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SUMMARY

A description is given of an alternative method of analysis of noise
transmission in buildings, This method incorporates power flow techniques
and has the advantage in that a unified approach is possible to both the
direct and indirect transmission paths. The method is gherefore equally
applicable to transmission between rooms which are adjacent or several
rooms or floors apart. The first configuration only lies within the range

of classical theories.

In this analysis, the building is regarded as an assembly of plate elements.
Vibrational energy flows to and from each plate across common structural
junctions in a manner analogous to heat transfer between bodies at different
temperatures, and can also flow to and from the enclosed air volumes. The
solution of sets of s;multaneous energy-balance equations gives the steady-
state vibrational energy of each plate at a structural junction. The
pressure wave energy, generated within a room by plate (or wall) vibrations,

is also predicted.

The vibrational energies are predicted from the modal density, loss factor,
couplihg loss factor, and radiation loss factors, which are assessed
theoretically and experimentally. Numerical calculations, involving a
computer, yield values of the transmission coefficients of bending,
longitudinal, and transverse waves at cross-junctions, T-junctions and

corners of reinforced concrete plates.

The theory is compared with measurements involving quarter-scale models
over a frequency range of measurement of 400 Hz - 12.5 KHz. Power-flow

Eheory can be used in the mid and high frequencies, but at low frequencies,

modal densities become too small.



Investigations are made on the effect of increasing the dissipative loss

factor of plates by means of a layer of sand-bitumin mixture.

In measurements on the transmission between two rectangular rooms sharing
one junction, agreement with theory is found except at low frequencies and
a simplified theory, in which only bending wave transmissions are

considered, gives adequate agreement with experiment.
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1.1

CHAPTER 1

SOUND TRANSMISSION IN BUILDINGS

Introduction

In the development of new building materials and constructional
methods, priority is usually given to the increase of the ratio of
mechanical strength to weight of the structural components in the
building. This improvement is often, unfortunatel&, allied to a
deérease in desirable acoustical characteristics. Pre-stressed
concrete, although stronger than that cast 'in situ', is less
efficient in absorbing vibrational energy (Putt 1970)., Sounds are
thus more readily propagated throughout the structure. High rise
buildings can be considered as a two or three dimensional array of
rooms, any one of which can contain the source of noise. Noise is

defined as undesired sound.

The Acoustician, concerned with noise reduction in buildings, must
therefore have an understanding of the processes involved in the
generation, propagation and dissipation of sound energy in both air.
and in the solid structure. His solution to the problem cannot be
at the expense of the mechanical strength of the material and of the
structure. Various accepted methods of analysis and solution of the
problem of noise transmission in buildings are now described.
Alternative approaches, not so readily accepted, are listed, including

a suggested method of analysis by the author.
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Sound can be transmitted from any one point to another in a building.
In airborne sound transmission the point of origin and reception are
in air while impact sound transmission involves the generation of
sound directly into the solid structure. The structure then transmits

and radiates sound into the receiving enclosed air volume.

The shortest path between the source point (or room) and the
receiving point (or room) is the direct path which is often
interrupted by cne or more interveﬁing partition walls., All other
paths are termed indirect or flanking paths which involve propagation

as structure-borne sound, sometimes over appreciable distances.

Calculation of sound transmission between source and receiver involves
the measurement of sound pressure level difference (Ll - L2) in
decibels. If the sound source and receiver are room volumes a spatial
average of the mean square sound pressure is taken. The British
Standard recommendation BS 2750 (1956) suggests that the level
difference be normalized by taking into account the sound absorption

of the receiver room. The normalized level difference is expressed

as,

Ao
D - (Ll - I L 10 loglo( /A) sasese s 1-1

N 2)

where A is the receiver room absorption and Ao is a reference, taken

to be 10 m2 at all frequencies.

The most common source-receiver configuration is that of adjacent

rooms separated by a partition wall. The insulating characteristic

of this wall is expressed as a sound transmission coefficient T

which is the ratio of sound power radiated into the receliver room to
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that falling on the source room side of the partition. The sound

reduction index (s.r.i.) or transmission loss (T.L.) is thus derived,

T.L. = s.r.i. = 10 1oglol/r = 10 log,  E,/E, ceeeeee 1.2

El/E2 is the ratio of sound energies of the two rooms. In field

measurements, the transmission loss is calculated from,

= - S
T.L' Ll L2 + 10 10910 ( /A) CL B B B B 1.3

S is the area of the partition and A is the absorption, in the same

units, of the receiver room.

Impact sound transmission measurements are absolute, the sound
source consisting of impacts produced by hammers, of mass 500 grams,
falling through a height of 40 mm. Normally, there are five hammers
falling at a rate of 10 per second. The resultant received sound

pressure level is normalised as in airborne sound transmission

measurements. Thus,

L = L

N 2 + 10 log10 (Ao/R) swesemw Lad

In both impact and airborne sound measurements the signal at the

receiving microphone is filtered to one third octave bandwidth about

any central frequency.

By use of these standard methods and calculations, comprehensive
lists of transmission characteristics of many wall and floor types
have been producedf In this country, information on field
measurements has been published by the Building Research Station

(1960), (now the Building Research Establishment), and notable
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contributions are to be found abroad, such as in the publications
of the National Bureau of Standards of the USA (1964). These and -
other reports, along with many laboratory measurements of partition
walls are primarily concerned with direct transmission. In the
field measurements, the source and receiver rooms are either
vertically or horizontally adjacent. The information is not
applicable to situations when the source and receiver room may be
separated by several floors or rooms. It is in this configuration
that the indirect transmission paths assume greatest importance.
Thus, in the following discussion a brief outline is given of the
theoretical and experimental work produced on both direct and
indirect sound transmission and on their relative importénce in

various sound source-receiver configurations.

Multiple leaf partitions and laminate constructions

In development of éower flow theory to describe noise transmission
in building structures, and in the quarter scale experiments, only
single leaf homogeneous walls will be considered. Apart from
simplifying the analysis, it is felt that this type of wall is
representative of those existing in high rise buildings. However
many problems of excessive noise transmission have been solved using
multiple leaf partitions and sandwich constructions,land the
literature provides examples $f many notable contributioﬂs to the
theoretical and experimental assessment of their sound transmission
characteristics. Beranek and Work (1949) and Lonﬁon (1950) describe

the transmission of reverberant sound through double walls. London's
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solution involves a ray technique where continuity conditions need
to be satisfied at each air-leaf boundary. The boundary conditions
are that (a) the continuity of particle displacement in a direction
perpendicular to the plate surface must be maintained, and (b) the
equations of motion at each partition need to be satisfied.
Experimental measurement by Brandt (1954), Peutz (1954), and.
Waterhouse (1954) show discrepancies with values predicted using the
methods of London even when the theory is modified by a dissipation
factor R. This parameter is incorporated into the expression of

mechanical impedance per unit area of panel to give,

z = 2R/cosf + iwm PRI 7,

Where 6@ is the angle of incidence of the impinging pressure wave
and m is the mass per unit area of the leaf. The resistive term R
attempts to account for insulation values higher than those
predicted from mass law theory at low frequencies. It is used to
take into account all losses, compressional, flexural and by

radiation and also losses at the edge of the panel.

1f some dissipative material fills the air gap between the two leaves
the problem can be solved by the use of impedance methods. Beranek
and Work (1949) have made calculations and measurements of several
types of wall and acoustical blankets, Experiment by Ford, Lord and
williams (1967) have indicated the effectiveness of introducing

absorbent linings, even in quite small quantities.

Mulholland, Parbrook, and Cummings (1967) use multiple reflection

theory to assess the effect of leaves which are absorbent on their
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inner surfaces. By empirically assigning a value of absorption
coefficient to these inner surfaces, agreement is obtained between
the theorijhich assumes the plates to be infinite in area, and
measured values. A development of this method (1968) takes into
account the finiteness of the plate, and of the effect of sound
absorption at the edge of the air space between finite panels.

Agreement with measurement is best when total absorption is assumed

to occur at the edges.

Where many acoustic and mechanical modes exist, White and Powell
(1965) employ statistical energy analysis techniques when
calculating the transmission of random sound through rectangular
double walls, In this technique, described in Chapter 2, a thermal
analogy is drawn with the vibrational power flow between the first
panel, the cavity, and the second panel. Sharp and Beauchamp (1969)
produce a matrix recurrence relation which describes the general case
of multiple leaf and of laminate constructions. This general

equation 1s easily reduced to describe double or triple leaf partitions.

Kurtze and Watters (1959) suggest a sandwich construction in which
the two outer leaves enclose a core of softer material. The resultant
laminate is more susceptible to shear wave propagation than to the
generation of the slower bending waves. The coincidence frequency
can therefore be shifted.several octaves to a higher frequency,

allowing the transmission loss to obey the mass law over the full

frequency range of interest. Coincidence, in which the structural
wavelength matches that of the airborne sound wavelength, results in

a dip in the transmission loss of the partition. Ford, Lord, and
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Walker (1967) show that in this type of laminate, an undesirable
resonance results from a dilational mode of vibration which depends
upon the core stiffness and the mass of the leaves. It is shown
that the core stiffness can be optimised to allow a theoretical mass
law response to exist throughout the full' frequency range. The mass

law is described in section 1.2.2 which deals with single leaf

panels.

Finally, Sewell (1970) derived the exact, two-dimensional, solution
of -the transmission of reverberant sound through a double partition
in a rigid baffle. Donato (1972) successfully restates the
classical approach and Price and Crocker (1970) produce impressive

experimental results by the use of statistical energy analysis.

1.2.2\ Single leaf partitions

The classical method of calculating the transmission loss of a single
leaf wall is to assume the wall to have negligible stiffness and
compressibility. For sound incident at an angle 8, the well used

expression for transmission loss is,

zcos B . 2
= "o 0w 80 8 106
T°L'9 1o loglo (1 + 2pC )

where Z is the mechanical impedance of the partition which, in this

case, is given by,

Z = ib)m ssscseew 1.7

where m is the mass per unit area. Thus, the wall is assumed to have
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mass reactance only. On integrating equation 1.6 over a suitable
angular range a mean or random transmission loss is obtained in

terms of the transmission loss at normal incidence. Cremer (1942)
suggests that in real situations the angle of integration does not

exceed 80°. The expression relating the random transmission loss

to that at normal incidence is,

edda = . Lo 123 T.L EE R T
ToLo o T.L_ - 10 log, (O o) 1.8

This theory is known as the mass law and concludes that the
transmission loss of a simple partition increases by 6 dB for every
doubling of frequency or of the mass per unit area. However, this
law does not hold to arbitrarily high frequencies. Cremer (1942),
Brillouin (1952), and Goséle (195§) argue that at the critical
coincidence frequency of the panel the radiation characteristics
alter dramatically. This causes a decrease in the value of
transmission loss. A correction to equation 1.7 due to panel

stiffness gives,

% - imm[l—(%'sinzsjzl coweas 1.8
C

where V. is the critical coincidence frequency. If the internal
dissipative losses of the material are considered, a further

correction gives,

d2av2
z = iwm (1 - (Y sin®6)%) + wny (g sin®6) sasnen: aTH
c c

where 7 is the internal loss factor of the material.

An often used description of the frequency dependence of transmission

loss is given by Watters (1959). The frequency range of interest is
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divided into three regions. The first region extends from the basic
resonance of the panel to the coincidence frequency. Here the wall
obeys the mass law and the gradient of the curve is given as
6dB/octave. The central region is a plateau which results from
coincidence and extends over two or three octaves. The third region
has a gradient of approximately 10dB/octave. Gos#le (1968) gives
experimental results of panels, which are large compared to the

bending wavelength, that illustrate the plateau region and subsequent

slope of the third region.

In order to develop the theory of partition walls it is necessary to
assess the effect of edge conditions. The finite panel theory must
also take into account the finiteness of the source and receiver rooms.
Sewell (1970) gives a complete solution of the transmission of
reverberant sound through a partition surrounded by an infinite rigid
baffle. Solutions are given for panels having free, simply supported,
and clamped edges and it is shown that above the critical frequency,

edge conditions do not affect the result.

However, if vibrational energy flows from the panel to the side walls
then edge conditions will affect the transmission loss above, as well
as below, coincidence. Heckl (1960) shows that only if less energy
is transmitted into the side walls than is absorbed by internal

friction, does the insulation remain independent of the boundary

conditions.

By assuming all surfaces with the exception of the partition as being

hard (i.e. having no velocity) Josse and Lamure (1964) treat a
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theoretical model of two rectangular rooms separated by a simply
supported wall. The transmission is expressed as a coupling between
the panel modes and the room modes. Below the critical frequency
the transmission loss is shown to depend upon wall dimensions and
the values given are less than those predicted using the mass law.
At higher frequencies the transmission loss becomes independent of

panel and room dimensions.

In similar work Nilsson (1971) draws the same' conclusions for the
frequency range above the critical frequency. At lower frequencies
a simply supported panel gives a transmission loss 3 dB higher than

that of a clamped panel.

In measurements, Gos#le (1965) discusses the influence of geometry
(and of flanking transmission) on the laboratory measurement of
transmission loss. It is shown that if the panel is set in a niche
in the transmission suite aperture a lower transmission loss is
measured than when no niche is present. Utley (1968), by comparing
measurements of low frequency transmission loss from different
laboratories indicates that the measurements are influenced by an
unspecified room paraﬁeter. Kihlman (1970) in experiments, shows

the influence of boundary conditions on the measured transmission:

loss and draws two conclusions.

(1) Below the critical frequency the mode pattern of the
panel is important; this in turn is influenced by the way

in which the panel is connected to the opening frame.

The baffling effect also appears important.
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(2) Above the critical frequency the total loss factor
(i.e. internal and edge losses) is the important

factor.

So far the discussion has been confined to airborne sound transmission
of walls and floors. A brief mention must be made of the impact=-noise
isolation of floor structures and, more specifically, their
relationship with the airborne transmission loss. Heckl and Rathe
(1963) apply the principle of reciprocity in deriving a relation

which allows the calculation of impact noise from the transmission
loss or vice versa. It is argued that if both are known then some
estimate of sound leakage and flanking is possible. It is shown that
the sum of the two standard measurements, LN and T,L,, is independent
of the properties of the floor. Ver (1971) extends the theory into

the frequency range below the critical frequency by considering both

the resonant and forced response of the floor.

As a summary the factors influencing the transmission loss of

partitions can be listed as follows.

(1) The material density, expressed as the mass per unit

area of the wall.
(2) The flexural stiffness.
(3) The dissipative loss factor of the material.
(4) The damping at the edge of the partition. This results
from the flow of vibrational energy into the side walls.
(5) The source room/receiver room geometry which affects the

modal distribution and coupling of the bending wave field
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on the partition and the pressure wave fields within

the rooms.

When dealing with multi-leaf panels, additional considerations are

necessary.

(6) The distribution of mass of the leaves.
(7) The depth of the cavity.
(8) The absorption and stiffness characteristics of the

filling material.

An understanding and assessment of these paramefers and their effect
on the transmission loss still does not allow the acoustician to
predict with confidence the performance of party walls and partitions
in real situations. The problem of flanking transmission has yet to
be assessed and a general understanding is necessary of indirect

transmission which becomes important at appreciable distances from

the noise source.

Indirect Transmission

In investigations of indirect transmission the theoretical and

experimental assessment has taken two forms.

(1) When calculating the transmission loss of a wall in
buildings, an attempt has been made to introduce a
correction to the predicted values due to flanking

transmission. In measurements several authors have

attempted to separate the direct from the indirect
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contribution in order to calculate the former in field

conditions.

(2) At greater distances from the sound source the effect
of single partitions becomes less important. All wall
and floor surfaces contribute to the propagation,
dissipation, and radiation of sound energy within the
building and it is important to assess the decrease
with distance from the sound sohrce, of the
vibrational amplitude of the surfaces. It is the
bending (or flexural) wvibrational modes of wall and
floor surfaces which couple most effectively with the
room modes. Therefore calculations of bending wave
energy at distances from the source will yield useful
information on expected airborne sound energies in

distant receiver rooms.

The investigation can thus be considered as that into near field and

far field effects and both are now discussed in more detail.

Near Field Indirect Transmission

Several of the techniques of field measurement of transmission loss
of walls in the presence of flanking paths are given in a review by

Burd (1968). They are listed as follows.

(1) London (1941) suggests the use of source and receiver
microphone as close to the partition surfaces as

possible without touching and using high level sound
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(3)
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sources.' It is then assuﬁed that the flanking paths
introduce large energy losses due to diffraction and

it then becomes possible to measure the sound

pressure level difference of the partition alone.

This method is limited to certain configurations and

could not be adopted as a general technique in the

field.

In work by Ward (1963) and by Utley and Mulholland (1967)
the sound pressure level produced by radiation from

a surface is shown to be related to the vibration

amplitude of that surface: The surface is assumed to

be radiating above the critical frequency and thus to have
the characteristics of a piston radiator, i.e. the surface
vibration ‘is assumed to be co-phased. Thus, knowing the
vibration amplitude of the partition, and assuming that
this surface only transmits the energy, the sound pressure
level can be éalculated. A measure of the contribution of
flanking transmission is then possible in the supercritical
frequency range. Utley and Mulholland argue that by apply-
ing a correction for the proportion of the area of the waves
on a panel which are in phase at low frequency, the method
can be used in measuring transmission loss of a panel in
the frequency region in which the influence of the mass

law is predominant.

Raes (1955) suggests a pulse-method when measuring
transmission loss in unfinished buildings. Analogous

to structural or space insulation a 'time insulation'

is introduced by making the direct path between source
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room and receiver room microphones as short as possible,
relative to all other paths. By using a sound pulse at
the source it is possible that the direct contribution
will arrive at the receiver microphone up to 10
milliseconds earlier than the contributions from other
paths., Difficulties in this method become apparent
when it is required to measure the sound transmission as
a function of frequency. The pulse width cannot be too
small since the equivalent steady-state bandwidth is
too large.  The pulse width cannot be too large since
path separation then becomes difficult. The problem is
further complicated if one takes into account the
dispersive nature of bending waves. The frequency
dependence of the wave velocity results in an alteration

in the pulse shape as it propagates through the structure.

(4) Burd (1964) developed a method, proposed by Goff (19555.
in which the cross-correlation function of a noise
signal fl(t) is produced by énalogue means. The receiver
room microphone signal f2(t) results from the contribution
of many paths. The ruﬁning cross~-correlation function for

"a delay time T may be expressed approximately as,

.
oy (U1 (t=T)dt
T =i T i

where T is the integrating time of the equipment. On
plotting the function against delay time a series of
peaks is seen, corresponding to the different

transmission paths. The disadvantages of this method
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are the same-as those of the pulse method. It is
impossible to differentiate between the contributions
of different paths which have the same delay time,

and filtering of the signal limits the time resolution

between paths.

A method suggested by Meyer, Parkin, Oberst and Purkis
(1951) could find application in both near field and
far field measurements. In this technique it is

assumed that the same sound energy will radiate from a
wall or floor if the same bending wave pattern is
reproduced, no matter by which method. Thus airborne
excitation of the source room might be simulated by
mechanical drivers exciting the party wall, side walls
and floors etc. On removing the drivers the separate
contributions of each flanking path aré estimated. The
technique is valid in the supercritical frequency region.
Here the acoustically and mechanically excited fields
are both composed of free bending waves. The limitation
of the method is in the complexity of simulation
technique which would quickly be unsurmountable for
configurations more complicated than that or a receiver
room adjacent to the source room. It is imagined that

a fair degree of expertise would also be required in

setting up the experiment. However, the authors are

able to conclude that the contribution of direct and

indirect transmission is equal when the partition

transmission loss is 49 dB. The indirect transmission

is negligible for a 40 dB partition. The method was
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used with some success by Purkis and Parkin (1952) in

' assessing the indirect transmission with joist and

solid floors.

(6) A simpler method of assessing flanking transmission
in flats for both airborne and impact sound is given
by Eijk and Kasteleyn (1955). Thé simplifying
assumption is made that the airborne sound transmission
over more than one storey is due to flanking
transmission only. The transmission loss due to
flanking transmission between two rooms directly
over each other is determined by subtracting from the
transmission loss over two storeys the flanking
transmission loss per‘storey. In laboratory
measurements of high transmission loss walls, Hudson
and Mulholland (1971) use the same process of
subtraction in the measurement of the airborne
flanking path between the source and receiver rooms -
of a transmission suite. The path through the
instrument area adjacent to the two rooms is:assessed

by measurement of the transmission loss between the
instrument area and the source room, and then between
the instrument area and the receiver room. The values

are then expressed as corrections to the measured

transmission loss of the partition.

All analysis techniques described have atfempted; by various methods,
to separate the direct from the indirect contribution to the

transmission loss of partitions in configurations where the source
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and receiver rooms are close together. In situations where the
sound source and receiver are several rooms or floors apart the
contributions from the indirect transmission predominate, and

different methods of analysis become necessary.

Far Field Indirect Transmission

Several authors have made notable additions to the theories of
Cremer (1949) on structure-borne sound in buildings. Analyses of
the propagation and transmission of sound through various structural
junctions have been made by Cremer (1953), Budrin and Nikiforov
(1964) , Zabarov (1968, 1970), Kihlman (1970), and Bhattacharya,
Mulholland, and Crocker (1971). A full discussion of their theories
and experiment is given in section 3.4 which deals with the
transmission of vibrational energy through plates forming cross-

junctions, corners etc.

An analysis of indirect sound transmission must include a description
of the various structural wave forms by which sound propagates

throughout a building. They can be listed as follows.

(1) 1In solids which extend appreciable distances in all
directions a pure longitudinal (or extensional) wave

can be generated in which the particle velocity is

in the direction of propagation. In general, structural

dimensions are seldom such that this wave type

propagates over any appreciable distance.



(2)

(3)

(4)

(5)

(6)
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Structural elements, more often than not, have cross-
sectional dimensions small compared with the wavelength
of vibration. The particle velocity in the direction
of propagation is accompanied by Poisson expansions

and contractions perpendicular to it. These quasi-
longitudinal waves are slower than the pure wave and

in solids which are finite in two dimensions, as in a

rod, the wave velocity is further reduced.

Shear waves, which are slower than longitudinal waves,
exist in solids of both finite and infinite dimensions.
Here, the particle velocity is perpendicular to the
direction of propagation. As is described in section
3.6 on the reflection and transmission of waves at a
junction, it is necessary to assume the generation of
a special form of shear wave. This is the transverse
wave in which the particle velocity is parallel to the

plane of the plate or wall in which it travels.

The most important wave form in structure-borne sound

propagation is the bending (or flexural) wave which

occurs in rods and plates of relatively small transverse
dimensions. This wave is propagated as a curvature

along the structure.

Torsional waves result from particle rotation about the

neutral axis of the section and are found in rods and

beams.

In relatively thick structures, Rayleigh waves may be



generated in which only the surface (and layers

adjacent) are deformed.

The waveforms listed under 2, 3, and 4 form the main contribution to
structure-borne sound. Section 3.6 gives a mathematical formulation
of the generation, propagation, reflection and transmission of these
waves in structures and it is shown that, depending upon the nature
of the structural discontinuity, each of the three wave forms is

capable of generating the other two.

Field measurement of structure-borne sound is confined to bending
waves which, as stated previously, are the most efficient radiators
of sound energy from walls and floors. Westphal (1956) uses
continuous excitation and pulse signals in measuring the decrease
in bending wave energy with increase of distance from sound sources
in tall flats. Measurements by Martin and Mtiller (1956) on an eight=-
storey building.have illustrated the importanée of junctions, in the
dissipation of sound energy at distances from the sound source. By
taking a mean value of bending wave energy on each surface, contours
are constructed which indicate the frequency dependence of the
decréase of sound energy with increased distance. The decrease is
more marked with increase in frequency. Westphal (1957) in field
measurement, and by constructing an electrical analogue, is able to
show that in steél framework, high=-rise buildings, structure~borne

sound is strongly attenuated in the vertical direction.

It is interesting to note that in measurements of Meyer, Parkin,

Oberst, and Purkis (1951) and in the contour measurements of Martin
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and MHller (1956) it is seen that the decrease with increased distance
in mean ben ding energy of each wall and floor is more marked at
higher frequencies but the decrease across any one surface becomes
less. This is the result of a more reverberant (diffuse) bending
wave field being generated on each surface at the higher

frequencies. As the number of modes within the measurement bandwidth
increases the spatial variation in the amplitude of vibration becomes
less and a single value of bending wave energy level can more

readily be assigned to the surface. It is this factor which prompted
the author to attempt to apply statistical energy analysis

techniques and power flow theory to the propagafion of sound in

buildings.

Summary

In both direct and indirect noise transmission in buildings, some
sound energy is dissipated in the building material and some in the
air volumes enclosed, not forgetting the surface absorption in the
rooms. Reflection of bending, quasi-longitudinal, and transverse
waves occur at structural discontinuities such as changes in
cross-section, junctions, changes in material etc, and, most
importantly, the effect must be considered of the large impedance

mismatch which occurs at the boundary between the air and the wall

surface,

In the following discussion, the above parameters are calculated

and, by power flow techniques the transmission of vibrational energy
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through building structures is predicted. Experiments are devised,
using quarter-scale models, which establish the validity of the

method over part of the frequency range of interest i.e. 100 Hz to

3.15 KHz. It is hoped by this method that a unified approach to

direct and indirect noise transmission is possible.
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CHAPTER 2

POWER-FLOW METHODS

Introduction

Technological developments within the last decade have resulted in
increased strength:mass ratios in structural elements and, at the
same time, have produced more powerful sources of random vibrations.
In the Aero-Space industry it must be possible for the effect of
acoustic and turbulent boundary layer excitation on the mechanical
vibrational response of a space vehicle to be calculated (Ungar and
Scharton 1967). Gas circulators in carbon dioxide cooled nuclear
reactors can produce 104 Watts of acoustic power in gases at
pressures of thirty atmospheres (Fahy 1969). The cooling element.
structures may therefore be.subjected to sound pressure levels of
up to 180 dB. Many more problems exist where structures respond to
wide bands of noise and the need arises to predict fairly accurately

the degree of the response.

The low frequency vibrational response of structures having simple
geometry can be assessed adequately by classical techniques. They
generally involve the determination of the shapes of several low

order modes and the calculation of their individual response to a

specified type of excitation. The total response is then obtained

by superposition of all the responses. At higher frequencies, and

with broad bandwidths, many vibrational modes may be involved and

the determination of mode shapes, associated natural frequencies,

and modal responses becomes complicated. In practical structures
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a complete mathematical description of the geometry, boundary
conditions, and elastic properties becomes difficult and the large

amount of data generated makes interpretation intractable.

To circumvent these problems an analytical technique was evolved in
which the time-average of the response of a complex strueture (and
its distribution over the structure) when excited by‘noise of
various bandwidths, could be calculated, using easily obtainable
parameters. These techniques require a knowledge of the density
with respect to frequency of the vibrational modes, the internal
losses of the structural materials, their sound. radiation
characteristics, and the mechanical coupling existing between parts
of the structure (Ungar and Scharton 1967). Equations in terms of
these parameters, analogous to equations of heat flow in
thermodynamics, were derived to describe vibrational power flow
between structures. This technique for evaluating vibrational power

flow is known as statistical energy analysis (S.E.A).

Lyon and Maidanik (1962) first considered the vibrational power flow
between randomly excited coupled oscillators in a study of
acoustically induced excitation of simple structures. The equations
of motion of two oscillators are expressed and the power flow between
them derived.in terms of time-averaged second moments of these
equations. The oscillators are assumed to be coupled through

inertia, through stiffness, and through a mechanism which could be

either conservative or dissipative.

Expressing the two equations,
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f1 is the force on the ith oscillator and Xy is the resultant
displacement. It is seen that the mass, damping, and spring terms
of equation 2,1 are modified by including an inertial coupling A,
a coupling Bz, and a spring coupling C. When B, and B, are equal,
the coupling is dissipative, and when equal and opposite the
coupling is conservative. In addition, the sources fl and f2 are
assumed to be statistically independent and to have 'flat' power

spectra compared to the admittance spectra of the two oscillators.

From equation 2.2 the effective fozrce f? produced on oscillator 2

from the coupled motion of oscillator 1 is written,

2 " 1
fl = -Axl - lel - Cxl R 2.3

The time=-average power is therefore,

2! " ot LI )
3 = = Lo - - s e s 204
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To evaluate the moments in equation 2.4 an 8 x 8 matrix is produced
by multiplying equations 2.1 and 2.2 by the displacements and

1 '
velocities Xy0 Xyr Xpr X, and then averaging. The determinant of

the matrix is evaluated by assuming that the coupling terms are

small. Thus,
2
|a] << 1: IC|<<wi¢w2: IBI<<51e32

On evaluating the moments and remembering that with conservative

coupling the energy dissipation in the system is independent of the
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coupling, equation 2.5 is written as,

12 7 T 7 912 - ) sREOT 80

where
2 4 2 2 2
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and where e is the unperturbed energy in the ith °391;1aF??' ‘The
assumption is made that the coupling term is small and that the
actual energy level in a coupled oscillator is little'differen;

from that in an uncoupled oscillator.

If the coupling is dissipative then the equality in 2.5 does not
hold. The two oscillator system becomes a three component system

where the coupling dissipates power at a rate given by,

1 L]
s 4 N 2 g pralitle @4
jdiss‘ B ‘ (xl + }52) ) N N N 2.6

The impqrtant conclusion of the derivation is that, in conservative
coupling, the vibrational power flow can be regarded as analogous
to a heat flow resulting from energy (or temperature) difference in

the oscillators.

In extending the theory to describe power flow between two groups of
oscillators, several assumptions were necessary. The modes need to

be well separated (in frequency space), internal losses must be small,

and the response must be linear. It is then pogsible to show that,

in a given bandwidth, the average power flow from one oscillator set

to the second set is proportional to the difference in the average
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energy of the oscillators of the two sets. Lyon and Maidanik found
application of the formulated theory in predicting the response of
a baffled, simply supported aluminium beam in a reverberant sound

field.

Lyon (1963) and then Eichler (1965) applied the techniques in
describing noise reduction of rectangular metal boxes blaced in
reverberant sound fields. Lyon assumed one box surface only as
being flexible whereas Eichler considered the response of all
surfaces. The analyses are essentially the same. Both authors
were at pains to stress the frequency regions of application of
S.E.A. At low frequency (below the fundamental resonances) the box
panels and enclosed air are assumed pure stiffnesses and the noise
reduction, defined as ten times the logarithm of the ratio of the
mean square pressure in the surrounding sound field to that in the
enclosed field, is expressed in terms of the acoustic compliance
and wall compliance. At intermediate frequencies the box walls
assume a resonant behaviour but the enclosed air remains a stiffness
which loads the wall reactively. The box walls and the surrounding
sound field can therefore be considered as two ensembles of
oscillators (or two sub-systems) between which power flows. At the
lower limit of this frequency region the wall modes are sufficiently
well spaced to be considered separately. At the upper limit of this
range multimodal averaging becomes necessary. In the high frequency
region in which the enclosed air volume becomes resonant the
analysis is that of a three sub-system configuration, i.e. the
enclosed air volume, the box walls, and the surrounding reverberant

sound field. 1In the intermediate and high frequency regions the
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S.E.A. techniques were applied with success. Eichler, in describing
modal and multimodal power balance, introduces the concept of
coupling loss factor and derives a law equating the product of
coupling loss factor and modal density in sub-systems. An
oscillator, or mode, is supplied with power TTi and attains an
average energy e;. A parameter @ is introduced such that the energy
dissipated internally is expressed as eiﬁi and that lost through
coupling to the second mode as eigg. Power ej¢; returns from the
second mode. The modal energy balance is written,

Ei}:ﬁjj_- Eejﬁg = T, comnmas Dul

j i#l -

Reducing all generator powers and loss factors to zero and assuming
a general law of thermodynamics, namely, that in two isolated,
lossless systems interacting with each other, their mean energies

are in proportion to their number of degrees of freedom, i.e.

e; = ej, equation 2,7 becomes
) "y i
gi gj C I B I 2.8

If several modes exist within the bandwidth, multimodal averaging is
necessary. By discarding correlations between the modal energies
and their coupling it is possible to express double averaging in the

derivation as the product of two simple averages. The power balance

equation 2.7 becomes,

1 . - x = --.v;oa 209
wErEnr msgfr Esns ﬂr

where the power is supplied to the rth sub-system. The coupling loss

factor ‘n: has now been defined such that the power flowing from
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sub-system r to sub-system s is given bY°3ErQ§- The internal power
loss in the rth sub-system is expressed by a similar expreséion
LoErn; (OrwE 7 ) where q; (or n) is the dissipative loss factor of
the structural material. Er is the energy stored in the rth sub-
system, averaged over time and unit bandwidth. Similarly, the

equality 2.8 is modified to,
n s ma r
rnr nsqs R N 2010

That is, the products of modal density and coupling loss factor in
coupled sub-systems are equal. The simplicity of the theoretical
model is apparent but Eichler stresses the limitations to its
practical application. As stated by Lyon and Maidanik (1962), the
sub-systems are assumed linear, loosely and conservatively coupled,

and the bandwidth must be small compared to its centre frequency.

As well as the fluid-structure interaction, Lyon and Eichler (1964)
apply  S.E.A. techniques to structure-structure couplings, the
structural elements investigated being a plate with a cantilevered
beam and a plate with a cantilevered plate. The primary variable is
the modal energy and the structures are described by their modal
dengities, masses, and loss-factors. The coupling loss factor of

the plate-beam structure is derived by consideration of moment
impedances and that of the two plate structure by solving the bending
wave equation for the boundary conditions existing at the junction.

Agreement between theory and experiment, in the case of broad-band

excitation, is good.

Lyon and Scharton (1965) considered a three element structure
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consisting of two aluminium plates connected by a narrow aluminium
strip of equal thickness. On exciting one of the plates, bending
wave fields resulted on all three structural components. 1In addition,
torsional waves are generated on the connecting beam and the
technique of anaiysis needed modification in order to account for

the possible change of wave type when vibrational energy passed from

one structure to another. Two approaches were considered.

(1) If the flexural and torsional modes on the connecting
beam are considered uncoupled, the transmission of
vibrational energy from the source plate to the other
plate has two components or paths. One path is that of
bending waves on plate 1 generating bending waves on
the beam which, in turn, produce a bending wave field
on plate 2. A second possible path results when the
plate 1 bending field generates torsional waves on the
beam which then generate a bending wave on plate 2. The
two components are considered separately, the resultant
bending wave field on plate 2 being the sum of the two

contributions.

(2) If the two wave types on the beam are considered
coupled only one possible path is assumed, which is
described by an effective coupling loss factor.
Assuming that the two wave modes are well coupled then,
in any frequency band, they will come to equilibrium at

the same modal energy. The total energy in the beam can

be expressed as,

Et - (nf + nt)Em
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where Em is the averaged energy per mode, and ne and
n_ are the flexural and torsional modal densities
respectively. The effective coupling loss factor

is thus given as,

L3
ne M ltlex) + 0 M(tor)

T lett) =
r

Using equality 2.10 the power flow, within, a unit bandwidth from

the ith to the (i1 + 1)th sub-system is expressed as,

n.

irl i
n.+ == 00 H-In [ 5 — i’. as s ew e 2-11
' i n,
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add the power lost internally by,

i i
Ei is the energy stored in the ith sub-system. The ratio of the
bending wave energies of the two plates could thus be expressed in
terms of the derived coupling and internal loss factors, Agreement
between theory and experiment was fair, even when the number of

modes within a bandwidth was low.

Newland {1966) has shown that the coupling loss factor, so far
defined, and the expression 2.10 can give rise to anomalous results
if misapplied. Taking the example of the plate-beam-plate structure

of Lyon and Scharton (1965), two equalities are assumed to hold

simultaneously, namely,
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where the source plate is considered the first sub-system, the
connecting beam the second, and the receiving plate as the third
sub=-system. Newland points out that both equalities in 2.12 can
only be true if the modal densities of the plates are equal (as
was, in fact, the case in Lyon's experiment). The weakness of the
coupliné loss factor as defined in equation 2.1l1 is, it is arqued,
that it depends not only upon the coupling itself but also on the
properties of the coupled sub-systems. Newland (1966) produces

an alternative factor dependent upon the total number of modes

coupled.

The derivation employs a per£ﬁrbation technique and the first case
considered is that of two oscillators coupled through a small, purely
elastic link. Expanding the model to describe power flow between two
sets of oscillators coupled inertially and through stiffness, a
coupling factor is derived by which the power flow‘is expressed in
terms of the frequency shifts of the oscillators caused by the
coupling, and of the modal densities of both sub-systems (Newland
1968). As with the derivation of Lyon, it 1s necessary to assume
conservative, loose coupling, and the ratio of bandwidth to centre
frequency must be small. In addition, the mode widths must be

smaller than the band-width by an order of magnitude. Newland's

coupling factor is written,

=
6 - — 2# (A) ni <Awi).<&w‘+|) sessese 2-13
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where (AW;) is the average difference between the natural angular
frequency in the coupled and uncoupled states, The power flow

equation 2.11 becomes,

i+l

M = ™" §*[E& _ B swsavan Told
! 202 [y oy

The two coupling factors are related by the expression,

i+l __  n, i+l
— —-—“‘l 6 LB I 2.15

The modal densities are with respect to angular frequency.

It appears that there are two quite distinct definitions of coupling
factor and it must be assumed that two answers will result from the
analysis of any one problem. By considering coupled beams, Khabbaz
(1970) indicated the discrepancy in the value of the two coupling
factors. Newland's value, obtained by considering the frequency
shift due to coupling is about five times that of Lyon, derived by
consideration of the amplitude of the transmitted wave across the
coupling of the beams when a travelling bending wave is incident
upon it. Crandall and Lotz (1971, 1973) investigated the same
problem of connected beams and divided the approach into that of
weak and strong coupling. In the case of weak coupling, the two
methods give the same value of coupling factor and it is only in
strong coupling that the difference occurs. This, they argue,
results from the misapplication of both the frequency shift method

of Newland and the travelling wave method of Lyon. Both methods are

limited to weakly coupled sub-systems.
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Scharton and Lyon (1968) have shown that the proportionality
between time-average power flow and the difference in the time-
average energles of two linearly coupled oscillators is independent
of the strength of the coupling if the oscillator energies are
correctly defined. The analysis is extended to the case of a group
of linear oscillators, all having the same natural frequencies and
internal losses, and all experiencing identical mass and spring
coupling. Gersch (1969) and Davies (1972, 1973) have further
considered the coupled oscillator and coupled oscillator ensemble
problem. Gersch, by using matrix inversion, obtains exact
solutions for average power flow between two oscillators in terms
of second moment computations. Davies indicates that by suitable
definition of the modal coupled energy the power flow and energy
difference of S.,E.A, can be preserved for the case of strong
coupling. His results are applied to the problem of two beams
coupled by a rotational spring of arbitrary strength. Work by
Mercer, Rees, and Fahy (1971) employs a perturbation analysis in
developing expressions for the energy flow between two oscillators
connected by weak, conservative coupling, where one oscillator is

subject to transient excitation.

When deciding on a definition of coupling loss factor, ease of
application must be considered a priority. The parameter suggested
in a letter by Lyon and Scharton (1966) has the important advantage
in that it can enter the energy balance equation on the same basis

as that of the dissipative loss factor. The total loss of a sub-
system is therefore simply related to the sum of the two loss factors

times the total energy of the sub-system. Newland's frequency shift
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method may pose problems in experimental assessment. In considering

weak couplings only the experimenter is presented with the

difficulty of measuring the corresponding small shift in frequency.

Conversely, larger frequency shifts will be allied to stronger

couplings which lie outside the region of validity of Newland's

theory.

If power flow techniques are to be applied to problems of

noise transmission in buildings, we see from the above that the

following limitations and requirements must be considered.

(1)

(2)

(3)

(4)

(5)

(6)

The coupling loss factors between structures and between
structures and the surrounding (or enclosed) air need

careful definition.

The bandwidth of interest should be wide enough to

contain several of the structural or room modes.

Internal loss factors of the structural material must

be assumed low.

The bandwidth of interest, as well as that on any mode

must be small compared to the centre frequency.

In order to apply S.E.A, techniques, with special
reference to equations 2.10 and 2.11, the coupling

must be assumed small.

The vibrational fields generated on structures and in

room volumes are assumed diffuse.

Only an approximation to the above conditions is possible when

dealing with real problems of noise transmission in buildings.
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However, the attractive simplicity of power flow techniques invites
the question of whether regions of validity exist in which these
methods can be applied meaningfully. The following sections will
be concerned with the application of some of the techniques
described to problems involving building structures such as the
junction of reinforced concrete plates (walls and floors) and the
sound radiation characteristics of plates forming surfaces of a
rectangular room. It is hoped to show in this thesis that such
considerations will allow a unified approach to the problem of

direct and indirect sound transmission in buildings.

Applications in Building Structures ‘

Little theoretical and experimental work has been done in applying
power flow and S.E.A. techniques to the structure-structure and
structure-fluid vibrational energy flows in noise transmission
through buildings., This brief description of previous work includes
experiments which, although outside the area of building acoustics,

has relevance to the matter in hand.

Structure-fluid interactions have been investigated more fully than
structure-structure power flows. Fahy (1969) was concerned with the
determination of tﬁe radiation characteristics below the critical
frequency of a thin flexible panel forming one side of a box, the
dimensions of which were not large compared to the acoustic wave-
length, and where the sound field in the enclosed volume could not
be assumed diffuse. As with Bhattacharyan and Crocker (1969/70),
it is shown that the coupling between the plate bending modes and



and the room modes is most efficient when certain simple relation-

ships concerning modal numbers are obeyed. Above the critical

frequency, Kihlman (1967) argues that the radiation from a standing,

sinusoidal wave shape on a room wall is, on the average, the same as

that obtained from the same wave radiating into semi-infinite space.
>

The assessment of sub~-critical and super-critical radiation -

characteristics of plates is discussed in section 3.1, dealing with

structure~fluid coupling.

S.E.A. techniques have been successfully applied by Crocker 'and

Price in investigating the radiation and transmission characteristics
of single panels (1969) and double panels (1970) forming a partition
between the two rooms of a transmission suite. In the case of the
single panel partition, the source room, panel, and receiver room

are considered as a three sub-system configuration with, in the case
of loudspeaker axcitation of the source room, sound power flowing
from the first sub-system (source room) to the second (panel), and
from the second to the third (receiver room). If sound leakage
exists between the rooms it constitutes an extra coupling (or
transmission path) between the first and third sub-systems. A double:
leaf partition between rooms is described by an extra two sub-systems;
the second leaf and the enclosed volume in the partition. 'In.both
partitions considered, energy balance equations using equation 2.11,
are produced and, on solution, the ratios of the bending energy

fields on the plate and the sound pressure energies in the rooms are
Although successfully applied, as with previous work, the

given.

panels investigated were thin (in this case, aluminium) and had high

critical coincidence frequencies. The radiation characteristics
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investigated were, in general, in the sub=-critical region and the

bending waves were considered the only form of vibrational energy

on the plates.

When real building structures are analysed, the thickness of walls
and floors encountered does not allow the use of some of the thin
plate approximations described, to arbitrarily high frequencies.

The bending wave velocities and critical coincidence frequencies

are lower than found on thin metal plates. As well as bending
waves, other wave types must be considered. They include.longitudinal
and shear waves. In investigating the propagation of structure-
borne sound via cross-junctions of concréte piates.of thickness
ranging from 50 mm to 200 mm Kihlman (1967) considered both
longitudinal and transverse shear waves as well as bending waves.

As shown by Cremer (1948), an incident bending wave at a junction
of semi-infinite plates will generate, in the far field, not only |
bending waves but longitudinal and, in the case of oblique incidence,
transverse waves. The transverse wave arises from the need to
preserve continuity of displacement across the junction of the

plates when a bending or longitudinal wave is incident obliquely. It
has the properties of a shear wave with the additional characteristic
of having its particle displacement in the plane of the plate.
Appendix I describes more fully the generation of these waves.

Cremer was able to consider numerically the transmission of energy

at junctions for simple cases. Kihlman's theoretical and

experimental investigation was concerned mainly with the effect of
concrete floors on the sound transmission of light concrete partitions.

By use of energy balance equations, the structure-borne sound
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transmissions of cross=-junctions were predicted. Agreement between
theory and experiment was good. The methods employed in the
following sections are derived, in some cases, from the work of
Cremer (1948), Kihlman (1967), and Lyon and Eichler (1964) and
reference to their work is made in the sections on power-flow models

and the assessment of power flow parameters.

Limitations of power flow techniques in sound transmission in

buildings

In this chapter, simple parameters are defined, energy balance
equations generated, and vibrational energy ratios calculated for
the case of structure-borne sound transmission through junctions
of concrete plates and for the sound radiation characteristics of
concrete plates forming rectangular rooms. In the latter case, S.E.A.
will be applied. It is necessary however to gauge the limitations of

these techniques when applying them to building structures.

The considerations are listed as follows.

(1) In this description of power flow to and from finite systems
it is convenient to consider the vibrational fields
generated as being diffuse. The fields of interest are
sound pressure fields in rectangular rooms and bending,

longitudinal and transverse wave fields on rectangular

reinforced concrete plates.

In the frequency range of 100 Hz to 3.15 kHz the pressure

fields of small rectangular rooms have high modal densities.



Even at the lower end of the frequency range, where the
eigenfrequencies are well separated, a one-third octave
bandwidth still contains several modes. Using the low
frequency modificationcof Dah You Maa (1938) to the

standard room modal density equation,

2
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where V, S, L are the volume, surface area, and sum of
the dimensions of the rectangular room respectively, and
C 3 is the sound wave velocity (taken as 344 m/sec), it is
possible to calculate the number of modes within a third
. octave bandwidth for any room dimension at a frequency
Assuming dimensions of 2 m x 3 m x 4 m, the modal density
at 100 Hz is calculated as 0.16 modes/Hz, and at 1 kHz the
value is 8.33 modes/Hz. Therefore, within a one-third
octave bandwidth there are 4 modes at 100 Hz, 266 at 500 Hz
and 1,983 modes at 1 kHz. Thus the modal density increases
rapidly with frequency and, over most of the frequency
range of interest, can be assumed to be large enough to

allow the sound field to be considered diffuse.

Wave velocities encountered in structural vibrations are
much higher than that of airborne sound and, in the case
of bending waves, are dispersive. This dispersion results
in a modal density which is independent of frequency.

Hart and Shah (1970) give a derivation of bending wave

modal density resulting in the expression,
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where S, h, CL' are the plate area, thickness, and
longitudinal wave velocity, respectively. For a concrete
plate of dimensions 4 m x 3 m x 0.15 m and a longitudinal
wave velocity of 4,193 m/sec, the modal density is
calculated, using equation 2.17, as 3.305 x 10_2 modes/Hz.
This gives a modal spacing of approximately 30 Hz.
Therefore, within a one=-third octave bandwidth, 1 mode
occurs at 100 Hz, 8 modes at 1 kHz, and 24 modes at 3.15 kHz.
It would appear that only at mid and high frequencies can
appreciable numbers of modes be assumed to exist within a
bandwidth. However, the conclusion reached by Lyon and
Scharton (1965) from experiments on the plate-beam-plate
structure was that S.E.A. methods were successful, even
when few modes are present. Reasonable results were
obtained when only one torsional mode existed on the connect-
ing beam. Kihlman (1967) was also confronted with the need
to consider few modes and was led to look at the modal
distribution as an additional pointer. It was argued that,
if the number of modes within a band-width is low, a high
variation in response of a finite system would be expected.
However, if the mode distribution, with respect to
frequency, is smooth, an average response, averaged over
the bandwidth, will, in many cases, agree with values
obtained assuming a higher modal density or ideally diffuse

field. In bending wave fields on rectangular plates, extreme
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variations in modal distribution do not occur and the
assumption of a diffuse field may be assumed valid at the

lower frequencies.

The assumption of high modal densities for airborne sound
in rectangular rooms and bending wave fields on rectangular
concrete plates appears reasonable. The same cannot be
said about longitudinal and transverse wave fields. The
wave velocities measured are much higher, with a
correspondingly lower modal density at lower frequencies.
It will be shown in Section 3.2,3 that if equation 2.16 is"
modified to describe non-dispersive waves in a two
dimensional finite system, the following expression for

longitudinal wave modal density results.

n(v) = EEE v + (Ly+ Ly) s
CE CL T EE R 2-18

where S, Lx, Ly are the plate area, length, and breadth
respectively. For a plate of dimensions 4 m x 3 m x 0.15m
and a wave velocity of 4,193 m/sec the modal densities are
2.098 x 10> modes/Hz at 100 Hz, 5.958 x 10~ modes/Hz at
1 kHz, and 1.518 x Yo 2 modes/Hz at 3.15 kHz. Therefore,
in a one-third octave bandwidth, only 1 mode is predicted
at 1 kHz, and 11 modes are predicted at 3.15 kHz.
Longitudinal wave modal density is therefore appreciable at

high frequencies only. The transverse wave velocity lies

somewhere in value between that of longitudinal waves and

bending waves and like the former is non-dispersive. The
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modal density will therefore be greater than that of
longitudinal waves and, being non-dispersive, will increase

with frequency.

To summarise, it would appear valid to assume high modal
densities, and hence diffuse fields, over most of the
frequency range of 100 Hz to 3.15 kHz, when dealing with
airborne sound waves and bending waves. ‘However, in the
case of bngitudinal and transverse waves, the region of
validity is confined to the upper part of the frequency
range. A fuller description of the modal densities of the

various wave types is given in section 3.2 and section 6.4.

The assumption is made that the vibrational wavelengths on
concrete plates are not large compared to the plate dimensions.
This results from the theoretical assessment of the coupling
loss factors of finite plates, where the length of the
junction is assumed infinite when deriving the mechanical
impedence of the junction. Kihlman (1967) observes that it
is at least required that the wavelength should not be
greater than twice the smallest plate dimension (excluding
thickness). This condition is obeyed by bending waves which,
at the lowest frequency of 100 Hz are still of the same order
of ‘magnitude as the length of junction. A concrete plate of

dimensions 4 m x 3 m x 0.15 m has a bending wavelength of

approximately 3.4 m at 100 Hz. For longitudinal waves of

velocity 4,193 m/sec the wavelength assumes the same order
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of magnitude as the plate dimensions at a frequency of

1,25 kHz .where AL is approximately 3.35 m. For transverse
waves of velocity 2,48l m/sec, the frequency is 800 Hz where
AI,is approximately 3.1 m. Therefore, over the frequency-
range of interest, the bending waves can be thought of as
equal to or smaller than the plate dimensions;. whereas this
is true only.at high frequencies for longitudinal waves, and,

at mid and high frequenciles for transverse waves.

Edge losses other than at the junction of the plates are

assumed small.

Although longitudinal; or more correctly, quasi-longitudinal
waves on platés iadiate some sound.energ} into the o
sufroundiné ain‘béﬁding waves are mﬁcﬁ mare efficient in
this reépéct. Théy wiii theféfore be thought og as‘tﬁe only

structural vibration to couple efficiently with room modes.

Transverse waves will have no sound radiation characteristics

since their particle displacement is in the plane of the

plate. : T A

The bending, longitudinal, and transverse wave modes.
generated on a concrete plate are considered uncoupled.
Therefore, three vibrational fields exist upon a plate each

of which can be analysed separately. As stated in (4)
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bending waves are the most important structural vibration
to the acoustician and will thus be investigated more

thoroughly than other wave types.

It is assumed that mechanical excitation of the concrete
plates initially generates a bending wave field only. This
appears reasonable when one considers the relative ease
with which bending waves are excited in rods (section 5.3)

and plates (section 6.4).

Power Flow in Structural Junctions

In this section, energy balance equations are produced for cross-

junctions, T—junétions, and corners of finite plates. By simple

analysis, or by numerical methods, involving a computer, the

vibrational energies on each plate, relative to the bending wave

energy on the mechanically excited for source) plate, are

calculated. The following notation is adopted.

(1)

A2,

au

The vibrational energy of a plate E, is suffixed by b,l
or t, describing the bending, longitudinal, and transverse

components of the field, respectively.

The coupling loss factor n is defined as such that the
power flow from the bending wave field on the ith plate to

the longitudinal wave field on the jth plate is written as,

’
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it jt ' |
TTJ= an E sss s 2'19
ib ib ib

where Esy is the total bending wave energy on the ith plate,
and W is the angular frequency. As a further example of this
nomenclature, consider the power flow from the bending wave

field on the jth plate to that on the ith plate. ‘This is

written,

ib ib e
IT. = wn E L B B B BN ) 2.20
jb jb jb

(3) The internal loss factor is defined as in convention such

that the bending wave energy dissipated on the ith plate

in a unit bandwidth is expressed as,

n' — mn E. ssswwea 2.2'
ib b ib

A longitudinal loss factor ql , and transverse loss factor
qt are similarly incorporated in the energy balance
equations. At this point sound radiation losses are not

considered separately, but as a small addition to the bending

wave internal losses.

2.4.2 Some General Considerations

Before describing specific cases of plates coupled to form junctions,

it might be advantageous to analyse a generalised, simplified power

flow model and from it draw some basic conclusions,
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Consider a sub-system coupled to (n - 1) sub-systems the latter
being independent of each other (Fig 2.1(a)). Assume that the
first sub-system (the source) is excited to a vibrational energy
level E1 in the steady state. Some of the energy is dissipated
internally and some transfers to each of the other sub-systems.
Further, assume that all coupling loss factors are éqﬁal and all

internal loss factors are equal. By simplifying the expressions

in 2.19 to 2.20, the energy balance equation for the rth sub-system

is given by,

1 r cevesess 2,22
w =
E(n + n.) mEIr;l

The L.H.S of the equation describes the energy dissipated and
transferred, and the R.H.S describes energy gain. The angular
frequency @ is common to both sides of the equation and can be
ignored in this and all subsequent equations. Assuming the

equalities,

AL B S . s veavee 2.95

| Iimwl= ’?2',"'7);;"’7"= 1r)t:t:vupL

equation 2.22 gives the vibrational energy ratio,

I a8 8s s 2.24

E': — _r_]ﬂ’l’&_ -
I A
E r"dis;' ncoupl. * 1Zﬁliss‘/"’ou:tupl.
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Generalised power flow diagram_for n coupled subsystems.
(a) Subsystems coupled to the excited subsystem.

(b) All subsystems coupled to each other.

I

Fig. 2.1
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The problem can be extended by allowing each sub-system to be
coupled to each other (Fig 2.l(b)). The energy balance equation

for the rth sub-system, in the steady state, becomes,

n. ® _ n o
e sglnr) "5
s#r s¥r . ssasssa 2425

-

If the equalities in 2.23 are used, each sub-system, other than the
source, will have the same energy level. Equation 2.25 simplifies

to,

Er(ndiss iR, = l)ncoupl? = = 2)Erncoupl.+ Elncoupl.

-

which gives the energy ratio,

R e
E, 1 + Ndiss,
1 coupl. - esbaiing Bslb

=

Equation 2.26 is the saﬁe ag 2.24 and it is éoﬁcluded ﬁﬁat, for
the given model, the fatio of the energy of an§ sub-system to that
of the directly excited (or source) sub-system is independent of
the degree of coupling between the sub-systemé. A more important
resﬁlt is that, in the case of steady state excitation of a set of

coupled sub-systems, the energy ratio is dependent, not on the

actual values of coupling and internal loss factor but on their

ratio. This can be expressed as a limit,

lim Exr = 1 ' — Y
Ey

ndiss/ncoupl. - 0
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Cross Junction of Finite Plates

The junction of four plates (Fig 2.2(a)) is assumed perfectly rigid
and to have dimensions negligibly small compared to its length. It
can be thought as the intersection of two plates, in whiﬁh case,
plate 1 has the same dimensions as plate 3, and plate 2 has the same
as that of plate 4. This symmetry will be used often in

simplifying the energy balance equations.

Bending Wave Fields

If, as is likely, at low frequencies, or for the case of thin
plates, bending waves are considered the only form of vibrational
energy, the flow diagram (Fig 2.2(b)) is simplified by disregarding
the longitudinal and transverse components. Further simplification
results from assuming that the vibrational fields on plate 4 are

equal to those on plate 2. Therefore, no power flows between them.

As described earlier, energy balance equations are produced for each
plate in which the L.H.S describes the energy flowing from or
dissipated in a plate, and the R.H.S describes energy flowing back

to the plate from the connected, or coupled plates. Thus for the

bending wave field on plate 2,

1b 3b, . 2b 2b ‘
Ezbmb + qzb + nzb} = Byt E3bn3b seesere 2208

@

On plate 3,

1b 2b 3b 3b



(a) Cross=-junction of four finite plates, one of which

is mechanically excited into bending vibration.

(b) Associated power flow diagram,

= 5=
(a)
mechanical
exciter Fiand
plate 1
plate 2
plate 4
plate 3
T?n
(b) -
Elb EH ,Elt
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Egp| [Ey 4t > Eov| [Bar| | Eat
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Fig. 202
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From equations 2.28 and 2.29 the bending wave energies on plate 2
and plate 3 are expressed in terms of that on plate 1. By simple

manipulation, and by use of the equalities,

2b 2b

| -
5B, ™k o

3 _ 1b
n2b n2b

nlb _ n3b
' '3b 1b ' veeesss 2.30

the energy ratio for plate 2_13 given as,

2b 3b
2b n .1
n + 1b 1b
1b 2b 3b
E nb +2n + 17
_2b = 1b _ 1b
E 2b 1b
b 2n .0
1b 1b 2b
Ob +2n - 2b 3b
20+ 20 47
1b 1b sweweas 2331
and, for plate 3,
2b 1b
3b 2n .0
n + 1b 2b
1b 1b
. | Ub + zqzb
3b = 26 1b
E1p ; 3b 26 20 . 7
qb +NnN +27 = 1b 2b
1b 1b 1b
ﬂb + 27
2b awwnesy Sedd
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2.5.2 Non-diffuse Longitudinal and Transverse Fields

In section 2.3 it has been shown that, at low frequencies and mid
frequencies, the longitudinal and transverse fields generated
cannot be thought diffuse. Kihlman (1967) argues further that
although bending waves may produce longitudinal and transverse
waves at the junction of plates the fields generated suffer
appreciable edge losses at low frequencies. Therefore these non-
reverberant fields are not involved in the reverse power flow but
rather act as energy sinks. Thus, the L.H.S of equations 2.28 and
2.29 have additional power loss terms describing the transformation
at the junction of bending waves into longitudinal and transverse

waves which dissipate energy through internal and edge losses.

For the bending wave field on plate 2, equation 2.28 becomes,"

1b:1 .t 2b 2b
E,,(, +2077""") = E, .07 + E;0
2b b 2b 1b lb 3b 1b L B I 2033
and for plate 3, . . ‘
2b,Ll ,t 3b 3b 1b
E,,M, + 277" "7+ p7") = E,. 7 + 2E,,1 s sanwes TyIlk
3b™'b 1b 1b 5% Wiy o

The notation in equations 2.33 and 2.34 has been altered to shorten
the expressions. The loss factor describing the transformation of

bending waves on the ith plate to bending, longitudinal, and

b,l,t
transverse waves on the jth plate qj 'r*** is such that,

ib
jbol,t _ db . L, 3t
nib nib nib qib

The energy ratios in equations 2.3! and 2.32 become,
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2b 3b 2b,l, t 3b,l ;t
E, _ b 15'1b 1b
E ’ 2b lb 2b,l ,t
1b nb < 2nlb L,t - 27 / (qb " 2" (O n3b;lpt)
2b lb 2b 1b eees 2435
and,
3b 2b lb 1b,L,t
3b = b 1b'2b
Elb nb + 2n2h,l,t + n3b,l,t _ 2n2bnlb / (nb + ZQIb Ly t
1b 1b 1b 2b cese 2.36

2.5.3 Diffuse Vibrational Fields ' ' ' N

At high frequencies, the wave fields other than bending wave fields
can also be considered diffuse, Reverse power flow must now be
taken into account. Thus, the 'paths' shown in the flow diagram
(Fig 2.1(b)) ‘are all two-directional and more terms are added to
the L.H.S and R.H.S of the equations 2.28 and 2.29. Not all
possible paths have been considered in this modification e.g: the
transmission from longitudinal and transverse waves on plate 1 to
similar wave types on plate 2. These paths are described by
relatively small coupling loss factors and yield small energy
transfer. The resultant fields are therefore considered secondary.
The validity of these assumptions is seen in section 4.4 and

]

Appendix [l where numerical values of related parameters are'given.

For the bending wave field on plate 2,

2b

It ' .37
Eapllpt 2myp) = Ibnlb M Ellnll e " ol Eal Il Eaz u sses 23
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and plate 3 gives,

2bLt 3ot 3b 3b Ib Ib
{n +2nb *h )= Edy *+ E.-'.It T n +282172b+2E 11 n

...2-38

21 2l 21 2t

Equations 2.37 and 2.38 have terms involving longitudinal and
transverse energies on all three plates; the energy balance

equations for longitudinal energy are,

2b 3b,L,t 1l 3l 3t 3L
E,, (‘ql + 21;“ gk UM ) = 2E,m5p * E3’°"1b + E3ln1b + E3t"1t

LU B B 2.39

1b 21 21
E + 2 m E + E
2t M, nzl) wh, 7l censann 4O
2b . 3b,l,t C1L 3L 3 3l
Ey ( n + 2r,-lt + UM ) 2E2bq2b + Elbqlb + Eu"u + Elt"n'

'S EEEERER] 204'

and the transverse energies are,

sesEces 2-42

2b . _3b,l,t 1t . _ 3t~ 3t 3t
E,..,M_+2n  +7 ) = 26,7 +E,N +E,n  +E.7
17t e ae Woy  Whan B g
1b 2t 2t
E..(. + 20 ) = E. N°" + E,n
2t 't - w7 Taplyy
2b  _3b,l,t 1t 3t 3t 3t
E. (0 + 2 - ) = 2E, 0+ E; 0+ EN 4+ ELT
aptlle + & 0 2pl, VRN R T Rl

.......-. 2.43

ssssoee 2.44



The equations 2.37 to 2.44 use the equalities 2.30 plus the

following,

2b
3l

2b
3t
3L

1t
1
3l

1l
3t

1t
3t

1l
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2b
1l

2b
1t

a
1

3t
1l

31
1t

3t
1t

=uwrry =%

Equations 2.3 to 2.4 could, with lengt

each plate energy in terms of

¢

Py

TR N W 2.45

hy manipulation, yield

the bending wave energy on plate 1l.

A more convenient method is that of expressing the equations as a

matrix which can be inverted by use of a computer.

matrix is defined as,

(a] (] = [c]

which is expressed more fully as, '

Thus the

CRCNC B R 2046



nc"zrfg 7, 0 —En;l;b 0 = '"rabl 'U?L '"|3: — —u_ ~° *
S R
-nib -nftb mznlzn:t ¢ ? ‘nlzbb _nib '”?tb £ ’?azbb
“. plate _
SN T
P el LBt o o] |2
'rﬂt M My 00 0 71{+r13?$7f:’ "0 B n|3|:
] "7.3: -7?': _2n|2tb 0 0 0 o‘ n+ ,ﬁ%nlztb 3 ’f;J

>Matrix inversion,

g

b (5] = [a]™ [c]

U — nm ey . @

¥ | 3 3
will then yield all vibrational energies relative to the bending

i~ S, r

wave enerngén”platell. The numerical methods employed are

discussed in Chapte:_e:

LA

2.6 T-Junctions of Finite Plates
!“"d"’f ‘

The junction of three plates can be thought of as a large plate

from 'which is cantilevered a smaller plate (Fig 2.3(a)). Either

the large plate or the cantilevered plate can be mechanically
LgEN e "tyqi® v, wheres Tha "opde O
excited, each giving different power flow diagrams. For the case
s * gt re . T I ATl e
where the large plate is excited (Fig 2.3(b)) the procedure of

g T R

obtaining the energy ratios is the same as that for a cross-junction.
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lh___h
mechanical
exciter

(b)

1b 1 1t

plate 3

2b 24

2t

3b 3l . 3t

(a) T-junction where the large plate is mechanically

“excited into bénding vibration.

(b) Power flow diagram, °

Fig. 2.3
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Many of the energy balance equations are the same except that a
factor of two is removed from some of the terms. The energy

ratios will, therefore be stated directly.

2.6.1 Bending Wave Fields

The energy ratios are obtained by modifying equations 2.28 and

2.29. The energy on plate 2 is given by,

2b 2b
] +'?.31:‘/”,1)“? + 3%
2b = 1b 1b 1b 1b lb
E 1b 2b 1b 3b
1b ’Tb+27] -7 /(qh+1] +n7)

2b lb 1b csssase 2.47

and, for plate 3,
)

3b . 2b 1b . 1b
] + / (M. +77)
b = 1b nlbn2b b oy
E 26 _3b 26 _1b 1b
1b Ny #0777 + 977 =19 .n / M, + )
% i i R teeees. 2.48

2.6.2 Non-diffuse Longitudinal and Transverse Fields

Equations 2.33 and 2.34 when altered, give for plate 2,

2b _3b 2b,L,t 3b
B - Mo+milg £y g R
.2bh = 1b 1b 1b 1b
L,t 2b_.1b 2b,L,t 3b
ECRENE N RetbAaEl et /mb+n AT
2b  1b 2b 1b 1B weessen 2449

and for plate 3,

1b;l ;E
: U I DAL R e
3b = b 1b 2b 1b2b T =
2b,L ,t 3b 2b AN}
E1b N, * 1 - +07 =0 ./ (7 )

1b 1b l1b 2b 2b
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2.6.3 Diffuse Fields o -

Fnﬂib 0 -n";b 0 0 0 | 0 0 g "'Eu' r-o -
N A M o0 0 o g [o
_nib —nf:’ ngziag.t 0 0 -qf: _;712:’ _nl2tb €, nfbb
0 0 5 0 "{'27};- 0" vt 0 0 3 qua
0' . ‘-0 0 0 ntfzq;_bt ‘"ﬁ: o 0 , ffbt
0o o b b b B oo | e | |
0 0 G, O 0 0. Wib o | e, [o
0 0 -1r112‘~b 0 0 0 0 1)‘ nﬁb €, 0

) JLU1 L

LI B I 2.5'

The matrix describing the energy balance equations.

™

2.7.1 T-Junction Where Cantilevered Limb is Excited

Figure 2.4 illustrates Fhis copfiguration?with the associated
power flow diagram. As in the analyéis of the cross-junction,
plate 4 vibrational flelds are assumed equal to thosg'on plate 2,
and;;h; eﬁefﬁf b;iaq;e equation need only be cénaideréd foruélaée

2. Adopting the procedure of the previous sections, initially,

assume the bending wave fields only as reverberant. The energy

ratio of plate 2.is, therefore, . . .. . ... ., . . .,
r.'21:1
i 7 - i Tk, %‘r"E LA tTe lb, kL
2b =
o X I 1b
fml Dewar f1au J'H?Elb; Hb +1
2b LU BN B ) 2.52
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(a)

mechanical
exciter

(b)

3b 3l 3t

(a) T-junction in which the cantilevered plate is mechanically
excited into bending vibration.

(b) Power flow diagram,
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2.7.2 Non-diffuse Longitudinal and Transverse Fields

Equation 2.52 néeds_little modification and the ratio becomes,

- . i

‘ n2b
E . 7 '1b
SR, WA 1blt
B MptR -
2b‘f * s v e e e 2-53

2.7.3 Diffuse Longitudinal and Transverse Fields

The matrix describing this case 1is,

—q+2"fw . e ‘:’-’7;, _2,,:[ al j r'E;t-_- i
. T"’.inzf.m‘t "20;) -27!.":1 - -27,; it <
S R T el 0 £y | = |12
'n?: “nit g "f'”;bfl 0 Y r)lz;

B R S AL

48000 2-54

2.8 Corner Junction of Finite Plates _

pa.

Figure 2.5 gives the cohfiguratibn‘and flpw diagram of a corner
junction. The energ;.ratios c;lculated‘are the same as in the
previous section; when assuming bending waves as the only form of
vibration, use equation 2.52, and when considering longitudinal
 » ‘and ‘transverse ifields as non-diffuse, use equation 2.53. It is

‘* necessary; of course,-to incorporate the coupling loss factors of

a corner junction into the equations.



(ﬂ.) =62 = Figo 265

//Jf

mechanical
exciter

plate 2

(p)
r?n
Eip Ev | | Bag|
"I"’ o~ E wt
Eob By Ext

(B R 2l i CER I i ‘. *
(a)”’ Corner junction.

(b) “Power flow diagram.’
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When all fields are assumed diffuse, the energy ratios result from
a matrix similar to 2.54. The difference being that the elements

containing a factor of two have this factor removed.

Power Flow Between a Surface in a Room and the Enclosed

Air Volume

When dealing with the power flow from the bending wave field on a
plate, forming one (or part of one) surface of a room, into the
enclosed air volume, a coupling loss factor nr describes the flow
of energy from the plate and qb describes the flow from the room
to the plate. Thus, a vibratizg panel radiating into a room where
all other surfaces are assumed rigid (a fair assumption for the
case of a scale model panel radiating into the receiver room from
the aperture of a transmission suite), can be represented by the
power flow diagram in Figure 2.6(b). There are two sources of
power input; mechanical excitation of the plate and loudspeaker

‘excitation of the room. From this diagram, two alternative energy

balancé equations result,

"wqub B 2c.oEbnr s wErnb'+ nmech. essesss 2455
b r
and,
OOErnr + ooErnb = QOEbnr + rTacoust. essssese 2,56
r b

where nb and nr are the plate and room loss factors, ;espectively.

] 1

Again, since the angular frequency & is common to every term, it

is disregarded. The factor of two in equation 2.55 indicates that



Fig. 2.6
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(a) Vibfatiﬁé panel radiating into a reverberant room. -

(b) Power flow diagram.:
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the plate is radiating into both the source and receiver rooms.

If the plate only, is excited, equation 2.56 becomes, -

EXp + Erp® = Ebn:
b ug

and the resultant energy ratio is,

r
]
Er = bb
EDb N+
s 2 Y ememane Sed

In order to simplify this expression, use is made of the following

considerations and assumptions.

(1) Because the modal densities of the bending wave fields
and the pressure wave fields are appreciable (as
discussed in sections 3.2.1 and 3.2.2), and because the
coupling loss factors are, in general, much smaller than
those encountered in structural coupling, the problem is
brought within the range of S.E.A. In particular, use

is made of the equality in 2.10. Thus,
b r ; o
RA = 7
e v, sonsann TuSE

where nr and n  are the pressure wave and bending wave

modal densities, respectively.

(2) It will be shown in Chapter 3 that the coupling loss
factor qr is simply related to the radiation resistance

of a plate, If a plate is suspended within a room then the

radiation of sound is into 4 1 space. For a plate placed
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in the aperture of a transmission suite, the radiation
from each side of the plate is into 27 space. The
assumption will be made that the coupling loss factor
into 4 m space is twice that into 27 space and unless
stated, the latter will be used in this discussion.
Therefore, in equation 2.55, the coupling loss factorn:r
b

is the same as that in equation 2.56.

(3) When placed in the transmission suite aperture, the edge

losses of the plate are assumed negligible.

(4) As well as the reverberaht receiver room, the plate is
coupled to the source room. This room ié thought heavily
damped (or in conventional terms, has a high average
ébsorption éoefficientl; glving semi-free field conditions.
Any power radiated into this room is therefore totally

absorbed; none returning to the plate.

(5) Equatibn 2.57 contains a room loss factor term qr which,
although not the accepted method of describing the sound
absorbing characteristics of a room, can be shown to be

simply related to the classical ékpressions (section 3.3.2).

-

Using 2.58 in equation 2.57, gives,

r
N
.E_r =
Eb nr + EE.nr
n. b veeesss 2.59
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If the only source of power is the loudspeaker, the

equation 2,55 becomes,

Eb), + 2Eb)° = Ern® . eeeee. 2,60
b
b ¥
which gives,

nb p*

EE e= nr b

Er r

Ny, + 21
b ssasesae 2.6'

For both cases, the resultant energy ratios are seen to
be dependent upon the internal loss factors of the plate
and the room and the coupling loss factor between the

- bending wave field and the pressure fileld.

The description, so far, has been of an experimental rather
than a field situation. In noise transmission in buildings,
all wall and floor surfaces will radiate, and be excited by,
airborne sound energy and the equivalent flow diagram
involves many sub-systems. Also, structure-borne sound
will flow between the plates making up the room surfaces.
This more complex situation is investigated in Chapter 7
describing noise transmission between rooms. However,

this simple model allows an experimental approximation

and a resultant measurement of the radiation loss factor

nr (Chapter 6).
b
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Summary

To summarise, by using power flow techniques anﬁ S.E.A., a unified
approach to noise transmission in buildings is postulated. The
vibrational energy flow between plates forming various structural
junctions, and between plates and the surrounaing air, have peen |
investigated. Using energé balance equations, the relative
vibrational energy for each‘wave type on each piate, and within-the
room volume, has been calculateé’in terms of simply deflned
parametefs. These inclqde the resbective mod;1 densities of each

wave type, the internal loss factor of the material, and the

"

coupling loss factor between each pair of sub-systems. It now

remains to assess these parameters theoretically and experimentally.



CHAPTER 3

THEORETICAL ASSESSMENT OF POWER-FLOW PARAMETERS

The simplicity of application of power flow techniques in describing noise
transmission has been shown in Chapter 2. The problem becomes more
complicated when an attempt is made to define clearly the parameters used
in the energy balance equations. Parameters such as the internal loss
factor of a material and the modal density of a vibrational field are
relatively easy to describe and to measure. However structure-fluid and.
structure—strudture coupling loss factors demand a more detailed discussion.
Along with the contributions of previous authors, this chapter is concerned
with the theoretical assessment of structure-fluid coupling, modal density,

loss factor, and structure-structure coupling which exist in buildings.

3.1 Structure-fluid and Sound Radiation from Plates

The sound radiation characteristics of a vibrating plate are
influenced mainly by the efficiency of the coupling between the
bending wave modes on the plate and the room modes. Before
discussing the mechanism of this coupling a description is given of
the sound radiation characteristics, i1f any, of other wave types

which contribute to structure borne sound propagation.

3.1.1 Radiation characteristics of Structural Waves other than

Bending Waves

In the generation and propagation of bending waves in structures,
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near fields are produced at any discontinuity and, if a mechanical
exciter is used, around the driver point. Heckl (1959) equates

the radiation contribution of this near field on a plate to that of
a piston type radiator of radius one-quarter of the bending
wavelength. This contributiqn is independent of plate size and

becomes less important at higher frequencies.

Quasi-longitudinal waves have a pafticle displacement normal to the

surface of the plate due to lateral contraction described by the

Poissons ratio. Sound can therefore be radiated into the surrounding

medium, and is appreciable if the plate is surrounded by liquid of
large acoustic impedance (Romanov 1969). However, in the case of
air, this radiation is negligibly small, and abnormally large

structural vibrational energies would be necessary before any

appreciable radiation resulted.

Transverse shear waves which result from obliquely incident bending
waves at a junction have their direction of propagation and particle

displacement in the plane of the plate and therefore no sound

radiation is possible.

The sound pressure field generated by a vibrating plate has near
and far field components. Greene (1961) indicates that the near

field results from the volume flow of air between adjacent areas

which are vibrating out of phase. The sound pressure produced

decays rapidly with distance (54.5 dB per wavelength for a plate
with many nodal lines) and can therefore be ignored. 1In the

following discussion therefore, the sound energy radiated by a
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plate is that of the far field.

"Coincidence Effect"

The dispersive nature of bending waves results in the existence of
frequencies where the bending wavelength, or a component of it, is
equal to the airborne sound wavelength. This "matching"” results in
a sharp increase in sound energy transfer between plate and air and
the phenomenon is known as coincidence. Cremer (1942) first
developed a satisfactory concept of coincidence by describing an
infinite plane pressure wave impinging upon an infinite pl;te

(Fig 3.1). ‘it is seen that the angle ¢L at which the sound waves
incident on the plate are freely transmitted, is given by,

-]
¢% = sin :

>| >

A
where Xi is the ratio of pressure wavelength to plate bending

wavelength.

The frequency at which coincidence occurs at an angle ¢% is given by,

'U'c = 300/ (ﬂclh Sin ¢°, ssesene 3-1

where C, is the longitudinal wave velocity, C, the airborne sound

velocity, and h the plate thickness. It is seen that the coincidence

‘frequency varies inversely as the square of the sine of the angle of

incidence and that it cannot occur for plane waves normally incident,
At grazing incidence (i.e. sin¢, = 1) coincidence occurs at the
lowest frequency possible for that particular plate thickness. This

frequency is known as the critical coincidence frequency and is
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Aston University

Nlustration removed for copyright restrictions

s R

An infinite piane wave impinging upon an inf!nlte‘plafe.

(Cremer 1948)
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given by,

.
'Uc ey 3c°/ (ﬂ cLh) a8 88 3-2

Although Cremer's concept of coincidence assumes the plate to be
infinite in area, the phenomenon is encountered in all .transmission
loss experiments. These measurements, involving finite plates, show
that coincidence occurs at the frequency of grazing incidence
(equation 3.2). However, Bhattacharya and Crocker (1969/70) argue
that the agreement between the results of Cremer's infinite plate
concept and finite plate measurements is accidental. It is further
stated (Bhattacharya, Guy and Crocker 1971) that the coincidence
effect of finite plates forming part of a rectangular enclosure.is
best approached by consideration of the modal character of the plate
and room vibrations. Just as with Cremer's theory, Bhattacharya's.
concept gives the critical (or first) coincidence as occuming when
the wave vector in the room is at the grazing angle of incidence,
under conditions of maximum coupling and panel resonance,

Subsequent coincidences occur at frequencies which obey the following

condition
(u = vc/2)2 - L2 - 1 R 303
(Ve/2)2 (a.”c/co)z

where | =0, 1, 2, ¢ceces

l is the cavity mode number in the direction normal to the flexible
plate and a is the room dimension in the same direction. The
relationship between v and | given by equation 3.3, has the form
of a hyperbola. The critical coincidence (L=0) gives the maximum

transmission of energy. The subsequent coincidences, given by
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higher values of | , have a gradually reduced transmission.

The descriptions of coincidence by Cremer and by Bhattacharya are
deceptively similar, and it is left to Yaneske (1972) to underline
the fundamental differences between the two. Using the generalised
concept of energy transfer between-any load form and any shape of
system displacement, Yaneske shows that a maximization condition
corresponds t; thé load being present both 'at the right time' and
'at the right place"relative to the gystem displacement. The first
condition i; described as resonance and the second can be described
by a term such as being coupled'. Since Cremer deals only with
unbo;nded systems, resonance is automatic and tﬁe coincidence effect
can be described solely by the Eondition in space which maximises
the amplitude of the induced free wave in the system. Bhattacharya
and Crocker use the term coincidence to describe several optimum
conditions which must occur simultaneously. The condition of being
'at the right time' requires that the bending wave on the plate and
the ﬁréssﬁre.fiéid in the room must both be in a state of resonance.
The condition of being 'at the right place' demands that the plate
modes and the room modés are well coupled. The two conditions are

separable and the need for them to be satisfied simultaneously shows

that true coincidence in finite systems will rarely, if ever, occur.

Bhattacharya et al also point out that it is theoretically impossible

to visualize coincidence in a finite plate unless it is backed by a

cavity. This conclusion results from the fact that plane progressive

pressure waves can only be assumed to match freely propagating

bending waves on a plate. Conversely, standing waves in an enclosure
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will generate standing waves on the plate. It is not possible to
visualise the matching of a standing wave on a plate with a freely

propagating wave in air.

Nomenclature

In the following discussion the parameter used most often is that
of radiation loss factor nrad' However, reference is now made to
other parameters which have been used in describing sound radiation,
and their relationship with each other. GUsele (1953) assesses the
sound radiation effeciency of a vibrating plate by comparing the
intensity radiated to that of a piston type radiator of the same
area and vibrating with the same velocity amplitude. Thus if the

sound intensity radiated by the piston is given by,

where v is the velocity amplitude, S the plate area, and popo'is'
the characteristic impedance of air, then the parameter s describing

the radiation of the plate under observation is given by,

g = I/Io
where I is the actual sound energy intensity radiated by the plate.
The constant s is known as the sound radiation factor or efficiency
of the vibrating surface and in general has a value near to or less
than unity over most of the frequency range. Gdsele shows that for
an infinite plate the radiation factor becomes infinite at the
coincidence frequency and then rapidly tends to unity for the higher

frequencies. This well known expression for radiation is reproduced
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below.

2 -,
s = (1=(AJAY) AZ A

:5=O A(A ' 2

.o 8880 3.4

The simple expressions in 3.4 have been modified in two ways in

order that the equation describes more realistically phenomena at

the subcritical region.

(1) GYsele shows that if a finite plate is considered then the
‘bending wave on it is a standing wave. Instead of being
zero, the subcritical value of the radiation factor s will
increase with increase of the ratio of bending
wavelength to plate width,A /a . Heckl (1959) appears
to give an explanation of this increase by suggesting
that the modal form of the plate bending wave field results
in cancellation of all contributing vibrating areas
adjacent to each other, except at the edges which give a
resultant finite radiation. As the plate width decreases

.with respect to the wavelength, this edge effect assumes

‘greater importance.

(2) westphal (1954), by incorporating internal damping into
the derivation (thus making Young's modulus complex) shows

that the subcritical values of s increase with increase of

internal loss factor of the plate.

In both modifications described the equations give a finite
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value of s at coincidence.

Reference is often made to the radiation resistance Rrad of a

structure in work on S.E.A. Examples are Lyon and Maidanik (196l)
and Fahy (1969). Maidanik (1962) defines the radiation resistance
as the sound power radiated by a panel divided by the mean square

velocity of the panel, averaged on time and space. Thus,

TTa

Rrad = >
(VP, LR N 3-5

The related radiation loss factor is given by Fahy and Wee (1968)

as,

Rrad

Trad =
Mpw a8 8889 3.6

where Mp is the plate mass.

The modal behaviour of plates

A vibrating finite plate can be described as a two dimensional
array of piston radiators which may reinforce or cancel each other,
depending on whether two radiating surface elements are in phase or

out of phase.' Maidanik (1962) and Crocker and Price (1969) qive

comprehensive descripfions of this phenomenon.

The vibration modes of a finite plate can be divided into modes
with resonance fregquencies above critical coincidence and modes with

those below. Crocker and Price describe the former as'acoustically
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fast (i.e. the bending wave velocity is greater than the speed of
sound) and the latter as acoustically slow. A subsonic bending
wave produces an airborne sound wave which because of its greater
velocity, causes cancellation of the contributions of adjacent

surface elements vibrating out of phase.

Figure 3.2 illustrates three important cases. When the bending
wave speeds parallel to both edge directions are subsonic, the
acoustic pressure generated by a phase element (or quarter wave
cell) is cancelled everywhere except at the corners (Fig 3.2(a)).
When a mode has a supersonic bending wave parallel to one edge and
a subsonic wave parallel to the other edge, then cancellation will
result everywhere except at the two edges (Fig 3.2(b)). The last
case (Fig 3.2(c¢c)) illustrates the surface mode which results when
the bending wave is supersonic in both directions. Here, no

cancellation occurs and the whole of the plate surface radiates

sound energy.

Rectangular walls radiating into rectangular rooms

In section 3.1.2 it was mentioned that one of Bhattacharya's

conditions for the occurrence of coincidence was the maximisation of

coupling between plate and room modes. In work by Kihlman (1967),

Fahy (1969), Bhattacharya and Crocker (1969/70) and Nilsson (1971)

the coupling between the pressure wave modes in the room and the

bending wave modes on the plate are evaluated. The plate can be

part of or all of one wall surface, or the partition wall between

two rooms.



Fig- 3.2

Aston University

llustration removed for copyright restrictions

Wavelength relations and effective radiating areas for

three modes. (Crocker and Price 1968).
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The method adopted by each author is essentially the same and
consists of calculating a coupling coefficient 822 between' the
room modes m,n (in the directions parallel to the plate edges) and

the plate modes q,r. This coefficient is expressed as, -

ff Sin Sin_ cos _'z cos ngz dY dz - spwssas 3.7

where b and ¢ are the plate dimensions.

On evaluating this coefficient, Bhattacharya and Crocker show that
certain combinations of room modes m,n and panel modes q,r give
zero values to Bg;. No coupling is then said to occur. For the
conditions that do give coupling equation 3.7 reduces to,

an = A 4gr
\ qr n2

(m2 - q2) (n2 - r2)' d s 3.8

Equation 3.8 gives maxima when,

TR

1+

1+

1 UL L B 3-9

Thus, a maximum results when the panel modes are closest to the

room modes but have different parity.

Féhy (1969) fﬁrtﬁ;;‘differentiates modal coupling into well coupled
Qnd proxiﬁéte éoupled modes. In the subcritical frequéncy range,
ﬁB.shoéé Ehét the (m=qg + 1, r=n + 1) type coupling'is not
ndrmally ﬁossible.i The most éfficient coupling occurs between

modes éldéé-ih natural frequency {lesé than half the sum of their
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bandwidths apart) and have the best available wave component match
in directions parallel to the plate edges. The modes are then
said to have maximum proximate coupling. In the supercritical
frequency region the (m=q + 1, r = n + 1), well coupled modes v,
predominate. Fahy's analysis is complicated by the statistics
needed to describe quantitatively the contribution of each type of

modal coupling...

The problem can be simplified by remembering that for the concrete
plates investigated the radiation characteristics are those in the
frequency region above critical coincidence where theory gives a
radiation efficiency close to unity. Kihlman (1967), in calculating
the average sound radiation from a wall with standing waves of
sinusoidal shape, shows that, above critical coincidence, the
radiation is on the average very nearly the same as that obtained
from the same wave when radiating into a semi-infinite space. This
conclusion was drawn by comparing results from calculations using

wave analysis to those derived from simple energy methods.

v

Radiation loss factor and the effect of different boundary

conditions

Although wé aré here érimarily concerned with the supercritical
frequency region of concrete plates, it may be of interest to
calculate the radiation loss factor over the full'audio frequency;
range. The calculation is that of Maidanik (1962) whose derivation,

using a tranform method, is corroborated by Donato (1973) who uses
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a direct derivation.

Experimental confirmation is given by Crocker and Price (1969).
Although developed to explain the acoustic response of ribbed panels,
the theory is applied successfully to simple panels forming
partitions. The value of radiation loss factor 47553 into half

space, of a plate of mass Mp' area Sp' and length of sides ll' [2

is given by,

~

[ACACIISP) 2(v[1g:}gl + [2”‘1+ lzn\clsplgg V<Y,
; /a2 JF :
= A% LA+ (A V=,
rad,” 2Tpvh . .
=/2
(1= yfv) - ' V>,
) o swswwve 3430
F 2 1/2 12 ,
where (4/m }“-'UIVC)I(WIUC] “"'UIVC} ) v<y/2
gl = =
© o v>y )2

2 1 /e 12 3/2
9, = (2M 1U=vfv ) talli+ ) (1= (V[V} N+ 20v[v) 1 [U-v]v )

e

P, and p are the air and plate densities respectively, Aa is the
acoustic wavelength, and Ac is the coincidence wavelength of the
2n
i ced concrete plate of
panel. The plot of nzad for a reinfor o)

thickness 150 mm, is given by the solid line in Figure 3.3.

It is seen that the subcritical response and the value at critical
coincidence are dependent upon the plate dimensions whereas the

supercritical value is simply dictated by the ratio of the critical



3.1.7

- G4 -

coincidence frequency to the frequency of vibration. More
specifically, Maidanik concludes that the subcritical coupling is

proportional to the length of the plate's perimeter.

So far the plate has been assumed to be simply supported and that
no near fields are produced at the plate edge. Both Maidanik (1962)
and Smith (1964) show that at frequencies below coincidence the

radiation contribution of near fields produced on free or rigidly

clamped plates must be considered.

By considering an infinite beam-plate system, Maidanik shows that
the radiation resistance (and therefore, the radiation loss factor)
of a plate with boundaries which give rise to near fields is twice
that of the simply supported plate when the frequency lies below
coincidence. At higher frequencies, the near fields become
progressively less important and the radiation resistance approaches
the value of that of a simply supported plate. Thus, in Figure 3.3,
the dotted line lying 3 dB above the solid line describes the
radiation loss factor for free or clamped plates. It would be
thought that experimental points will lie on the dotted line bélow
coincidence frequency. Above coincidence the two lines would be

expected to act as the envelope of experimental points, the tendency

being to assume the values of the solid line at higher frequencies.

Summary

When describing the radiation characteristics of reinforced concrete

plates, simple energy methods are used. The critical coincidence
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frequency is thought to be the only observable coincidence and the
modal characteristics of the plate and the room are ignored at
supercritical frequencies. More specifically, the radiation of
the plate is assumed independent of its situation, e.g. whether it
forms part of a rectangular room, or is radiating into half-space.
In the same frequency range, the effect of boundary conditions can
be neglected. By these simplifications, the sound radiation into
half-space from a vibrating plate can be expressed in terms of the
radiation loss factor such that sound power flow TT; from the

bending wave field E, on a plate, into a room is given by,

b
r r
My = wnyEy ceevene 3.11
where X 27
1 b L rad

In this way the sound radiation characteristics of walls and floors
making up rectangular rooms, can be introduced into the energy
balance equations, described in Chapter 2, in the same way as the

internal loss factors and the structural coupling loss factors.

Modal density

The‘modal-density of some wave types has already been given in
section 3 of bhapter 2, and it remains to glve a description of the
equatioﬁs used in their calculation. The modal distributions of
interest are those of pressure waves in rectangular rooﬁs, and

bending, longitudinal, and transverse waves on finite plates.
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Pressure waves in rectangular rooms

Several authors have derived the expression giving the number N of
modes, or eigentones in a rectangular room having frequencies less
than a value ¥V . Morse and Ingard (1968) give the solution of the
wave equation for the boundary condition that all surfaces are
acoustically ‘hard'. If #i is the velocity potential, the sound

wave equation is given as,

2, L=
Vy-2¥=o

A solution of the wave equation can be written as,

e lnx mNy nllz
Y = exp(-iwt) cos —= cos Ty °°° 1z sswswne 312

where Lx, Ly, Lz are the room dimensions. The integers l, m, n are

such that
4].[212 lznz & mznz i nznz
Cco? L2 Ly2 L ssnens 3419

For modes with frequencies less than V , equation 3,13 becomes,

M

4 2 l2 + mz + n2
— 2> T3 T2 T2
Co Lx Ly Lz searees 3.14

Thus, in(l, m, n) space, any point having positive integral
co-ordinate§ represents an eigentone. The total number of eigentones

below a frequency V is given by the number of points in the positive

octant of the.ellipsoid represented by equation 3.14. The number of

points equals the volume of this octant.and .therefore the number Np

of eigentones having .frequencies less than V is given by,
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4T (2Lx‘U ) (2Ly‘u ) (
/
3 Co Co Co cos teesess 3415

_ 1 2LzV, _ 4T Vv v
e 8 3

where V is the room volume.

The expression 3.15 is asymptotic in that the wavelength is assumed
small compared to the room dimensions. Dah-You Maa (1939) shows
that, at low frequencies, correcting terms need to be added to the
expression. Points lying on the co-ordinate planes are shared
between two octants and those on the axes by four octants. Therefore
equation 3.15 is corrected by the addition of half the number of

points on the co-ordinate planes and half the number on the axes.
The equation becomes,

3 2

4T v v nm s v 1 v
up 3 3 Y 3 2 Y 2%
Co Co LR I 3.16

where S is the total surface area of the room, and L is the sum of
the three room dimensions. The modal density is obtained on

differentiating Np with respect to frequency. Thus,

2

Nnp = dnp _ 4TV Y + m g V + L
dv i 2 2 2Co
3 Co 3.17
co . . -......' L ]

Bending waves on plates

The derivations of the vibrational modal densities on simple
structural elements are described in a review by Hart and shah (1971).
For a simply supported rectangular plate the standing wave solution

to the bending wave equation is expressed as,
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where the wave number K is related to the plate dimensions Lx, Ly

2 _ (pO,2 qll, 2
-K [(Lx) + (LY) ] * e 8 0 e 3-18

Thué, two component wave numbers are defined,

b Lx an o4 LY sessses 319

such that

AKx = -I-H:— and AKy =

&=

for unit increments of p and q.

-

In K-space the number of resonant frequencies is given as,

[
N (W) = dK dK sasdase 320
b AK, AK H Xy

y
Sp

where Sp is the plate area.

The integral is evaluated using cylindrical co-ordinates and on

assuming that the plate radius of gyration is h/ J12,

Thus, O Nblv}.-=--EEv

The modal density is therefore, _

dNp(V) _ V3 Sp veeesss 3.21

I'ibn” =
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The expression for modal density in 3.21 is that of thin plates.

Using his universal dispersion curve Nelson (1971, 1972) shows that
the modal density for plétés which are not thin compared to bending
waveléhgth, has a vaiue larger than that predicted.using thin plate
theory. A correction factor Kp is incorporated and this is defined

by the expression,

h K
K =
P ca/C,

where Cg/Ca_is the ratio of bending wave velocity to the surface

(Rayleigh) wave velocity. The corrected modal density for bending

waves on plates is then,

.ncorr¢(‘U) i n(v) Kp - ) sssssee Ja22

It will be seen in measurements of bending wave modal density of
model reinforced concrete plates (section 6.4) that the theory

described by Hart and Shah is adequate in predicting experimental
results, " .

]

3.2.3 Longitudinal and transverse waves on plates

The modal distribution of longitudinal and transverse waves on
reétangﬁlar.piétes can be considered as a two dimensional analogy

to that of pressure waves in rectangular rooms. This analogy is
valid if the waves are thought non-dispersive, and on assuming that
perfect reflection occurs at the plate edges. Thus, for longitudinal

waves, the two dimensional analogy to expression 3.12 is given as,
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Ipl exp( iNt) cos Ly cos Lz *R e e e 3 .23

where the plate lies in the x-y plane and has sides Ly, Lz.
Similar to the derivation given by equations 3.12 to 3.14, the modes

with frequencieé less than a value V are given by,

4'02 rrl2 + n2
28 T B o2 T -
cl Ly Lz sesssss 3.24

Taking .the positive quadrant, the total number of modes with

frequency less than v is,

N, - %n (2chv (AR nspu_z
L CL s s 0ase 3.25

where Sp is the plate area. The modal density becomes,

. i 2nisp V_
L = qv 7 2
ct . ..--.... 3.26

similarly, at low frequencies a correction can be added to equation

3.26 allowing for the points lying on'the axes of intersection which

have been halved. Equation 3.26 becomes,

Msp v 2 (Lx + Lz) ¥
A " 2 T cL w 3427
cl ¥ L . Y EEEEE] .

£}

giving the modal density

' dN - 2N sp Vv (Lx + Lz)
n = .2l - — i N
l d‘u clz Cl s eam 00w 3.28

The modal density for transverse waves is stated directly,

2n sp ¥V + (Lx + Lz)
t - ctz ct a8 ss 0 an 3.29
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Loss factor -

Th; followiﬁg discussion on loss factor is primarily concerned with
the internal dissipation of building materials, due to the effect
of imperfect elasticiéy rather than the effects of épplyigg damping
to existing structures; Thus, work on the inc?eased damping in .
sandwich structures contéining one or mofe 1;yers of viscéelgstic |
material will not be.considered. Neither will the effecté of
structural linkagesﬂ;uch AS rivets or bolts in steellpiﬁte be
discussed. The increase in damping due to fhe éttachment.of a

viscoelastic layer to the surface of a plate is analysed experi-

mentally in section 6.6.2.

Definitions and nomenclature

so far, the internal dissipative loss factor 7 ‘has been described
in terms of the energy balance equations given in Chapter 2. 1In -
his description of the dynamic properties of viscoelastic material,
snowdon (1968) describes the concept of the complex elastic medulus.
The strain-is no longer simply related to the stress, but that the
complex modulus E has a real component describing the storage
modulus and an imaginary part describing the loss. The ratio of the
imaginary to the real component is known as the loss factor. Other

terms used are loss tangent or loss coefficient. Thus the complex

modulus is written,

E = E (l + in’ seasass 3.30

Internal losses in a building material such as reinforced concrete
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can be caused by a variety of mechanisms involving the aggregate,

cementing material, and reinforcing rods.

Kuhl and Kaiser (1552) show that the effect of crevices causes an
increase of damping with increased vibration ampiitude for brickwork
but not for concrete. The increase of loss factor with increase in
frequency is explained if it is assumed that 0.1% of the material
consists of loose particles. However, as stated by Lazan, although
information is available on metals and polymers, (Pisarenko, 1962),

little is known of the physical micromechanisms in non-metallic

materials.

As well as the internal loss factor there are several parameters
which describe the dissipation of vibrational energy within a
material. If the material, in the form of a bar, is excited into
resonant vibration, the peak in the amplitude of vibration remains
finite due to the internal damping present in allvmaterialé. As the
damping increases the peak decreases and the bandwidth of half power
points increases (Fig 3.4(a)). This magnification at resonance is
described by the Q-factor which is calculated from the half power
bandwidth (1)2 - 1)1) in the expression,

Vr

Q = =——

where vr is the resonant frequency of the beam or system. The inverse

value of the Q-factor gives the loss factor.

Instead of the steady state response, the transient response of a



Fig. 3.4

no damping
(a)
small damping
large damping
o ' 'O frequency —»
(b)
(¢)

‘resonance frequency

(a) Half power bandwidth method.

(b) Decay method.

(¢) Admittance circle method. .



- 95 =

system can be measured in calculation of loss factor. On removing
the source of excitation the amplitude of vibration decays at a
rate dictated by the internal losses. (Fig 3.4(b)). It is possible
to talk of the logarithmic decrement § of the decay. This
parameter is calculated from the measurement of the ratio of

successive amplitudes ai/ai+1. The well known expression is,

a; | Q;
,Sr.:ln_' - —Ln_l.
Gis1 n Gisn

The logarithmic decrement yields the loss factor by means of the

expression,

N O
T

The decay is also described by the reverberation time T which is

the time required for the amplitude to decay to one thousandth of

its initial value. The loss factor is derived from reverberation

time by means of the expression

N
N

=
il

ddesven 3.31

L~
3

where V is the-resonant frequency, or if noise of finite bandwidth

is used, it is the centre frequency of the bandwidth.

From the argand diagram of the real and imaginary components of
displacement, which results as the system passes through a resonance

Kennedy and Pancu (1947) are able to calculate the loss factor

(Fig 3.4(c)) of the system.

Consider a single-degree-of-freedom system subject to an alternating
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force F_ expliwt)
mk + cx + Kx = Fy exp ict)

where m is the mass, ¢ is the viscous damping coefficient, and K

the spring constant of the system. The displacement is assumed to
be sinusoidal, thus

x = x expliwt)
and the equation becomes

2
~wmx o+ 1WXc + Kxg = Fo

In a review of material damping by Bert (1973) it is shown that the
stiffness term and the damping term can be combined to form a

complex stiffness as follows.

K = K + iwec = K(1 + 1in)

From which

Fo
% = m-w%)+mK Ve aeies 3e3e

The accepted expression for natural frequency is,

and if ‘the force amplitude Fo is expressed in terms of the static

deflection’xS then

Substitution into equation 332 glves



On separating into real and imaginary components,

X
s

x =
o Wwe 2
Wngg T

o

F

understand the shape

substitutions.
2 GF
n = "5
o
2
Y =(1=-n)

The real and imaginary

X
X = 5272
Y4
Y = - T;xsz
Y+

This is the equation of a circle of radius

-
2

In this equation the angular frequency «w is the variable. To

2

[«]

the imaginary axis is cut at (0,0) and (O,

-81)-1

X

—

8
2N
x

=
n

).

L L B 3.33

of the argand diagram make the following

LB L 3-34

LR N 3.35

.'.l.‘-- 3.36

(Fig 3.4(c)), where

If the damping is measured by the rate with respect to frequency at

which the response falls away from the peak then look at the rate of

change of X with respect to . .
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Thus,
HE 5 Y e Y
fﬁérefore

dX _ _ 2% |
dﬂ ooz nz F ssesees 3.37

Remembering that the radius of the circle is _g rearrange 3.37,

1

N = z%‘-/ (ax/an)
N = 4 x RADIUS / (dx/4n)

The rate of change of real component of displacement is measured

with respect to fregquency as indicated in Figure 3.4(c).

The three methods of assessing loss factor were incorporated in

experimental measurements of material constants described in

section 5.6.

i

Room loss factor

In sections 2.9, 6.5.3.4, and 7.2 the sound pressure field within

a room is considered a separate subsystem which is coupled to the
bending modes generated on the enclosing room surface. As with
other subsystems the room is assigned a loss factor which describes

the energy dissipated within. Normal analyses of room absorption

relate the average absorption of the room surfaces and the air

volume to the resultant reverberation time. Eyring's formula (1930)

is stated directly.
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T = 0.162V/ [4mV - S 1bge (1 - X)] snenans 3.38

where m is the attenuation constant of air (in metres-ls, 62 is the
average absorption coefficient of the room surfaces, V the room
volume, and S tse surface area.r It is seen that, without loss of
consistency, the room loss fgctox‘_nr can be expressed in terms of
the surface and air absorption. Using equations 3.31 and 3.38

n - 13.58[4nv - S log, (1 - X)] oewsnws "3s39
r vV

Thus the room bss factor can be measured using reverberation

techniques or predicted from values of average room and air

absorption.

Transmission characteristics and structural coupling loss

factor of .junctions.

]

Tﬁe transﬁission‘and }eflectioﬂ of vibrational energy at struétural
discoﬂtinuities ;ésrgirst coﬁgidered tﬁeoretically by Cremer (1948).
He derived the ﬁech&nical impedance and the transmission and '
refleétion characteristics of structures, such as ;6ds, beamé, and
plates, when excited into vibration. The main results of this and
other work is published in a book by Cremer and Heckl (1967).

A

eflecfions in structures result from chénges in"éfoas-seétidn,

v

Wave ¢

sperrmassen (descrete masses), changes in material, and changes in
direction which occur at corners and other junctions. Cremer derives

the amplitude of the reflected and transmitted waves by considering

a simplé travelling bending.wave, or longitudinal wave, incident at
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the discontinuity. The waves must satisfy the boundary conditions
existing at the discontinuity. Thus, at a corner of two rods, it
is necessary to assume continuity of vibration displacement, slope,
bending moment, and shear force. Each boundary condition gives rise
to an equation, and these sets of simultaneous equations allow the
calculations of the various wave amplitudes. Complex structures
give rise to many equations and the problem easily becomes
intractable. Cremer deals numerically only with the simplest cases,
and he produces little experimental verification. However, other

authors were able to confirm much of the theory.

Exner and:B&hme (1953) use models to investigate the frequency
dependence  of the reflection and transmission characteristics of
thin elastic layers inserted into rods of duraluminium. The rod
(40 mm cross-section and 1.7 m length) is excited at one end into
bending or longitudinal vibration, depending upon the angle of the
axis of the driver to that of the rod. The driver consists of a
speech coil suspended in a magnetic field. The coil is attached to
the. test piece and a signal voltage applied across it. This is a

common method of excitation and is referred to in section 5.4.

The other.end of the duraluminium rod is damped by being inserted

into sand. The reflected wave amplitude is reduced to a fraction of

that which exists at a free termination. Over the frequency range
investigated (200 Hz to 2 KHz), Exner shows that this fraction is

less than one tenth. The rod can thus be considered semi-finite.

The amplitudes-of the waves produced on either side of: the elastic

layer were measured by means of accelerometer tronsducers and
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results gave good agreement with the predictions of Cremer.

Similarly,” experiments of Mugiono (1955) involved model aluminium
bars of rectangular cross-section. These bars produced wave reflec-
tions by having one or two changes in cross-section. The measured
amplitudes, again give good agreement with theory. Kurtze, Tamm,
and Vogel (1955) studied the reflection and transmission of bending
waves at the corner of two perspex rods; again thought of as semi-
infinite by having their free-ends sand-damped. Theory on the
alteration in the transmssion characteristics at corners which
results on inserting elastic layers at the corners was affirmed by
experiment. Hinsch (1960) investigates the more complex problem of
cross-junctions, using small rods of perspex and aluminium. From
his results and conclusions an attempt is then made to determine the
sound damping which occurs at structural joints in buildings, thus
eliminating the need for field measurement. Budrin and Nikiforov
(1964) give a numerical analysis much the same as that of Cremer and
Hinsch. Heckl (1964) applies similar methods when investigating the

vibration of grillages and other simple beam structures.

Further theory by Cremer (1954) considers the energy transfer, in the
form of bending and longitudinal waves from a beam to a plate.
Important, -practical application of this work 1s seen in the need to
assess the ‘sound 'bridging' effect of short rods and the resultant
alteration in impact sound insulation of floating floors and airborne
sound insulation of lightweight double walls. Paul (1968), in
experiments with bars and plates saw application of his results to

buildings where vibrational energy in floors is transmitted by



=103

supporting pillars.

Care is needed when applying the results and conclusions, from the

simple theories and experiments described, to the more complicated

situations existing in buildings. The areas of application are

limited by.the following factors.

(1)

(2)

So far, the vibrational wave has been assumed to impinge

on the discontinuity at normal incidence. This is true for
the case of longitudinal and bending waves travelling

along rods and beams. These structures are thought of as
one~ or two-dimensional systems and calculation is
simplified. However the results and conclusions of this
theory are easily misapplied to the three-dimensional
structures in building.. Here, waves on a plate, forming
part of a junction, can impinge upon the junction at an
oblique angle. Indeed, if the vibrational field on a plate
is thought ideally diffuse, then all directions have equal
probability of occurrence. The need to consider the angular
average of the transmission characteristics of a junction,
rather than the value at normal incidence, is analogous to
the assessment of sound absorption coefficient of a room
surface. The normal incidence absorption coefficient, as
measured in an impedance tube, cannot be simply related to

the reverberant absorption coefficient as measured in a

" diffuse sound field.

In the calculations of Cremer et al of bending waves on bars
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and plates it is assumed that bending wavelength is several
times larger than-the thickness of the structure. Thus'the

effects of rotatory inertia and sheer forces are neglected.

(3) The beams and plates are often assumed infinite or semi-
infinite. Thus, at a junction of two or more rods, one
reflection only is thought to occur as a result of an
incident wave. The waves are thus considered free and-
progressive. If the rods were finite, reflections would

occur at the free ends and the vibrational fields would be

comprised of standing waves.

These discrepancies between the theoretical and experimental models
and the situation existing in the field have not prevented attempts
to apply results and conclusions of the former to the latter.

Zaborov (1968, 1970) calculates the airborne sound insulation of wall
constructions in the presence of flanking transmission by considering
the contribution of each flanking path in terms of a transmission
coefficient Th , defined as the square of the ratio of the

vibration velocity before and after the junction, i.e.

&

Implicit .in his argument is that in structure-borne sound propagation,
energy losses occur only at discontinuities i.e. the losses are
independent of the length of wall. Zaborov was able to draw the

following conclusions concerning noise transmission.
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(1) For the configurations investigated,'the reduction in
vibration level at a junction was predicted. Theory which
admits to the existence of bending waves only gave

' ‘essentlally the same result as that of more complex theory

"in which longitudinal waves are included. The predictions

differed by less than 1 dB.

'(2) 'The increase in noise level in a room, with a single wall
construction, caused by flanking transmission is
approximately 1.5 dB to 2.5 dB. This corroborates the
practice in the standards in several countries of subtracting
2 dB from the transmission loss of barriers measured in

.

"7 ' transmission suites to give the real loss in a building.
(3) The airborne sound transmission losses of multilayer wall"
' constructions in buildings are considerably less than that -
measured in a transmission suite where no flanking
transmission occurs. In many cases it was found that the
value measured in the field is completely dependent upon the

flanking transmission.

-

Therefore, by careful application of these results, useful design
criteria might be formulated from the simple theories. However, it
is'argued that a closer theoretical approximation to real structures
is necessary before dfawing meaningful, and more generally applied,
This, subsequent authors have attempted to do.

conclusions.

Lyon and Eichler (1964) calculate a junction absorption coefficient
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for a T-junction., This coefficient is defined by Heckl (1962) as
the power absorbed at the junction, averaged over all angles of
incidences, divided by the averaged incident power. The vibrational
field is assumed diffuse. The calculation is simplified by assuming
the plate thicknesses are equal and that the boundary conditions
existing at the junction are satisfied by a free travelling bending
wa;e. Quasi=-stationary near fields, longitudinal ahd transverse

waves are ignored. A relatively simple expression for the junction

absorption coefficient results.

It is Cremer (1948) who first gives a solution to the case of an

obliquely incident bending wave at a junction which takes into

account the generation of other wave types. The boundary conditions

are thus more correctly satisfied. The configurations considered are

simple, thereby allowing numerical calculation. An example is the

corner junction of two walls of equal thickness. By use of a computer

Kihlman (1967, 1970) calculates the transmission at a cross-junction

of finite, concrete plates for all angles of incidence. The

frequency dependence of the angular averages are then produced.

Using methods similar to that of Cremer and Kihlman, a theoretical

model of the vibration transmission at the junctions of infinite

plates is now described. Transmission coefficients are defined and

calculated, and, from them, the coupling loss factor is derived.
Angular and frequency dependence of the transmission coefficients

are illustrated and several plate configurations are investigated.



3.5

=106 =~

Assumptions in the derivation of structural coupling loss factor

The bending wave theory

In describing bending waves on plates or walls, classical (Kirchoff's)
plate theory is employed. Thus, in figure 3.5, a bending wave on

plate 1 is governed by the equation,

4 4
V - K =0 sevoe0e 3.40
{I b!l

where {I is the displacement in the z-direction i.e. normal to the

plate surface.

The wave number Kbl is defined by the relationship,

h
K = "lﬂwa tsemnne 3-41
by B

where Bl is the bending rigidity which, for a plate is given by,

3
Eyhy

By ® 1201 - ;;121 oy

El is Young's modulus, My is Poisson's ratio, h1 is the plate

thickness, and p, is the material density. Implicit in this

derivation is that the time dependence of the equations can be

expressed as exp(iwt).

The classical equation 3.40 cannot be assumed to hold to arbitrarily

high audio frequencies. Timoshenko (1921) and Mindlin (1951) have

shown that, at the higher frequencies, when the bending wavelength
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assumes the same order of magnitude as the plate thickness, the
effects of rotary inertia and, more importantly, shear must

be considered. Cremer (1948) incorporates corrections for both
effects in his modified bending wave equation which for present

purposes can be expressed as,

v - K:Ig' + i(|+2n+plleh<:|vzgl + %2u+pllcm4g' a0 eereees 3,43
where I/A is the ratio of moment of inertia to cross-sectional area.
The constant € is known as the shearing distribution number and it
results from the non-uniformity of the vertical shearing stress
component over the plate cross=-section. 1Its value is always greater
than unity; for a circular cross-section it has a value of 1.18 and

for a rectangular cross=-section it has a value of 1.2.

The last term in equation 3.43 combines both corrections and can be
ignored at frequencies where the separate corrections (the third
term in the equation) first become appreciable. On substituting the

values of the parameters into equation 3.43 the corrected bending

wavelength is obtained from,
h
i .2
A - ?\bl (1 - 3.6 t—ﬁl) )

ma. L L 3.44

for a plate of thickness hl' If the cross=-section is circular, the

correction becomes,

r
1,2
Koo, = OBy L= 3004 x5 ! sowewss 3448

where r is the radius.
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Wave velocity calculated using this corrected theory differs from
that calculated using the simple theory by approximately 10% when
the wavelength is six times the plate thickness. This somewhat
arbitrary value is often quoted as a limit to the application of

simple bending wave theory.

Figure 3.6 illustrates the calculated bending wavelength for
reinforced concrete plates of thickness 150 mm and 200 mm. Both
the simple theory and the corrected theory are shown and it is seen
that the difference in predicted wavelengths is appreciable
(approximately 10%) at a frequency of 1.4 KHz. Measurement of
bending wavelength on specimen rods of building material (section
5.3) indicate that the corrected theory gives the best agreement
between measured and predicted values. The assumption 1s therefore
made in the derivation of coupling loss factor that the bending wave
number Kb is that calculated using Cremer's modification to the

simple theory.

Free bending waves

If a plate is excited over the whole of its surface by impinging
ailrborne sound waves the bending wave field generated will consist
of forced waves, the velocities of which are dictated by the airborne
wave velocity and its angle of incidence at the plate. Below the
critical coincidence frequency, therefore, the forced waves are
propagated with velocities greater than those of free bending waves.
Above the critical coincidence frequency, a diffuse airborne sound

field will generate forced waves which will be propagated as free
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bending waves. In section 6.5.4 the critical coincidence frequency
of a reinforced concrete plate of thickness 200 mm is calculated

to be approximately 80 Hz. For a plate of 150 mm the value is
approximately 100 Hz. Thus, over the frequency range of interest
(100 Hz to 3.15 KHz) the plate radiation characteristics lie within
the supercritical range. It therefore appears reasonable to assume
that the bending waves generated on the plates will be propagated as

free waves.

Near fields

It has been seen that the bending wave equation (equation 3.40) is
of the fourth degree. Even at normal incidence, the boundary
conditions that exist at the junction cannot be satisfied by
reflected and transmitted travelling bending waves alone. It is
necessary to consider quasi-stationary near fields which decay
rapidly with distance (see equation 3.46 below). When the incident
bending wave is oblique, these near fields have a trace velocit§
along the junction, equal to the trace velocities of all other waves
generated. A concrete plate of thickness 150 mm which has a normally
incident bending wave has a calculated near field which decreases to
one tenth of its amplitude at a distance of one metre at a frequency
of 100 Hz. At 1KHz this distance is less than 150 mm. It is

therefore assumed that these near fields do not contribute to the

vibration energy level of the plate.
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3.5.4 Mechanical impedance

So far, only the wave field in plates at a distance from the free
and fixed edges have been aescribed. The analysis becomes more
complex at the edges, where forces and moments may be applied.

Dyer (1960) uses Mindlin's plate equations in obtaining the
impedance when a moment is applied to a small disc in the plane of
the plate, the edge of which is infinite in extent. It is shown
that classical theory may give erroneous results when the radius of
the disc of application becomes smaller than the plate thickness.
Similarly, Eichler (1964) uses classical theory when calculating
the admittance of a semi-infinite plate excited by a stud attached
to its edge. He concludes that more complex theory becomes
necessary only if the width of the stud becomes smaller than the
plate thickness. Kihlman (1967) argues that the method of Dyer
might be of use in assessing the range of validity of classical
theory, even when the plate edge is subjected to moments and forces
along the whole length, This is possible, only if the phase is

assumed to vary slowly along the edge.

The derivation of impedance (Appendix I) assumes the junction is of
infinite length. Thus, application of these results to plates of

finite dimensions 1s meaningful only if the junction is at least the

same order of magnitude as the bending wavelength.

It therefore appears that application of simple bending wave theory
has a frequency limit determined by conditions occuring at the plate

edges as well as conditions at a distance from them.
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Obliquely incident bending wave

The problem of a bending wave incident at the junction of four
plates will now be considered. The plates are assumed semi~infinite
and the junction line is thought to be of iﬁfinite length (fig 3.5).
The cross-junction is thought to be the intersection of two infinite
plates and therefore, plate 1 and plate 3 are assumed equal; and
plates 2 and 4 are equal. This symmetry allows the following

simplifications.

(1) The bending, longitudinal, and transverse wave fields

on plates 2 and 4 are equal.

(2) The longitudinal and transverse fields of plates 1 and

3 are equal.

Internal dissipative losses are assumed small and at this stage are

neglected.

Thus, consider an impinging bending wave, of unit amplitude, incident
at an angle ¢1 to the junction normal (fig 3.5). The displacement

in the z-direction on plate 1 1s expressed as,
41 - exp(imtlexpf-il(b[y sin¢|l{¢xpl-iKblxcos¢})+

Tblexp[lkblxcosqbl) + Tn|¢"P(Kn|“)} ssecsee 3.46

The time dependent term, commonlto this and all subsequént expressions,
will be assumed implicit and will, therefore, not be expressed. The
first term inside the curled brackets describes the incident bending
wave, the second term describes the reflected bending wave, and the

last term is that of the quasi-stationary near field. The complex
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coefficients Tbl, Tn1 describe the amplitude of these wave
components. The wave number Knl is expressed in terms of the
pProgressive bending wave number Kbl by inserting the solution
EXP(-Kblysinqbl) exp(Knlx) into the bending wave equation 3.40,

This gives

2,
Kn, = Kby (1 + sin“¢,) ceevee. 3.47

Similarly, the bending wave transmitted on plate 2 has the form,

Ez = gxp(-iszysinsz){sz exp(-ikbzzcos¢2) + Tnzcxp{-anz}} weren 348

and, on plate 3.

43 — e::p{—iKbaysind'&::‘!,’Tb3 exp[-iKbax cosqS) + Tn;;"‘p('”Kn;;x)} eraee 3.49

The first term on the right hand sides of 3.46, 3.48 and 3.49 describes
the junction trace velocity which must be equal for all waves. That

is, Snell's law is obeyed, giving,

Kbl sin¢l = Kb2 .'sin':P2 - Kb3 91n¢3 sEaeeee 3490

In addition to the bending wave fields, longitudinal and transverse
fields are generated in plates 2 and 4, and, to a lesser degree, in
plates 1 and 3. It is again noted that the transverse waves (in
which the direction of propagation is perpendicular to the direction
of displacement, and both are parallel to plane of the plate surface)

result from the need to satisfy the boundary conditions when the

bending wave is obliquely incident.

In considering these waves it will be convenient, initially to
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describe them using a single amplitude coefficient T Therefore,

on plate 2 the displacement is given by,

42 = exp (-iKb1y81n¢l) T{tz sesesese 3-51

and on plate 3,

E = exp (—iKb1YSin¢1) Tlt3 seseees 3-52

3

As in the expressions for the bending waves, the exponential term in
equations 3.5!' and 3.52 describes the trace velocity which is equal
for all wave types. In the five expressions listed there are eight
unknown amplitude coefficients of which five are of interest; namely
Tbl' sz, Tb3, Tltz’ Tlt3' By incorporating the boundary conditions
at the junction, the amplitude coefficients will be calculated and
hence the transmitted energy in that particular wave form. The
boundary conditions are the continuity of displacement, bending wave

slope, bending moment, and shear force. It would be more correct to

describe the continuities as occuring at,

=‘.

2

% = P&
2

o

z = + 1

@

However, the plates will be assumed to have negligible thickness,

thereby simplifying calculation.
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Continuity of displacement

This condition is expressed as,

€ 2,0 = &5 (R, teeeses 3.53

41 (x)x__o = 42 (z)z=o b ‘3 ‘x)x=0 sassssne 3.54

Substitution of the expressions 3.46-3.52 into equations 3.53 and

3.54 gives,

Ing ™ Tyeg = Ty cinsias 358
Tn) = Ty = 1 = Th cessess 3s56
Tny = Tigo = Thy T

This will allow the substitution and elimination of the near field

coefficients in later equations.

Bending wave slope

At the junction the slopes of the bending waves are continuous. Thus,

¢ 26,

(EEly - (2 (

ax X=0 oz I=Q ox X=0 ssesssss 3.58

On substitution,

-iKjcos@p, + iKI°°s¢ITbI + K Ty ichos¢2Tb2+ Knp Tho =-iKjcos P T, o= KniTns
sas san e 30 59

For simplicity the suffix b of the bending wave number is not shown.
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3.6.3 Bending moments

The sum of the bending moments about the y-axis is zero. The general

expression for the bending moment at the edge of plate 1 is given by

Timoshenko and Goodier (1951) as,

Mx = ~B‘_£L+p|5§'2

The sum of the bending moments is therefore,

2
_Bltg;g_ plg?zl -2B. 22.53 322] + 31{532:43- + pl-azj = 0 ceseea. 3.60

Substituting the five wave expressions into equation 3.60 gives,

2 2 2
Bk, “I1 - (1 - poysinp 1o, =BK,“(1+ (1 - p1)51n2¢1]x
240 - p

2 2 .3
Tny + 2B, [ K,“ = (1 = p ,)K,“sin qbll'rbz-zaztxz

1

2 ., 2 2401 o 2 2
K 51n¢13Tn2-BlKl [1-(1 H,)sin ¢>11Tb + B K “IL +
(1-p1}sin2¢1:rn3+nx [1-(1-p)sin¢] 6 O

sssseen 3.61

3.6.4 Forces in the z=-direction

At the junction of the plates forces will result from the linear

movement found in the longitudinal and transverse waves and from the

torsional moments in these plates.

The first type of force can be expressed by considering the impedance

Z 4o Which relates the force Fleo in the z-direction to the velocity

m{z.
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The derivation of Z £2 is described in Appendix I.

The second type of force results from the bending experienced at

the edge of a plate and is given by Timoshenko (1940) as,

= B (=2 o - =2
Qz I x3 t2 pl}ax ayz} LR RC B Y 3-62

The statement that the total force in the z-direction equates to

zero is expressed as,
Ql - Qz - 2F L 0 ssssnea 3.63
Substitution of the wave expressions into 3,62 and 3.63 gives,

2(, -

3 2
-iB K, “cosp, [ 1+ (1 - H 1) sin ¢>1 ] Tb, + B, Kn; K,
2 3
(1 - 'ul) sin ¢’1] 'I‘n:L - ilel cosqbl (1+ (1 - pl) ginngljx

2 - _ 2 3
Tby + ByKmK “[1 = (1 = 4 ,)sin"P ] Tny + 1B K, “cos¢p  x

2
1L+ (1 - K ) sin ¢1J - 1202, T4y = ©

LR NI 3-64

3.6.5 Forces in the x-direction

As well as a longitudinal and transverse wave resulting in plate 2
from the incident bending wave the transmitted bending in plate 2
will cause a longitudinal and transverse wave (say of third class)

in plate 1 and plate 3. The addition of forces in the x-direction
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gives-zero. Remembering that the bending wave fields in plate-2 and

pPlate-4 are equal and the longitudinal and transverse wave fields in

plate 1 and plate ‘3:are equal, then

Substitution gives,

OC...I.I:3-065

L}

1B2K2cos¢2 { K22 + (1 - }.1'2)'1(1251112(#1] Tb, = B,Kn, | K22 -
e - 2 2 . - . L .
T = B Tsin®G ) Ty — 40y Ty, = O o e g 2406
i keosp) [k =ikcosp) O K 1.1
kgt lcosgbl k3%, o;ﬂ o -kn2 T kn|
0 "{kn?; k gosﬂl —lkn-ii kl‘.:“:sq} knl kn2 T.o 0
T SEKk2T T 4Bk wpi 0 =2 [Itz-l-(l—y}lfsir?ﬁ] T 28 k2
11 22 1l %% I b3 | = |28k
O 2
“Sfafctgle Bl Rt -
aklcosgfllu-l-{l-pllslr?éﬂ 0 +iklco:4>|[lc-fl-pl)sln ]} ..(zwzm} 0 Tiea X
, s _
o Bk pRu-ukle RS T X 1) | I D
’ 22 - %ﬁ io 0 e2a 221 I B 0
0 ik gos pUCI-IRsiE +Wu.3} ]

By substitution of the wave expr.essions into the boundary condition

equations ‘a 'set. of simultaneous equations are obtained which allow

the calculation of the unknown coefficients Tb,, Tb,, Tb,,

Tlt3'

where

2
X B,K‘;’z{Knl[l-ll-p,lsin2¢l]_iKIcos¢| [1+ {1=pt,)sin ‘i‘n]]

Tiear

The set of 1equations can be expressed as the above matrix,
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To obtain the transmission coefficient at an angle of incidence it
is necessary to calculate the energy intensities of the incident

and transmitted waves. The general expression (Cremer, 1948) for
the intensity (or power per unit length) of a bending wave impinging

at an angle ¢ to the normal is given as,

2
Iine, () = LHMcC V cos¢p ssweave S467

where Cb is the bending wave velocity, V is the transverse velocity

amplitude, and M is the mass per unit area of the plate. If the

wave is sinusoidal and of displacement amplitude T then,

v = iwT
Also make the substitution,
20
Cb = Xb

The expression 3.67 now becomes,

L. ($) hp[TI coﬁ# ceeees. 3.68

where h. and p are the plate thickness and density respectively.
Thus, on plate 1, a wave of unit amplitude, at an angle ¢1 has an

intensity,

3
Tinc (¢1) - hpl‘lcl cosqbl ceescss 3.69

The transmitted bending wave intensity on the ith plate is given by,

3
Ii (¢1) = ipi K lTbil cos¢ ssmvans 3.70
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The transmission coefficient ?f(cﬁl) is the ratio of the intensities

in equations 3.69 and 3.70.

o _ >
7,'{<1>|1= hifi X |Thifcosdy cosssee 3.71

hip, Ki cosgh
The transmitted longitudinal and transverse wave energies incorporate

the real part of the impedance th into the expression for intensity,

2
)

2
Ilti (¢1} - T R ‘zlti) ,Tltil s eaem0a 3.72

The impedance zu:i"‘ derived in the appendix and for plate 1 is given

as,

2 2 _.2.242
% & EIhIKI (K¢ — 2Kjsin $) + 4|(fsin2qbl\/“(f - Klzsin2¢1,
- -2 | Jikg = kZin%p)

L L B 3.73

The two terms on the right hand side of equation 3.73 describe the
subdivisions of energy into longitudinal and transverse components.

The first term gives the energy transmitted as a longitudinal wave.
Thus,

2 2 2 2 2
2 E,h K (K.~ = 2K, sin q')l)

w
I ( ) = _ 2 2 2 _ 2 3
(P 2 W(l -H, K J(Kl K, “sin ¢ 3)

2
I'Iiti I

LR B 3.74

The second term gives the transverse component of the transmitted

energy,
- 2
2 Eyh Ky 2.9 2 9 2 r 12
I. (@) =& 4K, sin (K, = K, smqbl) .
v (9 2wl —p2K? G tti

R I 3.75
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When calculating the average transmission coefficient for each wave
component, it is assumed that all angles of incidence have the same
probability of occurrence. The general expression for the average

transmission coefficient is written as,

n/2

I
.Y ov = =n/2
i : /2
ii hnckh) d¢ﬁ
=n/2

COC NN 3-76

The denominator of equation 3.76 can be readily integrated, and for

transmitted bending waves,
o 2

h, p .k
i 1517 2
yl aV. = W f ' Tbi l C05¢i d¢1 ars e Ewe 3-77

The transmitted longitudinal and transverse waves are similarly
expressed.

/2
y it - ——kl R(Z,,.) | T, 2 3 :
3 " 2h, P ) el I ttd I Y1 ... 3.78

Equations 3.77 and 3.78 are calculated numerically and results are
given in Chapter 4 and Appendix III of calculated transmission

coefficients for various junctions of reinforced concrete plates.

Transmission of an incident longitudinal wave

As well as an incident bending wave at a junction the case of

longitudinal and transverse waves must be assessed.
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Consider an incident longitudinal wave at an angle qu, impinging at
a junction of four plates. Bending, longitudinal and transverse
waves will be generated on eacl; plate. Thebproblem is again
simplified by lumping together the amplitudes of the resultant
longitudinal and transverse waves on each plate. Also the vibrational
fields on plate 4 are assumed equal to those on plate 2. Thus, the

wave expressions on each plate are written as,

£, = exp - Ky sintﬁL [ exp - iK x c:c:sq\'al * Ty} el 3.79

¢ = exp - iKty simﬁt [sz exp = isz cosQ‘)z + Tnz exp = anz ]

L R 3080

¢ = exp - 1Kly sinle [Tlt3] sasssns 3.81

4 = exp - iKLY Sin¢l [Tttzl s sasse 3'82

g, = exp - i.Kly sin¢‘ [Tb3 exp - ixl(3 cos¢>3 4 Tn3 exp - Kn3x ]

sesssss 3.83

The wave expressions above are now incorporated into the following

4 ‘ -
boundary condition equations,

Continuity equations
The continuity of displacement gives,

¢ ~ { = Ea ceveses 3.84

‘1 - {z ciswesee 385
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On substitution equation 3.84 becomes

1 '|‘ = =
Tie1 Tha * Tho Tiea

and equation 3.85 becomes

Tiez = Tpz * T3

The Eontlnuity of bending slope gives,

%, _ _ %,
dz dz

which yields the equation,

=ik, cos$p, T, =K, T, = iK; cospy Ty + K 4 T .

The bending moments at the junction sum to zero.

gives the equation, ;

2

-B [Kz

2

2 2 2 2 2
sin“® 1T , + By [K, cos¢3+p31<t sinch]Tm-B

2 2 2
(K 3 = MK sin CbL] T3 0

The sum of shear forces in the x-direction is zero.

2 2 _, 2
cos qb2+ KK “ sin ¢L]Tb2+B2[Kn2

I-Iallol 3.86

L LB 3.87

LRI N I 3.88

LRI I Y 3189

This condition

2

X

3X

veseses 3.90

. {id € “ . 2 2
1092 = 102y T g = 1WZ 43 T 43 = 12B,K, cosd, [k, cos b

1
‘v (2=p.) K 2sin®p ] T + 28X
B, ( i ¥ “B2 2%n2

> TG
x K “ sin ¢|.]Tn2 = 0

22 - (2-p,)

LR 3-91
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Similarly for the forces in the z-direction.

2 2 2 2
1WZ 5 T g = 1 ByK; cosP, [K," cosP, + (2 - p 3) K ° sin%gp

L

2 o 2 .2
XTpa + BaK o [K % = (2 = u5) K ‘Sin¢L]Tn3 = 0 .... 3.92

b3 3 ' n3

On eliminating the coefficients Tnz. T 3¢ Tl.tl' a matrix is

produced representing the set of simultaneous equations.

3.7.2 Transmission coefficient

The amplitude coefficients sz, Tb3' Tlt2' TI. ¢3¢ are obtained

numerically by methods described in Chapter 4. The calculation of

the transmission coefficients is essentially the same as that

5 27 7
|-2I3 {kngki-(E-pZszsir?gﬁ# 0 0 {2921-“2;@2-(2- ksln¢] sz E{m[zl
ik cos@fk 5052q5 +{2—,u]k smzqfi]} o izmzua} Zed

0 -Bfic (e-piaipl  fok, 0E(2 WCsipl o - r:ll o
nn P| l In| kI'll Y L b3
{ klcosl[klccszpla-m-p kl sin %}}]} +t602uz} -
_{knz-t,kzcosgb?l ~(k —tkcnsﬂ) Ky kna T 0
2 2 e 2 2.2
~2BJ3 28k B[knl plkls rpl lekné'“z"t"“ﬁu T4l O
3.93
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described from an incident bending wave. The expressions are

therefore stated directly.

The average coefficient for transmitted bending wave on the ith plate

is given as,
n/2

: 2h, p
b i" i 2
V. Py w et b f IT I cos¢p, dp
ll KIR{thl) [e] bi i l seesses 3-94

For transmitted longitudinal and transverse waves,

/2
itt 1 2
yll. av, = ETZ—;H) fo ITttil R(thi) d¢l Vvasnes 395

If required, the contribution of the two wave components in equation

3.95 can be expressed separately.

The process for the calculation of the transmission of an incident

transverse wave is essentially the same as that for incident bending

-and longitudinal waves, and is not to be described. Tables of

calculated transmission coefficient for all three wave types are given

in Appendix III.

Coupling loss factor

It remains to calculate the various coupling loss factors, introduced
in Chapter 2, from the average transmission coefficients, derived in
this chapter. So far the transmission of energy at a junction has
been expressed as an absorption jzgg (Cremer 1948). Heckl (1962)

when measuring the vibrational energy absorbed at the edge of a plate,
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either by a strip of damping material, or by passage on to a

connected plate, uses a reverberation time method analogous to that

of room acoustics. The reverberation time is expressed in the form,

c
1 b
T 13.871S L Vil *

-wn ©ou e
13.8

s ssn e 3.96

where.S is the plate area, Cb the bending wave velocity, and n the

internal loss factor.

The summation describes the contribution of

each edge of length L1 and absorption coefficient Yibto the total

absorption of the plate.

Lyon and Eichler (1964) take the analysis

further by expressing the first term of the R.H.S of equation 3.96

as a loss factor analogous to the internal loss factor in the second

term.

2 2 Iy

1 2b
My = 7 S Ko Y1

1

This loss factor is expressed as,

LR B B N ] 3.97

for the case of bending wave energy on plate 1 generating bending

The l

wave energy on plate 2. T

over the angle of incidence against the boundary.

term results from the integration

A coupling loss

factor for an incident longitudinal wave can similarly be derived,

g2 .1 L1
- 1L n Sl KI.

For an incident transverse wave,

g2 L 1 1
1t n s Kt

1

2b
YJJ
esssess 3,98

2b

¥
lt L B 3.99

The factor of two in equation 3.97 results from the fact that the

bending wave group velocity is twice the value of the phase velocity.
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The coupling loss factors for ‘incident longitudinal ‘-

and transverse waves o

Equations 3.98 and 3.99 indicate that'fhe coupling loss factor for

incident longitudinal and transverse waves can be calculated if the
appropriate transmission cdefficient is known. A direct derivation
of these transmission coefficients, using simple bending tﬁeory has
been giveh in section 3.7. However two other methods of'éalcuiating
the transmission coefficient and hence the coupling loss factor for

these wave types are considered.

(1) Kihlman (1967), and, later Reichardt and Richter (1970)
show that, for a wave obliquely incident at a junction,
the transmission coefficient is independent of the

direction of t:ansmission, if the same trace is followed.

Thus,
2 1 : i s
Yy (@) = 73 (P)) ceseses 3.100

This is valid when one angle of incidence is considered.
However, angle-averaged parameters are used in this

present discussion and, in the case of plates of differing
thicknesses the relation in equation 3.100 will not hold

for all angles. If plate 1 is thicker than plate 2, a

faster bending wave results on the former plate. The incident
géézln&‘angle on plate 1 will produce a'smaller'transmitﬁed
ghéle chfitoon plate 2. Therefore if a wave on plate 2 is
incident at an angle larger than this critical angle qbcrit.
*Ehéﬁ toﬁallréfleétiﬁn results and the equality in equition .

3.100 breaks down. By means of reciprocity however, Kihlman
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is able to show that the averaged coefficients can still

be simply related. This is given by,
2 1
o M e 2 teeeee. 3.101

where K, and K, are the respective wave numbers of the
plates. Thus, as an example, the transmission coefficient
describing a longitudinal wave on plate 1, coupled to a

bending wave on plate 2 is obtained by means of equation

3.101. Thus,

2b Kp2

1
Y1, ™ K, Y 2p vissass 3109

(2) If the modal densities of the longitudinal and transverse
wave fields are appreciable then use may be made of the
equality 2.10 which states that the products of the
coupling loss factors and modal densities of coupled sub-
systems are equal. Thus, if‘the coupling loss factor of
a-bending incident on plate 2 which generates a longitudinal
wave on plate 3, is known, the reciprocal loss factor
describing an incident longitudinal wave on plate 3 generating

a bending wave on plate 2, can be calculated directly.

2b _ p2 _ 3t
"3 n, M 2p teeves. 3.103

where nbz/nl = ratio of bending wave to longitudinal wave

modal density.

The disadvantage of the second method described is that the longitudinal

and transverse modal densities can only be thought large at the higher
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frequencies in the range of interest. Both the above methods suffer
the disadvantage that they can only describe transmissions involving
bending waves. If it is desired that the coupling between

longitudinal wave fields on plates be calculated it is necessary to

use -the methods described in section 3.7.

The next chapter gives numerical results calculated using all three

. methods, and it. is seen that quite broad simplifications can still

yield applicable results.

Summary

It is seen that by use of simple bending wave theory the structural
coupling loss factor ané structure-fluid coupling loss factor of
coupled sub-systems can be calculated. These parameters, along with
the ratio of modal densities of the coupled sub=-systems, can now be
entered into the energy balance equations described in Chapter 2,

together with the internal loss factor of each sub-system.

]



CHAPTER 4

NUMERICAL ANALYSIS

The solution of power flow‘equations for coupled subsystems (Chapter 2)
and that satisfying the ﬁoﬁndary conditions existing at-tﬁe junction of
semi~infinite plates (Chapter 3) became intractable for the more complex
configuratiogs. The problem is circumvented by numerical methods, using

a high speed digital computer. The model used at Aston University is an
I.C.L. 1905E possessing a core size of 96K. The programming language used

throughout this and other numerical analyses is 1900 Algol.

T

4.1 The solution of a:set:of linear equations -

There are several numerical methods available for the solution of
lin;;r, simultaneous”equations, such as those expressed as matrix
3.93., Possibly the msst common method is Gauss' systematic
elimination met£od. Thi; method has many variants which differ in
fhe way thelmatrices are stored, the order of eliminafion and method
of reducing 1;r§e rounding errors. IFor the problem at hand, it was
feit that some ;ccuracy in the calculations could be sacrificed in
order to ensure that as short a computing time asrpossibie resulted.
In order to calculate transmission coefficient as a function of
angle (in one degree increments) and of frequency (in third octave
increments) the computation involves the solution of 1456 sets of
simultaneous equétions, each set represented by a 10 x 10 matrix.

The elimination method chosen was that of Crout which was designed

for the hand computation of small matrices. The method is illustrated
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by means of the programme sub-routine given in Appendix II.

Integration of the transmission coefficient

Equations 3.33, 3.34, 3.55 and 3.56 give the integralé of the
various transmission coefficients. The numerical integration was
made possible by use of Simpson's rule given by

X
n

4 E— 4
f)’(x]dx ~ (8x/3)[y,+ Y + 2y2+ 4y3+ +2yn 24- yn|+ yn]

Xo
where Ax is the increment within the range (xn - xol. As shown in
Figures 4.1 - 4.10, the variation with angle of incidence of many of
the calculated transmission coefficients is regular. Often, over
much of the angular range, there is a monotonic decrease to zero at
90°, A fairly large interval of one angular deéree was thought
adequate for the computation of the angular average. However the
transmission coefficient 'yig displays a peak valuer the sharpness
of the peak being more pronounced at low frequencieé (Fig 4.4), .The

angular increment was therefore altered to 0.2 degree at the lower

frequencies, resulting in 450 increments in the range 0-TV2. The
reduction of increment resulted in a smooth curve of average value

of yig, against frequency, without greatly increasing the computing

time.

Discussion of results: The angular variation of transmission

coefficient

The material constants used in tha’coﬁputation were obtained by
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measurement. The experiments are described in Chapter 5 and the
results are summarised in Table 5.1. In the case of reinforced
concrete, all material constants can be assumed independent of

frequency. The following values were used.

Density p = 2.5 x 103 Kg/m3

Young's modulus E = 4,0 x 1010 N’/m2

Poisson's ratio u = 0.3
Internal loss factor = 0.01

These constants along with the plate thicknesses hi' are the only

input data necessary.

Figure 4.1 shows transmission coefficient as a function of incident
angle at a frequency of 100 Hz, for the case of a bending wave
incident at a junction of four semi-infinite plates. The
transmission coefficients describing the change of wave type from

the bending wave are expressed in a manner such that the longitudinal

and transverse components are considered as one component. The

transmission of energy into each wave type is detailed in the tables

of Appendix III.

It can be seen that the coefficients differ greatly in characteristics,

especially those involving bending components i.e. ’Yfg and'Yig- The

latter has a sharp maximum and, at the angle where it occurs, the

junction can be regarded as reflection-free. There is a corresponding

dip in yfg at the same angle above which it decays regularly to zero

at an angle of 60°, where total reflection takes place. For the
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transmission coefficients describing the transfer from bending to
longitudinal and transverse waves, the angle of total reflection is

smaller; in this case, approximately 7=,

Figure 4.2 illustrates the same transmission coefficients at a

frequency of 1 KHz. The following changes are seen.

(1) The peak in ‘yis occurs at a larger angle and is not as

sharp as at the lower frequencies.

(2) A secondary dip, in jfig, is much more conspicuous. This

occurs at the angle at which the longitudinal component

is totally reflected.

(3) The longitudinal and transverse components are totally

reflected at a larger angle; in this case, approximately

25°,

(4) The coefficient 'yigt increases in importance with

frequency, but is still insignificant compared to other

coefficients.

Figure 4.3 and Figure 4.4 best illustrate these trends as regards
Yig and )!ig. The gradual increase in angle with frequency of the
occurrence of either peaks or dips in the bending wave coefficients
results from the dispersive nature of the bending wave. At low
frequencies, the bending wave velocities are much less than those
of either longitudinal or transverse waves. Thus, Snell's law

dictates that the angle of total reflection of the latter two wave

types will be small, the critical angle corresponding to a sharp



Transmission coefficient

0.0

1.0

= 136 -

Fig. 4.2

0.9 _

0.8 -

047

005""

0.5 7

0.4 =

0.3

1b

0.2

1b

O.l _—

3L,t
1ib

Frequency=1kliz,

.‘i’..--

i
-

J
6

¥ | 1
o7 «8 8

Sine of the angle of inc;dence

Transmission coefficient as a function of incident angle.

Cross=junction

h

i

= n. 15II!

h

2

= 0.2m.



=137 - Fig. 4.3

¥ s

Transmi.ssion. coefficient as a function of angle and frequency.

Cross-junctiong h1 = 0,15m h, = 0.2m 2 e Qad
E, = E,6 =4 x 1010 n/n®

1 o Fl -(_72 m 2,5 x 103 kg/ns.



- 138 - Fige 4.4

Transmission coefficient as a’ function of angle and frequency.
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rise or fall in 'yiﬁ and )!iz, respectively. At higher frequencies,
the frequency-dependent bending wave velocity is closer in value to
(although still appreciably less than) that of other wave types.
Thus, the critical angle will be larger and the contribution of the
longitudinal and transverse components greater in the total energy

transfer from one plate to another.

Figure 4.5 and Figure 4.6 give results for a bending wave incident
at a T-junction at 100 Hz and 1KHz, respectively. Compared to the
cross=junction, the coefficient.'yig assumes greater importance.

The reasons for this are: -

(a) the impedance offered by a thick plate to an incoming
wave on a thinner plate 1s greater than that offered

by a thin plate to a wave on a thicker plate, and

(b) the junction contains only one limb at rightangles to

the plate containing the incident wave. This farther

reduces the impedance.

The coefficient ‘yigt is negligibly small. This is to be expected
since this coefficient is thought only to result from the bending

wave field on plate 2 (and plate 4, in the case of a cross-junction).

Values are given in Figure 4.7 and Figure 4.8 for the case of a

corner junction. The longitudinal and transverse components are

illustrated separately. They show that the longitudinal coefficient

has a maximum at normal incidence and, because it has the 1argef

wave velocity, it has angle of total eflection smaller than that of
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the transverse wave. The latter increases from a zero value, at
normal incidence, to a maximum where the longitudinal component is
totally reflected, before dropping to zero at an angle corresponding

to that of its own total reflection.

Calculations of the transmission coefficients which result when
longitudinal and transverse waves are incident at a junction show
them to be much more regular functions of the angle of incidence.
Figure 4.9 illustrates the variation of coefficient when a
longitudinal wave, of frequency 100 Hz, is incident at a cross-
junction. Figure 4.10 illustrates the case at 1 KHz. The curves
are smooth and either increase or decrease monotonically with angle,
This would be expected since the incident longitudinal wave has the
greatest velocity and therefore, according to Snell's law, no angle
occurs such that total reflection results in any of the generated
waves. The coefficient, indicating the transition from longitudinal
to bending wave energy is small compared to other transitions, but

increases in importance at the higher frequencies.

The curves given so far in this section are of coefficients which
are proportional to the inteérands given in equations 3.77, 3.78,
3.94 and 3.95. That is, the curves describe the energy generated
at a junction, into the various waveforms, from an incident wave
which is assumed to impinge at every angle to the normal with equal
probability i.e. the incident field is diffuse. This approach is
similar to that in most other branches of acoustics. Thus, on
integrating these functions, an angularly averaged transmission

coefficient will result which, it is felt, has physcal significance



Transmission coefficient

=143 = Fige 4.9

1.0

Frequency=100liz.

0.9 _

0.8 —

2 oy o)

1l
0.6 -

0,5 ]

0.4 —

0.3

)
0.2 — 1

0.1 —

0.0 S | I 1 T T T 1 ¥ I
0 .1 i2 la lu 05 IB 07 .3 Og

Sine of the angle of incidence

Transmission coefficient as a function of incident angle.

Cross=junctiony h,1 = 0,2m h2 = 0,15m 4 f/“ﬁ = 0.3

2 3 3
E1 = E2 = 4 x 1010 N/m (71 'l€2 = 2,6 x 10" kg/m",



Transmission coefficient

- 146 = Fige 4.10

1.0

Frequency=1kliz,

0.9 _

0.8 —

Sine of the angle of incidence

Transmission coefficient as a function of incident angle.

Cross=junctiong hy = 0.2m h2 = 0,15m,




4.4

= 147 -

in the description of energy transfer at the junction of plates.

Variation of transmission coefficient with frequency

Figures 4.11 - 4.17 illustrate the variation with frequency of the
angle-average transmission coefficients. Results were calculated

for one-third octave frequency increments between 100 Hz and 3.15 kHz.
Figure 4.11 gives a comparison of the coefficients calculated by
simple bending wave theory and those calculated using Cremer's
modifications. At low frequencies the two methods give results

which do not differ. At frequencies above 400 Hz transmission
coefficients obtained by Cremer's modified theory are higher than
those calculated from simple bending wave theory. At 3.15 k the

values of )fii differ by approximately 10% of the higher value. The

2Lt
1b

at the highest frequency. In subsequent graphs, the average

two values of ¥y differ by approximately 40% of the higher value
transmission coefficients shown are those calculated using Cremer's

modification.

Figures 4.11 = 4.13 give the average transmission coefficients for
the case of a bending wave incident at a cross=junction, T-junction,
and corner, respectively. 1In these, and most other, cases the
variation with frequency of each, particular coefficient (for
example )leﬁ) has the same trends, irrespective of the junction

1b
configuration. The following generalisations can therefore be made.

2b
(1) Contrary to results given by Kihlman (1967), 'ylb is
seen to vary with frequency, albeit by a small amount.

Over the range of 100 Hz = 3.15 kHz, the coefficient
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increases by between 50% and 100%, the rate of

increase being greatest at the higher frequencies.

(2) The transmission coefficient ‘yiﬁ similarly increases
with frequency, and except at the highest frequencies,

assumes larger values than 'yig.

(3) The transmission coefficients describing the transfer
of energy into longitudinal and transverse wave
components show the greatest variation with frequency.
Values at 100 Hz are often an order of magnitude less

2b 3b
than those of ylb and ‘Vlb. The coefficient
approximately doubles in wvalue for every octave
increment, and, at the highest frequency, assumes equal

importance with the coefficients ‘Yig and 3’:5'

1b

general this coefficient is an order of magnitude less than any

In the graphs shown, values of ¥ are not illustrated. 1In

other coefficient and can often be neglected in setting up the

energy balance equations given in section 2.5. Some values are

tabulated in Appendix III.

Using the same configurations of junctions with concrete plates of
thicknesses 0.2 m and 0.15 m, results are given for the case of
incident longitudinal and transverse waves. Figures 4.14 - 4.17

allow the following generalisation to be made.

(1) The coefficients vary greatly from each other, often
by an order of magnitude. Thus, the largest

contribution, in the case of a cross=-junction, is
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b 3b

3L,t
. and yll.' and the

2
'yn , the next two are 71
least value is that of )!i:'t which at 100 Hz is

28 dB less than the largest coefficient.

(2) The variation with frequency of coefficients,
describing the generation of bending waves, is less

than those describing the generation of other wave

types.

It can be seen, that for reinforced concrete plates of not too
dissimilar thicknesses, vibrational energy incident at a junction
will transmit very efficiently into the other plates. The
transmission coefficients calculated by Kihlman (1967) are very much
lower in value for the cross=-junctions investigateé. The differences
result from the greater impedances offered by the junction in
Kihlman's model in which (a) the plate thicknesses differed by much
greater amounts than that of the author (0.07 m - 0.15 m), and (b)

the plates forming a junction were sometimes assumed to have different
material constants. When plate thicknesses are considered which are
of the same order as those considered by this author, then the results
given by Kihlman (1967) give some agreement with those presented in

this section and in Appendix III. (See Fig 5.11 and Table 9.24 in

reference) Therefore, some attempt is now made to apply the results

measurements.

to real situations in which they can be compared with

Results for finite plate junctions

From the table of calculated transmission coefficients for junctions

of semi-infinite plates (Appendix III) the assoclated structural
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Fige 4,15
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Fig. 4. 17

N

e 21

L~ 181t

100

200 400 800 1.6k
frequency (liz)

Transmission coefficient as a function of frequency.

Corner junctionjy - hi = 0,15m h2 s 0.2m

Je2k



- 157 =

coupling loss factors can be calculated as described in sections
3.8 and 3.9, The loss factors can now be introduced to the energy
balance equations of sections 2.5 - 2.8 and the vibrational energy

ratios for various plate configurations are calculated.

The calculations were carried out using the digital computer and
results are shown in Figures 4.18 = 4.20 for finite plates forming
a cross-junction, T-junction, and a corner, respectively. As
described in Chapter 2, five methods of calculation have been
postulated. The resultant bending wave energy ratios are given

for all methods. The methods are listed as follows.

(a) The energy balance equations include all possible
couplings between the three wave types, the coupling

loss factors having been directly calculated (section

2.5.3).

(b) The longitudinal/transverse - bending couplings loss
factors are calculated from the ratio of the wave

numbers of the coupled wavetypes (section 3.9).

(c) The couplings in (b) can also be given from the ratio

of the modal densities of the coupled wavetypes

(section 3.9).
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Fig. 4.19
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(d) The bending - bending/longitudinal/transverse wave
transitions only are considered, i.e. the longitudinal

and transverse fields are assumed non-diffuse (section

2.5.2).

(e) The bending - bending transitions 'only are considered
(section 2.5.1).
It is seen in the examples given, that there is little difference
in the calculated energy ratios using the five methods. The
predictions lie within a band of 1 dB which is well within the

expected experimental error. The maximum difference occurs at the

frequency of 3.15 kHz. 'The highest predicted energy ratios are
given by method (e) in which only bending - bending couplings are

considered. Since this simple method gives values which differ from

values produced by more exact theories, by an amount well within
experimental error, it appears valid to include predictions using

this model,. alongside those of the more complex model (a), when

comparing ‘experiment with theory.

Further calculations and summary

In this chapter the principal transmission coefficients for cross-

and T-junctions have been calculated. 1In Chapter 6 other coefficilents

will be calculated for comparison with experimental results.

Similarly, calculations of radiation loss factor and modal spacing

(or density) will be compared with experiment.
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The results described in this chapter are summarised.

(1)

(2)

Vibrational energy is transferred readily from one
concrete plate to other concrete plates forming a
junction; this is especially true if all plate
thicknesses and material are equal or near equal. A
reduction of energy flow results when the impedance,
at the junction, is increased. This increase is
possible by either introducing large thickness
differences in the plates, and or assigning greatly
differing material constants to each plate,

¢

In the finite systems investigated, consideration of
wave types other than bending waves does not
appreciably alter the predicted bending wave energy
It is thought however, that in more

on each plate.

complex systems containing several junctions, at the

higher frequencies the contribution of longitudinal

and transverse components will become greater.



CHAPTER 5

SCALE MODELLING AND THE DYNAMIC CHARACTERISTICS OF BUILDING MATERIALS

5.1

Introduction

¥ .

The experimental investigation of the theories described in
Chapter 2 and Chapter 3, involved the use of quarter-scale models
of the structural elements of interest. In acoustics, the use of

models in predicting the response of full scale systems is a well

established technique.

Harwood and Burd (1973) successfully predicted the acoustic response
of studios and concert halls using models to a scale 1:8. Schoch
and Feher (1952) use a large scale factor of between 1i20 and 1:30
when investigating sound transmission through single leaf partitions.
Work by Kost (1967) involves the use of a scale factor of 1:35 in
assessing the sound insulation of partition walls consisting of
damped and undamped aluminium sheet. Ingemansson (1969) observes
the effects of connections on the sound reduction of double walls.
The scale factor in these experiments is 135. Schloss and Reader
(1967) produce a direct comparison between the structural impedance

and radiated sound of a full scale and quarter scale wooden structure

in air and in water.

Similarity relations

The basis of scale modelling in acoustic experiments is the production
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of a similarity relationship between the airborne or structural
sound field in the original and in the model structures. If all
linear dimensions are reduced by a ratio l:n, then any mode of
vibration of the prototype structure has its equivalent in the model,
provided the frequency scale of the latter has been increased by a
factorn . This is true only if the dynamic properties of the

material, of which the structure is made, are independent of frequency.

Some examples of the dynamic response of structures are now
considered. For wave velocities in rods and plates, the quasi-

longitudinal wave velocity in a rod is given by,

E
€i2 '\/F

and is seen to be independent of frequency. Therefore, the modal
response of a rod set into longitudinal vibration is scaled correctly
simply by shortening the rod by the required ratio. In the case of

bending waves in plates the velocity is given by,

b L

C,. = 2[hw]® [E/12p(1 —pz)!

b

The velocity is dependent upon the fregquency and plate thickness.
Thus, if the plate thickness is reduced by a factor n then the
frequency must be increased by the same factor in order to ensure
the same response. Therefore, in the case of bending waves, on rods

and plates, all linear dimensions are reduced by a factor n to ensure

correct scaling.

The critical coincidence frequency of a plate has been given by,
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31’Co2

vcrit = T[Ct h
Again, geometric scaling by a factor n is accompanied by an increase

in frequency of the same factor.

In power flow theor&, reference is made to the modal densities of
the vibrational fields; more specifically, the ratio of modal

densities of coupled systems. The bending wave modal density with

respect to frequency on a plate is given by,

SBS

Cih

n =
Thus, a reduction in linear dimensions by a factor n will give a
value of modal density reduced by the same factor. This appears
contrary to the conditions required for true scaling. The apparent
anomaly results from the definition of modal density which is given
as the number of modes per Hz. In theory and experiment one is
concerned with the number of modes involved in the response, within
the bandwidth of interest. It is seen that the power flow equations,
described in Chapter 2, are for a bandwidth of unit frequency. 1In
this case, the modal density and number of modes per bandwidth have
the same value. However, bandwidth 1is normally expressed as a
fraction of the octave or as a percentage of the value of the centre
frequency. Thus, in the case of third octave filtering, the bandwidth
is approximately 23% of the centre frequency. Therefore, although the
modal density decreases by a factor n, on increasing the frequency by

this factor, the bandwidth increases by a factor n. The number of

modes involved in the prétotype and scale model thus remain the same
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and the similarity relation is preserved. The same argument applies

to longitudinal and transverse modal densities.

The discussion can be summarised by stating that, as in room acoustics,
the structural vibration patterns of similar systems are affected only
by the ratio of linear dimension to the vibrational wavelength,
providing the dynamic characteristics of the materials are

independent of frequency. This condition, along with the need to
obtain values of the dynamic parameters, prompted a series of
experiments concerned with the measurement of bending, longitudinal,

and torsional wave velocities in some common materials.

Measurement of the material constants

Several authors have investigated the variation with frequency of
complex elastic constants of building materials. Kuhl and Kaiser
(1952) measure the absorption of structure-borne sound in walls
with and without sand-filled cavities. Rupprecht (1958) considers
the travelling wave as well as the standing wave conditions in

investigations of the wave velocities and loss factors in rods of

building material. The frequency range of measurement is 100 Hz to

10 kHz. N811 extends the range from 5 kHz to 100 kHz when assessing
the frequency dependence of complex elastic constants. His results

seem to indicate that acoustic modelling with large scale factors

(up to 30:1) appears possible.

The experimental procedure adopted is similar to that of Schmidt

(1934). The complex Young's modulus and dynamic Poisson's ratio
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of building materials are obtained by excitation of free-free rods

of the material into bending, longitudinal, and torsional vibration,
and then observing the resonances which occur on altering the

driving frequency.l By measuring the rate of decay in amplitude on
removing the source of excitation, values of loss factor are obtained.
The material of primary importance is reinforced concrete. However,

results are given for brickwork and breeze-block.

Instrumentation

The driver

To excite the rods of building material into forced vibration it was
necessary to have an efficient method of excita;ion thch, at the
same time, did not introduce additional losses into the system, i.e.
there should be no contact between the driver and the specimen. The
method adopted was that of cementing a speech coil (wound on a light
aluminium former) to the rod and then introducing a magnetic field
by means of a permanent magnet (Plate 5.1). An alternating current

in the coil produces a force varying at the same frequency. The

direction of the applied force, relative to the axis of the rod,

determines the type of wave which will be produced. Figure 5.1

illustrates the driver positions required to excite quasi-

longitudinal and bending waves in a freely suspended rod.



PLATE 5.1 Fxcitation of longitudinal waves

in a suspended brieck rod.

8
r R o=
i >

.

PLATE 5.2 Ixcitation of torsional waves

in a pivoted brick rod
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Fig- 5.1
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The generation of vibrational modes in a suspended rod.:
(a) Longitudinal excitation.

(b) Bending excitation.
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5.4.2 The receiver

5.4.3

The acceleration amplitude at any point on the specimen was measured
by means of a Brtiel and Kjaer (B & K) piezoelectric accelerometer
transducer (type 4333) stuck by means of beeswax to the free end of
the specimen rod. The accelerometer could be positioned either to
measure the longitudinal wave or to measure the bending wave
acceleration amplitude (Fig 5.1). The accelerometer signal is

passed through a vibration pick-up pre-amplifier (B & K type 2625)
and amplified by an audio frequency spectrometer (B & K type 2112) on
linear response. The variation of amplitude with frequency could

then be plotted logarithmically using a level recorder (B & K type

2305) .

The signal source

The signal supplied to-the speech coil consiste& of an alternating
current. The frequency sweep was provided by the drive shaft of

the level recorder, driving a sine-random generator (B & K type 1024)
which emitted a pure tone, the logarithm of the frequency being made
to increase linearly with time. A typical sweep rate for a material
of loss factor of the order'of 10—2 would be approximately one octave
per minute. The signal from the generator was amplified using a Quad
S0E power amplifier. On obtaining the frequency response of the
specimen, the centre frequency of eadh resonance (and the half-power
bandwidth, 1f desired) was me;sured accurately, using a decade

oscillator (Muirhead K-126-A) reading to 0.1 Hz.



- 171 -

Torsional waves

Shear vibration, in the form of torsional waves, can be produced in
material when the specimen is in the form of a rod. Two methods of

excitation were employed.

(1) If the specimen rod is of circular cross-section, it is
relatively easy to produce torsional vibration by
ensuring that the direction of the driving force is
tangential to the cross-sectional circle of the rod.
This was done by cementing the speech coil to a
projecting aluminium stud (Fig 5.2(a)). The axis of
the accelerometer (i.e. the direction of greatest
sensitivity) at the other end of the rod is likewise
tangential to the cross-sectional circle and is also
perpendicular to the axis of the driving force. This
ensured that the torsional resonances were not masked
by the bending resonances which inevitably resulted, no

matter how much care was taken in positioning the driver.

(2) The first method was found unsatisfactory when the
specimen was of a rectangular cross-section, such as a
brick array. A greater couple is required and this can
be produced using two identical speech coils and magnets.
The directions of the forces produced, lie parallel to
one edge of the cross-sectional rectangle. By reversing
the polarity of one coil, relative to the other, the

forces produced are thus equal and opposite (Fig 5.2(b)).
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The generation of .torsional waves in rods of building material
(a) Circular cross=-section.

(b) Rectangular cross-section.
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Plate 5.2 illustrates a successful arrangement
where torsional waves were excited in a short rod

of brickwork, pivoted at the ends.

Measurement of material loss factor

A description of the methods of assessing the dissipative loss

factor in materials has been given in section 3.3. The methods

fall into two categories,

(1) Steady-state measurements involve the observation of
each vibrational mode for a constant excitation level.
At the resonant peak, values of loss factor are
calculated from measurements of half-power bandwidth
or, by use of the method of Kennedy and Pancu (1949).
This involves splitting the accelerometer signal into
components in phase with, and in quadrature with the
driving signal. As described in section 3.3, when the
driving frequency approaches a natural resonance of
the specimen, the quadrature component of the
accelerometer signal will increase until, at resonance,
the signal is completely out of phase with that of the
driving signal. The apparatus used in plotting the

admittance circle at resonance is illustrated in

Figure 5.3.

Figure 5.4 gives an experimental plot of the admittance

circle for three resonances, in this case, of a steel
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rod. As shown in Figure 3.4(c), the ideal locus

is a circle which is symmetric about the negative
imaginary axis, and passes through the origin. This
situation rarely occurs in practice and the resonance
point could occur in any quadrant. Also, the best-
fit circle drawn through the experimental points
above and below the resonance (the frequency range

was usually the half-power bandwidth) did not always

pass through the origin.

On removing the source of excitation, the vibration
amplitude decays with respect to time, the rate of
which is determined by the loss factor. The
excitation signal can be a pure tone, as in the steady-
state experiments, or can be narrow bandwidth random
noise. The latter is produced either by fixed
bandwidth warble tones or by one-third octave filters
from white noise. The accelerometer signal is also
filtered to remove nolse and partials and if amplitude
decay rates are being measured, it is important to
ensure that the response of the network is faster than
that of the signal decay. For the spectrometer used
(B & K type 2112), -full filter network response was

stated to occur in three cycles of the centre frequency.

Thus, at 100 Hz, the response time is 1(3.2 seconds, and
at 10 kHz, the time is 10-4 seconds. - These response

times are far shorter than the signal decay times
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measured (or reverberation times) and it can be
assumed that one-third octave filtering of the

signal does not mask the transient response.

The decay rates (given in dB/sec) or the reverberation timesof

materials were measured using three methods (Fig 5.5).

(a)

(b)

The amplified accelerometer signal could be charted }.
by a high speed level recorder. In measurements, it
was ensured that the chart pen speed was at least twice
the decay rate being observed. At high frequencies,
reverberation times become extremely short and the chart
pen speed limits the range of application. The greatest
value of loss factor that can be measured by this method

1 at 100 Hz and 2 x 1073 at 10 kHz.

was found to be 2 x 10~
To extend the range of application of the level recorder,
a scaling technique can be used in which the filtered
and amplified accelerometer signal is recorded on
magnetic tape and then replayed at a slower speed into
the level recorder. The F.M, tape réﬁorder used was a

B & K type 7001 which has four tape speeds, ranging

from 38.1 mm/sec to 1524 mm/sec. Time-scaling ratios

of 2.5, 4, 10, and 40 were possible. As an example,

the charting of a reverberation time of 0.2 seconds at

10 kHz is beyond the writing speed of the level

recorder alone. By recording the signal magnetically

at a tape speed of 1524 mm/sec and then playing back
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Measurement of loss factor 'by. decay methods.

(a) Level recorder, - - -+ -
(b) Magnetic tape recorder.

(c) Logarithmic amplifier and oscilloscope.
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at a speed of 152.4 mm/sec, a decaying signal results,
having a frequency of 1 kHz, with a reverberation time
of 2 seconds, a value well within the range of the
level recorder. Not all scaling ratios were possible
as the frequency ranges of each tape speed set limits
to the application. The range extended from O = 500 Hz
for a tape speed of 38.1 mm/sec to O - 20 kHz for a

speed of 1524 mm/sec.

For fast decay rates, the amplified and filtered
accelerometer signal could be passed through a
logarithmic amplifier and then displayed on a cathode
ray oscilloscope, the time -base of which is triggered
by the cut-off of the excitation signal. The
logarithmic amplifier was constructed to a design of
K F L Lansdowne of the Acoustics Section of the BBC
Research Department. It consists of a pair of Mullard
OA5 gold bonded diodes connected ‘back to back'. The
OAS5 diodes have voltage/current characteristics which
closely approximate to a logarithmic law over an input
range of 40 dB. The output signal is unrectified
since the time constant of the rectifier required for
the lowest frequencies would be comparable with the
decay time. This method has the advantage that many
decays can be observed within a short time, thereby
allowing an average value of the slope of the

decaying signal enveéope to be obtained quickly and

conveniently.
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Let the sweep rate be x sec/mm and the vertical
amplitude y volts/mm. The y amplifier gives an
output proportional to the logarithm of the input
voltage. Let the constant of proportionality be

K. (In the amplifier constructed, it has a value

of 0.32). 1If the angle of the envelope of the
decaying trace from the x axis is 6, the logarithmic

decrement which has been defined in section 3.3.1 is

calculated as,

L y tan e 1

v

A circular cursor graduated in tangents of the slope
is superimposed on the oscilloscope trace. Thus, by
keeping y and x constant, the logarithmic decrement
can readily be obtained. The loss factor is then

simply calculated from,

™=

]

Reinforced concrete

Concrete rods with various reinforcements were investigated along
with their quarter-scale models. The full scale model was of length
5 metres and diameter 0.1 metres. The concrete consisted of one part
ordinary portland cement, two parts zone two concreting sand, and

four parts 5 mm to 10 mm irregular aggregate. The water content was 0.5,
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Three methods of unstressed reinforcement were investigated.

(1) A single %" diameter steel reinforcing rod running

centrally through the concrete.

(2) Four rods of 4" diameter, symmetrically positioned

at an approximate distance of 30 mm from the centre.

(3) A complex reinforcement incorporating two %" diameter
steel rods. Each rod was bent into a "square wave"
shape, each "step" being of length 1 m and height 70 mm.
The planes of the two rod shapes were at right angles
to each other. The rods were freely suspended by thin
nylon cord (plateS3) which, it is felt, introduced little

additional loss to the system.

Longitudinal excitation

Figure 5.1(a) shows the form of excitation necessary to produce
quasi-longitudinal modes. The resonant frequencies v, of a mode n
is dictated by the rod length L and the wave velocity Ciae The
subscript of Ct2 denotes that the specimen is small in two dimensions

thus allowing Poisson expansion and contraction.

The velocity is given as,

C - Pe— ”n se s mes 5.1



PLATE 5.3 FFull scale and quarter scale

reinforced concrete rods,

PLATE 5.4 Suspended brickwork rod,
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where vn is the frequency of the nth mode. The transverse wave
velocity is equal to the torsional wave velocity when the specimen
cross-section is circular. In the case of a specimen of rectangular
cross-section the torsional wave velocity is slower than the
transverse wave velocity. For a rod made up of a single array of
bricks Cremer (1949) gives the ratio of torsional velocity to
transverse velocity as 0.878. The torsional velocity is calculated
from an equation similar to that of 5.1 where the mode frequency

refers to that of torsional vibration.

The process is the same when calculating bending wavelength with the
exception that "end" corrections need to be considered. Figure 5.6
gives the distance of nodes from a free end for each mode of a free-
free bar. Experimental values for a steel rod of length 1.915 m are
in good agreement with the theory of Rayleigh (1877). It is then a
simple matter to calculate the wavelength of the standing bending

wave at each bar resonance.

Figure 5.7 illustrates the excitation of the three wave types in a
reinforced concrete bar of length 5 m. Fast wave velocitles give
rise to fundamental modes at higher frequencies than those of slower
velocities and, as expected, longitudinal waves are shown to have the

greatest velocity, bending waves the smallest, with transverse waves

having an intermediate value,

Figure 5.8 gives the longitudinal and transverse wave velocities
calculated from equation 5.1, for concrete rods having three types

of reinforcement. The mean value is given for each rod and it is



Fig. 5.6
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seen that the rod having the complex reinforcement (which, it is
thought, gives the closest approximation to the real situation)
gives velocities lying between that of single and four rod

reinforcement.

The quasi-longitudinal wave velocity is given by,

E
c -/—
12 p seeevna 5.2

and the transverse wave velocity by,

[ E
¢ Nzpa+rm ceseces 5.3

Knowing the density of the concrete it is a simple matter of
obtaining values of the dynamic modulus and Polsson's ratio from

the wave velocities. The latter is obtained on combining equations

5.2 and 5.3 such that

2
C
1 12
p = E. (E_.....) - 1
t LB B 5.4

The values obtained in this and other experiments are summarised in

Table 5.1.

Figure 5.9 gives a plot of measured bending wavelength over a

frequency range of 100 Hz to 3.15 kHz. Assunng a value of Young's

modulus of 4 x 1010 N/mz, and a dengity of 2.5 x 103 Kg/m2

theoretical curves can be constructed. It 1s seen that there is

agreement between measured values and that predicted using Cremer's

modified bending wave theory. (See section 3.5.1.)
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Bending wavelength for reinforced concrete 5m x O.1m diameter,

(a) Simple bending wave theory.

(b) Cremer's modification.
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Figures 5.10 and 5.11 show the measured loss factor of concrete
rods for thfee types of vibration. The method of measurement used
most in obtaining these results was that of assessing the rate of
decay using any of the three methods described. The process usually
consisted of exciting the rod at one of its resonances by a signal
of random noise centred at that frequency within a narrow bandwidth.
The pre-amplified accelerometer signal is passed through a one-third

octave filter to a level recorder, tape recorder, or logarithmic

amplifier.

From Figures 5.10 and 5.11 the following observations are made.

(1) The bending, longitudinal, and transverse loss factor
have approximately the same value for all reinforced
rods. The value for unreinforced concrete are slightly

lower than those centred around a value of 0.0l.

(2) Despite fiuctuations, there does not appear to be
systematic change of loss factor with frequency. It
is thus valid to regard the internal loss of the
material as independent of frequency and thé mean
value of each set of measured values of loss factor

is therefore used to describe the material (Table 5.1).

(3) The loss factors for all wave types are approximately

equal.

Attempts were made to produce quarter-scale models of the reinforced
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Fig. 5.11
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concrete rods (plate 5.3). The attempts were successful for (1) a
single (%" diameter) rod reinforcement in a mortar of 1.5:2:3.5
ratio with w/c of 0.55 and (2) four rods (fgn diameter) with the same
mortar. In both cases the aggregate is finer than in the full scale
mix. Figure 5.12 indicates that the longitudinal wave velocities of
the two modes are approximately equal. Figure 5.13 shows that the
quarter-scale wavelengths are shorter by approximately 6% than
predicted wavelengths using values of building constants measured in
the full scale specimens. In most quarter-scale experiments
difficulty was encountered in calculating transverse wave velocity
and loss factor, but it is seen in Figure 5.14 and Figure 5.15 that
good similarity exists between the longitudinal and bending modes of
full scale and quarter-scale models of reinforced concrete rods.
Note that the frequency scales in the lower diagrams have been

shifted two octaves to the left to facilitate comparison.

Brickwork and breeze block

The methods of assessment of the dynamic parameters of brickwork and
breeze block were the same as those used on reinforced'concrete.

The brick rods consisted of a linear array of bricks (plate 5.4)

bonded at their ends by a strong water mix. Keying is ensured by

drilling small diameter holes to a depth of 10 mm into the ends of
the bricks. The frogs of the bricks were filled by mortar such that

one unit of the linear array was regarded as one brick with mortar

on the top surface ‘and on one end surface. Figure 5.16 illustrates

the resonant modes of an array of twenty-two bricks and Figure 5.17

gives the calculated longitudinal and transverse wave velocities
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Fig, 5.13
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for an eight-brick and a twenty-two-brick array in comparison with
those of quarter-scale models. Again the measured bending wavelength
gives good agreement with values predicted using Cremer's modified

bending wave theory (Fig 5.18).

Loss factor measurements are given in Figure 5.19, the methods used
being the half-power bandwidth method and the decay rate methods.
The loss factors appear surprisingly low and this, allied to the
high wave velocities encountered, might be attributed to the fact
that the brick-mortar work constructed under laboratory conditions

would be stronger than those encountered in practice.

By use of a "Unigain" accelerometer (B & K type 4339 with voltage
sensitivity of 10 mV/g) with a pre-amplifier and integrator (B & K
type 2625) it was possible to investigate the dependence of loss

factor upon displacement amplitude. Six resonant modes of a brick

array were investigated. The full scale brick 'beam' was six units

in length and three courses in height. Figure 5,20 indicates that
the loss factor appears to increase slightly with amplitude. The
rate of increase is small however and over the large part of the

displacement range investigated, values of the amplitude would not

normally be encountered in practice. The loss factor would thus be

thought independent of displacement amplitude.

" The construction of quarter-scale modelling of brickwork proved
difficult. The method finally adopted was to produce a matrix of
brick rubble, sand, and mortar which would give the same density

and complex modulus as full scale brickwork. Twelve mixes were
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produced, having Qarying ﬁroportioﬁs 6f these constituents. The

final choice was a mix 1:1.5:2.5 with water content 1.1. The
aggregate was brick rubble of dimensions 5 to 10 mm. Figure 5.17

and Table 5.1 show that the similarity between full scale and quarter=
scale brickwork appears good. The results for breeze block are not
discussed but are summarised in Figures 5.21, 5.22, 5.23 and Table

5.1:

Summary

Some of the results described in this section are listed in Table 5.1

and the following points may be noted.

(1) wave velocity and loss factor do not appear dependent

upon the unstressed reinforcement in concrete.

(2) Consideration of full scale and quarter-scale models of
reinforced concrete indicate that the following dynamic

parameters can be used to describe the material.

10 2
(a) Young's modulus E = 4 x 10 N/m

3 3
(b) Density p = 2.5 x 10 Kg/m

(c) The dynamic poisson's ratio u = 0.3

(3) The loss factors of concrete in longitudinal, transverse,

and bending wave motion do not differ appreciably.

(4) The loss factor appears independent of frequency and in
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Fig. 5.22
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the case of concrete can be assumed to have a value

of 0.01.

In brickwork investigated the wave velocities appeared
high and the measured loss factor was of the same order
as that of reinforced concrete. This is attributed to
the fact that the specimens produced in the laboratory

had stronger mortar and better keying than the brickwork

found on site.

loss factor is shown to be independent of displacement
amplitude over the amplitude range normally encountered

in practice.



CHAPTER 6

EXPERIMENTS USING QUARTER-SCALE MODELS

Introduction

The use of quarter=-scale models in assessing the vibrational response
of structures has been seen to be valid. It now remains to use

these techniques in an experimental verification of the power flow
theories, described in Chapter 2. The experiments are in four main

categories.

(1) The modal distributions of plates in vibration. are
measured and compared with the theory. The distribution
of pressure wave modes in rectangular rooms was not
investigated since the literature provides ample
descriptions of this phenomenon, both theoretically
(Morse and Bolt (1944), Bolt (1938), Dah-You Maa (1938))
and experimentally (Wente (1938), Hunt (1939), Som erville

and ward (1951)).

(2) The structure-fluid coupling is investigated for the
case of rectangular concrete plates. This involved the
measurement of radiation loss factor of baffled and

unbaffled plates. The influence of edge fixing is also

investigated.

(3) Concrete plates, forming junctions, are excited into’

vibration and the relative bending wave energy of each
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plate is measured. The dissipative loss factor of a
jplate is increased when clad with a visco-elastic
material. It is then possible to observe the effect

of dissipative loss factor on the vibrational level of

a plate, both directly, where the vibration amplitude of
the clad plate is measured, and indirectly, where the

vibration amplitude of a plate, joined to the clad plate,

is measured.

(4) Both structure-fluid and structure-structure couplings
are involved when the sound transmission between two model
rectangular rooms is investigated. These measurements are

described in Chapter 7.

The instrumentation has been designed to measure sound pressure level
within rooms and bending wave energy on plates. No attempt is made
to measure directly the longitudinal and transverse components of
plate vibration. It will be remembered that the plate bending modes
only are considered efficiently coupled to the pressure wave modes

within a room.

Instrumentation

Use was made of vibration transducers, signal filters and amplifiers,
operational amplifiers and data processing equipment. A description

of some of the apparatus has been given in Chapter 5, and the

following additional instrumentation is incorporated in the experiments.
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6.2.1 The drivers

In these steady-state experiments the mechanical excitation of the

plates was provided by electro-magnetic shakers.

The lighter structures, such as the concrete plates forming a
junction, were driven by a Ling Altec shaker (model 201). The driver,

mounted on a rigid frame, is bolted to the plate, (plate 6.2).

Larger structures, such as the model rectangular rooms require a
more powerful source of vibration and this was provided by a Ling

Altec shaker (model 407).

The steady-state signal to the driver was provided by a random
signal generator (B & K sine random generator type 1024). The signal
is filtered by one-third octave band pass filters (B & K type 1615)

and amplified by a Quad 50E power amplifier,

The loudspeaker, used to radiate sound into the room in the
measurement of radiation loss factor, consisted of an array of five
KEF high frequency units (type T.15) mounted in the sides of an
enclosed box (plate 6.6). This arrangement results in an
approximately omnidirectional sound source at the high frequencies.
Low frequency sound is provided by a cone loudspeaker, of 200 mm

diameter, radiating from the same box as the high frequency assembly.



PLATE 6.1 Suspended concrete T-junction

with accelerometers in position.

PLATE 6.2 Flectro-magnetic shaker,



PLATE 6.3 Accelerometer pre-amplifiers

and channel selector.

PLATE 6.4 Data processing equipment,



PLATE 6.5 Suspended concrete plate with

accelerometers in position.

PLATE 6.6 Loudspeaker, condenser microphone,

and diffusing sheets in receiver room.
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two clad

PLATE 6.7 Concrete T-junction with

plates.
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6.2.2 The vibration transducers

Accelerometer transducers were used to measure the acceleration
amplitude (and thus the bending wave energy) of the concrete plates.
As well as the accelerometers described in Chapter 5 (B & K type
4333) an additional type was used which had the advantage of having
a closely controlled sensitivity (10 mV/g + 2%). These "unigain"
accelerometers (B & K type 4339) proved useful when an absolute

value of bending wave energy was required.

It was sometimes necessary to have up to thirty accelerometers with
individual variable gain pre-amplifiers to allow the calibration (or
standardisation) of the accelerometer sensitivities. The pre=-

amplifier units were designed and constructed by Lansdowne Associates

and are shown in plate 6.3. The gain control on each channel allows

a variation of 6 dB in the amplified output signal of nominal gain

10 ds.

Measurement of sound pressure level was made by means of one inch
condenser microphones (B & K type 4131) with cathode followers (B & K

type 2613), illustrated in plate 6.6,

6.2.3 The channel selector

It was required that, in turn, the signal from each accelerometer
pre-amplifier be filtered, amplified, squared, displayed and stored

on punched tape. ‘This was made possible by means of a multiplex

unit designed and constructed by Martin Ellettof the acoustics research
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group (plate 6.4). The unit allowed up to thirty-two channels to
be addressed manually or automatically. The automatic switching

was sequential, the switching rate being approximately one channel
in five seconds. This was long enough to allow for the relatively

slow response of the square-law and rectification circuits.

[

The square=law module

The signal was squared and rectified by means of a circuit of seven

"biased" diodes which gave a D.C., output proportional to the square

of the A.C. input over a range of 40 dB (Fig 6.1).

Transducer calibration

The accelerometer calibration toock two forms.

(1) In measuring the bending wave energy ratio of plates
forming junctions it was required that each accelerometer
and pre-amplifier have the same sensitivity. An aluminium
disc (100 mm diameter, 40 mm thickness) formed a rigid
vibration table when bolted to the large electro-magnetic
driver. The accelerometers to be-calibrated are stuck to
this table by means of beeswax. The table is vibrated
sinusoidally at the frequency desired and the gain of each
pre-amplifier is altered until all accelerometers give the

same signal. A check is possible by altering the driver

frequency.
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where the constant K,given in (a2>= K V, equals 24.15[}/hec 1°/volts.

Also shown are the biased diodes of the square law device.
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(2) In making measurements of the radiation loss factor of
plates, it is necessary to calculate the absolute bending
wave energy of a plate, or more specifically, the mean
square of the acceleration amplitude. A calibration
curve is therefore required, showing the output of the
digital voltmeter (plus amplifiers, square=-law module
etc) against the mean square of the table acceleration
amplitude. The latter is obtained by use of one or more
"Unigain" accelerometers, the pre-amplifiers of which,
have zero again (B & K type 2625). The accelerometer
sensitivities are known and it is a simple matter to
calculate the acceleration amplitude. Figure 6.1 gives
a plot of measured voltage (displayed by the digital
voltmeter) against the mean square acceleration. A line
of unit gradient gives a reasonable approximation over a
range of nearly 40 dB, the constant of proportionality

in this case, being 24.13 (m/secz)z/volt.

Data storage and processing

The data displayed by the D.V.M is stored on tape by means of a
Solartron-Schlumberger recorder drive unit (type A290) and tape -

punch (Addo type 5). The punch is synchronised to the channel

selector. Plate 6.3 and plate 6.4 show the main components of the

signal processing circuit.
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Statistical considerations

In all experiments it was required that the vibrational response be
averaged with respect to time and also with respect to space. The
former is characterised by the mean square or the root mean square
(R.M.S) of the signal. Most of the apparatus used to measure the
vibrational response have rectifying and smoothing circuits which
give a direct reading of R.M.S. It is therefore necessary only to
say that when a measurement of accelerometer or microphone signal

at one position is made, the resultant parameters are the mean square

or the root mean square response.

The spatial average of the response is obtained by a sampling process
involving many microphone or accelerometer positions. The sampling
of the pressufe wave field is described in section 6.5. However, it
is important at this point to gauge the variation of measured bending
wave energy over a plate surface. The measurement of bending wave
energy at a point on a plate is described fully in section 6.6. The
measurements allowed the mean and standard deviation of a number of
accelerometer readings to be calculated, e.g. those obtained from
plates forming a cross=junction or a corner junction. For the model
cross-junction, in which one plate was mechaniéally excited, readings
were obtained at thirty-five accelerometer positions on each plate.
For each plate a plot of normalised standard deviation of the

bending wave energy ab/(Eb} was made against frequency (Fig 6.2 and
Fig 6.3). The same parameter was plotted for twelve accelerometer
readings per plate for a corner junction (Fig 6.4). From the graphs

the following observations can be made.
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(1) Over the (quarter-scale) frequency range the normalised

standard deviation is less than unity.

(2) There is, in general, a decrease with rise of frequency.
The high frequency value is often 50% or less than the

maximum value which occurs at the low frequencies.

This decrease is to be expected since at the higher

frequencies, more modes are generated within a one-third
octave bandwidth and the bending wave field becomes more
diffuse. If the field was ideally diffuse, then the .

parameter 05/(Eb? would assume a zero value,

(3) Stearn (1969) has shown that for thin plates and shells
and for a fairly high modal density N (ten or more modes
per bandwidth) the parameter ”b/{Eb) can be predicted
as lying between a lower limitJ% and an upper limit
%\/% Figure 6.4 shows that, except at the highest
frequencies, the measured values lie below those predicted
by Stearn and also over the whole frequency range the

gradient is smaller.

To summarise, the spatial variation of plate bending wave energy, as
represented by the normalised standard deviation, decreases with
increasing frequency from an approximately unit value to a dimensionless
value of 0.3 - 0.5. The gradient is small and one might postulate a
single number as describing the spatial variation over the whole

frequency range. This is given as 0.7 + 0.3.
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The mean of n accelerometer readings will be expected to have a

standard deviation smaller by a factor of 1/ yn. Therefore to

reduce the value to one fifth of the R.M,S amplitude it 1is necessary

to use at least fifteen accelerometers distributed about a test piece.

In experimentally assessing the spatial average bending wave energy

of a plate, two methods were adopted.

(1)

The experiments were initiated when few accelerometers
and pre-amplifiers were available. The spatial average
was obtained by altering the measuring position of a
single accelerometer many times., This process was time
consuming and introduced two problems, the first of which
concerned the mounting of the accelerometer. The
accelerometer adhered to the plate surface by means of
beeswax and it was found that readings of acceleration
amplitude were affected by the degree of adhesion. The
constant need to remount the accelerometer cast doubts

as to whether an adequate édhesion was being attained each
time. The second problem resulted from the long time
periods required for a set of readings. This introduced
the problem of "drift" in the driver signal which would
result in a different overall vibration level at the end

of a run ffom that at the beginning. This problem was

eliminated to some extent by having a monitoring

accelerometer mounted at the driving point. 1In this way

the power input could be kept reasonably constant.
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'(2) with the introduction of more accelerometers, pre=
amplifiers and automatic switching, it was possible
to speed up the process and ensure firmer mounting
of the accelerometers. The optimum number of
accelerometer points on a plate was set at fifteen.
If the number was less, the run is repeated with the
accelercmeter positions altered and the mean value of
energy ratio or radiation loss factor is calculated.
In measuring vibrational energy of the plates forming
two rectangular rooms, four accelerometers were
available for each plate. Thus, the experiment is

repeated four or five times and the mean value obtained.

Modal density

The method of measurement of bending and longitudinal modal
distribution of concrete plates is essentially the same as that for
the distributions in concrete rods, described in Chapter 5. A freely
suspended reinforced concrete plate (1 m x 0.75 m x 0.038 m) is
driven by a small shaker supplied by a sinusoidal current which

increases slowly in frequency from 100 Hz to 12.5 kHz.

For bending mode measurement, the driver was attached, normal to the
plate surface, near one corner. The plate response is measured by
an accelerometer, fixed in a position near the corner diagonally
opposite to éhat of the driver. The accelerometer signal, after
amplification is recorded by means of a level recorder. The process

then consisted of counting the resonant peaks lying between any two
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frequency intervals and to plot the total number of modes lying
below each frequency. This method of visual assessment is allied
to use made of the human ear. Experienced listeners in the
laboratory were able to locate all of the low and mid frequency
resonances of the plate as the driver frequency increased. The
plot, on Figure 6.5 is of the number of modes lying below any

frequency (forming the abscissa). The observed values are compared

with two theoretical predictions.

(1) The simple, thin plate theory, described in section
3.3.2 gives fair agreement with observation, even at
the higher frequencies. It must be stated however
that mode counting becomes increasingly difficult at
higher frequencies. This problem is eased to a
certain degree by reducing the sweep rate of the
driver, and increasing the level recorder paper speed

as the frequency increases.

(2) A more exact predicted modal distributlon was computed
using Warburton's (1953) theory for a freely suspended
thin plate. By this theory a fundamental frequency,
corresponding to the 1,1 mode of 142 Hz was predicted;

this gave reasonable agreement with the observed value

of 145 Hz.

In measurement of the longitudinal modal distribution
the axes of the shaker and the accelerometer are in the

plane of the suspended plate. They are again positioned

diametrically opposite each other and their axes
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approximately bisect the corners of the plate. Thus,
the components of the shaker force are able to excite
all longitudinal modes and the components of the

accelerometer axis of greatest sensitivity are able

to read them.

As would be expected the modal spacing was greater than
that of the bending waves and it was a simple task to
plot the observed number of modes against frequency,
(Fig 6.6). The result is compared with the simple and
corrected theory of non-dispersive waves in two
dimensions (section 3.3.3) and it is seen that the

corrected theory gives fair agreement.

To summarise, these model experiments indicate that the
simple thin plate theory for bending wave distribution

and the modified theory for longitudinal wave distribution

give fair agreement with observed values.

Radiation loss factor of concrete plates

In section 2.9 energy balance equations were derived to describe the

structure-fluid coupling loss factor q; of a plate radiating sound

into a room., These expressions are now used in the experimental

evaluation of this parameter. The experiment is illustrated in

Figure 6.7.
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The room

The room, shown in plate 6.6, is one of two rectangular rooms,
forming a small transmission suite. The wvolume is 19.27 m3 and

the wall surfaces are of hard plaster. Suspended within it are
hardboard sheets of various sizes and curvature. The total area

of the sheets was twice that of the floor area and they were
randomly distributed as suggested in British Standard 3638. 1In
addition, the field was sampled at ten microphone positions, the
microphone being mounted on a rotatable boom (plates 6.5 and 6.6).
In experiment, the difference between the maximum and minimum of the
ten microphone readings was approximately 6 dB at 100 Hz, 5 dB at

400 Hz, and 2 dB at 12.5 kHz. Thus, it is fair to assume the sound

pressure field to be diffuse in the mid and high frequencies.

The second room of the transmission suite was heavily damped and

could be assumed to absorb all sound energy above 400 Hz radiated

by a panel in the aperture.

The plate

The model reinforced concrete plates were of length 1 m and breadth
0.75 m. Different plates were used in different configurations in

order to assess the influence on radiation loss'factor of the

following

(1) Two plate thicknesses were considered, that of 0.038 m

and 0.05 m; corresponding to full scale thicknesses of
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0.15 m and 0.2 m respectively. In subsequent discussions
they will be termed the thin plate and thick plate

respectively.

(2) The plate edges were either free or fixed. The first
condition was obtained by simply suspending the plate
by nylon wires (plate 6.5). The second condition was
obtained by casting a concrete plate inside a concrete
"frame" of depth 130 mm and width 100 mm along the top
and bottom edges, and 220 mm width along the side edges.
The weight of the plate was less than one third the
weight of the frame which was thus thought sufficiently
massive. The "framed" plate was placed in the aperture

with its surface flush with that of the room wall.

(3) The plates, when freely suspended, could either radiate
sound into 4[T space, (plate 6.5) or if placed in the
transmission suite aperture, could be considered as
radiating in 2T space. 1In the aperture the plate was
suspended at two points and the air gap around it was

sealed with thin rubber tubing and sealing tape.

-(4) The plate could either be directly excited, by an electro-
magnetic driver (plate 6.5), or indirectly excited by a

loudspeaker within the reverberant room (plate 6.6).
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6.5.,3 Measurement procedure

Irrespective of whether the plate is directly or indirectly excited

the two parameters to be calculated are the room pressure wave energy

Er and the plate bending wave energy Eb'

6.5.3.1 Pressure wave energy Er

The mechanically driven plate or the loudspeaker (either of which
is supplied by a random noise signal through a one~third octave
filter and power amplifier) results in a steady-state pressure
field within the room. For each frequency the mean square pressure

(pz) is obtained from ten microphone readings. The room energy is

then calculated from the expression,

£ v ssuseus: Byl

E_ = 2
r poco

where V is the room volume, Po the air density, and co the airborne

sound velocity.

6.5.3.2 Bending wave energy Eb

At the same time as the sound pressﬁre is being recorded manually,
the signals from ten calibrated accelerometers, placed on the
platé surface, are processed and 1oggeé. Thus; for each frequency
the spatial average mean square acceleration (32) is calculated.
The expression for plate bending energy is,

' ) 2
Eb = Mp {(v")
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Where MP is the plate mass and (vz) is the mean square velocity
amplitude in the direction of theithickness. A reasonable

approximation is possible i1f it is assumed that,

(az) - oF v2}

& 1is the centre frequency of the bandwidth. Thus, the plate

energy is given as

M
Eb = _g (az) ess s 6.2
W

Both sets of measurements are repeated for different accelerometer

and microphone positions.

6.5.3.3 Radiation loss factor ni

In section 2.9 the ratios of the energies Eb' Er are given in terms
of the internal loss factors of room and plate, the ratio of the
modal densities n,/ n, and the radiation loss factor n;. From
the energy balance equations 2.53 and 2.54 and from the equality

2.56, the following relationships result. If the plate only is

excited then,

b 4
n o -
b Eb/Er nb/nr L B ) 6.3

If the room only is (loudspeaker) excited then,

N, = it
b ‘Er/Eb)(nb/nr) = 1 seseeee 604

when the plate lies within the room, i.e. radiates from both
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surfaces, or when the plate is baffled i.e radiates into the room

from one surface.

r _ b
To = @B (n /0 - 2 -

The factor of 2 is explained when one considers the plate within
the transmission suite aperture. It can be seen that half the

power radiated or re-radiated by the plate is lost to the highly

absorbent second room (Fig 6.7).

6.5.3.4 Room and plate parameters

Figure 6.8 gives the values of the parameters found on the right
hand side of equations 6.3 = 6.5. The modal density ratio nb/nr
is calculated from expressions given in section 3.2. The various
internal loss factors are obtained from the rate of decay of
pressure or bending wave amplitude, on removing the source of
excitation (section 5.6). The reverberation time of the room is

a mean value obtained from ten microphone positions. The loss
factor for the two freely suspended plates of different thicknesses
is given. It is seen that the value of Ty lies somewhat below

that of the value measured from reinforced concrete in the form of

rods.

6.5.4 Results

The results of the experiments are given in Figures 6.9 to 6.15.

On each graph is given the predicted value of Maidanik (1962) for
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a thin plate having simply supported edges. The upper (dotted)

curve lies 3 dB above the lower curve and 1s reproduced in order to

gauge the effect of

(1)

(2)

having edge conditions which given bending reflection, and

the influence of radiation into 47 rather than 271 space.

With the exception of Figure 6.12 all measured values of radiation

loss factor lie within the supercritical region of the plate

radiation characteristics. There are two reasons for this.

(1)

(2)

It is shown in section 3.1.2 that the critical coincidence
frequencies of plates, of full scale thickness 0.15 m and
0.2 m, lie below the frequency range of interest i.e.
100 Hz to 3.15 kHz. We are therefore concerned with

plates or wall surfaces which have piston like radiation

characteristics.

It was thought that the dimensions of the reverberent
room in general prevented meaningful measurements below
a frequency of 400 Hz. The modal density of the room

(and that of the plate) is too low to allow the assumption

of reverberant fields.

Figure 6.9 gives the result of a thin plate (of thickness 0.038 m),

freely suspended within the room. Although, in experiment a sharp

increase in the radiated power is detected at the predicted critical

coincidence frequency the measured radiation loss factor lies well
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below that predicted. Over most of the frequency range however,

the experimental points lie above the solid line. This might be
expected if a simple energy flow model is considered. At the.higher
frequencies, and for narrow bandwidth noise, ignoring edge effects,
phase may be ignored and the radiation loss factor in 4T space may
be thought equal to twice that into 27T space. This would

correspond to points lying 3 dB above the predicted value of 1)322.

Fig 6.10 illustrates a repeat of the experiment, using the thicker

plate. There is more scatter in the points but again they lie

above the solid line.

On disconnecting the mechanical driver and supplying sound power

to the room by means of a loudspeaker a resultant bending wave field
is produced upon the plate within the room. The radiation loss
factor may then be calculated from equation 6.5. Figure 6.11 gives
the results for a thin plate suspended within the room. It is seen

that measured values are greater than those obtained from mechanical

excitation by 1 dB to 4 dB.

The process of mechanical and acoustic excitation was repeated for
plates freely suspended within the transmission suite aperture. 1In
this situation the plate is regarded as radiating into 21 space.
Figure 6.12 gives the measured values for the thin plate and it is
seen that the points agree quite well with theory (solid line) over
much of the frequency range, with a tendency to fall below the line
at the highest frequency. As would be expected, the values of n;

shown in Figure 6.9 lie from 2 dB to 3 dB higher than the values in
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Figure 6.12.

Figure 6.13 shows the results of a similar experiment, using the

thick plate. It has been stated that each run was repeated with
different accelerometer and microphone positions and the mean value
taken of the two sets of results., In this graph is shown the

maximum, minimum, and mean at each frequency. The observed difference,
generally less than 2 dB, is typical of all experiments and thus, only

the mean value is indicated in all other results.

Results obtained from the acoustic (indirect) excitation of the
baffled, thin plate are given in Figure 6.14. Again there is more

scatter and the values are generally higher than those obtained from

mechanical excitation. However the results are of the correct order

of magnitude and they decrease in value with frequency increase,

albeit with a gradient less than that predicted.

Measurements were also made over a frequency range of 100 Hz to

12.5 kHz despite the low frequency limitations which have been

discussed. Figure 6.15 illustrates the frequency dependence of 17;

over the full frequency range. The plate had fixed edges (by means

of the concrete frame) and radiated from the transmission suite

aperture. Again, results appear reasonable, with the coincidence

peak being clearly seen. However it was felt that at the lowest

frequencies there was movement from the surfaces surrounding the

plate and thus radiation from the frame and the surrounding wall.

r
This would cause an increase in the value of 17b,
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6.5.5 Summary

From experiments with vibrating plates within reverberant rooms the

following conclusions may be drawn.

(1) Above critical coincidence, simple energy flow methods

are successful in describing the radiation characteristics

of plates in bending vibration.

(2) The thin plate theory of Maidanik (1962) predicts, fairly
successfully, the radiation characteristics of relatively

thick reinforced concrete plates.

(3) The radiation loss factor into 4 space is approximately

twice that into 2 T space.

(4) The edge condition does not appreciably affect results in
the supercritical region. Maidanik (1962) argues that any
edge condition giving a reflected bending wave (as in the
case of free or rigidly fixed edges) will double the value
of radiation loss factor calculated for a plate with
simply supported edges. However, experimentally it is seen
that values of qi;; obtained by mechanical excitation,

approximate more closely to the lower (solid) curve.

(5) Measurements made when the coupled sub-systems are
acoustically excited indicate that the equality in expression

2.56 can be said to be valid. Experimental points tend to
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be higher by 2 to 4 dB than that predicted by the theory
but the peaking at coincidence and the subsequent fall

off with frequency is seen.

Bending wave energy ratios of concrete plates forming junctions

In conjunction with theoretical predictions of energy ratios given

in section 2.5, measurements were made on quarter-scale models of
cross-junctions (plate 6.8), T-junctions (plate 6.1) and corner
junctions. The plates were freely suspended by nylon cord and had
dimensions of 1 m x 0.75 m. The thicknesses of the plates were

0.038 m for the thin plate and 0.05 m for the thick plate.

The method of obtaining a spatial average of the mean square
acceleration amplitude and from it the bending wave energy is the

same as described in section 6.5.3.2. The apparatus is illustrated

in Figure 6.16.

For the configurations illustrated it might be argued that bending
wave energy will be generated on the secondary plates by means of

two transmission paths.,

(1) Power will flow through the junction from the mechanically

excited primary plate.

(2) The primary plate will radiate sound energy which may impinge

upon the other plates.
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However the second transmission path is very weak compared with the

first, since the coupling between the plate modes and the room

(laboratory) modes is small.

Results

The comparison between theory and experiment is given in Figures

6.17 to 6.22. The nomenclature is such that the primary or
mechanically excited plate (indicated by the arrow) is termed plate

1, the plate at right angles to it as plate 2, and the plate collinear
with it as plate 3. Figures 6.17 and 6.18 give results for a cross-
junction where the thick plate and thin plate are mechanically
excited, respectively. In Figure 6.17 measurement agrees with theory
in that the ratio Eb3/Eb1 is higher by about 3 dB than the ratio
Ebz/Ebl' Also there is a general decrease with increased frequency.
In Figure 6.18 the correlation is not so obvious but the experimental
results give approximate agreement in the mid and high frequency
range., It is seen however in these, and the remaining figures, that
in the low frequencies experimental values lie well below those
predicted. This is not unexpected since, in this region, modal

density (per bandwidth) is low and the assumption of reverberant

bending wave fields becomes tenuous.

Figures 6.19 and 6.20 give the results for a T-junction where the
thick plate is driven. The bending wave field on each plate was
sampled by seven accelerometers and the experiment repeated for
another set of accelerometer positions. Indicated is the maximum,

minimum, and mean of the two runs. It is seen that at low frequencies
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the reproducibility is within 3 dB while at the high frequencies
this improves, on average, to 2 dB; many points giving less than

1 4B differénce in results. The 5cafter in-exéerimeﬁtél measurement
exceeds the relatively subtle differences observed in the predictions
from simple theory and the more complex theory (section 2.6). In
both cases the theory can only be said to describe observations at
frequencies above 2 kHz (or 500 Hz on the full scale frequency).
However the observed values of Eb3/Eb1 give good agreement at

several points in the low frequency range.

Figures 6.21 and 6.22 illustrate most clearly the limitations of
the theory at low frequencies. 1Indeed, Figure 6.21 which shows
results for a T-junction in which the cantilevered plate 1is excited,
indicates a regqular increase in measured energy ratio up to a
frequency of 1.6 kHz where a plateau is attained, corresponding
(within 3 dB) to the predicted curve. The result for a corner

junction, (Fig 6.22) illustrates the same trend.

To summarise, the correlation between experiment and theory for
transmission losses through junctions is not as good as that for the
radiation loss factor measuremeﬁts. Agreement can only be said to
occur at frequencies above 1.6 kHz quarter-scale frequency. The
predictions offered by the theories described in sections 2.5 - 2.8
and Chapter 4, lie within relatively narrow limits; well within the
limits set by experimental scatter. However, in the mid and high

frequencies, agreement between theory and experiment is often within

2 or 3 dB.
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6.6.2 Increase of loss factor by cladding

To investigate the direct and indirect effect of increase of loss
factor of plates forming a junction,it was necessary to derive a

plate cladding having the following characteristics.

(1) The material is required to have a low bending stiffness

so as not to contribute to the stiffness of the plate.
(2) It should be highly dissipative.

Dry sand possesses both properties but problems arise in application
to the plate surfaces, which are often vertical. The cladding
finally adopted was that of sand, bound in the bitumastic material
"Aquaseal"”. The sand is mixed with the heated aquaseal (in a ratio
of approximately 4:1) and is then spread upon the plate surface to

a depth of 12-13 mm. On setting, the cladding remains malleable

but adheres well to the surface (plate 6.7). Its adhesion is
increased by first painting a thin layer of aquaseal on the concrete

surface.

The efficiency of the cladding is at the expense of an appreciable
increase in weight of the concrete plate. The density of the cladding
is measured as 1.7 x 103 Kg/ma. Thus a layer on the thin plate
results in an increase of mass of 23% while a thick plate, when clad,
increases in weight by 17%, In measurement therefore a corrected

plate mass was incorporated into the bending wave energy calculations.

Figure 6,23 illustrates the loss factor of an unclad and clad concrete

plate (dimensions 1 m x 0.75 m x 0,038 m) which is freely suspended.
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One surface only is covered. To measure the decay, the accelerometer

outputs were recorded on magnetic tape or high speed tape and

replayed at a lower speed for analysis. The cladding causes the
effective internal loss factor of the plate to increase by almost

one order of magnitude. This was thought sufficient for the following

investigation of the effects of increase in this parameter.

6.6.3 Effect of loss factor on energy ratio

Figure 6.24 and Figure 6.25 show the bending wave energy ratios

Ebz/Ebl and Eb3/Ebl respectively, for a T-junction of thin concrete

plates. Four cladding configurations are considered.

(1) Measurements are taken of the bare T-junction where

plate 1 is mechanically excited.

(2) The cantilevered limb (plate 2) is clad in the sand-

bitumen matrix.
(3) Plate 3 only is clad.

(4) Both plate 2 and 3 are treated.
From the results, the following observations can be made.

(1) The measured energy ratio Ebz/Ebl is reduced by an amount
ranging from 3 dB at the low frequencies, up to 8 dB at
the higher frequencies. The reduction is also appreciable

for the ratio Eb3/Eb1' It ranges from 3 dB at low
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frequencies, to 9 dB at the higher frequencies. The
theory gives a predicted reduction in Ebz/Ebl of

4 dB at 400 Hz, increasing to 5 dB at 12.5 kHz. For
the ratio EbB/Ebl' the reduction ranges from 3.5 dB

at 400 Hz to 5 dB at 12.5 kHz.

(2) Attempts were made to gauge the effect of indirect
damping, i.e. the reduction in Eb2/Eb1 when plate 3
only 1s dad, and the reduction in Eb3/Eb1 when
plate 2 only is clad. It is seen that there is an
appreciable decrease in EbZ/Ebl at the high frequencies.
Above the frequency of 1.6 kHz the decrease ranges from
O dB to 4 dB with several points giving higher reductions.
The scatter at low frequencies does not allow general
comment to be made. It is seen that theory predicts a
reduction in Eb2/Ebl of less than 1 dB. Similarly
Eb3/Eb1 is observed to reduce in value, but by the

smaller amount of 1=-2 dB. This is more in agreement

with theory.

(3) Damping of both plate 2 and plate 3 results in appreciable
decreases in EbZ/Ebl and EbB/Ebl' The reduction in
Ebz/Eial at mid and high frequencies, results from both
the direct and indirect damping. It has a value of
approximately 3 dB at low frequencies, up to 10 dB at

the high frequencies. The reduction in EbafEbl is little

affected by damping of plate 2.
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From Figure 6.24 and Figure 6.25 the following conclusions are made.

(1) An increase of a magnitude in the loss factor of a
rlate results in a reduction in bending wave energy
ratio of about 6 dB. A plate, at right angles to the
source plate, gives a slightly higher reduction than

a plate collinear with it.

(2) The decrease in ratio, due to indirect damping, is
appreciable only on a plate at right angles to the
source plate. At mid and high frequencies, the value
is 2-3 dB. The influence of indirect damping on the

energy ratio of a plate, collinear with the source

plate, is slight.

(3) Direct and indirect damping has a reduced effect at

lower frequencies.

Summary

Quarter-scale model experiments on the sound radiating characteristics
of concrete plates and the vibrational energy flow between plates
forming structural junctions have shown that there is reasonable
agreement between observation and theoretical prediction at the mid
and high frequencies. This appears to underline the importance of

the vibrational fields in each sub~system having sufficiently high

modal densities. Only then can simple power flow techniques be used
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with success.

With this in mind a more complex structural system is now considered.

Namely that of two rectangular rooms, connected at one corner.



7.1

CHAPTER 7

SOUND TRANSMISSION BETWEEN ROOMS

Introduction

In the investigation of vibrational energy flow between sub-systems,
the coupling between plates and that between a plate and the
surrounding air have been assessed separately, both theoretically
and experimentally. However, when dealing.with more ‘complex models,
which give a closer approximation to noise transmission in real
building structures, it becomes necessary to consider both processes
as occuqing simultaneously. Thps, as described in Chapter 1,
airborne sound impinging upon a wall, will excite it into bending
vibration. The wall vibration results in radiation of sound and in
the generation of vibrational fields on connected walls which may
also radiate energy. The transmission path described is typical of

many that contribute to the resultant transfer of noise from one’

room to another,

The system now considered is that of two rectangular rooms Qﬁich have
a common junction (Fig 7.1). This is a simple approximation to a
pair of rooms in a two or three dimensional array of rooms such as
occur in a block of flats. The source and receiver room are.seen

to be on different floor levels and are not directly over each other.

Therefore, in this case, any transmission of sound must be by an

‘indi;ect path.

An important difference between this model and a real situation
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existingin a block of flats, is that many more plates, belonging

to adjacent roomsg, would be involved in the transfer-and dissipation
of the vibrational .energy: However, the discussion is simplified by
considering’ the two rooms as mechanically isolated, except from each
other. The simplicity of the model will allow the assessment of the
noise transmission when "the ‘source room has steady-state loudspeaker

excitation and when some of the plater:elements are mechanically-

driven.

Energy balance- equations

As shown in Chapter 2, each coupled sub—system in a system which
receives steady state excitation is assumed to have vibrational
energy flowing in, either directly (such as from a 1oudspeaker in
the room volume), or from‘connected sub-systems; some energy is

internally dissipated and some flows out to the same connected sub-

]

systems. Again, as in section 2, for each plate or air volume, an

energy balance equation results in which the L,H.S sums the power
internally dissipated or lost to the surrounding plates etc, and

the R.H.S sums the power input.

The problem is more complicated than those so far discussed and the

¢ x

following simplifying assumptions are made.

(1) Figure 7.1 shows that the plates can be considered as

floor or wall areas, the 1atter being thinner. Thus,

Eate

plates 3. 5, 9, and 11 are assumed thick (i.e. 0 2 m

ol "

full scale dimension) and all other surfaces are



(2)

(3)

(4)

(5)

(6)
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assumed thin. .Use is also made of symmetry.. Plate 6
and its vibrational field is assumed identical to that
of plate 4. Similarly, plate 12 is equal to plate 10

(i.e. 0.15 m full scale dimension).

The internal loss factor of each plate is assumed the

same and is also assumed independent of frequency.

Electromagnetic drivers are assumed only to excite plates
into bending vibration. Again, the bending modes bnly

are assumed efficiently coupled ‘to the ' room modes.

As well as generating a pressure wave field within the

rooms, the vibrating plates will also radiate outwards.

There is therefore the possibility that another transmission

path existing between room 1 and room 2. This path is

" ignored in the following discussion, and it is seen-later

that it can be eliminated in experimental verification. . ..

A more cdmplex matrix results when longitudinal and

transverse components are considered, but in order to

'”éimplify the description, the bending wave fields only

are considered. Along with graphs of experimental
results, predicted values using the complex theory (solid

1ine)‘aﬁd simple theory (dotted line) are given.

-

The coupling between plate and air 11; is assumed to be

T .
the radiation loss factor n:ad' The coupling between-
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the air and plate 1]: is calculated using the equation,

b . ) g 21
r nr rad TR eweee 7.1

where nb/nr is the ratio of modal density to room modal

density.

Thus, the pair of rooms given in Figure 7.1 has an associated power
flow diagram, given in Figure 7.2. It shows that power flow from
room 1 to room 2 is assumed possible only through the coupling of
plates 5 and 7 to plates 8 and 9. In experiment, room 1 can be
acoustically excited or plates 2, 3, 5, and 7 can be mechanically
driven. Assuming the former situation, the energy balance equation

for room 1 (air volume) is given as,

2b  _ 3b 4b
Eqlfg t2(0, % 0, + 9, )) =

1 1 1 1 1
Eop Mop * Bap Map * 2B M gp + EspMap ¥ EgpMop + nacoust.

L L 7.2

The room loss factor "1 is shown on Figure 7.1, along with that of
room 2. The values were calculated from reverberation time

measurements at five microphone positions in model rooms.

Similarly, when a plate is mechanically driven (such as plate 2) the

energy balance equation becomes,
3b 4b 5b 1 -
Egp( My * Mop + 2Mgp + Moy + 27 3)

. _2b - 2b S b TP - SO
EspMap * 2Bgp Mgy * Esplsp ¥ By +”mech2 cecsess 7.3
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By this method, the energy balance equations of all sub-systems,
whether directly or indirectly excited, are generated. As described
in Chapter 2, the steady-state energy levels of each sub-system will
be expressed in terms independent of the power flowing directly into
the system. This is possible when all energies are divided by the
generated energy in the directly excited sub=-system. Thus, when
plate 2 is mechanically driven, the generated bending wave energy

is assumed to have unit value and all other plate energies are

expressed with respect to it.

Numerical analysis

In the numerical solution of the set of simultaneous equations,
which result from the energy balance equations, matrix notation is

used. Initially the equations are expressed in the form,

(] [e] = [o]  eveees. T.4a

where the coefficient matrix [A] and the column matrix [E] are given

in the full expression,in equation 7.4b.

Equation 7.4 is equivalent to the statement that no sub-system is

directly excited and no power flows between sub-systems. There is
much duplication of radiation and coupling loss factor terms in the
elements forming matrix [A] in equation 7.4b (i.e. ngg = ‘qgg

ngg) and this simplifies notation.

The computational process begins by assigning non-zero values to
[
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the elements in the R.H column of equation 7.4. Thus, if plate 5

is excited directly into bending vibration then all other plate

energies are expressed by the ratio E

p1/Eps5°

The equivalent

operation is to remove the fifth row (enclosed by dotted lines) from

matrix A in equation 7.4 and by moving the f£ifth column to the R.H.S

of the equation, equation 7.4 becomes,

[A'] [E/Ebs:, -

where a, j are the elements of the coefficient matrix a.
r f

We have now a set of simultaneous equations which are solved using

Crout's rule (as in section 4.1 and Appendix II).

-

M5

4,5
6,5

a

a

12,3

L B

7.5

Thus, using the initial matrix equation 7.4, a computational routine

is evolved where the resultant, relative energy levels of any sub-
system can be calculated for the case when any single sub-system is

directly excited. Calculation was performed for the case of room 1

being acoustically driven or when plates 2, 3, 5 and 7 are, in turn,

mechanically driven.



= 27T =

7.4 Measurement

Experimental measurement involved the use of two model rooms,
connected diagonally as shown in plate 7.1. The methods of
measurement of plate bending wave energy and room pressure wave
energies are as described in Chapter 6. Figure 7.3 gives a diagram

of apparatus.

7.4.1 The rooms

The twp rooms were constructed from reinforced concrete plates of
thickness 0.05 m (plates 3, 5, 9, and 11) and of thickness 0.038 m
(for all other plates). The corners of the rooms were produced by
keying the edge of each plate and by using a strong grout as an
adhesive. The two rooms can be considered as lying on their sides
and the whole arrangement is isolated from the floor by rubber pads
standing upon concrete cubes (plate 7.3). The rooms were of
different dimensions; the source room having internal dimensions of
1.0m x 0.68 m x 0.76 m and the receiver room dimensions were

0.95 m x 0.75 m x 0.66 m. In measuring the airborne sound transmission
between the rooms it was felt necessary to eliminate transmission of
energy by outward radiation from the source room. Thus room 1l was
screened from room 2 by a large panel bisecting the common corner.
The panel was constructed from sheets of urethane and hardboard
panels and had a height of 2.5 m and a width of 5 m, Additional
damping of any outwardly radiated sound was produced by foam rubber
(approximate thickness 50 mm) placed between the source room and the

floor area. Despite the laboratory being fairly reverberant it was






SQUARE

- 279 -

DRIVER

DIGITAL|

LAW

VOLT= |
ME TER

.TAPC
PUNCH

2
A ’“‘7‘{"“2 |

SCAN-
NER

- [MANUAL
IADDRESS

CHANNEL
SELECTOR

PRE-AMR

Figo 7.3

n: ' N B ---,
N ™
w“"_' |
!
CATHODE <L D——D—J
FOLLOWER |
e
POWER AMP EXCITER ! '
G ' H
V4
b r—

Measurement of noise transmission in connected rooms.

¥

» *
Wt

oAb ey



PLATE 7.2 Pressure unit and monitoring

condenser microphone.

PLATE 7.3 Large electro-magnetic shaker

and accelerometers in position.
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found that the simple screening reduced the measured energy ratio
Er2/Er1 by up to 10 dB in the mid and high frequencies. At the

frequency of 630 Hz the improvement was still 6 dB.

A small triangular hole in each room allowed the insertion of
microphone cable (plate 7.5). The holes were then sealed by wooden

pleces of thickness 40 mm,

The drivers

As in prevbus experiments, mechanical excitation was produced by

the large electromagnetic shaker bolted to the plate (plate 7.3).

A steady-state sound field within room 1 was generated by a pressure

O Ll

unit (Vitovox type CN353) p&sitioﬁed outside the room, over a
circular aperture in the wyooden corner plece. This ensured that the
sound source was located as near as possible to a room corner. In
this position, the maximum number of room modes are excited within
the bandwidth of interest. 1In order to prevent any vibration of the
pressure unit directly generating plate bending fields, the unit was
isolated from the corner pilece by a seal of rubber tubing. Sound
radiation into the laboratory from the unit was eliminated by

enclosing it within a box, the inside of which was lined with

absorbent material.

Both acoustic and mechanical drivers were supplied with amplified,
one-third octave filtered random noise. A microphone on the axis

of the pressure unit, at a distance of approximately 200 mm



PLATE 7.4 Condenser microphones and stands.

PLATE 7.5 Microphone inside model room,
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(plate 7.2), and an accelerometer cemented at the driving point

of the mechanical shaker allowed the input power to the system to

be monitored. It was found that in the time taken to complete a

set of readings iittle or no drift in power input was observed.

The monitoring microphone and accelerometer also allowed any
experiment to be repeated. If it was required that the reading at
different accelerometer positions be taken, then the same power

input could be reproduced. Thus, at 400 Hz the monitoring microphone
reading (on a R.M.S meter on slow‘re3ponse) could be reproduced with

an accuracy of + 1 dB. While at 12.5 kHz the reproducibility was

within 0.2 dB.

The vibrational transducers

Figure 7.3 shows that the accelerometer signal circuit is the same
as that used in the radiation loss factor measurements and in the
measurement of bending energy ratio in plates forming junctions
(section 6.6). The bending wave energies of plates 2, 3, 5, 7,'8,
9, 11, and 13, were measured and compared with the predictions.
With the thirty-two accelerometer signal channels.available, four
calibrated accelerometers could be distributed on.each plate. The
experiment was repeated up to four times for different accelerometer
positions £o qive a total of twenty accelerometer readings for each
plate. A typical distribution of accelerometers is seen in plate 7.3.
The pressure filelds in each room were measured_using the one inch
condenser microphones plus cathod follqwera. Readings at five

microphone positions were recorded at each frequency. The microphone
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signal is amplified, filtered by a one-third octave bandwidth and
then metered. Plate 7.4 illustrates the monitoring microphone, the
two sampling microphones and stands, while plate 7.5 shows a

microphone in a position in the source room.

Results

Experimental measurement and values predicted from theory are given
in Figures 7.4 - 7.15. 1In all graphs the solid line represents
predicted values from theory where bending, longitudinal, and
transverse wave fields are considered. The dotted line gives the
predicted values from the simpler theory where bending waves only
are considered. The experimental points are the mean values of
three to five measurements. This corresponds to between twelve and

twenty accelerometer positions per plate.

Acoustic excitation

Loudspeaker excitation of room 1 will result in the direct generation
of a pressure field in room 1, and the indirect generation of bending
fields on all plates and a pressure field in room 2. For simplicity

of interpretation the plate bending wave energies are divided by the

bending wave energy of plate 3, i.e. Eb3 = 1.

The plate energies in the source room (Fig 7.4) vary little from
each other. As is expected, the deviation of theory from measurement

is a maximum at low frequency. 1In this and in subsequent results it
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is seen that agreement between measurement and theory can only be
considered fair at frequencies above 1.6 kHz in the quarter~-scale

frequency range.

The following observations are made of the results for the plates

forming the receiver room (Fig 7.5).

(1) Theory and experiment indicate a decrease in energy

ratio with increase in frequency.

(2) EbB/Eb3 and Ebg/Eb3 have greater values than those of
Ebll/Eb3 and Eb13/Eb3‘ This 1s seen to be the result
of vibrational energy having to pass through two plate
junctions in the receiver room, before reaching plates
11 and 13. wWith the exception of Ebll/Eb3' agreement
between predicted and measured values is reasonable.
The difference in values predicted using simple and

complex theory ig in general less than the difference

between either and experimental results.

Figure 7.6 présents.£he-frequency dependence of tha-room pressure
ratio Erz/Erl when room 1 is driven by a loudspeaker. 1In the mid
and high frequency range there is seen to be good agreement between
simple theory and experiment. The gradient is approximately 10 4B/

octave over most of the frequency range.
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7.5.2 Mechanical excitation

Figures 7.7 = 7.14 give the bending energy ratios of each plate when

plates 2, 3, 5, and 7 are mechanically excited. From the graphs the

following observations are made.

(1)

(2)

(3)

(4)

b i

Again the theory is seen to break down at frequenciles

below 1.6 kHz in the quarter-scale frequency range.

In geﬁefél, although following the measured tre#d with
frequency, the theory gives values lower than that
observed. The difference can be as much as 5 dB between
" the experimental results and values predicted by either
“theory. This is particularly true of the bending energy
of platé 11 which gives consistently high measured

values, irrespective of the plate excited.

The decrease in energy ratio with increase in frequency
is again seen in both theory and experiment. The line
predicted from the more complex theory has a steeper
gradient than that of the simple theory or a line-
(approximately) fitting the measured results. Indeed, at
the highest frequencies (5 kHz to 12.5 kHz) the agreement
between measurement and simple thedfy is often better

than that with the more complex theory.

The low predicted values may be the result of assigning
too low a value to the coupling factor q: i.e. the

coupling between the enclosed air volume and the surrounding
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plates. It will be remembered that in the measuremeﬁts
of radiation resistance by acoustic excitation.(section
6.5.4) the observed values were consistently higher
(though of the same order of magnitude) than the

theoretical value.

(5) As a result of having transmission paths 1ncorporating
two structural discontinuities it would be expected
that lower energies would be found on plates 8 and 9
when either plates 2 or 3 are excited than wheﬁ plates
5 and 7 are excited. Although plate 9 energies are
consistently lower (by approximately 3 dB over much of
the frequency range) when plates 2 or 3 are excited,
the same cannot be said of plate 8. The energy on this
thinner plate appears largely independent of the plate
mechanically excited in the source room. This again
appears to support the theory that the coupling between
the pressure modes and the plate bending modes is

stronger than initially thought.

The room energy ratio Erz/Erl is also calculated for each excitéd
plate (Fig 7.15). From the mid-frequencies upwards both theory

and experiment give a decrease in energy ratio with increase in
frequency. The theory and experiment also indicate that the energy
ratio is largely independent of which plate 1s excited. It might be
expected that values of Erszrl would be lower when plate 2 or plate
3 are excited than when plate 5 or plate 7 is excited. This is seen

to be true on plate 5. In general the ratio is insensitive to the

¥
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plate excited in the source room.



CHAPTER 8

'CONCLUDING REMARKS

General conclusions

c

Sound transmission in building structures has been investigated
theoretically, by means of power flow techniques, and experimentally,

by use of quarter-scale models., From prediction and measurement the

following observations are made.

(1) vVibrational energy is transferredrreadily from one
concrete plate to other concrete plates which form
a junction. This is particularly true when all plate
thicknesses are equal or nearly equal. It is shown
that bending, longitudinal, and transnerse naves are
the mein forms of vibrationel energy transfer. As
well as generating bending waves on all connected
plates, an obliquely incident bending wave gives rise
to longitudinal and transverse waves on plates at right
angles to the ecurCe plate, and, to a lesser extent, on

plates collinear with the source plate.

: 2

Atlcertain angles cf incidence, longitudinal and trensverse
waves areltotally reflected and the mechanical impedance of
the junctien effectively becomee zero. .A 1erge iransﬁssion
of bending wave energy then occurs between collinear

plates, i.e. the transmission coefficient )’lb gives a peak

value which is almost unity at low frequencies,



(2)
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Contrary to results of Kihlman (1967) 'the average
bending -wave transmission coefficient '}’fg between
plates-at right angles is seen to be frequency
dependent, albeit to a smaller degree than')’ig. The
coefficient yii increases with increase in frequency
and, ‘except at high frequencles, is greater in value
than ‘yi;’ ‘A general statement can be made ‘that the
most important transmission for the case of bending,
longitudinal,;“or transverse waves incident at cross-
junctions or T=-junctions of plates of nearly equal
thickness in that involving the generation of a wave

type on the collinear plate which-is the same as that

: . t B
incident, i.e. 'yig, yi:, yit.- o My

v I

From’calculated transmission coefficients at junctions
of semi~infinite plates,”structural coupling loss
factors were derived and then entered into energy
balance equations,-along with internal loss factor and
radiation loss factor. These equations describe the

power flow between finite plates forming junctions.

T - 4 L -t

‘It is seen that, for the configurations investigated,

consideration of wave types other than bending waves
did not appreciably alter the predicted bending wave
energy on each plate. The difference between values
predicted from this simple theory and those from more
complex theory is never more than 2 dB; this is well

within experimental error. - : N
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In general, . predicted and measured values of bending
wave energy agreed only in mid and high frequencies.
The frequency range of interest was 100 Hz -~ 3.15 kHz
(full scgle).- At the low frequencies, measured values
were generally  lower than predicted. This is certainly
due. to' the breakdown of simple power flow concepts at
low frequency where all vibrational modal densities are
low. .In:the bandwidth-of measurement (one-third octave)
one bending. mode may predominate and the bending field

cannot.be assumed to be diffuse. o 2 : s

PR

bi vor b
(3) Power flow methods are used more successfully in

describing the radiation characteristics of rectangular,
reinforced concrete plates. Thin plate theory of-
Maidanik- (1962) gives fair agreement with experimental
results. . For the plate thicknesses investigated it is
seen that-the critical coincidence frequency lies below:
the frequency range of interest. 'In this supercritical
region, .the radiation.characteristics.are unaffected by
edge conditions. Also, the radiation loss factor into
4T space is approximately twice that into 2 17 space,
Therefore, the radiation characteristics of a reinforced
concrete plate are independent of situation, i.e. whether
it forms parf af or ail of a surface of a rectangular

room or is radiating into 2T or 4T “space.

Thus, the sound radiation from a vibrating plate can be

described by the radiation loss factor which is entered
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into the energy balance equations in the same way as
dissipative loss factor. Values of radiation‘loss’
factor were obtained from reciprocal experiments in
which the plate is indirectly (acoustically)' excited.
The values obtained were higher than those obtained
from direct' (mechanical) excitation by about-3 d@B.

(4) The validity of using quarter-scale models in experiment
has been established. - The dynamic constants of 'full and
quarter-scale specimens of reinforced concrete, brickwork,
and breezeblock were calculated. Bending, longitudinal,
and transverse (torsional) wave velocities of concrete
rods are independent of the form of (unstressed) -
reinforcement. ' The dissipative loss'factor is also
independent of the form of reinforcement and gave
approximately the same measured value for all three wave
types. All these parameters are shown to be independent
of frequency and, 1in the case of brickwork, -dissipative
loss factor is independent of displacement amplitude.

P

The dynamic constants assigned to reinforced concrete

3

are'given as,

] L t-Fh

Young's modulus E = 4 x 1010 N/m2

¥ ot RO " ¢

3 Kq/m3

Density p o= 2.5 x 10
v+ Polsson's ratio g = 0,3 = :

Di;sipative loss factor n = 0.01



(5)
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The measured wave-velocities in brickwork were higher
than expected, and those of dissipative loss factor
were lower than expected.' This is thought to be due:
to the strong-mortar mix (and method of. keying)
employed in the linear arrays of brick.produced.: In
general, structures'made in the laboratory had'purer :
constituents, and constructional methods were more - -
exact than those employed on the site. This will tend

to increase vibrational wave velocities and reduce the

i

dissipative loss factor. ) = o Do
Structures -made from the above building materials can
be scaled successfully to a ratio of 4:1. In brickwork,
scale models were made. from a mix 1:1.5:2.5 with the

water content of 1.1. .The aggregate is of crushed brick

of -dimensions S mm = 10 mm,

Experiments were carried out on the direct and indirect

effect of increase-of material loss factor of a concrete
plate or plates forming junctions. The loss factor was

increased an order of magnitude by cladding the plate .-

with a layer of sand-bitumin mixture. The direct effect
of this increase is.to.reduce the bending wave energy on
the - clad plate by approximately 6 dB. Indirect.damping

in which the bending wave energy of a plate is decreased
when a connected plate is clad, is appreciable on plates
at right angles to the source plate. 1In mid and high

frequencies, it is of. the order of 2-3.dB.



(6)

(7)
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The indirect effect on plates collinear to the source
plate is slight. This fact would suggest that the
reduction in energy on a plate at right anglee to the

source plate may be the result of increase cf

mechanical impedance of the juncticn as well as the

increase in internal loss factor of the connected plate.

This increase in impedance results from the additicnal

bt )

mass cf the cladding.

Predicted values from thin plate thecry agree fairly

well with the measured mcdal distributions of bending

waves on reinforced concrete plates.

A two dimensional analogy to the wave theory of pressure

waves in rectangular rooms gives values in agreement

§ it

with measured longitudinal modal distributions on

rectangular concrete plates.

Investiqaticns were carried out on the sound transmissicn
between two rectangular rooms which have a common junction.

Again, agreement between predicted values and experiment

is found only in the mid and high frequencies. It is seen
that the bending wave energy distribution in the receiver

room and the room pressure wave energy ratio are largely

El

independent cf which surface in the source room ia

mechanically excited. Thecry, in which bendinq wave

transmissicns only are considered, gives fair agreement

]

with experiment in the mid and high frequcncies.
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Suggestions for further work

In this attempt to apply power flow methods to noise t;ansmi;sicn
in building structures, several aépécta have not been diécussed,
or at leaét; énly briefly; .It is thoﬁghtlhowever, that the
limitatiohs sé’the method have been pointed out so that it can be

applied with some confidence to more complex problems than those so

far discussed. The suggested topics for further research thus

are as follows.

(1) As well as thé bending wave energy on wall and fioor
surfaces, measurement could also be made of other wave
t&pes. The problem is that of differentiating between
the benéing wave viﬁration and that ofibngitudinai and
transverse waves. Measurements could be made of the

transmission of one wave type into another at junctions.

(2) A éirect comparison eould be made between a real structure
and a quarter-scale'model. A suggested configﬁzatian
wbuia 5e ﬁhe adjacent rooms of two semi-detached houses.
Measurement would be made, at full scale and quarter-

scale, of the airborne sound transmission and the bending

wave energy on the wall surfaces.

(3) Energy balance equations can be applied to more complex
structures than those discussed. An example would be
the investigation of sound transmission between rooms
separated by several floors or rooms. It might be thought

that the energy balance matrix would rapidly become
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intractable. However, it is the very complexity of the
problem which allows power flow methods to be applied”
meaningfully. Sub-systems such as each wall area which
so far have been considered separately may be lumped
together to form one sub-system. Thus, a rectangular:’
room can be "thought of as two coupled sub-systems, i.e.

the total floor and wall "area and the air volume-

-enclosed. Also if the rooms form part of a two or three

“'dimensional array, as exist’in high-rise buildings, ‘a

- ‘reiterative method may further simplify the analysis.

(4)

(5)

The direct and indirect effect of increase in internal -

loss factor of materials can be investigated for real

situations.

-
"

The method so far described is a steady-state method.

Impact noise transmission is often of a pulse like

nature. Thus the techniques may be modifiled or

replaced in order to describe transient effects.

“



APPENDIX I

DERIVATION OF IMPEDANCE ZiE AT THE JUNCTION OF SEMI-INFINITE PLATES

LN !

The calculations of éremer (1949) and Kihlman (1967) of the mechanical
impedance of a‘’corner junction and cross-junction, respectively, are by
similar methods! Cremer's expression has the advantage that the component
which gives rise to the longitudinal wave and that which gives rise to the
transverse wave are clearly distinguishable. By making the simplifying
assumption that the:impedance of a junction with a free edge is half that
of a junction without a free edge a convenient expression, describing zlt

can be derived using the method of Cremer. --The following-derivation is

thus an abbreviated form of -his theory."

yin)

plate |

longitudinal

tronsverse

— o E—— S— —

z({)

Fig. ALl
'xlel .
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A bending wave on plate 1, incident at the junction (Fig A I.l1l) will produce
a force which will excite a longitudinal wave in plate 2. Snell's law

dictates that this wave leaves the junction at an angle ¢l given by
K, sin ¢L = K, sin¢ , (1)

The force in the wave therefore has components in the y- and z=-directions.
However, since the driving force has components in the z-direction only, it
is necessary to assume the excitation of a transverse wave in which the

particle movement is perpendicular to the direction of propagation and

parallel to the plane of the plate.

The vortex=-free longitudinal wawire can be described by a potential function
lf._t and the source-free transverse wave by a stream function\b « Cremer

expresses these functions as,

b -

2 2 2
o exP(-iKy sin¢ l)exp(-izd’(lcl - K,“ sin ¢1)) ©2)

Y = 1IJ'° exp(—il(ly.s:l.ncpl)exp(—in(Ktz - Klz sin2¢ 1)) (3)

The displacemen{:s of the field are given by,

26 9y o
) = 5‘;‘ + 5"‘2" (4)
P | |
e Gy V—— 5
(=3, 7 3, e

To obtain the ratio of the quantities ¥ _ and §° the condition is assumed

that in the yz-plane there are no shearing stresses. According to Cremer
(1949, Section I 134b), this condition is given by,

a , an .
dy t dz Q (6)
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Substitution of equations 2, 3, 4, and 5, into equation 6 gives'at z = 0O,

Wi -2K, sincfa J(I{ - sinzq’J o B

2 2
¢o (K, 21<1 sin q'.>1) 7

+
"

The particle velocity which results on plate 2 can be expressed as,

W it e ield - #]

z=0 2=0 dz . (8)

Substituting equations 2, 3, and 7 into equation B8 gives

' cqe. @ e 2 2 .2 2 2,2
(Vz) = w[EK" =K sinqbl) + 2K sin ¢1 (K, K, sin ¢1} {’
2 2 3 .3
{Kt - 21(1 sin ¢1)

(9)

The force in the z-direction is obtained from the stress 0, . A general

expression for stress is given by Timoshenko and Goodier (1951) as,

o —E-——(d—§-+g—qy-+g—i-)]

z'(1+p)[i§+1-zp 'ax (10

Tt

where E is the Young's modulus of the material and p 1is the Poisson's ratio.

If it is assumed that the stress is zero in the x-direction, a similar

expression to equation 10 yields,

a5 o . & - al; L -
ax (1-p> G * a2 (11)

Substitution of equation 1l into equation 10 gives,

BN /Y- N | '
- ( * ) (12)
o () pz, dz dy'. o % a . _
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Equation can now be expressed in terms of @o' by substituting equations 2,
3, 4, 5,-and 7. The Poisson ratio inside the bracket in equation 12 can be

expressed in terms o the longitudinal and transverse wave number as follows,

Ke (13)
The final expression of stress in the z-direction thus becomes,

g 2

- E L 2 2 2
(oc:) - - (K, “ = 2K, “sin“d ) +
£ o (1-;12) x 2 ¥ 1 1

t

[ v oa LY

2.2 2 i By i 2 52 . 2
4K, “sin"p (k" - K, “sin“P ) J (K7 - K, “sin’g ) 3

2 -2 2 o i
(K~ = 2K “sin"¢,) (14)
The expression for impedance is,
z = (F—z) - - (azh)
Lt v Vz
Z2=0 z=0 (15)
Inserting equations 9 and 14 into equation 15,
E K, Zh .2 -2 251:129*.) ya
. - L t 1 1l %
Lt 2.4 2 2 2
W (1= pAHK ik “ - K, “sin“¢,)
2 2 2 2 2

The two terms in equation 16 indicate the subdivision of energy into the

two wave components,

The first term has a square root as a denominator which becomes imaginary

at an angle at which no longitudinal wave is transmitted. Instead of a
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transmitted progressive wave, a rapidly decaying near field is produced.
In describing this:component of the impedance at angles greater than this
critical angle the convention is adopted of substituting

2 e 2 2 2 2 2
-iJ (K, “sin ¢ 1 ~ K) for J(Kl - K sin 431} in the first term of
equation 16. Therefore, this term describes the energy transmitted as a

longitudinal wave.

Similarly, the second term in equation 16 becomes imaginary when the
limiting angle for transverse waves is exceeded and this term describes
energy transmittéd as a transverse wave, The transverse component which

is compliance is subtracted from the longitudinal component which is a
re;;tance abbvé the criﬁical-angle for.transverse waveé. An angle therefore
is aétained at which the two terms cancel and the impedance effectively
beeomes zero. Itlis seen that at this angle this phenomenon is accompanied

by large values of transmission coefficient of bending waves in plate 1 into

bending waves in plate 3.



APPENDIX II

THE " SOLUTION OF A SERIES OF LINEAR SIMULTANEOUS
EQUATIONS BY CROUT'S METHOD

The following sub routine is complete or can be used dynamically as part

or a larger programme.

'Begin'’

LTI
L

'Integer' ﬁ. I, J, K;
M: = read;
'‘Comment' This give§ the number of equations to be solved;
'Begin'! o
'Real’ 'Az-'ra.y'“ X[1:M, 1:M+ 1], A[i:Ml:
'For' I: =1 'step' 1 'until' M 'do’ r
'‘For' J: =1 'step' 1 'until' M + 1 ‘'do'
X[(I, J): = read;
'‘Comment' The elements may either be read into the programme, as above,
or result from the calculation in a preceding sub routine;
'For' I: = 2 'step' 1 'until' M + 1 'do'
X[1, I] s = X[1, T]1/X[1, 11,
'Comment' X[1, 1] 1is non zeroj
'For' J: = 2 'step' 1 'until' M 'do'
'Begin'
'For' I: = J 'step' 1 'until' M 'do’
'For' K: = 1 'step' 1 'until' J -1 'do’'

X1, J3]:=x[I, J] -X[I, K]*X[K, Tl

-

'For' I: = J+ 1 'step' 1l 'until*" M + 1 ‘do!
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'Begin'
'For' X: = 1 'step' 1 'until' J - 1 'do!
X[J3, IT]: =X[J, I] -X[J, K] *X[K, I];
X[J3, I): =X[J, 1) /X [3, 3]
'end’;

'end’,;

A[M]: ==X[M, M+ 1] ;
'For' I: = M = 1 'step' =1 'until' 1 'do’
'Begin'

AlI]l: = =X[I, M+1]);

'For' K: = M 'step' -1 'until' I + 1 'do’
AlIl:=Al1]l=XI[I,KI*¥A[KI];

'end';
'Comment' The solution is given by the array A and can now be

output by any convenient method;



APPENDIX III

TABLES OF TRANSMISSION COEFFICIENTS, AS FUNCTIONS OF FREQUENCY, FOR

CROSS -JUNCTIONS, T=-JUNCTIONS, AND CORNERS

OF REINFORCED CONCRETE PLATES
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