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We studied the relationship between the decline in sensitivity that occurs with eccentricity for stimuli of different spatial scale
defined by either luminance (LM) or contrast (CM) modulation. We show that the detectability of CM stimuli declines with
eccentricity in a spatial frequency-dependent manner, and that the rate of sensitivity decline for CM stimuli is roughly that
expected from their 1st order carriers, except, possibly, at finer scales. Using an equivalent noise paradigm, we investigated
the possible reasons for why the foveal sensitivity for detecting LM and CM stimuli differs as well as the reason why the
detectability of 1st order stimuli declines with eccentricity. We show the former can be modeled by an increase in internal
noise whereas the latter involves both an increase in internal noise and a loss of efficiency. To encompass both the
threshold and suprathreshold transfer properties of peripheral vision, we propose a model in terms of the contrast gain of
the underlying mechanisms.
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Introduction

Visual information is not solely restricted to variations
in luminance across the image (1st order variations);
variations in contrast (2nd order variations) also play an
important role in defining features (Johnson & Baker,
2004). Not unexpectedly, cells in the visual cortex are
tuned for both 1st and 2nd order image features (Zhou &
Baker, 1993). Even though some cells in early visual areas
perform both 1st and 2nd order processing, the neural
circuits underlying these two processes are very different
(Baker, 1999). In particular, 2nd order processing involves
an initial stage of linear filtering (similar to its 1st order
counterpart), but following a nonlinearity such as rectifi-
cation, the signal is subjected to a second stage of linear
filtering at a lower scale than that of the first stage (i.e.,
filter–rectify–filter or FRF model).
It has recently been shown that the 2nd order system,

like its 1st order counterpart, is composed of mechanisms
that are tuned for spatial frequency and orientation

(Ellemberg, Allen, & Hess, 2006). However, the overall
envelope of sensitivity of all second order tuned detectors
is about an order of magnitude lower than that of its 1st
order counterpart (Hutchinson & Ledgeway, 2006; Sutter,
Sperling, & Chubb, 1995).
One of the characteristic features of mammalian visual

processing is its strong dependence on visual field
eccentricity (Wertheim, 1894). The visual system allo-
cates more resources to central vision; in the retina there is
a greater density of most cells subserving central vision
(Rodieck, 1973), and in the cortex, more cortical area is
devoted to the central part of the visual field (Daniel &
Whitteridge, 1961). Furthermore, in the retina, the
receptive field size of retinal ganglion cells increases with
eccentricity (Peichl & Wassle, 1979) and in the cortex, the
mean receptive field size is larger in peripheral vision
(Hubel & Wiesel, 1977).
In terms of psychophysics, sensitivity to a 1st order,

luminance-defined stimulus of any given size falls off as a
function of eccentricity (Robson & Graham, 1981); the
higher its spatial frequency, the greater the falloff in
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sensitivity with eccentricity (in degrees of visual angle). This
would suggest that not only does the average receptive field
size change with eccentricity, reflecting a loss of smaller
receptive fields, but also sensitivity of cells of a particular
receptive field size also decline with eccentricity.
There are at least 3 different types of falloff with

eccentricity for 1st order spatial targets (Pointer & Hess,
1989) when eccentricity is considered in terms of units
relative to the size of a spatial target (i.e., eccentricity in
units of spatial periods); stimuli whose spatial frequency
is above 1 cpd exhibit one rule, those between 0.2 and
1 cpd exhibit another rule, and those below 0.2 cpd
exhibit yet another rule. These different characteristic
sensitivity falloffs for different spatial stimuli may reflect
their different processing sites within the cortex. Although
much is known about this strong eccentricity dependence,
much less is known about why sensitivity at any one
particular spatial frequency falls off.
In this study, we address three questions that bear upon

the above issues:

1. “Does the sensitivity for detecting a 2nd order
stimulus falloff at the same rate as 1st order stimuli
of the same spatial frequency?”

2. “Why is there a loss of sensitivity for 1st order
stimuli with eccentricity?”

3. “Why is the fovea less sensitive for detecting 2nd
order stimuli compared with their 1st order
counterparts?”

In terms of the first question, there is an obvious
prediction. Since the rate sensitivity declines with eccen-
tricity (in degrees) depends directly on the spatial fre-
quency of 1st order stimuli (Robson & Graham, 1981), and
2nd order processing comprises an initial stage of higher
frequency 1st order processing, one might expect a more
rapid falloff for 2nd order stimuli whose modulation
frequency matched that of a 1st order stimulus. This,
however, need not be the case since the foveal sensitivity
for detecting 2nd order stimuli is much less than that of
comparable 1st order stimuli, allowing the possibility that
carrier detection is not the dominant influence.
In terms of the second question, namely the reason for

the loss of sensitivity with eccentricity for 1st order
stimuli, there are a number of possibilities. One is that the
peripheral population of cells are less efficient at process-
ing information compared with their centrally located
counterpart, possibly because there are fewer of them
(Rodieck, 1973). Alternatively, peripherally located cells
could be individually more noisy than their central
counterparts as a consequence of their rod input which,
while not contributing signal, may contribute noise.
Finally, 2nd order stimuli may be harder to detect than

their 1st order counterparts for number of reasons. First,
their higher spatial frequency first stage may be either more
noisy (Pelli, 1990) or more quantum-limited (Banks,
Geisler, & Bennett, 1987; Van Nes & Bouman, 1967)

and therefore less efficient. Secondly, the loss in sensi-
tivity may have nothing to do with first stage processing
but involve less efficient pooling of population responses.
To address these questions we undertake two separate

series of experiments. In Part I, we address the question
concerning the relative falloff in sensitivity with eccen-
tricity for 1st and 2nd order stimuli of the same spatial
periodicity. In Part II, using an equivalent noise approach
we address two issues; the 1st order falloff in sensitivity
with eccentricity and the reduced sensitivity of foveal 2nd
order stimuli.

Methods

Apparatus and stimuli

Stimuli were displayed using either a Bits++ box (Part I)
or a VSG 2/5 (Part II), both supplied by Cambridge
Research Systems (Kent, UK). In Part I, the monitor was a
Sony CPD-520 GS (mean luminance 50 cd/m2), running at
85 Hz. In Part II, a Clinton Monoray monitor (mean
luminance 200 cd/m2) running at 120 Hz was used.
Monitors were gamma corrected using standard techni-
ques to compensate for the inherent nonlinearities of CRT
displays. Experimental software was written in Matlab
(The Mathworks, Inc.) and run on a PC.
Test stimuli were either sinusoidal luminancemodulations

about the mean value (L) or luminance (LM) or contrast
(CM) modulations of a carrier. At a viewing distance of
57 cm, the modulation was always at 1 cpd. In Part I,
viewing distances of 28 cm and 171 cm were also tested,
resulting in modulation spatial frequencies of 0.5 and 3 cpd.
The carrier for LM and CM stimuli was either a plaid

composed of two oblique gratings (T45-) at 4 times the
modulation frequency (both experiments) or a patch of 2-d
binary noise (Part I only). Carriers were counterphase
flickered using a square wave temporal envelope at 10.6 Hz
(Part I) or 10 Hz (Part II) (differences in temporal frequency
were due to different monitor refresh rates).
Test modulation and carrier were combined either

additively (LM) or multiplicatively (CM). In Part I, the
unmodulated carrier contrast was always 50%, so that it
was suprathreshold at the widest range of eccentricities
possible. In Part II, the carrier contrast was reduced to
25% because frame interleaving of the test with the noise
mask reduced the available contrast range. As viewing
was foveal for all LM and CM stimuli in Part II, the
carrier was always greatly suprathreshold.
Noise masks in Part II were 1-d samples of “pink” noise,

with a power spectrum proportional to 1/f, where f is
spatial frequency. Each noise sample was low-pass filtered
to remove all components above 1 cpd. Thus, the mask
consisted only of frequencies equal to and lower than the
test modulation. Masks were always oriented horizontally
and were combined with test stimuli using a frame

Journal of Vision (2008) 8(1):19, 1–12 Hess, Baker, May, & Wang 2

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/932849/ on 10/22/2018



interleaving technique. A new noise mask was generated
for each trial and was identical in both intervals (the
“twin” condition of Watson, Borthwick, & Taylor, 1997).
A control experiment confirmed that the noise masks did
not affect detection thresholds for the carrier plaid.
All stimuli were displayed in a two-dimensional Gaus-

sian spatial window, with standard deviation (A) equal to
one complete cycle of the modulation (test) signal.
We express contrast throughout in decibels (dB),

calculated as 20.log10(C%), where C% is contrast
expressed as a percentage. In the case of luminance-
modulated stimuli, this is Michelson contrast, given by

100 � Lmax j Lmin

Lmax þ Lmin

; ð1Þ

where L is luminance. For noise stimuli, contrast refers to
the RMS (root mean square) contrast, which is equivalent
to the standard deviation of the noise. High contrast, static
examples of these stimuli are shown in Figure 1.

Subjects

In Part I, two subjects were tested, both of whom were
inexperienced psychophysical observers. One (DL) was
naive to the aims if the experiment, and the other (JW) was
an author. In Part II, JW again participated, along with four
additional subjects, all of whom were highly experienced
psychophysically (2 postgraduates, 2 postdoctoral fellows).
All subjects wore their normal optical correction.

Procedure

Subjects were seated in a darkened room, at the
appropriate viewing distance (see above). Stimuli were
always presented in the centre of the screen; for peripheral

viewing conditions, fixation was away from centre by the
appropriate displacement and was with the dominant eye
(the nondominant eye was occluded). Stimuli were always
presented on the nasal side and did not lie in the blind
spot. A fixation point was always displayed, either on
screen or on an attached strip of card.
In Part I, a single interval orientation judgment task was

used, in which subjects indicated whether the test
modulation was horizontal or vertical (753 ms presenta-
tion). In Part II, a two-interval forced choice (2IFC)
detection paradigm was used, in which subjects indicated
the interval containing the test modulation (here the
modulation was always horizontal). The null interval thus
contained both mask and unmodulated carrier, whereas
the test interval contained the mask and the modulated
carrier (LM or CM). Stimuli were presented for 750 ms
with an interstimulus interval of 500 ms. Subjects
responded using a two-button mouse and were given
auditory feedback to indicate correctness of response.
Part I was blocked by viewing distance (and hence

effective spatial frequency), eccentricity, and stimulus
type (L/LM/CM, etc.). Part II was blocked by stimulus
type and mask contrast. Subjects completed all eccentric-
ities (or mask contrasts) for a given spatial frequency (or
stimulus type) before moving on to the next. The order of
blocks was randomly determined.
Thresholds were tracked by two interleaved staircases

(Cornsweet, 1962; Wetherill & Levitt, 1965), moving in
logarithmic (dB) steps of modulation contrast. In Part I, a
2-down, 1-up rule was used, and in Part II, a 3-down, 1-up
rule was used. Staircases terminated after 12 reversals.
Experiments in Part I were run between one and three
times by each subject, and Part II experiments were run
three times. The data were then pooled across sessions,
and a cumulative Gaussian was used to estimate the
threshold at 75% correct, using either the psignifit
software (http://www.bootstrap-software.org/psignifit/)
for Part I or the Probit analysis (Finney, 1971) for Part II.

Figure 1. Example stimuli: (A) sinusoidal luminance modulation, (B) luminance modulation of carrier (LM), (C) contrast modulation of
carrier (CM), (D) unmodulated carrier, (E–H) example 1-d noise masks.
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Modeling

The noisy liner amplifier model (LAM) (Lu & Dosher,
1999; Pelli, 1981) was fit to the data for each experiment
in Part II. The model is defined by the equation,

resp ¼ BC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
ext þ N2

int

p ; ð2Þ

where C is test contrast, Next is external noise (mask)
contrast, B is sensitivity, and Nint is an estimate of internal
noise level. For each mask contrast (Next level), the test
contrast was systematically varied until the model
response exceeded a criterion value, which was set
arbitrarily to 0.95 (dVat 75% correct in 2AFC tasks).
Best fitting parameters were determined using a simplex

algorithm (Nelder & Mead, 1965). The model was fit
using either 3 or 4 free parameters. In the 4-parameter
model, separate values of B and Nint were permitted for
each condition. In the 3<parameter models, one parameter
was constrained to take on the same value across both
conditions. Using a nested hypothesis F<test, the 3< and
4<parameter fits can be compared statistically to determine
whether the change in threshold across conditions is best
described by a change in internal noise, or a change in
sensitivity (efficiency).

Results

Part I: Eccentricity dependence

In Figure 2, contrast thresholds in decibels (see above)
are plotted against stimulus eccentricity for two subjects
(JW and DL) for three spatial frequencies; 0.5 (left), 1
(middle), and 3 cpd (right). In each case, a number of
stimuli are compared (see Figure 1); simple luminance
modulation at frequency f (L), a compound luminance
modulation where a frequency f has a fixed 50% contrast
4f plaid added to it (LM), contrast modulation where a
50% contrast 4f carrier plaid is modulated at frequency f
(CM), a simple luminance modulation of frequency 4f
(Carrier), luminance modulation at frequency f in which
fixed 50% contrast 2-d noise is added (LM noise), and
contrast modulation of 50% contrast 2-d noise at fre-
quency f (CM noise).
Results for the 3 spatial scales are similar though they

extend over different ranges of eccentricities (note scaled
abscissas). The luminance stimulus (LVgreen diamonds)
shows the characteristic monotonic falloff with eccentric-
ity, except at the largest scale, where foveal sensitivity
was less than that of the parafovea for both subjects, as
found by Kehrer and Meinecke (2006; see also Pointer &
Hess, 1989).
The addition of a fixed contrast 4f plaid component

(LMVred squares) did not alter the rate of falloff with

Figure 2. Results of Part I. Upper panels show data for subject JW at three spatial frequencies (viewing distances). Lower panels contain
results for subject DL. Symbols denote three modulation types (L, LM, and CM), as described in the text. Half filled symbols indicate a
binary noise carrier, filled symbols are for a plaid carrier at four times the modulation frequency. Performance at the carrier frequency was
also measured (crosses). For clarity, error bars are not shown. The mean bootstrapped confidence interval (95th percentile minus 5th
percentile) was reasonable (4.34 dB). Although the results appear similar at all spatial scales, note the change in abscissa scaling with
spatial frequency.

Journal of Vision (2008) 8(1):19, 1–12 Hess, Baker, May, & Wang 4

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/932849/ on 10/22/2018



eccentricity, although it was made considerably shallower
by the addition of fixed contrast 2-d noise (LM(noise)V
half-filled red squares) as a consequence of elevated
central/paracentral thresholds. The CM stimulus (blue
circles) exhibited a falloff with eccentricity that was
comparable to that of the L (green diamonds) or LM
(red squares) stimuli at the finest spatial scale (3 cpd) but
was slightly steeper at the coarsest spatial scale (0.5 cpd).
In Figure 3, we replot the data for the L, LM, and CM

stimuli for the three spatial frequencies on a common
eccentricity scale. It is clear that the rate of the falloff with
eccentricity depends both on the spatial periodicity of the
stimulus and the class of stimulus (i.e., L, LM, or CM).
It appears that depending on the spatial scale tested, the

2nd order stimuli (CM and CM(noise)) mirrored either the
falloff with eccentricity exhibited by the 1st order
luminance-modulated stimuli (L, LM) or that expected
of the higher frequency (4f) plaid carrier. This is
summarized in Figure 4 by plotting the slopes found from
the best fitting straight line to the L, LM, CM, and carrier
data of Figure 3 (for the 0.5 cpd data, we did not include
the foveal data for the reasons discussed above).
Figure 4A shows the average slope value across the two

subjects. The carrier data (crosses) are plotted twice; first
in terms of their actual spatial frequency (black) and
second in terms of the low spatial frequency component to
which they were either added (LM) or multiplied (CM).
For both 1st and 2nd order stimuli, it is evident that
sensitivity declines with eccentricity at a rate that
increases with the spatial frequency of the stimulus. In
Figure 4B, we plot the same data, with the slope
calculated by expressing eccentricity in terms of wave-
length of the stimulus, rather than degrees of visual angle.

This highlights the finding that the falloff for 2nd order
stimuli is not the same as for 1st order stimuli at low
spatial scales.
At low modulation frequencies, the CM stimulus has an

eccentricity falloff that is similar to that expected of the
carrier alone (compare brown crosses and blue circles in
Figure 4A). This suggests that sensitivity to the carrier may
govern 2nd order detectability at coarse spatial scalesVa
possibility we investigate further in the Discussion. How-
ever, at 3 cpd, the CM stimulus has an eccentricity falloff
that matches a 3-cpd 1st order modulation. It therefore

Figure 3. Threshold change with eccentricity for three spatial frequencies. Data are replotted from Figure 2 for the L (left), LM (middle), and
CM (right) conditions. Lines are best fitting regression lines through the data. For the 0.5 cpd data, the foveal (0-) point was omitted from
the regression for the reasons outlined in the text (L and LM conditions only).

Figure 4. Change in rate of peripheral sensitivity falloff with spatial
frequency. Data points are the slope values of the best fitting
regression lines shown in Figure 3, averaged across two
observers (geometric mean), with standard errors. Panel A shows
the slope as threshold (in dB) change per degree of visual angle.
The brown crosses are the carrier data transposed leftwards by a
factor of 4, to aid comparison with the CM data. Panel B replots
the data scaled by target wavelength.
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remains possible sensitivity at finer scales is determined
by other factors (see Discussion).

Part II: Equivalent noise experiments

The previously described results document two well-
known differences in human visual sensitivity, namely,
less sensitive peripheral detection and less sensitive CM
detection. Here we ask why sensitivity is reduced in these
two cases (i.e., for L stimuli with eccentricity and for
detecting foveal CM stimuli). We use an equivalent noise
approach to provide answers.
Figure 5 shows a comparison between foveal and

peripheral (20-) results for 5 subjects for L stimuli
(1 cpd) as a function of added 1-d fractal luminance
noise. Following Pelli and Farrell (1999), we use a noisy
linear amplifier model (LAM) to determine whether the
threshold loss under noiseless conditions is due to an
increased level of intrinsic noise (i.e., additive, referred to
as Nint) or a loss of efficiency/sensitivity (i.e., multi-
plicative, referred to as B). In the former case, one would
expect a difference between fovea and periphery in the
equivalent noise (the external noise level where thresholds
first begin to rise) and no threshold difference between
fovea and periphery in the high noise condition (the
functions should converge). On the other hand, if there is
no difference in the equivalent noise and there remains a
substantial threshold difference in the high noise condition
(parallel functions), then the underlying problem is one of
efficiency. To a first approximation, the differences appear
to be attributable to internal noise (functions converge).

However, this can also be assessed statistically using the
nested models F-test.
The foveal and peripheral data in Figure 5 have been

modeled in three ways. The solid curves show the fit when

Figure 5. Noise masking functions for foveal and peripheral stimuli. Filled (green) symbols show thresholds for foveal viewing (L stimuli),
open symbols are for 20- peripheral viewing. The lower right panel gives the average of all five observers. Error bars are the standard
error of the probit fit for each individual subject and the standard error of the threshold estimate for the averaged data. Curves are fits of
the LAM, as described in the text.

Subject BT CAS DHB JW PCH Average

B1 0.78 0.63 0.78 0.70 0.91 0.74
B2 0.93 0.86 0.71 0.92 0.74 0.72
Nint1 1.47 1.46 1.16 1.18 1.54 1.36
Nint2 3.44 5.28 2.40 3.70 4.25 3.12
RMSE (dB) 0.88 0.84 1.19 1.26 0.68 0.71

B1 0.99 0.91 0.95 1.00 1.21 0.92
B2 0.68 0.52 0.57 0.63 0.51 0.54
Nint 2.18 2.72 1.66 2.15 2.48 2.02
RMSE (dB) 1.56 1.94 1.73 2.16 1.61 1.46
F(1,8) 5.42* 6.52* 4.18 5.29* 6.57* 6.08*

B 0.83 0.68 0.75 0.76 0.87 0.73
Nint1 1.57 1.64 1.09 1.30 1.46 1.36
Nint2 2.99 4.08 2.57 2.94 5.06 3.12
RMSE (dB) 0.95 0.98 1.21 1.37 0.76 0.72
F(1,8) 1.10 2.23 0.24 1.26 1.57 0.01

Table 1. Parameters and RMS error for fits of the LAM to the data
of F/P experiment. Values in the upper section give the results of
the fits with four free parameters (all parameters free to vary). The
lower sections show the results of keeping Nint (middle) or B
(bottom) fixed across the two conditions. F scores are the result of
a nested hypothesis test between each of the 3-parameter models
(middle, bottom) and the 4-parameter model (top). Asterisks
indicate that the additional free parameter in the 4-parameter
model improved the fit significantly (at p G 0.05). All values are
rounded to 2 decimal places.
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all fourmodel parameters are free to vary (separate estimates
of B and Nint for both the foveal and the peripheral
conditions). The fit here is good for all data sets (see
parameters and root mean square (RMS) errors in Table 1).
The other curves are for 3-parameter versions of the model,
in which one parameter remained fixed across conditions.
Inspection of Figure 5 reveals that when B is fixed

(dashed lines), thefit is comparable to that of the4-parameter
model (solid lines). However, when Nint is fixed across
conditions (dotted lines), the fit is noticeably poorer. This
suggests that a difference in internal noise is responsible
for the threshold differences. We confirmed this statisti-
cally using a nested hypothesis F-test, which revealed no
significant difference between the 4-parameter and the 3-
parameter (B fixed) models but significantly poorer fits for
the 3-parameter (Nint fixed) model (see Table 1).
Figure 6 shows a similar analysis for foveal luminance

andcontrast-modulatedstimuli (1cpd)asa functionofadded
1-d fractal luminance noise. Using the same modeling
procedure as described above, the data were fit with either
3 or 4 free parameters. The parameter values of the fits and
their statistical evaluation are given in Table 2. Here, the
opposite pattern is observed, with sensitivity (B) being the
key parameter for 4/6 data sets. We conclude that our
sensitivity for CM stimuli is reduced because of a loss of
efficiency (or difference in sensitivity) of CM detectors.

Discussion

The main conclusion from the first part of the study,
concerning the regional variation in sensitivity of 2nd

order stimuli, is that the sensitivity for detecting a
contrast-modulated 2nd order stimulus declines with
eccentricity, being highest at or close to the fovea.
Furthermore, sensitivity declines in a spatial frequency-
dependent manner; the higher the contrast-modulation
frequency, the more rapid its sensitivity decline with
eccentricity. Lastly, the rate of decline in sensitivity of
2nd order stimuli at fine spatial scales is similar to that of
1st order stimuli of the same spatial scale. At coarse
spatial scales, the rate of decline of sensitivity with
eccentricity for CM stimuli is similar to that expected
from its 1st order carrier.

Figure 6. Noise masking functions for LM and CM stimuli, presented in the fovea. Red squares show thresholds for LM stimuli, and blue
circles are thresholds for CM stimuli. The lower right panel gives the average of all five observers. Error bars are the standard error of the
probit fit for each individual subject, and the standard error of the threshold estimate for the averaged data. Curves are fits of the LAM, as
described in the text.

Subject BT CAS DHB JW PCH Average

B1 1.00 0.82 1.13 0.77 0.96 0.93
B2 0.30 0.33 0.67 0.30 0.38 0.37
Nint1 1.98 1.99 1.87 1.26 1.69 1.73
Nint2 2.33 3.40 3.36 2.74 3.67 3.04
RMSE (dB) 1.12 1.04 0.92 1.02 0.53 0.69

B1 1.05 0.96 1.34 0.93 1.20 1.08
B2 0.28 0.27 0.54 0.23 0.28 0.30
Nint 2.12 2.55 2.43 1.75 2.42 2.24
RMSE (dB) 1.15 1.31 1.28 1.57 1.25 1.10
F(1,8) 0.37 2.88 3.85 4.59 6.59* 4.85

B 0.86 0.73 1.02 0.70 0.89 0.83
Nint1 1.65 1.73 1.64 1.10 1.53 1.51
Nint2 8.46 8.66 5.51 7.62 9.80 7.85
RMSE (dB) 2.27 1.72 1.26 1.86 1.37 1.57
F(1,8) 6.06* 5.03 3.73 5.57* 6.82* 6.45*

Table 2. Parameters and RMS error for fits of the LAM to the data
of LM/CM experiment. The layout mirrors that of Table 1.
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The result at fine scales is surprising. One might have
intuitively expected the detection of CM stimuli always to
be limited by the detection of the higher frequency carrier,
given that sensitivity at this higher spatial frequency falls
off much more rapidly (compare squares and crosses in
Figure 2) with eccentricity (Pointer & Hess, 1989; Robson
& Graham, 1981). One possibility is that there is a
nonlinear relationship between carrier contrast and CM
detection in the periphery. To test this, we compared CM
detection for a range a carrier contrasts for foveal and
peripheral loci. This explanation can be rejected because
the results show that CM detection varies approximately
linearly with carrier contrast for both foveal and periph-
eral stimuli (Figure 7).
A better explanation involves what is known about the

perceived contrast of peripherally located stimuli. While it
is true that more contrast is needed to detect peripherally
located stimuli of any spatial scale, once the stimuli are
detected, they are perceived at their veridical contrast
(Georgeson & Sullivan, 1975), suggesting that the
elevated peripheral thresholds are simply a consequence
of a more restricted contrast range (Cannon, 1985). Thus,
the perceived contrast does not vary in proportion to the
threshold change. In terms of the eccentricity dependence
of CM stimuli, although the degree to which the carrier is
above threshold changes rapidly with eccentricity, this has
no effect on CM detection until it approaches its absolute
threshold. This allows the rate of falloff for CM stimuli to
be primarily determined by the periodicity of their
contrast modulation, as found here for fine spatial scales.
In order to test directly whether the falloff in CM

sensitivity depends primarily on the frequency of the
carrier or of the modulation, we ran an additional control
experiment. Thresholds were gathered under the same
conditions as previously, for modulation frequencies of
0.5 and 1 cpd, using an 8f carrier (at 3 cpd, modulations
were not sufficiently detectable with this carrier to
measure a reliable slope estimate). If carrier frequency is
unimportant, then the slope should be constant across the

4f and the 8f carriers. However, if carrier frequency does
play a role, then the slope should change across carriers.
The results are shown in Figure 8, with the CM(noise)

slopes and 4f carrier slopes plotted for comparison. It is
clear that there is a systematic increase in slope across the
different carriers, with the noise carrier yielding the
shallowest slope, and the 8f carrier the steepest. Since
the noise carrier contains frequencies below 4f, we assume
that these govern performance in this condition. Thus, it
appears that carrier properties determine detection of
peripheral second order stimuli at coarse modulation
scales.
In the second part of the study, we sought a better

explanation, using an equivalent noise model, for why

1. the sensitivity of 1st order stimuli falls off with
eccentricity; and

2. the sensitivity of foveal 2nd order stimuli is
reduced compared with its 1st order counterpart.

The results suggest that the reduced sensitivity for
peripheral 1st order stimuli is due to an elevated level of
internal noise, and not to sampling efficiency, and that the
reduced sensitivity for foveal CM stimuli is due to
reduced sampling efficiency. In the following section, we
seek to provide a more physiological interpretation for
these two model parameters in terms of what is currently
known of the contrast gain control of visual neurons.
During the course of this work, we became aware that

the equivalent noise paradigm has recently been used
elsewhere to characterize the threshold difference for LM
and CM stimuli. One study, which used Gaussian noise,
reached similar conclusions to ours (Manahilov, Simpson,
& Calvert, 2005). However, a further study, which used
low-pass filtered 2-d noise, concluded that CM detectors
had a higher internal noise level (Allard & Faubert,
2006a). These authors used either LM or CM noise
applied to the carrier in order to affect the signal within
the appropriate pathway. They have recently shown
(Allard & Faubert, 2006b) a double dissociation between

Figure 7. Effect of carrier contrast on detection of CM stimuli.
Triangles are thresholds for foveal viewing, and stars are for 10-
peripheral presentation. Viewing distance was 57 cm, so the
spatial frequency of the modulation was 1 cpd.

Figure 8. Change in rate of peripheral sensitivity falloff for CM
stimuli with different carrier types. The 4f data are replotted from
Figure 4, with data from the other conditions calculated using the
same method and averaged across two observers.
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LM and CM stimuli in LM and CM noise (i.e., LM noise
masks LM stimuli, but not CM stimuli, and vice versa).
Clearly, there are important differences between their
approach and ours, which uses luminance noise in all
conditions, but still finds substantial masking for CM
stimuli (È6 dB (a factor of 2) for some observers). Such
differences highlight a shortcoming of the equivalent
noise approach, as its conclusions depend on the charac-
teristics of the stimuli used. In the following section, we
reinterpret our findings in terms of contrast gain control.

Contrast gain control

As Watson et al. (1997) point out, visual masking has
traditionally been considered from two perspectives.
Masking using visual noise is assumed to arise because
the noise increases the variance at the decision variable
(output stage) of the detection process (Pelli, 1981; Pelli
& Farrell, 1999). Thus, the masking is late acting and
within channel. Masking using narrowband gratings, on the
other hand, has been interpreted in terms of a contrast gain
control (Heeger, 1992) in which populations of neurons
tuned to different spatial characteristics inhibit each other.
Here, masking occurs between channels, perhaps at a much
earlier stage, or stages (Baker, Meese, & Summers, 2007;
Freeman, Durand, Kiper, & Carandini, 2002). The gain
control approach has been used extensively in grating
detection (Foley, 1994), image processing (Rohaly,
Ahumada, &Watson, 1997), and neural coding (Chirimuuta
& Tolhurst, 2005) paradigms.
Since grating stimuli which are distant in the Fourier

domain are not believed to activate common detecting
mechanisms, the noise paradigm cannot accommodate
cross-channel masking data, as a distant grating mask will
not affect the decision variable. However, noise masks and
grating masks can both be incorporated into the gain
control framework. Narrowband gratings strongly activate
a single inhibitory mechanism, whereas noise masks
activate many mechanisms, each more weakly, causing
suppression after a linear pooling process (Holmes &
Meese, 2004).
The two main effects described by the LAM can be

easily accommodated by a widely used gain control
equation (Foley, 1994),

resp ¼ Cp

Zq þ Cq þ w:Mq
; ð3Þ

in which C is the input (signal) contrast, M is the mask
contrast (be it noise or a grating), Z is a saturation
constant, w is a weight determining the impact of the
mask, and p and q determine the properties of the
nonlinear transducer function. Detection threshold is

reached when the increase in model response caused by
adding the test exceeds a criterion value, given by an
additional parameter k. Although the model has several
parameters (p, q, Z, w, and k), in practice some of these
can be fixed at commonly used values. Here, we constrain
the exponents to values used by Legge and Foley (1980),
who first proposed a model of this form (p = 2.4, q = 2).
With 3 free parameters (Z, w, and k), the model provides

a good fit to the foveal data (Figure 9). Increasing Z
results in an increase in detection threshold and converg-
ing masking functions, as seen for the peripheral data.
This is the same behavior caused by an increase in Nint in
the LAM. However, rather than attributing this change to
internal noise (as the LAM does), Z is most likely a
physiological property of the detecting neurons (Z corre-
sponds loosely to the semisaturation constant in the
Naka–Rushton equation (Naka & Rushton, 1966), much
favored by single cell physiologists).
Decreasing the sensitivity parameter (B) in the LAM

raises thresholds and produces parallel, not convergent,
masking functions. Interestingly, a comparable effect can
also be achieved in the gain control model by varying the
threshold criterion, k. It is noteworthy that k is thought to
be proportional to the variance of late additive (internal)
noise in the gain control model, yet produces very
different behavior from the internal noise parameter (Nint)
in the LAM.
Finally, by varying w, the masking function can be

shifted laterally on the contrast axis. This corresponds
roughly to a “mismatched perceptual template” in more
elaborate forms of the LAM (Huang, Tao, Zhou, & Lu,
2007; Lu & Dosher, 1999).
It is clear that models of the gain control form are well

able to describe noise masking data. Furthermore, they
offer a more accurate representation of the contrast
transducer that produces the familiar within-channel
dipper function for contrast discrimination (Legge &
Foley, 1980). Dipper functions are shifted upwards and

Figure 9. Gain control model fit to the average data from Part II.
Data points are replotted from the lower right hand panel of
Figure 5. The lower curve is the best fit of the gain control model
with 3 parameters free (Z, w, and k). The upper curve was
predicted by refitting one parameter (Z), while keeping the others
constant. The fit is comparable to that of the LAM.
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to the right by cross-channel grating masks (Foley, 1994),
and the same behavior has also been shown using
broadband noise masks (Henning & Wichmann, 2007;
Pelli, 1981, 1985). The gain control model accommodates
both of these findings.
The main practical use of the equivalent noise approach,

and models derived from it, has been to ascribe a
difference in thresholds to either a difference in sensitiv-
ity, or a difference in internal noise. From this analysis,
we have concluded that the difference in thresholds with
peripheral viewing is due to a change in internal noise
level. However, in the gain control model, we can produce
similar behavior by changing the value of Z. As this is
merely a model parameter, can it be said to have any
useful meaning?
The answer is yes. Let us assume that the value of Z

increases with eccentricity. This will produce an increase
in thresholds, as seen in Part I (Figure 2). However, due to
the compressive nature of the nonlinearity at high
contrasts, there will be little change in output with
eccentricity at suprathreshold levels, as shown by the
model response functions in Figure 10A at low and high
input contrasts (dashed line vs. solid line at the starred
location).
This reflects an empirically well-established phenomenon

known as contrast constancy, which occurs over changes in
both spatial frequency and eccentricity (Cannon, 1985;
Georgeson & Sullivan, 1975). The gain control model can
thus describe both the increase in detection threshold and
the fidelity of high contrast stimuli at different eccentricities
or spatial frequencies by varying a single parameter, Z (for
spatial frequency, this most likely only applies to lower
frequencies, where attenuation from optical factors is
unimportant, i.e., below 10 cpd, Williams, Brainard,
McMahon, & Navarro, 1994).

Figure 10B demonstrates this property of the model,
which was originally described by Cannon and
Fullenkamp (1991). The CSF was determined by estimating
values of Z that produce detection thresholds at a range of
spatial frequencies (based on the data of MAG from
Georgeson & Sullivan, 1975). We then used the model to
generate responses at 7 contrast levels for a single Z value
and calculated the matching contrasts at each spatial
frequency (estimated Z value) that produced the same
magnitude of response. This produced the familiar flat-
tening of matching functions at high contrasts, observed for
both spatial frequency and peripheral viewing (Cannon,
1985).
This account also gives some insight into the behavior

of 2nd order mechanisms. If the output of 1st order
mechanisms, which is governed by Equation 3, forms the
input to 2nd order mechanisms, then performance should
be largely unaffected by changes in the detectability of the
carrier at low contrasts, once it is above threshold and in
the compressive region of the transducer response curve
(the star in Figure 10A). Thus, second order sensitivity
could be determined by constraints other than that of
absolute sensitivity to the carrier, as we have found here
empirically at fine spatial scales.

Conclusions

We have shown that sensitivity for 1st and 2nd order
stimuli show a similar spatial frequency-dependent falloff
with eccentricity. For CM detection at coarse spatial
scales, the slope of this falloff is that expected of its 1st
order carrier. For CM detection at fine spatial scales, the
slope of the falloff is that expected of a 1st order stimulus

Figure 10. Model response curves and contrast matching predictions for different values of Z. In A, the model response is shown for a
range of input contrasts. At low inputs, Z greatly affects the model output, leading to different thresholds (input contrasts which produce a
fixed output, i.e., 1 unit (dotted line)). At higher inputs, Z has little effect on model response (star). In B, we show model predictions for
contrast matching. The CSF is defined only by variations in Z, and matching performance is estimated at a range of standard contrasts,
following the work of Georgeson and Sullivan (1975). At low standard contrasts, the matching functions follow the shape of the CSF, but
flatten out at higher contrasts, as found empirically (Georgeson & Sullivan plot their data with an inverted ordinate).
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of the same fundamental periodicity. Although such a
falloff in sensitivity with eccentricity can be attributed to
an increase in internal noise, our preferred explanation is
that it is due to a change in the gain properties of the
detecting mechanisms. The gain control approach pro-
vides a broader framework, which allows us to understand
both performance (thresholds) and perception (matching)
of stimuli at different spatial scales and positions in the
visual field.
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