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SYNOPSIS

This thesis describes two methods for the elastic analysis of
structures consisting of arbitrary parallel systehs of shear walls and
plane frames, subject to the effects of static wind forces and imposed
vertical loads. Bending of the floors in their own planes is taken into
account b& treating the structure as a grillage of walls and floors.

This is braced laterally by an assemblage of plane frames. An existing
compact elimination technique for the solution of equations is modified
for use in these analyses.

The first method of analysis uses a matrix force approach in which
the conditions of compatibility at the frame-floor junctions are expressed
in terms of influence ccefficients, derived separately for the frames and
the grillage. In the computer program for this method the regularity of
the structure is exploited in order to simplify the preparation and check-

ing of the data.

The second method employs a matrix displgccment approach in which the
stiffness matrices of the frames are condensed to fora an assemblage of
lateral stiffnesses, which is superimposed on the stiffness matrix of the
grillage. The computer program in this case is designed to make use of
backing storage, in order that fairly large structures can be analysed
with only a moderate core store.

Analyses of three structures are discussed, with particular reference
to the influcnce of in-plane bending of the floor slabs, the effects of
eccentric vertical imposed loading, and the effects of axial deformations
in the columns of the frames.

Verification of the methods of analysis is obtained by comparison with
the results of previous analyses. Comparisons with experimental results

and a finite element analysis are also made for a two storey model.
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CHAPTER 1

INTRODUCTION AND REVIEW OF PUBLSHED WORK L

"1l,1 Introduction

From the point of view of the structural engineer, a tall building
is one in which the vertical components of the structure must be designed
to resist lateral forces, representative of wind and seismic action, in
addition to the vertical dead and imposed loads, Rigidly jointed plane
frames with rectangular panels are a convenient structural form archi-
tecturally and can be used to provide the whole of the lateral bracing
in low=-rise buildings. In taller buildings however their susceptibility
to sway renders them uneconomic, especially if tlLe partitions are light
and non~-structural. More efficient bracing can be provided by reinforced
concrete shear walls and core structures, often in conjunction with
frames,

The necessity for means of determining accurately the distribution
of lateral forces carried by the bracing éomponents has been well
.established. Only in very simple cases are rule-of-thumb methods, based
on the relative stiffness of the components, sufficiently accurate. In
general it is necessanf to consider the complete interaction of a number
of components, not only of different relative stiffness, but with
different cdeflection characteristics. The problem has been the object of
considérable rescarch during the last decade and a number of re%iews
have been published 2'3’4. In this chapter the basic techniques used in
the analysis of complete structures are diccussed with reference to work
published before and during the period covering the work of this thesis.
Consideration is first given to methods of analysis of bracing structures

per se, followed by the analysis of complete structures.



1,2 Shear wall gystems

A plane frame with ;ectangular panels relies entirely on the stiff-
ness of its joints for lateral stability. Consequently, in order to
h provide adequate bracing against lateral forces economically, the stiff-
ness of the frame is often increased by replacing one or more of its
columns by a shear wall.' An alternative arrangement is for one or more
frames to be replaceq entirely by shear walls, usually coupled at each
storey by the floor slabs or by the lintel beams of door and window
openings. Other methdéds of increasing the lateral stiffness, such as

5

diagonal bracing in steel frames“and the use of infill panels are also
common,

l.2.1 The wide—-column frame analogy

Representation of a shear wall by an analogours wide column was
probably first used by Clough, King and HilsonGin a modified form of the
matrix displacement method of analysis which is now well established. On
bending, the rotation of the cross section of fhe wall confers a vertical
‘translation as well as a rotation to the end of a beam framing into its
edge. In the wide column analogy, the finite width of the wall is
simulated bf connecting the joints on the column axié to the ends of the
beams by rigid arms which rotate with the joints. The only modification
necessary in the analysis is the introduction of additional non-zero terms,
corresponding to the beam translations, into the displacement transforma—

tion matrix. This modification is described fully in Chapter 2 in the

notation of this thesis.

1,2.,2 Finite element methods

In the wide column analogy, the assumption of rigid bars between
the centre line of a wall and the ends of the connecting beams precludes
the determination of stresses in these regions. If complete details of

local stresses and deformations are required, an analysis using the finite



element technique is necessary., The method is well established and con-
sists briefly of dividing the structure into a mesh of small elements
connected by nodes at their corners. A simplified displacement function
is usually chosen to describe the elastic behaviour of the element in
relation to the displacements of the nodes and to satisfy compatibility
along its boundaries. This function forms the basis from which the
stiffness matrix of the element is obtained. The stiffness matrix of the
complete structure is constructed by combining the stiffness of individual
elements as in the matrix displacement method.,

Solution of the load-displacement equations gives nodal displace-
ments which constitute a lower bound to the actual displacements. The
degree of accuracy of the results depends upon the fineness of the mesh
and the suitability of the chosen function to represent the behaviour of
the structure., It is usual to vary the ﬁizé of the mesh in accordance
with the stress gradient and a number of elements with different character—
istics may be used simultaneously to represent different paris of the

.structure.

In the analysis of coupled shear wulls, MacleodTShowed that, unless

the cdhnecting beams were relatively deep, their rotations could not
adequately be represented by plane stress elements having translational
degrees of freedom only at the nodes. In a later papershe described a
method using line elements for the beams., The end rotations of the beams
were transmitted to the walls through rectangular plane elements having
an additional rotational degree of freedom at the nodes. -A unique rota~-
tion was achieved by using pairs of elewents in which complementary rota-
tions of a single edge were considered. In a more general approach,

9

Majid and Williamson”dealt with in-plane rotations by connecting opposite

nodes in a rectangular element by an imaginary prismatic member.



1.2.3 The continuum method

Both the wide column and the finite element methods conclude with
_the solution of a large system of simultaneous linear equations, for which
a digital computer is necessary. A direct solution can however be obtained
for shear walls, with sensibly uniform cross section and containing a
single vertical band of openings, by the use of the continuum method.

In this approach, the connecting beams are replaced by a continuous
elastic medium, The lateral applied 1oad§ and displacements are also
represented as continuous functions with respect to the distance from the
top or bottom of the wall., From a consideration of the equilibrium of
the system and by assuming continuous compatibility of lateral displace-
ment of the walls, a second order differential equation is written in
terms of a single statically indeterminate function. In order to derive
an expression for the stiffness of the connecting medium it is usually
assumed that a point of contraflexure occurs at the mid-span point in the
beams, This assumption breaks down and leads to an over—estimate of the
lateral stiffness of the wall when the wall sections are appreciably
:different in size, especially whéﬁ the stiffnesses of the connecting beams
and of ‘the less stiff wall are comparable.

A number of different approaches using the continuum method have been
proposed. These approaches yield similar results and their chief difference
lies in the choice of the redundant function. Rqsman;oused the integral
shear force in the connecting medium. The major developments, which are
reviewed in references 2, 3 and 4, have been directed towards increasing
the applications of the method to include multiple banﬁs of openings and
walls with varying stiffness, A recent approach by Coull et al}luses a
matrix progression formulation for the znalysis of any number of "coupled
walls. The differential equations are performed in a stepwise manner,

thus allowing discontinuities at any levels to be taken into account.

.



1.3 Secondary effects

The accuracy of the wide column frame method and the continuum
_method can usually be improved by the: inclusion of one or more secondary
effects.

1.3.1 Axial deformations

Neglect of axial deformation in the colums of a plane frame leads
to an over-estimate of the lateral stiffness of the frame and to errors
in bending moments, especially in the top storeys wﬁere the maximum axial
deformations occur, MacleodTBhowed that axial deformation in the piers
of coupled shear walls could also be important. Using the wide column
analogy to analysé a number of shear walls with a height-to-width ratio
of 3.15, be found that neglect of axial deformation in the columns
resulted in a gross over—estimate of the lateral stiffness of the walls,
especially when the connecting beams were relatively deep.

1.,3,2 Shear distortion

The deflections produced by the action of shear stresses in a beanm
are frequently neglected. Their significance may be assessed by consider-
ing the deflections due to flexure and shear at the top of a vertical

cantilever of height H, subject to a horizontal point load Q at the top.

3
These are respectively-EEL-and xoH where A and I are the area and second
3EI AG

moment of area respectively of the section; E and G are the respective
elastic and shear moduli, and « is the shape factor. For a rectangular
gection, a value of 1,2 is usually accepted for «» This value was obtained
by Timoshenkol2using a strain energy approach with elementary beam theory.
A similar value was obtained by CowperlBusing a flgorous elastic analy<is
and considering the mean rotation of the warped section.- The alternative
value of 1.5 obtained by Timoshenko is unrealistic as it is based on the
rotation of a single point in the warped section at the neutral axis.
Using the above expressiuvns for flexural and shear deflections it

can be shown that the proportion of the deflection due to shear distortion
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at the top of a plane shear wall with a height-to width ratio of 3 would
be approximately 8%. In similar walls containing openings the effect
would be expected to be less and would be related to the stiffness of
the connecting beams. Using the wide wolumn analogy, Macleod found that,
for the walls described in section 1.3.l1., the proportion of the deflec-
tion attributable to shear distortion was slightly highér than the above
figure, He also concluded that shear distortion was more important in
the columns than in the beams of the analogous frame except when the beams
were slender, !

In a wall-frame structure, Khan and Sbarounisl4f0und that shear
distortion in the wall made little difference except in the bottom two

storeys wherc its inclusion increased the shear torce carried b& the
frame by 10%.

l.3.3 Local bending

Local bending at the built-in end of a cantilever beam, connected
to a wide column, was studied analytically and experimentally by O'Donnell15
.and later analytically by Hichaellé. Both writers reported similar
resulés and concluded that local bending contributed significantly to the
deflection at the free end of the cantilever. Michael showed that for
beams whose depth was less than one sixth of the column width the effect
of local bending could be simulated by increasing the cantilever span by
half the depth of the section. These findings were corroborate@
experimentally by furi and also by Macleod who showed that, for relatively
deep beams, Michaels correction over-estimated the effect of local bending.
Local bending can also occur in a wall at & sudden change in cross—
section. Using a finite element analysis with a fine mesh near the discon-
tinuity,,6houdhury17examined the extreme-case of the cantilever shown in

Figelele Here it was found that local bending incréased the deflection at

the free end of the cantilever by only 2.8%,
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1.4 Analysis of complete structures

In a complete structure the lateral ‘displacements of the bracing
components are constrained at each floor level by the action of fhe floor
‘slabs,. ‘Most methods of analysis derive simplified expressions for the
compatibility of these displacem;nts by assuming that the floor slabs
translate and rotate in ﬂorizontal planes as rigid diaphragms but have
no stiffness with respect to bending or torsion normal to that plane,

When these assumptions are made, the methods of analysis can be classified
by the number of degrees of freedom necessary to define the displace-
ments of all the bracing structures at any floor level. '

l,4.1 One degree systems

If all the bracing components form a symmetrical arrangement and
the loading is also symmetrical, no rotation of the floor slabs takes
place. The horizontal displacements of all the bracing components at a
particular floor level are therefore equal and can be defined by a single
degree of freedom. A typical structure of this type is shown diagramatio-
ally in plan in Fig.l.2a. The assumption of infinite out-of-plane
flexibility of the flcor slabs implies that the inter—action between the
bracing components is one of the translation only., One degree .systems
can therefore be idealised as in-line systems of bracing components con—
nected together by axially stiff pin-ended links as shown in Fig.l.2b.

An early hand method of analysis for this idealised system was
presented by Khan and Sbarounisl4who applied the total external load in the
first place to the wall alone, computing the deflections at floor levels
by simple beam theory. The forces in the connecting links necessary to
produce the same deflections in the frame were next calculated, using a
moment distribution or slope-deflection approach. Equal and oppositc
forces were then applied to the wall, modifying the initial deflections.
The process was repeated until the deflections converged. Convergence was

achieved after about 7 iterations but the rate could be improved by the



use of design charts to select initial distributions for the forces in

the connecting links. A number of secondary effects such as the inclusion
.of axial deformation in the columns, elastic rotation of the wall founda-
tions and moment connections between the walls and the frames could also
be included.

Clough et a1.6used }he wide column frame analogy for similar struc-—
tures consisting of skeletal frames and wall-frame systems, The frames
were analjsed separately, reducing each stiffness'métrix to a condensed
form relative to the la*teral displacements only. The overall lateral
stiffness matrix for the structure was then obtained by direct super-
position of the contiibutions of the individual frames, The load vector
consisted of the applied wind forces together with a set of lateral forces
equivalent_to the applied vertical aﬁd rotational loads. Vertical and
rotational joint displacements in individual frames were obtained by back

- substitution of the common lateral displacements in the original load-
displacement equations,

An analysis of a 20 storey structure showed that neglecting axial
deformations in the frame colums resulted in errcrs of approximately 20%
in the ‘axial forces at the bases of some of the columgs and a reduction
of 14% in the lateral deflection at the top of the building. Shear distor—
tion effects were not discussed. |

The deflection characteristics of a wall and a frame are markedly
different. Under a uniformly distributed lateral load the deflection of
the wall is chiefly flexural as shown in Fig.l.3a, while the frame, on
the other hand, deforms mainly by shearing as shown in Fig.l.3b., Coupling

the two structures at each floor level results in the double curvature
illustrated by Fig.l.3c. These characteristic deflected shapes were used
as the basis for approximate methods of analysis by Rosmanlgand by
Heidebrecht and Stafford Smithgo. In both methods the flexural stiffness

of the wall, ignoring shear distortion was considered to be the sum of the
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stiffness of all the individual walls parallel to the wind direction.
Heidebrecht also included the bending stiffness of the frames normal to
_the wind direction., Similarly, the shear stiffness of the frames was
obtained from the combined stiffnesses of all the frames parallel to the
wind direction using the Portal method of ana.lysis].'8 The forces in the con-
necting 1ink§ were replaced by equal and opposite distributed horizontal
forces Acting on the two structures.

From a cqnsideration of the equilib;ium of horizontal shear forces
and using the principle of stationary complementary energy, Rosman
produced a second-order differential equation in terms of the bending
moment in the wall. Direct solutions were obtained for uniformly and
triangularly distributed loads. The forces in the connecting links were
obtained by statics and distributed to the frame columns in proportion to
their stiffnesses. Applicaticn of the method was restricted to the class
of proportioned frames capable of analysis by the Portal method.

By assuming continuous compatibility of deflections and considering
the equilibrium of the distributed forces applied to the wall and the frame,
‘Hbidebrecht obtained a fourth order differential equation in terms of the
common deflection., A transfer matrix apprpacﬂ was proﬁosed to deal with
structures of non-uniform section. Shear walls with openings were con-
sidered as frames, using the modified beam method of Stafford Smith21

10 take account of wide column effects. |

The results for a ten storey framed tube structure of uniform sec—
tion were found to compare well with a more accurate cqmputer solution.
No results however, were quoted for analyses of more irregular structures
where significant errors would have been expected to result from ihe use
of the Portal method of frame analysis. Also, as the differential equa~
tion was formulated by assuming a shear cantilever analogy for the frame,
comparative results would havc been interesting for structures containing
perforated shear walls which have deflection characteristics intermediate

between those of a frame and a wall,
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An alternative method for dealing with changes in structural stiff-
ness was developed by Gluckzzfor structures consisting entirely of mono-
lithic shear walls., The solution was obtained in two parts. Firstly the
applied forces were distributed to the walls in proportion to their
stiffness in a basic solution, assuming that the walls had a common deflec—
tion'line maintained by iﬁaginary torsion bars at the change points, In
the second, or complementary solution, the bending moments in the walls
were modified iteratively by the redistribu@ion resulting from the removal
of the torsion bars and the equalisation of deflections at floor levels
only.

1.4.2 Two degreé systems

,~ Typical of this class of structure are buildings with a rectangular
plan of fairly high aspect ratio, in which rotation of the floor slahs
occurs as a result of .asymmetrical.loading or an asymmetrical arrangement
of parallel walls and frames, The torsional stiffness of such a structure
is derived mainly from the lateral, in-plane displacement of the bracing-
components, The secondary torsional stiffness of the components with respect
to twisting about their own vertical axes has been shown, in the case of
walls and fr;mes, to be relatively ﬁnimportant'kr' 23. The movement of
the walls and frames at each floor level can therefore be defined by their
positions in relation to some fixed point in the floor slab and_by two
displacements which effectively give the rotation of the floor slab and its
translation in the di{ection of the plane of the walls or frames.

"Hébster24used a wide column frame analogy in which the stiffness
matrices of the analogous frames were partitioned as in Clough'!s method.
Their lateral stiffness wés then obtained by a methed of condensation
similar to that described in chapter 5 of this thesis. A consideration of
the equilibrium of the external wind loads and the forces carried by the
frames at each floor level yielded a set of equations in terms of the
lateral storey displacements of the first and last frames, deriving com-

patibility relationships for the intermediate frames by simple proportion,
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Axial strains and shear distoriion were ignored.

For a structure consisting of an asymmetrical arrangement of core
walls and parallel shear walls coupled by floor slabs, Coull and Irwi.n?5
proposed a method in which the continuum method was used to obtain
influence coefficients for the shear walls, taking account of the effects
of axial deformations in the piers of the walls, but ignoring shear
distortion. Torsional stiffnesses of the core walls about their own
vertical axes were included, using elemen&ary methods. Two sets of
equilibrium equations were formed for the lateral forces and the torques
respectively. Solution of tﬁese equations yielded the respective storey
translations and rotations., A feature of the method was that the equilib-
rium equations could be solved separately for the lateral forces and
torques so that the total number of equations to be solved at one time was
equal to the number of storeys.

Gluck26extended his earlier method of dealing with walls of varying
stiffness to include the effects of torsion. In the basic solution,
lateral forces were dealt with as before. Torqués were distributed in
proportion to the sectorial stiffnesses of the walls with respect to the
shear centre. Colinearity of the deflected fsrms of the walls during the
basic solution was maintained by the introduction of imaginary, torsion-
ally rigid planes at the changes in section., Bending moments and bimoments
in the walls were re~distributed on removal of these planes in %he conm-
plementary solution. The method was applicable only to structures con—
sisting of monolithic shear walls.

l.4e3 Threc degree systems

In a general structure, where the walls and frames are not necess,
sarily arranged symmetrically or in parallel planes, two orthogonal
translations and a rotation are necessary at each floor level to define
the displacements of the braqing components

Probably the earliest analysis of this class of structure was made
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by Weaver and Helson23who extended the work of Clough to take torsional
effects into account. The complete structure was analysed as a

.space frame in which the degrees of freedom of the joints were reduced,

by the diaphragm action of the slabs, to three per joint with two additional
translations and a rotation at each floor level. The method of condensa-
tion of the stiffness mat;ix was very similar to that of Clough, result-
ing in a set of equations in terms of the rigid body displacements of the
floor_slaﬂs. Tﬁe analysis of an L shaped building,-subject to a uniform .
wind load on the long face and a uniformly distributed vertical load on
each floor, showed that neglect of axial deformation in the columns
resulted in a 20% reduction in floor translations and a significant reduc-
tion in floor rotations, especially in the top storeys.

Winolur and Gluck?Tused a matrix displacement approach in which the
lateral stiffness matrices of the individual bracing components were
obtained separately by standard methods of analysis or by the use of models,
assuming u?it translations applied at each flocr level in turn, in the
'directions of the component axes, while zero displacements were maintained
at the other levels by imaginary reactive forces., The overall.stiffnees
matrix of the complete structure, in terms of the stérey displacements
was formed in a similar way by considering unit translations and a rota~-
tion in the plane of each floor in turn,

The results of an analysis of a ten storey btructure showed that the
concept of a shear centre, based on the relative lateral stiffnesses of the
bracing components at each floor is invalid. In fact it was shown in later

work by Gluck26that such a concept is only valid when the deflected feorms

of the components are colinear.

In a similar approach by Stamato and Stafford Smith?s, account was
taken of the interaction of vertical forces where frames or walls inter-
sect at an angle. The effect of these forces was shown to be particularly
significant in the framed tube type of structure where the frames normal

to the wind direction behave like the flanges of a box girder. The
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characteristic "shear lag" distribution of axial forces in the columns
of such frames is described and illustrated in reference 4.

2
A later method by Heidebrecht and Swift J

also used the matrix
displacement method. A modified form of the wide column analogy using
rigid body transformation matrices was employed to take account of the
finite size of beam to céiumn joints and non-coincidence of the shear
centre and centroid ;p wall piers. The warping of non-planar piers was _
included by developing a special member stiffness matrix which included
the bimoment and the rate of change of longitudinal displacement as add-
- itional force and displacement componentse.

Simulation of the bending action of the floor slabs by a system of
connecting beams was proposed, but the method of selecting suitable beam
sizes was not reported.

The continuum method has also been extended to deal with three degree
systems and two methods were published at abouf the same time by Rosman30
and GluckBl. Rosman used the shear forces aloﬁg bands cf openings in
~wall assexblies as the unknown functions in a set of simultaneous second
order differential equations, The number of equations was generally equal
to the number of opening bands in the system, Glucﬁ formulated a system
of three third order differential equations with constant coefficients in
terms of contlnuous functions representlnb the lateral translation and

the rotatlon of the floor slabs,

1.4.4 The effects of bendineg in floor slabs

The effects of out-of-plane bending of the floor slabs has been
ignored in nearly all the methods of analysis of complete structures
except where the slab prévides the coupling medium between shear walls,
When the walls are in the same vertical plane, the effect of the slab can
be simulated by an equivalent beam of the same depth. The choice of an
effective width for the equivalent beam has been the subject of some

research, notably by Khan aﬁd Sbarounisl4who investigated a single column



in a slab with idealised boundary forces.
Graphs of effective width were produced for a number qof’ aspect

ratios and thicknesses of slab.
32

Barnard and Schwaighofer” studied the case of a single pair of walls

connected by slabs with unrestrained edges. The extreme fibre stresses in
the walls, obtained by R&éman's contiﬁuum methoﬁ, were found to be in fairly
close agreement with experiments on é plastic model when the full width of
the slab was considered to be effective. In subsequent discussion however
Quadeer demonstrated that the continuum method is not suffieiently

sensitive to variations in slab width for accurate judgements to be made.

Quadeer and Stafford Smith33, in a more comprehensive theoretical
study, assuming a number of identical pairs of coupled walls, cbnclnded
that, in general, the effective width ic conside?ably less than the full
width of the slabe. Design graphs were presented for direct estimations to
be made.

When the walls are nﬁt in the same vertical plane, the interacticn
lis more complex and can only be studied effectively with the aid of finité
element techniques. Further research is necessary into the significance
of out-of-plane bending of the slabs in certain classes of structure. For
example, the "shear laé" effect noticed by Stomato and Stafford Smith in
a framed tube structure is likely to be redmeed if the vertical forces
transmitted to the inner columns of the frames by the floor slabs are con—
sidered.

In buildings of the so called '"slab type" which have a high aspect
ratio in plan, the distribution of lateral forces among the bracing com-
ponents may be significantly. affected by the bending of the floor slabs
in their own planes.

Goldberg34proposed a method in which the floof slabs were assumed to
behave as dcep beams subject to shear distortion as well as flexure, Out-

of-plane bending was once again ignored. The analysis was restricted to
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structures containing parallel arrangements of monolithic shear walls or
gkeletal frames with rectangular panels. Axial deformations in the beams
and columns of the frames were neglected and no provision was made for the
inclusion of wide colum effects, Equilibrium of lateral forces at junc-
tions of walls or frames with the floor slabs was assumed, but moment
equilibrium between the vertical bracing components and the slabs was
ignored. This latter.assumption is reasonable as it has been shown that
the torsional stiffness of walls and frames about their own axes is
relatively unimportant. The method of solution was a matrix displacement
approach in which equilibrium equations were formed in terms of the lateral
displacements of the floor slabs at each wall or column line., Elimination
of the equations was carried out storey by storey by the method now
generally known as the "method of substructures"”,

Analyses were carried out on two symmetrical structures, one of ten
and one of twenty storeys having two end walls and seven intermediate
frames, The variations in deflections resulting from the bending of the
.floor slabs were shown to be insignificant in both structures. A comparison
of the lateral forces carried by the centre-and outer frames however, showed
that the shear in the bottom storey waé approximately 50% greater in the
centre frame while at the top, the shear in the centre frame was reduced
in approximately the same proportion. At other levels the differences
between the frames were slight. The effeét of neglecting shear distor-
Ition in the walls and.slabs was shown to be significant.

1.5 Conclusions from published literature

In ihe methods of analysis of complete structures described in this
review, a variety of simplifying assumptions are made, the effect of
which is to resfrict the range of structural configurations to which
particular methods can be applied. Completely general methods of analysis,
based on finite elements are available., For example, in a recent program

35

developed by Bray™~, library subroutines for several different types of
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element ére accessible, In the case of multi-storey building structures,
however, the volume of data.required, and the core storage necessary for
such a program would be prohibitive. The alternative of a number of
simpler methods, each capable of analysing a range of structural con-
figurations, is more acceptable,

. The methods having.the most general application are those based on
the matrix displacement method in which analogous frames are used, With
these methods a wide variety of structural forms for the bracing components
can be handled with little or no increase in data preparation or com-
putation time,

Computationél advantages can be obtained by the use of the confinuum
method for the analysis of simple structures with sensibly uniform sectional
and material properties., For more complex structures however the advant-
ages are leass evident and even with the most recent developments, the method
is not capable of such general application as the wide column frame
analogy. -

1.6 The scope of this thesis

Apart from the work of Goldberg, the 5ending of the floor slabs in
their own planes has largely been ignored. Similariy, although facilities
for dealing with the effect of imposed vertical loading on the frames
have been included in somé éarlier analyses, no reports of its effects on
the overall behaviour of the structure have been found. In this thesis
two new computer met@ods, incorporating the above effects, are proposed
for the elastic analysis of complete structures of the type shown in
Fige 1.4. The structures consist of p=rallel walls and frames arranged
arbitrarily and interconﬂected by continuous floor slabs. Static loads

due to wind and the imposed vertical loads carried by the floor slabs are

considered.
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In these methods, the complete structure is treated as a grillage
of walls and floors which act as deep beams, bending in their own plénes,
'.and braced against lateral displacement by the frames. Part of the
analysis consists of the separate analysis, using the mairix displacement
method, of these two basic types of structure. Chapter 2 describes the
notation and sign conventions used in the matrix displacement analysis
and gives the derivation of the basic matrices.

A special subroutine has been written for the compact storage and -
solution of equationc. This subroutine, which is described in Chapter 3,
is based on two original methods due to Jenning's et al and combines a
compact form of Ganssian elimination with the use of direct access disc
backing storage.

Chapters 4 and 5 describe the proposed methods of analysis.

The first of these takes advantage cf the regular natures of the grillage
and the frames so that very little data prepara;ion is necessary. The
second is more general and incorporates the wide column frame analogy,
"thus permitiing a greater range of structures to be analysed. The second
method.also makes use of backing storage so that fairly large structures
. may be analysed with a moderate core store. _

Computer programs for both methods are described in Chapter 6. For
the first approach, the computer program is described in outline only,
with special reference to the methéd of presentaéion and interpretation of
the data. The program for the second method is described in more detail.
It is considerably more complex, owing to the use of backing storage and
to the special partitioned form required for the stiffness matrices of the
frames. '

Chapter 7 contains an account of experimental work carried out on a
two storey model structure consisting of Perspex walls and floors, braced

by steel frames. The resulté are compared with analytical solutions

obtained by the proposed methods and ty a general finite element analysis., .
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The final section of the work, namely an investigation into the
behaviour of three larger pfactical structures, follows in Chapter 8.
These structures are chosen to illustrate the effects of wind and
eccentric vertical loading and to examine the influence of in-plane bend-
ing of the floor slabs, axial deformations in the colums of the frames,
and the effect of local irregularities or discontinuities in the properties

r

of the structural members.



CHAPTER 2

BASIC MATRICES

2.1 Notation

I

ayb,d,ye,f,q

Bi, 01’ etc.

QW >

| o [ ('8 [

I~

. etec,

N e g
(]

£ ,¢ ,m
p'"q’

M ,M
1 =2

m
p' q

F-» T ¢

displacement transformation matrix.
member stiffness coefficients.
cross sectional area.

stiffness coefficients for a general frame.
Young's modulus.

modulus of rigidity.

depth of section.

Joint number at end 1 of a member.
joint number at end 2 of a member.
second moment of area.

assemblage of member stiffnesses.,

stiffness matrix.
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contributions of a mumber to the stiffness matrix.

matrix of applied loads.

flexural length of a member.
direction cosines.

moments at ends 1 and 2 of a member.
ratrix of member forces.

axial force.

shear'force.

radius of gyration.

rigid extensions of a beam connected to a wide
thickness of a plate member.

torque.

axial deformation of a member.

column,
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XyYs2

sway of a member.

matrix of displacements at joints.

coordinates of joint displacements.

matrix of member displacements equivalent to P.
shape '‘factor of a section.

constant relating shear and flexural deflections,
Péisson's ratio.

rotation,

angle of twist.

rotations about the x, y and z axes.

rotations at joints i and j. -

rotations at ends 1 and 2 of a member.

20
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2.2 Introduction

In this thesis twd basic structural forms, namely the grillage
and the plane frame, are analysed using the matrix displacement method.
Briefly summarising, the relationship between the external loads L and
the vectorially equivalent joint displacements X, in terms of the system
coordinates, is expressed by the equation

_Ii =}_{._}_{. ' = 3 ) ey ’(2¢1)

hhefelg is the stiffness matrix of the structure. The corresponding

relationship in terms of the local member coordinates is given by

g - .I_C__?_ - sessse (2."‘

where P and Z are equivalent vectors of the respective member forces
and displacemenis, and k is a diagonal assemblage of member stiffnesses.
Transformation from system to local coordinates is effected by the egua-

tion

Z = AX veeeee (203)

where A is the displacement transformation matrix. The stiffness matrix
is constructed directly from the stiffnesses of individual members by

using. the relationship .

K =2ka , ceeeee (202)

where the prime denotes the transpose of the matrix. For a single

member, this operation results in the submatrices
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K.. I X, .

b -1l = -1]
. 1 K.

=J1 ; —=J3

These are the contributions of the member to the overall stiffness
matrii of the structure. The subscripts i and j refer to the joinis at

ends 1 and 2 respectively of the member.

2.3 Grillage analyvsis

Fl

The floor slab elements and solid wall panels of the complete
structure are assumed to act as the members of a grillage loaded by the
wind forces. It is assumed that the members are rigidly connected deep
beams bending in their own planes and subject to torsion about their
longitudinal axes., Walls are assumed to be encastre at their bases, The
positive sign convention adopted for forces and displaccments is in accord-
ance with the right hand screw rule and is shown diagrammatically for a
‘horizontal and a vertical member in Fig. 2.1, The axes of the members
iie in_the x'y plane and the joints have degrees of freedom in the
z,06° and ¢Y directions,

The conventional form of the slope-deflection équations must bé
modified for a deep beam to take account of shear distortion. Thus, {for

a member of length !, using the sign convention and notation of Fig. 2.1,

=281 (2 + ) + 2BI(1 -8 ) - ¢z [ 1
T ('1_+g_p 6 _F 1+ 28 °. L& (l+ 2f3) v

ceseee (2.52)

M:zm(' g) 4.zn( ) -GH( 3.)
2T1+2ﬁ 1+ 28 5"1.;.2;3 v

Taking moments about one end of the member and substituting for the end

moments,



Fig. 2.1. Sign. convention for griliage
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Q=—6EI(.v1 ) -@;,-( 1 ) + 12EI( 1 ) e (20
Te\i+28/% TtE\iw2s/% s \Twzp/ 7 (2.50)

where E is Young's modulus and I is the second moment of area of the

sections B is a constant relating the deflections of a member due to
shear distortion and flexure. Its value is dependent on the geometrical
proportions 6f the member and may be expressed in terms of the slender-

ness ratio, thus \

B = 1_2_(1,' 1+ v e (2.6)
L =4
;.

where o is the shape factor of the sectiion, yis Poiéson‘s ratio and r
is the radius of gyration in the plane of bending. Equation (2.6) shows
that for slender members g tends to zero and the slope deflection
equations then aésume the standard form for a prismatic member.

When the restraint on the warping of the. cross sections is slight,
the wall and slab panels may be assumed to behave in torsion as long

" rectangular strips in which the torque T and the angle of twist op 2are

related by the equation

T = Ghtae_ : seesee (2'7)

where h is the depth and t the thickness of the section. From equations
(2.5) and (2.7) the force-displacement equations for a grillage member

may now be written in the form of equation (2.2), thus

Q] = [b 4@ a o] [+

M" d ° f 0 et s eea (208)
M |l a £ e O e
2 ]

B3 .0 0 0 qlJ LS&&
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where b = 12EI ( 1 )

53

1+ 2B
-5y
. L2 \1 + 2p

e = &EI(Z-!-E)
L \1 + 28

e - (1o )
- L 1+ 28
q = Ghit?
3¢
Since the grillage members represent the floor slabs and walls of
a building they may be assumed to be either horizontal or vertical. It
is convenient therefore to construct two sets of displacement and irans-
formation equations, using the sign convention and notation of Fig. 2.1.
For a horizontal member, with joint i at end 1 and joint j at end 2, the
displacement transformation equations may be written in the form of

equation (2.3), thus

joint i joint j
vl =1 0 0}-100"'55"
|
0 0 0 1100 0f|e"| jointi
|
0 0 0 010 0 1 oY
2 !
1
-B.T- i 0 -1 0 = 01 0 — eessee (2.93)
Z
o joint j
By

while for a vertical member



joint i
B v‘w =T =1 0 0
) 01 O
1
0 0 0O
‘2
ar 0 0-1

joint j
l1 0 0 7 rz1
0 0 0 6"
010 ¢
i 0 01 -
Z
ax
67
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joint i

(2.9p)

(AR R R R

joint j

The operation described by equation (2.4) produces the contribu-

tions of the member to the overall stiffness matrix. Thus for a hori-

zontal member,

-{1_! Sj 7
K-.. | K.
=30 =53
while for a vertical
£E.t &£. =
-ii ! =-ij
T
1
> K,.
=ji i =j§J

> 0 d 1 =b 0 &
0 g O 0-q O
d 0 e -4:0_f
b 0 -d b 0 4
0O-g 0i O q O
]
d 0 £ 1 -d 0 e .
member,
[b-a 0 | ~b-d 0]
\
d e O i d £ 0
!
0 0 ¢q 1 00 ¢
______-;-%_-u_______
b 4 0 i P d 0
1
-d £ 0 i d e O
]
0 0O-g 1 0 O ql

(2.10a)

LN N NN ]

(2.10b)
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General expressions for the determination of member forces from

the joint displacements may be obtained by combining equations (2.8)

‘and (2.9). Hence, for a horizontal member,

[ Q] =|—b0di—b0d-|'z"-

M a 0el —ao0rs 6|  joint i

.M 1l a orf ; -4 0 e X4 .

| 7 L o-g 0} ©0gqo0l|— veeees  (2.113)
%
o= joint j
oY

and for a vertical member,

(@] =[v a0 vao] [z]
| b
[
M, -4 e 0! d f O o~ joint i
| y
M -4 £ 01 de O° 6
3 '
T . 0 O—EI } 0 o q 4 — . + eeeense (2.11b)
i ) 2
= joint j
oY

2.4 Frame analysis

The term "frame" is used here in a general sense to denote eithes
a skeletal frame consisting of prismatic members, or a wide-column
analogous frame representing a shear wall system. Since the analysis

of the frames is made separately from that of the grillage, axes may be

chosen arbitrarily to define the plane of the frame. The x and y axes
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are used in this thesis as shown in Fig. 2.2 which also shows the
_positive sign convention for forces and displacements. Joipts may be
allocated from zero to three degrees of freedom in the x, y and 6
directions.

The force-displacement Equations for a single member of length £
and cross sectional area A may be obtained directly from the slope

deflection equations (2.5) and the axial stiffness of the member, thus

P ) = a 0 0 O u
Q 0O b 4 4d v
M 0 d e T (5] sosses (2-12)
1 ) 1
M -0 4 f e ¢]
- 2— -~ . - s 2—

where a = %g, the axial stiffness. The other coefficients have already
been defined.
For a prismatic member with joint i at end 1 and joint j at end 2,

the displacement transformation equations may be written in the form

Nad
ul = —gp =m, 0 "’p m, 0-‘ x
v =l -mq O ¢ mg O ¥ joint i
B 0 0 1 00 O &)
1 .
) "0 0 0 0 0 1 — ceseee  (2.13)
| 2] L ]
, b 4
y joint J
[ o | L

where { , m , ¢ ,m are direction cosines.
F ] QT q

The effect of a wide-column is shown diagrammatically in Fig. 2.3a.

Here the shaded areas are aszumed to rotate as rigid arms of length

8, and s, at ends 1 and 2 respectively of the beam. The arms are measured



Fig. 2.2

Sign convention for plane frame
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positively from the joint to the end of the beam in the positive direc-

tion of the P axis. 1In the figure therefore,s; is negative. Rotation

of the joints in a positive direction causes a reduction in the relative
lateral displacement of the ends of the flexible span of the beam as

shown in Fig. 2.3b. Equation 2.13 is consequently altered to

wu] = -, -m 0 i i, m 0 171 x]
] C sy s
v by mq -5, 1 b mg s, ; joint i
0 0 0 l1 10 0 .0
. i
0 o 0 o0 0O 0 1 0 :
2 — . I EXE RN ] (2.14)
L i L
- x
y joint j
L e

The application of equation (2.4) to the member stiffness matrix
of equation (2.12) and the displacement transformation matrix of equation
" (2.14) yields the contributions of the member to the overall stiffness

matrix of the frame, thus

| - - - - -
N i =ij - A, B =C A =B, Cz;
______ I
K.. | X.. B: F1 T, *Bi -F, -T,
=J1 y =JJ
-Ci _T1 E1 Ci Tl. F,
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where:
A = (?a +1%0 C = ¢ (d+shb)
1 - q 2 . q 2
B1 = zﬁnPa + zqmdb Ez = sg.b + 232d + e
C1 = gq (@ - sib) F,oo=4d (s2 - 51) -s;sb+f
E, = s, b-25d+e T, = mg (d+8,b)
F: = m':-a. + mz b
T o= m (a - sz)

Menber forces for eéch individual member are determined from the

joint displacements by combining equations (2.12) and (2.14), thus

(Pl = | -at -am . 0 | at am 0 |
P q | P P X
Q b2 -bm (d-s b) | bt bm (d+s b)
q q 1! q q 2 Y| Joint i
M | -4t -dm  (e-s d) i d¢ adm (f+s Q)
i q a 1 ' q q . 2 8
1
-d¢ -dm -sd) | a¢ dm +s d
Rt | %, q (r % ) i a4 a (e 2 )_ — (2.16)
X
joint j
.8
e

For regular skeletal frames it is convenient to construc% separate
matrices for the beams and columns, assuming that the direction of the P
axis for the beams i; froﬁ left to right, while for the columns it is
vertically downwards. The terms involving 8, or s& are eliminated. Thus

for a beam equation (2.15) is simplified to become

L
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teesss (2.17&)

ssisns  (Pulld)

In a similar mammer simplified fo.ms of equation (2.16) may also

be derived lor the deitermination of member forces.



CHAPTER 3

COMPACT STORAGE AND SOLUTION OF EQUATIONS e

3,1 Notation

A coefficient ma1':rix.

a'ij typical element of A.

B right hand side matrix,

biq typical element of B.

c ~matrix of iemporary reduction factors.
cj, 13 elements of C.

i, j, ¥ row and column subscripts.

m number of right hand side columns,

n: number of equations. .

q - column subscript for matrix B.

T column number of first non-zero element in row i of A.
matrix of unknown variables in equation AX=3B.

1>
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3.2 Introduction

In the methods of analysis used in this thesis the load-displace-
ment equations give rise to stiffnesé matrices that are large, sparse,
positive definite and symmetrical, but in which the elements do not
necessarily form a well defined band. A solution sub-routine has been
written based on the compact methods of stcrage and elimination.due to

36,37

Jenmnings et al which take advantage of the non=uniform band width

and of the symmetry of the matrix to reduce storage requirementis.

3,3 Jennings! method using Gaussian elimination

Jennings! original method may be described by considering the

solution of the set of n equations

AX = B cesese  (3.1)

where A is a symmetrical, positive definite coefficient matrix of

order n x n. B and X are maérices containing respectively m columns of

- right hand elements and the corresponding m vectors of unknown variables.

The ma?rixlg is stored as a continuous sequence row by row, starting from

the first non-zero element in each row and finishing with the pivotal

element on the leading diagonal. In order to locate the position of

each individual row in this sequence, the addresses of the leading diaz-

onal elements are stored as a separate sequence.- The right hand side

matrix B is stored in full matrix form and is overwritten by the solution

matrix X after a process of reduction and back-substitution based on

Gaussian elimination. Both matrices A;and B are wholly stored in cors.
In the reduction of a tfpical row i of A, a set of temporary

redauction factors c:j are determined for each column j starting from the
first non-zero element and finishing at the leading diagonal., The number
of temporary'factors for row i is therefore equal to the number of stored

elements aij' from which the factors are obtained, thus:
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J=1
2 —_— — [ AR N] .2
cj = aij C) ajk _ (3.2)
k=r.

where Ty is the column number of the first non-zero element in row i.
In the summation, since k never exceeds j-1, all the values of Cp Will
already have been determined. The e}ements aij are then replaced by
Oy Big for values of j from r; to i-1. The pivotal element a4 is
replaced by 1/ci. A new set of quantities c‘_j is formed during the
reduction of each row and is stored in the temporary sequence C.
Reduction of the m right hand side columns takes place row by

row. For a typical row i the process consists of replacing each right

hand side element biq by the quantity
i-1

3 (bi‘l"Z °5 P3q) e (3.3)

where q= 1, 2’ eseeese Me Once ag,‘ain, since j is a.lwaya less than i|
. all the elements qu in the summation will already have been reduced.
The back-substitution process is carried out for a typical row i

of A by subtracting th? product 201 biq from each hkq' where g = 1, 2,

esees M, for each value of k from T, to i-l. Successive applications

of this operation for i = n, n=l, ...s. 2 converts the right hand side

matrix B into the solution matrix.

3+4 Jennings! method using backing storacge

Jennings! later method employs the swne system of computer storage
for the cucificient matrix.but makes use of backing storé f;;ilities to
enable larger systems of equations to be solved with less core storage,
The method of sclution is based on Cholaski factorisation. The coeff-

icient matrix is partitigned into a number of segments, each of which

consists of an integral number of rows. These segments are stored on a



direct access disc file in fixed length blocks such that each block
is wholly or partially filled by one complete segment. The right hand
gide matrix is stored entirely in the core.

Reduction of the coefficient matrix takes place in a working area
of core store which, at any stége of the process, contains an active
and a passive block. The active block contains the elemenis currently
being reduced while the passive block contains those elements which
are required during the reduction of the active block. Active blocks
are divided into sections to avoid unnecessary transfer of passive blocks
between core and disc. Reduction then takes place row by row within
the sections. Reduction of the right hand sides, which are stored
entirely in the core, takes place either during or after reduction of

the coefficient matrix.

3.5 MNodified method of solution

In the method of solution which follows, Jennings! original approach
" using Gaussian elimination is modified to make use of the backing store
facilities just described. The right hand side matrix is also_stored
in fixed length blocks‘'on a direct access disc file in order to accom-
modate the large number of right hand side columns arising in the ana{ysis
of the frames. The matrices are partitioned so that correspon&ing seg-
~ ments of A and B contain equal numbers of rows. Gaussian elimination
rather than Choleski factorisation was chosen so that the subroutine
would be of the most general use in future research projects. Choleski
factorisaiion is proﬁé to give difficulties with negative square roots
in problems where the coefficient matrix has weak diagonal elements.
Previous work3s'39has shown however that load-deflection curves can

successfully be obtained, using Gaussian elimination, for siructures

with up to 2000 degrees of freedom even when the structure is approaching
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instability. The additional storage required for the temporary reduc-
tion factors is only equal to one disc block (a maximum of 512 real
numbers) and does not constitute a significant disadvantage.

The solution process may be described by considering the coeff-
icient matrix and right hand side columns of the set of equations
illustrated diagrammatically in Fig. 3.1. It is assumed that reduction
of the coefficient matrix has reached the stage where block 3 is about
to be reduced. Block 3 is therefore brought into the core as the active
block. The block is divided into sections as shown., It can be seen
from the diagram that reduction of the elements in section 1 requires °
only the elements of block 1 and so-on. The reduclion process therefore
takes place by reducing all the elements in section 1 with block 1 also
in core as a passive block. Reduction then proceedg to section 2,
replacing block 1 by block 2 as the passive block and so-on. Since each
section generzlly contains several rows of elements it follows that the
ﬁuMber of temporary ¢ factors required will be the same as the total
" number of elements in the active block and that the elements of C will
have a one o one correspondence with the elements of A as shown. Equation

(3.2) therefore becomes :

j i .
cij i Z . ececes (3&4)
k—r

1
El t P 1 =3 i :®
ements a, ; are rep aced by c, 15 255 o ayy is replaced by /cil
During the reduction it is necessary to include tests to ensure that
operations are not carried out on zero elements of A which occur before

the first non-zero element in a row and are consequently not stored in

the compact sequence. The possibility of this occuring in the summation
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part of equation (3.4) is excluded if reduction of the active block
takes place column by column,.starting the summation with k set to
rj as shown, where rj is the column number of the first non-zero
element in row j. For example, if j = 6 and i = 8 as in Fig. 3.1,

then k is set to 4 and

°86 = %86 ~ %84 %64 ~ %85 265

Reduction of the tight hand sides may be carried out in parallel
with the reduction of the coefficient matrix., Alternatively, as in the
present version of the program, the temporary stores may be written tc
disc as they are formed and called back into core later for the reduc—-

tion of the right hand sides, when the reductién of the coefficient

matrix has been completeds In this case the'expression (3.3) becomes

i-1 .
%_._ (‘biq_—-z ¢s5 biq ) (3.5)
e T . :
J=rc
< 1F

In or@er to-obtain all the terms qu to complete the summation it is

usually necessary to have recourse 10 several passive blocks. Accordingly,

to economise on block transfers, all the elements qu required from a

particular passive block are used before the next passive block is brought
-~

into store., For example be in active block 3 is reduced by successively

subtracting the follﬁhing quantities from it.

Passive block 1 083 b3q
; 6
Passive block 2 }E: ch qu
3=
Passive block 3 087 b?q

In each case q takes the values 1, 2, 3.
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After the reduction process has been completed the coefficient
matrix is an upper triangular matrix with its diagonal elements equal
to unity. This matrix is stored in transposed form in the locations
vacated by the original element; of A« Solution of the reduced set of |
equations proceeds by back substitution starting with row n-1 of B.

The process consists of subtracting from each element biq' the quantity

n

Z 8i tﬁ{q | t3.6)

k=i+1 -

Where q = 1' 2 eoseoes Il

Suffix i refers to the rows of the current active block of B
while suffix k denotes the rows of the passive blocks of A and B. To
minimise block iransfers, all possible summations are carried out with
anf pair of pgssive blocks before bringing the next pair into core. For
éxamﬁle, the operations on active block 2 with passive blocks 3 in core

as follows:

8

qu is replaced by b6q - j{: a6 bkq s Erei (3.7)

k=7
8_- -
b5q ls I‘eplaced by bsq - Z a-ks h‘.ﬁq sescee ‘ (3.8),

. k=7
b4q is replaced by b4q - ag, be cessas (3.9)
‘where q takes the values 1, 2, 3 in each case.

It should be expla{ned that elements A which are called for by
the gencral expression (3.6) do not appear in the summations if they

are zero elements not stored in the compact sequence. In the examples

quoted above 394+ 3951 29y and aq, aTe all omitted for this reason.
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In operation (3.7).the subscript k starts at its correct initial
*value of T. Its final value of 9 is disallowed for the reasons stated
above. All possible operations called for by the general expression
(3.6) have thus been carried out on the element b6q' which therefore
becomes a solution. The operati?ns on the elements b5q and b4q in
operations (3.8) and (3.9) on the other hand are seen to be incomplete.
Further operations with lower values of k are required to be carried
out when the subsequent passive block 2 is brought into store.

A computer program was written for the method, in the form of
the Fortran subroutine CDM, by J. S. Sidhu, under the supervision of the
author. An outline flow diagram for this subroutine is given in
Fige 3.2. When the subroutine is called, the matrices A and B are
gstored in the correct form on direct access disc files. On exit from
the subroutine the matrix A contains reduced elements and B contains the
sélution vectors. The function of the subroutine in the context of a
prégram for the analysis of complete structures is described in

Chapter 6.
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ANALYSIS BY INFLUENCE COEFFICIENTS

4.1 Notations

2

a. .
1J

[=2

» w A

y

i3

I

!

ij! ig

ij

[}

ij'kt

I IR

B .

horizontal deflection vector at all the frame

junctions due to w.

horizontal deflection of the grillage at junction

ij due to w.

porizontal deflection vector of the-frames due to
eccentric imposed loading.

deflection of a frame horizontally at junction ij due

to imposed loading.

horizontal deflection vector of the frames due to f.
horizontal deflection of a frame at junction ij due to f.
horizontal deflection vector at all the frame junctions
due to g and w.

total deflection of the grillage at junction ij.

Young'!s modulus.

vector of loads transmitted to the frames.,

horizontal force transmitted tg a frame.at junction ije.
influence coefficient matrix for the frames.

horizontal deflection of frame i at junction ij due to
unit horizontal force acting on the frame at junction if,
vector of loads transmitted to the grillage.

horizontal force transmitted to the grillage at frame

Junction ij.

‘influence ccefficient matrix for the grillage.

horizontal displacement of the grillage at junction ij due
to unit horizontal force acting at junction k¢,

stiffness matrix of a frame or grillage.

load matrix for determination of influence coefficients.

total number of storeys.
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total number of frames.

external wind load vectior.

wind force at junction of frame i with floor j.

actual wind load vector acting at the wall junctions,
wind force at the junction of wall i with floor j.
co-ordinates of joint displacements.

displacement in the direction of the rth degree of freedom
of the grillage.

displacement matirix resulting from the solution of ZFETILP
element in row r, column j of X,

Poisson's ratio.

rotation of a joint in a plane frame.

rotation of a joint in the grillage about the x axis.
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A.2 TIntroduction

The basic assumptions made in the analysis of the complete
structure have been described in Chapter 1. Briefly recapitulating,
the structure is assumed to consist of a grillage‘of solid walls and
floor slabs which is stiffened against horizontal displacements by the
action of a number of plane frames,

In this method the grillage and the.frames are'analysed separately
under the action of a system of unit horizontal forces in order to
determine their influence coefficients. The sub-structures are then
re-assembled so that the horizontal equilibrium and compatibility condi-
tions are satisfied at the junctions of the floors with the frames. The
method is basically a force method which leads to a set of compatibility
equations in terms of the horizontal forces carried by the frames at
each floor level, The number of these equations is therefore equal to
the number of frame~floor junctions in the complete structure.

Determination of the influence coefficients is carried out by the

matrix displacement method, using the basic matrices developed in
Chapter 2. Computer programming and data preparation'are simplified in
this approach by using the particular form of these matrices.developed

for horizontal and vertical members.

4.3 Analysis for wind loading

It is assumed in this analysis, and also ir the alternative approach
described in the next chapter, that the statical equivalent of the wind
load can be expressed as a system of concentrated loads acting at the
junctions of the floors with the walls (wall junctions), and with the
frames (frame junctions). Each af these junctions constitutes a joint
in the grillage and is definéd, as shown in Fig.4.l, by two reference

numbers. The first number indicates the position in the structure of



wall | 7

frame 1|

N w2l
frame 2

e

wall 2

Fig. 4.1.  Numbering of wall and frame junctions



the wall or frame, numbering from left to right. The second refers to
.the level of the junction. For instance, P1o and W), are the wind
forces acting at the junctions of frame 1 and wall 1 respectively with
floor 2.

Consider first the wind force pij acting at a typical frame junction
ij. A portion of this force fij is carried by the bare frame wbile thg

remainder'gij is transmitted to the grillage. Thus, for equilibrium

pij = ' fij + gij ssseee (4.1)

The horizontal equilibrium at all the frame junctions may be expressed

in matrix form by the set of equations

R =1+ g , {4.2)

Equation (4.2) implies that the only interactive forces relative to
the frames and the slabs are the .lateral forces, an assumption made by
most workers with regard to structures of the type coqsidered in this
thesis: The stiffness of the slabs with respect to bending normal to
their planes is ignored except when part of the slab may be considered as
a beam spanning between the columns of the frames. Approximate methods - -
for establishing the width of the beam in such cases were discussed in
Chapter 1. The resistance of the frames to twisting about their vertical
axes has been shown to be negligiblez3and is ignored. . The restraint
provided by the frames to the twisting of the slabs about their longitudinal
axes is also ignored in this analysis. Its efféct, however, on the
behaviour of a complete structure, is tested in Chapter 8.

The deflections of the grillage at the frame junctions, resulting

from the unknown forces g, may now be considered. Influence coefficients

can be defined such that a typical coefficient Gij' ktis the horizontal



43

displacement of the grillage at frame junction ij resulting from a

unit horizontal force applied at another frame junction k. The
deflection of junction ij due to the force &) 1S therefore Gij,kt By *
For example, in the structure of Fig.4.1l, the total deflections at the

frame junctions would be given by

41 = By,01 &1 * Oy 21 81 * Opy1n 8o+ Gyy 2p B
1 = 1,1 811 * O 01 81 * Opy 10 81p * Oy 00 E2p '
. sssass (4'3)
G2 = G211 811 * G201 81 C1z,10 812 * Gy 00 B0
Ao = Cpp 11 811 *+ Opp 21 801 + ¥op,10 81p + Grp 25 835

It follows that the total deflection dij at frame junction ij due to

all the loads g is given by

m n |
dij = Z Z Glj tkg gkg - & ssssee (4-4)

=1 k=1
where m is the total number of storeys and n is the total number of
frames.

To the above deflection has to be added an amount aij which is the
horizontal deflection of the grillage at frame junction ij due to the
action of all the wind forces w acting on the 'shear walls. This
additional deflection is directly calculable because the whole of any
wind force applied to a shear wall is tfansmitted to the grillage. The
final deflections 4 at all the frame jurctions in the grillage are

therefore given by

-(_1_ = _G_E"’_E}_ - eesvee (4.5)

where G is the influence coefficient matrix for the grillage and a is



the vector of horizontal deflections at all the frame junctions result-
ing from the wind force vector w.

A second expression for the deflection at the frame junctions may
be obtained by considering the independent action of the frames result-
ing from the unknown horizontal force vector f. Ignoring axial strains
in tﬁe beams, it may be assumed that the horizontal deflections of all
the columns at any floor level in a frame are equal. A set of influence
coefficients may therefore be defined such that a typical csefficient
Fij,it is the horizontal deflection of the frame at junction ij due to
a unit horizontal force acting at junction if.. The first subscripts in
each pair are always identical because it is the behaviour of individual
frames that is being considered at this stage. The total deflectiion C;

J

of frame i at junction ij resulting from all the forces fiz transmitted
L]

to the frame is given by

n

Hence, the deflections ¢ at all the frame junctions due to the vector f

are given by
E = Ei svesee (4.7)

where F is the influence coefficient matrix for all the frames. In order
to satisfy the conditions of compatibility at the frame junctions, the

deflections given by equations (4.5) and (4.7) must be equal and hence,

Ggt+ta = Ff | | coeeen (2.8)

Substituting for g from equation (4.2) into (4.8) and re-arranging,
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@+F)f = Cp+a seasvs (2:9)

Solution of this equation yields the unknown horizontal forces f

carried by the frames, thus

£ - C+B)) Cp+a) ceoiss  [4:10)

The portion g of the wind loads carried by the grillage may then be

obtained from the equilibrium equation (4.2).

4.1 Influence coefficient matrices

The influence coefficient matrices G and F are square matrices whose
order is mn, the total number of frame junctions. For example, matrix G
for the structure of Fig.4.l may be obtained directly from equation (4.3),

thus

G S,z | G2 %22

- " Floor 1
G111 %10 b G2 G20

deviee (4.11)

G G

12,1 %12,21 1 %1212 G122
Floor 2

Coo,11 %201 | G212 G220

Here it éan be seen that in a row, the initial pairs of subscripts are
identical, indicating that the elementz of a row are the deflectiions at

a given frame junction resulting from the application of a unit load at
each frame junction in turn. Similarly, in a column, the second pair of
subscripts are identical, denoting that a column contains the deflections
at all the frame junctions due to a unit load applied at a single junction.

The matrix is symmetrical in accordance with Maxwell's reciprocal theorem.
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The influence coefficient matrix F for the frames is constructed
in a similar way except that each column refers to a single independent
frame. Elements corresponding to deflections in other frames are

therefore zero. For the structure of Fig.4.1, for example

; y
E=1fan © e % o
o Fo1,20 1 O F21,22 t412)
- sssese 4-12
Fiaqy O Filo0120 O Floor 2
i 9 Foo,o1 1 © Fo2,22

The elements of the influence coefficient matrices are obtained by
carrying out separate analyses of the frames and the grillage, using
the matrix displacement method as described in Chapter 2. For each
frame the load matrix L of equation (2.1) consists of m columns, each
containing a single unit horizontal load. The influence coefficients
are given by the rows of the displacement matrix X corresponding to the
unit loads in L.

It is assumed that each joint has three degrees of freedom in the
X, Yy and O directions, implying that fhe horizontal displacements of all
the joints are independent. It is necessary therefore to suppresé axial
deforﬁations in the beams in order to ensure that column displécements at
a given level are equal. This can be accomplished by the insertion of
large fictitious cross sectional areas for the beams into the analysis.
In practice however, it was found that if the correct cross sectional
areas were used, tliec effect on the results was negligible. The inclusion
of unnecessary degrees of freedom is however wasteful of comput;r time and
storage,and in the later method of analysis, described in Chapter 5, a

single horizontal displacement is assumed at each floor level,
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As an example, the load and displacement matrices for frame 1 of
Fig.4.1l are shown in Fig.4.2a. Displacements not required in the con-
struction of the influence coefficient matrices are omitted from matrix
X in the figure. The numbering of the joints is given by the encircled
numbers in Fig..4.2b, which also illustrates the physical meaning of the
influence coefficients. In the diagrams load-case 1 corresponds with
colum 1 of L and the resulting displacements are given in column 1l of
X. Similarly, load-case 2 corresponds with column 2 of the matrices.

When skew symmetry exists, computer time and storage can be saved
by analysing only half of the frame. In this case the displacements of
Jjoints on the line of symmetry are suppressed in the y direction and the
unit loads of L are divided by 2.

Influence coefficients for the grillage are determined by a similar
anaiysis, but with the load matrix in this case consisting of mn columns.
The elements of the displacement vector a are also determined at this
stage by including the wind load vector w as an additional column in the
load matrixe. The corresponding horizontal Jdeflections at the frame junc-
tions are the required elements of a. The construction of the load and
displacement matrices for the grillage of Fig.4.l is illustrated in
Fig.4.3. Displacements not required at this stage of the analysis are

again omitted from matrix X in the figure.

4.5 The effect of imposed loading

Equations (4.5) and (4.7) imply that the sidesways produced in the
frames and the grillage are the result of lateral wind forces only. It
is well known however that sidesways also result from the action of
imposed vertical loads unless they are symmetrically applied and the con-
figuration of the frame or wall is also symmetrical. The effects of

these loads was included in some earlier ana1y3e36'23, which were concerned
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Fig, 4.3 Grillace losd and displacement matrices
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with structures consisting of frames and slabs only. Very few other
instances have been found in the published literature where provision
has been made for this type of loading. In particular, analyses in which
axial deformations of the columns are neglected, automatically exclude
their consideration. Similarly it would be difficult to include their
effects into analyses based on the continuum approach unless a consider-
able degree of uniformity of the imposed loading was assumed.

Usually an eccentric wall consists of two or more uniform elements
whose centre lines do not coincide. In such cases uniform loads from the
floor slabs in the upper elements produce an overturning moment about the
base of the wall, This effect can be reproduced by replacing the
eccentrically applied loading by a resultant vertical load acting through
the centre-line of the base of the wall, together with an overturning
moment applied at the base of each element. Since the vertical forces
cause no sway it is only necessary to consider-the effect of the cverturn—-
ing moments.l As an example, the derivation of these moments is given for
the tapered wall in Fig.4.4.

QOnsider first the narrowest part of the wall containinglnl floors
each carrying a total uniformly distributed load Ll' The resultant load

€1 froﬁ the neutral

2
axis of the segment below. The overturning moment at the junction ab is

from these floors iﬂlnlLi acting at an eccentricity of

therefore given by

e
Xy - m‘lLl—;-

Similarly, the overturning moment at junction cd is given by

N

My = (ML, + W, L) 22

2
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where the subscript 2 refers to the segment of wall beiween junctions
ab and cd. Since Ml and M2 act directly on the grillage, their effect
on the value of the displacements a can be determined by including them
in the load vector w.

The effect of eccentric loading on the frames on the other hand,
is to produce sidesways which alter the compatibility equations at .the
frame junctions. In Fig.4.5 the deflections of the frame and the grillage
at a typical frame junction ij are shown diagrammatically. Stage 1
represents the initial unloaded state of the frame and the grillage. The
éccentric vertical loads cause the frame to move horizontally a distance
bij to stage 2. The wind loads, which are shared between the frame and
-the grillage, cause the frame to deflect by a further amount cij while
the grillage deflects by dij to stage 3. The total deflections of the

frame and the grillage must be equal as shown and hence

dij = Cij + bij eesssse (4013)

The conditions of cdmpatibility at all the frame junctions are therefore

given in matrix form by

_@_ = 2+h | essose (4-14)

Substitution for 4 and ¢ from equations (4.5) azd (4.7) yields

Gg+a = FL+D ceeses  (4.15)

and equation (4.10) is therefore modified to become

£ = @+ @p+a-b) cosees  (4.16)
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The elements of vector b, which are the sway deflectionsat the
frame junctions due to the action of eccentric vertical loads on the
gseparate frames, may be determined by including an additional column of
vertical forces in the load matrix during the calculation of the frame
influence coefficients. ,Alternaiively the sidesways may be obtained

from a preliminary analysis of the frames subjected to vertical loads

On].yo

4.6 Displacements and member forces

The horizontal forces g and f are now used to determine the displace-
ments and merber forces in the grillage and the individual frames. In
the case of the grillage, it can be seen by referring back to Fig.4.3
that in addition to the horizontal influence coefficients required in
the construction of matrix G, the displacement matrix X contains influence
coefficients for all the other displacements in the grillage. It alco
contains, in the last column, the actual displacements resulting from the
load vector w. The actual displacements at %he grillage joints, resulting
from all the forces acting on the grillage, are therefore obtained by
multiplying all the eléments except the last in each row of X by g and then
adding the last element. For example, the typical displacement X

obtained from the rth row of X, is given by

s
x, = ji: (er gj) - Xr,s+1 ccecee (4.17)
J=1
where s = mn, the number of frame junctions.
The displacements at the joints in the frames are determined by
analysing each frame separately, using the appropriéte horizontal loads
extracted from the vector f. As in the grillage these displacemenis may

be obtained directly from the influence coefficients of the frames. A
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more convenient approach however, involving less computer storage, is
simply to re-analyse each frame completely using the member stiffnesses
“and othef relevant data retained from the analyses of the frames earlier
in the computer-program.

’Member forces in the grillage and the frames are obtained b& the
application of equations (2.11) and (2.16) respectively to each member

in turn,

4,7 Verification of the analysis '

Experimental verification of the analysis, using a two storey model
structure, was carried out at this stage. However, as the experimental
work forms the subject of €hapter 7, details of the results will not de
repeated here.

Further verification was obtained by comparison with the results
reported by Goldberg for the analysis of a 10 storey structure of a type
 commonly encountered in practice. This structure, which is illustrated
in fig.4.6,.consists of reinforced concrete walls and slabs for which
_Ybung;s modulus is 3 x 106 lb/in2 ard Poisson's ratio is O0.1l. The frames

6 1b/in2 and

are of steel sections with Youngt!s modulus equal to 30 x 10
having the section properties tabulated in the figure. Cross sectional
areas were not qucted by Goldberg, who did not include the effects of
axial deformations in the columns. The figures given in the table are
those of the nearect equivalent British sections. At the roof level the
structure is subjected to wind loads of 1800 1b on the wall junctions and
3600 1b on the frame junctions, At all other levels fﬁese values are
doubled. _

Typical deflections and frame shears are given in Table 4.1. A com-

parison of the results from;the method of influence coefficients with those

~ of Goldberg shows that the two are in good agreement. It can also be seen
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Goldberg Method of Influence Coefficients
Axial Strains Axial Strains Axial Strains
ignored ignored included
Storey Wall Frame 4 Wall Frame 4 | Wall | Frame 4
10 0.2434 | "0.2570 | 0.2446 | 0.2584 |0s2460 | 0.2604
5 0.1100 | 0.1481 | 0,1105 | 0.1486 |0.1100 | 0.1489
| 0.0142 0.0319 | 0.0143 0.0330 |0.1440 0.0339
i. Deflections (in.)
Goldberg Method of Influence Coefficients-
Axial Strains " Axial Strains | Axial Strains
ignored ignored included
Storey Frame 1 Frame 4 | Frame 1| Frame 4 |Frame 1| Frame 4
10 1718 813 1662 174 1508 -690
2 5415 5262 5274 5126 5073 4940
1 7156 10950 6727 10497 6539 10294
ii. Frame shears (1b.)

Table 4,1 Comparative results for Goldberg'!s structure

23
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that the inclusion of axial deformations in the columns of the frames
has little effect in this case., More detailed results of the analyses

carried out on Goldberg'!s structure are discussed later in Chapter 8.

4.8 Discussion

A feature of this method of analysis is that the three dimensional
structure is divided into plane structural elements which are then
analysed quite separately. Consequently the number of degrees of freedom
at any joint is limited to three and also the number of equations to be
solved at any stage of the analysis is relatively small. For example,
in Goldberg's 10 storey structure, displacements corresponding to 1110
degrees of freedom are determined. The largest number of simultaneous
equations, however is the set of 270 load-displacement equations for the
grillage. A further result of the separation of the grillage and the
frames is that it is only necessary to prepare data once for each seil of
identical frames. Additional economies in data preparation and program
running time arising from a consideration cf the regularity of the
structure are described in Chapter 6. -

A limitation inhérent in the method is that in order to be able to
carry out independent analyses on the frames and the grillage it is
necessary to ensure that on separation neither structure degenerates. into
a mecﬁanism. This implies that the grillage must always cOntain sufficient
monolithic shear walls to provide adequate bracing without the action of
the frames. This limitation places a severe restriction on the range of
structures that can be analysed by this method.

A further difficulty arises-from the form of equations (4.10).
Although the number of unknowns i; relatively small (one for each frame
junction)? the equations_are not sparse and could create a storage problem

in the analysis of large structures. Evidence of ill-conditioning was
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found in these equations during the analysis of Goldberg's 10 storey
strﬁcture when the number of frames was increased from seven to ten,
with a proportionate increase in the length of the structure. 1In this
case an accurate solution was not possible using the standard library
subroutine for the solution of the equations.

The method of analysis by influence coefficients was used by the
writer 4o carry out a preliminary investigation into the elastic
behaviour of complete structures, using Goldberg!s 10 storey structure

40 41,42

as an example '« The method was also used by Majid and Onen

as the
basis for research into the elastic-plastic behaviour of structures
loaded to collapse. However, in order to extend the range of structures
that can be analysed, and having regard to the limitations described
above, an alternative method of analysis was developed. Thiz is

described in the next Chapter.
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THE RESTRAINED GRILLAGE METHOD

5.1 Notation

b
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vector containing the horizontal deflections at all

the frame junctions due to the imposed loading.

vector of horizontal deflections in frame r due to the
impﬁsed léad vector ¢.

vector containing the horizontal deflectibns of all the
frames due to f.

horizontal deflection vector of frame r due to £?.
complete displacement vector for the grillage.

vector of horizontal deflections of the grillagg at the
Junction with frame r.

;ector containing the horizontal loads transmitted to the
frames.

vector of loads transmitted to frame r.

vector containing the loads transmitted to the grillage
at the frame junctions.

vector containing horizontal forces equivalent to the
imposed loading on the frames.

horizontal force vector equivalent to the imposed loading
on frame r.

stiffness matrix containing the horizontal stiffnesses of
all the frames.

horizontal stiffness matrix of frame r.

horizontal force at floor level i in frame r when unit
displacement is applied at floor level j.

stiffness matrix of the grillage without the frames.

Kll,gz,gl,gzzsegments of the stiffness matrix of a typical frame.

L

2

vector of imposed loads on a typical frame.

complete external load vector for the equivalent grillage.
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vector of unknown displacements due to all the loads
on a typical frame.
matrix of unknown displacements in a typical frame.

vector of vertical and rotational displacements due to {.



5.2 Introduction

In this approach the complete structure is again considered as a
grillage consisting of monolithic floor slabs and shear walls, restrained
laterally by the frames. The matrix displacement method is used to
determine the lateral stiffnesses of the individual frames by partition-
ing and condensation of their overall stiffness matrices. The stiffne;s
matrix of the complete structure is forméd by superimposing these lateral
frame stiffnesées on to the stiffness matrix formed by the wall and
floor slab panels of the grillage. Solution of the load displacement
equations for this restrained grillage yields the displacements at all
the wall and frame junctions in the complete structure. The analygia
of the frames is completed by back-substitution of the horizontal dis-
placements, extracted from thc displacement vector for the complete
structure, into the load displacement equations of each individual frame
in turn.

The assumptions described in Chapter 1‘concerning the configuration
of the complcte structure are unéhanged. However, by the use of the wide
column.frame analogy with arbitrary numberiné of the joints, the meaning
of the term "frame" has been extended to include a wider range of struc-
tures. Examples are shear walls with openings, wali—frame structures,
and frames braced by diagonal trussing. The term "wall" on the other hand
has been retained for the monolithic shear walls, which may form, with
the floor slabs, an integral part of the unrestrained grillage. The
assumptions made in the last Chapter with regard 1o th; conditions of

equilibrium and compatibility at the frame junctions are also retained.

5.3 Analysis for wind loading

The aim in this analysis is to produce a stiffness matrix for the

grillage which contains additional terms representing the lateral
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stiffness of the plane frames. It is not necessary therefore to
employ a system of joint numbering that distinguishes between frame and
wall junctions. The joints in this restrained grillage are located in

~vertical lines at the junctions of the floor slabs with the vertical
components of the structure. Unsupported points in the floor slabs,

such as on a vertical line of symmetry or at the free ends of.cantilve?ed
slabs, are also considered és joints.

The position of each joint is indicated by two subscripts, the
first indicating its position relative to the left hand side of the
structure, and the second denoting the level of the floor containing the
joint. For example, in Fig.5.1 the horizontal wind load P1o acts at the
joint formed by the junction of a wall in position 1 with the floor slab-
at level 2. Joints may have up to three degrees of freedom in the z,
o~ and ¢ directions as shown in the figure. It is assumed however that
all the joints in any particular vertical line have ithe same degrees of
freedom.

The equilibrium of all the ﬁpplied forces acting at the joints is

-

expressed by the equation

.I-)- = £+£ | seesee (5.1)

This equation has the same form as that of equation (4.2) in the previous
Chapter, but is not restricted to the frame junctions in this case. P is
the vector of all the external forces acting on the restrained grillage
and vector g is the portion of these forces carried by the walls and
floor alone. p and g have an order equal to the total assumed degrees of
freedom of the grillage and are necessarily identical except at the frame
Junctions, where it is assumed that a portion of the horizontal applied
forces is transmitted to the frames, This portion forms the appropriate

elements of vector f. Since horizontal equilibrium only is considered at



Numbering of joints
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the frame junctions, the remaining elements of f are zero.” - As an example
.the complete applied force vectors for the structure of Fig.5.1 are given
in Fig.5.2.

The effect of the vector g acting on the unrestrained grillage would

be to produce an equivalent set of displacements d, thus

g =34 ' CC ceseee  (5:2)

where J is the stiffness matrix of the unrestrained grillage. In some
siructures, for example one consisting entirely of floors and frames,
the unrestrained grillage consists of a system of unconnected slabs and
equation (5.2) has no meaning. In such a case it could be assumed that
the floor slabs were connected by a system of flexible members providing
a sufficient number of constraints to yield a non-singular stiffness matrix.
It will be seen later that when the lateral restraints of the frames are
applied, the stiffness coefficients contributed by these members can be
removed without invalidating the overall lcad-displacement equations of
the structure.

for the frames, the horizontal forces in f can be related to an

equivalent set of displacements ¢ by the equation

i = -I'_I.-(_} sssess (5'3)

where H is a square matirix of the same order as J, representing the lateral
gtiffness of all the frames. A typical coefficient H;é may be defined as
the horizontal force which must be applied to a-frame of type r at flcor
level i when a unit horizontal displacement is produced at floor j, while
the horizontal displacements at all other floor levels are held at zero.
This definition is illustrated in Fig.5.3a for the frame of type 1 in

Fig.5.1. As the compatibility condition at the frame junction is assumed

to be in a horizontal direction only, the vertical and rotational displace;
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P . €11 ¥ 0 |
0 0 0
Wall in position 1 0 0 0
P1p P 0
0 0 0
0 0 0
Py &1 a1
0, 0. 0
Frame in position 2 0 0 0
Poo | 82 £22
0 0 0
0 0 0
Py 831 3
0 0 0
Frame in position 3 0 0 0

P3p

3 g32 f32
0 0 0
0 0 0
Pn €11 0
, 0. 0 0
Wall in position 4 0 ; 0 0
0 0 0

J 0 -
b ‘8 £

Fig. 5.2 Anplied force vectors for the complete structure of Fig. 5,1
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ments of the joints are not restrained. A further assumption, implicit
in the above definition is that axial deformations in the beams are
negligible, resulting in equal horizontal displacements of all the
columns at any particular floor level.

For the same frame, Fig.5.3b shows the horizontal forces and
displacements related by equation (5.3). Here the subscripts refer to
the positions of the frame junctions in the complete structure. It can
bé seen from the diagrams that the relationship between these displace-

ments may be expressed in terms of the lateral stiffness coefficients as

follows =
£ = Hh “iz Coy -
seeecee 5.4
1
fon Hy ’éz Co,

This equation has the same form as equation (5:3) and hence for a frame

of type r

£ = ﬂrs.r (5.5)

where z?, gr and g? are the contribution of any frame of type r to the
corresponding terms of equation (5.3). Fig.5.4 shows the constiruction
of equation (5.3) for the complete structure of Fig.5.l. Combining -

equa:ti‘ons (5.1), (5.2) and (5.3)

12 2 g..(.l.-l-gg esssee (5.6)

For compatibility at the frame junctions, the corresponding
horizontal displacements in ¢ and d must be equal. Also, since H contains
rows and columns of zeros corresponding to all the remaining elements of

d, it follows that g.can.be replaced by d in equation (5.6), and hence
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P = (@+Ha vevene  (547)

where the combined matrix (J + H) is the stiffness matrix of the
restrained grillage. Solution of equation (5.7) gives d, the complete

displacement vector for the grillage joints resulting from the wind loads.

5.4 The effect of imposed loading

The overturning effect of eccentric vertical imposed loads acting
on the walls and frames was described in section 4.5 of the previous
Chapter. The same considerations again apply and in the case of the walls
the overturning couples may be incorporated directly into the load vector
p of equation (5.7).

The change in the compatibility conditions at the frame juncticns
produced by eccentric loading of the frames was expressed in equation
(4,14) which is still valid in the notation of the present analysis
provided that the vector b is correctly defined.

Re-arranging equation (4.14)

e =4-2 coeees  (5.8)

vhere d and ¢ are now the displacements of equations (5.2) and (5.3)
respectively and b is a vector containing the sidesways produced at all

the frame junctions by eccentric imposed loads on the frames. The elements
of b corresponding to the other degrees of freedom of the grillage are
merely dvmmy values satisfying equation (5.8).

Combining equations (5.6) and (5.8)

P =Jd+H(@-D) N )



65

or

P+h = @+B 4 wwssse  (5010)
Where_}l = ﬂl)_ = ' esesse (5011)

It follows from the form of equation (5.11) that h is a vector
whose non-zero elements are horizontal forces producing exactly the
same sidesways in the frames as those prqduced by the eccentric imposed
loading. Equation (5.10) shows that the effect of the imposed loads on
the displacements of the complete structure can be obtained by adding

these horizontal forces to the wind loads at the frame junctions.

5.5 Analysis of the frames

The contributions of a typical frame of type r to the lateral
Biiffness matrix H may be obtained by considering each column of Ef as a
load §ector producing a unit horizornial displacement at the corresponding
floor level and zero horizontal displacements at all the other floors.
The stiffness matirix of the frame is constructed directly, using the sub-
matrices of equation (2.15). However, as the columms are assumed to have
equal horizontal displacements at the floor levels, all the rows and
columns of the stiffness matrix corresponding to these displacements
are combined and grouped together at the bottom and right hand side of
the matrix. The method of construction is illustrated in Fig.5.5 which
shows the complete set of load-displacement equations for a two storey
frame., The subscripts of the stiffness coefficients refer to the numbers

allocated to the members of the frame as shown in the diagranm.
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The only loads considered to be acting on the frame at this
stage are the elements of _}f. The displacement matrix consists of a
unit matrix corresponding to _Hr, surmounted by a matrix of unknown
vertical and rotational displacements, These displacements are not
determined in the analysi's, but have been included in the figure 'for
the purpose of identification of the rows of the stiffness matrix.
The subscripts refer respectively to the joint numbers in the frame
and the columns of the displacement matrix.

For a general frame, the load-displacement equations of Fig.5.5

may be written as

o i e
Kll 12 sscsnee (5.12)
g K Koo s
~ from which
o = K‘ll _x_ * Elz escene (5.13)
_Er = 5212 + E‘22 cscsese (5514)
From equation (5.13)
X Kt g
e = __11 =12 ssocee - (5.15)
Substituting for X in equation (5.14)
' -1
..B.'r — 522 - Kzl 511 _K_lz seesnes (5.16)

If sidesways are produced by the imposed loading, the frames con-
tribute horizontal forces to the load vector h. For frame r these
horizontal forces hr are related to the sidesways Br by an equation of

the same form as equation (5.11), thus
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B = H Y ceeeee  (5.17)

Using this relationship, QF may be determined by partitioning the load-

displacement equations as follows

. ¢ 17 1
L X P g (5.18)
o r
2 Ea 1% | Y]

where ! is the vector of imposed loads and g.is the equivalent displace-
ment vector. The horizontal forces at the floor levels in this loading
case are assumed to be zero.

In expanded form, equations (5.18) may be written as

£ = }.E.ll d + &12 Rr secses (5-19)
2 = IE-ZIE + 5-22 .}.).r sssese (5.20)

and from equation (5.19) we obtain

g = lili_l_ b Ié-lg. br . ' ssssse (5-21)

Substituting for § in equation (5.20)

: 1
2 = Ezl I"("Il ! + @.22 _21 _11 _12) eseeee (5.22)
Using equation (5.16)
-1 \
o =K Kt + B Y cesses  (5.23)

and hence, using equation (5.17)

r y -1
h = —Kal E:ll i sessve (5.24)
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Since the overall stiffness matrix of the frame is symmetrical,

1
Kry =Ko

"tions (5.16) and (5.24) may therefore be re-written, thus

where the prime denotes the transpose of the matrix. Equa~

t =1 .
E = Ky = KKy Epp soeeee  (5.25)

) r ' -1 )
and h = "‘!{_12 K].l .‘é‘ - ' sssesse (5-26)

1

. _ :
Both those equations contain K,, K,, and can conveniently be solved

in one operation by compounding them as follows

EE 1B°] = [kp ! 2] - Kppky [Kpp! Lleeeees. (5:27)

Solution of this equation for each frame completes the preparation
necessary for the constructior of equation (5.10). It should be noted
that identical frames, which are subjected to the same conditions of
imposed loading, provide identical coefficients in H and h. Repeated

H

analyses of such frames are therefore unnecessary.

5.6 Détermination of member forces

For the grillage, the displacements d at all the joints are
obtained directly from the solution of equation (5.10). The end-moments,
shears and torques in the grillage members may tﬂen be determined from
these displacemenis by applying equations (2.11) io each member in turn.

For the frames, only the horizontal displaczments at each floor
level are known. These are equal to the deflections of the grillage at
the frame junctions and may be extracted t*rom the vector d. The remaining
displacements at all the joints in the frames can be obtained from the
partiticned form of the 1oad—dis§1acement equations by back-substitution.

Thus, for a typical frame r,'
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- '1 _ B -| i
L K Kyo X
11 12 (R XN NN ] (5.28)
15 (B K ] <]

where g? is the vector of horizontal displacements extracted from d
and x is the vector of unknown joint displacements. The load vector
consists of the imposed loads £ and an unknown vector £r consisting of
the horizontal forces carried by the frame,

Carrying out the multiplication for the upper segments

T
!.... = .I..{.ll -J_C_ + 512 2 : ssssne (5029)
-1 -1 T
or E = Kll -z_- = Kll K.lz .‘}. esneee (5-30)

Since Kﬁl [k, | £] has already been determined in the solution of
equation (5.@7),.5 mﬁy be obtained directly from a single operation of

.multiplication by arranging equation (5.30) as follows

'z - 51-1'1 PR IS B
- N (5.31)
1

The combined displacements x and t_1_r can now be used with equation
(2.16) to calculate the forces in the frame members. The unknown
horizontal forces ir may also be obtained if required, as follows.

From the lower segments of equatiovn (5.28)

ir = .1921.35 + .15‘22 .(lr seseee (5.32)

Substituting for x from equation (5.20)
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T -1 -1 r
£ = 521..12]_&. + @22"521 "K"ll 512)_@, eescese (5.33)

and hence, using equations (5.16) and (5.24)

£ = H a" -n" - ceeees  (5.34)

This result could also have been obtained by combining equations

(5.5), (5.8) and (5.17).

5.7 Discussion

The advantages of the method of influence coefficients arising from
the separation of the-frames and grillage are preserved in the restrained
.grillage approach which also has some additional features. In particular, a
stiffness approach is adopted throughout the analysis, with the result
that thé cnly equations to be solved are the load-displacement equations
of the frames and the restrained grillagé. These equations, which are
sparse and of variable band width, are well suited to solution by
Jennings! compact elimination technique. '

In tiie determination of the lateral frame stiffnesses the amount of
computation is prébablx-similar to that required for the calculation of
influence coefficients, although the actuai number of equations to be
solved is reduced by the compatibility of column displacements at the
floor levels and by the fact that the horizontal displacements -are kﬁown.
The ;nalysis is also neater in that no unwanted displacements are computed.

In the analysis of the grillage the need for the very large load
matrix, previously required for the calculation of influence coefficients,
is avoided. Furthermore, it is not necessary in this analysis for the
wall and floor panels to make up a stiff structure. For example, in
structures consisting of flcor slabs braced only by frames, if the degrees
of freedom in the 8% direction are suppressed at the grillage joints, the
addition of the lateral stiffness coefficients of the frames ensures that

the stiffness matrix of the restrained grillage is non-singular.
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CHAPTER 6

COMPUTER PROGRAMMING

6.1 Introduction
" In the analysis of a multi-storey, multi-bay building by computer,

a large proportion of the cost of the analysis arises from the prep;
aration and checking of data. Even after careful checking some errors
often remain, resulting in abortive runs and further expenditure of

time. The number of such errors probably depends both upon the volume of
data and upon the degree of difficulty with which.information is trans-
ferred from a drawing or line diagram of the structure to a format
acceptable to the program. In writing the program for analysis by
influence coefficients the regular nature of buildings has been used

to reduce the volume of data. Furthermore, a format has been adopted
which facilitates rapid transferrence of data from line diagrams.of the
frames and the grillage. The program is written in Atlas autocode and
was designed to operate within the core store of the Chilton Atlas computer
without_access 1o backing store.

The writing‘of the second programn, for the restrained grillage
approach, coincided with the installation of an I,C.L. 1905 computer at
the University of Aston. The program is written in Fortran and wes designed
to make use of direct access disc storage so that fairly large structures
could be analysed with the moderate core store available on this computer.
Improvements in generality, together with the use of backing store,
necessarily resulted in a more complicated program for this approach.

In particular the special compéct serial form in which -the stiffness
matrices are stored leads %o fairly complicated programming especially
when variable degrees of fr?edom and random numﬂéring of the joints are
introduced. In the analysis of the frames, additional difficultics arise
because of the partitioned form of the stiffness matrices.

Both computer programs are of major size. However, as similar

techniques are used in a number of instances, a full description of each
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program would involve undue repetition. Description of the first program,
which is the more straightforward, is therefore limited almost entirely
to a discussion of the format and treatment of the data for the frames.
The sec;nd, more complex program is discussed in greater detail.

6.2 Analysis by influence coefficients

A fiow diagram of the.program for the method of analysis by
influence coefficients is given in Fig. 6.1. The diagram, which uses
the notation of Chapter 4, is self explanatory and will not be discussed
in detail. The advantages arising from the simplified data format, which
is a feature of this program, may be described by taking the analysis
of the frames as an example. When the beams and columns of a frame are
known to form a regular pattern of rectangles, it is not necessary *o
number the individual members or joints; The necessity Zor setting up
tables of member-joint incidence is thereby avoided. Also, since regular
building frames usually contain a large number of identical members, the
length ana section properties of each type of member need only to be
specified once.

The format of the data for a simple frame is shown diagrammatically
in Fig. 6.2. Section (a) of the figure shows a line diagram of the frame
in which all members with identical lengths and section properties a#e
allocated a type number. General data for the {rame consist of the three
items shown in section (b) of the figure. The skew symmetry code is set
to 2 when wind loading only is considered and only half the frame is to
be analysed. In section (c) the properties of each type of member are
specified. As it is tacitly assumed in section (b)_that Young's modulus
is constant for all the frames, variations can be made in section (c) for
individual members by making proportional changes in the second moments

of area of the sections.
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(a) Line diagram

Column position (J)

(b) General data

Young!s modulus

No. of frames of this type
Skew symmetry code

(c) Member properties

AREA

INERTIA

LENGTH

Type 1
Type 2
Type 3
Type 4

(d) Position of first and last column

FIRSTCOL (I)

LASTCOL (I)

Floor 1
Floor 2
Flooce 3

3
1

1

4
4

p)

(e) Arrangement of coiumns

COLUMN TYPES
Floor 1 1l 1l
Floor 2 1l 1l 2 2
Floor 3 1 1 2 2 1

(f) Arrangement of beams

BEAM TYPES
Floor 1 3
Floor 2 3 3 3
Floor 3 4 4 4 3

Fie, 6.2 Data format for a frame
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The configuration of the frame is defined by using the type
numbers to indicate the positions of the members in the frame. Two
tables of type numbers are used, one for columns and one for beams.
These tables are shown in sections (e) and (f) of Fig. 6.2, where space
characters have been useé to make the tables resemble the line diagram
of the frame. Ghe&king of the data against the line diagram is thus
rendered extremely rapid and simple. The introduction of arbitrary
space and newline characters into the data is made possible by storing
the tables as one dimensional arrays, indicating fhe positions of the
sivst and Tast colurns in eack vow By tuo arvaye PTRSTCOL and TASTOOL
respectively as shown in Fig. 6.2(d). The data described above are
sufficient to define the éhape of most regular building frames compcsed
of rectangular panels,

In interpreting the data for the construction of the stiffness
matriz, it is recognised that only seven confiéurations of the members
at a joint are possible as shown in Fig. 6.3(a), each of which contributes
a unique pattern of elements to the stiffnéss matrix. For example, the
configuration of four members contributes the patte?n shown in Fig. 6.3(b),
the subscripts denoting the type numbers of the members. The pattern is
derived directly from the matrices of equation (2.17), assuming positive
directions of the P axes as shown. Elements above the leading diagonal
and before the first non-zero element in each row are excluded since they
are not required by Jenning's compact elimination subroutine. Patterns
for the other configurations are all sttsets of this basic pattern. The
stiffness matrix is consfructed by examining each joint in turn, starting
at the top left hand corner of the frame, determining the member configura-
tion at the joint and inserting the appropriate pattern of elements into
the matrix. This procedure.eliminates the need either for scanning throusgh

lists of members 1o test for incidence on the current joint, or for the
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multiple addressing of locations in the stiffness matrix which can
result when the matrix is constructed member by member.
Where a number of logical combinations of data are possible, each

43,

leading to a unique set of actions, decision tables 44form a convenient
means of expressing all the possible conditions and corresponding
actions as a complete picture. By examining the tables, ambiguities and
omissions 'in the logic can be detected mére easily than from a flow
diagram. The fables also facilitate the construction of flow diagramsﬂj
Defining I and J as the floor and column numbers respectively as .

gshown in Fig. 6.2(a), the rules for determining the member configuration
at any joint IJ irn a regular frame are set Outlin Table 6.1 in the form
of a decision table. The possible configurations are shown at the heads
of the columns of the table., Each column or rule contains a list of the
coﬁditions, which may be considered in any order, necessary for the isola-
tiocn of a particular configuration. They symbols I{YES) and N(NO) refer
to the results of the tests shown on the left hand side of the table.
The symbol E{EITHER) indicates th;a,t the result of a test is immaterial and
that either YES or NO will satisfy the conditions. It can be seen from the
table that alllthe configurations can be isolated merely by testing
appropriate elements of the arrays FIRSTCOL and LASTCOL and checking the
skew symmetry code.

~ The test for ambiguity consists of checking whether any of the
columns are identical (interpreting E as either YES or NO) and at the
same time lead to different sets of actions. On +this ﬁasis Table 6.1 is
clearly not ambiguous. A flow diagram derived from the table is given
in Fig. 6.4. The routes leading to thc selection of patterns of stiff-
ness coefficients, in the inner loop of the diagram, may be compared with

the columns of Table 6.l.
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The size of the structure that can be analysed by the method of
influence coefficients is limited by the fact that the program was
designed to operate without the use of backing store. The storage
requirements are chiefly governed by the influence coefficient matrix
for the grillage and the ‘load matrix used in deriving the influence
coefficients. Both these matrices are required to be in store at the
samc time. The load'hatrix is extremely sparse but must be stored in
full matrix form because it is subsequently overwritten by the displace-
ment matrix which is not sparse. As an example, the main storage require-
ments, ignoring symmetry, for Goldberg's 10 storey structure are given in
Table 6.2. Doubling the number of storeys merely coubles the sizes of
the compact stiffness matrices which are in any event relatively small.
T™e sizes of the load and influence coefficient matrices however are

increased by a factor of 4.

6.3 The restrained gsrillase method

In this program the regularity of :he-overall structure is again
exploited to simplify the preparation and checking of data. In order to
obtain a more general analysis of the frames however, it has been
necessary to revert to a more conventional and less economical format for
the data. The Fortran program consists of a short master segment calling
a number of subroutines, the functions of which are illustrated by the
flow diagram, Fig. 6.5, using the notation of Chapter 5.

The program is designed so that tle main storage arrays are stored
on disc filec using’standard Fortran input-output procedures both for
direct access and serial transfers. The construction of the arrays and
the subsequéntfoperation; on them take place in small buffer arrays in
the core store. Transference of data bteiween subroutines, except in the

case of relatively small arrays and single variables, is by means of the



MATRIX KUMBER OF
LOCATIONS
CGrillage Load Matrix 19000
Influence Coefficient 4900
Matrix.
Grillage Stiffness 2500
Matrix.
Frame Load Matrix 1300
Frame Stiffness Matrix 1200

Table 6.2 Storage requirements for Goldberg's 10 storey structure.

16
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disc files as shown diagrammatically in Fig. 6.6.

Direct access files 1 and 3 are required explicitly by the sub-
routine CDM, which uses the compact elimination technique described in
Chapter 3 for the solution of the equations generated in the subroutines
FRAM and GRIL. On entry to CDM, file 1 contains the right hand side
columns of the equations, which are overwritten by the solution matrix
on exit from the subroutine. File 3 contains the coefficient matrix.
Direct access file 4 is used to preserve data that would otherwise be

overwritten by CDM.

6.3.1 Analysis of the frames

In subroutine FRAM, the matrix parts Eil’ 1&2 and ﬁ%z are con-
structed, together with the imposed load vector !, for each frame type.
The format of the input data is conventional and is similar to that used
by Majid and Hilliamaongfor plane frames with gusset plates, except that
an additional column is required in the joint data in order to specify
the floor level containing each joint.. This additional information
defines the joints that are assumed to have a common horizontal displace-
ment and hence indicatés the columns of?gaé and K,, to which the joints
contribute elements., Joints which have no common displacement, for
example at the bases of the columns or between floor levels, are denoted
by a zero in this column. -

Storage is conserved by grouping of the data. Groups are arranged
g0 that joints in a typical group I may only be connected to joints in
the same group or to joints in groups I-1 or I+l. Similarly, members in
group I may only connect joints in group I to other joints in the sane
group or to joints in group I-l. Consequently, the'rows of the stiffness
matrix for joint group I can be constructed from the data of joint groups

I-1, I and I+l, and member groups I and I+l., Data for these groups are
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contained in small buffer arrays operating as stacks in which items of
data for new groups are added at the bottom, pushing up all the elements
in the stacks so that the items for previously processed groups are
lost. Items of joint and member data, which must be retained for use
later in the program, are written to the serial disc file 5 as shown in
Fig.‘6.6. The operation of the stacks is iliustrated for a system of

4 groups in Fig. 6.7. Movement of the elements in the stacks and also
within the subroutine CDM is by means of the ICL subroutine FMOVE, which
is very much faster than a Fortran DO loop.

The partitioned stiffness matrix is constructed directly by applyiﬁg
equation (2.15) to each of the parts,.r?sulting in the formation of 16
sub-parts as shown in Fig. 6.8(a). For convenience these sub-parts are
classified as leading diagonal when the second pair of subscripts is
ii or jj and as off-diagonal when the subscripts are ij or ji.

Fig. 6.8(b) gives the actual coefficients ohtained from equation (2.15)
and shows that when symmetry is taken into account, the number of sub-
parts can be reduced to 12. The displacements AR ei and Ij’ yj’ ej
denote the degrees of freedom at ends 1 and 2 respectively of the member.

The matrix parts K,, and K,, are stored in fixed length dblocks on
disc and are constructed a block at a time in small buffer arrays in the
core store. K,,, which is relatively small, is constructed in full matrix.
form in the core.

Two alternativé'methods of construction were considered, namely by
member or by joint. The former approach yields a faster running program
but requires buffers large enocugh to accimodate the elements of’Ell ard
ﬁlz contributed by two complete joint groups. The method was therefore
rejected in favour of the joint~by~joint approach, which, although slower,
has the advantage that the buffers are only required to contain the elements

contributed by a single jointe Furthermore, the operation of searching for
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Fig. 6.8 Contributions of a member to the partitioned
stiffness matrix.
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members incident on a particular joint, which causes this method to be
slower, is limited by the grouping of data io the members of two groups.
The additional running time associated with the joint-by-joint approach
does not therefore constitute a serious disadvantage in this program and
can be minimised by making the member and joint groups as small as possible,
Subroutine FRAM consists of three nested loops as shown in Fige 6.9.
In the outer loop, jo;nt and member data for the group are input. At
this stage also the stiffnesses of fhe members, their direction cosines,
the degrees of freedom of incident joints and any other data required
later for the calculation of member forces are written to disc file 5.
The stiffness coefficients contributed by the members to the stiffness
matrix are calculated and stored temporarily in the data buffers for
the member group. In the next loop the number of elements contributed to
X1 and K,, by each joint is calculated and the current state of the buffers
is checked, writing their contents to disc if there is insufficient space
for the current joint, The imposed load vector ¢ is also constructed at
this stage. The inner loop searches the two member groups in core for
members incident on the current joint, placing the stiffness coefficients
contributed by these members in the appropriate parts of the stiffness
matrix. In order to avoid repeated calculation of addresses, the cén-
tributions of all incidént members to the leading diagonal elements are
summed prior to their insertion into the matrix,

. Before Btiffnesé coefficients can be placed in the matrices it is
necessary to iﬂstitute a series of tests in order to determine whether ox
or not a particular group‘of elements exists or is required to be stored.
For example, since only the lower triangle of 511 is stored, off-diagonal
elements are not stored when the number of the current joint is lower than
the number of the joint at the other end of the member; leading diagonal

elements do not exist in K,, when there is no common displacement

associated with the current joint, and so on, The complete set of



( enter )
|

QF DATA ARRAYS.

READ GENERAL DATA
READ DATA FOR GRowe | INTO TOPS

»( CYCLE Groups

N

Y

» YES

LAST GROUWP 7

NOo

INTO BOTTOMS OF DATA ARRAYS

(READ DATA FOR GROURP (T +1)

)

Y
CYCLE JQINTS IN

'_\UOtNT GROUP T

1

CHECIKE \F JowNT Yes
QVERFLOWS DISC RECORD

Y Ne

WRITE Ky, fkiz § €]
To Disc AND SET Core
ARRAYS To ZERO

J

o’ CYCLE MEMBERS IN

\MEMBER GROUPS I, I+]

MEMBER CONNECTED |
TO TOINT 7
YES
PLACE OFF - pIAGOMNAL ELEMENTS IN

Ki, Kiz ANnO K22

FORM SUMS QF LEADING DIAGONAL, ELEMENTS

No | 1
-] MEMBER GROJPS

EXHAUSTED ?

PLACE IN &

ReEAD VERTICAL LOADS FoR TomwT AND

PLACE LEADING DIAGONAL ELEMENTS IN K"-K‘R\Gl

Y

Jomnt GRouP (TI)

NG

EXHAUSTED 7

L VES

LAST GROUP ?

NO

L

MEMBER GROUP (I) TO Tor

NMOVE ELEMENTS IN DATA ARRAYS TO
BRING JOINT GROuP (I-1) AnO

\

WRITE LAST RECORD OF K; Kz, & 7o Oisc

Y

(RETURN.)

Fig. 6.9 Subroutine FRAM




80

conditions for the placement of elements is stated as a decision_tahle
in Table 6,3, The table is seen to be unambiguous and, interpreting E
as either YES or NO, it can be observed that there are 32 independent
rules. As this is the maximum number of rules that can be obtained
from 5 conditions, it can also be concluded that no logical combinations
of the conditions have been overlooked. The flow diagram resulting
from the table is shown in Fig. 6.10._

It will be shown later that programming is simplified by the use
of common subroutines for the selection and placing of elements in the
stiffness matrices both of the frames and the grillage.

It was demonstrated in Chapter 3 that in order to solve a set of
equations in the compact serial form required by the subroutine CDM, an
auxiliary sequence is required giving the address of the lezding diagonal
element in each row of the coefficient matrix. This sequence is equally
necessary in the construction of the mairix so that the addresses can be
calculated for the serial form of the mairix corresponding to locations
in the full matrix. The formation of this sequence, which essentially
entails the calculation of the band-width of each row of the lower triangle
of the stiffness matrix, is facilitated by forming two further-sequences
LT and NC. In the first of these arrays, a typical element LI(K) is the
lowest number of any joint connected to joint K. The second array takes
into. account the number of degrees of freedom allocated to thevjoints.

A typical element NC(K) is the total number of columns in the matrix up

to but not including joint K. The purpose of these two arrays is illu~
strated in Fig. 6.11-which shows the rows of the stiffness matrix correspnd-
ing to joint 6 in a frame-with skéw symmetry. .All joints are assumed to
have three degrees of freedom except those on the centre line which have
two, Elements contributgd by the members are indicated by shading. From
the figure it can be observed that LI(6) = 2, NC(6) = 14 and NC(2) = 3.

The band-width of the first row is thus NC(6) — NC(2) + 1 and is



RULE 1121314156 |7 |8 |9 |10]11]12]13(14
WFK. =0 Y|Y(Y{Y |N|N |N N N [N |N|N (N |N
IC =0 Y|v|w|wly|y|v | |v|v|v|v v |y
% JC:=0 . EI|Y|N |N{Y|Y |[N |N|Y |Y|N|N |N|N
% ND5 =0 ||E E|E|E|Y N |Y N. Y N Y |Y |V N
= ele|v|v|ElE|E|E|E|E|Y [N |Y |N
Place leading ‘K14I X ixiixix iz |x |= |x IZ |
diagonal < K12 Iz Ix IxX [ |x
elements kK22 x|z ix X |X |X|X |X |X
g2 Flace off- ( x11 x s > & x |z
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elements \ K22 X x p =
doto next {nember X I |X|Xx (X |x |x|x |x|xix | |x
Goto next joint Hx'
NFK Number of degrees of freedom of the cufrent joint.
IC Storey containing the current joint. No common displacement if
IC = 0.
JC Storey containing the joint at the other end of the member. No
common displacement if JC = O.
NDS A flag which is set to zero when the current joint has a smeller

number than the joint at the other end of the member.

Table 6,3 Decision table for the placement of stiffness coefficients
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progressively increased by 1 for each of the other two rows.

The elements of NC are determined from the cumulative summation
of the degrees of freedom of each joint as the data for the joinis are
input. Array LJ, on the other hand, can most efficiently be obtained
from the member data alone by considering the numbers of the joints at
each end of the members. Thus the elements of LJ for the joints of group
I may be obtained by ;onsidering the members of group I. Members of
group I+l, although possibly connected to joints in group I, are auto-
matically eliminated because the joints at their other ends are in the
higher numbered group I+l. This section of the program‘is described by
means of the flow diagram in Fig. 6.12.

The lateral stiffness matrix.ﬁr of each frame type and the lateral
equivalents QF of the imposéd loads are computed by the subroutine IIFCO
using equation (5.27) as shown in Fig. 6.5. This subroutine, which is
shown as a flow diagram in Fig. 6.13, consists'essentially of two nested
loops in which the right hand side of equation (5.27) is evaluated. In
the diagram the identifier K12 refers to the buffer array previously used
in subroutine FRAM for the conatfuotion of the compound matrix LEiQ 1 ¢ ).
Similarly, K22 identifies a similar buffer used in constructing the com-
pound matrix [522 { 0], The evaluation of 512 gﬁ (%5 1 ] in
equation (5.27) is carfied out block-by-block, storiné successive columns

of the solution matrix E;i [ EIQ } jl] temporarily in the last column of

K12, while the unchanged blocks of Elé are stored in the remaining columns.
On exit from the subroutine the array K22 contains the compound matrix
Lﬂrl h?] for the frame. The lower triangle of'ﬂf, which is symmetrical,

and the ﬁector‘hr are stored serially in core for each frame type or for

frames subject to different imposed loads.
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6.3.2 Analysis of the restrained grillage

The construction of the load-displacement equations for the
restrained grillage is carried out by calling the gubroutine GRIL as
shown in Fige 6.5. As in the method of influence coefficients, the
regularity of the structure is used'to simplify and reduce the volume
of data. In this program however, the degrees of f?eedom of each
vertical line of joints can be varied and a wider.variety in the arrange-
ment of the structural members is made possible by providing for the
arbitrary omission of complete panels from the walls or floor slabs. A
flow diagram of the subroutine is given in Fig. 6,17,

The procedures for constructing the stiffness matrix of the grillage
and of the part mairix.gil in the analysis of the frames are closely
similar. In the case of the grillage however the configuration of the
members at cach joint is inferred directly from the data without the
necessity of searching through the member datsz for incident members,

Once the incident members for a particular joint have been determined,

the procedures for the selection and placing of the stiffness coeffic.ents
are thé same and the same subroutines can be used. For example, the sums
of the leading diagonal elements are formed by calling the subroutine
n(1,J,X,81,82,s3,54,55,56,P1,P2,P3,P4,R5,P6) for each incident member.
Thé input parameters I, J and K denote the degreés of freedom of the

joint in the order that they occur in the displacement vector and are
assigned the value of 1 if a degree of freedom exists.- The oﬁtput
parameters S1 through S6 are the sums cf the elements and are set to

zero before each joint is processed. The valueé of the stiffness _
coefficients assigned to the input parameters Pl through P6 are set out
.in Table 6.4 In the analysis of the frames the same parameters may be
used in the construction of &1l the part matrices Kiq0 Kyp and Ko

same parameters may be used also irrespective ¢f the direction of the

The
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P axis of the members if an exchange of identifiers for the stiffness

coefficients takes place earlier in the program. For the grillage,

the directions and orientations of the members are pre-determined. It

is therefore convenient to use the matrices of equations (2.10) to

obtain separate sets of parameters as shown in Table 6.4. A flow diagram
of the subroutine is given in Fig. 6.15, where the relative positions

of the leading diagonal elements are shoﬁﬁ in:the inset diagram.

In placiﬁg the off-diagonal elements it is necessary to consider
the degrees of freedom of the joints at both ends of the members. Each
degree of freedom of the current joint corresponds to a row in the stiff-
ness matrix while, for a particular member, each degree of freedom of
the remote joint forms a column in the pattern of off-diagonal elements
contributed by the member. A typical example is shown in Fig. 6.16(a)
where the current joint K has three degrees of freedom, while the remote
joint J has two. For each incident member the start azddress in the com-
pact sequence is calculated for each row of the pattern of off-diagonal
elements. The selection and placing of the elements in the row is then
made by calling the subroutine ROW (P,Q,R) where P, Q and R are input
parameters to which the appropriate stiffness coefficients are assigned
by the calling program. As joints in the grillage ére always numbered
consecutively in rows starting from the bottom left hand joint, only the
members to the left and below the joint contribute off-diagonal elements
to the stiffness matrix. A flow diagram of the subroutine is given in
Fig. 6.16(b). Part (c) of the figure shows a simplifiéd segment of the
calling program relating to the member to the left af the joint. A
similar sequence follows for the member below the joint. It is tacitly
assumed in the calling program that all the grillage joints have freedom
in the Z direction. The values of the stiffness coefficients, which are
tabulated in Table 6.5 are obtained directly from equations (2.10) for

the grillage and from equation (2.15) for the frame. In the case of the
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Row 2 (Y) -B, |-F; [-T,
Row 3 (6) G|
e — e — ———— ———
Left Rowl (2) |- | o |-a
Member Row 2 (ex) o |-q 0
Row 3 (g%) d |o | £
Lower Row 1 (2) b |-d | o
Member Row 2 (6%) d | £ | o
Row 3 (B‘Y) o o q

Table 6.5 -Off-diagonal stiffrness coefficients
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frame the calling program is very similar and as in the case of the
leading diagonal elements, the same set of parameters may be used
irrespective of the direction of the P axes of the members, by making
-an exchange of identifiers earlier in the program.

It may be observed .that these subroutines require a complete set
of stiffness coefficients to be calculéted for each member, although
only -those appropriate to the degrees of freedom at the ends of the
member are used., It is unlikely however that any significant loss of
efficiency results from this practice, having regard to the simplificar

tion of the logic resulting from the use of the subroutines.

6.3.3. Calculation of member forces

The program concludes by calling the subrcutine MFORCE in which
the forces in all the members of the complete structure are computed and
output. In this subroutinc, which is illustrated by the flow diagram
in Fig. 6.17, the in—planelforces in the wall panels and floor slabs are
first determined by applying equation (2.11) to the displacement vector
d obtained from the analysis of the restrained grillage,

For the frames, éhe vertical and_rotétional displacements are
first calculated from equation (5.31) using the lateral displacements QT,
extracted from vector d. The right hand side of equation (5.31) is pro-
greséively evaluated for successive blocks of the solution matrix
EE%’ [Eﬁ2= L] which was retained on disc file 4. Member forces are then
determined by the application of equation (2.16) to each member in turn,
using the member stiffnesses and other relevant data stored on the serizl

disc file 5.

6.3.4. The Scope of the program

The size of a structure that can be analysed by the program, assuming
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that sufficient core and backing store are available, is governed
by the number of elements in the stiffness matrix corresponding to a
single joint either of a frame or. the grillage. Usually the grillage
is the more critical. The maximum is 510 elements, which is the
capacity of the largest éinglé block of store that can be written to
disc using ICL subroutines. This quantity could be increased by |
modifying the suhrouéine CDM to enable the working core arrays to be
stored in multiple blocks on the disc. |

As an example, the array storage requirements for a 50 storey,
5 bay symmetrical structure containing 3 different.types of frame, each
with 600 degrees of freedom, is shown in Table 6,6, The units of the
table are real number equivalents, where one real number occupies two,
24 bit words in core and is equivalent {0 two integers. The largest
area of core, namely that required for the formation and storage of the
lateral stiffness coefficients for the frames, is significantly influenced
by the height of the structure, since the part matrix X0 has an order
equal to the square of the number of storeys, and also by the number of

different types of frame in the complete structure.



lateral stiffness coefficients for the
frames,

Buffers required by the system for 2048
direct access disc files.

Buffer arrays used as working space for 3072
the formation of the load-displacement
equations, '

Data arrays. 1260
Formation of K,, and storage of the 7000

Table 6.6 Array storage for a S0 storey structure
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CHAPTER T

EXPERIMENTAL VERTFICATION

7.1 Introduction

Verification of the method of influence coefficients has already
been provided for a 10 storey structure by comparison of the results
_ with those of Goldberg iq Chapter Z. The results from the restrained
grillage approach for this structure were almost identical with those
obtained by the method of influence coefficients. Further verification
by experiment was undertaken however, in order to provide a background
of experimental results with which the results of znalyses by the prop-
osed methods, and also by a finite element method, could be compared.

For this experiment # small, two storey symmetrical model was chosen,
firstly to avoid difficulties with storage in the finite element analysis,
and secondly so that all the relevant matrices for the proposed methods
could be constructed by hand, thus providing an zid in the development

of the computer programs.

The model was constiructed with walls and floor slabs made from
.Perspex and with three intermediate frames in mild steel., A general view
is given ia Plate 7.1 showing the model mounted on its side with the wind
loads simulated gy concentrated vertical loads at the junctions of the
floors with the walls and frames. Details’of the construction are given
in Figs. 7.1 and 7.2,

Particular care was taken in the design of the foundations to énsure
rigiéity and to avoid differential movemeni of %the footings of the walls
and the frames, For the frames, the bases of the columns were clamped
between augle brackets as shown in Fig. T.l. These bracket® were -provided
with a slot machined to fit.accurately and tightly round the column when
clamped by two § in. diameter bolis. The base flanges of the brackets
contained slotted holes so that their correct location on the base plates
could be ensured without inducing stresses in the frames. Similar brackets

were used for clamping the bases of the walls., Differential rotation of
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the footings was prevented by bolting them to a rigid base foundation
consisting of two universal columns, bridged by a mild steel plate
%—in. thick, the whole bolted to a 9 in. brick wall by "Lindapter"
bolts at 12 in. centires.

Local stiffening of the beams and columns at their joints by
surplus weld metal was avoided by using deep penetration fillet welds .
which were ground flush afterwards. The junctions of the floor slabs
with the frames were made with three screws only in order to provide
compatibility of lateral displacements at the junctions without intro-
ducing composite action between the Perspex slabs and the steel beams.

At the junctions between the slabs and the walls on the other Hand, the
sc¥ews were more closely spaced so that horizontal compatibility would

be achieved and the rotations of the walls would be fully transmitted to
the slabs. Screws were used so that the Perspex plateé could be assembled
after the preliminary testing of the bare frames, without disturbing the
base connections of the frames.

The results of primary interest, which were required from-the.
experiment, were the deflections at the junctions and the distribution of
lateral forces to the frames. The deflections were measured directly by
means of dial gauges mounted on a slotted angle frame as shown in Plate l.
The loading of the frames could not be determined directly. However,
since the combination of strains in the upper and lower storeyé is unique
for a given combination of loads, the strains in the columns were used as
a basis for comparison. Strains were measured initially by electrical
resistance foil gauges, using a Peekel electronic strain indicator, type
B103U, with a single dummy gauge for itemperature compensation, Subsequently
however, confirmation of some of the results by meaﬁs of Huggenberger

mechanical gauges was found to be necessary.



~
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T.2 Preliminary testing

Before a computer analysis of the model could be undertaken it
was necessary to determine Young's modulus for the materials. Tests
were carried out using the simple beam apparatus shown diagrammatically
in Fige 7«3+« Care was t;ken in the case of the very flexible Perspex
specimens to avoid friction at the supports. - It was also found that
results were affected by the varying force exerted by the dial gauge
return spring which was therefore removed.

In all the tests loads were applied simultanéously to the ends of
the beam in equal increments, taking readings of deflection during
‘ loading and unloading. Since Perspex is susceptible to creep, the loads
and spans were chosen to give strains ol approximately the same order as
those occurring in the model, and the duration c¢f the tests was made
equal to the time required for a complete loading cycle on the model,
ramely 2 hours. Detailed results of these tesis are given in Table T.1
for Perspex and in Table T.2 for steel. The corresponding load-
deflection graphs are plotte& iﬁ Figs. T.A-Q:En%.5 respectively.

Using simple beam theory and considering the circular bending of
the central span of thé beam, it can be shown that Young's mddulus is

given by

where a and { are the lengths of the cantilsver and central spans of the
beam as shown in Fige. T«3; b and t are the breadth and depth of the sec—
tion respectively, and w/8 is the slope of the load-deflection graph.
Values of Young!s modulus calculated from the graphé, using the above
expression, are given in the tables for each specimen. The linearity of
the load-deflection graphs for Perspex indicates that creep deFflections

did not have 2 significant effect.
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Deflection
(.001 in)
Material %gg% iﬁﬁizge Test Data and Results
Load Unload
0.0 43 46 0.0 | ¢{-=13in
0.1 53 55 9.5 | a=4in
Perspex from 0.2 62 65 19.0 | b = 1.44in (average)
left hand wall 0.3 72 74 28.5 | t = 0.258in (average)
) 0.4 81 84 38.0
0.5 9 92 47.0 | slope Wp = 10.53
0.6 101 56.5 | E = 433,000 1b/in
0.1 234 247 13,0 | a = 4in
0.2 257 260 26,0 | b = 1.25 (average)
Perspex from 0.3 270 273 39.0 t = 0,246 (average)
right hand wall 0.4 283 284 51.0
0.5 295 297 63.5 | slope W/6 = T.93,
0.6 309 7645 | E = 432,000 1b/in
0.0 262 269 0.0 | ¢t =13in
0.1 296 307 360 | a = 1.5in
0.2 340 346 T7+5 | b = 1.38 (average)
Perspex from 0.3 373 384 113.0 | t = 0.120 (average)
upper floor slab 0.4 410 4117 148.5
0.5 447 453 184.5 slope W/ = 2.782
0.6 | 482 216.5 | E = 433,000 1b/in
0.0 221 233 0.0 | ¢ = 13in
0.1 257 272 38.0 | a = 1.5in -
: 0.2 303 313 81l.5 b = 1.25in (average)
Perspex from 0.3 339 353 119,5 t = 0.121lin (average)
lower floor slab 0.4 377 392 158.5
0.5 417 427 195.5 slope = W = 2.60
0.6 459 232.0 | E = 446,000 1b/in2

Average value of Young's modulus

436,000 1b/in°

Table 7.1

Tests for Young'!s modulus of Perspex




) Average

Material Load |Deflection| Test Data and Results
(1v) (.001in)
000 0.0 !' = 29.9811’1
2.0 12.0 a = 9,0in

Steel from 4.0 26.0 b = 0.506in (average)

frame 1 6.0 38.5 t = 0,504in (average)
8.0 51.0

' 10.0 64.0 slope W/S = 152.5 >

12,0 77.0 E = 28,611,000 1b/in
0.0 0.0 ! = 29.98in
2.0 12.5 a = 9,0in

Steel from 4.0 25.5 b = 0.5045in (average)

frame 2 6.0 38.5 t = 0.506in (average
8.0 51.0
10,0 64,0 slope W/6 = 152.5 5
12,0 77.0 E = 28,357,000 1b/in
0.0 0.0 t = 29.98in
2.0 12.5 a= 9o0in

Steel from 4.0 26.0 b = 0.506in Eaverage;

frame 3 6.0 38.5 t = 0.504in (average
8.0 51.0
10.0 64.0 slope ¥/8 -~ 152.5 o
12,0 77.0 E = 28,611,000 1b/in

Average Young'!s modulus

28,526,000 1b/in°

Table 7.2 Tests for Young's modulus of steel
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ROOF LEVEL FIRST FLOOR
Load
" Frame | Frame | Frame| Average| Frame [Frame | Frame Average
| 2 3 1 2 3
0 0 0 0 0 0 0 0 0
10 174 173 172 173 103 103 102 103
20 .348 347 345 347 206 206 204 205
30 525 522 519 522 310 310 307 308 °
20 351 349 47 207 208 205
10 176 176 173 105 105 103
0 2 2 p | & 2 1
Table 7.3 Deflections of bare frames (.00l in)
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The values obtained for Young's modulus, both of Perspex and
steel, were within 3% of the mean, justifying the assumption of
average values in the computer analysis. The modulus of rigidity of
Perspex was calculated, using the manufacturer's quoted value of 0,35
for Poisson's ratio.

r Further preliminary tests were carried out on the bare frames in
order to establish that they were identical and that the deflections
and strains were in agreement with the computed results. During these
tests the three frames were loaded simultaneously in their final mount-
ings in order to ensufe that no differential displacements occu;red as
a result of small elastic rotations of the footings. Confirmation of
the strains recorded by the electrical gauges was obtained by repeated
tests with six Huggenberger mechanical strain gauges attached to each
frame in turn.

The deflections for the three frames are recorded in Table T.3
which shows that the deflections at each floor level agreed within 1% of
the averag>s The average deflections are plotted against load in Fige. T.6,
where the computed valugs are shown to agree closely with the eéxperimental
resultse. -

Load-strain graphs are given for the electrical strain gauges in
Fige TeT, where the figures in brackets denote the positions of- the éauges
as sﬁown in Fige 7.8(a)e Similar graphs for the Huggenberger. gauges are
plotted for each frame in Fige. T.9, where the positions indicated for the
gauges in this case refer to Fig. 7.8(b). .o

The strains, obtained from these graphs are compared in Fig.-T.1l0 with
the computed results for each frame at the loads shown. The computed
resﬁlts, incluéiﬂg axial strains, are the same for all the frames and are
indicated in micro-strains by the printed figures at the ends of the

colums in frame 2. It is noticed that the Huggenberger gauges gave more

consistent results throught and that with the exception ¢f some of the
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electrical gauge'readings, extremely close agreement exists between
the experimental and computed results. In the subsequent test on the
assembled model, the most unreliable of the electrical gauges were
replaced by Huggenberger gaugese.

The importance of pioviding a rigid base for the model was
demonstrated in an earlier test on the bare framess For this test the
mounting beams shown in Fig., 7.l were fixed to rigid supports at their
ends only and not to a solid brick wall as illustrated. It was found
that considerable variation from the computed results occurred, especially

in the central frame.

7.3 Test on the assembled model

A test was carried out on the assenbled model with maximum loads
on the junctions of 20 lb. at the frames and 10 lb. at the walls.
Detailed load—deflection and load-strain graphs for this test are given
in Figs. Tell through 7«13, The strains at full load, obtained from
these grapbs, and the results obtained by the proposed computer methods
of analysis are compared in Fig. T.14, where the computed strains are
again given in micro-strains at the ends of the columns. For the two
outer frames, where the strains are recorded in the same positions, the
average result is given. Both results are given when the gauges are in
différent ﬁositions, for example when one of the electrical gauges has
been replaced by a Huggenberger gauge.- IY¥ can be seen from the diagram
that experimental and computed results are in good agreement. During
the test slight buckling of the wall panels in the lower storey was
noticed at the maximum load. Non-linearity in the graphs, was not
apparent however.

9

The model was also analysed by a computer program”, written for

the analysis of general siructures consisting of plates and prismatic
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members. The panels of the walls and floor slabs were considered as
thin plates under the action of both in-plane and out-of-plane forces.
For this purpose they were each subdivided into 16 rectangular finite
elements. The deflections obtained by this analysis are compared with
those computed by the proposed methods and by experiment in Table T.4.
This shows that ‘all the deflections are in good agreement and that the
proposed methods give slightlj better agreement with the experiment.
The strains obtained by the finite element approach were also slightly
less than those obtained by the proposed method but agreement in this
case was within 2%.

The advantages of the method of influence coefficients over the
finite element approach, with regard to data preparation and computer
running time, can be demonstrated for this structure. In the finite
element analysis two axes of symmeiry were used, enabling the analysis
to be carried out on a quarter of the structuré, while in the method of
influence coefficients symmetry was not considered. Nevertheless a com-
parison of the volune of data and the computer running time for the two

analyses shows that, on the Chilton Atlas computer, the method‘of influence
coefficients required a running time of 0,25 minutes and 210 characters
of data, compared with 2.82 minutes and 1885 characters of data for the

finite element method.



DEFLECTIONS (.00l in)

Floor Position
: Proposed Finite
Experiment methods element
Wall 40.0 39.9 38.3
1 Outer Frame 5545 52.9 51.4
Central Frame 60.0 58.1 56.6
Wall 110.0 109.7 106.0
2 Outer Frame 118.0 116.0 113.2
Central Frame 120,0 119.1 116,1

Deflections of model

Table T.4.
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CHAPTER 8

AN _TNVESTIGATION INTO THE BEHAVIOUR OF COMPLETE STRUCTURES

8.1 Introduction

The only method in which the effects of in-plane bending in tﬁe-
}loors of a large structure are repbrted, is that due to Goldberg who
showed that the distribution of the lateral shear forces carried by the
frames in two symmetrical stiructures was influenc;d in part by these
effects. Goldberg'!s conclusions however are mainly concerned with the
relative importance of shear and flexural deformations in the walls and
slabs, and no comparative results are quoted in which the ,slabs are con-
sidered to act as rigid diaphragms. -

Using the computer programs described in Chapter 6, an investigation
was carried cut to examine more fully the effects of in—plan; bending of
the floor slabs on the deflections and member forces in the components
of three complete structures. In each analysis the significance of
- including the axial deformations of the columns of the frames was alsc
studie@.

The investigation was extende& to consider the effects of the sidesways
produced by eccentrically imposed vertical loads on the distribution of
lateral forces. The effects of local irregularities, such as a discon-
timuity in a floor slab, were also examined. -

Goldberg!s two structures were selected as the basis for these
investigations. The 10 storey structure has alrzady been described in
Chapter 4 (Fig. 4.6). The 20 storey structure, which is very similar in
general arrangement, is shown in Fig. 8.1. Again the cross sectional areas
of the columns, which were not specified by Goldberg, have been taken from
the nearest equivalent British séctions.

The walls and floors of the building are of reinforced concrete for

which Young!s modulus is 3 x 106 lb/in2 and Poisson's ratio is 0.1, Wind .
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12 2025 2707 67 2866 67
11 2025 2707 67 2866 67
10 2025 3036 17 3758 17
9 2025 3036 17 3758 77
8 2025 4132 92 4325 92
7 3387 4132 92 4325 92
6 3717 4926 109 5166 " 109
.5 5161 4926 109 5106 109
4 5321 5946 125 5946 125
3 5641 5946 125 5946 125
2 5862 6816 125 6316 125
1 3058 6816 25 6816 125

TABIE OF SECTION PROPERTIES

Fig. 8.1 Goldberg!'s 20 storey structure
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loads are equivalent to a uniform pressure of 15 1b/ft% For comparison
of the sectional properties of the two frames, the second moments of

area of the members are plotted horizontally to scale in Fig. 8.2.

From these diagrams it is seen that the beams of the 10 storey structure
are of uniform section, ;hile the columns are tapered, changing in
section at each storey. In the 20 storey frames the column sections
change at approximately every two sioreys, while the sections of the
beams, which are uniform for the top 14 storeys, are increased irregularly
below this level, Notably the. stiffness of the 10 storey frames is less:
than that of the iop 10 storeys of the 20 storey frames. ‘

The behaviour of a hypothetical 10 storey reinforced concrete building
structure was also studied. This structure, which is shown in Fig. 6.3,
was chosen as an extreme case with the walls and frames arranged
asymmetrically in plan, and the columns of the frames also arranged
asymmeirically. Young's modulus and Poisson's ratio for the concrete were
taken to be 28 x 10° kﬂ/hz and 0.15 respectively. Wind loads equivalent
to a uniform pressure o? 1 kﬂ/hz were a:suﬁed to act on the long face
of the building in the direction shown. These loads are tabulated in
Appendix 1, together with the loads acting on the-20 storey structure of

Goldberg. The derivation of the loaﬁs is also given in the appendix.

8.2 The effects of bending of the floor slabs in their own plane

In this part of the investigation the three structures were analysed
under the action of a uniformly distributed wind load. The effect of
treating the floor slabs as rigid diaphragms was obtained by increasing
the thickness of the slabs by a factor of 1000, The effects of increasing
the overall length of the structure, were also examined in the case of

Goldberg's 10 storey structure.
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8.2.1 Goldberg!s structures

Diagrams showing the lateral shear forces in the walls and frames
of.Goldberg's 10 and 20 storey structures are given in Figs. 8.4 and 8.5
respectively. In these gtructures, which are symmetrical and contain
identical frames, the loads carried by the frames at any particular floor
level would be equal if the floor slabs behaved as rigid diaphragms, The
difference between the lateral shear forces in the central and outer
frames can therefore be use% as an indicator of the effect of in-plane
bending of the floor slabs. These forces are shown by graphs A and B
respectively in the figures. The effect of treating the slabs‘as rigid
diaphragms is indicated by graph C.

It is of interest firstly to compare the shapes‘of the shear force
diagrams for the two structures. In the 20 storcy structure the shear
force in the frames is approximately uniform throughout .their height.
This is the condition produced by a single concentrated lateral force -

19

applied at the top of the frame, as assumed by Rosman “in his approximate
method of analysis, leading to a negative shear force at the top of the
walls. In the uniformly tapered frames of the 10 storey structure however,
the shear force at the top of the frames ié small and no negative shear
occurs in the walls. Also in contrast with the 20 storey structure, there
is a sudden large increase in shear force in the bottom storey.

In both structures the bending of the floor slabs causes an increase
in shear at the base of the central frame, and a reduction in shear at the
top. At intermediate storey levels, small, irregular variations in shear
occur between the ceniral and outer frames -of the 20 storey structure, but
in the 10 storey structure-the effect is negligible.

The diagrams show that the effect of rigid diaphragm action in the

slabs is to produce errors which are in the same sense for all the frames
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( a) wall ‘ (b) frames

Fig 8.5. Distribution of shear forcz in Goldberg's 20
storey structure
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at any particular level., This result is unexpected, since it would
have been reasonable to assume that the shear forces obtéined for rigid
slabs would lie between those for the central and outer frames. For the
central frame in particular, the differences between the results obtained
by assuming slab bgnding.on the one hand, and rigid diaphragm action on
the other, are therefore greater than might have been expected from
intuitive reasoning.

The shear force diagrams for the walls show that in both structures
the majority of the wind load is carried by the wails. In the 10 storey
structure the walls carry approximately 7 times the total load carried by
all the frames, while in the larger siructure the factor is apﬁroximately 5.

From the point of view of the desigiier, more useful data for comparison
are the bending moments and axial forces in the individual members of the
frames. On examination of the bending moments at a number of points in
the frames, it was found that similar patierns evolved. In the remainder
~of this thesis the bending moments at the lower ends of the inner columns
are used as indicators of the general trend. It may be assumed therefore
that any subsequent, unspecified reference to bending moments relates
to these points,

Bending moments in Goldbergts 10 storey frames are shown by graphs A,
B and C on the left hand side of Fig. 8.6, from which it is evident that
the ﬁifferences due to bending of the slabs are again significant only at
the bases of the frames. When the slabs are treated as rigid diaphragms,
the generzl effect on the bending moments is similar to that on the shear
forces. At the base of the central frame for example, the bending moment
is less than half the value obtained when the bending of'fhe slabs is taken
into account.

Similar results were obtained for the 20 storey structure and these are

plotted in Fig. 8.7. Here the increase in stiffness of the lower part of

the frame is reflected in the graph of bending moments. It is also noticed
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Fig 8.6. Bending moments in inner columns of Goldberg's
IO storey irames
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that in the intermediate storeys of this structure, the assumption of
rigid floor slabs leads to errors of up to 15% in either sense. These
errors occur in the regions where the sectional properties of the members
change. At the tops of the frames, the bending moments are over-estimated

by amounts varying from 90% in the central frame to 23% in the outer frame.

8.2.2. The effect of variations in wall stiffness

Using Goldberg!s 10 storey structure, subject to the same wind loads,
the effect of changes in the relative stiffness of the walls and frames
was examined by varying the thickness of the walls from 1 in. to 15 in.
Fig. 8.8(2) shows the deflections at the top of the structure in the
central frame (graph A) and in the outer frame (graph B) for different
values of wall thickness. Curves of similar shape were obtained for the-
bending moments in the frames. Fig. 8.8(b) shows, for example, the bend—
ing moments in the top and bottom storeys of the central and outer frames
(Graphs A and B). The effect of rigid diaphragm action in the floor slabs
is shown by graph C.

The increasing difference in the deflections of the central and outer
frames indicates that the bending of the slabs increases as the stiffness
of the walls is increased. This is due to the increased loading of the
floor slabs as a greater portion of the wind load is carried by the walls.
The ‘increase in bénding of the slabs probably accounts also fof the fact
that the difference between the three graphs of bending moment remains
approximately constant, in spite of the reauced loading of the frames.

The shape of the curves of bending moment shows that as the stiffness
of the walls is increased, they become progressively less effective in
reducing the loading of the frames. Thnis suggests that for a given

arrangement of walls and frames an optimum value of their relative stiff-

ness could be found.
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8.2.3 The effect of variations in the number of intermediate frames

Using the same structure a further investigation was carried out in
which the proportions of the load carried by the grillage and the frames
was varied by changing the overall length of the structure and the number
of intermediate frames. The distances between the frames, and hence the
wind loads at the junctions were kept at their original values.

Fig. 8.9(a) shows the variation in deflection at roof level for the central
frame and the end walls. As the number of intermediate frames is
increased, the deflections of the structure increase generally and the
effects of bending of the floor slabs become more significant as shown

by the divergence of graphs A and D. The defleclions of the end walls

are seen to be almost coincident with the deflections obtained when rigid
floor slabs are assumed. ‘

The effects of bending of the floor slabs are also shown in Fig. 8.9(b)
where the berding moments in the frames are plotted against the number of
intermediate frames. As this is increased, the loading increases, as shown
by the general slope of the graphs. The effects of slab bending become
more significant as the central frame becomes more remote from the end
walls, and is most marked at the bottom and top of this frame.- In the
bottom storey the effect is significant even when there are only 3
intermediate frames. On the other hand, it is negligible in the interﬁediate

storpyé, as shown by storey number 4 in the figure, even when the number

'
-
-

of frames is increased to 9.

8.2.4 The asymmetrical structure

For the asymmetrical structure the deflections_and rotations of the
floor slabs are given in Fig. 8.10 where it is seen-that the greatest
deflections cccur at the.unsupported frame in position 1. Treatment of
the slabs as rigid diaphragms was found to make practically no difference

at all to the deflections in this structure.
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The distributions of shear forces in typical walls and frames are
plotted in Fig. 8.11, from which a comparison of graphs A and B shows
that the effect of treating the slabs as rigid diaphragms is negligible
in the frames and of only slightly greater significance in the walls.
From Fig. 8.12(a) it is seen that the shear forces in the frames have an
epproximately linear relationship to one another., It is also noticed
that the total loads carried by the frames and the walls are of the same
order. The frame in position 1 actually carries a total load in excess
of the total wind load acting on the structure at this position, indicat-
ing that a negative load acts on the slabs. The portion of the wind
load acting at the other frame junctions is also small in compérison with
Goldbergt!s structure, which probably accounts for the relative insignif-

icance of the effects of slab bending in this structure.

8.2 The effects of torsion in the walls and slabs

In an asymmetrical structure the rotation of the floor slabs induces
torsion in the walls. Also, since the deflected shape of the bracing
components varies from one end of the structure to the other, torsion of
the floor slabs about %heir longitudinal axes takes place. In the 10
storey asymmetrical structure, which is an extreme case, fhe torques in
the walls were found to be insignificaﬁt, amounting to a maximum of -
1/10,000 of the bending moment or the base of the walls, thus confirming

1
1'23. -Torques in the slabs between the

the findings of previous workers
walls were of the same order. -
Torsion can also be induced in the walls and slabs of a symmetrical
structure if the floor slabs bend appreciably in their own plane. In
Goldberg's structures the torques in the walls were'found to be insignif-
icant, producing a maximum torsional shear stress of only 2 lb/inz.

Since torsional equilibrium at the frame junctions is not consideréd

in the methods of analysis described in this thesis, torsion can only be
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induced in a slab spanning between a wall and a frame by setting the
torsional rotation of the slab to zero at the frame junction. This
condition, which is probably more severe than that existing in practice
was tested in Goldberg's 10 storey structure for the slabs connected to
the end walls., Here it was found tﬁat the maximum torque in the slabs
was only 1/100,000 of the bending moment at the base of the walls. It is
evident therefore that, even allowing for a possible increase in torsional
stiffness resulting from the warping restraint of the wall-slab junctions,
it is most unlikely that the cummulative effect of the torques in the
slabs, on the bending moment at the base of the walls, could ever be

significant in this type of structure.

8.4 The effects of axial deformations

The effects of neglecting axial deformation in the columns of frames
have already been discussed in Chapter 1, with reference to.the published
literature. In this chapter the effects are examined for eazch of the
three structures analysed. Two approaches were adopted in the analyses.
Firstly the cross sectional areas of the columns were increased by a .
factor of 1,000, and secondly the vertical-displacements of all the joints
in the frames were set to zero. The first method, which has been found
to lead tc ill-conditioned load-displacemant equationslo, was included to
test the sensitivity of the elimination subroutine CDM. No evidence of
ill-conditioning was revealed however in these analyses.

Axial deformations in Goldberg's 10 storey frames have been shown in
Chapter 4 to have negligible effect either on the deflections or on the
distribution of shear forces. For the 20‘storey structure the deflections
at roof level are given in table 8.1, from which it is evident that here
also the effect of axial deformations is negligible, although of greater

significance than the assumption of rigid diaphragms.
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DEFLECTION (in)

Wall | Frame 1} Frame 2| Frame 3| Frame 4

Axial deformations

included 1.09 1.09 1.08 1.08 1.08
Axial deformations

excluded 1.00 | 0.99 0.98 0.98 0.98
Rigid slabs 1,08 | 1.08 1.08 1.08 1.08

Table 8.1 Deflections at top of Goldberg's 20 storey structure

On the other hand, a comparison of graphs A and D in ¥ig. 8.5 shows
fhat the she;r forces in the frames are over—estimated by approximately
10% in all storeys by suppressing the axial deformations in the columns.
This figure may be compared with Goldberg's prediction of 8.

It was found that in general, the effects on the forces in
individual members proved to be more significant than was apparent from
a consideration of the-shear force diagrams for the frames. For example,
the axial forces in the outer columns may be seen from Fig. 8.13 to be
over—estimated by amounts varying from 20% at the base of the frames to
zero at the top. In the inner columns, the axial forces are under-
estimated by a proportionally greater amount, although in this case the
absolute values of the forces are small. Fig. 8.14 shows that the bending
moments at the ends of the beams are over-estimated by approximately 20%
in the outer bays and under-estimated by 10% in the inner bay. These
errors are approximately-constant throughout the height of the frame,

A different pattern of results was obtained for the asymmetrical

structure, where it was found that the deflection at the top of the frame
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in position 1 was under-estimated by appfoximately 50% when axial
,deformations were suppressed. This result is shown by graph B in

Fig. 8.10, where the effect on the rotations of the floor slabs is also
indicated. The deflections of the wall in positidn 8 were unchanged.

'The effect on the éhéar forces in this structure is shown by
graph C of Fig. 8.11, indicating maximum errors of 10% only in the frames
and 20% in the walls. The effect on individual member forces however
was again greater, resulting in gross errors of up to 66% in the axial
forces at the bases of the columns, as shown in Fig. 8.15 for the frame
in position 1. ‘

The values oobtained for the bending moments in the beams, which are
given for frame 1 in Fig, 8.16, are also seen to be subject to large
errors, especially at the tops ¢f the frames. The bending momcnts at the
lower ends of the columns are plotted in Fig. 8.17, indicating that the
errors.produced here are generally less than in the beams.

The results obtained from the suppression of axial defo;mations in
the columns of these three structures show that the relationship between
the errors produced in deflection, in the lateral sheér forces carried by
the frames, and in the member forces, varies from structure to structure.
In order to form an assessment of the effect of ignoring axial deformations
therefore, it is not sufficient to adopt a single criterion such as shear
force. The results also indicate that the height-to-width ratio of a
frame, which has been suggested as a guide to the scale of errors likely
to result4, has less significance than other parameters such as the degree

of asymmetry and the stiffness of the beams and columns.

8.5 The effects of imposed loads

In Chapters 4 and 5 it was shown that the lateral forces carrried

by the frames are modified when imposed vertical loads are applied
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eccentrically to the frame., This effect was investigated using the two
.10 storey structures as examples. In Goldberg's structure the windward
bays of the frames were subjected to vertical loads equivalent to

100 l'b/ft2 acting on the slabs. This loading tends to cause sidesways
opposing the action of the wind, thus reducing the deflections of the
structure generally and increasing the proportion of the total wind load
carried by the frames. | ’

In the first instance the imposed load was applied to all the frames,
resulting in a reduction of approximately 4% in the deflections at the
top of the structure. The effect on the shear forces is given by graph C
in Fig. 8.18, which shows that between the second and eighth storeys, the
shear force carried by all the frames is increased by approximately 50%.
When the eccentric vertical loading on the walls is taken into account
however, the increase in shear force is only 10%, as shown by graph D.

The effect of the first loadcase could be regarded as the converse of the
differential sidegway produced by a small elastic rotation of the founda-
tions at the base of the walls, which was shown by Rosman19a180 to cause
considerable modification of the distributioﬁ of shea¥ forces in the
structure,

For the purpose of determining realistic values of imposed loads on
the asymmetrical structure, it was assumed that the élgbs were supported
by lateral and longitudinal beams spanning betweén the columns of the
frames. The slabs were assumed to carry distributed loads of BKR/ma and
2kN/m2 as shown in Appendix l. This loading, which was reduced in the
upper storeys in accordance with CP3, Chapter 5, is lighter than that
assumed for Goldberg's structure and more in accordance with that likely
to be experienced in practice. The derivation of the loads on the joints

of the frames is given in tha appendix.
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The effects on the deflections and rotations of the slabs are
. shown by graphs C in Fig. 8.10, and the corresponding shear forces by
graphs B in Fig. 8.12, It is interesting to observe that in this struoc«
ture; since the sidesways due to the imposed 1oadg were in the direction
of the wind, the loads c;rried by most of the frames were reduced. The
additional rotation of the floor slabs was sufficient however, to cause
the-load-carried by the frame in position 1 to be increased. It was also
noticed that, in contrast with Goldberg's structures, the proportional
changes in deflection were greater than in the shear forces.

For the asymmetrical structure the effect of suppressing axial
deformations was also examined, while the frames were subject to the

imposed loading. It was found that in this case the changes in deflection

and shear force were almost totally suppressed,

8.6 The effects of local irregularities

Two examples of local irregularities are considered in this section,
using Goldberg's 10 storey structure; In the first instance, in addition
to the wind load, the central frame alone was subjected to the eccentric
vertical loads described in the previous section. .As a result, the shear
forces carried by this frame were increased, as shewn by graph E in
Fig. 8.18, to a greater extent than when all the fgames were so loaded.
The effect on-the other frames however was found to be neglikible.

The bending moments, which include both the vertical and lateral
effects of the imposed loading, are showﬁ for the central frame by +the
graphs on the right hand side of Fig. 8.6. In the other frames the bending
moments are virtually unchanged and lie between graphs A and B on the
left of the figure. When the slabs are treated as rigid diaphragms
(graph C), it is noticed tha%t the bending moments in the central frame

are under-estimated by approximately 40% in the top storey and 11% in the
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ninth storey. In all other storeys the errors are negligible and of
opposite sign. These results are almost the reverse of those obtained
from wind loads alone.

The loading of a single frame in the manner described is probably
unlikely to occur in praotice. A similar effect would result however from
a wniformly distributed load over the whole of the floor slabs if, for

- example, alternate frames were constructed with an unsymmetrical arranée~
menf of columné.

The manner in which the bending moments in the columns of a frame
are affected by discontinuities in the section properties, has been
described in section 8.2.1. The effect of a local discontinuity in the
grillage due to a sudden reduction in the effective width of a floor slab
will now be discussed. A practical example of this type of discontinuity
occurs when a large opening is provided for visual communication between
floors — an architectural feature of some modera buildings.

For this investigation, the width of the floor slab was reduced
alternately on the first, fourth'and tenth floors, on either side of the
central frame as shown in Fig. 8.19.

The effects on the central frame, when the structure was subjected
to wind loads only, are shown by the bending momenté in Fig. 8.20. From
the figure it is apparent that when the réductiop occurs in the first
floor, the bending moment is increased by approximately 30% at the base
of the frame. It is reduced in the same proportion just above the first
floor level. The effect decreases to negligible propoﬁtions in other
storeys, dying out completely above the fourth floor. With the reduced
slab in the fourth floor‘the oscillation of the bending moment is greater,
amounting to 100% of the normal value. A large increase, but with no
oscillation also occurs when_the reduction is made in the roof slab.

The effect on the frames on either side of the centrél frame is

symmetrical and is shown for the left hand side of the structure in
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Fig. 8.19 Floor plan showing reduced width of slab

Fig. 8.21. At each of the three floor levels shown in the figure, only
the changes due to the discontinuity in that particular floor are apparent,
owing to the rapid damping. It is noticed that in each case the effect
is greatest in the thrge middle frames, but persists to a lesser degree

in all the frames, especially when the reduction occurs in the roof slab.
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CHAPTER 9

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

9,1 The methods of analysis .

Computer programs have been written for two proposed methods of
analysis of the class of structures consisting of arbitrary parallel
systems of shear walls and plane frames, interconnected by continuous
floor slabs. The effects of static wind loading together with
eccentrically imposed vertical loading were considered. Bending of
the floor slabs in their own planes was taken into account by consider-
ing all the plate ccmponents of the structure as the members of a plane
grillage of deep beams. The torsion of the walls and, to a limited
extent, the torsion of the slabs were also included.

Division of the structure into a number of plane components
allowed separate analyses of these components to be carried out, thus
reducing the number of equations that were required to be solved at any
stage of the analysis. Furthermore, the necessity for repeated analyses
of identical frames was avoided, reducing computation time and simplifying
the preparation and checking of data. Additional simplifications were
made, wherever possibie, by taking advantage of the regularity of the
shape of the structure and the recurrence of identical wall and floor
panelg. The measure of these savings, for the method &f infiuence
coefficients, was demonstrated by comparison with a general finite
element analysis of the two storey model described in Chapter T.

The method of influence coefficients, which is basically a matrix
force approach, concludes with the solution of a set of compatibility
equations, from which the lateral forces acting on the frames at the
frame junctions are determined. In some cases difficulty was experienced

in solving these equations, which, although relatively small in number,
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were not sparse and tended to be ill-conditioned.

The second, or restrained grillage, approach uses the matrix
displacement technique throughout, concluding with the analysis of a
grillage, in which the action of the frames is replaced by a system of
lateral restraints. By ﬁeans of the wide column frame analogy it was
possible to extend the range of structures that could be analysed,
without increasing computation time, and with a relatively small increase
in the volume of data required. Computer programming, however, was
complicated by the partitioning of the stiffness matrices of the frames
together with the compact method of storage, by the allocation of wvariable
degrees of freedom to the joints of the frames and the grillagé, and by
the use of backing storage facilities. On the other hand, all the equa~
tions were sparse and could be solved by the modified version of Jennings!
compact elimination technique. No evidence of ill-conditioning was
detected. The use of direct access disc files, for the storage of all
large arrays, enabled fairly large structures to be analysed by a ccm-
‘puter with only a moderate core store.

Since the basic assumptions for the two proposed methods were the
same, the results obtéined from their use, in the analysis of any
particular structure, were almost identical. The accuracy of these results
was verified by comparison with previous results by Goldberg. Further
verification was provided by comparison with the results of an experiment
on a two storey model structure, for which a general finite element
analysis was also carried out. In this case it was found that the proposed

methods gave a slightly better measure of agreement with the experiment.

9.2 The behaviour of complete structures

A number of conclusions can be drawn from the results of the

investigations described in Chapter 8. The degree of bending which takes
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place in the plane of the floor slabs depends upon both the size and
the distribution of the loads carried by the slabs. The most severe
effects are likely to occur in symmetrical structures of the type
analysed by Goldberg, where the slabs are supported by walls at their
ends. At the intermedia%e frame junctions the proportion of the wind
load carried by the glahs is increased when the stiffness of the wallé
relative to that of the frames is increased. Paradoxically therefore,
the errors in the member forces for the frames, which result from the
assumpticn of rigid diaphragm action of the slabs, could be most serious
when the proportion of the total wind load carried by the frames is least.
The total lateral load carried by the floor slabs, and hence the effect
of in-plane bending, is also increased when the overall length of tle
slabs betwecen the supporting walls is increased.

The assumption of rigid diaphragm action does not have an averaging
effect on the distributicn of the lateral she;r forces carried by the
frames, as might have been expected. Instead, it tends to produce
errors which are in the same sense for all the frames, the most serious
errors occurring in the frames most remote from thelsupporting walls,.

The forces in the members of the frames, were found to be significantly
in error in the bottom storeys of the frames, Here the forces were
under—-estimated by assuming rigid floor slabs. Errors of over-estimation
occurred at the tops of the frames. At all other levels the effect was
negligible except in the vicinity of sudden changes in the section
properties of the frames,

The neglect of axiél deformations in the columns of the frames leads
to over—estimation of their lateral stiffness, and hence of the lateral
shear forces carried by them at all storey levels. The lateral shear
force, which is the sum of the shears in the individual columns at a

particular level, is not in itself however, a good indicator of the
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effects of neglecting axial deformations. In the structures analysecd
it was found that larger errors, together with errors of under—estima~
tion, occurred in the bending moments and axial forces in individual
members. The most serious of these errors occurred in the bending
moments at the ends of the shorter beams in the asymmetrical structure.

It has been shown that when vertical loads are applied to a wall
or a frame in a manner which tends to cause sidesway, the restraints provided
by the floor slabs give rise to lateral shear forces at the junctions.
This effect is likely to be most sifnificant when the greatest restraint
is provided and will not necessarily be associated with large changes in
the deflections of the structure as a whole,

It was shown in Chapter 8, for example, that in a symmetrical
structure, braced by relatively stiff end walls, significant changes in
the lateral forces carried by the frames resulted wheﬁ eccentrically
imposed loads were applied to the frames, but noct to the walls, The
changes in deflection however were small. Similarly, when eccentric
loading was applied to a single frame, the-loads carried by that frame
were'significantly affected, but the effect on adjacent frames was
neglibible,

Conversely, in an asymmetrical structure where the rotation of the
floor slabs was only partly restrained by the walls, large changes in -
deflection occurred’ as.a result of eccentric vertical loads on the franes.
The effect on the distribution of lateral forces, on the other hand, was
small,

It was found that the lateral effects of vertical loading were
almost entirely dependant on the development of axial deformations in
the columns and would therefore be overlooked if these deformations were

supressed in the analysis.



115

Consideration of the floor slabs as deep beams enables the

- effects of variations in the section properties of the slabs to be
investigateds The effect of a sudden reduction in the width of a floor
slab of a symmetrical structure was studied at th¥ee different levels.
It was shown that the me;ber forces in the frames adjacent to the dis-
continuity were significantly affected. The effects on the other frames
in the séructure were smaller, but not negligiblé.. In the vertical
direction however, rapid damping occurred.

In conclusion it may be stated that the methods of analysis
described in this thesis take account of two effects, which are not
included in the majority of published methods, namely the effects of in—
plane bexnding of the floor slabs and of eccentric vertical loading éon
the frames. It has been shown that the inclusion of these effects cun
be achieved without undue additional expense, either in data preparation,
or in computer time and storage. The results of the analyses carried
out suggest that for some structures the results of neglecting these
effects could not be predicted and may involve serioqs errors in the com—

putation of deflections, or of member forces in the frames.

9.3 Suggestions for further research

The chief limitation of the above methods ‘of analysis is the restric-
tion to the class of structures containing only parallel walls and frames,
implying that the deflections of all the bracing components are in
parallel planes. The analysis of L shaped structures in which torsicn
produces perpendicular displacements of the twé arms of the L, or of
structures in which the bracing compouents are not parallel, is therefore
precluded. The restrained grillage approach could be extended however,
to include a wider range of "structures, by replacing the grillage by a
space frame. The simplified conditions of equilibrium and compatibility

at the frame junctions could be retainéd, together with the advantages,
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gained by analysing the frames separately. In this space frame a

. maximum of 5 degrees of freedom would be required at the wall junctions,
but at the junctions with plane frames, since the torsion of the floor
glabs has been shown to be unimportant, the degreés of freedom could be
reduced to two,translatigns and a rotation in the planes of the floors.
The total number of degrees of freedom, and consequently the storage
requireménts and running time for the space strudt;re, would not therefore
be very much greater than that for the grillage.

The importance of the effects of axial deformations in the columns
of frames or perforated shear walls has been pointed out both in this
thesis and in the published literature., In general, discussion has
taken th: form of comments on the results of particular analyses rather
than a statement of principles. In the report by ACI committee No. 442 4,
which was intended as a reference work for practising designers, it was
stated that 'while no definite rules can te given, the effects of column
axial deformation will generally be important if the height to width ratio
exceeds about threel,

&he results obtained for the structures analysed_in this thesis
show that the height-to-width ratio is not necessarily the most imporiant
parameter to be considered when deciding whether or not to include axial
deformations. A systematic investigation therefore, into the influence
of axial deformations in regular multi-storey frames, appears to be
desirable,

In this thesis, as in most published methods of analysis of cozplete
structures, it is assumed that the bases of the walls and frames are rigid.
It has been shown howeverlg, that the distribution of lateral forces is
extremely sensitive to small elastic rotations at the base of a wall, In

46

contrast, work has been carried out, for example by Sommer’ and Hbil47,

which shows that more accurate values for the contact pressures under a
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flexible strip footing can be obtained if the stiffness of the super-
structure is considered. The work of this thesis indicates that the
distribution of lateral shears is likely to be significantly affected

by small Qiffe;ent;al settlements of the footings of the frames. Such
settlements could be included in the restrained grillage analysis by
extending the lateral stiffness matrices, derived in Chapter 5, to include
rows and columns corresponding to wvertical displacements at the column
bases. An influence coefficient approach, similar to that of Sommer and
Heil, but in three dimensibns, would be required to determine the relation-
ship between contact pressures and vertical displacements in the soil,

One extension of the present work has already been mentioned in
Chapter 4, namely the work of Majid and Onen, relating to the elastic-
plastic behaviour of the frames incorporated in a complete structure.

This work is based on the analysis by influence coefficients described in
this thesis. A similar project, in which buckling and shear failures of
the walls and slabs are also to be considered, has now been started. It
is expected that the restrained grillage approach, described in Chapter 5

of this thesis, will be used as the basis for this investigation.
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APPENDIX 1

DETERMINATION OF LOADING

Al,1 Wind loads

The wind pressure.,on the structures was assumed to be uniformly
distributed over the face of the structure in each of the cases analysed,
except in Goldberg'!s 10 storey structure, when the conoeﬁfrated loads
quoted by Goldberg were used, giving a slightly reduced wind pressure
on the bottom two storeys. In the other two structures it was assumed
that, from an area enclosed by 4 joints, the wind force was apportioned
equally to each of the joints., The method is illustrated, for the joints
at the top left hand corner of Goldberg's 20 storey structure, in
Fig. Al.l. In this example the load apportioned to joint A was
15 x 12 x 20 = 3600 1b, Similarly the load carried by joint B was
1800 1b and by joint C was 900 1b. Applying the above method to the
whole structure and assuming that only the left hand half of the
symmetrical structure waé to be analysed, the wind loads given in
Table Al.l were oﬁtained.

Using the same approach, the wind loads given in Table Al.2 were

obtained for the 10 storey asymmetrical structure.

Al.2 Imposed loads

For the purpose of the investigations carried out on Goldberg's
10 storey structure, the imposed loading was assumed to be equivalent
to 100 1bfft2 on the floor slabs, supported by the beams of the frames
and the end walls in one bay only as shown in Fig. Al.2a. The result-—
ing moments and shears acting on the joints are shown in Fig. Al.2b.
The overturning mcments on’the walls were determined from the formula
derived in Chapter 4, section 4.5, assuming half the loads acting on

the frames. This loading is shown diagrammatically in Fig. A1.2c.
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Storey| End Wall Frames Frame
1 to 3 4
20 900 1800 900
19
: 1800 3500 1800
7
6 1950 3900 1950
5
4 2100 4200 2100
3
2 2250 4500 2250
1 2850 5700 2850

Table Al.1 Wind loads in pounds 6n Goldberg's 20 storev building
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Fig. AL2 Imposed loads on Goldbergs 10 storey structure
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Imposed loading on the floors of the asymmetrical structure

was apportioned to the beams of the frames and to the longitudinal
beams, in accordance with CP110 Part 1, 1972, as shown in Fig. Al.3a.
The loads from the shaded areas marked A were used for the calculation
of shears and end moments in the beams of the frames. The areas marked
B and C contributed }oads to the longitudinal beams. The end shears of
these beams were transferred to the joints of the frame, but their end
moments, which do not affect the sidesways in the planes of the frames,
were ignored. The resulting shears and moments on the joints of a

typical frame are shown in Fig. Al.3b.

Table Al,2

POSITION
Storey - 1 2-5 6 1 8
10 T.50 15.00 9.75 4.50 2.25
9
: 15.00 30.00 19.5 9.0 4.5
1

Wind loads in kN on the 10 storey asymmetrical structure
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Fig.A.13 Imposed loads on asymmetrical structure



