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SUMMARY 

Before the behaviour of granular material can be fully 
understood, it is necessary to study the simpler case 
of idealised regular packings. Two approaches towards 
this end are reported here; one analytical and one 
using computer simulation. 

In the first part of the thesis regular packings of 
rigid spheres (arranged in a body-centred orthorhombic 
manner) are analysed in order to define the conditions 
necessary to cause slip at the contacts. The macro- 
scopic stress and strain-increment tensors are derived 
to define both the initial yield conditions and 
subsequent plastic (softening) deformation. The 
geometry of the corresponding yield surface is 
described by an oblique cone which rotates during 
plastic deformation. Plastic strain-increment vectors 
are at right angles to the cone axis. 

The computer simulation uses the Distinct Element Method 
to study regular packings of discs as they deform under 
a loading imposed by end plattens. The method employs 
an explicit finite difference scheme to model the 
propagation of boundary originated forces and displace- 
ments through the assembly. The results of the simulation 
tests show that end plattens produce discrete shear bands 
which propagate through the assembly and that softening 
is associated with gap widening along the existing shear 
bands. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 OBJECT AND SCOPE OF THE INVESTIGATION 

The experimentally observed behaviour of granular 

material, such as sand, is complex due to its 

particulate structure. The external behaviour 

observed in the laboratory is however, in some way, 

related to the internal behaviour of the particles 

that together form the overall structure. To attempt 

to relate theoretically the observed behaviour of sand 

to what occurs within such a complicated structure would 

be extremely difficult. It is, therefore, necessary to 

first examine simpler structures in order that the 

intrinsic aspects of the internal mechanics may be 

identified. By studying packings of simple structures 

and identifying the yield conditions and associated 

mechanisms, it is hoped that a more fundamental under- 

standing of granular materials will be reached. Previous 

analyses of regular packings have usually been restricted 

to one (or two) particular array geometries. In this 

thesis a more general packing description will be adopted, 

thereby enabling a general three dimensional analysis to ‘be 

developed, which is applicable to both the initial yield 

condition and subsequent deformation. Before this is 

possible it is necessary to define the physical model and 

identify the structure. 
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In Chapter 2 the structure of regular arrays will be 

discussed and a review of previous analyses of regular 

arrays will be presented in Chapter 3. Chapter 4 

presents the analysis of a class of regular packings that 

can be defined as Body-Centred Orthorhombic, from which 

it is possible to identify the effects of structure and 

inter-particle friction. The relationship between the 

internal particle mechanics and the macroscopic yield 

conditions will also be considered. 

The second part of the thesis will be concerned with the 

use of computer simulation as a method of directly 

modelling the behaviour of granular material. After a 

general review of computer simulation presented in 

Chapter 5 a particular technique, the Distinct Element 

Method, Cundall and Strack (1978), will be described in 

Chapter 6. This technique is capable of modelling a 

wide variety of boundary conditions on irregular assemblies 

of random particles, but as an initial project at the 

University of Aston attention has been restricted to 

regular assemblies. The alterations necessary to achieve 

this, using the available computing facilities will be 

provided in Chapter 7. 

The results of the simulation tests carried out with the 

ammended program will be presented and discussed in Chapter 8. 

It will be shown that the stress-strain behaviour is 

18



dependent on the boundary conditions applied, which in 

turn affect the internal mechanisms. In this context 

particular attention will be given to the initiation 

and propagation of discrete shear bands within the 

assembly. Some final remarks will be provided in Chapter 

9, to conclude the presentation. 

1.2 TERMINOLOGY 

The majority of the symbols and terms contained in this 

thesis are common to a lot of current soil mechanics 

research and so are widely agreed upon and unambiguous. 

However, in certain instances, some terms may convey 

different meanings to different investigators. In 

such cases particular attention will be given to clarify 

the meaning of any possibly ambiguous terms and definitions 

will be provided of the symbols used at the relevant 

points in the text. 
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CHAPTER TWO 

2. THE STRUCTURE OF REGULAR PACKINGS 

Before examining the mechanics of regular arrays of 

spheres it is necessary to clearly identify the structure 

of the physical model. The spacial arrangement of the 

spheres is analogous to the "hard ball models" of 

physical metallurgy and crystallography which, in turn, 

represent the unit cells of the three dimensional space 

lattices used to describe the structure of crystals. 

In order ee avoid any ambiguity the unit cell terminology 

of crystallography will be adopted in this thesis. 

Coneeqdentlys this chapter will fivae of all consider 

crystallographic descriptions of structure. This will 

be followed by a consideration of the ways in which equal 

spheres may be packed to form regular arrays. Finally 

the arrangement which will be the subject of the analysis 

provided in chapter 4 will be examined. 

The Bibliography should be consulted for any historical 

references, mentioned in the text but, not found in the 

references list. 
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2.1 CRYSTALLOGRAPHIC UNIT CELLS 

2.1.1 Crystallography - Morphology and Internal Order 

The earliest work on the nature of crystals was an 

attempt to describe the observed external polyhedral 

geometry in terms of the internal order. Both Kepler 

and Descartes speculated that the configurations 

exhibited by snow flakes could be explained by the 

packing of spherical ice particles in a plane. This 

line of thought was developed by Hooke in 1665 for his 

work "Micrographia", in which it was noted that all 

shapes displayed by alum crystals could be achieved by 

packings of spherical particles. It was postulated 

by Huygens, in the same century, that the shapes formed 

by other crystals could be explained by various arrange- 

ments of ellipsoidal particles. 

A large number of "Laws" were put forward by early 

crystallographers searching for ways in which to 

understand the nature of crystals, these "Laws" usually 

expressed generalities about crystal properties. One 

of these, the "Law of Constancy of Interfacial Angles", 

states that for any two crystals of the same substance, 

the angles between corresponding faces are always the same. 

This was confirmed by Rome de 1'Isle in 1772 after 

performing extensive crystal measurements. 
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In 1782, Hauy began to build on the foundations of 

those, like Hooke, who explained the basic crystal 

forms by the packing of spherical or ellipsoidal 

particles. As an alternative building block, Hauy 

proposed the use of "Molecules Integrantes". These 

he sketched as parallelepiped - shaped blocks, the 

equivalent, in modern terms, to the primitive cells 

of a lattice. These blocks, when packed in parallel 

arrays, were intended to represent the crystal 

structure so that the exterior of the collection of 

blocks corresponded to the morphology of the crystal 

being modelled. The slopes and shapes of various crystal 

faces were simulated by leaving steps on the exterior 

of the building block assemblies. 

The geometry of such stacks of blocks was the inspiration 

for the contribution by Weiss, who in 1808 showed how it 

was possible to refer crystal faces to a system of axes. 

The conventions he adopted for the labelling and orientation 

of the axes persist through to the present day. To refer 

faces to axes, he defined the faces in terms of their 

relative intercepts with the three orthogonal reference 

axes. These ratios constituted the first use of indices 

to define crystal faces, and he proposed a corresponding 

"Law" - "The Law of Rational Intercepts". Using this 

reference system, Weiss was able to distinguish between 

crystals of different types. The indices used in modern 

crystallography to represent the orientation of crystal 
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faces are sets of three numbers that are proportional 

to the Weiss intercept system. These were proposed in 

1825 by Whewell and are commonly called the "Miller 

Indices" because Millers book, "A Treatise on 

Crystallography", published in 1839 popularised them. 

It was shown by Hessel in 1831 that there are 32 possible 

forms of symmetry applicable to crystals that can be 

developed from the external elements of symmetry, axes 

of rotation, inversion axes and reflection planes. These 

32 crystal classes were largely overlooked, however, until 

Sohncke called attention to them in 1879. 

The first space lattices were derived by Frankenheim in 

1842, but unfortunately a duplication was made of one of 

the forms so that it was concluded that there were 15 

basic forms of regular packings. This error was rectified 

in 1851 by Bravais whose geometrical analyses showed that 

there are only 14 different space lattices, in each of 

which the environment of every point is identical with that 

of every other point and is similarly orientated. The 

parallel orientation of layers of spheres, as required 

by the Bravais lattices, was at that time considered to be 

a pre-requisite for homogeneity. However, in 1863, 

Weiner showed that the homogeneity requirement merely 

called for any situation in which all arrangements have 

the same relation to the pattern as a whole,Using this 

argument Sohncke, in 1876, proposed the “65 point systems". 
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Sohncke showed that if identity of environment, only, 

were considered (without similar orientation) there 

are 65 regular point systems. As a development of this 

work, another 165 arrangements were discovered by using 

reflection and inversion operations in addition to 

those performed by Sohncke. There were three independent 

derivations deducing the existance of the 230 different 

types of three dimensional arrangements. These derivations 

were performed by Barlow in 1883, Fedorov in 1885 and 

Schoenflies in 1891. Schoenflies, using mathematical 

group theory in his derivation, probably had the greatest 

influence on later investigations and it was his work that 

was responsible for calling the symmetries of the point 

systems, "Space Groups". 

2.1.2 Unit Cells and Space Lattices 

In a crystal, the morphology reflects a dependence on the 

internal arrangement of the component parts. The pattern 

of this internal order is dependent on individual units, 

each of which is a group of linked atoms, with a fixed 

spatial relationship between them. This relationship 

has to be repeated many times to build up a crystal. 

Commonly, the smallest unit which, when repeated many 

times in three dimensions, will build up a crystal, is 

called a primitive cell. The corners of a primitive cell, 

(or building block), have the property that each is a 

point which is indistinguishable from its neighbours. An 
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array of such points is called a lattice, or a space 

lattice if it is a three dimensional arrangement. 

For three dimensional space lattices, although there 

are 230 different Space Groups, Bravais (1851) showed 

that there were only 14 basic types of lattice, as 

shown in Figure 2.1, and which are referred to as unit 

cells. Each unit cell is a building block which 

reflects the symmetries eit the structure and, when 

stacked with like building blocks, forms an infinitely 

extended mass which has no gaps between the individual 

blocks. 

For each class of unit cell the geometry is defined by 

three lattice vectors, A, B, and C; three lattice 

constants (or vector lengths) a, b, c; and the inter- 

axial angles a , B and Y ; as shown in 

Figure 2.2. Different crystals have different unit 

cell types, sizes and (where the angles between edges 

are not fixed at 90° or 120°) different angles. The unit 

cell nomenclature may be adopted and used in the analysis 

of regular packings if spheres are substituted for the 

atoms so as to form a “hard ball model". 

Thus a regular three dimensional array of spheres, when 

joined together by lines drawn through their centres, 

form a space lattice. The type of sphere packing arrange- 

ment can be represented by one of the 14 unit cells of 

Bravais. This system will provide a means of identifying 
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any packing and will avoid ambiguities when describing 

the work of contributors to this field. Consequently 

it will be the convention in this work, when describing 

packings referred to in other works, to call the packing 

by the name used in the original work, and where the 

packing description is different to that of the system 

used herein, the unit cell description will be quoted 

in brackets afterwards. For example, when reviewing 

the works of Gratton and Fraser (1935) on the packing 

of spheres, reference will be made to the tetragonal- 

sphenoidal (rhombohedral) arrangement. 

2.2 THE PACKING OF SPHERES 

Using a"hard ball model",Kepler (1611), was the first to 

recognise that a "close-packed" (face-centred cubic) array 

of spheres could be obtained either by stacking square or 

triangular packed planes; and concluded that "In the 

closest arrangement of solids (spheres), the trigonal 

order cannot occur without the square, and vice-versa". 

He demonstrated this by stacking dense packed (triangular) 

planes of spheres to form a tetrahedron, which he then 

inverted so that an edge of the tetrahedron, rather than 

a vertex, waS uppermost. He then found that, whenever one 

ball was removed from the top, the four balls of a square 

packed plane were revealed. 

A systematic study of the symmetrical arrangement of close 
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packed spheres, compatible with the external symmetry 

of crystals, was undertaken by Barlow. In 1883 he 

suggested the, then radical, concept that the separate 

atoms making up a crystal compound "Occupy distinct 

portions of space and do not loose their individuality". 

An extensive work was performed by Gratton and Fraser 

(1935) to examine how different regular arrangements of 

spheres affect the porosity and permeability of the 

resultant packings. They recognised four different 

regular packings: the cubic (simple cubic); the orthor- 

hombic (hexagonal); the rhombohedral (face-centred 

cubic); and the tetragonal-sphenoidal packing (rhombo- 

hedral); see Table 2.1. Gratton and Fraser also 

recognised the existance of 2 "dense-packed arrays", the 

face-centred cubic and the close-packed hexagonal, however 

due to their approach, both of these were considered as 

rhombohedral in their nomenclature. 

Gratton and Fraser (1935) noted that the tightest packing, 

the rhombohedral (face-centred cubic) packing was not of 

a uniform density. They recognised that the packing 

was composed of zones of tetrahedral elements and zones 

of octahedral elements. They observed that the overall 

porosity of the packing, which is widely quoted as 

25.95% is in fact a weighted average of the porosity of 

the octahedral elements (27.93%) and the porosity of the 
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tetrahedrons (22.00%). This is due to the way in which 

the triangular layers are stacked upon each other. 

As can be seen in Figure 2.3, it is not possible to 

place spheres in every available saddle of the lower 

layer. The regular stacking of layers in an A.B.A.B.A. 

manner results in the formation of tetrahedral and 

octahedral gaps. There are many alternatives of this 

stacking arrangement, for instance A.B.C.B.A.B.C.B.A, 

which leads to the formation of a hexagonal packed 

lattice. Such a situation could also occur when a 

face-centred cubic packing undergoes twinning, the 

packing that occurs in the twinned zone is in a hexagonal 

packing arrangement. 

2.3 THE BODY-CENTRED ORTHORHOMBIC ARRAY 
  

The 14 unit cells in Figure 2.1 may be grouped into the 

seven crystal systems as given in Table 2.1. Alternatively, 

except for the hexagonal and rhombohedral cells, they may 

be re-grouped according to whether they are simple, body- 

centred, face-centred, or base-centred, as shown in Figure 

2.4. 

It is the convention in crystallographic nomenclature 

to take the symbol ' # ' to mean "not necessarily 

equal to", Buerger (1970). Consequently all the body- 

centred cells can be described as body-centred 

orthorhombic, the body-centred cubic and body-centred 
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tetragonal cells being special cases of the more general 

body-centred orthorhombic unit cell. 

In Chapter 4 the mechanics of body-centred orthorhombic 

arrays will be analysed. The analysis will be shown to 

be an extension of previous work, Rennie (1959), Parkin 

(1965), Thornton (1979) dealing with face-centred cubic 

arrays. By stacking two face-centred cubic unit cells, 

an alternative body-centred orthorhombic unit cell can be 

identified as shown in Figure 2.5. This alternative 

orthorhombic cell is an equally valid building block. 

Hence it is clear that the face-centred cubic unit cell 

is a special case of the general body-centred 

orthorhombic unit cell. 

Consequently, by adopting the body-centred orthorhombic 

array as the physical model, general solutions can be 

obtained which will include body-centred tetragonal, 

body-centred cubic, and face-centred cubic arrays as 

special cases. Furthermore, for the mode of deformation 

to be analysed in Chapter 4, as will be ence the 

general body-centred orthorhombic description will remain 

valid throughout the deformation process. 

2030) The 15 Ball Dodecahedral Unit 
  

Although the structure is adequately defined by the body- 

centred orthorhombic unit cell it is more convenient to 
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adopt an alternative unit element for the analysis of 

the mechanics of the system. 

For regular arrays of rods or discs, Thornton (1977) 

adopted a rhombic unit element to define the structure. 

If two body-centred orthorhombic unit cells are stacked, 

one in top of the other, as shown in Figure 2.6 a, then 

an octahedral unit can be identified, Figure 2.6 b, 

which corresponds to a 6-ball"hard ball model",as shown 

in Figure 2.6 c. Although the octahedron, Figure 2.6 b, 

might appear to be the three-dimensional equivalent 

of Thornton's (1977) rhombic element, it is not a valid 

building block. 

As shown in Figure 2.7 a set of equal octahedral units cannot 

completely fill the space available. However, an 

examination of the voids in an assembly of octahedrons 

reveals that, as shown in Figure 2.7, the complete space 

available can be filled by three sets of interlocking 

octahedral assemblies. For the general orthorhombic 

arrangement ‘the octahedral dimensions are different for 

each set. 

Consequently it is possible to identify a dodecahedral 

unit composed of two octahedral units from each of the 

three sets. An exploded view of the dodecahedron is shown 

in Figure 2.8 which clearly illustrates the six octahedral 

components. The complete dodecahedron is shown in Figure 
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2.9. If an infinite number of such dodecahedra are 

arranged to form a body-centred orthorhombic array 

then the space available will be fully occupied and 

hence the dodecahedron is a valid building block. 

The corresponding"hard ball model"is illustrated in 

Figure 2.10 and consists of 15 spheres. This 15-ball 

dodecahedral unit will be used to define the physical 

model for the mechanical analysis provided in Chapter 4. 
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CRYSTAL 
SYSTEM 

CUBIC 

TETRAGONAL 

ORTHORHOMBIC 

RHOMBOHEDRAL 

HEXAGONAL 

MONOCLINIC 

TRICLINIC 

NOTES: (1) 

(2) 

(3) 

(4) 

TABLE 2.1 

a=b=c 

a=b¥c 

af#b7#c 

a=b=c 

a=b#c 

af#b7#c 

a#b#c 

LATTICE 
PARAMETERS 

- a=B=y=90° 

1 a=B=y=90° 

+ a=B=y=90° 

1 a=B=7790° 

BRAVAIS LATTICE 
UNIT CELLS 

SIMPLE CUBIC (1) 
BODY-CENTRED CUBIC 
FACE-CENTRED CUBIC (2) 

SIMPLE TETRAGONAL 
BODY-CENTRED TETRAGONAL 

SIMPLE ORTHORHOMBIC 
BODY-CENTRED ORTHORHOMBIC 
FACE-CENTRED ORTHORHOMBIC 
BASE-CENTRED ORTHORHOMBIC 

RHOMBOHEDRAL (3) 

» o=8=90°y=120°HEXAGONAL (4) 

1 a=y=90° #8 

1 oA B#Y#90° 

SIMPLE MONOCLINIC 
BASE-CENTRED MONOCLINIC 

TRICLINIC 

EQUIVALENT OF THE "CUBIC"OF GRATTON & FRASER 
(1935) 

" "RHOMBOHEDRAL" " " " 

“TETRAGONAL-SPHENOIDAL" " ” 

" "ORTHORHOMBIC" ww " 

CLASSIFICATION OF UNIT CELLS. 
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TRICLINIC SIMPLE BASE-CENTRED 
MONOCLINIC MONOCLINIC 

SIMPLE BASE-CENTRED BODY-CENTRED . FACE-CENTRED 
ORTHORHOMBIC ORTHORHOMBIC © ORTHORHOMBIC = opruigrtiomBic 

  

          

  

HEXAGONAL RHOMBOHEDRAL SIMPLE BODY-CENTRED 
TETRAGONAL TETRAGONAL 

it fe B 
SIMPLE : BODY-CENTRED 
CUBIC cuBIC EE 

  

FIGURE 2.1 THE 14 UNIT CELLS ACCORDING TO BRAVAIS 
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» B, C - LATTICE VECTORS 
» b, c - LATTICE CONSTANTS 

By Y - LATTICE INTER-AXIAL ANGLES g
o
>
 

FIGURE 2.2 TYPICAL UNIT CELL SHOWING THE LATTICE 
PARAMETERS 
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POSSIBLE 

SPHERE 

POSITIONS 

  

FIGURE 2.3 ARRANGEMENT OF SPHERES 
SHOWING ALTERNATING LAYER STRUCTURE 
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RHOMBOHEDRAL HEXAGONAL 

FIGURE 2.4 THE 14 BRAVAIS LATTICES ORDERED ACCORDING TO SPHERE 
DISTRIBUTION 
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FIGURE 2.5 TWO FACE-CENTRED CUBIC UNIT CELLS STACKED 
VERTICALLY TO SHOW A BODY-CENTRED 
ORTHORHOMBIC UNIT CELL CONTAINED WITHIN 
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(B) OCTAHEDRAL UNIT   

  

    

  

(A) TWO BODY-CENTRED ORTHORHOMBIC 
UNIT CELLS STACKED VERTICALLY 

(C) SIX BALL HARD BALL MODEL 
OF AN OCTAHEDRAL UNIT 

FIGURE 2.6 FORMATION OF OCTAHEDRAL UNITS FROM BODY-CENTRED 

ORTHORHOMBIC UNIT CELLS 
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FIGURE 2.7 DIAGRAMMATIC REPRESENTATION OF INTERLOCKING 
OCTAHEDRAL ASSEMBLIES 
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FIGURE 2.9 THE COMPLETE DODECAHEDRON 
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FIGURE 2.10 THE 15 SPHERE HARD BALL MODEL OF A 

DODECAHEDRAL UNIT 
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CHAPTER THREE 

3. THE MECHANICS OF REGULAR ARRAYS - A REVIEW 

3.1 INTRODUCTION 

The macroscopic stress-strain behaviour of regular 

arrays can be related to the force-displacement 

relationships at the interparticle contacts. The 

contacts behaviour will be dependent not only on the 

applied external loadings but also on the geometry of 

the array and the mechanical properties of the particles. 

Hence, the overall deformation of the assembly will 

be due to changes in the geometrical arrangement of 

the particles and deformation of the particles them- 

selves. 

3.2 ELASTIC BEHAVIOUR OF SPHERES 

3.2.1 Elastic Compliance due to Normal Contact Forces 

If two similar elastic spheres, each of radius’R, are 

in contact under the action of a normal force, N, the 

theory of Hertz, see Timoshenko and Goodier (1951), 

states that the radius of the contact area, a, and the 

normal displacement of the contact, aq , are given 

by 

a= {3(1-v)NR/8e} 4 +++ (3.1) 
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and 

= = 5 2°, a = 2{3(1-v)N/8GR*} oes (3.2) 

wherev andG are the Poissons ratio and shear 

modulus for the spheres. 

By combining the two equations, Duffy and Mindlin 

(1957) obtained the following expression for the 

normal compliance, c 

c = da/dN = (1-v)/2Ga oe (3.3 

Which shows that the load deformation curve is non 

linear due to the variation of awithNas given by 

(3.1). 

For two spheres in contact having different radii 

and different elastic properties, similar expressions 

exist, Timoshenko and Goodier (1951), and take the 

form 

1 Ys 
a = {3mNR)R, (K,+K,)/4(R,+R,)} Se0 (364) 

and 

_ 4 47% 
a = {3mN(K,+K>) (Ry+R,) “/4(R]R>) “} 2... (3.5) 

where K, = (1-v5) /TE, and Ky = (1-v5) /TE 4 define 

the elastic properties of the two spheres. The normal 
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compliance can then be determined and is given by 

c= da/dn={(1-v,)/G,+(1-v5) /G,}/4a +++ (3.6) 

which degenerates to (3.3) if the two spheres 

possess the same elastic properties. 

3.2.2 Elastic Compliance due to Combined Normal 
  

and Tangential Contact Forces 

Hertzian contact theory was extended by Catteneo (1938) 

and Mindlin (1949) to account for a tangential force 

component, T. According to these works, when a 

uniformly increasing tangential force is added to a 

contact which is under a constant normal force, then 

deformation will occur at that contact. As shown in 

Figure 3.1, the deformation is initiated on the 

circumference of the contact area and then propagates 

radially inwards. Thus, the portion on which deformation 

occurs is an annulus, of outer radius, a, and inner 

radius, c, where 

c= a(1-T/uN) +22(3-7) 

and pisthe coefficient of friction between the spheres. 

The relative tangential movement of the sphere centres 

was then expressed as 

§ = 3uN(2-v) (1-{1-T/un} ”) seca sil 3eS) 

leading to an expression for the tangential compliance 

S = dé/dT = (2-v) /4Ga(1-T/un) 73 +e- (3.9) 
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which was confirmed experimentally by Johnson (1955). 

The effects produced by reversing the tangential force 

were studied by Mindlin, Mason, Osmer and Deresiewicz 

(1951). Their work indicated that, as a result of the 

distortion at the contact the force-displacement 

relationship changes upon reversals. Should the 

tangential force oscillate between +r" (such that 

T <un ), then it was argued that a stable cycle would 

occur after the first quarter cycle, see Figure 3.2. 

The existance of an annulus of deformation, with the 

subject of equation 3.6 as its inner radius, was 

experimentally verified in the same work, and was also 

confirmed by Johnson's (1955) experiments. 

A later extension of this theory was provided by 

Mindlin and Deresiewicz (1953). They considered a 

varying additional force of constant obliquity 

applied across a contact under an existing initial 

normal force. This provided a load-displacement 

relation for first loading and unloading and then for 

the subsequent stabilised cycle. In such a stabilised 

cycle, if the tangential force component oscillated 

between iT, then tangential compliance during loading 

would be given by 

Sp = Se {0+ (1-6) {1- (148) (L"+n) /2(1+0L) }7 7} 
eeei(3 10) 
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u 

* 

where 1 T/UN, L =T /uN, 

8 = u/8 8 = aT/aN > 

and No is the initial normal force at the contact. 

For the unloading part of the stabilised cycle, the 

compliance, Su, is obtained by reversing the signs 

of © and L. 

A more recent work by Walton (1978), however, considered 

the case where the contact forces are initially zero 

and then both tangential and normal forces are increased 

simultaneously: with their ratio constant during the 

increase. It was found that no slip annulus is formed 

if T < uN, and Walton (1978) concluded that if slip 

occured at all it would take the form of sliding (slip 

over the whole of the contact area) when T= uN . 

Consequently it was suggested that the formation of a 

slip annulus depends on whether the spheres are first 

compressed normally and then sheared, or whether the 

two motions occur simultaneously. 

3.2.3 Elastic Behaviour of Regular Packings 

The theories pertaining to two similar spheres in 

contact (Sections 3.1 and 3.2), were used by Duffy 

and Mindlin (1957) to analyse a Face-Centred Cubic 

array of elastic spheres. By satisfying both 

equilibrium and compatability, a relationship was 

obtained between the relative displacement increments 
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and the load increments. The resulting non-linear, 

differential stress-strain relationship, however, 

requires the integration to be performed over the 

entire loading history. A similar method of analysis 

has also been used to analyse other regular arrange- 

ments: - Simple Cubic, Deresiewicz (1958); Close- 

packed Hexagonal, Duffy (1959). 

3.3 IRRECOVERABLE DEFORMATION DUE TO INTERPARTICLE SLIP 

Both Deresiewicz (1958) and Thurston and Deresiewicz 

(1959) recognised that if T =—N then the tangential 

compliance dé/dT becomes infinity. Hence they deduced 

that for regular arrays this would constitute failure 

of the packing since Coulomb type slip would occur 

between spheres resulting in a change in the configuration 

of the packing. They noted that the displacements of the 

spheres due to failure were several orders of magnitude 

greater than the elastic deformations previously 

examined and described this arrangement as a "series of 

shearing displacements of individual layers of spheres". 

Since such relative displacements (slips) are 

irrecoverable on unloading, the corresponding macro- 

scopic strains can be considered as plastic in contrast 

to the macroscopic elastic strains resulting from the 

deformation of the spheres themselves. Consequently, 

investigations of irrecoverable deformation are 

considerably simplified by assuming the spheres to be 
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rigid, thereby eliminating the recoverable (elastic 

behaviour. 

3.3.1 Two Dimensional Rod Models 
  

The closest packing arrangement of discs or rods is 

shown in Figure (3.3) and was analysed by Rowe (1962), 

who defined the structure by two anglesoa and gas 

shown. As can be seen, 8 defines the inclination 

of the contact planes and o defines the orientation 

of the inclined rows of contiguous rods. The failure 

mechanism was considered to result in the rods splaying 

apart in the horizontal directions and moving vertically 

together into the spaces created by the horizontal 

movement. The possibility of body rotation of the 

packing occuring during post-failure deformation was 

not considered. 

By considering separately the statics and kinematics 

of the system, Rowe (1962) derived the following 

expressions to define the principal stress ratio and the 

ratio of principal strain-increments, 

94/55 = tana.tan (+8) ates (Sie) ds) 

-E5/e, = tana.tang o0- (3.12 

which were then combined to eliminate g and give 
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tan(> +8) 
aaa Li 

—s ese (ael3) 
FE tang 

in which $7 is the angle of interparticle friction 

and the left side of the equation was taken to be the 

ratio of work-in to work-out. Rowe (1962) observed 

that this ratio is unity for frictionless rods; and 

concluded that, for rods with friction, the 'work 

ratio' was greater than unity as a result of the 

convertion of internal work into frictional heat. 

Experimental results reported by Rowe (1962) showed 

good agreement with the predicted relative movements 

of the rods. The maximum principal stress ratio, 

however, was significantly less than predicted and was 

obtained only after a small axial strain. This was 

attributed to slight imperfections in the rods which 

resulted in small irregularities in the packing 

arrangement. Ultimate collapse of the packing was 

described as a ‘catastrophic movement' which occured 

as the principal stress ratio approached unity. The 

collapse mechanism consisted of the rods on one plane 

moving right past the supporting rods to form new contacts 

on the next row. The rods in the areas to either side 

of this plane then returned to their original configuration. 

Inspection of Figure 3.3 clearly indicates that the 

structure of the array is not isotropic and hence the 

strength of the array would be expected to vary with the 
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direction of the applied stresses. The dependence on 

the relative orientation of the packing geometry was 

recognised by Parkin (1964) who considered the 

orientation of the applied stress system as a variable. 

Parkin (1964) identified that failure occured when 

interparticle friction is overcome on one or more sets 

of diametrically opposed contact planes and that this 

leads to the formation of gaps along one of the three 

sets of contiguous rows of rods. By defining © as the 

angle between the major principal stress plane and the 

direction of one of the contiguous rows of rods (the 

potential failure plane), see Figure 3.4, Parkin (1964) 

obtained the following solution for the strength of the 

packing 

oy cos (60+26-9 )-cos(60-9 ) 
Se = ; eee (3.14) 
85 cos (60+2 =P) cos (60=977) 

which provided the family of solutions shown in Figure 

3.5, which have minimum values of 

Q we 

= tan? (60+, /2) nee (Gels) 

Q 

when 9 = 60+4,/2 . 

Thornton (1977) extended Parkins (1964) analysis to 

initially less dense arrangements by considering the 

characteristic packing angle i (defined in Figure 3.6 
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as a variable. The horizontal rows of contiguous 

rods were considered to be 'the incipient failure 

planes' and the ratio of the stresses on these planes 

were determined as 

= cot(A-$.) ee a aetG) 
5 u 

n 

which leads to 

cos (A+26-9. )-cos (A-o 
ee ee areal satay) eK 

Fy eos (A520-9 )+cos (A$) 

or 

9 —= tanétan{ (180-8) -(A-$,) } +++ (3.18) 
Go 

2 

The family of solutions given by (3.18) are shown in 

Figure 3.7 and have minimum values of 

= cot? 79) we (3.19) 
2 

when © = 90° T50=6,) and exhibit infinite 

discontinuities at 6 = 90° =(A=97) and 90°. 

It was also identified that, fore = 90° - 1/2 , 

the directions of principal stress and strain-increment 

coincided and that the corresponding solution is 

i 
—— = Cot. (1/2) cok (A/2 ao mie (Se20)) 
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and that this corresponds to Rowe's (1962) solution 

for A = 60°. 

Since A was considered to be the instantaneous packing 

angle, the solution given by (3.18) was considered to 

be also valid during post-failure deformation. This 

lead Thornton (1977) to consider the solutions in 

terms of plasticity theory and a flow rule was identified, 

which was equivalent to (3.18) and expressed in conventional 

soil mechanics terminology as 

sin (9 +v) 
sin ¢ = ———4— wae (3022) 

cos (9,2) y 

where 

sin 9 = wee (de22) 

  

Ores 

and » is the angle if internal shearing resistance. 

Also 

mies) 
sin v = eee (3.23) 

(ey #65) 

where v is the angle of dilatation. 

The angle y is the deviation angle between the directions 

of principal stress and strain-increment, and hence when 

Ww = 0 the coaxial flow rule is obtained. 

sin » = sin (o,+¥) / cos ry «es (32:24) 
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The flow rule corresponding to the minimum strength 

solutions given by (3.19) was shown to be 

sin > = sin corny) Rees 

since this case is obtained when vo (/2- 

Although both Parkin (1964) and Thornton (1977) considered 

the relative orientation of the packing to the applied 

stress system, the amount of rotation of the principal 

stresses considered was limited to compressive stress 

states. Complete rotation of the principal stresses so 

as to include extension conditions was examined by 

Molenkamp (1980), who showed that the strength in 

extension was less than the strength in compression. 

3.3.2 Regular arrays of spheres - axisymmetric 
  

compression 

In their analysis of the elastic behaviour of face- 

centred cubic arrays of equal spheres, Thurston and 

Deresiewicz (1959) identified limiting conditions which 

would result in an alteration to the geometric arrange- 

ment of the spheres. They considered axisymmetric 

compression states of stress and obtained an 

expression for thestrength of the array which was 

given as 

3 Y6+8y «+ (3.26) 
    

¥6-4u 
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wherel is the coefficient of interparticle friction. 

This expression can be transformed and expanded to 

give 

—= = 2 + 2761 + 8u7+ (higher terms in yp) +++ (3-27) 

a 

However, although they considered axisymmetric stress 

conditions, the assumed deformation mechanism was 

described as a series of shearing displacements of 

adjacent layers which occured in one direction only. 

It was pointed out by Thornton (1974) that this was 

a plane strain mechanism and that equation 3.27 agrees 

with plane stress solutions obtained by Leussink and 

Wittke (1963) and Rennie (1959), see section 3.3.3. 

Both face-centred cubic and close-packed hexagonal 

arrays were analysed by Dantu (1961) who determined the 

strength of each array under axisymmetric compression 

conditions. The stress-ratio to cause failure for the 

face-centred cubic array was given as 

ee ee mer(e28) 
a3 - Lu 

which expands to give 

ea mete Ant 4u*+ (higher terms in y) erin (eco) 

w 

For the close-packed hexagonal packing, failure was 

defined by 

ple eee) (3.30) a aT ~o(3. 

55



or, in expanded form 

= 4+ 672u+ 12u2+ (higher terms in yp) ...(3.31 

Rowe (1962) also analysed both face-centred cubic and 

close-packed hexagonal arrangements under axisymmetric 

compression conditions. Following a similar argument 

to that which he presented for regular arrays of rods, 

see section 3.3.1, Rowe (1962) was able to derive general 

expressions which were valid for both types of array 

and remained valid during post-failure deformation. The 

principal stress-ratio was defined by 

co tana Ren (0 aie) ave (3/032) 

and the corresponding strain-increment by 

«+. (3.33) 

  

Where q represents the current packing angle and @ 

the angle between the contact plane and the major 

principal stress direction. Thornton (1974) showed 

that equation (3.32) was in agreement with Dantu's 

(1961) strength solutions when the appropriate values 

of gq andg were substituted. 

Leussink and Wittke (1963) analysed the strength and 

deformation of both face-centred cubic and close-packed 
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hexagonal arrays of rigid spheres. For axisymmetric 

compression states of stress, they considered that the 

packing type remained constant during deformation which 

merely produced a change in the angle of contact 

between spheres. Consequently, they were able to 

obtain a general solution for the principal stress 

ratio which was given as 

Go oho ‘ 
= 2 tan Jo tan (39+) wen (Oe od) 

w 

where p is the angle of interparticle friction and Jo 

is the angle between the contact normals and the minor 

principal plane. Equation (3.34) corresponds to Rowe's 

(1962) solution, equation (3.32), and is therefore also 

in agreement with equations (3.28) and (3.30) obtained 

by Dantu (1961) at failure. 

3.3.3 Regular arrays of spheres - plane strain 
  

In addition to axisymmetric compression, Leussink and 

Wittke (1963) also analysed plane strain deformation 

of both face-centred cubic and close-packed hexagonal 

arrays. Under plane strain conditions the "type of 

packing" was considered to alter during deformation 

and, hence, they were unable to obtain a general 

solution. The principal stress ratio in plane strain, 

for the face-centred cubic array, was given as 

(tanjg+tano/(1+sin?j9) *) 
= 2tanjg ————______——_- Pee(3e35) 

( ) 1-2tanptanj/(1+sin* 5) 
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and for the close-packed hexagonal case 

o loan eens : a : 
—= Ztanjy(tanjg+tanp) /(1 tanptanj,) 
0 

w Been ; in?5,) 4 + gtanj, (tanj,+tanp/(1+3sin?j,) *) «ss (3.36) 
  

(1-4tanptanj9/(1+3sin?j9) 4) 

It was shown by Thornton (1974) that the expanded forms 

of equations (3.35) and (3.36) are 

Oy felt 3e3 7) 
— = 2 + 276 + 8u7+ (higher terms in yu) 

53 
and 

san (3038) 

  

oS 
4+2/2 (1+2/3) p+36u72+(higher terms in ,) 

respectively. 

The strength of a face-centred cubic packing of 

rigid spheres was analysed by Rennie (1959) who 

recognised that the separation distance between the 

centre of a typical sphere and the centres of each of 

the twelve spheres in contact with it cannot decrease 

during shear. From this observation he was able to 

demonstrate that for a small strain S to be possible 

there must be six independent expressions of the form 

2x'Sx > 0 «+. (3.39) 

where x defines the co-ordinates of the centre of a 
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sphere in contact with the reference sphere. The 

six expressions were given as 

einen 
$11 +2¥2S) 5-28) 3+2S5 92/28, 3483, >0 

$1 142728) +28) +285 5+2/2855+533 > 0 

Sook 
$1 172V2S) 5-28, 3+2855+2V2S, 4453, 20 Reet 

$1 172¥2S, 4428) 3+2855-2728, 5455, 20 

It was shown that failure would occur if S,p0 with 

all other expressions equal to zero and the corresponding 

strain tensor was given as 

2 0 0 

s = Or =1 0 

0 0 0 

++. (3.41) 

which defines a plane strain condition. 

To obtain the stress tensor Rennie (1959) related 

the discrete forces acting on a typical sphere to the 

average stress tensor for the assembly as a whole by 

considering the average stress tensor inside one sphere 

within the array. The average stress tensor for a 

typical sphere was taken as the volume integral of the 

stress tensor through-out a sphere,which was expressed 

as the summation of the products of the discrete contact 

forces and the co-ordinates of their points of action on 

the boundary of the sphere. 

Hence the stress tensor was shown to be a multiple of 
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poe eae o 0 
3 

6 BY 3+2yvo=2ud f ses( 342) 

0 0 1+ 

where $ was taken as the angle between the principal 

axes of stress and strain. From (3.42) the following 

equation was obtained 

o,+o 
ies = 3{ (144u/273- 416/73) 24492} 2 .23(3643)   

Siae3 

which has a maximum of 

  

3/1+4u773 
Gee +--+ (3.44) 

14+4y/7273 

when 

V3u+472y2 
(= ——. vee (3-45) 

3+4y? 

Hence it was shown that the minimum (and therefore 

most critical) principal stress ratio was 

9, 3V1+4u?/3+14+4uv273 
FS weai(30 46 
o3 3V14+47 /3-1-4 1/273 

Rennie (1959) gave the expanded form of (3.46) as 

Qa 
~ = 2+2uv6+7y?-8/6u°/9+(higher terms in u) ... (3.47 

Q 
w 
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which is incorrect, Thornton (1974), and should be 

1 = 242/6+712+8/6u3/3+(higher terms in u)..(3.48) 
Oo 

o 

w 

Therefore, by permitting the stresses freedom to 

rotate about the intermediate principal stress 

direction, Rennie (1959) demonstrated that the co- 

axial situation (principal stress directions 

coinciding with principal strain directions) was not 

the most favourable orientation for collapse to occur. 

He concluded that the failure criterion was given by 

(3.48), which corresponds to a non-coaxial case with 

¢ defined by (3.45), but he considered it possible 

that a rotation of the stresses about some other 

axis might give an even more favourable orientation. 

3.3.4 Regular Arrays of Spheres - General Case 

Rennie's (1959) analysis of a face-centred cubic array 

of spheres was restricted to plane strain conditions. 

Parkin (1965) extended this work to cover the range 

between plane strain and axisymmetric compression by 

considering two inequalities in (3.40). Parkin (1965 

considered the possibility of both S p0 and 3570), 

which corresponds to the case of broken contacts on 

perpendicular diagonals. The corresponding strain- 

increment tensor was given as 

20 7 0 C7) 07 “0 

Ss = a0) -L O| +b 10 -1 76 +++ (3.49) 

0| 6 0 0.0 
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where a+b=1. 

It was assumed that the intermediate principal axes 

of stress and strain-increment coincided and a 

solution was sought for the range l>axl/2 . The 

contribution to the stress tensor of the normal 

contact forces was the same as that obtained by 

Rennie (1959), but the tangential force contribution 

was found to be 

2uqd 2 6 o 
— 0 -@tbh 0 wasi'3-50) 
3/2a*+ab+3/2b Coes 

Taking 8=l-q and F=/3/2a*+ab+3/2b* 

Parkin (1965) obtained the following expression 

(0,4+04)* © 9F?+12ubF (1-8) +4u*b? (1-8) * essa) 

(9,793)? F?+4uF(2atb) (1-8) +4y? (2atb) ? (1-8) *+8F78? 
a 

and by differentiating the right hand side with respect 

to g , the "critical" value of g was obtained as 

u(3atb) (F+2u(2atb) ) 
ee sew seo2) 

6F*+4ubF+2u7 (3atb) (2a+b) 

For specific values of % /0, the "critical" strength, 

0, / 04 was obtained by numerical solutions of (3.51), 

(3.52) and the relationship 

o F-2bu (1-8) 
  (9)/o3 +1) see (3'6 53) 

oO 3F+2bu (1-8) 
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Thornton (1979) attempted to extend Parkin's (1965 

analysis by permitting three degress of rotational 

freedom to the applied stress system. Changing to 

the usual soil mechanics sign convention for stresses 

and strains (compressive positive), and re-labelling 

the reference axes, Thornton (1979) re-wrote (3.49) 

to define the strain increment tensor as 

(atb) 0 0 

c= 0 =2b 0 2 (3004) 

0 0-24 

The normal contact force contribution to the stress 

tensor was expressed as 

igus ~pigogts Bogorts 

da |'=ptq=rts  ptqirts ~p=gqerts 
Vv 2v2 4 4 

Pprg-rt+s -p-gtr+s pt+gtrts 
2v2 4 4 

ven (3eO>) 

where p, q, r, and s are the normal forces at the 

four pairs of inclined contact planes, and V was, 

incorrectly (see Chapter 4) taken as the volume of 

a typical sphere. The contribution of the tangential 

forces was derived as 

ath 0 0 
2fd 
VE 0b 0 o-- (3.56) 

0 0 =a 
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where f = tn and nN is the smallest of the normal 

forces p, gq, r and s. 

Since the analysis was concerned with stress ratios, 

Thornton (1979) neglected the component d/V,and using 

(3.55) obtained the following expressions for the 

normal contact forces 

B= 2 + Tx + T/V2 + Ty/V2 

=1 - fa x + eal ty /v2 Cay bg es, 

q=l1l- Tx c Tf V2 + thy/V2 

p= 15 Ts + T4/72 - a2 

The stress tensor was then defined as a multiple of 

2+2(atb) £/F Toy ce 

ae 1-2bf/F Tye veh 3098) 

ay Tay 1-2af/F 

and the three degrees of rotational freedom were supplied 

to the applied stress system by arbitrarily varying 

the shear stress components in (3.58). 

However, it was pointed out by Parkin (1981) that this 

procedure was not admissible since the strain-increment 

tensor imposes restrictions on the interparticle forces 

which, therefore, invalidate solutions obtained for 

rotations about any but the intermediate principal strain- 
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increment direction. This criticism by Parkin (1981) 

resulted in a re-examination of the problem by 

Thornton (1981) who demonstrated that gap formation 

along perpendicular diagonals was only possible if 

slip occured at all contacts, with the consequence 

that the stress and strain increment tensors must be 

coaxial. This lead to the conclusion by Thornton 

(1981) that Parkin's (1965) solutions were inadmissible 

and that the only valid solutions were the original 

plane strain solution of Rennie (1959) and the general 

co-axial solution obtained by Thornton (1981). 

If slip occurs at all contacts then the normal forces 

are all equal to n (say) and Thornton's (1979) co-axial 

solution may be written as 

2+2(atb) u/F 0 0 

= nd 0 1-2bu/F 0 (3.59) 
ae} V ie 

0 0 1-2ayu/F 
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INITIAL OUTLINES ~----=== 
DEFORMED OUTLINE ~—_—— 

  

FIGURE 3.1 DEFORMATION OF TWO IDENTICAL, HOMOGENEOUS 
ELASTIC SPHERES IN OBLIQUE CONTACT 

  

  

+6 

2,4,6   
  

FIGURE 3.2 TYPICAL PLOT ILLUSTRATING THE VARIATION OF 
INTER-PARTICLE DEFORMATION WITH APPLIED 
TANGENTIAL FORCE



  

  

  

  

FIGURE 3.3 CLOSEST PACKING ARRANGEMENT OF RODS (OR DISCS) 
SHOWING THE PACKING ANGLES GAND 8 ACCORDING TO 
ROWE (1962) 
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FIGURE 3.4 PARKIN'S (1965) GENERAL TWO-DIMENSIONAL MODEL 

9? S70 - 

404 Pe ena 

  
  

  

a 4 5 6 O1/o2 

FIGURE 3.5 PARKIN'S (1965) TWO-DIMENSIONAL STRENGTH SOLUTION 
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FIGURE 3.6 PACKING ANGLE FOR INITIALLY LESS DENSE PACKINGS 
AFTER THORNTON 1977 

r O1/o2 (A=) =30° 

2075 ‘ 

40° | 

10 se 

\Y 
0 30 60 90 

  0 
8 

FIGURE 3.7 SOLUTIONS RESULTING FROM THORNTON'S (1977) 
ANALYSIS



CHAPTER FOUR 

4. THE ANALYSIS OF BODY-CENTRED ORTHORHOMBIC ARRAYS OF 

RIGID SPHERES 

This chapter presents an analysis of a class of regular 

packings which can be termed body-centred orthorhombic, 

see Section 2.3. The spheres are assumed to be rigid 

and so the analysis is solely concerned with the 

conditions which will produce slip at the interparticle 

contacts. Interparticle slip will result in a change 

in the geometry of the array and in this way the material 

(the assembly of spheres) can be said to have yielded. 

By examining the conditions necessary for slip to occur 

the corresponding stress and strain-increment tensors 

are derived. The results of the analysis are then plotted 

in principal stress space and, from the geometrical 

interpretation of the solutions, yield conditions are 

identified and compared with well known concepts of 

plasticity theory. The analysis presented in this 

chapter has been published eieeaneret Thornton and 

Blackburn (1981). 

Throughout the analysis, the usual soil mechanics 

convention that compressive stresses and strain-increments 

are positive will be adopted. 
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4.1 DERIVATION OF THE STRAIN-INCREMENT TENSOR 
  

The body=centred orthorhombic unit cell is illustrated 

in Figure 4.1 which also shows the cartesian co-ordinate 

reference frane (x,y,z). The dimensions of the unit cell, 

as shown, are measured between sphere centres in the x,y 

and z directions. The terms 1,m and n are the direction 

cosines of the lines joining the sphere centres to the 

centre of the central sphere, and D is the diameter of 

the spheres. By altering the values of the direction 

cosines, different body-centred orthorhombic packings 

may be analysed. The spheres, however, impose restrictions 

on the possible values of the direction cosines which 

must be in the range 1//2 to 1/2. 

“Although the structure is adequately defined by the unit 

cell shown in Figure 4.1, it is more convenient to consider 

the alternative building block of fifteen spheres which, 

together, form the "hard ball model" of a dodecahedron, 

Figure 4.2 (a). This permits a clear examination of the 

kinematics-of the body-centred orthorhombic array. It 

can be seen that the central sphere is in contact with 

eight other spheres, at contact points P,Q,R and S, where 

each point represents a pair of contacts on a common 

diameter. In addition, there are six other spheres 

separated from the central sphere by gaps at T,U and V 

(Figure 4.2 (b)). 

Th



If such an arrangement were to be subjected to a small, 

uniform strain-increment, Geis , then the change in the 

square of the distances between the centres of each of 

the surrounding spheres and that of the central one will 

be 

oO
 u (X,+dX,) (KX, +dX,) - X,X, «2+ (4.1) 

A. ia 

which, to a first order approximation in ax,, leads to 

6 = 2X, dx, +++ (4.2) 

but since ax; = Ses «<0 (4,3) 

6 = 2X ide, 5X, 22 (4.4) 

to a first order approximation in ax, . 

From an examination of the geometry of the body-centred 

orthorhcmbic packing, it has been shown that co-axiality 

is associated with a "multiple slip" mechanism in which 

slip occurs at all the contact points, Thornton (1981). 

As a result there is no gap formation at the P,Q,R and 

S contact points but the initial gaps at the T,U and V 

locations may change. Therefore, from equation 4.4, the 

following equations may be obtained: 

2 2 26 a = = de_ 41 +e, ym +de, n 2de, yim ade, mnt2de, nl oe) Om. .(4.5 (a))) 

2 x 2 as oe aes del +e, ™ +de yin +2de_ im 2de,, mn ade, nl 8 0 ...(4.5 (b)) 
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2 2 oe = =§ = ase (Als de, de, m +de,n 2de, yimt2de, mn 2de ,n1=6 =0 (4.5(c)) 

2 2 2 om = de, si vdeo +den +2deimt2de, mnt2de, n1=6 .=0 «++ (4.5(d)) 

8dem*D*=6,. oe (4.5(e)) 
v¥ 

Bde, n?D*=6 | oe (4-5(£)) 

Bde>5t D8. vee (465g) } 

which shows that 

coe 6,/(8D717) wee (426\(a)) 

dey, = 8, /(8D2m?) ... (4.6(b) ) 

de, = 6,/(8D?n?) +++ (4.6(c) 

By substituting equations 4.6 into equations 4.5 and 

solving simultaneously, it is found that the z,y and x 

axes are principal strain-increment directions. 

Using the substitutions 

a = 8,/(8D*) sa hae) 

b = 8,/(8D") wis (428) 

=. 2 c = 6,/(8D*) «woh 4e9) 

ae



the strain-increment tensor may then be written as 

Gf/l* 0 0 

few SO yee & <s(het0) 

with the conditions that atb+c=0 and that 

1*+m?4+n? = 1 

4.2 DERIVATION OF THE STRESS TENSOR 
  

The forces acting on the surface of the central sphere 

are discrete forces acting at the points of contacts 

with adjacent spheres. Consequently the state of stress 

within the sphere is not homogeneous. However, the average 

stress tensor within a sphere will be identical for all 

spheres due to the regular arrangement of the spheres. — 

Therefore, the macroscopic state of stress,0, is ay 

obtained directly from the average stress tensor, 555 ; 

for a typical sphere. 

If, within a volume V, there is a state of stress which 

is in equilibrium, but arbitrarily distributed within 

5 may be 

a =F F494 54V ae ad) 

the sphere, then the average state of stress 0, 

defined as 945 

Applying Gaus's Divergence Theorem, the above volume 

integral may be replaced by a surface integral to give 

ae 015 -% £,x, +598 swt hike 
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where xX; is the "i" co-ordinate of a point on the 

surface S, and t; is the "j" component of the 

traction acting on S at that particular point. 

However, since the tractions are discrete forces, 

the surface integral may be replaced by a summation 

over the "N" forces acting on the surface. Therefore, 

the average stress Sij4is defined as 

<i, * 300 ze; 2e8i(4013) 
where V is the volume of the space occupied by each 

sphere, on which there are n discrete forces t, acting 

at the contacts defined by the co-ordinates Xj- Hence, 

the individual contributions to the average stress tensor 

of the normal and tangential contact forces can be 

obtained by multiplying the orthogonal components of 

these forces by the co-ordinates of their contact points. 

The average stress tensor, therefore, can be considered 

to be the sum of the normal force contribution, cy 

and the tangential force contribution Gea e thus 
13 

Toa Ge oe meak(4e1a) G5 = 955 + S35 ( 

Imposing the restriction of no particle spin, all the 

tangential forces must be equal in order to satisfy moment 

equilibrium for each sphere. As coaxiality is associated 

with slip at all contacts, all the normal forces must 

be equal. Therefore the normal forces may be denoted by 

75:



p and the tangential forces by f=yp at every contact. 

The normal force contribution is obtained from the 

product 

S172 et 22 elo || eens 
5° = BP) m2 m/2_m/2_—s m2 fem on lesen (4ers) 

“n/2 -n/2 n/2 n/2 -l mon 

i mn 
which gives 

120 0 
ee Nee aD 2 

tapes ayer || pe Dae «++ (4.16) 
0:2 = 0narene 

The direction cosines of the tangential forces are 

determined by the strain-increment tensor and are given 

by the expression 

dx, c 
“ eA) 

(dx, dx, ) 
where dx, = d Sash al = 

By considering each contact individually it is found 

that the direction cosines of the tangential forces are:- 

-c/Fl , b/Fm , -a/Fn , at the P contacts 

c/Fl , b/Fm , -a/Fn , at the Q contacts 

-c/Fl , b/Fm , a/Fn , at the R contacts 

c/Fl , b/Fm, a/Fn , at the S contacts 

+++ (4.18) 

where F? = ¢?/1?+b?/m?+a?/n? oniCS eho) 
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Having thus defined the directions of the tangential 

forces, the tangential force contribution to the 

stress tensor is obtained from 

“1/2 1/2 -1/2 1/2][-c/Fl b/Fm -a/Fn 
5. .T . 2upDd m/2. m/2 m/2 = m/2 c/Fl b/Fm -a/Fn Ole 

ij Vv 
-n/2  <-n/2 n/2 n/2||-c/Fl b/Fm a/Fn 

c/Fl b/Fm a/Fn 

see (4.20) 

which leads to 

ic 0 
og, T= 4uepD | 9 

ay VE 

Cee Beei(4s 21) 

Substituting the two individual contributions 4.16 and 

4.21 into equation 4.14 the average stress tensor is 

obtained 

1?+uc/F 0 0 

i547 ape 0 m@+ib/F 0 wee (4022) 
0 0 n?+uya/F 

This equation indicates that the first stress invarient 

= = Vo -- (4. I, Ora yy osx 4pD/ © (4.23 

and the interparticle contact forces are given by 

p = 1,V/4D and £ = pI,V/4D «.- (4.24) 

Therefore the average stress tensor may be rewritten as 

l*+uc/F 0 ) 
oc = 2 eee (4.2 G57 3, 0 m@+ib/F 0 (4.25) 

) 0 n*+ua/F 
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The average stress tensor, equation 4.25, applies to 

all body-centred orthorhombic packings and defines the 

states of stress which will cause yield, the yield 

mechanism being defined by the strain-increment tensor, 

equation 4.10. Given the physical properties of the 

array (structure and interparticle friction) it is 

therefore possible, for an arbitrary mean stress, to 

identify the complete range of stress states which will 

cause yield by varying the parameters a,b and c. 

4.3 YIELD CONDITIONS FOR BODY-CENTRED TETRAGONAL 
  

PACKINGS 

Before discussing the solutions obtained from equations 

4.10 and 4.25, it will be useful to introduce a piece 

of nomenclature to assist in the identification of the 

different packings under consideration. It has already 

been shown that a range of regular packings can be 

analysed using the body-centred orthorhombic model, 

the actual type of packing being studied is only 

dependent on the values allocated to 1,m and n as shown 

in Figure 4.1 and as used in equation 4.10 and 4.25. 

The equations of Sections 4.1 and 4.2 apply to the complete 

range of body-centred orthorhombic packings, but for the 

sake of simplicity of presentation the remainder of this 

chapter will restrict its attention to body-centred 

tetragonal packings. In these packings, two of the 
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direction cosines are equal and because of symmetry 

it is sufficient to consider the case where m=n. 

However, the results would still be valid for the other 

body-centred tetragonal cases where l=n or l=m. 

While a range of values can be allocated to 1,m and n, 

there are limiting cases. These are dictated by the 

physical arrangement of the spheres. It can be seen 

from Figure 4.1 that such limiting cases occur when there 

are no gaps at either T,U or V. These conditions 

exist when 

1? = 1/2) m = 1/4 and n* 1/4 

and 
2 i= law em 3/8 and n? = 3/8 

+-- (4.26) 

These packings and the intermediate ones may be 

conveniently described by a simple term, referred to in 

this work as the packing factor, D. Where, 

Do = 1?/n? 6 00( 4.27) 

1=3,m 

may be referred to as a D=2.0 packing and the body-centred 

In this way the face-centred cubic packing ( 2an?=4) 

cubic (1?=m?=n?=3) as a D=1.0 packing. ‘Thus the 

geometrically limiting conditions referred to above 

(equations 4.26) can be restated as being the limits 

D=2.0 and D=0.6. Therefore the body-centred tetragonal 

packings within this range can be analysed using equations 

4.10 and 4.25 and as there are an infinite number of 

such packings, most of which have no distinguishing 

crystallographic name, it will be convenient to refer to 
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these packings by using their packing factor, D. 

When slip occurs at the contacts the assembly yields 

and the yield conditions are defined by equations 4.10 

and 4.25. The solutions for the stress tensor, 

equation 4.25, may be represented geometrically by 

plotting the results in principal stress space. Such 

a geometrical representation is analogous to the yield 

surface concept of conventional plasticity theories. 

Consequently it would appear possible to identify a 

macroscopic model in terms of plasticity theory which 

corresponds to the particle mechanics solutions 

provided in Section 4.1 and 4.2. For a complete 

plasticity theory it is necessary to identify a yield 

surface or yield function, a plastic potential surface 

or flow rule, anda hardening or softening law. These 

ideas will be dealt with in the remainder of this 

chapter. 

4.3.1 Yield Surface Geometry 

Theories of plasticity were initially developed to describe 

the behaviour of metals for which the mean (hydrostatic) 

stress has no significant effect on the yield conditions. 

Yield conditions may be represented in principal stress 

space by yield surfaces which enclose all the states of 

stress which produce only elastic behaviour. An example 

of a hypothetical, piece-wise linear, stress/strain plot 
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and the corresponding yield surface on a deviatoric plane 

is shown in Figure 4.3. While the deviatoric stress 

is in the region 0-1, shown in the figure, the sample 

is behaving in an elastic manner and is represented on 

the deviatoric plane plot as a point within the yield 

surface. When point 1 is reached the sample yields 

plastically (section 1-2 on the stress/strain plot). 

This is shown on the yield surface plot by the points 

representing states 1 and 2 being identical and located on the 

yield surface. Should the sample be unloaded and re- 

loaded (2-3-4) then it would behave in an elastic manner, 

until it again reached the yield stress (point 4). For 

continuing strain (4-5) the sample is shown to continue 

to deform plastically at the yield stress ( a) on the 

stress/strain curve and is depicted by points 4 and 5 

on the yield surface plot. 

Yield surfaces for metals are usually assumed to be 

cylindrical since yield is independent of mean stress. 

The yield conditions for granular material such as sand, 

however, are dependent on mean stress and hence the yield 

surfaces would be expected to be conical. In either case, 

attention is centred upon the shape of the yield locus on 

a deviatoric plane ( O,t05+0, = constant) of principal 

stress space. 

It is possible to observe the influence of the various 
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physical packing properties on the yield locus of a 

packing by varying those parameters relevant to equations 

4.10 and 4.25 and then solving the tensors for each case. 

By plotting the results of the analyses in principal 

stress space the geometrical definition of the yield 

envelopes can be identified. By calculating the 

stresses and dividing them by the first stress invarient 

( 5545/7, ) the results can be normalised to a common 

mean stress and the yield conditions can then be 

conveniently presented in terms of the ratio of octa- 

hedral shear to normal stress on a common deviatoric 

plane. This is illustrated in Figure 4.4 which shows 

the deviatoric yield locus for the body-centred cubic 

packing (D=1) together with the yield loci corresponding 

to the two limiting cases (D=2.0 and D=0.6). It can 

be seen that the yield locus for the body-centred cubic 

packing is a circle centred at the origin. From the shape 

of the yield locus for the D=1 packing it might be expected 

that the geometrical arrangement within the packing would be 

isotropic, which is clearly incorrect. The geometry of the 

body-centred array, however, is identical in the three 

principal directions and hence the behaviour is in effect 

isotropic for the irotational mode of deformation considered. 

For body-centred tetragonal arrays the spacial arrangement 

is only identical in two of the principal directions and 

this is reflected in the elliptical yield loci which are 

symmetrical about one of the axes shown in Figure 4.4. 
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According to the strain-increment tensor (equation 

4.4) all states of stress identified by the circular 

(D=1) yield locus, are associated with a zero rate of 

volumetric strain. For all the other body-centred 

tetragonal packings, the rate of volumetric strain 

depends on the deformation state. It is interesting 

to note that for the body-centred cubic packing, the 

radius of the yield locus is proportional to the co- 

efficient of interparticle friction. This corresponds 

to the force obliquity on the contact planes of the 

physical model, indicating that the size of the yield 

surface is controlled by the interparticle friction, 

see Figure 4.5 and that the shape is related to the 

structural anisotropy of the packing, Figure 4.6. 

This figure shows the yield loci on a normalised deviatoric 

plane for a number of body-centred tetragonal packings. 

It is clear that the yield surfaces are cones. These 

cones may be either right cones rotated about the origin 

of principal stress space or they may be oblique cones. 

It is possible to test whether the yield surfaces are 

right or oblique cones by solving the average stress tensor 

(equation 4.10) for different values of interparticle 

friction. For a given packing this will result in 

different sized yield loci on the normalised deviatoric 

plane. Since an oblique plane through a right cone produces 

an ellipse whose centre is offset from the axis of the cone. 
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Varying the interparticle friction will produce a set 

of ellipses which are not concentric if the cones are 

right cones. Figure 4.5 illustrates the effect of inter- 

particle friction for a face-centred cubic (D=2.0) 

packing. The result is a set of concentric ellipses, 

which demonstrates that the cones are oblique. 

4.3.2 Plastic Potentials and Flow Rule 

A yield surface is a geometrical representation of the 

stress tensor, but to represent the complete yield 

conditions it is necessary to include the strain- 

increment tensor in some way. This is achieved by 

superimposing the plastic strain-increment vectors, on 

the corresponding points along the yield surface in 

principal stress space. If the . strain-increment 

vectors are normal to a common surface then this surface 

is termed the plastic potential surface. 

Let the state of stress associated with yield be 

represented by the point P in Figure 4.7. Taking the 

point representing the state of stress as the origin 

for the corresponding plastic strain-increment vector 

the strain-increment tensor, and its components, may 

then be represented by vectors. The magnitude of the 

vectors is arbitrary provided that the ratio of the 

component vectors are correct as this gives the direction 

of the total plastic strain increment vector. Once the 

direction of the vector has been established, the line 
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that is perpendicular to the vector, passing through 

the vectors origin can be constructed. This line 

is a tangent to the plastic potential. The plastic 

potential is then defined by the curve (or surface in 

three dimensional space) that is normal to all the 

strain-increment vectors, Figure 4.8. The way 

in which the plastic potential is related to the yield 

surface is called the flow rule. Should the plastic 

potential and the yield surface coincide (as is assumed 

for metals) then the condition in known as normality 

and the corresponding theories are termed associated 

flow theories. 

It follows that if the yield surfaces are also plastic 

potentials the plastic strain-increment vectors will be 

normal to the yield envelopes. By superimposing the strain 

increment vectors on the yield surfaces and then viewing 

the deviatoric planes perpendicularly, it is found that 

normality does not occur; except for the body-centred 

cubic packing. For the body-centred cubic packing, the 

space diagonal is concurrent with the axis of the cone. 

When the deviatoric yield loci are examined by viewing 

them along the axes of the cones, the strain increment 

vectors appear as normals to the yield loci, Figure 4.9. 

However, on the o,3 720, plane (Figure 4.10) the strain 

increment vectors are perpendicular to the axes of the 

cones and therefore there is a lack of normality between 

the strain increment vectors and the yield surfaces. 
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4.3.3 Hardening/Softening Laws 

During plastic deformation of real materials the yield 

surface is continuously changing and as a result of 

these changes, the material is said to harden. The 

way in which the surface changes determines what type 

of hardening is exhibited by the material. 

A widely used approach is to assume that the initial 

yield locus undergoes a uniform expansion when the stress 

path reaches the yield surface. Such uniform expansion 

is termed isotropic hardening, see Figure 4.11 (a). This 

hardening implies that no anisotropy is introduced during 

plastic deformation. The overall geometry of the yield 

locus is retained, as is its centre, but the new yield 

locus is a larger concentric version of the previous one. 

Should unloading occur (section 2-3-4 of Figure 4.11 (a)), 

then the material response becomes elastic until it reaches 

the new yield locus, (at point 4 in the figure), at which 

point yield occurs resulting in further plastic deformation. 

Another approach, often used, is to assume that the yield 

locus undergoes a rigid translation, see Figure 4.11 (b), 

this is known as kinematic hardening. As yield occurs 

(section 1-2 of the figure) the whole yield locus moves 

in stress space, as a rigid body, in the direction of the 

stress path at the yield point. Unloading results in the 

material behaving elastically until it reaches the yield 
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locus (sections 2-3-4) again, whereupon plastic 

deformation is initiated. 

If the yield locus becomes distorted during hardening, 

but its centre does not move, as in the case when a 

circular yield locus becomes elliptical (Figure 4.11 

(c)), the type of hardening is known as anisotropic 

hardening. 

By considering that the D=2.0,D=1.0 and D=0.6 are all 

merely special cases of one packing (the body-centred 

tetragonal packing), it follows, for the irrotational 

mode of deformation considered, that under axisymmetrical 

compression a D=2.0 packing would deform to a D=0.6 

packing after passing through che infinite number of 

packings which have D' values between these two limits. 

The way in which the yield stress alters with this 

deformation is shown in Figure 4.12, on which are 

marked the points corresponding to the various yield 

loci of Figure 4.6. These figures show that as the 

regular packing deforms, it undergoes a combined kinematic 

and isotropic softening. 

4.4 CONCLUSIONS 

It is shown by the expression for the average stress 

tensor (equation 4.25) that the size of the yield surface 

depends on the interparticle friction and the mean stress. 
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The shape of the yield surface, however, is related 

to the structure of the packing, which itself is 

defined by the geometrical distribution of the particles. 

The structure of the packing also controls the inclination 

of the yield surface which, inturn, dictates the rate 

of dilation. It has been shown that the yield surfaces 

obtained can be defined by oblique cones which have 

deviatoric planes as base planes. The angle of 

inclination of the axis of each cone depends on the 

geometry of the packing (l,m and n). For each separate 

yield surface, the plastic potentials consist of an 

infinite number of equally oblique cylinders. Each of 

which is only applicable to one value of mean stress. 

The plastic potentials, therefore, reduce to an infinite 

number of bands around the oblique cone, the width of 

each band being infinitessimally small. 

88



2/1/0 

2/m/D 

2/n/D y 

FIGURE 4.1 BODY-CENTRED ORTHORHOMBIC UNIT CELL SHOWING 
COORDINATE AXES AND CELL DIMENSIONS 

   

(A) THE ASSEMBLY (B) THE CENTRAL SPHERE 

Z az 

v 
Q S 

G x U Ue x 

V 

2.8. = CONTACTS 

ty 

BS 

R 
eV. = ‘GAPS 

FIGURE 4.2 DODECAHEDRAL HARD BALL MODEL SHOWING 
POINTS AND GAPS 

oO a 

  
89



DEVIATORIC STRESS (co) 1,2 ae? 
—
 

YIELD 
SURFACE 

DEVIATORIC 
STRAIN (c) 

  

FIGURE 4.3 DEVIATORIC STRESS/STRAIN PLOT AND THE CORRESPONDING 
YIELD SURFACE (VIEWED IN PRINCIPAL STRESS SPACE) 

  ! FIGURE 4.4 NORMALISED DEVIATORIC YIELD LOCI 

90



  

  

D'
= 

2.
0 

PA
CK

IN
G 

  91 

FI
GU
RE
 

4.
6 

DE
VI
AT
OR
IC
 

YI
EL
D 

LO
CI
 

FO
R 

FI
GU

RE
 

4.
5 

EF
FE
CT
 

OF
 

IN
TE

RP
AR

TI
CL

E 
FR
IC
TI
ON
 

BO
DY
-C
EN
TR
ED
 

TE
TR
AG
ON
AL
 

PA
CK

IN
GS

 

fA



  

gq 

dq deq d€pq 

opq 
oq 

op 

op 
dep 

Oq, deq = OCTAHEDRAL NORMAL STRESS AND PLASTIC 
STRAIN INCREMENTS RESPECTIVELY 

OCTAHEDRAL SHEAR STRESS AND PLASTIC 
STRAIN INCREMENTS RESPECTIVELY 

FIGURE 4.7 METHOD OF SUPERIMPOSING PLASTIC 
STRAIN - INCREMENT VECTORS ON YIELD POINTS 

o p> dep 

O1 

FIGURE 4.8 A PLASTIC POTENTIAL CONSTRUCTED FROM 
PLASTIC STRAIN-INCREMENT VECTORS 

92



FIGURE 4.9 DEVIATORIC YIELD LOCUS VIEWED ALONG 
THE AXIS OF THE CONE (D'= 2.0 PACKING) 
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CHAPTER FIVE 

5. REVIEW OF COMPUTER SIMULATION 

5.1 INTRODUCTION 

"No substantial part of the Universe is so simple 

that it can be grasped and controlled without 

abstraction. Abstraction consists of replacing 

that part of the Universe under consideration by 

a model of a similar but simpler structure", 

Rosenblueth and Wiener, (1945). 

Simulation is essentially the act of eeteing ae a 

model of a real situation and then performing 

experiments on that model. Various simulation 

techniques have been used for scientific purposes 

for over three hundred years. The purpose of these 

techniques is to advance the understanding of the 

behaviour of physical systems, by providing measured 

observations of the behaviour of models which represent 

those systems. Models can be divided into two 

categories, physical models and mathematical ones. A 

common type of physical modelling is the construction 

of scale models. These normally take the form of small 

scale replicas which are tested under controlled 

conditions. Typical examples of scale modelling in 

geomechanics include retaining wall and foundation 
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experiments, and more recently the use of centrifuge 

models. An alternative type of physical modelling can 

be performed by the construction of an analogue system. 

If the real situation obeys certain mathematical 

relationships then these relationships can be modelled 

by a physical analogue, as is the case for seepage 

which can be modelled using either electrically 

conductive paper or by electrical resistance networks. 

If,however, the real situation is governed by definitive 

mathematical rules which can be expressed in the form 

of equations, then the system may be modelled by 

mathematical abstractions. Prior to the introduction 

of modern computers, such mathematical abstraction 

had to be restricted to relatively simple problems, 

but modern computing facilities now make it possible 

to simulate complex three dimensional situations. 

5.2 Developments in Computer Simulation 

Electrical Resistance Networks, as are used to simulate 

real situations as ground water flow, can also be used 

as a calculating device to solve differential equations. 

Problems of this type have been modelled by Network 

Analysis, using electrical circuit elements, since the 

1920's. General purpose mechanical differential analysers, 

developed from the wheel and disc integrator (1876), have 

been used since the 1930's to study problems involving 

differential equations. Electrical relays were used to 

aid in the development of an automatic calculator, the 
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predecessor of the modern day computers which have 

made numerical simulation so accessable. 

The general purpose analogue computer, developed in 

1943 at the Massachusetts Institute of Technology, 

comprised of various electronic units which were 

capable of performing simple mathematical operations 

on voltages. Under such an arrangement, each physical 

factor was represented by a computer variable (a 

voltage) and the computer units were so inter-connected 

that the variables could be constrained to obey the 

same equations that dictated the behaviour of the actual 

problem variables. The simulation user could then join 

together the separate units by inserting plugs joined 

by wires into various sockets on a patch panel. The 

results were then observed and measured by oscillo- 

scopes, graphical recorders and data-loggers. More 

modern analogue computers owe their speed of operation 

to the parallel nature of their construction. All 

the separate units operate simultaneuously so that all 

the variables can change together, in the same way as 

they would do in an actual problem. In order to optimise 

the usage of the resulting high speed solutions, digital 

logic and small digital computers were included in the 

design (around 1960) of some analogue computers to form 

Hybrid systems. In such a system, the digital section 

controls and monitors the operation of the analogue 

section and provides space for program and data storage. 
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The first really practical proposal for a computer 

which was capable of storing programs in its memory 

was commissioned in 1949 at Cambridge University. This 

early machine was based on work done by Von Neumann 

who extended earlier ideas put forward by Eckert and 

Mauchly. The Eckert-Mauchly UNIVAC was introduced 

in 1951 and soon developments were made which enabled 

computers to be programmed (Fortran I was developed in 

1956) to solve differential equations by numerical 

ingegration, This technique was called Digital 

Simulation and offered the advantages of simplicity 

and accuracy over the analogue simulation models. In 

digital computer simulations, a system is represented 

by a set of algebraic/differential/logical equations, 

these are then solved by the computer and the results 

presented in some form of tabular or graphical output. 

Initially, the major disadvantage of Digital Simulation 

was that of speed. Digital Simulation depended upon a 

sequence of simple mathematical processors passing 

through the central processor, each of which took a 

finite length of time and, prior to the introduction 

of transistors in computers (1958), the vacuum tubes 

used were both slow and of a short design life. The 

subsequent introduction of integrated circuits in 1966 

meant that a lot of the problems associated with hard 

wire computers (such as overheating, system breakdowns 

and component failure) were to a great extend eradicated. 
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Further developments such as input/output interrupts, 

timesharing, satellite links, mini and micro-computers, 

and interactive programming, have all contributed to 

make computing faster and cheaper. Consequently digital 

simulation has become one of the most attractive forms 

of modelling. 

5.3 Computer Simulation in Geomechanics 

In order to perform a computer simulation of a real 

system, that system must be described in a form that 

is both acceptable to the computer and realistic to 

the system under consideration. If a system can be 

characterised by a set of variables, with each 

combination of variable values representing a state 

or condition of the system, then manipulation of the 

variable values simulates movements of that system 

from state to state, Prikster and Pegden (1979). 

Simulation could thus be described as a numerical 

technigue for conducting experiments on a digital 

computer, which involves certain types of mathematical 

and logical models that describe the behaviour of a 

system over extended periods of real time. For complex 

systems, the techniques used can yield valuable in- 

sights into which variables are most influential in that 

system and how the variables interact. 
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5.3.1 Continuum Models 

A method commonly used for analysing continuous 

media on digital computers is the Finite Element 

Method. In the Finite Element Method the procedure 

is to idealise the subject into a continuum which is 

then subdivided into a large number of discrete 

elements. It is then assumed that these elements are 

only connected to each other at their common nodes or 

joints. Within each such element, it is normal to 

assume that the displacements and the strains are 

determined entirely by the nodal displacements. For 

this purpose a "Displacement Function" is assumed 

which specifies, in advance, the manner in which each 

joint within the element deforms. It is then assumed 

that the stresses within an element are those derived 

from the strains associated with the displacement 

function. The stiffness matrices 

for each element are assembled together to form an 

"Overall Stiffness Matrix" for the system. Once this 

has been achieved, ordinary matrix models can be used to 

obtain the solution of many diverse engineering problems. 

The Finite Element Method, was, initially, restricted to 

the analysis of material which was, or was assumed to be, 

linear elastic. Subsequent developments, however, have 

extended its use to materials which obey non-linear and 

elasto-plastic constitutive laws. 

A Finite Element approach is capable of modelling limited 
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progressive mechanisms, as it is possible to 

perform a number of calculation iterations during 

the solution of any problem. Thus, as the model 

parameters change, iterations may be performed using 

the revised values. However, the initally selected 

arbitrary discretisation of the material cannot be 

altered subsequently because it would then be necessary 

to construct a new overall stiffness matrix which would 

make the analysis very expensive. 

5.3.2 Jointed Rock Models 

As stated in the previous section, ground models may be 

treated as a continuum. However, there are cases when 

this is not entirely satisfactory when the ground behaves 

in an essentially discontinuous manner. One common 

example is that of jointed rocks. The importance of 

joints and seams in rock has long been recognised by 

engineers. Tunnelling and the stability of rock slopes 

are both cases which are more dependent on the joint 

properties of rock than the characteristics of the intact 

rock itself. 

It is probably more realistic to treat jointed rock as an 

aggregate of massive rock blocks, separated by joints 

which possess their own properties, than to consider it 

as a continuum, whose overall characteristic properties 

are somehow altered due to the influence of discontinuities 

within the mass. 
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Goodman et al (1968) suggested a method of joint 

representation which could be incorporated into a 

Finite Element analysis in order to provide a more 

faithful simulation for jointed rock problems. In 

this work, as well as defining the mass properties, 

different elements were defined for the joints where 

they passed through the otherwise continuous material. 

The joint elements were described by their own 

properties (normal and shear stiffnesses and strength). 

Several situations were modelled, including a simulated 

tunnel through a staggered rocky block system. From 

the results obtained it was concluded that the inclusion 

of joint elements in an otherwise standard Finite Element 

computer program provided a method of analysis that 

adequately handled joints that failed through tension, 

rotation and shear. Using this modification observations 

were made of collapse patterns commonly observed in real 

situations. It was noted that the inclusion of 

discontinuities in the mathematical model improved 

comparisons between the model and the prototypes, the 

results being significanlty superior to those obtained 

from analytical and experimental methods where a continuum 

model was used. This work on joints was developed by 

Zienkiewicz et al (1970) who further modified the joint 

elements to allow modelling of curved and variable thick~ 

ness joints. By defining the middle surface of the joint 

(using a shape function) and then establishing the normal 

and tangential directions to this surface at the node 

points, the coordinates of connecting nodes could be 

established. Several models of mass rock behaviour were 
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discussed, including a stratified or laminar model 

and a limited tensile stress model which could 

accommodate load reversals (previously tensile 

stresses developed in such analyses were relieved 

to zero, this implied that no compressive stresses 

could be developed until joint closure occured). 

The model permitted stress analysis of more realistic 

rock configurations, possibly with complex joining 

properties. The solution of these simulations were 

obtained from an iterative process whose convergence 

to the solution was dependent on the proximity of the 

structure to its failure state. For cases of non- 

uniformly applied load, it was noted that the stress- 

strain relationship was not necessarily unique and so 

special care had to be taken, though the technique was 

still claimed to be applicable. 

A different approach for jointed rock was adopted by 

Cundall (1971). A computer program was described to 

simulate a system of "semi-rigid rock blocks" in which 

the interaction between blocks was governed by friction, 

contact stiffness and the simple laws of motion. Each 

block was treated as a separate entity with unlimited 

translation and rotation possible. The program was 

dynamic, employing a simple explicit time-marching 

finite difference scheme, thus enabling progressive 

failure to be modelled. 
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Using this technique it was possible to study the 

effects of joint geometry, joint properties and 

loading conditions. It was also suggested that rock- 

bolts and water pressure in the joints could also be 

simulated. 

5.3.3 Granular Models 

Althouwh soil is usually treated as a continuum it 

consists of discrete particles which interact with 

each other. It would not, however, be feasible to 

treat soil as discontinua by considering individual 

particles, in order to provide a predictive tool for 

Geotechnical analyses. Soil, inspite of its discrete 

internal structure, behaves en-mass as a continuum and 

a continuum approach using the Finite Element Method 

is expected to remain the most universal and economic 

tool for computer simulation in pecnechentese Such 

an approach however depends on the validity of the 

constitutive laws incorporated into the formulation 

and, to date, no entirely satisfactory constitutive 

model for soil exists. This is due to the complex 

macroscopic behaviour of soil which is the result of its 

internal discrete nature. 

It is therefore attractive to attempt to use computer 

simulation to model the internal deformation processes 

which may occur in particulate assemblies. In this way 

a better understanding of the mechanics of particulate 
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material can be obtained from which it is possible 

to develop more realistic constitutive laws which 

may then be incorporated into conventional Finite 

Element programs. 

Serrano and Rodriguez-Ortiz (1973) described a computer 

program that was capable of generating a model of a 

granular media according to any given particle size 

distribution. The simulated soil particles were placed 

in a random manner, thus allowing natural soil structure 

to form and then be observed. It was suggested that 

the assemblies could be simulated using the Finite 

Element Method in which a stiffness matrix was constructed 

which took into account the geometry of the assembly 

and the stiffnesses at each contact. Incremental 

displacements were determined from the last known forces 

by inverting the overall stiffness matrix. In order 

to deal with slip at the contacts, iteration procedures 

were necessary and only one contact was allowed to slip 

at atime. A big disadvantage of this approach was that 

it was necessary to reform the stiffness matrix whenever 

a contact was made or broken. However, the results were 

reported as being promising. 

Another numerical model for discontinua was described 

by Trollope and Burman, (1980). Their model for a 

granular wedge was simulated by a mass of rigid particles, 

the compliance of which was seen to be governed by the 
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stiffnees characteristics at the interparticle contacts 

or joints. It was demonstrated that, irrespective of 

particle shape, the model could be reduced to a lattice- 

like analogue whose nodes were at the particle centroids. 

The resulting nodal displacements were determined by the 

movements associated with the dislocation of each joint 

or contact. Because of the manner in which the lattice 

represented mass behaviour as being the result of the 

composite interactions between adjacent particle centroids 

it was considered to be a discrete model, and as the model 

was dominated by the stiffness characteristics, the 

technigue was labelled the Discrete Stiffness Model. 

Extending the application of the method previously used 

for jointed rock, Cundall (1971), Cundall (1978) carried 

out numerical experiments on random assemblies of discs. 

The disc assembly could be contained within boundaries 

that were free to move in any desired manner. The 

characteristics of the discs and the contacts between 

discs could be prescribed by the user and there was no 

restriction on the amount of displacement permitted to 

the discs. 

The method of analysis was called the Distinct Element 

Method and was described as an explicit numerical scheme 

in which the interaction of the particles is monitored 

contact by contact and the motion of the particles 

modelled particle by particle. 
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The particles within the assembly could be generated 

by a built-in random particle generator which could 

create discs to fill a given area, the discs conforming 

to any chosen particle size distribution. It was 

argued that only a simple placement algorithm was 

needed since mechanical compaction from an initially 

less dense state was preferable to any scheme that 

fitted particles closely together by using a non- 

physical numerical procedure, especially as mechanical 

compaction often forms the first stage of any physical 

experiment. The total number of discs that could be 

modelled at any time was claimed to be 5000 although 

the maximum number of discs that have actually been 

used in reported tests is 1000. With such large 

assemblies it was necessary to make extensive use of 

graphical output facilities in order to facilitate 

the interpretation of the results. 

Further examples of numerical simulation of random 

disc arrays were provided by Cundall and Strack (1978), 

(1979a) and (1979b). In these works the method was 

used to simulate experiments on photo-elastic discs 

presented by de Josselin de Jong and Verruijt (1969) 

and Oda and Konishi (1974). The comparison between the 

results of the physical tests and those of the computer 

simulations were used as a validation of the method. 
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The authors suggested that although the comparison was 

qualititive, the Distinct Element Method was a 

valid tool for research into the fundamental 

behaviour of granular assemblies. Cundall and Strack 

(1979b) also described a three dimensional version of 

the Distinct Element Method program which was used 

to simulate a triaxial test on a Face-Centred Cubic 

arrangement of spheres reported by Rowe (1962). 

Comparison with Rowe's experimental results was 

encouraging. 

A more detailed description of the Distinct Element 

Method will be provided in Chapter Six.



CHAPTER SIX 

6. THE SIMULATION OF PARTICULATE MATERIAL 

USING THE DISTINCT ELEMENT METHOD 

6.1 INTRODUCTION 

The program published by Cundall and Strack (1978) 

was specifically designed to assist in the 

development of constitutive laws for soil. It was 

intended that such laws would result from numerical 

tests performed on assemblies of discrete particles 

simulated on a computer by use of the Distinct Element 

Method program - "BALL". Features of such a purpose- 

designed package included the facility for applying 

force or displacement boundary conditions to the 

assemblies of particles, which in turn could be 

specified as having various values of inter-particle 

friction, cohesion and stiffness. By the use of in- 

built graphics routines, the mechanisms occuring with- 

in the granular assembly during a test could be studied 

and the results used to confirm or invalidate existing 

theories and form the basis for new ideas. 

6.2. THE REQUIREMENTS OF THE MODEL 

The simulation program BALL, (version 1.1) was written 

specifically to meet the special needs of modelling a 
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particulate material. Unlike the structural elements 

of a building, whose relative orientation are often 

assumed fixed, a granular material (which is capable 

of being loaded in a variety of ways and undergoing 

considerable strain) exhibits a greater amount of 

relative movement between its constituant granules. It 

is,therefore, necessary for a simulation program to 

accurately model the conditions which cause such large 

internal relative movements. This, in many cases, will 

produce a grain structure that is considerably different 

from the original internal configuration. To allow for 

such movements to occur it is necessary to have a 

sophisticated system of linking information for any 

individual grain to any other element it might come into 

contact with, (which in the extreme case is any other 

element in the assembly), not just its immediate neighbours. 

To allow for such individual movement (and hence independence) 

it is necessary to have associated with each grain its own 

individual grain properties (particle size, density, cohesion 

and surface friction) as all the grains need not be identical. 

It is also necessary to simulate some system of controlling 

the boundaries of the particulate assembly which may be 

either stress-controlled or strain-controlled. A common 

method of deforming elements of soil in the laboratory is 

to employ controlled boundary plattens which apply a 

uniform deformation to the boundary of the element. The 

data structure of such a platten would have to be modelled 

along similar lines to the material grains, allowing it to



move during a simulation run, while permitting the 

positions along the platten where it contacts 

particles to also vary. 

To improve the efficiency of information retrieval 

and data co-ordination so that the program is viable 

in terms of computer execution time, it is vital that 

all the relevant information is readily available 

for each disc and platten. 

6.2.1 The Working Space 

It is necessary to define a two dimensional co-ordinate 

system for use in "BALL" and to declare the upper and 

lower bounds which the computer program has to consider 

while performing the simulation. The program is set up 

to accept the maximum width and height that the user 

expects to need. This area can be considered as a 

physical "working space" in which the elements of the 

simulation can interact. The lower left corner of the 

working space is implicitly taken as the origin of the 

resultant co-ordinate (X,Y) system. On this working 

space the program user specifies the size of grid that is 

required and this is then set up in both the horizontal (X) 

and vertical (Y) directions. Having divided the working 

space into the relevant number of boxes to form a continuous 

grid over the entire working space, the simulation program 

uses the boxes formed by this grid as an extra reference 

system. This is used to limit search areas for particles, 

by eliminating the need to check all particles for possible 
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contacts (and hence interactions) with the particle 

currently under scrutiny. The grid thus acts as a 

rapid reference system for any point or set of 

neighbouring points on the working space. 

6.2.2 Components of the Simulation 

Once a co-ordinate system with its grid has been set 

up, it is possible to define discs and walls (or plattens) 

which map onto the working space. 

A disc is placed so that its centre is at the co-ordinates 

specified by the user. The disc then occupies the area 

of working space concomitant with its radius. Where two 

similar discs over-lap, the contact is assumed to be at 

the mid-point of the over-lap. To ease reference for such 

contacts, each disc is mapped into the grid boxes that 

its circumscribing square covers and a record is kept of 

which boxes arecovered (even partially) by which discs. 

A similar procedure is followed for the walls (or plattens) 

of the simulation problem. As each wall is defined its co- 

ordinates and length, (see appendix B for a detailed 

explanation of BALL program commands), enable the program 

to map which grid boxes will be within the bounds of the 

wall. This information is stored by the program so that 

a record can be kept of which boxes contain wall elements. 
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6.2.3 Dynamic Storage 

Information and data used in the simulation is stored 

in one of two distinct forms. Data constants, such 

as the radii or densities of the different disc types 

are normally constant throughout any one simulation 

run, such constant-value data items are stored in 

various separate arrays. Examples of such constants 

are: the values of disc radii, the coefficients of 

disc and wall friction and the normal and shear stiff- 

nesses. However there is a need to have some storage 

set aside for non-constant data. Such data, which will 

be constantly liable to access and variation, is 

referred to as "Dynamic Data" and the corresponding form 

of storage as "Dynamic Storage". 

The data base in which the dynamic information is stored 

in BALL, is composed of a one dimensional array. This 

array contains information concerning the co-ordinates of, 

and the kinematics and out of balance forces associated 

with, each individual disc and wall. Space in the array 

string is also reserved for information concerning each 

of the boxes formed by the grid and some space is 

maintained for a "Linked-List" (see section 6.2.4) when- 

ever there is a need for additional information concerning 

the grid boxes. 

All the above information is grouped into separate 

sections of the dynamic data array. The partitions between 
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sections are indicated by markers which provide a 

flexibility for expansion or contraction of any section 

of the array as the simulation proceeds. The structure 

of the dynamic storage is shown in Figure 6.1, which 

provides an overall memory map and guide to storage 

for users of BALL. 

As stated above, the information stored in this 

manner is organised in a one-dimensional aerate this 

saves storage in computer-core and thus minimises the 

size of the program storage requirement. Sometimes, 

however, the program requires to place two pieces of 

information into the same location in the array: This 

is achieved in the program by the use of the Fortran 

"EQUIVALENCE" statement. As each array location is 

implicity allocated two accessable words of storage, these 

can be either split-up and used individually for holding 

INTEGER values or combined to hold a REAL number. (See 

Figure 6.2). 

The program is coded so that wherever it is necessary to 

access a single integer, the whole data-location is 

equivalenced to an integer array of size two, this then 

permits either of the integers to be retrieved. For storage 

Purposes and because most of the data in the program is of a 

REAL type, the dynamic array stores all values as REAL. Thus 

two integers which occur at one memory position are 

stored as the equivalenced real number in the computer - 
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this is usually an apparently meaningless "junk" form 

of data bits, but because the data is always accessed 

in the same way (by equivalencing to arrays) these 

"junk" values become invisible to the computer and 

are returned to the program in their original form. 

6.2.4 Box (or Grid) Storage 

As was remarked in section 6.2.2, information is stored 

in the relevant part of the array storage for all discs 

or walls which overlap into any box of the grid. An 

individual section of the dynamic array is allocated to 

the boxes. Each box has two "words" of storage allocated 

to it, and there are seven different box conditions that 

the contents of a box may depict, (see Figures 6.3 and 

6.4). 

State 1. If there are no discs or walls ina 

particular box then both words of storage are set to 

zero values. 

State 2. If there is one entry in a box, then the 

starting address of the data relevant to that particular 

disc or wall is placed in one word of the box and the 

other word is set to a zero value. 

States 3 and 4. When there are two or more elements 

in the area covered by a box, it may be necessary to 

access information for which there would be insufficient 

storage space in the box-section of the storage array. 

If there is no contact between the elements in the box, 

a zero is placed in one word of the storage location



and the address of a "Link" element is placed in the 

other word of box storage. The link address refers 

to a data location outside the box-section. At the 

location given by the address in the non-zero box-word 

a pointer is set-up. This pointer consists of two 

words of storage, each containing the starter-address 

of one of the particles in the grid area. 

Should the two elements in the grid area be in contact, 

then instead of a zero in one word of store, a contact 

address is inserted. This address refers to the start 

of a section of data which is set-up to accommodate 

information pertaining to the contact. This exists 

outside the area of data allocated to boxes. The 

starter address refers to the first piece of information 

relevant to that particular contact. Storage is 

allocated for information on the shear and normal 

displacements, and the shear and normal contact forces, 

in addition to this there is a two word space for the 

starter address of the two bodies in contact (cross- 

referenced) and a two word space is reserved for a 

pointer to another contact - for cases where more than 

one contact occurs in the same physical grid area of 

the working space. The second word of box-storage 

contains the link to the starter addresses for the two 

bodies in contact - the same as before. 

States 5 and 6. For the more complex case where 

there are three bodies in the same area of box-grid, 

then one word of store is either a zero (State 5 - 

no contacts occuring in that box) or the starter-address 
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of a contact list, (State 6). The starter-address of 

a contact list has the same function as described above, 

except this time (more than one contact in a box), 

the final piece of data in the contact information is 

a pointer to another contact starter-address. The 

other word of the box-storage contains a pointer to 

linking information outside the box-section of storage. 

The information at the pointer address is made up of 

two words; one word points to the starter-address of 

one of the elements in the box, while the other word 

contains a pointer to another location which in turn 

contains the starter addresses of the other two bodies 

in that box. 

State 7. The most general and hence most complex 

situation is where there:are many bodies in one box. 

In this case, the words of storage concerned with that 

particular box contain -a pointer to a contact list and 

a pointer to the particle addresses. The information at 

the location given by the particle-address pointer is 

divided into two words, one contains the starter-address 

of one of the particles in that box, while the other word 

contains a pointer to another link. At the address of 

the link (as given by the pointer), the data is again 

divided into two parts, one giving the starter-address 

of a particle, while the other contains a pointer to 

another link and so on, until the last link is reached, 

in which case it contains two particle starter-addresses. 

The algorithm for this section of storage is summarised 

in Figure 6.4. 
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6.2.5 Redundant Address Locations 
  

An important feature of the "BALL" simulation program 

is the way in which it handles the array tidying process. 

As has been shown in section 6.2.4, information is 

recorded of contacts occuring in any grid box of the 

physical working space, however the storage capacity 

requirements would soon increase excessively if contact 

data, which was no longer applicable, was preserved in 

the dynamic array. As contact information is discarded, 

the storage space becomes redundant and if no facility 

was provided in the program for the re-use of such 

storage space, the dynamic array would soon be burdended 

with excessive amounts of out-of-date or redundant 

information. 

The program BALL maintains two "Empty" lists, these are 

lists of un-used box-links discarded by the program. 

Whenever a contact is discarded or a link becomes 

redundant its address is entered at the top of the 

relevant empty list. Consequently whenever a contact 

is created or a link is required, the empty-lists are 

consulted to see if there is any redundant space in the 

dynamic array and if any memory is available then the old 

memory locations are re-addressed and re-used. The empty- 

lists work as a last in - first out stack and thus ensure 

that all available space is re-used efficiently before 

new memory space is allocated. 
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6.3 PROGRAM ITERATION 

To enable the reader to more easily understand the 

subroutine calling sequence used by BALL, a brief 

description of the logic governing a typical iteration 

cycle will be presented in this section and the reader 

should refer to Figure 6.5 which shows the subroutine 

calling sequence. 

6.3.1 Initialisation of the Data Base 

Step (1). 

Step (2). 

Step (3). 

On the initial instruction to the simulation 

program to commence a number of iteration 

cycles, the program calls Subroutine INIT 

to calculate the values of the masses, 

moments of inertia and the normal and shear 

stiffnesses for all the different particle 

types (the maximum number of different types 

of particles has been arbitrarily set to 

fifty). As part of this initial setting-up 

process, Subroutine REBOX is called. 

Subroutine REBOX updates a particle's contacts 

with walls and dics - and reviews the boxes 

in which it has entries, by scanning the 

boxes that should show an entry for that ~ 

particle. Which boxes to search are 

dictated by the radius of the particle and 

the co-ordinates of its centrod. REBOX then 

calls subroutines SEARCH and UPDATE. 

Subroutine SEARCH searches the box which it 
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Step (4). 

Step (5). 

has been instructed to examine by REBOX. 

The purpose of this search is to delete any 

entries for a particle found in that box 

that should not be there; to insert entries 

to that box for a particle which should be 

there, but has not been found; and to call 

Subroutine TEST if any particle (other than 

the one passed to SEARCH from REBOX) is 

found in a box. 

A call to Subroutine TEST is a dummy call. 

One of the subroutine parameters between 

REBOX and SEARCH is a text variable, (in this 

case BTEST). . On being transferred to SEARCH 

the text value is allocated to the variable 

TEST. Thus, whenever Subroutine TEST is 

called from this subsout ines TEST has the value 

BTEST and consequently Subroutine BTEST is 

called. This form of call theoretically enables 

Subroutine SEARCH to call many other program 

segments. Indeed, later in the execution of 

the program, it is necessary to use SEARCH for 

monitoring a wall, in which case the value 

allocated to variable TEST is not BTEST but 

WTEST, which tests the properties of a wall. 

In the current context, Subroutine SEARCH would 

call Subroutine BTEST. This subroutine is only 

called when SEARCH finds an object in a box 

which is different from the particle being 

considered. BTEST then tests whether the two 
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Step (6). 

Step (7). 

elements are in contact, if a contact exists 

then the starter-address of the object is put 

into a buffer, (unless it is already there) 

and the buffer counter incremented. A 

similar process would be set in motion if 

WTEST had been called, except that no disc 

address would be passed to the TEST sub- 

routine, instead a wall would be examined. 

Once Subroutine BTEST ends, control is 

returned to Subroutine SEARCH and then to 

Subroutine REBOX. The above process (Steps 

(2) to (5) ), is repeated until all the 

relevant boxes in the Working Space have been 

examined and when this has been done, Sub- 

routine UPDATE is called. 

The function of UPDATE is to use the information 

stored in the buffer (as mentioned in Step (5) ) 

in order to create new contacts, should they now 

exist but have not been found - and to re-box 

any existing contacts that are now in an in- 

correct grid-box. The number of tasks that 

this subroutine has to perform is relayed to 

it by the value of the buffer counter. Before 

using new space for any additional information 

that has to be recorded, the re-usable memory 

list is consulted to see if there is any old- 

memory space available, and if there is, then 

the old-memory space is re-used. 

Once this process has been completed, control 
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is returned, via REBOX, to Subroutine 

INIT. The data base necessary for the 

simulation to proceed is then fully 

initialised. 

6.3.2 Methodology of the Iterative Cycles 

Once a suitable data base has been prepared, it is 

possible to proceed with the discrete eee 

approach of the simulation. Details of the simple 

force and motion algorithms have been omitted from the 

following description so as not to cloud the logic 

behind the program. The equations are described in 

detail by Cundall (1978) and shown on the program 

listing microfiche in appendix c . Figure 6.5 should 

be consulted while reading this section. 

The driver-routine which controls the calculation loop 

is Subroutine CYCLE, this calls the subroutines which 

govern disc movement, wall movement and inter-element 

forces, incrementing the model-time at the end of each 

cycle. 

Step (1). The first task of Subroutine CYCLE is to scan 

all the discs that have been declared in the 

Working Space. For each of these discs it 

calls Subroutine MOTION. 

Step (2). Subroutine MOTION calculates the new velocities 

and displacements for each disc, from the 

forces and movements acting on it. Once the 
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Step (3). 

Step (4). 

new disc velocities, (X-direction, 

Y-direction, and angular), are calculated, 

they are stored in the dynamic array in 

the section set aside for disc information. 

From the new disc velocities, Subroutine 

MOTION calculates the new co-ordinates of 

the disc centres and stores these values as 

it did the velocities. Having calculated 

the above information, MOTION checks to see 

if any disc has moved sufficiently (see Section 

6.3.3 for an explanation of the reboxing and 

contact detection algorithms), to set a 

flag which indicates it is necessary to re- 

examine that particular particle - using the 

REBOX series of subroutines, (explained in 

Section 6.3.1). Once this check has been made, 

control is returned to Subroutine CYCLE. 

Subroutine CYCLE immediately examines the 

flag which could have been set during Sub- 

routine MOTION, if the flag has been set then 

the REBOX subroutine is called and action is 

taken as described in Section 6.3.1. Should 

no flag be set, then MOTION is called for the 

next disc and step (2) is repeated until Sub- 

moneine MOTION has been called for all the 

discs. 

Once CYCLE has finished updating the disc 

information, it starts to work on the walls. 

For each wall, CYCLE calls Subroutine WALMOT, 
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Step (5). 

Step (6). 

this subroutine updates the position of one 

wall, (per call to the subroutine), by 

using the wall velocity, (a user-dependent 

variable). In a manner similar to that 

described in step (2), if the wall has 

moved sufficiently to warrant re-examination, 

a flag is set and control is passed back to 

Subroutine CYCLE. On re-entry to CYCLE, a 

check is made to see if the logic flag has 

been set, indicating the need for a call to 

rebox the wall. Should this be necessary then 

a call is made to Subroutine REBOXW. 

Subroutine REBOXW has a similar function to 

Subroutine REBOX, except that.it acts on a 

wall. To aid in the scanning of the grid- 

boxes along the track of a wall, REBOXW calls 

Subroutine SCAN. 

Subroutine SCAN searches the boxes along the 

length of the wall for entries that indicate 

the wall's presence. To do this it calls 

Subroutine SEARCH but sets the text parameter 

to WTEST, thus indicating that a wall is the 

subject of the investigation. Subroutine 

SEARCH acts in the same way as described in 

Section 6.3.1, but on calling Subroutine TEST, 

this time it is really calling Subroutine 

WTEST. After SEARCH has returned control to 

SCAN, SCAN calls Subroutine UPDATE to create 

new contacts and rebox any existing ones where 
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Step (7). 

Step (8). 

Step (9). 

Step (10). 

necessary - as described in Section 6.3.1. 

Once all the walls have been processed as 

described in steps (4) to (6), Subroutine 

CYCLE proceeds to examine all the contacts, 

both disc-to-disc and disc-to-wall. To do 

this the dynamic array is accessed at the 

pointer which indicates the start of the~ 

section which contains the data for the boxes. 

The boxes are scanned to find those with no 

more than one element, (either disc or wall), 

in. For such a box, Subroutine FORD is called. 

Subroutine FORD calculates the forces at a 

single contact. In this routine the stiffnesses 

of the particles are assumed to act in series 

and if the two particles have differing 

cohesion or frictional values, then the 

smaller value is used in the calculation. 

Once the interparticle forces have been 

calculated, they are put into the disc 

information section of the dynamic array 

and control is returned to CYCLE. 

Where there is more than one contact in a single 

box, the information is linked as described in 

Section 6.2.4 - in this way all interparticle 

forces are accounted for and calculated using 

Subroutine FORD. 

Steps (1) to (9) describe the basic algorithm 

for one iteration cycle. There is a loop with- 

in the CYCLE subroutine which allows the total 
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iteration-sequence to be repeated as many 

times as requested by the simulation user. 

6.3.3 Contact Detection and Reboxing 

The maximum distance a disc can move in both the X and 

Y directions before a contact search and reboxing check 

is initiated is one unit, whereafter the integer value 

of the relevant co-ordinate must change. In many cases 

a search is activated before such a distance is moved. 

For the extreme case of unit movement in both directions, 

by both discs forming a contact, the incremental movement 

between discs is 2/2 units. This figure is arrived at by 

doubling the hypotenuse of a right angled traingle of 

unit base length. In the simulation, a constant is set 

to this extreme value and all particles within this 

distance of each other are assumed to be potentially in 

contact and space is reserved for cn contacts. A 

potential contact does not contribute any force sums to 

the particle until the distance between perimeters falls 

below zero. 

When the integer part of either the X or Y co-ordinate 

of a disc centroid alters, the REBOX series of subroutines 

is called for that disc. Subroutine REBOX examines the 

boxes that have entries for that particular disc and 

determines if the box entries are still correct. If the 

box entries need altering then REBOX creates and deletes 

entries as necessary. Similarly, Subroutine REBOXW governs 
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the monitoring of boxes for a wall when it has moved 

sufficiently to change the integer value of one of 

its co-ordinates. 

The use of such a simple reboxing trigger-mechanism 

places some restrictions on the co-ordinates that can 

be used efficiently, but while doing so it saves a 

considerable amount of memory, as old co-ordinates 

do not have to be stored and compared with current 

ones for a number of cumulative movements. Cundall 

(1978) comments on the effiency of such a co-ordinate 

system approach and concludes that while the actual 

co-ordinates used for Work Space will not affect the 

statics/dynamics of a particular simulation, the 

choice of co-ordinates will have a bearing on the degree 

of efficiency achieved by the simulation. The extent 

of such effects would depend on the relative radii of 

the discs. Cundall illustrates this point by saying 

that large radii will lead to smaller memory require- 

ments, (contact space will only be allocated to discs 

which are then relatively close to each other), but 

that there will be a corresponding increase in execution 

time as reboxing and up-dating would have to be 

performed more frequently. Alternatively, the use of 

smaller radii would lead to higher memory requirement - 

as contact space will then be reserved for relatively 

distant neighbours, but a corresponding lower execution 

time is used, (as reboxing and up-dating will be less 

frequent). 
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It is apparent that in such a situation, it is the 

responsibility of the individual user to assess the 

capabilities of the computer, on which the 

simulation program is to be mounted and to specify 

the co-ordinates in a manner which will lead to the 

optimum use of both machine time and storage. 
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CHAPTER SEVEN 

7. IMPLEMENTATION OF THE SIMULATION PROGRAM 

7.1 INTRODUCTION 

The correct functioning of any computer program is 

dependent upon the system on which it is run. There- 

fore when moving a program from one computer system 

to another it can be expected that a number of 

alterations will have to be made; the number and extent 

of these alterations depending on the differences between 

the original and the proposed computer systems. Once 

the requirements of the new system have been identified, 

the necessary alterations made, and the program 

successfully run, it is then possible to modify the 

program so that it may, more efficiently, fulfil the 

reason for its implementation. 

The computer program "BALL", version 1.1, was originally 

set up on a PDP 11/45 and an Interdata 8/32- After 

consideration of the computing facilities at Aston, it 

was decided to initially implement the program on the 

ICL 1904S available there but due to the computing 

resources needed to develop the simulation, it later 

became necessary to again transfer the program, this time 

to the CDC 7600 computer at the University of Manchester 

Regional Computer Centre (UMRCC). The process for the 
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implementation of the "BALL" simulation program on the 

available computer facilities is described in this 

chapter together with a description of the modifications 

made to the model. 

7.2 COMPILATION AND EXECUTION OF "BALL" 

Compilation of a computer (source) program is the 

process whereby instructions written in a programming 

language are converted into Machine Code. The resulting 

(object) program can then be read and acted upon by the 

computer. In order to produce the object program the 

Compiler translates each language statement into its 

Machine Code equivalent. Only a program that is 

grammatically correct can be successfully compiled. 

Any syntactical errors in the program will be detected 

by the Compiler. 

The original version of "BALL" was written in PDP-11l 

FORTRAN (known as FORTRAN IV PLUS), this conforms to 

the American National Standard Institute (ANSI) FORTRAN 

IV specifications, aS does 1900 EXTENDED FORTRAN which 

is used on the ICL 1904S. For this reason, the majority 

of the program instructions were common to both languages, 

changes only being necesssary where the two dialects 

fail to overlap. 

7.2.1 Alterations necessary for compilation 

“Ball",version 1.1, was set-up originally on a PDP 11/45 
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(Dames and Moore, London) and on an Interdata 8/32 

(University of Minnesota). The program was written for 

byte-orientated machines, that is, machines in which 

memory "words" are composed of multiples of 8 bits. 

In order to use this type of memory most efficiently, 

all addresses and pointers were assumed to be 16-bit 

quantities. By implication, this limits the size of 

the Dynamic Array (See Chapter 6) to 32,767 elements, 

which is the largest number that will fit into 16 bits. 

By contrast, on the ICL 1904S, which uses 24-bit words, 

the largest integer number that can be stored is 

8,388,607. 

In order to optimise the use of memory all addresses 

and pointers used in the original versions of the 

program were assumed to be 16-bit quantities and the 

dynamic array was structured to allow two 16-bit 

words to share the memory of a two-word "dummy" 

variable. This was achieved on the PDPll using a 

FORTRAN "EQUIVALENCE" statement in the following manner: 

INTEGER* 4 TAL 

INTEGER*2 Il, 

DIMENSION IL(2) 

EQUIVALENCE (IAL,IL) +++ (7-1) 

In the above FORTRAN coding, the two 16-bit words of 

array "IL" share the same memory locations as the 32-bit 

variable "IAL". Although different computers use 

different conventions for storing such two-word variables, 
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the internal arrangement of variables, in such cases, 

is transparent to the program provided that the 

variables are transferred between 16 and 32 bit 

variables using EQUIVALENCE statements only. The terms 

INTEGER*4 and INTEGER*2 refer to the number of bytes 

allocated to the variables in PDPll FORTRAN. This 

facility, however, is not available in the ICL 1900 

EXTENDED FORTRAN. Thus, since the ICL 1904S is a word- 

orientated machine, it was necessary to permit some 

variables to be twice the bit length of others. This 

is achieved by using the declarations INTEGER and REAL. 

Under such circumstances INTEGER variables consist of one 

24-bit word of storage while REAL variables consist of two 

24-bit words. (This assumes that the statement "COMPRESS 

INTEGER AND LOGICAL" has been used in the program 

desription segment of the ICL 1904S job). The revised 

coding suitable for the ICL 1904S is: 

REAL IAL 

INTEGER IL 

DIMENSION IL (2) 

EQUIVALENCE (IAL,IL) oe (7.2) 

It is apparent that this particular aspect of the 

simulation program wil] not be adversely affected by 

transferal to the ICL 1904S. In fact the transfer will 

result in greater accuracy (more bits allocated to each 

word of storage) whilst at the same time the underlying 
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logic, on which the program is based, has been retained. 

Another major difference between the two FORTRAN 

dialects is the way in which they deal with "TEXT" data. 

A TEXT-type quantity is a string of characters. FORTRAN 

contains only a limited text handling capability. The 

manipulation of variables or array elements holding TEXT 

values must be performed by compiler-dependent character 

handling routines. In the original program, TEXT is 

inputted one record (80 characters) at a time. The first 

four characters of a record are converted to ASCII 

(American Standard Code for Information Interchange) 

format, by using an "ENCODE" statement, and allocated a 

variable name. This variable is then tested for equi ey 

to various TEXT constants by using a "logical IF" state- 

ment. For example, consider the following PDP11 FORTRAN 

statements: 

DIMENSION LINE (80) 

READ (1,500) LINE 

500 FORMAT (80A1) 

ENCODE (4,6,ALINE) (LINE (I), I=1,4) 

6 FORMAT (4A1) 

IF (ALINE.EQ.4HREST) GOTO 10 meio) 

This declares an array (LINE) of eighty elements. Eighty 

TEXT characters are then read into the array "LINE". The 

first four of these characters are converted into ASCII 

code and are contained in variable "ALINE". A "Logical 

IF" is then performed, which compares the contents of 
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"ALINE" with the TEXT string "REST", control being 

passed to Label 10 should the comparison show that 

the two are identical. Such an "ENCODE" statement 

facility was not available on the ICL 1904S and so 

an alternative coding was required, this is given 

below: 

DIMENSION LINE (20) 

DATA IREST/4HREST/ 

READ (1, 500) (LINE (K) ,K=1,20) 

500 FORMAT (20A4) 

Ir=4 

IF (ICOMP(II,LINE(1),1,IREST,1) .EQ.0) 

GOTO 10 o2- (7.4) 

This would result in an INTEGER array (LINE) of twenty 

elements being declared and a TEXT constant (IREST) being 

initiated with a value "REST". A line of information 

is then read into "LINE", every element of which would 

contain four characters. Then, by using an ICL 1900 

EXTENDED FORTRAN character routine, "“ICOMP", the four 

characters in the first element of "LINE" are compared 

with the characters allocated to the variable "IREST". 

Should the comparison show that the two sets of text 

are identical then the character routine ICOMP returns 

an integer value of zero, if not, a value of unity is 

returned. The returned value is then compared with zero 

in a "logical IF" statement and if ".TRUE." then control 

is passed to label 10. 

As a great deal of the flexibility of the simulation program 
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is derived from the use of TEXT strings, it is important 

to retain as much as possible of the logic surrounding 

TEXT comparisons. For example all simulation command 

sequences are initialised by TEXT "KEY-WORDS" which are 

read from a data-file. The TEXT that is read in is then 

compared, via a “look-up table" with permissible KEYWORDS 

and control passed to the relevant section of the program, 

which is associated with that KEYWORD. In addition to 

commands issued during a simulation run, (including the 

command to "STOP" a run), a TEXT input is necessary for 

the initialisation of all simulation runs. This TEXT 

value informs the program whether it is to restart a 

previous set of runs or whether it is to commence a new 

series. The difference in KEYWORDS directs the computer 

either to read in a new set of initialisation data, or 

to consult a Magnetic Tape which was previously written 

to-by a preceeding simulation run. This facility to re- 

start a previously run simulation, and then continue it, 

is one of the most important features of the simulation 

program. 

As it was intended to run the modified program as a back- 

ground job on the ICL 1904S, it would not have been 

possible to interrupt the simulation and interrogate it, 

mid-run, without abandoning the whole job. The "RESTART" 

facility, once implemented, enables a run to be set in 

motion and then halted so that an inspection can be made 

of the progress of the simulation. Once inspected, the 

run can then be RESTARTed and the modelling parameters 
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altered, if required. 

The comprehensive graph-plotting subroutines incorporated 

in the original program were unable to be implemented on 

the plotting device connected to the ICL 1904S. This 

meant that compatible graph plotter commands had to be 

substituted for the original ones. The alternative 

graphics routines were provided using the GINO graph 

plotter library facility. One advantage of GINO is 

its portability to other Universities which have an 

ICL 1900 series computer. 

Due to the inherent slowness of the operation of the graph 

plotting process, the computer would be very inefficiently 

used if the plotter was controlled directly from a users 

program. Instead of directly controlling the plotter, 

therefore, the plotting codes for pen and paper movements 

that are generated by a program are output to a eilestore 

file. On completion of a program, the file containing the 

plotting codes is accessed by a special "System Program" 

to produce the actual graphical Saeoee This operation 

Occurs sometime after the originating program has been 

processed. In this way the slow speed of the graph plotter 

does not slow down the rate at which the computer can process 

the simulation. 

7.2.2 Execution of the Simulation 

The program "BALL" requires a considerable amount of 
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computer core and execution time. In order to ensure 

that the simulation is completed relatively quickly 

on an already partially congested time sharing multi- 

programming system, it is important to understand 

how the computer system works so that jobs can be 

submitted in the manner most beneficial to the rapid 

processing of the simulation. 

Because of its availability, the ICL 1904S (at the 

University of Aston in Birmingham) is a heavily used 

computer. In order to optimise the efficiency of the 

running of the computer, jobs are started in an order 

which makes the most efficient.use of the system. This 

ordering is carried out by a part of the Operating 

System known as the High Level Scheduler. This requires 

information about each job, such as the amount.of core 

storage, the execution time required by the job, and its 

priority. This information is supplied by the user, as 

each job is submitted, in the form of a Job Description 

parameter. The jobs are then streamed into one of four 

categories (A to D) depending on the Jobtime and core size. 

A job that requires a short running time will be directed 

into the 'A' stream, while a job needing a large amount 

of core and/or execution time, will be directed into the 

'D' stream. 

Jobs in streams 'A' and 'B' are permitted to run 24 hours 

a day, while the running of stream 'C' jobs is limited 
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to between 17:00 hours, and 08:00 hours. The largest 

jobs, those in stream 'D' are only run between 22:00 

hours and 08:00 hours. The order in which jobs are 

run, within the stream limitations, is determined by 

each jobs individual Index value. This is dependent 

on the user's previous usage of the computer, the 

number of shares allocated to that user and the priority 

which that user attaches to the job. Jobs submitted 

with a high priority can get through relatively quickly 

but will adversely affect the turnaround of subsequent 

jobs of that user. Both index schemes (users index and 

job index) are subject to an exponential time decay; 

thus a user may compensate for a high index by not using 

the user number, or a job with an initially high index 

will achieve a lower index if it remains in the job 

queue for a long enough period of time. Before deciding 

on the approach to adopt towards the job queuing system, 

it will be beneficial to study the operation character- 

istics of a typical "BALL" simulation run. 

The rate of program execution is referred to in disc- 

cycles per second. For example, if the program was 

operating at 100 disc-cycles per second, an execution 

time of 5 seconds would be sufficient for an array of 

50 discs to be simulated for 10 full calculation cycles. 

An execution speed of typically 150 disc-cycles per second 

was obtained from the program when it was working on the 

ICL 1904S, but this rate of calculation is dependent on 

what tasks are required of the simulation (graphical 

output, disc information printout, alteration of operating 
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conditions, etc.). As a typical simulation run requires 

about 60,000 simulation cycles, an eighty six disc array 

(as used in part of this work) will require an execution 

time of approximately 34,400 seconds (or about 9.5 hours) 

for the calculation cycles alone. An approximation of 

about ten percent of this time should be added-on for the 

production of graphical output and information printouts. 

It is thus necessary to run the program over a series of 

jobs, rather than as one big run; (maximum job-time in 'D' 

stream being 3600 seconds). How many jobs depends on the 

stream in which the user intends to run the simulation. 

Typically, on the available installation, it was found 

that a complete, adequately tabulated and illustrated 

simulation experiment would take: 

either 11 stream 'D' jobs 

47 stream 'C' jobs 

126 stream 'B' jobs 

or 629 stream 'A' jobs 

As the processing time for running 'C' and 'D' stream 

jobs was so restricted, it was decided to run the simulation 

in the 'B' stream. As shown above this requires the running 

time of 126 jobs; the ability of the program to stop and 

be restarted is consequently very important. The program 

writes to a Magnetic Tape file when it has finished 

the individual job execution and this file is retained in 

backing store until it is called up as data for another 

program run. The nature of such a procedure is that a



Magnetic Tape File must be written to and closed, before 

it can be recalled and opened. Thus the seperate jobs, 

that make up the whole simulation run, must be run 

sequentially rather than concurrently. 

On some multi-programming computer systems this could 

lead to problems as it is possible that more than one of 

the simulation jobs could be loaded into core at the same 

time; thus they would both use the same "Restart" files, 

perform the same calculations, output the same results 

and possibly cause problems to the next job to be run. 

Fortunately the High Level Scheduler on the ICL 1904S 

is set-up so that it allows only one job from a user to be 

run at any one time. 

Ten hours of computing time is quite considerable, 

especially when it has to be obtained in competition with 

other users. When running at maximum capacity, the central 

processor can deal with four 'B' stream jobs in core, thus 

for the optimum turn-around time, the simulation user has 

to aim at monopolising one channel of core for the full 

required time. Even if this was possible, it would still 

take longer than ten hours to run the program; this is 

because the ICL 1904S is a time-sharing system. This 

effectively means that even though a program is in core, 

so are three others from different users. While work is in 

progress on one of these programs, the others are being 

ignored. The program being used alters when an 'Interrupt' is 

generated. This can be caused by a number of events, typically 

an Input/Output request or Time slice exceedence. When an 
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interrupt is encountered, transfer is effected to 

another program in core, thus not holding up the 

relatively fast Central Processor with a relatively 

slow peripheral request. By processing jobs in 

discrete modules, it can be seen that just because 

a job has a scheduled execution time of 300 seconds, 

it is probable that the length of run-time needed will 

be considerably greater. It should therefore be clear 

that efficient use of the High Level Scheduler will permit 

the simulation test to be completed sooner. 

7.3 MODIFICATIONS TO THE MODEL 

Although the "BALL" simulation program had already been 

used in ecaneedian with random arrays, with the limited 

time available (program"Ball",Version 1.1 became available 

in October 1979), it was decided that it would not be 

realistic to contemplate a thorough examination of the 

behaviour of random assemblies. Since the current work 

had been concerned with regular arrays (Part 1 of this 

thesis), it seemed logical, since the published use of 

"BALL" in connection with regular arrays was minimal, 

to apply program "BALL" to regular arrays in this research 

project. In addition, it was thought that the experience 

gained in the use of "BALL" on regular arrays would be 

beneficial to the future application of random packings. 

Consequently this aspect of the research is to some extent 

an exploratory investigation into the use of "BALL" as a 

simulation technique to investigate the behaviour of 

particulate systems. 
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The necessary modifications to the existing program 

are described in this section. 

7.3.1 Initialisation of the assembly 

The original method of creating discs meant that the co- 

ordinates of the centroid had to be declared and a command 

issued to create a disc. This logic has been retained, 

but as the modified program was to be used to simulate 

regular packings, it would be beneficial to have a section 

of the program generate the disc centroids from information 

given to it concerning the number of rows and columns of 

discs required. This not only avoids possible user-errors, 

but also cuts the number of read statements necessary to 

set up the total packing (and hence reduces the number 

of interrupts - see Section 7.2.2). Such an algorithm 

simaresrenat even very small overlaps, or gaps, are 

avoided. The algorithm governing this piece of programming 

is shown in Figure 7.1, which illustrates the way in which 

the co-ordinates are generated for any arbitrary number 

of columns, rows and disc radius inputted by the user. 

Although this refinement may appear to be trivial, its 

effect on possible interrupts is such that it can sign- 

ificantly affect the initial job run-time. 

7.3.2 Boundary Control Facilities 

Having created the disc assembly, the next step is to 

simulate a hydrostatic stress applied to the boundaries 
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of the array. To do this it is necessary to apply 

discrete forces to all boundary discs. This is done 

in the program by setting up two arrays (one for 

horizontally constrained discs and one for vertically 

constrained discs). The first element contains the 

number of discs constrained, the other elements 

containing the starter addresses of the constrained discs. 

When the assembly has been consolidated under the desired 

hydro-static stress the plattens are then introduced. To 

avoid wasting computer time, the initial wall description 

was automatically related to the position of the four 

corner discs after consolidation. The algorithm is 

contained in Figure 7.2. 

In the original version of "BALL", all the discs are free 

to spin if and when they want to. Spin is naturally 

restricted at a wall interface, but no similar restrictions 

existed for stress-controlled boundaries. Since laboratory 

samples of soil are normally contained within flexible 

rubber membranes which provide restraint on the boundary 

particles, it was decided to incorporate a general 

particle spin restraint option. In this way it is possible 

to deny some, or all, of the discs the freedom to rotate. 

The spin-constraint array is set-up in a similar manner 

to the horizontal and vertical constraint arrays, already 

Mentioned. There is, however, a special case for the spin 

constraint case, namely the condition where all the discs 

are required to be irrotational (instead of, say, merely 

the boundary ones). In this case there is no need to feed 
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in the starter address of every disc, instead a default 

value (in excess of 1000) should be allocated to the 

‘disc-number' element. The value of this element is 

tested later in the program and the necessary action taken 

then. This avoids the need for an iterative process 

dealing with each disc in turn; instead a flag is set 

which re-routes the execution through a part of the program 

which allows no particle spin. Spin restraint is useful 

for dealing with problems involving boundary effects on the 

outer discs. 

7.3.3 Iteration of the Test Process 

After consolidation, the assembly was to be loaded in 

shear with the hydrostatic stress constraint. Under these 

conditions the discrete forces used to simulate the hydro- 

static stress are dependent on the current dimensions of 

the array. Originally there was a command "CYCLE" which 

simply called subroutine CYCLE and performed the required 

number of calculation cycles. This did not allow for any 

change in dimensions during the iterations. It was there- 

fore necessary to write an algorithm around the "CYCLE" 

command. This calculates the dimensions of the packing 

before each call to "CYCLE", thus enabling the out-of- 

balance forces on the discs to be adjusted before each 

iteration cycle is performed. After each iteration cycle 

has been completed, the horizontal and vertical out-of- 

balance force-sums are calculated along with the long- 

itudinal strain (in the direction concurrent with platten 

movement). This information may be passed to a file, which 
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subsequently contains all the stress ratios and strain 

values for the entire test, cycle by cycle, thus 

enabling the user to study a particularly critical part 

of the test in detail. This also acts as a check to 

ensure that the test is not run too quickly. A run 

that has been performed too rapidly (wall movement) will 

show oscillations in the stress ratio over a large 

number of cycles. This whole procedure is then repeated 

for the total number of iteration cycles requested in the 

original command input. The algorithm is shown in Figure 

793s 

7.3.4 Contact Summary Option 

Discs that have been in contact, but have recently broken 

contact cannot always be observed from the graph-plots, 

especially for small gaps in the packing. To overcome 

this it was necessary to obtain a way of listing the 

discs in contact, together with the normal and shear 

forces at the contacts. In the original program there was 

a command "PRINT" which obtains a printout of certain 

sections of program storage, the existing options being 

printouts of disc and wall information. This command was 

extended to include contact information. In a separate 

file, a record is kept of the total number of non-zero 

contacts and the cycle number at which this number existed. 

The algorithm is shown in Figure 7.4. 
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7.3.5 Graphical Output Facilities 

For simulation runs involving large numbers of cycles, 

it was decided that it would be convenient to have a 

regular plot of the disc positions every few thousand 

cycles. This provides the user with a visual record 

of what is actually happening to the discs. While 

such plots are of little use quantitatively, they are 

useful in assessing the state of the simulation run, as 

it is easier to scan pictorial output for information 

than it is to study large numbers of tabulations. 

While the original program needed individual PLOT commands 

for each plot, it was decided that an automatic plot 

should be set up, whereby the program generates plot 

information without the need for a PLOT command. The piece 

of programming necessary for this was inserted in CYCLE, 

the plot interval being supplied to the program via a 

single PLOT request in the command data. (See Appendix 

B for a list of the various simulation commands). At 

the same time, a facility for selecting alternative forms 

of output media (for example micro-film or microfiche) 

was incorporated. 

On entry into the plotting subroutine the output option 

is checked and the relevant type of plotting file 

initialised. The algorithm for the plotting subroutine 

is shown in Figure 7.5. This subroutine is entered 

everytime a call is made for graphical output. Standard 

GINO-F routines are used for the instructions to draw 

lines and characters. 
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The plotting subroutine determines if the current call 

is the first one in a job run. If the current call 

is the initial one, then this subroutine opens the 

relevant type of graphical output file and then declares 

the plot scale and the origin of the co-ordinate system 

used in the graphics system. The character size is set 

to the scale of the plot and then an iteration is 

performed which takes each disc in turn, accessing the 

information stored in the Dynamic Array, obtaining the 

co-ordinates of the disc centroid. A circle is then 

drawn (radius scaled down) at the corresponding location 

of the disc. A counter is incremented and the process 

repeated. When this has been performed for all the discs, 

a similar sequence of events is followed for the walls. 

In order to provide a clear indication of movement and 

relative position, the working space grid was superimposed 

in a different colour, on the plot. As a means of 

reference and to make post-simulation examination of the 

plots easier, a title informing the user of the total 

number of cycles performed when the plot was produced, 

was also added. 

7.3.6 Command Value Abstraction 

A seemingly over-complicated feature of the original 

simulation program, was the way in which commands, once 

read in, were directed to a parsing subroutine to 

abstract the associated data values. Originally, a TEXT 
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comparison was performed between the first four letters 

of the command word and the KEY WORDS in the LOOK-UP 

table. Once the correct keyword was established, a ten 

digit integer number was associated with the command and 

control passed over to Subroutine PARSE. This subroutine 

deduced from the ten digit number how many arguments were 

to be expected with the keyword and’their type. The 

subroutine compared the line of data read in as TEXT 

with the keyword (ignoring any number of blanks and 

commas) and then associated the dummy variables with the 

relevant types of argument. In this way a single TEXT 

value was read into the program from the command data file, 

the TEXT was split into individual TEXT variables by 

using the relevant digit code and then the TEXT values 

were converted to REAL, INTEGER or ALPHANUMERIC values, 

as stipulated by the digit code and allocated to dummy 

variables to be fed back to the calling subroutine. 

This subroutine used the functions ENCODE and DECODE 

available on the PDP 11/45 to transform data from and 

to ASCII code. Such a subroutine, while being very 

"user-friendly" in terms of data handling, seemed over- 

complicated and was not feasible on the available 

computer. Instead, free-format input statements were 

used. The algorithm describing the logic of this 

modified section of the program is shown in Figure 7.6. 

This shows that the concept of a command/look-up table 

comparison is retained, but instead of an integer code 

being passed across to PARSE, the keyword number is 
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transmitted. This number is used in a computed GOTO 

statement to direct control to that section of PARSE 

which contains the appropriate READ statements. The 

command values are allocated to dummy variables and 

control is then passed back to the calling routine. 

The keyword number is used again in a computed GOTO, 

this time to direct control to the relevant part of 

subroutine NEXT. The dummy variables are then used 

in this section and upon completion of the command, 

control is passed back to the start of the subroutine, 

ready. for the next command to be read in. This has 

the advantage that it is easier to follow the logic, 

easier to modify for implementation of additional 

commands and has greater portability between different 

computer systems. 

7.3.7 Input/Output Channel Allocation 

The allocation of channel numbers is very much a machine 

dependent arrangement, but for completeness the channels 

used in the modified simulation program are as follows:- 

Le Input File ne void 

22 Output File ae Plot File 

sie Total Contacts File 8: Wall Force History File 

4: History File oe Complete Stress-Ratio/ 
Strain Record File 

Se Stress-Ratio/Strain 
Summary File 10: Restart File 

The Input File contains a sequence of commands, (as 

given in Appendix B), it is this file which dictates 

155



the operation of the simulation. 

The Output File acts as a logging device, it echoes 

all input commands and is the main output channel for 

the program. 

The Total Contacts File, is a tabulation of the total 

numbers of non-zero contacts at the end of each complete 

set of calculation cycles. 

The History File contains a periodic dump of all wall 

variables. This file can be accessed by post-processor 

programs to plot stress-strain curves. 

The Stress-Ratio /Strain Summary File contains the 

stress-ratio and corresponding strain at the end of each 

set of iteration cycle commands. 

The Plot File is the channel to which all plot commands 

have to be written, due to the off-line nature of: the 

graph plotting device. 

The Wall Force History File is really a dummy file, it 

was used as a monitoring file during the calibration 

stage of the model and is now retained as an empty file. 

The Full Stress-Ratio/Strain Record File is similar to 

the Stress-Ratio / Strain Summary File, except that it 

contains the state of the simulation, calculation cycle 
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by calculation cycle. This file tends to be a very long 

one and because of this, the file option is normally un- 

used. 

The Restart File is overwritten by the program whenever 

it reaches a normal exit state and is used to restart 

the program from the point at which it stopped. 

7.4 TRANSFER OF THE SIMULATION PROGRAM FROM THE 

ICL 1904S to the CDC 7600 

Because of the arrangement of the ICL 1904S services 

available, it became apparent that for larger tests 

(more discs, bigger strains or both), the machine time 

needed for a reasonably well documented simulation 

experiment would cause a great deal of inconvenience 

to other users. After performing several such 

experiments, it was recommended that the program should 

be transferred and run on the CDC 7600 at Manchester. 

Due to the time restrictions necessary for such a move, 

the alterations to the program were kept to a minimum, 

although the CDC 7600 did offer some interesting Fortran 

extensions. 

The use of linked lists in the simulation (as described 

in Chapter 6), requires the facility to compress two 

INTEGER variables into one REAL variable location in 

the Dynamic Array. On the ICL 1904S it is possible to 

compress INTEGER variables so that they occupy one word 

157



of storage only and as REAL variables are allocated 

two words, the system of linked lists works adequately 

well. On the CDC 7600 however, both INTEGER and REAL 

variables are allocated one 60-bit word of storage. To 

circumvent this, it was necessary to use DOUBLE PRECISION 

variables for the Dynamic Array. This, naturally, increased 

the memory requirements of the program; since DOUBLE 

PRECISION variables are allocated two 60-bit words of 

store. However, the storage available at UMRCC on the 

cpc 7600 is far greater than that on the ICL 1904S, 

(64K words of Small Core Memory and 250K words of Large 

Core Memory) and so no memory difficulties were encountered. 

One feature of the CDC 7600 is the speed in which it 

executes jobs. A simulation run (me job) at Aston on the 

ICL 1904S typically took twenty times longer to execute, 

thus by submitting a job of an allocated executable time 

of 1280 seconds ( the maximum amount of time on the CDC 

7600, turnaround usually over-night), it was the 

equivalent of running 25,600 seconds worth of jobs on 

the ICL 1904S. 

Other available features included: the use of "SHIFT" 

functions, these effectively allow the storage of values 

anywhere within the 60-bit word configuration. In this 

way it would be possible to store four 15-bit values 

within one variable (or two 30-bit values, etc) as long 

as care was taken when accessing such values. This could 

be applied in future developments of the program to reduce 
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the storage requirements of the Dynamic Array. Another 

way of optimising the storage of the Dynamic Array is 

to declare it in a "BLANK COMMON" statement. On the 

cpc 7600, any such declarations are placed at the end 

of the program storage area in core. Thus, as the 

cpc 7600 is not a multi-programming system, it is 

impossible to damage other jobs in core. Thus, an 

array in a BLANK COMMON declaration can have a declared 

size of unity in the program and can be expanded as 

required from inside the program. This means that there 

is no need to estimate the eventual size of the Dynamic 

Array, as has to be done on the ICL 1904S, to avoid 

"Privalage Violation-Array out of Bounds" types of run- 

time errors. 

Another facility of the Manchester service was the provision 

of Computer Output on Microfilm or Microfiche (COM), 

this avoids producing unmanageable quantities of printout 

and is available for both lineprinter copy and graphical 

output. 

The use of UMRCC facilities is not totally without job 

time and job size restrictions because the Manchester 

service is shared by other Universites in the region, each 

having a percentage share in the system. The total 

filestore available to the University was approximately 

40,000 blocks, a figure that can be exceeded if there 

is any difficulty with the com hardware, and graphical 
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plots are not erased. The total job allocation to the 

University is currently 1280 job units per day. A 1280 

second simulation run would typically use 640 of these 

units. However it can be seen that running the simulation 

program to model a whole experiment, (up to 5% strain) 

can be achieved in three days, at the rate of one run 

per day, which is a considerably faster, (and more 

convenient to others), turnaround time than could be 

expected from other available computers. 
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INPUT (number of rows, number of columns, 

disc type, disc radius). 

Initialise the Row Counter to a negative number 

Initialise the disc co-ordinates (X,Y) to a suitable 

position on the Working Space. (XSTART,YSTART) 

Calculate the horizontal and vertical distance between 

centroids (dX,dY) 

XSTART=XSTART-dxX 

YSTART=YSTART-dY 

ITERATE FOR REQUESTED NUMBER OF ROWS 

| 

| 

| 

| IF (Row Counter -ve) X=XSTART 

Y=Y+dY 

Row Counter = - Row Counter 

| and No. of discs in row= 

No. of columns 

IF (Row Counter +ve) X=XSTART + RADIUS 

and No. of discs in row= 

| No. of columns - 1 

| ITERATE FOR NUMBER OF DISCS IN A ROW 
  

X=X+ dx 

ENTER EXISTING DISC 

CREATION ROUTINE, CREATE 

| 
' 
1 

\ 
\ 
| A DISC AT X,Y 
| 

| 

| 

I 

; END LOOP 

END_ LOOP 

INFORM user of number of discs created. 

OBTAIN a graphical printout of the disc arrangement. 

FIGURE 7.1 ALGORITHM FOR AUTOMATIC FORMATION OF A 

TIGHT PACKING 
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INPUT 
n @ A 

GOTO 

SET 

SET 

GOTO 

END _OF SECTION 

starter addresses of corner discs. 

variables, relative to corner discs, 

in order to define lower wall. 

wall counter = 1. 

existing wall definition section. 

DEFINE ONE WALL 

IF not first wall 

THEN END OF SECTION   

GOTO remainder of Auto-wall definition 

section. 

variables, relative to corner discs, 

in order to define upper wall. 

wall counter = 2. 

existing wall definition section. 

FIGURE 7.2 AUTOMATIC WALL DEFINITION ALGORITHM 
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INPUT 

END LOOP 

PRINT 

(number of cycles, cell pressure, addresses 

of corner discs). 

total number of previous cycles is zero 

THEN original height = Y distance between 

end disc + 2 * radius. 

from 1 to number of cycles. 

CALCULATE current packing dimensions. 

IF walls are present 

THEN current height = distance between walls. 

CALCULATE horizontal and vertical forces 

which correspond to the requested 

cell pressure. 

SET force sums to zero 

IF there are any Horizontally constrained 

discs and if the horizontal force is non- 

zero 

THEN add in the restraining horizontal 

force to each horizontally constrained 

disc. 

IF there are any Vertically constrained discs 

and if the vertical force is non-zero 

THEN add in the restraining vertical 

force to each vertically constrained 

disc. 

IF total number of cycles is zero 

THEN CALL SUBROUTINE INIT\Both routines acting 

CALL SUBROUTINE CYCLE\as originally 

(for 1 cycle) specified. 

CALCULATE resulting Horizontal and Vertical 

force sums on discs 

CALCULATE stress ratio and percentage strain 

IF printout option flag set 

THEN printout stress ratio and percentage 

strain 

iteration successfully completed message 

END OF SECTION 

FIGURE 7.3 ALGORITHM TO ITERATE A SERIES OF COMMANDS 
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SET UP HEADINGS 

INITIALISE contact counter 

POSITION marker at the start of the box 

information (M3) in the Dynamic Array 

RETRIEVE information at marker address ——~——__ 

IF a contact exists in that box 

THEN obtain normal and shear forces 

across the contact and the 

starter addresses of the objects 

in contact. 

Printout information. 

Increment the contact counter if 

the contact is a non-zero one. 

Check the contact list for other 

contacts in the same box. 

IF another contact exists THEN 

    

INCREMENT box counter by one 

Lee still in box section of the Dynamic 

Array 

‘THEN 
PRINTOUT total number of contacts 

END OF SECTION 

FIGURE 7.4 ALGORITHM FOR CONTACT PRINTOUT 
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START 

LE this is the initial call 

THEN initialise the appropriate output 

file. Set the scale and plot origin. 

SET character size 

FOR all discs 

draw a circle of given scaled 

radius around disc centroid 

and insert the disc's starter 

address. 

FOR all walls 

determine the wall lengths 

and positions. Draw them. 

DRAW the grid over the Working Space. 

PRINT the cycle number 

START a new page 

END OF SECTION 

FIGURE 7.5 ALGORITHM FOR THE PLOTTING SUBROUTINE 
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SUBROUTINE NEXT 

START 
INPUT comand line ~—_..., -a | 

COMP ARE it to keywords in look-up table 

ae keyword not found 

THEN print error message ———»——_4 

SET value to key-word number and pass 

this value to PARSE. 

CALL SUBROUTINE PARSE 4 

SUBROUTINE PARSE 

START 

COMPUTED GOTO 

READ 

RETURN 

COMPUTED GOTO 

PERFORM 

SEEK NEW COMMAND 

using passed over value 

using Free Format into dummy 

variables. 

using key-word number to relevant 

command section. 

command using dummy variables.   

  

FIGURE 7.6 ALGORITHM FOR READING IN COMMANDS 
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CHAPTER EIGHT 

8. RESULTS OF COMPUTER SIMULATION TESTS 

This chapter presents the results of tests performed 

on various regular arrangements of discs using the 

computer program BALL. It was decided to simulate a 

series of biaxial tests in which a rectangular sample 

(consisting of a regular close packed array of discs) 

is bounded by plattens on two opposite sides, the 

remaining two sides being stress controlled boundaries. 

Stress controlled boundaries were simulated by applying 

discrete out of balance forces to each of the boundary 

discs at the beginning of each calculation cycle. As 

the length of the stress controlled boundary altered, 

the discrete forces on ene discs were adjusted accordingly. 

For reference purposes, the direction of platten movement 

is denoted the y-direction and the x-direction is taken 

to be perpendicular to this, in the plane of the sample. 

The stress ratio, oy / 9, , consequently refers to the 

stress on the plattens divided by the constant stress 

applied to the stress controlled boundaries. 

Three main groups of tests were performed, on packings 

with different numbers of discs - the packing sizes were of 

18, 86 and 124 discs. Initially, tests were performed on 

18 disc arrays. This small packing has the advantage of 

being processed relatively quickly on the ICL 1904S computer 

at the University of Aston (see section 7.2.2). The 18 disc 
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tests were used to check that the results obtained 

from the simulation runs were not unreasonable. By 

altering the boundary conditions and the disc properties, 

changes were observed on the stress-strain curves that 

could be directly linked to the changes in the test 

conditions. The choice of platten velocity was 

particularly critical to the results and so a number 

of tests were performed to establish the optimum choice 

of this parameter. 

Having established a suitable platten velocity and 

examined the effects of various particle properties, 

further simulation tests were performed on larger arrays 

to study the effect of boundary conditions on the overall 

behaviour of the packings. The behaviour of the smaller 

sample was felt to be disproportionately influenced by 

boundary effects. On the ICL 1904S computer, the 86 disc 

packing was chosen as the largest test sample size that 

could be processed repeatedly in the remaining research 

time available and consequently tests were performed on 

this configuration. 

Due to improvements in the available computing facilities, 

it later became possible to transfer the simulation 

program to the CDC 7600 computer at the University of 

Manchester. The tests subsequently performed on this 

computer employed a larger packing size of 124 discs. 

From the results of these tests, it was possible to study 

the effects of interparticle slip and gap formation on 

the resulting stress-strain curves. 
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8.1 PRELIMINARY TESTS ON 18 DISC ARRAYS 
  

The 18 disc array was generated so as to provide an 

initial arrangement as shown in Figure 8.1. In order 

to facilitate reference to individual discs, the data 

starter-address of each disc (see Section 7.2) was 

printed within the area occupied by each disc. Because 

it was not possible to simulate rigid discs, elastic 

discs of a high stiffness were used. The close packing 

arrangement of discs was then "consolidated" by 

simulating a hydrostatic stress acting on the sample. 

This consolidation was necessary because the internal 

contact forces (and overlaps) associated with the desired 

confining stress need to have developed naturally as a 

result of the simulation technique. Consolidation was 

considered complete when no further changes occurred in 

the packing dimensions and the stress ratio had returned 

to unity. Both top and bottom plattens were then introduced 

and were located so as to be in contact with the boundary 

discs (but with no overlaps). With the hydrostatic stress 

still applied and held constant, the sample was then sheared 

in compression by specifying equal and opposite velocities 

to the two plattens. The percentage (engineering) strain 

in the y-direction and the stress ratio oy /o,, were recorded 

after each calculation cycle. 

8.1.1 Selection of Control Parameters 
  

The simulation model, as already described in chapters 
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6 and 7, is essentially a dynamic simulation model and 

as such there can be problems when using it to model 

a quasi-static situation, due to the resulting motion 

of the particles. To counter this problem, there is 

provision in the program for a "damping" of the 

calculated motions of the elements. This prevents 

the occurance of vibration of particles in contact 

(contact damping) and also prevents the particles from 

moving, as a body, around in the sample area (global 

damping). 

Global damping acts on the velocities of the discs and 

is introduced into the equations of motion. The effect 

is similar to having dashpots connecting each particle 

to its current position. This damping therefore operates 

on the components of the velocity vectors and on the spin. 

Contact damping, however, operates on the relative 

velocities at the contacts. This acts rather like dashpots 

in the directions of the normal and shear forces at the 

contacts. The contact damping, in the direction of shear, 

is not applied when sliding occurs; the damping then is 

due to friction alone. The contact damping adjustments 

are introduced into the equations for the out of balance 

forces. 

As explained by Cundall (1978) the damping scheme used 

requires the input of four parameters,’ . ,£.._,Im and Ik; 
min min 

wheref, is the frequency at which minimum damping occurs, 
min 
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en is the fraction of the critical damping at that 

frequency and Im and Ik are flags which control the 

section of parameters in the following damping equation 

[el = of] + B(x] Rnb) 

where [€] is the damping matrix, [M is the mass matrix, 

{(K] is the stiffness matrix and aand Bare constants. 

If, the flag, Im = 1 then% is set to zero and if Ik=1, 

B is set to zero. 

The damping parameters used, in the simulations presented 

here, were Aa = 0.5,f,3, = 0-5, Im= 0, Ik=1 (thus 

using the global damping option); as used by Cundall (1978) 

and Cundall and Strack (1979), who remarked that the 

results they obtained were independent of the values chosen 

for the damping parameters, for simulations using low 

platten velocities. A more detailed explanation of the 

damping systems involved is discussed elsewhere, Cundall 

(1978), Cundall and Strack (1978). 

As the aim of the computer simulation was to simulate 

a quasi-static test, it was necessary to determine platten 

velocities suitable for this purpose. Should the platten 

velocities be temporarily interrupted and ey eta continued, 

then there would be a decrease in the stress on the plattens 

because some time is required for the damping within the 

system to bring the discs to equilibrium. This is illustrated 
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in Figure 8.2 which shows the reduction in stress on 

the plattens with time, after the platten velocity has 

been zeroed. It is possible to choose a sufficiently 

small platten velocity so that such decreases are 

negligible, however such low velocities require an 

inordinate amount of computer time to simulate small 

movements of the plattens. There is a point at which 

the modelling becomes too expensive in computer time, 

to justify the small extra precision gained. Equally, 

if the chosen platten velocity is relatively high - 

although the required deformation state is quickly 

attained - the number of extra cycles required, after 

the platten velocities have been zeroed, would be 

excessive. There is, therefore, a need to compromise and 

the decision was made to continuously move the plattens, 

at a low velocity, with no rest cycles. 

The effect of platten velocity on the overall stress-strain 

behaviour is shown in Figure 8.3. Three tests are 

illustrated. Two tests, A and B, were performed with 

continuous platten displacement. A velocity of 0.001 

units per cycle was applied in the case of test A and a 

velocity of 0.002 units per cycle was used in test B. In 

the third test, C, a velocity of 0.002 units per cycle was 

applied for 80 cycles and then, with the platten velocity 

zeroed, a further 400 cycles of calculation time were 

performed to allow the system to reach equilibrium; this 

pattern being repeated throughout the test. 

Lie



It can be seen from Figure 8.3 that the pre-peak 

behaviour is not affected by the rate of deformation, 

for the platten velocities chosen. The method of controlling 

the wall movement does, however, affect the post-peak 

stress-strain curve. As shown in Figure 8.3, the post- 

peak stress ratios are lower for the slower rate of 

continuous deformation, but even lower values are obtained 

in test C. This indicates that the slower velocity 

employed in test A was not sufficiently slow as to avoid 

significant dynamic effects. However, it is clear from 

the figure that the small amount of precision gained by 

doubling the calculation time needs to be weighed against 

the increased cost in computer time. The relatively slow 

platten velocity of 0.001 units per cycle was used in all 

the tests on larger samples in this chapter, while the 

higher platten velocity of 0.005 units per cycle was 

used in the earlier validation tests on small sample 

sizes. 

8.1.2 Validation tests 

Before examining the results of tests performed to evaluate 

the influence of particle properties, a theoretical analysis 

of elastic discs - using an approach similar to that used 

in Chapter 4, will be presented. 

Consider the case of frictionless elastic discs in contact. 

The forces on such a disc are shown in Figure 8.4 (a). To 

be consistent with the computer simulation the elasticity 

of the discs may be represented by linear springs acting 

in the normal and tangential directions at the contacts. 
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Let the displacements at the contacts be, 

6p at P, é6q at Q and é6t at T see (Bere 

Assuming the stress within the discs to be 

-32 x,N, eee CSea) 

Where Nj are the normal forces and xX, are the co-ordinates 

of the contact points, this can be expanded to give 

V3/4 =v3/4 ‘| ¥3p/2 p/2 
2 o> 2DI1/4 1/4 1/2 ||-V73q/2 q/2 woni(Be4) 

pul 0 t 

Where D is the diameter of the disc. 

or 

o,,=2 87a s 45 2ea) ee e8-5) 
J V}V¥3/4 (p-q) 1/4 (pta) +t 

However, for the problem under consideration, 

G15 = o>, * 0 as 94) and 550 are principal 

stresses and therefore p = q. This leads to 

oy 0 =p 3p 0 
a --- (8.6) 

0 o5 0 pt2t 

Which for linear springs, where p =Ké,and Te =K6. 

gives 
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71} _ px 3 0 es 

~ 2y o> 1 2] }z6, 

The strain-increment 

Thornton (1979), thus 

2X,de,.X. = (D+26) (D+26) -D? 
Jy 

which, at P, gives 

2|v3p/2 0/2| de,, 415 ¥3D/2 

deo, 29 Die 

or Ade, +7 3Ade +7 3Ade,  +Ade,, 

Similarly at Q, 

2fv30/2 v/2| GE yy de 15 -/3D/2 

4&9, dEp2 oe 

or JAde, ,-V3Ade | .-V3Ade,  +1Ade,, 

and at T 

2 [o >] de) 12 2 

de, 22 y 

or 

; oy 
Since p="; 60 = Sar Gig = Ge, 

rotation) 

372 de, 5t1/2 deo, 
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tensor can be 

+++ (8.7) 

obtained as per 

+++ (8.8) 

eee (8.9) 

= 2505/0 soe (8.10) 

= +++ (8.11) = 46 D 
q 

= +++(8.12 28,/D ( ) 

«++ (8.13) 

me a. (8. 14) = 28,/D 
= 0 (as there is no 

= 46 mea Se ft (8.15)



Therefore, from (8.14) 

D 3 

= 8 0 

and (8.15) 

and for linear elastic discs 

which gives 

but 

Q 
Qa 

or 

Q 
e 

Qa 

C
r
e
 

w   

1 dey, +. (8.16) 

Giemieco2 

iL € 
: (8.17) 

4 Ey 

into (8.7) to obtain 

° H   meek : «+ (8.18) 
a, 2| 0 4 e 

9 3 fy 

| BUS +e (8019) 
16V|3 9 € 

2 

= /3D?/2 , leading to 

9 3 € 
fe K 1 
* 33 3 5 woe 20), 

=2 

L 1 &) 

373K eee (Be21) 
S ewe E5 Nv 
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The analysis for discs with friction is similar to that 

presented above, the forces on a disc are illustrated 

in Figure 8.4 (b). The average stress tensor within the 

disc is made up of normal and tangential force 

contributions 

035 7 0450+ ot e822) 

The normal force contribution is 

a 3/4 (pita) 73/4 (p,-4,) 
cof ee (Ow25 955 7 ( ) 

¥3/4 (pied 1/4 (peta) tt. 

which is similar to (8.5) for the frictionless case. 

The tangential force contribution is 

73/4 -/3/4 0 || p,/2 -¥3p,/2 
(T) Cag = 2p week Seed) 

ij + 1/4 1/40 5/2 -q,/2 -v3q,/2 

oe 0 

which leads to 

oe 73/4 (p,+a,) -3/4 (p,-a,) 

oe : 
1/4 (py-a,) tt, -¥3/4 (pi ta,) 

rai (Be2s) 

Representing the disc compliance by linear springs (both 

normal and tangential) the relationship between the 

contact forces and contact displacements are 

KIS = KIA 
e P ae P n 

a Kré = KEA 
i. q ec a n 

For the problem under consideration 

oO = 0 12 hence t and a= Ak 21 te Fe Pe q op 
0 therefore p.-q.= 73(p,-q,) S12 

177



From inspection, isotropic compression occurs with t.= o= 

q= p,and, for shear with 405=0 E.=0 , there- 

fore G.= Py and Des Ge which when 

substituted into (8.23) and (8.25) give 

(N) 
o ey 3P, 0 

2V 
(N) 

o> 0 (p,+2t,) 

we. (8526) 
_ DK 3 0 Eo 

2V 
i 2 tS, 

and 

9, (T) a ¥3p, 0 

(T) 2V 

ol 0 -¥3P, 

7 Bo lara) 
3 = DK ZA, 

2V |-73 

where v = /3D*/2 and hence 

Oo, war V3 0 1 6, 

35 yee PyARy en 26, rae ee) 

=A 

The strain increment tensor is likewise seen to be made 

up of two components 

My (T) +++ (8.29) 
€,, = &, CA 

a3 ij 1j 
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N 
Where Ch ) is the contribution due to the normal 

displacement and ay i the contribution due to the 

tangential displacement. It follows from (8.17) that 

(N) 

ret Beige (8.30) 8 (N) eae . 

28, 0 4) \\z5 

and 

(N) ey i : 4/3 -1/3| |26, 
(N) oe (8231) E> 0 1 r6, 

The remaining part, due to the tangential forces, is given 

by 

2 |1/73 
a =A eSe se) 

Be Dp \e-¥3 P 

which follows from the analysis for rigid discs (Appendix 

A). Combining (8.31) and (8.32) 

€ 4/3 =1/3 1/¥3 6 1 2 P 
sae wee (8533) 

E> D0 i Ve r6, 

za, 

Slip occurs when 26,= 0 and EAL -uES , therefore from 

(8.28) and (8.33) we obtain 

oy = K/D (v3 + wu) EO, +++ (8,34a) 
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and 

o, = K/D (1/¥3 - wu) = «+. (8.34b) 

from which 

Cree ¥3 (v3 + yn) 
i ec eee soe Beso) 

o5 (1 - ¥3 wu) 

which agrees with Rowe (1962) and Thornton (1977). 

Considering the strains to failure, it follows that, at 

li =- hy = ee foe 2Vv3 ure, where Bon ¥3D oa 2 

D (i-v3n) K 

and therefore 

-6u0 
267 2 +--+ (8.36) 

(1-¥3u)K 

226 

BP (4/v3 + w) 
7X ep 

22D, (4 + V3p) 

cies 
  ee Oes 1) 

¥3K (1i= v3n) 

All the above values of strain include the strains during 

consolidation. During consolidation with o\= Oy" 

€,= €) 7 TAS= 6, r6,= noe 

= = = = 226 = 20,//73K Therefore 56, r6. o Oy and €,= €5 ars, 2/ 

Thus, the failure strains developed during shear are 

2o9 {3+2/73u} 
€1¢= +++ (8.38) 

¥3K {1-v3yu } 
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-205 (14+273p) 
  
  

  

€5.= wis (S039) 
a ¥3K (1-73 ) 

and 

40 
a. a, +++ (8.40) 

¥3K (1-73) 

Therefore 

€ 2 VE = Zien == +++ (8.41) 

1£ 0 (3+2V3u) 

which is affected by friction, and 

R-1 (1+ %y)  K 
Se wee (O04) 

1f 
Ria ew cy (where R = 0; /93) 

which is the modulus of the stress ratio-strain curve. 

It is therefore possible to provide theoretical curves 

for an array of regular elastic discs, which are assumed 

to act elastically up to some peak value and then deform 

in a plastic (strain-softening) manner afterwards, Figure 

8.5. These curves result from a combination of the 

elastic theory presented in this section and the plastic 

analysis presented in Appendix A. 

Figure 8.5 provides a comparison between the results of 

a computer simulated test on a 124 disc array of friction- 

less particles and the theoretical predictions. The stress 

ratio values simulated by the computer program are seen 
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to be lower than those predicted, both in the pre-peak 

and the post-peak sections. Possible causes could be 

the small number of discs involved (hence the large effects 

of the boundaries) and the effect of allowing the particles 

the freedom to spin. This latter point is further examined 

in section 8.3.2. The volume change curve shows very good 

agreement pre-peak, but the post-peak values deviate from 

the predicted curve. However, for the post-peak simulated 

tests, the packing is not exhibiting uniform deformation, 

some areas of the packing are much denser than others. The 

non-uniform deformation will be discussed in detail in 

Sections 8.2 and 8.3. 

Figure 8.6 shows four stress-strain curves for packings 

of different disc stiffnesses. It can be seen that as the 

stiffness of the discs increases, the stress-strain curves 

peak earlier in the tests with a slight increase in the 

peak stress ratio. This trend is in agreement with 

equations (8.38) and (8.42) and is explained by the fact 

that slip can only occur when gaps are created between 

horizontally contiguous discs. In the simulation test, 

consolidation of the packing leads to the formation of 

overlaps at the horizontal contacts between the discs. 

These overlaps imply contact forces are present and slip 

cannot occur until the packing has deformed sufficiently 

to reduce these overlaps (and contact forces) to zero. 

With packings of rigid discs, there are no overlaps created 

during "consolidation" and therefore, when sheared, no 
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deformation is required before slip occurs. 

A similar series of tests waS performed to illustrate 

the effects of cell pressure on the assembly and these 

test results are illustrated in Figure 8.7. It is 

seen that, in agreement with equation (8.38), the 

peak strength occurs at greater strains as the cell 

pressure is increased. High cell pressures during 

consolidation lead to high forces on the discs at 

the horizontal contacts. As failure cannot occur until 

these forces become zero, it follows that the higher 

the contact force generated during consolidation, the 

greater is the amount of packing deformation needed 

before slip can occur. 

The effects of interparticle friction are illustrated 

in Figure 8.8, which shows stress-strain curves for 

packings with different coefficients of interparticle 

friction. It can be seen that the slope of the pre- 

peak curve steepens with increases in interparticle 

friction and that the strain required to reach peak stress 

ratio increases. These trends are supported by equations 

(8.38) and (8.42). The increase in slope of the stress- 

strain curve (and hence the increase in the packing 

stiffness) can be explained by the friction allowing a 

greater force obliquity at the contacts before friction 

gives way to slip. Similarly, the delay in reaching 

peak stress that occurs with increasing friction is 

also due to the delay before slip occurs and slip is 

necessary to cause the gap opening which is associated 
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with failure and consequently post-peak behaviour. 

From the preceeding test results, the most economic tests 

(computer time) would appear to be on frictionless discs, 

under a low cell pressure with all the discs having a 

high stiffness. Unfortunately, such a choice of 

conditions, when combined, lead to tests which are very 

sensitive to the boundary conditions. Platten velocity 

again becomes the critical factor and in order to avoid 

unduly slow platten speeds, a compromise has to be 

reached. All tests subsequenly described in this 

chapter were simulated using the following antes unless 

otherwise stated: 

Platten Friction 0..070r50).3 

Disc Friction 0.0 or 0.3 

Confining Stress 4000 

Stiffness 1500000 

Damping parameters 0.5,0.5,0,1 

Platten Velocity 0.001 or 0.005 

8.2 EFFECT OF SAMPLE SIZE ON MODE OF DEFORMATION 

A series of tests were performed on samples with different 

numbers of discs in order to examine the effect of sample 

size and shape on the mode of deformation and the 

stress strain behaviour. The simulation parameters used 

in this series of tests were: frictionless discs, frictionless 

plattens, a cell stress of 4000 units and a disc stiffness 

Due to the nature of the program, all units are dimensionless. 
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of 1.5x10° units. The sample sizes used were 18, 74, 

86, 95, 124 and 410.discs. 

The smallest sample used (18 discs) reached a maximum 

stress ratio, ree ,» around 1.2% strain, see Figure 

8.9. At 1.4% strain, gaps were observed at all but 

five of the original horizontal contacts. This is 

illustrated in Figure 8.10. Further deformation 

resulted in progressive widening of these gaps as 

shown in Figure 8.11. This figure shows the geometry 

at 11.7% strain and it can be seen that not all the gaps 

are of equal size and that some discs remain in contact 

with each other throughout the test. Unfortunately this 

packing size is too small to examine, in detail, the 

causes which lead to the observed non-uniform deformation 

pattern. It is, however, clear that the gaps shown in 

Figures 8.10 and 8.11 are associated with the formation 

of discrete shear bands within the sample. 

A larger (74 discs) packing was tested and the resulting 

stress ratio - strain curve is shown in Figure 8.12. The 

geometry of the packing, corresponding to three stages 

of the test, is illustrated in Figures 8.13 - 8.15. These 

figures show the progressive development of shear bands 

during the test and it can be seen from Figures 8.12 

and 8.13 that the shear bands were initiated before the 

stress ratio, Oy/oy had reached a maximum. Maximum 

stress ratio was reached at 1.4% strain. The packing 
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geometry at 1.3% strain is illustrated in Figure 8.13 

which shows that shear bands had already formed and 

were initiated at the stress controlled boundaries, 

adjacent to the four corners of the assembly. These 

shear bands propagate through the array until they 

reach the platten controlled boundaries, Figure 8.14. 

It is interesting to note that at this stage of the 

test, 1.7% strain (0.3% post-peak), observations based 

on the locations of boundary discs alone would give no 

indication of the very non-uniform deformation occuring 

internally. Further deformation results in the shear 

bands being reflected back at the platten boundary and 

subsequently transversing the packing, to reach the 

opposite platten as shown in Figure 8.15 which corresponds 

to a strain of 2.8%. The shear band pattern is seen to be 

symmetrical as would be expected for the boundary conditions 

imposed in the test. 

Exactly the same pattern of shear band propagation was 

observed during a test on an 86 disc packing, the results 

of which are illustrated in Figures 8.16 - 8.20. Tests 

on 95 disc and 124 disc packings also confirmed the shear 

band propagation pattern, as shown in Figures 8.21 - 8.27. 

The sample size and shape, however, do have an effect on the 

size and shape of the groups of contiguous discs which 

are separated from each other by the shear bands. This 

affects the ability of the packing to transmit the platten 
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loads through the sample, and consequently affects 

the resulting stress ratio-strain curve as illustrated 

in Figure 8.28. This figure shows that although the 

elastic pre-peak behaviour is not significantly 

affected, the maximum stress ratio and post-peak 

behaviour is very much dependent on the size and shape 

of the packing. 

The largest array of discs examined (410 discs) cannot 

be directly compared with the other packings reported 

so far since, unlike the other packings which consisted 

of frictionless discs, the 410 disc array was composed 

of discs with an assigned value of interparticle co- 

efficient of friction of 0.3. Nevertheless, it can be 

seen from Figures 8.29 and 8.30 that the shear band 

propagation pattern was similar to that of previous tests. 

The difference between the results of the 410 disc test 

and the other tests reported in this section was that, 

although shear bands were initiated at the corners of the 

assembly, two adjacent shear bands were formed, one 

starting from the stress controlled boundary the other 

from the platten boundary. This is illustrated in 

Figure 8.30 which also shows that, the two adjacent 

shear bands propagate from each corner until two sets 

of shear bands meet. Subsequent deformation results 

in the arrested propagation of one of the shear bands in 

each set. As can be seen from Figure 8.30, only the shear 

bands which were initiated at the stress controlled boundary 

continue to propagate so as to reach the opposite platten 

boundary. The stress ratio - strain curve generated by the 
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test on the 410 disc packing is provided in Figure 8.31. 

8.3 TESTS ON 124 DISC ARRAYS 

8.3.1 Effect of End Restraint 

Two tests on the 124 disc packing were simulated in order 

to examine the effect of end restraint. One test was 

carried out usingacoefficient of platten friction of 0.3; 

the other test simulated frictionless plattens (co- 

efficient of platten friction = 0.0). In both tests the 

confining stress was 4000 units, the disc stiffness was 

6 
1.5x10° units, and the coefficient of interparticle 

friction was 0.3. 

The stress ratio-strain curves obtained from these two 

tests are shown in Figures 8.32 and 8.33. Figures 8.34 - 

8.39 show the geometry of the array at various stages of 

the test (as indicated in Figure 8.32) for the case of 

frictionless plattens. The manner in which the geometry 

changes for the case of plattens with friction is 

illustrated in Figures 8.40 - 8.45, the corresponding 

strains being indicated in Figure 8.33. A direct comparison 

of the two stress ratio-strain curves is provided in 

Figure 8.46. 

It can be seen from Figure 8.46 that the two curves diverge 

after approximately 1% strain. This divergence is associated 

with local conditions at the corners of the sample tested with 
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frictionless plattens which resulted in the initiation 

of shear bands at about 1.4% strain. The stress ratio 

developed in the test with frictionless plattens reached 

a maximum of 2.4% strain and then decreased showing 

significant post-peak softening behaviour. For the test 

with friction along the plattens, shear bands were only 

initiated at about 2% strain when the stress ratio was 

already greater than the maximum stress ratio attained 

using frictionless plattens. Following the initiation 

of the shear bands there was only a small further increase 

in stress ratio until about 3% strain, after which the 

stress ratio gradually decreased. 

Figure 8.34 shows that, for the test with frictionless 

plattens, shear band initiation occurred along the 

platten boundaries adjacent to the corner disc. The 

shear bands then propagated diagonally from the corners 

into the packing until two shear bands meet, as shown in 

Figure 8.35 which depicts the array geometry at 2.9% 

strain. The propagation of these original shear bands 

is arrested during post peak behaviour which is associated 

with the formation of a second, third, and fourth set of 

shear bands as shown in Figures 8.36 - 8.39. It would 

appear from the above figures that the post-peak shear 

bands propagated from within the assembly and were initiated, 

in each case, at the mid-height of the sample. 

The deformation of the sample tested using plattens with 

friction is shown in Figures 8.40 - 8.45. The general 
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pattern of shear band formation is similar to that created 

in the test with frictionless plattens. However, due to 

the frictional restraint at the plattens, the original 

shear band is initiated not at the platten boundaries 

but at the stress controlled boundaries adjacent to the 

corner discs, Figure 8.40. Platten friction also inhibits 

the propagation of the shear bands through to the platten 

boundaries. Figure 8.43 shows the array geometry at 3.58 

strain when the shear bands have just reached the central 

part of the platten boundaries. Further deformation leads 

to a widening of the existing gaps and this is associated 

with a continuous reduction in stress ratio as shown in 

Figure 8.33. 

The mechanism of failure can be described as that of gap 

creation along inclined discrete shear bands. Gap creation 

results in a reduction in the number of contacts between 

the discs. Figures 8.47 and 8.48 show how the number of 

contacts reduce during a test, for the case of frictionless 

plattens and plattens with friction respectively. It can 

be seen from these two figures that the stress ratio-strain 

curve is linear until the first gaps are created and that 

the change in slope of the curve is related to the number of 

gaps created. Platten friction delays the start of the 

gap formation process but the process is always initiated 

when the stress ratio is still increasing. From figures 

8.47 and 8.48, and the other figures referred to in this 

section, it is clear that maximum stress ratio occurs when 

there is a continuous (though not necessarily straight) line 

of gaps between the two platten boundaries. It can also be 
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seen from Figures 8.47 and 8.48 that platten friction 

inhibits the speed of propagation of shear bands 

through the sample and thus delays the attainment of 

maximum stress ratio. During post-peak behaviour there 
significant 

is no iW reduction in the number of contacts, 

Figures 8.47 and 8.48, the softening behaviour being 

due to the widening of existing gaps. 

8.3.2 Effect of disc rotation (spin restraint 

In all the tests that have been reported in this chapter 

the individual discs of an assembly have been permitted 

the freedom to rotate (or spin) as naturally dictated 

by the internal conditions at any stage of a test. In 

this section the effect of spinrestraint will be examined. 

Two levels of restriction were adopted: either 

rotational freedom was denied to all discs; or to boundary 

discs only. 

Figure 8.55 shows the effect of spin restraint on the stress 

ratio-strain curve for tests using frictionless plattens. 

By comparing this figure with Figure 8.46 it can be seen 

that the effect of spin restraint is not as great as that 

of end restraint. However, even if only the boundary discs 

are denied rotational freedom there is a significant delay 

in the initiation of shear bands. Figures 8.38, 8.52 and 

8.49 provide a comparison of the array geometry at 3.58% 

strain for the three curves shown in Figure 8.55. It is 

clear from these figures that spin restraint inhibits the 

propagation of shear bands throughout a test. 
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The effect of disc rotation for tests employing plattens 

with friction is shown in Figure 8.56. It can be seen 

that there is no significant effect until after 3% 

strain. For the three stress ratio-strain curves shown, 

the array geometry at 3.58% strain is illustrated in 

Figures 8.43, 8.53 and 8.50. The delayed development 

of shear bands due to spin restraint, which can be seen 

from a comparison of these three figures, accounts for 

the fact that the stress ratio is still increasing at 

this stage for the two cases of spin restraint. Figures 

8.45, 8.54 and 8.51 provide another comparison of the three 

packings at about 5.2% strain. At this stage of the test 

only the sample with rotational freedom denied to all 

discs exhibits an increasing stress ratio, Figure 8.56. 

As can be seen from Figure 8.51 this is due to the much 

slower propagation of shear bands which, for complete 

spin restraint, have not yet reached the platten boundaries, 

even at this relatively large strain. 

8.4 FURTHER OBSERVATIONS 

Although it would be desirable to verify the regular 

packing theory, presented in the first part of this 

thesis, by practical laboratory experiments on regular 

assemblies of discs and spheres, it is not possible to 

ensure that the particles would be exactly 

identical - which is necessary to obtain a truly regular 

packing, as noted by Rowe (1962) and Leussink and Wittke 

(1963). It was therefore attractive to employ the 
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computer simulation approach using the Distinct Element 

Method proposed by Cundall and Strack (1978). However 

as has been shown in this chapter, the guaranteed initial 

regular arrangement is not sufficient to ensure a 

subsequent uniform deformation pattern. Both packing 

size and boundary conditions result in the formation 

of discrete shear bands and this, in turn, results in 

a deviation from the predictions of the ideal regular 

packing theory. 

The discrete shear band patterns, shown in this chapter, 

are based on observations of gaps created at horizontal 

contacts. While it is apparent that there are no 

contact forces once a gap exists, it is also 

possible to have _ zero contact force at a contact 

without a gap. Figure 8.57 indicates the locations of 

horizontal contact forces during a test on a 124 disc 

packing using frictionless plattens. This figure, 

when compared with the corresponding shear band patterns, 

Figure 8.34 indicates the metastable condition of contacts 

at locations other than in the shear bands. Figure 8.57 

suggests that subsequent deformation would take the form of 

a diffused (pure shear) mode of deformation spreading out 

from the centre of the sample. This in fact did not occur, 

as shown in this chapter, due to the existance of the discrete 

shear bands shown in Figure 8.35, which provided, in effect, 

planes of weakness. 

193



TOP PLATTEN 

> BOTTOM PLATTEN 
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COORDINATE AXES 

194



STIFFNESS = 1.5 x 10 
WALL VELOCITY = 0.001 
CELL STRESS = 4000 
COEFFICIENTS OF PLATTEN/DISC 

A FRICTION = 0.0/0.0 

STRESS RATIO 

9/9. 

2.24 4 

2.23) 4 

2e22 4 

2.214 

2.20) J 

elon 

2.18) 4 

RELAXATION CYCLES 

2.175)   
  > 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

FIGURE 8.2 PLOT OF STRESS RATIO AGAINST RELAXATION CYCLES 

195)



  

  
  

STRESS RATIO STIFFNESS = 1.5 x 10° 
3, /o CELL STRESS = 4000 

x = , CCEFFICIENTS 
OF WALL/DISC 

2.4 4 FRICTION = 0.0/0.0 

Zoe 

2.04 

1.8 J 

CURVE PLATTEN VELOCITY 

Bl A 0.001 
de B 0.002 

C 0.002 + RELAXATION 
(80 + 400) 

1.44 

1.24 

% STRAIN 
€ 

1.0 ——— y 
T T T T T T 

© 0-4 0:8 1.21.6 2.0 2.4 2.83.2 3.6 4.0 

FIGURE 8.3 PLOTS OF STRESS RATIO AGAINST STRAIN ILLUSTRATING THE 
EFFECTS OF LOADING RATE 

196



(A) FRICTIONLESS DISCS 

  
pn M. 

FIGURE 8.4 FORCES ACTING ON A TYPICAL ELASTIC DISC WITHIN A CLOSE 
PACKING 

19:7.



UMETRIC 

     

  
  

AIN % 
STRESS RATIO 

ee sl 3.0 5 ays 

2.6 4 THEORETICAL 
CURVES = —— 

2.2 7 SIMULATION 
CURVES = X AND @ 

= [son 

1.8 4 

dene 

% STRAIN . 
y 

oo 4 1.0 a 

0.5 1,007 © 9 a7.5 2.0 2.5 
+ O22 

Oo J 

2 
+ o6 4   

FIGURE 8.5 PLOTS OF STRESS RATIO AND VOLUMETRIC STRAIN AGAINST 
LONGITUDINAL STRAIN, COMPARING THE THEORETICAL RESULTS 
WITH THOSE OBTAINED FROM THE SIMULATION, FOR A 
FRICTIONLESS PACKING 

198



A STRESS RATIO 

2.7 4 

    

Fy /F 

STIFFNESS = 1.5%x10° 
STIFFNESS = 1.5-x1O 

6 

PLATTEN/DISC 
FRICTION 
CELL STRESS 
WALL VELOCITY 

0.0/0.0 
4000 
0.005 

STIFFNESS = 8.5 x10° 

STIFFNESS = 1.5°%10° 

% STRAIN , 

  

0.1 0.2 0.3 

y) 

s > 

0.4 0.5 

FIGURE 8.6 PLOTS OF STRESS RATIO AGAINST STRAIN TO ILLUSTRATE THE 
EFFECTS OF STIFFNESS 

199



A 
STRESS RATIO 

Ty /oy 

PLATTEN/DISC 
FRICTION 
STIFFNESS 
WALL VELOCITY = 

  

THEORETICAL 
96 ud N CURVE FoR RIGID DISCS 

. CELL PRESSURE = 1000 \. 

CELL PRESSURE     
o
a
 

6000 

  
Vedios % STRAIN   € 

y 
1.0 T T T T T T y 7 T T —~ 

QO” OF 8058 1.271.692.0254 (258 3.2 356 4.0 

FIGURE 8.7 STRESS RATIO - STRAIN CURVES ILLUSTRATING THE EFFECTS 
OF CELL PRESSURE 

200 

ELL PRESSURE 
]



  
0 

1.5 x 10° 
4000 
0.005 

STIFFNESS 
CELL STRESS 
WALL VELOCITY 

STRESS RATIO 

go/o 

%@ STRAIN € 
, : oe 

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2° 3.6 4.0 

FIGURE 8.8 PLOTS OF STRESS RATIO AGAINST STRAIN ILLUSTRATING THE 
EFFECT OF INTER PARTICLE FRICTION



O
N
T
A
I
d
 

ISIG 
BL 

NV 
YOI 

FAUND 
NIVULS 

- 
O
l
V
Y
 

SSIVIS 
6°8 

JUNDT4 

 
 

O
b
 

ore 
Wed 

orl 

1 
1 

: 
: 

ol 
K 3 

NIWYLS 
% 

fe 
One 

Alv1OU 
OL 

33¥4 
SOSIO 

TV 
One 

LX 
Sil 

= 
SSINSATIS 

0
/
5
0
 

0°0/0°0 
= 

NOILIIYA 
N3LLW1d/9SIG 

s00°0 
= 

ALIDONIA 
NALLWId 

OILWa 
SSdv1s   

202



  

FIGURE 8.1G DEFORMATIGN OF AN 18 DISC PACKING 

AT 0.2% STRAIN POST PEAK (1.4% STRAIN) 

  
FIGURE 8.11 DEFORMATION OF AN 18 DISC PACKING 

AT 10.5% STRAIN POST PEAK (11.7% STRAIN 
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a 

FIGURE 8.13 DEFORMATION OF A 74 DISC PACKING 

AT 1.3% STRAIN 

  
 
 

 



 
 

  
  

x FIGURE 8.14 DEFORMATION OF A 74 DISC PACKING AT 1.7 
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FIGURE 8.15 DEFORMATION CF A 74 DISC PACKING AT 2.8 
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FIGURE 8.23 DEFORMATION OF A 95 DISC PACKING 

ONLESS DISCS I AT 2.0% STRAIN, WITH FRICT 
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FIGURE 8.25 DEFORMATION OF A 124 DISC PACKING 

AT 1.4% STRAIN, WITH FRICTIONLESS DISCS 
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FIGURE 8.27 DEFORMATION OF A 124 DISC PACKING 

ONLESS DISCS tr WITH FRICT 2.3% STRAIN, 
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FIGURE 8.29 DEFORMATION OF A 410 DISC PACKING 

AT 2.10% STRAIN
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0.3 PLATTEN FRICTION 

ALL DISCS ARE FREE TO ROTATE 

FIGURE 8.40 DEFORMATION OF A 124 DISC PACKING 

AT 2.49% STRAIN WITH FRICTIONAL PLATTENS 
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FIGURE 8.44 DEFORMATION OF A 124 DISC PACKING 

AT 3.90% STRAIN WITH FRICTIONAL PLATTENS 
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BOUNDARY DISCS IRROTATIONAL 

FIGURE 8.53 DEFORMATION OF A 124 DISC PACKING 

AT 3.58% STRAIN, WITH BOUNDARY DISCS 

IRROTATIONAL 
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CHAPTER NINE 

9. CONCLUDING REMARKS 

Throughout the text of this thesis, comments and 

conclusions have been provided where appropriate 

and it is, therefore, necessary to add only a few 

closing remarks in this final chapter. 

The research described in this thesis has been concerned 

with the mechanics of regular arrays of discs and spheres. 

It was shown in Chapter 2 that a wide range of packing 

geometries can be described as Body-Centred Orthorhombic. 

From the analysis of Body-Centred Tetragonal packings 

presented in Chapter 4 it was found that yield conditions 

were represented in principal stress space by skew cones 

whose apex was at the origin and whose base planes were 

parallel to the deviatoric planes. The strain-increment 

vectors were found to be normal to the axis, rather than 

the surface,of the cone and hence the normality rule 

frequently adopted in plasticity theory does not apply. 

For each yield cone, plastic potential surfaces could be 

defined by an infinite number of equally skew cylinders. 

During deformation the deviatoric yield loci translate 

and change shape. Hence the axis of the yield cone rotates 

about the origin of principal stress space during 

deformation. The shape of the yield surface was shown 

to be related to the structure of the packing and the size 
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of the yield surface was found to be dependent on the 

inter-particle friction and the mean stress. 

The second part of this thesis was concerned with 

computer simulation tests on regular packings of discs 

using the Distinct Element Method. Results obtained 

from the simulation tests were presented in Chapter 8. 

The observed mechanism of failure was described as gap 

creation along inclined discrete shear bands and post- 

peak softening behaviour was associated with the 

widening of existing gaps. Platten friction, and to a 

lesser extent spin restraint, was found to inhibit the 

speed of propagation of shear bands through the samples, 

thus delaying the attainment of peak stress ratios. 

Significant irregularities were seen to be introduced 

into the packings by the boundaries, so in future it 

would be worthwhile to use a more sophisticated boundary 

control facility when performing similar tests on 

regular arrays. 

Two methods have been reported showing how the 

behaviour of regular packings can be studied, one using 

an analytical approach and the other making use of large 

scale computing facilities. It is anticipated that, arising 

from these studies, further work will be carried out on 

random arrays and on packings of irregular shaped particles. 
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This will, in turn, lead to a greater understanding 4: 

of the behaviour of granular material. 
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Appendix A 

Two Dimensional Analysis of Regular Rigid Disc Arrays 

The analysis of two dimensional arrays of regular 

rigid discs follows closely the method described 

in Chapter 4. 

The strain-increment tensor for two dimensional 

packings is similar to that presented in (4.10), 

e/1? ° 

oan = eee (A.1) 

oO a/n? 

where atc = O and 1? +n? =1. 

The range for 1 and n is between 3/2 and 4 inclusive 

and for the case of a close packing 1 = 73/2 and n = 4. 

As in (4.7) and (4.9) 

o Ml 6u/ (8D?) +++ (A.2a) 

Q a $v/(8D?) +++ (A.2b) 
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where 6v = 16A1D1 and é6u = 16A,Dn 

therefore c = 2A,;1 _, a= 2Aan 

D D 
  

where A, and A, are the vertical and horizontal 

displacements, respectively, of each disc. 

For the same tangential displacement at each contact, 

say Ap 

4, = ndp and A, = -lAp 

therefore 

de,. = 2Ap n/l ° 
ij ss D ee (A. 3) 

° -1/n 

The average stress tensor is obtained by summing the normal 

force and tangential force contributions as in (4.14). 

S55 = [35 (NW) + 955 (7) o++(A.4) 

But for the two dimensional analysis the contributions 

are 

a oO 

%45(N) = 2pd Wea (As 5) 

Vv ° m2 

and 

cS O° 

iy (ty) = 2ED +e (BUG) 

We Oo a 
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where F =(D/2). Very iat meaty ne 

Summing the two contributions results in the average 

stress tensor, 

- 2 955 2pD 1284: 7167 O° 
wee (A. 7) 

Mi ° n? + pa/F 

Solutions corresponding to the average stress tensor 

for cases where »p = 0.0 and yp = 0.3 are shown in 

Figure A.l. 
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APPENDIX B 

COMMANDS AVAILABLE FOR "BALL" 

To set up and run the program "BALL", it is necessary 

to use some, or all, of the following commands - 

depending on the simulation desired. The format for 

all commands is the first four letters of the command 

word on one line, and then the correct number of parameters 

on the following lines. In this appendix, the first four 

letters of each command word underlined are to be typed 

exactly, while the variables shown merely stand for 

numerical values. The majority of these commands remain 

unaltered from their original form, as found in Cundall 

(1978). The usual Fortran convention is used, where 

variables peqinaiaa with the letters I,J,K,L,M or N 

represent integer values, while all others indicate real 

values. The first command must be either 

START 
W H NBOX NBALL NWALL 

or 

RESTART 

If the first command is START, the parameters have the 

following meanings: 

WwW width of the grid area (x-dimension) 

H height of the grid area (y-dimension) 

NBOX number of grid boxes requested 

NBALL maximum number of discs that are likely to be 

used. 
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NWALL maximum number of walls to be used. 

The next line must be a heading and can consist of 

any characters. 

The Restart card is used when it is desired to continue 

a run that was previously terminated normally. The 

previous run must have written a restart file before 

stopping. To indicate whether this is so, or not, a 

message is printed out at the end of each successful 

run. If the Restart command is used, the next commands 

should be from those listed below. 

The following commands may be issued in any order, unless 

it is stated otherwise. 

STOP 

RADIUS 

R ITYPE 

SHEARSTIFFNESS 

K ITYPE 

NORMALSTIFFNESS 

RELIES 

DENSITY 

RHO ITYPE 

FRICTION 

U ITYPE 

COHESION 

C ITYPE 

This stops the simulation run and a 

restart file is written. 

Defines the radius,R, of type ITYPE 

discs. 

Defines the shear stiffness,K, of type 

ITYPE elements. 

Defines the normal stiffness,K, of 

type ITYPE elements. 

Defines the density,RHO, of type 

ITYPE elements. 

Defines the coefficient of friction, 

u, for type ITYPE elements. 

Defines the cohesion,c, for type 

ITYPE particles. 
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DAMPING 

LMIN FMIN IM IK 

CYCLE 

FRACTION 

F 

XGRAVITY 

XG 

YGRAVITY 

YG 

CREATE 

X ¥ ITYPE 

Sets the damping parameters for 

Rayleigh damping, where FMIN is the 

frequency at which minimum damping 

occurs, and LMIN is the fraction of 

critical damping at that frequency. 

Where Rayleigh damping takes the form 

(c] = o [m] + 8 [x] 

If IM=1, a is set to zero 

If IK=1, 8 is set to zero 

If IM=IK=0, normal Rayleigh damping 

is used. 

The simulation performs N calculation 

cycles, under the current boundary 

conditions. 

This sets the fraction of the critical 

time-step used, to F. Recommended 

values are: 0.2 to 0.5 for loose 

packings, 0.1 for dense packings. 

Sets the gravitational accelerations 

in the x and y directions. 

Creates a type, ITYPE, disc with its 

centre at (X,Y). A radius must have 

been defined previously for this type 

number. 
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AUTO 

XL XU YL YU N NTRY SEED 

FORM 

Automatically generates particles. The 

program tries to generate N particles 

within the area XL<X<XU and YL<Y=YU, 

using a random number generator whose 

seed value is SEED. If the simulation 

has not produced N particles after NTRY 

tries, it gives up and writes a message 

informing the user how many discs were 

actually generated. This command, 

because of its random packing ability 

was not used for the research reported 

in this thesis. Used instead was; 

Forms a tight packing of discs, NCOLS 

NCOLS NROWS ITYPE RAD by NROWS, using discs of radius 

DEFWALL 

RAD and of properties associated with 

type ITYPE particles. 

NAME XC YC @C Hl H2 XV YV 6v ITYPE 

  

Defines a wall as follows: 

eV XV 
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where; ITYPE is the type number, NAME 

is an alphanumeric name (4 characters) 

ec and év are in degrees and degrees/ 

second respectively. 

ALTWALL Causes the velocities or the type 

NAME xv xv ev ITYPE of the named wall, to be altered. 

ZERO Sets all particle velocities to zero. 

RESET Resets the radius vectors of all 

particles to zero. 

RETURN Zeros the cycle counter. 

HISTORY RESET Rewinds the 'history file' causing 

the erasure of whatever is in there. 

HISTORY REPEAT Sets the value N such that the ‘history 

N file’ will be added to after every N 

time cycles. 

PRINT Prints out data on WALLS or DIscs 

WALL XL XU YL YU or CONTACTS, within the area 

or BALL XL XU YL YU XL#X=XU, YL=Y<XU 

or CONT XL XU YL YU If XL=XU=YL=YU=0 then 

data on all WALLS/DISCS/CONTACTS 

will be printed out. 

DUMP Dumps out memory from locations 

Nl N2 Nl to N2 in the working array. 

PLOT Selects the output media for graphics 

MEDIA NCYCLES (MEDIA=35 results in Microfiche) 

(MEDIA=16 results in cinefilm) 

260



A graphics plot is automatically 

produced every NCYCLES. 

WINDOW Sets the area of the simulation that 

XL XU YL YU is to be plotted. The window size 

is initially set equal to the total 

grid area. 

CHECK Prints out the kinetic energy and 

momentum sums for all particles. 

ISET_ Sets directly the first and second parts 

IL(1) IL(2) ILoc of the memory word at location ILOC 

in the working array. 

KSET Sets directly the memory word at location 

RV ILOC ILOC to the real value RV. 

GO BACK OVER A SERIES OF COMMANDS 

NCYCLES HSTRESS VSTRESS N(1) N(2) N(3) N(4) 

Cycle through the simulation for 

NCYCLES with the current boundary 

conditions and the horizontal and 

vertical restraining stresses kept 

at HSTRESS and VSTRESS respectively. 

The four discs at the corners of the 

packing are N(1) N(2) N(3) and N(4). 

HORIZONTALLY CONSTRAINED DISCS Specifies the following 

VERTICALLY CONSTRAINED DISCS number (NUMBER) of discs 

NUMBER to be either Vertically or Horizontally 

Tl constrained. Where Il, I2 etc are the 

TQ discs that will be affected, there 

must be NUMBER discs specified. 

IN 
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SPIN CONSTRAINED DISCS 

NUMBER 

PLATTEN PACKING AND 

CONSTS I1 I2 13 14 

Basically the same as for Horizontally 

and Vertically constrained discs, 

except that the discs specified are 

held irotational. If the value 

of NUMBER equals 9999, then no disc 

numbers need be specified as all 

discs will be held irotational. 

AUTOMATIC DEFINITION 

Automatically define plattens along 

the top and bottom of the packing, 

using the co-ordinate of the corner 

discs (I1-I4) and under an isotropic 

stress of CONSTS. 
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APPENDIX C 

PROGRAM LISTING OF "BALL" 

A program listing of the computer simulation 

"BALL", will be found on a microfiche bound inside 

the back cover of this thesis. 
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