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The strength and behaviour of the edge column-slab 
connection of a flat plate under different loading conditions, 
taking account of the column shape in calculation of the 
shearing capacity of the slab, was studied. 

The programme was to obtain data to be used for 
establishing a method for analysis of this connection. 

A test programme was undertaken to obtain information 
about the behaviour and strength of such connections. A 
total number of 15 specimens were tested under loads 
gradually increasing to failure. 

A method for the prediction of the ultimate capacity 
of edge slab-column connections is developed. 

This theoretical analysis is applied to other available 
slab tests and compared with the experimental findings. 
Good agreement is obtained between the test and calculated 
loads. A number of conclusions are drawn from these 
comparisons as well as from the experimental observations 
Some suggestions are also made for further research on the 
subject. 
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Veale 

Velex 

NOTATION 

shear area of slab at d/2 from the periphery 

of the column. 

length of critical shear section at d/2 from 

the periphery of the column. 

red: d/2 

ft d 

effective depth of slab 

eccentricity in load applied to column 

ultimate compressive strength of concrete 

coefficient used in defining external moment 

carried by vertical shearing stresses acting 

at the critical section 

bending moment at section cD 

moment capacity for V = 0 

torsional moment at sections AD and BC 

ultimate moment 

ratio of area of tension steel to area of concrete 

side dimension of the column perpendicular to 

free edge 

side dimension of the column parallel to free 

edge 

thickness of slab 

vertical shear force 

shear force at predicted ultimate load 

shear force at which flexural failure takes 

place 
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shear capacity for zero eccentricity 

measured shear force at failure 

shear stress 

maximum shear stress 

shear stress from bending moment 

shear stress from vertical shear force 

ultimate shear stress 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Reinforced concrete floor construction can be divided 

into two categories: 

1 - slabs supported on beams spanning between columns 

2 - slabs supported only at the columns which are 

called flat slabs or flat plates. 

The joint between the slab and the column in reinforced 

concrete flat plate floors is often the most critical 

section. From strength considerations a joint must be 

strong enough to resist the forces from the members framing 

into it. For the individual members, knowledge of the 

internal forces developed due to the external forces and 

deformations imposed on the structure could be sufficient 

for an efficient design layout, but the situation at the 

interaction of these members is quite different. This 

region is subjected to a complex stress distribution due to 

the effect of multi-directional forces, such as axial load, 

bending moment, torsion and shear transferred by the members 

as a result of the external loads. The situation is further 

complicated by the effect of the forces arising from creep, 

shrinkage and temperature change. In the light of these 

considerations the necessity for investigating the strength 

and behaviour of the slab-column joints under the influence 

of various design variables is evident.



bo 
(a) Corner joint (b) Edge joint with spandrel beam 

(c¢) Bdge joint without 
spandrel beam     (a) Interior joint 

Fig. 1.1 Different types of slab-column joints



The slab-column joint in a reinforced concrete flat 

plate usually occupies one of the four situations shown 

ain Faeune lel © Vizas 

(a) corner joint with or without beams 

(b) edge column with spandrel beam 

(c) edge column without spandrel beam 

(d) interior joint. 

Edge and corner column connections tend to be the 

most critical as far as the moment and shear transfer are 

concerned. 

The economy of the entire structure is, to a large 

extent, governed by the degree to which the ultimate 

strength of the connection between the slab and the column 

can be predicted and utilized. 

Most studies on the strength of flat plate structures 

at their connections with columns were carried out on 

square and circular slabs simply supported at the edges 

and loaded through concentric square or circular column 

stubs. These specimens were designed to simulate the 

parts of flat plate in the actual structure bounded by 

lines of contraflexure in the vicinity of an interior 

column. Little information is available regarding the 

shear strength of these slabs near columns when both 

axial load and significant moment are to be transferred, 

as is specially the case with exterior column-slab 

connections.



1.2 Object and Scope of the Investigation 

The object of this investigation was to study experi- 

mentally the strength and behaviour of the edge column- 

slab connection of a flat plate under different loading 

conditions, taking account of the column shape in calcul- 

ations of the shearing capacity of the slab. The programme 

was to obtain data to be used for establishing a method 

for analysis of this connection. For this purpose a test 

Programme was undertaken to obtain information about the 

behaviour and strength of such connections, and to invest- 

igate the shear and moment behaviour of edge connections 

of a flat plate structure. 

The type of test specimen shown in Fig. 3.1 was 

chosen for the following reasons:- 

(1) There was not enough test data available on 

this type of connection concerning the column 

shape. 

(2) This type of connection is simple in detail of 

construction while it gives valuable information 

concerning the major problem. 

In all, 15 specimens were tested under loads gradually 

increasing to failure. All specimens were supported and 

loaded as shown in Fig. 3.1. 

The parameters which are believed to have the greatest 

influence on the moment-shear strength of an edge connection 

in flat plate structure are tabulated in Table 3.1.



The following parameters were kept constant in all the 

specimens during the tests: 

(1) Concrete strength coe 

(2) The tensile steel ratio, P, kept constant 

at 2.5 per cent. 

(3) The thickness of slab, t, which was kept 

constant at 75 mm. 

(4) The column perimeter (three sides only) was 

kept constant at 540 mm. 

1.3 Method of analysis 

In Chapter VIa method for the prediction of the 

ultimate capacity of edge column-slab connections is 

developed. The method is capable of predicting the ultimate 

capacity of this type of connection in the following cases: 

(1) Edge connection subjected to bending moment 

in plane perpendicular to the free edge of 

the slab. 

(2) Edge connection subjected to axial load and 

bending moment in a plane perpendicular to the 

free edge of the slab. 

The various approximations were compared with 

experimental results when available. In the same chapter 

(Chapter VI) the test results of the writer and those found 

elsewhere were compared with the theoretical predictions.



CHAPTER II 

REVIEW OF LITERATURE 

2.1 General 

The problem of shear strength of slabs at their 

connections with columns was recognised as early as 1913") 

and has been extensively investigated by several researchers 

in the last two decades due to the increased development 

and use of flat plate structures and the inclination towards 

the use of small column sizes. A primary practical need, 

therefore, is the development of improved reinforcing 

details and design criteria for transfer of loads from the 

plate into the supporting column. 

A brief summary of the work on the problem of shear 

strength of flat plate slabs prior to 1961 has been reported 

() (2 

by Moe’. The European Commiteee on concrete republished, 

(3,4) 
in 1965 and 1966, many of the more recent investigations’ 

Comprehensive Ale and reliable design criterias 

exist to estimate shear strength at interior columns carry- 

ing reasonably concentric loads. Design procedures have 

also been developed for shearhead reinforcement made from 
(6.7.8) 

rolled steel structural sections, 

In contrast, limited experimental work is available 

(2,10) 
regarding shear and moment transfer at exterior columns 

and other cases of interior columns especially for taking



into account the column shape in calculations of the shear- 

ing capacity of the slab. 

Design procedures have so far been formulated by 

assuming that a fraction of the bending moment causes non- 

. : s 2 * 25897, uniform distribution of vertical shear Stresses >79n 22) 

The review of the literature in this article will be 

divided into two parts: the first part will deal briefly 

with the strength of a column-slab connection subjected to 

concentric load, and the second part of the review will 

deal with studies carried out to investigate the problem 

of combined moment and shear transfer. 

2.2 Shear strength near the column of symmetrically 

loaded slabs (concentric loading). 

The earliest study of the shear strength of slabs is 
1 

that of Talbot”) who in 1913 presented his well-known 

  

investigation on reinforced concrete footings. Altogether 

114 wall footings and 83 column footings were tested to 

failure. Of the latter, approximately 20 specimens failed 

in shear. On this basis Talbot proposed the following 

formula for calculating the nominal shear stresses at an 

assumed critical section located at a distance from the 

column faces equal to the effective depth of the slab 

7 V 

Y* ar + tase yesh)



Table 2.1 Location of the critical section governing 

the ultimate shearing strength as proposed 

by different researchers and codes. 

  

  

  

Distance of critical 
Name of the researcher or code section from column 

periphery 

Talbot 1913 d 

AC1 Code (318-56) d 

Forsell and Holmberg 1946 the 

Whitney 1957 d/2 

AC] Code (318-63) d/2 

AC1 Code (318-71) d/2 

AC1 Code (318-77) d/2 

B.S. Code CP 114-57 d/2 

B.S. Code CP 110-72 1.5h 

Hognestad 1953 0 

Elstner and Hognestad 1953 0 

Di Stasio and Van Buren 1960 d-13" (diagonal tension) 

0 (punching shear) 

Moe 1961 0      



where, 

v = the shear stress 

V = the shearing force 

r = the side dimension of square column 

d = the effective depth of slab 

jd = the internal moment arm of slab. 

He found that relatively high values of shear strength 

were obtained when large percentages of tensile reinforce- 

ment were used. This study has formed the basis of design 

practice for reinforced concrete footings in many countries 

throughout the world. 

Many improvements have been made in the design 

methods, especially in adjusting the magnitudes of the 
(5,13, 14 15, 17) 

allowable stresses. 

Researchers and designers have differed considerably 

in their proposals for the position of the critical section. 

Table 2.1 shows some of the proposals, and the differences 

can be seen. 

A second experimental investigation of 24 wall foot- 

ings and 140 column footings were tested to failure in 1944 

by F E Richart, who concluded that shearing stresses are 

frequently a critical feature of the design of a footing 

despite high bond stresses. The shearing stresses at 

failure, calculated at a distance "d" from the face of the 

column (by equation (2.1)) varied generally from less than



0.05ft to 0.09f€. Withrespect to shearing strength 

Richart observed: 

"The use of the critical section at less than 
the distance “d" outside the column faces seems 
well worth considering in interpreting the test 
results, as does also the allowance of a portion 
of the maximum shear for the doweling effect of 
the reinforcing bars. These features are 
considered here as possible explanations of foot- 
ing action, not at this time as suggested design 
methods." 

13) 
Heausctad’ ia 1953 presented the results of an 

extensive re-evaluation of the shear failures of footings 

(2) 
which were reported by Richart. Hognestad recognised the 

effect of superimposed flexure on the ultimate shearing 

Vtest 

Vflex 

parameters in the statistical study of the results. He 

strength and introduced the ratio 4 = as one of the   

suggested that the shearing stresses could be computed at 

zero distance around the loaded area since this seemed to 

give the best measure of shearing strength. 

Hognestad found that the ultimate shearing strength 

could be calculated within the range of variation in 

parameters covered by Richart's tests, by using the follow- 

ing equation. 

0.07 
  NS 0.035 + 4 i Bee Zb'd fic + 130 psi ( ) 

' 
where b = perimeter of critical section taken at 

the periphery of the column, 

10



Elstner and Nnonesiad” reported shear tests on 24, 

6 ft square and 6 inch thick reinforced concrete slabs. 

The majority of these slabs were supported along all four 

edges. The results of these tests, as well as those 

reported by Forsell and Halenere ane by Richart and Kluge 

were analysed and compared favourably to the strengths 

predicted by Equation (2.2). 

(21) 
Keefe in 1954 investigated the effectiveness of a 

special type of shear reinforcement known as a "“shearhead". 

The slabs with the shear heads had an ultimate shear 

capacity nearly 40% higher than those without. 

Elstner and Hanceae in 1956 reported on tests of 38, 

6 ft square slabs; 24 of these tests were reported in 

Reference 20. The following equation was found to 

predict the shear strength of all the slabs tested by the 

authors with good accuracy 

Vv fe 
v= qb'd = 333 psi + 0.046 a (2.3) 

(2) 
Whitney in 1957, presented an ultimate strength 

theory for shear strength based on a re-evaluation of 

previously reported test tesnee The major assumption 

made was that the shear strength was primarily a function 

of the ultimate resisting moment of the slab per unit 

width inside the "Pyramid of Rupture", which he defined as 

a frustum of a cone or pyramid with a surface sloping out 

in all directions from the column at an angle of 45°. 
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Scordelis, Lin and May ah 1958 investigated the 

shearing strength of prestressed lift slabs by testing 

6 ft square slab specimens. Final failure of all slabs 

occurred when the steel collar punched through the slab 

A variable amount of flexural cracking was visible just 

Prior to failure and was generally smaller in the thicker 

slabs which had column recesses. On the basis of their 

study the following were some of the conclusions advanced: 

(1) The ultimate punching shear stress as computed 

by awe = ee varied between 0.101 and 0.211 x gbdFe 
at the edge of the collar, between 0.079 and 

0.157 at a distance d/2 from the edge of the 

collar, and between 0.058 and 0.127 at a distance 

d from the edge of the collar. Therefore it 

cannot be considered to be constant at any one 

of these locations 

(2) The test data agreed quite well with results 

obtained using the ultimate shearing strength 
20" 

formula proposed by Elstner and focnestad vend 

by Whitney. 

They concluded also that these formulas would yield 

sufficient accuracy for prestressed concrete slabs provided 

a suitable method is used to calculate the ultimate flexural 

capacity. 

(3) Adequate provision should be made in the design 

so that ultimate flexural capacity will govern 

failure rather than ultimate shear capacity, 

Ne



since a shear failure may be sudden and without 

warning. 

Base in 1959 reported on small scale tests of centrally 

loaded reinforced concrete slabs supported on four edges. 

One of the important conclusions was that 

"the amount of tensile reinforcement in the slabs 
and the resulting amount of flexural cracking 
seemed to affect the punching failure significantly." 

Kinnunen and yianden i 1960 reported on a number of 

tests carried out on circular concrete slabs, approximately 

6 ft in diameter and 6 in thick, reinforced with top mesh 

only. The slabs were supported by tie-rods along the 

circumference and an upward vertical load was applied at 

the centrally placed column stub. The principal parameters 

were, the type and the amount of slab reinforcement (ring, 

ring and radial, and two way), and the column size 

(approximately 6 in and 12 in diameter). Two expressions 

were proposed for calculating punching strength, derived 

from the equilibrium at failure of a segment of the slab, 

and are given in terms of the properties of the concrete 

and reinforcement, and of the slab and column dimensions. 

The calculation of the strength is a trial and error process 

and was restricted to slabs with radial or circular 

reinforcement. In 1963 Cinnunen extended the theory to 

cover slabs with two way reinforcement, but the method was 

still rather time-consuming. Also in 1963, Anderson 

presented a study on slabs with shear reinforcement. His 
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assumptions were not different from Kinnunen and 

(28) : 
Nylander's ‘assumptions for slabs without shear reinforce- 

ment. 

noe, in 1961, reported tests of 43, 6 ft square slabs 

which were very similar to the test specimens of Elstner 

and Hognestad. Moe's major variables were effect of 

openings near the face of the column, effect of column 

size, effect of eccentricity in the applied load and 

effectiveness of a special type of shear reinforcement. 

He also included a statistical study of 140 footings and 

120 slabs tested by earlier investigators. Some of the 

more important conclusions arrived at in Moe's study are: 

(1) The critical section governing the ultimate 

shear strength of the slabs and footings should 

be measured along the perimeter of the loaded 

area. 

(2) The shear strength of slabs and footings is to 

some extent dependent upon the flexural strength. 

(3) The unit shearing strength is highest when the 

column size is small compared to the slab 

thickness. 

(4) The ultimate shearing strength of slabs and 

footings, as determined in the short time tests, 

can be predicted with good accuracy by 

14



(7) 

(23) 
Yitzhaki, 

slabs. 

Inclined cracks in the slabs developed at loads 

as low as 50% of the ultimate strength. 

In cases of moment transfer between square 

columns and slabs, test results indicate that 

it is safe to assume that the portion of the 

moment transferred through vertical shearing 

stresses is distributed along the perimeter of 

the column as shown in Fig. 2.3. Maximum 

shearing stresses due to combined action of 

vertical load and moment should not exceed 

the values expressed by Equation (2.4). 

Since shear failure is undesirable in a concrete 

structure, slabs and footings should be designed 

so that flexural strength governs. This is 

accomplished by placing a limitation on shearing 

stresses as expressed by 

v = (9.23 - 1.125)VF2 for r/d < 3 

v = (2.50 + 104) /F2 for f/d > 3 

in 1966, reported results of tests on circular 

He proposed the following expression for calcul- 

ating vertical punching strength of an interior column 

LS:



Vv = 8(1 - Y2)d2(149.3 + 0.164pf,)(1 + 0.5 7d) 

(psi) aa (228) 
= = o 3 o 73
 " percentage of slab reinforcement 

fg = yield stress of the steel 
f 

Guaap es (is the reinforcement index). 
c 

The three terms in Equation (2.5) express the effect of 

concrete strength (1 - Y2 ), slab reinforcement strength 

(p fy) and of the "/d ratio. The numerical constants in 

the middle bracket were evaluated by trial and error from 

the available test data. 

The above expression can be written in terms of a 

nominal ultimate shear stress on a critical section at a 

distance "“d" from the column perimeter 

pp eeeet Un ee e108 ga 0 a1 64) pfy)(1 - 92) 
Yu Sa) (apa upayd 

(psi) 
we 2.,0) 

Since in the practical design the value of “q" varies 

between 0.15 and 0.25, the effect of concrete strength 

given by the term (1 - %2) is relatively small. The 

ultimate shear strength, therefore, largely depends on the 

effect of slab reinforcement strength (pfy). The stress 

vy is (according to Equation (2.6)) independent of "d. 

The 1963 AC1l Building Code referred to nominal 
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ultimate shear stress in case of square interior column 

V 
u Se ee 46 VF 

‘ (4r + 4d)d Seis 

(6) where $ is a reduction factor assumed by the cade. as 0.85. 

When vy exceeds the specified value the strength may be 

augmented by shear reinforcement, but the design steel 

stresses are only 50% of the recommended yield stresses, 

so the maximum value of vi should not exceed 6ovFT For 

slabs less than 10 in thick, shear reinforcement is 

considered ineffective. The code also requires that the 

shear stresses be checked for the slab acting as a wide 

beam. 

30, 

cP 114 (1957)! Tre to nominal shear stresses which 

may be calculated from the following formula: 

LCE wi ony v Wr we. Mere (2aT) 

= ale i Vern 40 + 50 for u 33,000, psi 

where 

Vw = Shear force at working load 

V perm = permissible shear stress. 

The effect of '/d ratio and slab reinforcement are 

not considered in Equations (2.6) and (2.7). 

(s1) 31 

Long and Bond, in 1967, presented a theoretical method 
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of analysis for the calculation of the punching load of an 

interior column and flat slab structure with two-way slab 

reinforcement. The method is based on elastic thin-plate 

theory from which the stresses in the compression zone were 

derived, assuming a linear distribution of stress. They 

also reported results of tests on four t scale slabs and 

columns. Long a 1968 extended the theory to predict the 

ultimate capacity of slabs under combined normal loads and 

bending moments. 

In a progress report presented to ACI committee 426, 

Shear and Diagonal Tension, March 31, 1968, Zaidi, Sabnis 

and REIT nkeaented an extension to cee work on punching 

strength of slabs with openings in the column vicinity. 

They extended the scope of their work beyond that of Moe's 

by considering different shaped holes and various hole 

configurations. 

Based on statical analysis of their 125 test specimens 

on small scale slab specimens (test specimens were modelled 

after Moe's slabs with a geometrical scale factor of 2.5) 

the following relation (Equation 2.8) was proposed to 

replace Equation (2.4) for slabs with openings in the 

column vicinity. 

ve nts 18 + 018 ontea a) (ava) 
ae , : 

(psi i oaue Teor 
Flex 
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(a) eccentricity e (b) effective. 

perimeter 

b 
bede = Column 
1 and 2 = Openings 

b? = Perimeter of the column excluding the portion within the 

radial projections from the centre of the column to the 
corners or edges of holes. 

sabed' + e"e' =2b1 + b2 +b3 (Fig.(a)) 
= abe' + a'de' 
= 4b1 

e =e. +e = Sum of eccentricities of the centre of gravity of 
the effective perimeter with respect to the centre of the 

column. 

Note: The different eccentricities in two cases although b' is the same 
for both 

Fig. 2.1 Concepts of effective perimeter and eccentricity.



It may be noted that Equation (2.8) resembles that of 

Moe's Equation (2.4) to a large extent, except for the 

presence of the extra parameter e/d which allows for 

including the effect of unsymmetrically located holes 

(Fig. 2.1). For the analysis of their test results, Zaidi, 

Sabnis and Roll obtained one concrete compressive strength, 

fic, from test cylinders in Moe's tests. An increase of 

20 percent in the compressive concrete strength f'c was 

found for smaller cylinders. 

The effect of columns elongated in plan on the 

behaviour of flat plate structures was later considered 

by Smith and Sones aya Sianondecs A reinforced concrete 

flat plate test structure consisting of nine panels was 

tested. Column elongation in long direction was 0.4 of 

span. Moments and deflections in one of the interior 

panels were determined by elastic analysis. The results 

were compared with the empirical method of AC1 318-63. 

Although no specific results were reported regarding the 

ultimate capacity of a column slab connection,- the crack 

pattern of the exterior connections confirmed the observ- 

ations reported in the present investigation. 

HaWelec ein 1970 studied the effect of colummrectangu- 

larity on the strength and behaviour of 9 slab column 

specimens. The test specimens were made to simulate an 

interior column-slab connection in a flat plate structure. 

All slabs were 7 ft. square, 6 in. thick and supported on a 
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centrally located rectangular column. The variables 

included in this study were the aspect ratio for the 

column, the loading pattern and the reinforcement pattern. 

For 8 of the specimens the length of the column perimeter 

was kept constant at 48 in. and the aspect ratio varied 

between 1 and 4.3. 

The load was applied concentrically to the connect- 

ions by means of rods at 24 in. centres along two opposite 

edges or along the four edges of the slab. 

He concluded that the nominal shear stress decreases 

markedly as the aspect ratio increases. The shear capac- 

ities were consistent with those calculated from the 1971 

AC] Building Code for specimens with columns having long- 

to-short side ratio less than 2.0. For larger ratios 

the ultimate shear stress dropped to 3.27F at a ratio of 

4.3. Based on the results for the nine specimens, a desian 

provision was proposed for the nominal shear stress in 

slabs having rectangular columns: 

V 
  v= v= (2.5 + 3.0%r,) but not greater u bd Fr 

(psi) c 

than 40 ae. vul(2a9:) 

where r, = width of smaller column face 

r, = width of larger column face. 
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2.3 Shear strength of slabs in moment and shear transfer: 

(eccentric column loading). 

Only limited information is available regarding the 

shear strength of flat plate floor slabs near their 

connections with columns when both axial load, V, and 

bending moment, M, are to be transferred. 

In 1959 Romer thald udenonced the results of tests on 

simply supported circular reinforced concrete slabs. The 

tests included eleven specimens, three of which were loaded 

eccentrically through a centrally located circular column 

stub. For concentrically loaded connections he concluded 

that dooneeend: Renna Tica equation which considers the 

combined effect of shear and flexure in a centrally loaded 

slab when used for slabs containing tension reinforcement 

only, resulted in satisfactory agreement with the test data. 

For the three eccentrically loaded specimens, only one of 

them showed a clear eccentric failure (punching and un- 

symmetrical crack pattern). This showed, nevertheless, that 

if an eccentric load is applied there can be a decrease in 

ultimate strength of the slab, and in this case the 

reduction was about 15%. 

In 1960, Tsuboi and Kawaguchi menorted nine tests on 

mortar slabs 3 ft. 4 in. square, and 1 3n6 in, thick, 

simply supported along two opposite edges. Three of these 

slabs were made of plain mortar. Moments were applied to 

the slabs in a plane parallel to the free edges through 
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concentric square stubs 8 in. square. The slabs were 

assumed to represent one interior panel of a flat plate 

floor. The variable in the six reinforced slabs was the 

distribution of the reinforcement in the direction parallel 

to the plane of the applied moment although they all 

contained the same amount of reinforcement. The reinforce- 

ment in the perpendicular direction was kept the same. 

The latter test slabs were grouped into three identical 

pairs. In the first pair, seventy percent of the reinforce- 

ment parallel to the plane of the applied moment was 

distributed in the column strip and the rest uniformly 

distributed in the middle strip. In the second pair the 

reinforcement was uniformly distributed over the entire 

width of the panel. In the third pair, thirty percent of 

the reinforcement was uniformly distributed in the middle 

Strip. 

One slab of each of the identical pairs was subjected 

to gradually increasing moment, while the other was subjected 

to reciprocally repeated moment. In the latter case, 

loading was reversed at three stages; first a little outside 

the elastic range, then in an elastoplastic state and 

finally near the ultimate strength. Two trends were observed 

with respect to the ultimate strength of test slabs: 

(1) Higher failure moments occurred in slabs with 

greater ratio of reinforcement in the column strip 

for both types of loading. 
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Fig. 2.2 Critical section for diagonal tention and assumed 

distribution of shear stress. 
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(2) Static reversal of loading reduced the ultimate 

capacity of the connections, especially after 

load reached the ultimate in the previous half of 

the cycle. 

Di Stasio and Van Rive an 1960, presented a working 

stress method of analysis for calculating the maximum unit 

shearing stresses, determining both diagonal tension and 

punching shear due to combined shear and bending moment 

loading at exterior and interior connections. The major 

criterion of this method is the limitation on the vertical 

shear stress on a critical section located at a specified 

distance from the face of the column. According to their 

suggestions, two critical sections of the slab in the 

vicinity of the column have to be checked, namely: 

(1) a critical section for diagonal tension following a 

periphery parallel to the column faces at a distance t-l% in. 

therefrom; (2) a critical section for punching shear at 

the column-slab intersection. The applied shear, V, and 

moment, M, were assumed to cause the shear stresses shown 

in Fig. 2.2. The maximum and minimum unit shears were 

calculated by equations of the form: 

(1) For exterior edge connection (Fig. 2.2 (a)) 

Tyetalve a ee poem ie) va i Pract c (2.10(a)) 

M- Mp. - ¥ 
Vie lee Gee Stee c (2.10(b)) 

ic Ae Je 
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(20; #26 ye 

Length of critical section parallel to the 

plane of the bending moment. 

Length of critical section perpendicular to the 

plane of the bending moment 

Distance of the centroid of the section being 

sheared from the column centroid. 

aw 
oa g 

G 
rao 
slab thickness 

effective depth of slab 

aie |F se 2 
1 + (m - 1)P 

Es 
modular ratio| — 

Cc 

ratio of total (top and bottom) steel slab 

flexural moment resisted by the slab section BC 

property of the assumed critical section analogous 

to polar moment of inertia 

2 
C, Z2ECY 2q,t? 

aoe + as 2G toe} Ct + - 3| 
12 12 
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(2) For interior connection (Fig. 2.2 (b)) 
  

(2.11(a)) 

~N
 

(M- Map = ManJC asta Wy Ap ~ Nec)% 
d | Ag ony 

< " |g
 ae
 

; 2a (2.11(b)) Ny ~ a 

| yo Baan meot |e 

where in this case 

Ae 

" e(Cy + Go)t 

BuO exeCut’ cc 
(A =5 tas 2c, t/ = Je   

The above formulae are for the critical section of 

diagonal tension. For the critical section for punching 

shear, the same formulae are applied with the substitution 

of the proper values for Meo May and the dimensions to 

conform with the smaller periphery. 

Di Stasio and Van Buren limited the maximum shear 

stress to 0.0625 te > on a critical section directly at 

the column periphery (critical section for punching shear). 

With respect to permissible stresses on the critical section 

for diagonal tension the recommendations of the 1956 ACI 

Building Code which was applicable at that time, were 

followed, namely: 

vies 0.3 f¢ + 100 psi 

when at least 50% of the required column strip steel 

crosses the section, or 
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Vip = (02025 fo 4 85 psi 

when at least 25% of the required column strip steel 

crosses the section. 

In 1961 Kreps and Ree ae a the results of six 

tests carried out by Fredrick and pallet on square flat 

plate specimens, simply supported along two opposite edges 

and free along the other two edges. The specimens were 

loaded through concentrically located 6 in. square column 

stubs by axial loads and bending moments in a plane parallel 

to the free edges. Depth of the slab and the distribution 

of the reinforcement were included as important variables. 

No significant results concerning the shear problem were 

given by the authors, since their programme was primarily 

conducted to determine the effective width, in relation to 

slab depth, of the column strip available to transmit a 

column moment into the slab for a flat plate of 

reinforced concrete exposed to lateral (seismic or wind) 

loads. 

Also in 1961, Maer oreioe tet twelve tests on 6 ft. 

square, 6 in. thick slabs. The slabs were simply supported 

along all four edges in such a way that no negative 

reactions could be taken at the supports, and corners were 

free to lift. Load was applied at different eccentricities 

through a centrally located square column stub. The 

eccentricity of the applied load varied from 0 to 24 in. 
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(b) Distribution of shear stresses 
due to load V , 

  

                

(c) Distribution of shear stresses 
due to moment M . 

(a) Combined distribution of shear 
stresses. 

Fig. 2.3 Distribution of shear stresses at ultimate. 
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Important variables in Moe's study were column size 

and the yield strength of the reinforcing steel. Only two 

specimens contained compressive as well as tensile rein- 

forcement. He suggested that if a is small, i.e. less than 

oe where r is the width of a square column, the behaviour 

of the slab was approximately the same as for slabs loaded 

by axial load through column stub only. If ‘ is greater 

than . or if the slabs are subjected to bending moments 

only, the problem becomes more complicated than that of 

normally loaded slabs. From the test results Moe derived 

an empirical equation which has been shown to predict the 

strength of the tested slabs with sufficient accuracy for 

design. Moe's strength method of analysis is summarised 

as follows: 

Fig. 2.3 (a) shows a square column stub loaded with 

an axial force, V, and a moment, M, in one of the planes 

of symmetry parallel to two faces of the column. The slab 

is not shown in the figure, but the forces and moments 

resisted by the assumed slab critical section immediately 

at the column-slab interface are shown in this figure. 

In developing his strength criteria Moe assumed that:- 

(1) The axial load V results in producing uniform 

nominal shear stresses in the critical section 

given by 

v Voz = a ; (a) 
where 
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(2) 

A " 4rd 

r = side width of a square column. 

The bending moment, M, is resisted by: 

(a) 

(b) 

flexural moment of slab section AD and BC 

(Rig. <253 (a)) 

torsional moments, Mz, on sides AB and CD, 

and 

vertical shear stresses on the four sides of 

the critical section. They are assumed to 

be constant along the critical sections 

perpendicular to the plane in which the 

applied moment acts and vary linearly along 

the other two planes as illustrated in 

Fig. 2.3 (c). 

The resultant of the internal moments produced in (a), 

(b) and (c) must balance M. The fraction of the total 

bending moment resisted by the vertical shear stresses was 

assumed equal to KM where K is a constant which was 

determined from the test results. Considering the 

distribution of the vertical shear stresses shown in 

Fig. 

or 

2.3 (c) Moe determined Vin aS 

  — —_KM 

pins 4y2g 
3 

KMC 
v= b aa (b) 
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where 

  

ves maximum vertical shear stress produced by 

the bending moment portion KM 

C = half width of a square column = 5 

eons 
Jo = 3 

Moe advanced that failure of a column-slab connection 

subjected to the present case of loading (Fig. 2.3 (a)) 

takes place when the maximum value of the shearing stress, 

v, (Fig. 2.3 (d)), reaches a critical value equal to the 

shearing strength of the same slab under concentric load 

determined from Equation (2.4). The maximum shear stress, 

v, > is obtained as the summation of vy and Vm 2S follows: 

Ve SNe avs 

or 

Vv KMC 
= + 

Minakayds © We (2.12) 

Using the above assumption Moe worked backwards from his 

test data and concluded that the value of K in Equation 

(2.12),and therefore the fraction of the total moment 

transferred by shear stresses, was approximately one third. 

In calculating v, for the case of concentric load Equation 

(2.4) was used. For design Moe recommended a limiting 

vertical shear stress of (9.23 - 1.12 we for a ratio 

less than 3 and (2.5 + 10 gtr for = ratio greater than 

3. These were conservative limits, intended to produce 

flexure rather than shear failure. 

32



In 1962 AC1-ASCE committee 326°) conducted a study of 

Moe's work which resulted in a recommendation that a limit- 

ing shear stress VG be established using the following 

expression in which the critical section follows the 

periphery of the column: 

e ves ae 1) vf (2.13) 

Therefore the shear load capacity of a concentrically loaded 

connection can be evaluated as 

Wierev bd (2.14) 

where b' is the perimeter of the critical section taken at 

the periphery of the column. 

To develop design recommendations for AC] 1963 code 

for moment and shear transfer, AC1-ASCE committee 320) 

reviewed the foregoing investigations and in addition took 

into account some preliminary information on work by Hanson 

and Hanson The committee recommended a procedure similar 

to Di Stasio and Van Burente pee with two modifications. 

It was proposed that the critical section be taken at d/2 

from the faces of the column, and that the effective depth 

rather than the total depth be used in calculation of AL 

and J. 

At interior columns the equation recommended for 

design was 

vies ete RNC eae a (2.15) 
More eA, Je 
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Fig . 2.4 Dimension and reinforcement for slab tested by anderson 
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where Va ultimate shear stress. 

2 
Best agreement with available tests (10 of which were Moe's, 

(x) 
10 were Hanson's and Hanson's and 5 reported by Kreps and 

Hy 

gewten) was obtained with a K value of 0.20. 

The ACI era, gave a working stress design method 

similar to that of Di Stasio and Van Buren but dropped out 

the Z. Also it did not take into account the dowelling 

effect of the steel. A critical section (r,+d) and 

i + 3t) for interior columns was allowed by this method, 

where r, is the side width of a rectangular column in the 

direction of the plane in which the bending moment acts 

and r, is the width of the other side of the column. The 

following equation is given to calculate the limiting 

stress 
M-M M eee os Mage Tee) Q (2.16) 

c 

The calculated shear stress by this method is limited to 

6 

allowable values specified in the AC1 318-63 Building cody. 

In 1966 Aaderaan, 'rancteee test specimens simulating 

edge connections in flat plate structures. The slabs, 

which were approximately 5 ft. by 2 ft. 6 in. with a thick- 

ness of 5 inches to 7 inches, were supported on neoprene 

pads closely spaced along all edges except the one contain- 

ing the column. The dimensions and reinforcement for a 

representative specimen are shown in Fig. 2.4. The 

specimens were loaded by means of a hydraulic jack through 
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a column stub extended on one side of the slab only. The 

variables were the eccentricity of the load on the column 

slab, column size and slab reinforcement. 

He concluded that the eccentricity of the column load 

Produced a great effect on the ultimate load. When the 

eccentricity was small the failure was a pure flexural 

failure, in spite of the fact that nominal shear stress was 

high. When the eccentricity was great the failure was by 

punching, and the value of the nominal shear stress was 

lower. Anderson also suggested an expression for calculat- 

ing the nominal shear stress at a critical section located 

() 
at the column faces. 

In 1968, Hanson and daacon roneer es 17 tests involving 

combined shear and bending moment. Ten of these slabs had 

been reported in 1962 by AC1-ASCE committee 326°) Sixteen 

of the specimens contained 6 in. square or 6 in. x 12 in. 

rectangular concentric columns. Only one specimen was 

tested which had an edge column 6 in. square simulating 

conditions at an edge connection (Fig.2.5). The slabs 

were reinforced with two mats of No. 3 deformed bars spaced 

3 in. centre-to-centre in each direction. The mats were 

placed so that the bars parallel tothe long side of the slab 

were covered by 3 in. of concrete. Pairs of 1 in. x 6 in. 

holes were blocked out of the slab in eight of the specimens 

with square columns. These holes were located adjacent to 

the column and either parallel to the long sides (free edges) 
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or the short sides (loaded sides) of the slab. The slab 

reinforcement was continuous through the holes. 

The columns had hinged reaction points 30 in. above 

and below the surface of the 3 in. thick slabs. The 

principal variables were the location of the holes blocked 

out of the slab and the loading arrangement. Loads were 

applied to the slab along lines 36 in. from the centre line 

of the column (Fig. 2.5(a)). The three loading arrangements 

considered caused eccentricities varying from zero to almost 

infinity. For type 1 loading, the line loads in Fig. 2.5(b) 

were equal in magnitude and opposite in direction. For type 

2 the line loads were equal and acting in the same direction 

and for type 3 only were acting downward. Three of the 

interior column-slab connections were subjected to reversal 

of loading. In these tests, the direction of the applied 

loads was reversed after reaching 25, 50 and 75 percent of 

the expected ultimate load (determined from companion 

specimens tested under monotonically increased loads up to 

collapse). 

As a result of the examination of their tests and 

( 2" 
previous tests reported by Hoeeithe following were some of 

their important conclusions: 

(1) The working stress method in section 2102 of 
« 

the commentary on the 1963 ACI Building Code ows 

found to have a factor of safety less than 2 for 

some of the slab-column connections under combined 
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shear and moment. 

(2) The working stress method recommended by Di Stasio 

and Van piven wnoditied to agree with 1963 AC] 

code, was found to have a variable factor of 

safety always greater than 2. However, the method 

did not agree with the trend of the test data. 

(3) The ultimate strength design method recommended 
2 

by moet wae found to be simple in application and 

to give good results except for the case of the 

edge connection. 

(4) The ultimate strength design method recommended 

by ACI-ASCE committee 326” was found to give a 

good prediction of the strength of the column-slab 

connection only when the moment reduction factor, 

K, was changed from 0.20 to 0.40. 

During the preparation of a proposed revision to the 

1963 AC] Building cue” committee aie) adopted the method 

of the joint Coes tie for calculating the ultimate capacity 

of a column slab connection when moment and shear are to be 

transferred with the modification proposed by Hanson and 

Batech In addition it was noted that most of the test 

data considered by Hanson and Hanson ate reach their findings 

mentioned above, involved square columns. In practice, 

however, for architectural reasons rectangular columns are 

frequently used, particularly at edges of buildings. It is 

logical to assume that the fraction of the bending moment 
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transferred by flexure, across the periphery of the 

critical section defined eariien® by the joint committee, 

increases as the width of the face of the critical section 

resisting the moment increases. Accordingly, it was 

suggested that the fraction, K, of the bending moment 

transferred by eccentricity of the shear about the centroid 

of the critical section be taken as 

eas (2247)    
1 —S— 

1+ ai ae 
m+d 
  

where co +d) is the width of the face of the critical 

section resisting the moment, and (r, + d) is the width of 

the face at right angles to (r, + d). Equation (2.17) 

gives K = 0.40 for square columns. 

In 1968, and later in 1970, Zaghlool, de Paiva and 

Giecknen reported the results on four flat plate structures. 

Each structure was a full size, square, single panel flat 

plate structure cast monolithically with a square column 

at each corner. The structures measured 10 ft. centre to 

centre of columns, with column height constant at 5 ft. 

The column bases rested on steel balls so that rotation 

but not translation of the lower end of the column was 

permitted. The variables studied were the column width to 

slab depth ratio and the concrete strength. Two column 

sizes were used 53 in. and 63 in. square. The slab thick- 

ness was constant at 54 in. The reinforcement in the slab 

consisted of 3 in. diameter deformed bars having an average 
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yield stress of 55 ksi. The positive reinforcement was 

placed parallel to the edges of the slab and spaced 

uniformly over the entire width. In the negative moment 

region of the slabs adjacent to the columns only continuity 

bars were provided by three of the column bars bent into the 

slab, the outside corner bar was bent along the diagonal, 

the other two outside bars were bent parallel to the edges, 

and two other continuity bars were placed parallel to the 

slab edges and bent down adjacent to the outside corner bar. 

The structures were loaded by uniform loads simulated by 

16 point loads through 15 in. square by i in. thick steel 

plates resting on rubber pads on the surface of the slab. 

The loads were provided by four hydraulic jacks through 

distributing members. 

In connection with the shear strength of the slab at 

its connection with the column, they found that the existing 

methods for predicting the column-slab connection strength 

for interior columns, when extrapolated to corner columns, 

produced extremely conservative results. Considering a 

simplified approach to the analysis of their tests, using 

the principal tensile strength of the failure cone, they 

obtained the following expression for the shear stress at 

ultimate: 

vy = 2 = (5.6 + 2.0(8))VFE (2.18) 
Teed 

where 
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v = vertical shear force. 

This expression showed good correlation with the tests 

In 1969 Phinchgnkic? tented 52 half scale models of 

column-slab connections designed to simulate interior, edge 

and corner connections in a flat plate structure. They were 

tested under the action of axial load, bending moment or a 

combination of both. Of interest are the exterior column- 

slab connections which are described below: 

All specimens had 3 ft. square by 3 in. thick reinforced 

concrete slabs with column stubs above and below the slab. 

In all the tests the slabs were supported by 14 in. diameter 

tie-rods, 64 in. centre to centre along the edges. 

The edge connections were supported along three edges 

with the column stub being located at the centre of the free 

edge and the corner connections had two free edges adjacent 

to the column. 

The loads were applied to each specimen through 1 in. 

thick steel plates attached to the ends of the column stubs 

at 13 in. from the top and bottom faces of the slab. 

The slabs were reinforced with two similar mats at the 

top and bottom faces. Each mat consisted of aoe in. diameter 
16 

bars of hot rolled high tensile steel with a guaranteed 
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1" thick plate 
  

  

  Le   

      

1/2" cover 

3" 

position of 5" x 5" Top and bottom 

column stub. mesh 5/16"dia.bars.     

Fig. 2.6 Dimensions and reinforcement for edge and corner connections 

tested at Imperial College by Stamankovic.



yield stress of 60,000 psi. Typical slab reinforcement 

for edge and corner connections is shown in Fig. 2.6. 

The principal variables were the type of loading and the 

location of slots in the slabs at the column faces with 

respect to the plane in which the bending moment acts. 

Nine of the edge column-slab connections were loaded 

as follows: 

One specimen was loaded by axial load only. Four 

were loaded by bending moment in a plane perpendicular to 

the free edge; the first one had openings in the slab 

adjacent to the column sides, the second one had an opening 

in the slab at the inside face of the column, and the third 

and fourth did not have holes. The other four specimens 

were tested under varying ratios of bending moment to 

axial load. 

The analysis of the test specimens given by Stamenkovic 

are summarised as follows: 

(1) For the slab specimens which were provided with 

holes through the slabs parallel to the plane in 

which the bending moment acts, the bending 

capacity of the connection was assumed to be 

expressed by the ultimate strength formula given 

by the AC] 1963 Building code” for corner and 

edge connection as follows: 
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(2) 

0.9bd?#* q(1 - 0.59q) (2.19) 

width of the column face perpendicular to the 

plane of applied bending moment 

effective depth of the slab 

. fy 
reinforcement index = P au 

c 

ratio of the tension steel crossing the inside 

column face of width "b". 

For the case of specimens in which the bending 

resistance of the slab section perpendicular to 

the plane of bending was omitted by introducing 

a hole through the slab, the bending moment 

applied through the column stub was assumed to 

be resisted by the capacity of the slab section 

(or sections) at the column side (or sides) 

parallel to the plane of applied moment in torsion. 

For obtaining the torsional capacity of the slab 

section it was recognised that the torsional resistance 

depends on the area of the slab-column interface, concrete 

strength, the amount of transverse reinforcement and the 

degree of containment. The contribution of the reinforce- 

ment was rationalised by assuming the friction develops at 

the irregular interface of a crack, the frictional stress 

depending on the contact pressure developed by the tensile 

force in the reinforcement. This concept has been used 
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for calculating the shear siregeen It was further assumed 

that at failure, this friction stress is uniform on the 

whole area of the column-slab interface. He suggested 

that the plasticity formula (2.20) would hold in such a 

case: 

Me = Nts (a + §) (2.20) 

N = number of column-slab interfaces parallel to the 

plane of the applied moment 

tT = represents the nominal shear stress associated 

with the tensile force in the reinforcement 

ee 
t “et 

Ky = friction coefficient 

Act = total area of transverse steel crossing the 

column-slab interface 

ty = yield of steel 

a = width of column-slab interface 

t = total slab thickness 

Using a single test for each type of connection he worked 

backwards from Equation (2.20) and found that 

for corner connection Ky = 0.7 

for edge connection Kia 0.7 

for interior connection Kevan 0 

For connections subjected to axial load he modified Moe's 

Equation (2.4) in the following form: 
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(a) For interior connection 

ISR =F0.075 r7d Mines aaa 0.90 vy G22) 

(pst eee Vee oh o5e secelce 
Vetex 

(b) For edge connection 

ee etn Ade Fecal! VE CNa On O7 bund) 
ui 3rd 4r + 8d B8ravTL 

(psi) le 5226. ee Fr 

flex c 

i222) 

(c) For corner connection 

y= WL. 2s 2d |p gg | 15U = 0.075 r/4)| o 
u ¢c 2rd 4r + 8d 1+ 5.25 2rdvFe_ 

flex 

(2523) 

Equations (2.22) and (2.23) for edge and corner 

connections respectively were obtained by modifying 

Equation (2.4) by a factor which expresses the relative 

lengths of the critical sections taken at a distance d from 

the column perimeter. The basis of this correction was 

recognised to be inconsistent with the critical section 

recommended by Hoe It was considered, however, that the 

number of tests on edge and corner columns (one test for 

each connection) was insufficient to justify modifying 

Moe's formula for internal columns, and the inconsistency 

was accepted at that time. 
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For the case where there were no holes the capacity of 

the corner or edge connection in bending was calculated as 

follows: 

2 

M = 0,90bd7#! q(1 - 0.59q) + Nr $ (ee) (2.24) 
3 

where n = 1 for corner connections of the type tested and 

n = 2 for edge connections. 

For the combined bending and axial load cases he 

Proposed an interaction equation in the following form: 

La) 
where Mand V,are to be calculated from Equations (2.22) 

a al (2.25) 

Or (2.23) respectively and M was defined as follows: 

for an edge connection 

M = Mtest - V : 

and for a square corner connection with side width equal 

to r 

0.40 M = [test =v 5] [0.6 + at | 
Z Mt /Mtu 

It is of interest to mention that Stamenkovic also 
(3,10) 

found, as did others that extrapolation of the existing 
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(2.12 
methods of analysis for interior conta Veo predict the 

ultimate capacity of exterior connections gave extremely 

conservative results. 

In 1970 we tacented an analytical method for 

calculating the stresses in flat plates near incerta. and 

edge Seluans The method was based on the theory of elastic 

mates The background for the method was given ecwieey 

He calculated the amount of column moment transmitted to 

the slab by flexure, torsion and vertical shear stresses. 

According to this method the following are the 

proportions of the total applied moment which are balanced 

by flexure, torsion and shear for a square periphery of a 

critical section of a side width equal to 0.20L where L is 

one panel width. 

Table 2.2 Moment balancing by flexure, torsion and shear. 

  

  

Flexure Torsion Shear 

Interior connection 

(v6) 
(Tabte 3) 0.340 0.156 0.504 

Edge connection 
47 

(Table 3) 0.254 0.264 0.482         
From the above table the coefficient K which allocates 

the portion of the column moment transmitted by torsion and 

vertical shear combined to conform with Di Stasio and Van 
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(1) 
Buren method is equal to 0.66 for interior columns and 

0.746 for edge columns. Also K which allocates the amount 

to be transmitted by vertical shear stresses to conform 

with the formula due to Hoe is 0.504 and 0.482 for 

interior and edge columns respectively. 

It is important to know that the mathematical model 

was assumed as an infinitely long plate in one direction 

and simply supported along the other two sides which are 

perpendicular to the plane of the applied moment with the 

moment applied at the centre. Mast suggested that the use 

of simple supports at the ends rather than the actual 

columns does not affect the stresses at the simulated 

loaded column to any significant degree since the location 

of the approximation is remote from the area of study. But 

at the same time it has to be noticed that the moment was 

applied at the central point, and the proper boundary 

conditions at the periphery of the loaded column were not 

reproduced. 

Hawkins and Corley in 1970” developed an ultimate 

strength procedure for interior and exterior column-slab 

connections based on a beam analogy. The slab framing into 

each column face was idealised as beams running in two 

directions at right angles. The ultimate capacity of the 

connection was obtained by summing the ultimate bending 

moment, torsional moment and shear forces of the beams for 

the given loading condition. 
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In the revised 1971 AC1 Building Code (AC1 318-71) 

Section 11.13.2 states that 

“when unbalanced gravity load, wind, earthquake 
or other lateral forces cause transfer of bend- 
ing moment between slab and column, a fraction 
of the moment given by 

    2.26 
G+d ( ) 

shall be considered transferred by eccentricity 
of the shear about the centroid of the critical 
section defined in section 11.10.2. Shear 
stresses shall be taken as varying linearly about 
the centroid of the critical section and the 
shear stress vy shall not exceed Avis ou 

In section 11.10.2 it is stated that 

"The critical section shall be perpendicular 
to the plane of the slab and located so that 
its periphery is a minimum and approaches no 
closer than d/2 to the periphery of the concen- 
trated load or reaction area." 

In AC] 318-77 Building Code the shear stress NG 

changed from AvP to 4ovtt, .where @ is a reduction factor 

equal to 0.85. 

In the British Code of Practice for the structural 

82, 

use of concrete CP110, Part 1, 1972”) section 3.6.2 states 

"In the case of structures in which stability 
is provided by shear walls or other bracing 
designed to resist the lateral forces and where 
the ratio between adjacent spans does not exceed 
1.25, the shear force should be calculated for 
the condition where the ultimate imposed loads 
are applied to all panels adjacent to the column 
being considered. The design for shear should 
then be in accordance with 3.4.5.2., except 
that the values for ultimate shear stress given 
by Table 5 should be reduced by 20%. 
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In other cases the total moment M being 
transmitted to the slab at each column-slab 
connection should be calculated and the design 
checked in accordance with 3.4.5.2 (as modified 
above) for a shear force increased by the factor 

12.5M 

VR 
oe   

where V is the shear force and 2 is the shorter 
of the two spans in the direction in which 
bending is being considered. It will be necessary 
to consider various arrangements of ultimate 
imposed loads in cases where the ratio between 
adjacent spans exceeds 1.25 leading to various 
combinations of M and \V. 

The magnifying factor does not apply to corner 
columns or to edge columns being bent at right 
angles to the edge." 

(53) In 1974 Regan “presented a comparison between the 

AC1-Building Code (1971) and the British Code CP110, Part 

1 (1972) on shear problem at the column head regions in 

flat slabs. The most important differences were as 

follows: 

(1) The AC1 Code includes torsion in its uneven 

shear effects. 

(2) In the ACI Code uneven shear effects are 

greater if the column dimension parallel to 

the eccentricity is larger than that perpen- 

dicular to it, while in CP110 rectangularity 

has no effect. 

(3) According to CP110 the effect of uneven shear 

decreases for greater slab spans. There 

appears to be no evidence either way on this 
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point for flat slabs, but there are cases 

in bridge decks where the AC] predictions 

are better. 

(4) The biggest difference is in the treatment 

of moments perpendicular to slab edges, where 

the AC] code applies the above approach with 

a suitable modification of Je and predicts a 

considerable influence on punching resistance, 

while CP110 totally ignores any such effect. 

2.4 Summary 

In reviewing the literature it was found that most of 

the experimental work concerning the ultimate shear strength 

of column-slab connections was concentrated on a study of 

specimens which were assumed to simulate a concentrically 

loaded interior connection. Only limited information is 

so far available, which involves bending moment or combined 

axial load and bending moment transfer. A lack of experi- 

mental data is apparent regarding the strength and behaviour 

of exterior column-slab connections, i.e. corner and edge 

connection. 

The present methods of estimating the shearing capacity 

of slabs under both axial load and bending moments give 

different results, some of which may be unsafe, as shown by 

Hanson and dag #5r interior connections. These methods 

when extended to edge connections were found to produce 

: (2,10, 4) 
extremely conservative results. 
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The following concepts are common in the present 

design methods: 

(1) Limiting the maximum shear stresses at the 

remote points of an assumed critical section. 

(2) Nominal shear stress to increase linearly 

from the centroidal axis of the peripheral 

section and to reach a maximum at one of the 

transverse sections. 

(3) Flexural stresses are treated as an 

independent variable. 

Each method uses a different position for the 

critical section (see Table 2.1), certain limiting shear 

stress and different K values to allocate a portion of the 

total moment to be transferred by shear and torsion. 

For Di Stasio and Van euvan and similarly the 

ACI-ASCE committee 326 and the commentary on the ACI Code 

1953” » K is considered to be the portion of the bending 

moment which is to be transmitted by torsion. Consequently 

J, in Equations (2.10), (2.11), (2.15) and (2.16) would be 

the polar moment of inertia of the critical section. In 

Moe's Equation (2.12), K determines the portion of the total 

bending moment which is to be transmitted by vertical shear 

stresses only. In Equation (2.12), Je is determined from 

equilibrium of the external moment portion KM with the 

moment produced by the assumed vertical shear stress 
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distribution. It would therefore be expected that 

different values for K and Vj, Would be obtained from the 

two different approaches. Also, according to Di Stasio 

and Van Buren, no moment will be transmitted by vertical 

shear and torsion if the applied moment to the connection 

is equal to or less than the flexural capacity of the 

critical section faces which are perpendicular to the plane 

of the applied moment. 
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CHAPTER III 

TEST PROGRAMME 

3.1 General 

The discussion in section 2.4 clearly shows that the 

problem of moment or combined axial shear and moment 

transfer between columns and slabs at the connection with 

edge and corner columns is not yet solved and accumulation 

of experimental information is required. 

Test programmes were undertaken in this investigation 

to study the effect of the basic parameters, nr, /y, ratio, 

n/t ratio, and r/d ratio on the ultimate strength of slabs 

at their connection with edge columns. 

An outline of this test programme giving a detailed 

description of the test specimens and details of method of 

fabrication, material properties, testing equipment, 

instrumentation and testing procedure is presented. 

3.2 Object and Scope 

The object of the study was to determine the variation 

of strength and stiffness of the joint as the ratio of the 

column sides was changed and the ratio of moment and shear 

was changed. The main test piece dimensions and the variable 

dimensions are shown in Fig. 3.1. 
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The test programme was divided into four series of 

tests, involving a total of fifteen specimens. The 

principal variables considered were the column dimensions 

and the eccentricity of loading. 

3.3 Description of test specimens 

In order to obtain a realistic estimate of the 

behaviour of a real flat slab structure at failure, it was 

necessary to use test specimens that would represent the 

appropriate part of such a structure. Each of the fifteen 

specimens was intended to represent, in reduced scale, an 

isolated portion of slab surrounding a column as shown in 

Figa (3eul ie 

It has been shown in tests on flat slab structures 
Eo 

carried out in T1inois”” that no undesirable scale effects 

occur for half full scale of actual structures. 

All slabs tested in this investigation were 75 mm 

thick with the slabs cast monolithically with their column 

stubs. The column sizes changed from one series to another. 

The column stubs were kept constant at 400 mm above and 

below the surface of the slab. The columns had hinged 

reactions at their ends. 

The column perimeter (three sides only) for all 

specimens was kept constant at 540 mm. 
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The position of the line load was chosen to represent 

the point of contraflexure of the slab which is assumed to 

be 15% of the span between columns. The distance from the 

line load to the exterior face of the column (L) was varied 

from 500 mm up to 1100 mm jin 200 mm_ steps for each series, 

as shown in Table 3.1 below. 

Table 3.1 Dimensions of test specimens and loading 

  

    

  

  

Specimen | Column size 5 Specimen | Column size L 

No. ee — Ye ue No. i mm) Ss nt 

1 140 280 500 5 180 180 500 

2 : a 700 10 Z x 700 

3 7 e 900 i a wy 900 

4 y x 1100 12 ie ; 1100 

5 160 220 500 13 200 140 500 

6 “ : 700 14 i if 700 

ih % u 900 15 : . 900 

8 ‘ ‘ 1100                     

The length of the other side of the slab was kept 

constant at 1200 mm. 

3.4 Material 

3.4.1. Concrete 

The concrete mix was designed for a cube crushing 

strength of 25N/mm* at seven days. One cubic metre of the 
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mix contained: 

395 kg of cement 

229 kg of water 

682 kg of fine aggregate 

1034 kq of coarse aggregate. 

Ordinary Portland cement and a 10 mm maximum 

aggregate size were used. 

The concrete for the specimens was mixed in one or 

two batches according to the size of the slab, as shown in 

Table 3.2 below, and the concrete strengths are listed in 

Table 3.3 

Table 3.2 Volumes and Number of Eatches of the Mix 

  

  

Specimen No. Volume of mix Number of batches 

(m*) 

Ve Say 953) 0.15 1 

2, 6,10,14 0.17 1 

Sp this tribe O19. e: 

ATE ose 0.21 2       
    

Compressive strength was determined from tests on 

standard 150 mm control cubes. The average of 3 specimens 

was considered to represent the strength, fic, of the 

concrete in the test structure. 
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Table 3.3 Strength properties of concrete 
used in test specimens. 

  

Compressive Modulus of Tensile strength 

  

  

strength rupture splitting test 
Specimen (fe) (F,.) (f+) 

No. N/mm? N/mm? N/mm? 

1 27.76 2.626 2092 

e 25.93) 2.626 2.425 

3 29.00 2.940 2.622 

4 26.20 2.900 2.120 

5 26.80 36567) 2.079 

6 27.30 Seh/5: aaeol 

7 29.80 3.097 2.544 

8 29.20 2.979 135995) 

a 22.50 2.744 2.073 

10 29.00 3.018 2.156 

11 22.90 2.979 1.431 

12 26.30 3.254 22037 

13 30.30 3.214 2.249 

14 26.20 2.979 2eo7 7 

15) 28.90 3.254 1.948 
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Fig. 3.2 Typical slab and column reinforcement. 
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Fig. 3.2 (Continued) 
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Modulus of rupture strength was obtained from the 

average of 3 tests on 100 mm by 100 mm by 400 mm_ beams 

using third point loading. 

Tensile strength in splitting was determined from the 

average of 3 tests on 150 mm x 300 mm control cylinders 

using 10 mm wide timber strips. After casting, the slab 

and cubes were kept for forty eight hours under wet sack- 

ing and then stored in the laboratory until tested. 

3.4,2. Reinforcement 

(i) Column stub reinforcement 

The longitudinal reinforcement used in the 

column stubs consisted of 4-16 mm diameter plain bars 

of intermediate grade steel. (See Fig. 3.2) Stirrups 

were 8 mm diameter plain intermediate grade steel. 

(ii) Slab reinforcement 

The slabs were reinforced with two mats of 10 mm 

diameter plain bars spaced 50 mm centre to centre in the 

direction perpendicular to the exterior free edge of the 

slab. In the other direction of the slab, two mats were 

used of 10 mm diameter plain bars spaced 100 mm centre 

to centre. The mats were placed so that the bars perpend- 

icular to the free edge were covered by 10 mm of concrete, 

all as shown in Fig. 3.2. 

The steel properties for the specimens were obtained 
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from 3 samples cut from the bars used in each slab, see 

Table 3.4, 

Table 3.4 Physical Properties of Reinforcement Steel 

  

  

Specimen oy in N/mm? Specimen fy in N/mm? 

i 414.2 9 352.20 

2 299.60 10 327.98 

3 335.46 11 379.84 

4 375.60 qe 354.38 

2) S29 522 13 375.60 

6 341.63 14 381.96 

7 326.36 U5 833.016 

8 358.60       

In order to prevent flexural failure occurring before 

the punching shear failure, the amount of reinforcement was 

approximately 30% greater than that obtained by yield line 

method. Typical stress-strain relationships for 10 mm. and 

16 mm diameter bars are shown in Fig. 3.3. 

3.5 Fabrication of test specimen 

3.5.1. Formwork 

The form was made such that the column was cast in the 

horizontal position while the slab was vertical, and both 

the column stubs and the slab were cast at the same time. 

Special attention was given to the rigidity necessary to 

control the dimensions of the slabs and column stubs 
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Fig. 3.3 Typical stress-strain relationships for reinforcement steel 
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Fig. 3.4 Dial gauges ( deflectometers ) layout for a 

typical specimen. 

67



3.5.2. Fabrication of reinforcement 

The bars were assembled in the form with the configur- 

ation shown in Fig. 3.2. Bar spacings were carefully 

checked before casting. 

3.6 Casting and Curing 

Concrete was placed manually with compaction of the 

concrete by table vibrator. The control specimens were 

cast at the same time. Curing consisted of keeping the 

slabs and the control specimens damp by means of wet sack- 

ing and polythene sheets. 

3.7  Deflectometers 

The deflections of the slab of each test specimen 

were measured at the positions indicated in Fig. 3.4. The 

dial guage used for measuring these deflections had 

graduations of 0.01 mm. 

3.8 Supporting Condition and Loading System and Apparatus. 

The downward line load on the slab was applied through 

a 100 mm x 100 mm steel tube crosshead, 700 mm long, as 

shown in Fig. 3.5. Each end of this tube applied a concen- 

trated load to the centre of another steel tube of the same 

cross-section and 420 mm long. The load on each tube was 

distributed on the slab by two 200 x 100 x 20 mm_ steel 

pads. The load was applied by a 10-ton hydraulic ram at 

the centre of the top beam. The applied load was measured 

by means of a proving ring placed between the ram and the 

top beam. 
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3.9 Testing Procedure and Measurements 

One day before testing, the specimen was placed, 

centred and levelled in the testing rig and the necessary 

testing equipment assembled. 

The testing of each specimen involved the recording 

of three separate items of information during the course 

of loading. 

1. The applied load (proving ring reading) 

2. The deflectometer reading (dial guage) 

3. The general behaviour of the specimen, 

including cracking, was observed and recorded. 

Immediately prior to testing, zero readings on all 

the measuring devices were taken and recorded. The load 

was increased in increments to failure. The magnitude of 

the increments was reduced at higher load levels near 

failure. 

After the application of each load increment the 

readings on the measuring devices were recorded. The 

locations of the cracks were marked on the surface and 

free edges of the slab. The time required until failure 

varied between one and two hours. 
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CHAPTER IV 

TEST RESULTS 

4.1 General 

The variables considered in the experimental investigation 

were the column side ratio r, /r,, the column side to the 

eccentricity ratio r,/L, and the column side to the effective 

slab depth ratio r,/d. 

In this chapter, observations during the progress of the 

tests, deformations of the slabs and the failure mechanism 

of connections are reported and discussed. 

4.2 Behaviour of the test specimens and modes of failure 

In this section the behaviour of the test specimens 

throughout the course of loading is discussed. 

The fifteen tests were carried out to study the effects 

of the variables on the behaviour and ultimate capacity of 

an edge column connection under the application of an axial 

load and a bending moment acting in a plane perpendicular 

to the free edge of the slab. They were classified as 

follows: 

(1) The first series consisted of four specimens 

in which the principal variable was the eccentricity 

of the load (L) which was varied from 500 mm to 

1100 mm. The column size was kept constant at 
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Cre = 140, re 260). The slab reinforcement in the 

direction of bending moment was 2.3%, and 1.5% in 

the other direction. 

(2) The second series consisted of four specimens with 

the same variable as in Section 1 above, but with 

a different constant column size Gre = 160, nee 220). 

The same slab reinforcement as before was used. 

(3) The third series consisted of four specimens with 

the same variables but the column size was 

(ES SUB Ose 52o 180). 

(4) The fourth series consisted of three specimens with 

(L) varying from 500 mm up to 900 mm; the column 

size was (a = 200, r, = 140). The same amount of 

slab reinforcement was used in this series. 

Note that in all specimens the column perimeter was kept 

constant at 540 mm. 

In the present section a comparison is drawn between the 

different specimens to show the effect of the variables 

considered on the behaviour and on the variation of deflection 

of the slab. 

I. Appearance of the test specimen at various 

loading stages. 

In all tests the cracks formed on the surface of the slab 

in approximately the following sequence. The first cracks 

were probably due to torsion on the sides of the column and 

de



 



they appeared at a load level equal to 0.50 - 0.68 times 

the failure load. 

The cracks started at the inner face of the column in 

the slab and ran from the inner corner of the column towards 

the free edge. They followed first the column sides 

perpendicular to the free edge of the slab for a short 

distance and then deviated in the slab away from the column. 

Two or three of these cracks formed and one of them near 

the column developed into a large crack directly associated 

with the eventual failure of the specimen, see Fig. 4.1. 

With increasing load this crack extended from the column 

side to the free edge, having an inclination of about 35° 

to the side face of column, and then continued across the 

free edge. The crack, in progressing towards the compression 

side of the slab across the free edge, was inclined to the 

plane of the slab. The average inclination was about 45° 

in the direction away from the column stub to the comp- 

ression side of the slab. 

In addition to these cracks, others formed at the central 

part and progressively extended over the entire slab with 

increasing load, but they stopped some distance before the 

edge of the slab. 

Some other tangential cracks appeared at different 

distances from the column faces. Finally the failure 

occurred in a form of a wide inclined crack from the inner 
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corner of the column to the free edge of the slab. 

It is believed that the idealised mode of failure was 

the prime mode of failure and was mainly due to the form- 

ation of the torsional cracks on the column sides and 

flexural shear cracks at the inner side of the column. 

(see Fig. 4.1 

There was not much difference in the crack pattern and 

mechanism of failure in all specimens, The major difference 

was that the cracks were wider and more noticeable for 

specimens with the greater eccentricities. 

II] Ultimate Capacity 

The load carrying capacities of the specimens in the 

four test series are listed in Table 4.1. Comparing the 

capacities of the series, as in Fig. 4.2., shows that the 

axial load carrying capacity of the connection increases 

approximately linearly with the increase of ri/t ratio, 

where r, is the column side perpendicular to the free edge of 

the slab and L is the distance from the line load to the 

free edge of the slab. Fig. 4.3. and 4.4. have been drawn 

like Fig. 4.2. by using L' and L" instead of L, where L' 

is the distance from the line load to the centre of column, 

and L" is the distance from the line load to the centre of 

three sides of column. As may be seen in these figures, 

the effect of using different starting points for measuring 

eccentricity is small. 
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Also it was noticed that the load carrying capacity of 

the connection reduced slightly as r,/r, and r,/d increased, 
3 

(see Figs. 4.5 and 4.6) Thiseffectwas noticed by Hawkins 

in his tests on interior slab-column connection. 

Hawkins found that both the cracking and failure loads 

decreased as the column sides ratio r,/r, increased. This 

is contrary to that observed in the present investigation 

for edge connection. (See Fig. 4.7). 

This probably related to the difference between the 

type of specimens used by Hawkins and specimens used in this 

investigation. Hawkins' specimens were rectangular columns 

with square slabs concentrically loaded; the columns had 

aspect ratio ranging between 1 and 4.3, while the specimens 

of this research were rectangular columns with rectangular 

slabs subjected to axial load and bending moment; the 

column aspect ratio varied from 0.54 to 1.43. In the case 

of edge connection, high bending moment is applied to the 

column, while in the case of interior connection loaded 

concentrically there is no bending moment carried by the 

column. Additionally, slab continuity or lack of slab 

continuity must have a considerable effect; other difference 

in variables may also have some effect on the cracking 

pattern. 

III Deflections 

The deflection of the slab was measured at different 
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locations throughout the slab for all specimens, (see Figs. 

4.8 to 4.11). Representative load-deflection curves for 

the connections tested in the present investigation are 

given in Figs. 4.12 (a-d), 4.13 (a-d) and 4.14 (a-d). 

These figures are for displacements in different locations 

as shown in the key sketch in each figure. 

In Fig. 4.15 the ri/b ratio is plotted against 

deflections for three positions of dial gauges, D,> Dd, 

and D,, measured at a load level of 10 KN. 

Deflected shape curves at a load level of about 90 

percent of ultimate capacity and at cracking load for 

different lines on the edges and centre line of the slab 

are given in Figs. 4.18 to 4.29. The arrangements of the 

dial gauges for all specimens tested are shown in Figs. 4.8 

to 4.11. The indicated deflections are for the last readings 

of the dials taken before failure. 

As shown in Fig. 4.12 (a-d) - which are the load- 

deflection curves of De - the influence of ree ratio 

seems to be small for all slabs and is hardly noticeable 

for long spans. 

In Fig. 4.13 (a-d) for D,, there is no very significant 

effect of the variables on the deflection of the slab at 

that point. 
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In Fig. 4.14 (a-d) the deflection of D becomes upward 

at this point for slabs with longer spans rather than for 

short spans. 

The effect of varying ri/b is also shown in Fig. 4.15 

for the deflections D,, > D, and D,. As shown in this 

figure, as r,/L ratio increased the deflection at Dy and 

D, decreased. This deflection (at De and D,) becomes 

very high for small values of ryt ratio, while there is no 

significant effect of ret on the deflection at Dy except in 

the case where rise ratio is less than 0.2, where the 

deflection becomes upwards and noticeable. 

The effects of ri/l, ri/d and rity are also shown in 

Figs. 4.16 and 4.17. In these figures ri/t and ree has 

been drawn against the difference between D, and Ds HAS 

shown in these figures, (oy - De) seems to be increased 

slightly with the increase of ri/ts ri/d and TAY This 

means that the difference between the positive moments in 

the column strip and middle strip of the flat plate 

increases with the increase of these variables and decreases 

with their decrease. 

Deflected shape curves are shown in Figs. 4.18 to 

4.29; Figs. 4.18, 4.20, 4.22 and 4.24 are for the deflection 

of the slab along lines AB and CF for two load levels. In 

these figures, as the length of the span increases the 

deflection of point C along line CF decreases and then 
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becomes upwards for longer spans. In this case high bending 

moments and then high torsion will take place on the connect- 

ion. The differences between the deflections of the slab 

(at 90% of failure load) is clear for short spans. This 

difference is very small at cracking load. 

In Figs. 4.19, 4.21, 4.23 and 4.25 the deflection of 

the slab along line BD at 90% of failure load and at crack- 

ing load are similar for all spans. These differences are 

hardly noticed for the deflection along line AE. 

The effect of the variables is negligible on the 

deflection along line BG for all slabs. 

4.3 The effect of the variables on the flexural capacity 

of the connection. 

To assess the effect of the variables Vata. rid and 

rit on the flexural capacity of the connection, M 
test 

plotted against Vi/Vaoty fds br, /Ls cy/L° and r./L8 iin bigs. 

is 

4.30 to 4.38, where L' is the distance from the centre line 

of the column to the line load, and L" is the distance from 

the centroid of the effective perimeter to the line load. 

As shown in Figs. 4.30 to 4.35, the flexural capacity 

of the connection tends to decrease very slightly with the 

increase of ros and ri/d, while in Figs. 4.36 to 4.38 the 

flexural capacity tends to increase with the increase of 

r,/L ratio.
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The variation is greater if the bending moment is 

calculated using M = VL than if it is calculated using 

M = VL' or M = VL"; for the latter two cases the test 

flexural capacity appears almost constant although there is 

some scatter. It appears that rotation should be considered 

to take place about either the centroid of the column area 

or the centroid of the effective perimeter, but possibly 

with a slight margin in favour of the latter. 

As shown in Figs. 4.39 to 4.42 the crack pattern does 

vary to some extent depending on the proportions of the 

column. In Fig. 4.39 it can be seen that the cracks develop 

at the face of the column which resists bending, and extend 

into the slab roughly parallel to the column face; and as 

would be expected by the shape of the column, a relatively 

small moment appears to be transferred to the column in 

torsion on the sides. At the other end of the scale where 

the longer sides are available to resist torsion, the 

bending cracks parallel to the column face are quite small 

and transverse bending cracks begin to develop as shown in 

Fig. 4.42. 

4.4 Summary 

In this chapter the test results for edge slab-column 

connections were presented and discussed. The following 

conclusions can accordingly be drawn.
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(1) 

(2) 

(3) 

(4) 

The primary failure mechanism for an edge column-slab 

connection subjected to moment and shear can be 

idealised as illustrated in Fig. 4.43. (The term 

mechanism refers to the last stage of the structure 

before failure which is capable of undergoing deform- 

ation without change in the resistance to external 

loads). 

For these structures, cracks can be expected at loads 

as low as 50 to 68 percent of the ultimate load. 

The failure of the specimen at ultimate load followed 

the formation of the torsional cracks on the column 

sides and flexural shear cracks at the inner side of 

the column. 

The flexural capacity of the joint is sensibly — 

constant for the range of column aspect ratios tested. 

Such variation as can be seen indicates that as r, 

increases relative to r, there is a small reduction in 

flexural capacity of the joint. 
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CHAPTER V 

STRENGTH ANALYSIS 

5.1 Shear Strength 

5.1.1... General 

The effect of the variables on the shear strength 

of the connection is discussed and their effect on the 

capacity of the connection in the light of the experimental 

evidence is pointed out. 

5.1.2. Method of analysis 

It may be of interest to analyse the results 

obtained experimentally in the present investigation using 

the conventional method of analysis 

yoke (5.1) 
c c 

where 

Ne ultimate shear stress 

Vv = shear force 

AY = Area of concrete in assumed critical 

section, periphery times effective slab 

depth d. 

k = moment reduction factor 

M = unbalanced moment 

c = distance from centroidal axis to the most 

remote part of critical section 

Jo = polar moment of inertia 

and then compare the ultimate shear stresses obtained from 
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these results with the allowable ultimate shear stresses 

given by both ACI 318-77 Building Code and CP110 Code of 

Practice using both assumed critical sections. 

This method (Eq. 5.1) was chosen because of its 

acceptance by a number of Peseanchens sa and also by 

ACI 317-71 and ACI 318-77 codes. This type of approach was 

used in comparing with the CP110 approach in obtaining the 

modification factor for interior slab-column connection 

subjected to shear and moment (see section 3.6.2 CP110 and 

Eq. 2.27). The differences between this approach and the 

53 
approach followed by CP110 as mentioned by Regan are as 

follows. 

(al) The ACT code includes torsion in its uneven shear 

effects. 

(2) In the ACI code uneven shear effects are greater 

if the column dimension parallel to the eccentricity 

is larger than that perpendicular to it, while in 

CP110 rectangularity has no effect. 

(3) According to CP110 the effect of uneven shear 

decreases for greater slab spans. There appears to 

be no evidence either way on this point for flat 

slabs, but there are cases in bridge decks where 

the ACI predictions are better. 

(4) The biggest difference is in the treatments of 

moments perpendicular to slab edges, where the ACI 

code applies the above approach with a suitable 
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C=C'41.5 or C'+d/2 
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a,=0/2+g 

apxC/2-8 

A =(2C+b)a 
aa 3 2 2 

J =2ac /12 + 207/12 + 2Cdg~ + bd(C/2-g)        

  

  

Fig. 5.4 Critical sections for shear stress 
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modification of Jo and predicts a considerable 

influence on punching resistance, while CP110 

totally ignores any such effect. 

Eq. 5.1 was used to calculate shear stresses for 

comparison with CP110 using the critical section assumed 

by CP110. Three different values of k were used 

(1) k = 0 according to CP110 

(2) k = 0.20 according to ACI-ASCE Committee 326. 

(3) k = 0.40 according to Hanson and Hanson. 

5.1.2.1. Typical calculation of the shear stress 

using Eq. 5.1 

For c= 140 mm, b' = 260 mm, d = 60 mm from Fig. 5.A 

we find (for CP110) 

¢ = 25255 nm, B= “4850 mm 

g = 61.85 mm, a: = 64.4 mm 

A, = 59400 mm? 

Jo = 406.7 x 10° mm* 

Substitute these values in Eq. 5.1 using k = 0.2 and then 

get another value for vi by using k = 0.4. 

Then follow the same approach to calculate Vai 

according to AC1-77 assumptions (see Fig. 5.A and Table 5.1). 

Sirlsoen Eehec ee of Vt ratio 

In Figs. 5.1 to 5.4 the calculated ultimate shear 

stress (according to CP110 assumptions) is plotted against
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ten ratio. Also in Figs. 5.5 to 5.8 the calculated 

ultimate shear stress (according to ACI-77) is plotted 

against TAs ratio. As shown in these figures, the effect 

of ae ratio on the ultimate shear stress is small. As 

a) Mie increases the ultimate shear stress decreases 

slightly, while the allowable shear stress given by the 

codes remains practically constant. Also we can notice from 

those figures that the code values are not on straight line 

because they are dependent on concrete strength. 

The allowable ultimate shear strength under ACI-77 

code seems to be highly conservative when the value of k 

is taken according to the code equation (Eq. 2.26), while 

the ultimate shear strength under CP110 appears to be 

unsafe for all tests when k = 0 and unsafe for high values 

of r,/r, when k = 0.20. If the value of-k = 0.40 is used 

in calculating the shear stress using the CP110 assumptions 

for critical section, and the results are compared with 

CP110, it can be seen that all specimens produce safe 

results except those with high values of Watee 

5.154 Effect of Crack ratio 

In Figs. 5.9 to 5.12 the calculated ultimate shear 

stress,using a critical plane at 1.5h from the column as is 

done in CP110,is plotted against ri/t Yatto. © Inch igs'.5% is. 

to 5.16 the calculated ultimate shear stress,using a 

critical section at d/2 from the column as in ACI-77 code, 

is plotted against r,/L ratio. 
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As shown in these figures the ultimate shear stress 

calculated using Eq. 5.1 tends to increase with the increase 

in r,/L while the allowable shear stress remains practically 

constant. These figures also demonstrate that the ratio 

Vee ele code increases as r,/L ratio increases, therefore 

for high values of r,/L the allowable ultimate shear strength 

under the present codes seem to be more conservative than 

for low values of r,/L3 while it seems to be unsafe for small 

values of r,/L (see Fig. 5.17). Fig. 5.18 shows the effect 

of the ratio P/L (where P is the perimeter of the column for 

three sides). As shown from this figure, for high values of 

P/L the allowable shear strength under the present codes is 

conservative and it is unsafe for small values of P/L. 

Sc lS. eet fect iot r,/d ratio 

In Figs. 5.19 to 5.22 the calculated ultimate shear 

stress (according to CP110 assumptions) is plotted against 

n/a ratio. In Figs. 5.23 to 5.24 the calculated ultimate 

shear stress (according to AC1-77) is plotted against 

ri/d ratio. 

As shown in these figures, the effect of ri/d 

ratio seems to be similar to the effect of ee ratio. 

As r,/d ratio increased the calculated ultimate shear 

stress decreased slightly while the allowable shear stress 

remained constant. 
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5.1.6. Effect of 9 

From Figs. 5.27 to 5.34 the calculated ultimate 

shear stress decreases slightly as M/V increases. From 

these results it can be said that the current codes do not 

recognise the variation in the ultimate shear stress due 

to the variation in the M/V ratio. 

5.1.7. Comparison with Regan's analysis for the edge 

connection. 

To determine the punching resistance of an edge 

column, Regan used the following equation: 

Me " 0.8E.v, bed (5.52) 

p b, + 1.51h where b 

He assumed that "The three-sides shapes of these 

perimeters are such as to offer very little bending stiff- 

ness, and it can be assumed that, so long as the combined 

flexural and torsional resistances are not exceeded, the 

shear distribution remains substantially uniform.” 

He supported this assumption by some test results 

from various sources as shown in Fig. 5.35. The moment 

resistances of this figure were calculated as 

Mi ea my bye 2vm,my by 

where M, = ultimate bending resistance about an axis 

through the ‘centre of gravity of the column 

perimeter 

m= flexural resistance moments per unit width in x 

and y directions 
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vm my = torsional resistance moments per unit width. 

b.,b = column dimensions. 

By applying these equations on the present test 

results we find that these results give low shear strengths 

similar to the shear strengths obtained for the tests by 

Stamenkovic and shown in Fig. 5.35. This effect may be 

due to their small scale as suggested by Regan, h = 75 mm, 

and this scale is similar to Stamenkovic's scale 

(h = 76 mm). 

Sie Flexural Strength 

5.2.1. General 

The calculation of the ultimate flexural strength 

of the various test structures was made ignoring the 

possibility of a premature shear failure. The yield line 

theory as developed by K Woohansonand discussed by others 
56, 57, 58 

was used for this purpose. 

An evaluation of the strength of a test structure 

is important, not only because the computed or the observed 

strength of structures have general application to other 

structures of the same type, but also because a comparison 

of the computed and observed strength of the test structures 

is indicative of the reliability of the known methods of 

analysis in predicting the strength of relatively complex 

slabs. 
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In applying the yield line theory, the yield 

moments of the slabs were based on the ultimate strength. 

Certain assumptions were applied in calculating the ultimate 

flexural capacities of the test structures. 

5.2.2. Application of yield line analysis to the test 

structures. 

To determine the collapse load of a given slab the 

sequence of the steps may be summarised as follows: 

(1;) A possible yield line pattern is adopted. 

(2) The ultimate moment (m) per unit length is 

calculated for various yield lines. 

(3) The collapse load (Wu) which corresponds to the 

assumed yield line pattern is calculated by the use 

of virtual work. 

(4) The dimensions of the particular failure pattern 

are adjusted to minimise (Wu). 

(5) Different trial yield line patterns are assumed and 

steps 2, 3 and 4 are repeated. 

(6) Provided all possible collapse mechanisms (yield 

line patterns) have been investigated, the lowest 

computed value of (Wu) is theoretically the correct 

collapse load (because of the approximation in the 

theory). 

The virtual work theorem states that the "external 

work" U, 4» and the "internal work", Ujnts are equal. The 

term external work is the summation of the products of
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external forces and their conjugate displacements which 

arise from the virtual displacement system. The term 

internal work is the summation of the products of the 

internal stresses and displacements. 

If a vertical load is applied on the free edge of 

a slab, then the possible failure patterns are as follows: 

(1) The first yield line pattern is shown in Fig. 5.36 

If the load is given a vertical deflection of unity, then 

the solution for the slab is obtained by following the above 

six steps. 

To calculate the ultimate moment per unit length, 

the following method was used. 

From Fig. 5.37(b) we have 

  a = 2 =o Y 070035 (5.2) 

Er ee (5.3) 

f means (where E = 213333 N/mm?) (5.4) 

By solving these equations to find fe and x, the ultimate 

moment can be determined as: 

6 ‘et (ded! 
My = 0.70F.y-x-b.(d-5) + Acf5(d d') (5.5) 

The external work of the slab is 

Vee = Wea UbI6 

The internal work is 

Vane = mt 0+ 2m r,tanda it 4mr8 

Ar 
pees ei cee a ; 

Wieres te r,tano  etan6  tand (Scena Trea. Oy)



By equating the external work to the internal work 

  

we obtain 

mr 2m,r,tane 4m,r,cote 
w= — + at oa (555.79) 

The minimum value of w can be found by differentiation 

2r,m 4mor 
oe = 0 + ——— sec@ - =     cosec*6 = 0 

(5.81) 

  

Now substitute the values of m,, m,, 9, and fy of each 

specimen into Eq. 5.7 to get the values of w. 

(2) The second possible yield line pattern is shown in 

Fig. 5.37. By following the same steps as in (1) we obtain: 

  w= (5.9) 

5.2.3. Flexural strength of test structures 

The two possible modes of failure shown in Figs. 

5.36 and 5.37 were studied and the failure load (Vetex) 

and the ultimate capacity Melex have been found. Clearly 

the smaller value of these two failure loads will be used. 

The values of Neen? Melex? V and M are 
test test 

tabulated in Table 5.2 where M represents the maximum 
test 

moment reached during testing. 

157



 
 

 
 

  

s
a
l
z
L
o
e
d
e
o
 

L
e
u
n
x
a
l
4
 

v
2
°
s
 

a
l
g
e
l
 

Lv°0 
Se*2b 

go°ze 
00L 

z9°ZBELL 
 8L*90Lb2 

gL" eee 
SL 

9b°0 
£5799 

56°6b 
00$ 

o9'lpszl 
68 0zLL2 

96°18E 
tL 

8£°0 
89° OLL 

g"€8 
00€ 

 96°169ZL 
9 

HH9ZZ 
09°Sze 

el 
Sb°0 

9L°E€ 
Lb‘ bz 

026 
«© 

pL “ZOBLL 
-90"988Gz 

BE" HSE 
ZL 

g5°0 
8b'St 

9g°ze 
OzZ 

e0°SeLZL 
 68°S8zz2z 

8°6LE 
iL 

19°0 
12°95 

£8°0b 
02S 

 g2°sezLL 
9 

*6SEhz 
86 °L2€ 

ol 
8b°0 

22°96 
Lb'89 

Oze 
 OL'S6ell 

 L9*z6ES2 
0z‘2g¢ 

6 
£50 

CLE 
ev ez 

0v6 
OL*SELZL 

99 2zH92 
09"8se 

8 
19°0 

9b 
6E 

9b°L2 
Ope 

 L2°SeZLL 
98'zeEve 

9€"92€ 
l 

29°0 
68°95 

BL°8E 
OvS 

 se'rzsll 
 €S-0SLgz 

€9° 
be 

9 
g$°0 

09°s8 
2b'6S 

Ove 
OL'PZLLL 

89° eszbz 
Be 

ee 
5 

55 °0 
Lite 

GSee¢ 
096 

«= 
LB LZEZL_~=—s20"G82Z2 

09°sze 
b 

19°0 
12°68 

oL*92 
092 

OL'LSPLL 
96° 698b2 

9p 'See 
p 

6L°0 
9° Ly 

v9'Le 
095 

6£°0EZOL 
_—EL*9zzzz 

09° 662 
2 

19°0 
06°66 

96°S9 
09€ 

68°lPSEL 
ve L662 

zp bly 
\ 

xalJ 
. 

(1) 
A 

_% 
(nN) 

(n> 
(uw) 

(uw-N) 
(wu-N) 

(,ww/N) 

eel 
(2) 
°
C
 

eee 
a 

a 
aT 

a 
ON*ds   

 
 

158



 
 

  

 
 

  

saiqroedeg 
leunxaly 

g 
2°g 

alqel 

LL°0 
S"LL9LL 

0"0g0SL 
‘ 

: 
SL 

H 
SL 

9170 
€"pOzEL 

0°0S2ZL 
i 

: 
€2 

‘ 
tl 

LL"0 
2° LL6LL 

008691 
Cee 

eb 
lL 

ze 
Obl 

X 
002 

el 
69°0 

0° 08201 
0°0v9SL 

f 
LL 

ZL 
€8°0 

0'0v9bL 
0°8b89L 

‘ 
{ 

81 
i 

LL 
66°0 

000S¢L 
0°09StL 

i 
G2 

: 
ol 

6L°0 
00S€zL 

O°9L9SL 
o0'e 

00°L 
Gade 

O8l 
x 

O8L 
6 

6L°0 
g*2bezL 

0° ¥09SL 
: 

A 
Pea 

: 
8 

16°0 
G"6LLEL 

0° 80zrL 
fi 

i 
"1 

a 
Ll 

28°0 
O°8bZ LL 

O-OLerl 
: 

0‘02 
a“ 

9 
88°0 

§*06S2L 
oO’ blerl 

19°2 
£L°0 

ds 
0zz 

X 
091 

g 
LL‘0 

SL°€Sb2L 
0*Z£09L 

‘ 
$*ZL 

i 
b 

16°0 
G2°S€6EL 

0882p 
q 

A 
eZ) 

‘ 
€ 

gtk 
§*L06rL 

0°89Z2L 
: 

5 
52 

‘ 
z 

68°0 
029851 

092921 
Geez 

»5°0 
or 

092 
X 

obL 
L 

Se 
ww 

= 
NY 

ww 
= 

Nx 
p/ta 

y
s
 

(wi) 
4593, 

4x 
14 

“ON 
‘ds 

7583, 
a
n
e
t
S
?
4
y
 

x
l
s
)
 

  
 
 

159



Slab size 

    

    

) © 600 x 1200 
2 © 800 x 1200 

© 1000 x 1200 
+ 1200 x 1200 

Fig. 5.38 Flexural strength of 
edge slab-column joint 

(4/25) 

0.9 

067 

®. 

G2 © 
9.5 ° 

eee ae 
e 

0.3 
O01 0.3 0.5 0.7 0.9 1.1 1.3 r,/r, 

sae size 
° 00 x 1200 

> © 800 x 1200 

: © 1000 x 1200 
+ 1200 x 1200 

Fig. 5.39 Flexural strength of 
edge slab-column joint 

(x,/a) 
0.9 4 

° 

0.7 4 
© 
e 

ae © 
0.5 ®. 

ae 
e 

0.3 7 7 
1.0 2.0 300 xa 

160



  

  
  

  

> 0.54 
° ° 0.73 

© 1.00 
+ 45 

Fig. 5.40 Flexural strength of 
edge slab-column joit 

(x,/L) 

0.9 

e 

0.7 wax? 
° 

. ve is 

0.5 ; wn Fae. 
+ 

0.3 + + 
0.1 0.2 0.3 0.4 0.5 0.6 = 4,/L 

_z,/x 
> Tee. 
ie e 60.54 

O 0.73 
© 1.00 
a 1.43 

Pig. 5.41 Flexural strength of 

4 edge slab-column joint 

e W/V) 

0.9 1 

e 

0.7 4 Roa a ar 

© © O. eee. 

: ee Jeers i 
0.5 © : 
sl Pa + a ° 

+ 

0.3 
800 1000 M/V



5.2.4. Comparison with test results 

In this section the ultimate theoretical load 

capacity of the slab obtained from the yield line theory as 

described before is compared with the test ultimate capacity 

of the connection. o, as shown in Table 5.2 is plotted 

against Ween ri/d, ri/t and M/V in Figs. 5.38, 5.39, 5.40 

and 5.41 respectively; where $, is the ratio of test 

ultimate strength to the theoretical ultimate strength of 

the slab. 

As shown in Fig. 5.38, for all specimens, 9, 

decreases as a is ratio increases. It appears that as 

r,/r, ratio increases the ultimate flexural strength of 

the connection becomes overestimated by greater amounts. 

This case is the same for @, against r,/d (see Fig. 5.39). 

In Fig. 5.40, where 9, has been drawn against nels 

for both low and high values of Lowe is %, is nearly the same, 

but for intermediate values of ri/ls 9, is relatively high, 

which indicates that the ultimate flexural strength is 

overestimated specially for low and high values of ri/t. 

The same conclusion can be drawn in the case of o, drawn 

against M/V ratio (see Fig. 5.41). 

5.3 Summary 

The following conclusions from this chapter can be 

drawn: 

(Gi) "k" factor was used equal to 0.4 by Hanson and 
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12 

Hanson , in equation no. 5.1. For most specimens this 

value gives safe results when used with CP110 stresses and 

failure plane. In only one case does it give a slightly 

low safety factor (0.97). 

(:2)) Equation 5.1 appears not to fully describe the failure 

since a constant shear stress is not obtained when using it. 

The calculated shear stress is higher for small eccent- 

ricities than it is for large eccentricities 

(3; The method proposed by Regan and adopted in part by 

CP110 appears to give safe results, although the margin of 

safety is very variable. 

Meest 

flex 
in Table 5.2 for all specimens are less than unity. This 

(4) The values of and the values of o, as shown 

indicates that the ultimate flexural strength is over- 

estimated by a considerable margin for all specimens. The 

yield line method is therefore not suitable for the 

calculation of the strength of such joints, and some method 

which takes more account of shear would be better. 
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CHAPTER VI 

ANALYSIS FOR ULTIMATE STRENGTH 

AND COMPARISON WITH TEST RESULTS 

Gist General 

An ultimate strength procedure is derived for 

determining the shear and unbalanced moment capacity of 

exterior column-slab junctions. This theory is based on an 

extension of previous investigations. The strength of such 

junctions as predicted by the theory is shown to give good 

agreement with test results. 

Gi Introduction 

In most cases the strength of flat plate column 

junctions without any shear reinforcement is governed by 

a shear-flexure failure on some critical section surrounding 

the column before the formation of the complete yield line 

pattern for the slab. On this critical section the applied 

shear and unbalanced moment are resisted by three actions 

within the slab, namely (i) flexure, (ii) shear, and (iii) 

torsion. The theory for the failure mode is based on the 

evaluation of these three quantities which are obtained 

from the results and previous investigations. 

Fig. 6.1 shows the portion of a flat plate surround- 

ing an exterior column. Let V be the resultant shear and 

M the unbalanced moment about the x-x axis acting on the 
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Fig. 6.1 Critical section for the shear stress of an edge 

slab-column junction 
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centroid of the slab-column junction at ultimate loading 

conditions. The forces and moments acting on a critical 

section ABCD within the slab and contributing to the transfer 

of the shear V and the moment M are indicated in the figure. 

The unbalanced moment M is transferred by three 

actions, namely (i) flexure on face CD, (ii) vertical shear 

on face CD, and (iii) torsion on faces AD and BC. 

The individual contributions of these actions will 

be determined and summed to obtain the total unbalanced 

moment that can be transferred with shear force at the edge 

column-slab junction. 

The distribution of stresses in the slab around the 

column at the ultimate load is very complex. Mast. has 

obtained the distribution of stresses in flat plate near 

columns due to the moment transfer in accordance with the 

theory of elastic plates. This elastic stress distribution 

does not apply at the ultimate load because of the effect 

of inclined cracking in the slab around the column, which 

has been ignored in the theory, and is likely to alter the 

stress distribution; additionally the elastic theory does 

not account for the influence of the slab reinforcement and 

the concrete does not behave as an elastic homogeneous 

material at ultimate load. Because of this complex 

behaviour it is necessary to make some simplifying assump- 

tions in order to derive design equations. 
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Gr3 Assumptions and Prediction of Strength of Edge 

Column-slab Connection. 

In this section a method is proposed for predicting 

the strength of the edge column-slab connection in flat 

plate slabs under combined shear and unbalanced moment 

loadings. 

In Moe's method the ultimate strength analysis was 

developed by assuming that the critical section is directly 

adjacent to the periphery of the column and that failure 

takes place when the maximum shear stress reaches a limiting 

value equal to the shear strength of the same connection 

under concentric load. For an interior square column and 

slab connection subjected to combined bending moment M and 

vertical shear force V the ultimate vertical shear stress 

is given in Eq. 5.1 as 

kMC V Ve = » AMC 
he Ts u 

in which A. = bd, and ies (2/3)r3d, b = the perimeter of 

the column; r = the column width; C = one half the width 

of the column, and k = a moment reduction factor which 

accounts for that part of the shear which is resisted by 

bending moments and torsional moments acting at the column 

and slab intersection. Moe determined the constant k 

experimentally and found that the best correlation with 

his test results is obtained for k = Ip, 

In considering the strength of the edge column-slab 
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connections under the action of shear and biaxial moment, 

it is assumed that the critical section is located at a 

distance equal to half the effective depth of the slab from 

the periphery of the column, and, as was done by Moe, that 

failure takes place when the maximum shearing stress reaches 

a limiting value equal to the shearing strength of the 

same connection under concentric load. The limiting 

ultimate shearing stress under concentric load was calculated 

using the equation 

r 

Vv 15(1-0.075 d@ a = = Tare ae, 6.1 
gan bed 15). 25 woo ‘ , 

flex 

Equation 6.1 was chosen for development because of 

the following: 

AT) This equation was found to give good results. 

(2) The shear strength of a flat plate was found, as in 

Moe's investigations, to be affected by the ratio 

of column side to slab thickness. 

(3) The shear strength of a flat plate is dependent upon 

the flexural strength. 

The value of Nevex in equation 6.1 was calculated 

for the test structures by means of the yield line theory 

according to the modes of failure discussed in Chapter V. 

The application of this method, with some developments, to 
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the test structures will be discussed in the following 

sections. Note that Equation 6.1 was used after conversion 

to SI units, therefore it becomes: 

r 

1.244(1-0.075 4) /F! 
te eT i (6.1A) 

2 +0. = 
N/mm Vetex 

v in N/mm? 
u 

fe in N/mm? 

ris bos d in mm 

Velex TaN 

6.3.1. Prediction of strength of edge column-slab connection 

Referring to Fig. 6.1 which is a plan of an edge 

column-slab connection in a flat plate floor slab, the 

connection is subjected, in addition to the axial shear 

force, to unbalanced moment M. As mentioned before, this 

moment is balanced by torsional moment, vertical shear 

stresses and flexural moment of the slab at the critical 

section. The effective depth of the critical section for 

shear is equal to the effective depth, d, of the slab at 

that section. 

To obtain a semi-empirical formula by which the 

ultimate shear strength can be predicted, the balance of 

the above-mentioned forces has to be achieved as follows. 

Equilibrium condition in the x-direction in Fig. 6.1 

gives: 
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Fig. 6.2 Assumed shear stress distribution 

170



t c 
M-(Méy + Mee r MAD + Vx) = 0 (6.2) 

where x is the eccentricity of the resultant V in the x 

: Z t t . 
direction, Mee and Mab are torsional moments on section 

BC and AD respectively. 

From Equation 6.2 we have 

Es te 
Vx = M- (Man oF Mec + Map) (6.3) 

If the part of the total external moment in the x- 

direction to be taken by the vertical shear stresses is 

assumed to be proportional to the total moment, M, Equation 

6.3 becomes 

Vx = kM (6.4) 

where k is a coefficient which defines the amount of external 

moment which is carried by vertical shearing stresses 

between the slab and column. Furthermore, it is assumed that 

the shear stresses are uniformly distributed across the 

effective depth of the slab, and,as was assumed by Moe,that 

the failure takes place when the maximum shear stress 

reaches a value equal to the shear strength of the same 

connection concentrically loaded. Also it is assumed that 

the shear stresses are proportional to the distance from 

the centre line of the critical section ABCD (see Fig. 6.2(a)) 

hence from Fig. 6.2 (b) we have:



(Gi) The line of zero shear stress G-G is located such 

that the resultant of vertical forces due to moment 

only is zero. 

(2) The moments of shear stress areas about line G-G 

equal to the amount of external moment which is 

carried by vertical shearing stresses is kM. 

By taking moments about GG we find: 

[ecav.c.4 c,) + 2(gv,¢,)(% ¢,) + v,b¢,]4 = kM (6.5) 

By substituting c,, c, and v, (Fig. 6.2) into 

equation 6.5 we have 

kM ee ere ae 6.6 Vv 5 ( ) 
1 et [abs+12b3b, +9, bz +203 | 

where b, = 2b, + b, 

The vertical shearing stress due to the vertical 

shearing force (Fig. 6.2(c)) can be expressed as 

ine tie eee ee mee (6.7) 
(2b, +b, )d b,d 

Therefore the maximum shearing stress at the inner 

corners of the section shown in Fig. 6.2 (d) can be 

expressed as:



max Ss m 

oe rs Se ee ul (6.8) 
0 1 3 2 2 3 Sig[40i+1203b, +90,024262] 

V, 

but aah bed 

where Vi = vi (2b, +b, )d = shearing capacity at zero 

eccentricity, and ve is to be determined from Eq. 6.1. 

Ts se 2ritrs 
(Note: Eq. 6.1 must be multiplied by 3b abe because of 

1 2 

the new critical section assumed by the writer where 

bi =r,t+ $ and bo = on, +d 

Therefore 

VAR, gee pee ee ee (6.9) 
| bi [4b34+12b2b +9b b2+2b3 

b 1 POE .o2 2 

| 
w:

 

Substitute M = Ve in Eq. 5.9 and we get 

V=V, - kVe 
z b 3 2 2 3 Fey (that 12h pb, #8b BL Feb: | 

or 

Mie Vig ee ee ie (6.10) 
i ee Oe ee 

bi [4bj+12b7b, +9b b> +2b>] 
3b3 

The constant k can now be determined from the test results. 

173



6.3.2. Interaction diagram 

The test results may also be evaluated in terms of 

an interaction diagram after Hanson considering the critical 

section is assumed to be located at a distance d/2 from the 

periphery of the column, and the ultimate shear capacity of 

the connection is then calculated for the case of shear 

transfer without moment transfer as: 

Veus vyb, d = Vic (6.11) 

For the case of moment transfer (M,) without shear 

transfer, the ultimate shear capacity of the connection is 

obtained from Equation (6.6) as 

  

  

Pee kM) 

> Efi atazbe 9b, b2+2b3 ial a peat Paes 4 

therefore 

Vmbad 3 2 2 3 teers [sbi+12b%b, +90, b2+23] (6.12) 

For intermediate case, the connection capacity from 

Equation 6.8, where the axial shear controls, becomes: 

  

See max. 2 3. 

kM 

Puen cane cepa : 
1 3 Zor [thi +1230, +90, 624203] 

kM, 
Wy? Aly 8] 

SiG [abi+1zb3b,+9b,b2+2b3] 
3b5 
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From Equations 6.11, 6.12 and 6.13 we obtain: 

V M 
u u 
—=l- > 6.14 
Mig Mo ( ) 

6.3.3. Determination of k factor 

The factor "k" in Equation 6.9 defines the portion 

of the column moment which is carried by vertical shear 

stresses as already mentioned. The results from the test 

structures are used in determining a value for this factor. 

A trial was made to check a similar factor determined 

experimentally by Hoerrnon his tests for eccentric loads 

in one direction and Zaglool from his tests for eccentric 

loads in two directions. Moe found that the ultimate shear 

strength of all his slabs could be predicted with a standard 

Le the 
3 

ultimate shear strength of Zaglool's slabs could be 

deviation of 0.103 when k was taken as equal to 

predicted when k was taken equal to 0.04. In applying these 

two factors to the test structures it was found that the 

results were a conservative lower bound when k = $ and 

unsafe when k = 0.04, as can be seen from Figs. 6.3 and 6.4 

and Table 6.1. Also it is noticed from Fig. 6.3 that as 

ry/r, Increases the “k" factor increases. From this, it 

can be concluded that the behaviour of edge column-slab 

connection subjected to axial force and bending moment is 

nearly similar to the behaviour of the interior column-slab 

connection subjected to similar loads when the ratio of 

r,/r, is more than unity, and it is nearly similar to the 

behaviour of the corner column-slab connection subjected to 

axial force and biaxial bending moment when the ratio of 

r,/r, is less than unity. 

VES:



v/v 

r,/r, 
  

0654 

0.73 
1.00 
1.43 +

0
0
8
 

  

  e/r, 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 

Fig. 6.3 Effect of eccentricity 
on ultimate shear strength 

of flat plates 
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° 0.73 
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0.0 0.5 1.0 15 2.0 uM, 
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§ 

0.0 0.5 1.0 1.5 2.0 u/M, 

Fig. 6.4 Interaction of shearing force and bending moment 

of slab-column connection (a) K = 0.04 (b) K = 0.333 
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The deficiency of Moe's and Zaglool's factors in 

this case could be related to the difference between the 

type of specimens used by those investigators and the 

specimen used in this investigation. Moe's specimens 

were square slabs with square columns, while Zaglool's 

specimens were full size, square single panel flat plate 

structures cast monolithically with a square column at each 

corner. For a description of the specimens tested by the 

present author, refer to Section 3.3. 

It was therefore felt that a determination of a 

more suitable moment reduction factor (taking into consider- 

ation the effect of rT was desired, rather than using 

that obtained to fit Moe's and Zaglool's results. 

The determination of "k" factor proceeded as 

follows: 

Equation 6.12 can be written in the form 

v>,4 
eae [abs+12b2b +9b b2+2b3] (6.15) 

3beM, 1 Te eyes 2 
  

Also Equation 6.14 can be written 

M 
a u My = zk (6.16) 

Loos 

Vy



K 

K = 0.0689 + 0.0888 r,/r, 

  

    
0.19 

0617 

Fig. 6.5 Proposed equation 
0.09 for K 

0.0 : : 
0.00 0.50 1.00 r,/r5 

ee Ne Author results Test x, /, 

N  Stamankovic : 0.54 
> Hanson & Hanson ° 0.73 
7 Zaghlool ® 1.00 

a 1.43 

1.5 

Fig. 6.6 Interaction diagram 
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Substitute the values of LP from Equation 6.16 into 

Equation 6.15 and then evaluate the values of "k" for each 

specimen (see table 6.2). 

Now plot "k" against Da Nie ratio and find the 

relation between "k" and ri/r, (see Fig. 6.5). Therefore 

the equation of the line passing through the points in 

Fig 6.5 is 

k = 0.0689 + 0.0888 a (6.17) 
Lar 

Also it can be said that when eat is equal to 

zero, 6.8% of the total moment are assumed to contribute to 

the shearing stresses,which is negligible; this increases 

as eel increases, until the ratio reaches unity, where 

15.8% of the total moment are assumed to contribute to the 

shearing stresses with the distribution assumed to be 

linear, as shown in Fig. 6.2. 

6.4 Comparison with test results 

The validity of the method for predicting the edge 

column-slab connection strength presented in Section 6.3 was 

checked using: 

(1) The test results of the writer 

12 

(2) Hanson and Hanson's tests 

G3) Stamankovic's tests 

183



(4) Zaglool's tests. 

The theoretical predictions are tabulated against 

the test results in Tables 6.2 and 6.3. 

In all cases the theoretical predictions were in 

reasonable agreement with the experimental results. Some 

of the measured results, however, were somewhat lower than 

computed. This discrepancy between the measured and com- 

puted results may be ascribed to one or more of the 

following causes: 

Clie} Variation in the yield strength of the reinforcement. 

(2) Variation due to placement of steel at levels other 

than the assigned ones. 

(3) Difficulty in obtaining uniform thickness of the 

slab. 

(4) Local variation in concrete strength throughout 

the slab which was cast from two batches. 

The test results are now evaluated in terms of 

Proposed k values and Equation 6.16, and are plotted in 

Fig. (6.6. 
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Yu Yo Metex eG Veale Vtest 
SPs KN kN kN Vid 
NO. (Test) Eq. 6.11 KN-mm N-mm Eq. 6.14a calc 

1 40.00 73.70 17676.0 | 26532.0 29.46 1.36 

2 25.00 43.56 12768.0 | 24393.6 14.96 1.67 

3 Ta50, 38.81 14288.0 | 29495.6 12.66 1.38 

4 12.50 34.45 16032.0 | 33072.0 11225 Vala 

5 32.50 66.13 14314.0 | 42323.2 19.98 1.63 

6 20.00 50.69 14310.0 | 27372.6 17.40 Meals 

u Vs50 39.99 14208.0 | 29592.6 12.97 1.35 

8 12.50 34.85 15604.0 | 32759.0 11.24 esti 

9 32.350) 67.32 15616.0 | 21542.4 28.29 Td 

10 25.00 51.08 14560.0 | 26561.6 18.09 1.38 

i 18.00 41.97 16848.0 | 30218.4 15.02 1.20 

12 11.00 34.85 15640.0 | 32062.0 11.43 0.96 

13 32.00 77.62 16980.0 | 23286.0 32573) 0.98 

14 23.00 55.44 17250.0 | 27720.0 - 21.27, 1.08 

15 15.00 41.58 15050.0 | 29106.0 14.17 1.06 

Average Veest = 1.24 

calc 

Standard deviation o = 0.21 

Table 6.4 Calculated and test results 

6.5 Modified Interaction Formula 

Hanson interaction formula (Eq. 6.14) may be re- 

written as follows 
VOM 

V = (oocflex (6.14a) 
calc M iv 

flex 0 

where Metex is the flexural capacity of the joint calculated 

using yield line theory. The results are presented in Table 

6.4. As can be seen, the modified form of the interaction 

formula tends to predict failure loads generally on the safe 

side except for two values, and the standard deviation is 

0.21, which is reasonable. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

el Summary 

The purpose of this investigation was to study 

experimentally the strength and behaviour of the edge 

column-slab connection of a reinforced concrete flat plate 

under different loading conditions. The view was to obtain 

data useful for establishing a method for analysis of this 

connection. 

The experimental study involved tests on 15 

reduced scale connections. The test specimens were as 

shown in Fig. 3.1. The column stubs were cast monolithically 

with the slabs. The variable parameters were: 

(1) The ratio of column sides dn: 

(2) Ratio of column side to the effective depth ri/d. 

(3) Ratio of column side to the slab length L. 

(4) Ratio of bending moment to axial load M/V. 

The test results along with the effect of the parameters 

were discussed in Chapter IV. 
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A theoretical method for the analysis of an edge 

connection subjected to the effect of combined axial force 

and bending moment was developed in Chapter VI. The method 

was checked against the test results of the writer and the 

others. Good correlation was found between the test results 

and the theoretical predictions. 

Tae Conclusions 

From the tests conducted and different variable 

parameters involved in this investigation, it was possible 

to obtain the following conclusions. 

(al): The primary failure mechanism for an edge column- 

slab connection subjected to moment and shear can 

be idealised as illustrated in Fig. 4.7. 

(2) For these structures, visible cracks can be expected 

at loads as low as 50% of the ultimate load. 

(3) The flexural capacity of the joint is sensibly 

constant for the range of column aspect ratio 

tested. Such variation as can be seen indicates 

that as ne increases relative to ry there is a 

small reduction in flexural capacity of the joint. 

(4) The critical section governing the ultimate shearing 

strength of the slab is located at a distance equal 

to d/2 from the perimeter of the column. 
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(5) 

(6) 

(7) 

(1) 

The ultimate shearing strength of plates computed 

at a section at d/2 distance around the column was 

found to be predicted with good accuracy by the 

following equation 

kM 
Wo oe ee (6.9) 

b 
spt [apzerzb2p +9b bz+2b3] 
3b3 1 DZ a. z 

The portion of bending moment to be transferred 

through vertical shear stresses distributed along 

the critical section as shown in Fig. 6.2, k, was 

found to be as follows: 

Fi 

k = 0.0689 + 0.0888 */r, (6.17) 

The interaction between the bending moments and 

shearing force at the column-slab connection can be 

expressed by a linear function as follows: 

~sei- 4 (6.14) 

Suggestions for future research 

On the basis of the present investigation the 

following suggestions for further research concern- 

ing shear and moment transfer can be recommended: 

A study on plates with different steel ratios in 
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(2) 

(3) 

(4) 

the vicinity of the columns. 

A study of the effect of different slab thicknesses 

on the ultimate shear strength. 

A study of the effect of different types of shear 

reinforcement on the ultimate shear strength in the 

case of thick slabs. 

A study of the effect of static reversal loading 

on the ultimate shear strength of column-slab 

connection is also of great interest. 
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(1) 

(2) 

(3) 

(4) 

The primary failure mechanism for an edge column-slab 

connection subjected to moment and shear can be 

idealised as illustrated in Fig. 4.43. (The term 

mechanism refers to the last stage of the structure 

before failure which is capable of undergoing deform- 

ation without change in the resistance to external 

loads). 

For these structures, cracks can be expected at loads 

as low as 50 to 68 percent of the ultimate load. 

The failure of the specimen at ultimate load followed 

the formation of the torsional cracks on the column 

sides and flexural shear cracks at the inner side of 

the column. 

The flexural capacity of the joint is sensibly|~ 

constant for the range of column aspect ratios tested. 

Such variation as can be seen indicates that as r, 

increases relative to r, there is a small reduction in 

flexural capacity of the joint. 
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CHAPTER V 

STRENGTH ANALYSIS 

5.1 Shear Strength 

§.1.1. General 

The effect of the variables on the shear strength 

of the connection is discussed and their effect on the 

capacity of the connection in the light of the experimental 

evidence is pointed out. 

S.1.2. (Method of analysis 

It may be of interest to analyse the results 

obtained experimentally in the present investigation using 

the conventional method of analysis 

ele (5.1) 
c c 

where 

Mia a ultimate shear stress 

v = shear force 

ae = Area of concrete in assumed critical 

section, periphery times effective slab 

depth d. 

k = moment reduction factor 

M = unbalanced moment 

G = distance from centroidal axis to the most 

remote part of critical section 

Jo = polar moment of inertia 

and then compare the ultimate shear stresses obtained from 
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these results with the allowable ultimate shear stresses 

given by both ACI 318-77 Building Code and CP110 Code of 

Practice using both assumed critical sections. 

This method (Eq. 5.1) was chosen because of its 

acceptance by a number of reseanchets san te and also by 

ACI 317-71 and ACI 318-77 codes. This type of approach was 

used in comparing with the CP110 approach in obtaining the 

modification factor for interior slab-column connection 

subjected to shear and moment (see section 3.6.2 CP110 and 

Eq. 2.27). The differences between this approach and the 

approach followed by CP110 as mentioned by Redan are as 

follows. 

) The ACI code includes torsion in its uneven shear 

effects : 

(2) In the ACI code uneven shear effects are greater 

if the column dimension parallel to the eccentricity 

is larger than that perpendicular to it, while in 

CP110 rectangularity has no effect. 

(3) According to CP110 the effect of uneven shear 

decreases for greater slab spans. There appears to 

be no evidence either way on this point for flat 

slabs, but there are cases in bridge decks where 

the ACI predictions are better. 

(4) The biggest difference is in the treatments of 

moments perpendicular to slab edges, where the ACI 

code applies the above approach with a suitable 
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modification of Je and predicts a considerable 

influence on punching resistance, while CP110 

totally ignores any such effect. 

Eq. 5.1 was used to calculate shear stresses for 

comparison with CP110 using the critical section assumed 

by CP110. Three different values of k were used. 

(1) k = 0 according to CP110 

i x " 0.20 according to ACI-ASCE Committee 326. 

w = " 0.40 according to Hanson and Hanson. 

5.1.2.1. Typical calculation of the shear stress 

using Eq. 5.1 

For c= 140 mm, b' = 260 mm, d = 60 mm from Fig. 5.A_ 

we find (for CP110) 

c = 252.5 mm, b = 485.0 mm 

= 61.85 mm, a, = 64.4 mm 

AY = 59400 mm? 

J, = 406.7 x 10° mm* 

Substitute these values in Eq. 5.1 using k = 0.2 and then 

get another value for in by using k = 0.4. 

Then follow the same approach to calculate Uy 

according to AC1-77 assumptions (see Fig. 5.A and Table 5.1). 

Bilas. Effect of te ratio 

In Figs. 5.1 to 5.4 the calculated ultimate shear 

stress (according to CP110 assumptions) is plotted against 
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Wt ratio. Also in Figs. 5.5 to 5.8 the calculated 

ultimate shear stress (according to ACI-77) is plotted 

against rat ratio. As shown in these figures, the effect 

of r,/r, ratio on the ultimate shear stress is small. As 

Tate increases the ultimate shear stress decreases 

slightly, while the allowable shear stress given by the 

codes remains practically constant. Also we can notice from 

those figures that the code values are not on straight line 

because they are dependent on concrete strength. 

The allowable ultimate shear strength under ACI-77 

code seems to be highly conservative when the value of k 

is taken according to the code equation (Eq. 2.26), while 

the ultimate shear strength under CP110 appears to be 

unsafe for all tests when k = 0 and unsafe for high values 

of r,/r, when k = 0.20. If the value of-k = 0.40 is used 

in calculating the shear stress using the CP110 assumptions 

for critical section, and the results are compared with 

CP110, it can be seen that all specimens produce safe 

results except those with high values of rite 

5.1.4 Effect of r,/L ratio 

In Figs. 5.9 to 5.12 the calculated ultimate shear 

stress,using a critical plane at 1.5h from the column as is 

done in CP110,is plotted against ri/b ratio. © InsFigs. 5 13: 

to 5.16 the calculated ultimate shear stress,using a 

critical section at d/2 from the column as in ACI-77 code, 

is plotted against r,/L ratio. 
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As shown in these figures the ultimate shear stress 

calculated using Eq. 5.1 tends to increase with the increase 

in ry/t while the allowable shear stress remains practically 

constant. These figures also demonstrate that the ratio 

Veeet Moade increases as ryt ratio increases, therefore 

for high values of r,/L the allowable ultimate shear strength 

under the present codes seem to be more conservative than 

for low values of ri/b3 while it seems to be unsafe for small 

values of r,/L (see Fig. 5.17). Fig. 5.18 shows the effect 

of the ratio P/L (where P is the perimeter of the column for 

three sides). As shown from this figure, for high values of 

P/L the allowable shear strength under the present codes is 

conservative and it is unsafe for small values of P/L. 

6.1.5. Effect of ri/d ratio 

In Figs. 5.19 to 5.22 the calculated ultimate shear 

stress (according to CP110 assumptions) is plotted against 

ri/d ratio. In Figs. 5.23 to 5.24 the calculated ultimate 

shear stress (according to ACI-77) is plotted against 

r/o ratio. 

As shown in these figures, the effect of ria 

ratio seems to be similar to the effect of rae ratio. 

As r,/d ratio increased the calculated ultimate shear 

stress decreased slightly while the allowable shear stress 

remained constant. 
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From Figs. 5.27 to 5.34 the calculated ultimate 

shear stress decreases slightly as M/V increases. From 

these results it can be said that the current codes do not 

recognise the variation in the ultimate shear stress due 

to the variation in the M/V ratio. 

5.1.7. Comparison with Regan's analysis for the edge 

connection. 

To determine the punching resistance of an edge 

column, Regan used the following equation: 

Me = 0.88 ov, bad (5.2) 

where D, = b, + 1.5mh 

He assumed that "The three-sides shapes of these 

perimeters are such as to offer very little bending stiff- 

ness, and it can be assumed that, so long as the combined 

flexural and torsional resistances are not exceeded, the 

shear distribution remains substantially uniform." 

He supported this assumption by some test results 

from various sources as shown in Fig. 5.35. The moment 

resistances of this figure were calculated as 

M, = myby + 2vm my by 

where M, = ultimate bending resistance about an axis 

through the ‘centre of gravity of the column 

perimeter 

mom, = flexural resistance moments per unit width in x 

and y directions 
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ym My = torsional resistance moments per unit width. 

bysby= column dimensions. 

By applying these equations on the present test 

results we find that these results give low shear strengths 

similar to the shear strengths obtained for the tests by 

Stamenkovic and shown in Fig. 5.35. This effect may be 

due to their small scale as suggested by Regan, h = 75 mm, 

and this scale is similar to Stamenkovic's scale 

(h = 76 mm). 

5.2 Flexural Strength 

5.2.1. General 

The calculation of the ultimate flexural strength 

of the various test structures was made ignoring the 

possibility of a premature shear failure. The yield line 

theory as developed by K Woohensonand discussed by others 
56, 57, 58 : 

was used for this purpose. 

An evaluation of the strength of a test structure 

is important, not only because the computed or the observed 

strength of structures have general application to other 

structures of the same type, but also because a comparison 

of the computed and observed strength of the test structures 

is indicative of the reliability of the known methods of 

analysis in predicting the strength of relatively complex 

slabs. 
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In applying the yield line theory, the yield 

moments of the slabs were based on the ultimate strength. 

Certain assumptions were applied in calculating the ultimate 

flexural capacities of the test structures. 

5.2.2. Application of yield line analysis to the test 

structures. 

To determine the collapse load of a given slab the 

sequence of the steps may be summarised as follows: 

(1) A possible yield line pattern is adopted. 

(2) The ultimate moment (m) per unit length is 

calculated for various yield lines. 

(3). The collapse load (Wu) which corresponds to the 

assumed yield line pattern is calculated by the use 

of virtual work. 

(4) The dimensions of the particular failure pattern 

are adjusted to minimise (Wu). 

(5) Different trial yield line patterns are assumed and 

steps 2, 3 and 4 are repeated. 

(6) Provided all possible collapse mechanisms (yield 

line patterns) have been investigated, the lowest 

computed value of (Wu) is theoretically the correct 

collapse load (because of the approximation in the 

theory). 

The virtual work theorem states that the “external 

work" Uae? and the “internal work", Ujnt. are equal. The 

term external work is the summation of the products of



  

r,tan 8 

rjtan 9 

  

  
  

H 
= 

@       
| = 1 unit 

cs TF Aa 
™% *. ze 

r, tan @ =: 
1 — 

  + 

    
Note: The same layer of reinforcement used 

at the top and bottom of the slab. 

Fig. 5.36 First yield line pattern 

154 

(a) 

(o) 

(¢)



  

(a) 

  

  
  

          

: 030035 
c a I as 0.7£ xD 

Sinan dance TES Re 
———— 4,f, 

Fig. 5.37 Second yield line pattern 

155



external forces and their conjugate displacements which 

arise from the virtual displacement system. The term 

internal work is the summation of the products of the 

internal stresses and displacements. 

If a vertical load is applied on the free edge of 

a slab, then the possible failure patterns are as follows: 

(1) The first yield line pattern is shown in Fig. 5.36 

If the load is given 

the solution for the 

six steps. 

To calculate 

a vertical deflection of unity, then 

slab is obtained by following the above 

the ultimate moment per unit length, 

  

the following method was used. 

From Fig. 5.37(b) we have 

ey = 2 10.0055 (5.2) 

AST er OCF cx. b a= A.ty (3.3) 

tomes (where E = 213333 N/mm?) (504) 

By solving these equations to find f and x, the ultimate 

moment can be determined as: 

  

a ek t¢gt as = 0.70F..x.b.(d >) + Agfg(d d*) (5.5) 

The external work of the slab is 

Use = Wea (5.6) 

The internal work is 

Wie =m ria + 2m r tanéa + 4m r 8 

Ar 
ler eo ( a : where 8B = F,tané ~ e@tand ~ Tano (see Fig. 5.36(c)) 
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By equating the external work to the internal work 

we obtain 

mr, 2m,r,tano 4m,r,cote 
NR a ee ee (S27)   

The minimum value of w can be found by differentiation 

2r,m 4mnr 
aw 1? sect -     cosec*6 = 0 

(5:8)) 

  

Now substitute the values of m,, m,, 6, and fy of each 

specimen into Eq. 5.7 to get the values of w. 

Ces) The second possible yield line pattern is shown in 

Fig. 5.37. By following the same steps as in (1) we obtain: 

  w= (5.9) 

5.2.3. Flexural strength of test structures 

The two possible modes of failure shown in Figs. 

5.36 and 5.37 were studied and the failure load (Were) 

and the ultimate capacity Melex have been found. Clearly 

the smaller value of these two failure loads will be used. 

The values of Weigle Testes Y and M are 
test test 

tabulated in Table 5.2 where M represents the maximum 
test 

moment reached during testing.
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5.2.4. Comparison with test results 

In this section the ultimate theoretical load 

capacity of the slab obtained from the yield line theory as 

described before is compared with the test ultimate capacity 

of the connection. $, as shown in Table 5.2 is plotted 

against mts ri/d, ri/t and M/V in Figs. 5.38, 5.39, 5.40 

and 5.41 respectively; where , is the ratio of test 

ultimate strength to the theoretical ultimate strength of 

the slab. 

As shown in Fig. 5.38, for all specimens, 9, 

decreases as ey ee ratio increases. It appears that as 

r,/r, ratio increases the ultimate flexural strength of 

the connection becomes overestimated by greater amounts. 

This case is the same for 9, against r,/d (see Fig. 5.39). 

In Fig. 5.40, where 9, has been drawn against ri/l, 

for both low and high values of r,/L, ¢ is nearly the same, 
0 

but for intermediate values of ri/Ls 9, is relatively high, 

which indicates that the ultimate flexural strength is 

overestimated specially for low and high values of ri/t. 

The same conclusion can be drawn in the case of o, drawn 

against M/V ratio (see Fig. 5.41). 

5.3 Summary 

The following conclusions from this chapter can be 

drawn: 

(1) "k" factor was used equal to 0.4 by Hanson and 
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12 

Hanson , in equation no. 5.1. For most specimens this 

value gives safe results when used with CP110 stresses and 

failure plane. In only one case does it give a slightly 

low safety factor (0.97). 

(2) Equation 5.1 appears not to fully describe the failure 

since a constant shear stress is not obtained when using it. 

The calculated shear stress is higher for small eccent- 

ricities than it is for large eccentricities 

(5) The method proposed by Regan and adopted in part by 

CP110 appears to give safe results, although the margin of 

safety is very variable. 

Meest 

flex 
in Table 5.2 for all specimens are less than unity. This 

(4) The values of and the values of @, as shown 

indicates that the ultimate flexural strength is over- 

estimated by a considerable margin for all specimens. The 

yield line method is therefore not suitable for the 

calculation of the strength of such joints, and some method 

which takes more account of shear would be better. 
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CHAPTER VI 

ANALYSIS FOR ULTIMATE STRENGTH 

AND COMPARISON WITH TEST RESULTS 

Biel General 

An ultimate strength procedure is derived for 

determining the shear and unbalanced moment capacity of 

exterior column-slab junctions. This theory is based on an 

extension of previous investigations. The strength of such 

junctions as predicted by the theory is shown to give good 

agreement with test results. 

6.2 Introduction 

In most cases the strength of flat plate column 

junctions without any shear reinforcement is governed by 

a shear-flexure failure on some critical section surrounding 

the column before the formation of the complete yield line 

pattern for the slab. On this critical section the applied 

shear and unbalanced moment are resisted by three actions 

within the slab, namely (i) flexure, (ii) shear, and (iii) 

torsion. The theory for the failure mode is based on the 

evaluation of these three quantities which are obtained 

from the results and previous investigations. 

Fig. 6.1 shows the portion of a flat plate surround- 

ing an exterior column. Let V be the resultant shear and 

M the unbalanced moment about the x-x axis acting on the 
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centroid of the slab-column junction at ultimate loading 

conditions. The forces and moments acting on a critical 

section ABCD within the slab and contributing to the transfer 

of the shear V and the moment M are indicated in the figure. 

The unbalanced moment M is transferred by three 

actions, namely (i) flexure on face CD, (ii) vertical shear 

on face CD, and (iii) torsion on faces AD and BC. 

The individual contributions of these actions will 

be determined and summed to obtain the total unbalanced 

moment that can be transferred with shear force at the edge 

column-slab junction. 

The distribution of stresses in the slab around the 

column at the ultimate load is very complex. Mast has 

obtained the distribution of stresses in flat plate near 

columns due to the moment transfer in accordance with the 

theory of elastic plates. This elastic stress distribution 

does not apply at the ultimate load because of the effect 

of inclined cracking in the slab around the column, which 

has been ignored in the theory, and is likely to alter the 

stress distribution; additionally the elastic theory does 

not account for the influence of the slab reinforcement and 

the concrete does not behave as an elastic homogeneous 

material at ultimate load. Because of this complex 

behaviour it is necessary to make some simplifying assump- 

tions in order to derive design equations. 
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6.3 Assumptions and Prediction of Strength of Edge 

Column-slab Connection. 

In this section a method is proposed for predicting 

the strength of the edge column-slab connection in flat 

plate slabs under combined shear and unbalanced moment 

loadings. 

In Moe's method the ultimate strength analysis was 

developed by assuming that the critical section is directly 

adjacent to the periphery of the column and that failure 

takes place when the maximum shear stress reaches a limiting 

value equal to the shear strength of the same connection 

under concentric load. For an interior square column and 

slab connection subjected to combined bending moment M and 

vertical shear force V the ultimate vertical shear stress 

is given in Eq. 5.1 as 

V kMC v= + 
u e i 

in which A. = bd, and I. = (2/3)r3d, b = the perimeter of 

the column; r = the column width; C = one half the width 

of the column, and k = a moment reduction factor which 

accounts for that part of the shear which is resisted by 

bending moments and torsional moments acting at the column 

and slab intersection. Moe determined the constant k 

experimentally and found that the best correlation with 

his test results is obtained for k = Ip. 

In considering the strength of the edge column-slab 
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connections under the action of shear and biaxial moment, 

it is assumed that the critical section is located at a 

distance equal to half the effective depth of the slab from 

the periphery of the column, and, as was done by Moe, that 

failure takes place when the maximum shearing stress reaches 

a limiting value equal to the shearing strength of the 

same connection under concentric load. The limiting 

ultimate shearing stress under concentric load was calculated 

using the equation 

i 
v 15(1-0.075 d)vf¢ z 2°15: Ly 6.1 ay) BET Tiedias EE Nis 

flex 

Equation 6.1 was chosen for development because of 

the following: 

(1) This equation was found to give good results. 

(Ws) The shear strength of a flat plate was found, as in 

Moe's investigations, to be affected by the ratio 

of column side to slab thickness. 

(3) The shear strength of a flat plate is dependent upon 

the flexural strength. 

The value of Vetex in equation 6.1 was calculated 

for the test structures by means of the yield line theory 

according to the modes of failure discussed in Chapter V. 

The application of this method, with some developments, to



the test structures will be discussed in the following 

sections. Note that Equation 6.1 was used after conversion 

to SI units, therefore it becomes: 

r 

1.244(1-0.075 NS 
vu oe ae (6.1A) 

2 +0 = 
ven Velex 

v in N/mm? 
u 

fin N/mm? 

ri. bj. d in mm 

Velex nw 

6.3.1. Prediction of strength of edge column-slab connection 

Referring to Fig. 6.1 which is a plan of an edge 

column-slab connection in a flat plate floor slab, the 

connection is subjected, in addition to the axial shear 

force, to unbalanced moment M. As mentioned before, this 

moment is balanced by torsional moment, vertical shear 

stresses and flexural moment of the slab at the critical 

section. The effective depth of the critical section for 

shear is equal to the effective depth, d, of the slab at 

that section. 

To obtain a semi-empirical formula by which the 

ultimate shear strength can be predicted, the balance of 

the above-mentioned forces has to be achieved as follows. 

Equilibrium condition in the x-direction in Fig. 6.1 

gives: 
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Fig. 6.2 Assumed shear stress distribution 
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Uavticpmetpe:* Maps’ wale 20 (6.2) 

where x is the eccentricity of the resultant V in the x 

: é t t . : direction, Mee and MAD are torsional moments on section 

BC and AD respectively. 

From Equation 6.2 we have 

Vx = M-(Map + wee + wes) (6.3) 

If the part of the total external moment in the x- 

direction to be taken by the vertical shear stresses is 

assumed to be proportional to the total moment, M, Equation 

6.3 becomes 

Vx = kM (6.4) 

where k is a coefficient which defines the amount of external 

moment which is carried by vertical shearing stresses 

between the slab and column. Furthermore, it is assumed that 

the shear stresses are uniformly distributed across the 

effective depth of the slab, and,as was assumed by Moe,that 

the failure takes place when the maximum shear stress 

reaches a value equal to the shear strength of the same 

connection concentrically loaded. Also it is assumed that 

the shear stresses are proportional to the distance from 

the centre line of the critical section ABCD (see Fig. 6.2(a)) 

hence from Fig. 6.2 (b) we have: 

VA



(1) The line of zero shear stress G-G is located such 

that the resultant of vertical forces due to moment 

only is zero. 

Cay The moments of shear stress areas about line G-G 

equal to the amount of external moment which is 

carried by vertical shearing stresses is kM. 

By taking moments about GG we find: 

[eavee. cee 2(gv,c, (3 c,) + v,b,0,]4 = kM (605) 

By substituting c,, c, and v, (Fig. 6.2) into 

equation 6.5 we have 

ape = ena Se eee (6.6) 
d 

SBE [avs+t2bsp, +9b,b242b3| 
0 

where b, 2b. + b 

The vertical shearing stress due to the vertical 

shearing force (Fig. 6.2(c)) can be expressed as 

Vice neee NS Soe ee ye ule (6.7) 
(2b, +b,)d bd 

Therefore the maximum shearing stress at the inner 

corners of the section shown in Fig. 6.2 (d) can be 

expressed as:



Waxes m 

vias ae if bea aoe es (6.8) 
0 i 3 2 2 a Fig [4b +1203, +9, 624203] 

vy 

but eee me 

where ve = vy (2b, +b, )d = shearing capacity at zero 

eccentricity, and va is to be determined from Eq. 6.1. 

ati ctl 2r tre 
(Note: Eq. 6.1 must be multiplied by SoerEE because of 

1 2 

the new critical section assumed by the writer where 

Dy = tis $ and) by = on ated 

Therefore 

ee y, = 3 = Z 3 (a2) <i Wscaae  Deaae| b 
3b 

Substitute M = Nie in Eq. 5.9 and we get 

ey ee kVe 
2 b 3 2 3 Bot thr 12bi he ree e222 | 

or 

v 
Vee s ee Se (6.10) 

Fae KS a 
bif4b3+12b2b +9b b2+2b? 
eet ak 12 ter? & 

3b3 

The constant k can now be determined from the test results. 
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6.3.2. Interaction diagram 

The test results may also be evaluated in terms of 

an interaction diagram after Hanson considering the critical 

section is assumed to be located at a distance d/2 from the 

periphery of the column, and the ultimate shear capacity of 

the connection is then calculated for the case of shear 

transfer without moment transfer as: 

V, = vyb,d = vyAc (6.11) 

For the case of moment transfer (M,) without shear 

transfer, the ultimate shear capacity of the connection is 

obtained from Equation (6.6) as 

  

kM, 

Yn = bed pae ° ae eT 
sie [4b2+12b2b, +9b,b2+2b3] 

0 

therefore 
Vn >, 4 

My = abik [abj+12b%b, +9, b2+2b3] (Got2) 
0 

For intermediate case, the connection capacity from 

Equation 6.8, where the axial shear controls, becomes: 

  

  

s max m 

kM 
7 ra u 

uF = Mike AL ame : : : ; 

Foz [tbi+12b%, +90, 024203] 

kM, 
vw re [My a (6.13) 

$i [4bi+12b7b,+90, bz+2b3] 
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From Equations 6.11, 6.12 and 6.13 we obtain: 

=1- (6.14) 

6.3.3. Determination of k factor 

The factor "k" in Equation 6.9 defines the portion 

of the column moment which is carried by vertical shear 

stresses as already mentioned. The results from the test 

structures are used in determining a value for this factor. 

A trial was made to check a similar factor determined 

experimentally by Meet tron his tests for eccentric loads 

in one direction and Zaglool from his tests for eccentric 

loads in two directions. Moe found that the ultimate shear 

strength of all his slabs could be predicted with a standard 

deviation of 0.103 when k was taken as equal to i The 

ultimate shear strength of Zaglool's slabs could be 

predicted when k was taken equal to 0.04. In applying these 

two factors to the test structures it was found that the 

results were a conservative lower bound when k = i and 

unsafe when k = 0.04, as can be seen from Figs. 6.3 and 6.4 

and Table 6.1. Also it is noticed from Fig. 6.3 that as 

r,/r, increases the "k" factor increases. From this, it 

can be concluded that the behaviour of edge column-slab 

connection subjected to axial force and bending moment is 

nearly similar to the behaviour of the interior column-slab 

connection subjected to similar loads when the ratio of 

r,/r, is more than unity, and it is nearly similar to the 

behaviour of the corner column-slab connection subjected to 

axial force and biaxial bending moment when the ratio of 

ri/r, (sess than unity. 
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on ultimate shear strength 

of flat plates 
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0.0 0.5 1.0 105 2.0 u/™M, 

Fig. 6.4 Interaction of shearing force and bending moment 

of slab-column connection (a) K = 0.04 (b) K = 0.333



The deficiency of Moe's and Zaglool's factors in 

this case could be related to the difference between the 

type of specimens used by those investigators and the 

specimen used in this investigation. Moe's specimens 

were square slabs with square columns, while Zaglool's 

specimens were full size, square single panel flat plate 

structures cast monolithically with a square column at each 

corner. For a description of the specimens tested by the 

present author, refer to Section 3.3. 

It was therefore felt that a determination of a 

more suitable moment reduction factor (taking into consider- 

ation the effect of reine) was desired, rather than using 

that obtained to fit Moe's and Zaglool's results. 

The determination of "k" factor proceeded as 

follows: 

Equation 6.12 can be written in the form 

v5.4 
k = sia [sbis tape +9b bz+2b3] (6.15) 3b3M, 1 ro? aa 2 

Also Equation 6.14 can be written 

M 
= u 

Moe oye (6.16) 
{ee 

Vv, 
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K 

0.29 

K = 0.0689 + 0.0888 r,/r, 

  

  

).2 F 

e 
e 

0.19 

0.17 

Fig. 6.5 Proposed equation 
0.049 for K 

0.0 7 
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ve v5 Author results Test r /z, 

\  Stamankovic : 0.54 
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Fig. 6.6 Interaction diagram 
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Substitute the values of BS from Equation 6.16 into 

Equation 6.15 and then evaluate the values of "k" for each 

specimen (see table 6.2). 

Now plot "k" against ns ratio and find the 

relation between "k" and ete (see Fig. 6.5). Therefore 

the equation of the line passing through the points in 

Fiig..5..5. ‘is 

ri 
k = 0.0689 + 0.0888 — (6.17) 

Y 

Also it can be said that when Fada, is equal to 

zero, 6.8% of the total moment are assumed to contribute to 

the shearing stresses,which is negligible; this increases 

as ne increases, until the ratio reaches unity, where 

15.8% of the total moment are assumed to contribute to the 

shearing stresses with the distribution assumed to be 

linear, as shown in Fig. 6.2. 

6.4 Comparison with test results 

The validity of the method for predicting the edge 

column-slab connection strength presented in Section 6.3 was 

checked using: 

(1) The test results of the writer 

12 

(2) Hanson and Hanson's tests 

(i) Stamankovic's tests 
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(4) Zaglool's tests. 

The theoretical predictions are tabulated against 

the test results in Tables 6.2 and 6.3. 

In all cases the theoretical predictions were in 

reasonable agreement with the experimental results. Some 

of the measured results, however, were somewhat lower than 

computed. This discrepancy between the measured and com- 

puted results may be ascribed to one or more of the 

following causes: 

(1) Variation in the yield strength of the reinforcement. 

(2) Variation due to placement of steel at levels other 

than the assigned ones. 

(3) Difficulty in obtaining uniform thickness of the 

slab. 

(4) Local variation in concrete strength throughout 

the slab which was cast from two batches. 

The test results are now evaluated in terms of 

proposed k values and Equation 6.16, and are plotted in 

Fig... 1616) 
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Yu Yo Metex NG Veale Vtest 
SPs KN kN kN ee 
No. | (Test) | €q. 6.11 | — kN-mm Nenm Eq. 6.14a | “cate 

1 40.00 73.70 17676.0 | 26532.0 29.46 1.36 

2 25.00 43.56 12768.0 | 24393.6 14.96 1.67 

3 VW7650 38.81 14288.0 | 29495.6 12.66 1.38 

4 12.50 34.45 16032.0 | 33072.0 11.25 aca 

5 32.50 66.13 14314.0 | 42323.2 19.98 1.63 

6 20.00 50.69 14310.0 | 27372.6 17.40 TES 

i 17.550 39.99 14208.0 | 29592.6 12.97 Tass 

8 12.50 34.85 15604.0 | 32759.0 11.24 leant 

9 32550) 67.32 15616.0 | 21542.4 28.29 lesb 

10 25.00 51.08 14560.0 | 26561.6 18.09 1.38 

W 18.00 41.97 16848.0 | 30218.4 15.02 hs20) 

12 11.00 34.85 15640.0 | 32062.0 11.43 0.96 

13 32.00 77.62 16980.0 | 23286.0 32073 0.98 

14 23.00 55.44 17250.0 | 27720.0- 2127 1.08 

15 15.00 41.58 15050.0 | 29106.0 14.17 1.06 

Average Veest = 1.24 

Veale 

Standard deviation o = 0.21 
  

Table 6.4 Calculated and test results 

6.5 Modified Interaction Formula 

Hanson interaction formula (Eq. 6.14) may be re- 

written as follows 

VMetex Vv = (6.14a) 
calle M +LV 

flex ° 

where Me ray is the flexural capacity of the joint calculated 

using yield line theory. The results are presented in Table 

6.4. As can be seen, the modified form of the interaction 

formula tends to predict failure loads generally on the safe 

side except for two values, and the standard deviation is 

0.21, which is reasonable. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

Fess Summary 

The purpose of this investigation was to study 

experimentally the strength and behaviour of the edge 

column-slab connection of a reinforced concrete flat plate 

under different loading conditions. The view was to obtain 

data useful for establishing a method for analysis of this 

connection. 

The experimental study involved tests on 15 

reduced scale connections. The test specimens were as 

shown in Fig. 3.1. The column stubs were cast monolithically 

with the slabs. The variable parameters were: 

CRY The ratio of column sides mat: 

(2) Ratio of column side to the effective depth ri/d. 

(3) Ratio of column side to the slab length L. 

(4) Ratio of bending moment to axial load M/V. 

The test results along with the effect of the parameters 

were discussed in Chapter IV. 
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A theoretical method for the analysis of an edge 

connection subjected to the effect of combined axial force 

and bending moment was developed in Chapter VI. The method 

was checked against the test results of the writer and the 

others. Good correlation was found between the test results 

and the theoretical predictions. 

Loe Conclusions 

From the tests conducted and different variable: 

parameters involved in this investigation, it was possible 

to obtain the following conclusions. 

(aN); The primary failure mechanism for an edge column- 

slab connection subjected to moment and shear can 

be idealised as illustrated in Fig. 4.7. 

(2) For these structures, visible cracks can be expected 

at loads as low as 50% of the ultimate load. 

(3) The flexural capacity of the joint is sensibly 

constant for the range of column aspect ratio 

tested. Such variation as can be seen indicates 

that as i, increases relative to ny there is a 

small reduction in flexural capacity of the joint. 

(4) The critical section governing the ultimate shearing 

strength of the slab is located at a distance equal 

to d/2 from the perimeter of the column. 
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(5) 

(6) 

(7) 

ded 

(1) 

The ultimate shearing strength of plates computed 

at a section at d/2 distance around the column was 

found to be predicted with good accuracy by the 

following equation 

kM 
ie (6.9) 

sey tbie 1203p, 490, biz) 

The portion of bending moment to be transferred 

through vertical shear stresses distributed along 

the critical section as shown in Fig. 6.2, k, was 

found to be as follows: 

r 

k = 0.0689 + 0.0888 '‘/r (6.17) 
2 

The interaction between the bending moments and 

shearing force at the column-slab connection can be 

expressed by a linear function as follows: 

Ue one ee (6.14) 

Suggestions for future research 

On the basis of the present investigation the 

following suggestions for further research concern- 

ing shear and moment transfer can be recommended: 

A study on plates with different steel ratios in 
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(2) 

(3) 

(4) 

the vicinity of the columns. 

A study of the effect of different slab thicknesses 

on the ultimate shear strength. 

A study of the effect of different types of shear 

reinforcement on the ultimate shear strength in the 

case of thick slabs. 

A study of the effect of static reversal loading 

on the ultimate shear strength of column-slab 

connection is also of great interest. 
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