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SUMMARY

The Stremgth and Stiffness of Slabs

to Column Joints.

Isam Majed Shaker

MPhil. in Civil Engineering
1981

The strength and behaviour of the edge column-slab
connection of a flat plate under different loading conditions,
taking account of the column shape in calculation of the
shearing capacity of the slab, was studied.

The programme was to obtain data to pe used for
establishing a method for analysis of this connection.

A test programme was undertaken to obtain information
about the behaviour and strength of such connections. A
total number of 15 specimens were tested under loads
gradually increasing to failure.

A method for the prediction of the ultimate capacity
of edge slab-column connections is developed.

This theoretical analysis is applied to other available
slab tests and compared with the experimental findings.
Good agreement is obtained between the test and calculated
loads. A number of conclusions are drawn from these
comparisons as well as from the experimental observations.
Some suggestions are also made for further research on the
subject.

Key words: columns (structural); concrete slabs;

flat plates (concrete); punching shear.
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NOTATION

(o = shear area of slab at d/2 from the periphery

of the column.

b0 = Jlength of critical shear section at d/2 from
the periphery of the column.

b1 = k3 d/2

b2 = d

d = effective depth of slab

e = eccentricity in load applied to column

fé = ultimate compressive strength of concrete

k = coefficient used in defining external moment
carried by vertical shearing stresses acting
at the critical section

Méﬁ = bending moment at section éb

M, = moment capacity for V = 0

MED’M;C = torsional moment at sections Aﬁ and éé

Mu = wultimate moment

r = vratio of area of tension steel to area of concrete

v, = sice .dimension of the column perpendicular to
free edge

Y. = side dimension of the column parallel to free
edge

t = thickness of slab

v = vertical shear force

VcaTc = shear force at predicted ultimate load

Vf1ex = snear force at which flexural failure takes
place



shear capacity for zero eccentricity
measured shear force at failure

shear stress

maximum shear stress

shear stress from bending moment

shear stress from vertical shear force

ultimate shear stress
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CHAPTER 1

INTRODUCTION

1.1 General
Reinforced concrete floor construction can be divided
into two categories:
1 - slabs supported on beams spanning between columns
2 - slabs supported only at the columns which are

called flat slabs or flat plates.

The joint between the slab and the column in reinforced
concrete flat plate floors is often the most critical
section. From strength considerations a joint must be
strong enough to resist the forces from the members framing
into it. For the individual members, knowledge of the
internal forces developed due to the external forces and
deformations imposed on the structure could be sufficient
for an efficient design layout, but the situation at the
interaction of these members is quite different. This
region is subjected to a complex stress distribution due to
the effect of multi-directional forces, such as axial load,
bending moment, torsion and shear transferred by the members
as a result of the external loads. The situation is further
complicated by the effect of the forces arising from creep,
shrinkage and temperature change. 1In the light of these
considerations the necessity for investigating the strength
and behaviour of the slab-column joints under the influence

of various design variables is evident.



9

]

(a) Corner joint (b) Edge joint with spandrel beam

(e¢) Edge joint without
spandrel beam

(d) Interior joint

Fig. 1.1 Different types of slab-column joints



The slab-column joint in a reinforced concrete flat
plate usually occupies one of the four situations shown
¥ Flguyre 151 . Vize

(a) corner joint with or without beams

(b) edge column with spandrel beam

(c) edge column without spandrel beam

(d) interior joint.

Edge and corner column connections tend to be the

most critical as far as the moment and shear transfer are

concerned.

The economy of the entire structure is, to a large
extent, governed by the degree to which the ultimate
strength of the connection between the slab and the column

can be predicted and utilized.

Most studies on the strength of flat plate structures
at their connections with columns were carried out on
square and circular slabs simply supported at the edges
and loaded through concentric square or circular column
stubs. These specimens were designed to simulate the
parts of flat plate in the actual structure bounded by
lines of contraflexure in the vicinity of an interior
column. Little information is available regarding the
shear strength of these slabs near columns when both
axial load and significant moment are to be transferred,
as is specially the case with exterior column-slab

connections.



1.2 Object and Scope of the Investigation

The object of this investigation was to study experi-
mentally the strength and behaviour of the edge column-
slab connection of a flat plate under different loading
conditions, taking account of the column shape in calcul-
ations of the shearing capacity of the slab. The programme
was to obtain data to be used for establishing a method
for analysis of this connection. For this purpose a test
programme was undertaken to obtain information about the
behaviour and strength of such connections, and to invest-
igate the shear and moment behaviour of edge connections

of a flat plate structure.

The type of test specimen shown in Fig. 3.1 was
chosen for the following reasons:-
(1) There was not enough test data available on
this type of connection concerning the column
shape.
(2) This type of connection is simple in detail of
construction while it gives valuable information

concerning the major problem.

In all, 15 specimens were tested under loads gradually
increasing to failure. A1l specimens were supported and

loaded as shown in Fig. 3.1.

The parameters which are believed to have the greatest
influence on the moment-shear strength of an edge connection

in flat plate structure are tabulated in Table 3.1.



The following parameters were kept constant in all the

specimens during the tests:

(1) Concrete strength fé.

(2) The tensile steel ratio, P, kept constant
at 2.5 per cent.

(3) The thickness of slab, t, which was kept
constant at 75 mm.

(4) The column perimeter (three sides only) was

kept constant at 540 mm.

1.3 Method of analysis

In Chapter VI a method for the prediction of the
ultimate capacity of edge column-slab connections is
developed. The method is capable of predicting the ultimate

capacity of this type of connection in the following cases:

(1) Edge connection subjected to bending moment
in plane perpendicular to the free edge of
the slab.

(2) Edge connection subjected to axial load and
bending moment in a plane perpendicular to the

free edge of the slab.

The various approximations were compared with
experimental results when available. 1In the same chapter
(Chapter VI) the test results of the writer and those found

elsewhere were compared with the theoretical predictions.



CHAPTER I1I
REVIEW OF LITERATURE

2.1 General

The problem of shear strength of slabs at their
connections with columns was recognised as early as 1915”
and has been extensively investigated by several researchers
in the lTast two decades due to the increased development

and use of flat plate structures and the inclination towards
the use of small column sizes. A primary practical need,
therefore, is the development of improved reinforcing

details and design criteria for transfer of loads from the

plate into the supporting column.

A brief summary of the work on the problem of shear

strength of flat plate slabs prior to 1961 has been reported
()

2
by Moe . The European Commiteee on concrete republished,

(3,4)

in 1965 and 1966, many of the more recent investigations.
Comprehensive test@%ata and reliable design criterié%n
exist to estimate shear strength at interior columns carry-
ing reasonably concentric loads. Design procedures have
also been developed for shearhead reinforcement made from

(6.7.8)
rolled steel structural sections,

In contrast, limited experimental work is available

(9913)
regarding shear and moment transfer at exterior columns

and other cases of interior columns especially for taking



into account the column shape in calculations of the shear-

ing capacity of the slab.

Design procedures have so far been formulated by
assuming that a fraction of the bending moment causes non-

= - . X . 2 7
uniform distribution of vertical shear stresses.( *7o1 5 12)

The review of the Titerature in this article will be
divided into two parts: the first part will deal briefly
with the strength of a column-slab connection subjected to
concentric load, and the second part of the review will
deal with studies carried out to investigate the problem

of combined moment and shear transfer.

2.2 Shear strength near the column of symmetrically

loaded slabs (concentric loading).

The earliest study of the shear strength of slabs is
that of Talboéq who in 1913 presented his well-known
investigation on reinforced concrete footings. Altogether
114 wall footings and 83 column footings were tested to
failure. Of the latter, approximately 20 specimens failed
in shear. On this basis Talbot proposed the following
formula for calculating the nominal shear stresses at an

assumed critical section located at a distance from the

column faces equal to the effective depth of the slab

v
: g
Y2 T0r + 2d0)30 (£:54.)




Table 2.1

Location of the critical section governing

the ultimate shearing strength as proposed

by different researchers and codes.

Name of the researcher or code

Distance of critical
section from column

periphery
Talbot 1913 d
AC1 Code (318-56) d
Forsell and Holmberg 1946 (4
Whitney 1957 d/2
AC1 Code (318-63) d/2
AC1 Code (318-71) d/2
AC1 Code (318-77) d/2
B.S. Code CP 114-57 d/2
B.S. Code CP 110-72 1.5h
Hognestad 1953 0
Elstner and Hognestad 1953 0

Di Stasio and Van Buren 1960

Moe 1961

d-13" (diagonal tension)
0 (punching shear)
0




where,
v = the shear stress
V = the shearing force
r = the side dimension of square column
d = the effective depth of slab

jd = the internal moment arm of slab.

He found that relatively high values of shear strength
were obtained when large percentages of tensile reinforce-
ment were used. This study has formed the basis of design
practice for reinforced concrete footings in many countries

throughout the world.

Many improvements have been made in the design
methods, especially in adjusting the magnitudes of the

(5513, 14, 15, 17)
allowable stresses.

Researchers and designers have differed considerably
in their proposals for the position of the critical section.
Table 2.1 shows some of the proposals, and the differences

can be seen.

A second experimental investigation of 24 wall foot-
ings and 140 column footings were tested to failure in 1944
by F E Richart, who concluded that shearing stresses are
frequently a critical feature of the design of a footing
despite high bond stresses. The shearing stresses at
failure, calculated at a distance "d" from the face of the

column (by equation (2.1)) varied generally from less than



0.05ft to 0.09ft. With respect to shearing strength

Richart observed:

“The use of the critical section at less than

the distance "d" outside the column faces seems
well worth considering in interpreting the test
results, as does also the allowance of a portion
of the maximum shear for the doweling effect of
the reinforcing bars. These features are
considered here as possible explanations of foot-
ing action, not at this time as suggested design
methods."

O

1
Hognestad "in 1953 presented the results of an

extensive re-evaluation of the shear failures of footings
(16)

1
which were reported by Richart. Hognestad recognised the
effect of superimposed flexure on the ultimate shearing

Vtest
Vflex

parameters in the statistical study of the results. He

strength and introduced the ratio ¢, = as one of the

suggested that the shearing stresses could be computed at
zero distance around the loaded area since this seemed to

give the best measure of shearing strength.

Hognestad found that the ultimate shearing strength
could be calculated within the range of variation in
parameters covered by Richart's tests, by using the follow-

ing equation.

. N 0.07
s 0.035 +

f'c+ 130 psi Lesé)

!
where b = perimeter of critical section taken at

the periphery of the column.

10



Elstner and Hognestad&dreported shear tests on 24,
6 ft square and 6 inch thick reinforced concrete slabs.
The majority of these slabs were supported along all four
edges. The results of these tests, as well as those
reported by Forsell and Ho]mberén)and by Richart and Kluge
were analysed and compared favourably to the strengths

predicted by Equation (2.2).

(21
Keefe in 1954 investigated the effectiveness of a
special type of shear reinforcement known as a "shearhead".
The slabs with the shear heads had an ultimate shear

capacity nearly 40% higher than those without.

Elstner and Hognestadhﬂin 1956 reported on tests of 38,
6 ft square slabs; 24 of these tests were reported in
Reference 20. The following -equation was found to
predict the shear strength of all the slabs tested by the
authors with good accuracy
Vv f'c

= e = 333 i 0.046 — 2.3
v o psi + 5 (2.3)

]

whitneym'in 1957, presented an ultimate strength
theory for shear strength based on a re-evaluation of
previously reported test resu1té?’nl The major assumption
made was that the shear strength was primarily a function
of the ultimate resisting moment of the slab per unit
width inside the "Pyramid of Rupture", which he defined as

a frustum of a cone or pyramid with a surface sloping out

in all directions from the column at an angle of 45°,

11
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Scordelis, Lin and May()in 1958 investigated the
shearing strength of prestressed 1ift slabs by testing
6 ft square slab specimens. Final failure of all slabs
occurred when the steel collar punched through the slab.
A variable amount of flexural cracking was visible just
prior to failure and was generally smaller in the thicker
slabs which had column recesses. 0On the basis of their
study the following were some of the conclusions advanced:
(1) The ultimate punching shear stress as computed
by J% = Vtes?
f fb'df .

c
at the edge of the collar, between 0.079 and

varied between 0.101 and 0.211

0.157 at a distance d/2 from the edge of the
collar, and between 0.058 and 0.127 at a distance
d from the edge of the collar. Therefore it
cannot be considered to be constant at any one

of these locations

(2) The test data agreed quite well with results
obtained using the ultimate shearing strength
20
formula proposed by Elstner and Hognestaé )and

by Hhitneyﬁu)

They concluded also that these formulas would yield
sufficient accuracy for prestressed concrete slabs provided
a suitable method is used to calculate the ultimate flexural

capacity.

(3) Adequate provision should be made in the design
so that ultimate flexural capacity will govern

failure rather than ultimate shear capacity,

12



since a shear failure may be sudden and without

warning.

Base in 1959 reported on small scale tests of centrally
loaded reinforced concrete slabs supported on four edges.
One of the important conclusions was that

“the amount of tensile reinforcement in the slabs

and the resulting amount of flexural cracking
seemed to affect the punching failure significantly."

Kinnunen and Ny]anderkgin 1960 reported on a number of
tests carried out on circular concrete slabs, approximately
6 ft in diameter and 6 in thick, reinforced with top mesh
only. The slabs were supported by tie-rods along the
circumference and an upward vertical load was applied at
the centrally placed column stub. The principal parameters
were, the type and the amount of slab reinforcement (ring,
ring and radial, and two way), and the column size
(approximately 6 in and 12 in diameter). Two expressions
were proposed for calculating punching strength, derived
from the equilibrium at failure of a segment of the slab,
and are given in terms of the properties of the concrete
and reinforcement, and of the slab and column dimensions.
The calculation of the strength is a trial and error process
and was restricted to slabs with radial or circular
reinforcement. In 1963 Kinnunenzﬂextended the theory to
cover slabs with two way reinforcement, but the method was
still rather time-consuming. Also in 1963, Anderson

presented a study on slabs with shear reinforcement. His

13



assumpticns were not different from Kinnunen and
(26) ;
Nylander's "assumptions for slabs without shear reinforce-

ment.

2)
Moe , in 1961, reported tests of 43, 6 ft square slabs

which were very similar to the test specimens of Elstner
and Hognestad. Moe's major variables were effect of
openings near the face of the column, effect of column
size, effect of eccentricity in the applied load and
effectiveness of a special type of shear reinforcement.
He also included a statistical study of 140 footings and
120 sTabs tested by earlier investigators. Some of the

more important conclusions arrived at in Moe's study are:

(1) The critical section governing the ultimate
shear strength of the slabs and footings should
be measured along the perimeter of the loaded

area.

(2) The shear strength of slabs and footings is to

some extent dependent upon the flexural strength.

(3) The unit shearing strength is highest when the
column size is small compared to the slab

thickness.

(4) The ultimate shearing strength of slabs and
footings, as determined in the short time tests,

can be predicted with good accuracy by

14



Yitzhaki,

slabs.

15(1 - 0.07553

— % (2.4)
1 + 5.25 Dd Ve ¢

%]ex

Inclined cracks in the slabs developed at loads

as low as 50% of the ultimate strength.

In cases of moment transfer between square
columns and slabs, test results indicate that
it is safe to assume that the portion of the
moment transferred through vertical shearing
stresses is distributed along the perimeter of
the column as shown in Fig. 2.3. Maximum
shearing stresses due to combined action of
vertical load and moment should not exceed

the values expressed by Equation (2.4).

Since shear failure is undesirable in a concrete
structure, slabs and footings should be designed
so that flexural strength governs. This is
accomplished by placing a limitation on shearing

stresses as expressed by

v = (9.23 - 1.123)/FT  for r/d < 3
v = (2.50 + 108)/FT  for f/d > 3

in 1966, reported results of tests on circular

He proposed the following expression for calcul-

ating vertical punching strength of an interior column

15



V. =8(1 - Y2)d2(149.3 + 0.164pf ) (1 + 0.5 7d)
(psi) S 205

=
-
(4]
= ]
m
o
I

percentage of slab reinforcement

fg = yield stress of the steel
.F

g =p ?¥ (is the reinforcement index).
c

The three terms in Equation (2.5) express the effect of
concrete strength (1 - 92 ) slab reinforcement strength
(p fy) and of the "/d ratio. The numerical constants in
the middle bracket were evaluated by trial and error from

the available test data.

The above expression can be written in terms of a
nominal ultimate shear stress on a critical section at a
distance "d" from the column perimeter

VT Vu = (149.3 + 0.164 pf ) (1 - 92)

u
. (4r + 8d)d

(2.6)

Since in the practical design the value of "q" varies
between 0.15 and 0.25, the effect of concrete strength
given by the term (1 - WZ) is relatively small. The
ultimate shear strength, therefore, largely depends on the
effect of slab reinforcement strength (pfy). The stress
v, is (according to Equation (2.6)) independent of "d.

The 1963 AC1 Building Code referred to nominal

16



ultimate shear stress in case of square interior column

v

u
Vy = < 4 ¢ /T
5 (4r + 4d)d b1

(6)

where ¢ is a reduction factor assumed by the codesas 0,85,
When v, exceeds the specified value the strength may be
augmented by shear reinforcement, but the design steel
stresses are only 50% of the recommended yield stresses,

so the maximum value of v should not exceed 6¢/?: . For
slabs less than 10 in thick, shear reinforcement is
considered ineffective. The code also requires that the
shear stresses be checked for the slab acting as a wide

beam.

30
CP 114 (1957) )refers to nominal shear stresses which

may be calculated from the following formula:

W ;
sdagna 2.7
i(r + d)d _ 'perm Leal

= 4 = - i
vperm 0 + 50 or u 000 psi

V, = shear force at working load

vperm = permissible shear stress.

The effect of Ud ratio and slab reinforcement are

not considered in Equations (2.6) and (2.7).

31
Long and Boné,)in 1967, presented a theoretical method

17



of analysis for the calculation of the punching load of an
interior column and flat slab structure with two-way slab
reinforcement. The method is based on elastic thin-plate
theory from which the stresses in the compression zone were
derived, assuming a linear distribution of stress. They
also reported results of tests on four % scale slabs and
columns. Long hﬁin 1968 extended the theory to predict the

ultimate capacity of slabs under combined normal loads and

bending moments.

In a progress report presented to AC1 committee 426,
Shear and Diagonal Tension, March 31, 1968, Zaidi, Sabnis
and Ro11@%resented an extension to Moe's2 work on punching
strength of slabs with openings in the column vicinity.
They extended the scope of their work beyond that of Moe's
by considering different shaped holes and various hole

configurations.

Based on statical analysis of their 125 test specimens
on small scale slab specimens (test specimens were modelled
after Moe's slabs with a geometrical scale factor of 2.5)
the following relation (Equation 2.8) was proposed to
replace Equation (2.4) for slabs with openings in the

column vicinity.

g 14(1 + 0.15% - 0.425%) (2.8)
(psi) d 1 +10 LA 7

flex
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(a) eccentricity e (b) effective
perimeter
b
bcde = Column
1 and 2 = Openings
bt = Perimeter of the column excluding the portion within the
radial projections from the centre of the column to the
corners or edges of holes,
=abcd' + e"e' =2b1 + b2 +b3 (Fig.(a))
= abe' + d'de'
= 4b1
e =e_ + e = 5um of eccentricities of the centre of gravity of
tHKe effective perimeter with respect to the centre of the
column.

Note: The different eccentricities in two cases although b' is the same
for both

Fig. 2.1 Concepts of effective perimeter and eccentricity.
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It may be noted that Equation (2.8) resembles that of
Moe's Equation (2.4) to a large extent, except for the
presence of the extra parameter e/d which allows for
including the effect of unsymmetrically located holes
(Fig. 2.1). For the analysis of their test results, Zaidi,
Sabnis and Roll obtained one concrete compressive strength,
f'c, from test cylinders in Moe's tests. An increase of
20 percent in the compressive concrete strength f'c was

found for smaller cylinders.

The effect of columns elongated in plan on the
behaviour of flat plate structures was later considered
by Smith and Simmondsqqand Simmonds@ﬂ A reinforced concrete
flat plate test structure consisting of nine panels was
tested. Column elongation in long direction was 0.4 of
span. Moments and deflections in one of the interior
panels were determined by elastic analysis. The results
were compared with the empirical method of AC1 318-63.
Although no specific results were reported regarding the
ultimate capacity of a column slab connection,. the crack
pattern of the exterior connections confirmed the observ-
ations reported in the present investigation.

Hawkinéﬁ)in 1970 studied the effect of colummnrectangu-
larity on the strength and behaviour of 9 slab column
specimens. The test specimens were made to simulate an
interior column-slab connection in a flat plate structure.

A1l slabs were 7 ft. square, 6 in. thick and supported on a

20



centrally located rectangular column. The variables
included in this study were the aspect ratio for the
column, the loading pattern and the reinforcement pattern.
For 8 of the specimens the length of the column perimeter
was kept constant at 48 in. and the aspect ratio varied

between 1 and 4.3.

The load was applied concentrically to the connect-
ions by means of rods at 24 in. centres along two opposite

edges or along the four edges of the slab.

He concluded that the nominal shear stress decreases
markedly as the aspect ratio increases. The shear capac-
ities were consistent with those calculated from the 1971
AC1 Building Code for specimens with columns having long-
to-short side ratio less than 2.0. For larger ratios
the ultimate shear stress dropped to 3.2%?3' at a ratio of
4.3. Based on the results for the nine specimens, a desian
provision was proposed for the nominal shear stress in

slabs having rectangular columns:

W= -du T 3.0”yr1) but not greater
(psi) . /ﬁ;
than 40 Jhe. wl258)
where r, = width of smaller column face
r, = width of larger column face.
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2.3 Shear strength of slabs in moment and shear transfer:

(eccentric column loading).

Only limited information is available regarding the
shear strength of flat plate floor slabs near their
connections with columns when both axial load, V, and

bending moment, M, are to be transferred.

In 1959 Rosenthalpﬂreported the results of tests on
simply supported circular reinforced concrete slabs. The
tests included eleven specimens, three of which were loaded
eccentrically through a centrally located circular column
stub. For concentrically loaded connections he concluded
that Hognestad's@gempirical equation which considers the
combined effect of shear and flexure in a centrally loaded
slab when used for slabs containing tension reinforcement
only, resulted in satisfactory agreement with the test data.
For the three eccentrically loaded specimens, only one of
them showed a clear eccentric failure (punching and un-
symmetrical crack pattern). This showed, nevertheless, that
if an eccentric load is applied there can be a decrease in

ultimate strength of the slab, and in this case the

reduction was about 15%.

In 1960, Tsuboi and Kawaguchi@qreported nine tests on
mortar slabs 3 ft. 4 in. square, and 1 %16 %, thick,
simply supported along two opposite edges. Three of these
slabs were made of plain mortar. Moments were applied to

the slabs in a plane parallel to the free edges through
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concentric square stubs 8 in. square. The slabs were
assumed to represent one interior panel of a flat plate
floor. The variable in the six reinforced slabs was the
distribution of the reinforcement in the direction parallel
to the plane of the applied moment although they all
contained the same amount of reinforcement. The reinforce-

ment in the perpendicular direction was kept the same.

The Tatter test slabs were grouped into three identical
pairs. In the first pair, seventy percent of the reinforce-
ment parallel to the plane of the applied moment was
distributed in the column strip and the rest uniformly
distributed in the middle strip. 1In the second pair the
reinforcement was uniformly distributed over the entire
width of the panel. 1In the third pair, thirty percent of
the reinforcement was uniformly distributed in the middle

strip.

One slab of each of the identical pairs was subjected
to gradually increasing moment, while the other was subjected
to reciprocally repeated moment. In the latter case,
loading was reversed at three stages; first a little outside
the elastic range, then in an elastoplastic state and
finally near the ultimate strength. Two trends were observed

with respect to the ultimate strength of test slabs:

(1) Higher failure moments occurred in slabs with
greater ratio of reinforcement in the column strip

for both types of loading.
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(2) Static reversal of loading reduced the ultimate
capacity of the connections, especially after
lToad reached the ultimate in the previous half of

the cycle.

Di Stasio and Van Bureé?)in 1960, presented a working
stress method of analysis for calculating the maximum unit
shearing stresses, determining both diagonal tension and
punching shear due to combined shear and bending moment
loading at exterior and interior connections. The major
criterion of this method is the limitation on the vertical
shear stress on a critical section located at a specified
distance from the face of the column. According to their
suggestions, two critical sections of the slab in the
vicinity of the column have to be checked, namely:

(1) a critical section for diagonal tension following a
periphery parallel to the column faces at a distance t-1% in.
therefrom; (2) a critical section for punching shear at
the column-slab intersection. The applied shear, V, and
moment, M, were assumed to cause the shear stresses shown

in Fig. 2.2. The maximum and minimum unit shears were
calculated by equations of the form:

(1) For exterior edge connection (Fig. 2.2 (a))

M- Mye - V. )a
ot give i e leesit Mg L (2.10(a))
L= T4 | R, J,
M= Mg - V)
Tl e BC il B (2.10(b))
7d | A, Jo

o]



where

(€. 6 )k
Length of critical section parallel to the
plane of the bending moment.

Length of critical section perpendicular to the
plane of the bending moment.

Distance of the centroid of the section being

sheared from the column centroid.

Cy
s g
C,
T

slab thickness

effective depth of slab

1
1 + (m = 1)P
Es
modular ratio| —
C

ratio of total (top and bottom) steel slab
flexural moment resisted by the slab section BC
property of the assumed critical section analogous
to polar moment of inertia

2
C

A 2C,t?
Al k. + 2C,tg* + gt[ %_— g]

12 12
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(2) For interior connection (Fig. 2.2 (b))

i

gt | v (M- Map - MgelG
v = S [Ac 4 o c (2.11(a))

M- Wer = M )Gy
St { [, ap_~ Msc) }c (2.11(b))

P Al . 2%

where in this case

A, =i2(C0+ Gyl
40 g0t
B et

Cl
+ 2c2t[ o ]2

The above formulae are for the critical section of
diagonal tension. For the critical section for punching
shear, the same formulae are applied with the substitution
of the proper values for MBC’ MAD and the dimensions to

conform with the smaller periphery.

Di Stasio and Van Buren limited the maximum shear
stress to 0.0625 fé , on a critical section directly at
the column periphery (critical section for punching shear).
With respect to permissible stresses on the critical section
for diagonal tension the recommendations of the 1956 ACI
Building Codé?)which was applicable at that time, were
followed, namely:

Vet o 0.3 fé + 100 psi
when at least 50% of the required column strip steel

crosses the section, or
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Vij = 0.025 f¢ } 85 psi
when at least 25% of the required column strip steel
crosses the section.

(40)

In 1961 Kreps and Rees reported the results of six
tests carried out by Fredrick and Pollauf &ﬂon square flat
plate specimens, simply supported along two opposite edges
and free along the other two edges. The specimens were
loaded through concentrically located 6 in. square column
stubs by axial loads and bending moments in a plane parallel
to the free edges. Depth of the slab and the distribution
of the reinforcement were included as important variables.
No significant results concerning the shear problem were
given by the authors, since their programme was primarily
conducted to determine the effective width, in relation to
slab depth, of the column strip available to transmit a
column moment into the slab for a flat plate of
reinforced concrete exposed to lateral (seismic or wind)
loads.

Also in 1961, Moe@)reported twelve tests on 6 ft.
square, 6 in. thick slabs. The slabs were simply supported
along all four edges in such a way that no negative
reactions could be taken at the supports, and corners were
free to Tift. Load was applied at different eccentricities

through a centrally located square column stub. The

eccentricity of the applied load varied from 0 to 24 in.
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Fig. 2.3 Distribution of shear stresses at ultimate.
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Important variables in Moe's study were column size
and the yield strength of the reinforcing steel. Only two
specimens contained compressive as well as tensile rein-

forcement. He suggested that if % is small, i.e. less than

%, where r is the width of a square column, the behaviour
of the slab was approximately the same as for slabs loaded
by axial load through column stub only. If % is greater
than % or if the slabs are subjected to bending moments
only, the problem becomes more complicated than that of
normally loaded slabs. From the test results Moe derived
an empirical equation which has been shown to predict the
strength of the tested slabs with sufficient accuracy for

design. Moe's strength method of analysis is summarised

as follows:

Fig. 2.3 (a) shows a square column stub loaded with
an axial force, V, and a moment, M, in one of the planes
of symmetry parallel to two faces of the column. The slab
is not shown in the figure, but the forces and moments
resisted by the assumed slab critical section immediately

at the column-slab interface are shown in this figure.

In developing his strength criteria Moe assumed that:-

(1) The axial load V results in producing uniform
nominal shear stresses in the critical section
given by

V=i (a)

where
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A 4rd

1]

r side width of a square column.
(2) The bending moment, M, is resisted by:
(a) flexural moment of slab section AD and BC
(Fig. 2.3 {a))
(b) torsional moments, My, on sides AB and CD,
and
(c) vertical shear stresses on the four sides of
the critical section. They are assumed to
be constant along the critical sections
perpendicular to the plane in which the
applied moment acts and vary linearly along

the other two planes as illustrated in

Fig. 2.3 (c).

The resultant of the internal moments produced in (a),
(b) and (c) must balance M. The fraction of the total
bending moment resisted by the vertical shear stresses was
assumed equal to KM where K is a constant which was
determined from the test results. Considering the
distribution of the vertical shear stresses shown in

Fig. 2.3 (c) Moe determined v_ as

m
_ KM

Vi ﬁrzd

3

or

KMC
Vo A el b
0 (b)
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where

AT maximum vertical shear stress produced by
the bending moment portion KM
C = half width of a square column = %
o 2oy
JC - 3

Moe advanced that failureof a column-slab connection
subjected to the present case of loading (Fig. 2.3 (a))
takes place when the maximum value of the shearing stress,
v, (Fig. 2.3 (d)), reaches a critical value equal to the
shearing strength of the same slab under concentric load
determined from Equation (2.4). The maximum shear stress,

vV, » is obtained as the summation of v. and v_ as follows:

\') m
Vl = VV - Vm
or
Vv KMC
— et g e
L T T S 1 (2.12)

Using the above assumption Moe worked backwards from his
test data and concluded that the value of K in Equation
(2.12),and therefore the fraction of the total moment
transferred by shear stresses, was approximately one third.
In calculating v, for the case of concentric load Equation
(2.4) was used. For design Moe recommended a limiting
vertical shear stress of (9.23 - 1.12 E)/?g for % ratio
less than 3 and (2.5 + 10 E)/f? for 5 ratio greater than

3. These were conservative limits, intended to produce

flexure rather than shear failure.
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In 1962 AC1-ASCE committee BZJQ conducted a study of
Moe's work which resulted in a recommendation that a limit-
ing shear stress ¥ be established using the following
expression in which the critical section follows the
periphery of the column:

v, = 4(5 + 1)VFL (2.13)

Therefore the shear load capacity of a concentrically loaded
connection can be evaluated as

vV = vubﬁ (2.14)
where b' is the perimeter of the critical section taken at

the periphery of the column,

To develop design recommendations for AC1 1963 code
for moment and shear transfer, AC1-ASCE committee BZéQ
reviewed the foregoing investigations and in addition took
into account some preliminary information on work by Hanson
and Hansoé?) The committee recommended a procedure similar
to Di Stasio and Van Buren';?)but with two modifications.
It was proposed that the critical section be taken at d/2
from the faces of the column, and that the effective depth
rather than the total depth be used in calculation of Ac

and Jc.

At interior columns the equation recommended for

design was

Vous =0 2t e AT (2.15)
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where Ve ultimate shear stress.

2
Best agreement with available tests (10 of which were MoéJs,

10 were Hanson's and Hanson'shﬂand 5 reported by Kreps and
Reesem)) was obtained with a K value of 0.20.
(x2)

The AC1 commentary gave a working stress design method
similar to that of Di Stasio and Van Buren but dropped out
the %. Also it did not take into account the dowelling
effect of the steel. A critical section (r,+d) and
(r, + 3t) for interior columns was allowed by this method,
where r, is the side width of a rectangular column in the
direction of the plane in which the bending moment acts
and r, is the width of the other side of the column. The
following equation is given to calculate the Timiting
stress

e A0S Mg o) (%") (2.16)

Ac Je

The calculated shear stress by this method is limited to

6
allowable values specified in the AC1 318-63 Building Coég.

In 1966 Anderso&hﬂreported test specimens simulating
edge connections in flat plate structures. The slabs,
which were approximately 5 ft. by 2 ft. 6 in. with a thick-
ness of 5 inches to 7 inches, were supported on neoprene
pads closely spaced along all edges except the one contain-
ing the column. The dimensions and reinforcement for a
representative specimen are shown in Fig. 2.4. The

specimens were loaded by means of a hydraulic jack through
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Fig. 2.5 Hanson and Hanson's test specimens and loading arrangement,
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a column stub extended on one side of the slab only. The
variables were the eccentricity of the load on the column

slab, column size and slab reinforcement.

He concluded that the eccentricity of the column load
produced a great effect on the ultimate load. When the
eccentricity was small the failure was a pure flexural
failure, in spite of the fact that nominal shear stress was
high. When the eccentricity was great the failure was by
punching, and the value of the nominal shear stress was
Tower. Anderson also suggested an expression for calculat-
ing the nominal shear stress at a critical section located

ki
at the column faces.

In 1968, Hanson and Hansonhﬂreported 17 tests involving
combined shear and bending moment. Ten of these slabs had
been reported in 1962 by AC1-ASCE committee 32&? Sixteen
of the specimens contained 6 in. square or 6 in. x 12 in.
rectangular concentric columns. Only one specimen was
tested which had an edge column 6 in. square simulating
conditions at an edge connection (Fig.2.5). The slabs
were reinforced with two mats of No. 3 deformed bars spaced
3 in.centre-to-centre in each direction. The mats were
placed so that the bars parallel to the long side of the slab
were covered by § in. of concrete. Pairs of 1 in. x 6 in.
holes were blocked out of the slab in eight of the speciwens

with square columns. These holes were located adjacent to

the column and either parallel to the long sides (free edges)
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or the short sides (loaded sides) of the slab. The slab

reinforcement was continuous through the holes.

The columns had hinged reaction points 30 in. above
and below the surface of the 3 in. thick slabs. The
principal variables were the location of the holes blocked
out of the slab and the loading arrangement. Loads were
applied to the slab along lines 36 in. from the centre line
of the column (Fig. 2.5(a)). The three loading arrangements
considered caused eccentricities varying from zero to almost
infinity. For type 1 loading, the line loads in Fig. 2.5(b)
were equal in magnitude and opposite in direction. For type
2 the line loads were equal and acting in the same direction
and for type 3 only were acting downward. Three of the
interior column-slab connections were subjected to reversal
of loading. In these tests, the direction of the applied
loads was reversed after reaching 25, 50 and 75 percent of
the expected ultimate load (determined from companion
specimens tested under monotonically increased loads up to

collapse).

As a result of the examination of their tests and
(2)

2
previous tests reported by Moe, the following were some of

their important conclusions:

(1) The working stress method in section 2102 of
(e
the commentary on the 1963 AC1 Building Code )was
found to have a factor of safety less than 2 for

some of the slab-column connections under combined
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shear and moment.

(2) The working stress method recommended by Di Stasio
and Van Bureéu)modified to agree with 1963 AC1
code, was found to have a variable factor of
safety always greater than 2. However, the method

did not agree with the trend of the test data.

(3) The ultimate strength design method recommended
2
by Moe()was found to be simple in application and
to give good results except for the case of the

edge connection.

(4) The ultimate strength design method recommended
by AC1-ASCE committee 32éﬂ was found to give a
good prediction of the strength of the column-slab
connection only when the moment reduction factor,

K, was changed from 0.20 to 0.40.

During the preparation of a proposed revision to the
1963 AC1 Building Codéﬂ committee 31&“ adopted the method
of the joint committeesfor calculating the ultimate capacity
of a column slab connection when moment and shear are to be
transferred with the modification proposed by Hanson and
Hanson.ﬁﬂ In addition it was noted that most of the test
data considered by Hanson and Hansoéu)to reach their findings
mentioned above, involved square columns. In practice,
however, for architectural reasons rectanqular columns are
frequently used, particularly at edges of buildings. It is

logical to assume that the fraction of the bending moment
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transferred by flexure, across the periphery of the
critical section defined ear]ie#ﬂ by the joint committee,
increases as the width of the face of the critical section
resisting the moment increases. Accordingly, it was
suggested that the fraction, K, of the bending moment

transferred by eccentricity of the shear about the centroid

of the critical section be taken as

e

(2.17)

]
2/ F d
O .
3/Q+d
where (g + d) is the width of the face of the critical
section resisting the moment, and (r, + d) is the width of
the face at right angles to (r,+ d). Equation (2.17)

gives K = 0.40 for square columns.

In 1968, and later in 1970, Zaghlool, de Paiva and
G]ockneé%w)reported the results on four flat plate structures.
Each structure was a full size, square, single panel flat
plate structure cast monolithically with a square column
at each corner. The structures measured 10 ft. centre to
centre of columns, with column height constant at 5 ft.
The column bases rested on steel balls so that rotation
but not translation of the lower end of the column was
permitted. The variables studied were the column width to
slab depth ratio and the concrete strength. Two column
sizes were used 5% in. and 63 in. square. The slab thick-

ness was constant at 53 in. The reinforcement in the slab

consisted of 3 in. diameter deformed bars having an average
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yield stress of 55 ksi. The positive reinforcement was
placed parallel to the edges of the slab and spaced
uniformly over the entire width. 1In the negative moment
region of the slabs adjacent to the columns only continuity
bars were provided by three of the column bars bent into the
slab, the outside corner bar was bent along the diagonal,
the other two outside bars were bent parallel to the edges,
and two other continuity bars were placed parallel to the
slab edges and bent down adjacent to the outside corner bar.
The structures were loaded by uniform loads simulated by

16 point loads through 15 in. square by % in. thick steel
plates resting on rubber pads on the surface of the slab.
The loads were provided by four hydraulic jacks through

distributing members.

In connection with the shear strength of the slab at
its connection with the column, they found that the existing
methods for predicting the column-slab connection strength
for interior columns, when extrapolated to corner columns,
produced extremely conservative results. Considering a
simplified approach to the analysis of their tests, using
the principal tensile strength of the failure cone, they
obtained the following expression for the shear stress at
ultimate:

vy = L = (5.6 + 2.0(3)T (2.18)
b' d

where
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v = vertical shear force.

This expression showed good correlation with the tests.

In 1969 Stamenkovicwdtested 52 half scale models of
column-slab connections designed to simulate interior, edge
and corner connections in a flat plate structure. They were
tested under the action of axial load, bending moment or a
combination of both. O0f interest are the exterior column-

slab connections which are described below:

A11 specimens had 3 ft. square by 3 in. thick reinforced
concrete slabs with column stubs above and below the slab.
In all the tests the slabs were supported by 11 in. diameter

tie-rods, 6% in. centre to centre along the edges.

The edge connections were supported along three edges
with the column stub being located at the centre of the free
edge and the corner connections had two free edges adjacent

to the column.

The loads were applied to each specimen through 1 in.
thick steel plates attached to the ends of the column stubs

at 13 in. from the top and bottom faces of the slab.

The slabs were reinforced with two similar mats at the

top and bottom faces. Each mat consisted of i in. diameter

16
bars of hot rolled high tensile steel with a guaranteed
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Fig. 2.6 Dimensions and reinforcement for edge and corner connections
tested at Imperial College by Stamankovic.



yield stress of 60,000 psi. Typical slab reinforcement
for edge and corner connections is shown in Fig. 2.6.

The principal variables were the type of loading and the
location of slots in the slabs at the column faces with

respect to the plane in which the bending moment acts.

Nine of the edge column-slab connections were loaded

as follows:

One specimen was loaded by axial load only. Four
were loaded by bending moment in a plane perpendicular to
the free edge; the first one had openings in the slab
adjacent to the column sides, the second one had an opening
in the slab at the inside face of the column, and the third
and fourth did not have holes. The other four specimens
were tested under varying ratios of bending moment to

axial load.

The analysis of the test specimens given by Stamenkovic

are summarised as follows:

(1) For the slab specimens which were provided with
holes through the slabs parallel to the plane in
which the bending moment acts, the bending
capacity of the connection was assumed to be
expressed by the ultimate strength formula given
by the AC1 1963 Building Codéq for corner and

edge connection as follows:
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My = 0.9bd*f! q(1 - 0.59q) (2.19)

where
b = width of the column face perpendicular to the
plane of applied bending moment
d = effective depth of the slab
q = reinforcement index = f¥
fc
p = ratio of the tension steel crossing the inside

column face of width "b".

(2) For the case of specimens in which the bending
resistance of the slab section perpendicular to
the plane of bending was omitted by introducing
a hole through the slab, the bending moment
applied through the column stub was assumed to
be resisted by the capacity of the slab section
(or sections) at the column side (or sides)

parallel to the plane of applied moment in torsion.

For obtaining the torsional capacity of the slab
section it was recognised that the torsional resistance
depends on the area of the slab-column interface, concrete
strength, the amount of transverse reinforcement and the
degree of containment. The contribution of the reinforce-
ment was rationalised by assuming the friction develops at
the irreqgular interface of a crack, the frictional stress
depending on the contact pressure developed by the tensile

force in the reinforcement. This concept has been used
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45
for calculating the shear strengt#.) It was further assumed

that at failure, this friction stress is uniform on the
whole area of the column-slab interface. He suggested
that the plasticity formula (2.20) would hold in such a

cases:

My = Nt 2 (a - ) (2.20)

N = number of column-slab interfaces parallel to the
plane of the applied moment

T = represents the nominal shear stress associated
with the tensile force in the reinforcement

i

Ast y

= K
T “at

Kt = friction coefficient

=
n

et total area of transverse steel crossing the
column-slab interface

fy = yield of steel

a = width of column-slab interface

t = total slab thickness

Using a single test for each type of connection he worked

backwards from Equation (2.20) and found that

for corner connection Kt = D.f
for edge connection Kt = 0.7
for interior connection Kt =_ =0

For connections subjected to axial load he modified Moe's

Equation (2.4) in the following form:

46



(a) For interior connection

v, = ﬁ = 0,90| 15(1 - 0.075r/d) % (2.21)
(psi) L 1 + 5:25 3rdvfe

vf'[ex

(b) For edge connection

Vv 3r + 4d 15(1 = 0.075 r/d)

v = = 0.90
MG S3rd S Ah o4 Bd 3rd/T
(psi) 1 + 5,26 ——_¢C T
flex >
(2.22)
(c) For corner connection
v, = zvd N ir + ;: 0.90 15(1 - 0.075 r/d) /F:
(psi)JS LA 1 +5.25 %d—'”
flex
(2.23)

Equations (2.22) and (2.23) for edge and corner
connections respectively were obtained by modifying
Equation (2.4) by a factor which expresses the relative
lTengths of the critical sections taken at a distance d from
the column perimeter. The basis of this correction was
recognised to be inconsistent with the critical section
recommended by Moee) It was considered, however, that the
number of tests on edge and corner columns (one test for
each connection) was insufficient to justify modifying

Moe's formula for internal columns, and the inconsistency

was accepted at that time.
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For the case where there were no holes the capacity of
the corner or edge connection in bending was calculated as

follows:

o
M = 0.90bd*f! q (1 - 0.59q) + Nt g (o - %) (2.24)

where n = 1 for corner connections of the type tested and

n = 2 for edge connections.

For the combined bending and axial load cases he

proposed an interaction equation in the following form:

)

where M, and V;are to be calculated from Equations (2.22)

[ %ng &~ (2.25)

or (2.23) respectively and M was defined as follows:

for an edge connection

M = Mtest - V %

and for a square corner connection with side width equal

A N
0.40
M = [Mtest - E][o.s § ot ]
2 Mg /Mty
where
M, = 0.40[Mtest -V 5]
t2 t
""tu”?["‘?]

It is of interest to mention that Stamenkovic also

1@

9
found, as did othersa’ that extrapolation of the existing
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2,12
methods of analysis for interior co1umné )to predict the

ultimate capacity of exterior connections gave extremely
conservative results.

s 47)

[
In 1970 Mast presented an analytical method for

L6
calculating the stresses in flat plates near interior ‘and

47
edge co]umnsg) The method was based on the theory of elastic

(ue) 48, 49)
plates. The background for the method was given elsewhere.
He calculated the amount of column moment transmitted to

the slab by flexure, torsion and vertical shear stresses.

According to this method the following are the
proportions of the total applied moment which are balanced
by flexure, torsion and shear for a square periphery of a
critical section of a side width equal to 0.20L where L is

one panel width.

Table 2.2 Moment balancing by flexure, torsion and shear.

Flexure Torsion Shear
Interior connection
(u6)
(Table 3) 0.340 Dlh6 0.504
Edge connection
L7
(Table 3)() 0.254 0.264 0.482

From the above table the coefficient K which allocates
the portion of the column moment transmitted by torsion and

vertical shear combined to conform with Di Stasio and Van
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(11)
Buren method is equal to 0.66 for interior columns and

0.746 for edge columns. Also K which allocates the amount
to be transmitted by vertical shear stresses to conform
with the formula due to Moéq is 0.504 and 0.482 for
interior and edge columns respectively.

It is important to know that the mathematical model
was assumed as an infinitely long plate in one direction
and simply supported along the other two sides which are
perpendicular to the plane of the applied moment with the
moment applied at the centre. Mast suggested that the use
of simple supports at the ends rather than the actual
columns does not affect the stresses at the simulated
loaded column to any significant degree since the location
of the approximation is remote from the area of study. But
at the same time it has to be noticed that the moment was
applied at the central point, and the proper boundary
conditions at the periphery of the loaded column were not

reproduced.

Hawkins and Corley in 197é&9deve1oped an ultimate
strength procedure for interior and exterior column-slab
connections based on a beam analogy. The slab framing into
each column face was idealised as beams running in two
directions at right angles. The ultimate capacity of the
connection was obtained by summing the ultimate bending
moment, torsional moment and shear forces of the beams for

the given loading condition.
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51
In the revised 1971 AC1 Building Code (AC] 318—7])()

Section 11.13.2 states that

"when unbalanced gravity load, wind, earthquake
or other lateral forces cause transfer of bend-
ing moment between slab and column, a fraction
of the moment given by

L - 21 G+ d
Te s St i ZH
Tl ( )

shall be considered transferred by eccentricity
of the shear about the centroid of the critical
section defined in section 11.10.2. Shear
stresses shall be taken as varying linearly about
the centroid of the critical section and the

shear stress vy shall not exceed 4/?& oy

In section 11.10.2 1t is stated that

"The critical section shall be perpendicular

to the plane of the slab and located so that
its periphery is a minimum and approaches no
closer than d/2 to the periphery of the concen-
trated lToad or reaction area."

In AC1 318-77 Building Code the shear stress i

changed from 4JF& to 4¢¢fé,.where ¢ is a reduction factor
equal to 0.85.

In the British Code of Practice for the structural

52
use of concrete CP110, Part 1, 19?5,)section 3.6.2 states

“In the case of structures in which stability

is provided by shear walls or other bracing
designed to resist the lateral forces and where
the ratio between adjacent spans does not exceed
1.25, the shear force should be calculated for
the condition where the ultimate imposed loads
are applied to all panels adjacent to the column
being considered. The design for shear should
then be in accordance with 3.4.5.2., except

that the values for ultimate shear stress given
by Table 5 should be reduced by 20%.
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In other cases the total moment M being
transmitted to the slab at each column-slab
connection should be calculated and the design
checked in accordance with 3.4.5.2 (as modified
above) for a shear force increased by the factor

12 .5M
Ve

T +

where V is the shear force and 2 is the shorter

of the two spans in the direction in which

bending is being considered. It will be necessary

to consider various arrangements of ultimate

imposed loads in cases where the ratio between
adjacent spans exceeds 1.25 leading to various

combinations of M and V.

The magnifying factor does not apply to corner
columns or to edge columns being bent at right
angles to the edge."

(%3)

In 1974 Regan "presented a comparison between the
AC1-Building Code (1971) and the British Code CP110, Part
1 (1972) on shear problem at the column head regions in
flat slabs. The most important differences were as

follows:

(1) The AC1 Code includes torsion in its uneven

shear effects.

(2) In the AC1 Code uneven shear effects are
greater if the column dimension parallel to
the eccentricity is larger than that perpen-
dicular to it, while in CP110 rectangularity

has no effect.

(3) According to CP110 the effect of uneven shear
decreases for greater slab spans. There

appears to be no evidence either way on this
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point for flat slabs, but there are cases
in bridge decks where the AC1 predictions

are better.

(4) The biggest difference is in the treatment
of moments perpendicular to slab edges, where
the AC1 code applies the above approach with
a suitable modification of Jc and predicts a
considerable influence on punching resistance,

while CP110 totally ignores any such effect.

2.4 Summary

In reviewing the Titerature it was found that most of
the experimental work concerning the ultimate shear strength
of column-slab connections was concentrated on a study of
specimens which were assumed to simulate a concentrically
loaded interior connection. Only limited information is
so far available, which involves bending moment or combined
axial load and bending moment transfer. A lack of experi-
mental data is apparent regarding the strength and behaviour
of exterior column-slab connections, i.e. corner and edge

connection.

The present methods of estimating the shearing capacity
of slabs under both axial load and bending moments give
different results, some of which may be unsafe, as shown by
Hanson and Hansoém)for interior connections. These methods
when extended to edge connections were found to produce

) (3,10, )
extremely conservative results.

53



The following concepts are common in the present

design methods:

(1) Limiting the maximum shear stresses at the

remote points of an assumed critical section.

(2) Nominal shear stress to increase linearly
from the centroidal axis of the peripheral
section and to reach a maximum at one of the

transverse sections.

(3) Flexural stresses are treated as an

independent variable.

Each method uses a different position for the
critical section (see Table 2.1), certain limiting shear
stress and different K values to allocate a portion of the
total moment to be transferred by shear and torsion.

(1)

For Di Stasio and Van Buren and similarly the
ACI-ASCE committee 326 and the commentary on the ACI Code
IQBJQ , K is considered to be the portion of the bending
moment which is to be transmitted by torsion. Consequently
Jo. in Equations (2.10), (2.11), (2.15) and (2.16) would be
the polar moment of inertia of the critical section. In
Moe's Equation (2.12), K determines the portion of the total
bending moment which is to be transmitted by vertical shear
stresses only. In Equation (2.12), Je is determined from

equilibrium of the external moment portion KM with the

moment produced by the assumed vertical shear stress
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distribution. It would therefore be expected that
different values for K and L would be obtained from the
two different approaches. Also, according to Di Stasio

and Van Buren, no moment will be transmitted by vertical
shear and torsion if the applied moment to the connection
is equal to or less than the flexural capacity of the
critical section faces which are perpendicular to the plane

of the applied moment.
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CHAPTER III

TEST PROGRAMME

3.1 General

The discussion in section 2.4 clearly shows that the
problem of moment or combined axial shear and moment
transfer between columns and slabs at the connection with
edge and corner columns is not yet solved and accumulation

of experimental information is required.

Test programmes were undertaken in this investigation
to study the effect of the basic parameters, rn/r, ratio,
q/L ratio, and r,/d ratio on the ultimate strength of slabs

at their connection with edge columns.

An outline of this test programme giving a detailed
description of the test specimens and details of method of
fabrication, material properties, testing equipment,

instrumentation and testing procedure is presented.

3.2 O0bject and Scope

The object of the study was to determine the variation
of strength and stiffness of the joint as the ratio of the
column sides was changed and the ratio of moment and shear
was changed. The main test piece dimensions and the variable

dimensions are shown in Fig. 3.1.
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The test programme was divided into four series of
tests, involving a total of fifteen specimens. The
principal variables considered were the column dimensions

and the eccentricity of loading.

3.3 Description of test specimens

In order to obtain a realistic estimate of the
behaviour of a real flat slab structure at failure, it was
necessary to use test specimens that would represent the
appropriate part of such a structure. Each of the fifteen
specimens was intended to represent, in reduced scale, an
isolated portion of slab surrounding a column as shown in

Fig. (3.1).

It has been shown in tests on flat slab structures
S
carried out in I]]inois()that no undesirable scale effects

occur for half full scale of actual structures.

A1l slabs tested in this investigation were 75 mm
thick with the slabs cast monolithically with their column
stubs. The column sizes changed from one series to another.
The column stubs were kept constant at 400 mm above and
below the surface of the slab. The columns had hinged

reactions at their ends.

The column perimeter (three sides only) for all

specimens was kept constant at 540 mm.
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The position of the line load was chosen to represent
the point of contraflexure of the slab which is assumed to
be 15% of the span between columns. The distance from the
lTine load to the exterior face of the column (L) was varied
from 500 mm up to 1100 mm in 200 mm steps for each series,
as shown in Table 3.1 below.

Table 3.1 Dimensions of test specimens and loading

Specimen | Column size L Specimen | Column size L

No. . = r, e No. s el ¥ e
1 140 280 500 9 180 180 500
2 ’ 1 700 10 ‘ . 700
3 < “ 900 11 = . 900
4 v $ 1100 12 i i 1100
5 160 220 500 13 200 140 500
6 i . 700 14 i 2 700
7 ¥ % 900 15 i g 900
8 e % 1100

The length of the other side of the slab was kept

constant at 1200 mm.

3.4 Material

3.4.1. Concrete
The concrete mix was designed for a cube crushing

strength of 25N/mm? at seven days. One cubic metre of the
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mix contained:
395 kg of cement
229 kg of water
682 kg of fine aggregate

1034 kg of coarse aggregate.

Ordinary Portland cement and a 10 mm maximum

aggregate size were used.

The concrete for the specimens was mixed in one or
two batches according to the size of the slab, as shown in
Table 3.2 below, and the concrete strengths are listed in

Table 3.3

Table 3.2 Volumes and Number of Eatches of the Mix

Specimen No. Volume ?f mix Number of batches
(m*)

Ty, 5, 9,13 0.15 ]

2y 63109514 0.17 1

= o B 8 0.19 2

4, 8,12 D.21 2

Compressive strength was determined from tests on
standard 150 mm control cubes. The average of 3 specimens
was considered to represent the strength, f'c, of the

concrete in the test structure.
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Table 3.3 Strength properties of concrete
used in test specimens.

Compressive Modulus of Tensile strength

. strength rupture splitting test
N ik /B Wi
1 27.76 2.626 2.092
2 25.93 2.626 2.425
3 29.00 2.940 2.622
4 26.20 2.900 2.120
5 26.80 3.567 ¢ 073
6 27.30 3175 2221
7 29.80 3.097 2.544
8 29.20 2.979 1.995
9 22.50 2.744 2.073
10 29.00 3.018 2.156
11 22.90 2.979 1.431
12 26.30 3.254 2.037
13 30.30 3.214 2.249
14 26.20 2.979 2.571
15 28.90 3.254 1.948
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Fig. 3.2 Typical slab and column reinforcement,
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Modulus of rupture strength was obtained from the
average of 3 tests on 100 mm by 100 mm by 400 mm beams

using third point loading.

Tensile strength in splitting was determined from the
average of 3 tests on 150 mm x 300 mm control cylinders
using 10 mm wide timber strips. After casting, the slab
and cubes were kept for forty eight hours under wet sack-

ing and then stored in the laboratory until tested.

3.4,2.Reinforcement

(i) Column stub reinforcement

The Tongitudinal reinforcement used in the
column stubs consisted of 4-16 mm diameter plain bars
of intermediate grade steel. (See Fig. 3.2) Stirrups

were 8 mm diameter plain intermediate grade steel.

(ii) Slab reinforcement

The slabs were reinforced with two mats of 10 mm
diameter plain bars spaced 50 mm centre to centre in the
direction perpendicular to the exterior free edge of the
slab. In the other direction of the slab, two mats were
used of 10 mm diameter plain bars spaced 100 mm centre
to centre. The mats were placed so that the bars perpend-
icular to the free edge were covered by 10 mm of concrete,

all as shown in Fig. 3.2.

The steel properties for the specimens were obtained
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from 3 samples cut from the bars used in each slab, see

Table 3.4.

Table 3.4 Physical Properties of Reinforcement Steel

Specimen fy in N/mm? Specimen fy in N/mm?

1 414.2 9 352.20
2 299.60 10 327.98
3 335.46 11 379.84
4 375.60 12 354,38
5 329 .22 13 375.60
6 341.63 14 381.96
7 326.36 15 333.16
8 358.60

In order to prevent flexural failure occurring before
the punching shear failure, the amount of reinforcement was
approximately 30% greater than that obtained by yield line
method. Typical stress-strain relationships for 10 mm. and

16 mm diameter bars are shown in Fig. 3.3.

3.5 Fabrication of test specimen

3.5.1. Formwork

The form was made such that the column was cast in the
horizontal position while the slab was vertical, and both
the column stubs and the slab were cast at the same time.
Special attention was given to the rigidity necessary to

control the dimensions of the slabs and column stubs.
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Fig. 3.3 Typical stress-strain relationships for reinforcement steel
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typical specimen.
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3.5.2. Fabrication of reinforcement

The bars were assembled in the form with the configur-
ation shown in Fig. 3.2. Bar spacings were carefully

checked before casting.

3.6 Casting and Curing

Concrete was placed manually with compaction of the
concrete by table vibrator. The control specimens were
cast at the same time. Curing consisted of keeping the
slabs and the control specimens damp by means of wet sack-

ing and polythene sheets.

3.7 Deflectometers

The deflections of the slab of each test specimen
were measured at the positions indicated in Fig. 3.4. The
dial guage used for measuring these deflections had

graduations of 0.01 mm.

3.8 Supporting Condition and Loading System and Apparatus.

The downward 1ine Toad on the slab was applied through
a 100 mm x 100 mm steel tube crosshead, 700 mm 1long, as
shown in Fig. 3.5. Each end of this tube applied a concen-
trated load to the centre of another steel tube of the same
cross-section and 420 mm long. The load on each tube was
distributed on the slab by two 200 x 100 x 20 mm steel
pads. The load was applied by a 10-ton hydraulic ram at
the centre of the top beam. The applied load was measured
by means of a proving ring placed between the ram and the

top beam.
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3.9 Testing Procedure and Measurements

One day before testing, the specimen was placed,
centred and levelled in the testing rig and the necessary

testing equipment assembled.

The testing of each specimen involved the recording
of three separate items of information during the course
of loading.

1. The applied lToad (proving ring reading)

2. The deflectometer reading (dial guage)

3. The general behaviour of the specimen,

including cracking, was observed and recorded.

Immediately prior to testing, zero readings on all
the measuring devices were taken and recorded. The load
was increased in increments to failure. The magnitude of
the increments was reduced at higher load levels near

failure.

After the application of each load increment the
readings on the measdring devices were recorded. The
locations of the cracks were marked on the surface and
free edges of the slab. The time required until failure

varied between one and two hours.
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CHAPTER IV

TEST RESULTS

4.1 General

The variables considered in the experimental investigation
were the column side ratio r,/r, , the column side to the
eccentricity ratio r,/L, and the column side to the effective

slab depth ratio r,/d.
In this chapter, observations during the progress of the
tests, deformations of the slabs and the failure mechanism

of connections are reported and discussed.

4.2 Behaviour of the test specimens and modes of failure

In this section the behaviour of the test specimens

throughout the course of loading is discussed.

The fifteen tests were carried out to study the effects
of the variables on the behaviour and ultimate capacity of
an edge column connection under the application of an axial
load and a bending moment acting in a plane perpendicular
to the free edge of the slab. They were classified as
follows:
(1) The first series consisted of four specimens
in which the principal variable was the eccentricity
of the load (L) which was varied from 500 mm to

1100 mm. The column size was kept constant at
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(r1 = 140, r, = 260). The slab reinforcement in the
direction of bending moment was 2.3%, and 1.5% 1in
the other direction.

(2) The second series consisted of four specimens with
the same variable as in Section 1 above, but with
a different constant column size (r1 = 160, L= 220).
The same slab reinforcement as before was used.

(3) The third series consisted of four specimens with
the same variables but the column size was
(r; = 180, r; = 180).

(4) Thé fourth series consisted of three specimens with
(L) varying from 500 mm up to 900 mm; the column

size was (r = 200, r, = 140). The same amount of

slab reinforcement was used in this series.

Note that in all specimens the column perimeter was kept

constant at 540 mm.

In the present section a comparison is drawn between the
different specimens to show the effect of the variables
considered on the behaviour and on the variation of deflection

of the slab.

I. Appearance of the test specimen at various

loading stages.

In all tests the cracks formed on the surface of the slab
in approximately the following sequence. The first cracks

were probably due to torsion on the sides of the column and
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they appeared at a load level equal to 0.50 - 0.68 times

the failure load.

The cracks started at the inner face of the column in
the slab and ran from the inner corner of the column towards
the free edge. They followed first the column sides
perpendicular to the free edge of the slab for a short
distance and then deviated in the slab away from the column.
Two or three of these cracks formed and one of them near
the column developed into a large crack directly associated
with the eventual failure of the specimen, see Fig. 4.1.
With increasing load this crack extended from the column
side to the free edge, having an inclination of about 35°
to the side face of column, and then continued across the
free edge. The crack, in progressing towards the compression
side of the slab across the free edge, was inclined to the
plane of the slab. The average inclination was about 45°
in the direction away from the column stub to the comp-

ression side of the slab.

In addition to these cracks, others formed at the central
part and progressively extended over the entire slab with
increasing load, but they stopped some distance before the

edge of the slab.

Some other tangential cracks appeared at different
distances from the column faces. Finally the failure

occurred in a form of a wide inclined crack from the inner
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corner of the column to the free edge of the slab.

It is believed that the idealised mode of failure was
the prime mode of failure and was mainly due to the form-
ation of the torsional cracks on the column sides and
flexural shear cracks at the inner side of the column.

(see Fig. 4.1)

There was not much difference in the crack pattern and
mechanism of failure in all specimens, The major difference
was that the cracks were wider and more noticeable for

specimens with the greater eccentricities.

IT Ultimate Capacity

The load carrying capacities of the specimens in the
four test series are listed in Table 4.1. Comparing the
capacities of the series, as in Fig. 4.2., shows that the
axial load carrying capacity of the connection increases
approximately linearly with the increase of rl/L ratio,
where r, 1is the column side perpendicular to the free edqge of
the slab and L is the distance from the Tine load to the
free edge of the slab. Fig. 4.3. and 4.4. have been drawn
like Fig. 4.2. by using L' and L" instead of L, where L'
is the distance from the line load to the centre of column,
and L" is the distance from the line load to the centre of
three sides of column. As may be seen in these figures,
the effect of using different starting points for measuring

eccentricity is small.
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Also it was noticed that the load carrying capacity of
the connection reduced slightly as r,/r, and r,/d increased,
3,

(see Figs. 4.5 and 4.6) Thiseffectwas noticed by Hawkins

in his tests on interior slab-column connection.

Hawkins found that both the cracking and failure loads
decreased as the column sides ratio r,/r, increased. This
is contrary to that observed in the present investigation

for edge connection. (See Fig. 4.7).

This probably related to the difference between the
type of specimens used by Hawkins and specimens used in this
investigation. Hawkins' specimens were rectangular columns
with square slabs concentrically loaded; the columns had
aspect ratio ranging between 1 and 4.3, while the specimens
of this research were rectangular columns with rectangular
slabs subjected to axial load and bending moment; the
column aspect ratio varied from 0.54 to 1.43. In the case
of edge connection, high bending moment is applied to the
column, while in the case of interior connection loaded
concentrically there is no bending moment carried by the
column. Additionally, slab continuity or lack of slab
continuity must have a considerable effect; other difference
in variables may also have some effect on the cracking

pattern.

IIT Deflections

The deflection of the slab was measured at different
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locations throughout the slab for all specimens, (see Figs.
4.8 to 4.11). Representative load-deflection curves for
the connections tested in the present investigation are
given in Figs. 4.12 (a-d), 4.13 (a-d) and 4.14 (a-d).

These figures are for displacements in different locations

as shown in the key sketch in each figure.

In Fig. 4.15 the rl/L ratio is plotted against
D

deflections for three positions of dial gauges, 03 » D,

and D13 measured at a load Tevel of 10 KN.

Deflected shape curves at a load level of about 90
percent of ultimate capacity and at cracking load for
different lines on the edges and centre line of the slab
are given in Figs. 4.18 to 4.29. The arrangements of the
dial gauges for all specimens tested are shown in Figs. 4.8
to 4.11. The indicated deflections are for the last readings

of the dials taken before failure.

As shown in Fig. 4.12 (a-d) - which are the load-
deflection curves of D13 - the influence of rlfrz ratio
seems to be small for all slabs and is hardly noticeable

for long spans.
In Fig. 4.13 (a-d) for D,, there is no very significant

effect of the variables on the deflection of the slab at

that point.
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In Fig. 4.14 (a-d) the deflection of Dsbecomes upward
at this point for slabs with longer spans rather than for

short spans.

The effect of varying rI/L is also shown in Fig. 4.15

for the deflections D D_. and Da. As shown in this

13 ¥ =9

figure, as r /L ratio increased the deflection at D, and

D, decreased. This deflection (at D, and D ) becomes

very high for small values of rI/L ratio, while there is no
significant effect of r,/L on the deflection at D, except in
the case where rI/L ratio is less than 0.2, where the

deflection becomes upwards and noticeable.

The effects of r./L, r /d and r,/r, are also shown in
Figs. 4.16 and 4.17. In these figures rllL and rl/r‘2 has
been drawn against the difference between D, and D13 . As
shown in these figures, D+ D,,) seems to be increased
slightly with the increase of rlfL, rl/d and rl/rz. This
means that the difference between the positive moments in
the column strip and middle strip of the flat plate
increases with the increase of these variables and decreases

with their decrease.

Deflected shape curves are shown in Figs. 4.18 to
4.29; Figs. 4.18, 4.20, 4.22 and 4.24 are for the deflection
of the slab along lines AB and CF for two load levels. 1In
these figures, as the length of the span increases the

deflection of point C along line CF decreases and then

111



becomes upwards for longer spans. In this case high bending
moments and then high torsion will take place on the connect-
ion. The differences between the deflections of the slab

(at 90% of failure load) is clear for short spans. This

difference is very small at cracking load.

In Figs. 4.19, 4.21, 4.23 and 4.25 the deflection of
the slab along line BD at 90% of failure load and at crack-
ing load are similar for all spans. These differences are

hardly noticed for the deflection along line A E

The effect of the variables is negligible on the

deflection along line BG for all slabs.

4.3 The effect of the variables on the flexural capacity

of the connection.

To assess the effect of the variables rlfrz, rI/d and
r,/L on the flexural capacity of the connection, Mtest is
plotted against A S Y e ry /Lt and o /LS T in Figs,
4.30 to 4.38, where L' is the distance from the centre line
of the column to the line load, and L" is the distance from

the centroid of the effective perimeter to the line load.

As shown in Figs. 4.30 to 4.35, the flexural capacity
of the connection tends to decrease very slightly with the
increase of rI/r2 and rlfd, while in Figs. 4.36 to 4.38 the
flexural capacity tends to increase with the increase of

ri/L ratio.
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The variation is greater if the bending moment is
calculated using M = VL than if it is calculated using
M = VL' or M = VL"; for the latter two cases the test
flexural capacity appears almost constant although there is
some scatter. It appears that rotation should be considered
to take place about either the centroid of the column area
or the centroid of the effective perimeter, but possibly

with a slight margin in favour of the latter.

As shown in Figs. 4.39 to 4.42 the crack pattern does
vary to some extent depending on the proportions of the
column. In Fig. 4.39 it can be seen that the cracks develop
at the face of the column which resists bending, and extend
into the slab roughly parallel to the column face; and as
would be expected by the shape of the column, a relatively
small moment appears to be transferred to the column in
torsion on the sides. At the other end of the scale where
the Tonger sides are available to resist torsion, the
bending cracks parallel to the column face are quite small
and transverse bending cracks begin to develop as shown in

Fig. 4.42.

4.4 Summary
In this chapter the test results for edge slab-column
connections were presented and discussed. The following

conclusions can accordingly be drawn.
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Fig. 4.43 Failure mechanism
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£1)

(2)

(3)

(4)

The primary failure mechanism for an edge column-slab
connection subjected to moment and shear can be
idealised as illustrated in Fig. 4.43. (The term
mechanism refers to the Tast stage of the structure
before failure which is capable of undergoing deform-
ation without change in the resistance to external

loads).

For these structures, cracks can be expected at loads

as low as 50 to 68 percent of the ultimate load.

The failure of the specimen at ultimate load followed
the formation of the torsional cracks on the column
sides and flexural shear cracks at the inner side of

the column.

The flexural capacity of the joint is sensibly
constant for the range of column aspect ratios tested.
Such variation as can be seen indicates that as r,
increases relative to r, there is a small reduction in

flexural capacity of the joint.
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CHAPTER V

STRENGTH ANALYSI1S

5.1 Shear Strength

5.1.1. General

The effect of the variables on the shear strength
of the connection is discussed and their effect on the
capacity of the connection in the light of the experimental

evidence is pointed out.

5.1.2. Method of analysis

It may be of interest to analyse the results
obtained experimentally in the present investigation using

the conventional method of analysis

Vi % + &?E_ {5.1)
c c
where

IR ultimate shear stress

v = shear force

Ac = Area of concrete in assumed critical
section, periphery times effective slab
depth d.

k = moment reduction factor

M = unbalanced moment

C = distance from centroidal axis to the most
remote part of critical section

JC = polar moment of inertia

and then compare the ultimate shear stresses obtained from
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these results with the allowable ultimate shear stresses
given by both ACI 318-77 Building Code and CP110 Code of

Practice using both assumed critical sections.

This method (Eq. 5.1) was chosen because of its
acceptance by a number of 1r'esean~f.‘!r1enr'sz'?’n.’12 and also by
ACI 317-71 and ACI 318-77 codes. This type of approach was
used in comparing with the CP110 approach in obtaining the
modification factor for interior slab-column connection
subjected to shear and moment (see section 3.6.2 CP110 and
Eq. 2.27). The differences between this approach and the

53
approach followed by CP110 as mentioned by Regan are as

follows.

i) The ACI code includes torsion in its uneven shear
effects.

(2} In the ACI code uneven shear effects are greater

if the column dimension parallel to the eccentricity
is larger than that perpendicular to it, while in
CP110 rectangularity has no effect.

(3) According to CP110 the effect of uneven shear
decreases for greater slab spans. There appears to
be no evidence either way on this point for flat
slabs, but there are cases in bridge decks where
the ACI predictions are better.

(4) The biggest difference is in the treatments of
moments perpendicular to slab edges, where the ACI

code applies the above approach with a suitable

126



c! 1.5t no e Tl 5

1.5t

c/2 g

(a) CP110 (b) ACI-77

C=C'+1.5 or C'+d/2
b =b'+3t or b'+d
a1-C/2+g
a,=C/2-g
A =(2C+b)d
ot 3 2 2
J =2dC /12 + 2Ca’/12 + 2Cdg“ + vd(C/2-g)
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modification of Jc and predicts a considerable
influence on punching resistance, while CP110

totally ignores any such effect.

Eq. 5.1 was used to calculate shear stresses for
comparison with CP110 using the critical section assumed

by CP110. Three different values of k were used.

—_
—
—
~
U]

0 according to CP110
0.20 according to AC1-ASCE Committee 326.

— o~
L o

SP) —
P =
1} 1]

0.40 according to Hanson and Hanson.

5.1.2.1. Typical calculation of the shear stress

using Egq. 5.1

For ¢ = 140 mm, b' = 260 mm, d = 60 mm from Fig. 5.A
we find (for CP110)

¢c = 252.5 mm, b = 485.0 mm
g = 61.85 mm, &g = 64.4 mm
A. = 59400 mm 2

Jo = 406.7 x 10¢ mm*

Substitute these values in Eq. 5.1 using k = 0.2 and then
get another value for Vu by using k = 0.4,
Then follow the same approach to calculate ¥y

according to AC1-77 assumptions (see Fig. 5.A and Table 5.1).

Bl 35 - Effect of r‘l/r'2 ratio

In Figs. 5.1 to 5.4 the calculated ultimate shear

stress (according to CP110 assumptions) is plotted against
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¥, ratio. Also in Figs. 5.5 to 5.8 the calculated
ultimate shear stress (according to ACI-77) is plotted
against rlfrz ratio. As shown in these figures, the effect
of r /r, ratio on the ultimate shear stress is small. As
ralr, increases the ultimate shear stress decreases
slightly, while the allowable shear stress given by the
codes remains practically constant. Also we can notice from

those figures that the code values are not on straight line

because they are dependent on concrete strength.

The allowable ultimate shear strength under ACIL-77
code seems to be highly conservative when the value of k
is taken according to the code equation (Eq. 2.26), while
the ultimate shear strength under CP110 appears to be
unsafe for all tests when k = 0 and unsafe for high values
of r /r, when k = 0.20. If the value of-k = 0.40 is used
in calculating the shear stress using the CP110 assumptions
for critical section, and the results are compared with
CP110, it can be seen that all specimens produce safe

results except those with high values of rl/rz.

5.1.4 Effect of rI/L ratio

In Figs. 5.9 to 5.12 the calculated ultimate shear
stress,using a critical plane at 1.5h from the column as is
done in CP110,is plotted against rI/L ratio. | InE3gss. 5513
to 5.16 the calculated ultimate shear stress,using a
critical section at d/2 from the column as in ACI-77 code,

is plotted against r /L ratio.
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As shown in these figures the ultimate shear stress
calculated using Eq. 5.1 tends to increase with the increase
in r /L while the allowable shear stress remains practically
constant. These figures also demonstrate that the ratio
Vtest/Vcode increases as r1/L ratio increases, therefore
for high values of r /L the allowable ultimate shear strength
under the present codes seem to be more conservative than
for low values of r. /L; while it seems to be unsafe for small
values, of r./L [see Fig. 5.17). Fig: 5.18 shows the effect
of the ratio P/L (where P is the perimeter of the column for
three sides). As shown from this figure, for high values of
P/L the allowable shear strength under the present codes is

conservative and it is unsafe for small values of P/L.

5.1%5. Effect of rl/d ratio

In Figs. 5.19 to 5.22 the calculated ultimate shear
stress (according to CP110 assumptions) is plotted against
rI/d ratio. In Figs. 5.23 to 5.24 the calculated ultimate
shear stress (according to AC1-77) is plotted against

rI/d ratio.

As shown in these figqures, the effect of rI/d
ratio seems to be similar to the effect of r1/r2 ratio.
As r /d ratio increased the calculated ultimate shear
stress decreased slightly while the allowable shear stress

remained constant.
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S.1.6. “Effect of

==

From Figs. 5.27 to 5.34 the calculated ultimate
shear stress decreases slightly as M/V increases. From
these results it can be said that the current codes do not
recognise the variation in the ultimate shear stress due

to the variation in the M/V ratio.

5.1.7. Comparison with Regan's analysis for the edge

connection.

To determine the punching resistance of an edge
column, Regan used the following equation:

Ve

]

0.85v, b d (5.2)

o b0 + 1.51h

where b

He assumed that "The three-sides shapes of these
perimeters are such as to offer very little bending stiff-
ness, and it can be assumed that, so long as the combined
flexural and torsional resistances are not exceeded, the

shear distribution remains substantially uniform."

He supported this assumption by some test results
from various sources as shown in Fig. 5.35. The moment

resistances of this figure were calculated as

M, = mxby + Z/E;ﬁ; b
where Mu = ultimate bending resistance about an axis
through the 'centre of gravity of the column
perimeter
mx,my = flexural resistance moments per unit width in x

and y directions
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/m_m = torsional resistance moments per unit width.

b ,b = column dimensions.

By applying these equations on the present test
results we find that these results give low shear strengths
similar to the shear strengths obtained for the tests by
Stamenkovic and shown in Fig. 5.35. This effect may be
due to their small scale as suggested by Regan, h = 75 mm,
and this scale is similar to Stamenkovic's scale

(h = 76 mm).

S Flexural Strength

5.2.1. General

The calculation of the ultimate flexural strength
of the various test structures was made ignoring the
possibility of a premature shear failure. The yield line
theory as developed by K Ndohansoéznd discussed by others

%6, 57, 58 1
was used for this purpose.

An evaluation of the strength of a test structure
is important, not only because the computed or the observed
strength of structures have general application to other
structures of the same type, but also because a comparison
of the computed and observed strength of the test structures
is indicative of the reliability of the known methods of
analysis in predicting the strength of relatively complex

slabs.
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In applying the yield 1ine theory, the yield
moments of the slabs were based on the ultimate strength.
Certain assumptions were applied in calculating the ultimate

flexural capacities of the test structures.

5.2.2. Application of yield 1line analysis to the test

structures.
To determine the collapse load of a given slab the
sequence of the steps may be summarised as follows:

(1) A possible yield 1ine pattern is adopted.

(2) The ultimate moment (m) per unit length is
calculated for various yield lines.

(3) The collapse load (Wu) which corresponds to the
assumed yield line pattern is calculated by the use
of virtual work.

(4) The dimensions of the particular failure pattern
are adjusted to minimise (Wu).

(5) Different trial yield line patterns are assumed and
steps 2, 3 and 4 are repeated.

(6) Provided all possible collapse mechanisms (yield
line patterns) have been investigated, the lowest
computed value of (Wu) is theoretically the correct
collapse load (because of the approximation in the

theory).
The virtual work theorem states that the "external

work" Uoyt? and the "internal work", Ujnt, are equal. The

term external work is the summation of the products of
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external forces and their conjugate displacements which
arise from the virtual displacement system. The term
internal work is the summation of the products of the

internal stresses and displacements.

If a vertical load is applied on the free edge of
a slab, then the possible failure patterns are as follows:
(1) The first yield line pattern is shown in Fig. 5.36
If the load is given a vertical deflection of unity, then
the solution for the slab is obtained by following the above

six steps.

To calculate the ultimate moment per unit length,
the following method was used.

From Fig. 5.37(b) we have

s = 2=y 0.0035 (5.2)
My T+ 0.7, Kb L E AR (5.3)
LR e (where E = 213333 N/mm?) (5.4)

By solving these equations to find Q and x, the ultimate

moment can be determined as:

X LE = Iy
Mu = 0.?0'Fcu.x.b.(d-§) + Asfs(d d') (5.5)
The external work of the slab is
Uext= Wea (5.6)

The internal work is

Uint =0 o 2m1rltanea + 4m2r28
B v
A R R T e :
where B = v tand - etans - Tand (see Fig. 5.36(c))
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By equating the external work to the internal work

we obtain

W o= + + (5.7)

The minimum value of w can be found by differentiation

2r.m dm_ r
%% =0 + > 2 sec?d = cosec?s = 0

B e
tang = v %?2 (5.8)

1

Now substitute the values of Mmoo M, 6, and fy of each

specimen into Eq. 5.7 to get the values of w.

L 2:) The second possible yield line pattern is shown in

Fig. 5.37. By following the same steps as in (1) we obtain:

w = (5.9)

5.2.3. Flexural strength of test structures

The two possible modes of failure shown in Figs.

5.36 and 5.37 were studied and the failure load (Vflex)

and the ultimate capacity Mflex have been found. Clearly

the smaller value of these two failure loads will be used.

test and Mtest abs

represents the maximum

The values of Vflex’ Mf1ex’ Vv
tabulated in Table 5.2 where Mtest

moment reached during testing.
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5.2.4. Comparison with test results

In this section the ultimate theoretical load
capacity of the slab obtained from the yield line theory as
described before is compared with the test ultimate capacity
of the connection. ¢, as shown in Table 5.2 is plotted
against rl/rz, rljd, rI/L and M/V in Figs. 5.38, 5.39, 5.40
and 5.41 respectively; where % is the ratio of test
ultimate strength to the theoretical ultimate strength of

the slab.

As shown in Fig. 5.38, for all specimens, %
decreases as r,/r, ratio increases. It appears that as
r,/r, ratio increases the ultimate flexural strength of
the connection becomes overestimated by greater amounts.

This case is the same for ¢u against r /d (see Fig. 5.39).

In Fig. 5.40, where % has been drawn against rlfL,
for both 1ow and high values of e, fhs ¢u is nearly the same,
but for intermediate values of r /L, 9, is relatively high,
which indicates that the ultimate flexural strength is
overestimated specially for low and high values of rI/L.

The same conclusion can be drawn in the case of b, drawn

against M/V ratio (see Fig. 5.41).

Gre Summary

The following conclusions from this chapter can be
drawn:

(1) "k" factor was used equal to 0.4 by Hanson and
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12
Hanson , in equation no. 5.1. For most specimens this

value gives safe results when used with CP110 stresses and
failure plane. 1In only one case does it give a slightly

low safety factor (0.97).

(2) Equation 5.1 appears not to fully describe the failure
since a constant shear stress is not obtained when using it.
The calculated shear stress is higher for small eccent-

ricities than it is for large eccentricities.

(3) The method proposed by Regan and adopted in part by
CP110 appears to give safe results, although the margin of

safety is very variable.

M,
test
(4) The values of o At the values of ¢ as shown

in Table 5.2 for all :;gZimens are less than unity. This
indicates that the ultimate flexural strength is over-
estimated by a considerable margin for all specimens. The
yield 1ine method is therefore not suitable for the

calculation of the strength of such joints, and some method

which takes more account of shear would be better.
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CHAPTER VI

ANALYSIS FOR ULTIMATE STRENGTH
AND COMPARISON WITH TEST RESULTS

6.1 General

An ultimate strength procedure is derived for
determining the shear and unbalanced moment capacity of
exterior column-slab junctions. This theory is based on an
extension of previous investigations. The strength of such
junctions as predicted by the theory is shown to give good

agreement with test results.

6.2 Introduction

In most cases the strength of flat plate column
junctions without any shear reinforcement is governed by
a shear-flexure failure on some critical section surrounding
the column before the formation of the complete yield line
pattern for the slab. On this critical section the applied
shear and unbalanced moment are resisted by three actions
within the slab, namely (i) flexure, (ii) shear, and (iii)
torsion. The theory for the failure mode is based on the
evaluation of these three quantities which are obtained

from the results and previous investigations.
Fig. 6.1 shows the portion of a flat plate surround-

ing an exterior column. Let V be the resultant shear and

M the unbalanced moment about the x-x axis acting on the
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ADCB = columm perimeter

A'D'C'B' = the assumed shear plane perimeter

sk
7R

I S __,__J])l

Fig. 6.1 Critical section for the shear stress of an edge
slab=-column junction
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centroid of the slab-column junction at ultimate loading
conditions. The forces and moments acting on a critical
section ABCD within the slab and contributing to the transfer

of the shear V and the moment M are indicated in the figure.

The unbalanced moment M is transferred by three
actions, namely (i) flexure on face CD, (ii) vertical shear

on face CD, and (iii) torsion on faces AD and BC.

The individual contributions of these actions will
be determined and summed to obtain the total unbalanced
moment that can be transferred with shear force at the edge

column-slab junction.

The distribution of stresses in the slab around the
column at the ultimate load is very complex. Mast“7 has
obtained the distribution of stresses in flat plate near
columns due to the moment transfer in accordance with the
theory of elastic plates. This elastic stress distribution
does not apply at the ultimate load because of the effect
of inclined cracking in the slab around the column, which
has been ignored in the theory, and is likely to alter the
stress distribution; additionally the elastic theory does
not account for the influence of the slab reinforcement and
the concrete does not behave as an elastic homogeneous
material at ultimate load. Because of this complex

behaviour it is necessary to make some simplifying assump-

tions in order to derive design equations.
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8.3 Assumptions and Prediction of Strength of Edge

Column-slab Connection.

In this section a method is proposed for predicting
the strength of the edge column-slab connection in flat
plate slabs under combined shear and unbalanced moment

loadings.

In Moe's method the ultimate strength analysis was
developed by assuming that the critical section is directly
adjacent to the periphery of the column and that failure
takes place when the maximum shear stress reaches a limiting
value equal to the shear strength of the same connection
under concentric load. For an interior square column and
slab connection subjected to combined bending moment M and
vertical shear force V the ultimate vertical shear stress

is given in Eq. 5.1 as

kMC

V
v = e
Kc I

u
in which Ac = bd, and Ic = (2/3)r®d, b = the perimeter of
the column; r = the column width; C = one half the width
of the column, and k = a moment reduction factor which
accounts for that part of the shear which is resisted by
bending moments and torsional moments acting at the column
and slab intersection. Moe determined the constant k
experimentally and found that the best correlation with

his test results is obtained for k = IB.

In considering the strength of the edge column-slab

167



connections under the action of shear and biaxial moment,

it is assumed that the critical section is located at a
distance equal to half the effective depth of the slab from
the periphery of the column, and, as was done by Moe, that
failure takes place when the maximum shearing stress reaches
a limiting value equal to the shearing strength of the

same connection under concentric load. The limiting

ultimate shearing stress under concentric load was calculated

using the equation

r
.o ¥ 15(1-0.075-d)¥fc (6.1)
g, sl bd/TY :
(859) o 145.25
P f

Tex
Equation 6.1 was chosen for development because of

the following:

(1) This equation was found to give good results.

(2) The shear strength of a flat plate was found, as in
Moe's investigations, to be affected by the ratio

of column side to slab thickness.

(3) The shear strength of a flat plate is dependent upon

the flexural strength.

The value of Vflex in equation 6.1 was calculated
for the test structures by means of the yield line theory
according to the modes of failure discussed in Chapter V.

The application of this method, with some developments, to
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the test structures will be discussed in the following
sections. Note that Equation 6.1 was used after conversion

to SI units, therefore it becomes:

i
1.244(1-0.075 44)/F!
¥ im & (6.1A)
- 140.435 il
2 +U. S T )
N/mm Vetex

v in N/mm?

u
fC in N/mm?
ros bu, d 1in mm
Vetex N N

6.3.1. Prediction of strength of edge column-slab connection

Referring to Fig. 6.1 which is a plan of an edge
column-slab connection in a flat plate floor slab, the
connection is subjected, in addition to the axial shear
force, to unbalanced moment M. As mentioned before, this
moment is balanced by torsional moment, vertical shear
stresses and flexural moment of the slab at the critical
section. The effective depth of the critical section for
shear is equal to the effective depth, d, of the slab at

that section.

To obtain a semi-empirical formula by which the
ultimate shear strength can be predicted, the balance of

the above-mentioned forces has to be achieved as follows.

Equilibrium condition in the x-direction in Fig. 6.1
gives:
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t _
M=(Mcp + Mg + Mg +vx) = 0 (6.2)

where x is the eccentricity of the resultant V in the x
. / t t !
direction, Mét and Mhb are torsional moments on section

BC and AD respectively.

From Equation 6.2 we have

£, ki
Vx = M=(MLL + M + MAD) (6.3)
If the part of the total external moment in the x-
direction to be taken by the vertical shear stresses is
assumed to be proportional to the total moment, M, Equation

6.3 becomes

Vx = kM (6.4)

where k is a coefficient which defines the amount of external
moment which is carried by vertical shearing stresses

between the slab and column. Furthermore, it is assumed that
the shear stresses are uniformly distributed across the
effective depth of the slab, and,as was assumed by Moe,that
the failure takes place when the maximum shear stress

reaches a value equal to the shear strength of the same
connection concentrically loaded. Also it is assumed that
the shear stresses are proportional to the distance from

the centre line of the critical section ABCD (see Fig. 6.2(a))

hence from Fig. 6.2 (b) we have:
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(1) The Tine of zero shear stress G-G is located such
that the resultant of vertical forces due to moment

only is zero.

(2) The moments of shear stress areas about Tline G-G
equal to the amount of external moment which is

carried by vertical shearing stresses is kM.

By taking moments about GG we find:

[2(%\;2(:2)(?.5 c,) + 2(zv,c,)(5 ;) + vlbzcl]d = kM (6.5)

By substituting c , c, and v, (Fig. 6.2) into

equation 6.5 we have

T kM (6.6)

d
——E-l}bf+12bfb2+9b1b§+2bg1

n
™~
o
+
o

where bD

The vertical shearing stress due to the vertical

shearing force (Fig. 6.2(c)) can be expressed as

Vl = v— —

Bl (6.7)
2b_+b_)d b d
1 2 0

Therefore the maximum shearing stress at the inner
corners of the section shown in Fig. 6.2 (d) can be

expressed as:



ma X S m
T EEE W KM (6.8)
0 1 3 2 2 3
EEE[4b1+12b1b2+9b1b2+2b2]
VO
but Vmax = E—;

where Yo 2 vu(2b1+bz)d = shearing capacity at zero

eccentricity, and CE is to be determined from Eq. 6.1.

s ail 2ri+r,
(Note: Eq. 6.1 must be multiplied by 5 it because of
Vit

the new critical section assumed by the writer where

b. = p. .+ % and b2 e d

Therefore

Vv - KM (6.9)

? b1[4b3+12b§b2+9b1b§+2b;J

3b

Ow

Substitute M = Ve in Eq. 5.9 and we get

R kVe
: b 3 2 2 3
EE%[4bl+12b1b2+9b1b2+2b2]
or
v
V = : (6.10)
1+ ke
by [4b3+12b2b_+9b b2+2b?
Ty 1 ) B G 2
3b}

The constant k can now be determined from the test results.
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6.3.2. Interaction diagram

The test results may also be evaluated in terms of
an interaction diagram after Hanson considering the critical
section is assumed to be located at a distance d/2 from the
periphery of the column, and the ultimate shear capacity of
the connection is then calculated for the case of shear
transfer without moment transfer as:

V, = vybd = v A (6.11)

For the case of moment transfer (M) without shear
transfer, the ultimate shear capacity of the connection is

obtained from Equation (6.6) as

kM
o o 4b3+12b%b_+9b_b2+2b?
3b§ 1+ 3 2+ 1 2+ 2
therefore
vmbld
o S v [4b;+12b§b2+9b1bg+2bg] (6.12)
0

For intermediate case, the connection capacity from

Equation 6.8, where the axial shear controls, becomes:

s max m
kMu

Vu = vuAC - AC =

1

2[ﬁbf+12bfb2+9blb§+2b:]
3b?2
kM
v, = Ac[vu . : ] (6.13)
gég[éb§+12b¥b2+9b1b§+2b31
0
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From Equations 6.11, 6.12 and 6.13 we obtain:

v M
B JatE

Vo Mo

(6.14)

6.3.3. Determination of k factor

The factor "k" in Equation 6.9 defines the portion
of the column moment which is carried by vertical shear
stresses as already mentioned. The results from the test

structures are used in determining a value for this factor.

A trial was made to check a similar factor determined
experimentally by Moezfrom his tests for eccentric loads
in one direction and Zaglool from his tests for eccentric
loads in two directions. Moe found that the ultimate shear
strength of all his slabs could be predicted with a standard
deviation of 0.103 when k was taken as equal to %. The
ultimate shear strength of Zaglool's slabs could be
predicted when k was taken equal to 0.04. 1In applying these
two factors to the test structures it was found that the
results were a conservative lower bound when k = % and
unsafe when k = 0.04, as can be seen from Figs. 6.3 and 6.4
and Table 6.1. Also it is noticed from Fig. 6.3 that as
riy/r, dincreases the "k" factor increases. From this, it
can be concluded that the behaviour of edge column-slab
connection subjected to axial force and bending moment is
nearly similar to the behaviour of the interior column-slab
connection subjected to similar loads when the ratio of
r-l/r2 is more than unity, and it is nearly similar to the
behaviour of the corner column-slab connection subjected to

axial force and biaxial bending moment when the ratio of

r,/r, is less than unity.
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The deficiency of Moe's and Zaglool's factors in
this case could be related to the difference between the
type of specimens used by those investigators and the
specimen used in this investigation. Moe's specimens
were square slabs with square columns, while Zaglool's
specimens were full size, square single panel flat plate
structures cast monolithically with a square column at each
corner. For a description of the specimens tested by the

present author, refer to Section 3.3.

It was therefore felt that a determination of a
more suitable moment reduction factor (taking into consider-
ation the effect of rI/rz) was desired, rather than using

that obtained to fit Moe's and Zaglool's results.

The determination of "k" factor proceeded as
follows:

Equation 6.12 can be written in the form
v.b d

u 1
kv
3b2M

[gb3+]2b2b +9b b2+2b3] (6.15)
1 17 2 12 2

0

Also Equation 6.14 can be written

M
M, - u (6.16)

{ it
VO

178



K
@
). 29
K = 0.0689 + 0,0888 z~1/r2
)21 %
®
@
Fig. 6.5 Proposed equation
0.0% for K
0.0 : "
0.00 0.50 1.00 ::'1/1'2
vu/ ¥y Author results Test Ty /::-i

\ Stamankovic v T

X Hanson & Hanson (o] 0.73
/ Zaghlool ® 1.00
i 1.43

1.+
Fig. 6.6 Interaction diagram
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Substitute the values of M0 from Equation 6.16 into
Equation 6.15 and then evaluate the values of "k" for each

specimen (see table 6.2).

Now plot "k" against rl/r2 ratio and find the
relation between "k" and rlfr2 (see Fig. 6.5). Therefore
the equation of the line passing through the points in
E1g..6.5 1s

"
k = 0.0689 + 0.0888 — (6.17)

rz
Also it can be said that when rl/r'2 is equal to
zero, 6.8% of the total moment are assumed to contribute to
the shearing stresses,which is negligible; this increases
as rl/r2 increases, until the ratio reaches unity, where
15.8% of the total moment are assumed to contribute to the
shearing stresses with the distribution assumed to be

linear, as shown in Fig. 6.2.

6.4 Comparison with test results

The validity of the method for predicting the edge
column-slab connection strength presented in Section 6.3 was

checked using:

() The test results of the writer
12

(2) Hanson and Hanson's tests

(3) Stamankovic's tests
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(4) Zaglool's tests.

The theoretical predictions are tabulated against

the test results in Tables 6.2 and 6.3.

In all cases the theoretical predictions were in
reasonable agreement with the experimental results. Some
of the measured results, however, were somewhat lower than
computed. This discrepancy between the measured and com-
puted results may be ascribed to one or more of the

following causes:

) Variation in the yield strength of the reinforcement.

(2) Variation due to placement of steel at levels other

than the assigned ones.

(3) Difficulty in obtaining uniform thickness of the
slab.
(4) Local variation in concrete strength throughout

the slab which was cast from two batches.

The test results are now evaluated in terms of

proposed k values and Equation 6.16, and are plotted in

Fog. 0.0,
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Vu V0 Mf]ex Lvo VcaTc Vtest
5P kN kN kN v
NO. (Test) i L kN-mm N-mm Eq. 6.14a calc
1 40.00 1370 17676.0 | 26532.0 29.46 1.36
2 25.00 43.56 12768.0 | 24393.6 14.96 1.67
3 17.50 38.81 14288.0 | 29495.6 12.66 1.38
4 12.50 34.45 16032.0 | 33072.0 1125 Vel
5 32,50 66.13 14314.0 | 42323.2 19.98 1.63
6 20.00 50.69 14310.0 | 27372.6 17.40 LR
7 17.50 39.99 14208.0 | 29592.6 12.97 135
8 12.50 34.85 15604.0 | 32759.0 11.24 1.1
9 32.50 67.32 15616.0 | 21542.4 28.29 1.15
10 25.00 51.08 14560.0 | 26561.6 18.09 1.38
11 18.00 41.97 16848.0 | 30218.4 15.02 1.20
12 11.00 34.85 15640.0 | 32062.0 11.43 0.96
13 32.00 77.62 16980.0 | 23286.0 32.73 0.98
14 23.00 55.44 17250.0 | 27720.0. 21.27 1.08
15 15.00 41.58 15050.0 | 29106.0 14.17 1.06
Average Ytest = 1.24
Vca]c
Standard deviation o = 0.2]
Table 6.4 Calculated and test results

e Modified Interaction Formula

Hanson interaction formula (Eq. 6.14) may be re-
written as follows
V_M
v e
calc M
flex

where Mf1ex is the flexural capacity of the joint calculated

flex
+L‘J0

(6.14a)

using yield line theory. The results are presented in Table

6.4. As can be seen, the modified form of the interaction

formula tends to predict failure loads generally on the safe
side except for two values, and the standard deviation is

N.21, which is reasonable.

184a



CHAPTER VII

SUMMARY AND CONCLUSION

) Summary

The purpose of this investigation was to study
experimentally the strength and behaviour of the edge
column-slab connection of a reinforced concrete flat plate
under different loading conditions. The view was to obtain
data useful for establishing a method for analysis of this

connection.

The experimental study involved tests on 15
reduced scale connections. The test specimens were as
shown in Fig. 3.1. The column stubs were cast monolithically

with the slabs. The variable parameters were:

(1) The ratio of column sides rlfrz.

(2) Ratio of column side to the effective depth rlfd.
(3) Ratio of column side to the slab length L.

(4) Ratio of bending moment to axial load M/V.

The test results along with the effect of the parameters

were discussed in Chapter IV,
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A theoretical method for the analysis of an edge
connection subjected to the effect of combined axial force
and bending moment was developed in Chapter VI. The method
was checked against the test results of the writer and the
others. Good correlation was found between the test results

and the theoretical predictions.

Taid Conclusions

From the tests conducted and different variable:
parameters involved in this investigation, it was possible

to obtain the following conclusions.

(1) The primary failure mechanism for an edge column-
slab connection subjected to moment and shear can

be idealised as illustrated in Fig. 4.7.

(2) For these structures, visible cracks can be expected

at loads as low as 50% of the ultimate load.

(3) The flexural capacity of the joint is sensifly
constant for the range of column aspect ratio
tested. Such variation as can be seen indicates
that as i increases relative to r there is a

small reduction in flexural capacity of the joint.
(4) The critical section governing the ultimate shearing

strength of the slab is located at a distance equal

to d/2 from the perimeter of the column,
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(5)

(6)

(7)

o

(1)

The ultimate shearing strength of plates computed
at a section at d/2 distance around the column was
found to be predicted with good accuracy by the
following equation

kM
Vi - (6.9)

b
-—i[ﬁb3+12b2b +9b b2+2b31
abg 1 152 12 2

The portion of bending moment to be transferred
through vertical shear stresses distributed along
the critical section as shown in Fig. 6.2, k, was
found to be as follows:

r
k = 0.0689 + 0.0888 '/r, (6.17)

The interaction between the bending moments and
shearing force at the column-slab connection can be

expressed by a linear function as follows:

v M
5SS o (6.14)
VI} MO

Suggestions for future research

On the basis of the present investigation the
following suggestions for further research concern-

ing shear and moment transfer can be recommended:

A study on plates with different steel ratios in
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(4)

the vicinity of the columns.

A study of the effect of different slab thicknesses

on the ultimate shear strength.

A study of the effect of different types of shear
reinforcement on the ultimate shear strength in the

case of thick slabs.

A study of the effect of static reversal loading

on the ultimate shear strength of column-slab

connection is also of great interest.
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(1)

(2)

(3)

(4)

The primary failure mechanism for an edge column-slab
connection subjected to moment and shear can be
idealised as illustrated in Fig. 4.43. (The term
mechanism refers to the last stage of the structure
before failure which is capable of undergoing deform-
ation without change in the resistance to external

loads).

For these structures, cracks can be expected at loads

as low as 50 to 68 percent of the ultimate load.

The failure of the specimen at ultimate load followed
the formation of the torsional cracks on the column
sides and flexural shear cracks at the inner side of

the column.

The flexural capacity of the joint is sensibly
constant for the range of column aspect ratios tested.
Such variation as can be seen indicates that as £y
increases relative to r, there is a small reduction in

flexural capacity of the joint.
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CHAPTER 'V

STRENGTH ANALYSIS

5.1 Shear Strength

5.1.1. General

The effect of the variables on the shear strength
of the connection is discussed and their effect on the
capacity of the connection in the 1ight of the experimental

evidence is pointed out.

5.1.2. Method of analysis

It may be of interest to analyse the results
obtained experimentally in the present investigation using

the conventional method of analysis

vu=%+‘%£- (5.1)
c c
where

AT ultimate shear stress

v = shear force

Ac = Area of concrete in assumed critical
section, periphery times effective slab
depth d.

k = moment reduction factor

M = unbalanced moment

g = distance from centroidal axis to the most
remote part of critical section

JC = polar moment of inertia

and then compare the ultimate shear stresses obtained from
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these results with the allowable ultimate shear stresses
given by both ACI 318-77 Building Code and CP110 Code of

Practice using both assumed critical sections.

This method (Eq. 5.1) was chosen because of its
acceptance by a number of 1r'esear-chersz’?’n'12 and also by
ACL 317-71 and ACI 318-77 codes. This type of approach was
used in comparing with the CP110 approach in obtaining the
modification factor for interior slab-column connection
subjected to shear and moment (see section 3.6.2 CP110 and
Eq. 2.27). The differences between this approach and the

3

5
approach followed by CP110 as mentioned by Regan are as

follows.

) The ACI code includes torsion in its uneven shear
effects.

(2) In the ACI code uneven shear effects are greater
if the column dimension parallel to the eccentricity
is larger than that perpendicular to it, while in
CP110 rectangularity has no effect.

() According to CP110 the effect of uneven shear
decreases for greater slab spans. There appears to
be no evidence either way on this point for flat
slabs, but there are cases in bridge decks where
the ACI predictions are better.

(4) The biggest difference is in the treatments of
moments perpendicular to slab edges, where the ACI

code applies the above approach with a suitable
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modification of JC and predicts a considerable
influence on punching resistance, while CP110

totally ignores any such effect.

Eq. 5.1 was used to calculate shear stresses for
comparison with CP110 using the critical section assumed
by CP110. Three different values of k were used.

(1) k = 0 according to CP110
0.20 according to AC1-ASCE Committee 326.

—— ——
w o

o e
=
1 M

0.40 according to Hanson and Hanson.

5.1.2.1. Typical calculation of the shear stress

using Eq. 5.1

For c' = 140 mm, b' = 260 mm, d = 60 mm from Fig. 5.A
we find (for CP110)

¢c = 252.5mm, b = 485.0 mm
g = 61.85 mm, a, = 64.4 mm
AC = 59400 mm?

Jo = 406.7 x 10° mm*

Substitute these values in Eq. 5.1 using k = 0.2 and then

get another value for v by using k = 0.4.

u
Then follow the same approach to calculate Va

according to AC1-77 assumptions (see Fig. 5.A and Table 5.1).

k.l -3 Effect of r‘l/r‘2 ratio

In Figs. 5.1 to 5.4 the calculated ultimate shear

stress (according to CP110 assumptions) is plotted against
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5 A ratio. Also in Figs. 5.5 to 5.8 the calculated
ultimate shear stress (according to ACI-77) is plotted
against rI/r2 ratio. As shown in these figures, the effect
of r /r, ratio on the ultimate shear stress is small. As
r-l/r2 increases the ultimate shear stress decreases
slightly, while the allowable shear stress given by the
codes remains practically constant. Also we can notice from
those figures that the code values are not on straight line

because they are dependent on concrete strength.

The allowable ultimate shear strength under ACI-77
code seems to be highly conservative when the value of k
is taken according to the code equation (Eq. 2.26), while
the ultimate shear strength under CP110 appears to be
unsafe for all tests when k = 0 and unsafe for high values
of rI/r2 when k = 0.20. If the value of -k = 0.40 is used
in calculating the shear stress using the CP110 assumptions
for critical section, and the results are compared with
CP110, it can be seen that all specimens produce safe

results except those with high values of r]/rz.

e Effect of rI/L ratio

In Figs. 5.9 to 5.12 the calculated ultimate shear
stress,using a critical plane at 1.5h from the column as is
done in CP110,is plotted against rI/L ratio. : InFigs.: 5:;18
to 5.16 the calculated ultimate shear stress,using a
critical section at d/2 from the column as in ACI-77 code,

is plotted against r /L ratio.
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As shown in these figures the ultimate shear stress
calculated using Eq. 5.1 tends to increase with the increase
inr /L while the allowable shear stress remains practically
constant. These figures also demonstrate that the ratio
Vtestfvcode increases as r,/L ratio increases, therefore
for high values of r,/L the allowable ultimate shear strength
under the present codes seem to be more conservative than
for low values of r /L; while it seems to be unsafe for small
values of r,/L (see Fig. 5.17). Fig. 5.18 shows the effect
of the ratio P/L (where P is the perimeter of the column for
three sides). As shown from this figure, for high values of
P/L the allowable shear strength under the present codes is

conservative and it is unsafe for small values of P/L.

5.1.5. .Effect of rlfd ratio

In Figs. 5.19 to 5.22 the calculated ultimate shear
stress (according to CP110 assumptions) is plotted against
rl/d ratio. In Figs. 5.23 to 5.24 the calculated ultimate
shear stress (according to AC1-77) is plotted against

rI/d ratio.

As shown in these figures, the effect of r./d
ratio seems to be similar to the effect of r'llr2 ratio.
As r /d ratio increased the calculated ultimate shear
stress decreased slightly while the allowable shear stress

remained constant.

139



ACI-77 CP110 r,/r
v pycrd ) : e
teat’ calc 7 ° 0.54
- (o] 0.73
& @ 1.00
X + 1.43
Fig. 5.17 The calculated and test shear stresses vs r1/L
P
a.UC
®
N
N 1%
N\ %
®
7 4 @
(o]
1454
= (O]
/ s
® X-— +
®
O
/ i @
o
O
+
1.01
®
r, /L
(:;.2 6.5 0.4

140



vtest/vca;c

ACI-T7 CP110 r, /r2

4 b 0.54
— ° 0.73
A © 1.00
X + 1443

Fig. 5.18 The calculated and test shear stresses
vs (Perimeter/L)

2.9
a
i
N
N % Ve
X
°
Vi ©
(o)
1%
- ®
7 +
o) +
- =
/7 (e
W o]
5
(@)
B
1.9
®©
Perimeter/L
0.5 0.75 1.00

141



2.01

1.5]

1.0

shear stress
2
N/mm

o
@

CP110
Test(k=0.2)
Test (K=0.4)

Fig. 5.19 Influence of r /d

on the shear siress
calculated using

CP110 assumed crit-
ical section (slab
size 600mm x 1200mn

)

2.0

2.0

T

1.0

Fig- 5.20

CP110
Test EK—O.ZE
Test(K=0.4

Influence of r /d
on the shear siress
calculated using
CP110 assumed crit-
ical section (slab
size 800mm x 1200mm

)

2.0
142

o



1.0

N/mﬁd

| shear stress

®
O
©

Fig. H.21

O— —@—. -0
\

-~

® w
--.._____-._______..
O-——--_.. o____oh‘

-

=0

CP110
Test (K=0,2)
lest(K=0.4)

Influence of r,/d

on the shear siress
calculated using
CP110 assumed crit-
ical section (slab
size 1000 x 12000mm)

2.0

1]

1.0}

3.0

@O0 e

Fig. 5.22

CP110
Test K:O.Zg
Test(K=0.4

Influence of r_/d

on the shear siress
calculated using
CP110 assumed crit-
ical section (slab
size 1200mm x 1200mm)

3’16



shear stress

® © ACI-T77
@) Test
3.0 0\
i Fig. 5.23 Influence of r,/d
Ny o) on the shear siress
p Ao T g i calculated using
2 O ACI-77 assumed crit-
ical section (slab
size 600mm x 1200mm)
2.0
;s k] 4
\.
2.0 3.0 4.0 r /4
o  ACI-TT
(o] Test
; Fig. 5.24 Influence of r,k/d
on the shear siress
calculated using
ACI=T77 assumed crit-
ical section (slab
3.01 size B800Omm x 1200mm)
P~
’ =0
C:c) ”
O /
\\ /7
s /
~ =il
ARG o
A ®
1.5 " Ty
2.0 3.0 4.0 r,/d

144



ro
.
wn

2.0

3.0

2.5

2.0 1

1.5

shear stress
qN/mmz

3 ACI-T7
O Test

Fig. 5.25 Influence of r,k/d
on the shear stiress
calculated using
ACI-77 assumed critical
section (slab size
1000mm x 1200mm)

stress

4.0 r1/d

. ACI-TT
O Test

Fig. 5.26 Influence of r_ /d on
the shear stress
calculated using
ACI-T77 assumed critical
section (slab size
1200mm x 1200mm )

145



Kal.8. . mEffect of

] =

From Figs. 5.27 to 5.34 the calculated ultimate
shear stress decreases slightly as M/V increases. From
these results it can be said that the current codes do not
recognise the variation in the ultimate shear stress due

to the variation in the M/V ratio.

5.1.7. Comparison with Regan's analysis for the edge

connection.
To determine the punching resistance of an edge

column, Regan used the following equation:

v 0.85v, b d (5.2)

b. + 1.5mh

where b
p 0

He assumed that "The three-sides shapes of these
perimeters are such as to offer very little bending stiff-
ness, and it can be assumed that, so long as the combined
flexural and torsional resistances are not exceeded, the

shear distribution remains substantially uniform."

He supported this assumption by some test results
from various sources as shown in Fig. 5.35. The moment

resistances of this figure were calculated as

My c=mby & 2/5;5; b
where Mu = ultimate bending resistance about an axis
through the 'centre of gravity of the column
perimeter
mx,my = flexural resistance moments per unit width in x

and y directions
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/mxmy = torsional resistance moments per unit width.

bx,by= column dimensions.

By applying these equations on the present test
results we find that these results give low shear strengths
similar to the shear strengths obtained for the tests by
Stamenkovic and shown in Fig. 5.35. This effect may be
due to their small scale as suggested by Regan, h = 75 mm,
and this scale is similar to Stamenkovic's scale

(h = 76 mm).

5.2 Flexural Strength

5.2.1. General

The calculation of the ultimate flexural strength
of the various test structures was made ignoring the
possibility of a premature shear failure. The yield line
theory as developed by K NdohanSOJan discussed by others

5, 57, 58 .
was used for this purpose.

An evaluation of the strength of a test structure
is important, not only because the computed or the observed
strength of structures have general application to other
structures of the same type, but also because a comparison
of the computed and observed strength of the test structures
is indicative of the reliability of the known methods of
analysis in predicting the strength of relatively complex

slabs.
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In applying the yield line theory, the yield
moments of the slabs were based on the ultimate strength.
Certain assumptions were applied in calculating the ultimate

flexural capacities of the test structures.

5.2.2. Application of yield 1line analysis to the test

structures.

To determine the collapse load of a given slab the
sequence of the steps may be summarised as follows:

(1) A possible yield line pattern is adopted.

(2) The ultimate moment (m) per unit length is
calculated for various yield lines.

(3) The collapse load (Wu) which corresponds to the
assumed yield 1ine pattern is calculated by the use
of virtual work.

(4) The dimensions of the particular failure pattern
are adjusted to minimise (Wu).

(5) Different trial yield line patterns are assumed and
steps 2, 3 and 4 are repeated.

(6) Provided all possible collapse mechanisms (yield
line patterns) have been investigated, the lowest
computed value of (Wu) is theoretically the correct
collapse load (because of the approximation in the

theory).
The virtual work theorem states that the "external

work"™ U  i» and the "internal work", Ujnt, are equal. The

term external work is the summation of the products of
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external forces and their conjugate displacements which
arise from the virtual displacement system. The term
internal work is the summation of the products of the

internal stresses and displacements.

If a vertical load is applied on the free edge of
a slab, then the possible failure patterns are as follows:
(1)

If the load is given a vertical deflection of unity, then

The first yield line pattern is shown in Fig. 5.36

the solution for the

six steps.

To calculate

slab is obtained by following the above

the ultimate moment per unit length,

the following method was used.

From Fig. 5.37(b) we have
els - 4y 0.0035 (5.2)
A; f; + 0.?fcu.x.b = Asfy (5:3)
R S (where E = 213333 N/mm?) (5.4)

By solving these equations to find fe and x, the ultimate

moment can be determined as:

X - = a0

Moo 0.?0fcu.x.b.(d-—§) + Asfs(d d') (5.5)
The external work of the slab is

Uext = Wea (5.6)
The internal work is
Uint = Mor ot 2m1r1tan8a + 4m2r28

Aop
SER? 2 ea i o .

where g = Fm ey oy s Tano (SEE F1g. 5.36(C))
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By equating the external work to the internal work

we obtain
m,r 2m_r_tan® dm.r_cotd
i 1°%.2 - A + 21 (5.?)
e e e

The minimum value of w can be found by differentiation

2r.m 4m_r
%% =0 + L serihs cosec?s = 0

e e
tang = v %?2 (5.8)

1

Now substitute the values of m o, m , 6, and fy of each

specimen into Eq. 5.7 to get the values of w.

(2) The second possible yield 1ine pattern is shown in

Fig. 5.37. By following the same steps as in (1) we obtain:

W o= (5.9)

5.2.3. Flexural strength of test structures

The two possible modes of failure shown in Figs.

5.36 and 5.37 were studied and the failure load (Vflex)

and the ultimate capacity Mflex have been found. Clearly

the smaller value of these two failure loads will be used.

The values of V v and M

flex® Mflex® test test
tabulated in Table 5.2 where Mtest represents the maximum

are

moment reached during testing.
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5.2.4. Comparison with test results

In this section the ultimate theoretical load
capacity of the slab obtained from the yield line theory as
described before is compared with the test ultimate capacity
of the connection. ¢, as shown in Table 5.2 is plotted
against rlfrz, rI/d, rl/L and M/V in Figs. 5.38, 5.39, 5.40
and 5.41 respectively; where % is the ratio of test
ultimate strength to the theoretical ultimate strength of

the slab.

As shown in Fig. 5.38, for all specimens, $,
decreases as rlfrz ratio increases. It appears that as
r,/r, ratio increases the ultimate flexural strength of
the connection becomes overestimated by greater amounts.

This case is the same for ¢n against r, /d (see Fig. 5.39).

In Fig. 5.40, where ¢, has been drawn against r./L,

for both 1ow and high values of r,/Ls ¢ is nearly the same,

0
but for intermediate values of rl/L, ¢0 is relatively high,
which indicates that the ultimate flexural strength is
overestimated specially for low and high values of rlfL.
The same conclusion can be drawn in the case of ¢0 drawn

against M/V ratio (see Fig. 5.41).

5ed Summary

The following conclusions from this chapter can be

drawn:

L) "k" factor was used equal to 0.4 by Hanson and
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12
Hanson , in equation no. 5.1. For most specimens this

value gives safe results when used with CP110 stresses and
failure plane. 1In only one case does it give a slightly

low safety factor (0.97).

(2) Equation 5.1 appears not to fully describe the failure
since a constant shear stress is not obtained when using it.
The calculated shear stress is higher for small eccent-

ricities than it is for large eccentricities.

(3) The method proposed by Regan and adopted in part by
CP110 appears to give safe results, although the margin of

safety is very variable.

M
test _
(4) The values of T and the values of ¢ as shown

in Table 5.2 for all Z;giimens are less than unity. This
indicates that the ultimate flexural strength is over-
estimated by a considerable margin for all specimens. The
yield Tine method is therefore not suitable for the
calculation of the strength of such joints, and some method

which takes more account of shear would be better.
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CHAPTER VI

ANALYSIS FOR ULTIMATE STRENGTH
AND COMPARISON WITH TEST RESULTS

6.1 General

An ultimate strength procedure is derived for
determining the shear and unbalanced moment capacity of
exterior column-slab junctions. This theory is based on an
extension of previous investigations. The strength of such
junctions as predicted by the theory is shown to give good

agreement with test results.

biie Introduction

In most cases the strength of flat plate column
junctions without any shear reinforcement is governed by
a shear-flexure failure on some critical section surrounding
the column before the formation of the complete yield line
pattern for the slab. On this critical section the applied
shear and unbalanced moment are resisted by three actions
within the slab, namely (i) flexure, (ii) shear, and (iii)
torsion. The theory for the failure mode is based on the
evaluation of these three quantities which are obtained

from the results and previous investigations.
Fig. 6.1 shows the portion of a flat plate surround-

ing an exterior column. Let V be the resultant shear and

M the unbalanced moment about the x-x axis acting on the
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ADCB' = column perimeter
A'D'C'B' = the assumed shear plane perimeter

B ____1.__.Ec.
/AR

P e Gl SIS

Fig. 6.1 Critical section for the shear stress of an edge
slab-colunn junction
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centroid of the slab-column junction at ultimate loading
conditions. The forces and moments acting on a critical
section ABCD within the slab and contributing to the transfer

of the shear V and the moment M are indicated in the figure.

The unbalanced moment M is transferred by three
actions, namely (i) flexure on face CD, (ii) vertical shear

on face CD, and (iii) torsion on faces AD and BC.

The individual contributions of these actions will
be determined and summed to obtain the total unbalanced
moment that can be transferred with shear force at the edge

column-slab junction.

The distribution of stresses in the slab around the
column at the ultimate load is very complex. Masth?has
obtained the distribution of stresses in flat plate near
columns due to the moment transfer in accordance with the
theory of elastic plates. This elastic stress distribution
does not apply at the ultimate load because of the effect
of inclined cracking in the slab around the column, which
has been ignored in the theory, and is likely to alter the
stress distribution; additionally the elastic theory does
not account for the influence of the slab reinforcement and
the concrete does not behave as an elastic homogeneous
material at ultimate load. Because of this complex

behaviour it is necessary to make some simplifying assump-

tions in order to derive design equations.
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6.3 Assumptions and Prediction of Strength of Edge

Column~slab Connection.

In this section a method is proposed for predicting
the strength of the edge column-slab connection in flat
plate slabs under combined shear and unbalanced moment

loadings.

In Moe's method the ultimate strength analysis was
developed by assuming that the critical section is directly
adjacent to the periphery of the column and that failure
takes place when the maximum shear stress reaches a limiting
value equal to the shear strength of the same connection
under concentric load. For an interior square column and
slab connection subjected to combined bending moment M and
vertical shear force V the ultimate vertical shear stress

is given in Eq. 5.1 as

V kMC
v = L itk
u Ic o

in which Ac = bd, and I = (2/3)r®d, b = the perimeter of
the column; r = the column width; C = one half the width

of the column, and k a moment reduction factor which

]

accounts for that part of the shear which is resisted by
bending moments and torsional moments acting at the column
and slab intersection. Moe determined the constant k
experimentally and found that the best correlation with

his test results is obtained for k = 13.

In considering the strength of the edge column-slab
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connections under the action of shear and biaxial moment,

it is assumed that the critical section is located at a
distance equal to half the effective depth of the slab from
the periphery of the column, and, as was done by Moe, that
failure takes place when the maximum shearing stress reaches
a limiting value equal to the shearing strength of the

same connection under concentric load. The limiting

ultimate shearing stress under concentric load was calculated

using the equation

r /T
v = V = 15(1‘0.0?5%& (6.])
(o5 byd 145.25 oI
P flex
Equation 6.1 was chosen for development because of

the following:
(1) This equation was found to give good results.

(.29 The shear strength of a flat plate was found, as in
Moe's investigations, to be affected by the ratio

of column side to slab thickness.

(3) The shear strength of a flat plate is dependent upon

the flexural strength.

The value of Vflex in equation 6.1 was calculated
for the test structures by means of the yield line theory
according to the modes of failure discussed in Chapter V.

The application of this method, with some developments, to
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the test structures will be discussed in the following
sections. Note that Equation 6.1 was used after conversion
to SI units, therefore it becomes:
rl
1.244(1-0.075 H")/?l
v, = (6.1A)

bod/Te
N/mm? 140.435 -%———2
flex

: 2
vu in N/mm
] 3 2
fC in N/mm
d 1in mm

VfTex in N

6.3.1. Prediction of strength of edge column-slab connection

Referring to Fig. 6.1 which is a plan of an edge
column-slab connection in a flat plate floor slab, the
connection is subjected, in addition to the axial shear
force, to unbalanced moment M. As mentioned before, this
moment is balanced by torsional moment, vertical shear
stresses and flexural moment of the slab at the critical
section. The effective depth of the critical section for
shear is equal to the effective depth, d, of the slab at

that section.

To obtain a semi-empirical formula by which the
ultimate shear strength can be predicted, the balance of

the above-mentioned forces has to be achieved as follows.

Equilibrium condition in the x-direction in Fig. 6.1

gives:
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t
M!

g T Y

t
M= (M bt x)=0 (6.2)

where x is the eccentricity of the resultant V in the x

- { t t . :
direction, Mé&'and Mhb are torsional moments on section

BC and AD respectively.

From Equation 6.2 we have

5 t
Vx = M-(Mah + MEIL 4 Mid) (6.3)

If the part of the total external moment in the x-
direction to be taken by the vertical shear stresses is
assumed to be proportional to the total moment, M, Equation

6.3 becomes

Vx = kM (6.4)

where k is a coefficient which defines the amount of external
moment which is carried by vertical shearing stresses

between the slab and column. Furthermore, it is assumed that
the shear stresses are uniformly distributed across the
effective depth of the slab, and,as was assumed by Moe,that
the failure takes place when the maximum shear stress

reaches a value equal to the shear strength of the same
connection concentrically loaded. Also it is assumed that
the shear stresses are proportional to the distance from

the centre line of the critical section ABCD (see Fig. 6.2(a))

hence from Fig. 6.2 (b) we have:
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(1) The 1ine of zero shear stress G-G is located such
that the resultant of vertical forces due to moment

only is zero.

(2) The moments of shear stress areas about line G-G
equal to the amount of external moment which is

carried by vertical shearing stresses is kM.

By taking moments about GG we find:

[2(%v2c2)(% c,) + 2(gv,¢,)(5 c,) + vlbzcl]d = kM (6.5)

By substituting ¢ , ¢, and v, (Fig. 6.2) into

equation 6.5 we have

v i kM (6.6)

. bid
- [4b3+12b§b2+9b1b§+2bg]
3b3

wheve b.. = 2b. "+ b,
The vertical shearing stress due to the vertical

shearing force (Fig. 6.2(c)) can be expressed as

Vl = ___V._._ =

S ich (6.7)
(2b +b,)d b, d

Therefore the maximum shearing stress at the inner
corners of the section shown in Fig. 6.2 (d) can be

expressed as:
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maXx S m
0 1 3 2 2 3
EEE[4b1+12b1b2+9b1b2+2b2J
VU
but Vmax = E—;E

where VD = vu(2b1+b2)d = shearing capacity at zero
eccentricity, and ¥ is to be determined from Eq. 6.1.
e o1 2ri+r,
(Note: Eq. 6.1 must be multiplied by 35 55 because of
Gl
the new critical section assumed by the writer where

" d x
b = . $ E and b2 A d

Therefore

V=V - kit (6.9)

0 b 3 2 2 3
Sbé[4bl+12blb2+9blb2+2b2]

Substitute M = Ve in Eq. 5.9 and we get

R e kVe
? b 3 2 3
EE.é.[:;blnzblbzwblbgwbz]
or
VU
v - (6.10)
1+ ke
bl[}b§+12b§b2+9b1b§+2b;}
3b2

The constant k can now be determined from the test results.
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6.3.2. Interaction diagram

The test results may also be evaluated in terms of
an interaction diagram after Hanson considering the critical
section is assumed to be located at a distance d/2 from the
periphery of the column, and the ultimate shear capacity of
the connection is then calculated for the case of shear
transfer without moment transfer as:

Youm Nsb 4 s Vol (6.11)

For the case of moment transfer (M) without shear
transfer, the ultimate shear capacity of the connection is

obtained from Equation (6.6) as

i kM0
& hld 3 2 2 3
§E§[4b1+12b1b2+9b1b2+2b2]
therefore
vmbld ; " ,
M, = _3b§k [§b1+12bfb2+9b1b2+2b2] (6.12)

For intermediate case, the connection capacity from

Equation 6.8, where the axial shear controls, becomes:

S ma X m
KM
- 2 u
Vu = VUAC Ac B ; : : ;
= |:4b1+12b1b2+9b1b2+2b2]
kM,
] = -
v, Ac[vu i ] (6.13)

|:4b§+12b§b2+9b1b§+2bg]

3b3}
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From Equations 6.11, 6.12 and 6.13 we obtain:

) M
e P
VO

|

(6.14)

=

0

6.3.3. Determination of k factor

The factor "k" in Equation 6.9 defines the portion
of the column moment which is carried by vertical shear
stresses as already mentioned. The results from the test

structures are used in determining a value for this factor.

A trial was made to check a similar factor determined
experimentally by Moezfrom his tests for eccentric loads
in one direction and Zaglool from his tests for eccentric
loads in two directions. Moe found that the ultimate shear
strength of all his slabs could be predicted with a standard
deviation of 0.103 when k was taken as equal to %. The
ultimate shear strength of Zaglool's slabs could be
predicted when k was taken equal to 0.04. 1In applying these
two factors to the test structures it was found that the
results were a conservative lower bound when k = % and
unsafe when k = 0.04, as can be seen from Figs. 6.3 and 6.4
and Table 6.1. Also it is noticed from Fig. 6.3 that as
r,/r, increases the "k" factor increases. From this, it
can be concluded that the behaviour of edge column-slab
connection subjected to axial force and bending moment is
nearly similar to the behaviour of the interior column-slab
connection subjected to similar loads when the ratio of
r,/r, is more than unity, and it is nearly similar to the
behaviour of the corner column-slab connection subjected to
axial force and biaxial bending moment when the ratio of

r,/r, is less than unity.
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The deficiency of Moe's and Zaglool's factors in
this case could be related to the difference between the
type of specimens used by those investigators and the
specimen used in this investigation. Moe's specimens
were square slabs with square columns, while Zaglool's
specimens were full size, square single panel flat plate
structures cast monolithically with a square column at each
corner. For a description of the specimens tested by the

present author, refer to Section 3.3.

It was therefore felt that a determination of a
more suitable moment reduction factor (taking into consider-
ation the effect of rl/rz) was desired, rather than using

that obtained to fit Moe's and Zaglool's results.

The determination of "k" factor proceeded as
follows:

Equation 6.12 can be written in the form

e vubld

3b§M

|:4b3+12b2b +9b b2+2b3:| (6.15)
) | T2 1 2 o

0

Also Equation 6.14 can be written

M
= u
I u———v; (6.16)
Ty
VO
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Substitute the values of M0 from Equation 6.16 into
Equation 6.15 and then evaluate the values of "k" for each

specimen (see table 6.2).

Now plot "k" against r‘l/r2 ratio and find the
relation between "k" and rl/r‘2 (see Fig. 6.5). Therefore
the equation of the line passing through the points in
Etg.. 6.5 is

Y
k = 0.0689 + 0.0888 — (6.17)

r2
Also it can be said that when r'lfr2 is equal to
zero, 6.8% of the total moment are assumed to contribute to
the shearing stresses,which is negligible; this increases
as rl/r2 increases, until the ratio reaches unity, where
15.8% of the total moment are assumed to contribute to the
shearing stresses with the distribution assumed to be

linear, as shown in Fig. 6.2.

6.4 Comparison with test results

The validity of the method for predicting the edge
column-slab connection strength presented in Section 6.3 was

checked using:

(1) The test results of the writer
12

(2) Hanson and Hanson's tests

3 Stamankovic's tests
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(4) Zaglool's tests.

The theoretical predictions are tabulated against

the test results in Tables 6.2 and 6.3.

In all cases the theoretical predictions were in
reasonable agreement with the experimental results. Some
of the measured results, however, were somewhat lower than
computed. This discrepancy between the measured and com-
puted results may be ascribed to one or more of the

following causes:

(1) Variation in the yield strength of the reinforcement.

(2) Variation due to placement of steel at levels other

than the assigned ones.

(3) Difficulty in obtaining uniform thickness of the
slab.
(4) Local variation in concrete strength throughout

the slab which was cast from two batches.

The test results are now evaluated in terms of

proposed k values and Equation 6.16, and are plotted in

Fig. 6.6
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Vu Vo Mf1ex LVo Veale EEEEE
il kN kN kN v
NO. (Test) Eq.. 6.1 kN-mm N-mm Eq. 6.14a calc
1 40.00 73.70 17676.0 | 26532.0 29.46 1.36
2 25.00 43.56 12768.0 | 24393.6 14.96 1.67
3 17.50 38.81 14288.0 | 29495.6 12.66 1.38
4 12.50 34.45 16032.0 | 33072.0 11.25 1.1
5 32.50 66.13 14314.0 | 42323.2 19.98 1.63
6 20.00 50.69 14310.0 | 27372.6 17.40 1.15
7 17.50 39.99 14208.0 | 29592.6 12.97 1.35
8 12.50 34.85 15604.0 | 32759.0 11.24 1y
9 32.50 67.32 15616.0 | 21542.4 28.29 115
10 25.00 51.08 14560.0 | 26561.6 18.09 1.38
11 18.00 41,97 16848.0 | 30218.4 15.02 1.20
12 11.00 34.85 15640.0 | 32062.0 11.43 0.96
13 32.00 17.62 16980.0 | 23286.0 32.73 0.98
14 23.00 55.44 17250.0 | 27720.0 - 21.27 1.08
15 15.00 41.58 15050.0 | 29106.0 14.17 1.06
Average EEEEE # ¥
Vcalc
Standard deviation o = 0.21
Table 6.4 Calculated and test results
6.5 Modified Interaction Formula

Hanson interaction formula (Eq. 6.14) may be re-

written as follows
VM
o fl
T o flex (6.14a)
Mérexttls

where Mflex is the flexural capacity of the joint calculated

v

using yield line theory. The results are presented in Table

6.4. As can be seen, the modified form of the interaction

formula tends to predict failure loads generally on the safe
is

side except for two values, and the standard deviation

N.21, which is reasonable.
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CHAPTER VII

SUMMARY AND CONCLUSION

7= Summary

The purpose of this investigation was to study
experimentally the strength and behaviour of the edge
column-slab connection of a reinforced concrete flat plate
under different loading conditions. The view was to obtain
data useful for establishing a method for analysis of this

connection.

The experimental study involved tests on 15
reduced scale connections. The test specimens were as
shown in Fig. 3.1. The column stubs were cast monolithically

with the slabs. The variable parameters were:

(1) The ratio of column sides rlfrz.

(2) Ratio of column side to the effective depth r /d.
(3) Ratio of column side to the slab length L.

(4) Ratio of bending moment to axial load M/V.

The test results along with the effect of the parameters

were discussed in Chapter IV,
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A theoretical method for the analysis of an edge
connection subjected to the effect of combined axial force
and bending moment was developed in Chapter VI. The method
was checked against the test results of the writer and the
others. Good correlation was found between the test results

and the theoretical predictions.

y di Conclusions

From the tests conducted and different variable:
parameters involved in this investigation, it was possible

to obtain the following conclusions.

1) The primary failure mechanism for an edge column-
slab connection subjected to moment and shear can

be idealised as illustrated in Fig. 4.7.

(2) For these structures, visible cracks can be expected

at loads as low as 50% of the ultimate load.

(3) The flexural capacity of the joint is sensibly
constant for the range of column aspect ratio
tested. Such variation as can be seen indicates
that as e increases relative to i there is a

small reduction in flexural capacity of the joint.
(4) The critical section governing the ultimate shearing

strength of the slab is located at a distance equal

to d/2 from the perimeter of the column.
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(6)

(7)

13

(1)

The ultimate shearing strength of plates computed
at a section at d/2 distance around the column was
found to be predicted with good accuracy by the
following equation

kM
V=¥ - (6.9)

b
——l[ﬁb3+1zb2b +9b b2+2b3}
3bg 1 I ] 12 2

The portion of bending moment to be transferred
through vertical shear stresses distributed along
the critical section as shown in Fig. 6.2, k, was
found to be as follows:

r

k = 0.0689 + 0.0888 '/r (6.17)

2

The interaction between the bending moments and
shearing force at the column-slab connection can be

expressed by a linear function as follows:

i P (6.14)

Suggestions for future research

On the basis of the present investigation the
following suggestions for further research concern-

ing shear and moment transfer can be recommended:

A study on plates with different steel ratios in
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the vicinity of the columns.

{29 A study of the effect of different slab thicknesses

on the ultimate shear strength.

(3) A study of the effect of different types of shear
reinforcement on the ultimate shear strength in the

case of thick slabs.

(4) A study of the effect of static reversal loading

on the ultimate shear strength of column-slab

connection is also of great interest.
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