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Summary 

The dynamic analysis of prismatic structures is further 
developed to include structures with members of different forms 
of taper. The mass, static stiffness and dynamic stiffness 
matrices are formulated for two assumed displacement functions 
— polynomial and quasi-exact, the latter giving an exact 
solution for prismatic structures. Both functions give an 
exact solution with finer subdivisions of the elements. The 
methods of subdivision are compared for their effectiveness. 
The formulation of the property matrices, for both functions 
in both prismatic and tapered sections,are fully documentated 
and are proved to be valid in the analyses. 

The solution methods described give natural frequencies, 
the modal shapes and the analysis of dynamic response. The 
matrix iteration methods are developed to solve the linear 
eigensystems which are derived from the polynomial expressions. 
Nonlinear eigensystems,developed from the quasi-exact function, 
are studied by means of the count algorithm. This algorithm 
identifies a root with the concept of the Sturm sequence and 
the isolation of the singularity. It also serves as a powerful 
tool in dealing with abnormalities. 

The behaviour of plane frame structures, both of prismatic 
and tapered section, is studied with a wide variety of examples, 
Certain special features are noted : the convergence tests ; 
the extensional mode in flexural vibration ; the discontinuities 
in sectional properties ; the optimisation of structures and 
the half-structuring analysis at the plane of symmetry. The 
analytical results obtained are supported by experimental 
evidence. 
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NOMENCLATURE 

Roman alphabet 

a Haunch length 

a, Arbitrary constants, i=1,2,3,.... 

a, Scalar multiplier 

A Cross-sectional area 

AP Asymptotic pole 

b Breadth of a rectangular section 

b, Unknown coefficient 

c Damping coefficient 

G@ Critical damping coefficient 

CA Count algorithm 

dad Depth of a rectangular section 

D-£ Determinant-frequency curve 

DFP Dimensionless frequency parameter 

E Young's modulus 

EI Flexural rigidity 

EA Extensional rigidity 

£ Frequency in HZ(cycles per second) 

f(x) Function in the Sturm sequence 

H Height of a frame 

I Second moment of area 

L (i) length of an element 
(ii) span length of a frame — 
(ii) span length between supports of beam structures 

m Depth ratio 

m' Optimised depth ratio 

mx) Linearly varying section function of depth (148542)



n(x) 

Bending moment 

(1) number of degrees of freedom 
(i) breadth ratio 

(Bees) Linearly varying section function of breadth Z 

Transformation ratio of the depth of the equivalent 
uniform section (E.U.S.) 

Axial force 

Transformation ratio of the breadth of the E.U.S. 

Quotient in the Sturm sequence 

Frame aspect ratio 

Radius of gyration 

Slenderness ratio 

Rayleigh quotient 

Sign count in the count algorithm 

A count in the extensional asymptotic pole algorithm 

A count in the flexural asymptotic pole algorithm 

(i) Total count in the count algorithm 
(i) Shear force 

time 

Axial displacement 

Axial displacement amplitude, U=usin (wt+f') 

Response amplitude coefficient 

Transverse displacement 

Transverse displacement amplitude, W=wsin(et+@) 

(i) distance measured along the abscissa 
(ii) Abscissa in the local coordinate system 

Abscissa in the global coordinate system 

(i) distance measured along the ordinate 
(i) Ordinate in the local coordinate system 

Ordinate in the global coordinate system



Greek alphabet 

[Kk] 

a Flexural dimensionless frequency parameter (aL) 

8 Extensional dimensionless frequency parameter (aL) 

¥ Extensional frequency parameter, y= Sut 

&; Kronecker delta 

é& Elemental length 

ss Damping ratio 

8 Slope displacement 

e Angle of rotation in unitary transformation 

~ Flexural frequency parameter, W= Su 

-& Eigenvalue for a standard eigensystem 

=z Shape function 

T Gonstent, =37 141595....) 

° Density in Kg/m' 

$ An angle through which an element rotates from local 
to global system 

A variable in the Bessel function transformation (eq.5.47) 

wy A variable in the Bessel function transformation (eq.5.48) 

w Angular frequency in radians per second 

n Forcing frequency 

Matrices 

{al Portion of total matrix for deriving static stiffness matrix 

fc Constraint matrix 

{p] Rigidity matrix 

Cs] Non-singular matrix with zero-elements above the diagonal 

Tr Unit matrix 

ae Dynamic stiffness matrix 

[3] Square matrix for standard eigensystem ( CKI Em] ) 

Static stiffness matrix
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[MJ] Mass matrix 

Cu] Portion of total matrix for deriving mass matrix 

(OD) 2 aie: Imatoix 

{P Orthogonal matrix 

CrJ Displacement transformation matrix 

Cx] Total matrix for deriving dynamic stiffness matrix 
(e.g. EILALCAJ-we(NT CN] ) 

Vectors 

{a} Constants vector 

{a} Response amplitude vector 

{f} Distributed force vector 

{F} (i) External force vector 
(i) Driving force amplitude vector 

R(t)} Applied load vector 

{W} Axial deformation vector 

{x} (i) Arbitrary vector for iteration 
(i) Response vector 

{y} Arbitrary vector for iteration 

Displacement vector 

Strain vector 

Stress vector 

Suffices 

oO Extensional vibration 

Flexural vibration 

Global system 

Static stiffness matrix 

lower bound 

mass matrix 

Equivalent uniform section 

upper bound
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CHAPTER a 

INTRODUCTION 

Sil Historical Review 

During recent years, the dynamic analysis of structures 

has become increasingly important in civil engineering structural 

mechanics. The increase in emphasis on dynamic behaviour can be 

attributed largely to two aspects — an increasing demand and an 

expanding capability. There is now a demand for engineers to 

become familiar with dynamic analysis procedures, and to apply 

them to the study of structural systems which are of extreme 

complexity and/or non-uniformity, and an expanding capability that 

has made possible the dynamic analysis of large structures has 

been provided by modern large scale digital computers operating 

on finite element formulations of problems. 

As is often the case with original development, it is 

rather difficult to quote an exact date on which the finite 

element method was formulated. Important original contributions 

have been presented by Turner et.al, ee & Kelsey’, and Clough’ 

by whom the term "finite element" was first introduced. Initially 

developed on a physical basis for the analysis of problems in 

structural mechanics, it is now recognised that the finite element 

method may be applied to many other fields in physics and engineer- 

ing.



The problems on the vibration of solid bodies were first 

investigated by Euler and Bernoulli in the 18th Century when the 

differential equation of elastic vibration of the beam was 

developed. Theorems on mechanical vibration were established 

during the time of Rayleigh (1842-1919), and since then, the 

theory has been extended to the analysis of plates and shells.” 

Preliminary work on beams of variable section, carried out by 

Cranch and Adler, was applied to beams with certain particular 

boundary conditions. The natural frequencies of beams with a 

wider range of boundary conditions has been presented by Gorman? 

The finite element technique applied to vibration problems 

is now becoming well-known, and the study of the vibrational 

behaviour of large plane frame structures is assuming a greater 

demand. Further, although non-prismatic sections are becoming 

more common, either for economic or aesthetic reasons, relatively 

little work appears to have been carried out into the vibrational 

behaviour of structures composed of such elements. 

It is with the vibrational study of plane frameworks, 

composed of both prismatic and variable sections, that this thesis 

is concerned. Before this study is presented, however, a brief 

review of the theory of vibrations and of the method of finite 

elements, as applied to vibration problems, is presented.



§1.2 Fundamental Theory of Vibration 
  

The two kinds of vibration that a structure can undergo 

are free vibration and forced vibration?” In free vibration a 

structure undergoes oscillatory motion while free of any external 

forces, whereas in forced vibration the structure responds to a 

system of time-varying external forces. An understanding of the 

free vibrations of any structure is virtually a prerequisite to 

the understanding of its response in forced vibration. Further- 

more, it is found that in the majority of design problems, once 

a solution for free vibration is obtained, the need for solving 

the more complicated problem of forced vibration response is 

obviated. 

§1.2.1 Governing differential equations for free vibration 
  

  

(a) Flexural vibration 

The differential equation governing the free vibration of 

beams is discussed in most texts on vibration: ” Consider a small 

beam element of length §x, as shown in fig.1.2.1b, where bending 

moments and shear forces act on the ends of the element. Consider- 

ing the beam displacements and associated slopes to be sufficiently 

small, and equating the net transverse force acting on the element 

to the product of its mass and acceleration the 

equation in its general form becomes 

2 : Sew Set te oO dee 

This equation applies to both prismatic and non-prismatic 

elements. For prismatic elements the equation simplifies to



ae 

erg - aww = 0 Vad 

where w=Wsin(wt+¢), i.¢. oscillatory motion,W being a function 

of x only, andw& ¢' being the angular frequency and phase angle 

respectively. 

(b) Extensional vibration 

The forces in the axial direction acting on a small beam 

element of length‘x are indicated in fig.1.2.2c. The different- 

ial equation for extensional vibration is thus 

2g) = Fu Frat a Jes Bait TSA se Le2e3 

For prismatic elements this reduces to 

au OF ae 1 ous fury = <204 

where u=Usin(wt+#), i.e. oscillatory motion, U being a function 

of x only. 

The method of setting up the equations for forced 

vibration follows a similar procedure. 

§1.2.2 Limitation 

In considering the equilibrium of forces for the governing 

differential equations of free vibration, the effects of shear 

strain and rotary inertia have been neglected. In special cases 

in which these assumptions are not permitted, further consult- 

ation should be made to the literature” on this subject.



Sin3 Finite Element Method 

This method, originating with the slope-deflection 

equations, is a development of the matrix displacement method, 

and has been described in many texts?” However for completeness 

and for cross-reference purposes,the method as applied to free 

vibration problems is outlined with equations and formulae 

forming a sequence of operations. The formulations of element 

matrices in the following chapters will follow this procedure. 

§1.3.1 The displacement function 

Due to the fact that elements are only connected at nodes, 

the number of degrees of freedom assumed in each element is 

dependent on the number of nodes it possesses. For this reason, 

the distribution of the displacements throughout the element must, 

in general, also be assumed, the number of terms being determined 

by the number of degrees of freedom. The assumption should 

describe the deflected shape of an element as closely as possible 

and a commonly employed function is one that is polynomial in 

nature. The polynomial displacement function for an one-dimen- 

sional element is of the form 

Wee Saye eS Sh 

where a, are arbitrary constant coefficients & i = 1,2,3,.....n, 

the number of degrees of freedom. The directions of W & x are 

indicated in fig.1.2.la



The nodal displacements {3} may then be obtained in terms 

of the arbitrary constants {a} by 

{8} = Cc] fa} 153.2 

and the inverse manipulation yields 

fa} = Colts) 1.323 

As can be inferred from eqs.1.21 to 1.2.4, element matrices 

for vibration problems will be composed of two portions 

(a) the static stiffness matrix, 

(ob) the mass matrix, 

which is dependent on the density of the material of the element. 

§1.3.2 Formulation of static stiffness matrix 

This matrix, relating the nodal forces to the corresponding 

displacements, is constructed from the following steps:- 

(a) Strain-displacement relationship 

The strain-displacement relationship is given in matrix 

form as 

{e} = [a] {a} 1.334 

and the substitution of equation 1.3.3 gives 

{fe} = CA]Loy {8} Toes



(b) Stress-strain relationship 

This relationship between stress and strain given by 

Hooke's Law is expressed in matrix form as 

{o} = [D] {e} a8 

and the substitution of equation 1.3.5 gives 

{o} = CDICAI CT {8} yt 

where [D] is EI in a beam element and EA in a bar element. 

(¢) Static stiffness matrix 

The element matrices are obtained from the application of 

either virtual work or unit displacement methods. Without 

repeating the procedures of derivation which are discussed in 

io-24 [ - ee 
Many textbooks, the static stiffness matrix is given as 

transversely, 

Cx] = er CeY [taTcalax-cor" Le3e8 
longitudinally, 

Cx] > ea CoTtaTcal ax-toY 1.3.9 

where here the matrices [A] are respectively the transverse and 

longitudinal portions of the total matrix given in eq.1.3.4.



§1.3.3 Formulation of mass matrix 

This matrix relates the nodal forces to the nodal 

accelerations and may be constructed as follows, 

(a) Displacement and constant vectors 

The assumed displacement function is rewritten in the 

following matrix form, 

{w} = Cy] {a} Tao 

and the substitution of equation 1.3.3 gives 

{w} = CwiCeT {8} Eas 

(b) Force and acceleration 

As the body force is associated with the volume of the 

element, the distributed force per unit length is expressed 

as, 

C£] = ea{w} 1.3.12 

and the substitution of equation 1.3.11 gives 

[fl = eal IC cT {8 1.3.13 

(ce) Mass matrix 

With the consideration of the total virtual work done by 

the distributed forces, it is possible to express the nodal 

acceleration in terms offthe equivalent external nodal forces as 

Cr] = [M1{5} ese 

eA - cot fewt'c N]dx-[c]" tes 15 It where [M] 

this being the mass matrix.



§1.3.4 Dynamic stiffness matrix 

The combination of the static stiffness matrix and the 

mass matrix results in the dynamic stiffness matrix”. [J], 

the form of which is 

Co] = (x) -(™] 1.3.16 

Combining the expressions for [K] and [M] yields the matrix 

{g] in the form 

Transversely, 

C3] = Cot (estate al-wealnTC wax -[ 1.3.17 

Longitudinally, 

foie= [ou [eatate a]-wealn] [ N])ax-[ oy 1.8028
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§1.4 Scope of Work 

Although non-prismatic members can be approximated by a 

number of stepped prismatic elements, such an approximation 

does not always give a satisfactory result, and hence the 

motivation to obtain stiffness matrices for non-prismatic 

elements is obvious in static as well as in dynamic analysis. 

An understanding of prismatic members is a prerequisite 

to the understanding of non-prismatic members, and therefore 

a general study on the vibration of prismatic structures is 

first presented. Apart from the formulation of element matrices 

for prismatic members, a survey of methods of solution of eigen- 

problems is given. A wide range of examples then describes the 

many important features, and comparisons and convergence tests 

to exact solutions are given. 

In the investigation into the behaviour of non-prismatic 

structures two forms of displacement function are used. Due to 

the complexity of functions for non-prismatic members, certain 

difficulties were encountered in the solution routines, and the 

interpretation of the difficulties arising, especially the 

asymptotic poles which are roots of a clamped-clamped member, 

are described. The investigation of the vibrational behaviour 

of non-prismatic structures is systematically built up by 

analysing several comprehensive examples. Supporting experi- 

mental work is described with details of instrumentation.



ee 

The knowledge of free vibrational behaviour is extended 

to the dynamic response of structures. For exciting forces 

of sinusoidal form, two methods are introduced — frequency 

response and mode superposition methods which are illustrated 

with examples. For exciting forces of non-harmonic motion, a 

step-by-step integration method is outlined. Structures with 

both prismatic and non-prismatic sections are considered. 

Apart from the documentation of several main programs 

which are used throughout the thesis, the development of other 

useful routines which have been compiled into a set of library 

subroutines is also described, and some of the techniques used 

for the efficient programming of solution routines are presented,



  

Fig.1.2.la Sign convention 
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Fig.1.2.1lb Beam element 
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Fig.1.2.le Bar element
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CHAPTER 2 

FORMULATION OF MATRICES 

S221 Discretisation & Equilibrium 

§2.1.1 Equation of motion 

The finite element method provides a means for discreti- 

sation of the continuum problem by expressing its displacements 

as a finite series of displacement functions. The amplitude 

serves as the generalised co-ordinates of the system. The time- 

varying displacements of a linear system which is represented 

by w(x,t) may be expressed as follows: 

1 

wet) = 2 &n(x)wn(t) 21a 
net 

where &n(x) are independent shape functions which satisfy‘ the 

boundary conditions and Wn(t) represents the time-varying 

amplitude of these shapes. 

The equation of motion of the discretised continuum expresses 

the equilibrium of the forces corresponding to the generalised 

co-ordinates of the system. Thus, if the nodal displacements 

in eq.2.1.1 are represented by the displacement vector {Say 

the equilibrium relationships of the forces corresponding with 

{8} may be written as: 

{Fs} +{Fx}+ {Fo} = {Pt} 21.2
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in which the terms on the left hand side represent the elastic 

force, inertia force and damping force vectors respectively and 

the right hand side is the applied dynamic load vector. In 

matrix notation, this is represented as: 

CK] {x} + Cm] fe} + Cod fe} = {P(e} 2.1.3 

If the damping matrix Ce] is neglected, the general 

formulation for an undamped system is in the form of 

CK] {x} + Coul{e} = {P(e} Ones 

For steady state sinusoidal motion, {x} is assumed in the form 

of 

{xp = {se} ols 

where {St is a column vector of nodal displacements 

w is the unknown frequency 

i = J-1 

and Rijsignifies "the real part of". 

Substituting for {x} into eq.2.1.4, a more generalised form of 

representing the dynamic equilibrium of an undamped system is 

CKI{S} - wl] (3} = [P(e)} rein
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§2.1.2 Free vibration & resonance 
  

The free vibration properties of the finite-element 

idealisation may be evaluated by considering the equation of 

motion, eq.2.1.6, for the special case in which external loads 

vanish, i.e: 

CKI]{s} -wtlm]{st} = 0 2el.7 

This is immediately recognised as a typical eigenvalue 

problem. Different values of angular frequency, #, which are 

generated are referred to as natural frequencies of the system. 

A resonant frequency is defined as the frequency for which 

the response is a maximum. It is reported” that the peak values 

of displacement, velocity and acceleration response of a system 

occur at slightly different forcing frequencies. The difference, 

which is a result of damping considerations, is negligible for 

the degree of damping usually embodied in physical systems. The 

frequency at which resonance occurs is generally taken as 

resonant frequency =o, (1-y) 2.1.8 

oe where the damping ratio ¥ 

Cc damping coefficient iT 

Ce W eritical damping coefficient.



§2.1.3 Displacement functions 

As previously mentioned, in most finite element analyses 

the manner in which the element deforms must be assumed. These 

assumptions should incorporate the following principles;- 

(a) The displacement function must have the same number of 

arbitrary coefficients as the number of degrees of freedom 

of the element. 

(bo) The deflected shape is described as nearly as possible 

without any preferred direction of displacement. 

(c) No internal strain is experienced within an element which 

undergoes rigid body movement. 

(a) A tendency to constant stress and strain conditions occurs 

as the size of the element is reduced. 

(e) The compatibility of displacements along the boundaries 

with adjacent elements should be satisfied. 

The most commonly employed type of displacement function 

used is polynomial in nature. As this function is frequency- 

independent, the formulated dynamic stiffness matrix is taken 

as a linear eigenvalue problem. 

For elements formulated using the polynomial displacement 

function, a further simplification may be made by concentrating 

equivalent portions of the total mass at the nodal points. The 

most important advantage of using this lumped mass representation 

is that the mass matrix is diagonal and the numerical operations 

are greatly reduced.



Le 

However the more accurate representation is to consider 

the mass to be distributed over the element, and to use the mass 

matrix given in eq.1.3.15 to produce this effect. The polynomial 

functions are themselves approximations to the true shape of the 

deflected curve of the vibration problem, and hence only approxi- 

mate results will be attained using matrices based on these 

functions. The true shape of the peniection curve may be obtained 

for elements where the deflection is a function of one variable 

only by solving the governing differential equation, and matrices 

formed using these functions will be exact in as much as results 

obtained from them will be independent of any element subdivision. 

These various functions and the matrices so formed are now described
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§2.2 Dynamic Stiffness Matrices Formed froma 
  

Polynomial Displacement Function 

§2.2.1 Static stiffness matrix 

It is convenient for the formulation of matrices if the 

positive directions of the forces and displacements are defined. 

A set of local axes for an element is shown in fig.2.2.1 where 

x is the distance measured along the p-axis from node 1 to node 2. 

The positive directions of displacements u, w & 9 corresponding 

to forces P, S & M respectively are shown. 

(a) The displacement function 

An assumed displacement function which has been introduced 

in §1.3 is polynomial in nature. For a beam with four transverse 

and two axial degrees of freedom, this form of function will be 

written:- 

for transverse displacement, 

W=a, + ax + ax? + ax? Qeead 

and for longitudinal displacement, 

where a, to a,are arbitrary constants.



to 

The chosen displacement functions, eqs.2.2.1 & 2.2.2, 

indicate that the transverse and longitudinal displacements are 

mutually independent of each other. It is noted that the diff- 

erentiation of eq.2.2.1 gives the slope displacement, thus, 

dw 
dx 3 . + 2ax + 3a,x* 2u25a 

Substituting the end conditions, x = 0 for node 1 and x = L for 

node 2, into eqs.2.2.1 to 2.2.3 gives 

  

w= Z 0 0 OY ay 
8, 0 1 QO Olt a 
Wr 1 L Le Le [0] 5; 
a 0 1 25 2 3E ay 

a (oJ a ar i 2.2.4 
U, xt L a. 

or more concisely 

{s} = Celta} 22285 

The inverse of €q.2.2.5 gives 

es 
fal SS eeniats} en 2G 

where 

“4 
oy = a 13 0 0 0 

Elo 1? Memon 6 
=3L =2i°-3L. = 

2 L -2 L 

Co] 
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(b) The strain-displacement relationship 

Differentiating eqs.2.2.2 & 2.2.3 with respect to x yields 

  

gw. a 2288 

Fi 
and 8 = 2a, + bax 2.2.9 

which represent the axial strain and curvature of theblement 

respectively. Substituting into eq.1.3.4 gives 

  

2.2.10 

or more concisely 

fe} = Cal {a} oun 

(c) The stress-strain relationship 

For elastic material which obeys Hooke's law, the forces 

are related to the strains as follow:- 

for axial force, 

DS BA ey 2e2el2 

and for bending moment, 

M= EL .&, 2.2.18



eu 

Eqs.2.2.12 & 2.2.13 may be rewritten in matrix form as:- 

Pp] =] EA 0 Se 
i, o etl le od 

or more concisely 

to} = (D] fe 2.2.15 
Substituting a dame into 2.2515 gives 

{o} = CDILA] {8} 2.2.16 

(d) The stiffness terms 

If matrices [C] of eq.2.2.7 and [A] of eq.2.2.11 are 

substituted into eqs.1.3.8 & 1.3.9, and the integration and 

triple matrix multiplication performed, the static stiffness 

matrix [K] in its general form will be as given in eq.2.2.17. 

Exits} Spr | 2. > 6b =o 6u 

  

  

    

EL ; wr 
v 40° =6) (207 | 8, 

12 6, | Co] ts 
ol 2 

Symmetrical Qe2chh 

T Eel 
AL’ 
Se les     

t may be pointed out that the polynomial form gives exact 

functions for a static prismatic beam, the transverse function 

producing the standard slope deflection equations in matrix form. 

The functions are obtained by solving 

au 

BI=-; = 0 & sage = 0 Sede lS 

these being the transverse and longitudinal differential equations 

for an end-loaded beam.
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§2.2.2 Lumped mass matrix 

If the distributed mass is lumped into two equal portions 

at the nodal points of an element, the representation of the 

lumped mass is as given in eq.2.2.19 

  

    

    

  
  

(EROS A=" CA a isn 0)! 0 w, 

Opener! 8, 
$ 0 Co] Wy 

0! e, 

Symmetrical 3 e ai seer   

Substituting eqs.2.2.17 & 2.2.19 into eqs.1.3.17 & 1.3.18 gives 

the dynamic stiffness matrix [7] shown in equation 2.2.20. 

    

  

  

  

Gol sho= 21 jde=tor GL) =12) "ot Ww, 
7 ee 

e AT peGn en oie. a, 
12-30" -6L ' ce Wa 

{4° 4 a, 

Symmetrical ae? 

U, 

eae20 

where ot= SAutr 

By
 
H
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§2.2.3 Consistent mass matrix 

The assumed displacement function (eqs.2.2.1 & 2.2.2) may 

be expressed in matrix form as 

Zoceed 

  

It has been mentioned that the transverse and longitudinal 

displacements are mutually independent of each other, and hence 

the shape function matrix may be rewritten as:- 

for extensional vibration, 

PALE (io Oi 08 1-0 a ed 22008 

and for flexural vibration, 

EN fe ee et 0 oj 2.2023 

“1 
Substituting [Cc] of eq.2.2.7 and [N] of eq.2.2.22 & eq.2.2.23 

into eq.1.3.15, and again carrying out the integration and triple 

matrix multiplication, the mass matrix in its general form becomes 

as shown in eq.2.2.24. 

CmM]{s} =@an [is6 22 54 -13L : wi 
420 47 13h 31 : [0] a 

1S65 =220 0% Ws 
4L* 82 

Symmetrical o 
Uz 

  

2.2.24



If now the matrices [K] of eq.2.2.17 and [M] of eq.2.2.24 

are substituted into the expression, [J] = [K] -w{M], the dynamic 

stiffness matrix is as given in eq.2.2.25. 

Eq. 202.25 om) Pies 
  

With regard to the polynomial functions, it may be observed 

that the maximum number of eigenvalues that can be solved from 

a [J] matrix is equal to the number of degrees of freedom in 

the structure, i.e. the order of the matrix. The greater the 

number of elements in a structure the more accurate become the 

results and also the greater become the number of eigenvalues 

that can be obtained. As an example, the maximum number of 

eigenvalues obtainable in the structures shown in fig@2.2.2a &b 

are respectively two and five.
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§2.3 Dynamic Stiffness Matrix Formed from Solution of 

Governing Differential Equations 

§2.3.1 The exact displacement function 

The setting up of the governing differential equations 

for a beam undergoing free vibration has been given in S152 

and the equations are rewritten here as:- 

(a) for transverse displacement, or flexural vibration, 

2 pew = a ae (BI Sz) + Ze (eAw) Eee! eee 

(ob) for longitudinal displacement, or extensional vibration, 

(Rau) = = (eau) = «0 Gar! 
ICS ciow =f ae 

Since for a uniform section, the flexural rigidity (EI) 

and mass per unit length (eA) are constants, eqs.2.3.1 & 2.3.2 

are respectively simplified to 

  

EI tw su = ae + OA > 0 ae'd5 

and ee ee se. 2. ae 

EA Se 2 

Now letting w=-Wsin(wt+$) and = u=Usin(wt+9) , 

these equations may be expressed as 

4. 

EI a - RAW " oO i)
 

w oO
 

  

2. rere asia t 
a ae 
  o [S)

 

wo
 

oO
 + PAU
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The general solution of eq.2.3.5 gives, for flexural 

vibration, 

W = asinax + a,cos~x + a,sinhrax + a,coshrx aecel 

where Ste PAut/ EI 

and the general solution of eq.2.3.6 gives, for extensional 

vibration, 

U (= aysinyx “= a, costx 2.3.8 

where Y?=0Au/ BA 

These two equations are defined as exact displacement 

functions, and results obtained from them will be independent 

of element subdivision. The displacement at any point distance 

x from node 1 (fig.2.2.1) is evaluated in terms of circular 

and hyperbolic expressions, a, to a, being arbitrary constants. 

It may also be noted that the transverse and longitudinal 

displacements are mutually independent of each other, but the 

relationship between the two frequency parameters is 

Y= an J (T/A) 2.3.9
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§2.3.2 The static stiffness matrix 

The equation for the slope at any point in the element 

is obtained by differentiating eq.2.3.5, thus 

dw = = A(a,cosax - asindx + a,coshax + a,sinhdx ) 263-10 
dx 

Substituting the boundary conditions, x = 0 at node 1 and 

x = TL at node 2, into eqs.2.3.5, 2.3.8 & 2.3.10 gives 

  

| a ay 
a. ay Qe Sedk 
Wi as 
82 a, 

Wi as 
Uz ae 

where = sinaL 

c= cos AL 

sh = sinhaL 

ch = coshaL 

This may be written more concisely as 

{8} = fl {a} 2Qe3el2 

To express the arbitrary constants in terms of the nodal 

displacements, the inverse manipulation of eq.2.3.12 is carried 

out, thus 

“4 
{a} = Col 18} 2.3.13 

[eT being written in full as 

Coy. ec. 0 £ , 2.3.14
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where 

  

Qeted> 

feire i -(sch+esh) (kssh-cch »(s+sh) (c-ch) 

= 2L-cch) ax(+ssh-cch) (sch-csh) n(e-ch) -(s-sh) 

x(sch+cesh) (#ssh-cch) -2(s+sh) = (c=-ch) 

n-ssh-cch) -~sch-csh) -Xce-ch) (s-sh) 

and 

Col= sar| -cosm 1 2.3.16 
sinyL 0 

To obtain the curvature and axial strain, eqs.2.3.10 & 

2.3.8 are differentiated with respect to x, thus 

2. 
oo = x(-asinax -a,cosax +a,sinhyx +a,coshrx ) Dewey. 

SS = ¥( a,cosyx -a,sinyx ) 2.3.18 

Matrix notation for the strain-displacement relationship 

gives 

te | =a) ot 2.3.19 

and the substitution of eqs.2.3.27 & 2.3.18 gives 

' ' " 

Be
es
 

1 1 1 &| = | -Xsimx __-Xcos.__Xsinkp Oe Or el esi 
cos¥x -Ysintx|| a, 

2.3.20 

The stress-strain relationship is the same as that used in 

§2.2 for polynomial functions. Manipulating this together with 

(a] and Cer" , the formulation of the static stiffness matrix may 

then be carried out by the integration and triple multiplication. 

MAS is shown tn) eqe.2,3 121 to 293.123: 

  

  BGS -Jsse2b CO 2.3029 (OM P2300
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§2.3.3 Mass matrix 
  

The exact displacement functions may be expressed in 

matrix notation as 

{8}= CN] {a} 263.04 

where {a} = (6, Bp a: aS, acl , and the displacement shape 

function matrix is 

(a) for flexural vibration 

[N] = [sindx cosax sinhyx coshrx 0 0] 268005 

(b) for extensional vibration 

255-20 
[Nhe eee 0 0 0 sin¥x  cosYx] 

Substituting for [N] and Cey" of eq.2.3.14 into eq.1.3.15, the 

mass matrix may be expressed as shown in eqs.2.3.27 to 2.3.29. 

  
Bq.2.3.27 £0 253-29 on  P.32 

It may be observed that, for each element term, [K] and 

Cm] possess similar expressions, and in the combination of 

[kK] and [M] to form the dynamic stiffness matrix [K] - o*{M], 

these similarities enable the direct formulation of this matrix 

to be obtained in very simple terms.
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§2.3.4 Dynamic stiffness matrix 

The formation of this matrix as [K]-u{M] gives 

  

  Bq.2.3.30 to 2.3.32 on P.35 | 

It can be seen that the elements of the dynamic stiffness 

matrix are far simpler than those of its constituent components 

(xk] & [MJ], showing the advantage of employing derived displacement 

functions. Furthermore, this simplication can be executed at an 

earlier stage of the formulation. If [K] &.[M] of eqs.1.3.8, 

1.3.9 & 1.3.15 are substituted into [J] = [kK] -w{m], [J] is 

given as:- 

crn Cod. [txtex -CoY 2.3.33 

where (X] = DCATCA] - easly itn] 2538 

& where D = EI for a beam and 

EA for a bar 

Substituting [A] of eq.2.3.20 and [N] of eqs.2.3.25 & 2.3.26 

into [xX] gives 

{x] = Eny 
2.635 

  

  

where X,;= -2sindx sinmx 
-2sinyx cosh\x . 
-2cosax sinhx 

Xu= -2cosrxx coshax 

cos 2 
-sin2¥x 

X= -cos2% 
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The integration of Ey and afterwards the triple matrix 

multiplication, will directly produce the dynamic stiffness matrix. 

The advantage is to by-pass the formulation of the complicated [K] 

& [M] matrices. Following the modified procedure, one set of inte- 

grations and triple matrix multiplications is necessary, and a 

further simplification occurs with the formation of zero element 

terms.
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-*%6+sh) 

(ce-ch) 

x6 ch+csH) 
  

  

[3] [Goer e) keke wi, 
1 oi 
' Wa. 

Li pee shan eee e. 
' + uy, 

o ! Cg,J U2 
\ 

{J,¢] = EI Rechtesh assh 
l-cch = 

Symmetrical 

where s=sinL 

c=cosaL 

ch=coshyL 

sh=sinhaL 

(3,1 = YBa cos¥L a 
sinxL Ree teh. ee 

-1 cos¥L 

  

Eq.2.3.30 

Eq.2se3631 

-~€-ch) 

-6-sh) 

-Assh ; 

6ch=csh) 

BG sceaeae
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§2.4 Assembly of the Overall Matrix 

§2.4.1 Transformation to global coordinates 

Having calculated the values of [J] for the individual 

elements into which the system is subdivided, the next step is 

to assemble these to form an overall matrix for the entire dis- 

cretised system. This is done by ensuring that the equilibrium 

and compatibility conditions are satisfied at all nodes within 

the discretised system. The assemblege procedure, particular) its 

mechanisation by using a computer, is described fully in many 

textbooks.” However, for completeness the transformations to 

global coordinates is outlined. For ease of reference in this 

section only, the suffix g is used to denote the quantities 

referring to the global system. 

Fig.2.4.1 shows an arbitrarily orientated element inclined 

at an angle ¢ to the global system. Axes x & y refer to the local 

coordinate system and X & ¥ refer to the global system. The trans- 

formation for nodal displacements is expressed as 

{S}= CrJ {4} : 2 ana



aH 

Writing these equations in full gives 

{S$} =| cos¢ sing 
-sing cosg¢ 

RS tae OS 

{ol 2.4.2 

  

The basic force-displacement relationship, [J]{$} = {Eu} | 

for an element can be shown” to be transformed into 

{Rof= Coy] {8} ooae3 

where the transformed dynamic stiffness matrix in global 

coordinates is given by 

Cy) = Cr? Cs] Cr] 2.4.4 

For any two rigidly connected elements, fig.2.4.2, the 

assemblege of the dynamic stiffness matrix is represented in 

the general form, 

     

  

    

CoT{§} = | (a), (Jae) 0 ba 2545 

ae (Te) + Toa); (Tab) ; §, 

(Tee) 5 & 
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§2.4.2 The partitioning of the dynamic stiffness matrix 
  

For beam structures, the overall matrix can be partitioned 

into two separate independent matrices which are associated with 

flexural and extensional vibrations. This cee not 

applicable to frame structures since the vibration always incorp- 

orates both flexural and extensional displacements. 

Consider two elements, referenced as i & j, and connected 

in two different ways as shown in fig.2.4.3 & 2.4.4. It can be 

seen in fig.2.4.3 that the element terms which refer to extensional 

displacements ug, u, & Ue Can be extracted to form another dynamic 

stiffness matrix for extensional vibration. Obviously the dynamic 

stiffness matrix for flexural vibration is formed from the remaining 

element terms. This procedure cannot be performed with the orient- 

ation shown in fig.2.4.4 because the element terms for extensional 

displacements are coupled with those of flexural displacements. 

This may support the argument that axial effects should not be 

neglected in the analysis of frame structures.



w, WS 

am — | 
RS RAEN EAE STE FEO 

1 2 

joes | 

a 
Fig.2.2.1 Sign convention for local axes 

  

1 

(Malet foe “La 
(a) eet) 
Fig.2.2.2 Degrees of freedom 

Te cen 

Fig.2.4.1 
x Coordinate system 
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Assemblege of two elements 
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De llc Fig.2.4.3 
Overall matrix for 
a continuous beam 

Symmetrical ¢ : oul Eiak 
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CHAPTER 3 

METHODS _OF__ SOLUTION 

S31 Advances and Development 

§3.1.1 A survey of solution methods 

The study of free vibration is always linked with the 

solution of eigenvalue problems. The standard notation of the 

eigensystem is 

CF] {8} = pw {8} gel 

where [J] is a square matrix and fis the eigenvalue associated 

with eigenvector {5}. 

A large number of solution methods exist for obtaining 

natural frequencies and mode shapes, these being respectively 

the eigenvalues and eigenvectors of the eigenproblem, and recent 

publications on the general description of solution methods are 

those by Bathe & Wilson and Jennings: The methods may be broadly 

classified into 

(a) those which employ the technique of matrix manipulation 

as the basis of the solution algorithm, and known as the 

Matrix Iteration Category and 

(ob) the Determinant Evaluation Category.
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Within the first category, the basic iteration processes 

are forward and inverse iteration by which eigenvalues 

(frequencies) and eigenvectors (mode shapes) are obtained. 

This matrix iteration may be further modified by a matrix trans- 

formation into a form which can be more easily analysed. Many 

transformation techniques have been contributed by Jacobi, 

Givens, Householder, Wilkinson, Rutishauser, Francis, etc. With 

a large number of different solution technique available, it is 

obvious that no single algorithm always provides an efficient 

solution. 

In the second category, it is noticed that the classical 

characteristic (determinantal) equation method is not suitable 

for computer implementation. However, with the facilities of 

the Sturm sequence and the inclusion of an iteration feature 

in the characteristic equation, the determinant evaluation 

method is shown to produce an efficient solution* Furthermore, 

this method is also recommended in the solution of non-linear 

F 35.36 37.38 
eigensystems and large eigensystems. 

For reptitive structures,” due to the special feature of 

the repetition, the characteristic equation may be easily 

factorised into individual mathematical functions. Natural 

frequencies are then obtained accurately by the Newton-Raphson 

iterative method for these factorised functions. The derivation 

of this method is introduced later for continuous beams with 

exact displacement functions. The advantage of this special 

development is to achieve a systematic way of-understanding the 

behaviour of natural frequencies.
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The linear eigensystem, which is derived from the 

polynomial displacement function (eq.2.2.25), is frequency 

independent. On the other hand, the exact function , 

(eqs.2.3.7 & 2.3.8), is frequency dependent and hence a 

non-linear eigensystem results (eq.2.3.30). The linearity 

of the eigensystem is one of the crucial aspects that 

contributes to the choice of solution methods. 

Basic considerations of linear eigensystems have been 

reported in many textbooks" of which a full documentation on 

properties is described by Jennings? The nature of a linear 

eigensystem has also been discussed with the idea of bifurca- 

tion which has been further extended to non-linear systems .** 

a 
However, a well-established technique * for handling nen-linear 

eigensystems which is widely recommended is used in this thesis.
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§3.1.2 Choice of solution methods 

Because of the large number of different solution tech- 

niques, it is not possible to assume one single algorithm which 

provides efficient solutions in every case. The size of eigen- 

systems, the bandwidth, the number of required eigenvalues and 

eigenvectors or whether or not the system is linear are usually 

the factors which contribute to the decision of choosing a 

solution method. The methods in both categories are reported 

to be commendable. It is considered that the methods in the 

Matrix Iteration Category are efficient for linear systems, or 

even superior if all eigenvalues and eigenvectors are required, 

whereas the determinant method, with the Sturm sequence property, 

is an infallible method for non-linear eigensystem without any 

risk of modes being missed.



45 

§3.2 Matrix Iteration Category 

§3.2.1 Properties of element matrices 

The equation for a standard eigenproblem has been shown 

in eq.3.1.1 where [J] is assumed to be given or readily 

evaluated. However, the consideration of [K] & [M] constitutes 

a generalised eigenproblem, thus 

CK] {8} =,~(C™] {8} 3.2.1 

The inverse manipulation of [M] gives 

Cy Ck] {8 = » {8} Sono 

and the inverse manipulation of [K] gives 

CXT Co] {8} = {8} a 

In vibration problems, [K] & [M] are positive definite 

matrices and symmetric in nature and both matrices have the same 

bandwidth. However, it should be pointed out that (My Cx] and 

(kT CM] are not necessarily symmetrical and a full matrix always 

results from these matrix multiplications. A ear matrix utilises 

a large storage and requires a large number of solution oper- 

ations. Realising that the properties of standard eigenproblems 

are more easily assessed, effective transformation procedures 

from the generalised eigenproblem into standard form are imp- 

ortant.
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The solution of a linear eigenproblem yields n eigen- 

values, (1, Aa, ores ,An), and corresponding eigenvectors, 

C{S}, {&b, ----- {G), The back substitution of each eigenpair 

( a, {&} ) should satisfy the orthonormality relationship,” 

thus 

(SP OMT {&} = 4 3.2.4 

{mM] being a function of \;in non-linear eigensystems 

where i=l, 2p en's pavers ele sie occlelere lem eat 

The relationships of [M] and [K] - orthonormality, 

{Sa Cod £4) 

i oo
 

w wo
 

OV
 {sh CK] (8) 

where by = Kronecker delta symbol” 

dT) for. a= j 
Ol Lore war eas 

can be used as a check on the eigenvectors.
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§3.2.2 Classical iterative method 

As no explicit formula is available for the calculation 

of the roots of a characteristic equation, alternative methods 

of solution must be sought. The iteration operation is based 

on the generalised eigensystem as shown in eq.3.2.1. In vibration 

analysis, the iterative process is performed as follows. 

The procedure is started with an initial assumed vector {1}. 

During the (n+l)th step of iteration, {Xm is evaluated in this 

expression, 

(eI (Zoed = O41 Ot es 

An improved vector, eat is then obtained by substituting 

1Xeet into 

ea = eed $22.8 
¥ Eau} Lo] (Rmh 

The denominator, which is the norm of matrix and vector 

products, is a measure of convergence. It is a scalar quantity 

for achieving M-orthonormality as shown in eq.3.2.4. 

The iteration is more effective if the eigenvalues are 

obtained during the process. ‘The procedure is first to assume 

ty] <(M1 {x}. During the (n+1)th step of iteration, {Xa} is 

evaluated from 

{ant = LM] {Xan} 322.10
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and an improved vector {You is obtained from 

362610 

  

It is noticed that the iteration is on {Yah rather than on 

{taf - The convergence is achieved on the value of {Yen which 

is evaluated in eq.3.2.11. During the iteration process, the 

eigenvalues can be obtained from the convergence of the Rayleigh 

quotient, Rq, which is given as 

{Xnnb {yuh 
Ry = a" 352512 

Lina {Geb 

The described iteration process is known as inverse 

iteration.” In vibration analysis, the preference of the inverse 

iteration over the direct iteration is that the former gives the 

smallest eigenvalue and corresponding eigenvector whereas the 

latter produces first the highest eigenvalue and corresponding 

eigenvector. Higher order eigenvalues may be obtained from the 

relationships of orthogonality which are shown in eqs.3.2.5 & 

3.2.6.



49 

§3.2.3 Transformation methods and large eigensystems 

A transformation method transforms a matrix under investi- 

gation into another without any change in eigenvalues. The 

fundamental importance is that all the eigenvalues can be obtained 

directly from the transformed matrix. Transformation methods are 

particularly suitable for fully populated matrices, i.e. matrices 

with large bandwidths. 

Recalling the generalised eigenproblem in eq.3.2.1, the 

decomposition of [M] may be expressed in the form of 

[mM] = (clic) See 

where [G] is a non-singular matrix with zeros above the diagonal. 

Substituting for [M] into eq.3.2.1 gives, 

& if 
Cx] {Ss} =~ Celle] {8} 3.2.14 

Multiplying and premultiplying gives 

4 
[citkIfe"] Cel (st = alot (st 82015 

where [G™] =(o*] 

If (X] = (eT Cellet} 3.2.16 

and {5} = Cel {st 7 

then [XK] {8} = a (83 3.2.18 

where [K] is symmetrical.
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Eq.3.2.18 is in the form of the standard eigenproblem. 

It is noticed that although [K] & [mM] are banded, [K] is obtained 

as a full matrix which is inefficient for large order finite 

element analysis. For this reason,many solution algorithms 

60-64. 
for large eigensystems have been developed, namely Jacobi, 

Givens, Householder, LR and QR, and most recently QZ. 

Since [M] is always a positive definite matrix, it is not 

necessary to employ the classical LDL decomposition” method 

which is designed generally for non-symmetric matrices. Cholesky 

33 
factorisation,” which is of the form of eq.3.2.13, is recommended 

as an effective decomposition method. 

Jacobi's method® which may be regarded as the original trans- 

formation method is based on unitary transformation, i.e. the use 

of plane rotation. A special form of unitary matrix is an ortho- 

gonal matrix [P] which is a real matrix such that 

7 T 

bey Gees EeiiPi = E23 3.2.19 

By definition, a matrix [B] is said to be related to [a] by 

by unitary transformation if 

Ce] = Cey Calced 3.2.20 

The orthogonal matrix [P], analogous to rotation of axes in a 

plane, is typified as 

Sze al 

cos 8 sin! 

~sin BF cos 

where 6' is the angle through which the axes rotate
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In Jacobi's solution, the matrix [P] is selected in such a 

way that an off-diagonal element in [A] (eq.3.2.20) is zeroed. 

The iteration is hence centered on the selection of 8. The 

plane rotation idea was also adopted by Givens (1954) to trans- 

form the matrix into a tridiagonal matrix. Givens' method is 

further extended to Householder's method which is more efficient 

for symmetric matrices. The consideration of computing time 

and storage space is investigated by Wilkinson (1960) 2” 

A typical example of similarity transformation® ds: 

Rutishauser's LR method (1955). This involves the upper triangle 

of a matrix to produce another matrix with greater dominance, is. 

the diagonal terms become heavier with respect to the non-diagonal 

terms. The lower triangular matrix in the LR method is replaced 

by an orthogonal matrix in Francis's QR method (1961. It may 

be noted that the LR method has been gradually superseded by QR 

method and a very efficient procedure known as the Householder- 

QR-inverse iteration” has been compiled. An extension of the 

QR algorithm is the development of the QZ algorithm which accounts 

# 33 

for singular matrices. 

A short survey of the variety of transformation methods 

has been briefly introduced. The descriptions and applications 

of all these methods are fully reported in textbooks” especially 

Bathe & Wilson” and Jennings: Within the context of this thesis, 

as the investigation is concentrated on the vibrational behaviour 

of members rather than on the solution of huge complex structures, 

it is not intended to study the efficiency of large eigensystems 

with the various methods.
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§3.3 Determinant Evaluation Category 

§3.3.1 Explicit characteristic equation 

The formulation of this equation is the fundamental method 

of solving an eigenproblem. The generalised eigenproblem in 

eq.1.2.1 may be expressed 

[K = wim] {§} = 0 ae oe: 

of which a non-trivial solution is possible if 

|x -wm| = 0 eee 

This determinant is expanded in terms of eigenvalues to 

give a characteristic equation, the roots of which are the 

eigenvalues. For the polynomial displacement function, the 

characteristic equation is in the form of 

kN) eC ot ek el, eee CCK om O Bane 

where “ is the dimensionless frequency parameter and n is the 

number of degrees of freedom or the order of the matrix.
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Examples of the explicit characteristic equation of a free 

cantilever beam, for both=polynomial and exact functions are 

shown in eqs.3.3.4 & 3.3.5 respectively. 

ao = 1a240° 4 15190 ul ° w w S 

1 + cosacosha Wl ° w w uo
 

It is noticed that the number of multiplications required 

to obtain the coefficients of a characteristic equation of a 

fully populated matrix is roughly proportional to n* . As 

the computional requirement is excessive and is sensitive to 

errors, the explicit characteristic equation method is not 

recommended for computer implementation. 

§3.3.2 Non-linear eigensystems 

The matrices for an exact solution are frequency dependent 

and form a non-linear eigensystem. As the methods which are 

presented for a linear eigensystem are inapplicable, the deter- 

minant method must be invoked. With the property of the Sturm 

sequence and the treatment of asymptotic poles, the determinant 

method has been proved efficient and reliable.
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(a) Sturm sequence 

The development and proof of Sturm's theorem™ is not given 

here, but to illustrate its particular features for non-linear 

eigensystems, its application is presented. Originally designed 

for the solution of polynomial problems, the Sturm sequence has 

provea*® to be applicable to hon-linear eigensystems. 

The Sturm sequence is defined as a sequence, f,(x),i= 1,2.... 

«+e. mM, Over an interval (a, b), such that 

(i) £,,(%) does not vanish in (a, b) 

Gi) at any zero of fic), 4= 2, 3 oeseeee. m—- 1, the two 

adjacent functions are non-zero and have opposite sign. 

In considering the solution of the real roots of f(x) = 0, the 

sequence may be obtained from the following expressions:- 

£,Gc)> = £6) 

£3(«) <= f(x) 

£; (x) = a,,(«x) fj) - £,, (x) f=2)) Sy veins seid 

Lee = Gay 0) EA) 

where qe, (x) is the quotient and 

£,., (*) is the negative of the remainder when 

£;,, (x) is divided by £,(x).
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The property of the Sturm sequence is further extended to 

Sturm's theorem which states that within an interval of (a, b), 

the difference between the number of changes in sign in the 

sequences 

fila) eae cece Sc ii\sissie ev site aly RECA) 

Be EAD) pea (Dies stemiercesterecescls sry Sin) 

oe 

is the number of roots of the function, f(x). 

To facililate the understanding of utilisation, an example 

is given of the solution of the polynomial equation 

E(x) =x’ - 2.4x° + 1.03x° + 0.6x - 0.32 = 0 Scary 

The signs of the sequence of functions, £,, f2, ...e.-- En 

are shown in table 3.3.2a for values between -e@ to +a@. From 

the last row of table 3.2.2a, it is given that there is one root 

in (-1, 0), two roots in (0, 1) and one more root in (1, 2). 

By successive reduction of the intervals the roots may be obtained 

to any desired accuracy. As a check, the actual roots are -0.5, 

0.5, 0.8 and 1.6. 

Although the example here is polynomial in nature for 

simplicity, the Sturm sequence is not as efficient as the 

iterative methods in the treatment qf this form of equation, 

but is extremely well suited to non-linear equations.
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(b) Sign Count 

The characteristic equation, from 3.3.2 is written as 

|z| = 0 3.3.8 

The formulation is greatly enhanced by the Sturm sequence 

technique ** for the case of symmetric matrices. It is well- 

known that the leading principal minors of [J] possess the Sturm 

sequence properties. The important feature is that the number 

of changes in sign of consecutive members of the sequence is a 

reliable instrument in identifying the order of the natural 

frequencies. Furthermore, as only the signs of the leading prin- 

cipal minors are of interest, full evaluation of the determinant 

is not required. 

The number of negative characteristic values; equal to 

the number of sign changes between consecutive leading principal 

minors of [J] in eq.3.3.8, was first named as the sign count, 

s(J) (the symbol ()denoting a braketed expression), by Wittrick 

& Williams? The process of undertaking a sign count involves 

no more additional time than the evaluation of a determinant. 

One way to effect a sign count algorithm is to reduce [J] into 

upper triangular form, fee by a simple Gaussian elimination 

procedure (without row inter-change). The rth diagonal element 

of fons is thus 

bol = vile   
3.3.9 

In vibration problems, it is extremely unlikely that one 

erro; 
or more of the leading principal minors of [J] is zero. Even 

if it is, the iteration process can be continued with a sightly 

different trial value of frequency.
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(c) Asymptotic pole algorithm 

Recalling eqs.2.3.31 & 2.3.32, the denominators which 

are of particular interest are respectively 

Ae ae 1 - cosacosha 2310 

AP, = sing 32 ee 

which give infinity in [g,] & [J.J] if 

for flexural vibration, 

1 - cosacosha = 0O Sy2e he 

for extensional vibration, 

sing = 0 Sesete 

In fact, the roots of these two equations are solutions 

for a clamped-clamped element as shown in fig.3.3.2b. The roots 

are shown in table 3.3.2c. In many cases, when no element in 

a structure is constrained into a clamped-clamped boundary 

condition, these roots are in existence as asymptotic poles. 

The discontinuities (fig.3.3.2f) which so result will disturb 

the mechanism of the iteration process. In order to maintain 

a smooth iteration process, the above mentioned sign count 

algorithm is superimposed with the occurrence of these poles. 

If a free vibration problem is defined by eq.3.3.1, 

(x-wm] {6}=0, in which {8} is the displacement vector, the asymp- 

totic pole algorithm is designed to obtain the number of eigen- 

values when the constraints are so applied to the structure as 

to cause {3} to be zero. This zero displacement vector corres- 

ponds to the existence of asymptotic poles in the det.-frequency 

curve. The asymptotic pole algorithm is merged with the sign 

count to yield a general form of count algorithm, thus
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S= 2S + S)R FP -sQ) ena. id 
5; 

when n = total number of elements in a structure™ 

S; and Sg are the counts obtained from the asymptotic pole 

algorithms for flexural and extensional vibration respectively. 

The rules of finding these values are given in table G58 3205 

Typical determinant-frequency (D-F) curves are shown in fig. 

3.3.2e and £. 

(a) Summary of count algorithm 

It should be stressed that the iteration process is also 

upset if a redundant algorithm is introduced, e.g. Se should 

not be included if extensional displacement is not to be 

considered in a beam vibration. It is therefore necessary to 

reinforce the application of the count algorithm as in the 

following summary:- 

(1) For linear eigensystems:- 

So = -s(3) Fe 95315 

(2) For non-linear eigensysyems:- 

(i) Flexural vibration only 

; s = s(J) eae) 33a L6 
7 

(24) Extensional vibration only 

8 = sis) £15 (Se) ee ae 

(iii) Dual vibration 

Se) so) > Sis, +5.) 3.3.18
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§3.3.3 Convergence procedures 

The count algorithm, the general form of which is given in 

eq.3.3.18, enables any eigenvalue to be iterated to any required 

accuracy. The procedure is designed to iterate between an upper 

bound, \u, and a lower bound, »%, which is firstly assumed to be 

zero. The two bounds are so defined that the difference in the 

total count between the two trial bounds is unity. This value 

of unity denotes that there should exist one eigenvalue between 

the two bounds. An improved trial value is obtained by bisection, 

thus 

Ag = Our s)/2 3.3.19 

The procedure is iterated with another pair of bounds which 

may be (A& 4), or ( ¥& % ) until the desired accuracy is 

achieved. The procedure for the iteration of a 3rd mode is 

illustrated in fig.3.3.3a. The convergence of iteration to the 

required eigenvalue is based on the idea of Rayleigh's theorem 

and a proof is given in ws. Furthermore, if two specified bounds 

of frequencies are given, the number of eigenvalues within the 

range of order can be readily assessed by applying eq.3.3.18. 

The iteration between upper and lower bounds for an eigen- 

value of nth order may be continuous or asymptotic. The two cases 

are respectively shown in fig.3.3.3a & b with the indication of 

the total number of counts. The importance of the count algorithm 

is clearly demonstrated in the asymptotic case which exhibits a 

non-linear iteration. The difficulties in isolating an eigen- 

value which is located near asymptotic poles can be imagined. 

This phenomenon frequently occurs in non-prismatic structural 

analyses and will be discussed with certain remedies in a later 

chapter.
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§3.4 Further Analyses 

The discussion in the former sections has concentrated 

on the determination of natural frequencies (eigenvalues). 

In this section certain techniques are discussed that can 

lead to improvements in the solution methods. 

§3.4.1 Sub-structuring 

A rather recently developed procedure in finite element 

™ Tt has been assemblege is the sub-structuring technique.” 

demonstrated conclusively that a saving of computer time and 

an unchanged small bandwidth are possible. The basic concept 

of assembling sub-structures is described as follows:- 

Eq.3.3.1 is partitioned into 

(dpi Ulaclilanll toni ieee 0 2e4et 

(Ime {am} | | {8} 

where Ga displacement vector of (N-n) nodes 

{8s} 

il 
Ul) displacement vector of n nodes 

and sufficesm& s denotes master and slave respectively. 

The first equation from the matrix in eq.3.4.1 becomes 

_ 
{Sm} = -[Tnn] [Tas] {$54 30452 

and the second equation becomes 

{Ss} = —[Tme'] (Gal {Set 3.4.3
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Substituting for {§mbinto eq.3.4.3 gives 

[a] {8} = 0 3.4.4 

where [54] = Coe] - Cond Cn) [oma] 
Eq.3.4.4 replaces eq.3.3.1 as an eigenproblem. [J,] is a 

symmetric matrix of order nxn which is smaller than NxN for Gos: 

However, if all the elements in [J] are linear functions of y, it 

is not necessarily true for [J,]. It has been found that eq.3.5.4 

behaves as a non-linear eigensystem which should be solved by 

the method as described in the last section. 

§3.4.2 Mode sHape 

A program.for the determinant method does not usually produce 

the eigenvectors corresponding to the associated eigenvalues. 

The reason is that the solution of the eigenvectors involves 

storing the whole band of [go], increasing computation time and 

complicating the coding for programming. However, despite all 

these obstructions, there is no difficulty in amalgamating, into 

the determinant solution routine, a subroutine for evaluating 

eigenvectors and hence the mode shape. 

Once an eigenvalue is obtained, the back substitution into 

the original frequency dependent matrix will produce a set of 

linear simultaneous equations, the solution of which” is 

straight forward and many library subroutines are available for 

this purpose. Alternatively, the eigenvectors can be effectively 

calculated by the technique of inverse iteration method which 

has been described in §3.2.2.
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§3.4.3 D-£ curve 

This is a graphical output showing the value of determinants 

for different values of frequency. It is not intended to use 

the curves for finding the roots of eq.3.3.2, but to show a 

general view of the distribution of frquencies. Furthermore, 

an accurate plot of D-f curves can be used as an aid to explain 

the phenomenon of asymptotic poles, and other possible comp- 

lexities of the behaviour of determinants which will be discussed 

later when dealing with non-prismatic structures. 

An important aspect of D-f£ curves is the evaluation of 

determinants. Unfortunately, the absolute range of a variable 

in a digital computer (ICL 1904) is up to 10” and so an overflow 

will be registered after 10 or even fewer multiplications. 

Two remedies are used successfully:- 

(a) Before any matrix manipulation, each element of a matrix is 

divided by the value of Young's modulus, E, which is of the 

order 10% for concrete. If there is a risk of overflowing 

“16 : Wear ree 
at 10°, EI instead of E is used as a common divisor. 

(bo) The numerical multiplication is executed in two operations, 

namely characteristic variable and power index (e.g,3.76xI0", 

3.76 being the characteristic variable & 20 being the 

power index). The final product is stored as the combination 

of the characteristic variable multiplications and the addition 

of the power index. Theoretically, a real variable can be 

9388683 
evaluated up to a limit of 10 - This is shown in table 

3.4.3a and a flow chart for this algorithm is shown in 3.43b.
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§3.5 A Special Development for Repetitive Structures 
  

Soe Sea Explicit characteristic equation 

It has been mentioned that the handling of the explicit 

characteristic equation is excessive in computation time and 

sensitive to error, but the setting up of such equations is 

beneficial for non-linear eigenproblems. However more 

information can be obtained from an explicit characteristic 

equation than the finally obtained frequencies. 

It can be seen in table 3.5.la that the characteristic 

equations for simple beams are expressed in neat and general 

forms from which frequencies are effectively evaluated by the 

Newton-Raphson method. Similarly, simple expressions may be 

obtained for repetitive structures, for example, continuous 

beams formed by the repetition in simple beams. Furthermore, 

the equations for mode shapes are also given in simple forms 

which describe mode shapes of any order. 

§3.5.2 Repetitive structures 

As the order of a matrix becomes higher, the setting up"an 

explicit characteristic equation becomes increasingly time 

consuming. It is, however, not too complicated if a structure is 

repetitive in nature and the knowledge of sub-structuring” can 

always be an advantage. Multi-equal-span continuous beams with 

classical boundary conditions are typical examples which will be 

Studied in detail. The investigation is presented in figs.3.5.2a



64 

to g inclusive. 

(a) Matrix formulation (Figs.3.5.2a, b & c) 

The presentation is easier if only flexural vibration is 

considered here and the procedure is extended to extensional 

vibration. As no vertical displacement at the nodes is experi- 

enced in continuous beams, the matrix formulation is much sim- 

plified with only rotational displacements. The elements which 

are associated with rotational displacements are Jy,, tha -& uy 

where for the exact function 

A = Jog = Jy = (sinacosha -.cosasinho. )/AP, Best 

w l = Tx il ( -sina + sinha )/AP, Bb Ae 

and for the polynomial function, 

A= 53 = ou 1680 - 4a° 325.3 

840 - 3a° 3.5.4 w i q > a 

(>) Coefficient triangles (Figs.3.5.2d & e) 

The expansion of the determinants of these matrices are 

explicit characteristic equations of which the coefficients 

exhibit a definite format. Coefficient triangles are prepared, 

which are similar to the Pascal's triangle in binomial expansions. 

For spans more than ten in number coefficients are formatted from 

the extension of coefficient triangles. 

(e) Factorisation & solution (Fig.3.5.2£) 

A rational approach to a solution is to factorise an explicit 

characteristic equation into as many simple expressions as possible 

Each factorised expression will poner ere a set of roots which are 

infinite in number for the exact function. The solution of these 

roots are obtained with no difficulty by the Newton-Raphson method.
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Due to the feature that spans are repetitive, a factorised 

expression may appear in some other multiples of spans. This 

implies that for spans of certain multiples, there should exist 

a definite frequency. It is shown that, from structure-system B 

in fig.3.5.2f, a natural frequency of =3.9266 occurs for m=l, 3, 

5......., where m is the number of spans. This procedure may be 

extended to predict natural frequencies of a continuous beam of 

any number of spans. 

(a) Determinant-frequency curve (D-f curve) 

Each factorised expression possesses a different variation 

in D-f£ curves. A collection of these curves for some common 

factorised expressions in exact solutions is shown in table 3.5.2q 

A common feature for all these curves is that the profile of each 

curve is repeated between asymptotic poles. 

§3.5.3 Extensional vibration 

As horizontal displacements are the only parameter in the 

displacement vectors, the procedure which is designed for flexural 

vibration is applicable to extensional vibration with slight 

modifications. This saves the unnecessary repetition of the 

procedure and emphasises the particular features of analogy which 

are outlined as follows. 

(a) Elements in matrices 

If rotational displacements are replaced by horizontal 

displacements, the corresponding elements of Ug, Ju, Js are 

represented by 

for the exact function,



A = Jy = Jy = cosf/AP, Sao. 

B tl Ts= -1/AP. 3.5.16 

where AP, is defined in eq.3.3.11 

for the polynomial function, 

dg = = 6 2n SSS, 

B = Jae = -(6+B7) 9.5.8 

(b) Boundary conditions 

The analogy between the boundary conditions at the extreme 

supports is shown in table 3.5.3a. 

(c) The roots 

Without performing the tedious procedures which are described 

formerly, it is possible to reduce the evaluation of natural 

frequencies, for the rth mode of n number of spans, into simple 

formulae, thus, 

(i) for a system with one end inextensible and the other end 

extensible, 

8 = n(&%-1)/2n 3.5.9 

@i) for a system with both ends inextensible, 

a = (r+tnn(2=})) 1/n 3.5.10 

It is noticed that the sequence of these roots exhibits a 

very strong proof of the exact displacement function. The natural 

frequencies of a continuous beam should be the same as the natural 

frequencies of a single span beam.



  

Table 3.3.2a 
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An example on the Sturm sequence 

  

  

          

% -x2 -1 0 4 2 fo] 

£, (x) + + = = 2 a 

£2(x) - - + + + 

£(x) + + + + + + 

£4(x) - - - + + + 

£,(x) + + + + + + 

No. of 
sign changes ¢ e 2 : 2 8 

where 

Ex) Se = 254x rl. 03x’. +Os6e, -0232 

f(x) = se -1.8x* +0.515x +0.15 

£,(x) = x*-1.3434x +0.4071 

£,(x) = x -0.6645 

£(x) = 4 

0



68 

Table 3.3.2¢ 
The roots of a clamped-clamped 

  

  

  

          

  

  

  

  

  

            
  

  

beam 

£ |-cosxeoshaso | sinB <0 

a, Bi 

—— 1 | 4.73004 m 
2 7.85320 ar 
3 10.99561 30 

it 4 14.13717 4n 
5 17.27876 St 

Fig.3.3.2b e : 
A clamped-clamped 8 2itl, in 
beam Zz ; 

9 : ; 

Table 3.3.2d Counts from the AP algorithms 

Value of S Value of 

AR, +ve | -ve ve 

i, | (AP>O) | (AP<O) 

gz | odd & =i-l| S,=4 
| 2 

£ | S, =INT (8/7) 

z 
a7 }even) S,=% S,=i-1 

Det Det [or a, fs 

1 
| \ / 

a x eet ane 

Sa mr 

Fig.3.3.2e Fig.3.2.2f 
Typical D-f curve of the Typical D-f curve of the 
polynomial function exact function
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FIG -3-3-3b O-F CURVE OF A NON-LINEAR EIGEN SYSTEM 
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Storage of high power multiplication 

  

Multiplication of (2.36x10%) (1.79x10") (5.84x10”) 
  

  

  

  

    
    

Characteristic Power 
variable index 

Numerical 
: ; : 2.36x1.79x5.84 24 +31+39 

Multiplication] _ 24.67 = 95 

Product = 2.46710” 

10” 8388607 
Limit 

Product = 10”   
  

Start 

Given A&B 

    

  

  

  

  

i B=ALOG10(B) 
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i RASEXP10 (B-FLOAT (IB) ) 
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Fig.3.4.3b 

  

    
  

Product= RCx10 

  

Flow chart for the multiplication of 
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Table 3.5.1 Flexural vibration of simple beams 

  

  

  
  

  

| Sin&cosh@ 

{ 

Explicit Displacement Equation. Wx, Remark 
Beam Characteristic 

Equation 

Wex) 

T+CosQ Cosh = 0 | ( SinAX - SichAX)— b,( Gos AX—Cosh AX) 

O<x<L 

SinQ=0 | Sin AX 

b, = Sind: Sinhtt | 
CosCle Casha 

        

sas 

4 3 

| fat | CosSinh@ =0 | ( SinAX— Sinh AX)—b,(CosA X= CoshAX) 

1~ Cos Cosh@= 0 }( Sind x—Sinhd X)+b,(Cos A X-CoshA x }   Sin Q~ SinhQ 

8a Cosa= cast   
  

Table 3.5.3 Analogy between the boundary conditions 

  

Extension Vibration Flexural Vibration 
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Coefficient Triangles 

  

  

  

  

  

  

No. of spans Coefficient Triangles 
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ae 1 
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+4 +3 ' 

42 i 
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Five spans 16 28 WS die. 3 
Six spans 32 64 38 Dail [aaie ees 

Seven spans 64 144 104 25 - 

7-span a a Ts G ne 
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if n is odd aly nly wh sleisiae a 
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Table 3.5.20 D-f£ curves for the factorised functions 
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CHAPTER 4 

BEHAVIOUR OF PRISMATIC PLANE STRUCTURES 

§4.1 Introductory Notes 

It is obvious that the displacement function which is 

obtained from the governing differential equation should give 

exact solutions. The purpose of demonstrating the convergence 

tests is) to 

(i) show that the assumed displacement functions are useable, 

(ii) compare the efficiency of the different displacement 

functions in various discretisations. 

The dynamic behaviour of structures is best appreciated by 

the studying of examples. The examples covered range from a 

simply supported beam to a multi-storey building. As far as this 

chapter is concerned, members of structures are of prismatic 

section and all results are obtained from the exact solution. 

Comparison of natural frequency within the same type of 

structure by varying one of the design parameters is highly 

emphasised. (For example, in a multi-span continuous beam, 

different natural frequencies might be expected for different 

numbers of spans.) Graphical presentation is a simple way of 

demonstrating these comparisons. Throughout this chapter, 

frequencies are kept to the y-coordinates for the sake of 

consistency.
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Wherever necessary, examples are illustrated with modal 

shapes. The symmetry of a structure is accompanied by a 

symmetry in modal displacement. Problems with symmetric and 

anti-symmetric modes are also investigated. 

Results are generally given in terms of the following 

parameters:- 

(a) Frequency characteristic equations 

These characteristic equations describe the relationship 

between circular natural frequency, w, and material and sectional 

properties, thus, 

for flexural vibration, 

x = wRA/EL 450.1 

Waa O7e ine 

(b) Natural frequency (f£) 

In general the unit for the natural frequency of a 

structure is denoted as cycles per second or hertz (HZ), i.e., 

Shs 4,1)3 

(ce) Frequen arameters (nrA&Y) 

From eq.4.1.1 & 4.1.2 a relationship between x& Y can 

be obtained. The frequency parameter describes the free 

vibration of a structure taking account of its material and 

sectional properties. The relationship between \&¥ is express- 

ed in terms of the radius of gyration of a section, thus, 

ya NY 4.1.4 

where Yy= [% 4.1.5
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(a) Dimensionless frequency parameters (a&B ) 

The free vibration of a structure, especially a beam, is 

very often expressed in terms of dimensionless frequency 

parameters (which is abbreviated as DFP) for simplicity and 

generality. These are :- 

aL 451.6 u for flexural vibration, a 

for extensional vibration, 8 = ¥L 40267 

Substituting into eq.4.1.4, the relationship between the two 

DFPs may be written as 

a = ¥ (8-L/r,) 4.1.8 

Very often the extensional DFP (8) is required in flexural 

vibration. In this case eq.4.1.8 is therefore re-written as 

G@= /(8-L/rq) 4.109 

a, being the flexural DFP in extensional vibration. 

(e) Sectional properties ( I&A ) 

The specification of second moment of area and cross 

sectional area can describe a section of any shape, e.g. rect- 

angular section, I-section, etc. In many of the examples, when 

sectional shape is not explicitly mentioned, sections of any 

shape can be applicable. Sections of all members. can be 

identical or in different configuration (§4.6). 

(G=)) Material properties ( E&@) 

Unless otherwise stated, the material properties of 

concrete and steel were respectively specified as follows :- 

Young's modulus, 25° & 200 KN/mm* 

Density, 2400 & 7500 Kg/ m3
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§4.2 Convergence of Polynomial Function 
  

Unless the exact displacement functions are used, the 

accuracy of the computed frequencies depends mainly on the 

number of split elements, and on the nature of the assumed 

displacement function! The. accuracy is increased by using 

more elements in the representation of the structure. 

The polynomial expansions used in the assumed displacement 

function may be one of the causes that will affect the rate of 

convergence. The employed polynomial function is a complete” 

polynomial for an one-dimensional element. An improvement” to 

the polynomial function has been suggested. 

The assumed function with consistent mass over-estimates 

the dynamic stiffness matrix, and so the convergence curves tail 

down to the exact solution. The curves tail up to a converged 

solution in the case of lumped mass representation. 

Usual presentation of convergence is shown by a curve join- 

ing all the points of discrete values. -In many of the following 

examples, if the rate of convergence cannot be shown: distinctively, 

the points are joined with straight lines or the results are 

tabulated.
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§4.2.1 Convergence in beam structures 

Four standardised beam structures with classical bound- 

aries are considered both for lumped mass and consistent mass 

representation. The convergence curves are shown in fig.4.2.la. 

Comparatively slow convergence is experienced in lumped mass 

representation and extremely poor convergence is given in the 

free cantilever beam. 

It is widely accepted that the accuracy of computed 

frequencies deteriorates with modes of higher order. Furthermore, 

it has also been found that the accuracy deteriorates with the 

higher magnitude of the dimensionless frequency parameters. It 

is observed, in fig.4.2.1lb, that the convergence of the second 

mode in the free cantilever beam (AL=4.694) is better than that 

of the first mode in the encastre beam (aL=4.730). More examples 

on the comparison of convergence of higher modes are shown in 

fig.4.2.1¢ \& a. 

§4.2.2 Convergence in frame structures 

For frame structures, it is shown in table 4.2.2a that the 

porweraence using the lumped mass representation is not as rapid 

as that obtained from the consistent mass representation. Using 

the consistent mass representation in the polynomial function, an 

acceptable result (“/o... =1.055) is obtained even when every 

member of the portal frame is taken as one element.
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In the vibration of frames, the frequency parameters are 

relatively low in magnitude compared with those of the beams. 

The low value of parameters may be one of the reasons why a more 

rapid convergence is always obtained. More examples of. the 

convergence of frames are shown in fig.4.2.2b & c. 

§4.2.3 Justification on computing time 

Besides the rate of convergence, another aspect of interest 

is to justify the polynomial function with respect to the comput- 

ing time, CPU, based on the determinantal method. Similar compar- 

ison is also applicable to the other methods of solution. 

It is noticed that the advantage of the diagonal feature 

in the lumped mass matrix is not utilised in the general algorithm 

of the determinantal method. As the difference in time of formula- 

tion, between lumped and consistent mass matrices is negligible, 

comparison is therefore concentrated on the polynomial function 

and exact function for members of consistent mass. 

The characteristic equation for determinant method (eq.3.31) 

is described as 

9 

ce] = Ce 4.2.1 
3| 

where [J] i
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The computing time consumed in the evaluation of a 

determinant may be divided into the following three aspects:- 

(a) CPUg — for the Formulation of [J] matrix. 

The time for the assemblege into an overall matrix 

is also included. This depends on the total number of 

elements in a structure. The variation is approximately 

linear. 

(b) CPU, — for the matrix Manipulation. 

The determinant is evaluated by the Gauss elimination 

method. It is obvious that the CPU, is dependent on the 

matrix order N. The time taken is approximately propor- 

tional to N3. It is identical for both displacement functions. 

(c) CPUs — for other Steering instruction 

The initialisation of matrices, the organisation of 

variables, the count algorithm, etc. are included in CPUg,. 

It is comparatively significant if the matrix order is small. 

Typical values of these CPUs are summarised in fig.4.2.3a, 

b, c& d. These are used as guidelines for the time comparison 

of displacement functions. Three types of simple structures are 

considered and they are shown in fig.4.2.3d.



84 

§4.2.4 Conclusion on the choice of function 

It has been shown that there is no advantage to be gained 

in using the lumped mass system. In the following chapters, the 

analysis is based on consistent mass distributed along the members 

of structures. 

Rapid convergence, reliable results and stable iteration 

are given by the polynomial function. However, the price of 

good accuracy which shouldbe obtained from more elements sometimes 

cannot be justified with computing time. As an exact solution 

can be obtained with a smaller amount of computing time, this 

is therefore recommended. The results of examples in the follow- 

ing sections are obtained from the exact displacement functions.
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§4.3 Members Without Global Orientation 

The basic requirement for this class of structure is the 

co-linearity of the centre lines of the members, the members 

being connected to each other in the same local orientation. 

The examples described are divided into standard principal beams 

and continuous beams with classical boundary conditions. 

§4.3.1 Un-coupled matrix 

The matrix in fig.4.3.lb is formulated for the continuous 

beam shown in fig.4.3.la. The matrix clarifies the particular 

features of local coordinate formulation — the elements for both 

flexural and extensional vibrations are not coupled, and the tech- 

nique of matrix partitioning can be so employed that two independ- 

ent matrices are formed respectively for dual vibrations as shown 

in fig.4.3.lc & 4.3.1d. 

The eigenvalues of the above two matrices are natural 

frequencies for flexural and extensional vibrations respectively. 

The amalgamation of these frequencies should be the same solution 

as that from the matrix in fig.4.3.lb. From the local coordinate 

matrix formulation, more features are then observed as follows:- 

(a) Flexural vibration is distinguished clearly from extensional 

vibration, or vice versa. 

(ob) The solution of two partitioned matrices reduces computing 

time.
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§4.3.2 The suppression of extensional vibration 
  

The exact solutions for the standard principal beams can 

be seen in many texts, but generally no account is taken on the 

duality phenomenon of both flexural and extensional vibrations. 

As an example to point out the importance of duality, consider 

the third mode of a simple supported beam, i.e. 4=37,. If 

extensional vibration is taken into account, this is not always 

the third mode. The crucial factor is the choice of sectional 

properties, I and A or the radius of gyration ry (eq-4.1.5). it 

is shown in table 4.3.3c that “*=3'is the fourth mode. The third 

mode is in extensional vibration which is %=7.043. 

§4.3.3 Natural frequency in single span beams 
  

The boundary conditions of beams and their corresponding 

modes are shown in table 4.3.3a, and for bars in table 4.3.3b. 

If both flexural and extensional vibrations are considered in 

beam structures, the natural frequencies are shown in table 

4.3.3c. It is noticed that the suppression of the axial displace- 

ment would eliminate the extensional frequency results.
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§4.3.4 Natural frequencies in continuous beams 

A very detailed discussion of continuous beams has been 

mentioned in§3.5 for both flexural and extensional vibrations. 

Natural frequencies of typical continuous beams are tabulated 

in table 4.3.4. It is noticed that the first mode of a contin- 

uous beam may result from extensional vibration. 

§4.3.5 Comment 

Taking the advantages of local coordinate orientation, 

the formulated matrix can be partitioned into matrices for 

flexural and extensional vibrations. The corresponding eigenvalues 

can then be easily recognised as modes for either flexural or 

extensional displacements. The duality in vibration should be 

accounted for in the actual solution of a structure. There is 

also a reduction in computing time for partitioned matrices. 

Generally, lower natural frequencies are expected for an 

increasing number of spans. If extensional vibration is neglected, 

the first mode for simply supported continuous beams is always 

aL=". The first mode of the other two types of continunus. beams 

tends to aL=n if the number of spans increases to infinity, 

(£19.4.3-5);
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§4.4 Frames with Global Orientation a ees 

§4.4.1 The re-orientation of the matrix 
  

The frame shown in fig.4.4.la is encastred at A & C, 

and the displacements at joint B are xy Ve ee The dynamic 

stiffness matrices for members AB & BC in their local coordinates 

are respectively shown in fig.4.4.lc & d. In order to conform 

with the compatibility of overall matrix formulation for the 

whole structure, elements in fale should be re-orientated as 

shown in fig.4.4.le. The overall stiffness matrix is finalised 

in fig.4.4.1b. 

A very important point which should be stressed is that 

the matrix cannot be partitioned as in the case of the continuous 

beams since the existence of pure flexural or extensional vibra- 

tion does not occur. This interaction behaviour is investigated 

by considering various types of framework. 

§4.4.2 Rectangular frame 

The single storey portal is a commonly used structural 

frame. A detailed study would examine the many hidden features 

which would be the basis for further development. These features 

are discussed as follows:-
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(a) Slenderness ratio (r,) 

The frequency characteristic equations of eq.4.1.1 can 

be expressed in terms of the radius of gyration (x) and the 

slenderness ratio (r,), thus, 

w = (() * % 4.4.1 

ew =-[h% “ 4.4.2 

The natural frequencies of a structure are very much dependent 

on these two parameters. An example of this is shown in table 

4.4.2a. 

(b) Frame aspect ratio (r) 

This is defined as a ratio of height to span of a frame, 

Lis Ge: q= H/L. This ratio greatly affects the vibration of a 

frame both in terms of natural frequency and in DFP. An example 

showing the variation of natural frequency with frame aspect ratio 

is shown in fig.4.4.2b. 

(ce) Higher modes 

For ease of explanation, the first mode of vibration is 

always considered. Similar behaviour should apply to modes of 

higher orders. When dealing with higher modes, more attention 

should be paid to the following points:- 

(i) The evaluation of the function as it becomes higher 

in order. 

(i) the greater chance for the intrusion of asymptotic poles 

Git) the coincidence of modes 

Generally, no problem arises in the solution of the first twenty 

modes. An example giving the outcome of higher modes is shown in 

fig.4.4.2c. Particular interest is drawn to the superposition 

of symmetric and anti-symmetric modes.
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(a) Symmetry 

If a frame exhibits geometrical symmetry, half structures 

may be simplified into symmetric and anti-symmetric components 

for vibration analysis (fig.4.4.2d). The results obtained from 

both half-structures are then arranged in ascending order to 

obtain the complete set of frequencies. The fundamental mode 

can result in either anti- or symmetric displacements. This 

phenomenon can be seen in fig.4.4.2c. 

Theoretically, when the frame aspect ratio is 0.3119, the 

fundamental mode produces neither anti nor symmetric displacements. 

It can be seen that the first two modes become almost coincident. 

Fig.4.4.2e demonstrates this coincidental phenomenon more precisely. 

Usually the coincidence appears more frequently in modes of higher 

order. 

(e) Coincident mode 

It is found that the displacements at the coincident mode 

are very unstable. The nature of the mode is very sensitive to 

a slight change in eigenvalues. Iteration of ill-conditioned 

matrices are expected in the vicinity of the coincidence, and the 

coincident mode can easily be undetected if the technique of the 

Sturm sequence is not employed in the analysis. It is even more 

difficult to obtain an associated set of eigenvectors used for 

plotting the modal shape. Some features on the coincident mode 

is shown in table 4.4.2f. 

(£) Modal shape 

Modal shape for a particular frequency is plotted with the 

information given by the associated set of eigenvectors. The 

methods in the matrix iteration category give the eigenvectors 

directly. As an example, the first two modes of a square frame 

are shown in fig.4.4.2q.
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(g) Dimensional similitude 

The variables in the frequency characteristic equations 

(eq.4.1.2) can be re-arranged in terms of dimensionless groups, 

thus 

(6 = Ce) ok A 46403 

where r, & & are the slenderness ratio & DFP respectively. 

Design tables are prepared with the idea of similitude 

for structures in which the topological dimensions of all members 

are of the same scale. The variables for similarity are slend- 

erness ratio and DFP. A typical design table for a square frame 

is shown in table 4.4.2h and an application is demonstrated in 

table 4.4.2i. Similar tables for other structures can be prepared 

in the same manner. 

§4.4.3 Pitched frame 

Pitched frames are more widely used than other structures. 

Developments of the simple pitched portals are the ' Mansard ' 

frame and the frame with bracing beam. Typical performances of 

these frames, with dimensions, are tabulated in table 4.4.3a, 

and fig.4.4.3b shows the variation in natural frequency with 

different frame aspect ratios.
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§4.4.4 Experiment on frame of unequal leg 
  

A steel strip was bent into a frame as shown in fig. 

4.4.4a. Steel blocks which were welded to the end of the 

frame were clamped to a solid rigid foundation. Harmonic 

displacement excitation was applied at point E by means of an 

electrical excitor, and an accelerometer F was attached to the 

frame at various positions to measure the response. The 

frequencies at which the response reached its maximum were the 

natural frequencies of the various modes. These were then 

compared with computed results and results by Bishop & Johnson” 

(table 4.4.4b).
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§4.5 Natural Frequency of Complex Structures 

§4.5.1 Engineering decision on support fixity 
  

In theoretical analyses the support conditions are usually 

either considered pinned or fixed, but in practice these condi- 

tions are never completely satisfied, the actual perfdrmance of 

the supports being somewhere between a hinge and a fixity. The 

natural frequencies obtained from different support conditions 

are compared in fig.4.5.la. The difference in the first mode 

is significant. The significance decreases for higher modes and 

also as the number of storeys increases. 

The structures are built up as multiples of single-bay 

single-storey frames; the multiples of these frames in the hori- 

zontal direction producing multi-bay frames, and in the vertical 

direction multi-storey frames. The relationship between natural 

frequencies and the multiplicity is obviously non-linear. These 

features are discussed according to the following pattern of 

multiples:- 

TRAIN (fig.4.5.1b) 

= multiples in horizontal direction only 

TOWER (fig.4.5.1c) 

= multiples in vertical direction only 

BLOCK (fig.4.5.1d) 

- multiples in both direction
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§4.5.2 TRAIN 
  

The multi-bay frame is shown in fig.4.5.lb. The first six 

modes are obtained and are plotted against the number of bays in 

fig. 475.25 he coincident modes usually occur when the mode 

order is greater than four. For higher mode orders only, the 

frequency decreases rapidly as the number of bays increases. 

§4.5.3 TOWER 
  

The multi-storey frame is shown in fig.4.5.le and the first 

six modes are plotted against the number of storeys in fig.4.5.3. 

The coincident modes can occur as low as in the second mode. It 

is obvious that the frequency decreases rapidly as the number of 

storeys increases. 

§4.5.4 LOC: 

In the example of BLOCK (fig.4.5.1d) the number of bays is 

equal to the number of storeys. Anti- and symmetric modes are 

considered separately at the plane of symmetry, and these modes 

are tabulated in table 4.5.4 . It is noticed that there exists 

no pattern in which the modes, resulting from anti- or symmetric 

deflected shapes, may be ordered.
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§4.5.5 Discussion 

It is obvious that a lower natural frequency would be 

expected from a taller structure, and the example of TOWER 

shows that lower natural frequencies result as the number of 

storeys increases. Similarly, from the example of TRAIN, the 

natural frequency is not increased if multiples of bays are 

attached to each other. 

On the other hand, from the example of BLOCK, a 2-bay, 

2-storey structure gives a higher natural frequency than that 

of a single bay, 2-storey structure. The fundamental modes of 

these three examples are summarised in table 4.5.5.
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§4.6 Variation in Geometric Configuration 
  

§4.6.1 Types of discontinuity 

Discontinuity in this context refers to members that have 

step changes in sectional properties. Such changes can result 

from an abrupt change in cross-sectional geometry or in beam 

material. While property discontinuities are shown schematically 

as geometrically discontinuous, they can be the result of the 

joining of sections of the same cross-sectional geometry, but of 

different material properties. 

Geometrical discontinuities are considered in the following 

cases:- 

(a) EI variable, @A unchanged; n= BL AL 

(b) CA variable, BI unchanged; n= PA,/eA, 

(ea) a special case such that n= n= mh 

(da) for rectangular section, depth varied but volume of material 

unchanged. 

The first three cases of variation can be applied to all 

shapes of sections. The fourth case only applies to a rectangular 

section in which natural frequencies can be maximised in the 

optimisation process. The fees of optimisation will be discussed 

in §4.7. 

Each case of variation exhibits certain features in terms 

of DFP-and these features are summarised in table 4.6.1. It can 

be noticed that geometrical discontinuities do not change the value 

of the frequency parameter for extensional vibration.



oF. 

§4.6.2 Discontinuity for flexural vibration in beams 
  

Single span beams with discontinuities at mid-spans are 

shown in table 4.6.2a. The four mentioned cases of discontin- 

uity are studied accordingly and the resulting variations are 

compared with curves in figs.4.6.2b, c, d & e. Similar procedures 

can be extended to continuous beams and to different arrangements 

of discontinuity. 

§4.6.3 Discontinuity for extensional vibration in bars 
  

Three possible types of boundary conditions for extensional 

vibration are studied. Due to the simplicity in the mathematical 

expressions and similarities in boundary conditions, the resulting 

natural frequencies for the four mentioned discontinuity cases are 

explicitly summarised in table 4.6.3a. Furthermore, the following 

points are noted:- 

(a) As the axial stiffness does not vary results for discontin- 

uity case (a) will be constant. 

(b) The other three discontinuity cases are dependent on PA 

which is the only variable, and therefore they give identical 

solutions. 

(ea) Natural frequencies are independent of geometrical discontin- 

unity in beams having similar end boundary conditions.
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§4.6.4 Discontinuity at corners 

If geometrical discontinuity is introduced at the corners 

of a frame (fig.4.6.4a), the interaction from flexural and exten- 

sional vibration can produce more interesting variations in 

natural frequency. The study of a rectangular frame with the 

four cases of discontinuity are shown in figs.4.6.4b, c, d&e. 

The profiles of curves are different from those of the beams. In 

fig.4.6.4e, distinct peak values are obtained for the optimisation 

procedure. 

§4.6.5 Lumped mass simplification 

By this simplification a portal structure may be solved 

as a single degree of freedom system by manual analysis, and an 

estimation of the magnitude of the fundamental mode obtained 

quite rapidly. In applying the method to a rectangular frame 

the following assumptions are made:- 7 

(Ay lumped mass 

(ii) exclusion of axial deformation 

Gi) expected mode shape prescribed 

Warburton™ gives an example of a square frame in which 

sway movement is an assumed modal shape. The above three 

assumptions are employed and the example of a square frame is 

extended to any rectangular frame of various frame aspect ratio.
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If the frame shown in fig.4.6.4a is reduced to a one 

degree of freedom system with the above three assumptions, 

it gives 

  

The reliability of the lumped mass simplification in a 

frame can be observed from the following two comparisons:- 

(a) Estimated and computed results are tabulated in table 

4.6.5a with different values of n,. A significant 

difference is noticeable when n,is less than 1.0, n, = 1.0 

being a rectangular section. 

(b) For a frame of rectangular section, estimated and computed 

results are tabulated in table 4.6.5b with different frame 

aspect ratio.
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§4.7 Optimised Natural Frequency 

§4.7.1 Engineering decision 

One of the first design decisions is the geometry of the 

structure, and the sectional properties of the members. Ina 

static analysis, the design criteria would vary from stress to 

deflection limitation, but as far as free vibration is concerned, 

the most important criterion is the natural frequency. The 

optimised sectional properties should give the highest frequency. 

If the topology of the structure and volume of material 

are kept constant, different natural frequencies would be expect 

ed for different volumes of material allocated to each member, 

and there should exist one highest natural frequency for a 

certain ratio of allocation. 

It is obvious that the beam of fig.4.7.la would give a 

higher natural frequency than that of fig.4.7.lb. It is not 

so obvious to make a decision on the ratio of the section 

depths (n,). (The highest natural Ereciency is later found to 

occur when the depth ratio between the two sections is 0.389)
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§4.7.2 The rigidity of commonly used sections 
  

The variation of radius of gyration produces different 

values of natural frequency. If I is kept constant,w will 

decrease with the increase of A (fig.4.7.2a). The two extreme 

values of radius of gyration are zero and infinity, but the 

commonly used sections never tend to either extreme. Table 

4.7.2b is a summary of different types of sections and the 

manufacturer's products are well within + 5% of these listed 

radii of gyration. These sections are marked accordingly on 

fig.4.7.2a to give a comparison. 

§4.7.3 Continuous beams 

The simplest demonstration of optimisation is described 

with beams. Both flexural and extensional vibrations are 

separately considered, and the optimised natural frequency is 

compared with its equivalent uniform section for the optimised 

percentage. The layout of the examples is illustrated in §4.6.2 

& §4.6.3, from which the information in table 4.7.3 is extracted 

§4.7.4 Frames 

The frame considered in §4.6.4 supplies the information 

for optimisation. The optimised values are—tabulated in 

table 4.7.4.
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§4.7.5 Bridge 

The principle of optimisation can be extended to other 

structures such as bridges which are composed of continuous 

beams and columns. Consider the bridge whose topology is 

shown in fig.4.7.5a. By altering the section depths to those 

shown in fig.4.7.5b the natural frequency is increased by 27%. 

Table 4.7.5c shows the progression to the optimised state. 

The rapid convergence to the highest natural frequency 

suggests that two iterations are adequate. Further improvement 

will involve the curtailment of beams into stepped beams, or with 

greater sophistication, the introduction of tapered sections. 

These will be investigated later.
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§4.7.6 Comment on optimisation 

Hollow sections which reduce the weight but still maintain 

the rigidity of the section are favoured in vibration. As can 

be seen in table 4.7.2b, a steel box section can have a natural 

frequency 2.7 times higher than that of a concrete rectangular 

section. 

The natural frequency can also be increased by a logical 

choice of sectional dimensions. In some cases the optimum 

design is a structure with members of identical section; a 

step in a span may result in a tremendous decrease in natural 

frequency. In some particular case, natural frequency is inde- 

pendent of the change in sections, especially in extensional 

vibration. In many cases, an intelligent choice of section 

can increase the natural frequency by as much as 66% as is 

shown for a stepped cantilever beam. 

A stepped cantilever beam with thicker section at the 

fixed end and a thinner section at the free end is a primary 

generating idea in having a tapered section which would increase 

the natural frequency and eliminate an awkward step in mid-span.
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Convergence of lumped & consistent mass 

  

  

  

      

representation 

No. of elements w 
5 aa Feat 
member \UMPED CONSISTENT 

Seok th: 1055 | 

2 0.921 1.012 roa 

3 0.989 1.002 Y= 50 

4 0.997 1.000 Exact scition = 18-26 He 

ee 5 0.999 1.000       

  

  

  

              

  

  

  

    

Table 4.2.2b Convergeme of Frame 

No. of elements dene 
eos Weraet 
member 

h=04 Ye os Y206 Y=0-7 

al 1.0028 1.0017 1.0014 1.0012 

2 1.0008 1.0004 1.0002 1.0002 
= 

3 1.0003 1.0001 | 1.0001 1.0000 i 

4 1.0000 | 1.0000 | 1.0000 | 1.0000 : 

Exact solution (H2) 12692 9.41 1220 5.12 

Table 4.2.2c¢ Convergence of multi-bay frames 

er ieireen (coat eke 
Polynomial function é 

(Ha) uk 2 3 4 5 6 

la ddeet| 1 | 10.625] 9.748] 9.464] 9.308 | 9.212 | 9.146 
in each 2 |10.617| 9.742] 9.460) 9.303 | 9.208} 9.143 

oy 3.| 10.612°| (9.735) 9.454) 9.5299 | 9.203 | 9.138 

Gact. solution 10.609 | 9.733] 9.452] 9.296 | 9.201 | 9.136                 
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Table 4.3.3a Natural frequency of beams in flexural vibration 

Beam Boundary Oder of Mode (4= AL) 

Ref. Conaitions Ist 2nd 3rd 4th nth 
  

BML —— i, 875 | 4.694] 7.855| 10.996 (2n-1) 1/2 
  

BM2 = w 2 37 an nt 
  

BM3 ot oe 927 | 7.067 (10.2107) 13). 352 (4n+1) 1/4 
  

BM4 ——— 4.           730 | 7.853 }10.996 | 14.137 (2n+1) 1/2   
  

Table 4.3.3b Natural frequency of Bars in extensional wbratbn 

  

Bar Ref£| Boundary Conditiors B= L for nthmode Remark 
  

  
  

    BRL fn (n-1)1 

BR2 — (2n=-1) 1/2 a=/85 

BR3 | (2n-1)7           
Table 4.3.3¢ Natural 

  

Beam & Beam 

Bar Ref.|} Structures 
  

frequency of Beam structures 

Order of Mode (AL) (Kisto00 

ise 2nd 3rd 4th Sth 6th 
  

BM1+BR2 875| 4.694! (7.048)} 7.855] 10.996 | (12207) 
  

BM2+BR2 Tv 2m | (7.048) 3n| (12.207) 4n 
  

| 
927 | (7.048)| 7.069}10.210] (12.207)! 13352 | 
    BM4+BR3   

te 

———% 

BM3+BR2 | #——y ]3. 

——— 4,   730| 7.853 | 9.967)|10.996| 14.137 | (07264)             
N.B. Figures in brackets 

for extensional mode. 
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Table 4.4.2a 
Natural frequency of different slendernes ratio 

  

Frequency 
sa Structure 

a HZ 

  

  

250 1.2095 0.30 
200 1.2095 0.38 
150 1.2094 0.50 
100 32093 0.75 L 
50 1.2087 deo 0 
20 1.2042 2.72 r= 10 
10 1.1887 7.26             

MB x, = (AL/T)
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Fig.4.4.2c Symmetric and anti-symmetric modes of sae 
different frame aspect ratios
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Fig.4.4.2d The symmetry of a frame 

Table 4.4.2e 
Natural frequ encies of symmetric & 
  

  

    

% Ist_Mode 2nd Mode 

0.3105 (185172) 18.268 
0.3110 (18.168) ie.22o 
0.3110 (18.163) 18.190 
0.3116 (18.162) 18.182 
Oesily (18.162) 18.174 
053118 (18.161) 18.167 
O.3119 18.160 18.160 

0.3120 eat oa (18.159) 
0.3140 17.997 (18.143) 
053150 ty Oo) (18.134) 
0.3160 17.845 (ie. 126) 
0.3180 175695 (18.110)       

Table 4.4.2f 

anti-symmetric modes 

—— coincident mode 

N.B. figures in brackets 
for extensional 
modes 

Features of the coincident mode 
  

  

  

Dimensbns Frequency Modal shape 

a=4.2043 
a £=18.160 

Lsioo The coincidence 
of the lst & 2nd 

x, =0.3119 mode 
ym =50   
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Fig.4.4.2g Modal shapes of a square frame 
  

  

fr 
eB £ c 

| 

§ 
3 B= 25 amt 

R= rhoo Ka/md 

a Ty = 0:25m 
Ts = 200 

5-Om 

  

   
1st made = 16-35 HE 2nd mode = 60-99 HE    

  

  

  

If the slope displacement at joint B to-be 

    

  normalised, 

lst mode 2 

| Xs 8.7392 0.0240 
| Y 0.1409 0.3024 ry; 
| 33 -1.0000 1.0000 

Ke 3.7669 0.0000 
x, 0.0000 2.2619 
a 0.4170 0.0000 
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Table 4.42h DFP for a square frame 

  

  

  

                    

‘eto 

  

  

  

  

  
  

Mode Slenderness ratio % ) 
order 10 20 50 100 150 200 250 

1 1.766 | 1.784 1.789) 1.790 ) 1.790} 1.790 | 1.790 

a 6.038) |(3.446)1(3.540) | (3.552) |(3.555) | (3.556) |(3.556) 

3 3.675 |(4.422)| 4.539] 4.541 | 4.542 | 4.542 | 4.542 

4 (3.849] 4.525 |(4.687)| (4.720 |(4.725) |(4.727) |(4.729) 

5 4.474] 5.058 | 6.559/ 6.693 | 6.710 | 6.716 | 6.719 

6 (4.63))| (5.660) | (7.355) | (7.413) |(7.422) |(7.426 |(7.427) 

a (5.474)| (6.670)| 7.759] 7.956 | 7.977 | 7.984 | 7.987 

8 6.116} 6.914 |(8.277) | (9.716) |(9.805) |(9.826) |(9.835) 

N.B. Figures in brackets 
for symmetric mode. 

Table 4.4.21 Application of table 4.4.2h 

Geometrical Frequency 
Dimension g 

Structure s mode a 
cea L order|from table fea fe he 

lst 1.790 1.03 HZ 
P62 320 (1120 | 225. 8th 9.830 31.07 HZ 

Testo Ist Lents 41.78 HZ 
g 0.267/0.25] 4.0 15 | 8th 6.525 564.68 HZ 
§ < sooo                  
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Typical examples of pitched portals 

  

Type pinned fixed Mansard With bracing beam 

  

  

        
      
  

  

      

Frames Sta . st ae 

ache foe ee eid 
Dimension i i 3 

| tao | 10.0 10.0 19. 

& 2.275 32378 Beas 3.154 
Prepare he 5332 t1.72 11.35 10522 

Remark Y= 020 & = 3227 ft: @ FE Yaw 

607 
AL 

Slope = (#25 4 : 
504 i Slope = 115 x 

Slope = (roe tk 

404 | [ ‘ 
| | 

304 

204 

Fig.4.4.3b 
Lo: = r - : = Variation in frame aspect ratio 

oy Os o7 os. th 13 of a pitched portal 

Tee 

Table 4.4.4b 
Frequencies of an unequal leg 

4 ——2:354_ frame 

| 
eS ¢ Vode From Results 

Bishop £ : as. eae PF | Excermental | Computed : 

3 3 v[ Seen | Tua) cae) oes 
= 3 3 | 

e 2 +£y L |} 42.5 42.3 40.57 4.3 a WM : 
—; | + ZZ, 2 | 147 14152 | 139.39. 163 

fore 3) 215 197.8 | 201.42 sliver 
ee 4 | 377 355.7 | 358.42 0.8 
Clisos take 5 |475 | 455.6 | 448.43 | 1.6 
Es 2/2 Yannt 

Fig.4.4.4a 
An unequal leg frame 

  

  

  

  

  

    
  

    
  

  

 



117 

  

=== fied supports 
planed. supports   

Figures in brackets te 
dine He percentage, 
difference 

  ORDER OF MODE   

  

Fig.4.5.la Comparison of support fixity 

  

  

  

    = Bah = 0%     
H Fig.4.5.le 

Multi-storey frame (TOWER) 

a 
Fig.4.5.1b 
Multi-bay frame (TRAIN) 

G05 

  

  

      

4 

at ee a a> 

peck RE ie tas 
Fig.4.5.1d 
Multi-bay multi-storey frame 

(BLOCK)
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loo4 

300 

200-4 (ae 200-4 

| 
| 

=I 

5 
| 
| 

|   
Fr

eq
ue

nc
y 

in 
HE
        

84 

i 
| 

| 

NB. Figures in squares fe | 

denela moder order | 

| | 

ee eee ea eee et 
\ 2 3 4 5 6 7 3 ! 2 3 4 3 e 

No. of Bays No. of storeys 

Pig.4.5.2 Fig.4.5 33 
Natural frequency of TRAIN Natural frequency of TOWER
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Table 4.5.4 Natural Frequency of BLOCK 

Mode No. of storeys 

Order 1 2 3 4 5 6 

aT 10.61 7.82 4.97 3.64 2.88 2-38 

2 @8590) 25597) 16.51) 1Li.79 9.14 7.46 

3 52539) 28.79|(27.29)| 21,76) 16.98 | 13.33 

4 (79.10) 33.98] 29.80] 26.88] 24.99] 20.07 

5 96.08] (35.1)] (31.67)| (29.37)| 26.69)| 26.53 

6 |(115.43) (38.21) 31.69] 30.26] 28.36] (26.94) 

7 161.47] 81.46] (34.07)| 31.82 | 29.40)! 27.19 

8  |(176.41) (66.9)} 34.75 | (32.50)| G0.12)] 27.35 

9 | (189.03)} 92.47] (35.91)| 32.67 | (30.27)| (27-69) |Frpenice in broke 
[for symmetric. modes, 

6 ie}
 

nN ° wo O° o wo .07)} 36.11 | 32.78] 30.35 | (28.02)                 
  

  

    

      

  

  

    
  

Table 4.5.5 Fundamental modes in complex structures 
va 

or 

6 1.408 2238) 

a = a 5 12723 2.88 

St > 
Slay 14 eee oa 3.64 

3 
a Bs: 3.062 4.97 

Sl 

° 2 4.880 | 7.82 

c Lye LOe 6) 9.733) 9.452) 9.296) 9.201) 9.136 

1 2 3 4 5 6 TRAIN 
—                 

No. of Bays 

N.B. Frequencies in HZ



Table 4.6.1 Cases of discontinuity 

Case a b ¢ d 

A EX. Ga, = Siu , fA du 
Ratio WE Nea Ne? ty = eae Uae 

§ Flexural 
vibration | fave ae Ate mae Nad nortan 

Extensbnal 
vibration ¥ie x. Ye% YWihe Yeh 

Table 4.6.2a Discontinuity in mid span of beams 

| 
Beam A B Cc D 

| 
nm | mn 

Boundary Gg @ Oo 8 | i 2 Bae gae 

Condition Pre | ; + gq 

| 

iS 
zo] : 

D 

Ao 

3.04 

C 
204 5 

Pig.4.6.2b 
Variation in n, e) 

0. 
+ 

i i ew Le to kt It it 
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Fig.4.6.2c 
Variation in n, 

vAsoued 
dation in 

  
30: 

2.05 

  
  
  

  

fhe     

| 
ee 

= 

ee ee 

B 

100 

  

Fig.4.6.2e Variation in 

  

204/ 
i 

104 

    
30   oo
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Table 4.6.3a Discontinuity for extensional vibration 
  

case of discontinuity 

b c da 
  

BAR 

o 

  
  

¥L*0-0 for all 

B -—= Constant Variation, 
yL= V4 fig.4.6.3b 

G ——a constant, 4L= 72 

  

              
oF 

eL 

064 

  

os4 

O44 

034       ot T T T T T 
ot 02 os to 10 50 wo AL Ae Ne 

Fig.4.6.3b Discontinuity in Bar-B 

  

      

  

  

  

  

Table 4.6.5a Table 4.6.56 if 
Variation inn, Variation in q 

yee | DFP (AL) nee 
= 8h, T =f 2 rie |e [ert |e | | [Mie | fo 
= Ufo, | ea result | error | 

| | 0.3 | 5.1130 | 4.2158 | 21.2 
0.5 | 2.0000 | 1.8881 5.9 |0.4 | 4.0455 | 3.5465 | 14.0 
10) P8628) 1. 7A91e| Wid Oe #0. Smal PS 6S GN 3s s025 76) Lin 
220") -lw68ts: | 1.6400 2.5) 0.6 | 2.8868 | 2.6475 | 9.0 

|_5 Li al42s) 1.35971 13 0.7 | 2,6329'/°2.3888:) 7.2 
10 T2854 12.2052 | 6.8 0.8 | 2.2590; 2.1302] 6.0 

oer 2.0402 | 1.9440 4.9) 
1.0 | 1.8612 | 1.7891 4.0| 
ie 1.7118 } 1.6580 Sod 
U2 ol DSS5i) (5455) 0268        
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a os 

o44 
oa 

— 034 

02 

OF 

Ge 
O0- T T T ~ T 

ef ¢ oe GF O tr © Oo wo it 1% 
Fig.4.6.4a Fig.4.6.4b Variation in ng 
iscontinuity at corners 

of a frame 

Fig.4.6.4¢c I 
Ried a + —- 

Variation inn, 4, = Re ie i; ee nes 

on. 

aM, Me, Ay 

Variation in r   

      Fig.4.6.4e 
Variation in n, 

ol    
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Fig.4..7.1a ‘ 5 3 

Stepped. Cantilever Beam with shallow end beng fre. A 

1a.4.7.1) eee) 
Fig.4. b A 
Stapeed, Cantilever Beam with deep end. being free. 

Table 4.7.2b 
tg of commonly used sections 

  

  

        

Section Shope % 

Box Oo | 0.47 

Universal I 0.40 

Channel Soros 

Hollow ° 0.34 

Angle i 0x30 

Rectangular] J 0.29 
    

  

D = extensional diinension about 
Fig.4.7.2a enlawe ditrdien 

Cress sectoral area in commonly used section i 

Table 4.7.3 Optimisation in beams 
  

  

  

7 ee Optimised section Uniform Ogtinsed 
° Section irm3e8 a. Beam / Bar dy} AL XL perentage 

ay 0.389] 2.4138) 1.8752] 66% 

| | ie, p60 agora, Lat So SURE pet 0 OES tara 1 ML Oe, ce en SR 

8 eS io no optimisation 

ee ee 
z 

= a: 0.220] 4.0118] 3.9266] 4% 
a ee | Fe ee a SOG SA Tal pon ae elen eee     

j = 1.0 no optimisation 

$ | consland net applreable 

a Pe ce eee en ed ae ane eee ae freee 

——_ 9-0 10.432| 7.3766| 200% 

— a. | constant not appleable 

  

Ex
te

ns
io

na
l           
 



Table 4.7.4 Optimisation in frame 

  

  

  

  

    
  

          

[Om 

  

Bi G.427..55 
Bridge of optimised section 

  

  

Optimised structure ] Frequency 4 
: | a Equivalent] Optimised} 

|e ose) Frequency | Uniform % \ 
es section 

z 3.8216 320269 a=3. 6 a=3. ” 
af pe [ ase | £=9.34Hz | £-6.79HZ oer 

<0 

b=0.3 | 
L=10.0 | | 

| a=2.0873 a=1.7896 a 
re is | £=3.23HZ | £=2.36Hz 36% 

(dmensiens in -m) i= 07 | 
| 

| 

—— 

| tom 20m i idwseel 
bzodm 
de1om 

Fig.4.7,5a 
Bridge with members of identical 
rectangular section 

| Membar 4 

g End span | 050m 
Middle span 123m 

WT Z — Column 1:50 m      



126 

Table 4.7.5¢ Optimisation in a bridge 

  

  

  

  

Tral Section (depth) Natural Freq. ria 
Ne. Riad Remark 

End span | Mid span} Column Hz Shae 

0.2 dee 1.0 4,566 Ss 
0.4 1.6 dee G; 8.106 A x 

First 0.6 1.4 1.0 7155 A 

Trial 0.2 too is 4.568 A 
0.4 Leo5 5S 8.988 A @ 
0.6 LS 5.2 8.504 Ss 

One 1.30 2.0 4.569 A 
0.4 1.10 2.0 8.611 Ss x 
0.6 0.90 2.0 Te22l Ss 

0.4 VS tee 8.749 Ss 
0.5 1.4 dee 2 8.766 Ss x 

Second 0.6 Led 1.2 8.498 Ss 

Trial 0.4 1.35 TS 8.988 A 
0.5 1s25 ao 8.991 s @ 
0.6 1315 1.5 8.504 Ss 

0.3 1.3 1.8 6.833 A 
0.4 die 1.8 8.988 Ss x 
0.5 ted 1.8 8.505 Ss                 

A for anti-symmetric mode 

s for symmetric mode 

x for the optimised value 

for the final optimised value 

 



  

Chapter 5 

Formulation of matrices for tapered beams 

§5.1 Introduction 

§5.1,1 Extension to the solution of tapered sections 
§5.1.2 Special features of tapered section 
§5.1.3 Simplified form of matrix formulation 

§5.2 Polynomial displacement function 

§5.2.1 Static stiffness matrix 
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§5.4.1 The general solution of the governing differential 
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-4.2 The properties of Bessel functions 
«4.3 The formulation of the dynamic stiffness matrix 
4.4 The application to simple beams



  

\27 

CHAPTER 5 

FORMULATION OF MATRICES £OR TAPERED BEAMS 

§5.1 Introduction 

Some of the earliest work carried out into the behaviour 

of tapered beams is that by Cranch & Adler where the eeane= 

verse natural frequencies of certain beams tapered to a point 

are investigated analytically. This work was extended by 

Jones” to include a wider range of boundary conditions. 

The finite element approach to tapered beams has been 

considered by a number of authors 2" The basic cubic 

approximation of the transverse displacement profile was 

investigated by Lindberg” where the behaviour of a pointed 

wedged cantilever was studied. This form of beam has been 

further investigated by Thomas & Dokumaci™ using quintic 

displacement functions, and results were compared with those 

by Lindberg” and also with exact analytical results given by 

Sanger.” Other work on higher order functions has been carried 

out by To™ who also investigated by the behaviour of a tapered 

cantilever. 

Of other investigations carried out on tapered members 

it may be of interest to note that Eastep* and Irie et. al have 

studied the problem using perturbation approaches, and that 

: 8587 
large amplitudinal vibrations have also been considered.
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In this chapter two forms of displacement function for 

tapered members are examined, and also, in addition to flexural 

displacement, axial deformation is included. Firstly the basic 

cubic representation for flexural displacement, together with 

the corresponding linear representation of axial deformation, 

is considered, and this is compared with formulations miaeieing 

the hyperbolic-trigonometrical forms of displacement function ®& 

described previously. 

  

§5.1.1 Extension to the solution of tapered sections 
  

The most common method of dealing with non-prismatic 

sections is to idealise the member into a number of prismatic 

portions as shown in fig.5.l.la. The accuracy of the solution 

Mneresees as the number of divisions becomes larger. The 

method will in most cases lead to a satisfactory analysis. 

However, it leads to the solution of a large order matrix which 

is uneconomic in computing time and to a large amount of data 

preparation which also requires extensive storage. 

In order to obtain an analysis in the same manner as that 

of prismatic members, the dynamic stiffness matrix of a non- 

prismatic membér should be formulated. The formulations are 

presented with the following two assumed displacement functions:- 

(a) Polynomial function 

W = a,+ ax + ax? + a,x? S  Saleta 

U = a+ a,x 5.1.1b
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(b) Quasi-exact function 

W = asimx + a,cosx + a,sinhx.+ a,cosmx 5.1.2a 

U = ajsinYx + a,cos¥x 5.1.2b 

from which exact solutionswere obtained for uniform members. 

The exact solution of non-prismatic members, which involves 

the utilisation of Bessel functions, is also developed. However, 

the exact solution does not appear to be justified due to the 

large amount of computational work. The accumulated rounding > 

errors during the extensive computation may also decrease the 

accuracy of the exact solution. The exact solution may be 

suitable for simple structures such as beams with classical 

boundary conditions. 

A considerable amount of computation is encountered in the 

determination of the dynamic stiffness matrix with the quasi- 

exact function. The accumulation of rounding errors which 

results from the large amount of computation is significant, and 

the evaluations near the asymptotic poles are extremely unsteady. 

Certain remedial measures are suggested so that smooth iterations 

are maintained. 

The convergence of natural frequencies of non-prismatic 

structures is studied for the stepped uniform section ideal- 

isation and for the two assumed displacement functions. The 

behaviour of tapered sections is presented with different degrees 

of, and different forms of, taper. The investigation is further 

extended to non-prismatic structures such as haunched beams, 

portal frames and bridges. The study is also supplemented with 

experimental evidence,
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§5.1.2 Special features of tapered sections 

Because of aesthetic appearance and a more economical use 

of material, the use of non-prismatic sections in structures is 

often implemented. For generality, the formulation of the 

dynamic stiffness matrix is based on a doubly tapered beam. The 

same procedure can be applied to other forms of non-uniformity. 

For ease of reference the different forms of non-uniformity in 

straight members are defined. These are:- 

G40) Prismatic member (fig.5.1.2a) - uniform 

(ii)  Devetailed member (fig.5.1.2b) - tapered in breadth 

Gai) Wedged member G@ig.5 de) - tapered in depth 

(iv) Doubly tapered (6t@55 te20) - tapered both in breadth 
member and depth. 

It is obvious that more parameters are involved in the 

definition of tapered than in prismatic members. In order to 

clarify the possible ambiguity in notation, and to facilitate 

the explanation in the matrix formulations, certain specifications 

are noted here. 

(a) The degree of taper 

This is commonly designated by the depth and breadth ratios. 

In connection with fig.5.1.2b & c respectively, 

Breadth ratio, n bi/ Soilesa u 

Depth ratio, m= dif cd, 5.1. Sb,
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(b) Equivalent uniform section 

It is more convenient if the breadths and depths are 

referred to an equivalent uniform section. With the aid of 

fig.5.1.2e, the equivalent uniform section is defined as 

(i) for the ith local member 

(b.), = uh + (ae 5.1.4a 

(a); = fee ee 5.1.4b 

(ii) for the whole system 

% (b,)i baa FG Va 5.1.5a 

dle A s 5.1.5) 
a 

where i = 1, 2, 3, «eeeeee.. mn, the total number of members. 

The transformation of the sectional properties of every 

element into the equivalent uniform section enhances the 

systematic formation of the matrix. It is shown in fig51.2f 

that the sectional properties at the jth joint are related to 

the equivalent uniform section by 

xy
 il ofp
 : ” ro

n wp 

bi 
Deo 
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(c) The transformation in the frequency parameter 

The frequency parameter of a structure, for flexural 

vibration in the general form, is denoted by 

For an equivalent uniform section, it is 

ye SA cs S22 
= EL 

and at the jth joint, it is 

~ 
,= 8A 

Ay st Ww 5.1.9 
EI, 

For a homogenous rectangular section, the relationship of 

he & dy is given by 

a= AS 5.1.10 j ean oie 
¥i 

For extensional vibration, the frequency parameter, % din 

Y= fu? 5.1.11 

is not a function of geometrical properties, and hence the 

relationship is constant, thus 

tats Se. 1e
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(a) The function of linearly varying section 

Considering the ith element of a structure as shown in 

fig.5.1.2g, the sectional properties at a section distance x 

from node 1 are expressed in terms of linearly varying section 

functions which are defined as 

m(x) 

n(x) 

= Ae ax Bol. 

Set aS x 5.1.14 

and the sectional properties are therefore 

or 

b, 

Ax 

Ix 

= d,-m(x) Biel 6 oe 

= b:-n(x) 5.1.15b 

= A,-m(x) n(x) Selec 

= 1,.m(x) n(x) 5.5150 

These physical parameters are related to the equivalent uniform 

section, 

dx 

bx 

Ax 

qx 

thus 

= p d, m(x) 5.1.16a 

= @bn(x) 5.1.16b 

= pa A,m(x) n(x) 5.1 .16C 

= pq I, m(x) n(x) 5.1.164
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§5.1.3 Simplified forms for matrix formulation 

As mentioned in §5.1.2d, for non-prismatic sections, the 

sectional properties are expressed as functions of the length 

of the member, i.e. m(x) and n(x). It follows that the flexural 

rigidity (EI), the extensional rigidity (EA) and mass per unit 

length (@A) in eqs.1.3.8, 1.3.9 & 1.3.15 respectively are also 

functions of x. These equations are therefore re-written 

respectively as:- 

Cx) = coy Jencaital ex cof 5.1.17 

(kl = Coy: [eacaital ax. Cy" 5.1.18 

i) = seo, fea. cwlew] oxi ol 5.1.19 

For ease of reference, the matrix which results from the 

integration of the product of the matrices and linearly varying 

section functions is denoted by [xX], i.e. [X] is always sand- 

wiched between the constraint matrices [CJ& [ey so that the 

form (CT(xIfeTy is obtained. It is noticed that the constraint 

matrices are common to those of the prismatic sections, and the 

main task is to evaluate [X]. In order to facilitate the 

formulation of the property stiffness matrices for different 

types of taper, the above three equations are interpretated 

into simplified general forms.
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Referring to eq.5.1.16 & fig.5.1.2g, the substitution of 

the linearly varying section functions into eqs.1.3.8 & 1.3.9 

gives :- 

for flexural vibration, 

“ 
T = a 

[K,] Spek. ken] ates Cajm(x)n(x)dx-[c] 521520 

for extensional vibration, 

{kJ = pa ea, Co“T.(CatCalm(x) a(sdexCcy" 5.02 

Similarly, into eq.1.3.15, it gives :- 

“ 4 
[M] = pqe, Coy (Cw CeIn era ax-Cel Sals22 

As described in §2.3.4, considering [J]=[K]-uw[M], the dynamic 

stiffness matrix is given as 

for flexural vibration, 

C3, ] Sil 23 
hk 2 

= pq ELX-Ec4 ot fc Salado) -Cwitw] ) moxdn(e) ax. Let" 

for extensional vibration, 

{3.] 5.1.24 

= pq eaeCot | ACaTCa] - CyTCw]) m(x)n(x) ax -CcT"
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§5.2 Polynomial Displacement Function 

The derivation of Coy , CA], & [NJ], which are identical 

to those of prismatic members, are shown in eqs.2.2.7, 2.2.10 

and 2.2.22 & 2.2.23 respectively. (Since the resulting eigen- 

system is linear, matrix iteration methods as described in §3.3 

could be used.) It is therefore necessary to formulate the 

matrices [K] &[M]. for the solution of eq.3.2.1 which is re- 

written here as 

CK] Ls] = «(M083 5.2.1 

The matrices [K] & [M] are then substituted into 

Cg] = (K] -«a{M] to give [J] which was solved by the determi- 

nantal method with the facility of the count algorithm. The 

formulation is started with a doubly-tapered member. The 

property stiffness matrices are then reduced to a wedged member 

and to a dovetailed member, and further to a prismatic member, 

the matrices for which are given in §2.3. Again, for a wedged 

member and a dovetailed member, the same property stiffness 

matrix is formulated if the derivation is started from the 

integration of the matrices.
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§5.2.1 Static stiffness matrix 

(a) Doubly tapered member 

With reference to eqs.5.1.20 & 5.1.21, [X] is written as; 

for flexural vibration 

[x,] = fc aly [a]m*(x) n(x)dx i) 

and for extensional vibration 

Pale [tat La]m(x)n (x)ax 55203 

The mathematical operations in these two equations gives 

{X,] in a rational form as 

  

Exd = 

é aa Srv¥sy Sr(rts) , ri(cts) ~ rs where X= 4L (1+ 7 + 3 + Z +e ) 

= 2p A rts. 34 (ets) . ei(ets) x's Xa. = 2b 03 += ee 

2 Sere, ser) =: 2 sz (rss) ae {zss) +58 ) 

= Se X, = Lig ( see Fa) 

and where r=m-1 

&s=n-1 

Substituting [xX,] into eqs.5.1.20 & 5.1.21, and performing 

the triple multiplication gives the static stiffness matrix as 

shown in eq.5.2.5 

5 onePoise 
L
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(b) Wedged member 

For a member of constant width, the breadth ratio is 

unity in the doubly-tapered matrix formulation. Substituting 

n=l into eq.5.2.5 gives the static stiffness matrix for a 

wedged member. 

(e) Dovetailed member 

Similarly for a dovetailed member, substituting m=l into 

eq.5.2.5 gives the static stiffness matrix. 

(d) Prismatic member 

The substitution of m=l & n=l into 5.2.5 gives the same 

stiffness matrix as shown in eq.2.2.17
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Eq-5.2.5 Static Stiffness Matrix of Polynomial Function 

fa oes = Ki Ka Kes Ku | 
1 1 0 1 Ke Kay a = [0] 

sym. 3 aah 

Kaa | 
0 Sa ea sm: ro] a 

1 ra 

where 

Ky, = Za ( 132mn +15m +45mn +18m +18mn +45m +15n +132 ) 

Kz = Za ( 38mn + 4m +12mn + 9m + 9mn +33m +lln + 94) L 

Ky = -Ky 

Ke = Za ( 94mn +llm +33mn + 9m + 9mn +12m + 4n +38) L 

Ky = Za ( 12mn + 2m + 6mm + 8m + Smn +27m + 9n + 68) Lt 

Ky = -Ky 

Ky = Za ( 26mn + 2m + 6mn + m+ mn + 6m + 2n + 26 ) 12 

er = 

Ryo = ky 

Kau = Za ( 68mn + 9m +27mn + 8m + 8mn + 6m + 2n + 12) 1 

Kes = DPQEA/6L ( 2mn + m tn +2 ) 

Kye = -Kue 

Keo = Kes 

and where Za = Pd EI /35L3
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§5.2.2 Mass Matrix 

(a) Doubly tapered member 

With reference to eq.5.1.22, [X] is written as 
ee 

Cx,] = | CNT CNIm(x)n(x) dx 5.2.6 

The mathematical operation gives Cx] in a rational form as shown 

in eq.5.2.7. Substituting [xX] into eq.5.1.22 and performing the 

triple multiplication give the mass matrix as shown in eq.5.2.8. 

  

Eqs5.2./7 Gn “PL 140 
  

  

  Eq.5.2.8 on P.141   
  

(b) Wedge member 

For a wedged member, substituting n=l into eq.5.2.8 gives 

the mass matrix. 

(ce) Dovetailed member 

For a dovetailed member, substituting m=l1 into eq.5.2.8 

gives the mass matrix. 

(d) Prismatic member 

The substitution of m=l1 & n=l into eq.5.2.8 gives the same 

mass matrix as shown in eq.2.2.24. 

§5.2.3 Dynamic stiffness matrix 

The expressions for the static stiffness matrix 

(eq. 52.5 ) and the mass matrix (eq 4552.6) ) are. 

substituted into [J]=[K]-«w[M] to give the dynamic stiffness 

matrices. These are in the simplest form that are available and 

the coding for the computer programming is straight forward.
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Eq.5.2.7 Matrix [X] of Polynominal Function 

    

ge § x ¢ e 2 

    

    

  
  

sym. Xag Xy C0] 

Kay 

ae ete eg 2G ae 
Co] 

ae 

Where 

Xy =e 1 + (r+s)/2 + rs/3 ) 

Xi = Lb? ( 2/2 + (ets)73 + rs/4 ) 

Xe = $2? (3/3 + (ts) /4 4-rs/5 ) 

Me Ss at Oars + rs) (5 rs 76.) 

Be a nie 

Xa = Ku 

M, = L° (1/5 & (rts)/o + rs77_) 

Key = etaoe 

Xy = L* ( 1/6 + (r+s)/7 + rs/8 ) 

ee Se 7/7 G8) 8) bers/9™) 

i ne 

Msg = Kg 

Kee = Xy 

& Where 

r=m-l



Bq.5.2.8 

v= 

Nee 

141 

Mass Matrix for Polynominal Function 

2, ( 

~Z 

Zy ( 

PAL/60 

PaL/60 

PAL/60 

and where 

  

76mn 

17mn 

92mn 

19mn 

4mn 

( 

( 

( 12mn + 3m + 3n + 

Zy 

    

    

+ 140m 

eon 

+ 140m 

+ lim 

+ Sm 

+ 17m 

Fe 4m 

+ 140m 

+ 725m 

ES Sm 

ae 

+ 

    

140n 

25n 

140n 

17n 

5n 

17n 

4n 

140n 

25n 

5n 

    

  

580 

76 

bey 

amn + 3n + 3n + 12 ) 

3mn+ 2m + 2n + 

= pqeAL/2520 

3 

2 

) 

) 
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§5.3 Quasi-exact Displacement Function 

In using this function, a non-linear eigensystem results, 

and as has been mentioned in §2.3.4, the expressions in the 

dynamic stiffness matrix are simpler than those in“btatic stiffi- 

ness matrix and mass matrix. Hence it is not intended to 

formulate the complicated [K] and [M]. Also, since the proposed 

direct formulation procedure is able to avoid the unnecessary 

complicated mathematical operations, the formulation of the 

dynamic stiffness matrix is therefore carried out by directly 

employing eq.5.1.23 & 5.1.24. 

The integration of the matrices may be carried out by 

numerical integration, but to minimize the risk of rounding errors 

and to save computing time, analytical integration was carried 

out. The triple multiplication, Cex Icy; is then programmed 

for numerical multiplication. 

§5.3.1 The product of poly-circular-hyperbolic functions 
  

The mathematical procedure is simpler if the trigonome- 

trical and hyperbolic functions are referred to node 1 of an 

element (fig.5.1.2£). For this reason, eqs.5.1.23 & 5.1.24 

are rewritten as 

for flexural vibration 

C3, J pa et. Co*y Cx, ] Lc) eeaea 
u 

where [X, ] { Cy, Jax Seaue 

it where [yY,] (falta m(x) - [NT CN] )m(x) n(x) 3-3.3
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and for extensional vibration, 

“1 
Etelia= eq cavihe) legit 5.3.4 

where [Xe] [ Cx. ex 5.3.5 

awhere (ve] = ( A208) - cwit@ ) moon) 5.3.6 

Matrices [A] & [N] are given in eqs.2.3.20 and 2.3.25&26 

respectively. Substituting for [A] & [N] into eq.5.3.3 gives, 

for flexural vibration, 

    
     

    

Cy, ] = |u(x)-s*(x) u(x)s(x)c(x) v(x)s(x)sh(x) v(x)-s (x)-ch (x 

(x) 62) v(x)-c(x}sh(x) v(x)c¢(x).ch (x 

u(x) sh*(x) u (x)sh(x)ch (x 

or u(x). ch'tx) 

where (x) = ( m(x)-1 )m(x)n(x) 
= pari + 2 (3r¢28)ixX + r(etas)ixe + rsx} 

v(x) = (-m(x)-1 )m(x)n(x) 
=q{-20 - 2(arts)tx - r(3re4s)ix + rir+3s)ix + rsx*} 

r=m-1 & s=n-1 

and where s(x) = sindx 

c(x) = cosrx 

sh(x) = sinhyx 5.3.7 

ch(x) = coshrxx 

and into eq.5.3.6 gives, for extensional vibration, 

  

  

[Ye] = | t(x) (cos¥x-sirl¥x)  -t(x)2sin%x cos%ix 

Senatncel +(x) (sintx-cos%x) 

Coe ee ( UP +(r+s)Lxt+rsx* ) 

uw
 

w @
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§5.3.2 The definite integral 

It is noticed that the integration of every element term 

follows the general form 

n “ Re 
x { g, | h(x) x" ax } 53349 
a A 

where n=1,2,3,-.<0. 

h(x) being the product of trigonometrical and/or 

hyperbolic functions 

& g, being the coefficients 

L 
The definite integral of [h(x)x" ax is given in Appendix A. The 

application of these integrals to the evaluation of each element 

term in [X,] of eq.5.3.2 and [X.] of eq.5.3.5 is shown by an 

example. To evaluate the element term, X, , for a wedged member, 

  

I (ae 3 
x, = + [ (eimtne (QrLx + 3ABe+ pix) dx 5.3.10 

" ae 
= 2B | xsinhx ax + GF [pista dx + Efesichxc dx 

= ae a? -2asc+s* ) 

eh AS a P 
+ Te 2a? +6aisc +6a,s° -3a, +3sc ) 

| + Tea 2of -8césc +12ais -6a,+12asc -6s° ) 

2 iat Qo, (r+27 = sasc(r+1)(r+2) + 4ots(3r+6r+2) 

- 6ar(r+2) + 12qse-Xr+1) - 6s*r* } 

The procedure for the evaluation of other element terms 

is similar. A complete set of elements for the matrix Cx, ] is 

given in Appendix B .
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§5.3.3 Dynamic stiffness matrix 

Due to the complexity of the integrations, explicit 

triple multiplication for flexural vibration becomes unwieldy 

ai 
and hence the multiplication of Co*T {xf} was programmed for 

computer implementation. 

Although the evaluation of the dynamic stiffness matrix 

for extensional vibration may be processed as described above, 

in this case an explicit approach is feasible. Undertaking 

the integration in eq.5.3.5, [Xe] is given as 

Xen = ae (mn-1)8" -2mng's" -(2mn-m-n)gsc +(m-1) (n-1)$} 

Kes = et amngisc -(2mn-m-n)8s*+(m~1) (n-1) (g-se) } 

Xen = Xs 

where 6=¥%L , s=sinyL , c=cosyL 

The triple multiplication gives the dynamic stiffness matrix, 

the elements of which are 

a Iss = Z| 28'sc +(m+n-2)Bs° +(m-1) (n-1) (8- sc) } 
5aGel2 

Jg =-Z. 

{ 
{(mn+1) 6's +(m-1) (n=1) (B-se) } 

Doe Zel 2mngsc -(2mn-m-n)ps* +(m-1) (n-1) (gc-s)} 

where §=y¥L 
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§5.4 Exact Solution with Bessel Functions 

§5.4.1 The general solution of the governing differential 

Equation 

(a) Flexural vibration 

The equation of motion in its general form is shown in 

eq.1.2.2. For non-prismatic beams, also assuming oscillatory 

motion w=Wsin(wt+¢), the differential equation is written as 

Sfer2y - wPA, =. 0 Sel 

or on expanding 

4, 36 2 

gal andy , &z dw -ofaw = 0 5.400 hat + 2axae * ax ae 
    

I, and A, of a wedgedsection, which are indicated in 

fig.5.1.2£, are expressed as a function X such that, 

Ix Ex 5.4.3 

An Ae 5.4.4 

where X = m(x) = 

  

The variable x in eq.5.4.2 is replaced by X , thus giving 

a 3. be 

eo + ox Gh + 6 Sh - Sw + 0 5.4.6   
  

  
is M4 

where a, =xL = == Uw, and r=m-1
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It is intended to transform eq.5.4.6 into a standard form 

from which the general solution can be expressed in Bessel 

functions. The transformation is commenced with the introduc- 

tion of two variables, p & PP , where 

y= wo 5.457 

& ® = 2a 5.4.8 

The derivatives of ¥,?, W & X are given in Appendix C. The 

substitution of these derivatives into eq.5.4.6 gives 

g eo ' aes - wih. 395 - 3) -pp =0 erate 

This equation can be factorised into 

[wg + 0d eS oe vf[e S05 - wl =0 5.4.10 

and is satisfied if either 

oi +0 (Peat) em =O 5.4.11 

or eee +o, Salas weg 5.4.12 

Eqs.5.4.11 & 5.4.12 are Bessel's equations of the first 

order whose solutions may be expressed in terms of cylindrical 

functions. The general solution of eq.5.4.9 is therefore 

bp = a dP) +a,n(P) + ast?) + aK(P) 5.4.13 

where J, N, L, K, are the cylindrical functions of the first order. 

Substituting eq.5.4.7 gives the displacement function as 

w= pf aa) + am?) + an) + ax} 5.4.14 

It may be noted that the same equation results from the theory of 

4 
circular tanks of variable wall thickness .
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(b) Extensional vibration 

Assuming oscillatory motion, the differential equation 

in eq.1.2.3 is written as 

x (2a, ) + PAU = 0 540d S 

or on expanding 

@u , da dU .e A nae tiaras ae + Oe Aa = 0 5.4.16   

Substituting for eqs.5.4.4 & 5.4.5, the variable x is replaced 

by X, thus giving, 

@u au Br xs Boat ax bee US = 18 Ss4ea7 

Pee Lars where 8 = z ei} 

Introducing two variables, 

y ue? 5.4.18 

ip 8 & P= 2x 5.4.19 

the differential equation is written as 

2 ay a = i PE + Pap + @-1)h = 0 5.4.20 

of which the general solution is given as 

~ = ag) + an) 5.4.21 6 

Substituting eq.5.4.18 gives the displacement function as 

u =3 {aaa@ + a NP) } 5.4.22
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§5.4.2 The properties of Bessel functions 
  

The expressions for the Bessel functions of zero order 

are given as 

(a) the first kind, 

  

5.4.23 

Z eae ee ees eee a ag Ch ie oe + ae sare: + 

> oe ie : rato 
ToC) 1 ee +aie +t xtra + 

(b) the second kind, 

  

TT c 

2 é - 

my(®) = 5.0%) Zandev) + 2S Fad) epha etsy) +. 
4 & 

Ke(P) ==, (P) (ing+y) +H + batt) top tege (Ltt) tae 

V being Euler's constant = 0.5772156.... 

Also the Bessel functions of the first order may be expressed 

in items of those of zero order thus 

Ty (P) = - TL) ey 
Tr = 24?) 

ny OP) = = wt (9) 

Ky Se saKip) 

The Bessel functigns of the first kind are then readily obtained 

  

as 

ge 5 7 

Ji(P) = 3a -aEgr - Earner -BEaeener 7 
5.4.25 

§ > 7 

1,00) = 3 +5 tab toi te i 

For Bessel functions of higher orders, it is necessary to 

assume the knowledge of the recurrence formulae which are given 

in most mathematical texts dealing with Bessel functions.
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only examples of flexural 

Problems involving extensional 

In the following sections, 

vibration are considered. 

vibration may be treated in a similar manner. 

The formulation of the dynamic stiffness matrix 

5.4.26 

§5.4.3 

The first derivatives of eq.5.4.14 with respect to x 

gives the slope as 

2 
- tho aJa(P) + an.(?) — at,(P) + ak(?) ) 

which is differentiated again to give the curvature as 

+ 
apr aJ,(P) + any(P) + a1,(P) + ax,(P) ) 5.4.27 

substituting 

5.4.28 

(m=1)* 

TA) KC) 

4a 

Considering the strain-displacement relationship, 

5.4529 J 

eq.5.4.27 into eq.1.3.4 gives 

tC) KP) 

4 4a 
[a] = Tme1yEpe C J,(%) n,(P) 

and the displacement function in eq.5.4.14 gives 

~e 
el g,(f) 5, (?) 

x 

cx] = 

nfo xh 

Substituting the end conditions, x=0 for node 1 and x=L for node 

a 

55.4230 

2, into eq.5.4.14 & 5.4.26 gives 

J,(P) Ni) 
R P, 

I.(f) K(f) 
a     

  

oi Zs 

W. J, (P) NG? I 
i 2, oe 2 

o(8) wt) AG) KH) ay 
Z, Zs Zi Z,
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‘ 2ma, 

whet! f= Gary > Pen ger 
z= (DL 5 _ (m-1) Ly 
r= Bae 8 t= Oya 

of which the inverse gives [C]. The dynamic stiffness matrix 
4 

is obtained if [c],[a] & [N] are substituted into eq.5.1.23 . 

The mathematical operations required to form the inverse 

matrix, fel, and hence the multiplications of CaTCal and 

[NT{N] are formidable. Furthermore, it is not practical to 

attempt to carry out the integration and triple multiplication 

because of the huge amount of work thus generated. Even if a 

computer program is designed for all these tedious operations, 

the success in giving a correct result may be suspect due to 

the rounding errors which could be accummulated during the 

executions. 

§5.4.4 The application to simple beams 

Although it is considered not practical to program for 

the exact solution, the Bessel function solution may be applied 

to simple beams. By substituting the boundary conditions into 

eqs.5.4514, 5.4.26 & 5.4.27 , the coefficients a; 4,, a, ay, 

‘and the natural frequencies can be computed. The application 

is demonstrated in the solution of a propped cantilever as 

shown in fig.5.4.4. The boundary conditions are, 

2 

dx? 

Qu
 

=   At x=0, W=0 & 0 = tl 

At x=L, wW=0 & gH <0



iS2 

Using these boundary conditions, eqs.5.4.14, 5.4.26 & 

5.4.27, gives the following equations 

a a(P) 

a,T3(P) 

ao, (P) 

ad, (P) 

The natural frequencies are then 

equation, 

J, (%) 

J, (P) 

TCP) 

OCP) 

+ aN, (9) 

+ a,N,(?) 

+ aN, (?) 

+ aN, (P) 

N, CP) 

N; (?) 

N, (P) 

N, (P) 

+ a,I, (9) 

+ aT () 

+ aI, (9) 

- a,I,(?) 

Emp) 

T; () 

Ere) 

-T, () 

+ ak(~) =0 5.4. 31a 

+ aks(~) = 0 5.4.15 

+ ak,(P) = 0 524.3ic 

+ aK (P) = 0 5.4.31d 

obtained from the determinantal 

eC hiiease ao 

K; () 

K, (?) 

Ky (P) 

5.4.32



  

Fig.5.l.la Stepwise uniform section idealisation 

by, 

be de fab, 
4 

Fig.5.1.2a Pig.5.152b 
Prismatic member Dovetailed member 

i 
2 a y 

a nds 

4 

Fig.5.1.2¢ 
Wedged member Big.S. 1. 2d 

) Doubly tapered member 

  

Fig.5.1.2e Equivalent uniform section
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te ® @ @ 

i ee dj t 
uniform section 

Fig.5.1.2£ 
Transformation of the jth joint 

  

  Pies us 

hig.5.1.2g 
Linearly varying section of the ith element 

Fig.5.4.4 
A propped cantilever beam



  

Chapter 6 

The difficulties in solution routines & interpretation 

§6.1 The limitation in numerical evaluation 

§6.1.1 The rounding error 
§6.1.2 The singularity 

§6.2 Difficulties arising in the solution routines 

§6.2.1 The inconsistent evaluation in the prohibited range 
§6.2.2 The misleading count algorithm 
§6.2.2 The interruption in the iteration process 

  

remedial measures 

avoidance of the first asymptotic poles 
e by-passing of the prohibited range 

appraisal of the count algorithm



55 

CHAPIER 6 

THE DIFFICULTIES IN SOLUTION ROUTINES & INTERPRETATION 

In the matrix formulation using the polynomial functions, 

the expressions for tapered seecions are more complicated than 

those for prismatic sections. However, although more arithmetic 

executions are required to evaluate each expression, the numerical 

operations are well within the capability of a computer. No 

difficulties nor suspectability of the solution routines, which 

are discussed in Chapter 3, is reported. The solution routines 

from the matrix iteration methods and the determinantal methods 

are capable of giving successful results. 

The complexities of the trigonometrical and hyperbolic 

functions are increased in the matrices produced from the quasi- 

exact functions. The risk of incorrect evaluation becomes higher 

as the dimensionless frequency parameter (AL) increases in 

magnitude. The evaluation is even more misleading if the 

dimensionless frequency parameter approaches the asymptotic poles 
’ 

In this chapter the difficulties in the solution routines for the 

quasi-exact function are discussed. For ease of documentation, 

the two terms which are repeatedly used in this chapter are 

abbreviated as CA and AP respectively for count algorithm and 

asymptotic pole.



LSS: 

§6.1 The Limitation in Numerical Evaluation 

§6.1.1 The rounding error 

Inherent in computer technology is the fact that a computer 

operates using only a certain number of significant figures. 

In the ICL 1904s system, every execution accommodates 11 signi- 

ficant figures for single precision implementation. The greater 

the number of numerical executions, the higher the risk that the 

rounding errors become prominent. An example on rounding errors 

may be shown by obtaining the difference of two numbers of similar 

magnitude, such as 

Difference = 7.81542341176 x 10% - 7.81542341174 x 10" 
6s ied 

Instead of carrying 2x10", the computer may take the difference 

as zero for the next execution. 

For tapered members, as it is not possible to construct 

every element term of the dynamic stiffness matrix as elegently 

as those of prismatic members, the matrix is formulated by the 

summation of the triple multiplications. The arithmetic 

execution is so heavy that deviated evaluations are unavoidable. 

The occurrence of rounding errors is further emphasised in the 

following example.



is 

A. free cantilever beam which is wedged in section 

fig.6.l.la) is described by a depth ratio m. A depth ratio 

of unity should re-define the beam as a prismatic beam €ig.411b. 

Stal any the substitution of m=l into the dynamic stiffness 

matrix formulation of a wedged section (§5.3 & subroutine JWEDGE) 

should give the same result as that of ‘prismatic section (fig2.330 

& subroutine JPRISM). The two sets of evaluations are plotted 

in the D-f curves (fig.6.l.lc & d), where the discrepancy can 

be easily visualised. 

In fig.6.1.lc, as the evaluations are performed with simple 

expressions, the profile of the D-f curves are well-defined and 

so are the eigenvalues which clearly intersect the abscissa. 

The same profile can not be achieved in fig.6.1.1d. The portions 

of curves which are drawn in dotted lines signify the uncertain- 

ties. These uncertainties always appear near the APs. Fora 

wedged section of greater taper, the uncertainties in the D-£ 

curve (fig.6.3.1¢c) may span across the abscissa to another AP.
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§6.1.2 The singularity 

It has been shown that the uncertainties occur near the 

APs. This is mainly due to the evaluation of 

1/ (1-cos\L coshaL ) Ones 

_ 
in the [c] & [C°]’ matrices of eg.2.3.14. This expression may 

also need to be evaluated in the integration matrix, [x], in 

eq.5.3.9. The evaluation of expression (6.1.2) is extremely 

sensitive whenaL is near the APs. 

In the determinantal method, a change of sign may signify 

a possibility of the existence of a root. The inaccurate 

evaluation of expression (6.1.2) gives misleading information. 

In fig.6.l.ld, attention is drawn to asymptotic poles of the 

2nd, 4th & 6th order. The values of these poles are respectively 

a, = 7.85321 

a, = 10.99561 6.1.3 
a, = 14.13717 

which are roots of eq.2.3.10, i.e., 

AP, 1 - cosaL coshaAL = 0 6.1.4 

It-is increasingly clear that the evaluations near the APs 

are unreliable. The regions in the vicinity of these poles are 

identified as prohibited ranges’ (£ig.6.2.1a). The ranges may 

vary from negligible, e.g. the first pole in fig.6.1l.Jlc; toa 

full span from pole to pole. .(fig.6.3.1c)
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§6.2 Difficulties Arising in the Solution Routines 

§6.2.1 The inconsistent evaluation in the prohibited range 
  

It can be seen, in fig.6.l.1lc, that the fourth mode is 

situated very close to the second AP. Due to the rounding 

errors that accumulate from the complicated formulation incurred 

using the quasi-exact function, the fourth mode cannot be well- 

defined as can be seen in fig.6.l.ld. The same curves are 

magnified in fig.6.2.la showing the prohibited range, and their 

determinantal values are tabulated in table 6.2.1b. 

With subroutine JPRISM, the curve intersects the abscissa 

ataL=7.85476. THis intersection, one of the roots, is confirmed 

by the CA as the fourth mode. Situated not far before the root 

is an AP, AL=7.85321, where singularity is present. The deter- 

minants are evaluated for every interval of 0.0001 in AL and 

the evaluations are very steady. If 0.0001 is taken as the 

prohibited range, the root of \L=7.85476 is well beyond it. It 

may therefore be concluded that a steady iteration is always 

obtained in prismatic sections using the exact function. 

Due to the unsteady evaluation with the quasi-exact 

function in the subroutine JWEDGE, the prohibited range, in 

fig.6.1.1d, is’ required to be widened. The range is increased 

in both directions until steady evaluations are maintained. The 

prohibited range is now bounded by (aL=7.8519) and (aL=7.8554) 

for the second AP. The expected root which lies within the 

prohibited range cannot now be well-defined.
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§6.2.2 The misleading count algorithm 

In a normal CA, if the sign count increases by one, it 

signifies the existence of a root with a well-defined values — 

a definite root. If the asymptotic algorithm increases by S,, 

(Sq being obtained from eq.3.314), and the sign count decreases 

by Sy leaving the CA unchanged, there should exist an AP, The 

unchanged CA argues that the point of singularity is not a root 

even though the determinants change sign about the AP. The AP 

may therefore be termed a biased root. A normal CA which 

quantifies either definite roots or biased roots is operated 

with subroutine JPRISM. 

If the use of the subroutine JPRISM is replaced by JWEDGE, 

it can be seen in fig.6.1.1d that the normality of the CA is 

maintained up to the third mode. The CA in the prohibited range 

of the second AP is very misleading. As can be seen in table 

6.2.1b, the following abnormal counts are noted:- 

(a) (1) DUPLICATED mode — the third mode has already been clearly 

defined as ,L=7.37658 which is an extensional mode, If the CA 

at AL=7.8520 (which is 1+3=4) is accepted as a normal count, 

the CA at AL=7.8525 (which is 1+2=3) will indicate the exist- 

ence of another third mode. It can also be noticed that the 

CA of (1+2=3) and (1+3=4) are repeated within the prohibited 

range. 

(ii) DEVIATED mode — the misleading CA indicated that any of 

the many intersections within the prohibited range can be 

taken as the fourth mode. The result obtained from the 

iteration process with subroutine JWEDGE is not always the 

same value as that obtained from subroutine JPRISM. |
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(b) (4) ASYMPTOTIC mode — it can be seen in fig.6.3.1l¢ that the 

roots coincide with the APs. There is no indication that a 

definite root is able to be isolated from the APs even though 

the determinants are evaluated with very small intervals. The 

values of the determinants are tabulated in table 6.2.2a . 

(ii) MISSING mode — in fig.6.3.lc, the profile of the curve 

is expected to intersect the abscissa to give the second 

mode. However, due to the rounding errors, the curve bends 

down and tends to the negative asymptote. The CA before and 

after the first AP, (0+1=1) & (1+1=2) respectively, shows 

that there should be a mode of second order before it. Never- 

theless, the change of curvature at the proximity of the 

intersection omits this root. 

§6.2.3 The interruption in the iteration process 

A smooth iteration is maintained provided that the CA gives 

a normal count. As the iteration is recurrent in nature, the 

process can be continued een with a misleading CA. It is obvious 

that a misleading CA is liable to give an inaccurate root. Once 

a root is evaluated with a misleading CA, the reliability of the 

following roots is highly suspect. It is also necessary to 

identify the definite roots from all the other roots. 

There is a possibility that the iteration falls within the 

prohibited range. The evaluation is so sensitive that an over- 

flow would be registered during the execution. The iteration 

process may either be terminated unexpectedly, or be continued 

with a risk of transmitting false information.
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§6.3 The Remedial Measures 

§6.3.1 The avoidance of the first asymptotic poles 
  

The misleading CA always occurs within the prohibited range 

If the first asymptotic pole can be transplanted sufficiently 

behind the required number of roots, the iteration is free from 

the danger of evaluating singularity. The roots which result 

before the first AP are therefore definite and accurate, and hence 

it is ideal if as many roots as possible occur before the first 

AP. The manner in which this “achieved, i.e. how the value of the 

position of the first AP is increased, is described below. 

The solution of eq.2.3.10 gives the first root as 44.73004. 

If the member in fig.6.1.la is split into n elements as shown 

in fig.6.3.la, the position of the first AP of the first element 

may be calculated as 

(a,)' = [% de 6230 

and for the ith element, 

ay = / Ba, 623.2 

In order to obtain all the required roots with definite 

values, it must be ensured that the smallest of (@. is larger 

than the roots. The ideal is for all the APs of the elements, 

de. (Gi), (G),....... (Or) ........ (ai)", to be very close to each 

other. This will maximize the position of the first AP. For 

elements split into equal lengths, the APs are tabulated in 

table 6.3.16.
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Tt is noticed that: the avoidance of the first AP is 

effectively achieved by splitting a member into more elements. 

This is in Parallel to the rate of convergence to the exact 

solution. The D-f curves for the wedged cantilever beam in 

fig.6.3.la are shown in fig.6.3.lc for different member of 

elements. It can be seen that more roots are well-defined and 

that these roots are converging as the number of elements 

increases. 

§6.3.2 The by-passing of prohibited range 
  

It has been shown that the evaluation in the prohibited 

range is unreliable. In order to maintain a smooth iteration 

for as many roots as required without having the iteration process 

interrupted, the evaluations are kept away from the prohibited 

ranges. For the particular cases within the prohibited range, 

certain assumptions are made with the support of the CA. The 

following two suggestions are interpreted as a result of the 

abnormal CAs described in §6.2.2. 

(a) APPOINTED mode 

As there is only one real root for a particular mode, it 

is not possible to accept all the intersections of the same CA 

as the modes; and a sensible decision is necessary. In fig.@4lc, 

if AL=8.8301 is taken as the second mode, it would be illogical 

to have the third mode well defined as AL=8.3779. Such illogi- 

cality is rectified by taking the itersection at the smallest 

value as an approximate root, This is to maintain the validity 

of <u. Also, a smaller value of wL always avoids interference 

by the first AP.
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(b) ASYMPTOTIC mode 

It is very common that the profile of a curve.tends to the 

asymptote and the CA after the AP shows that a mode should exist. 

It is therefore considered that the AP be taken as an approximate 

root since no definite value of the root is obtained, not even 

by reducing the iteration interval. 

It must be noted that these two suggestions only give 

approximations. An approximate root would preferably be accompan- 

ied by an associated message commenting on the abnormality. Wher- 

ever necessary, it is helpful if the CAs for the suspected range 

are fully listed. The profile of the D-f curves is also a means 

of envisaging the difficulties arising. It is also recommended 

that the APs are predicted independently so as to guide the CAs. 

§6.3.3 The appraisal of the count algorithm 
  

The importance and function of the CA has been shown to be 

of great interest. Originally derived from the Sturm sequence to 

locate the roots of a polynomial function, the CA enables the 

solution of non-linear eigensystems with the introduction of the 

asymptotic pole algorithm to be carried out. It has been mentioned 

in Chapter 3 that for prismatic structures, an infallible solution 

is guaranteed. 

The application to the nonlinear eigensystems has been 

extended from prismatic structures to non-prismatic structures. 

Due to the complicated expressions in the matrix formulations, 

difficulties arise with the standard solution routines. It is with 

the aid of the CA that these difficulties are overcome. The most 

prominent feature of the CA is its ability to facilitate the 

remedial procedures.
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Subroutine JPRISM Subroutine JWEDGE 

* count ee Po: count 
Determinant Algorithm Determinant Algorithm 

7.8510 7 ASE25 14+2=3 9.02E25 1+2=3 
7.8515 8.03525 1+2=3 1,07E26 1+2=3 
7.8520 9.64E25 1+2=3 -1.24E26 
7.8525 1.35E26 14+2=3 8.00E26 
7.8530 3.63E26 1+2=3 -1.25E28 
7.8535 -1.80E26 2+1=3 -5.29E27 
7.8540 -4.03E25 2+1=3 3.72826 
7.8545 -3.43524 2+1=3 -3.45E25 
7.8550 5.74224 2+2=4 -3.45E25 
T2805 1.38825 2+2=4 2.04E25     

  

    
Table 6.2.2a Prohibited range of the lst AP 
  

: count Determinant Rigerithm 

2.34483E30 0+0=0 
-5.47994530 O+1=1 
8.88815E29 0+0=0 
2.26730E32 0+0=0 
2.91564E31 

-6.14823533 
-1.24082E31 
-5.59675230 
4.23714E29 1+0=0 
3.09534E30 | 1+0=1 
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CHAPTER 7 

BEHAVIOUR OF _NON-PRISMATIC PLANE STRUCTURES 

8 7a Convergence 

Convergence tests are studied for the following three 

assumptions (assumed displacement functions and discretisation) 

(i) The exact function in the stepwise idealisation. 

(ii) The quasi-exact function in the tapered discretisation. 

Gi) The polynomial function in the tapered discretisation. 

To facilitate the presentation of the convergence curves, 

specified notations are allocated and are summarised in table 71. 

§7.1.1 Beam structures 

(a) Fundamental modes of simple beam structures (fig.7.1.1la) 
  

The boundary conditions of the four structures examined 

are:- Beams in flexural vibration, 

(i) Beam A —— free cantilever 

(ii) Beam B —— both ends encastré. 

Bars in extensional vibration, 

Gii) Bar C —— extensible at the shadow end and inextensible 

at the deep end. 

(iv) Bar D —— both ends inextensible.
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For comparison purposes, the sectional properties of these 

members are identical. The members are wedged in section with a 

depth ratio of 4.0. The convergence curves are shown in fig 71h. 

Every set of curves converges to a value which is considered 

to be the exact solution. Obviously the rate of convergence from 

the stepwise idealisation is inferior to that from the tapered 

discretisation. In case (iv), as the matrix formulation for the 

stepwise idealisation is in the same format as that for the 

tapered discretisation, the two convergence curves are therefore 

identical. 

Although the examples are considered with members of wedged 

section, similar rates of convergence can be obtained for dove- 

tailed sections and doubly tapered sections. 

(b) Higher modes (fig.7.1.1b) 

It is noticed that if extensional vibration is not suppress-— 

ed in a beam, the result of case (iii) is the fourth mode in a free 

cantilever beam, and the result of case (iv) is the third mode in 

an encastré beam. For a free cantilever beam, the convergence of 

the second and the third modes are shown in fig.7.1.1b. 

(c) Haunch beam (fig.7.1.1c) 

The haunch beam shown in fig.7.l.1c is composed of two 

tapered members and one prismatic member. By using the quasi- 

exact function (exact in prismatic member), no subdivision is 

necessary in the prismatic member; subdivisions are applied to 

the two tapered members only. On the other hand, by using the 

polynomial function, subdivisions are applied to every member.
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In order to obtain a conformable comparison on the rate of 

convergence, the convergence curves are plotted against the 

member of degrees of freedom, i.e. the size of the matrix to 

be solved. 

It is observed that the curves tail to a converged value. 

Again the curve obtained from the stepwise idealisation is not 

as rapid as that from the tapered discretisation, and the curve 

obtained from the quasi-exact function exhibits a higher per- 

formance than that from the polynomial function. 

§7.1.2 Frame structures 
  

(a) Pitched portal frame 

A model pitched portal frame, which has been statically 

analysed by Just,” is investigated here dynamically. (§7.4). 

In order to facilitate the presentation of the information, the 

physical properties of the pitched frame are preferably shown 

in §7.4 (£ig.7.4.1). However, the rate of convergence for the 

pitched frame is shown in table 7.1.2a. 

It is found that the converged value for the fundamental 

mode of, the pitched frame is 41.53 HZ. A rapid convergence is 

obtained from the tapered discretisation. For coarser sub- 

division, the quasi-exact function gives a closer approximation. 

If no subdivision is applied to the frame, the approximated 

natural frequency is over estimated by about 22%. The over- 

estimation is reduced to 8% by Subaivicing each member into 2 

elements, and to 3% from a 3 element subdivision.
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(b) Mansard frame 

A Mansard frame is shown in table 7.1.2b. Although the 

rate of convergence is tabulated with the number of elements in 

each member, it is understood that no subdivision is required 

in the prismatic member when using the quasi-exact function. 

Again, the stepwise idealisation produces the poorest convergence. 

(ec) Motorway bridge 

The dimensions of a motorway bridge and the rate of conver- 

gence are shown in table 7.1.2c. A poor convergence using the 

stepwise idealisation is obtained as expected. In the tapered 

discretisation, the rate of convergence of the polynomial 

function is nearly identical to that in the quasi-exact function. 

§7.1.3 Discussion on the choice of function 

The most obvious observation from the convergence tests 

is that the stepwise idealisation converges relatively very 

slowly and is hence an uneconomical form of representation. 

Consequently, it follows that the tapered discretisation is a 

better form for reliable and rapid convergence. In tapered 

discretisation, the decision on the choice between the quasi- 

exact function and the polynomial function is not so obvious. 

If a structure consists of prismatic members, it is 

preferable to use the quasi-exact function as no subdivision 

in a prismatic member can increase the convergence rate, and
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hence decrease the computing time. Furthermore, from the 

experience of analysing many examples of other structures, the 

\ almest : ae 
quasi-exact function\always gives a better approximation for 

fewer subdivisions in a tapered member. 

For a large number of subdivisions in a member, the natural 

frequency from the polynomial function is nearly identical to that 

from the quasi-exact function. If it is necessary to justify the 

convergence with respect to the computing time, the polynomial 

function is preferred to the quasi-exact function. The time 

consumed in the matrix formulation in the latter is more than 

five times that in the former. This comparison is shown in table 

7.1.3a for a particular example. Also the solution routines with 

the polynomial functions avoid the difficulties (as mentioned in 

Chapter 6) which arise with the quasi-exact function.
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$752. Variation in Parameters 

§7.2.1 Depth ratio in wedged members 

Beams and bars with classical boundary conditions are 

considered. The fundamental modes (in DFP) of these examples 

are plotted with the variations in depth ratio as shown in fig. 

7.2.1, In a free cantilever beam, an increase of frequency 

results from the increase in taper (the shallow end being free). 

An optimised frequency is obtained in a propped cantilever (the 

shallow end being propped) at a depth ratio of about 3.0. It 

is seen that a tapered member as an encastré beam or a simply 

supported beam gives a lower value of frequency. 

§7.2.2 Depth ratio of higher modes 

Natural frequencies of higher modes are plotted in fig. 

7.2.2 against the depth ratio for a wedged cantilever beam. If 

axial deformation is taken into consideration, the existence of 

an extensional mode is very much dependent on the depth ratio. 

In a prismatic member, the third mode is in extensional vibration. 

The axial mode becomes the fourth if the depth ratio is greater 

than about 2.2. It is noticed that an optimised frequency is 

obtained at a depth ratio of about 2.0 for the third mode of the 

wedged cantilever beem (extensional vibration being suppressed).
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§7.2.3 Different types of taper 

A free cantilever beam (the shallow end being free) is 

considered in dovetailed section, wedged section, and doubly 

tapered section (the depth and breadth ratios being identical). 

The comparison of the natural frequency resulting from different 

depth or breadth ratios is shown in fig.7.2.3. 

§7.2.4 Haunch ratio in haunch beams 

Fig.7.2.4 shows the natural frequency (DFP) of haunch 

beams with the variation of haunch ratio for different depth 

ratios. For commonly used haunch beams, the optimised frequency 

is obtained if the haunch length is about + to i of the length 

of the beam. 

§7.2.5 Optimisation of a bridge 

The example given in §4.7.5 of a prismatic bridge is 

further investigated here by introducing tapered sections. 

Different natural frequencies are expected if the bridge is 

modified by using one or more of the following sections:- 

(fig.7.2.5a shows a bridge with all of the following) 

(ie) End span - a depth ratio of 3.0 with the shallow end 

being propped. 

(41) Column - a depth ratio of 2.0 with the shallow end 

being connected to the foundation. 

(ii) Mid-Span - a haunch beam with haunch and depth ratios 

of 0.25 and 2.0 respectively.
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Table 7.2.5b shows the natural frequencies with different 

combinations of the above tapered sections. The fundamental 

mode of the bridge with all sections tapered (fig.7.2.5a) is 

8.78HZ which is smaller than that of the prismatic bridge of 

equivalent uniform section (i.e. 8.99HZ obtained in §4.7.5). 

This is the result obtained from the assumption that the bridge 

supports are perfectly fixed. When the bridge supports are 

perfectly pinned, the natural frequency is increased by 13% .



176 

§7.3 Modal Shape 

The profile of the modal shape of a structure is more 

accurately assessed if more nodal displacements are available. 

It has been stated in §7.1.3 that as the number of subdivisions 

in a structure becomes greater the rate of convergence obtained 

from the polynomial function is the same as that from the quasi- 

exact function. Also the suitability of the polynomial function 

is indicated because of the smaller amount of computing time 

consumed. Furthermore, the linear eigensystem which results from 

the polynomial function is preferably solved with the matrix 

iteration methods. In the matrix iteration methods, eigenvectors 

(with the associated eigenvalues) are given directly in the same 

iteration process. 

§7.3.1 A free cantilever beam 

A free cantilever beam (the shallow end being free) is 

considered with the following four sections:- 

(a) Beam A - Prismatic section 

(b) Beam B - Dovetailed section, n=4.0 

(ec) Beam C - Wedged section, m=4.0 

(da) Beam D - Doubly tapered section, m=n=4.0 

The mode shapes of the first four modes (in pure flexural 

vibration) are shown in fig.7.3.1. The slope at the free end 

for every beam is normalised for comparison. The magnitudes 

of the relative peak values decrease if the flexural rigidity 

is increased. It is noted that the four sections mentioned 

above are in an ascending order of flexural rigidity.



§7.3.2 Pitched portal 

The modal shapes of the first eight modes of the pitched 

portal frame are shown in fig.7.3.2. The physical properties 

of this frame are shown in fig.7.4.1. Comparison is made by 

superimposing the modal shapes which are obtained from a frame 

of equivalent uniform section. As the frame is symmetrical in 

geometry, either symmetric or anti-symmetric modes result.
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§7.4 A Detailed Investigation of the Pitched Portal 

§7.4.1 Physical properties of the frame 

The frame, which had undergone static tests,” is a mild 

steel pitched portal frame. The dimensions are shown in fig. 

7.4.1. The modulus of elasticity and the density are given 

as 223 KN/mm* and 7689 Kg/m’ respectively. 

If the results obtained from this frame are to be 

compared with those from a frame of prismatic section, the 

depth and the breadth of the equivalent uniform section must 

be taken as 7.5mm and 44.55mm respectively. 

§7.4.2 Vibrational analysis of the frame 

The natural frequencies of the first eight modes from the 

pitched frame are compared in table 7.4.2 with those from the 

frame of equivalent uniform section. A decrease in the natural 

frequency (33% in the fundamental mode) is expected if the 

supports are perfectly fixed. The natural frequencies for the 

frame with pinned supports are also shown in table 7.4.2, and 

an increase of 16% in the fundamental mode is noted. Also shown 

in fig.7.3.2 are the modal shapes of the first eight modes of 

both the pitched frame and those of the frame of equivalent 

uniform section.



§7.4.2 Experiment on the’ frame 

The apparatus for the experiment is illustrated in 

Plate 1. The frequency of the test frame is the frequency 

of the vibrator which is driven by an oscillator power 

amplifier, and the frequency is obtained from the frequency 

counter. The signal for the source of excitation to which 

the stationary accelerometer is closely placed is indicated 

in the serviscope. A resonance is obtained by when a 

maximum amplitude of the response curve in the serwiscope is 

observed. The natural frequencies obtained from the experi- 

ment are compared with the computed results in table 7.4.3 . 

The moving accelerometer is to measure the response at 

any point along the frame. The deflected shape of the frame 

is obtained by relating the amplitude of the response curve 

from the moving accelerometer to that from the stationary 

accelerometer. It is found that the experimental deflected 

shapes at resonance are very similar to the modal shapes as 

Shown in fig.7.3.2  «
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Convergence of a pitched frame 
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Table 7.1.2a 

Stepan - . ie ae Tapered Diceratieation 

in eech | Exact Quasi -exack | — Palagromiel 
mamber ein Tim son, 

1 54.95 | 50.62} 53.84 
2 °46.77 | 45.02] 45.09 
3 44.57] 42.83] 42.85 
4 43.59 | 42501). 2050s. 
5 42.96] 41.82] 41.82 
6 42.59] 41.68] 41.68 

Table 7.1.2b 
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Table 7.1.3 CPU for polynomial & Quasi-exact functions 
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=p gece ey eae 8.99 HZ (4.45 HZ) 

8.97 HZ (4.48 HZ) 

(.68 HZ) (4.57 HZ) 

10.25 HZ (4.85 HZ) 

10.19 HZ (4.87 HZ) 

a: T (8.78 HZ) (5.02 HZ) 

N.B. Fi gures in brackets 
ir symmetric modes 
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Prismatic 
m=n=1.0 

Dovetailed 
m=LO n=40 

Wedged 
m=40 n=L0 

Doubly tapered 
m=n=4,.0 

  

  

ist mode 

2nd mode 

  

  

Modal shapes of a free   

3rd mode 

Z , 
Ee th mode 

antilever beam



  

     
   

  

     

   

Se    

      

    
   
  

Ast anti-sym.mode 

41.53HZ 
n= 61.58HZ 

2nd anti-sym mode 
—— 209.89HZ 
——— 246,69HZ 

  

B 

3rd anti-sym. mode 

— 544.82 HZ 
\ —— 615.98 Hz 

4th anti-syn. mode 
845.17 HZ 

s=-=" 695.54 HZ 

  

   
Ist sym. mode 

105.88HZ 
—— 103..19Hz 

2nd sym. mode 

——~— 334. 21HZ 
- 429. 16HZ 

  

  

3rd sym. mode    

Tapered ____ 
section 

| Prismatic _ | 
al section Big.7.3.2 Modal shapes of a pitched portal frame  
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fr boalth | 
  

    

  

  

  

x 3mm dapth 
‘ 

50mm braodth — 3 
X [2mm dapth 

r 

j 
3 

25mm breath > 
x 3mm depth ™ 

ee Soom le 

Fig.7.4.1 Dimension of a model pitched frame 

Table 7.4.2 Comparison of natural frequencies (HZ) 
  

  

  

      

Fixed supports Pinned supports 
Mode Tapered Prismatic Tapered Prismatic 

section section section section 

1 41.53 61.58 32.04 27.74 
2 (105.88) (103.18) (91.42) (87.54) 
a 209.89 246.69 192.82 223/.99 
4 (334.21) (429.16) (324.95) (379 222.) 
5 (542.06) 615.98 (480.93) 462.58 
6 544.82 (617.48) 485.22 (485.59) 
7 845.17 895.54 813.70 855.93 
8 (1054.90) | (1235.60) (1012-23) | (1156.62)       
  

Table 7.4.3 Computed & experimental results of pitched frame 
  

  

  

Mode. Nautral frequency (HZ) % 
Computed Experimental error 

1 41.53 41 ees 
2 (105.89) 106 | 0 
3 209.89 139 5 
4 (334.21) 318 | 5 
5 | (542.06) 506 | g 
6 544.82 543 | 0 
a 845.17 802 5 
8 (1054.90) 1020 2           
  

N.B. Figures in brackets 
to indicate symmetric 
modes.
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CHAPTER 8 

DYNAMIC RESPONSE 

§8.1 Survey of Methods 

§8.1.1 Introduction 

The time variation of the force vector {P(t)} in eq.2.1.4 

may be harmonic, transient or random. For forces of harmonic motion, 

the steady-state response of the structure can be found by the 

frequency response method or the normal mode method. The 

application of these two methods are discussed inthe next section. 

The numerical integration method can also be applied tothe 

solution of problems involving harmonic exciting forces although 

this method becomes economical computationally in the analysis 

of non-harmonic response. The basic assumptions of this method 

are made about the variation of the displacements or accelerations 

during small time intervals. With such assumptions the set of 

n second order differential equations (eq.2.4.1) is replaced, 

in general, by n simultaneous equations. Different approaches 

2 : 31,96 
and assumptions to this method are reported’. 

It isthe intention ofthis chapter to examine the behaviour 

of the dynamic stiffness matrix for tapered section @s derived 

in Chapter 5) inthe dynamic response analysis, and results obtained 

fromthe tapered section are compared with those fromthe prismatic
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section. Although the exciting forces are assumed tobe harmonic 

in nature, similar comparisons may be obtained for exciting 

forces of different natures which may involve using the numeri- 

cal integration method. However, for harmonic forces the 

frequency response method and the normal mode method are dis- 

cussed here: with particular attention to the tapered discreti- 

sation. 

§8.1.2 The frequency response method 

For an undamped system, the equation of motion (eq.2.1.4) 

is rewritten as 

Cx] {x} + Cu] {x} = {Prey} Belli 

The harmonic excitation, {P(t)}, is given in the form 

{P(t)} = {#}sinat 8.1.2 

where {F} is a vector of the driving force amplitude and A is 

the forcing frequency. If the system is also considered to be 

in steady-state vibration, the response vector may be assumed 

to be given by 

{x} = {a}sinat 5.1.3 

where {a} is an unknown vector of the response amplitude. 

Substituting for {P(t)} & {x} into eq.8.1.1 gives 

[ k-<tm ] fa} = {F} 8.1.4 

If a is not anatural frequency, the square matrix [K-.«'m] 

is non-singular and may be inverted to yield 

Py 
fa} = (k-«m] {F} 8.1.5 

The response amplitude is thus expressed in terms of the driving 

force amplitude.
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8.1.3 The normal mode method 

Consider any arbitrary vector {y} , 

1 

tyh= 2 (ele Sic 

where {5} is the rth eigenvector of the general eigensystem, 

CK1{S} =wfm]{S} (in eq.3.2.1) and a, is a scalar mode multi- 

Plier. Premultiplying both sides of this equation by {SY} Co] 

gives 

{sf Cu {yt = (aloud {&} 2 8.1.7 

Because of the orthogonality relation of eq.3.2.5, all theterms 

on the right hand side vanish except the one for which r=s, thus 

{SFOMI{y} = {SFO {5} 4 8.1.8 

Substituting the value of the scalar mode multiplier so obtained 

into eq.8.1.6 gives 

a, {$+} {5.). I 

{yb = 2 STL] fit Iv} 8.1.9 

It is noticed that the summation of the matrix manipulation 

gives the identity, 

gh {5° 
» feet 7H =[x] 8.1.10 

and it follows that {y} is completely arbitrary and independent. 

If the arbitrary vector is replaced by the driving force ampli— 

tude vector {Fr} , this may be expressed as 

iS OM ; {F} = > Ste a {F} 8.1.11
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Also let the response amplitude vector {a} be represented by 

{a} = iS}, Ssei2 
fr 

where b, is an unknown coefficient. The natural frequency at 

the rth mode (from the general eigensystem) is given as 

we = (My CK] 8.1.13 

Substituting for eqs.8.1.13 & 8.1.12 into eq.8.1.4 gives 

¥ (ta) Ea] Shp, = {F} 8.1.14 

7 
Premultiplying both sides of the equation by {S} , and again 

using the orthogonality relationship, the unknown coefficient 

is obtained as 

bh = + _ {si fe} 3.1.15 aro? {S30 {8} 

Substituting for b, into eq.8.1.12, the effect of frequency on 

the response is clearly indicated as 

by 

al lbh ) = Do A g-1.16
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§8.2 Analytical Study of Prismatic Beam 
  

The beam considered is shown in fig.8.2 . To simplify 

the presentation, extensional displacement is suppressed. 

Flexural displacements (W,,8,) are excited by harmonic forces 

denoted as Fsinat and Msinat. In-the vibration of a beam, the 

frequency is better referred to the dimensionless frequency 

parameter,aL. The frequencies at resonance for the beam shown 

in fig.8.2 are »L=1.8751, 4.6941, 7.8548, etc. 

§8.2.1 The frequency response method 

(a) Polynomial function 

Substituting the boundary conditions into the equations 

for the formulation of the dynamic stiffness matrix (eq.2.2.25) 

  

gives 

EI_ | (5040-156q* ) (2520-220° )L |] wl=|F 8.2.1 
4200 Se 

sym. __ (1680 -4a* )L']} &} | M 

Manipulating the inverse of the dynamic stiffness matrix and 

substituting into eq.8.1.5, the response amplitude vector is 

found to be 

Wale a (1680 -4q* )it -(2520-22a+ )L F 8.2.2 

8, sym. ___(5040-156a") M 

where 3L 

Q = ST(a*- 1l224q°+ 15120)
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If a=0.0, the static displacement of the beam is given, thus 
= i w 
i
 oe & jH
 ' La
 » 

Bs
 

iS)
 eal H hy
 

8.2.3 

If a=1.8796, which is the frequency at resonance from the 

assumed polynomial function, the value of Q in eq.8.2.2 becomes 

zero and hence every element term becomes infinite. However, 

for a=1.8751, which is the exact frequency at resonance, the 

response amplitude vector becomes 

ZL W ar 34.6207 9 -47.7317 F B.264 

8, sym. 66.06L M 

(b) Exact function 

Substituing the boundary conditions into eq.2.3.31 gives 

BEC (sch+csh) a? (ssh)aL wi] = | F 6.2.5 
TF Lech }- 7 

Sym. Me Sch 

  

  

  

Manipulating the inverse of the dynamic stiffness matrix and 

substituting into eq.8.1.5, the response amplitude vector is 

found to be 

We i Ir
 (sch-csh)U -(ssh)ab F 8.2.6 

8 sym. _(sch+esh)a* M 

To obtain the element terms as rational values, the evaluation 

is achieved by using the series expansions of the trigonometri- 

cal and hyperbolic functions (Appendix D)
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§8.2.2 The normal mode method 

The free vibration of the beam is the solution of the 

eigenproblem which is obtained by equating the driving force 

amplitude vector {F} ineq.8.1.4 to zero. From the polynomial 

function, the eigenvalues are respectively a,=1.8796 & 5.8997 

for r=l1&2. By normalising the slope displacement, the modal 

shapes are described by 

{S} = ed 812.7 

~ = 3620-2300. 8.2.8 
Wiel ee \ irS OC 56e 

From eq.2.2.24 the mass matrix of the beam is written as 

(mM] = eaL/420 | 156 22L 8.2.9 
a 4   

and hence the denominator of eq.8.1.16 is 

{atCMI{(s} = eato. 8.2.10 

; _ af -8400t +98960 where & = “3 (lio? -1260F B52. 1) 

Substituting {5} into the numerator of eq.8.1.16 gives 

{ah (SP {2} = wo oWlF 8.2.12 
Ww, lii™ 

Substituting for eqs.8.2.10&8.2.12 into eq.8.1.16, the response 

amplitude vector at the free end of the beamis expressed as 

We L x 1 i wy OW F == = gs2.15 
] io ae re 1 [:} 

 



LOT, 

Substituting fora,, Q. & W., the response amplitude vector 

is evaluated, thus 

Wl}= Bf & ba F 6.2.14 

6, =f $a $2 M 

02527 0.0172.) where fice if 50,82. 4 0.0172, 
Qy (at—a*) ~ Q,(ay—ot 

eo icoee Oniaie. 
i. Q, (ar=at) * 0, (aot) 

eae LEG He) 
. Q, (aF=aF TY *~ OCag=o7 

05129217 

0.002173 

&where Q, 

Q, 

u 

If a=0.0, the static displacements at the free end are found to 

be the same as those obtained from eq.8.2.3. For the frequency 

at resonance, i.e.a=1.8796, infinity is expected in the response 

amplitude vector. However, for the exact frequency at resonance, 

i.e.a=1.8751, the response amplitude vector is obtained as shown 

in eq.8.2.4 . 

Similar procedures can be performed with the exact 

function, but these are not duplicated here. It should be 

noted that whereas the response amplitude vector is obtained 

by superposition of two modes in the polynomial function, 

infinite modes are superposed in the exact function. However, 

the superpositions contributed from higher modes becomes 

insignificant, and the procedure may be truncated by discarding 

the higher frequencies. The degree of truncation is dependent 

on the value of (wt-s") which is the denominator in eq.8.1.16 .
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§8.2.3 Discussion on the methods 

(a) Displacement functions 

Considering the beam shown in fig.8.2 subjected to an 

excitation force of Fsingt only, the vertical displacement 

is given by 

(i) from eq.8.2.2 in the polynomial function 

= 3(1680-40* ) FLY 
Wi = QS=1224e° +15120 BI 8.2.15 

(ii) from eq.8.2.6 in the exact function 

ee sch-csh_ FL’ e 
Ww, = Welcean) BE 8.2546 

In fig.8.2.3a, the excitation displacements are plotted 

against the dimensionless frequency parameter (AL) according 

‘to eq.8.2.15&8.2.16. The frequencies at resonance are given 

at points where the displacements are infinite. 

(b) Computing time 

In the frequency response method, the process requires 

repeated inversion if arange of frequencies is to be studied. 

In the normal mode method, the matrices are computed once only , 

and the range of the frequencies is studied by simply substituting 

into (W-n?) . Therefore, as shown in fig.8.2.3b, the normal 

mode method is more economical in computation time if the 

number of frequencies to be obtained from the same vibrating 

system is more than 3.
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§3.3 Examples on Structures of Tapered Section 

§8.3.1 A free cantilever beam 

(a) Analytical study 

The presentation of the analytical study is typified by 

using the frequency response method in the polynomial function 

Similar procedures for the normal mode method and in the 

quasi-exact function are not duplicated here. The wedged 

cantilever beam investigated is shown in fig.8.3.la with a 

depth ratio of 4.0, the shallow end being free. The depth of 

the equivalent uniform section is 1.0. 

Substituting the boundary conditions and the depth ratio 

of the beam into the dynamic stiffness matrix (§5.2.3), the 

equation for the forced vibration is given as 

E 259560-528at (79128-86a0)} | w, = Bz 8.361 
840 

sym. (32088-17044 | 6, M 

I 
G 

If the dynamic stiffness matrix is referred to the equivalent 

uniform section (I,a) instead of the section at the shallow 

end (1I,,a,) , a transformation is required. From 6G5561.6 |, 

this gives 

Again, from eq.5.1.10&5.1.16, the transformations are 

cr 

  

i 

VB, 

per
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Substituting for a,& I, into eq.8.3.1 gives 

EL 259560-33000" 79128-5380) Wi] = Ee 8.3.9 SS | 
22122) Misys _432088-1060!)| | 6, M 

which is denoted in matrix notation as 

[5] {8} = {PF} 8.3.6 

Premultiplying both sides of eq.8.3.5 by faa gives 

wl = 9 [(@2088-1060" - (79128-5380 | F 8.3.7 
8, sym. 259560-33000] | M 

0.2131 
where 9 = ET (q*-7840+33499) 

The frequency at resonance is obtained if 

a® -784q*+ 33499 = 0 8.3.8 

which gives 

gi 2.5947 8.5.9 
a, = 5.2138 

2 

and these are compared with the exact solution, 

a, 2.5850 8.3.10 
a, = 5.0888 

The static displacement vector is obtained by substituting 

a=0.0 into eq.8.3.7, thus 

Wi] = L/EI | 0.2037 -0.5023 F : 8.3.11 

g, sym. 1.6477 M 

which is compared with the exact solution 

W] = L/EI 0.205 -0.488L F Basede 

8 sym. _ 2.440 M 

For a range of frequencies, the response amplitudes are shown 

in. £ig.8. 316).
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(b) Numerical study 

The procedure of the analysis discussed in the last 

section is programmed so as to cater for a dynamic system with 

a large number of degrees of freedom. As it is necessary for 

the profiles of the deflected shapes tobe precisely described 

by an adequate number of nodal points, eachmember is subdivided 

into a comprehensive number of elements. The assigned number 

of elements should be sufficient to give an almost exact 

solution. 

Repeating the analysis of the beam shown in fig.8.3.la, 

the response amplitudes at the free end obtained for a range 

of frequencies are shown in fig.8.3.lc. In the same diagram, 

the response amplitudes are also shown for members of prismatic 

and doubly tapered sections. The frequencies at resonance are 

indicated at the positions of infinite amplitude. When the 

driving frequency is about a=4.0574, the zero intersection in 

fig.8.3.1c indicates that the displacement at the free end is 

zero. (It is noted that a=4.0574 is the natural frequency of 

a propped cantilever.) The deflected curves with different 

driving frequencies are compared in fig.8.3.ld.
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§8.3.2 Pitched portal 

Harmonic excitation is acting horizontally at the eaves 

of the pitched frame (point B of fig.8.3.2a). The response 

amplitudes for arange of frequencies are shown in fig.8.3.2b. 

Two sets of curves respectively for horizontal response amplitudes 

at points B&D are compared. Natural frequencies of the frame 

are declared at the poles of singularity. The zero intersection 

at a frequency of about 94HZ indicates that there is no horizontal 

displacement at point B. The deflected shapes for the forcing 

frequencies before and after the zero intersection are shown 

In-figss.3 a2. 

If the horizontal force is considered with null forcing 

frequency, a static problem is observed. The computed 

horizontal displacement at point B is 5.892mm which is 

compared wit! 5.90lmm from Ref.79, the difference being 

only 0.1%. In this case the horizontal force is simply 

LLOMKN.
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Fig.8.3.ld Deflected shapes of a wedged 
cantilever 

Esnahe 3 > Dimension of 
the frame to 
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fig. 7.4.1 
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to excitation fo. 

ral 

rce



= 53} =105. 20. i 41.53HZ % 105 .89HZ 

| 

| 

10.4 | Si ' 

v | A < Vy 
3z | \ es \ 
a a = asi coe 
eae | ener AN) EL ae | Response at B <= Sei 
av | * 

3 | i! 
aq -10.4 : Response at D | 

3 | i = | i 
| | 

o4 | | -20. 

20 4b 60 30 100 120 
Forcing frequency A (HZ) 

Fig.8.3.2b Response amplitude of the pitched frame 

Fsmat 

( FalokN) 

Fig.8.3.2c Deflected shapes of the pitched portal frame (mm) 

207 

  

  

     
  

    

    

  
  

 



  

Chapter 9 

Techniques 

§9.1 

§9.1.1 
§9.1.2 
§9.1.3 

§9.2 

RS. 2 ok 
$9.(2,2 
§9.2.3 

§9.3 

§9.3.1 
§9.3.2 

§9.4 

§9.4.1 
§9.4.2 

& Computer Aids 

Evaluation of l-cch 

The series expansion of l-cch 

The application of the built-in standard function 
Series expansion economiser 

Element Splitting 

The methods of element splitting 
The comparison of element splitting methods 
Limitation 

The symmetry of a structure 

The analysis of structures exhibiting symmetry 
The false mode in the plane of symmetry 

Notes on the computer programs 

Subroutine library maintenance 
Steering programs



208 

CHAPTER 9 

TECHNIQUES & COMPUTER AIDS 

§9.1 Evaluation of 1-cch 

§9.1.1 The series expansion of l-cch 

By definition, l-cch is the abbreviation for 

1.0 - cosacosha Die da. 

where a is the dimensionless frequency parameter. The evalua- 

tion of this expression may be critical especially in the 

prohibited range (§6.2). Its utmost significance is in the 

location of the asymptotic poles and is hence a crucial factor 

in the count algorithm (eq.6.1.4). 

The series expansion of the trigonometrical and the hyper- 

¥ . . zl , +, 103 % 
bolic functions are given in many textbooks, thus 

  

      

2 

cosa = lL - Ht ait Sole 

2 4 3 oo Oe es ee Rata aaie 
cosha = 1 + St aie ett oe 13 

Substituting into eq.9.1.1 gives 

_ 40¢ 160°, 640" 256a' 
l-cch = Tas St P ey sere Poe 9.34 

2ece one ens Cl Gat  
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The degree of accuracy in the evaluation of l-cch is 

dependent on the computation of the number of terms in the 

right hand side of eq.9.1.4. It can be envisaged that more 

terms should be considered for larger values of q and even 

more when a is in the prohibited range. 

§9.1.2 The application of the built-in standard functions 

As the trigonometrical and the hyperbolic functions are 

commonly used in technological application, the evaluation of 

these functions are readily accessible in the digit processor 

system. These standard functions are designed for general 

mathematical purposes and a satisfactory accuracy is always 

achieved in an ordinary well conditioned application. The 

critical evaluation in the prohibited range is so ill-conditioned 

that the application of the standard evaluations is inaccurate 

In using the standard functions’ of evaluation, the 

executive statement is written as 

FDET = 1.0 - C@S (ALPHA) *C@SH (ALPHA) O25 

where ALPHA is a real variable for the dimensionless frequency 

Parameter. The evaluations are compared in table 9.1.2a. To 

cater for the extreme cases, the comparison is focused on the 

evaluations in the prohibited range. It is also supplemented 

with the implementation of the double precision. In the single 

precision implementation, the accuracy of the evaluation can be, 

achieved up to the 4th significant figure in the prohibited 

range of the first AP (aq =4.73004), and up to the 3rd signi- 

ficant figure in that of the second (q =7.85420).
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§9.1.3 Series expansion economiser 

To facilitate the coding for the series expansion of l-cch 

(APPENDIX E2c), eq.9.1.4 is rearranged in the form of 

  l-ech=H G(1-Hdh (1-8 wre HERE nang ))) 9.1.6 

where nate 

The reliability of the evaluation depends on the number of terms 

being computed. It is shown in table 9.1.3a that, fora= 4.73004 

at least 7 terms are required to give an accurate ll-significant 

figure result in the single precision implementation, and 8 terms 

in the double precision implementation. More terms are required 
@ 

for higher values of a and the minimum number of terms required 

are tabulated in table 9.1.3b. 

It is inevitable that the critical value of l-cch deserves 

the privilege of being executed in double precision. If the 

results for the double precision implementation given in table 

9.1.3b are presented graphically as shown in fig.9.1.3c, a linear 

relationship may be obtained for the required number of terms and 

the magnitude of a. The linearity is bounded by 

NIT = 4.5 + 0.80 21.7 

It is infallible if the required number of terms is over- 

rated by an additional term, and the rounding up gives 

NTT = 6 + 0.80 DLs. 

NIT is automatically generated if the following statement is 

included in the coding, thus 

NIT = 6 + INT (0.8%*ALPHA) Dales 2 

The coding of the economiser (NTT) can be found in APPENDIX E2c.
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§9.2 Element Splitting 

§9.2.1 The methods of element splitting 

As far as this thesis is concerned, the subdivisions in 

the members are assumed to pe“equal length. The equal length 

element splitting method (ELES), which has been assumed up till 

now, is based on the ground of its simplicity. It does not take 

any account of the geometrical properties of the member, i.e.the 

tapered ratio of a tapered member. Considering a tapered member, 

in the subdivisions, there is a decrease in the tapered ratio in 

every element as illustrated in fig.9.2.la where the depth ratios 

of the two elements are 2.5 & 1.6. 

If the subdivision is so devised that every element 

possesses the same tapered ratio, this decrease in the tapered 

ratio is eliminated and the prismatic form is adhered to as 

closely as possible throughout the structure. The equal taper 

element splitting method (ETES) hence gives an optimised tapered 

ratio in each element and is expected to produce a better conver- 

gence than the ELES method since the nearer each element is to 

the prismatic form the better suited is the quasi-exact function 

to the elements. 

If a member is split into i number of regularised elements 

by the ETES method (fig.9.2.1lc), the depth ratio of each element 

is equated to an optimised depth ratio (m'), thus 

re ee elaine ter ec Deck ap Gs
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Eliminating the intermediate depths in terms of the two extreme 

end depths gives 

4 i d 2 ule mi = ( a y 9.22 
\ 

Again, solving the equalities in eq.9.2.1, the depth at the kth 

node is given as 

qd, = 0 we
 

w 

Equating the depths in similar triangles, the distance from the 

1st node to the kth node is 

mye 2S 5 = a 9.2.4 

Using the example shown in fig.9.2.la, the application of 

these formulae in the ETES method is illustrated in fig.9.2.lh 

Although it appears that the formulae for the ETES method are 

unwieldy the coding of the method in a computer program is 

similar to that of the ELES method (APPENDIX El). There is no 

significant increase in computing time and no complication in 

the implementation.
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§9.2.2 The comparison of element splitting methods 

It is intended to show that a more rapid convergence is 

obtained from the new method (ETES) than the traditional method 

(ELES). Examples from beam structures and a frame structure 

are considered. For a consistent comparison, the test examples 

are analysed with the polynomial function. Comparisons using 

the quasi-exact function are expected to yield the same 

conclusion. 

(a) Beam _ structures 

Beams of wedged section are considered with classical 

boundaries. The members are split into 2,3,4&5 elements by the 

two methods. The results obtained are tabulated in table 9.2.la. 

In the wedged cantilever beam, the results from the two methods 

give the same rate of convergence. In other beam structures, 

the results obtained from the ETES method give a better con- 

vergence. 

(bd) The pitched portal frame 

The physical properties of the pitched portal are shown 

in fig.7.4.1. The fundamental mode results obtained from the 

two methods are tabulated in table 9.2.2b. It is again shown 

that the results obtained from the ETES method give a better 

convergence. The frame split into 15 elements of equal taper 

gives a better approximation than-that with 24 elements of 

equal length.
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§9.2.3 Limitation 

The formulation of the optimised taper in every element 

of a wedged member can be extended to a dovetailed member by 

replacing the depths by the breadths. In a doubly tapered 

member, the split elements of equal taper in depths may not be 

of the same length as the split elements equal taper in breadths 

A compromise, obtained by taking the average, will distort the 

optimisation and an improved convergence may not be observed. 

As the depth is more critical than the breadth of the section, 

the optimisation only in depth ratio may be the better alter- 

native.
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§9.3 The Symmetry of a Structure 

§9.3.1 The analysis of structures exhibiting symmetry 

If a structure is symmetric in geometry, only half of the 

structure about the plane of symmetry need be considered in the 

free vibrational analysis. Fig.9.3.la & b shows two examples 

exhibiting symmetry. The geometry of the half structure of a 

single-bay frame is given by halving the span length only (fig 

9.3.la), and symmetric & anti-symmetric constraints are then 

applied at the plane of symmetry. In a double-bay frame, the 

geometry of the half structure is a single-bay frame and the 

sectional properties of the members lying in the plane of 

symmetry are halved. (fig.9.3.1b) 

In the half structures, fewer members (and hence fewer 

degrees of freedom) are considered. The most important 

advantage of symmetry is therefore the reduced computational 

time. The superposition of the natural frequencies which are 

obtained separately from both types of half structure gives all 

the natural modes (in order) of the whole structure . Each 

superposed mode can also indicate the type of vibrational mode, 

i.e. either symmetric or anti-symmetric. If half structures are 

not assigned, the designation on the type of the modes cannot be 

readily obtained until the mode shapes are available. The 

examples on the mode superposition for the frames in fig.9.3.la 

& b are shown in table 9.3.lce & d respectively.
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§9.3.2 The false mode in the plane of symmetry 

The frequencies obtained in table 9.3.lc & d are roots 

obtained from the iteration process. These roots (with the 

order) are confirmed by the count algorithm. The biased roots 

(§62.2), which are identified by the count in the asymptotic 

pole algorithm, have been discarded. Table 9.3.2 shows the 

frequencies at the asymptotic poles for the member lying in 

the plane of symmetry of the frame in fig.9.3.1lb. 

Referring again to table 9.3.1d, the frequencies marked 

thus x in the half-structure analysis cannot be found in the 

analysis of the whole structure. Actually, these frequencies 

are frequencies at the asymptotic poles as given in table 932. 

In the half structure the asymptotic pole algorithm identities 

these as definite roots, and hence since they are non-existant, 

care must be taken in interpreting these results in half 

structure analyses. These modes, the false modes, are obtained 

as eigenvalues of a clamped-clamped member lying in the plane 

of symmetry — flexural eigenvalues in the symmetric half-frame 

and extensional eigenvalues in the anti-symmetric half-frame. 

Obviously, as there is no member lying in the plane of symmetry 

of the frame in fig.9.3.la, no false mode is experienced.



§9.4 Notes on the Computer Programs 
  

It is well recognised that the ultilisation of the finite 

element procedures is motivated by and pertains to the special 

characteristics of the computer. Throughout the examples in 

this thesis, the results are obtained with the aid of a computer. 

Different programs are prepared for the different requirements 

of the analysis. Due to the limited space in the thesis, only 

typical programs of the same kind are listed, with brief 

discussions and block diagrams as the media of introduction. 

§9.4.1 Subroutine library maintenance 

A library, in a sense of computer terminology, is a group 

of items in semicompiled format arranged in some logical order 

that permits easy access to the individual components of the 

library. If a subroutine is frequently used or common to 

several programs, it is advisable that it be compiled into a 

subroutine library. A consequential advantage is the saving in 

compilation time of the same subroutine when used in other 

steering programs. This particular feature is noticeable if a 

considerable ‘number of modifications is necessary in the steering 

program.



(a) 

(i) 

(ii) 
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Library:JJIMC (Appendix E1) 

This subroutine includes the following facilities:- 

It reads the information of a structure,e.g. the topology, 

sectional properties and the orientation of each member. 

It also reads the number of subdivisions in each member 

and the types of displacement at each joint. 

It splits the members into elements. The topology, 

sectional properties and the orientation of each element 

are accordingly dealt with. Connections to connections of 

the split elements should be in the same format as the 

original structure. 

It computes the total number of degrees of freedom for the 

whole structure and the equivalent uniform section to 

which the transformations of the sectional properties 

are referred. 

It is noticed that if the subdivision is implemented 

with the computer execution, a huge amount of work in data 

preparation is saved, and also the tedious manual subdivision 

is eliminated. If the subdivision is manipulated with the 

ETES method, only a slight modification is required. The 

modification is included at the end of the listing of the 

subroutine.
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(b) For the matrix formulation (Appendices E2a,b&c) 

Three different groups of library subroutines are designed 

The listings in Appendices E2a,b&c are respectively referred 

to as:- 

(2) Library:KMPOLY —— subroutines KTWCU & MIWCU are used to 

formulate the static stiffness matrix and the mass matrix 

respectively, with the polynomial displacement function. 

(ii) Library:JCUBIC —— for the formulation of the dynamic 

stiffness matrix, [7], with the polynomial displacement 

function. 

(iL) Library:JEXACT —— for the formulation of the dynamic 

stiffness matrix, [J], with the quasi-exact displacement 

function. 

In the libraries JCUBIC & JEXACT, independent subroutines 

JPRISM, JDOVET, JWEDGE & JDOUBL are provided for elements of 

prismatic, dovetailed, wedged and doubly-tapered sections 

respectively. Economical computation occurs with the appropriate 

choice of subroutine. The subroutine JDOUBL may be used for 

elements of any taper. 

fe) Library:JSNGL (Appendix E3) 

Two procedures are performed in this library:- 

(i) The local coordinate of every element is transformed into 

a global system. An example of a transformed dynamic 

stiffness matrix is given in eq.2.4.4. 

(ii) The transformed matrices are combined together forming an 

overall matrix.
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(a) Library:ASYMPIOTE (Appendix £4) 

It has been mentioned in §6.3.2 that since the evaluation 

is kept clear of the prohibited range in order to maintain a 

smooth iteration, it is therefore necessary to predict the 

positions of the asymptotic poles. These positions depend on 

the sectional properties of every element sapere poles may be 

either flexural or extensional. This library gives the order 

of positioning of all these poles and their associated values. 

_ The prediction of these poles is particularly essential in the 

analysis of half-structures (§9.3). 

(e) NAG Library (Numerical Algorithm Group) 

This as a well-known library developed by the pioneer 

numerical mathematicians. The NAG library is a very important 

aid to the computer user in scientific computation. It provides 

oO xcellent available routines for a variety of numerical subjects. 

The application of each routine is backed up with a full docu- 

mentation which is up-dated annually. In the design of the 

source program, the numerical algorithm always employs the NAG 

Library whenever possible.
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§9.4.2 Steering programs 

With the facilities of the library subroutines, the 

programming of the steering programs for the analyses is much 

simplified. For different requirements in the analyses, programs 

of a wide variety can be designed. It is within this context 

that two typical steering programs are given as examples. 

(a) Steering programs:LINEIG (Appendix F1) 

It is understood that a system of linear simultaneous 

equations is obtained from the polynomial displacement function. 

The solutions of the linear eigenproblem may be performed with 

the matrix iteration methods which uses the standard routines 

in the NAG library. Frequencies (eigenvalues) and modal shapes 

(eigenvectors) are obtained from the same process of execution 

The algorithm may be terminated at this stage (stage E in fig. 

9.5.1) if dynamic response analysis is not required. 

For the analysis of dynamic response, the algorithm 

continues with the concept of the normal mode method. The 

eigenvalues and the eigenvectors obtained in the previous stages 

are immediately used for the mode superposition. The block 

diagram showing the format of the whole program with the stages 

referenced to the listing of the program is shown in fig.9.5.1 

(Appendix Fl).
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(b) Steering program:NONLIN (Appendix F2) 

The program is based on the determinantal method (§3.3) 

and the stages for programming are shown in fig.9.5.2. The 

program uses the library:JEXACI which formulates the dynamic 

stiffness matrix for the quasi-exact function and hence a non- 

linear eigensystem results. With the facilities of the count 

algorithm, eigenvalues of the non-linear eigensystem are obtained 

Further extension to the program is the back substitution 

of the eigenvalues into the non-linear simultaneous equations, 

and to solve for the eigenvectors which give the modal shapes. 

Another program for the dynamic response analysis may be designed 

if the excitation forces are also considered in the setting up 

of the simultaneous equations. The solution routine, which 

solves the set of simultaneous equations to give the response 

amplitude, is based on the frequency response method. 

Although the program is purposely designed for the solution 

of a non-linear eigensystem, a slight modification gives a program 

for a linear eigensystem. This is performed simply by replacing 

the use of library:JEXACT by library:JCUBIC which gives the 

dynamic stiffness matrix for the polynomial functions. As no 

asymptotic pole appears in the linear eigensystem, the asymptotic 

algorithm is suppressed. The count algorithm hence consists only 

of the sign count (eq.3.3.15)).
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Table 9.1.2 The accuracy of the evaluations 

l-cch 

Standard Series ae 
* function expansion Multiplier 

4.730040 4.294004 4.293769 107 
§ | 4.730041 -1.470522 -1.470794 10° 

3 | 7.853204 -8.026654 | -8.025566 10“ 
=) 7853205 4.332914 4.835268 10mg 

4.730040 4.293826 4.293826 10" 
¢| 4.730041 -1.470767 | -1.470767 10* 

2%) 7.853204 -8.025222 | -8.025222 10* 
6 &| 7.853205 4.334719 4.834719 10+           

Table 9.1.3a Series expansion of l-cch 

  

  

      

(for a=4.73004) 

Bones oe double Multiplier 
terms precision precision 

i -1.6002856254/ -1.6002856255 10 

2 7.5508913228| 7.5508913183 107 

5 -1.3080945927| -1.3080945431 107 

4 1.4636667443| 1.4636687950 TO” 

5 4.2516421333| 4.2516090727 OT 

6 4.2938902549| 4.2939240286 alors 

G 4.2937688522| 4.2938258578 oe 

8 4.2937688522| 4.2938259968 10 

Ss 4.2937588522| 4.2938259967 10% 

10 4.2937588532| 4.2938259967 aol       
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Table 9.1.3b Required number of terms (NTT) 
in series expansion 

  

  

  

  

No. of terms required to give 
an accuracy of 10 sig. fig. 

ie Single Double 
precision precision 

4.73004 T 8 

oo se0 9 1l 

10.99560 dea 14 

14.13717 es, 16 

L7e21875 16 19 

20.42035 LF a 

| 23750104 Lo 23 

26.70353 22 | 26 
29.84513 24 28         

  

  

Fig.9.1.3c Series expansion economisation
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os a ESE 

i 
| meas My = 16 

5.0 5.0 

Fig.9.2.la Example of ELES method 

a = 

Mm =m =m, + 20 

L333 | 667 

Fig.9.2.lb Example of ETES method 

  

    
pa : 

LL Caplit ide it -alemants) 

Fig.9.2.1c A member of i equal taper elements
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Table 9.2.2a Element-splitting methods in beams 
  

  

  
  

  

  

    

Dimensionless frequency 
Beam structure No. of parameter (a) 

clnels [FTES method | ETES method 

7 2.5947 
—— 2 2.5858 2.5858 

3 2.5851 2.5851 
m=4o 4 2.5851 2.5851 
Sxact sol. = 25850 5 2.5850 2.5850 

2: 2.9551 
eae 2 2.9431 2.9443 

3 2.9345 2.9304 
eee t 4 2.9300 2.9272 
Erect sol 29286 5 2.9279 2.9262 

1 4.1687 
2 4.0934 aii] 2 

’ 3 4.0749 4.0709 
mas0 4 4.0656 4.0616 
Exact sol. = 4.0572 5 4.0615 4.0589 

aL not applicable 
-—— 2 4.9833 4.6975 

3 4.6570 4.5503 
mado 4 4.5698 4.5204 
Exact sol. = 4.5060 5 4.5372 4.5118       
  

Table 9.2.2b Element-splitting methods in the 

pitched portal frame 
  

  

  

        

peene Total Size Frequency (HZ) 
elements no.of of Baek 
in neers acti ELES method ETES method 

1 3 6x6 pee SS ne eee 
2 6 15x15 45.09 42.88 
3 2, 24x24 42.35 41.33 
4 12 33x33 42.11 41.63 
5 15 42x42 41.32 41.57 
6 18 Ses 41.68 41.54 
7 2L 60x60 41.62 41.53 
8 24 69x69 41.58 41.53      
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Integer Representation 
Degrees of freedom (D0F) in order :- y 
X= transition 3 Yankton.» O-ntston 
"L' represents freedom 
SOllsmecGn aires 
2g O10 yepresents 4 -transition only . 

Mt 

EALeA 

a 

  

Whole frame 
   

Symmetric Anti-symmetric 
( 6 DOF ) half-frame half-frame 

( 4 DOF ) (5 DOF ) 

Fig.9.3.la Half-structuring of a single-bay frame 

      

Anti-symmetric 
half-frame 

(5 DOF ) 

    

y frame
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Table 9.3.lc Frequencies of frame in fig.9.3.la 
  

Half-frame Whole frame 
  

  

  

  

    

  

  

  

  

  

        
  

Hable 952.2 

  

  

        

+ anti- 
Symmetric symmetric Frequency /Type 

66.6 15.1 ioe Al 
2 95.3 90.5 66.6 |Sl 
3 174.6 i322 90.5 A2 
4 O22 234.2 95.8 |s2 
5 335.0 338.5 128.2 A3 
6 386.6 431.9 174.6 |'S3 
7 507.7 Bote? 221.2 |s4 
8 620.4 657.9 234.2 a4g| NB 
9 761.5 678.9 335.0 |S5 G) Dimension of the frame = 

10 850.9 862.5 338.5 a5 Ledm , Heém, {029m 

andre ce (os) See 
13 507.7. |s7 Gi) Ad to dencte the third 
14 Sole a7 ane areca 
is 620.4 |s8 SE the fifth symevatric 
16 657 Ag mode , ete. 

Table 9.3.1d Frequencies of frame in fig.9.3.1b 

Half-frame Whole frame 
i anti- 

Symmetric Z etric Frequency |Type 

1 69.0 as3 14.3 Al 
al 87.6 68.9 68.9 A2 
3 92.2% 91.0 69.0 |sl 
4 121.6 - 103.6 B16. Se 
5 163.3 159.5 91.0 a3 
6 203.8 224.7 103.6 a4 
q 254.0% | 83756 d2t76) §\s4 
8 263.7 269.0% 159.5 aS 
9 327.4 343.5 163.3 |s5 

10 387.0 351.0 203.8 |s6 
il 443.8 427.9 20457 ag| NS. 
12 498.0% 506.6 237.6 AT | diy See nites above 
12 529.9 514.0 263.7 |s8 
14] 579.0 | 538.0% | 327.4 |s9 1 a 
15 608.3 644.4 343.5 AQ 
16 : : 351.0 alo 

alge 387.0 |si0 
13 427.9 al 
19 443.8 |su 
20 506.6 al Y : 

{ i 

order a a 3 

Flexural 92.2 | 254.0 | 498,0 | to 
Extensional’.{ 269.0 | 537.9 | 806.9 | ‘+28     

Frequencies at the asymptotic poles
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Start 

  

  

  

    

  

  

  

  

  

        
  

  

  

      

Input : Topology & sectional properties of 
i the structure 

B Split into elements (Library :JJTMC) 

Matrix formulation, (Library :KMPOLY) 
c Overall matrix posting (Library:JSNGL) 

Solve the eigenproblem (NAG: LIBRARY) 

D CK] (8 = o*L mj {8} 

Output : eigenvalues (frequencies) and 
| E eigenvectors (modal shapes) 

F { Input : Forces and forcing frequencies 
  
  

  

    
  

  

ae Dynamic response problem solved by the 
ic normal mode method 

H | Qutput : The response amplitudes 
  
    

a) 

Fig.9.5.1 Block diagram showing the format of program LINEIG
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Start 

Input : Topology & sectional properties of 
me the structure 

  

  

  
  

  

B Split into elements (Library: JJTMC) 
  

  

  Predict the asymptotic poles 

(Library: ASYMPTOTE ) a     
  

  

  

  

  

  

  

— Matrix formulation (Library :JEXACT ) 
Dey Overall matrix posting (Library:JSNGL) 

E Triangulation by Gauss elimination 

F Perform the count algorithm 
  

  

Obtain a root and check the total count a       
  

  

total count. 

ce 

    i : The root, the determinant and the i 

    
Fig.9.5.2 Block diagram showing the format of program NONLIN



Chapter 10 

Discussion & Conclusion 

§10.1 Discussion of structures with prismatic sections 

§10.2 Discussion of structures with tapered sections 

§10.3 Further general discussion 

§10.4 Recommendations for further research
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CHAPTER 10 

DISCUSSION _& CONCLUSION 

§10.1 Discussion of Structures with Prismatic Sections 

Although the static stiffness matrix is an important 

requirement, the production of the additional mass matrix is 

also an essential feature in the formulation of the dynamic 

problem. The mass matrix obtained by the lumped mass 

representation is inefficient in giving a reliable result, thus 

motivating the solution considering the mass distributed along 

the member. A true distribution of mass is an essential 

requirement in giving an exact solution. With the polynomial 

displacement function, the distributed mass solution gives a 

good representation of the mass matrix. With the exact displa- 

cement function, a true distribution of mass is represented in 

the mass matrix. As the static stiffness matrix is also 

formulated in the exact manner, the dynamic stiffness matrix 

is therefore exact. It is noted that the exact displacement 

function is obtained by solving the governing differential 

equation of motion.
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The static stiffness matrix and the mass matrix are 

formulated by a similar procedure. The procedure involves the 

the triple multiplication and integration in the manipulation 

of the matrices. A considerable amount of arithmetical work 

always confines the procedure to the handling of simple 

expressions, e.g.polynomial functions. However, despite the 

heavy manipulation inthe trigonometrical and hyperbolic 

functions, the static stiffness matrix and the mass matrix 

are formulated for the exact displacement function as well as 

those for the polynomial function. 

In the formulation of the dynamic stiffness matrix for 

the exact displacement function, the tedious matrix manipulation 

is very much simplified since some of the element-terms are 

cancelled in the total matrix. Consequently, the dynamic stiff- 

ness matrix is expressed in simpler expressions than the static 

stiffness and the mass matrices. If the latter two matrices 

are available, the former matrix is directly formulated by obtain- 

ing the difference of the two given matrices taking account of 

the frequency parameter. 

The requirements forthe choice of a displacement function 

are accuracy and economy. The polynomial displacement function 

can give a very good approximated result with acoarse subdivision 

of the members. However, aS an exact solution is possible and 

is also justified with the computational time, the choice is 

obviously in favour of using the exact displacement function.
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The soultion methods are discussed under two main 

categories : matrix iteration and determinant evaluation. 

In the first category, eigenvalues and eigenvectors are obtained 

in the same process, but the methods are preferably used for the 

linear eigensystem,iefrom the polynomial displacement function. 

The non-linear eigensystem, of which the frequency dependent matrix 

is derived from the exact displacement function, is more effectively 

solved by the determinantal method with the facility of the 

count algorithm. This algorithm consists of two counts, namely 

a sign count and an asymptotic pole count Asign count is derived 

from the concept of the Sturm sequence, and the singularity 

evaluation from the exact displacement function is accounted 

for by the asymptotic pole count. The introduction of the count 

algorithm permits the identification of a definite mode without 

an actual evaluation of the determinant. It is an infallible 

method for finding any required number of roots of any specified 

order. If the asymptotic pole algorithm is suppressed, the 

method is also suitable for the solution of a linear eigensystem. 

An advantage that occurs inthe analysis of beam structures 

is the partitioning of the matrix sothat pure flexural vibration 

and pure extensional vibration can be dealt with independently. 

Also the analysis of partitioned matrices always saves computa- 

tional time. If the axial deformation is not suppressed, the 

order of a flexural mode may be affected by superimposing the 

extensional modes. In the analysis of frame structures, no 

matrix partitioning is possible. In these cases flexural 

vibration is coupled with the extensional vibration, and hence 

axial displacement should not be neglected.
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A structure may contain prismatic members of different 

sectional properties. Different natural frequencies result 

from the variation indiscontinuities, either at joints or by 

being abruptly stepped. The sectional properties may be so 

designed to give a structure where the natural frequency isa 

maximum.
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§10.2 Discussion of Structures with Tapered Sections 

A tapered member may be idealised into amember of stepped 

uniform sections, but the analysis using ths stepwise ideali- 

Sation always gives anunsatisfactory result. An exact solution 

is obtained only if the matrices are formulated from the exact 

displacement function of a tapered member. However, an exact 

solution does not appear to give apractical analysis due tothe 

heavy computational procedures thus generated. An alternative 

is to obtain aclose approximation by using assumed displacement 

functions and taking account of the continuous change in the 

sectional properties for the whole tapered member during the 

formulation of matrices. The matrices, which are written in 

simplified and uncomplicated form, are obtained for the polynomial 

displacement function. For the quastexact displacement function, 

as the complicated treatment in the trigonometrical and the 

hyperbolic expressions becomes intractable, the property matrices 

cannot be written in an elegant format. The dynamic stiffness 

matrix is hence obtained from the numerical execution of the 

triple matrix multiplication and the matrix integration which 

are readily formulated. 

For coarse subdivision, the quasi-exact displacement 

function gives a better approximation. This function, whichis 

also recommended in structures consisting of prismatic members, 

gives an exact solution for members of prismatic section. The 

most important deficiency in using this function is the disturbance 

of the asymptotic poles. Several approaches are suggested to 

diagnose the abnormalities. The count algorithm, which is 

originally developed for the identification of a root, provides 

an effective means for the remedial procedures.
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For a better approximation, the members should be split 

into more elements. Ina structure possessing fine subdivision, 

the results obtained from the polynomial displacement function 

are able to be justified with the computational time. This 

function also gives a linear eigensystem which is suitable for 

the matrix iteration methods, and the eigenvectors are readily 

obtained inthe same process. Furthermore, the iteration in the 

polynomial function is steadier than the quasi-exact function 

due to the simpler execution in the polynomial expressions and 

the non-existence of the asymptotic poles. 

Although the two assumed displacement functions described 

are different in nature, the obtained results are mutually 

agreeable. Also, forincreasingly finer subdivision, they both 

give the same converged value which is taken asthe exact 

solution. The reliability of the analyses is further confirmed 

by performing a’ dynamic test on a model pitched frame. 

( A similar test was repeated for a prismatic frame and agree- 

able results were obtained.) 

In using the assumed displacement functions, by having the 

subdivision as fine as possible, the exact solution (for both 

natural frequencies and modal shapes) of a structure with 

different types of taper is obtained. In the same structure, 

different natural modes result from different arrangements of 

taper, and again optimisation of the structure to give a 

maximum natural frequency may be carried out using selected 

tapered sections. A guideline for such selection may be oer 

in §7.2 which described an investigation into the variation of 

depth ratios.
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§10.3 Further General Discussion 

The dynamic analysis is further considered as a forced 

vibrating system by introducing excitation forces and forcing 

frequencies of harmonic motion. The frequency response method 

and the mode superposition method, which have been suggested 

in the response analysis of prismatic structures, are also 

suitable for structures of tapered sections. Both analytical 

and numerical results agree with each other. As a deflected 

shape is more accurately described by having more co-ordinates, 

more nodal points are required, these being formed by a finer 

subdivision of the structure. For a structure split into more 

elements than necessary to give a converged value, the rate of 

convergence is no longer a criterion in choosing a displacement 

function. Taking the advantage of its simplicity in the 

computation, the polynomial functions are always recommended. 

The same conclusion also applies to the analysis of modal shapes. 

In the design of aframe structure, consideration should be 

given to the fixity of the supports. From the given example of 

a bridge, itis noticed that a lower natural frequency is given 

from the bridge with fixed supports. As supports are neither 

perfectly fixed nor pinned, acertain degree of judgement must 

be exercised in a design situation.
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The most interesting feature in the quasi-exact displace- 

ment function is the existence of the asymptotic poles. Afull 

investigation onthe singularity of these poles was carried out 

unintentionally. The sensitivity of the evaluations near the 

vicinity of the poles becomes acute and steadier evaluations are 

observed if the necessary trigonometrical and hyperbolic 

functions are handled in series expansion with double precision 

implementation. Itis, however, still advisable that such evalua- 

tion is avoided by introducing a prohibited range, and that the 

features within the range are predicted with the facilities of 

the count algorithm. 

For a structure symmetrical in geometry, half-structuring 

at the plane of symmetry gives an economical analysis and the 

obtained results identify themselves as either symmetric or 

anti-symmetricmode. However,in the analysis of half-structures, 

false modes are obtained as well as the definite modes. These 

false modes are detected by observing the asymptotic poles of 

the members lying at the plane of symmetry. 

A traditional method of subdivision is to achieve an equal 

length in every element. The subdivision is innovated by having 

an equal taper in every element. The new method, which gives 

an optimised tapered ratio, produces a better rate of convergence. 

No additional work in data preparation is necessary, and in 

fact the subdivision is processed automatically by the computer 

for both methods. The subdivision is accurately performed and 

the tedious manual procedure eliminated. The subroutines for 

processing the subdivisions together with other subroutines 

are maintained in a library system which is directly accessible 

by every steering program.
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§10.4 Recommendations for Further Research 

An immediate continuation of the work is the vibration 

of space structures. The matrices which have already been 

formulated are readily accessible for these analyses, although 

the number of degrees of freedom at each node must be increased 

from three to six . Another possible development is the 

consideration of non-harmonic forces in the dynamic response 

analysis, of which a knowledge of numerical integration is essential. 

It is also possible to study structures under vibration due to 

random excitation, moving loads and ground movement. 

The analysis of non-prismatic structures has been commenced 

with members of linearly tapered section. By following a similar 

routine, non-prismatic membey with non-linearly varying sections 

may be considered. Also, the dynamic analysis of a straight 

member may be extended to a curved member. Furthermore, for a 

comprehensive representation of an element, shear deformation 

and torsional effects are other aspects of displacement that 

should be included in the matrix formulation.
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(AJ. ( 8a (ssh +ech) -24a'sch +242 (ssh -cch) +24esh ) 

Q/AS.( Salsch +esh) -24a'(ssh) +24sch -csh) -24(1-ech) ) 

  

Yar (-2a* +2a’shch -éa" -12a'sh' +12ashch -6sh' ) 

= (YAS. ( sash! +4q! -120'shch +12ash +6a -éshch ) 

a. 

Q. 

Q- 

2. 

Q. 

  

AT. ( 2a* +aa’shch ~6a' -12a'sh +12ashch -6sh' ) 

+( 4a’ -20d'se +20q'(2s%1) +60d'se -30a (23-1) -30se ) 

( 10q(2s*-1) +40q’se -30a'(2s'-1) -60ase +30s') 

( 20q'(sch-csh) +30d'cch -120a(sch+esh) +240assh -120(sch -csh) ) 

( 20a(ssh -cch) +80dcsh -120c%ssh +cch) +240asch -120(ssh -cch +1) ) 

( 4af +20q'se -200'(2s-1) -60a%¢ +300 (2-1) +30se ) 

( 20q'(ssh+cch) -a0dsch +120a(ssh-cch) +240gesh -120(ssh+csh-1) ) 

Q.( 20q'(sch-csh) -8d'ssh +120ca'(sch-csh) +240acch -120(sch+csh) ) 

2. 

Q. 

2. 

( -4a' +20d'shch -20a'(2sH+1) +60a'shch -302(2sti+1) +30shch ) 

( l0a(2stie1) -40d'shch +30c'(2sH+1) -60ashch +30sh! ) 

( 4a° +20c'shch -20q'(2sti+1) +60a'shch -30a (2sH+1) +30shch ) 

where 2 = 4/5{1/ay 

   

Note 

  

s=sinlL 7 osAL 4; shesinFAL ; chscoshAL 

Sinhrx ¢ eoshax have been abbreviated 
& shx € chan  vaspectiely 

x



APPENDIX B Matrix [ X] of Exact Function 

Cx] = Xi i Xi Xi Xu 

  

  
  

where 

Ky = Bl2ot(c+2F -Bd'se(r+1) (r+2) +4c's(3e+6r+2) -6oir (r+2) 

t+l2asc(r+1)r -6sr* } 

Xq = $(4ors(c+1) (r+2) -2ah(r+1) (+2) +2cfso(3e+6r+2) 

-6as(r+l)r +3ar -3scr* ) 

X, = -t(a°(sch-esh) (r+1) (+2r+2) -4ofr to’cch (37+6r+4)r 

-3a (sch+esh) P(r+1) +3sshr } 

X4 = -4(0(ssh-cch+1) (r+1) (4+2r+2) -dr(r+3r+4) +olosh(3r+6r+4)r 

ja (ssh+cch-1)r(r+1) +3schr -3a2 ) 

Ma = G(2oh(r+2) +8dlse(r+1) (r+2) -4ds'(3x4-6r4+2) +6dr (r+2) 

-l2ascr(r+1) +637) 

% = -4(0 (sshtech-1) (c+1) (4+2r+2) fr (+3r4+4) -osch(3rs6r+4)r 

+3a (ssh-cch+1)4(r+1) -3ar +3cshz ) 

X4 = -$(o¢(schtesh) (£+1) (r+2r+2) -dssh(3r+6r+4)r 

+3a (sch-esh) A(r+1) -32 +3cchr*) 

x, = 4l- -2a'(r+2) +8efshch (r+1) (r+2) +4dsH(3¢+6r+2) -6ar(r+2) 

+l2ashch(r+1)r -6sHr ) 

Xy = S(4ash(r+1) (x42) +20)(r+1) (r+2) -2olshch (32+6r42) 
+6asHhr(r+1) +3ar -3shchr*) 

Ky = B(20'(r+2? +8eshch (r+1) (r+2) -4dsH(3r+6r+2) -6crr (r+2) 
+l2ashchr (r+1) -6shr* } 

Where r=m-1 s=sinaL sh=sinhL 

c=cos AL ch=cosh)L
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APPENDIX D 

  

Functions 

a 

sing = a= 37+ 

3 

sha = a + ag + 

a 
cosa = 1 - + + 

at 

cho. = 1) + ap ches 

ssh = sing sha = 

och “= “cos@ cha = 

Sch -= jsing chq = 

esh = cosa sha = 

sch-csh Boa: ae 
ae aoe Loe 

schtcsh eee, RO 
a LS 

ssh i ieee os 
a a 90 

at 
l+ech = 2+ te 

Ee 0 = 950 

2 
sch - sh ame = eds 

at eech) eos oS 

sch + csh 2 
a(iech = ae a 

ssh Seemke 
at ech) ee 

  

oe 
90 

i 
a 

aS aoe 
3 

a =~ ee 

a? 

  

Series Expansion of Trigonometrical & Hyperbolic 

36 seeee 
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(STMBE Q) 
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(
J
T
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B
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Q
)
 _ 

SEGHENTS 
CJJTHO) 

o61]051 
SEWLCMSE*T, 

MU) 
= 

WISCMB) 
COMPRESS 

INTEGER 
AND 

LOGICAL 
002]052 

SETHIS 
= 

( 
THICMB)-THICME) 

> 
/ 

FLOAT 
(HSE) 

COMPACT 
PROORA 

0031053 
SEWIIS 

= 
( 

WISCME)-WETCHB) 
> 

7 
FLOAT 

CASED 
TRACE 

O 
004)054 

TFC 
MSELEQ.1 

> 
GOTO 

433 
eno 

005] 
055 

00 
454 

KAA=2, 
MSE 

0
0
6
 

S
E
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H
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K
A
A
,
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E
)
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B
)
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I
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,
 

X
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,
 
V
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L
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L
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,
 
I
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,
 
M
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I
Z
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L
O
C
A
T
,
 
M
E
M
,
 
N
O
M
,
 
O
0
7
 

S
E
W
I
C
K
A
A
,
M
B
)
 

= 
S
E
W
I
C
1
,
M
B
)
 

# 
S
E
W
I
T
J
A
F
L
O
A
T
C
K
A
A
-
1
)
 

1 
IPT, 

IPT, 
THL, 

TNS 
NYP, 

ZH, 
CS, SN,WIL,WId,2N,EQU,EPU,THU,WIU, 

008]058 
454 

CONTINUE 
2 
N
W
I
P
T
,
N
W
I
P
T
,
N
U
I
S
T
,
W
W
I
S
T
 

NSE, SETH, SEWL,NWRT 
N
W
I
)
 

0091059 
433 

CONTINUE 
DIMENSTON 

JNCMYY) 
,
X
C
O
N
Y
Y
)
,
Y
C
C
M
Y
Y
)
 

,LRCMYY, 3) ,LQCMYY) ,EPUCMYY), 
010/060 

435 
CONTINUE 

1 
EQUCHYY) 

,MEMCAYY) 
LPT 

CAYY) 
SPT 

CMYY) 
THE 

CHYY) 
THI 

CMYY) 
,LOCATCMYY) 

911 
[061 

bO 
1031 

RH=1,NON 
Z 

TNONYY) 
HYP 

OMY) 
,ZMCNYY) 

,CSCMYY) 
,SNCMYY) 

,WITCHYY) 
WEI 

ONYY), 
Oi2}062 

TF 
(MEM 

(MB) 
-NE.5)G0TO 

1031 
3 

NWIPTCHYY) 
,MWJPTONYY) 

,AWISTOMYY) 
,NWISTOMYY) 

,NSECMYY), 
0151063 

MEM(MGD=4 
& 

SETHCHXX,HYY) 
,SEWLCHXX 

NYY) 
N
W
T
 

OMYY) 
,NWLROCMYY, 

5) 
0146 

064 
TF 

(NSE 
CNY) 

EG.1)G0TO 
1033 

11 
FORMATCIG,260.0,1%,511) 

015}065 
DO 

1932 
KAA=1,NSEC(MB)-1 

12 
FORRATC310, 

460.0, 10) 
016 

}u66 
SETHCKAA,MBE)=( 

SETHCKAA,MB) 
+ 
S
E
T
H
C
K
A
A
t
T
,
 

4B) 
0/2.0 

21 
F
O
R
M
A
T
C
2
0
X
,
 

15, 2710.5, 5K, 511) 
0174067 

SEWL 
(KAA 

,MB)=C 
SEWI(CKAA,NA) 

& 
S
E
W
E
C
K
A
A
I
1
,
 

MB) 
D420 

22 
F
O
R
M
A
T
C
Z
2
0
X
,
 

315 ,4F10.5,15) 
0131068 

1032 
CONTINUE 

23 
FORMATCIX, 

JOINT 
PARAMETERS 

IN, 
XC,YC,LR*) 

019 
]009 

SETHCNSE 
(MG) 

HB) 
= 
(
S
E
T
H
C
N
S
E
 

CMB) 
MED STH 

(MED I/2.0 
24 

FORMNATCIX,*HEMDER 
PARAMETERS 

MEM, 
IPT, 

JPT, 
THI 

WETS, 
NSE") 

020 
|o70 

S
E
W
L
C
N
S
E
C
M
B
)
 

MB) 
= 
C
S
E
W
T
O
N
S
E
 

(MP) 
NE) I

W
S
 
(MEIIZ2.0 

WRITE 
(2,23) 

o21fort 
GOTO 

1031 
bO 

241 
JT=1,NOJ 

022 
]O72 

1033 
SETHC1,MB)=C 

S
E
T
H
C
T
,
 

MED 4THICHE) 
9/220 

READ 
(1,99) 

INCITY 
XECIT) 

,YCCIT), 
CLRCIT, KA) 

KA=1, 3) 
023 

}073 
SEWL(1,MB=C 

SEWTC1,MBDFWISCMBY 
0/220 

231 
WRITECZ,21) 

 
I
N
C
I
T
I
,
X
C
C
I
T
)
 

,YCCIT), 
CLROIT, KA) 

KART, 3 
024074 

1031 
CONTINUE 

P 
WRITEC2, 

24) 
025 

{075 
00 

260 
KAA=1,NOJ 

DO 
252 

Mb=1,N0M 
026|076 

260 
NWRT(KAA)=-99 

READ 
(1,12) 

MEMCMED 
LPT 

CMB) 
JPTCMB) 

THI 
CMB), 

THICKE), 
O27 

jor? 
WNM=1 

1 
WELChe) 

WEI 
CMB) 

NSE 
CMB) 

028 
[078 

WNJ=1 
2
3
2
 

W
K
I
T
E
 
(
2
,
2
2
)
 

M
E
M
C
M
E
D
,
 

T
P
T
 
O
M
B
)
,
 
J
P
T
O
M
G
)
 
,
T
H
I
C
M
B
)
 

,
T
H
I
C
M
B
D
,
 

0
2
9
 

|079 
N
W
E
P
T
C
V
)
=
1
 

1 
W
I
I
G
)
 

WI 
(HOD 

NSE 
OME) 

030 
Joz0 

NWISTC1)=1 
DO 

331 
MU=1,NOm 

031 
NWERCT, 

1
=
L
R
O
,
1
)
 

CS 
CHB 

I
Y
=
X
C
C
I
P
T
 
C
H
)
 
-
X
C
C
I
P
T
 

CME) 
) 

O32 
[082 

N
W
L
E
R
O
V
,
2
)
=
E
R
(
1
,
2
 

SNCNBY=YC 
CPT 

CRU) 
-YCCIPT 

CME) ) 
035 

[O83 
NWLR 

OL, 3
)
=
L
R
C
1
,
 3) 

HYP 
(MBI =SAKTCCS 

CHL) 
*CS 

(MB) 
4S N CHU) 

* SNOMED) 
054 

|0a4 
T
F
O
N
S
E
(
1
)
E
.
1
)
G
0
T
O
 

261 
CS 

(MED =CS 
CMB) 

ZHYP 
CAB) 

; 
035 

[oss 
00 

262 
KAA=Z2,NSECD) 

351 
S
N
C
A
B
I
=
S
N
 

CMB) /LYP CMB) 
046 

Joa6 
NNM=NNMH) 

SPAN=0.0 
037 

Jos? 
NNJ=NNJHT 

VOLWI=0.0 
038 

Joss 
NWIPTCUNM=1)=WNd 

VOLTH=).0 
039 

Jorg 
NWIPTONNM 

= )=NNJ 
DO 

$32 
MB=1,NON 

049 
Joyo 

UWLRONNS,1)=1 
VOLWI=VOLUL 

NCWIT 
CONE) 

#WIS 
CAB) 

AHYP 
OMB) 

/2-0 
041 

Jov1 
NWLRONNS 

2921 
VOLTH=VOLTHSCTHI 

CHOI ATHS 
(MB) 

ANYP(MBI72.0 
042 

Jove 
UWER 

GUNS 
{2924 
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S
P
A
N
=
S
P
A
N
A
N
Y
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(Mb) 
043 

1093 
262 

CONTINUE 
| 

WIU=VOLWI/SPAN 
044 

096 
261 

NWIPTOCNNM) =NNJ 44 
THU=VOLTH/SPAN 

j 
‘ 

045 
095 

NWISTCT)=NWJPT 
CHM) 

DO 
435 

Ma=1,NOM 
046 

1096 
N
W
L
R
O
N
N
J
 

TT, TY=LRCIPTOI) 
1) 

MSE=NSE 
(MB) 

042 
J097 

NWERCNNJ4T, 
20=URCIPTOD 

2) 
SETNC 

41.0) 
= 

THEONA) 
ne 

ined: 
afl 

C
i
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de 
EN OE 
e
e
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L
i
b
r
a
r
y
:
J
J
T
M
C
 

(cont'd) 
 
 

(JTMBE Q) 
S
t
a
t
m
e
n
t
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(
J
T
M
B
E
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273 

275 
274 

277 
276 

278 

280 
279 

271 
263 

28 

282 

TECHOM.EQ@.1DG6TC 
265 

bO 
2717 

KAA=2,N0M 
WNM=NNFYT 
W
N
J
E
N
N
 OT 

DO 
275 

KAB=1,KAA-1 
TF 
C
I
P
T
C
K
A
B
)
 

NE 
TPT CKAARD G

O
T
O
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NYTP 

TONE) 
=NWISTCKAD) 

GOTO 
e274 

CONTINUE 
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N
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N
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N
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GOTO 
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N
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I
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)
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DO 
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M
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CONTINUE 
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GOTO 
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BLOCK DIAGRAM SHOWING THE SETTING UP OF THE APPARATUS


