleton Sensor-state High
Definite  |lgnore
Poor
| [Poor
T e Infini High
T - Dempster-Shafer Infinite :
Variations in evidential strength T228 Tables 6.10,6.13 Singlimn Sensor-state [High
Definite ~ |Ignore
| Poor S
—
[
I
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Test Description TestID Thesis Reference D“
ecision Conflict |4y
Algorithm/ Thresh tndan/
Belief es1old/ | Establisheq)
Represent. Ordering/ |[Rare/
S 1 s
Presentation | Decisjop Absent
Threshold |Data
Quality
Variations in evidential strength T229 Table 6.
ar €6.10 B‘ayes Infinite High
Singleton Sensor-state |High
Definite  |Ignore
|
-qations in evidential strength T230 xxl%
Variations m € gt galbalez 6131 0é6.11, Dempster-Shafer| Infinite High
12,0.13,6.14 Singleton Sensor-state High
Definite  |Ignore
Variations in evidential strength T234 Table 6.15 Dempster-Shafer Infinite High
Singleton Sensor-state |Good
Definite Ignore
Variations in evidential strength T236 Table 6.11 D’empster-Shafer Infinite High
Singleton Sensor-state |Fair
Definite  |{Ignore
Ignore
Variations in evidential strength T2361 Table 6.11 Dempster-Shafer| Infinite High
Singleton Sensor-state [Poor
Definite  |Ignore
Ignore
Variations in evidential strength T2381 Table 6.16 Dempster-Shafer|Infinite High
Singleton Sensor-state [High
Definite  |Fair
Ignore
Variations in evidential strength T238 Table 6.16 Dempster-Shafer| Infinite High
Singleton Sensor-state [High
Definite Poor
Ignore
Decision threshold T241TDSC  |Figure 6.1, Dempster-Shafer| Infinite High
Table 6.21 Singleton Taxonomic {High
Definite  |Ignore
High
Decision threshold T242TDSH |Figure 6.1 Dempster-Shafer|Infinite . H?gh
Singleton Taxonomic |High
High Ignore
High
Decision threshold T242TDSL  |Figure 6.1 Dempster-Shafer|Infinite . Hfgh
Singleton Taxonomic |High
Low Ignore
High
. ng},]
i, : Dempster-Shafer Infinite .
Decision threshold T243SDSCFigure 6. Singleton Sensor-state [High
Definite  |Ignore
Good
| »
Decici F_T—"Dempster-Shafer Infinite H%gh
ecision threshold T243SDSH  |Figure O. Singleton Sensor-state |High
High Ignore
Good
I nfini High
- : ter-Shafer| Infinite !
Decision threshold T243SDSL  |Figure 6.1 Qemps Sensor-state [High
Singleton
Low Ignore
Good
[ B
—
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Test Description TestID Thesis Reference |Decision P
Alvors onflict Abundant/
5 gfmthm/ Threshold/ Established/
elief Ordering/ |Rare/
Representation [Decision Absent
Threshold |Data
Quality
Conflict resolution T257TCTH |Table 6.21 Dempster-Shafer| High High
Singleton Taxonomic High
Definite Ignore
Good
Conflict resolution T257TCTM |Table 6.21 Dempster-Shafer Medium High
Singleton Taxonomic High
Definite Ignore
Good |
Conflict resolution T258SCTH  |Tables 6.19,6.20 | Dempster-Shafer High High
Singleton Taxonomic |High
Definite Ignore
Good
Conflict resolution T258SCTM |Table 6.17 Dempster-Shafer| Medium High
Singleton Taxonomic [High
Definite  |Ignore
Good
Indicator Value I =5 T286_105  |Table 6.17 Dempster-Shafer|Infinite High
Singleton Sensor-state |High
Definite  {Ignore
High
Indicator Value I =10 T286 110  |Table 6.17 Dempster-Shafer| Infinite High
Singleton Sensor-state [High
Definite  |Ignore
High
icator = T286 120  |Table 6.17 Dempster-Shafer| Infinite H%gh
Indicator Vatue 1= 20 B Singleton Sensor-state [High
Definite Ignore
High
i High
i - = Tables 6.17, 6.18 | Dempster-Shafer| Infinite ig
Indicator Value I =30 T286 130 able Singtelon Sensor-statc [High
Definite Ignore
High
; Dempster-Shafer|Infinite High
Simple support: Present Data TOS1 Tables 7.1,7.2 Simpple cupport |Sensor-stte High
Definite  |Ignore
lgnore |
T o e Infini High
: . Dempster-Shafer| Infinite !
Simple-support:Present & Confirming| T053 Tables 7.3, 7.4 Simpﬁe support |Sensor-state High
Absence Definite  |lgnore
Ignore |
,._4———-"‘__-__—_'—_——_——-__— .
#'T Dempster-Shafer| Infinite High
Simple-support:Present & T055 Tables 73,7 Simple support Sensor-state [High
Disconfirming Absence Definite  |Ignore
High |
e |High
. o finite 1
| mpster-Shafer{In !
Simple-support:Present &[TossVar  |Tables 7,78 ]S?i;prie support |Sensor-state ?@hre
Disconfirming Absence (Variable Definite \%Sr(i)able
weight) I _ﬁgh/’
L | . H
- ter-Shafer| Infinite !
Si 7 Tables 7.9, 7.10,[Derspte Sensor-state [High
mple support. Present Data. TOS ] (TR rE e
7.1 Combination) Definite lgg(lri"-——
Simple support | ———
I
I
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Thesis Reference

R TestID Decision
Test Description

Conflict Abundant/
Algorithm/ Thireshold/ Established/
Belief Ordering/ [Raye/
Representatioy Decision  |Absent
Threshold |Dat :
Quality :
Table 7.12 Dempster-Shafer| Infinite High
Consonant belief. Present Data B Consonant Sensor-state High
Definite Ignore
Ienore
7 T —— . -
able 7.12 Dempster-Shafer|Infinite High
Consonant belief. Present & Absent|T313 ! Consonant Sensor-state [High
Definite Ignore
Data High
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Glossary and Abbreviationg

¢ The degree of evidential discount used to represent the quality of
© certain reasoning, y of a data source ip

« The degree of evidential conflict in Dempster’s rule.

o In Barnett’s scheme, a measure of uncertainty of a proposition.

® In D-S theory, the environment or frame of discernment.

a; In Barnett 's scheme, the evidence accumulated against (disconfirming) H.

Al Artificial Intelligence. The study of computational tasks that apparently require human
intelligence.

ASPT Average Score per Taxon. Derived from the BMWP Score.

Autecology The ecology of a single species. Autecological studies are concerned with the
correlation of the distribution of a species with environmental factors.

Automatic classifier A computer program incorporating an uncertain-reasoning decision
algorithm, developed as part of the experimental work described in this thesis.

Barnett’s scheme A computational scheme for combining evidence represented as simple
support functions in linear time.

BBI Belgian Biotic Index. A European variant of the TBI.

Benthic organisms Organisms living on the bottom of a stream, lake, or the sea. Also
referred to as the benthos.

BERT Benthic Ecology Response Translator. Name given to pr‘oposed expert or decision-
support system for river water quality assessment using biological methods.
Bioassessment In the context of this thesis, the use of biological material to determine the
quality of water.

Biocenosis A community occupying a given biotope.

stem.
Biota The living component of any system, e.g. of the hydrosphere, of an ecosy

ichi BMWP Score.
BMWP Biological Monitoring Working Party, after which 18 named the

unt of oxygen required for the

re of the amo ‘ :
- Je aerobic matter 1 a water

BOD Biological Oxygen Demand. A mea
s 'S mically degradab

aerobic micro-organisms to oxidise bioche
sample to a stable inorganic form.

me evidence supports the various

bpa Basic probability assignment: the degree t0 which s0
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propositions within the frame of discernmen;.
¢, In Barnett 's scheme, the measure of Support against 4

CF Certa.inty Factor. Refers to the method of certainty factors, an uncerta: ;
system which encodes measures of belief and disbelief. (1 e Teasoning

Consonant belief A belief function assigned 19 5 hierarchica

g . ly-order :
elements within a frame of discernment. y-ordered set of focal

D Shannon-Wiener (or Shannon-Weaver) diversity index.

D, The degree of support for each hypothesis, as output by an automatic

in this project classifier as used

D-S Dempster-Shafer. Refers to Dempster-Shafer theory,

, considered to be a generalisation
of the Bayesian calculus.

Dempster’s rule The procedure for combining belief functions is D-§ theory.

Determinand A general name for a characteristic or aspect of water quality; usually an
attribute which can be numerically quantified.

DoE Department of the Environment.

DSS Decision Support System. A software system often incorporating graphics, databases
and algorithmic models for solving broad or ill-defined problems in some domain.

e; In Barnett’s scheme, a simple evidence function formed from the combination of f; and
a,

EC European Community. Now the European Union.

ECI Expert Classification Index. Used in an earlier analysis for encoding the expert’s
intermediate classifications.

Ecology The study of the interrelation between living organisms and their environment.

Environment See frame of discernment.

Evidential discount See €.

i ing ability of a human
Expert system A computer system which emulates the decision-making ability ota
CXpert.

. H“
Ji In Barnett’s scheme, the evidence accumulated for (confirming) 7

FBA Freshwater Biological Association.
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Frame of Discernment The samp]

€ space of mutua]] ; _
- Demps ter-Shafer theory. ¥y exclusive and exhaustive hypotheses

g, Weighting factor for a species, as used in the ¢

Saprobic Index. alculation of §]

adedek’s Extended

GQA General Quality Assessment. Refers to a river

quality assess
proposed by the Department of the Environment. Y ment scheme recently

H, Refers to an hypothesis or several hypotheses in a sam

' ple space. i =1 _ eni
total number of singleton hypotheses. 3 n, where n is the

h; Abundance level of species i, as used in the calculation of Sladegek’

s Extended S j
Index. aprobic

IFE Institute of Freshwater Ecology. The IFE was established in April 1989 by agreement
between the National Environment Research Council and the Freshwater Biol

. ogical
Association.

K. In Barnett’s scheme, the degree of internal evidential conflict for hypothesis H.

I-value Indicator value of probability distribution, as devised for this project. For classifier
output, the /-value encodes the “strength” of the distribution and the adjacency of the
quality class rank-ordering.

ID3 Iterative Dichotomiser 3. Name given to a machine learning algorithm.

INTELLIPATH A commercial belief-network knowledge-based system for the diagnosis
of lymph node diseases.

Invertebrates Animals not possessing a backbone.

K In Barnett’s scheme, the degree of evidential conflict between hypotheses.

Knowledge-based system See Expert System.

L, Likelihood of sufficiency, used in the odds-likelihood formulation of Bayes’ rule.
L, Likelihood of necessity. See L,.

LEONARDO Name of software package for personal computers for developing

knowledge-based systems.
LQI Lincoln Quality Index.
m In D-S theory, the basic probability assignment (bpa)-

i ECI and SCI.
MSE Mean-square error. Referred to square of absolute difference between

(Used in an earlier analysis).
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MUNIN A belief-network system for diagnosis of Neuromuscular disop
1sorders,

MYCIN An early celebrated expert system for diagnosing microbial infect;
ections.

NP Non-deterministic, Polynomial time. “NP-hard”

) refer
computational problems. 510 a class of non.|

inear

NRA National Rivers Authority (now part of the Environment Agency)

NWC National Water Council.

O The decision order output by an automatic classifier as used in this project

OASIS Name given to a graphical decision support system (

: DSS) for -water
contaminant modelling. S) for ground-water

Oxygen sag The de-oxygenation of river water caused by the discharge of organic wastes.
Characteristic oxygen sag curves show that the point of maximum de-oxygenation usually
occurs a considerable distance below the point of discharge. See also BOD.

p: In Barnett's scheme, the measure of support for H,
Potable supply Supply of water suitable for human ingestion.
r; In Barneit’s scheme, the uncommitted belief (i.e. the support for 6).

RAISON Acronym for “Regional Analysis by Intelligent Systems On a microcomputer”.
A knowledge-based system for modelling watershed acidification.

RIVPACS River Invertebrate Prediction and Classification System. A computef ;ystem
for the classification of sites and the prediction of freshwater biological communities.

s In D-S theory, the degree of support assigned to an hypothesis.

s; Preferred saprobic zone of a species i. Used in the calculation of Sladecek’s Extended
Saprobic Index.

§ Saprobic Index.

; sifier in terms
SCI System Classification Index. Encodes the output of an automatic classifier
of an intermediate classification.
. . . ingleton subsets O
Simple support A belief function which assigns probability mass 10 singl
their complements.

heme in which

n assignment s
esent a g leton

Si  thi is to repr ; ~
Ingleton support A term used in this thesis to rep + the remainder assigned [0 Sing

evidential discount is represented by a bpa t0 0, wit
hypotheses.
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gsSI Site of Special Scientific Interest.

R Interval-valued evidence combination, an alternative to Dempster’s rye,
T-

TBI Trent Biotic Index.

INSPAN Two-way Indicator Species Anal
T?lltivariate data 1n an ordered two-way table
m
attributes.

ysis. A computer

program for arranging
for classification

of the individualg and

YWA Yorkshire Water Authority. Succeeded by the NR4

(Northumbria ang Yorkshire
Region).
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