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SUMMARY

This thesis is concerned with the analysis of beams resting
on elastically deformable media. In particular, the analytical
studies are restricted to the treatment of infinite and finite
beams subjected to concentrated and distributed loadings.
Integral expressions are derived for the plane strain and three
dimensional problems of the infinite beam resting on an isotropic

homogeneous and non-homogeneous (plane strain) media.

The solution to the problem of the finite beam is obtained
by using the solution developed for the infinite beam together
with a superposition technique. The numerical values of the
integral expressions are tabulated for the finite and infinite
beam. The results of contact force distribution, obtained from
the superpositon technique, are then compared with the results
obtained from Barden's and Ohde's approximate solutions. The
influence of the length to width ratio of a beam, subjected to
a central concentrated load, on contact force distribution is also

investigated.

Laboratory model tests have been conducted on finite beams of
different flexibility which rest on a granular subgrade. These
tests have been carried out under both two dimensional plane strain,
and three dimensional conditions. These experimental results are
compared with the theoretical analyses which assume both Winkler

and elastic continum behaviour of the granular medium.
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CHAPTER ONE




1.1 Introduction

~Shallow foundations are frequently designed and constructed
in the form of beams resting on soil media and subjected to
external loads. The important step in the design of such
foundations is to obtain the manner in which the contact stress
-is distributed at the beam-soil medium interface. The simple
assumption of linear distribution of contact stress disregards
the effect of flexibility of the beam and mechanical properties

of the soil medium on contact stress distribution.

A rational design approach should take into consideration
the influence of factors such as flexibility of the foundation,
flexibility of the superstructure, time independent and time
dependent deformational characteristics of the soil medium and
the nature of external loading. However, there are as yet no
efficient techniques which take into account the influence of
all the above factors in the design of foundations. The existing
techniques for the design of foundations accounts onmly for the
effect of the flexibility of the foundation and the deformational

characteristics of the soil medium,

In order to take into consideration the effect of mechanical
properties of soil in the analysis of soil foundation interaction
problems, it is necessary to have a knowledge of the complete
stress-strain characteristics of the soil. A complete stress-

strain relationship for soil will furnish the stress and strains




in a soil medium at any particular time under any given loading

condition.

Owing to the variety of soils and soil conditions encountered
in engineering practice such a generalized stress-strain
relationship cannot be developed to fulfil the requirements of

every type of soil behaviour.

The inherent complexity in the behaviour of real soil has

led to the development of many idealized models of soil behaviour,
especially for the analysis of soil foundation interaction problems.
The relevant choice of an idealized behaviour of soil for a soil
foundation interaction problem will depend primarily on the type

of soil and soil conditions, the type of foundation and the nature
of external loading. A brief discussion of some idealized models
which form the point of view of soil foundation interaction problems

is given in the following sections.

1.2 Idealized Soil Models

1.2.1 The Winkler Model

1

The idealized model of soil media proposed by Winkler (1867)
assumes that the soil consists of closely spaced, independent
linear springs. The relation between the deflection W of the soil
medium at any point on the surface, is then proportional to the
sfress, p, (applied load per unit area) at that point and

independent of stresses at other points.




p(x,y) = kw(x,y) (1.1)

where k is termed the modulus of subgrade reaction with units
of stress per unit length. For this particular model, the
displacement of the loaded area will be constant whether the
foundation is subjected to infinitely rigid load or a uniform
flexible load (Figure 1.1). In addition, for both types of

loading the displacements are zero outside the loaded region.

1.2.2  The elastic solid model

A serious objection can be made to the inability of the
Winkler model to produce any deflection outside the loaded area.
The simplifying assumptions made in the Winkler's hypothesis
restricts its applicability to soil media which possess the
slightest amount of cohesion and transmibility of load. It is
obvious that in the case of soil media surface deflections will
occur not only immediately under the loaded region but also
within certain limited zones outside the loaded area. In an
attempt to account for this continuous behaviour, the soil media
have been treated as an elastic continuwm. The problem of semi-
infinite homogeneous isotropic linear elastic medium subjected
to a concentrated load acting normal to the plane boundary was
first analysed byéBoussinesq (1885). This basic solution can be

used to obtain the response function for the three dimensional

elastic soil medium.



- 3

2
Fig.l. I  Deformotion of the Winkler model due to

a. umform {lexible load
b rigid load




In general, the application of the theory of classical
elasticity to soil-foundation interaction problems presents a
complex mathematical problem. References on a number éf solutions
to boundary value problems of particular interest’to soil

foundation interaction are given by Selvadurai (1975).

1.2.3 Two parameter models

The inability of the Winkler's model to account for the
continuous behaviour of the so0il and the mathematical complexities
involved in representing the soil medium with an elastic continuuvm
model have led to the development of many other models. In an
attempt to find a physically close and mathematically simple
representation of a model for the behaviour of the soil medium, one
may approach the problem in two ways. In the first approach the
discontinuity between the spring elements of Winkler model 1is
eliminated by introducing some kind of interaction between the
spring elements. Such physical models of soil behaviour have been
proposed by Filanenko-Borodich (1940), Hetenyi (1950) and
Pasternak (1954). The second approach starts with thé elastic
continuvmmodel and introduces simplifying assumptions with respect
to the distribution of displacements and stresses. Such a
simplification is taken into consideration in the soil models proposed
by Reissner (1958) and Vlasov (1966). A comprehensive review of
the two parameter models is given by Kerr (1964). Here, a brief

discussion of these models is given.



(a) Filonenko-Borodich Model

In this model the interaction between spring elements in
the Winkler model is provided by connecting the top ends of
the spring elements to a stretched elastic membrane subjected
to a constant tension T as shown in Figure (1.2). By considering
the equilibrium of the membrane-spring system in the z direction,
it can be shown that for the three dimensional problem the

load-displacement relation is given by

plx,y) = kw(x,y) - TY%w(x,y) (1.2)
where
v2 = _&8.2_. + _éi.
ax? dy?

is Laplace's differential operator in rectangular cartesian
coordinates. In the case of the two dimensional problem (1.2)
reduces to

p(x) = kw(x) - ng_\,i (1.3)

ax?
From (1.2) and (1.3) it can be seen that this model is
characterised by the rigidity of spring elements and the intensity

of tension T in the membrane.
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(b) letenyi Model

In this model which was proposed by Hetenyi (1950), the
interaction between spring elements is provided by imbedding,
in the two dimensional case an elastic beam and in the three
dimensional case an elastic plate, in the material of Winkler
foundation. It is assumed that the imbedded beam or plate
deforms in bending only. The relation between p and deflection

w for the three dimensional case is

p(x,y) = kw(x,y) - DV2V2yw (1.4)
where
3
o . __Eb
12(1-v?)
and
0292y = O, 29" , Lo
ax* 3x2dy? ay"

for the two dimensional problem (1.4) reduces to

3 L

PO = ku(x) + B ¥
, W

ax

(¢) Pasternak Model

The model to represent the soil behaviour proposed by
Pasternak (1954) assumes the existence of shear interactions

between the spring elements. This can be accomplished by



connecting the ends of the springs to a beam or plate consisting
of incompressible vertical elements which deform in transverse
shear only (Figure 1.3). Consider the vertical equilibrium of

a shear layer element cut out by the surfaces x, x + dx, y and v
y + dy as shown in Figure (1.3). By assuming that the shear layer

1s isotropic in the x,y plane with shear modulus Gx = Gy = G we

have

_ _ ow
Tz = Oxz = C 3%
(1.5)
ow
.. =0 = G =
vz~ “y'yz 3y
The shear forces per unit length of the shear layer are
4
~ _ ow
Ny = Tzt = 6 5%
o
3 (1.6)
N oW
Ny = yzdZ = G Ty
For force equilibrium in the z direction
BNX oN
3y +p-kw=0
or
p(x,y) = kw(x,y) - GV%w(x,y) (1.7)

It can be seen that by replacing G by T, equation (1.7) becomes

identical to (1.3).




(d) Vlasov Model

The model of soil response proposed by Vlasov (1949)
approaches the problem from an elastic continuwmpoint of view
and introduces displacement constraints that simplify the basic
equation for a linear elastic medium. By imposing certain
restrictions upon the possible distribution of displacements
in an elastic layer, Vlasov was able to obtain a soil response

function similar in character to (1.3) and (1.7).

(e) Reissner Model

The model which was proposed by Reissner (1958) is derived
by assuming that the in plane stresses (in the x,y plane)

throughout the soil layer of thickness H are negligibly small

O =0 =T = 0 (1.8)

and the displacement components u, v and w in the rectangular

cartesian coordinate directions x, y, z satisfy conditions

It can be shown that the response function for this model is

given by



W - czvzw =p+ — V¥p (1.9)
where p is the external load and w is the vertical displacement
at Z = 0 and

c1‘=

s
H
Ef and Gf are the Young's modulus and shear modulus of the soil
layer. For a constant or linearly varying p after redefining

of constants ¢, = k and ¢, = G equation (1.9)is identical to (1.7).

1 2

A consequence of assumption (1.8) is that the shear stresses
Tox and sz are independent of z and hence are constant throughout
the layer. Such an assumption is unrealistic particularly for
thick soil layers. Since this model is introduced to study the
response of the soil surface to loads and not the stresses induced

within the layer, this particular deficiency (assumption 1.8) may,

in general, be of no serious consequence.

1.3 Beams resting on idealized models of foundations

Assuming that there is no loss of contact at the beam-soil
medium interface, the differential equation for the deflection of
a beam resting on soil medium is

N
I d*w

dx*

E

b tpP=q ' (1.10)
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where p is the contact force (contact stress x width of the beam)
at the beam medium interface, and q is applied load (load per
width, per unit knﬂ#h of the beam). By substituting in (1.10) for
p in terms of w from the response function of a ﬁarticular model.
the differential equation can be solved to obtain the deflection

of the beam.

Due to limitation of space it is not intended to discuss

the analysis of beams resting on all types of idealized models.

’

. . - on
The analysis of infinite and finite beams resting two and three

dimensional elastic continuvmmodel forms the major part of the
thesis and therefore are discussed in separate chapters
(chapter 2, 3 and 4). In the following we briefly discuss the

analysis of beams resting on Winkler medium.

1.4 Beams resting on Winkler model

The general differential equation governing the deflected

shape of a beam resting on Winkler medium is

d“*w

dx*

EI

+ Kw (1.11)

it
el

where q is the external applied load and EI is the flexural

rigidity of the beam.
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The solution of (1.11) 1is

sinix] (1.12)

1 2

w(x) = exx[c cosAx + c,sinix] + e_kx[cscoskx + ¢,

where J—
- K
A —'j4EI
and €1 Cys Cg and ¢y can be determined by making use of

boundary conditions at the ends of the beam.

The main difficulty in applying the general solution given
by (1.12) to a particular problem arises in the determination of
the integration constants which involves a considerable amount
of work. To avoid the mathematical difficulties Hetenyi (1947)
proposed the method of superposition. In this method the solution
for the infinite beam subjected to a concentrated load is used to
obtain the solution to the infinite and finite beam subjected to

different types of loadings.

The deflected shape of an infinite beam loaded by a concentrated

force P applied at the origin (Figure 1.4) is given by

w(x) = ehkx[coskx + sinix] (1.13)

2K

where K = Bk and B is the width of the beam.




X

te beam on o Winkler medium,

1

n

Inf
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The slope (6), bending moment (M) and shearing force (V) are

related to the deflection of the beam by

) 2 3
o= yo iyl g W (1.14)

b dx? dx3

By using (1.13) in (1.14) we have

2
B(x) = B%~ eﬂxxsinxx

p -AX .
M(x) = i © [cosAx - sin)x]
V(x) = - g— e_AxcosXx

For the details of three and two dimensional analysis of beams

on two parameter foundation model see Selvadurai (1975).

1.5 Scope of the Work

The major part of the work is concerned with the analysis
of the beams resting on an isotropic homogeneous and non homogeneous
elastic medium. The two and three dimensional analysis of an’
infinite beam resting on an isotropic homogeneous elastic medium
and subjected to a concentrated load, a concentrated couple and
a uniform distributed load is given in chapter 2. The integral

expressions are obtained for the deflection (w), bending moment (M),
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shearing force (V) and contact force (Q). The numerical values of
these integrals are tabulated in Appendix 1. Analytical expressions
are‘obtained for the maximum deflection, bending moment and contact
force of an infinite beam subjected to a concentrated force P.

These expressions are then equated to those obtained from the
Winkler analysis to obtain values for the modulus of subgrade
‘reaction in terms of the flexural rigidity of the beam and the

elastic properties of the medium.

The analysis of the finite beam is discussed in chapter 3.
The solution for the infinite beam problem is used, by employing
the superposition technique, to analyse the finite beam Subjected
to a concentrated load, a concentrated couﬁle, and a uniform
distributed load at an arbitrary location. The integral expression
for W, M, V and Q of the beams with different length subjected to
a concentrated load and a concentrated couple, for both two and
three dimensional media}are evaluated and given in Appendix 1. The
results of the contact force distribution of a beam resting on a
three dimensional elastic medium and subjected to a concentrated
central load are then compared with the results obtained from the
two approximate methods of”solution (Barden's and Ohde's methods),
and the effect of length to width ratio of the beam on the results

discussed.

The differential equation governing the displacement function
of .a plane strain problem of an isotropic non-homogeneous

incompressible elastic medium is developed in chapter 4. The
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solution is then used to analyse beams resting on such a non-
homogeneous incompressible medium for the case when the shear
modulus G is a linear function of the depth. In this chapter

the effect of non-homogeneity of the medium on the deflection,
bending moment and contact force distribution of the infinite

and finite beam subjected to a concentrated load and a concentrated
couple is investigated. The numerical results for W, M, V and

Q for the finite and infinite beams are given in Appendix {.

In order to investigate the validity of the theoretical
analysis discussed in chapters 2 and 3 for the particular case
when the medium is a granular material, a series of model tests
with the steel model beams of different stiffness were carried
out. The description of apparatus for the three and two dimensional

model tests, and experimental procedures are discussed in chapter 5.

The content of chapter 6 is the analysis of experimental

results.

In chapter 7 the results of the plate loading tests for the
evaluation of the mechanigal properties of granular material
are given. These properties are used to carry out the theoretical
analysis of the beams, assuming Winkler and elastic behaviour of
the granular material. The theoretical results are then compared

with the experimental results.




CHAPTER TWO

INFINITE BEAM ON_ELASTIC MEDIUM
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2.1 Introduction

The analysis of an infinite beam resting on a homogeneous isotropic
elastic half space and subjected to a concentrated force, was first
given by Biot (1937). Vesic (1961) later extended this work to
include the case of an infinite beam subjected to a concentrated couple.
The aﬁalyses given by Biot and Vesic are restricted to the class of
slender beams whose bending response is governed by the classical
Bernoulli-Euler theory of beams. Briefly, this particular beam theory

is based on the following assumptions:

1) The cross sections of the beam remain plane and normal to the

axis of bending.

2) The strains and rotations of the beam are small compared to

unity.
3) The deflections due to shearing stresses are neglected.

4) The beams are assumed to be straight and prismatic with
dimension proportions that will prevent failure by twisting,

lateral collapse or local wrinkling.

A more accurate solution of the infinite beam problem can be
obtained by treating the beam as an elastic layer of finite thickness

(see Hetenyi, 1946).
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In this chapter, we shall outline Biot's solution and extend
it to the case where the infinite beam is subjected to a uniform

distributed load of finite length.

2.2 Semi Infinite Elastic Medium Subjected to a Sinusoidal Load

2.2.1 Plane strain problem of the elastic half space

We consider the plane strain problem (Fig. 2.1) of an
isotropic elastic half space which is subjected to a

sinusoidal normal load of the form
Q(x) = rooskx (2.1)

where Q(x) is the intensity of the load per width 2b and
unit length (Fig. 2.1). The problem is reduced to obtaining
a solution to the biharmonic equation (see Timoshenko and

Goodier, 1970).

n 4 Y
o'F 0'F , OF

ox* ax? az? dz"

subject to the following boundary conditions

= =71 _ =0, for z=o
% % Xz ! 0 g

Q
ig-coskx, T, =0, for z = o

z XZ

The stress components Ux, GZ and Tyg® 8re given by

32
9% = 572
32F
9, = (2.2)
z s .
ax?
- aZF
T =



. Q%)= Qo Cos Ax

e

P

Fig. 2.1 The plane strain problem of infinite half space
subjected to a sinusoidal load

Flg. 2.2. The infinite half space subjected to o sinusoidal 166d
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The complete stress function is given by

W -
F =2 ekz(l + Az)cosix (2.3)
2b)A? -

By considering the stress-strain relations for an isotropic,
homogeneous elastic material, we obtain the following expression

. ow . . .
for the strain EZ(= 5;0, where w is the displacement in the
positive z direction.

g%'= %-{(1-v2)oz - v(1+vo 1, (2.4)

In (2.4) E is the modulus of elasticity and v the Poisson's ratio
of the medium. The stress components Oy» 0, are obtained by
substituting (2.3) in (2.2). By substituting O» O, in (2.4)

and integrating the resulting expression, we obtain

0
bAE

Q

w = (1-v¥)cosix.+ £(x), (2.5)

where f(x) can be identified as a rigid body motion which can be

set equal to zero without less of generality.

It may be concluded that a sinusoidal loading of the type (2.1)

produces a sinusoidal surface displacement

2
W o= (;“é Q(x) (2.6)
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2.2.2 Three dimensional problem of the elastic half space

Consider a semi infinite homogeneous isotropic elastic half

space subjected to the double sinusoidal normal stress
q(x) = qocoskx cosfy

The equations of equilibrium, in terms of displacements u, v
and w (in the positive direction of the rectangular Cartesian
coordinate) of a point within the medium, are given by

Timoshenko and Goodier, 1970

2 1 de -
uriw w0
Vot e ae =0, (2.7)

2 =
Vi oy t 0

where
du ow v 2 52 th 2
= e _— o+ 3 V + + a
= 3% 7 5z dy 32 522 —

A solution of equations (2.7) is to be found in which

1) Shear stresses are zero on the surface (z = 0),
\e. Smooth inkcface.,
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2) The stress components Ox’ OZ tend to zero as z > ®
In addition, the solution for u, v and w would be doubly
sinusoidal in x and y directions. It can be verified (Love, 1944),

that the solutions, satisfying these conditions and equations

of equilibrium (2.7), tre

_ _ 2 2
u = _g_i\z - .—];__2.\.).._ ez‘/(A + 8 ) sinlx C056y
A2+ g2
2 2
VvV = % z - ...1_:.2.\.)....___ éZ/()\ + 48 )COS}\X SinCSY
V(A%+ §%)

2 2
w =j%. [Z/(xz + 82 4 2(1-v)} éZ/(K + 8% cosAx cosdy

where A is an arbitrary constant,

The surface displacement in the z direction is

w(o) = %% (1-v)cosAx cos8y, (2.8)

and the corresponding normal stress is

2 2
q(x) = -0, = {Yi /(A Xgﬁ ) cosAx cosdy (2.9)

From (2.8) and (2.9) we obtain the following relationship between

q(x) and w(o)

1-v?

(o) = 2 = -
! EV/(A\%+ 62)

q(x) (2.10)
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Consider the isotropic elastic half Space acted upon by a

sinusoidal normal load
q (x,y) = 9, (¥)coshx (2.11)

as shown in Fig. 2.2. This load is located within the region

y =‘tb. In (2.11), qo(y) is a function of y in such a way that
it is equal to zero when y< -b, y>b and equal to 9% for all
values of y in the interval +b > y > -b, We express qo(y) as a

sum of sine functions in the form
[00]
q0 i .
4,0 = ‘fr[ Fleins(yeb) - sind(y-b))Jds  (2.12)
LS

The surface displacement of the medium corresponding to the load

q,(x,y) given by (2.11) can be expressed in the form
1 p
W, (x,y) = wo(y)coskx, (2.13)

where wo(y) represents the displacement of the medium along any
cross section parallel to the y-axis. The value of wo(y) can be
obtained by applying equation (2.10) to each of the elements of

the loading given by (2.12), we then obtain

Q 10" 1
o =2 =~ B—{les) . ¢(Y28)} (2.14)
where
= _X. = X, ~
Yl = b + 1; YZ b 1:
QO = 2q.b, B = Ab,
and

5(E) =/§ko(u)du (2.15)



In (2.15), ko(u) is the zero-order Bessel function of the second

kind, (of modified Hankel's type), given by (see Watson, 1922)

K (u) cos(Yu)

: 2
o + B

where

The average deflection wavg across the width 2b is defined as

+b
Y ;
ang - 2b W (y)dy (2.16)

-b
By substituting (2.14) in (2.16) and evaluating the integral

numerically we obtain the following relationship between QO and

W
avg

= ——, BU(B) (2.17)

In (2.17), Y(B) may be tabulated as follows, for B > 0.1

B 0.1 0.5 1.0 3.0 8.0 o

w(B) 4.80 1.90 1.42 1.13 1.04 1

For B < 0.1 the function Y(B) takes the asymptetic form (see

Biot, 1937).

P(B) = 7% [log%—+ 0.923] (2.18)
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S50 far we assumed that the distribution of sinusoidal load across
the width 2b is uniform. The effect of changing the distribution
of the loading in y direction is now investigated for B = 1,

The average load (Qavg) in the y-direction is

+b
Qavg = 5%/ 9, (y)dy
~b
If the loading is constant (Qavg = qo) across the width 2p
(b >y > -b), as shown in Fig. (2.2), the corresponding deflection
is given by curve a (Fig. 2.3). Now, consider the loading shown
in Fig. 2.4. The deflection across the width 2b was found to be
nearly uniform (see curve b in Fig. 2.3). It is found that a 3.1
per cent increase in the average loading (Fig. 2.4), causes a
17 per cent increase in the average deflection (Fig. 2.3). That is,

the ratio Qavg/w can become 1.17/1.03 (= 1.13) times as large,

avg
between the case when q, is a constant across the width of the beam, and
the case when wo(y) is nearly constant, when B = 1. Equation (2.17)

can now be written as (see Biot, 1937)

Q
3915— = & - — £ e (2.19)
Yavg Wavg C(1-v?)

where C is a coefficient which varies from unity for a constant
pressure distribution q, acToss the width of the beam to 1.13 for
uniform deflection W, across the width of the beam. The effgcts

of changing the distribution of the loading across the width 2b

was investigated for a special case B = 1. The margin of variation
of C in (2.19) is generally much smaller for o < 8 < 1 and

© > B > 1, and tends to zero for B = o, or B = =,
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_ 1
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e —

Fig. 2.3. The displacements corresponding to
the loadings shown in fig 2.4

4

T 777 q0/8.
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Fig. 24. The corresponding loadings for displacements a sb.
of fig 2.3
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2.3 The Infinite Beam Problem

Consider an infinite beam, resting on an elastic, homogeneous
and isotropic medium (Fig. 2.5a), and subjected to a sinusoidal

external load p(x) per unit length

p(x) = pocoskx (2.20)

where Py is a constant,

It is assumed that there is no loss of contact at the beam-
elastic medium interface. The reactive force Q(x) is assumed to be

in the form of a sinusoidal distribution (Fig. 2.5b) of the type

Q(x) = rooskx (2.21)

where Qo is the constant.

The relationship between the deflection W(x) of the beam and the

reactive force Q(x) is

Qo
W(x) = el cosAx (2.22)

where for the plane strain problem of the elastic half space, from
(2.6) F is given by

_ bEA
(1-v?)

F

From (2.19) it is evident that for the three-dimensional problem of

the elastic half space

F= —  By(R)

C(1-v?)




P(x)zP, cos Ag

— — S — .
/
(@)
Y
P(x)XP, cos As
A\ ] ' \ul ]
A T
the infinite
N ,
(b) Q (x) = Qo cos Ax" beom
Y
)
///// /A
(c)
Y
3

Fig. 2.5. The infinite beam subjected to a sinusoidal load
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The ditferential equation governing the deflection W(x) of the

beam 1s

I L:—-—a— = P(x) - Q(x) (2.23)

where Ebl is the flexural rigidity of the beam.

By making use of (2.20), (2.21), (2.22) and (2.23) it can be
shown that the deflection W(x) of the beam due to sinusoidal
external loading P(x) is given by

Pocoskx
W(x) = e (2.24)
\'E I+F
By a superposition of the external loads of the type (2.20) any
arbitrary loadings P(x), symmetrical about the y-axis, can be

expressed as a Fourier integral, in the following form :-

00

P(x) = /‘ P(A) coshxdh (2.25)
where ° rm
POY = 3 | -P(E)coshnde

2.4 Infinite beam loaded by a uniform load of finite length

Consider the problem of an infinite beam which is subjected to
a uniform load of intensity p per unit length, and of length 2a.
In this case expression (2.25) for this external loading reduces
to
sinia

6o}
P(x) = 2 /1 3 cosixdA (2.26)
s}




From (2.24) we note that each element of this loading

2P sinla

-jﬁ“ - X cosAxdA

produces a deflection

AW (x) = ZB_ sinia
’ x(x”ﬁbhF)

cosAxdAi

The total deflection W(x) due to the uniform strip load can be

obtained as an integral of these deflections, i.e.

oD
W(x) = %;ﬂ/ sinka cosAaxdi
‘”A()\‘*EbhF)

or
2pct N
= .2
WO = = 3 (0 (2.27)
b
where
0 é
Iy ® =/_5~11LQ9‘E).. cos(aX) da (2.27a)
O a? (o)
In (2.27a) a = a/c, X = x/c,
for the plane strain problem of the elastic half space, we have
1
- 2 A
EbI(l-v,)
c = |————
Eb |
Q=1 (2.28)

for a three dimensional problem of the elastic half space

E T s
c = %{j C(l—\)z)—'};“g }

Q= B (2.29)
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The flexural moments in the beam are given by

2
M(x) = —prdMO)
dx?

(2.30)

Similarly, the shearing force V(x) and the contact force, Q(x)

are given by

"
veo = B = p - erdEOD

1
d*x

(2.31)

By using (2.27), (2.30) and (2.31) respectively, we obtain the

following expressions for M(x), V(x) and Q(x) (reaction per width

2b and unit length of the beam).

M(x) = 2$C2 35,00,
vix) = 2 g (0,
) = 2, (0
where © )
3,00 = /h ii%fgﬁl-cos(uX)da

(o]

0] . s
JSu(X) =/ gﬁiggﬁg-sin(aX)da
3
o a7+0

J4u(x) = jﬁpgiiﬂgggl~cos(ax)da
(o)

a(a’+Q)

(2.32 a-c)

(2.33 a-c)



2b ' - .
2bp,=p e 2d —{/p per unit length
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Fig.26  The infinite beam subjected to a uniform load.

/

Y

3

Fig 2.7  The infinite beam subjected to a
concentrated force

- P pe=zM

€
_ 3P
1 3 1

\

T,

Fig. 2.8. The infinite beam subjected to a
concentrated couple
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.5 Infinite beam subjected to a concentrated force

3]

The solution to the problem of an infinite beam loaded by a
concentrated line force of intensity P (total load across the width
of the beam) at the origin (Fig. 2.7) can now be obtained as a limit
of the case, where the width of the strip load 2a » o, and the total

load per unit length 2pa =+ P. Considering that

i
sin(aa)
o a

Lt

aa + o

from (2.27) and (2.32 a-c), the expressions for W(x), M(x), V(x)

and Q(x) are given by

Pc?
W(x) = ;EET' Jop(x)
M(x) = %f»sz(X) (2.34 a-d)
V() = I (0
P
Qx) = = J4P(XJ
where
00 0 .
J () = /‘ cos (aX) da, Jz () = /‘ acos (aX) do
°P o a(a+Q) P Jo o’ Q

0 5 . 00 ~ X
T = [ s gy o = [ He0sled) 4
3p 0 3+Q P a’+Q

(@)

(2.35 a-d)



2.6 Infinite beam loaded by a concentrated couple

A couple, M, acting on the infinite beam can be represented as
a limiting case of a combination of two concentrated forces acting
a small distance (e) apart, as shown in Fig. 2.8. It is assumed
that as e + o, Pe approaches the value, M. Using (2.34a), the
eqﬁation of the deflected shape can be written as

3 [_ B
W(x) = E‘E“ET | JopXrere) = I (0 (2.36)

Using the condition Pe -+ M as e » o (2.36) is expressed as

Wixy = Met dgp(X)
T g

By differentiating Jop(x) (equation 2.35a) with respect to X, the

expression for W(x) can be given by

2
WEx) = 252 3 (0 (2.37)
where
0 N
3,00 = sinfoX) 4o (2.38)
p o) 0L3+ Q

The expressions for M(x), V(x), and Q(x) are

M
Vix) = L, (%)
() = Tlapt) (2.39a-c)
M
Q(x) = — J. (X
Cz7T Sp
where oo A
J.(X) = ./ aflsin (o X) da (2.40)
Sp o i+
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2.7 The integrals involved in the analysis

In order to evaluate the deflections, bending moments,
shearing forces, etc., for the case of the infinite beam, and
the finite beam, subjected to a concentrated load, a concentrated
couple, and a uniform distributed load, it becomes necessary to
evaluate the integrals an(X) and Jnu(X) given by equations
(2.35 a-d), (2.38), (2.27a), and (2.32a-c). These integrals,
however, cannot be expressed in an explicit form. Therefore
approximate numerical techniques are generally employed for their

evaluation (see Biot, 1937; Vesic, 1961; Drapkin, 1955).

2.7.1 The function Y (R)

We note that for the three dimensional problem of the elastic
half space all these integrals are dependent upon the function
P(B). The function Y(R) takes into account the three dimensional
effect of the supporting medium (see section 2.2.2). This function
is tabulated by Biot, 1937, for e > f > 0.1 and given by a
logarithmic expression (equation 2.18) for B8 < 0.1. The numerical
evaluation of the integrals requires an explicit expression for
Y(B), which represents this function for the whole range of
a(e > a > 0). Drapkin, 1955, suggests a hyperbolic curve for this
function in the form of

0(B) = 1+ (2.41)

| @

in which a is a constant and is obtained by fitting the hyperbolic

representation (2.41) to Biot's logarithmic expression for f < 0.1.
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Using the method of least squares, Drapkin found a = 0.34. It was

found that for upper range of B (v > f > 0.1), the corresponding

values for W(B) from (2.41) is in close agreement with Biot's

tabulated values. The hyperbolic representation of Y(B) (equation

2.41) and Biot's values for the function (logarithmic representation

for B < 0.1 and tabulated values for © > 8 > 0.1) are shown in

Fig. 2.9. In evaluation of the integrals, the hyperbolic representation
given by (2.41) is used for the function Y(B) for the whole range of

B-(o >R > 0).

2.7.2 Fvaluation of Integrals JnD(X)

A technique which was used by Vesic, 1961, is employed for the
evaluation of the integrals Jop(x), le(x) ..... Jsp(x), involved
in the analysis of infinite beam resting on a three dimensional
medium. Since the same procedure is used for evaluation of all the
above integrals, the method is explained in detail for one of these

integrals. le(x) is given by

7. (0 =./Oosir‘i(m)()
P aty(e)
is chosen as a typical example. The integrand of this integral is a
convergent oscillating curve which is shown in Fig. 2.10. First the
integral is divided into two parts, i.e.
Xy = J, (X)) % o+ 1 J. (X))o 2.42
P ™ 00 (2.42
) 0 o

where a is the value of o for point M (Fig. 2.10).



o logarithmic expression equation2)8

4 tabulated values

Fig 2.9. Voriation of y(8) with B (after Drapkin 1955)

A

Rex)

Fig. 2. 10 variation of the integrand of T, (")’-f“ with
: : 'p A (eex)



-31-

. ~ . a .
The first part of the integral (}le@j)]n]) is integrated by
(&)

interpqlation, using Simpson's rule. The second part (].JIP(X)]OO )
1y N

. i
can be integrated, partly numerically, and partly analytically, !
by employing the following approximation
IJIP(X)I = /. sin(oX) 44 - /. sin(eX) 4, (2.43)
B M TC o’

m m
The amount of error involved in making the above approximation will
be discussed in a later section (section 2.9). Integrating (2.43)

by parts we obtain

/m Eln(OLX) dot - sin (o X) + x/2 [COS(%X{E

3 Y 2
a a 202
m m

+ x51(umX)E

where Si(amx) is a sine integral given by

(x s
n*
sS1inv

Si(umx) = /. dv (2.44)
o

The same procedure is followed for the evaluation of integrals

J, (X ..... JSP(X), that isg up to a certain point, M, these

integrals are evaluated numerically and from point M onwards, i.e.

©>a>a (um is the value of o at point M), the approximation

similar to (2.43) is made. For the rest of the integrals | an(X) Ei

m
is given as follows

© co
IJ (X)fa) _ /‘ acqs(ax) dao = /Q COS(qu.da
5 e et o?
m
or
]JZP(X)I‘20 & EffiumX) - XW/2 + xSi(amX) (2.45)
a m

m



o o, ) 0
IJ (@f _ o sin (uX) sin(aX) |
3 pb da = —-—-———-—-———-—-a Ao

A

34
o, Ve ap
or
IJSP(X)IQn = m/2 - Sia X) (2.46)
)
00 o0 X o
19,00 = /' V(B)cos(aX) .o . f cos(aX) .o
o a® + 1 (8) o3
“n “n
or

!J4P(X) }OO = coslom!) 4 x/2 [Ml + xcj(amx)} (2.47)
2 (63
% 20 n m

Where in (2.47) Ci(amX) is a cosine integral

a X
JiIN
. _ Ccosv

Cl(amx) -./ 5 dv (2.48)
(80]

(o6}

For Jop('x) =/ cos(aX) do, due to the infinite value of the
o ala+P(B))

integrand of this integral, the procedure is slightly different.
The integral is divided into three parts, as follows
! J

£ a
SOL L EANEL) B iJOp(x)lEm | (x)lO: (2.49)

op op

m

where € is an abscissa, small in comparison with unity (e = 0.00001).
. € .
To evaluate ]JOp(x)fo it should be noted that, for small enough

value of o, cos(ay) = 1, and a* becomes negligible compared with

op(B) .
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Theretore,

1 (x)’ﬁ - _cos(aX) 4 = _da (2.50)
o ° afa’+(R)) v (B)

By substituting for P(B) from (2.41), we have

!JOP(X)IE = log [(b/c)(e + 0.34/1,/¢)/0.34] (2.51)

o
The second part of integral (ie }JOP(X), ™y can only be evaluated
€

o0
numerically. For the third part (ie ]JOP(X)] ) the following
o

m
approximation is employed.

© 00] [0.0)
EaNesIN =/‘-435ﬂ599-da =‘/ cos(0X) gq (2.52)
P M ] a(a’+p(8) o
i m
Integrating (2.51) by parts we have
5ol = coslen) L xPeos(onX)
op o (2.53)

m 3 3 60,
OLm m

3 . ’
N é-[n/2 - si(e X)) - Xsin (an’)

602
m

For the case of the two dimensional analyses, the procedure for
the _ _
the evaluation of integrals is the same as, three dimensional case,

except Y(B) is replaced by unity. The integrals Jop(X) and J_ (X)

in the case of two dimensional problems are infinite (the integrands
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of these integrals are infinite at a = 0) for all values of X. It
is therefore impossible to represent absolute values for the integrals
JOP(X) and Jou(X). To overcome this difficulty, the integrals

Jop(X) and Jou(X) are evaluated relative to their values at X = 0,

(1.e. Jop(o) and Jou(o)) as follows

o
Jop(x) S J (o) = /ﬁ [cos(ax)-1] da

op OL(OLS + 1) (2.54)

[00]

B [cos(aX)-1] ..
Jou(X) - JOU(O) = '/0 "TJE;;—:“ZE—‘bln(aa) do

It can be shown that the integrands of the integrals (2.54), are zero

at o = 0, and have finite values for « > o > 0.

2.7.3 Evaluation of integrals Jnu(x)

In evaluating the integrals Jnu(X) (equations 2.27a and

2.33 a-c), the integrals are first divided into two parts as follows

00 dm [o's]
Jnu(X) + Jnu(X)

it

Jnu(X)

(04

° n

o

The first part of the integral:(ldhu(X) I§m>is evaluated numerically
using Simpson's rule. For the second part <I‘Jnu(x)r2 >, the
integrals can not be further simplified by employinét;;;roximation
similar to that given by (2.43), The first part of the integrals can

then be taken as the value of integral with the value of o such that

a further increase in the value of o does not change the value of



. o . N . .
(X) ‘ m  significantly. The effect of a change 1n o on the
o

|
nu

C o, . : . : :
value of (Jnu(x) | “m  is discussed in a later section (section 2.9).
0

2.8 Nunmerical Results

The University's ICL 190S5E computer was used to obtain numerical
values for the integrals an(X) and Jnu(X). In the programme which
was developed for this purpose, the standard routines FATINTSMP ,

S12ABA, and S13ACA, were used (see ref.[21]). The first routine

~(i.e. FAINTSMP) employs Simpson's rule to evaluate the integrals

between the limits zero and o (am refers to the abscissa of point M

in Fig. 2.10). This upper limit was chosen to be twenty (1.e. o= 20) .
The effect of a change in the value of o on the numerical values of
integrals an(X) and Jnu(X) is discussed in a later section (section
2.9). The maximum error in the values of the integrals due to numerical
integration is limited to f 0.1%. The routines S13ABA and S13ACA
evaluate the sine and cosine integrals (equations 2.44 and 2.48). The
numerical values for the.integrals an(X) for both three and two
dimensional problems of an infinitefg?g tabulated in appendix 1. The
distribution of deflection, bending moment and contact force for an
infinite beam resting on an isotropic homogeneous elastic medium and
subjected to a concentrated load, a concentrated couple and a uniform
load, for both three and two dimensional media for different values of
B/2c are given in Figures (2.11) to (2.16). For the two dimensional
problem, since the integrals involved in the expressions for the
deflection of the beam subjected to concentrated and uniform load are
infinite for all values of X (integrals 2.27a and 2.35a with the
function O = 1), the deflected shape of the beam is evaluated [W(0)-W(x)]

instead of absolute values of deflections (Figures 2.13 and 2.16a).
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Fig. 2.11. Infinite beam subjected to a concentraled load
(hree Dimensional Pmbiam)
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Fig 2.12 Three dimensional problem of an infinite beam
subjected to a concentraled couplie
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Fig. 2. 13  Plane strain problem of an infinite beam
subjected to a concentrated load
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Fig. 2.14.  Two - dimensional problem of an infinite
beam subjeclied to a concentrotled coupie .
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2.9 The accuracy of the values of integrals

In the previous section, it was mentioned that the amount of
error in the values of integrals JnP(X) is limited to *0.1%. There
is a second source of error which results from the approximation of
the type given by (2.43). This approximation implies that in the

integrals an(X) for values of a > o the function £ = 0 instead

0.3{
ab/c

and {2 = 1 for the two dimensional problem. To obtain the amount of

of its real value Q = Y(B)[Y(R) = 1 + ], for the three dimensional,
error due to this approximation, the upper limit o was doubled

(i.e. o= 40), and the integrals were evaluated for different values

of x/B (x/B = 0 to 10). The maximum percentage difference between

the values obtained with am = 20 and those with am = 40 were as

follows

less than -0.001% for Jop(X), le(X), JZP(X),

CoM-0.01% M3y (00, and (2.55)

] = 9 t
! " 0.1% J4P(X) and JSP(X).

An increase in the value of o beyond o = 40 did not have a

(X). The

significant effect on the values of the integrals an

maximum error is therefore the sum of errors given by (2.55) and
that due to numerical integration. It can be seen that the maximum
error occurs for J4P(X) and JSP(X), which is -0.2%. In order to
investigate the accuracy of the values of integrals Jau(X), the
integrals were first evaluated numerically between zero and twenty

(o, = 20). The upper limit of the integrals was then doubled (am = 40)
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and the integrals were evaluated. The maximum difference in the
values of integrals obtained with the upper limits o = 20 and 40

was less than -1%.

, W, and Q

ax

2.10 Analytical expressions for M
‘ m max

in an infinite beam

The maximum value of the bending moment (Mm ), deflection

ax

(W ), and contact force (Qmax) in an infinite beam, subjected to

max
a concentrated load P (total load across the width of the beam), and
resting on an homogeneous elastic isotropic medium occurs at the
point of application of the load (i.e. x = 0). From the equations

- ) ¢ ] 1
(2.34 a-d) the values of Mm W , and Qmax are then given by

ax’ max

o0
M = Pc ado Pc .
max «— — — = — J_ (o),
™ /. a3+¢(8) m 2p
P 3 o d P 3
c o, c
W = = o J (O):
max ﬂEbIji a[a3+w(8)] ﬂEbI op
(2.56)
o0
P ve o . P
Qmax Toem /; S+ (B) om J4p(0)<

The values of an(o)/ﬂ (see Appendix 1) are plotted against B/2c
(Fig. 2.17). It was found that the values of an(X)/ﬂ at X = 0 can

be represented by the following analytical expressions
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_ - B,0.188
.]20(0) = 0.352 lz"c—] .
B.o.sus
J =
op(®) = 0515 [5] , (2.57)
J. (o) = 0.390 [-0-166
4p h 2¢c

By substituting (2.57) in (2.56) we obtain

B.,0.188

= g v
Miax = 0352 Pc [] ,

_ Pc? B.o.6ug
W = 0.515 £ [ , (2.58)

b

_ P B.,-0.166

Qmax = 0.390 c [2c]

Depending on the value of B/2c, the maximum error in representing

the above analytical expressions for an(o), can be positive or

. negative (see Fig. 2.17). This error is 8% for Wmax’ *4.5% for

+ o £ . PR .
Miax? and 15.5% for Qmax' Biot (1937) gives an expression for

the maximum bending moment as follows

_ 2¢cy0.831
Mo = 0.332 Pc [5] '

This expression appears to be in error, the correct form 1s as

follows

2c O0.83)
. PR [=-
Mmax 0.166 [ B]

orxr

=
i

2¢c -0.169
oy = 0:332 Pe [5F]
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2.11 Comparison with the solution for an infinite beam
resting on a Winkler medium

The analysis of beams resting on a Winkler medium (see Chapter 1)
is sometimes referred to as 'conventional analysis' (see Vesic, 1961).
This definition is adopted here in our discussion. In the
conventional analysis, the expressions for the deflection (W),

bending moment (M), and contact force Q are given by (see Hetenyi,

1947) .
W =-g% e‘kx(coskx + sinAx),
M = %%—ebxx(coskx - sinix), (2.59)
Q = %;-eﬁxx(cosxx + sinix),

where

The value of the modulus of subgrade reaction (K) may be determined
from in-situ tests (e.g. plate loading tests). A comprehensive
account of the evaluation of the modulus of subgrade reaction from

plate loading tests is given by Terzaghi (1955).

It is also possible to find a value for K in terms of £ and v
of the elastic medium, by a comparison of the solutions for an
infinite beam in conventional and rigorous (Biot's solution) method

of analysis. By comparing the maximum bending moments in two methods
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of solution, Biot obtained the following expression for K

tiz

K = 1.23]

B.,0.33 f

o 2.60

2¢ c(i-v®) ( )
Expressions similar to (2.58) can be obtained by comparing

the maximum deflections, and contact forces of an infinite beam
in the two methods of analysis (Biot's solution and conventional
analysis). The maximum values of W, M and Q in conventional

analysis (equations 2.57 a-c) occurs at X = 0.

S
wmax 2K °
P
Mmax = 7 (2.61)
PA

|

Qmax 2

By equating Wmax’ Mmax’ and Qmax in conventional analysils
(equations 2.61) with those of rigorous method (Biot's method)
represented by analytical expressions (equations 2.58), we obtained

three values for K defined as KW’ KM’ and KQ as follows

0.135 -
K, = 0.606 B%} -J*T._, ,
C(1-v?)
O.2u48 .
Ky = 1.018 (9—8511 -t (2.62)
e C(1-v?)
-0.336
Ky = 1481 Pﬁ _E
- C(1-v?)

Where C is defined by (2.29).
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The distribution of deflections, bending moments and contact forces
for an infinite beam subjected to a concentrated load for both
rigorous method of analysis (with B/2C = 0.01, 1.0) and conventional
analysis (with K = Kp» Ko KQ) are shown in Fig. 2.18 a-c. Table

3

2.1 shows the percentage difference in the values of W , M
max’ max
gnd Qmax of a infinite beam subjected to a concentrated load, and

resting on a semi infinite elastic medium, and those of conventional

analysis,

W M
max max Qmax

B/2C 0.01 1.0 0.01 1.0 0.01 1.0

KW 0 0 0 -14 1 20
KM 0 31 0 0 1 9
K -3 49 -1 9 0 0
Q

Table 2.1 Difference in % in the values of maximum
deflection, bending moment, and contact
force

2.12 Conclusions

Biot's solution for an infinite beam resting on an homogeneous,

isotropic elastic half space was extended to include the case of

loading by a uniform strip load.
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The distribution of deflection, bending moment and contact
force of a beam subjected to a concentrated load, a concentrated
couple, and a uniform load were plotted for different B/2c values
(Figures 2.11 to 2.16). Numerical values for the integrals
involved in the expressions for deflections, slopes, bending moments,
shearing forces, and contact forces of the infinite beam resting on
both three and two dimensional elastic media, subjected to a

concentrated load, and a concentrated couple are given in Appendix 1.

The maximum error involved in evaluation of integrals is limited
to -0.2% (for an(X)), and +1% (for JnU(X)). The analytical
expressions for the maximum value of deflection, bending moment, and
contact force of a beam subjected to a concentrated load and resting
on a three dimensional medium were obtained (equations 2.38). By
equating Wmax’ Mmax and Qmax in the rigorous method (Biot's solution)
with that of the Winkler problem, it is‘possible to obtain three
values for the subgrade modules identified as K _, KM and KQ (equations
2.62). These values of K are used for the purpose of comparing the
distribution of displacements, bending moments, and contact forces

for both types of supporting media (i.e. elastic half space and

Winkler).



CHAPTER THREE

FINITE BEAMS ON ELASTIC MEDIUM
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3.1 Introduction

The analytical solution of a finite beam resting on a semi-
infinite isotropic homogeneous elastic medium is complicated due
to the fact that both continuity and boundary conditions must be
satisfied simultaneously. There exist several methods of analysis

which overcome the mathematical complexity involved in the problem.

The approximate methods of analysis of a finite beam resting
on a semi-infinite isotropic homogeneous elastic medium are given
by Ohde (1942), and Barden (1962). In these methods it 1is assumed
that the contact forces are made up from a number of blocks of
uni form loads. By satisfying the continuity of slope (Ohde's method),
or deflection (Barden's method) at the beam-medium interface, the
contact forces are obtained by solving a set of simultaneous

equations.

A superposition technique (the technique was first used by
o
Hetenyi, 1946 to analyse the problem of,finite beam resting on
Winkler medium) was employed by Drapkin (1955) for the analysis of

centrally loaded finite beam.

In this chapter, we adopt a superposition technique for the
solution of a finite beam resting on an isotropic homogeneous

‘elastic medium. The solution is given for the following loadings
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1) finite beam subjected to a concentrated force at an

arbitrary point,

2) finite beam subjected to a uniform load at an arbitrary

location, and

3) finite beam subjected to a concentrated couple at an

arbitrary point.

3.2 Finite beam with free ends

We develop here the superposition technique for the analysis
of finite beams resting on an isotropic elastic homogeneous half
space, and subjected to an arbitrary external loading. First, the
finite beam with free ends to be analysed is assumed to occupy a
region of the infinite beam with the same external loading (see
Fig. 3.la). Referring to Fig. 3.la, points A and B in the infinite
beam will in general have non zero bending moments and shearing
forces. The object of the superposition technique is to reduce
the bending moments and shearing forces at locations A and B,
(Fig. 3.la) to zero simultaneously. For this purpose we utilise
the solutions, developed earlier for the problem of an infinite

beam which 1s subjected to a concentrated force, and a concentrated

moment.
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Let the bending moment and shearing forces at points A and B
of the infinite beam, due to loadings shown in Fig. 3.la, be MA’
0 and M

N B’ QB' Next consider an infinite beam, subjected to

a system of loadi D P - p 1. ; Fig.3.1b).
Sy oading ‘OA and MOA at A, and IOB’ MOB at B (Fig.3.1b)

In order that the superpostion of the solutions for infinite beams
shown in Fig. (3.la) and (3.1b) give the solution for the finite
beam with free end (Fig. 3.1¢), it is necessary that the loadings

POA’ MOA’ POB and MOB produce bending moments and shearing forces

- Mas -Qp and Mg, -Qz at A and B respectively, i.e.
ZM = - = —
atA Ma MMaen My
(3.1)
Maen = Qo aep = O
or
MAl + MA2 + MA3 + MA4 = ’MA
Qu * QU2 " Q3 Qy = -Q (3.2)
Mgy *+ Mgy Mgt My, = My
Qe * Uz * Qg v gy = Qy
where MAn’ QAn and MBn’ QBn are bending moments and shearing forces

at A and B due to loadings POA’ MOA’ POB and MOB‘ The four

quantities POA’ MOA’ POB and MOB are referred to as end

conditioning forces (Hetenyi, 1946). By making use of the
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solutions for infinite beam subject to a concentrated load and
couple, given by (2.34 a-d), and (2.39 a-c), equations (3.2)

can be written in matrix form as

{r} = [C) (R} , (3.3)

where, {F} and {R} are column vectors given by

M, Poa
{r} = QY , (R} =| "on , (3.4)
) My ) Moa

Q Mog

and [C] is the coefficient matrix given by

(C/ﬂ)J2PO’ (C/ﬂ)JzPL, 1/2 (l/ﬂ)JBPL,

_ 1/2 (l/ﬂ.)JSPL‘ _(l/C(’T)JllPO (I/CTT)JA'I)L‘

- ¢/m)J 1/m)J 1/2 (3.5)
(C/mJopy (C/M oy (/M) gpy /

(-1/m)J

3pL’ L 4P0

1/2 —(l/Cﬂ)J4p , (1/Cm)d

In the coefficient matrix, J by refers to JnP(X) evaluated at X = 1,

and L = L/C.

The superposition technique, as outlined here, only satisfies
the boundary conditions at the ends of the beam and continuity
conditions at the interface. For the complete solution of the problem
it is necessary to satisfy the zero traction boundary condition on

the surface of the half space exterior to the beam. Consider beam



AB in Fig. 3.2. Suppose the solution for this beam is obtained
by applying the superposition technique. There might exist a
contact stress distribution outside region AB, such that produce
zero bending moment and shearing forces at A and B. Therefore
when the superposition technique is used to find the solution for
the finite beam, the solution is not valide unless the traction

on the surface of the half space (at z = 0) exterior to the beam

is zero.

3.3 Finite beam subjected to a concentrated force at
an arbitrary point

In this section we apply the superposition technique, outlined
earlier, to the special case of a finite beam, subjected to a
concentrated force P at an arbitrary location (Fig. 3.1). The
solution of the problem can be further simplified by resolving
the load P into its symmetric and antisymmetric parts (see Hetenyi,
1946). Using such a decomposition, the number of unknown end
conditioning forces for each loading are reduced to two. We denote
the end conditioning forces, in symmetric case, PO, MO’ and PO’

M. in antisymmetric case (Fig. 3.3b-c). These end conditioning

0
forces are related to POA’ IOB’ MOA by (Fig. 3.5)

Por = Pot 'V Por=PoFo

(3.6)

0A 0 0 0B 0 0
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Fig.3.2 Non zero traction ot the surfoce of the
half space exterior to the beam
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’ ’ s/

In the symmetric loading, P : -M Q. at )

Y g, 0 and M0 produce A EA at A,
and fMA, +QA at B (Fig. 3.4). By making use of infinite bean
solution for the concentrated force and the concentrated couple

(equations 2.34 a-d, 2.37, 2.39 a-c), the zero moment and zero

shearing forces boundary conditions at A and B are given by

Ii)C Mé )

- Gapo T o) o Ugpg * Jgpd F My = 0

, (3.7)
-P ‘

0 M
= (T = Jag) = 0 o

TR0 T TEPLY T o (Jupg - ) * Q= 0,

where JnPr is the value of JnP(X) evaluated at X = r and L = L/c.

¢ i ¢ 2y

For the antisymmetric case PO and MO produces —MA, QA at A and

L

MA’ —QZ at B (Fig. 3.4). The boundary conditions give

5 4 M H
1OC 0

. {szo - JopL } A {Jspo - Jspﬁ\ oMy =0

(3.8)

" "

4

0 —
T [Jspo : Jspﬁl T T [J4PO ' J4Pﬁ\ "=

i

/ / &
The relationship between MA’ QA’ MA and QA’ and MA’ MB’ QA and

QB (Fig. 3.4) are given by the following

MA = 1/2(MA + MB) , MA = 1/2 (MA - MB) ,
, ’ (3.9)
QA = l/Z(QA - QB) ’ QA =1/2 (QA + QB)
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By solving (3
use of (3.6)

the end condi

where

and

>
i

[o=]
{

? 4 "

P and MO’

/
.7 d . £ >
) and (3.8) for P, MO’ 0

and making

and (3.9), we obtain the following expressions for

ti
ioning forces POA’ MOA’ POB’ MOB
= P(a1 + uz) s MOA = P(oc3 + a4) R
= Pp - = -
(o) =) Mog = Plag - ay)
C 2 o
_Fell L. F1+H1
c 4 ¢,
-1/2 [sz ' sz’] [J4.po “ depr| o
-1/2 [‘sz ot Jsm’} Pzpo \ J:smj} ;
“1/2 [ opg - szsz,'} Japo ¥ J4PL'J ’
172 Japy - Jsm’] I3pg = Isor
i L A

(3.10)

(3.11)

( 32
SEIIRA

L

(JSP L') 2]{
J

(3.12a-3)



t=172 [?3Pg' ' Jspz} ‘fzpo ' szLﬂ ’
Fy= 1/2 i?3Pg/ JSPQ} :?ZPO ) JZPL} ’
=172 :?2Pg' ' szxﬂ iJspo - JSPLJ ’
= 1/2 zjng’ ) szzi [ﬁ3po " JSPL}

where L' = L/C, 0 = 0/C, g'= L'- &

The solutions for the finite beam shown in Fig. 3.6a are then obtained
by superpostion of the solutions for an infinite beam, subjected to

concentrated force P (Fig. 3.6b), and system of loadings POA’ MOA’

Pops Mop (Fig. 3.6¢), given by equation (3.10).

The expressions for deflection, bending moment, shearing force,

and contact force [(contact stress) x B] are given by

pe3
W(X) = EE;T’GOP(X) s
MOX) = RS 6,00,
(3.13 a-d)
V) = - D600,
P
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G-
where
Gop )= Jgpy v (0 # OLz)J()le NS B aZ)JOPXZ (o GB)J]PXl
vy - ag)dopy
2
e - ) _
op (XD = Jopy (0 + O‘2)‘]21>x1 v (o O‘2)‘]2P><2 volog uB)JSle
v (o) - ag)d gy
2
Gap(X) = Jgpy + (0 + C‘2”31»(1 vy - Ot2)J3Px2 voloy o “3)J4le
v (0 - o)y
2
) = 1 - -
Gap(X) = Jypy v (o # OLz)“]ztpxl + (o O‘2”4?)(2 v (o o O‘3)‘]5le
vy - O‘3”51})(2
(3.14 a-d)
and
J is the value of J _(X) evaluated at X = r,
nPr np
X, = Lo+ X, X, = & - X, X = x/C




3.4

Finite beam subjected to a uniform distributed load

acting at an arbitrary location

The superposition analysis of this problem (Fig. 3.7) can be

approached in a manner similar to that outlined in the previous

section.

contact forces

W(X) =

M(X)

V(X)

QX)

Where

Goy ) = Jgyx + (0g + O‘6)J0le°’ (ag - O‘6”0?)(2* (@, + agddypy *

are given by

2pe”

T, T GoutX)
SRS LS ES
™ “2U ’
_ _ 2pc
- T GSU(X) 3
. 2P .
Gy, ()

+ (o - 0‘3)J1PX2 g

GoyX) = Jouy * (05 O‘6)J2PX1+ (g
+ (o - “8)J3PX2 ,
= J + (O
Gy (XD = Jgx * (05 + @) gpx (
+ (u7 - a8)J4PX2 >
Gy = Japx * 5+ %V apx " (0

* log - ogddgpx,

- a6)J

. -

-

The deflection, bending moment, shearing forces, and

(3.15 a-d)

1

J +

Qg * Qgldapy

2px2t (@ 8)

6T apy T (ag +oag)d

7 apx. "
S|

6)J4PX2+ (g + 0‘8)‘]5le+

(3.16 a-d)



In (3.16 a-d), J and J . are the values of J . (X) (equations’

nur Pr nt

2.27a and 2.33 a-c) and JnP[X) evaluated at X = r.

I 4 7
Xp = L=+ X, X,=80-X,
L = L/C , &=28/)C , X=x/C
o) = A+BI _ A1+B1
5 C’ ? 0’6 - C71 3
(3.17)
;. ’ /
L Fell ) F1+T£
77 T o % T T

/

1

2 / / ’ ’ /
The values of A, B, C, C{, F, H, F, and H1 are obtained by

making the following substitution in (3.12 a-j)

2PL 208

2pg’ 2Ug
3PL 3UL

7.
Tapgg T augh
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3.5 Finite beam subjected to a concentrated couple
acting at an arbitrary location

The solution to the problem of a concentrated couple acting at

an arbitrary location (Fig. 3.8), can be written in the form

W(X) = Mc? G, (X)
mE, T "OM ’
b
M
(3.18 a-d)
M
M
Q0 = == 6,00
cm
Where
o) = Jypy + (og + OLlo)Jopxl v (o - 0‘10)‘]0Px2 @y O‘12)J1px1

vo(agy - Ole)lexz ,

Gop(X) = Jgpy + (0g * 0‘10)J2le + (og - 0‘10”2&))(2 volagy 0‘12)J3PX1
+ ey - O‘12”3px2 ;

Oau () = Jypy * (g * 1o gpy * (P = ®100Tapx, * Py gy Taex,
v ey - OL12)J4Px2 ’

Gy = Jgpy * (0 * OLlo)Janl (g - “10)J4Px2 vy, O‘12”5le

+ (OLll - OLIZ)JSPX .
(3.19a-d)

+



In (3.19 a-d)

9 & ’ %10 T C; ’
) . (3.20)
u “ N
L. Fe ey
11 c* ’ %2 % T
1
In (3.20) A, B, Al’ Bl’ c, Cl’ F, H, Fl and Hl are obtained
by making the following substitution in (3.12 a-j):
Jope T Japy
JZPg' ” —JSPg'
(3.21)
Jipg 7 Japy

3Pg

3.6 Numerical Results

Numerical values are obtained for the deflections W(X),
bending moments M(X), shearing forces V(X), and contact forces
Q(X) of a finite beam subjected to a concentrated unit load and
a concentrated unit couple, resting on a three dimensional
elastic medium (the numerical results for the two dimensional

medium are given in chapter 4). In order to evaluate the above



values, it is necessary to obtain values for GOP(X), GZP(X],

GSP(X), and G,,(X) (defined in 3. 14a-d), and GOM(X), GQM(X),
GSM(X) and G4M(X) (defined in 3.19a-d). A method for the
evaluation of integrals JnP(X) occuring in expressions GnP(X)

and GnM(X) was discussed in chapter 2. The numerical results

for L/B = 5, 10, 20 and B/2c = 0.01, 0.05, 0.1, 0.2 and 1.0
are given in Appendix 1. These results are for the following

eccentricities of concentrated load and concentrated couple

% =0, B, 2B, 2.5B for L/B = 5
% = 0, 2B, 4B, 5B " 10
g = 0, 4B, 8B, 10B n 20

where £ is the distance from the point of application of external
load to the end of the beam, L is the length of the beam, and B

is its width.

Figures 3.9 and 3.10 show the contact force and bending

moment distribution for beams with L/B ratios of 5, 10 and 20,

and B/2c = 0.01, 0.05, 0.1, 0.2, 1.0, subjected to a central
concentrated unit load. The full lines are the results obtained

for the infinite beam.

Figure 3.11 shows the distribution of contact force for a
finite beam (L/B = 10) subjected to a concentrated unit load of
different eccentricities. From Figure 3.11 it can be seen that
for B/2c = 1.0, the finite beam can be treated as an infinite

beam, as long as the concentrated load acts at £ > B (i.e. the
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load acts at region ab). From Appendix 1 it can be seen that
the beam with L/B = 5 behaves similarly to L/B = 10 for

B/2¢c = 1.0; i.e. when the concentrated load acts at a distance
4B > 2 > B, the beam can be treated as an infinite beam. In
Figures 3.12 and 3.13 the variation of maximum contact force and
bending moments for beams with L/B = 5, 10, 20 subjected to a
‘central concentrated load P for different values of B/2c are given.
It can be see that for a flexible beam (B/2c = 1), the maximum

contact force and bending moments are almost the same for L/B = 5,

10 and 20.

3.7 Comparison with approximate methods of analysis

Barden (1962) gives an approximate method of obtaining
contact force distribution beneath finite beams resting on an
elastic medium. The solution is governed by a dimensionless

parameter ¢ given by

TELY (3.22)

104 =
4EbI(l~v2)

In this method it is assumeg that the contact force distribution
is made up from a number of steps or blocks of uniform vertical
loads. The beam will deflect under the action of the known
external applied loads and the unknown contact force distribution.
The elastic medium will also deflect under the equal and opposite
reaction to the contact force. Assuming that the beam does not
lift, the deflected shapes of the.beam and soil must coincide;

hence the unknown contact pressure distribution may be solved.
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Barden gives Tables of influence coefficients of the contact
force distribution for different values of 10'¢ (= 0, 10, 50,
100, 300, 500, 700, 1000, 5000, 10000) for a beam with L/B = 10
with different eccentricities of applied load. Barden concludes
that the influence coefficients for the contact force obtained
in the case of beams with L/B = 5 and 20 are fairly close to the
corresponding values obtained with L/B = 10. llowever, the
extent of error involved due to a variation of L/B is not

explicitly evaluated.

In this section we investigate the influence of L/B on

the contact force distribution of a finite beam resting on an
elastic medium, subjected to a central unit load, using the

following methods of analysis

(1) Ohde's Method
(ii) Solution obtained by using superposition

technique.

A summary of Ohde's method is given in Appendix 2. In this
method the solution is governed by an influence coefficient
given by

3
8 = a“BE (3.23)

2
EbI(l—v )




N

This method is used to obtain the contact stress distribution

of the beams with L/B = 5, 10, 20, subjected to a central
concentrated load. The contact force distribution for different
values of § (equation 3.23) corresponding to 10"¢ values

(Table 3.1) are given in Appendix A.2, Tables (A.2.2a-c).

Fig. 3.14 shows the contact force distribution obtained for

"L/B = 5, 10, and 20, for different 10"¢ values by using Ohde's

method. The results given by Barden are also shown in solid

lines.

The relation between B/2c values of superposition technique

and Barden's 10“¢ values can be written as follows

4 s
B/2c ='(—~1-9—-L] (3.24)
_ aw(L/B)"

From (3.24) it can be seen that B/2c is not independent of L/B.
Since the integrals JnP(X) occuring in the expression -for the
contact force distribution (equation 3.13d) are dependent on

B/2c, therefore a change in L/B would have an effect on the
distribution of contact force. The corresponding values of B/2c
for different values of 10"¢ are given in Table (3.1). By using
superposition technique the contact force distribution of the beams
with L/B = 5, 10, 20 subjected to a central unit load are obtained
for different values of B/2c. The maximum contact forces for

the beams with different L/B ratios obtained from different
methods of analysis (superposition, Barden's and Ohde's method)

are compared in Table (3.2). It can be seen that for rigid beams
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L/B =5 L/B = 10 L/B = 20
10% ¢ ‘
0o/B 1 S/B} s/of o/B| S/B| S/O0| 0O/B S/B 5/0
0.0 1.02 11.20 {1.10 [1.06 {1.20 {1.13 {1.09 |1.20 | 1.18
10 1.07 {1.16 {1.10 {1.04 {1.15 |1.10 {1.04 |1.15 [1.08
50 1.16 {1.09 [1.13 {0.99 | 1.06 |1.07 [0.93 {1.05 {0.94
100 1.21 {1.05 {1.14 |0.96 {1.00 |1.04 {0.85 |0.97 [0.87
\
300 1.22 11.03 1;Y9 0.93 10.94 [1.01 [0.75 |0.89 [0.84
7\ \
500 1.21 [1.04 [1.20 {0.94 {0.94 [1.00 {0.73 [ 0.88 [0.86
700 1.21 11.06 [1.20 {0.95 |0.95 |1.00 [0.74 |0.89 [0.88
1000 1.22 11.08 [1.20 [0.96 [0.98 [ 1.02 [0.75 |0.90 [0.88
5000 1.27 {1.23%3 {1.22 10.99 |1.,07 |1.08 |0.80 {0.98 [0.97
10000 1.29 11.34 {1.26 {1.01 |1.15 {1.14 |0.81 {1.02 [1.04

Table (3.2) Comparison of the maximum contact stress of a finite
beam subjected to a concentrated load in the middle,
using different methods of analysis

0 = Ohde's method
B = Barden's method
S = Superposition




(10%¢ < 50), the superposition method gives greater values
for the maximum contact force for the three values of L/B.
This is because the methods fails to predict the concentration
of the stresses at the ends of the beam. From Table (3.2) it

can be seen that for L/B = 10 and 10"¢ > 50 the results obtained

from different methods are in good agreement.

In order to investigate the effect of L/B on the results,
the ratio between the maximum contact forces of the beams with
L/B = 5 and those of L/B = 10, and 20 are obtained for different
10*¢ and given in Table (3.3). The maximum contact force for
beams with L/B ratios of 5, 10 and 20 referred to as QS’ QlO and
Q20 respectively. It can be seen that a decrease in L/B increases
the maximum contact force. This increase depends on the flexural
rigidity of the beam and elastic properties of the medium. The

ratios of maximum contact forces of L/B = 5 and those of L/B = 10

and 20 for a flexible beam (10*¢ = 1000) are

Q Q
2 = 1.28 55- = 1.59
%o 20

using superposition method.
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ot Q:/Qy, Q:/Q
OH SU OH SuU

0.01 0.96 1 0.93 1
10 1.03 1.01 1.03 1.01
50 1.18 1.03 1.25 1.04
100 1.27 | 1.05 | 1.43 | 1.07
300 1.32 | 1.10 | 1.64 | 1.16
500 1.28 | 1.11 { 1.67 | 1.19
700 1.28 | 1.11 | 1.64 ¢ 1.19
1000 1.27 | 1.10 | 1.64 | 1.20
5000 1.28 | 1.15 | 1.59 1.25
10000 | 1.28 | 1.16 | 1.59 | 1.32

Table (3.3)

The ratios QS/Q10 and QS/on for a

beam subjected to a concentrated

central unit load

Q5 = Maximum contact force for L/B

OH = Ohde's method

SU = Superposition method

L./B

L/B

tl

i

10

20
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3.8 Validity of the solution

A serious objection which can be made on the solution
obtained from the superposition technique is that the method
fails to predict the concentration of contact forces atthe ends
of the beam. It was thought that the reason for this peculiar

‘behaviour might be due to one of the following

(a) The no zero tractions which might exist on the surface

of the medium exterior to the beam (see section 3.2)

(b) It was assumed that the deflection of the beam is
governed by equation (2.23) which is restricted to

the class of slender beams.

It is however possible to compare the results for contact forces
obtained from this method and those of an approximate method of
solution to obtain a criteria for the validity of the solution.
Numerical results were obtained for contact force distribution
of a beam with L/B = 10 subjected to a concentrated unit load
with different eccentricities for different values of B/2¢c
(equation 3.24) corresponding to 10000 > 10"¢ > 0. The results
were compared with the values given by Barden. It was observed

that the two results are in good agreement for

10%¢ > 100 or B/2c > 0.09 (3.25)
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The relation between L/2c, L/B and B/2c 1is

‘L/2¢c = L/B . B/2¢ (3.26)

The limit given by (3.25) in terms of L/2c is
L/2¢c > 0.9 (3.27)

By using (3.25), (3.26) and (3.27) the limit of B/2c for the

validity of the superposition method for beams with L/B =5

and 20 are

B/2c

i
9]

1

0.18 for L/B
(3.28)
B/2c

0.045 for L/B 20

fl
i

3.9 (Conclusions

The expressions for the deflection, bending moment,
shearing force and contact force were obtained for a finite
beam subjected to a concentrated load, a concentrated couple
and a uniform load acting at an arbitrary location. Numerical
results for L/B = 5, 10, 20 and B/2c = 0.01, 0.05, 0.1, 0.2, 1,
for the case of concentrated force and a concentrated couple
are given in Appendix 1. The results show that beams with L/B =
5, 10 and 20 and B/2c = 1 can be treated as an infinite beam
provided the concentrated force or couple is acting at a distance

2 > B from the end of the beam.
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The results for contact force distribution showed that
the solution is not valid for rigid beams. By comparing the
results for the contact force distribution obtained from
superposition method and those given by Barden, a criteria was

given for the validity of the superposition method as follows

B/2c > 0.18 for L/B =5
B/2c > 0.09 " " 10
B/2c > 0.045 " " 20

The influence of L/B on the maximum contact force distribution
of a finite beam with different flexibilities subjected to a

central load was investigated.



CHAPTER FOUR

BEAMS ON NON-HOMOGENEOUS ELASTIC MEDIUM
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4.1 Introduction

In the analysis of the infinite and the finite beam problem
(Chapters 2 and 3) elastic properties of the medium were treated
as being constant throughout the medium. There 1s experimental
evidence which indicates that the elastic properties of the
5011 vary with depth. A series of plate loading tests at
different depths were performed on Middle Chalk in Norfolk (Burland
and Lord, 1970). The values obtained for Young's modulus
increased as the depth increased. Marsland (1971) obtained values
for Young's modulus of London clay at different levels to a depth
of 25m from the in situ plate loading tests and laboratory triaxial
tests. These values indicate that Young's modulus increases with
depth as a result of increase in overburden pressure. Simons (1971)
in his investigation on the effect of non-homogeneity of London
clay in the settlement calculations, concludes that the elastic
modulus of soil varies with depth as a consequence of increasing
effective stresses. An example of settlement calculation given by
Simons indicates that the immediate settlement (elastic settlement)
in a foundation is over-estimated if the elastic properties are
assumed to be constant with depth. Triaxial tests on samples,
taken from different depths of London clay, were carried out by
Wroth (1971). The results cbtained from these tests showed that
the values of Young's modulus increased with depth.  The above
evidence suggests that a deposit of soil can be treated as a
non-homogencous medium. A non-homogeneous medium is one whose

mechanical properties at a point ave functions of the spatial



ﬁoordinates at that point, i.e. G = G(x,z) and v=v (x,z).

In this chapter, the differential equation governing the
displacement function of an isotropic non-homogeneous incompressible
elastic medium is developed. The problem is then solved for the
special case when shear modulus G is a linear function of depth
in the form G = G(o) + mz. The solution is used to analyse beams
resting on such non-homogeneous incompressible medium. The effect
of a linear variation with depth of shear modulus on the stresses
and displacements in an isotropic non-homogeneous incompressible
(Vv = 0.5) elastic medium subjected to a uniform distributed load
was first investigated by Gihson (1967). The work was later
extended to include all values of Poisson's ratio (Gibson and

Sills, 1971).

4.2 Basic equations

Consider a plane strain problem of an isotropic non-homogeneous
incompressible (v = 0.5) elastic medium, where shear modulus

1s a function of x and z (Fig. 4.1); i.e. G = G(x,z

5 &

[ l
\ |
) ;G:G(X,Z
| _
G
’ éw

Fig. 4.1
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For such a non-homogencous clastic medium, the stress

components are related to displacements 1} and W by the relations

O = px,z) + 2C lU s
X dX
. . ; . oW /
o, = plx,z) + 2G Ers s (4.1)
, :
o ogfaw, )
Xz ! \3Z 0x 4

wWhere

plx,z) = (0x + 0gz)/2

1s an arbitrary hydrostatic pressure which should be determined
by the boundary conditions of the particular problem.
In the absence of body forces, the equations of equilibrium

in the x and 2z directions are

o0 aT
X, Xz - 0
Jx dz
(4.2)
00 afK"
P ox = 0
By substituting (4.1) in (4.2) we obtain
p(x,2) (e ). 2 fe .
x0T o BV ek / "oh7 | Y =0
pean) D (), d [ o I
RV 9z ey ) ax |9z dx -

(4.3)



4.2.1 Displacement function

We introduce a displacement function r such that

L . ar,
= - \’ = - .- A
U e , e (4.4)
which satisfies the condition of incompressibility
ou W
=  + m = 0 4.5
9x Jz (4.5)

Using (4.4), (4.3) can be expressed in terms of p(x,z) and

L(x,z); by eliminating p(x,z) from the resulting equations we obtain

Nval o) EE. WE. 2 QE _ji 2,
V'L v 2 e e (V7)) v 2 g (VOO)
.4 %6 o’g (32(3 a%)/zm )Zr> .
Ay e el B e i Sl A vl A
9xdz  9xdz Moax2 o az? 7 Nax? 922

(4.6)

It can be shown that the hydrostatic stress should satisfy the

following equation

R L S S W I B A
\Y P(X,Z) + 2"8“‘5‘:‘ +‘~3\( s - + )
xoz ox? 3z? e \\Bx” 522
T
KA ax az«) sz X2 \BZQ 8)(2)
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Linear variation of G(x,z)

We now consider the particular case where the shear medulus

varies linearly with depth according to

G = G(o) + mz/c (4.7)

Where G(o) is the shear modulus at z = 0, ¢ 1s a typical length
parameter and m is a positive constant. By substituting (4.7) in

(4.6) we obtain

V,Z) ¢ e ) TELOGZ) = 0 (4.8)
or
VA[ZVip(X,2)] = 0 (4.9)
Where
Z=2z/c+p , p = £%¥2L s X = x/c
G(o)
A
0 g ®
G = G(o) + mz/c
A 0= o0
7 D = o0
G = mz/c

Pig. 4.2



4.2.%3 Sinosuidal Loading

Consider the planc strain problem of an isotropic non-

homogeneous incompressible medium which is subjected to a sinosuidal

load Q(X) = roost shown in Fig. 4.3 (Total load per width 2b)

- QX) = 0 _cosAX
!
A ITF' l\l\ 0

d
|

-
b
8
-

N X

4 T Y
—)// \\LéJ/

Fig. 4.3
e
A solution for r obtained from (4.8) and substituted innstress
displacement relationship (equation 4.1) should satisfy the

following boundary condition

SAD T = 0 4.10°
2b ’ Xz ( )
In addition, the stresses should tend to zexo when 7 -+ o A
solution for equation (4.8) which is appropropriate to the sinosuidal
loading Q(x) = rooskx and satisfies the condition of zero stresses
where Z = «, is of the form

Ve (X,2) = k e Msin ax (4.11)

Where kl is a constant which is determined from the boundary conditions.




The displacement function #(X,Z) has the form of

c(X,Z2) = H(Z)o_A“ sinAX (4.12)

By substituting (4.12) in (4.11) we obtain

k
d Az ooy L. b .
-Lﬁ L '“——-—-—-'dz" ._/\}(/4) J = 7 (4 R 13)
or
GUZ)_ oaiz) = kolog 7+C (4.14)
dz 1
A solution of (4.14) is
o eZAZ
2) =k - - 2 Fi(-2AZ -k (4.15)
HZ) = k) | gy log 2 -5y BIC2AD)] v Ky (4.15)
where k? = -C/2), and Li(-0) is the exponential integral defined
by
o
e—t
Ei(-0) = —‘/ S dt
. F

By substituting (4.15) in (4.12), we obtain

- r -2A\Z
) |

— log % - %— Ei(-2)\Z)J e M }sinkx

(4.16)
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This displacement function divectly gives the displacement components
] Yy 8 |

U oand W, we have

r - ,_). )\ Z i ) -

/ 1 . B | “AZ . )

U :3 ok, + kléii—log 7z - 5—§m«-ui(—?xz@ j e )/swnXX (4.17)
W = —A%‘kz + Ky [~ %7-1og 7 - e PN Ei(—ZAZ)%ge_xzcoskx (4.18)
L_ Lo/ —_’_";“_""_ i

2 4)

By substituting (4.17) and (4.18) in the first (or second) of

equations (4.3) we obtain for p(X,Z) the following expression

R S PR IO Y
A 112 2 | : .
‘ L (4.19)
k. [ _ )
e hklog z ‘XezAin(*ZAz) * %_E_3€~XZCOSXX

The constants kl and k, are obtained by satisfying the boundary

conditions (4.10).

Q eP
K1 = 1600 L 2 o
Zop e x 2eMPRI(-20p)
O 2xp?
o {1 1 2 ... \ A 1
RZ = k]Aij log o + 57 e Ei(-2Ap) - 7k2p

The expressions for U and W are obtained by substituting (4.20)

in (4.17) and (4.18). By superposition of the external loads of
the type Q = QOCOSRX (see Chapter 2, sections 2.4 and 2.5}, it 1s
also possible to obtain the expressions for the displacements U and

W of the half space subjected to a uniform distributed load (Fig. 4.4)
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or a concentrated load. Tor the uniform distributed loading it

can be shown that

0 ;
WX, 7) ] %Lrﬁ~ e—AL sjn(kh)cos(kX)! 1+A2Q£ij—kp”(p2)l Edk
’ 21G{0) 2 Dy, ADL - | §
o A )\ﬂe i -2AD ) + ’?*;\—p" + 1
(4.21)
Where
2

n(w) = e Ei(-2)- log w

b
I3 ¥

TTTTITTT T

; - e per unit length
»:wwm&:é«m'wﬂ\lfé 4] . a -
o}

e,

/;-

Fig. 4.4




Equation (4.21) is identical to that obtained by Gibson (1967) .
By substituting (4.21) in (4.18), the surface displacement

[W(X,0)] in the Z direction is given hy

0 . 4
WX o) = 0 T Ll penx f
V(X,0) HOR F(Xp)wi cosAX (4.22)
where
] 1 200 .. ]
F(xp) = 2 11 + 575 * Ap eV EL(-2Ap) (4.23)

For large values of 0, Ei(8)can be approximated by the following

-0

BEi(-8) = - =e [1 + 0(6° 1)) (4.24)

1
0

With this value of Ei(-0), we obtain (from (4.23))

. oy, L 1 PYTEITeN

The solution for the homogeneous case is obtained as the limiting

case when p + ®

Lt F(Ap) 1

t

p >

With F(Ap) = 1, equation (4.22) becomes

W = e COSAX (4.26)
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This is identical to the expression found earlier [equation (2.6)

with v = 0.5]. The values of function IF(Ap), cvaluated for

different Ap are as follows

Ap 0.0001; 0.001} 0.01 0.1 1.0 5 10 20 50

F(Ap) 10002 1002 101.9) 11,70 2.27! 1.28] 1.14} 1.07} 1.03

4.3 Beams resting on an isotropic non-homogeneous incompressible
mediun wheré shear modulus is a linear function of depth

The solutionsof the infinite and the finite beam subjected to
a uniform distributed load, a concentrated load, and a concentrated
couple, are similar to the case where the medium was treated as
an isotropic homogeneous elastic medium (Chapters 2 and 3). The
expressions for W(X), M(X), V(X) and Q(X) are identical to those
given in Chapters 2 and 3, except the function @ in the integrals

JnU(X) and an(X) is equal to O = F(Ap). And the typical length

parameter in this case 1s

ke




4.4 Numerical Results

The numerical values of expressions for the deflections,
bending moment, shearing forces, and contact forces for an
infinite beam subjected to a concentrated load, and a concentrated
couple were obtained. The method for the evaluation of the
integrals involved in these expressions is similar to the
homogeneous case which is given in chapter 2. Since in the two
dimensional analysis the deflection of an infinite beam subjected

to a concentrated load is infinite for all values of x

(0e]
WEX) = cos (aX) do = 20 0
’ mE, T 3 ) . T "o
b Jo ala’+ F(Ap)] )

it is not therefore possible to obtain an absolute value for the
deflection of the beam. It is however possible to obtain the
deflected shapesof the beam (deflection relative to the point

of application of load).

o0}
_ Pa’ 1 - cos(uX)
W(o) - W(X) = T PSS
b o oafa’+ F(Ap)]

The integral in the above expression is zero for o = 0.

In Figure 4.5 the deflected shapeof the beam for different
values of p = ——% are shown. These results suggest that as
non-homogeneity increases (increase in m) the deflection of the

beam under the load is also increased. The distribution of

bending moment, shearing forces, and contact forces are given
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in Figures (4.6), (4.7) and (4.8). 1t can be seen that an
increasce in m (decrcase in p) increases the maximum bending
moment. The shearing forces along the beam (Figure 4.7)

decrease as non-homogeneity of the medium increases. Table (4.2)
gives the maximum values of bending moment, contact force, and
relative deflection [W(o) - W(x)] of the beam (at x/c = 0) for

different values of

0.

o 1 2 5 100 [lomogeneous
wﬁhl
—wéz—w* 0.23028 0.31129 | 0.41739 | 0.59045 | 0.60844

Pc’

M )

S 0.28640 0.31390 | 0.34342 ; 0.38205 0.38490

cQ

T 0.46969 0.423726 | 0.41039 0.38544 | 0.38490

Table (4.2)

100 the results

i

From Table (4.2) it can be seen that for p
are very close to those obtained by treating the medium as being
homogeneous. Figure 4.8a shows the variation of maximum bending
moments and contact forces against p for an infinite beam subjected

to a concentrated load.

Since the integrals occuring in the expressions for the
shearing and contact force distribution of an infinite beam subjected
to a concentrated force [JSP(X) and J4P(X)] are similar to the

integrals in the expressions for bending moment and shearing forces
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of an intinite beam subjected to a concentrated couple, (see
hapte £ . .

chapter 2), thercfore the curves in Figures 4.7 and 4.8 can

be sid 1 a4¢ euvves f . .

e considered as curves for bending moments and shearing forces

tor the loading by a concentrated couple (replacing the vertical

U M(X :
axis in Figure 4.7 by & ) , and in Figure 4.8 by E%%ﬁl-). The
deflection and contact force distribution for loading by a

" concentrated couple are given in Figures (4.9) and (4.10).

The solution to the finite beam was obtained by using the
infinite beam solution and applying a superposition technique
(see chapter 3). The numerical values for bending moments,
shearing and contact forces were obtained for beams with L/c =
0.5, 1, 2, 4, subjected to a concentrated load or a concentrated
couple at distances 0.25L and 0.5L from the end of the beam for
both homogeneous and non-homogeneous medium (p =0.5,1, 2, 100) .
The results are tabulated in Appendix l. These results are for
three locations on the beams (two ends and the point under the
load). In Figure 4.11 the distribution of contact force and
bending moment for a finite beam (L/c = 0.5, 1, 2, 4) subjected
to a central concentrated load are given for different values of
D. Similar to the three dimensional case (chapter 3), it can be
seen that the solution fuils to give concentration of stresses
s of the rigid beanm. The results for the rigid beams

at the end

contrast with the theory of elasticity which states that

concentration of stresses must exist at the edges of a rigid

stamp resting On elastic medium.
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Figures 4.12 and 4.13 show the variation of maximum
coptact force and bending moment (for a hean subjected to a
central concentrated load) against p. TFor a particular

value ot p, the maximum contact force decreases as L/c¢ increases,
. (Figure 4.12). The values of maximum contact force for L/c = 8
with different values of p showed that these results are equal
to those of infinite beam (up to third decimal place). From
Figure (4.13) it can be seen that for a particular value of p
maximun bending moment increases as L/c increases. The maximum
value of bending moment for a finite beam with L/c = 4 can be
greater than that of an infinite beam. This is due to negative
contact forces which exist for an infinite beam. The negative
values of contact force produces negative bending moment and

hence the maximum value of bending moment for an infinite beam

a i maEE cvF

might be less than that of a finite beam.

4.5 Conclusions

The two dimensional problem of an infinite beam resting on
a non-homogeneous elastic half space where shear modulus is a

linear function of z, G(Z) = G(o) + mZ was analysed. The

maximum deflection of a beam resting on such medium 1s over-

estimated if the analysis is based on the assumption of homogeneous

behaviour of the medium. AS far as maximum bending moments and

contact forces are .concerngd, the effect of non-homogeneity is to

reduce the former and increase the latter. For values of
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p > 100 [p = Glo)
1

» ] the results obtained from non-homogeneous

solution are practically the same as those obtained from

classical solution.

The solution for the finite beam was ohtained by employing
a superposition technique and using the infinite beam solution.
The numerical results for finite beams subjected to a concentrated
load and a concentrated couple at distances 0.25L and 0.5L from
the end of the beam are given in Appendix 1. It was shown
(Figure 4.12, 4.13) that for a particular value of p for values
of L/c > 8 the finite beam subjected to a concentrated load can
be treated as an infinite beam. As in the case of the infinite
beam problem, the effect of non-homogeneity of the medium with
O > 100 on the results obtained for the finite beams is
insignificant and the medium can be treated as being homogeneous.
Finally, the results obtained for the rigid beams show that

the finite beam solution is only valid for flexible beams.






-B83-

5.1 Introduction

In the previous chapters (chapters 2, 3 and 4), the analytical
solution of the infinite and finite beam, resting on a two, or
three dimensional elastic medium, were given. These solutions can
be applied to analyse the foundation of a structure resting on
natural deposits of soils. Owing to the variety of soils and soil
conditions that can be encountered in engineering practice, the
~applicability of the analytical solutions (chapters 2, 3 and 4)
should be investigated from tests on full scale prototype structures.

These tests, although necessary, are expensive and time consuming.

For this reason the laboratory scale model tests are more attractive.

A series of model tests were performed to investigate the
behavior of steel beams resting on a granular subgrade. The model
tests were designed so that the stress conditions in the underlying
foundation material were two dimensional (plane strain) and three

dimensional.

In this chapter the material used in model tests, the detail
of apparatus, and experimental procedure are described. The analysis
of the experimental results and their comparison with the theoretical

results are given in chapters 6 and 7.
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5.2 Materials used in the model test

5.2.1 The Beams

Three steel beams were used as beam models. The beams have
the same length (L = 140 cm), but different moments of inertia.
The moment of inertia of the beams were chosen so that, according
to Hetenyi's classification of the beams (letenyi, 1946) , they

present a short, a medium and a long beam.

Hetenyi's classification of the beams, resting on Winkler

medium is based on their '"AL" values given by
AL = == (5.1)

where,
L is the length of the beam
K is modulus of subgrade reaction
E 1 is flexural rigidity of the beam

b

Hetenyi's classifications are as follows

a) Short beams AL < m/4
b) Beams of medium length m/4 < AL <7 (5.2)
AL >

¢) Long beams
From (5.1) the moment of inertia is given by

Ly
L'K (5.3)

i 4
4Eb(XL)
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In order to choose the I values for the beams, so that they
present the classification given by (5.2), the values of Eb and K
in (5.3) are required. For Young's modulus of steel, a value of
Eb = 2.1 x 10% Kg/cm® was chosen. From the plate loading tests on a
square plate 16cm x 16em x 1.2cm (see chapter 7) k = 0.454 Kg/cm?®.
An approximate value of 1l6cm was chosen for the width of the beams.
The value of K is then K = 0.454 x 16 = 7.2 Kg/cm®. For this
particular case (Eb = 2.1 x 10%, K = 7.2 Kg/cm?®) in terms of moment
of inertia, the classification given by (5.2) can be written as

follows

d) Short beams 1> 803 cm®

e) Beams of medium length 803 > I > 3.4 cm" (5.3)

f) Long beams I <3.4cm*

The beam sections were chosen so that each beam has a moment
of inertia in one of the limits given by (5.3). These sections are
rectangular, channel, and two channels welded toe to toe to form

a hox section. Some data on beam sections are given in Table 5.1.

Table 5.1 Some data on beam sections
. Width (2) | Depth (3)| Area (4) Moment of (5)
Section (1) . . . 2 Inertia, I,
in cm in cm in cm
in cm"
Flat 15.2 1.2 18 2.16
Channel 15.7 6.5 24.5 113
Box 15.7 13.0 49.0 1600




THE MODEL BEAMS

PLATE 5.1
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Strain gauges of the type FLA-6-11 are fixed on the surfaces

of the heams to mecasurce the surface strain due to bending,
Twenty-nine strain gauges were located Scm apart. [or the case
of loading by two concentrated loads, two extra strain gauges
were fixed to the beam at the points of application of loads.

Plate (5.1) shows the beam sections with the attached strain

pgauges.

5.2.2 The Sand

A Leighton Buzzard sand was used as the subgrade. Particle
size distribution of the sand, obtained from a standard sieve
analysis, is shown in Figure (5.1). The sieve analysis gave

D,. = 0.34mm, D, = 0.48mm and uniformity coefficient p = 1.40.

10 60
The maximum and minimum porosities measured, using methods of
tilting and vibrating table, suggested by Kolbuszewski (1948). The

. _ ae o - % C o
values obtained are n .. = 45.5% and non 33.7 The specific

gravity of grains, which was measured according to procedure

in BS1377 was GS = 2.66.

5.3 The Test Tank

5.3.1 The Three Dimensional Tank

The test tank for three dimensional test is a 2400mm x 1200mm x

1200mm rectangular box (see plates 5.5 and 5.6).
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The sides of the hox consist of 6mm perspex inside a steel
frame, the steel frame was restrained by three 75mm x 37mm x 95mm
steel angle section, which went round the perimeter of the box.
Three 125mm reinforcing bars restrained the top of the box
across the width. The diagonal restraints were provided by 50mm x
50mm x Smm steel angle sections. The maximum deflection of the
sides during the test, for maximum applied load on the beam, (1600 Kg),
did not exceed lmm. The box rests on the base beam of the rig

(see plate 5.11).

5.3.2 The Two Dimensional Test Tank

For two dimensional test tank a reinforced concrete box was
constructed (Fig. 5.2). The inside dimensions of the box were
2100mm x 165mm x 1200mm. The tank is constructed in four sections:
side S1 and base B were constructed as one element, side SZ’ end
columns Cl and C,. To minimise the friction between the sand and
the surfaces of the sides (Sl and 52) of the box, these surfaces
were levelled with sheets of smooth formica, 3mm thick. A strong
adhesive (Araldite) was used to stick the formica sheets. The
elements C, and C, and sides Sé were then mounted to their ppsition
on the base B. The columnssc1 and7€2 were fixed to the side; 54
and S, by eight bolts (Fig. 5.2} The bolts passed through the

2
holes which were provided in 51, §,, €y and Gy, during the casting.

In order to provide spac@wfér the base beam of the loading frame,

the tank was placed on_four_l?Omm x 100mm x 1000mm concrete beams.
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The maximum deflection of the sides, for the maximum single
concentrated load of 2400 Kg applied on the beam, did not exceed
0.1mm. The smoothness of the sides and their high rigidity
fulfills the requirement for the existance of plane state of strain

in sand during the test.

5.4 Deposition of sand

When sand is used in laboratory model testing, the fundamental
problem is the formation of sand beds with constant porosity
throughout the deposit. The methods for preparation of sand deposits
can be divided into two major groups, depending on the technique
used to achieve the desired porosity. The first method is where
the porosity of sand is adjusted after deposition. The sand is
deposited in layers, the porosity of each layer is adjusted by
mechanical means (tamping, vibrating). The method is only suitable
for preparation of dense deposits., A sand layer prepared in this
manner has a non-homogeneous distribution of porosity. Barden (1962a),
used vibration techniques ﬁo prepare deposits of dense sand,

Feda (1961) observed that geposits of dense sand obtained bY
compaction, had different Eorosities at different locations in the

layer.

In the second method, the porosity is controlled by adjusting

the rate (the weight,@@?asited per unit area in unit time) and

velocity (height of fallj g£ the sand rain during the depositiop,
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Kolbuszewski (1948), investigating the methods of determining
the‘ljmiting porosities of sand, (maximum and minimum porosities),
concluded that the porosity of a sand deposit increases with
increasing intensity and decreasing velocity of deposition. With
this method, two techniques of deposition are commonly used. The
'first technique is where the-sand is deposited over the whole
plan area of the tank (Kolbuszewski and Jones, 1961). In the
second technique the sand is deposited, using a sand curtain which
travels backwards and forwards across the length of the tank
(James, 1967; Walker and Whitaker, 1967). The porosity of the
deposits, obtained by the first technique, is affected by the
turbulence in the region of deposition (i.e. a non-homogeneous
deposit). With the second technique, since the displaced air can
move away in front of the sand curtain, the deposit exhibits
relatively homogeneoué porosities. It can be concluded that the
best available method for the preparation of homogeneous deposits
of sand at a certain known porosity is the depostion, using(a
controlled intensity sand curtain traversing along ‘the area of the
test tank. This technlque 15 adoPted here for pg paratlon of the

deposits.

5.4.1a Descriptiqn_qf‘ﬂg¥3g£

For the depositon @f’§and in three dimensional model tests,

an apparatus designed by”, 61l (1974) was used. The apparatus

which is a travelling hoppet is shown in plate (5.2). It COﬂSiﬁtS:

of a steel framefphassf' d,a wooden panel to give a capa01ty of
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0.28m”. The base of the hopper consists of two plates, the

inner plate which is welded to the hopper chassis and the outer

plate which can move in a groove along the length of the base.

Both base plates are drilled with a regualr pattern of holes
i 3

1lmm diameter, at 25mm centre. In a closed position, the holes of

Athe base plates coincide with the solid spaces in the outer plate.

A partial or full coincidence of the holes can be provided by
displacement of the outer plate, an adjusting cam, shown in plate
(5.3) was used for this purpose. The cam was calibrated for three
positions between closed positions and full coincidence of the holes.
These positons correspond to zero, 3mm, 6mm, 9.5mm and 22mm
displacements of outer plate, as shown in Figure (5.4a), as

position 0, 1, 2, 3 and 4. The shaded area in these positions

shows the coincidence of the holes. A second cam, which was provided

on the other side of the base, could bring the outer plate to zero

position (closed position).

The hopper filled with sand, lifted by a fork lift truck and
attached to the trolley which consists of a steel frame, two axdes
and four wheels as shown im plate (5.4). The trolley, with the

hopper attached to it, could travel along the top flange of the

cross beam of the rig. The manner in which the hopper travels

is shown in Figure (5.3a). - The speed of the travel was adjusted

so that the hopper was empty when it reached the other end. The

hopper was then 1ifted to ground level, filled with sand, lifted

and attached to the trolley. The process was continued, until the

rod level in the test tank.

sand reached the requl

SO 2 RS i,




5.4.1b Measurement of Poresity

Cylindrical density tins were placed at different points
of the receiver to obtain the porosity of the sand. The tins,
which are 50mm in diameter and 37mm high were made from brass
tubing. To allow the displaced air to expel from the tins, the’
base of each tin was perforated by a number of 12.5mm diameter

holes and had gauze stuck inside the face of it.

5.4.1c Calibration of the Hopper

The variation in porosity of sand, deposited by the hopper,
depends both on height of fall (velocity of sand rain) and
aperture size (intensity of sand rain). Cunnell (1974) showed
that; (a) for a particular aperture size, the difference between
average porosity, measured at the bottom and surface level of
the bed was nor more than a random variation, and (b) a change in
the level of sand in the hopper had no significant effect on the
porosity of the deposit. Figure 5.4b shows the variation in the
average porosity with the aperture set shown as positions 1, 2,

3 and 4 in Figure (5.4a). The varying intensity of the sand rain

at positions 1 and 4 are shoyn in plates (5.5) and (5.6).

Ao

LIS




Wheels Pulley
Pulley
Rope
Rope P
) g g
= S =
Z Cross beam -
cmroe e
-Trolley .+ Rope
z Bl+~-Connecting points
Hopper
-
oo
¢ ib
, to#
. 3 S
v f: ; ',: L V g E
it g Sand  rain -
pprdag ! g,
i Pyt E E ‘
2
Geared P
winder oo
FIG. 5. 3a -
L
- ~Pulley
~——Geared winder
Pulley Hoppe? -gRope
Rope ;
Bolts N\ -/ Rope | LpPulley
7 - o o o R e " ewﬁﬁ.&’ ‘“'“"‘ R e = -
o - Base of the
, - hopper - ®
- Jrack

Winder

FlG. 5 3b




Inner plate

Outer plate

O f 2
3 4
FI1G. 5 4a The aperture corresponding to 3,6, 9-5, 22 m-m

dieplacement of outer plate.

Ny
n{Porosity) ,’E
A ¥
450/g I !%
i "‘ﬁ
4090 |
3590 | , . —t —e

3 4 Aperture setting




5.4.2 Deposition of sand for the
Two Dimensional Model Test

5.4.2a Description of llopper

The apparatus is on the same principles as that
of the hopper for a three dimensional test. The
intensity of a traversing sand curtain is adjusted to

obtain a deposit with required porosity.

The hopper trolley, used for this purpose, is
shown in plate (5.7). The capacity of the hopper
trolley is 0.102m®, and it is composed of; two semi
circle sides, 580mm in diameter, which are made from
19mm ply wood. A semi circle surface, 390mm wide,
which was made from a plastic faced flexible hard board,
3mm thick, with the smooth surface facing inside the

hopper. This part had a hole 170mm x 75mm at its bottom.

A wooden frame is fixed around the perimeter of this hole

(plate 5.7). Two steel plates 3mm thick form the base of

the hopper. One of the plates is fixed to the frame, the

other can move in the grooves provided on the frame. The

movable plate had a vedtical part (see plate 5.7) to
facilitate the movement of the plate. The setting of

the apertures to contrel the intensity of the sand raln,

was made by adjusting the movable plate at different
positions along the grngesf? Two bolts, each having two

adjusting nuts, were fixed to the base frame. By
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PLATE {577a) GENERAL VIEW OF THE HOPPER

PLATE @587b)  BASE OF THE HOPPER

THE HOPPER USED FOR DEPOSITION IN THE TWO DIMENSIONAL TEST
o




turning the adjusting nuts against the vertical

part of the movable plate, the plate was moved

along the grooves of the frame to give the required
aperture size. To measure the size of the aperture
the vertical part of the movable plate moved along two
graduated bars which are fixed to the base frame. To
prevent the sand pouring out when the hopper is not

in operation, a square wooden plate, 180mm X 100mm

was slid in the grooves, on the outside surface of the
adjustable plate to shut the aperture. The trolley of
the hopper consists of two axles with four wheels
attached to them, the axles were fixed to the hopper

by four support clips.

The manner in which the hopper moves along the
tank is shown in Figure (5.3b). A rope was attached
to a hook which was fixed on the axle, the rope passed
over a pulley which was connected to a hand operated
geared winder. In a t%ial £i11 a considerable duning
effect was observed, this was due to jerking of the

hopper. A balance weight as shown 1in Figure (5.3b) was

used to minimise this effect.

[

The alignment of the hopper during deposition

was insured by two channel guides. These channels had

one side each fixed to the frame, and the other side

inside the tank to act as & guide (see plate 5.7).




5.4.2b Calibration of hopper

In order to deposit a layer of sand to a
predetermined porosity, it was necessary to find the
porosity of sand rain at different heights of the
tank for different sizes of hopper aperture. Density
tins were placed at different positions along a
wooden platform, 2080mm x 160mm in plan. This platform,
which is supported by two ropes at its ends, is suspended
inside the tank at different levels. The supporting ropes
passed over two pulleys at the ends of the tank. The
pulleys (Fig. 5.3b) are fixed on slotted angles which
rest on the edges of the end columns. The height of fall,
which is from the top of the tank to the surface of the
platform, is measured by a graduated wooden bar. The ;
hopper was filled and the aperture was adjusted to the
required size. The hopper ran along the tank by winding
the geared winder manually. When the density tins
were filled, the platform was pulled up, the tins were
screeded level, weight and.porosity calculated. This

was repeated for different heights and different sizes

of aperture.

Figures (5.5a-d) show the variation of porosity
" with aperture size for different heights of fall. In
contrast with the hopper for the three dimensional test,

it can be~$eén that the height of fall affects the porosity

of deposit, i,gjﬁtha porosity increases as the height of
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Aperture mm.
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5.5 Loading System

Initially it was intended to use a hydraulic jack for the
application of the load to the experimental beams. The base of the
jack was fixed to the bottom flange of the cross beam of the leading
frame of the two dimensional model. A steel proving ring was used
té measure the applied load. The proving ring was fixed to a knife
edge which was located at the point of application of the load
on the beam model. The settlement of the beam which was largely
irrecoverable, caused the load to decrease. The hydraulic pump had
to be continuously readjusted to maintain a constant reading on the
proving ring. To eliminate this problem, it was decided to adopt
a dead load system. The loading system used for this purpose 1is
shown in Figure (5.6a). It consists of a loading arm, a
restraining bar, and an inverted "T'" knife edge through which the !
load is applied on the beam. The lever arm, which is 150cm long,
is made from two 75mm X 75mm X 25mm Steel angle sections. The
angles are 25mm apart and accommodate two steel blocks 25mm X
2com X 2S5mm The steel blocks are welded to the angles and have
"V' shape seatings to receive the knife edges of the restraining
part, and inverted "T'" (Fig. 5.6a). The horizontal part of the
inverted "T'' is a knife edge which rests across the width of the beam
and transfers the applied load on the beam. The restraining part
for the three dimensional tests (which is different than that of

the two dimensional loading system) is shown in Figure 5.6b. The

magnification of the loading arm was approximately five.
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5.6 Bxperimental Procedure
]

5.6.1 Experimental Procedure for Three
Dimensional Test

Experiments of Cunnell (1974) showed that, when depositing
sand, the surface of the sand at the edges 1s lower than the centre
of the bed. This problem has been overcome by placing the sand at
the bottom of the test bed and banking it round the edges. Four
~density tins were placed on sand and their positions and numbers
were noted. Using a fork 1lift truck, the hopper which was filled
at ground level, (see plate 5.8a-b ) was lifted and connected to the
trolley. The hopper was brought to the starting position which was

marked on the cross beam of the loading frame. The aperture was

set and the hopper was drawn along the bed by winding the crank of
the worm gear, the speed of the pulling was adjusted So‘thﬁf the
hopper was empty when it reached the other end. When;thé héppe ”
reached the other end, the aperture was closed aﬁd the héypérfw 

pulled back to its starting position. The hoppexr was lifted down

and filled. Before the next layer is deposited, d@n§ity;tin§‘are

”e-re@uired

placed on sand. The deposiﬁion wasAéﬁﬁtinuei~unt‘
level of sand (approximately QOch'
bed was then levelled by u51ngghg
The board, with its two %&n‘i

was pulled along the hed

" The beam was then placag' eﬁtrally‘ﬁh the bed (the manner in ﬁf

placed on the bed is shown in -

- which the beams wefefh

_This ¥

Figure 5.7). Thg f  /gaug@ﬁ‘WﬂS built.
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rested on two sides of the test hed and was fixed in position by
"G clamps.  The loading system was then assembled and strain
gauges were comnected to the extension box. The strains were
recorded by Compuleg Alpha 16 Computer; reading time for each
strain gauge was approximately 0.1 second. Plates (5.9) and
(5.10) show the channel beam under a concentrated load, and the

flat beam under two point loads.

After completion of the test, the loading arm, the dial gauges
frame, and the beam, were removed. Finally, the sand was emptied
into plastic containers, through two openings at the base of the
tank (plate 5.11). The density tins were removed as soon as they

appeared, and their weights were recorded.

The three dimensional model tests were carried out with two

different porosities of sand corresponding to aperture set 1

i

(n = 39.3%) and 3(n = 43.8%) of Figure 5.4a. The range of porosity
measured by density tins, for different tests, were between 43.4%
and 44.3% for opening 3, and between 39.1%, 39.9% for opening 1

(n = 45.5%, n_. = 33.7%).
min

5.6.2 Experimental procedure for Two
Dimensional Test

)

The hopper was lifted and plaged in position with its chann




PLATE 5.9 THE CHANNEL BEAM UNDER CONCENTRATED LOAD :
(THREE DIMENSIONAL TEST) v

PLATE 5.10 THE FLAT BEAM UNDER TWO POINT LOADS
| (THREFE NTMENGTONAT TReT
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pulled along the tank (Fig. 5.3b). The tests were performed on
the deposits of sand in their densest possible state which could
be prepared by t%e hopper. From the calibration curves (Fig. 5.5a-d),
it can be seen that the densest homogeneous deposit which can be
prepared, has a porosity n = 48.5%. The size of aperture to give
this porosity at different levels was obtained from Figufes(S.Sa-d)‘
With each aperture size, 1l0cm of sand was deposited. The speed of
the geared winder, to pull the hopper, was adjusted so that 5cm of
" sand was deposited for each travel of the hopper along the tank.
When the hopper reached the end of the bed, the shutter was
pushed in to stop the sand rain. The rope was disconnected from the
axle and the hopper waspushed back to the other end. The process
was repeated until the tank was filled to a level approximately 50mm
below the top of the walls. The hopper was lifted down and the

surface of the sand was then levelled by a scraper which ran along

the tests bed (plate 5.12) as the scraper is made of a plate 3mm

thick fixed to an angle section 25mm x 25mm. - In order to ensure that
the thickness of the bed is the same throughout the bed, the angles

rested on two supports, which were fixed to the frame at the top of

the tank, and levelled carefully. The scraper was drawn from the

middle to the ends, the extra sand was then removed from the ends.

The beam, which was marked at the point of application of load,

was lifted- and placed on the bed with its mark in coincidenc




THE SCRAPER USED TO LEVEL THE SAND
IN THE TWO DIMENSIONAL TEST

PLATE 5.12

L7



PLATE 5.13

PLATE 5.14

THE BOX SECTION BEAM UNDER CONCENTRATED

LOAD (TWO DIMENSIONAL TEST)

THE CHANNEL BEAM UNDER TWO LOADS
(TWO NIMENSIONAL TEST)

o
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knife edge of the restraining bar inside the "V shape. The
inverted "T" was placed at the point of application of load with
the knife edge of. the vertical part of it located in the 'V'" shape

of the lever arm.

The strain gauges were connected to an extension box by
multi-core electric cables. A strain indicator 'peekle' was used
to record the induced surface strains. The deflection of the beam
at different points were measured by dial gauges located at 10cm
intervals. The "V'' shape of the lever arm was then brough in
contact with the vertical knife edge of the inverted "T" by
lowering the plate which supports the lever arm. The loading was
then started by gently placing the weights on the pan of the
loading hanger. The load increment was continued until the
deflection at the point under the load reached 25mm. Plates (5.13)
and (5.14) show the box section beam under a point load and channel
beam under two point loads. When the test was completed, the
loading system, the dial gauges frame and the beam were removed.
Finally, the sand was emptigd (using a Qacuuﬁ cleaner) and weighed.
The porosity of the sand wa§ calculated for each test. The range

of porosity for different tests was between n = 43.4% and n = 44.2%.

&
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6.1 Introduction

The description of the apparatus and the testing procedure,
for both two and three dimensional model tests were given in
Chapter 5. The results of experiments are presented in this
chapter. A series of experiments were performed with the different
Beams which were subjected to either a concentrated central load
or two concentrated loads. The number of tests with different beams

in the two and three dimensional conditions are shown in Table (6.1).

In the three dimensional tests, the experiments were performed
with two different porosities of sand. These porosities were
obtained by setting the aperture size at settings 1 or 3 of the
hopper (Chapter 5 Section 5.41c). These deposits are referred to as
medium dense, and medium loose, respectively (nmax = 45.5%,

N T 33.7%). The range of the average porosity of the deposits in

different tests were

fl

39.0% to n = 40.2%  aperture éetting 1

=
1}

43.4% to n 44, 3% " " 3

i

=
i

In the two dimensional tests, the deposits for different tests
were prepared with the same'aperture settings (Chapter 5, Seétion
5.4.2b). The range of porosity in different tests wWas: between
n = 43.4% and n = 43.9%. The bending'moments along thé beams were

obtained, using the relationship




-101-

where
€ is the recorded strain
Eb is Young's modulus of the beams (Ebz 2100000 Kg/cmz)
1 is the moment of inertia
ﬁnd y is the distance from the neutral axis of the section to a
level where the strain gauges are located. The value of I/y for

each beam section is as follows

I/y = 3.6 cm® flat beam
" = 75,7 " channel "
vo= 246 box "

Since the loading is concentrated, the contact force distribution
(contact stress x width of the beam) along the beams can be obtained
through double differentiation of the bending moment distribution

curves.

Table 6.1
Section | No. ofir Single load Two Loads
Tests 3D 2D 3D 2D
Box 3 ' -2 1 - -
Channel 4 2 1 - 1
Flat 6 2 1 1
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6.2 The results
The variation of the load against the central deflection of the
begms (subjected to a concentrated load) in the two and three
dimeﬁsional tests (shown as 2D and 3D) are given in Figures (6.1ac).
“In the three dimensional tests the load increment for each test was up
to a point (final load) where a rapid increase in the deflection of
the beam was observed. The load deflection curves of the beams, resting
on medium dense subgrade (n = 39% to 40'.2%) were linear over a
considerable initial range. At higher loads (exceeding half the final
load), the rate of deflection incrased (Figures 6.lac). For the medium
.loose subgrade (n = 43.4% to 44.3%), for the first initial loadings,
(60% of the final load), the slope of the load-central deflection curve
decreased, and at higher loads (up to the final loading), the

deflections were proportional to the applied load.

The corresponding curves in the two dimensional tests (shown as
20 in Figures 6.lac) on medium loose sand (n =A% to 43.3%), were

linear for the whole range of applied load.

The results of surface strains showed a linear increase with
applied load. The central strain against the applied load for the flat
beam is shown in Figure (6.2), Because of the linear increase of
strains and deflections with the applied loads (in the three dimensional
tests with medlum loose sand, the deflection curves are linear after
some initial loadings), as shown in Flguras (6.1ac) and (6. 2), he

distribution of deflectxogi b@ @ing moment and contact force along the

beams are obtained fox a"paﬁﬁicuiaf’léad in the linear part of load-

_central deflection agz;’J*?Th@sajare shown in Figures (6.3ac) and

(6.4ac).
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6.3 Discussion of the results

The deflection of the box section beam under a single central
load, in both the two and three dimensional tests (Figure 6.3c),
indicate that the beam behaves as a rigid foundation. The deflection
curves for the beams subjected to a concentrated load, show that
(Figures 6.3ab) the deflection of the beam under the load relative

to the ends of the beam increases as the flexibility increases.

The distribution of contact force (for a single and two loads)
under the flat beam (Figures 6.4ab) is similar to the deflection
curves (Figures 6.3a and 6.3d). The contact force curve for the
channel beam (Figure 6.4c) had the shape of the deflection curve
(Figure 6.3b) towards the centre of the beam, and reduced to zero at

the ends.

Due to the rigid behavior of the box section beam under point
load (Figure 6.3c), and the channel beam (Figure 6.3e) under two
loads (two dimensional test) recorded strains along the length at
the surfaces of these beams were practically‘zero; it was therefore
not possible to obtain the @istribution of contact force beneath
the beams. The tests on the box section beam can be considered as
plate loading tests, and in Chapter 7 the results of these tests are

used to obtain values for K (modulus of subgrade reaction) apd

the elastic properties of the granular material ( ). To

1-v?
investigate the effect of change in porosity of sand on the maximum
deflections, bending moments, and contact forces, the ratios of

these values in tests with medium loose sand, and medium dense sand,
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for different heams under concentrated load (Figures 6.3a-c,

6.4a and 6.4c¢) were obtained and given in Table (6.2).

From Table (6.2) it can be scen that an increase in porosity
causes a considerable increase in the value of maximum deflection.
A 5.3% increase in the porosity of sand causes 2.9 times increase
in the maximum deflection of the flat beam under a central load
of P = 300Kg. For the channel and box beam the increases are
3.8 and 4.6 times for P = 600Kg. The increase in the porosities
- are 3.5% for the channel beam and 3.9% for the box beam. It can
be concluded that, in the linear range of the load deflection

curves (the curves shown as 3D in Figures 6.la-c), the ratio of

== increases as the rigidity of the beam increases.

FL CH BO
= % n.= % = 44.1%

nl- 44 ,3% nl 43,4 nl 44,1
n,= 39% n,= 29.9% n,= 40.2%

W1

SRLEY 2.9 3.8 4.6

W

n2

M i )

L 1.78 1.30 -

M

nz

%:i 0.64 0.78 -

Table (6.2)
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Table (6.2) shows that an increase in porosity of the deposit,
increases the maximum bending moment and decreases the maximum
contact force. In contrast to the deflection, the effect of
change in porosity on the maximum bending moments and contact

forces of the flat beam is more than that on the channel beam.

A comparison of the results for deflection (Figures 6.3a-c),
bending moments and contact forces (Figures 6.4a and 6.4c) for
a single load show that creating a condition of plane strain for
the subgrade has the same effect as decreasing the porosity of the

sand in the three dimensional test.

The deflection curve of the three dimensional test with the
flat beam subjected to two loads (each acting at a distance L/3
from the ends) and resting on medium dense sand (Figure 6.3d) shows
that a part of the beam between the applied loads behaves like

a rigid beam.



CHAPTER SEVEN

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS




7.1 Introduction

In this chapter we compare the experimental results
obtained from model tests with equivalent theoretical results,
assuming that the granular medium behaves as (i) a Winkler
medium and (ii) an isotropic-homogeneous elastic medium. To
carry out such a correlation we require numerical values for

the constants describing the Winkler model (K), and the elastic

»

medium (E and v).

The basic disadvantage of idealizing the response of the
soil medium as a Winkler medium is that the constant describing
this model is not an intrinsic property of soil. It may, of

course, be unique for a particular foundation problem.

With the elastic continwmidealization the constants
(E and v) describing the models are assumed to be characteristic
and unique properties of the material. In practice, however, the
stress-strain relationships of most soils is non-linear and
depends on the type of soil, its moisture content, compaction,
axial stress, confining stress, agiaf - $trcszy confining stress,
duration of load application, repetition of load, etc. In
reality, it is impossible to determine a modulus of elasticity
(E) for a soil. If all the above factors are kept constant and
the change in stresses is small (compared to say the yield stress),

a tangent modulus can be defined. Similar arguments follow

for Poisson's ratio V.



In the present discussion we shall assume these properties
can be determined to a reasonable degree of accuracy, from either
laboratory or in situ tests. The determination of constants

describing the Winkler model (K) can he approached in the

following ways

(1) the constant K for a particular soil medium

may be obtained from in situ plate loading

tests.

(i1) the constant can be related to the elastic
properties of soil (E and v) by comparing
the solutions to a particular soil foundation

interaction problem.

A comprehensive account of the evaluation of the modulus of
subgrade reaction from plate loading test, and practical
application of the theory of subgrade reaction is given by
Terzaghi (1955). The discussion of the factors affecting the
determination of modulus;subgrade reaction and further references

on the measurement of K is given by Selvadurai (1975).

Using the second approach, Biot (1937) has expressed the
modulus of subgrade reactipn K in terms of the elastic constants
of the soil medium and the flexural property of the beam by

equating the maximum bending moments in an infinite beam subjected

to’a concentrated load P and resting on Winkler and elastic medium.
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: .k O s

K= 1.23 | 1 ’;”I E (7.1)
L c(i-v?) b C(1-v?)
for the three dimensional problem, and
1
N _

K= 0.710 | — {;bd - (7.2)

(1-v¥) b (1-v?

for the two dimensional plane strain problem.

Expressions similar to (7.1) were obtained (chapter 2,
equations 2.62), by equating the maximum deflections, bending
moments and contact forces in an infinite beam resting on

Winkler and elastic medium, subjected to a concentrated load.

Vesic (1961, 1963) and Barden (1962, 1963) have suggested

the following expressions

) 1
_ 0.65E [Eb“] he

K = (7.3
(1-v?) Byl
and
K - ~OO6513 {(7-4)
1-v2

In (7.1) through (7.4), E and v are elastic properties of
the medium, EbI is flexural rigidity of the beam, b is half
width of the beam and C is a factor (C = 1.00 if the distribution

of contact stress across the width of the beam is uniform;

1.00 < C < 1.13 if the deflection across the width of the beam is

uniform).
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Another interesting interpretation of the modulus of
subprade reaction K was proposed by Gibson (1967). The stresses
and displacements in an incompressible non-homogenecus elastic

half space, where shear modulus ((z) increases according to
G(z) = G(o) + mz

were obtained by Gibson. It is found that when G(o) = 0, the
surface deflection w(o) 1is qo/2m within the loaded area and

zero outside the loaded area, where a, is the stress intensity
of the uniform external load. This interpretation suggests that

K = 2m.

In order to evaluate the elastic properties (E and v) and
the modulus of subgrade reaction K of the sand subgrade, a
series of plate loading tests was’ perforﬁed. It is assumed that
the supporting soil medium behaves like an isotropic elastic half
space. From the knowledge of the solution of a rigid plate
resting on an isotropic elastic half space-it is then possible to
determine a value for the term I%GT-. This has been carried out
for both the plane strain and three dimensional plate loading
tests. The values of TEG?’ are then used to obtain values for
the modulus of subgrade reaction K for the Winkler model (equation
7 2 for the two dimensional and the second equation of 2.62 fbr

the three dimensional analysis) and the beam-foundation characteristic

¢ (equations 2.28 and 2.29) for the elastic half space model.
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7.2 Plate loading tests

7.2.1 Two dimensional plate loading tests

Two sets of plate loading tests were performed. The
plates were square, lécm x l6em x 1.2cm, and rectangular,
32cm x 16cm x 1.2cm.  The experiments on each plate were carried
out twice. The load settlement curves for these tests are
shown in ligures 7.1 (first set of tests) and 7.2 (second set
of tests). The unloading curves (Figure 7.1) show that the
settlements were completely irrecoverable. The settlements
were proportional to the applied load up to the points A and
A'(for the square plate), B and B'(for the rectangular plate).
The values of applied load and induced settlements at these
points are used to evaluate the term IEM; for sand. The loads

-V

7 ¥
and settlement corresponding to points A, A , B and B are as

follows

Square plate first test (point A in Figure 7.1)

P = 100 Kg w = 0.819¢m ' (7.5)

4
Square plate second test (point A in Figure 7.2)

P = 100 Kg w = 0.795cm (7.6)

Rectangular plate first test (point B in Figure 7.2)

P = 400. Kg w = 0.,925cm (7.7)

/
Rectangular plate second test (point B in Figure 7.2)

P = 400 Kg w = 0.907cm (7.8)
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It is assumed that the supporting soll medium is an isotropic
homogeneous, linear clastic continuumof semi infinite extend.
The settlement of a rigid plate resting on such a medium is

given by (see Zeévaert, 1974)

(7.9)

where q 1s applied load per unit area of the plate, B is the
a [
width of the plate and o is a constant depending on the ratio

of the sides of the plate.

The settlement of the rigid plate in the plane strain
problem can be approximated by the settlement of a rectangular
rigid plate where the ratio L/B (L is the length of the plate)
is large. For example, the deflection of a rigid plate with

L/B = 25, is given by (7.9) with a, = 2.65,

1-v2

E

W = 2.65Bqa (7.10)
By using the values of P and w given by (7.5) through (7.8) we

obtain values for as follows

1-v?
Square Rectangular
plate plate
first test | 20.2 35.8
second test} 20.8 36.5
Values of - in Kg/cm?

1-v



" . E
The average values of —>- are then

2

1-v

= 20.5 Kg/cm2 (7.11)

—— = 36.1 Kg/cm? (7.12)

from the rectangular plate loading test (32cm x l6cm).

From (7.11) and (7.12) it can be seen that the £

1-v2

values obtained from the results of square and rectangular plate
loading tests are not unique. The two dimensional theoretical
analyses are therefore carried out (section 7.3) with K
(equation 7.2) and c¢ (equation 2.28) values obtained using both

values of

given by (7.11) and (7.12).
1-v?

7.2.2 Three dimensional plate loading tests

The results of three dimensional tests on box section beam
resting on medium loose and medium dense deposits and subjected
to a central concentrated load (see chapter 6) showed a uniform
settlement of the beam along its length. These tests are
considered as plate loading tests. The results obtained from

for the sand in

these tests are used to obtain a value of "
1-v



~for the test on medium loose deposit (n
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the three dimensional tests. The load displacement curve for
these tests are shown in Figure (7.3). These tests were performed
on deposits of sand with porosities n = 40.2% and n = 44.1%.

These porosities correspond to aperture settings 1 and 3 of the
hopper (see chapter 5) respectively. At the limit of proportionality

of load displacement curves (points C and D in Figure 7.3) we have

P = 600 Kg w = 1.1llcm (7.13)

44 .1%), and

P = 1200 Kg

=
1

0.43cm (7.148)

for medium dense deposit (n = 40.2%).

As in the two dimensional plate loading tests, it is assumed
that the sand behaves like an isotropic-homogeneous elastic
medium. By substituting (7.13) and (7.14) in the expression for the
displacement of a rigid stamp resting on an isotropic homogeneous

elastic medium (equation 7.9 with a, = 2.15 for L/B = 9) we obtain

E

- = 42.8  Kg/en® (7.15)
1-v

40.2%), and

i

for medium dense deposit (n

E

1-v?
for medium loose deposit (n

= 8.3 Kg/cm? (7.16)

44.1%) .
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7.3 Theoretical Analysis

In the previous section, from the results of the plate

. : E .
loading tests, values were obtained for the term —— . These
1-v?
values are used to carry out theoretical analyses assuming that

the granular subgrade behaves like (i) Winkler medium, (ii) an

“isotropic homogeneous elastic medium. The two dimensional

analysis of the beams are carried out for both values

1-v?
obtained from the square and rectangular plate loading tests.
The values of K for the flat and channel beams are obtained by
substituting (7.11) and (7.12) in (7.2) and using the

corresponding values of I and b (half width of the beam) from

Table (5.1). These values are given in Table (7.1)

Rectangular
Square plate plate loading
loading test test
Flat 3.60 7.65
Channel 1.01 2.14

Table (7.1) Values of K in Kg/cm2

Two dimensional analyses

The corresponding K values for the three dimensional analyses

are obtained by making use of equation 2.62 and the terms Tt%y

given by (7.15) and (7.16). These values for the flat and
channel beam resting on medium loose and medium dense sand are

given in Table (7.2).
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MD M L

FL i FL CH
K Kg/cm? 32.7 23.8 5.5 4.0
equation

2.62

Table (7.2) Values of K in Kg/cm?

Three dimensional analysis

In the analysis of beams resting on an homogeneous elastic
medium, the characteristic of the beam-medium was defined as

(see equations 2.28 and 2.29)
q

c = [gl-vz) 5 (7.17)

in the two dimensional analysis, and

E, T Y/s
c = (ﬁ(l-vz) Tﬁ?} (7.18)

in the three dimensional analysis.

By making use of equations (7.17) and (7.18) and the

values obtained from plate loading tests, the c values
2

1-v
for the two and three dimensional analyses are evaluated and
given in Tables (7.3) and (7.4). In (7.18) it is assumed that

C=1 (i.e. the distribution of contact stress across the beam

is uniform).
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Square Rectangular
PLT PLT
FL 30.6 25.4
CH 113.3 93.8

Table (7.3) ¢ values for two

dimensional analysis

MD ML
FL 24.00 41.4
CH 88.7 153.1

Table (7.4) c¢ values for three

dimensional analysis

In Table (7.4), MD and ML refer to medium dense and medium

loose deposits respectively.

With the knowledge of K and ¢ values given in Tables (7.1)
to (7.4), it is now possible to carry out theoretical analyses
of the flat and channel beams resting on both Winkler and elastic
media. For both types of média the contact forces and bending
moment distributions are obtained by assuming that the beams have
finite and infinite length. The analyses of the finite and infinite
beams resting on an isotropic homogensous elastic medium, and

subjected to a single concentrated load, are given in chapters 2
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and 3. TFor the case of two loadings (€flat beam subjected to
two loads each acting at a distance L/6 from its centre), the
solutions for the finite and infinite beams are ohtained by

superposition of the solutions for each loading.

The expressions for the contact force and bending moment
distribution of an infinite beam resting on Winkler's media and
subjected to a concentrated load (Figure 7.4a) are as follows

(lletenyi 1946)

P

, , 0O
L s Ol = X
Fig. 7.4a
Q = %;-e_kx (cosAx + sinlx) (7.19a)
P -Ax .
M = v e (cosAx - sinAx) (7.19h)

In (7.194) and (7.19b) A is given by

i (7.20)

By making use of K values given in Table (7.1) the A values for

two dimensional analyses are evaluated and given in Table (7.5).

b4
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Square Rectangular
PLT PLT

FL 0.0211 0.0255

CH 0.0056 0.0068

Table (7.5) values of X for the

two dimensional analysis

For the three dimensional analyses the values of ) are obtained

by using equation (7.20) and the values of K given in Table (7.2).

MD ML

FL 10.0366 0.023

CH {0.0125 0.008

Table (7.6) values of

A for three dimensional analyses

The expressions for bending moment and contact force
distribution of a finite beam resting on a Winkler medium and
subjected to a concentrated load P at its centre (Fig. 7.4b)

are (Hetenyi, 1946

2 eSS 44 liiLiddid

R

b
£
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p 1 . . ) )
M = 23 STTS ATV {sinhAx[sinix - sinA(&-x)] -
- CoshAx{cosAx + cosA(2-x)] +
) N N ) (7.21)
+ SsinAx[Sinhix - SinhA(2-x)] +
+ cosAx[CoshAx+ cosh)(2-x)])
and
Q = P L - {CoshAx[sinix - sinA(&-x)] +
2 SinhAf + sinAl ; -7 AT |
(7.22

+ cosAx[SinhAx - SinhA(2-x)]}

The expressions similar to (7.21) and (7.22) for the case of two
concentrated loading each acting at a distance L/6 from the centre

of the beam as shown in Fig. 7.4c are

7]11?)/]!1111!7117?i)’n’al’rr::rl'frrilllf YIYTIIV?
A Ce
i@ L ¥
¥

Fig. 7.4c

. emmem e a2 e
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P 1 .
M- T 3N STARNE 7 sinng L2 SinhAx

sinAx[CoshA(L/3)cosA(2L/3) +
+ CoshA(2L/3)cosA(L/3)] +(CoshAxsinAx-SinhAx cosix)
[CoshA(L/3)sinA(2L/3) - SinhA(L/3)cosA(2L/3) +

+ CoshA(2L/3)sink(L/3) - SinhA(2L/3)cosA(L/3)]}

" for L/3 > x > 0 and
M = [M P [CoshA(x-L/3)sink(x-L/3
X

+ SinhA(x-L/3)cosA(x-L/3)]
for 2L/3 > x > L/3

- 1 :
Qo = ST ST {2CoshAxcosix[CoshA(L/3)cosA(2L/3)

+ CoshA(2L/3)cosA(L/3)] + (CoshAxsinAx+SinhAxcosix)
[CoshA(L/3)sinA(2L/3) - sinhA(L/3)cosA(2L/3) +

+ CoshA(2L/3)sinA(L/3) - SinhA(2L/3)cosA(L/3)]}

for L/3 > x > 0 and

QB-c - {QA-B] + PX[coshA(x-L/3)sinA(x-L/3) -
. x>L/3

- sinhA(x-L/3)cosA(x-L/3)]
for 2L/3 > x > L/3
Equations (7.19), and (7,21) through (7.25) are used to obtain the

distribution of the bending moments and contact forces for both

infinite and finite beam analyses of beam on Winkler medium.

(7.23)

(7.24)

(7.25)

i
¥
3
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The theoretical resuls for the bending moments and contact
force distribution of the flat and channel beanm assuming the
Winkler and elastic behaviour of the subgrade based on both
actual dimensions of the beams and infinite beam analyses are
" shown in Figs.7.5 to 7.10.The results for the infinite and finite
beams are referred to as Wi and Wf (for the Winkler medium), Ei
and Ef (for the elastic medium). In figs. . 7.5to 7.10the experimental
results are shown in dash lines. It was not possible to show all
theoretical resulté as the graphs would have been too congested.
Therefore the maximum values of contact force and bending moments
for different theoretical analyses (Wi, Wf, Ei’ Ef) together
with the experimental results are given in Tables (7.7a-c), for
the three dimensional analyses, and Tables (7.8a-c) for the two
dimensional analyses. As far as maximum bending moments and
contact forces are concerned, from these tables it is possible to
make comparisons between the results obtained from experiments
and those of theoretical approaches. Figure 7.11 shows the values
of K obtained from the resglts of square, rectangular (for the
two dimensional analyses), and box section beam (for the three
dimensional analyses). Thg K values obtained from the experiments
(ratio between contact force and deflection) are also shown in

this figure,
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(a)
(b)
(c)
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(a)
-
Ex Wi wf Ei EJr
L 3.46* 3.45 3.76 3.55 3.79
5.57% 5.49 5.71 5.71 5.88
CH 5.12 2.40 4.37 2.39 4,37
6.18 3.75 2.76 3.72 4.79
(b)
Ex Wi Wf Ei hf
FL 4120 3260 3553 3338 3627
2550 2049 2062 2125 2172
CH 9220 18750 {10410 19378 {10704
7750 12000 9990 12565 | 10285

(¢)

Ex W, W

Q 7.50 6.54 | 6.95 6.74 7.03

M 1400 1630 1717 1858 1281

Tables (7.7a-c) Three dimensional analyses

Maximum contact force - single load (Kg/cm)
Maximum bending moment " " (Kg-cm)

Maximum contact force and bending moment for the
flat beam subjected tp two loads

* Medium loose

+ .
Medium dense




(&)
(b)
(c)

b W; W E. E.

ot | 6. 02 1.68 | 4.31 2.04 4.18
. . 4.24

(b)
Ex W, :
Nl Wf Ei Ef
: 3554 | 3864 | 3533 | 3678
FL | 2700
2041 | 3171 | 2034 | 3078
i | gaco | 26785 110476 |26165 | 10683
22058 10452 (21662 | 10635
(c)
Ex W we | B, | Eg
5.24 | 5.67| 5.25 | 5.41
FL 1670 1 586 | 5.71| 5.76 | 6.04
3184 | 3354 | 3417 | 3368
.
CH 12425 '} o443 | 2657 ] 2671 | 2796

Tables (7.8a-c) Two dimensional analyses

Maximum contact force - single load (Kg/cm)
Maximum bending moment " " (Kg-cm)

Maximum contact force and bending moment for
the flate beam subjected to two loads

from square PLT .
1-v2 ]

from rectangular PLT
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7.4 Conclusions

The values of modulus of subgrade reaction as calculated
from the experimental results are not generally constant. The
variation of K along the beams (Figure 7.11) depends on;
flexural rigidity of beams (EI), porosity of the subgrade,
intensity of loading, and the condition of testing (three or

two dimensional).

The results of the plate loading tests show that it is not
. . . B .
possible to obtain a unique value of ——- by assuming that
1-v?
the granular material behaves like an elastic medium. The two

dimensional plate loading tests suggest that values

1ou?
increase as the width of the plate increases. ?he comparisons
between the theoretical and experimental results are therefore
valid for the values of beam-subgrade characteristics (A for the
Winkler, and c for the elastic half space analysis) which are
based on the results of a particular plate loading test, i.e.
square and rectangular plate loading test ( for the two

dimensional analyses) and box section beam ( for the three

dimensional analyses).

The results of the three dimensional tests with flat beam
on medium loose sand (AL = 3.22) and medium dense sand (AL = 5.12)
M
show that Winkler solution: for the infinite beam gives a close

approximation of contact force distribution on medium dense and

medium loose deposits. Similar conclusion was made by Barden (1963)




tor dense sand (for AL > 2.75). It may therefore be concluded
that a value of non-dimensional parameter Al. for a particular
porosity of sand can be found such that beyond this value the
Winkler solution is valid. Further experimental evidence is
required to obtain the variation of this limit with porosity of
sand. With the values of AL for the flat and éhannel beam it

~1s not possible to define a limit for AL beyond which the Winkler
solution is applicable. It can only be mentioned that this

limit is between 3.22 > AL > 1.13 for medium loose sand, and

between 5.12 > AL > 1.76 for medium dense sand.

In contrast to the three dimensional tests, the correlation
between the experimental results and Winkler solution is less
- * . M
in the two dimensional test on,flat beam. From the results of
i T
the two dimensionalen flat beam (Figures 7.8 and 7.9) good
)
agreement was observed between the experimental and theoretical
results, if the beam is assumed to have finite length and resting

on elastic medium with the characteristic length ¢ obtained from

the results of the rectangular plate loading test.

The results of the two and three dimensional tests on the
channel beam show that the Winkler and elastic half space analyses
underestimate the maximum contact force and overestimate the
maximum bending moments. This is-due to the fact that the contact
forces at the ends of the beams resting on a granular material

tend to be small regardless of the flexural rigidity of the beam.
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The results obtained for the flat beam subjected to two
loads show that the finite beam analysis on elastic medium
gives a close approximation of maximum contact force for
both two and three dimensional (see Tables 7.7c, 7.8c and
Figures 7.7, 7.10). The analytical results for this beam
indicate that the maximum value of contact forces are under the
loads (for three dimensional analyses) and at the centre of
the beam (for two dimensional analyses). The experimental
results for both cases showed the maximum value of contact
force at the centre of the beam. The understanding of the
behaviour of the beams resting on a granular material and
subjected to different types of loading demands performance of
several more experiments to investigate the effect of factors
like porosity of granular material, stiffness of the beam, type
of loading on contact force and bending moment distribution for
both two and three dimensional conditions. The sand deposition
apparatus for the three dimensional test described in chapter 5
was shown to be capable of forming large uniform beds of sand
over almost the complete range of porosity. lThe apparatus for
sand deposition in the two dimensional test was not capable of
producing deposits of sand denser than medium dense. The hopper
can be modified to produce a range of porosities. This can be
achieved by using a techniqﬁe similar to three dimensional

deposition.

For further work the steel model beams with moments of
inertia of I = 2,0, 50, 100, 500, 1000, and 1500 are suggested.

With the information obtained from the tests with these beams
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it would be possible to find for different porosities of

sand a limit for AL beyond which the Winkler solution is

valid.

The results of tests on these beams would also give
information regarding the behaviour of beams with the
flexural rigidities intermediate between the flat and channel

)

channel and box section beams.

Finally, the surface strain is practically zero for the
beams which have a uniform displacement due to applied load.
It is not therefore possible to obtain contact force
distribution for these beams by using strain gauges. The
contact force under such beams can only be measured by
installing pressure cells (Barden, 1962a), at the beam

subgrade interface. .
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A.l.1

Three dimensional analysis

A.l.la

Numerical values of the integrals JnP(X)
for the analysis of infinite beam
subjected to a concentrated load or a

concentrated couple
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0
X/BYB/2e | I 00/m F 3 (/1| 3,00 /m I/ 3, 00/m | I (x)/m
0.01 | 0.02450 | 0.000 0.14414 | 0.5000 | 0.87433 | 0.0
0.05 | 0.07758 " 0.20828 L 0.61601 i
0 0.1 0.12422 " 0.24024 ' 0.54163 "
0.2 0.19378 m 0.27280 i 0.48600 L
1 0.46904 a 0.33726 " 0.41453 "
0.01 | 0.02447 | 0.00278 | 0.13432 | 0.48253| 0.87324 | 0.10881
1 0.05 1 0.07662 | 0.01843 | 0.16135 | 0.43878| 0.60537 | 0.19443
1 ]0.1 0.12005 | 0.03877 | 0.15097 | 0.39368| 0.51390 | 0.23682
0.2 0.17678 | 0.07421 | 0.11053 | 0.31615| 0.41704 | 0.26550
1 0.22418 | 0.12293 {-0.05424 | 0.01573| 0.07618 | 0.10793
0.01 | 0.02439 | 0.00537 | 0.12484 | 0.46510| 0.87006 | 0.20734
0.05 | 0.07404 | 0.03247 | 0.12046 | 0.37943| 0.57931 | 0.31784
2 1 0.1 0.10977 | 0.06175 | 0.08215 | 0.29644| 0.45536 | 0.33522
0.2 0.14120 | 0.09727 | 0.01442 | 0.17213] 0.30130 | 0.29368
1 0.07836 | 0.03423 |-0.02530 |-0.01844|-0.00819 | 0.00444
0.01 | 0.02426 | 0.00778 | 0.11571 | 0.44774| 0.86498 | 0.29970
0.05 | 0.07025 | 0.04272 | 0.08536 | 0.32325| 0.54327 | 0.39702
31 0.1 0.09614 | 0.07284 | 0.03151 | 0.21239} 0.38411 | 0.36836
0.2 0.10268 | 0.09218 | -0.03337 | 0.07414] 0.19185 | 0.24680
1 0.04160 | 0.00935 |[-0.00448 |-0.00410|-0.00406 |-0.00321
0.01 | 0.02408 | 0.01001 | 0.10693 | 0.43051| 0.85811 | 0.38587
0.05 | 0.06560 | 0.04972 | 0.05568 | 0.27100| 0.50084 | 0.44751
41 0.1 0.08120 | 0.07538 {-0.00378 | 0.14294| 0.31061 | 0.36161
0.2 0.06908 | 0.07470 |-0.05013 | 0.01537| 0.10653 | 0.17898
1 0.02838 | 0.00491 |-0.00111 {-0.0044 |-0.00049 |-0.00065
0.01 | 0.02386 | 0.01206 | 0.09849 | 0.41342| 0.84959 | 0.46544
0.05 | 0.06039 | 0.05402 { 0.03101 | 0.22320| 0.45456 | 0.47414
51 0.1 0.06637 | 0.07216 i-0.02663 | 0.08787| 0.24113 | 0.33038
0.2 0.04328 | 0.05438 |-0.04949 |-0.01469] 0.04804 | 0.11522
1 0.02038 | 0.00322 {-0.00067 |-0.00014|-0.00002 |~0.00002
0.01 | 0.02360 | 0.01395 | 0.09039 | 0.39653| 0.83945 | 0.53804
0.05 | 0.05487 | 0.05608 | 0.01088 | 0.18014| 0.40668 | 0.48067
6| 0.1 0.05257 | 0.06537 |-0.03981 | 0.04598| 0.17925 | 0.28680
0.2 0.02529 | 0.03616 |-0.04086 |-0.02613| 0.01249 | 0.06515
1 0.01510 | 0.00215 {~-0.00042 |-0.00010|-0.00002 | 0.00000
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x/B| p/2¢ Jo(x)/n Jl(x)/w Jz(x)/ﬂ Js(x)/ﬂ J4(x)/ﬂ JS(x)/ﬂ
0.01 | 0.02330 | 0.01568 0.08263 | 0.37984| 0.828111| 0.60349
0.05 | 0.04924 | 0.05633] -0.00518 0.14187) 0.35887 | 0.47373

7 1 0.1 0.04035 | 0.05671| -0.04579 | 0.01555 0.12670 | 0.23853
0. 0.01380 | 0.02198} -0.03000 |-0.02694 0.00613 | 0.03046

1 0.01152 | 0.00148] -0.00025 |-0.00006 0.00002 |-0.00000
0.01 | 0.02297 | 0.01725| 0.07520 0.36340| 0.81545 | 0.66183
0.05 | 0.04365 | 0.05516| -0.01765 | 0.10832 0.31229 | 0.45620

8 1 0.1 0.02993 | 0.04740| -0.04666 |-0.00535 0.08385 | 0.19040
0.2 0.00714 | 0.01204] -0.01997 {-0.02270 0.01367 | 0.00913

1 0.00900 | 0.00108] -0.00016 |-0.00004 0.00001 {-0.00000
0.01 | 0.2261 0.01869f 0.06809 | 0.34723| 0.80169 | 0.7133%2
0.05 | 0.3824 0.05290( -0.02700 | 0.07934| 0.26792 | 0.42987

9 | 0.1 0.02137 | 0.03827| -0.04416 [-0.01861! 0.05025 -0.14622
0.2 0.00369 | 0.00572] -0.01204 |-0.01686|-0.01477 |-0.00227
1 0.00712 | 0.00082] -0.00010 |-0.00002!-0.00001 -0.000001
0.01 | 0.02222 | 0.01998] 0.06131 | 0.33134| 0.78696 0.758410
0.05 | 0.03310 | 0.04985| -0.03361 | 0.05465| 0.22647 0.398622
10 | 0.1 0.01458 | 0.02987] -0.03961 |-0.02601{ 0.02500 | 0.107461
0.2 0.00220 | 0.00209} -0.00644 {-0.01130{-0.01271 | 0.00714

1 0.00566 | 0.00065} -0.00007 |-0.00001}-0.00001 |-0.00000

ER"

B =
2c

T6C(T-V7)E, 1

}1/3

B = Width of the beam

prees
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Finite beam subjected to a concentrated load




S50

Bending Moment

Shearing Force

Contact Force

ﬂ =
. J
0
et [ e
1./B
I}
x/B | B/2¢ ETW(x)/c®| M(x)/c Vi(x) E cO(x)
0.01 | -0.19257 | 0.0000 0.0000 } -8.32392
0.05 | -0.14622 v Y -1.67841
0 | 0.1 | -0.12697 z v 1.20.85311
0.2 | -0.09798 g o 10041232
1 0.02355 " ' -Of00295
0.01 | -0.19256 |~0.00310 | -0.28528 | -8.22420
0.05 | -0.14544 |-0.01616 | -0.28033 | -1.54740
1 0. -0.12245 -0,03185 -0.27512 -0.7517%
0.2 | -0.07473 |-0.05540 | -0.23990 | -0.33999
1 0.11258 {-0.00279 | -0.00135 | 0.00031
0.01 | 0.12395 {-0.00951 | -0.32764 | 3.92237
0.05 | 0.12955 [-0,04804 | -0.31526 | 0.82889
, | 0. 0.13070 [-0,09421 | -0.31054 | 0.39133
0.2 0.13311 |-0,16621 | -0.28324 | 0.12491
1 0.15960 |-0.00773 | -0.00631 | -0.00843
0.01 | 0.44046 |-0.01449 | -0.12759 | 16.08213
0.05 | 0.40501 [-0,07140 | -0.11711 | 3.13766
3] 0.1 0.38757 |-0.14094 | -0.11854 | 1.53581
0.2 0.36728 |-0.25614 | -0.13114 | 0.65565
1 0.25038 |-0.05837 | -0.05861 | -0.05076
0.01 | 0.75698 |-0.01294 0.31480 | 28.22354
0.05 | 0.68117 |-0.06360 0.31595 | 5.54865
4 | 0.1 0,64987 |-0.12595 0.30877 | 2.75559
0.2 0,64102 |-0.23886 0.26431| 1.35871
1 0,64068 - 0.16176 | 0.01534
0.01 | 1.07350 1.0000 | 40.54464
0.05 | 0.95791 0| 8.23508
5 1 0.1 0.91684 " 4.26934
0.2 0.95006 H 2.45829
1 2.12803 | " 1.8809]
= Peflection

1t

[

.
o
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i
Y
0
N |
x/B R/2c | EIW(x)/c® | M(X)/c V(x) cN(x)
0.01 | -0.50907 0.00000 0.00000 |-20.54075
0.05 | -0.42025 i " 4.14469
0 0.1 ~0.37422 " X 2.0817]
0.2 -0.27299 " " 0.92226
1 0.07671 u " 0.00514
0.01 | -0.00266 |{-0.00107 -0.09118 | -0.93464
0.05 0.018R89 |-0.00568 -0.08801 | -0.12978
1 0.1 0.02601 {-0.01124 -0.08642 | -0.05635
0.2 0.03534 | -0.02097 -0.07987 | -0.02273
1 0.03823 | -0.00401 -0.00451 | -0.00392
0.01 0.18725 {-0.00255 -0.03659 6.35452
0.05 0.18406 |-0.01280 -0.02918 1.29522
2 0.1 0.17944 |-0.02498 -0.02783 0.63894
0.2 0.17206 |-0.04610 -0.02424 0.30158
1 0.07444 }-0.02548 -0.01876 | -0.00821
0.01 0.37716 |-0.00151 0.16346 | 13.65047
0.05 0.34935 |-0.00683 0.16960 2.68246
3 0.1 0.33379 1-0.01317 0.16905 1.3%327
0.2 0.31551 |-0.02263 0.16488 0.65079
1 0.22038 | -0.05453 0.01656 0.07815
0.01 0.56707 0.00503 0.50890 | 20.93419
0.05 0.51468 0.02584 0.50950 4.13029
4 0.1 0.48849 0.05209 0.50755 2.05833
0.2 0.46119 0.10555 0.50199 1.03852
1 0.46351 0.34757 0.51299 0.42579
0.01 0.75697 0.0000 0.0000 28.32739
0.05 0.67989 " " 5.74377
5 0.1 0.64216 n " 2.933%40
0.2 0.59844 t v 1.51448
1 0.16188 " n 0.02121
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x/B B/2¢c EIW(x)/c®! M(x)/c V(x) cQ(x)

0.01 0.28219 0.0000 0.0000 9.95695

0.05 0.26556 0.0000 0.0000 2.03392

0 0. 0.10323 0.0000 0.0000 0.99148
0.: 0.19416 0.0000 0.0000 0.40539

1 0.01181 0.0000 0.0000 -0.04588

0.01 0.28220 0.00049 0.09998 9.96602

0.05 0.26582 0.00251 0.10061 1.98724

1 0.1 0.10977 0.00498 0.09948 0.99056
0.2 0.20918 0.00834 0.08444 0.44555

1 0.05692 |-0.01397 0.02329 | -0.01170

0.01 0.28220 0.00447 0.29996 9.96800

0.05 0.26630 0.02258 0.30057 1.98532

2 0.1 0.12005 0.04473 0.208%8 0.99331
0.2 0.23700 0.07944 0.27669 0.52436

1 0.21622 |-0.05184 0.01321 0.08004

0.01 0.28220 0.01247 0.50000 9.96754

0.05 0.26654 0.06262 4 2.03663

2.5 0.1 0.12422 0.12454 n 1.02509
0.2 0.25100 0.23397 " 0,57384

1 0.46235 0.33760 " 0.41266

wn

o
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(RS —— | .
/B = 10
9 = 0
x/B B/2¢c BEINC) /) M) /e V(x) cO(x)
0.0L | ~0.25031 0.00000] 0.00000 | -9.91756
0.05 | -0.22185 L L -2.01453
0 0.1 -0.15857 " " ~0.81506
0.2 -0.01176 " g ~0.07840
1 0.02252 " " -0.00051
0.01 | -0.09341 -0.0062 | -0.27793 | -4.01862
0.05 | -0.08064 -0.03135) -0.27224 | -0.76067
1 0.1 -0.05711 -0.05072( ~0.22290 | -0.33809
0.2 ~-0.00476 -0.02524] -0.06497 | -0.09061
1 0.03711 -0.00060] -0.00014 | -0.00003
0.01 0.06350 -0.01908] -0.01908 | -0.31923
0.05 0.06192 -0.09342| -0.31071 0.37491
2 0.1 0.05318 -0.15594| -0.27506 0.08510
0.2 0.02148 -0.10836! -0.14418 | -0.00851
1 0.06171 -0.00159] -0.00040 | -0.00012
0.01 0.22044 -0.02893] -0.11937 0.02443
0.05 0.20817 -0.14045} -0.12102 1.53167
3 0.1 0.18824 -0.24610| -0.14049 0.61573
0.2 0.12027 -0.24711} -0.18487 0.03987
1 0.11367 -0.00367] -0.00052 | -0.00021
0.01 0.37743 -0.025821 0.32180 | 14.01914
0.05 0.35984 -0.125911 0.30736 2.76827
4 0.1 0.36135 -0.23474] 0.24741 1.36860
0.2 0.35539 -0.33803] 0.03175 0.60246
1 0.25076 -0.05837/ -0.05861 | -0.05076
0.1 0.53446 0.0000 1.00000 | 19.93967
0.05 0.51616 " o 4.,23626
5 0.1 0.56907 " ” 2.51078
0.2 0.82536 i " 2.07098
1 2.12822 r " 1.88089




n

I

|
M
e I
1./B
9,
x/B B/2c EIW(x)/c? M(x)/c V(x) cQ(x)
0.01 -0.17189 0.0000 0.0000 -6.93312
0.05 | -0.15231 " t -1.42123
0 0.1 -0.11313 " " -0.60022
0.2 -0.02101 t . -0.09470
1 0.00621 il " -0.00019
0.01 | -0.04635 -0.00416 | -0.18234 | -2.2150%
0.05 | -0.03830 -0.02124 | -0.17925 | -0.4122%
2 0.1 -0.02477 -0.03549 | -0.15055 | -0.18362
0.2 0.00223 -0.02449 | -0.05643 | -0.05494
1 0.01048 -0.00024 | -0.00006 | -0.00001
0.01 0.07919 -0.01207 {-0.17539 2.57299
0.05 0.07661 -0.05921 {-0.16988 0.50503
4 0.1 0.06966 -0.10067 {-0.15059 0.18901
0.2 0.04301 -0.08352 | -0.08480 | -0.00553
1 0.01878 -0.00063 | -0.00013 | -0.00002
0.01 0.20474 -0.01595 | 0.02450 7.41637
0.05% 0.19383 -0.07694 | 0.02354 1.43%569
6 0.1 0.17979 -0.13462 | 0.01047 0.63455
0.2 0.13728 -0.13929 [-0.03119 0.17278
1 0.03880 -0.00442 [ -0.00414 | -0.00412
0.01 0.33033 -0.00785 | 0.41744 12.21553
0.05 0.31393 -0.03705 | 0.40797 2.41856
8 0.1 0.31010 -0.0652% | 0.37502 1.21224
0.2 0.31450 -0.07033 | 0.26186 0.60944
1 0.22056 ~0.05453 | 0.01656 0.07815
0.01 0.39312 0.00313 {-0.31479 | 14.57167
0.05 0.37466 0.01668 |-0.32393 2.94978
9 0.1 0.38000 0.03626 |-0.34892 1.55256
0.2 0.42336 0.09127 |-0.43301 0.92030
1 0.46364 0.34757 |-0.48701 0.42579
0.01 0.45592 0.0000 0.0000 16.95251
0.05 0.43536 i i 3.55870
10 0.1 0.44958 " " 1.97357
0.2 0.52633 " " 1.29502
1 0.16197 " " 0.02120




)
1
¥
— [ -

x/B | B/2c CIW(x)/c*l M(x)/c V(x) cQ(x)
0.01 | -0.09345 0.0000 0.0000 -3.94852
0.05 | -0.08274 " " -0.82831
0 0.1 -0.06744 i " -0.38633
0.2 -0.02931 i i -0.11382
1 0.00771 " i -0.00031
0.01 0.00071 -0.00212 | -0.08675 | -0.41139
0.05 0.00415 -0.01114 | -0.08629 | -0.06379
2 0.1 0.00823 -0.02029 | -0.07828 | -0.02872
0.2 0.01233 -0.02412 | -0.04831 | -0.01797
0.01 0.09487 -0.00505 | ~0.03154 3.17929
0.05 0.09150 -0.02500 | -0.02902 0.63555
4 0.1 0.08722 -0.04541 | -0.02585 0.29416
0.2 0.07000 -0.05863 | -0.02353 0.09184
1 0.02603 ~-0.00105 | -0.00043 | -0.00048
0.01 0.18905 -0.00296 | 0.16839 6.81426
0.05 0.17977 -0.01344 | 0.16818 1.34013
6 0.1 0.17283 -0.02294 | 0.16220 0.6543%6
0.2 0.16192 -0.0283) | 0.12845 0.31032
1 0.07411 -0.02518 | -0.01845 | -0.00822
0.01 0.28323 0.01011 |-0.48693 | 10.41184
0.05 0.26839 0.05i84 | -0.49137 2.06718
8 0.1 0.26072 0.10479 | -0.49698 1.05008
0.2 0.26126 0.20553 | -0.50470 0.59350
1 0.46364 0.34757 | -0.48701 0.42579
0.01 0.37740 0.0000 0.0000 13.96556
0.05 0.35600 " " 2.89008
10 0.1 0.34028 " " 1.47669
0.2 0.29465 i i 0.68785
1 0.16197 " i 0.02120
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x/B B/2¢ EIW(x)/c® | M(x)/c V(x) cQ(x)
0.01 | -0.01501 0.0000 0.0000 ~0.96370
0.05 | -0.01283 " " -0.23339
0 0.1 -0.01972 " g -0.16531
0.2 -0.03416 " " -0.12929
1 0.01072 " " -0.00053
0.01 0.04778 -0.00008 | 0.00885 1.39232
0.05 0.04688 -0.00101 | 0.00696 0.28572
2 0.1 0.04277 -0.00461 {-0.00385 0.13008
0.2 0.02823 -0.02195 |-0.03494 0.02832
1 0.02003 -0.00066 | -0.00015 | -0.00001
0.01 0.11057 0.00196 | 0.11232 3.78554
0.05 0.10659 0.00930 | 0.11223 0.76591
4 0.1 0.10572 0.01141 | 0.10193 0.39947
0.2 0.10366 -0.02430 | 0.05197 0.20103
1 0.04110 -0.00447 |-0.00410 | -0.00406
0.0 0.17335 0.01002 | 0.31224 6.20903
0.05 0.16582 0.05024 | 0.31306 1.24267
6 0.1 0.16599 0.09137 | 0.31576 0.66689
0.2 0.18769 0.10627 | 0.30688 0.44052
1 0.22332 -0.05421 | 0.01573 0.07618
0.01 0.20474 0.01755 |-0.55151 7.41484
0.05 0.19480 0.08815 |-0.55079 1.47931
7 0.1 0.19153 0.16867 |-0.53886 0.78184
0.2 0.21018 0.26698 |-0.49784 0.52042
1 0.46786 0.33728 |-0.49999 0.41457
0.01 0.26750 0.00206 |-0.20741 9.78636
0.05 0.25087 0.01065 {-0.20854 1.95099
9 0.1 0.22838 0.01989 [-0.19543 0.93059
0.2 0.17049 0.02467 |-0.12944 0.37056
1 0.07444 -0.02286 | 0.02039 | -0.00734
0.01 0.29888 0.0000 0.0000 10.97894
0.05 0.27857 " " 2.23637
10 0.1 0.24428 i " 1.03947
0.2 0.13671 " " 0.27929
1 0.02494 " " ~0.01877




137

)

x/B B/Zc EIW(x)/c? | M(x)/c V(x) cQ(x)
0.01 | 0.06344 0.0000 | 0.0000 2.02141
0.05 | 0.05784 " Y 0.36696
0 0.1 0.03255 " " 0.0746%
0.2 | -0.03043 " Y 0.12683
1 0.01406 " Y 000088
0.01 | 0.09485 0.00195 | 0.10445 | 3.19611
0.05 | 0.09003 0.00920 | 0.10007 | 0.6373%6
) 0.1 0.07982 0.01225 | 0.0758 0.29673%
0.2 0.0330%  |-0.01402 |-0.00687 | 0.0942)
1 0.02824 | -0.00110 |-0.00046 | -0.00046
0.01 | 0.12626 0.00898 | 0.25617 | 4.31711
0.05 | 0.12177 0.04387 | 0.25431 | 0.89500
0.1 0.12449 0.07185 | 0.23590 | 0.50126
4 0.2 0.14220 0.03375 | 0.15694 | 0.32375
] 0.07823 | -0.02530 |-0.01844 | -0.00819
0.01 | 0.15766 0.02301 |-0.54389 | 5.60359
0.05 | 0.15163 0.11429 |-0.54198 | 1.13819
0.1 0.15659 0.21106 |-0.5204% | 0.65445
6 0.2 0.19873 0.28831 |-0.49347 | 0.51508
1 0.46887 0.33726 |-0.50000 | 0.41453
0.01 | 0.18903 0.00603 |-0.29568 | 6.80393
0.05 | 0.17810 0.03011 |-0.20292 | 1.34943
g 0.1 0.16421 0.05253 |-0.26291 | 0.66327
0.2 0.13921 0.04377 |-0.14576 4 0.31696
1 0.07807  |-0.02527 | 0.01850 | -0.00811
0.01 | 0.22039 0.0000 | 0.0000 7.99270
0.05 | 0.20319 X " 1.59888
0.1 0.16202 " ¥ 0.66488
10 0.2 0.04089 " g 0.03807
1 0.02547 " ¥ 0.00305
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[

L/B = 10
j 3
x/B | B/2¢c FIW(x)/c® | M(x)/c V(x) cQ(x) ¢ = 5B
0.01 0.14190 0.0000 0.0000 5.00686
0.05 0.12971 " o 0.97655
0 0.1 0.0921 " " 0.34695
0.2 -0.00955 " " -0.08259
1 0.01887 i " -0.00132
0.01 0.14192 0.00100 | 0.10005 5.00167
0.05 0.13176 0.00488 | 0.09765 0.97964
1 0.1 0.10637 0.00734 | 0.07552 0.40909
0.2 0.03991 -0.00223 | -0.00177 0.06273
1 0.02807 -0.00088 | -0.00066 | -0.00035
0.01 0.14194 0.00399 | 0.20006 4.9999
0.05 0.13375 0.01956 | 0.19618 0.99181
2 0.1 0.12018 0.03106 | 0.16384 0.47428
0.2 0.08959 0.00545 | 0.04855 0.18915
1 0.04144 -0.00447 | -0.00413 | -0.00402
0.01 0.14195 0.00899 | 0.30005 4.99866
0.05 0.13553 0.04416 | 0.29612 1.00733
3 0.1 0.13%268 0.07375 | 0.26515 0.53806
0.2 0.13799 0.04346 | 0.015022] 0.31995
1 0.07823 -0.02530 | -0.01844 | -0.,00819
0.01 0.14196 0.01599 | 0.40003 4.99776
0.05 0.13687 0.07883 | 0.39757 1.02054
4 0.1 0.14217 0.13792 | 0.37838 0.59156
0.2 0.17876 0.13261 | 0.30397 0.44557
1 0.22407 -0.05423 | 0.01574 0.07618
0.01 0.14197 0.02499 | 0.50000 4.99748
0.05 0.13741 0.12371 | 0.50000 1.02649
5 0.1 0.14605 0.22567 o 0.61754
0.2 0.19737 0.29241 o 0.51738
1 0.46887 0.33726 R 0.4145%3
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x/B /2¢i  EIW(x)/c? M(x)/c V(x) cO(x)
0.01 | -0.13283 0.00000 0.00000 | -5.02442
0.05 | -0.07628 X z ~0.66327
0 1 0.1 0.00328 " " -0.00446
0.2 0.00588 a i -0.00029
1.0 -0.01913 " " 0.00030
0.01 | -0.04878 -0.01278 | -0.27950 | -1.97763
0.05 | -0.03436 ~0.04313 | -0.19364 | -0.32423
4 1 0.1 -0.00728 -0.0083 -0.02913 | -0.06832
0.2 0.00924 0.00116 0.00209 0.00207
1.0 -0.00221 0.00008 | -0.00008 | -0.00001
0.01 0.03061 -0.03829 | -0.31779 1.01046
0.05 0.01523 -0.13794 | -0.25759 0.02035
8 | 0.1 -0.01014 -0.06026 | -0.10833 | -0.12307
0.2 0. 00869 0.00503 | -0.00046 | -0.01093
1.0 0.01338 -0.00013 0.00002 | -0.00002
0.01 0.1098%3 -0.05733 | -0.11954 3.95075
0.05 0.08687 -0.22722 | -0.15450 0.53681
12 | 0.1 0.02952 -0.18393 | -0.18975 | -0.03343
0.2 0.00239 -0.03231 | -0.06480 | -0.07942
1.0 0.03712 -0.00060 | -0.00013 | -0.00005
0.01 0.19417 -0.05108 0.31738 6.98704
0.05 0.19361 -0.22623 0.21511 1.37567
16 | 0.1 0.18761 -0.30213 | -0.02640 0.57047
0.2 0.12058 -0.2492) | -0.18202 0.03777
1.0 0.11373 -0.00367 | -0.00052 | -0.00021
0.01 0.27895 0.00000 1.00000 10.09488
0.05 0.33358 " g 2.65804
20 | 0.1 0.51825 g " 2.25975%
0.2 0.82513 " X 2.06957
1.0 2.12817 l " 1.88089




xX/B B/2ci EIW(x)/c? M(x)/c V(x) cO(x)
0.01 | -0.05140 0.00000 0.00000 | -2.01757
0.05 | -0.03854 n " ~0.35381
0 0.1 ~0.01429 " ¥ ~0.07976
0.2 0.00282 " " 0.00161
1.0 ~0.00021 o " -0.00003
0.01 | -0.00070 -0.00448 | -0.08787 | -0.18742
0.05 0.00037 -0.01913 | -0.07475 | -0.03377
4 0.1 0.00084 -0.01871 | -0.03973 | -0.02360
0.2 0.00156 -0.00104 | -0.00%46 | -0.0068]
1.0 0.00327 -0.00003 | -0.00000 | -0.00000
0.01 0.04697 -0.01019 | -0.03084 1.60718
0.05 0.04245 -0.04%60 | -0.02670 0.28002
8 0.1 0.02873 -0.05039 | -0.02704 0.07156
0.2 0.00680 -0.02051 | -0.02328 | -0.01410
1.0 0.00891 ~0.00016 | -0.00004 | -0.00001
0.01 0.09443 -0.00562 0.16830) 3.37382
0.05 0.09092 -0.02231 0.15807 0.65432
12 0.1 0.08623 -0.02822 0.11448 0.31164
0.2 0.07022 -0.05132 0.01616 0.11008
1.0 0.02832 -0.00111 | -0.00044 | -0.00049
0.01 0.14411 0.02053 0.51070 5.19418
0.05 0.14152 0.1043] 0.50268 1.06498
16 0.1 0.15103 0.19940 0.49830 0.62522
0.2 0.19725 0.28266 0.51675 0.50269
1.0 0.46890 0.33726 0.50000 0.41453
0.01 0.19421 0.00000 0.00000 7.04722
0.05 0.18384 " " 1.44511
20 0.1 0.15290 " " 0.62360
0.2 0.04156 " " 0.03749
1.0 0.02548 " X -0.00303




X/B{ B/2¢i BIW(x)/c? M(x)/c V(x) c 0(x)
0.01 0.03013 0.00000 0.00000 0.99216
0.05 0.00645 " X 0.00954
01 0.1 -0.02650 " t -0.14440
0.2 -0.00205 L o ~0.01557
1.0 0.0032% g L -0.00005
0.01 0.04745 0.00383 0.10396 1.60437
0.05 0.03928 0.00837 0.05985 0.28262
41 0.1 0.02339 -0.02111 | -0.02483 0.07313
0.2 0.00634 -0.01888 | -0.02377 | -0.01368
1.0 0.00892 -0.00016 | -0.00004 | -0.0000]
0.01 0.06334 0.01793| 0.25635 2.2026%3
0.05 0.07018 0.061821 0.22428 0.53530
8 1 0.1 0.08421 0.00785] 0.13217 0.%3512
0.2 0.06871 -0.05038] 0.01487 0.10706
1.0 0.02837 -0.00111} -0.00044 | -0.00049
0.01 0.07966 0.046121 0.45610 2.79272
0.05 0.09005 0.19994| 0.47797 0.70588
20 0.1 0.12855 0.252200 0.51234 0.57173
0.2 0.19412 0.2732%| 0.50219 0.48975
1.0 0.46904 0.33726] 0.50000 0.41453
0.01 0.09572 0.01217] -0.29632 3.39869
0.05 0.08711 0.047441 -0.24383 0.66028
6 1 0.1 0.07819 0.02634] -0.11300 0.31607
0.2 0.06695 -0.03903%| -0.00345 0.11207
1.0 0.02835 -0.00111] 0.00044 | -0.00049
0.01 0.11194 0.00000| 0.00000 4.01202
0.05 0.07517 3 " 0.56362
20 1 0.1 0.00022 " “ -0.04489
0.2 -0.02763 " " -0.1008]
1.0 0.00856 L L -0.0003%
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- -1, -

/B =

B .
x/R R/2¢ EIW(x)/c? M(x)/c V(x) cO(x)
0.01 0.07099 0.00000 0.00000 | 2.50036
0.05 0.03669 L L 0.25307
0 0.1 -0.0221% " " -0.13419
0.2 ~0.01238 o r -0.04904
1.0 0.00539 H " -0.0001%
0.01 0.0713% 0.00199 0.10000 | 2.50106
0.05 0.04946 0.00573 0.06137 | 0.35949
? 0.1 0.01154 -0.00602 | -0.01968 [-0.02046
0.2 0.00167 -0.01181 | -0.02600 |-0.02046
1.0 0.00891 -0.00016 -0.00004 |1-0.00001
0.01 0.07157 0.00800 0.40008 2.50123
0.05 0.06196 0.14366 0.14366 0.46310
4 0.1 0.04612 -0.00793 0.01985 | 0.17258
0.2 0.02397 -0.03630 | -0.03073 | 0.01408
1.0 0.01503 0.00024 0.00002 1-0.00011
0.01 0.07162 0.01800 0.30011 2.4999])
0H.05 0.07335 0.06461 0.24628 0.56133
6 0.1 0.08160 0.01792 0.11990 0.32059
0.2 0.06895 -0.04855 0.01267 0.10904
1.0 0.02837 ~-0.00111 -0.00044 |-0.00049
0.01 0.07152 0.03201 0.20006 2.49864
0.05 0.08209 0.12566 0.36698 0.64130
8 0.1 0.11350 0.09653 0.28359 0.48547
0.2 0.14116 0.01456 0.17109 0.3029]
1.0 0.07835 -0.02530 | -0.01844 |-0.00819
0.01 0.07135 0.05002 0.50000 2.49831
. 0.05 0.08571 0.21224 e 0.67834
10 0.1 0.12893 0.25201 " 0.57476
0.2 0.19367 0.27255 " 0.48714
1.0 0.46904 0.33726 " 0.4145%




A.l.1c

Finite beam subjected to a concentrated couple



P
L —
~ 1. :
x/B 1 B/2 EIW(x)/c? M(x) cV(x) { c?0(x)

0.01 ~15.8246 0.00000 0.00000 -610.838
0.05 -2.74006 " " -24.6683

0 0.1 -1.23623 ” " -6.15394
0.2 -0.43786 " " ~-1.29140

1.0 0.05772 r " ~0.003%70
0.01 |-9.49465 -0.10166 | -9.70469 -364.473
0.05 |-1.64237 -0.10480 | -1.92360 [-14.1770

1 0.1 -0.74013 -0.10317 -0.94465 -3.47894
0.2 ~0.26971 -0.08697 | -0.40355 |-0.79552

1.0 0.08361 -0.00152 -0.00006 0.00151
0.01 |-3.16463 -0.35057 | -14.55223 |-121.602
0.05 |-0.54352 -0.35247 | -2.86109 |-4.65930

2 10.1 ~0.23939 -0.34653 | -1.41439 | -1.23291
0.2 ~0.08594 -0.30245 | -0.64992 {-0.43445

1.0 0.11367 0.00179 0.00289 -0.00059
0.01 3.16553 -0.64926 | -14.55237 | 121.590
0.05 0.55890 -0.64581 | -2.86667 4.5564]

3 10.] 0.27537 ~0.63922 | -1.4374% 1.02119
0.2 0.14714 -0.58615 | -0.73817 0.02517

1.0 0.13916 -0.01151 | -0.0322) |-0.05096
0.01 9.49595 -0.89835 | -9.70497 364.4740
0.05 1.66774 -0.89445 | -1.93500 14.18267

4 10.1 0.81557 -0.89031 | -0.99198 3.48530
0.2 0.47392 -0.86170 | -0.58833 0.79898

1.0 0.28533 -0.27542 | -0.28647 |-0.20314
0.01 15.8267 -1.00000 0.00000 610.870
0.05 2.78540 4 " 24 .92588

5 0.1 1.39091 " " 6.71022
0.2 0.93683 " " 2.44016

1.0 1.76430 " " 1.55939
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x/B B/2c| RBIW(x)/c? M(x) cV(x) c20(x)
|
0.01 |-15.82503 0.00000 0.00000 | -610.844
0.05  |{-2.74099 " " -24.65965
0 0.1 -1.23797 " " -6.13926
0.2 -0.44258 " L -1.27125
1.0 0.00365 i " 0.00181
0.01 {-9.49499 -0.10166 | -9.70478 | -364.480
0.05 |-1.64450 -0.10476 | -1.92314 | -14.1767
1 0.1 -0.74556 -0.10299 | -0.94326 | -3.47832
0.2 ~-0.28419 -0.08605 -0.40037 : -0.,79711
1.0 0.00098 0.00360 0.00416 | 0.00317
0.01 |-3.16490 -0.35075 | -14.55238! -121.604
0.05 |-0.54684 -0.35239 | -2.86103 | -4.6668
2 0.1 -0.24857 -0.34614 | -1.4.403 | -1.24249
0.2 -0.11032 -0.30077 | -0.65020 | -0.44917
1.0 -0.02010 0.01758 0.00780 | -0.00514
0.01 3.16532 -0.64926 | -14.55253| 121.590
0.05 0.55439 -0.64579 | -2.86732 4.55174
3 0.1 0.2624% -0.63897 | -1.43931 1.00012
0.2 0.11262 -0.58592 | -0.74525 0.00926
1.0 -0.10154 -0.02037 | -0.08115 | -0.11260
0.01 9.49581 -0.39834 | -9.70510 364480
0.05 1.66203 -0.89448 | -1.93548 14.19887
4 0.1 0.79886 -0.89058 | -0.99396 3.51892
0.2 0.42926 -0.86480 | -0.59354 0.86766
1.0 0.05339 -0.52675 | -0.43136 | -0.00203
0.01 15.82645 0.00000 0.00000 610.871
0.05 2.77350 i " 24 .87734
5 0.1 1.35044 o " 6.59867
0.2 0.80240 " " 2.18023
1.0 0.31287 " o 0.27575
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x/B | B/2¢c EIW(X)/CZI M(x) cV(x) c20(x)
0.01 1-15.82549 0.00000 0.00000 -6010.852
0.05 | -2.74660 " z -24.68895
0 0.1 |-1.25730 n n ~6.20560
0.2 -0.50153 " " -1.39950
1.0 0.00483 4 " 0.01735
0.01 |-9.49533 -0.10166 | -9.70490 | -364.480
0.05 |-1.64903 -0.10487 | -1.92540 | -14.19231
1 0.1 |-0.75975 -0.10406 | -0.95275 | -3.50750
0.2 |-0.324%4 -0.09408 | -0.43595 | -0.85296
1.0 [-0.03293 0.01617 0.01003 | -0.00524
0.01 |-3.16512 -0.35075 | -14.55253| -121.604
0.05 |-0.55030 -0.35280 | -2.86383 | -4.65957
2 0.1 |-0.25757 -0.34941 | -1.42540 | -1.23091
0.2 |-0.13027 -0.32569 | -0.69412 | -0.43030
1.0 |-0.12475 -0.01599 | -0.07581 | -0.10826
0.01 3.16522 -0.64926 -14.55264 121.597
0.05 { 0.55200 -0.64637 | -2.86767 4.60227
3 0.1 0.25875 ~0.64388 | -1.44140 1.11360
0.2 0.11682 -0.62376 | -0.75511 0.21012
1.0 | -0.00350 -0.49933 | -0.41345 0.00132
0.01 | 9.49563 0.10166 | -9.70503% 364 . 484
0.05 | 1.65572 -0.10520 | -1.93062 14.21340
4 0.1 0.78068 -0.10655 | -0.97366 3.55240
0.2 0.38325 0.11293 | -0.51461 0.93661
1.0 0.11322 0.02321 -0.06957 0.11156
0.01 | 15.82599 0.00000 0.00000 610.861
0.05 | 2.75828 " " 24.77163
5 0.1 1.29787 H " 6.37508
0.2 0.62962 n " 1.72706
1.0 -0.01519 ” ” -0.03576
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x/B| B/2¢ E EIW(x)/c?| M(x) eV (x) A0 (x)
0.01 |-15.82574 0.00000 0.00000 | -610.86
0.05 |-2.75174 " " -24.724
0 0.1 ~1.27519 " x ~6.27912
0.2 ~0.55748 " " -1.53974
1.0 0.0158%3 " " 0.03319
|
0.01 [-12.66061 |-0.02635 | -5.46395 | -486.10
0.05 |-2.20201 ~0.02809 | -1.09280 |-19.222
0.5/ 0.1 ~1.02265 -0.02857 | -0.54770 | -4.77538
0.2 ~0.45577 -0.02779 | -0.26579 | -1.16321
1.0 -0.01958 0.00890 0.01256 | -0.00165
0.01 |-9.49549 -0.10166 | -9.70496 | -364.48
0.05 | -1.65221 -0.10502 | -1.92777 | -14.204
1 0.1 ~0.76977 -0.10518 | -0.96214 | -3 53023
0.2 -0.35279 -0.10237 | -0.47117 | -0.89644
1.0 -0.06375 0.01573 | -0.00469 |-0.03691
0.01 |-6.33035 ~0.21386 | -12.73431 | -243.10
0.05 |-1.10213 ~0.21760 | -2.51638 | -9 35378
1.5/ 0.1 -0.51582 -0.21701 | -1.25625 | -2.36053
0.2 -0.24560 -0.21286 | -0.62543 | -0.64580
1.0 -0.12046 -0.01761 | -0.07410 | -0.10969
0.01 |-3.16519 -0.35075 | -14.55260 | -121.60
0.05 |-0.55151 -0.35320 | -2.86595 | -4.64225
2.00 0.1 -0.25968 -0.35254 | -1.43428 | -1.19795
0.2 -0.12981 -0.34911 | -0.72798 | -0.37270
1.0 -0.15032 -0.16341 | -0.23424 | -0.20708
0.01 0.00000 -0.50000 | -15.15888 | 0.00000
0.05 " n -2.98203 1
, g 0.1 " n -1.49504 i
21 0.2 " " -0.76878 "
1.0 " " -0.41415 g
)
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x/B | B/2¢c EIW(x)/c? M(x) c V(x) c?0(x)
0.01 | -3.92130 0.0000 0.0000 -149.224
0.05 | -0.69560 " o ~5.93902
0 0.1 ~0.22811 " ” -1.08270
0.2 0.02351 i i 0.03620
1.0 0.01740 g n -0.00036
0.01 | -2.35279 -0.10187 | -4.77931 | -90.1804
0.05 | -0.42305 -0.10111 | -0.93%3059 | -3.48593
2 0.1 -0.16108 -0.07666 -0.36376 -0.77444
0.2 -0.01533 -0.00295 | -0.02375 | -0.09115
1.0 0.02860 0.00000 0.00000 | -0.00002
0.01 | -0.78411 -0.35069 | -7.19219 | -30.3161
0.05 | -0.14599 -0.34233% | -1.40894 | -1.29855
4 0.1 -0.08013 -0.27766 | -0.62423 | -0.51674
0.2 -0.04913 -0.06558 | -0.15171 | -0.23242
1.0 0.04686 0.00000 0.00000 | -0.00010
0.01 0.78514 -0.64917 | -7.19351 30.255
0.05 0.14493 -0.63531 | -1.44547 0.96415
6 0.1 0.04633 ~0.55911 | -0.75466 | -0.08736
0.2 -0.03306 -0.27519 | -0.38565 | -0.32607
1.0 0.08440 0.00000 0.00000 0.00113
0.01 2.35543 -0.89807 | -4.78195 90.186
0.05 0.46114 -0.88874 | -1.00492 3.50042
8 0.1 0.26240 -0.84862 | -0.63491 0.78872
0.2 0.16986 -0.67355 | -0.56953 | -0.00613
1.0 0.13943 0.00000 0.00000 | -0.05097
0.01 3.92713 -1.00000 0.00000 149,366
0.05 0.81243 L i 6.78072
10 0.1 0.61251 1 i 2.70425
0.2 0.80250 . " 2.01184
1.0 1.76443 " " 1.55938




. ,‘_..J(:_ SR
[ — rs
/B = 10
X/R | B/2¢ EIW(x)/c? | M(x) cV(x) e 20(x) 0, = 28
0.01 | -3.92176 0.0000 0.0000 2149 .23
0.05 | -0.69680 Y " -5.93407
01 0.1 -0.23166 z N ~1.07856
0.2 0.01796 " " 0.04745
1.0 -0.00150 " " 0.00010
0.01 | -2.35232 ~0.10188 | -4.77953% | -90.1826
0.05 | -0.4256% ~0.10107 | -0.93035 | -3.48766
2 0.1 -0.16802 ~0.07666 | -0.36444 | -0.78086
0.2 -0.03124 ~0.00189 | -0.02367 | -0.10004
1.0 ~0.00298 0.00012 0.00003 | 0.00000
0.01 | -0.78452 ~0.35071 | -7.19238 | -30.3128
0.05 | -0.14995 -0.34233 | -1.40979 | -1.30579
41 0.1 -0.09045 -0.27861 | -0.62864 | -0.52814
0.2 ~0.07579 -0.06893 | -0.16480 | -0.25555
1.0 -0.00628 0.00048 | 0.00050 | 0.00066
0.01 0.78475 ~0.64919 | -7.19355 30,259
0.05 0.13959 ~0.63559 | -1.44750 | 0.95886
¢ | 0.1 0.03281 -0.56266 | -0.76276 | -0.09065
0.2 -0.06755 ~0.29693 | -0.41796 | -0.34458
1.0 -0.03672 0.01851 0.00819 | -0.00446
0.01 235506 -0.89808 | -4.78186 | 90.19124
0.05 0.45443 ~0.88941 | -0.00508 7.54696
g | 0.1 0.24626 -0.85461 | -0.6339% | 0.8812]
0.2 0.14193 ~0.71820 | -0.57305 0.17717
1.0 -0.00462 20.49931 | -0.41346 | 0.001%6
0.01 3.92599 0.00000 | 0.00000 149 .35
0.05 0.78437 " z 6.61712
o | 0.1 0.51453 " ¥ 2.34271
' 0.2 0.48446 " " 1.2637]
1.0 ~0.01574 " " ~0.03972
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EIW(X) /c? M(X) cV(X) cf0(X)
~3.92278 0.00000 | 0.00000 | -149.257
-0.71196 X " ~6.04334
-0.27740 z " ~1.26911
-0.02639 " H -0.04625
-0.00193 " " 0.00021
-2.35391 | -0.10190 | -4.78011 | -90.1881
-0.43416 | -0.10279 | -0.94530 | -3 52053
~0.19298 | -0.08855 | -0.41667 | -0.85890
-0.07570 | -0.03148 | -0.09853% | -0.19772
-0.00493 0.00044 | 0.00049 | 0.00065
~0.78485 -0.35074 | -7.19289 | -30.3046
-0.15179 | -0.34743 | -1.42633 | -1.27855
~0.09256 | -0.31474 | -0.68989 | -0.48900

0. -0.09811 ~0.18879 | -0.31122 | -0.31679
1. -0.03427 0.01844 0.00819 -0.00444
0. 0.78478 | -0.64922 | -7.19352 | 30.2807
0. 0.14465 | -0.64285 | -1.44851 1.10984
0. 0.05924 | -0.61564 | -0.77114 | 0.18726

0.01075 | =0.53091 | -0.50047 | -0.00562

-0.00009 | -0.50000 | -0.4145% | -0.00000
0.01 | 2.35464 0.10191 | -4.7810] 90. 1954
0.05 | 0.44666 0.10649 | -0.97604 3.50018
0.1 0.22914 0.11485 | -0.52594 | 0.96926
0.2 0.13953 0.12601 | -0.30685 | 0.35652
1.0 0.03405 ~0.01841 | 0.00823 | 0.0049
0.01 3.9432 0.00000 | 0.00000 149296
0.05 | 0.74393 3 n 6.29584
0.1 0.37860 i " 1.72387
0.2 0.17572 z ¥ 0.43245
1.0 0.00310 " “ 00026
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x/B| B/2¢ ETW(x)/c? M(x) cV(x) c?0(x)
0.01 | -3.92350 0.00000 | 0.00000 | -149.275
0.05 | -0.72608 " z ~6.1545
0 0.1 ~0.32148 " " S1.46508
0.2 -0.08315 3 " ~0.18946
1.0 ~0.00294 " " 0.00028
0.01 | -3.13890 ~0.02668 | -2.68365 | -119.601
0.05 | -0.58335 -0.02827 | -0.54326 | -4.77%24
1 0.1 ~0.26683 | -0.02690 | -0.25900 | -1.1550
0.2 ~0.09697 ~0.01607 | -0.08306 | -0.22040
1.0 ~0.00487 0.00040 | 0.00053 | 0.0006%
0.01 | -2.35428 | -0.1091 ~4.78053 | -90.19]
0.05 | -0.44029 ~0.10446 | -0.95931 | -3.56049
g 0.1 -0.21095 -0.10019 | -0.46595 | -0.91724
0.2 | -0.10772 -0.06896 | -0.18473 | -0.27885
1.0 | -0.00933 0.00410 | 0.00406 | 0.00%20
0.01 | -1.56963 ~0.21396 | -6.28621 | -60.407
0.05 | =0.29616 | -0.21620 | -1.25714 | -2.40049
3 1 0.1 -0.15095 | -0.21017 | -0.62508 | -0.68007
0.2 -0.10685 -0.16627 | -0.30407 | -0.31184
1.0 ~0.03422 0.01844 | 0.00819 | -0.00444
0.01 | -0.78488 ~0.35076 | -7.19323 | -30.297
0.05 | -n.14984 ~0.35201 | -1.43871 | -1.22529
4 0.1 -0.08244 -0.3472) | -0.73525 | -0.40249
0.2 -0.07872 ~0.31256 | -0.42494 | -0.27354
1.0 -0.12293 | -0.01574 | -0.07618 | -0.10793
0.01 | 0.00000 -0.50000 | -7.49625 | 0.00000
0.05 X " -1.50087 3
5 | 0.1 " " ~0.77949 3
0.2 3 ¥ ~0.49549 Y
1.0 3 " ~0.41453 X
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X/B 1 B/2¢ ] BIW(x)/c? M(x) e V(x) ¢ O(x)
0.01 |-1.01635 0.00000 0.00000 | -37.5882
0.05 | -0.09402 " " -0.77695
0o 0.1 0.02248 o x 0.08940
0.2 0.00427 " " ~0.00202
1.0 -0.01704 " " 0.00018
0.01 |-0.61113% -0.10378 | -2.39549 | -22.37434
0.05 | -0.08561 -0.06011 | -0.29750 | -0.72447
4 10.1 -0.00759 -0.01228 0.01226 | -0.05414
0.2 0.00862 0.00049 0.00230 0.00456
1.0 -0.00265 0.00010 ~-0.00006 -0.00001
0.01 |-0.20517 -0.35118 | -3.58657 | -7.45538
0.05 | -0.06604 -0.23585 | -0.57624 | -0.64691
g 0.1 -0.04362 0.01269 | -0.00888 | -0.23576
0.2 0.00923 0.01217 0.01246 0.00372
1.0 0.01008 ~0.00010 0.00002 | -0.00002
0.01 0.20306 -0.64624 | -3.59750 7.20657
0.05 |-0.00737 -0.51151 | -0.77866 | -0.29090
12 0.1 -0.06344 0.18991 | -0.37001 | -0.42197
0.2 -0.02175 0.01398 | -0.03573 | -0.09546
1.0 0.02863 -0.00042 | -0.00009 | -0.00003
0.01 0.61541 -0.89512 | -2.41686 22.4649
0.05 0.13371 -0.82454 | -0.71775 0.75181
16 |0.1 0.05220 0.61320 | -0.64933 | -0.10720
0.2 -0.03217 -0.27298 | -0.38997 | -0.32126
1.0 0.08441 -0.00216 0.00054 0.00113
0.01 1.03340 ~1.00000 0.00000 38.1324
0.05 0.40502 " " 3.22505
20 10.1 0.56174 d " 2.44873
0.2 0.80207 " n 2.01165
1.0 1.76443 " L 1.55938
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(A),
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X/B , B/2¢c| EIW(x)/c? M(x) e V(x) c A0
0.01 | -1.01670 0.00000 0.00000 | -37.590
0.05 | -0.09785 o " -0.79491
0o 0.1 0.02115 " e 0.00873
0.2 0.00040 " i 0.00082
1.0 -0.00036 " " 0.00004
0.01 | -0.61150 -0.10378 | -2.39599 | -22.384
0.05 | -0.08965 ~0.06150 | -0.30427 | -0.74021
4 10.1 ~0.01531 0.01245 0.00954 | -0.06904
0.2 0.00155 0.0038%3 0.00661 0.00758
1.0 -0.00049 0.00000 0.00000 0.00000
0.01 | -0.20555 ~0.35126 | -3.58772 | -7.45826
0.05 | -0.07004 -0.24105 | -0.58805 | -0.65534
g 0.1 -0.05732 -0.02175 | -0.12191 | -0.27006
0.2 -0.01096 0.02341 0.01381 | -0.01022
1.0 -0.00110 0.00004 0.00001 0.00000
0.01 0.20267 -0.64641 | -3.59799 7.22598
0.05 | -0.01049 -0.52159 | -0.78962 | -0.27294
12 10.1 -0.07619 -0.2285% | -0.41877 | -0.43854
0.2 -0.07478 -0.01861 | -0.11398 | -0.18891
1.0 -0.00495 0.00044 0.00049 0.00065
0.01 0.61500 -0.89523 | -2.41554 22.4286
0.05 0.13305 -0.83588 | -0.70610 0.80223
16 0.1 0.06546 -0.68143 | -0.64232 0.15970
0.2 0.01235 -0.53074 | -0.51139 | -0.00092
1.0 -0.00009 -0.50000 | -0.41453 | -0.00000
0.01 1.02979 0.00000 0.00000 38.0321
0.05 0.32839 t " 2.66946
20 |0.1 0.31709 M " 1.41493
0.2 0.17493 " " 0.43037
1.0 0.00310 L " -0.00226

3 N
L/B = 20
9 = 4B



x/B

3/2¢ i EIW(x)/c? M(x) cV(x) ¢ 0(x)

0.01 | -1.01897 0.00000 0.00000 | -37.66944

0.05 | -0.13%442 " " ~1.08189

0 0.1 0.00305 " n 0.03400
0.2 0.00848 g n 0.02791

1.0 -0.00048 " g 0.00001
0.01 | -0.61259 -0.10399 | -2.40048 | -22.41365

0.05 | -0.10716 -0.07963 | -0.38403 | -0).8597]

4 0.1 ~0.0454% -0.01492 | -0.06728 | -0.19590
0.2 -0.01170 0.02006 0.01618 | -0.01019

1.0 -0.00109 0.00004 0.00001 0.00000

0.01 | -0.20547 -0.35187 | -3.50190 | -7.41986

0.05 | -0.06534 -0.29608 | -0.68056 | -0.58882

3 0.1 ~0.07769 ~0.15445 | -0.30734 | -0.38315
0.2 -0.07509 -0.01588 | -0.10625 | -0.17978

1.0 ~0.00492 0.00044 0.00049 0.00065

0.01 0.20393 -0.64715 | -3 .50686 7.31780

0.05 0.02509 -0.60119 | -0.79791 0.14391

12 0.1 0.000149 | -0.51510 | -0.55209 | -0.00808
0.2 0.00055 -0.49980 | -0.48435 0.00319

1.0 -0.00000 -0.50000 | -0.41453 0.00000

0.01 0.61425 0.10440 | -2.40846 22.4420

0.05 0.13139 0.11868 | -0.54618 1.01997

16 0.1 0.09057 0.12120 | -0.30954 0.40807
0.2 0.07387 0.02499 | -0.0952] 0.18579

1.0 0.00491 -0.00044 0.00049 | -0.00065
0.01 1.02382 0.00000 0.00000 37.83986

0.05 0.21653 L " 1.75064

20 0.1 0.08852 L L 0.36936
0.2 ~0.01739 " n ~0.06482

1.0 0.00099 " " -0.00009




x/B| B/2ci EIW(x)/c? M(x) cV(x) c20(x)
0.01 | -1.02111 0.00000 0.00000 | -37.746
0.05 | -0.16996 " " -1.36948
0 0.1 -0.02872 " x -0.10270
0.2 0.01734 " “ 0.05621
1.0 ~0.00063 " " 0.00003
0.01 | -0.81728 -0.02792 | -1.35424 | -30.064
0.05 | -0.14541 -0.02565 | -0.24891 | -1.13761
2 0.1 -0.04980 -0.01103 | -0.06191 | -0.20525
0.2 -0.00551 0.01078 0.01969 | -0.00157
1.0 ~0.00108 0.00004 0.00001 0.00000
0.01 | -0.61341 -0.10418 | -2.40424 | -22.430
0.05 | -0.11968 -0.09690 | -0.45729 | -0.94586
4 0.1 -0.06869 ~0.05490 | -0.16407 | -0.30415
0.2 -0.03520 0.01985 | -0.00583 | -0.06837
1.0 -0.00215 0.00011 0.00002 0.00000
0.01 | -0.40936 -0.21642 | -3.14995 | -14.843
0.05 | -0.08995 ~0.20594 | -0.62612 | -0.73526
6 0.1 -0.07814 -0.14710 | -0.30170 | -0.37506
0.2 ~0.07520 ~0.01756 | -0.10304 | -0.18286
1.0 -0.00492 0.00044 0.00049 0.00065
0.01 | -0.20496 -0.35235 | -3.59458 | -7.37930
0.05 | -0.05189 -0.34415 | -0.74666 | -0.45425
8 0.1 -0.06326 ~0.29796 | -0.45060 | -0.3423]
0.2 -0.09771 -0.17259 | -0.30020 | -0.29564
1.0 -0.03423 0.01844 0.00819 | -0.00444
0.01 0.00000 ~0.50000 | -3.74234 0.00000
0.05 v " -0.79695 "
10 0.1 ” " -0.5383] x
0.2 v " -0.48570 "
1.0 " " -0.41453 "




Two dimensional analysis

A.l.2a

Numerical values of integrals JnP(X)




x/c Jg(x)/'n‘ Jl(x)/ﬂ Jz(x)/‘n .]:S(x)/‘n J (X)) /m ‘_Ys(x)/'n

0.00 0.0000 0.0000 0.38490 0.50000 0.38490 | 0.0000
0.25 0.01078 {0.08159 0.27178 0.40597 0.36187 [ 0.14489
0.50 0.03867 {0.13777 0.18118 0.32056 0.31972 | 0.18442
0.75 0.07799 {10.17385 0.11054 0.24652 0.27235 10.19082

1.00 0.12430 |0.19446 0.05693 0.18433 0.22564 {0.18097

jae]

1.25 0.17425 }10.20349 0.01744 0.13340 0.18252 | 0.16311
1.50 0.22535 [0.20413 -0.01062 0.09265 0.14436 10.14189
1.75 0.27584 10.19894 -0.02962 0.06076 0.11162 {0.12008
2.00 0.32450 }0.18990 -0.04162 0.03639 0.08424 10.09928
2.25 0.37060 10.17856 -0.04833 0.01823 0.06183 [0.08036
2.50 0.41369 | 0.16606 -0.05116 0.00510 0.04387 10.06373

2.75 N.45360 {0.15322 -0.05122 | -0.00403 0.02976 10.04951

3.00 0.49032 10.14061 -0.04940 {-0.01006 0.01892 10.03762

! 3.25 0.52395 | 0.12862 -0.04638 1 -0.01372 0.01077 {0.02788
- 3.50 0.55470 10.11747 -0.04269 | -0.01563 0.00482 10.02006
3.75 0.58277 {0.10730 -0.03868 | -0.01627 0.00061 {0.01390

4.00 0.60843 {0.09814 -0.03462 | -~0.01604 |-0.00225 {0.00914

Jrx) =3 (0) - I (x)
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A.1.2b

Finite beam subjected to a concentrated load
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ig»ﬂ ’

-

0
- L .
2/L = 0.25

L/c x/¢ ETwW*/c? M(x)/c V(x) cQ(x)
0.0 3.54917 | 0.0 0.0 -1.19089
0.5 0.375 | 0.0 0.03618 | 0.46357 3.39061
0.5 -1.18274 | 0.0 0.0 5.47003
0.0 2.43396 | 0.0 0.0 -0.60115
1.0 0.75 0.0 0.07324 | 0.45972 1.67678
1.0 ~0.80860 | 0.0 0.0 2.85404
0.0 1.72383 | 0.0 0.0 -0.30082
2.0 1.5 0.0 0.14798 | 0.45697 0.83799
2.0 -0.55199 | 0.0 0.0 1.49432
0.0 1.22362 | 0.0 0.0 -0.15016
4.0 3.0 0.0 0.27733 | 0.47091 0.47270
4.0 -0.25033 | 0.0 0.0 0.68206
We o= W(L - &) - W(x)

2/L = 0.5

0.0 0.00099 | 0.0 0.0 2.13657
0.5 0.125 | 0.00035 | 0.01607 | 0.25460 1.98262
0.25 0.0 10.06329 | 0.50000 1.95443
0.0 0.00803 | 0.0 0.0 1.11313
1.0 0.25 0.00283 | 0.03264 | 0.25645 0.98442
0.5 0.0 0.12727 | 0.50000 0.97111
0.0 0.06215 | 0.0 0.0 0.53851
2.0 0.5 0.02199 | 0.06247 | 0.24693 0.48861
1.0 0.0 0.24844 | 0.50000 0.52162
0.0 0.34554 | 0.0 0.0 0.08995
4.0 1.0 0.12729 | 0.07037 | 0.16596 0.24557
2.0 0.0 0.38938 | 0.50000 0.40230




A.1.2c

Finite beam subjected to a concentrated couple
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0 { -
-
- L
/% = 0.25
L/c x/c ETW*/c? M(x) cV(x) c2Q(x)
0.0 28.40207 0.0 0.0 -26.61204
0.5 0.375 0.0 -0.83897 |[-2.25640 11.24712
0.5 -9.47855 0.0 0.0 26.70378
0.0 9.74187 0.0 0.0 -6.83692
1.0 0.75 0.0 -0.83618 |-1.14266 2.73491
1.0 -3.29170 0.0 0.0 7.04251
0.0 3.40999 0.0 0.0 -1.63075
2.0 1.5 0.0 -0.81710 |-0.62219 0.62786
2.0 -1.30438 0.0 0.0 2.08443
0.0 1.05643 0.0 0.0 -0.17878
4.0 3.0 0.0 -0.71479 |-0.45987 0.09570
4.0 -0.79983 0.0 0.0 0.89602
/L = 0.
0.0 18.92126 0.0 0.0 ~26.63647
0.5 0.125 9.46199 |-0.16070 |-2.25262 -11.26412
0.25 0.0 -0.50000 |-2.94754 0.0
0.0 6.46864 0.0 0.0 -6.89482
1.0 0.25 3.23981 |-0.16100 |-1.12695 ~2.77090
0.5 0.0 -0.50000 |{-1.47078 0.0
0.0 2.23368 0.0 0.0 -1.76236
2.0 0.5 1.13864 | -0.15960 |-0.55831 -0.70338
1.0 0.0 -0.50000 |-0.74734 0.0
0.0 0.63958 0.0 0.0 -0.35376
4.0 1.0 0.39797 |-0.13736 |-0.25868 -0.22888
2.0 0.0 -0.50000 |-0.43807 0.0




A.1.3d

Finite beam subjected to a

concentrated load. Non-

homogeneous incompressible
medium
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0 |
L Py
L/¢c
%/L = 0.25
x/c P EIWx/c3 | M(x)/c V{(x) ¢ Q(x)
0.0 1.61135 | 0.0 0.0 -1.10442
0.375 | 0.5 0.0 0.03563 | 0.46643 3.44482
0.5 0.48273 | 0.0 0.0 5.21491
0.0 1.97425 | 0.0 0.0 -1.13378
0.375 | 1 0.0 0.03575 | 0.46599 3.43221
0.5 0.61802 | 0.0 0.0 5.27428
0.0 2.37841 | 0.0 0.0 -1.15894
0.375 | 2 0.0 0.03586 | 0.46545 3.41974
0.5 -0.76483 | 0.0 0.0 5.33172
0.0 2.86198 | 0.0 0.0 21.17983
0.375 | 5 0.0 0.0360 | 0.46475 3.40672
0.5 0.93813 | 0.0 0.0 5.39274
0.0 3.51883 | 0.0 0.0 -1.19310
0.375 | 100 0.0 0.03617 | 0.46367 3.39106
0.5 21.17190 | 0.0 0.0 5.46699
8/L = 0.5 o = 89
m
0.0 0.04863 | 0.0 0.0 2.05096
0.125 | 0.5 0.01237 | 0.01579 | 0.25165 1.99309
0.25 0.0 0.06278 | 0.50000 1.98442
0.0 0.03664 | 0.0 0.0 2.06662
0.125 | 1 0.00933 | 0.01584 | 0.25217 1.99122
0.25 0.0 0.06280 | 0.50000 1.97907
0.0 0.02620 | 0.0 0.0 2.08310
0.125 | 2 0.00669 | 0.01589 | 0.25273 1.98921
0.25 0.0 0.06297 | 0.0 1.97339
0.0 0.01539 | 0.0 0.0 2.10336
0.125 | 5 0.00397 | 0.01596 | 0.25344 1.98680
0.25 0.0 0.06309 | 0.50000 1.96607
0.0 0.00171 | 0.0 0.0 2.13395
0.125 | 100 0.00053 | 0.01606 | 0.25450 1.98295
0.25 0.0 0.06327 | 0.50000 1.95541

0.

5
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e
o
L P,

L/L = 0.25

L/c =1
| x/c o EIW*/c® | M(x)/c V(x) | e(x)
0.0 +1.33185 | 0.0 0.0 -0:55299
0.75 0.5 0.0 0.07135 | 0.46592 1.72285
1.0 -0.32948 | 0.0 0.0 2.63608
0.0 -1.49490 0.0 0.0 -0:56897
0.75 1 0.0 0.07171 | 0.46486 1.71309
1.0 -0.41160 | 0.0 0.0 2.68057
0.0 -1.70301 0.0 0.0 -0.58392
0.75 5 0.0 0.07208 | 0.46373 1.70320
1.0 | -0.50541 0.0 0.0 2.72608
0.0 1.98312 0.0 0.0 -0.59713
0.75 S 0.0 0.07253 | 0.46230 1.69154
1.0 -0.62416 | 0.0 0.0 2.77870
0.0 2.41171 0.0 0.0 -0.60400
0.75 100 0.0 0.07319 | 0.45997 1.67742
1.0 -0.79944 | 0.0 0.0 2.84982
L/L = 0.5
0.0 0.09834 | 0.0 0.0 1.01847
0.25 0.5 0.02606 | 0.03130.{ 0.24964 0.99526
0.5 0.0 0.12495 | 0.50000 1.00623
0.0 0.07754 | 0.0 0.0 1.03754
0.25 ] 0.02061 0.03159 | 0.25114 0.99329
0.5 0.0 0.12545 | 0.50000 0.99823
0.0 0.05842 | 0.0 0.0 1.05537
0.25 5 0.01567 | 0.03184 | 0.25244 0.99130
0.5 0.0 0.12589 ! 0.50000 0.99150 .
0.0 0.03766 | 0.0 0.0 1.07662
0.25 c 0.01035 | 0.03214 | 0.2539% 0.98880
0.5 0.0 0.12640 | 0.50000 0.98382
0.0 0.00971 0.0 0.0 1.10965
0.25 100 0.00325 | 0.03259 | 0.25620 0.98485
0.5 0.0 0.12718 | 0.50000 0.97239
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1;2“-*—‘

L/c

0
—~ L -
2/L = 0.25

x/c o EIW*/c3 M(x)/c V(x) e Q(x)
0.0 1.21814 | 0.0 0.0 -0.28036
1.5 0.5 0.0 0.14014 | 0.47040 0.88461
2.0 -0.18697 0.0 0.0 1.28377
0.0 1.27444 0.0 0.0 -0.28694
1.5 1 0.0 0.14189 | 0.46745 0.87309
2.0 -0.24798 0.0 0.0 1.32843
0.0 1.35329 0.0 0.0 -0.29427
1.5 2 0.0 0.14340 | 0.46497 0.86345
2.0 ~0.31490 0.0 0.0 1.37002
0.0 1.47747 0.0 0.0 -0.30160
1.5 5 0.0 0.14512 | 0.46213 0.85303
2.0 -0.40201 0.0 0.0 1.41825
0.0 1.70732 0.0 0.0 -0.30414
1.5 100 0.0 0.14768 | 0.45763 0.83898
2.0 -0.54233 0.0 0.0 1.48820

2/L = 0.5

0.0 0.20393 | 0.0 0.0 0.38084
0.5 0.5 0.06246 | 0.05230 .| 0.21960 0.50362
1.0 0.0 0.23012 | 0.50000 0.59842
0.0 0.17408 0.0 0.0 0.42883

.5 1 0.05268 0.05572 | 0.22913 0.49972
1.0 0.0 0.23644 | 0.50000 0.57056
0.0 0.14603 0.0 0.0 0.46242
0.5 2 0.04441° | 0.05797 | 0.23527 0.49671
1.0 0.0 0.24053 | 0.50000 0.55306
0.0 0.11362 0.0 0.0 0.49355
0.5 5 0.03541 0.05990 | 0.24039 0.49362
1.0 0.0 0.24398 | 0.50000 0.53887
0.0 0.06573 0.0 0.0 0.53414
0.5 100 0.02289 0.06223 | 0.24633 0.48915
1.0 0.0 0.24803 | 0.50000 0.52314

2
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9
- L .
L/c
2/L = 0.25

x/c o Efwe/c® | M(x)/c | V(x) cQ(x)

0.0 0.93402 0.0 0.0 -0.11220
3.0 0.5 0.0 0.23605 | 0.50029 0.5616%3
4.0 0.09768 0.0 0.0 0.42043
0.0 1.00341 0.0 0.0 -0.12911
3.0 1 0.0 0.24817 | 0.49293 0.52955
4.0 0.02466 0.0 0.0 0.49218
0.0 1.05859 0.0 0.0 -0.13972
3.0 2 0.0 0.25724 | 0.48667 0.50875
4.0 -0.04165 0.0 0.0 0.54784
0.0 1.11757 0.0 0.0 -0.14791
3.0 5 0.0 0.26572 | 0.48037 0.49177
4.0 -0.11868 0.0 0.0 0.60289
0.0 1.21312 0.0 0.0 -0.15181
3.0 100 0.0 0.27621 | 0.47199 0.47401
4.0 -0.23956 0.0 0.0 0.67500

2/L = 0.5

0.0 0.53505 0.0 0.0 -0.10927
1.0 0.5 0.21748 | 0.00969 | 0.07743 0.25147
2.0 0.0 0.27209 { 0.50000 0.54692
0.0 0.48074 0.0 0.0 -0.05912
1.0 1 0.18572 0.02716 | 0.10441 0.25341
2.0 0.0 0.30761 | 0.50000 0.49861
0.0 0.43946 0.0 0.0 -0.01282
1.0 2 0.16398 0.04192 | 0.12623 0.25246
2.0 0.0 0.33640 | 0.50000 0.46257
0.0 0.40072 0.0 0.0 0.03310
1.0 5 0.14647 0.05548 | 0.14563 0.25008
2.0 0.0 0.36212 { 0.50000 0.43222
0.0 0.34954 0.0 0.0 0.08623
1.0 100 0.12825 0.06960 | 0.16504 0.24604
2.0 0.0 0.38810 | 0.50000 0.40343




A.1.3e

Finite beam subjected to a

concentrated couple. Non-

homogeneous incompressible
medium
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0 | o
Noows
L Yo
= 0!
/L = 0.25 L/e = 0;

x/c o} ETW*/c? M(x) SV (x) ¢ 2Q(x)
0.0 12.48964 0.0 0.0 -25.22907
0.375 0.5 0.0 -0.84103 | -2.25746 11.59438
0.5 -<4.,11919 0.0 - 0.0 25.35945
0.0 15.50332 0.0 0.0 -25.59228
0.375 1 0.0 -0.84054 | -2.25672 11.50990
i 0.5 -5.14394 0.0 0.0 25.70299
; 0.0 18.82839 0.0 0.0 -25.92705
; 0.375 2 0.0 -0.84005 | -2.25642 11.42688
] 0.5 -6.26638 0.0 0.0 26.02765
0.0 22.78809 0.0 0.0 -26.25725
0.375 5 0.0 -0.83954 | -2.25629 11.34239
0.5 -7.59741 0.0 0.0 26.35196
0.0 28.15367 0.0 0.0 -26.60880
0.375 100 0.0 -0.83897 | -2.25639 11.24815
0.5 -9.39569 0.0 0.0 26.70034

L/L = 0.5

0.0 8.29332 0.0 0.0 -25.26851
0.125 0.5 ' 4,18665 |[-0.15853}-2,25252 -11.61591

0.25 0.0 -0.5 -2.97209 0.0
0.0 10.31172 0.0 0.0 -25.62425
0.125 1 5.18181 -0.15907 |-2.25237 -11.52909

0.25 0.0 -0.5 -2.96613 0.0
0.0 12.53397 0.0 0.0 -25.95507
0,125 2 6.28303 -0.15959 }-2.25236 -11.44490

0.25 0.0 ~1-0.50000 {-2.96028 0.0
0.0 15.17717 0.0 0.0 -26.,28297
0.125 5 7.59679 -0.16010 |-2.25242 ~-11.35970

0.25 0.0 -0.5 -2.95431 0.0
0.0 18.75582 0.0 0.0 -26.63313
0.125 100 9.37930 -0.16069 |-2.25262 -11.26514

0.25 0.0 -0.5 -2.94762 0.0
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S
0 s
N
- 1
2/L = 0.25
x/c o EIW*/c? M(x) cV(x) c2Q(x)
0.0 1.98326 0.0 0.0 -2.86261
0.75 0.5 0.0 -0.83751| -1.14935 2.86261
1.0 -0.64963 0.0 0.0 6.59597
0.0 5.63144 0.0 0.0 -2.83806
0.75 1 0.0 -0.83765] -1.14551 2.83806
1.0 -1.85259 0.0 0.0 6.67422
0.0 6.56716 0.0 0.0 -6.53057
0.75 2 0.0 -0.83741 1 -1.14371 ‘ 2.80982
1.0 -2.19022 0.0 0.0 6.77279
0.0 7.79454 0.0 0.0 -6.67246
0.75 5 0.0 -0.83692 | -1.14283 2.77517
1.0 -2.62121 0.0 0.0 6.89111
0.0 9.64496 0.0 0.0 -6.83455
0.75 100 0.0 -0.83620 | -1.14262 2.73578
1.0 -3.25905 0.0 0.0 7.03934
/L = 0.5

0.0 3.17046 | 0.0 0.0 ~-6.35687
0.25 0.5 1.65125 -0.15792 | -1.12431 -2.91713

0.5 0.0 -0.5 -1.49156 |. 0.0
0.0 3.70496 0.0 0.0 -6.48081
0.25 1 1.89891 | -0.15863 | -1.12502 -2.88331

0.5 0.0 -0.5 -1.48663 0.0
0.0 4.34121 0.0 0.0 -6.60321
0.25 2 2.20191 | -0.15933 | -1.12563 -2.85029

0.5 0.0 -0.5 -1.48193 0.0
0.0 5.16726 0.0 0.0 -6.73569
0.25 5 2.60177 -0.16010 {-1.12622 -2.81287

0.5 0.0 -0.5 -1.47691 0.0
0.0 6.40443 0.0 0.0 -6.89208
0.25 100 3.20780 | -0.16098 |-1.1269%3 -2.77172

0.5 0.0 -0.5 -1.47089 0.0
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B
0 1,
\J
~ L
&/L = 0.25 L/c
x/c | p EIW*/c? M(x) cV(x) c?0(x)
0.0 0 1.98326 | 0.0 0.0 -1.19953
1.5 ' 0.0 -0.80097| -0.67846 0.64262
2.0 -0.64963 | 0.0 0.0 2.13921
0.0 2.17208 | 0.0 0.0 -1.34204
1.5 ) 0.0 -0.80967| -0.65208 0.65068
2.0 -0.76111 | 0.0 0.0 2.05631
0.0 2.41215 | 0.0 0.0 -1.44367
1.5 5 0.0 -0.81413| -0.63739 0.64992
2.0 -0.88308 | 0.0 0.0 2.03020
0.0 2.76012 | 0.0 0.0 -1.53400
1.5 . 0.0 -0.81647| -0.62804 0.64305
2.0 -1.03976 | 0.0 0.0 2.03788
0.0 3.36584 | 0.0 0.0 -1.62920
1.5 190 0.0 -0.81725| -0.62197 0.62888
2.0 -1.28775 | 0.0 0.0 2.08014
L/L = 0.5

0.0 1.15464 | 0.0 0.0 -1.50814
0.5 0.5 0.66138 | -0.15260| -0.55313 | -0.78411
1.0 ‘ 0.0 -0.5 -0.77392 0.0

0.0 1.33513 | 0.0 0.0 -1.57096
0.5 ) 0.73752 | -0.15467| -0.55520 | -0.76061
1.0 0.0 -0.5 -0.76540 0.0

0.0 1.53002 | 0.0 0.0 -1.62592
0.5 ) 0.82050 | -0.15623| -0.55644 | -0.74272
1.0 0.0 -0.5 -0.75939 0.0

0.0 1.78621 | 0.0 0.0 -1.68507
0.5 c 0.93313 | -0.13 74| -0.55740 | -0.72513
1.0 0.0 -0.5 -0.75383 0.0
0.0 2.20509 0.0 0.0 -1.75962
0.5 100 1.12464 | -0.15954 | -0.55828 | -0.70418
1.0 0.0 -0.5 ~-0.74757 0.0




A«mwmm%ﬂ

-166-
)
0 1
N
. L
L/c = 4
/L = 0.25
x/c | o ETW*/c? M(x) eV (x) | efx)
0.0 0.63029 | 0.0 0.0 -0.06842
3.0 0.5 0.0 -0.62974| -0.59534 0.06170
4.0 -0.42607 | 0.0 0.0 1.06393
0.0 0.69223 | 0.0 0.0 -0.00976
3.0 1 0.0 -0.65954| -0.54748 0.07868
4.0 -0.48843 | 0.0 0.0 0.99621
0.0 0.75727 | 0.0 0.0 -0.04983
3.0 2 0.0 -0.68272| -0.51200 0.08937
4.0 -0.55251 | 0.0 0.0 0.94388
0.0 0.85002 | 0.0 0.0 -0.11135
3.0 5 0.0 -0.70120 -0.48326 0.09560
4.0 -0.63996 | 0.0 0.0 0.90651
0.0 1.03253 | 0.0 0.0 -0.17676
3.0 100 | 0.0 -0.71533| -0.45958 0.09684
4.0 -0.78541 | 0.0 0.0 0.89126
/L = 0.5
0.0 0.09404 | 0.0 0.0 -0.14760
1.0 0.5 0.11596 | -0.10289| -0.23562 | -0.32225
2.0 0.0 -0.5 -0.51771 | . 0.0
0.0 0.21915 | 0.0 0.0 -0.21644
1.0 1 0.19076 | -0.11632| -0.24573 | -0.28672
2.0 0.0 -0.5 -0.48502 0.0
0.0 0.33055 | 0.0 0.0 -0.26472
1.0 2 0.25170 | -0.12482] -0.25162 | -0.26373
2.0 0.0 -0.5 -0.46516 0.0
0.0 0.45169 | 0.0 0.0 -0.30655
1.0 5 0.31185 | -0.13128| -0.25561 | -0.24595
2.0 0.0 -0.5 -0.45073 0.0
0.0 0.62522 | 0.0 0.0 -0.35141
1.0 100 0.39130 | -0.13714] -0.25804 | -0.22955
2.0 0.0 -0.5 -0.43844 0.0




APPENDIX TWO

OHDE’S METHOD OF EVALUATION OF CONTACT STRESS

DISTRIBUTION
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Ohde's method of evaluation of contact stress distribution

Tﬁe method is based on the assumption that the supporting medium
behaves as a semi infinite homogeneous isotropic elastic continumm,,
The contact stress at the beam elastic continuwminterface is assumed
to be made up from a number of blocks of uniformly distributed loads

pl; Py «onn- P, per unit area of contact (Fig.A.2.1b). We denote

by Wl’ W2, W3 ..... Wn the deflections at the centre of each block (Fig.

A.2.1la). The deflections Wl’ W2 .... Wn at the centre of the blocks
are related to Pys Pps Pz oeene. 1 by following n equations

(see Terzaghi, 1943),

= a(1l-v?)
! (CPy * CpPp * CgPg * ..nt. ChPr) T
W = (c +C + C + c ) Eﬂl"vz
2 2P1 1P2 © CPz e n-1Pn E ’
W = (c + C + C + c ) a 1'V2)
n npl n-1P2 n—3p3 """ 1Pn B
(A.2.1)
Where Cys Cos Cgovnnnn c, are influence coefficients for the

settlement of point 1 due to a unit load uniformly distributed over
the elemental areas, 1, 2, 3, 4 ..... n. They can be obtained by
integrating the Boussinesq solution for displacement under a
concentrated load (see Terzaghi, 1943). In (A.2.1) E is Young's
modulu; of the elastic mediﬁm,' V is Poisson's ratio of the elastic
medium and a = L/n. Where L is the length of the beam and n is the

number of blocks of contact stress.

L T T - T S



Q, Q, A Qg B
M 'M‘g'rl. | ~ h’ﬁnfll Mo e
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, | Qnh = Bqn
Ql' Lal | Fn pn = Bpﬂ
At —t
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Fig |

c.
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T e min  oviace i S

|
l I | u
A L | Ca 1 —
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| 1 .

Thé influence coefficients

Ohde's method of analysis of beoms resting
on on isotropic homogeneous e¢lastic medium.
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By making use of Clapeyron's theorem of three moments (see
Timoshenko, 1965), the requirement of continuity of slope of the

beam is given by the following n-1 equations

: 6EI
Ml + 4M2 + M3 = —;;— (—W1 + EWZ - W3)
6EI
My + aMg 4 M, = -; (W, + 20, - W) (A.2.2)
_ 6EI
2Ml’l'~1 + 4Mn = -~a-2~ (*an'-l + 2Wn)
Where Ml‘ M2 ..... Mn are bending moments at the centre of each
beam element (Fig. A.2.1 ) given by
My =My + (Pp - Qp)a
M3 = M1 + (P1 - Q1)2a + (P2 - Qz)a (A.2.3)
Mn = M1 + (Pl - Ql)na + (P2 - Qz)(n-l)a.+ e (Pn - Qn)a.
In (A.2.3) Ql’ Q2 ...... Qn are external loads and Pl‘ P2 ..... Pn
are contact loads [(contact stress) a.B], acting at the centre of
blocks 1, 2, 3 ..... n. By substituting (A.2.3) and (A.2.4) in
(A.2.2) the following n-1 equations are obtained.
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(C2 + B)pl + ((‘.1 + B/6)p2 + C2p3 ... C .p

n

il

B(ql + Q2/6 - ml)

+

(C3 2B)p1 + (C2 + B)p2 + (C1 + B/6)p3 + C2p4 + C3p5 + o
CoaPn = B(2ay * ay * a3, = ™)
(C, + 38)p, + (Cy + 2B)p, + (Cp + B)py + (Cp + B/6Ip, + CoPg * Cype + -

CoPy = B(3aqy + 20, *+ Az * Qe - M)

(A2 .4)
[c, + (n-1Blp, + [C _;+ (-2)Blp, + ... [c, + B/61p,
= B[“ql + (n"l)qz oo qn 1 qn/6]
Where
Cp = 2(c) - ¢, Cy = cy - 2¢, + cg,
Cy = ¢, - 2c3 * Cys Cn =c 1 2cn e (A2 .5)
3
R = ___3.‘._..]%.?‘.__?__ , (/\.2 .6)
EbI(l-y )
Ml
ql,, C|2 ..... qn = (Ql, Q2 ..... Qn)/B, and ml = ;‘2—1;

The n-1 equations given by (A. .4) together with the conditions

of vertical equilibrium,
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Ohde's method was applied to obtain the influence coefficients
for contact stress distribution of beams with L/B = 5, 10, 20,
subjected to a concentrated unit load in their centres. In

table A.1.1 the influence coefficients cy and Cn (see equations

A.2.1 and A.2.5) are given.‘ Tables (A.2.2 a-c) give the values
of pl/qm, P2/qm’ ..... Pn/qm (q, is the averagé stress on beam

elastic continwm interface due to applied unit load) for different

3
values of B<§ = —E—EE—~—-—> . The values of Barden's coefficients
2
EbI(l-v )
y IN 'ITELM . .
3 < 107 = ————r > corresponding to 8 values are also given.
| 4EbI(1-v2)
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Table A.2.1 - The values of coefficients Cn and c,

(number of elemental areas n = 10)

L/B 5 10 20

¢, 0.76589 1.12223 1.53179
c, ~0.94007 -1.5836 -2.37528
c, 0.29586 0.033043 0.34415
c, 0.33010 0.62215 1.00563
cy 0.15593 0.16078 0.16214
C, 0.08914 0.11546 0.12685
¢, 0.10513 0.10659 0.10698
c, 0.02483 0.02738 0.02813
¢ 0.07917 0.07979 | 0.07994
Ce 0.1025 0.01079 0.01094
¢ 0.06345 0.06377 0.06385
C, 0.00519 0.00536 0.00541
c, 0.05293 0.05311 0.05316
c, 0.00299 0.00305 0.00307
cq 0.04540 0.04551 0.04554
Cq 0.00187 ©0.00190 0.00101
cq 0.03974 0.03982 0.03984
Cy ' 0.00125  0.00127 | 0.00127
1 0.03533 0.03539 0.03540
Clo 0.00881 0.00886 0.00887 |
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L/B = 5 : (a)

10" ¢ B P,/a, Py/a, Ps/q Py’ Ps/
0 0 1.44022 | 0.94566 | 0.89607 | 0.86515 | 0.85290

10 0.0025 1.30818 | 0.91845 | 0.91460 | 0.92244 | 0.93633

50 0.0127 0.89788 | 0.83065 0.96856' 1.10049 | 1.20243
100 ‘ 0.0255 0.55539 | 0.75147 | 1.00703 | 1.24907 | 1.43704
300 0.0764 | -0.06614 | 0.57211 | 1.03645 | 1.51759 | 1.93998
500 0.1273 -0.28630 | 0.47116 | 1.00350 | 1.61005 | 2.20159
700 0.1782 -0.38250 | 0.39864 | 0.95523 | 1.64695 | 2.38169
1000 0.2546 -0.43741 | 0.31609 | 0.87720 | 1.66072 | 2.58340
5000 1.2733 20.23254 |-0.05169 | 0.24296 | 1.31369 | 3.72757
10000 2.5465 -0.09880 |-0.10436 |-0.02019 | 0.91491 | 4.30845

L/B = 10 (b)

10" B P,/ P,/4, P/a, Py/ Ps/ap,
0 0 1.31719 | 0.97441 | 0.92415 | 0.89755 | 0.88669

10 0.0013 1.27307 0.96276 | 0.93002 | 0.91781 | 0.91635

50 0.0064 '1.11238 | 0.91988 | 0.95090 | 0.99160 | 1.02524
100 0.0127 0.94142 | 0.87339 | 0.97214 | 1.07013 | 1.14292
300 0.0382 0.47269 | 0.73871 | 1.02226 | 1.28561 | 1.48072
500 0.0637 0.19618 0.650237 1.04161 | 1.41283 | 1.69914
700 0.0891 0.01715 | 0.5856 | 1.04573 | 1.49517 | 1.85636
1000 0.1273 -0.15328 | 0.51326 | 1.03719 | 1.57331 | 2.02951
5000 0.6367 -0.43159 | 0.14631 | 0.71589 | 1.66650 | 2.90289
10000 1.2733 -0.31557 -0.01487 | 0.42376 | 1.52396 | 3.38272
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L/B = 20 (c)
—— S

1070 B Py/qy, Py/Ap P3/ P4/ 9y, Ps/qp,

0 0 1.23514 | 0.9113 | 0.94318 | 0.92007 | 0.91049

10 0.0006 1.21924 | 0.98621 | 0.94518 | 0.92768 | 0.92169

50 0.0032 1.15783 | 0.96716 | 0.95284 | 0.95707 | 0.96510

100 0.0064 1.08583 | 0.94470 | 0.96168 | 0.99153 | 1.01626
700 0.0191 0.84162 | 0.86724 | 0.99021 | 1.10849 | 1.19244
500 0.0318 0.65077 | 0.80490 | 1.01047 | 1.19996 | 1.33389
700 0.0446 0.49795 | 0.75337 | 1.02486 | 1.27328 | 1.45053
1000 0.0637 0.31911 | 0.69046 | 1.03873 | 1.35916 | 1.59254
5000 0.3183 -0.36843 | 0.35028 | 0.97726 | 1.68879 | 2.35210
10000 0.6367 | -0.44339 | 0.19001 | 0.81942 | 1.71407 | 2.71989

Tables A.2.2 a-c Influence coefficients for the contact stress
distribution, using Ohde's method

(The number of elemental areas n = 10)

]
9]

(a) L/B
(b) L/B = 10
(c) L/B = 20

L]
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