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SUMMARY

This thesis examines the behaviour of universal beams, when
subjected to concentrated loads applied on the top flange, and
simply supported on small lengths of bearing at the end of the beam.
The stresses produced from this type of loading cause a localised
failure either at the centre under the applied load, or at the end
at the point of support.

A total number of ninety tests have been carried out on
different universal beam serial sizes for various loading- and sup-
porting conditions. These beams appeared to fail in an manner
characterised by yielding at the flange and elastoplastic buckling
or crushing of the web. Two modes of failure were observed: a)
Mode 1 - This failure mode was found to occur to beams loaded or
supported with relatively small or zerc lengths of bearing and it
is characterised by the transverse bending of the flanges. b) Mode
2 - This failure mode was found to occur when the beams were loaded
or supported with large lengths of bearing. The flanges were
slightly distorted without any significant transverse bending.

The test results are compared with various design codes such
as BS 449, American Specification, the recently published Draft
Code and empirical relationships. The comparisons show that these
codes, although conservative in some cases, are very unsatisfactory
in others,

Two theoretical approaches are developed, an Elastic Buckling
analysis, examining the stability of the web plate and a Crushing
theory which considers the stress system attainable at the web root
combined with the ultimate moment of resistance due to bending of
the web and the flange. An expression for the minimum thickness of
the loading plate is also formulated.

The derived theories are compared with the expérimental results
and the Crushing theory is further simplified to a suitable form for
design purposes.

Beam, Bearing, Buckling, Web, Yielding.
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NOTATION

Half wave length, or half length of plate.
Area.

Coefficients, as defined in chapter 6.
Half wave length, as defined in chapter 5.
Robertson constant,

Beam flange width, or half depth of plate,
Coefficients, as defined in chapter 6.
Effective strut length,

Length of stiff bearing (Draft Code).
Euler Buckling load (BS 449),.
Coefficients, as defined in chapter 6.
Overall depth of beam, or as defined in
chapter 5 (D = A/?].

Coefficients, as defined in chapter 6.
Plate Flexural Rigidity.

Web depth between root fillets.

Young's Modulus.

Secant Modulus.

Tangent Modulus.

Initial eccentricity of the web,

As defined in chapter 5 (F = gﬁ.

Axial compression in member,

Applied force.

Permissible ultimate stress (Perry formula).

Bending stress.
Buckling stress,

Yield stress.
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Flange yield stress,

Yield stress for spreader.

Root yield stress.

Web yield stress.

As defined in chapter 5 (G = 12I/Bldt).

Clear distance between the flanges,

Moment of Inertia.

Elastic buckling coefficient

Distance from the outer face of flange to

web toe or fillet.

Factor of safety (BS 449),

Span of the beam.
Overall length of the

Length, as defined in

plate.

chapter

6.

As defined in chapter 2 for Series V.

Length of the applied
Length of support, as
Length, as defined in
Length, as defined in
ITI,
Length, as defined in
i iy
Length, as defined in
VI.
Length, as defined in
IV,
As defined in chapter

Applied moment in the

Moment capacity of the member,

load.

defined

chapter

chapter

chapter

chapter

chapter

6.

member.

in‘chapter D%
2 for series 1I.
2 for Series
2, for Series

2 for Series

2 for Series



PF

P

Plastic moment of resistance for the flange,
Plastic moment of resistance for the flange
at the end of the failed zone,

Plastic moment of resistance for the plate.
Plastic moment of resistance for the web,
Length of bearing (American Specification).
Sum of longitudinal loadings Nx and Nb'
Critical force per unit length.

Length of bearing for internal load.

Length of bearing for end reaction.
Longitudinal compressive force per unit
length,

Vertical compressive force per unit length.
Shear force per unit length.

Maximum compressive value of Nb.

Perry factor.

Length obtained by dispersion at 45° through
half the depth of the section.

Length obtained by dispersion at a slope of
i el Jidil

Load,

Ultimate load due to web buckling (BS 449).

Ultimate load due to web bearing (Draft Code).

Ultimate load due to web bearing (BS 449).
Critical load.

Experimental load.

nth critical load.

Theoretical load.

Ultimate load due to web buckling (Draft Code).



A R e Crushing load as defined in chapter 6.

TR et oA
P, Compressive strength (Draft Code),
P Euler strength.
Py Design strength, (py = 0,93 fy).
R Concentrated locad or reaction (American
Specification),
r Root radius,
T Slenderness ratio.
T Beam flange thickness,
t Beam web thickness,
tD Thickness of bearing plate.
W Axial load.
wl,wz,w3,w4 Work done, as defined in chapter 6.
S W Resistance provided by the web per unit
length.
XV T Cartezian co-ordinates.
X Overhang of beam,
Zl,z2 ....26 Factors, as defined in chapter 7.
a Factor, as defined.in chapter 6,
o Numerical factor, as defined in chapter 5.
050,507 Arbitrary angles.,
Y Factors, as defined in chapter 5.
A Vertical movement,
&H Horizontal movement
61,62,63 etc Deflections (experimental recordings).
€5€,58 Strains,
n Reduction factor (Inelastic buckling).
B,el Arbitrary angles.

A Numerical factor, as defined in chapter 5.



Al Slenderness ratio (Draft Code).

Ao Limiting slenderness (Draft Code).

A Load length to plate length ratio (ll = c/b).
v Poisson's ratio.

E Coefficient of restraint.

o Panel aspect ratio (p = b/d).

/5 Critical stress.

G i Maximum value of applied stress,
51,02,03 Stress.

¢ Arbitrary angle.

V] _ Arbitrary angle.

w Amplitude of buckled wave,

Wo Initial plate deflection.

015Uy, 0gs0, Deflections, as defined in chapter 6.

Note: Some notations not included in the above list, will be

specifically defined when they are first introduced.



CONTENTS

SUMMARY
ACKNOWLEDGEMENTS
NOTATION
CONTENTS

LIST OF TABLES
LIST OF FIGURES

LIST OF PLATES

Page No
CHAPTER 1 INTRODUCTION AND HISTORICAL REVIEW

1.1 INTRODUCTION 1
a2 BRITISH STANDARDS 2
1.2.1 Draft Standard Specification for the

Structural Use of Steelwork in Buildings 4
1.3 ELASTIC PLATE BUCKLING THEORY S
13,1 Uniform Edge Loading on Two Opposite Edges

of a Rectangular Plate D
1.5.:2 Concentrated Edge Loading 10
1.4 FURTHER PLATE BUCKLING THEORY 14
1.5 INELASTIC PLATE BUCKLING 22
1.6 PUBLISHED TEST RESULTS AND EMPIRICAL ;

METHOD OF ANALYSIS 26
1.7 CONCLUSIONS FROM PREVIOUS WORK AND SCOPE

OF PRESENT INVESTIGATION 30

CHAPTER 2 EXPERIMENTATION AND INSTRUMENTATION

2,1 INTRODUCTION 32
2.1.1 Sections of Tested Beams 32
2012 Referencing of Tested Beams 34
2,1.3 Description of Series of Tested Beams 34
2.2 DETERMINATION OF PROPERTIES OF BEAM

MATERIAL 38



CHAPTER

CHAPTER

Lelal
dedelil
2.2.1.2
2.2.2
2eles
2.3
2.3.1
2.3.2
2.3.2,1
2¢9.2.2
2.4
2.4.1
2.4.2

2.4.3

3.1
3.2
3.2.1
3.3
3.3.1

D0 52

4,2.1

Tensile Tests

Large Tensile Test Specimens
Small Tensile Test Specimens
Tensile Test Results
Observation from the Tensile Test Results
PREPARATION OF BEAMS

Test Beam Dimensions
Instrumentation

Strain Indicators

Deflection Indicators
LOADING DEVICES

Test Beam Set-ups

Load Application

Testing Procedure

PRESENTATION OF THE TEST RESULTS
INTRODUCTION

TEST FAILURE LOADS

Modes of Failure

STRAIN RECORDINGS

General Strain Distribution
Strain Gauge Readings

DEFLECTION GAUGE READINGS
CONCLUSIONS FROM TEST RESULTS
CURRENT DESIGN CODES AND PUBLISHED
THEORIES

INTRODUCTION

ANGLE OF DISPERSION

Design to BS 449 and BS 153

Page No
39
39
46
46
46
55
56
57
63
66
68

68

72

74
74
90
97
100
102
113

125

126
126

127



CHAPTER

4.2.1.1

4.2,1.2
4,2,2

4.2.2.1

4.2.2.2
4,2.3

452.3.1

4.3

4.3.1
4,3,2
4.3.3
4.3.4

4.4

5.1
5.2

5.2.1

5.2,1,1

5.3
5.4
5,5
5.5.1
5.5.2

5.5.2.1

Comparison of the Test Results to
BS 449 (1969)

Conclusions from the Comparison
Draft Standard Specification

Comparison of the Test Results to the
Draft Cdoe

Conclusions from the Comparison
American Specification

Comparison of the Test Results to the
American Specification and Conclusions
from the Comparison

OTHER INVESTIGATORS' WORK

Shedd

Winter and Pian

Delesques

C.I.R.I.A. Project R.P.219

CONCLUSIONS

ELASTIC BUCKLING THEORY
INTRODUCTION
ELASTIC BUCKLING ANALYSIS

Web Plate of Universal Beam Subjected

to Various Loading and Boundary Conditions

Web Plate of Universal Beam Subjected to

a Parabolically Distributed Load

DETERMINATION OF THE BUCKLING COEFFICIENT

CALCULATION OF THE ELASTIC CRITICAL LOAD

EXPERIMENTAL CRITICAL ELASTIC LOAD

Web Behaviour from Strain Recordings

Elastic Critical Load from Southwell Plot

Southwell Plot for the Beams Tested

139
148

148

149
154
154
156
160
163

164

167

167

169

171
181
182
186
186
187

190



CHAPTER

CHAPTER

5.6

Se7

5.8

6.1

6.2
6.2.1
6.2.1,1
6.2.1,2
6.2,1.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.4

6.4.1

6.4.2

6.5

6.6

6.7

Tol

COMPARISON OF THE DEVELOPED THEORY
AND OTHER PUBLISHED ANALYSES

COMPARISON OF THE DEVELOPED THEORY
AND TEST RESULTS

CONCLUSIONS FROM THE COMPARISON

LOCAL CRUSHING THEORY

INTRODUCTION

Page No

194

197

199

205

LOCAL CRUSHING THEORY FOR CENTRAL FAILURE 206

Determination of the B-Factor

Von Mises Yield Criterion

Yield Line Pattern 1

Yield Line Pattern 2

LOCAL CRUSHING THEORY FOR END FAILURE
Determination of the B-Factor

Von Mi;es Yield Criterion

Yield Line Pattern 1

Yield Line Pattern 2

MINIMUM THICKNESS OF LOADING PLATE

Minimum Thickness of Loading Plate for
Central Failure

Minimum Thickness of Loading Plate at
Support for End Failure

SUITABILITY OF THE CRUSHING THEORY AND
DETERMINATION OF OTHER FACTORS

COMPARISON OF LOCAL CRUSHING THEORY TO
THE TEST RESULTS

CONCLUSIONS FROM THE COMPARISON
A SIMPLIFIED APPROACH TO THE CRUSHING
THEORY

INTRODUCTION

209
209
210
215
219
221
221
221
224

226

227

229

231

238

248

250



T ud

TraD

7.4

Tan

7.6

CHAPTER 8

8.1

8.2

8.3

8.4

8.5

ADDENDUM

APPENDIX 1
1.1

APPENDIX 2
i |

262

REFERENCES

SIMPLIFICATION OF THE CRUSHING THEORY

MINIMUM THICKNESS OF LOADING PLATE IN
A SIMPLIFIED FORM

EMPIRICAL ASSESSMENT OF INSERTED FACTORS

COMPARISON OF THE SIMPLIFIED CRUSHING
THEORY TO THE TEST RESULTS

CONCLUSICONS FROM THE COMPARISON
CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER RESEARCH

INTRODUCTION

CONCLUSIONS FROM THE EXPERIMENTAL
OBSERVATIONS

CONCLUSIONS FROM THE COMPARISON OF THE
DEVELOPED THEORIES TO THE TEST RESULTS

CONCLUSIONS

RECOMMENDATIONS FOR FURTHER RESEARCH

STRAIN AND DEFLECTION RECORDINGS

CALCULATION OF THE CRITICAL COEFFICIENT

PLATE LOADED BY A UNIFORMLY DISTRIRUTED
COMPRESSIVE STRESS ON THE LONGITUDINAL
EDGES AND BENDING STRESS ON THE OTHER
TWO EDGES

Page No

250

264

275

367

371

381



CHAPTER 1

TABLE 1.1

TABLE 1.2

TABLE 1.3

CHAPTER 2
TABLE 2.1
TABLE 2.2
TABLE 2.3
TABLE 2.4

TABLE 2.5

CHAPTER 3

TABLE 3.1

CHAPTER 4
TABLE 4.1
TABLE 4,2

TABLE 4.3

TABLE 4.4

TABLE 4.5

CHAPTER 5

TABLE 5.1

CHAPTER 6

TABLE 6.1

LIST OF TABLES

VALUES FOR THE BUCKLING COEFFICIENT K OBTAINED
BY ZETLIN

CRITICAL COEFFICIENT USING FINITE ELEMENTS

VALUES OF CRITICAL COEFFICIENT Kcr

BEAM SERIAL SIZES USED IN THE TESTS
BEAM SERIES AND SERIAL SIZES
TENSILE TEST RESULTS

TENSILE TEST RESULTS FOR SPREADERS

DIMENSIONS OF TESTED BEAMS

FATLURE LOAD OF TESTED BEAMS

COMPARISON OF TEST RESULTS TO BS 449 (1969)
COMPARISON OF TEST RESULTS TO THE DRAFT CODE

COMPARISON OF TEST RESULTS TO THE AMERICAN
SPECIFICATION

COMPARISON OF TEST RESULTS TO WINTER AND
PIAN FORMULAS

COMPARISON OF TEST RESULTS TO C.I.R.I.A.
FORMULA

VALUES OF THE BUCKLING COEFFICIENT

COMPARISON OF THE CRUSHING THEORY TO THE
TEST RESULTS

Page No

16
24

25

33
40
48
54

58

75

130

141

150

159

165

195

239



Page No

CHAPTER 7
TABLE 7.1 COMPARISON OF THE SIMPLIFIED THEORY TO

THE TEST RESULTS 258
ADDENDUM
TABLE Ad. 1 COMPARISON OF TEST RESULTS TO THE PROPOSED

METHOD BY ROBERTS AND ROCKEY 272
APPENDIX 1

TABLE A.l STRAIN AND DEFLECTION READINGS



CHAPTER 1

FIGURE 1.1

FIGURE 1.2

FIGURE 1.3
FIGURE 1.4

FIGURE 1.5

FIGURE 1.6

FIGURE 1.7

FIGURE 1.8
FIGURE 1.9
FIGURE 1.10

FIGURE 1.11

CHAPTER 2

FIGURE 2.1
FIGURE 2,2
FIGURE 2.3
FIGURE 2.4
FIGURE 2.5
FIGURE 2.6

FIGURE 2.7

CHAPTER 3

FIGURE 3.1

LIST OF FIGURES

ELASTIC BUCKLING COEFFICIENT K, FOR VARIOUS
BOUNDARY CONDITIONS -

ELASTIC BUCKLING COEFFICIENT Kl FOR RESTRAINED
LOADED EDGES GIVEN BY BLEICH

PLATE UNDER COMBINED LOADING
PLATE SUBJECTED TO CONCENTRATED LOADS

ELASTIC BUCKLING COEFFICIENT K FOR VARIOUS
BOUNDARY CONDITIONS

DETAILS OF STRUCTURAL SYSTEM SOLVED BY ZETLIN

PLATE SUBJECTED TO CONCENTRATED LOADS ON ONE
SIDE

RESULTS OBTAINED BY WHITE AND COTTINGHAM
RESULTS OBTAINED BY ROCKEY AND BAGCHI
RESULTS OBTAINED BY ROCKEY AND BAGCHI

RESULTS OBTAINED BY KHAN AND WALKER

SUMMARY OF TEST SERIES I TO VIII

LARGE TENSILE TEST SPECIMENS

SMALL TENSILE TEST SPECIMENS

DETERMINATION OF THE WEB ECCENTRICITY
TYPICAL STRAIN GAUGE LOCATION AND REFERENCING
DEFLECTION GAUGES LOCATION AND REFERENCING

STIFFENING CLAMP

EXPERIMENTAL RESULTS OF TESTED BEAMS

Page No

11

13

15

18
19
20
2k

23

36
45
47
62
64
67

71

84



Page No

FIGURE 3.2 TYPICAL STRAIN IN WEB FOR SERIES I AND II 105
FIGURE 3.3 COMPARISON OF STRAIN FOR SERIES III AND IV 107
FIGURE 3.4 TYPICAL STRAIN IN WEB FOR SERIES III 108
FIGURE 3.5 TYPICAL STRAIN DISTRIBUTION FOR BEAMS IN

SERIES III 110
FIGURE 3,6 STRAIN DISTRIBUTION FOR SERIES VI 111
FIGURE 3.7 DIRECT STRAIN DISTRIBUTION FOR SERIES IV 112
FIGURE 3.8 STRAIN DISTRIBUTION FOR BEAM NO 44 114
FIGURE 3.9 STRAIN DISTRIBUTION FOR BEAMS IN SERIES VII 115
FIGURE 3.10 LOAD DEFLECTION PLOTS FCR BEAM 13a 116
FIGURE 3.11 LOAD DEFLECTION PLOT FOR BEAM 13a 117
Figure 3,12 LOAD VERTICAL DEFLECTION PLOTS FOR BEAMS IN

SERIES VI 119
FIGURE 3.13 LOAD LATERAL DEFLECTION PLOTS FOR BEAMS IN

SERIES VI 120
FIGURE 3.14 LOAD DEFLECTION PLOTS FOR BEAMS IN SERIES VIII 121
FIGURE 3.15 LOAD LATERAL DEFLECTION CURVES FOR BEAMS IN

SERIES VII . 122
FIGURE 3.16 DEFLECTION CURVES FOR WEB UNDER LOAD POINT

FOR BEAM NO 60 123
FIGURE 3.17 DEFLECTION CURVES FOR WEB UNDER LOAD POINT

FOR BEAM NO 61. 124
CHAPTER 4
FIGURE 4.1 COMPARISON OF FAILURE LOADS AND BS 449 ULTIMATE

LOADS 136
FIGURE 4.2 BUCKLING TYPES CONSIDERED BY SHEDD 155
FIGURE 4.3 LOADING AND SUPPORTING CONDITIONS FOR TESTS

PERFORMED BY WINTER AND PIAN 158
FIGURE 4.4 COMPARISON OF TEST RESULTS FOR CENTRAL FAILURE

WITH THE WINTER AND PIAN FORMULA 161
FIGURE 4.5 COMPARISON OF TEST RESULTS FOR END FAILURE

WITH THE WINTER AND PIAN FORMULA 162



Page No

CHAPTER 5
FIGURE 5.1 PLATE SUBJECTED TO VARIOUS TYPES OF LOADING 170
FIGURE 5.2 DEFLECTED SHAPE AND LOADING OF PLATE UNDER

INVESTIGATION 174
FIGURE 5.3 DEFLECTED SHAPES 176
FIGURE 5.4 BUCKLING CURVES FOR o.5m SPAN OF

406 x 140 x 39 kg U,B, 183
FIGURE 5.5 THEORETICAL EXTREME BUCKLING CURVES FOR

406 x 140 x 39 kg U,B, 185
FIGURE 5.6 BUCKLING TYPES AND SOUTHWELL LINES 189
FIGURE 5.7 SOUTHWELL PLOT FOR BEAM NOS 25a AND 26b 191
FIGURE 5.8 SOUTHWELL PLOT FOR BEAM NO 54 192
FIGURE 5.9 SOUTHWELL PLOT FOR BEAM NOS 55 AND 56 193
FIGURE 5.10 VALUES OF BUCKLING COEFFICIENT BY VARIOUS

INVESTIGATORS 196
FIGURE 5.11 ELASTIC BUCKLING CURVES FOR

406 x 140 x 39 kg U,B. 198
FIGURE 5.12 ELASTIC BUCKLING CURVES FOR

254 x 102 x 22 kg U.B. 200
FIGURE 5.13 ELASTIC BUCKLING CURVES FOR

254 x 102 x 28 kg U.B. 201
FIGURE 5.14 ELASTIC BUCKLING CURVES FOR

457 x 191 x 98 kg U,B. 202
FIGURE 5.15 ELASTIC BUCKLING CURVES FOR END FAILURE FOR

254 x 102 x 22 kg U.B. 203
CHAPTER 6
FIGURE 6.1 FAILURE MECHANISM FOR CENTRAL FAILURE 207
FIGURE 6.2 YIELD LINE PATTERN 1 FOR CENTRAL FAILURE 211
FIGURE 6.3 DETERMINATION OF THE LENGTH OF THE FAILED ZONE 213
FIGURE 6.4 YIELD LINE PATTERN 2 FOR CENTRAL FAILURE 216
FIGURE 6.5 DETERMINATION OF THE LENGTH OF THE FAILED ZONE 218

FIGURE 6.6 FATLURE MECHANISM FOR END FAILURE 220



CHAPTER 2
PLATE 2.1

PLATE 2.2

CHAPTER 3
PLATE 3.1
PLATE 3.2
PLATE 3.3
PLATE 3.4

PLATE 3.5

LIST OF PLATES

LOADING DEVICES

STIFFENING CLAMP USED FOR SERIES I TO IV

MODES OF FAILURE

DEFLECTED SHAPE FOR BEAMS
CRACK LINES IN TESTED BEAMS
CRACK LINES IN TESTED BEAMS

CRACK LINES IN TESTED BEAMS

Page No

69

70

96
98
101
103

104



CHAPTER 1

INTRODUCTION AND HISTORICAL REVIEW

1.1 INTRODUCTION

In current design practice, when considering rolled steel beams,
it is very common to place a bearing stiffener at the location of
a concentrated load or support to prevent web crushing or web buck-
ling. There are some situations, however, when the exact location.
of an expected concentrated load is not known or cannot be determined.
Such a situation occurs in rolled steel beams or plate girders which
support crane rails or railroad tracks directly on top of the com-
pression flﬁnge. Massonnet (1) in 1968, while presenting the review
of present state of knowledge of thin wall deep girders at the
annual conference of International Association of Bridge and Structural
Engineering, emphasized that this type of loading requires attention.

Due to failure of load bearing falsework involving the use of
I-beam grillages, notably Vancouver Narrows Bridge in 1958 and
Loddon Viaduct in 1972, it was indicated that more research was needed
for revision of the design rules and investigation of factors not
fully appreciated in the then design codes, particularly those
.concerned with the web capacities of rolled steel I-beams.

In 1961 Hrennikoff (2), when investigating the collapse of the
Vancouver 2nd Narrows‘Bridge, published a paper which is concerned
with the grillage of the falsework supporting the bridge during
erection. This grillage proved to be the cause of the collapse.
Hrennikoff believed that the lessons to be learned from the catast-
rophe are:

1) the inapplicability of the usual column formulae for the design

of the webs of the grillage beams in buckling,



2) the weakening effect of the plywood pads interposed in the
grillage,l

3) the inapplicability of the column formulae given by the Canadian
Specifications CSA 1952,

More recently, in the report of the collapse of falsework for
the river Loddon Viaduct (3) the circumstances which lead up to the
collapse and the appearance of the falsework after failure had
occurred are described. The buckled and twisted shape of the beams
after collapse suggests the possibility of the collapse, being
initially due to buckling of the webs of the rolled steel beams,

The major criticism of a general design matter referred to was:
"There were no stiffeners fitted to the thin webs of the 10 x 10

x 49 1b universal columns and 12 x 6% x 31 1b universal beams of
the mild steel grillage assemblies supporting the Hannebeck trusses.
These were subject in our opinion to considerable buckling and
twisting loads".

In 1964 Holmes (4) showed that universal beam sections have
relatively little resistance to cross sectional deformation and that
the stresses associated with such deformation are quite high. Com-
paring Universal Beam Sections and British Standard Beams of either
equal moment of inertia or section modulus, the stresses associated
with cross-sectional deformation are between two and four times
greater in universal beams than in the equivalent rolled steel joist.

A similar failure occurred at Koblenz in 1972 for a deep I-
beam without stiffeners, as reported in the 'New Civil Engineer!

December 20, 1973.

1.2 BRITISH STANDARDS

The most widely used design standards for Steelwork in Great

Britain is BS 449 (1969) "The Use of Structural Steel in Buildings"



(5) and BS 153 (1972) "Specification for Steel Girder Bridges"

(6). The former was first introduced in 1932 and since then it has

been revised many times. Before the publication of BS 449 in 1932,

Glanville (7) conducted ten tests on rolled steel beams to determine

the advisability of providing web stiffeners for steel I beams.

These tests were performed at the request of the British Steelwork

Association. In the final report it is stated, "It is impossible

from the results of these few tests to draw conclusions of such an

exact nature as to constitute a basis for purposes of design, certain
general conclusions may, however, be stated'". These conclusions
could be summarised as

1) Beams where restraints are not imposed fail in torsion; such
form of failure must be prevented by the provision of proper
top cleats connecting beams and stanchions.

2) When torsion failure is prevented and the points of support are
at the ends of the beam the failure in every case occurred by
vertical buckling of the web over the supports.

) In béams which were allowed to overhang the supports the
additional stiffness of the ends given by the overhanging portion
was sufficient to increase the failing load.

The current edition of BS 449 and the original publication have
different clauses dealing with rolled steel beams when subjected to
concentrated loads. Both editions, however, require consideration
of two criteria, the overall buckling of the web and the local
crushing in the vicinity of the applied load or support. The clause
which deals with rolled steel beams which are subjected to concen-
trated loads, in BS 449 (1969) is 28 (a) (i) in chapter 4. This is
based on the assumption that a length of the web acts as a strut in

which the ends are restrained both in position and direction, thus



the effective length is d/2 where d is the depth of the beam
between root fillets. The effective length of the strut is obtained
by using a 45° angle of dispersion from the ends of the stiff
bearing to the neutral axis. The web crushing clause is 27(e)

in chapter 4, An effective length of the web along which crushing
will occur is determined by assuming a 30° angle of dispersion to
the plane of the web and the root radius, or edge of the beam
whichever is the shortest. These clauses are discussed in more

detail in chapter 4,

1.2.1 Draft Standard Specification for the Structural

Use of Steelwork in Buildingg

During the period of completing the present work the "Draft
Standard Specification for the Structural Use of Steelwork in
Buildings" (8) was published. Some alterations have been made
concerning web buckling and web bearing. The clauses dealing with
web buckling and web bearing are 7.3 and 7.4 respectively in chapter
8. For web buckling the slenderness of the web is changed to
2.5 d/t and the compressive strength P, is calculated based on a
different Robertson constant a'and design strength py, which is
taken as 0.93 times the yield stress of the material, This section

is discussed in more detail in chapter 4,

1.3 ELASTIC PLATE BUCKLING THEORY

Thin plates, which are stressed in their own plane are often
present in steel structures as webs of rolled steel beams and plate
girders. However, where designs involve concentrated and partial
edge loads, such as the web-plate of a crane girder under the action
of heavy wheel loads applied to the flanges, the stress distributions
change, thus causing tremendous mathematical difficulties in obtain-

ing solutions,



When a plate is stressed in its plane under the action of
external applied forces and a critical loading is reached, the
plane state becomes unstable. For larger loads after any dis-
turbance a change in equilibrium results, the plate deflects
laterally and it becomes buckled. For a plate this does not
necessarily imply failure, because the buckles are restrained in
the transverse direction and the plate is usually capable of

carrying loads beyond the first buckling load.

1.3.1 Uniform Edge Loading on Two Opposite Edges

of a Rectangular Plate

The web of a rolled steel I-beam can be considered as a rec-
tangular plate loaded by a uniformly distributed load on two
opposite edges, subjected to different boundary conditions. Many
authors have investigated this problem from the early days such
as Bryan (9) in 1891 for simply supported boundary conditions,

For more complex boundary conditions other authors, such as
Stowell (10), have published work dealing with this problem. Stowell
considered the case of a plate with either simply supported or
clamped edges and free unloaded edges. The case of a rectangular
plate with loaded edges free and unloaded edges simply supported has
been analysed by Woinowsky .- Kreiger (11). Many other boundary
conditions have been examined by several authors such as Timoshenko
(12), Bleich (13j, as shown in figures (1.1) and (1.2) and Stowell (14).

Gerard and Becker (15 collected the work of other authors and
gave a very comprehensive summary. They also considered the case
of buckling of a simply supported rectangular plate under combined
bending and compression and for other boundary conditions as well,

They provided values of the plate buckling coefficient in each case,
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for various aspects ratios.

Shulesko (16) (17) considered the elastic stability of rectangular
plates compressed in two perpendicular directions by forces
uniformly distributed along the edges. In his paper he dealt with
the case of a plate with one edge free and the opposite edge
elastically restrained.

More recently Johnson (18) considered the problem of buckling
of a plate under the combined action of longitudinal compression,
transverse compression and shear,

An important problem, especially for the design of box beam
webs, is the stability of a rectangular plate under longitudinal
bending and transverse compression, this type of loading is shown
in figure (1.3a). Timoshenko who investigated this problem, states
that the critical stress is reduced, due to the compression,
compared with the case when the plate is under the action of bending
only. This reduction depends on the ratio of the applied forces
and the aspect ratio of the plate.

Grossman (19) later investigated the same problem and presented
interaction curves, that is curves which determine the value of
one stress required to produce buckling when a given value of another
stress is also acting.

Some years later Wittrick (20) investigated the buckling of
an infinite strip, simply supported on its edges and subjected to
the combined action of longitudinal and transverse compression,
bending and shear, using Galerkins method; he presented charts
covering all possible combinations of the basic stress system,

A theoretical investigation of the buckling of a simply
supported flat rectangular plate, under critical combinations of

longitudinal bending, longitudinal compression and transverse



bl
Eapiiigo i Bt T ) e
Nbx

R A JRE b Tk B

a. Type of loading solved by Timoshenko

HLLLLLHJ.J,LHHT

EEEGEERECEE RS EEE

b. Type of loading solved by Noel

..

el

FIGURE 1.3 PLATE UNDER COMBINED LOADING



10

compression, was made by Noel (21), He presented interaction
curves for these loading types for various plate aspect ratios.

He also included curves of critical buckling coefficients for
simply supported flat rectangular plate under combined unsymmetrical
bending and lateral compression, as shown in figure (1.3b). This
type of loading occurs in beams having unsymmetrical cross-section.
These results indicate that the reduction in the allowable bending
stress due to the addition of lateral compression is greatly
magnified by the further addition of only a small longitudinal
compressive load,

Theodor Von Karman (22) in 1932, produced an equation for the
effective width of a buckled plate under uniform compressive
loading., This was investigated by Sechler and was found to be
accurate for very thin wide plates.

Winter (23) in 1946, published an empirical equation for the
effective width of a compressive flange based on tests, carried
out on U and I section beams, under pure moment loading. The
equation was based on that of Von Karman but modified to increase
its validity over an extended range of plate width to thickness

ratios.

1.3.2 Concentrated Edge Loading

When a rectangular plate is subjected to a concentrated load
the analysis becomes more difficult. Some of the analyses require
the use of an approximate energy method if the deflected shape is
not known; this happens when the boundary conditions are complicated.

The problem-of a simply supported plate, which is compressed
by two equal and opposite forces applied to the plate, as shown in
figure (1.4a).has been investigated by Sommerfeld (24) in 1906 and

a few years later in 1910, by Timoshenko (12). They came to the
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conclusion that the plate will buckle when the applied load W has
the value of E%Q s Where b is the distance between the .loaded edges
and Dyis the plate rigidity.

The case of a plate subjected to a single load was first
investigated by Girkman (25) in 1936 but his results were in a
form unusable by engineers and applied to plates with an aspect
ratio greater than 0.9.

In 1937 Leggett (26) investigated the same problem, that
Timoshenko examined, when all the edges of the plate were simply
supported. Leggett found that the critical load for an infinite
plate is 12.5% larger than that estimated by Timoshenko.

In 1949 Hopkins (27) considered the case of a simply supported
rectangular strip, subjected to loads distributed over small lengths
of the longitudinal edges. His results were underestimated com-
pared to Timoshenko's results by about 10%. This under-estimation
is due to neglecting the extensional deformation of the middle
surface during buckling in the manner of Timoshenko.

In 1952 Yamaki (28) investigated the buckling of a rectangular
plate, under loads distributed uniformly along a certain range of
two opposite edges as shown in figure (1.4b), using the integration
method. For the boundary conditions of the plate, three different
cases were considered; the loaded edges are always simply supported
and the other two edges are simply supported, clamped or free.
Unfortunately his results were not in agreement with the results
obtained by Timoshenko. The results obtained by Timoshenko, Leggett,
Hopkins and Yamaki are summarised in figure (1.5).

Zetlin (29) in 1952 using a Rayleigh-Ritz method of solution,
studied the same problem as Girkman and presented his data in the

form of graphs, which can easily be used by designers. He
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considered a rectangular plate simply supported along all edges
‘with the load W applied at mid-span along the top longitudinal

edges over a length c. This load was balanced by shear stresses

in a parabolic distribution along the vertical edges, as shown in
figure (1.6). Zetlin showed that the buckling load L of the plate

under consideration can be obtained from the equation below.,

_.._ccr= ]{—-91 2 1% |

where

t is the thickness of the plate

b is the length of the loaded edge

K is the plate buckling coefficient

He provided values of K for different panel aspect ratio p and

load length to plate length ratio ) Equation (1.1) can be

1.
written as
2200 4
7D 1
= LAY AT
o K 1 - 122

= b =S
where p = ) and 11 5

and, therefore, the critical load Wcr can directly be calculated
using equation (1.2). The values for K given by Zetlin are shown

in table (1.1).

1.4 FURTHER PLATE BUCLKING THEORY

As has been stated earlier, the difficulty in the analysis of
plate subjected to concentrated loads is to determine the deflected

shape and the initial state of stress.
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Case No | p = b/d Ay =B K
1 2 1/65 378.00
2 2 1/20 116.30
3 2 1 10,67
4 1 1/65 216.00
5 1 1/20 67.30
6 1 1 6.20
7 1/4 1/65 559.00
8 1/4 1/20 169.20
9 1/4 1 26.60

TABLE 1.1 VALUES FOR THE BUCKLING

OBTAINED BY ZETLIN

COEFFICIENT K
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In 1962 White and Cottingham (30), using the finite difference
method considered the case of a plate simply supported on its bottom
edge and loaded over a part of the top edge. The same loading
condition has been examined by Zetlin, as shown in figure (1.7a).
White and Cottingham presented their results in a graphical form,
for plates of different support and geometric conditions. These
results are reproduced in figure (1.8). Both investigators, Zetlin
and White and Cottingham, agreed that the buckling coefficient K
de creases as the length of the loading increases.

Several investigators such as Gallagher and Padlog (31),

Kapur and Hartz (32) used the finite element techniques in deter-
mining the critical load of plates.

In 1969 Rockey and Bagchi (33), using the finite element method,
solved the same problem investigated by Zetlin and White and
Cottingham; the loading condition is shown in figure (1.7b). They
considered cases of plates with the length to depth ratio values up
to 2. By this method they dealt with the interaction of the flange
and web plate, a factor which has not been considered in previous
solutions. They showed how the flange members influence both the
stress distribution of the web-plate and the combined structure,
Their results are presented in a graphical form providing relation-
ships between the critical load, the ratio of the load length to
the length of the plate (c/b), the panel aspect ratio (b/d') and
the ratio of the flénge to web thickness (tf/t). These results
are reproduced in figure (1.9) and figure (1.10).

However in 1967 Alfutov and Balabukh (34), (35) introduced
a simplified theoretical method, using the energy method, in which
only a statically determinate stress distribution and a deflected

shape were needed to be formulated.
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Khan and Walker (36) in 1972 adopted the above method and
obtained buckling loads which agree to within 5 per cent with
those calculated using the more laborious finite element method.
The critical load can be obtained using equation (1.3).

2
i

= Dy
Pcr =K 2 1.3

o

This expression has a similar form to the formula for the critical
load of a plate, uniformly loaded on two opposite edges. Some of
the results obtained by these investigators are shown in figure
(1.11) and table (1.2).

Typical results, obtained by the mentioned investigators,
for various boundary conditions are shown in table (1.3). Rockey
and Bagchis' results are in good agreement with those by Khan and
Walker and Zetlin for a point load. For the case, though, when
the plate is loaded over the whole length Zetlin overestimates the
critical load specifically for an aspect ratio of 4.0 and ¢/B = 1,0;

this overestimation is about 16%.

1.5 INELASTIC PLATE BUCKLING

It is known that after a perfectly.flat plate buckles at the
elastic critical stress Oy it is possible to carry additional
loads as the lateral deflections grow sufficiently large to harness
the extra resistance due to stretching of the middle plane. Finally
due to plasticity, the plate fails and a maximum value of applied
stress Gy is reached., It is, therefore, true to state that

o 0., for postbuckled rectangular plates. However, it is possible

>
max cr
for break down of the material to occur when the plate is still
flat and before Oy is reached. When this happens, the plate buckles

and collapses at a lower value of applied stress than Ocps SO that
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A/B | c /2B ¢/B K ox A/B | c,/2B ¢/B K.y
1.0 0 0.25 | 2.84 16.0 0 1.0 | 1,05
3.0 0.50 | 3.42 32.0 0 1.0 | 0,53
1.0 1.00 | 4.39 4.0 0 0.5 | 2.27
1.0 | 0,25 0.50 | 3.47 8.0 0 0.5 | 1.69
2.0 0 Q.50 | 2,67 16.0 0 0.5 | 0.99
3.0 0 0.50 | 2.46 4.0 0.25 1.0 | 2.88
2.0 0 0.25 | 2,50 4.0 0.25 0.5 | 2.40
4.0 0 0.25 | 2.12 4.0 0.25 0.25 | 2.26
8.0 0 0.25 | 1.60 4,0 0.50 1,0 | 5,08
16.0 0 0.25 | 0,98 4.0 0.50 0.5 | 2.52
32.0 0 0.25 | 0.53 4.0 0.50 0.25 | 2.37
2.0 0 1.0 3.21 ' 4.0 | 0,375 0.75 | 2.69
4.0 0 1,0 2,74 6.0 | 0,125 0.50 | 1,96
8.0 0. 1.0 1.95 6.0 end 0.50 | 2.05
shears

cr

=K_ (n°Q/2B)

TABLE 1.2 CRITICAL COEFFICIENT USING FINITE ELEMENTS



Investigator Boundary Conditions Kcr
Timoshenko +
Hopkins SS/SS ) G
Yamaki
Leggett SS/8S 1.46
Khan and Walker SS/SS 1,48
1.62%
4 T
Timoshenko FE/SS 2,55
Yamaki FE/SS 4.12
Khan and Walker FE/SS 4,22*

+  Simply supported
t+  Fixed/Simply supported
* Obtained by an Approximate Method

TABLE 1.3 VALUES OF CRITICAL COEFFICIENT Kcr
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Onar Ton® This is known as inelastic or plastic buckling,

The inelastic buckling theory for plates parallels to a great
extent the inelastic buckling of struts, Shanley (37) has
shown that the effective value of the Reduced modulus E for a
strut, introduced by Engesser, Considere and Von Karman was the
Tangent modulus Et‘

Many attempts have been made to introduce the laws of plastic
theory into plate buckling analysis. In 1940, Bijlaard (38) and
in 1947 Ilyushin (39) used the total strain theory to define stress/
strain relationships,

In 1946 Gerard (40) solved the problem of a simply supported
plate subjected to a uniform edge loading, using a secant modulus
method. He verified his results with small scale tests, on alluminium
alloy specimens which shoyed good agreement with the theory.

Stowell (41) in 1948 modified the plate buckling theory of
Ilyushin, using the total strain theory. This theory states that
the relationship between stress and strain takes the form o=E <€
where E is the Secant modulus, for material which is being loaded.
He presented a table of plastic reduction factors n, the ratio
of the minimum buckling stress to the minimum elastic stress, in
terms of the Secant modulus of elasticity Es’ the Tangent modulus
of elasticity Et and the Young's modulus of elasticity E.

Gerard and Becker (15) have summarised the work of many
other authors providing plasticity reduction factors for a number

of different cases.

1.6 PUBLISHED TEST RESULTS AND EMPIRICAL METHOD OF ANALYSIS

A large number of tests, performed on steel rolled beams and

plate girders subjected to concentrated loads, have been published.
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Usually these test results are accompanied by theoretical, semi-
empirical or purely empirical formulas and suggestions for design.
These recommendations, mainly concern beams with thin webs, with
stiffeners at the supports and at the load points, and not with
universal beam sections which have relatively thick webs.

In 1913 Moore (42) reported some 40 tests on steel I-beams
with various loading and end restraining conditions. He also
made some observations on the variation of steel strength with its
location in the beam cross section. In the report the difficulty
of distinguishing between the final failure pattern and the initial
cause of failure of the tested beams is pointed out.

Moore and Wilson (43) in 1916 published results of tests on six
I-beams and two built up girders. These tests were made to study
the web strains in I-beams and girders, so designed that the primary
failure would be a web failure. Two types of failure were observed;
diagonal shear buckling of the web and torsional buckling of the
beam rotating in plan about a vertical axis at mid-span.

As previously mentioned Glanville in 1931 reported ten tests
on rolled steel beams, carried out for the British Steelwork
Association.

In 1932 Ketchum and Draffin (44) reported tests made on rolled
steel I-beams with various loading and restraining conditions. These
tests were performed on beams with upper flanges restrained from
sideway> buckling, with upper flanges free to buckle sideways and
compression of the web over a bearing block, For the latter case
the investigators stated that it is the distance from the inner
edge of the bearing block to the end of the beam and not the length
of the block itself which determines the ultimate bearing strength

of the beams.
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Lyse and Godfrey (45) in 1934 published some tests on rolled
steel beams and on sections made from plates by welding for a large
range of depth to thickness ratio of the web. The investigators
came to the conclusion that no possibility of web-buckling existed
for beams with a depth to thickness ratio up to 70. It is clearly
stated that buckling may be expected to occur at a depth to thick-
ness ratio of the web of 80 or more, However, the authors were
mostly concerned with the incidence of shear buckling.

Winter and Pian (46) in 1946 performed some 136 tests on cold
formed steel sections. They concluded that the failure loads were
irrespective of the depth of the section; they also provided two
empirical expressions for the ultimate load of the beam, depending
on the location of failure.

In 1947 Wastlund and Bergman (47) published results of tests
performed on welded steel I-girders, subjected to shearing stresses,
normal stresses (bending moments) and combined shearing and normal
stresses. They discussed appropriate factors of safety against
buckling of webs and also provided a general design procedure,

In their report it is stated that the theoretical critical load of
plane web-plates bears no direct relation to the ultimate load and
the ratio of the ultimate loads to the. theoretical load increases
with the slenderness ratio of the web.

A considerable amount of theoretical and experimental work has
been done on plate girders. The design and analysis of plate girders
involve problems such as buckling of the web plate and vielding
of the compression flange. Massonnet (48) (1) discusses the behavi-
our of plate girders in great detail. In the former reference some

tests on plate girders conducted by Thurlimann and Basler are reported.



29

Many problems connected with plate girders having stiffened
web-plates have been examined by Rockey (49) (50) (51) who evolved
a simple criterion for the minimum rigidity of flanges from experi-
ments. Similar work has been done by Skaloud (52), (53).

All the above mentioned researchers concur to demonstrate that
buckling of the web of a plate girder is a progressive phenomenon
which does not involve a sudden collapse of the girder as the buckling
of a column, due to progressive growth of membrane stresses.

In 1974 Delesques (54) published some work, based on some 60
tests performed by other researchers. He provided formulae for
practical applications and curves which simplify the use of these
formulae,

Recently, in 1977 a research programme was completed in the
Department of Civil Engineering, University of Aston, supported by
the Construction Industries Research and Information Association.
In the final report RP219 (55) some 50 tests are described carried
out on universal beam sections. The test programme included
various degrees of top flange restraint and load eccentricities.
Two distinct types of failure were observed. The first was an
elastic torsional buckling failure in which the top flange rotated
relative to the bottom flange about a vertical axis through mid-
span. The second type of failure was characterised by yielding of
the top flange and elastoplastic buckling or crushing of the web
area adjacent to the applied load,

Guy (56) in 1977 published some tests on several universal
beam section sizes having various types of loading conditions. The
majority of the beams were tested by loading with two opposite
loads, thus eliminating the effects of bending and shear.

Most of the mentioned authors presented excellent theoretical



work but they failed to produce any experimental results which would
indicate the validity of their theories, Unfortunately, such
theories without any experimental evidence cannot be considered in

design.

1.7 CONCLUSIONS FROM PREVIOUS WORK AND SCOPE OF

PRESENT INVESTIGATION

When rolled steel beams are subjected to concentrated loads,
applied on their flanges they behave in a complex manner and many
variables are involved. Such variables are the geometrical and
physical properties of the beams as well as the various stresses
induced due to the loading type and supporting conditions. The
known published works have considered many of the variables,
unfortunately they often failed to examine the influence of a part-
icular variable on the ultimate strength of the beam so firm
conclusions could not be drawn. Only Winter and Pian exoamnecl
certain variables and their results are used for design of cold
formed sections in America..

In view of these gaps in the behaviour of rolled steel beams,
when acted upon by concentrated loads, it was felt that more system-
atic tests on universal beam sections, examining only a particular
variable at aﬁy one time, should be undertaken., Obviously, the
range of each variable will be limited for the present work and
these limitations will be stated in the relevant chapters. The
results to be obtained from these tests, would be compared with the
various design practices and theories associated with the strength
of universal beam sections and examine the factor of safety of
these practices. Further theories or semiempirical theories might

be needed to be developed, where more consideration will be given
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to the investigated variables.

The proposed tests will be performed on universal beam sections,
simply supported, loaded on one flange and supported at the ends.,
These tests will be so designed that failure will be expected
either at the centre of the beam, under the applied load, or at the

end at the support.
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CHAPTER 2

EXPERIMENTATION AND INSTRUMENTATION

2.1 INTRODUCTION

This chapter refers to the experimental details and procedures
employed for the tested beams. Due to the large number of tests
conducted for this work, a total number of ninety, it is impractical
to refer individually to each test. Therefore, a rather general
description of the experimentation and instrumentation will be out-
lined here.

The tests were performed on grade 43 mild steel rolled universal
beam sections, supplied by a steel stockholder. Imnerfections like
dents, bends and flame cut ends were removed by cold sawing.

All the beams were simply supported and according to the
location of failure they were broadly divided into two groups. In
the first group are those tested for end failure and in the other,

those tested for central failure.

2.1.1 Sections of Tested Beams

The universal beam sections used for testing were chosen to
give a range of web depth to thickness (d/t) ratio. For the present
study this ratio varies from 56.7 to 24.1. The majority of the tests
were performed on the 254 x 102 x 22 kg and 406 x 140 x 39 kg univer-
sal beam sections. Some of the tested beams had certain of their
dimensions altered by réducing the flange thicknesses or widths.

Table (2.1) shows all the universal beam sections used for the
present study with the corresponding depth to thickness ratio of the

web.,
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Metric U.B. Size 1 Depth to thickness
D(mm) x B(mm) x kg/m Ratio d/t
457 x 191 x 98 35.5
406 x 140 x 39 56.7
254 x 102 x 28 35.1
254 x 102 x 28% 35.1
254 x 102 x 25 36.8
254 ; 102 x 22 38.7
254 x 102 x 22+ 38,7
254 x 102 x 22* 38.7
152 x 89 x 17,09 24,1

* Indicates Flange Width Reduced

+ Indicates Flange Thickness Reduced

TABLE 2.1  BEAM SERIAL SIZES USED IN THE TESTS



2.1.2 Referencing of Tested Beams

According to the type of loading, type of support, point of
application of load and the variables investigated the tests are
classified into eight series, defined by I to VIII.

The beams are identified by numerals and in some cases
where beams were tested for end failure at both ends, by suffices
a and b and are considered as separate tests., There is a certain
amount of cross referencing and any coincident results will be shown

with different series where necessary,

2,1.3 Description of Series of Tested Beams

All the beams were tested simply supported on various lengths
of span; this length was determined by the distance between the
centres of the supports. Beams tested for central failure had an
overhang of 75 mm at each end and beams tested for end failure had
a total of 150 mm overhang.

The beams included in series I to V were tested for end failure
and the beams of series VI to VIII for central failure; For the
beams tested for end failure the load was vertically applied to the
top flange through a stiff bearing plate, 100 mm long and 65 mm thick.
These tests, as stated above, were arranged so that failure would
occur at the end. To enable this to happen a stiffening clamp was
fixed to the web of the beams of series I to VI to prevent failure
under the applied load. This device will be discussed in a following
section. At the end where failure was expected to occur, the support
was different for each series and will be described below. The
support at the other end was kept the same for all the above mentioned
series. It consisted of a bearing plate, 100 mm long, situated

across the full width of the flange. All the series of the tested



beams are shown diagrammatically in figure (2.1) and are described
in detail below.

Series I - All the beams in this series, except beam No 3,
were supported by a 12.7 mm long stiff bearing across the full
width of the flange of the beam. Between the stiff bearing and
the beam a packing plate was placed as shown in figure (2.1). The
length of the plate 1e was varied for each test but the support
was always at the end of the plate and the beam. Beam No 3 was
supported in a similar manner, the difference being that the plate
and 12.7 mm long stiff bearing plate were continuous and the plate
was bolted to the beam.

Series II - Beams in this series were supported in a similar
manner to series I, the difference being that the centre line of the
12.7 mm long stiff bearing was always in line with the centre
line of the top plate. The thickness of the plate for test Nos 18
2a and 2b in this series was varying.

Series IIT - Beams in this series were supported on a 12.7 mm
long stiff bearing without a packing plate. The distance of the
centre line of the stiff bearing to the end of the beam, denoted
by lk’ was varied for each test. Certain beams in this series had
their dimensions altered and were tested for a constant value of
1k'

Series VI - Beams in this series were supported on a fixed
bearing plate, as shown in figure (2.1). The length of this plate
15 was varied for each test.

Series V - Beams in this series were supported on a 12,7 mm long
stiff bearing situated at the end of the beam, as shown in figure
(2.1). The point of application of the applied load was varied

along the beam. The distance of the centre line of the 100 mm long
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Series No. Loading Arrangement Details

Simply supported
Constant span

le Vvaries

simply supported
LL Constant span

Lmst Vary

L/2 L/2

el L it

Simply supported
TEE
Constant span
T = Ly varies
o L/2 L7112
- - .
L
I_LI |
Simply supported
I Constant span
L veries
‘_] L/2 L2 ‘—
- o -
—
LS

FIGURE 2.1. SUMMARY OF TEST SERIES I TO VIl



series No
Simply supported
v
Constant span
= [ ] === lj L varies
L=L L
« e
Lﬂ
s
Simply supported
74 L, la serial size vary
L/2 L/2
—2 ,
la |
Lp PN Lp
Simply supported
NIT L, lg serial size vary

f—f la l—
lp "_.1 lp
I_'g_l it
Simply supported
YT Constant span
la,t vary

L/2 i

3
8Il[

50 mm

FIGURE 2.1 CONTINUED
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plate, on the top flange, to the centre line of the 12.7 mm stiff
bearing is denoted by 1. For this series, as has previously been
mentioned, the stiffening clamp was not used.

Series VI - Beams in this series were rested on stiff bearings
of lengths lp’ as shown in figure (2.1). The load was applied
through another stiff plate on the top flange at mid-span. The
length of this stiff plate 1, was varied for beams of a constant
span. The same procedure was repeated for different lengths of
span and different beam sections.

Series VII - Beams in this series were supported by stiff
bearings of length lp at both ends and loaded through another stiff
plate, placed on the top flange of the beam at mid-span, of con-
stant length 1a for various lengths of span. The same procedure
was repeated for different beam sections and different lengths
1p and la"

Series VIII - Beams in this series were supported in the same
way as the beams in series VI. The load was applied at mid-span
through a stiff bearing of 12.7 mm long placed in the middle of
another plate of length 1. The parameter under investigation
for the beams of this series was the thickness of the above mentioned

plate.

2,2 DETERMINATION OF PROPERTIES OF BEAM MATERIAL

In order to determine the properties of the material in the
beams, tensile tests were performed on specimens. These specimens
were obtained from a sample length, cold sawn from each 12 m
length of universal beam section supplied. Some tensile tests
were also performed on specimens cut from the material of the

spreader plates.
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2.2.1 Tensile Tests

Two types of tensile tests were performed, one using large
tensile specimens and another using small tensile specimens. For
all the lengths large specimens were prepared except for small
beam section sizes, where this was impossible, and where only
a small length of beam was available. In these cases small specimens
were taken. In a few cases both types of specimens were taken for
the purpose of cross-checking of the results.

Each tensile test is referred to by numerals such as T1, T2,
T3 etc and so beams will refer to the particular material test to
which it relates. A complete list of the beams tested in the
present work is given in table (2.2), which shows the tests carried
out in each test series, the test number, the serial size of the
beam section and the reference number of the 12m length from which
each beam was cut.

The tensile tests for the spreader plates are identified by
TP1, TP2, TP3, etc and large tensile test specimens were used for

this purpose.

2.2.1.1 Large Tensile Test Specimens

Specimens were cold-sawn from each sample length to 275-300 mm
long. The location of these specimens in relation to the beam cross-
section is shown in figure (2.2a) and in an isometric view in
figure (2.2b). It was impossible to have these specimens taken
from beams with overall depth D of less than 250 mm, as these would
have been too short to ensure adequate grip in the jaws of the
testing machine.

The cold sawn specimens were then machined to a uniform rect-

angular cross-section and their cross-sectional dimensions were
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Test Test Serial Size Ma;gzial
Series No D(mm) x B(mm) x kg/m Rafarence

lla 254 x 102 x 22 T3

7a 254 x 102 x 22 T2

7b 254 x 102 x 22 T2

1 6b 254 x 102 x 22 T2
8a 254 x 102 x 22 T2

8b 254 x 102 x 22 T2

3 254 x 102 x 22 T17

1la 254 x 102 x 22 T3

5a 254 x 102 x 22 T2

5b 254 x 102 x 22 T2

6a 254 x 102 x 22 T2

I1 10a 254 x 102 x 22 T3
12 254 x 102 x 22 T3

1 254 x 102 x 22 T17

2a 254 x 102 x 22 T17

2b 254 x 102 x 22 T17

4b 254 x 102 x 22 T1

11b 254 x 102 x 22 T3

III 13a 254 x 102 x 22 T3
13b 254 x 102 x 22 T3

14 254 x 102 x 22 T3

TABLE 2,2

BEAM SERIES AND SERIAL SIZES
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Test Test Serial Size Ma;zzial
Series No D(mm) x B(mm) x kg/m Reference

15 254 x 102 x 22 T4

16 254 x 102 x 22 T4

18 254 x 102 22 T4

20 254 x 102 22 T5

22 254 x 102 22 TS5

36* 254 x 102 22 T10

LR 3T* 254 x 102 22 T10
38* 254 ' 102 22 T10

39+ 254 x 102 28 T9

40+ 254 x 102 x 28 T9

41+ 254 x 102 x 28 T9

42+ 254 x 102 28 T9

43+ 254 x 102 x 28 T8

4b 254 x 102 22 T1

26a 254 x 102 22 T6

25a 254 x 102 22 T6

5 25b 254 x 102 x 22 T6
26b. 254 x 102 22 T6

24b 254 x 102 22 T6

27 254 x 102 x 22 T6

28 254 x 102 22 T6

* Flange Width Varied

t Flange Thickness Varied

TABLE

2.2 (CONTINUED)
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Test Test Serial Size Ma;gzial
Series No D(mm) x B(mm) x kg/m ol iy
R1b 254 x 102 25 T7
IV Rla 254 x 102 x 25 T
R2 254 x 102 x 25 T7
4b 254 x 102 x 22 4§
23b 254 x 102 x 22 TS
v 23a 254 x 102 x 22 T5
29a 254 x 102 x 22 T8
29b 254 x 102 x 22 T8
31 254 x 102 x 22 T8
30 254 x 102 x 22 T8
32 254 x 102 x 22 T8
33 254 x 102 x 22 T8
34 254 x 102 x 22 T8
VI 50 254 x 102 x 22 T10
51 254 x 102 x 22 T10
52 254 x 102 x 22 T10
53 254 x 102 x 22 T10
62 406 x 140 x 39 T15
63 406 x 140 x 39 T15
60 457 x 191 x 98 T14
61 457 x 191 x 98 T14
2.2 (CONTINUED)




43

|
Test Test Serial Size Ma;:zial
Series No D(mm) x b(mm) x kg/m e
64 406 x 140 x 39 T15
65 406 x 140 x 39 T15
66 406 x 140 x 39 T15
67 406 x 140 x 39 T15
68* 254 x 102 x 22 T16
VI 69* 254 x 102 x 22 T16
70* 254 x 102 x 22 T16
i b 254 x 102 x 22 T16
12 254 x 102 x 22 T16
7 254 x 102 x 22 Ti6
74* 254 x 102 x 22 T16
5% 254 % 102"% 22 T16
44 254 x 102 x 22 T10
35 254 x 102 x 22 T10
45 254 x 102 x 22 T10
46 254 x 102 x 22 T10
VII 48 254 x 102 x 28 T9
47 254 x 102 x 28 T9
49 254 x 102 x 28 T8
58 406 x 140 x 39 T11
59 152 x 89 x 17.09 T13
TABLE 2.2 (CONTINUED)
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Test Test Serial Size Ma;g;ial

Series .No D(mm) x B(mm) x kg/m Reterence
54 406 x 140 x 39 T11
55 406 x 140 x 39 T1t

VII

56 406 x 140 x 39 T11
57 406 x 140 x 39 T12
77 254 x 102 x 22 T17
76 254 x 102 x 22 Ty

VIII 78 254 x 102 x 22 T17
79 254 x 102 x 22 T17
80 254 x 102 x 22 i

TABLE 2.2 (CONTINUED)
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accurately measured. These specimens were tested in a Denison
hydraulic compression-tension testing machine, which incorporates

a 50 mm gauge length strain recorder and automatic plotter,

2.2.1.2 Small Tensile Test Specimens

These specimens were cold sawn from localised areas at the
locations of the beam cross-section shown in figure (2.3a). They
were machined to the shape and dimensions of a Hounsfield specimen
No 12, as shown in figure (2.3b). After recording the dimensions
of these specimens they were tested in a Hounsfield tensometer.

The small specimens were taken as a check on the results
obtained by the previous method and also to investigate any variation

in the material strength with location in the beam cross-section.

2,2.2 Tensile Test Results

The material characteristics obtained from the tensile tests
were the yield stress fy, the ultimate stress fult and the modulus
of elasticity E at various locations in the cross section for each
12 m length. The resulting values of these material properties,
of each individual specimen of all the tensile tests, are shown in
table (2.3). In the same table are also shown the average yield
and ultimate stresses for the web and flange and the yield stress,
the ultimate stress and modulus of elasticity for the section as
a whole.,

The results for the tensile tests performed for determination

of the properties of the material are shown in table (2.4).

2.2,3 Observation from the Tensile Test Results

As can be seen from the tensile test results, shown in table
(2.3), the beam material at the junction of the web and the flange

of the beam has in many cases a yield stress value somewhat lower
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Tensile |Specimen : Specimen | Specimen | Specimen | Specimen | Specimen [Specimen
Test Type Properties 1 2 3 4 5 6 Web Flange [ Overall
f
N/;mz 298,99 322,15 290.26 299,56 290,77 300,42 | 295,17 | 297.78
fult
T1 Large N/mm?2 479,95 482.96 481,37 477.24 477.15 481.41 (477,20 [ 479.30
kN?mmz 207.05 209.53 205,97 219.46 | 198,26 208,06
f
N/%mz 309.29 323,98 294,27 293.36 303,18 305,45 | 298,27 | 301,86
fult
T2 Large N/mm? 471.26 437,65 478,57 469.38 472,40 466,51 |470,.89 | 468,70
KNEMQ 186,48 | 188,68 | 191.13 | 188.91 | 183.93 187.83
f
N/;mg 323,76 342,99 316,11 314,37 302,57 324,74 |308.47 | 316.61
f.ult
T3 Large N/mm? 469,39 476,82 458,60 464,82 464.40 465.85 | 464,61 | 465,23
kNEmmz 181.09 202.42 188.08 203,50 198.67 194.75

TABLE 2.3

TENSILE TEST RESULTS

8y



Tensile| Specimen : Specimen| Specimen | Specimen | Specimen | Specimen | Specimen
Test Type Properties 1 5 3 4 5 6 Web Flange | Overall
fyz 324,62 336.41 305,74 304,12 286,76 318,13 | 295.44 | 306,76
N/mm :
flt
T4 Large e 9 477.61 468,38 459,02 474 .82 460,37 466,01 | 467.60 | 466,80
N/mm
B, | 191,27 | 215.65 | 194.12 | 221.17 | 191.59 202,76
kN/mm
fy 2 317,43 345,51 345,99 327.34 330.06 338,73 | 328,70 |'355;72
N/mm
fult
T5 Large 2 459,31 468,24 465.29 469,65 451,02 464,53 | 460,34 | 462.43
N/mm
E
kN/mm2 194.34 210,40 190,89 203,11 210,93 201,94
£
N/;mz 299,39 323,66 316,71 322,59 298.79 314,12 | 310.69 | 312.41
fult
T6 Large N/mm2 448,50 458.70 467,58 476.10 449,44 460,59 | 462,77 | 461,68
B
kN/mm2 185,99 213.07 189,69 194.67 197,73 196.23
TABLE 2.3 (CONTINUED)
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Tensile | Specimen A Specimen| Specimen | Specimen | Specimen | Specimen | Specimen ;
Test Type Properties 1 > 3 4 5 6 Web | Flange [Overall
f
N/;mz 329.12 340.46 299.23 527.95 311.20 317.01 | 319,57 | 318.29
fult
5 1 Large N/mm2 464 .55 482,32 461,40 497 .43 486,34 467.42 | 491.89 [ 479,65
E 2 206,34 189.46 200,48 193,44 195.09 196,90
kN/mm
f
N/;mz 336.78 352.67 316.52 314,11 316.02 320,56 | 315,07 | 322,84
fult
T8 Large N/mmz 489.86 493.18 486,01 48(.21 487.71 500.85 | 483,96 | 486,37
a2 | 204,11 | 201.18 | 194.48 | 182.53 | 198.10 196,08
kN/mm
£
N/%mz 344,92 355,95 290.69 297 .25 279,28 320.56 | 288.27 | 304,41
fult '
T9 Large N/mmz 509,17 500, 39 496,92 490.29 483,16 500,85 | 486,73 | 493,79
E 5 | 207.47 | 217.81 | 205.68 | 198.78 | 202.48 206,44
kN/mm
TABLE 2.3 (CONTINUED)
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Tensile | Specimen : Specimen | Specimen | Specimen | Specimen | Specimen | Specimen
Test Type Properties 1 2 3 4 5 6 Web Flange | Overall
f
N/%mz 302,25 287,05 309,85 322.24 331.01 309,85 | 305.35| 320.43 | 312.89
fult
T10 Small N2 501.96 501.96 495,77 501,96 505.76 477,17 | 498,87 | 491,47 | 495,17
E -
kN/mm? i h i i . "
f
Y 378,82 378,18 340.28 311.83 365.88 359.39 | 338,86 | 349.12
N/mm2
fult
g § Large N/mm2 495,93 506,06 496 .82 481.47 506.61 498,91 | 494,04 | 496,48
E
KN/mm2 196,80 199,65 202,51 198.60 208,09 201.13
fY
N/mm2 333,88 325,29 376.16 312.28 358.36 378.69 | 336.91 | 368,53 11352.72
fult
T11 Small Niine 506,29 519.42 507,74 504,28 510,36 522,83 | 509.45 | 516,60 |513,.02
E
kN/mm? : ¥ B i - & _
TABLE 2.3  (CONTINUED)



Tensile| Specimen 2 Specimen | Specimen | Specimen | Specimen | Specimen | Specimen
Test Type Properties 1 2 3 4 i - 6 Web | Flange | Overall
£
N/;m2- 384.90 | 382,05 | 375.45 | 342,63 | 377,38 379,46 | 360.01 | 369.73
fult
T12 Large N/mm 2 494,16 | 511.38 | 469.48 | 503,12 | 497,14 486,13 | 500,13 | 493,14
mm2 | 198.44 | 196.04 | 203.65 | 200,40 | 195.48 198.80
f x
N/i@12 337.98 | 327,27 | 374,24 | 315.20 | 348,36 | 388,69 | 338.66 | 368.53 | 353.60
fult
T13 Small Nl 516,19 | 509.79 | 504.14 | 494,44 | 520.96 | 532.00 | 506.14 | 526,48 | 516.31
E —
kN/mm 2 3 5 P . S §
£
N/thz 279.17 | 264.08 265,43 | 249.93 | 257,19 268.53 | 253.56 | 261.05
fult
T14 Large Nt 436,06 | 439.15 | 463.29 | 448.74 | 435.06 450,45 | 441,90 | 446.18
kNEmmZ 197.06 | 215.80 | 180.97 | 204,49 | 191,94 198,05
TABLE 2.3 (CONTINUED)



Tensile | Specimen . Specimen | Specimen | Specimen | Speci i i
Test pType Properties P 1 P 2 P 3 p glmen Spe§1men Speglmen Web | Flange | Overall
fY
N/mmz 385.64 338,65 297,76 322,42 353,82 329,95 | 338,12 | 334.04
fult
T15 Large N/mm2 507.76 547,11 465,59 494,63 499,37 496,51 | 497,00 | 496.76
kNEmz 194.77 | 194,78 | 173.24 | 196.35 | 229.76 197.78
f
N/;mz 342,22 355,24 320,78 330.60 305,98 334,76 | 318.29| 326,53
fult
T16 Large N/mm2 488.32 490.05 475,92 485,51 475,96 482,55 | 480.74 | 481.64
E
kN/mm2 200,07 175.17 194,41 202,41 194,27 193,27
; i
N/%mz 346,93 353.26 324,91 320.86 % P g i 357,50 | 324,32 | 330,91
fult
117 Large N/mmz 493,70 496,58 494,16 483.75 529,04 494,65 | 506.40| 500,52
E
kN/mm2 216,83 204 .92 201.49 197.45 207,02 205,54
TABLE 2.3 (CONTINUED)
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T’?‘Eiile Platet;l)'l;r:':;kness Basm No Nf%,m ) Nf% % kNI/EmmZ
TP1 10.0 77, 80, 1 271.74 424,10 200.16
TP2 15.0 76, 78, 2a | 268.42 | 409,69 | 192,13
TP3 20.0 78, 2b 320.44 | 462.61 208,59
TP4 25,0 3 256.29 | 422,61 200,12
TP5 39,0 79 303,05 | 475,10 205,65

TABLE 2.4 TENSILE TEST RESULTS FOR SPREADERS

¥S
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than the material in the web and the flange. This is probably due
to the hot rolling process during manufacture, because of the
rate of heat dispersion from the section when cooling., It is also
clear from these results that the material at the junction of the
web and the flange was well rolled since the specimens cut from
this part of the beam had an ultimate strength as high as the
specimens cut from the web or the flanges.

The yield stress was found to vary with the thickness of the
section and the thinner the section the higher the yield stress,
This could be explained for the same reason given above. The
ultimate stress was reasonably constant as well as the modulus of

20 Both types of

elasticity at a mean value of 199,04 kN/mm
tensile tests were performed on specimens from beam with physical
properties Tll, so the results can be compared. The small specimens
give values for the overall vield stress of 1.03% higher than those
of large specimens, while the overall ultimate stress of the section
was 3.33% higher than the values obtained from the large snmecimens.
However this variation is small and can be neglected.

The guaranteed tensile yield stress for a grade 43 rolled steel
beam, given by the manufacturer(57) is 250 N/mmz. The average

yield stress obtained from the tensile test results is well above

this value, at a mean of 322,56 N/mm~.

For the purpose of comparing the test results with current
design practices and theoretical predictions the actual values,

obtained from the tensile tests, will be used.

2.3 PREPARATION OF BEAMS

A brief description of the preparation of the beams is out-

lined in this section. From lengths of the standard sections
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provided by the supplier, usually 12 m long, required lengths were
cold sawn to an accuracy of #0.5 mm. Some of the beams had their
dimensions altered. In series III beam Nos 36, 37 and 38 and in
series VI beam Nos 68, 69, 70, 71, 72, 73, 74 and 75 of the serial
size 254 x 102 x 22 kg, had the width of both flanges reduced to
obtain a range of flange width to thickness ratio (B/T). Also in
series III beam Nos 39, 40, 41, 42 and 43 of the serial size

254 x 102 x 28 kg had the thickness of both flanges reduced, to
obtain a range of flange to web thickness ratio (T/t).

All the beams were cleaned with a wire brush and afterwards
painted with white-wash which has been found useful in showing
stress lines. It was hoped that these lines would help to indicate
the critical load and give a general stress distribution in the

beam.

2.3.1 Test Beams Dimensions

Due to manufacturing imperfections there was a variation in
the cross-sectional dimensions of the tested beams., Therefore,
the dimensions of each individual beam were measured before
testing by means of a vernier caliper and a micrometer, both
calibrated to an accuracy of 0.01 mm. This was so that the actual
dimensions of the beams be included in any relevant theory when
considered and also a comparison could be made between the manu-
facturers specified dimensions and the actual dimensions of the
beams.

The dimensions measured were the overall depth of the section
D, the width of the flanges B, the thickness of the web t and the
thickness of the flanges T. The depth between the root fillets d
was not included in the measured dimensions since this measure-

ment will not be accurate due to the root radius. The overall
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depth D was measured in the plane of the web at both ends of the
beam and the width of both flanges was measured along the beam at
about 150 mm intervals., These measurements were done by means of
a vernier caliper. The thickness of the web was measured at five
points across the depth of the web, at every quarter depth and
adjacent to the root radius. From these measurements it was
noticed that the lesser value was that corresponding to the mid-
depth of the section. The web is thicker adjacent to each flange,
usually over a depth of approximately 50 mm, than at the centre by
2-5%. The thickness of the flanges was measured mid-way between
the web and the flange edges.

The average values of the measured dimensions of all the beams
are shown in table (2.5). Also in the same table is recorded the
initial eccentricity of the web. To determine this reading the
beam was set with its flange edges on the bed of a planing machine,
as shown in figure (2.4), Measurements were taken to the centre
of the web at its junction with each flange and the centre of the
web at mid-depth, marked Al, B, and C1 respectively. The distances
Yis ¥y and Ya from the machine bed to the web face at the above
points were measured with a vernier caliper. A stiff steel straight
edge was placed on the other flange edges and the distances y'l, y'2
and y'3 were also measured. From the known thickness of the web
the required eccentricity of the web could be determined. It was
generally noticed that the more slender the web the greater the
initial curvature. The maximum eccentricity of the web recorded

was 1,18 mm for the beam No 13,

2.3.2 Instrumentation

Instrumentation was needed to measure strains at a number of

points on the web surface, lateral deflections of the web and vertical
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Overall| Flange Web Flange | Overall Web
Beam No| Depth | Width | Thickness| Thickness Length | Eccentricity
D B t 1 I8 e

1 256,22 | 102,63 5.99 6.70 1150 0.22
2 256.40 | 102.41 6.02 6.72 1150 0.17
3 256.41 | 102,31 5.89 6.66 1150 0.08
4 256.46 | 102,54 6.35 6.78 1150 0,07
5 256,77 | 101,62 6.29 6.99 1150 0.14
6 256.62 | 101.70 6.26 6.73 1150 0.06
7 256.67 | 101.64 6.29 6.70 1150 0.12
8 256,30 | 101.79 6.23 6.80 1150 0.31
10 256.56 | 101,67 6.26 6.79 1150 0.11
11 256.48 | 101.65 6.22 6.86 1150 0.07
12 256.43 | 101,65 6,23 6.80 1150 0.24
13 <ohu25 F 10175 6.20 6.87 1150 1.18
14 256.26 | 101,51 6.35 6.95 1150" 0.06
15 256,42 | 102.47 6.47 6.93 1150 0.13
16 256.54 | 102.33 6,38 7.28 1150 0.17
18 256.40 | 102.08 6.38 7.16 1150 0.18
20 256,13 | 101.69 6.31 6.85 1150 0.04
22 256.33 | 101.61 6.25 6.81 1150 Q.51
23 256.09 | 101.53 6.04 6.82 1150 0.41
24 256.08 | 101.32 6.03 6.84 1150 0.10
25 256,19 | 101.38 5,98 6.88 1150 0.13

All dimensions in mm

TABLE 2.5

DIMENSIONS OF TESTED BEAMS
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Overall | Flange Web Flange Overall Web __T
Beam No | Depth | Width |Thickness| Thickness| Length Eccentricity
D B L T b e
26 256,25 | 101.33 6.08 6.96 1150 0.17
27 256.45 101,53 6.37 6.90 1150 0.22 |
28 256.38 | 101.78 6.43 7.07 1150 0.30
R1 258.40 | 102,70 6.62 8.69 1150 0.27
R2 258,77 | 102.48 6.70 8,75 1150 0.14
29 255.61 | 101.02 5.96 6.86 1150 0.04
30 255.64 | 101.24 6.13 6.88 1150 0.09
31 255.76 | 101.41 5.95 6.82 1150 0.05
32 255.87 | 101.43 6.27 i | 1150 0.11
33 255,88 | 101.47 6.25 7,18 1150 0.17
34 255.99 | 101.65 6.00 6.82 1150 0.06
35 255,95 | 101.48 6.51 6.94 1150 0.96
36 255,63 87.26 6.18 6.96 1150 0.15
37 255.69 73,28 5.98 6.86 1150 0.19
38 255.65 59,81 6.03 6.97 1150 0,22
39 262.69 | 101.05 6.65 9.78 1150 0,37
40 261.48 | 101.10 6.62 9.08. 1150 0.18
41 260.08 | 101.25 6.54 8.29 1150 0,01
42 259.98 | 101.06 6.58 7.85 1150 0.29
43 258.10 | 101.14 6.46 6.90 1150 0.14
44 255.95 | 101,54 6.05 6,88 650 0.39

TABLE

2.5 (CONTINUED)
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Overall| Flange Web Flange Overall Web
Beam No| Depth | Width | Thickness| Thickness| Length |Eccentricity
D B t il L e

45 255,91 101.24 5,95 6.89 2150 0.47
46 255,74 | 101,35 5.96 €.79 3150 0.50
47 263.60 | 100,06 6.51 9.77 1150 0.09
48 263.15 | 100,27 6.53 9.79 650 0.04
49 263.27 | 100,25 6.55 9.79 3150 0.05
50 255,96 | 101,45 5,98 6.89 1150 0.21
51 255.97 | 101.37 6.02 6.93 1550 0.17
52 256,00 | 101.45 5.90 6.72 1550 0.03
53 256,03 | 101.62 5.86 6.72 1550 0.09
54 400,75 | 141.53 6.77 8.98 650 0,64
55 400.82 141.63 6.80 8.88 1150 0.78
56 401.08 | 141.69 6.88 8.98 2150 0.53
57 401,25 | 141.56 6.82 8.81 3150 0.94
58 401.19 | 142,25 6,64 8.95 3650 0.34
59 153,21 87.94 4.90 7.87 900 0.25
60 466.28 | 192.87 | 11.65 19.87 1400 0.16
61 466.34 | 192.88 | 11.60 19.77 1400 0.08
62 400,90 | 140.74 6.56 8.65 650 0.43
63 400.62 | 141.69 6.67 8.68 650 0.28
64 400,79 | 141,34 6.80 8.89 2150 0.52
65 400.88 | 141.30 6,69 8.88 2150 0.39

TABLE

2,5 (CONTINUED)
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Overall | Flange Web Flange Overall Web
Beam No| Depth Width | Thickness| Thickness| Length | Eccentricity

D B t T L* e
66 400.96 | 141.44 6.62 8.75 2150 0,32
67 400.56 | 141,59 6.76 8.83 2150 0.47
68 256.71 72,64 6.03 6.76 1150 0.12
69 | 256,50 | 58.23| 6.05 6.79 1150 0.04
70 256.53 73.89 6.06 6.83 1150 0.13
71 256.40 58.77 6.03 6.77 1150 0.09
72 256.68 72.40 6.03 6.80 1550 0.10
73 256,63 58.32 6.03 6.76 1550 0.02
74 256.56 73,29 6.05 6.77 1550 0.11
75 256.69 58.42 6.06 6.76 1550 0.07
76 256.45 | 102,75 6.04 6.78 1150 0.17
77 256.25 | 102,38 5.95 6.64 1150 0,12
78 256.23 | 102,15 5.98 6.70 1150 0.09
79 256,51 | 102.34 5.94 6.65 1150 0.06
80 256,31 102.54 5.94 6.65 1150 0.04

TABLE 2.5  (CONTINUED)
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deflections of the entire beam. Correspondingly, the instrumen-
tation conéisted of strain gauges and a deflection gauges frame.

Electric resistance strain gauges were used which had a
gauge length of 5 mm and a gauge resistance of 120 ohms. The
accuracy of the strain gauge readings was one microstrain. The
deflection gauges had the finest division of one hundredth of a
millimetre. A set of strain and deflection measurements was taken
after each increment of load. As mentioned earlier all the beams
were white-washed for detecting and recording the plastified

regions.

2.3.2,1 Strain Indicators

The determination of stress distribution through an elastic
medium when it is subjected to concentrated loads is very complex
and a very large number of strain gauges and strain rosettes would
be needed to obtain a complete picture. The reader is referred to
Hendry (58), Coker (59), Frocht (60) et al, where such a stress
distribution is examined using photoelastic analysis. Since such
a determination is beyond the scope of the present work and it is
money and time consuming, to avoid any complications only a limited
number of strain gauges were used.

~ Electrical resistance strain gauges were attached to all the
tested beams but in varying positions and numbefs. The beams tested
for end failure, that is the beams in series I to V, had only one
pair of strain gauges attached, to record any sudden change in
stress in the beam web due to yielding or buckling. These gauges,
shown in figure (2.5a) were positioned at the mid-depth of the web,
'along the centre line of the support at each face of the web. Larger
numbers of strain gauges along the mid-depth of the web could not

be attached due to the clamping device. Where only two strain
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gauges were used for beams tested for central failure, these were
positioned at the mid-depth of the web along the line of action
of the centre of the applied load on each face of the web, as
shown in figure (2.5b), for the purpose of recording any sudden
change in stress. For other cases, where a larger number of
strain gauges were used, the position and referencing of these
gauges is shown in figure (2.5c). Two objectives were achieved by
positioning the strain gauges at these locations. Firstly, the
decrease of strain at the mid-depth of the web away from the load
application point would be indicated and secondly, the progression
of the area of the web which has yielded from the load application
point would also be indicated.

The positions of the strain gauges were marked and cleaned
with a hand-grinder. These areas were further cleaned with
'genclene' and finally neutralised with ammonia solution. The
strain gauges were then glued to the steel and left to dry. The
connectors were then soldered to suitable cables with care to
avoid any damage to the gauges. The strain gauge readings, where
only two gauges were used, were taken manually using a Peckel
strain recorder. For beams with larger number of gauges the read-
ings were recorded automatically using a Compulog Data Logger.

As has been mentioned in a previous section the beams were
white-washed to obtain a general stress distribution throughout
the section, in addition to the strain gauges attachment., This
white-washing technique was used by Moore and Wilson (43), Lyse
and Godfrey (45), Massonnet (61) etc and found to be auite effective.
Although no actual strain values have been recorded in this way,
definite crack lines have been obtained in the white-wash at hiéh

strains.
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2.3.2,2 Deflection Indicators

The deflected shape of the web of a universal beam when it is
subjected to concentrated loads is also complex as the strain dis-
tribution. For the purpose of the present studv it was decided to
measure lateral deflections of the top flange and web at different
points, vertical deflection of the beam and any other deflection
considered to be important. The deflections were measured by means
of mechanical deflection gauges and could be read to an accuracy
of 0.01 mm. The position of the gauges varied throughout the
tests and typical locations and referencing are shown in figure
(2.6a to c¢). The referencing of these gauges is that given in the
test readings in appendix 1.

The location of the deflection gauges used for the beams
tested for end failure is shown in figure (2.6a). Dial gauge No 1
was always in line with the centre line of the support at the end
where failure was expected, and indicated the vertical movement of
the web above this point. Dial gauge No 2 was always in line with
the applied load, indicating the vertical movement of the beam at
mid-span. Dial gauges No 3 and No 4 were indicating the lateral
deflection of the top flange and web at mid-depth above the support
respectively. For the beams tested for central failure the number
and position of the dial gauges was varied for different tests.

The location and referencing of these gauges according to the
number used is shown in figure (2.6b to e),

In some tests it was noticed that the top flange of the beam,
at mid-span, moved horizontally. This movement, possibly caused
by eccentricity of the vertical applied load in relation to the
line of the web,was usually relatively sudden. In general regions

of high strains, indicated by flaking of the white-wash, were
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accompanied by large out of plane web deflections.

2.4 LOADING DEVICES

The majority of the beams were tested in a large testing rig
shown in plate (2.la). The load was applied to the top flange of
the beam by means of a motorised hydraulic ram of 1000 kN capacity.
This load was measured by a load cell attached to the bottom of the
ram and connected to an automatic recording machine. The rest of
the tested beams namely beam Nos 60 and 61 were tested on an
Avery 2500 kN capacity machine shown in plate (2.1b)., the selection

depending on the expected failure load.

2,4.1 Test Beam Set-Ups

Due to inaccuracies in manufacture of rolled steel beams the
webs of the beams were not at right angles to the flanges, that is
to say the beams had a degree of 'out of sauareness'. To compensate
for these imperfections small packing pieces were inserted under
the bearing plates at the supports, so that the web was alwayvs
vertical under the applied load. To set up the web of the test
beam vertical along the whole span was not possible, because there
was a variation in the shape along the length and also because the
web is not perfectly flat.

All the beams were set with the bottom flange horizontal
with respect to the length and the centre of the applied load
plumb, For each failure all the beams were tested under a load
applied at mid-span with a stiffening clamp, designed to prevent
failure under the applied load, except beam Nos 23a, 23b, 29a and
29b. The stiffening device is shown in plate (2.2) and figure
(2.7). To control any appreciable sideways movement of the top

flange an angle-iron frame was introduced at each end of all the
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PLATE 2.2 STIFFENING CLAMP USED FOR SERIES T to IV
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tested beams, shown in plate (2.la, b) at the ends of the beam,

2,4.2 Load Application

The load applied to the upper flange of the beam was one of

the following types:

1

Knife Edge Load - These knife edges were used throughout the
tests. They were made from mild steel and were manufactured with
a radiused bearing edge of very small diameter and finally hard-
ened before using. The area of contact with the flange of

the beam was very small and assumed to be zero. These knife
edges were welded to a stiff plate so they were more stable when
they were in contact with the head of the ram, but they were not
attached to the tested beam in any way; the friction on the
contact area provided the only restraint. They were found to be
very good and although applied to high loads did not flatten or
distort.

Uniform Distributed Load - In these cases the load was applied
to the top flange by means of stiff steel plates, usually 50 mm
thick and of the required length. For this type of loading as
for the previous one, the flanges could have lifted off if such
a failure mode was possible. Some tests namely test No 3 in
Series I, tests Nos 1, 2a and 2b in Series II and all the tests
included in series VIII had the thickness of these plates

reduced as this variable was under investigation.

2,4,3 Testing Procedure

Basically, the testing procedure for all the tests was the

same. First zero readings were taken for all the strain and

deflection gauges. An approximate failure load was predicted for

the beam to be tested and increments of loadings were applied slowly
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at a constant rate. At each increment the load was held constant
and all deformations were allowed to stop before a set of readings
was taken. This procedure was continued until failure. Usually,
when inelastic behaviour was detected in the web or in the beam as
a whole, the load increment was cut to a half., The load then was
held constant and the reading deferred until the needle on the
dial gauges stopped moving. Usually, the dial needle would move

a few divisions during the reading, but at this point the lateral
deflections of the web were large so that this change was negligible,
Failure was defined by large increase in deflections and a band

of yielding. After the formation of the yield band the beam could
not sustain any higher load. At this point the load was removed
quickly to avoid any further deformations. It was not possible to
record any strain or deflection readings at failure due to their
large rate of increase.

A large number of beams were reloaded one or two times and
repeating loading cycles carried out to a few beams only. For
the reloading of these beams only the final load was recorded.
Some other observations during testing were noted such as flange
movements, bending and the appearance of crack lines in the white-

wash were recorded.
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CHAPTER 3
PRESENTATION OF THE TEST RESULTS

3.1 INTRODUCTION

In this chapter the test results of all the tested beams are
presented. As has been mentioned in chapter 2 the recordings made
during testing were:

1) The failure load

2) Strain recordings

3) Deflection recordings.

In the following sections, therefore, the different variations of
the failure load with the variables investigated for each series

of tests as well as strain versus load and deflection versus load
relationships will be examined and discussed. It is impossible, due
to the large number of tests conducted, té refer to the behaviour
of each beam, under test, individually. Representative tests are

selected from each series and discussed.

3.2 TEST FAILURE LOADS

The most important information géined from the experimental
recordings of thebeams is the variation of the ultimate load with
respect to the variable investigated. The failure loads obtained
for each test as well as any retest loads and the mode of failure
are shown in table (3.1a to h).

The failure loads for each test series vary with the cor-
responding variable. In cases where in a particular test series
different beam serial sizes have been used, or the actual dimensions
of the beams altered, the general variation of the ultimate load

with the variable investigated is of the same form. The failure
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it Fallure Retest Retest Failure
Series | Beam e Load 1 2 Mode
i /KN /N /kN
iia | 12,7 1 255.0 - - 1
7a | 20.0 | 260.0 - - 4
76 | 30.0 | 270.0 - = .
I 6b | 50.0 | 257.5 - - 1
8a | 70.0 | 260.0 - _ :
8b | 90.0 | 285.0 - - 1
3 | 90.0 | 280.0 - " d

(a) SERIES I

TABLE 3.1 FAILURE LOAD OF TESTED

BEAMS
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) 1C . Failure | Retest | Retest Failure
Series | Beam i T L?;g ikN ikN Mode
1ta | 22,7 [i25.D 255.0 - - 1
S5a | 20.0 [i25.8 310.0 - - 1
5b | 30.0 | 25.0 320.0 - - 1
6a | 50.0 | 25.0 339.0 - - 1
11 10a | 70.0 | 25.0 410.0 - - i
12a | 90,0 | 25.0 450.0 - - 1
1 50.0 | 10.0 315.0 222.5 - 1
25 | 50.0 | 15.0 325.0 240.0 - 1
2b | 50.0 | 20,0 340.0 215.0 - 1
(b) SERIES II
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lk Failure | Retest | Retest | Failure
Series | Beam oo Load 1 2 Mode
/kN /kN /kN

4b 6.35 | 245.0 - - 1
11b 15.0 | 265.0 - - 1
13a 25.0 28755 - - d
13b 35,0 | 340.0 - B 1
14 40.0 | 390.0 - - 1
15 60.0 | 400.0 - - 1
16 90,0 | 420.0 - - 2
18 100.0 | 440.0 - - 2
20 120.0 | 450.0 - - 2

I1I

22 130.0 | 455.0 310.0 - 2
36 35.0 | 330.0 210.0 - 1
37 35.0 | 310.0 212.5 - 1
38 35.0 | 290.0 - - 1
39 35.0 | 407.5 260.0 - 1
40 35.0 | 400.0 2725 - 1
41 35.0 | 397.5 255.0 - 1
42 35.0 | 390.0 - - 3
43 35.0 | 385.0 270.0 - 1

(c) SERIES III
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- 1 Failure Retest Retest Baities
Series | Beam s Load 1 2 Mode
/mm /N /kN /XN

4b [12.7 | 245.0 - - 1

26a |20.0 | 258.0 - - 1

25a |30.0 | 270.0 - - 1

25b [40.0 | 320.0 - - 1

26b |50.0 | 340.0 - - 1

v 24b |60.0 | 350.0 - - 2

27 |70.0 | 390.0 - - 2

28 |[80.0 | 420.0 - - z

R1b |20.0 | 295.0 - - 1

Rla |50.0 | 420.0 - - 1

R2 |70.0 | 460.0 - - -

{d) SERIES IV




: . Failure Retest Retest Fail
Series | Beam | , | Load 1 2 M;dgre
/kN /kN /kN
4b 500.0 | 245.0 2 o 1
23a 400,0 | 198.0 » = 1
v 23a 300.0 | 180.0 - = 1
29a 200.0 | 140.0 < = 1
29b 150,0 | 140.0 - & 1
(e) SERIES V
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Series Beam S?;n 1a Fiéisre RefeSt REEESt Fa;igze
/mm /kN /kN /kN
31 1.0 0 208.0 185.0 - 1
30 1.0 50.0 270.0 190.0 - 1
32 1.0 | 100.0 310.0 270.0 248.0 2
33 108 150.0 350.0 320.0 - 2
34 1.0 | 250.0 395.0 350.0 - 2
50 1.4 0 185.0 175.0 - 1
51 1.4 50.0 217,5 195.0 - 1
52 1.4 | 150.0 240.0 2375 - 2
53 1.4 | 250.0 265.0 230.0 - 2
62 D5 0 322.58 280.0 260.0 1
63 0.5 150.0 495.0 195.0 - 2
60 1.25 12,7 860.0 710.0 - 1
VI 61 Io#s 100.0 1060.0 720.0 - 2
64 2.0 0 285.0 280.0 260.0 1
65 2,0 50.0 350.0 290.0 - 1
66 2,0 | 150:0 460.0 285.0 - 2
67 2.0 | 300.0 530.0 165.0 - 2
68 1.0 0 190.0 165.0 117.5 1
69 1.0 0 180.0 147 .5 157.5 1
70 1.0 | 150.0 297.5 145.0 122.5 2
i 1.0 | 150.0 260.0 107.5 90.0 2
72 1.4 0 140.0 92.5 67.5 1
73 1.4 0 1275 72.5 62.5 1
74 1.4 150.0 190.0 157.5 125.0 2
75 1.4 | 150.0 1725 85.0 75.0 2

(f) SERIES VI
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) Span 1 1 Failure | Retest | Retest P igiing
Series Beam T a o Load 1 2 Mode
/mm /mm / kN /kN /kN
44 0.50 12.7 | 12,7 | 237.5 210.0 205.0 1
35 1.00 12.7 | 12,7 | 215.0 205.0 185.0 1
45 2.00 | 12,7 | 12,7 | 145.0 125.0 - 1
46 3.00 | 12.7 | 12,7 | 100.0 85.0 - 1
48 | 0.50 | 12.7 | 2,17 | 300.0 275.0 - 1
47 1.00 | 12:71 32,7 | 272.8 255.5 - 1
VII 49 1 3,00 | 12.7°%} 12.7 | 135.0 120.0 - 1
58 3.50 | 12.7 | 12.7 | 250.0 - - 1
50 | 0.75 ! 12.7 | 12.7 | 168.75 - - 1
54 | 0.50 | 100.0 | 50.0 | 470.0 450.0 - 2
55 | 1.00 | 100.0 | 50.0 | 430.0 430.0 | 385.0 2
56 | 2.00 | 100.0 | 50.0 | 350.0 325.0 | 315.0 2
57 | 3.00 | 100.0 | 50.0 | 280.0 175.0 - 2

(g) SERIES VII
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Failure

Retest

Retest

Series | Beam /;m /;m L?Eg ikN ?kN Fﬁgégre
77 50.0 | 10.0 240.0 212.5 200.0 1
76 50.0 | 15.0 260.0 2175 - 1
VIII 78 250.0 | 15.0 300.0 245,0 240.0 2
79 250.0 | 39.0 390.0 - - 2
80 50.0 | 10.0 250,0 210.0 - 1

(h)

SERIES VIII
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loads are also represented in a series of graphs shown in
figure (3.la to k). Where convenient, two or more beam sections
are shown on the same graph. On these graphs appropriate test
results of reference (55) are included.

Figure (3.la), representing the failure loads of series I,
shows that the length of the bearing plate 1., placed on top of
the 12,7 mm long stiff bearing has no very significant effect on
the failure load.

When the position of the stiff bearing is changed as for
series II then the length of the bearing plate has an influence
on the failure load of the beams. This variation is shown in
figure (3.1b) and can be best represented by a straight line.

On the same graph are included the tests with the plates of
differing thicknesses.

When the beéring plate is removed and the stiff bearing is
placed towards the centre of beam as in series III, the failure
loads increase with the length lk’ as shown in figure (3.1lc).
Figure (3.1d) shows the variation of the failure load with the
flange width B and the flange thickness T. Thé basic section
sizes, before alteration, were 254 x 102 x 22 kg and 254 x 102 x
28 kg respectively. These variations could be represented by
straight lines.

Figure (3.le) shows the variation of the failure loads of
beams in series IV with the length of bearing 15.

Figure (3.1f), for beams in series V, indicates that the
failure load decreases with the distance 1 and for small values

of 1 the load seems to become constant,
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Figure (3.1g, h), representing the failure loads for beams
in series VI, shows that the failure load increases with the
length of the applied load 1a and the curve appears to become
flatter for long lengths of load. The variation of failure
load with the flange width for different lengths of load is
shown in figure (3.1i). The basic section size was 254 x 102 x 22 kg
before alteration.

The influence of bending for beams in series VII is shown in
figure (3.1f) for different beam serial sizes. Such a variation
has also been obtained by reference (55), as shown in the same
figure,

The variation of the failure load with the thickness of the

loading plate for beams in series VIII is shown in figure (3.1k).

3,2,1 Modes of Failure

As has previously been mentioned a frame was introduced at
both ends of the beams to prevent the top flange moving horizon-
tally at right angles to the beams.

Whatever the location of failure the beams seemed to fail in
a manner characterised by yielding of the flange and elastoplastic
local buckling, or crushing of the web. Two modes of this type
of failure were observed,

Failure Mode 1 - This failure mode is shown in plate (3.1a) and
occurred to beams loaded or supported, depending on the location
of failure, with relatively small or zero lengths of bearing.

This failure mode is characterised by the out of plane deflections
of the web, being confined to a small region of the beam in the
vicinity of the applied load, or support. The largest out of

plane deflection of the web seemed to occur at a depth about one
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third of the depth of the beam. A further feature, possibly due
to the very local nature of the failure, is the transverse
bending of the flanges which is such that contact with the support
of load strip is only maintained directly over the web.

Failure Mode 2 - This failure mode is shown in plate (3.1b).

The lateral deflection of the web had the same form as for mode 1,
but they were larger; the maximum deflection occurred at about

the same point, shown in plate (3.2a, b) for mode 1 and mode 2
respectively. This mode of failure was found to occur when the
beams were loaded or supported with large lengths of bearing plate.
The flanges were slightly distorted and it could be said that

no significant transverse bending was noticed.

More information on the failure mode can be provided by
examination of the loads attained for beams which were retested.
Beams that had failed in mode 1, when retested, were attaining a
load only slightly lower than the ultimate load. Figure (3.1l)
shows the effect of cycles of loading and unloading of beam No 35
which has failed in this mode. From figure (3.1l) it is clear
that the failure load reduces to 74% of the first loading after
seven cycles. To the contrary beams that had failed in mode 2,
when retested, could sustain a load a lot less than the ultimate

load.

3.3 STRAIN RECORDINGS

Two ways were adopted in obtaining the strain distribution in
the beams, as already has been mentioned in chapter 2. A general
strain distribution was obtained from the flaking of the white-
wash and a more accurate one from the readings of the attached

strain gauges. The observations from these methods will be
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PLATE 3.2 DEFLECTED SHAPE FOR BEAMS
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discussed individually as follows.,

3.3.1 General Strain Distribution

It should be emphasized that the strain distribution obtained
from the pattern of the crack lines in the white-wash is approxi-
mate. It is assumed that the crack lines are formed when the
material yields.

It appears that the crack line patterns in the white-wash for
beams which failed at the end are similar, despite the type of
support. Typical patterns are shown in plate (3.3a, b), for
beams 13b and 23a respectively. Areas of very high strain, such
as at the support and in the vicinity of the applied load at mid-
span, are indicated by the larger areas of flaked white-wash. In
plate (3.3a) it could be seen that at the support, the angle the
crack lines make with the plane of the flange, is in the region
of 20° to 30°. Plate (3.3c) shows the crack lines in the white-
wash in the region of the applied load for beam No 44, This was
loaded and supported withl2.7 mm long stiff bearings across the
full width of the flanges. The span of this beam was 0.5 m and
the large dark areas along the mid-depth line show the position
of the strain gauges. As the span of the beam increases, the
affected zone gets larger, this is well shown in plate (3.3d) for
beam No 35. This had the same loading and supporting conditions
as the former one and was of 1.0 m span. The angle, the crack
lines make with the plane of the flange, for this case as dis-
played in plate (3.3d) is in the region of 40° to 50° and the
total length of dispersion is about equal to the depth of the

beam.
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(a) Beam No 13b (b) Beam No 23a

.l
wn

(d) Beam No 44 (c) Beam No .

PLATE 3.3 CRACK LINES IN TESTED BEAMS
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If the span of the beam is kept constant and the length of
the applied load varies, then the strain distribution varies,
This is shown in plate (3.4a) for beam No 66 and plate (3.4b)
for beam No 67. These beams were loaded by 150 mm and 300 mm
lengths of load respectively and as could be seen from the above
mentioned plates the strain dispersion is greater for a shorter
length of applied load. This statement is confirmed by plate
(3.5a, b) for the beam Nos 60 and 61 respectively. These
beams were loaded by 12.7 mm and 100 mm lengths of load respectively.
Plate (3.5c) shows in greater detail the crack lines in the
white-wash at the inside face of the top flange for beam No 60.
The crack lines have a slight curvature away from the centre of
the applied load. This was noticed for other cases and could also

be seen in plates (3.4a, b).

3.3.2 Strain Gauge Readings

The strain gauge readings and the deflection gauge readings
are given in table (A,1)in appendix 1. Strain readings which have
exceeded the value of the 'yield strain' are shown with 'Y' along-
side; the yield strain can be determined from the tensile test
results.

The stra;p gauges, as previously mentioned, were always
used in pairs, one each side of the web. The direct and bending
strains can therefore be calculated, if required, from the semi-
sum and semi-difference of the readings of the two strain gauges
respectively. Figure (3.2a) shows the comparison of the direct
strains for test No 8a and test No 10a of series I and series II
respectively and figure (3.2b) shows the compcyisorn of the bend-

ing strains for the same tests. The only difference in these
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(a) Beam No 66

(b)Y Beam No 67
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(a) Beam No 60 (b) Beam No 61

(c) Beam No 60

PLATE 3.5 CRACK LINES IN TESTED BEAMS
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tests is the type of support, although the length of the bearing
plate is the same. The direct strain distribution is similar but
with higher strains for test No 8a, as one would expect. The
bending strain distribution is rather peculiar. The strain
increases with increasing loads and when the beam is near to fail-
ure it decreases and further it increases for test 10a, Figure .
(3.3a, b) shows a comparison between the strains for test No 13b
and test No 25b of series III and series IV respectively. Each
beam is identical, except for the type of support, but with the
distance of the inner face of the bearing plate to the end of the
beam approximately equal. The direct strains are quite comparable,
with the strain being higher, at comparable loads, for test No 13b
due to the smaller area of support. The bending strains show

a similar distribution but not a uniform one. At small loads

the strain reduces with an increase of load and suddenly near

to failure point in increases. Certain beams in series III namely
beam Nos 36, 37 and 38 had the width of the flanges reduced and
figure (3.4) shows the direct and bending strain distributions.
All these beams show very similar direct strain distributions
except the strain for test No 13b, being slightly higher than the
others at small loads. This is probably due to the large initial
eccentricity of the web as can be seen from table (2.5) and the
deflection readings given in table (A,1) in appendix 1. The com-
parison of the bending strains in figure (3.4b) shows that the

strain is relatively small for test Nos 36, 37 and 38 and higher

for test No 13b, for the reason given above. It appears that
changes in flange width have little effect on the strain distri-

bution in the web and further comparisons are not made. In series III,
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some beams had the thickness of the flanges reduced, namely

beam Nos 39, 40, 41, 42 and 43. All beams show very similar
direct strain distribution, as shown in figure (3.5a). As for

the previous case the bending strain distribution is not very clear
and any conclusions will be misleading.

The plot of the strain along the mid-depth line of the beam
Nos 50, 51,52 and 53 in series IV are shown in figure (3.6), at
a load of 160 kN. All beams have the same span and are loaded at
the top flange at mid-span through stiff loading plates of vary-
ing length. The direct strain curves, as one would expect, are
flatter for increasing lengths of the applied load, higher in the
vicinity of the applied load and decreasing away from it. Despite
the differences of strain under the load point for different lengths
of bearing the strains at the supports and the strains at a
quarter span are similar for all tests.

Figure (3.7) shows the direct strain distribution on a vertical
section of the web at the central point load at mid-depth and a
quarter-depth from the top for beam Nos 50 and 53. Beam No 50 was
loaded by a knife edge load and as could be seen from figure (3.7a)
the strain is higher at a quarter depth than at mid-depth. For
beam No 53 the load was distributed with a 250 mm long stiff bearing
plate and the strain was about the same at a quarter and mid-depth.
Near to the failure point though, as could be seen from figure
(3.7b), the strains indicate a change of curvature of the web.,

The state of strain in the web along the mid-depth line can
be examined from the strain gauge readings for test No 44 in series
VII, which was simply supported on two 12.7 mm long stiff bearings

and loaded at mid-span through another. The strain distribution is
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shown in figure (3.8). The direct strain is increasing with
increasing loads,especially at mid-span and at the supports, this
is possibly due to plastic yielding, and reduces between these

two points at high loads, where by referring to figure (3.8b) is

a region of high bending strains. Figure (3.9) shows the direct
and bending strain distribution for beam Nos 44, 35, 45 and 46 all
loaded in the manner explained above but for different lengths

of span at a load of 80 kN. The effect of the initial eccentricity

of the web of beam No 35 can be seen from these plots.

3.4 DEFLECTION GAUGE READINGS

The lateral web deflection along the mid-depth line at the
location of failure was recorded for all the tests. For many tests
the central deflection gauge showed a relatively large deflection
of the web at a very small load. The deflections then increased
very gradually, at a slower rate up to the point of failure
when they increased at a very fast rate and became unreadable in
some tests. These large initial deflections were mainly due to
'squaring up' of the flanges between the applied loads as the
initial load increment was applied.

Typical load-deflection curves for beams tested for end
failure are shown in figures (3.10) and (3.11) for test No 13a.
Figure (3.10) shows the vertical deflection of the beam at mid-
span and above the support. The lateral deflection of the top
flange, at mid-span, is shown in figure (3.11a). At a very small
load the movement is quite large and very small for further incre-
ments of load up to failure. Figure (3.11b) shows the lateral
deflection of the web at the mid-depth line above the support.

The deflection increases for small and intermediate increments
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FIGURE 3.8 STRAIN DISTRIBUTION FOR BEAM No 44
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of load and near to failure it appears to become almost horizontal.

Figure (3.12) shows the variation of vertical deflection at
the bottom flange of the beam with load for beam Nos 31, 30, 32,

33 and 34 for central failure. These beams had the same span and
were loaded through stiff bearing plates of varying lengths. It
could be said that at comparable loads the length of the stiff
bearing has no influence on the vertical deflection of the beam
at mid-span, until failure is imminent.

Figure (3.13) shows the influence of the length of the bearing
plate on the lateral deflection of the web for beam Nos 64, 65,

56, 66 and 67, These had a span of 2.0 m long and loaded through
different lengths of stiff plate . For small loads it appears
that the deflection decreases with increasing lengths of loads and
this could probably be due to initial lack of straightness. For
further load increments no solid conclusions could be draﬁn out,

As the span increases, for a constant length of load, the
vertical deflection of the beam, at mid-span, increases with
increasing load. This is shown in figure (3.14) for beam Nos 44,
35, 45 and 46. Up to a span to depth ratio (L/d) of 4.0 the
increase in the vertical deflection is relatively small and gets
larger for ratios greater than 4.0. The same seems to happen with
the lateral deflection of the web at mid-depth, as is shown in
figure (3.15) for the same beams. That is, at comparable loads,
the deflection increases with increasing spans.

Figures (3.16) and (3.17) show the lateral deflection over the
web depth, for increments of load for beam Nos 60 and 61 respect-
ively. These beams were identical except that the first mentioned

beam was loaded through a 12.7 mm long stiff bearing and the other
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one, through a 100 mm long stiff bearing. As could be seen from
figure (3.16) the deflections are small for small and intermediate
loads and become very large at loads near to failure point, as
expected for buckling., The initial deflection due to smail incre-
ments of loading is influenced by the initial curvature present
before any loading is applied. As the load increases, the lateral
deflection increases as well and the crest at which the deflection
is maximum is above the mid-depth line of the web. The value of
the maximum deflection decreases with increase in the length of

the stiff bearing plate.

3.5 CONCLUSIONS FROM THE TEST RESULTS

The test results presented for certain types of loading for
different beam serial sizes show similar behaviour patterns., How-
ever, for the test series where only one beam section size was
tested, obviously, there will be doubts about the behaviour of
other beam section sizes, Different beam section sizes were not
possible to be included into the experimental program due to the
large number of tests already conducted. This point will be
referred to in the final chapter when considering suggestions for
further research.

Some hypotheses were presented to explain the observations
made during the tests for some beams. Later, when comparing the
test results with analytical approaches the validity of these

hypotheses will be discussed.
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CHAPTER 4

CURRENT DESIGN CODES AND PUBLISHED THEORIES

4.1 INTRODUCTION

The design of steel beams is usually governed by limiting

the stresses due to bending, shear, buckling, crushing etc., which
are related to the known yield or ultimate stress of the material,
The effects of 'web bearing', the failure which may result at
concentrated loads if the vertical compression in the web is
excessive and 'web buckling', the failure due to axial force and
out of plane deflections of the web, as are considered in some current
design codes, will be examined in this chapter.

Most of the current design standards, when considering
the web buckling and web bearing behaviour of steel beams,
us€  the technique of the load dispersion method. This is the dis-
tribution of the load through the flanges into the web. A large
number of investigators have examined this subject, mostly in this
country, America and Europe. However, there are variations in the
angle of dispersion. These variations will be considered in the next

section.

4.2 ANGLE OF DISPERSION

In Great Britain BS449(1969), the 'Specification for the Use
of Structural Steel in Buildings' together with ammendment slip No 5,
published 31 July 1975 (5), is widely used in design. When web-
buckling is considered, a 45° angle of dispersion is assumed.
BS 153, 'Specification for Steel Girder Bridges' (6) is also in
use and deals with the web buckling of rolled sections in the same

way as BS 449, When a load is directly applied to the flange of a



beam both the BS 449 and BS 153 specifications consider that it is
dispersed uniformly, through the flange to the connection of the
flange to the web, at an angle of 30° to the plane of the flange.

In America the A.I.S.C. svecification (62) adopts a 45° angle of
dispersion for web-bearing. The same angle of dispersion is also
assumed by Shedd (63) for the case of web buckling. Dispersion is
taken through the root fillets or through the web flange welds
and for both, British and American specifications, the angle of
dispersion is constant and independent of the length of stiff bear-
ing. Shedd's dispersion for buckling is for d/4,

In Holland Voorn (64), in a report written in Dutch, suggests
that the angle of dispersion should vary with the length of bearing
and that it is greater for short lengths of bearings than for long
ones.

The BS 449 and BS 153 codes are considered in more detail,
as it follows, since they are the most commonly used in this

country,

4,2,1 Design to BS 449 and BS 153

For the purpose of the present work the clauses concerning
web-buckling and web-bearing stresses, when the beam is subject to
concentrated loads applied to the flanges or at points of support,
are considered.

a) Web Buckling

The ultimate load due to web buckling PB is calculated from
equation (4.1), which assumes that a length of the web b is acting

as ‘a strut.

B b 401
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In the above expression t is the thickness of the web, fb is the
permissible stress, as given in table (17) in BS 449 or in part 3B,
clause 9 in BS 153 for a slenderness ratio of dv3/t., This slender-
ness ratio has been derived by considering fully fixed conditions.
If the loaded flange is allowed to rotate or is not restrained
against lateral movement then the slenderness ratio should be
increased accordingly. The fb values of table (17) in BS 449 have
been obtained by using the Perry formula for struts, given by

equation (4.2), for a slenderness ratio %-a 30. For %— < 30, fb is

obtained from linear interpolation between the value of fb for

% = 30 by using equation (4.2) and a value of f, = 155 N/mm? for
&= 0.
T
£+ (n+l) C /f + (m+1) C_\2
ko - L (" -£C 4.2
e b 2 2 y o

A factor of safety kl has been introduced and for BS 449 this

factor has the value of 1.7, In the above expression £, is the
minimum yield stress and Co is the Euler critical stress. The
effective strut length b is defined as 'the length of stiff portion
of the bearing (that portion which cannot deform appreciably in
bending) plus the additional length given by dispersion at 45° angle
to the level of the neutral axis plus the thickness of the seating
angle (if any)'. It is also stated that the stiff portion of
bearing should not be taken as greater than half the depth of the
beam for simply supported beams and the full depth of the beam for

beams continuous over a bearing.

b) Web-Bearing
The same argument holds for the bearing resistance of the web,

but instead of a 45° angle of dispersion a 30° angle is considered



in this case. The ultimate load Pc can be calculated from:

BPir=ub ot ® 4.3

In this expression bC is the length of stiff bearing plus the
length given by 30° angle of dispersion up to the level of the
junction of the web and the root radius. The thickness of any
flange plate or seating angle may be included in the same way as

for the previous case,

4,2,1.1 Comparison of the Test Results to BS 499 (1969)

In calculating the ultimate loads in accordance to BS 449,
for the purpose of comparing them with the test failure loads,
the yield stress obtained from the tensile tests is used.

The theoretical BS 449 ultimate loads, due to web-bearing
and web-buckling, for all the 90 tests are shown in table (4.1).

In the same table the failure loads are included as well as the
ratio of the failure load to the minimum theoretical load . This
ratio is less than 1.0 for 20 tests, which means that the BS 449
method gives a less than satisfactory safety factor at working

load in these cases. Consequently, for 70 of the 90 tests the ratio
is greater than 1.0 and so for these cases the BS 449 method is
conservative by varying amounts.

The general observations from table (4.1) show that for zero
or very short lengths of concentrated load and for short lengths of
span, the method is conservative. For intermediate lengths of
applied load and lengths of span, the method effects a suitable
factor of safety against failure, and for long lengths of load and
long lengths of span the method is unsatisfactory. It can be seen

from table (4.1) that for all the tests, except for test No 67, this
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¢ Bests Failure BS4§9 BS449 Lowest pex
Series No Load Bearing | Buckling Mode P(BS449)
/kN /kN /kN
lla 255.0 159.10 446,46 C 1.603
7a 260.0 154.02 434.76 & 1.688
7b 270.0 154,02 434,76 C 1.753
I 6b 257.5 155,12 507,73 C 1.682
8a 260.0 314,20 503,23 C 0.827
8b 285.0 314,20 503.23 C 0.907
3 280.0 242,33 463.42 L 1,155
1lla 255.0 159.10 446 .46 C 1,603
5a 310.0 168.21 446.i7 C 1.842
5b 320.0 187.20 461,58 € 1.709
6a 339.0 223,63 488,31 c 1.516
II 10a 410.0 273,96 623.15 C 1.497
12a 450.0 311.65 649.76 C 1.444
1 315.0 233,18 495,92 C 1,351
2a 325.0 199,20 547.60 C 1,631
2b 340.0 199,20 563,29 C 1.707
4b 245.0 | 142,22 442,24 C 1.723
11b 265.0 193,17 473.86 C 1,372
iy 13a 2975 231.03 502.46 C 1,288
13b 340.0 265,75 533,96 € 1,355

C 1Indicates Bearing Failure

B 'Indicates Buckling Failure

TABLE 4.1

COMPARISON OF TEST RESULTS TO BS 449(1969)
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Failure

BS449

BS449

Series Bﬁgm Lﬁ;ﬁ Beﬁiéng Buc?iing L;ggzt 5hT%§EZ§)

14 390.0 272,25 588.27 € 1.433

15 400.0 269,87 642,96 C 1.482

16 420.0 266.93 726,28 ¥ 1.573

18 440.0 265.98 866.01 C 1.654

20 450.0 286,18 867.56 C 1:572

22 455.0 282,95 887.79 C 1.608

4 | 36 330.0 259.77 527.35 C 1,347
37 310.0 249,68 487,12 C 1522

38 200.0 | 25151 | 506.04 C 1,253

39 407.5 299,95 592,08 C 1.425

40 400.0 295,73 586,05 C 1.420

41 397.5 287.33 5735.11 ¢ 1.453

42 390.0 288.74 578,23 C 1.420

43 385.0 277.07 559.23 C 1,462

4b 245.0 152.70 442,24 C 1.604

26a 258.0 180,37 447,19 C 1.430

v 25a 270.0 214,63 463,88 Cc 1,258
25b 320.0 252.00 493,22 C 1.270

26b 340.0 294,33 537.76 C 1.155

24b 350.0 329.10 560,05 C 1.064

TABLE 4.1 (CONTINUED)
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i Baan Failure BSd?Q BS4§9 fowest Pe

Series No Load Bearing | Buckling Mode p(§§§§9}
/kN /kN /kN

27 390.0 388,73 646.44 C 1.003

28 420.0 432,33 689,18 C 0,995

IV R1b 295.0 208.00 525,57 c 1.418

Rla | 420,0 334,42 631.25 C 1.256

R2 460.0 425,13 715,30 C 1.082

4b | 245,0 142,22 442,24 C 1.722

23b | 198,0 134,57 371,29 C 1.471

y 23a | 180.0 115.34 318.24 C 1.561

29a | 140.0 95.34 263.45 C 1.468

29b | 140.0 89.74 247,95 C 1.560

31 208.0 104 .00 381.65 C 2,000

30 270.0 202.60 480.48 C 1.333

32 310.0 312.40 581,19 i 0.992

33 350.0 412,33 659.35 (0 0.849

34 395.0 589.91 766 .34 C 0.670

¥ 50 185.0 105.20 377.39 € 1.759

51 217.5 203,11 456.31 C 1.071

52 240.0 389.63 584,71 C 0.616

53 265.0 576,27 720,07 C 0.460

63 322.5 165.10 429.07 C 1.953
TABLE 4,1 (CONTINUED)




Series o Fiiigre Bziiiﬁg Bugiigig et Pex

No /KN JKN JKN Mode P(BS 449)
63 495,0 500.99 615.31 g 0.988
60 860,0 340,96 1248.64 C 2.474
61 1060.0 662,26 1519.89 C 1.607
64 285.0 177.52 449,00 C 1.605
65 350.0 280,03 507.74 C 1.250
66 460.0 498,54 603,81 C 0.923
67 530.0 846.23 810.35 B 0.626

VI 68 190.0 109,85 394,55 C 1.729
69 180.0 109.49 396.55 C 1.644
70 297.5 406.59 630,33 C 0.732
71 260.0 404,13 624.61 C 0.643
72 140.0 109.74 394,50 C 1.276
73 127:5 109,57 394,52 C 1.164
74 190.0 406.02 628,55 C 0.468
75 1725 407,14 630.58 C 0.424
44 237,5 125.83 404,07 . C 1.887
35 215.0 136.82 455.16 C 1.571
45 145.0 125,05 392,60 C 1,160

VII
46 100.0 125.26 393.49 c 0.798
48 300,0 159,86 460,14 C 1.877
47 A 159,37 458,75 C 1.710

TABLE 4.1 (CONTINUED)
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Series R Fiéigre Bzzi:ig Bugiigﬁg howsst Pex
No /KN kN kN Mode P(BS 449)
49 155.0 159,21 462.48 C 0.850
58 250.0 205.26 468,45 C 1.218
59 168,75 | 129.96 267 .81 C 1.298
VII 54 470.0 413,81 596.10 C 1,136
55 430.0 415.94 603,04 C 1,034
56 350.0 421.91 621,79 C 0.830
57 280.0 443,66 632,03 C 0.631
77 240.0 133,28 413.33 C 1.801
76 260.0 207.75 472,39 C 1,252
VIII 78 300,0 159.01 416.97 C 1,887
79 390.0 600,38 779,11 C 0.650
80 250.0 133.26 412,20 C 1.876

TABLE 4,1 (CONTINUED)
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method indicates bearing failure. However, the calculated buckling
load for test No 67 was quite near to the bearing load. It has
been mentioned in chapter 3 that the beams seemed to fail in an
elastoplastic manner and probably this is the reason why the method
gives so conservative bearing loads.

For beams tested for end failure, that is for test series I
to V, the method gives safe results except for two cases namely
test Nos 8a and 8b in series I. The theoreticai buckling loads are
always unsatisfactory as well as the bearing loads for large lengths
of the applied load.

For beams of series VI, tested for central failure, the
method gives conservative bearing loads for short lengths of
applied load and unsatisfactory results for large lengths of load,
For both cases the theoretical buckling loads are unsatisfactory and
for some cases the ratio of the failure load to the minimum theoretical
load is below 0.5. This is shown in figure (4.1a) where typical
theoretical failure loads are compared with the test failure loads
of beams of the same serial section. Figure (4.1b) shows the com-
parison of typical test results with the theoretical loads for beams
in series VII, namely beam Nos 44, 35, 45 and 46. The effect of
bending, especially for relatively long lengths of span, can be
seen as both, the theoretical bearing and buckling loads, are very
unsafe. This is noticed for different beam serial sizes included

in the same series.

4.2.1.2 Conclusions from the Comparison

It has been shown from the comparison that design according
to BS 449, for web-bearing and web-buckling, gives a variable factor
of safety against failure and in quite a few cases this factor is

less than 1.0. For small lengths of the applied load and small
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FIGURE 4.1. COMPARISON OF FAILURE LOADS AND
BS 449 ULTIMATE LOADS .



lengths of span the factor of safety is well above 1.0, but for
long lengths of the applied load and long lengths of span this
design method is unsatisfactory.

The test failure loads show clearly that the variation of the
load with the length of the stiff bearing plate through which the
load is applied is not linear, as the BS 449 method assumes by
considering a constant angle of dispersion. As mentioned earlier
fully fixed ended strut conditions are assumed by considering an
effective length of dv3/t; this is erronious because the flange
to web connection is insufficient to provide fixed ended strut
condition even when full restraint to the flanges is attained.
Therefore, as the comparison has indicated, the load dispersion
approach is not a practical design method in its usual simple form
and it would need to have many complicated modifications to cater
for the variations investigated in the tests, to make it fully

satisfactory.

4,2,2 Draft Standard Specification

As for the current code BS 449, the draft code limits the
stresses at certain points in the web of the beam due to buckling
and bearing when the beam is subjected to concentrated loads

applied to the flanges or at the position of supports.

a) Web-Buckling

The buckling resistance Pw of the unstiffened web of the

beam is obtained from:
Pw = (b1 -+ nlj t pc

where

b1 is the length of stiff bearing and it is that length which cannot
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deform appreciably in bending. Dispersion of load through a
steel bearing shall be taken at 45°,

is the length obtained by dispersion at 45° through half the
depth of the member.

is the web thickness

is the compressive strength obtained from table (6.2.2) or
figure (6.2.1) in the code with a'= 5,5 and slenderness ratio
X = 2,5d/t, provided that the flange through which the load
or reaction is applied, is effectively restrained against
both rotation relative to the web, and lateral movement
relative to the other flange. Alternatively p. may be deter-
mined using a modified Perry Strut formula, as represented by
equation (4.4), on which the above meJ%TUned tﬁklgg,and figures
are based. The compressive strength P. shall be taken as the

smallest root of:

(Pg - P (&, -P) =npg P, 4.4

is the Euler strength (=m2E/12)

is the design strength (=0,93 fv}

is the Perry factor (= 0.00la(X - A,)) but not less than zero.
is taken as 5.5 |

is the slenderness ratio (2.5 d/t)

is the limiting slenderness (=0.2Vﬂ§E/py}

It is stated that when the load or support reaction is applied

through a compression flange which is stressed to more than 60% of

the capacity, the following inequality shall be satisfied.



F is the applied force

P is the buckling resistance of the web
M* is the applied moment in the member
Mp is the moment capacity of the member

F is the axial compression in the member

A' is the area of the section

b) Web Bearing

The load capacity Pb of the web at its connection to the

flange is given by:

Pb = (b2 + n2) 1 py 4.6

where
b2 is the stiff length of bearing defined as before
n, is the length obtained by dispersion through the flange to the

connection of the flange to the web at a slope of 1 to 2.5 to

the plane of the flange.

4,2.2,1 Comparison of the Test Results to the Draft Code

The ultimate loads according to the draft code have been cal-
culated for all the tested beams. Although it is specified in the
code that the design strength P of the material should be used,
the calculations were carried out using both the yield strength fv
and the design strength P The value of the design strength of
steel, complying with BS 4360, should be taken from table (5.7.1)

of the code for the appropriate material thickness and grade of
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steel. Alternatively p,, may be taken as 0,93 fv but not greater thau

D73 fu where ful is the ultimate tensile strength of the

LE? t

material,

The ultimate loads due to web-bearing and web-buckling for
all the tested beams are shown with the test failure loads in
table (4.2). In this table also the lowest mode is recorded as
well as the ratio of the failure load to the minimum theoretical
load, when the fy and the P, values are considered. As for the
previous code, when the method indicates a bearing failure this
is denoted by 'C' and when a buckling failure is indicated it is
noted by 'B'.

For beams tested for end failure, that is for beams in series
I to V, the proposed method, when the fv values are considered,
would fail to predict five of the results namely beam Nos 8a, 8b,
38, 27 and 28 by a small margin. For small lengths of stiff
bearing the method is very conservative and for larger lengths
of bearing the factor of safety Varies;when the P, values are
considered the method failed to predict only one of these results
namely beam No 8a.

For beams tested for central failure, that is beamsin series
VI to VIII the method failed to predict 18 test results when both
the fy and P, values were considered and consequently the ratio of
the failure load to the minimum theoretical load is less than 1.0.
These cases, marked with an asterisk in table (4.2), were then checked
for the condition given by equation (4.5) and only 9 cases
give unsafe results when considering the fy values and 8 cases
when considering the P, values. The values recorded in table (4.2)
are those corresponding to these cases. It is worthwhile to notice

that the code indicates buckling failure for 7 out of the 9 unsafe



Susten | Teut railuve toad Bearing Load Buckling Load Lﬁggzt _Ekﬂﬂiﬂ L;g:zt Pexp
No /kN on fy on py on fy onpy | g Pon fy ol Pon py
/kN /kN /KN /kN ¥ Y

lla 255.0 207.47 | 192,95 | 269,13 | 260.36 C 1.229 C 1.321

7a 260.0 200,93 | 186.86 | 269.68 | 259,04 C 1.294 C 1.391

7b 270.0 200.93 | 186.86 | 269,68 | 259,04 C 1,344 C 1,445

T 6b 257 .5 199.74 | 185,75 | 268,35 | 257.75 C 1,289 4 1.386
8a 260.0 291,30 | 270.91 | 314.11 | 301.71 C 0.893 C 0,960

8b 285.0 291,30 | 270.91 | 314.11 [ 301,71 C 0.978 C 1,052

3 280.0 204.07 | 189.78 | 262.21 | 254,07 C 1372 C 1.475

1la 25520 207.47 | 192,95 | 269.13 | 260,36 (& 1.229 C Fs521

5a 310.0 212.43 | 197,55 | 276.18 | 265,28 G 1.459 C 15569

5b 320.0 231.41 | 215,21 | 285,74 | 274.46 C 1,383 > 1.487

11| 6a 339.0 270.22 | 251.30 | 303.84 | 291,85 C 1.254 G 1.349
10a 410.0 404.63 | 376.31 | 370.39 | 355.77 B 1,107 B 1152

12a 450.0 404,75 | 376,42 | 392,66 | 377.28 B 1.146 B 1,193

1 315.0 204,07 | 189,78 | 284,64 | 272,22 C 1.544 C 1.660

TABLE 4.2 COMPARISON OF TEST RESULTS TO THE DRAFT CODE

[8748




) Test | Failure Load Bearing Load Buckling Load | Lowest Pex Lowest pex
SeRres N /kN on £, [ on py [Ton fy [ on py MOdz 5aﬁ_¥“‘ St ﬁﬁﬁ_gj
AR/ T e IRy )
2a 325.0 283,77 | 263,91 |290.07 |276.76 C 1.145 (94 1.231
6 2b 340.0 283,77 | 263.90 |290.07 |276.76 C 1.198 C 1.288
4b 245.0 199,11 | 185.17 |275.63 | 263,10 C 1.230 C 1,323
11b 265.0 241,54 | 224.63 | 285,64 | 276,34 C 1.097 C 1.180
13a 297.5 279,63 | 260,05 | 303,54 [293.66 C 1.063 C 1,144
13b 340.0 308.22 | 286.65 |-317.32 | 303.67 £ 1.103 C 1.186
14 390.0 346.00 | 321,78 |346.78 | 337.92 C 1.127 < 9% .
15 400.0 367.18 | 341,47 (390,97 [378.48 C 1.089 ¢ 1.171
16 420.0 363.24 | 337.82 |445,.69 |431.36 C 1,156 C 1.243
% 18 440.0 361.87 | 336,54 (465,39 | 450,43 C 1.216 C 1,307
20 450.0 386,51 | 359.60 |515.32 [496,06 C 1.164 C 1,251
22 455.0 384.93 | 353,98 | 533.02 |512.84 C 1.182 C 1,285
36 330.0 310.40 | 288,67 |315.72 | 303.18 C 1,063 C 1,143
37 310.0 300.64 279.59 |293.41 | 283.30 B 1.056 B 1.094

TABLE 4.2 (CONTINUED)

vl



S Tﬁst Fatlure Toad Bearing Load Buckling Load L;gszt pex_ L;gzzt _EEER_
o /kN on f on on fy | on py ¢ | Ponf Pon p
/| /KN 1 N W y | onpy y
38 290.0 302.96 | 281,75 | 299.92 | 287.68 B 0.967 C 1.029
39 407 .5 360,69 | 335.45 | 374.38 | 360,60 C 1,130 i 1215
40 400.0 352,96 | 328,25 | 366.83 | 353,16 C 1133 C 1,219
i 41 39735 341.73 | 317,81 | 361.89 | 343,99 C 1.163 C 1.251
42 390.0 343,32 | 319,29 | 358,52 | 344,99 C ) 136 C 1.221
43 385.0 327.81 | 304,87 | 350,04 | 336.84 C 1.174 C 1.263
4b 245.0 199,11 185.17 275.63 | 263.10 C 1.230 6 1.323
26a 258.0 226,65 | 210,78 | 268.36 | 257,55 C 1,138 C 1.224
25a 270,0 260,10 | 241,89 | 273,22 | 263,78 C 1,038 C 1316
25b 320,0 297.47 | 279,65 | 290,51 | 280,45 B 1.101 C 1.156
1V 26b 340,0 340.61 | 316,77 | 322.72 | 309,72 B 1,053 B 1.098
24b 350.0 374,79 | 348,55 | 329.96 | 319.75 B 1.061 B 1.095
27 390.0 437.56 | 406,93 | 396.49 | 381,33 B 0,983 B 1.023
28 420.0 481.51 | 447.80 | 425.69 | 410,97 B 0,987 B 1.022
R1b 295.0 262,86 | 244,46 | 327,92 | 312,11 C 22 C 1,207
TABLE 4.2 (CONTINUED)
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N e - T ] o O e
| AN | Y | o fy 2 jon iy ¥
Rla 420.0 | 389,28 | 362,03 | 393.85 | 374.87 | ¢ 1.079 | ¢ 1,160
3 R2 460,0 481.26 | 447 .57 | 446,19 | 414.12 B 1,031 B i A |
4b 245.0 | 199.11 | 185.17 | 275.60 | 263.10 | ¢ 1.230 | ¢ 1,323
23b 198.0 175,33 | 163,06 | 213.23 | 208,98 £ 1.129 C 1,214
Vv 23a 180.0 150,29 | 139.77 | 182,77 | 179.13 C 1.198 5 1,288
29a 140.0 | 124.08 | 115.39 | 153.88 | 148.64 | C 1028 | ¢ 1.213
29b 140.0 116.78 | 108,60 | 144,82 | 139,89 5 1,199 5 1,289
31 208.0 150,12 | 139.61 | 225,22 | 216.09 & 1,385 & 1.490
30 270,Q 253.02 | 235.30 | 286,66 | 275,42 C 1.067 B 1.147
32 310.0 361,17 | 335,89 | 288.91 | 283.66 B* 1,073 B* 1.093
- 33 350.0 460,95 | 428,68 | 316,95 | 310,98 B* 1.104 B 1,125
: 34 395.0 636.72 | 572,18 | 358.52 | 353,55 B* 1,102 B* 1417
50 185.0 147.16 | 136.86 | 221.94 | 213,52 C 1257 C 15552
51 2.5 242,37 | 225,40 | 204,98 199.93 B#* 1.061 B* 1,088
52 240.0 422,28 | 392.72 | 236,72 233,40 B* 1.014 B* 1.028
TABLE 4.2 (CONTINUED)
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L Test | Fatitirel ot Bearing Load Buckling Load |Lowest pex Lowest o~
Sevies [l /kN on f on on f on Mode _ﬁthL Mode  Yor ?
ad| Y| e | ey | on fy Ae o1 Ry Y
53 265.0 602.91 | 560,71 | 270,94 | 266,56 B* 0,978 B* 0,994
62 3225 258 801F 220 .62 1 231,43 | 1222.23 B 1,394 B 1.451
63 495.0 574.95 | 534,70 | 289,69 | 281,55 B 1,708 B 1,758
60 860.0 494,26 | 459.67 | 801,24 | 757,79 £ 1,740 G 1,871
61 1060.0 810,75 | 754,00 | 972,30 | 919,74 G 1. 307 C 1,406
64 285.0 239,15 | 232,45 | 227.49 | 219,55 B 1,253 B 1,298
65 350.0 354,65 | 329,82 | 268,46 | 263,93 B 1,304 B 1.326
VI 66 460,0 572,52 | 532.44 | 315,50 | 308.20 B 1.458 B 1.493
67 530,0 921,08 | 856,60 | 419,12 | 414,38 B 1.265 B 1.279
68 190.0 158,55 | 147.45 | 234,90 | 222,91 G 1,198 C 1,289
69 180.0 158,04 | 146,98 235;49 224 .46 C 1159 G § 225
70 297,5 | 455,27 | 423.40 | 256.95 | 251,14 | B* 1.158 | B* 1.184
71 260.0 452.37 | 420,71 | 233.57 | 228.73 B* 1,313 B* 1,157
72 140.0 158.40 | 147.32 | 188.61 | 183,65 5 0.884 c* 0.950
73 12735 158,16 | 147,09 | 174,38 | 170,13 G 0,806 c* 0.867
TABLE 4,2 (CONTINUED)
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s Tost | paiture load Bearing Load Buckling Load L;:gzt Pex Lazgzt ¥
No /kN on fKI on py | on fy [ on py on 400 o e 5 Pon Py
/K /kN /kN /kN y y
74 190,0 454,66 | 422,83 | 255.19 | 248.56 B* 0.744 B* 0.764
a 75 172.5 454,53 | 422,73 | 230.21 | 225.52 B* 0.749 B* 0.765
44 237.5 172.88 | 160.78 | 242,17 | 232.42 C 1.374 b 1,477
35 215.0 186,02 | 173.00 | 283,32 | 271,08 C 15156 C 1.243
45 145.0 169.83 | 157,94 [ 154,02 | 151.78 B* 0.941 B* 0. 955
46 100.0 169:.55 | 157.47 | 119,07 | 117,71 B* 0.840 B* 0,850
48 300.0 217.32 | 202.10 | 286.41 | 275.60 C 1.380 G 1.484
47 272.5 218,88 | 203.56 | 286.00 | 275,20 C 1.245 % 1.339
VII 49 135.0 218.58 | 203.28 | 153,44 | 151,40 B 0.880 B* 0.892
58 250.0 283,16 | 263.34 | 239,10 | 234,97 B 1,046 B 1.064
59 168.75 174,95 | 162.71 | 174,91 | 172,82 BX 0,964 G 1.037
54 470.0 492,50 | 458,03 | 305.11 | 301.72 B 1.540 B 1.558
55 430.0 495,10 | 460,45 | 309.86 | 306.46 B 1,388 B 1,403
56 350.0 502,48 | 467.31 | 320.61 | 313,72 B 1.092 B 1,116
57 280.0 528.58 | 491.58 | 267.63 | 266.00 B* 1.046 B* 1.053
TABLE 4.2 (CONTINUED)
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Bearing Load

Buckling Load

Lowest

P
exp

Lowest

2 Test | Failure Load exp
Sazles No /kN on f. on py | on fy | on py Egd; Pon f gode Pon p_
/kﬁ /XN /KN /kN y i )

77 240.0 181.29 | 168,60 | 238,44 | 232,04 C 1.324 C 1.423

76 260.0 256,14 | 238,21 | 277.64 | 273,94 C 1,015 C 1,091

VIII 78 300,0 182.10 | 169,36 | 239,62 | 233.19 C 1,647 C 1.771
79 390.0 648.70 | 603,29 | 363.23 | 367.72 B* 1,074 B* 1,060

80 250,0 181.28 | 168.59 | 232,29 | 232,50 C 1.379 C 1,483

==
TABLE 4,2 (CONTINUED)
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results and consequently bearing failures for the rest, two,

namely beam Nos 72 and 73. For the buckling failures either the
stiff bearing is small and the span relatively large or large
lengths of stiff bearing and relatively small lengths of span, For
the bearing failures the length of bearing and the span are both
of small lengths.

4.2.2.2. Conclusions from the Comparison

The comparison of the failure loads of the tested beams and
the theoretical ultimate loads according to the draft code,
indicates that the proposed rules are over conservative for short
lengths of bearing but inadequate for long lengths of bearing. This
was noticed from the previous comparison of the test results to
BS 449 (1969), although a different slenderness ratio, angle of
load dispersion and a modified Perry formula is used for the draft
code.

However, if the draft code will be used in future, some
alterations should be made in the proposed rules; if the 'Perry
formula' will be used, in calculating the fb values, a new expression

for the effective length should be formulated.

4.2,3 American Specification

The only limitation the American code A.I.S.C, (1973) places
on the prevention of web buckling is on the clear distance between

the flanges h of beams and plate girders is

b 2 14000 ¢ &

T I
Yy

o

where
t is the web thickness in inches

fy is the yield stress of the compression flange;

otherwise stiffeners should be introduced.
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For web-crushing the compressive stress at the web toe of the
fillets, resulting from concentrated load, not supported by bearing
stiffeners, shall not exceed the value of 0.75 fv; otherwise bearing

stiffeners shall be provided. The governing formulas are:

For interior loads,

R
m = 0-75 fy 4.7-1
For end reactions,
R
m £ 0.75 f}" 4 ol a2

where

R is concentrated load or reaction

t is the web thickness

N is the length of bearing

k is the distance from the outer face of flange to web toe or

fillet.

4,2.3.1 Comparison of the Test Results to the American

Specification and Conclusions from the Comparison

Equations (4.7.1) and (4.7.2) can be written as:
For interior load
R < 0.75 fy t (N + 2k) 4.8.1
For end reaction

R < 0.75 fy t (N+K) 4.8,2

The crushing loads for all the beams have been calculated, utilising
the above equations, and all the values are shown in table (4.3).
As could be seen from the comparison this method is over con-

servative for small lengths of stiff bearings and very unsafe for



Series B;gm EE;;U?EN R(Amer. specif) EEEE
/kN R
1la 255.0 84.75 3.009
7a 260.0 81.98 3172
7b 270.0 - 81.98 3.293
I 6b 257 .5 116.75 2,206
8a 260.0 151.20 1.720
8b 285.0 151.20 1.885
3 380.0 120.63 3,150
1la 255.0 84,75 3.009
S5a 310.0 102,06 3,037
5b 320.0 130,54 2,451
% 6a 339.0 187.25 1.810
10a 410.0 281.71 1.455
12a 450.0 279.98 1.607
TABLE 4.3 COMPARISON

Series Bgzm Eiiéu;iN R(Amer. specif) SEER
/kN R

1 315.0 132,07 2,385

2a | 325.0 133,27 2,437

2b | 340.0 149,40 2,276

4b 245.0 40.67 6.024

11b 265.0 110,30 2.403

13a 297.5 130.88 2.273

13b 340.0 130.88 2.598

it 14 390.0 134.07 2.909

15 400.0 133,27 3.001

16 420,0 131.77 3,187

18 440.0 131,36 3,350

20 450.0 129,13 3.485

22 455.,0 123,48 3,541

OF THE TEST RESULTS TO AMERICAN SPECIFICATION

0ST



Series B;ﬁm EiiiuﬁiN R(Amer. specif) ESEE
/kN R
36 330.0 127,12 2.596
37 310.0 123,18 2enl]
38 290.0 124,10 2,357
39 407.5 154,53 2.637
IT1
40 400.0 150,17 2,664
41 397.5 144,18 2.757
42 390.0 144.76 2.694
43 | '385.0 136,57 2.819
4b 245.0 40,67 6.024
26a 258.0 51.09 5.050
IV 25a 270.0 64.24 4,203
25b 320.0 78,25 4,089
26b 340.0 93,83 3.624

. Beam | Failure |R 5 2
Series (Amer. specif) exp
No Load /kN /KN R
24b 350.0 107.08 3.269
27 390.0 128,32 3.039
28 420.0 144 .54 2,906
Iv
R1lb 295.0 58.39 D052
Rla 420.0 105, 80 3.970
R2 460.0 136,79 3.363
4b 245.0 40,67 6.024
23b 198.0 71,91 2.753
V' 23a 180.0 61.64 2,920
29a 140,0 50,96 2.747
29b 140.0 47 .96 2.919
31 208.0 45,04 4,618
VI
30 270.0 120.42 2.242

TABLE 4.3 (CONTINUED)
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Series Bgzm Egiéuﬁiﬂ R(Amera specif) EEEB
/kN R

32 310,0 199,44 1.554

33 350.0 274,48 1,275

34 395.0 408.94 0.966

50 185.0 44,15 4,190

51 217.5 115.09 1.890

52 240,0 251,30 0.955

VI 53 265.0 387.15 0.684
62 322.5 71.49 4,511

63 495.0 322,49 1.535

60 860.0 171.48 5.015

61 1060,0 370.74 2.859

64 285.,0 73,92 3,855

65 350.0 156.68 2.234

Series Bﬁsm Eiiiuj:N R(Amer, specif) | " exp
/KN R
66 460,0 321,02 1.433
67 530.0 581.17 0.912
68 190,0 47 .57 3.994
69 180.0 47 .41 3.796
70 297.5 270,15 1.101
VI
71 260.0 268.62 0.968
2 140.0 47 .52 2,946
ik 1275 47 .45 2.687
74 190.0 269,75 0.704
75 1iZ2.5 270,39 0.638
44 2a1eS 62.68 3.789
VII 35 215.0 67.45 5187
45 145.0 61.59 2.354

TABLE 4.3 (CONTINUED)

cSt



Series B;ﬁm EE;&U;EN R(Ameru specif) EEEE
/kN R
46 100.0 61.46 1.627
48 300.0 76,56 3.918
47 272a5 76.99 3.539
49 135.0 76,97 1.754
58 250,0 98.21 2.545
VII
59 168,75 62.39 2.705
54 470.,0 254,11 1.849
55 430.0 255,36 1.684
56 350.0 258.83 1.552
57 280.0 272,04 1.029
77 240.0 95.17 2.522
76 260.0 121,22 2.144
VIII 78 300.0 110,46 2.716
78 390.0 415,73 0.938
80 250.0 64.10 3.900

TABLE 4.3 (CONTINUED)
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relatively long lengths of stiff bearings. For 8 out of the 90
tests the method is very unsatisfactory, namely for beam Nos 34,

52, 53, 67, 71, 74, 75 and 79. These beams failed at the centre and
the load was applied through relatively large lengths of bearing .
For the beams which failed at the end the American specification

is more conservative than the British specification.

4.3 OTHER INVESTIGATORS' WORK

4.3.1 Shedd

Shedd in 1934 gave some design guides concerning web vertical
buckling and web-bearing in rolled steel beams. These guides have
been adopted in the A.I.S.C. specification as Hrenrikoff (2) refers.

Vertical or column buckling is the type of web failure in
which the section of web vertically above the bearing plate at the
reaction or below a concentrated load is subjected to column action
and tends to buckle under :it. Shedd recommended that the height of
web for investigating this column action over reaction, depends on
the effectiveness of the restraint against relatively lateral move-
ment of the two flanges. If the top and bottom flanges of the beam
are restrained against lateral movement or rotation the web must
act as a fixed-end column and if only the bottom flange is held in
position it may act as a column having one end fixed and the other
hinged. These cases are shown in figure (4.2a, b) and the lengths
which may be used in applying the column formula is half of the
depth and two-thirds of the depth. For the latter case Shedd suggests
that buckling may also occur as indicated by figure (4.2c) and some
other designers as indicated by figure (4.2d), where the top flange
will be kept in a horizontal plane due to the restraint provided by
the load and the stiffness of the flange.

Shedd suggested that for the web over the reaction the area
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of the simulate column section should be taken as

Al =t (Nr'+ D/4) A.8.1

and for the web under a concentrated load as

A2=t (Np-I-D/Z} 4,8,2

where
Nr is the length of bearing at end reaction

Np is the length of bearing for internal load.

From the expression (4.8.1) and (4.8.2) it is clear that a 45°
angle of dispersion is taken, similarly to BS 449, but only allowed
up to one quarter of the overall depth of the section. For web
bearing he did not recommend any angle of dispersion from the point
of load application. He accepted that the direct stress are
resisted by the length of the web directly below the load.

By comparing the failure loads of the tested beams with the
ultimate loads given by the above expressions this method for end
failure is very conservative, For beams tested for central fail-
ure, in general, is unsatisfactory for small lengths of span ,
loaded by small lengths of load and for long lengths of span and

long lengths of the applied load.

4,3,2 Winter and Pian

When beams are cold formed, the depth to thickness ratio of
their webs are in general greater than 50 and in such cases stiff-
eners cannot be easily introduced. So besides bending and shear
examination it it necessary to design these webs against local
failure at points where loads are applied or at reactions.

Winter and Pian investigated this problem by performing some

136 tests on double and single webbed sections. The loading and
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supporting conditions of these beams are shown-in figure (4.3).
Failure occurred either under the applied load or at the supports.
It is noticed from the test results that there was only a little
difference in the average failure load for double and single webbed
sections., The failure load for end failure was also half of the
failure load for span failure. They represented their results by

two simple empirical formulas for span and end failure respectively

as

P = (15 + 3.25 V1a/t) t2 fy 4,9.1
and

P = (10 + 1.25 Y1a/t) t2 £ : 4.9.2
where

P is the failure load

la is the length of bearing

t is the thickness of single web

From these two expressions it is clear that the crushing strength
consists of two parts: a) the resistance the web could offer for
zero length of bearing and b) the added resistance due to an increase
in the length of bearing. It should be noticed that the depth of
the section is not included in these'ex?ressions and since the
sections used were made from metal of uniform thickness the con-
tributions of the web and flange thicknesses in the above expressions
cannot be detected.

Although the test results of the present work are not directly
comparable with the predicted ultimate loads using the above
expressions, the comparison for the beams in series VI and VII, for
central failure, and beams in series IV, for end failure, are shown

in table (4.4). If the quantity v1a/t is plotted against Pexpftzfy
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Beam 31 30 32 33 34 50 51 52 53 60 61
=
7}
E Jlah 0 2,856 3.994 4.900 | 6,455 0 2.882 5.042 6,531 0 2,936
5]
w
P/tzfy 18,199 | 22,256 | 24,425 | 27,754 | 33.987 16,534 (19.181 | 22.035 | 24,664 | 23.586 | 30.014
Beam 44 35 45 46 48 47 49 58 59 54 55 56 54
=
=
it \/Ia7t 1.449 1.397 1.461 1.460 1.395 1.397 1.392 1.383 1.660 3,843 3.835 3,812 3,829
=
% 2
P/t fy | 20.738 | 16.214 | 13,090 | 8.997 | 23.112 | 21.123 10,337 | 16,242 (19,877 | 29,373 | 26.636 | 21.180 | 16,282
Beam 4b 26a 25a 25b 26b 24 27 28 R1b Rla R2
=
v
= \lla/t 1.414 1,814 2.240 2.586 2.868 3.154 B 15 3.527 1.738 2.748 3.232
E] '
v
P/tzfy 10,202 | 11,170 | 12,084 | 14.322 |"14. 721 15,406 [15.383 | 16,258 | 10.754 | 15,055 | 16.100
TABLE 4.4 COMPARISON OF TEST RESULTS TO WINTER AND PIAN FORMULAS

6ST
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and if Winter and Pians' assumed variables were correct then the
lines represented by equation (4.8.1) and (4.8.2) should have been
the best fitted lines through these points.,

By referring to figures (4.4) and (4.5) it could be said that
Winter and Pians' formulas compared to the test results, for both
types of failure, are conservative for small lengths of bearing

and unsafe for larger lengths of bearing.

4.3,3 Delesques

In 1974 Delesques came to some conclusions concerning the
buckling of webs of slender beams when they are subjected to con-
centrated loads on the upper flange. He gathered his information
from tests performed by Bergfelt (65) Bergfelt and Hovick (66) and
some by Marinoto and Velez, Lyse and Godfrey. Bergfelt and Hovick
used very slender beams, the depth to thickness ratio varied from
50 to 350 which covers a large range of practical applications,

Following Hoglund's procedure, who expressed the resistance
of the web p as p =850 t2, Delesques expressed p as a function
of Et2, where E is the modulus of elasticity of the section. He
carried out an investigation of the possible influence of different
parameters in a graphical form and came to the conclusion that:

1) the elastic limit of the web,

2) the aspect ratio of the beam panel,

3) the stiffness of the beam flange and conditions for supporting
the loads,

4) the depth to thickness ratio of the web de not have any
appreciable influence on the failure load. He concluded that

for all the beams tested, whatever the slenderness ratio of the
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web in which buckling takes place, under the load the resistance
p was greater than 0.04 Et?,

All the tests for the present work have been performed on
rolled steel universal beams. The depth to thickness ratio of the
web (d/t) for the whole range varies from 26,9 to 56.7. Therefore,
the results of these tests are not comparable with the work of
Delesques, since this is based on very slender beams; such sections
could behave in a different way under loading than the universal
beam sections., However, as it has been shown from the test
results some of these factors investigated by Delesques do have an

influence on the failure load of the tested beams.

4,3.4 C,I.R.I.A. Project R.P. 219

In the C.I.R.I,A. project 'Web Buckling of Rolled Steel
Beams'R.P 219, carried out in the Civil Engineering Department at
Aston University, the investigators, using the concept of an
equivalent strut, have shown that the axial load Wa,_for span

failure, is given by the expression

W = — 4.11

where
be is the equivalent width of strut; for this elastoplastic type

of failure it is given by:

be = 0,0125 %’ D + la, where 2- is the slenderness ratio, taken

for this case as 0,75 x 2V3 d/t.
D is the overall depth of the section
la is the length of the stiff bearing

fbr is the buckling stress, obtained by using the formula in the
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appendix B of BS 449 (1969)
L 1is the span of the beam
I is the second moment of area of the section about the axis of

bending.

By using equation (4.11), the theoretical failure loads for the
beams in series VI and VII have been calculated and the comparison
with the test failure load is shown in table (4.4). As could be
seen from this comparison, this method gives unsatisfactory results

for large lengths of stiff bearing and long lengths of span.
4.4 CONCLUSIONS

The various design methods considered here were shown to be
conservative for certain loading conditions and very unsuitable
for others.

Most of these methods use the load dispersion theory for
calculating the effective bearing length which in its present form
gave unsatisfactory results, especially for cases invelving long
spans and long lengths of bearing.

The conclusions that many investigators have drawn from these
tests mainly concern beams more slender than universal beams which

behave in a different manner under load.
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Series | Beam No S}/);n };m Pexp p1:h EE
/XN /XN Bk

31 1,00 | © 208,0 | 201.03| 1.035

30 1.00 | 50,0 | 270.0 | 251.94| 1,072

32 1.00 | 100.0 | 310.0 | 306.93| 1,010

33 1.00 | 150,0 | 350.0 | 353.65| 0.990

34 1.00 | 250,0 | 395.0 | 419.77| 0.941

50 1.40 | © 185.0 | 181.27] 1,021

51 1.40 | 50,0 | 217.5 | 222.96| 0.975

52 1.40 | 150.0 | 240.0 | 297.90! 0.806

53 1,40 | 250.0 | 265.0 | 375.59| 0.705

62 0.50 | © 322.5 | 299.56| 1.077

VI 63 0.50 | 150.0 | 495.0 | 386.97| 1.279
60 1.25 | 12,0 | 860.0 | 799.59| 1.055

61 1.25 | 100.0 1660.0 981.81| 1,084

64 2,00 | © 285.0 | 239.12( 1,192

65 2,00 | 50.0 | 350.0 | 307.39| 1,139

66 2.00 | 150.0 | 460.0 | 352.68| 1.304

67 2,00 | 300.0 | 530.0 | 446.36| 1.187

68 1.00 f 0 190.0 | 188,60| 1.007

69 1.00 | © 180.0 | 179.66| 1,002

70 1.00 | 150.0 | 297.5 | 318.65| 0,934

TABLE 4.5 COMPARISON OF TEST RESULTS TO

CIRIA. FORMULA
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Series Beam No S?;n_ };m Pexp Pth Pexn
/kN /kN pth
FA 1.00 { 150,0 | 260.0 | 302.90| 0,858
72 1.00 0 140,0 | 166.56 | 0,841
VI 73 1.00 0 127,5 | 155.67 | 0.819
74 1,00 | 150.0| 190.0 | 287.20 | 0.662
75 1,00 | 150.0| 172.5 | 271.08 | 0.636
44 0.50 12.7 | 237.5 | 250.74 | 0.947
35 1.00 12.7 | 215.0 | 231.38 | 0,929
45 2.00 12.7 | 145.0 | 165.70 | 0,875
46 3.00 12,7 | 100.0 | 136.38 | 0.733
48 0.50 12,7 | 300.,0 | 296.58 | 1.012
47 1.00 12.7 | 272.5 | 257.88 | 1.057
VII 49 3.00 12,7 | 135.,0 | 170.87 | 0.790
58 3.50 12,7 | 250.,0 | 243.77 | 1.026
59 0.75 12,7 | 168,75| 129.31 | 1,305
54 0.50 | 100.0 | 470.0 | 343,58 | 1,368
55 1.00 | 100.0 | 430.0 | 396.56 | 1,084
56 2,00 | 100.0 | 350.0 | 354.79 | 0,986
57 3.00 | 100.0 | 280.0 | 322,33 | 0.869

TABLE 4.5 (CONTINUED)
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CHAPTER 5
ELASTIC BUCKLING THEORY

5.1 INTRODUCTION

In chapter 4 the current design practices mentioned assume
that the failure of the rolled steel beams could be either due to
local crushing in the vicinity of the applied load, or, due to
overall elastic buckling of the web in which part of the web is
considered as a uniformly loaded strut.

In this chapter an elastic buckling analysis of the web plate
of a universal beam is presented to investigate what relationship,
if any, exists between elastic buckling theory and ultimate strength
of the beam. This theory is mainly concerned with the conditions
and loading which best represent the actual behaviour of the web
plate. In this buckling analysis, consideration has also been
given to the bending; the forces, longitudinal and vertical are

assumed to be proportional to each other.

5.2 ELASTIC BUCKLING ANALYSIS

The web plate of a universal beam could be considered as a
rectangular plate, subjected to different types of loading and
boundary conditions. The influence of the restraint provided by
the flanges is, of course, very important in the analysis of the
plate as it is for a strut. According to the amount of restraint
at its ends, a strut of length b will have an elastic critical load
of between w2EI/b2 and 4w2EI/b2. This elastic critical load is

usually written in the form:

2
p = K T EI

- b2 5.1
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where K is referred to as an elastic buckling coefficient.
Similarly for plates the critical load per unit length Ncr could

be obtained from the following expression:

N = K, —5 5.2

where Kl is an elastic buckling coefficient and D, is the modulus
of rigidity of the plate and is given by D, = Et3/12(1-vz)a The

total critical load PCr can be obtained from:

= = K 1T_D1 3
cr Ncr ¥ kl b °b Bedsd
and by substituting K = Kl %-, then
2
p g I_D, 5.8,2
cr b

Where convenient, for presenting results, both K1 and K will be
used.

When no body forces are present, the St. Venant differential
equation can be used for the analysis as presented by Timoshenko
(12) et al.

2 2 2

3w 3w 3w
— + N + 2N —_
X ax2 y ay2 Xy 9x3y

5.4

qv4 w=N

The elastic critical load could be obtained by solving the above
equation for various boundary conditions. The solution of this
equation becomes more difficult when the Nx’ Ny and ny forces are
not constant throughout the plate, due to variable coefficients,
The energy method is an alternative in solving equation (5.4).
This enables the stability of the plate to be examined in a very

direct and simple way. According to this method, the strain energy
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of bending is equated to the work done by the forces acting in the

middle plane of the plate. The general energy equation is presented

as:
1 [ (OWs2 dw, 2 g B e
- —2— \ I\x (—a‘*f) + N}’ (3}’) + ZI\XY ax 'BTJ dx d'\

2 2 2 2 2
SY1ES 217 caw d B (ENh) aay s
9x 3y 89X oy~ 90X 9y

An expression for the lateral deflection of the plate w must be
found to satisfy the boundary conditions and to make the variation
of the energy equation a minimum. For more complicated loadings
and boundary conditions an approximate method of analysis such as

Rayleigh-Ritz method can be used.

5.2.1 Web Plate of Universal Beam Subjected to Various

Loading and Boundary Conditions

In this section the theoretical determination of the elastic
buckling load of a rectangular plate, for three different types of
loading and various boundary conditions is presented. The applied
load is one of the following forms:

1) Uniformly Distributed

2) Triangularly Distributed

3) Parabolically Distributed

and it is applied on the two opposite longitudinal edges. The
vertical edges are subjected to bending forces. The three loading
cases are shown in figure (5.1); the analysis for the cases shown
in figure (5.la, b) is given in Appendix 2.

The web plate of the universal beam will be considered as a
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rectangular plate with the two vertical edges simply supported or
free and the longitudinal edges simply supported or fixed, due to
the restraint provided by the flanges.

5.2.1.1 Web Plate of a Universal Beam Subjected

to a Parabolically Distributed Load

Consider the plate shown in figure (5.1c), loaded, in the y
direction, in the middle plane by a force parabolically distributed.

This force is given by:
€2

i X0 2% e
Ny_NoY[?+A_+1] -A<=x< 0 5.6.1
x2 2x :
Ny=NoY[A—2—T+ 1] O x e A 56,2
The force distribution in the x-direction Nbx is given by:
. By,
Nbx = No [1 - % 3§ ] 5.7

where

Ny is the vertical compressive force per unit length acting on plate
middle plane

N, is the maximum compressive/tensile value of N, at the edge of
the plate (estimated by elementary means)

N is the longitudinal compressive force per unit length acting on
plate middle plane

N is the sum of the longitudinal loadings Nx and Nb

Y is a numerical factor to be defined later

o is a numerical factor

Various longitudinal force distributions can be obtained by altering

oy in expression (5.7). For example by setting o, = 0 the case of

uniformly distributed force is obtained. The case of pure bending

is obtained by setting @, = 2 and a combination of bending and com-

pression or bending and tension by setting a, < 2or~ao > 2
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respectively. Different boundary conditions will be considered,

as follows,

a) All Edges Simply Supported

The plate in this case is assumed to be simply supported
along its edges so that out of plane deflection along its edges is
not prevented. Along any perpendicular to the longitudinal edges
the plate is free to move in its own plane. The out of plane
deflection of the plate w must satisfy the boundary conditions

along its edges x = + A and y = + B, These boundary conditions

are:
w=0 at x=4%+A and y =+ B S.8.1
azw & 32w a S
2 \,_2'—0 at X = + A&
8x 3y
2 2
3;’+u——§3“"=0 at y =+ B 5.8.3
3y ox

This is for 2A = L', where L' is the overall length of the plate.
It should be noted that the length 2A is an undetermined parameter.
It could be greater, equal or less than L'. In cases, where the
length is greater than L', such as for short plates, this has no
meaning and the limit should be taken as L'. The length 2A is less
than L' for cases of very long plates. An approximate expression
for the deflection w which satisfies the above mentioned boundary
conditions and the experimental observations is taken as

(cos %% + A sin %XJ in the y-direction, which is not symmetrical
about the x-direction, and as a half cosine curve in the x-direction,
The numerical factor X is obtained from the deflected experimental

shape; for the purpose of the present work it is taken as 0,25 .



173

The deflection w is given therefore by the following expression.

TX Ty sinmy .
w = w, cos >+ (cos B YA sl — AR XS A 2.9.1
L! |
w=20 - E—-? X g-A 5.9;2
1
w=0 s S ‘g— SieDed

where ubis the initial deflection in the plate; the deflected
shape is shown in figure (5.2a). By introducing the correct limits

of integration into equation (5.5) this becomes:

A
i %j/[Nx(-g%) 30-'!)2](1 dy = --—-‘/:/ U,‘ g_%)_) o)
=B =A

-B -A

2 2 2

9 d a
21-V) [ + —5 - ax‘*’ay) 1) dx.dy 5.10
ax ay

By substituting now equations (5.6.1), (5.6.2), (5.7) and (5:9.1)
into equation (5.10) and after evaluating and simplifying No can be
obtained from:

N =K HLQ- 5.11
(2B) '

where K is a buckling coefficient given by

(A) 1+ 2% + (%)2 {1+ 165%) + 201 + 4 3%
s 5.12
641 A2 (1 + 8% 6 )
ey (ﬁﬂ Y 5
On 3T

At this stage the numerical factor y has to be determined., From

the simple theory of bending NO can be obtained from
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where P is the applied critical load and L is the span of the beam,
as shown in figure (5.2b). In equation (5.13) P is unknown and

could be obtained by integrating the expression giving the load,

that is
A 2z
X 2x
. R 2 1
P ZNO YO/“L 5 A + 1) dx
A
: ; 2
which gives PmaN Ay 5.14

By substituting this value of P in to equation (5.13) and rearranging

%%% 5,15

| =

'Y=

and therefore equation (5.12) becomes:

(EJZ (1432) + (%32 (1 %16 2% & 2 [1# 4245
K= 5.16
641 , A2 (3+40%) (B+n2) 12T
o e . LdtE
o7 m™

b) Longitudinal Edges Fixed and Vertical Edges

Simply Supported

The loading remains the same as for the previous case, but the
edges y = + B are now fixed; the edges x = + A, as before, simply
supported. An expression for the deflection w must be formulated
which satisfies the boundary conditions, The deflected shape and
the edge conditions are shown in figure (5.3a); the new boundary
conditions are

w=20 at x =t Aand y =+ B Sedlsd
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2 2
22 + v 4. 0 at x = + A 5.17.2
2 2
ax oV
dw _ 0 at vy =% B 5173
av -] o

An expression for w, which satisfies the above conditions is

‘- X TY < WY\ 2 -
w = w, cos EK—(cos 55 * A sin ﬁ—a - A=A L b
Ll
w=20 - §-? X £ -A hd8L2
Lf
w=20 A< xxg s 5,18.3

By following the same procedure as for case (a) the buckling

coefficient K is given by,

2.3.4

3 A,2 2
QI+31 7 ) + (EJ (4+82)

searty + 2(1+16A2-T%;A2
TEI0 2520 121

2 LdtB

A
Z

— - (90161+20184°) + L

110257 =

B, 2 )

Ki=

5,19

c) Longitudinal Edges Simply Supported and Vertical

Edges Fixed

As for the previous two cases the loading remains the same.
The edges y = + B are now simply supported and the edges x = * A
are fixed. The expression for the deflected shape must satisfy

the new boundary conditions which are:

n
4
o~}

w=0 at Xx =2 A and y

54.20,1
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%% = at x'= £ A 52002
2 9
3§+u“§=o aty = + B 5,20,3
v 90X

Such an expression can be written in the form

= 2 mx TY o AN ‘!
w = UJO cos ﬁ (COS ﬁ + X 51n B—) A< x g A ST B o
Ll
w=0 -i—-é X £ -A BaZlcd
w.= 0 A?X.S-z—- 5,21,3

and the deflected shape is shown in figure (5.3b). By following
the same procedure as before the buckling coefficient K can be

written as

2 2
(%]2 (1+A2) - (%)2 (1+EI;6A ), Q+42)

K = < 5.22
160 , A (4 s12) (1+43%) . 31
2 B LdtB
97 4

d) Longitudinal Edges Simply Supported and

Vertical Edges Free

For this case the longitudinal edges, that is y = + B, are
simply supported and the vertical edges x = + A are now free. The
deflected shape can be expressed as:

Ty

A IX (cos T in T
w = 6, cos 5= (cos 55 * A sin ) 0

S B Sl

A\
=
S

w
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where 2a is the wavelength as shown in figure (5.3c). The quantity
2a is not yet determined; by following the same procedure as for
the previous cases and by introducing the correct limits when

integrating, the buckling coefficient K could be written as

-

a_ . mA, B“ 2 1 2 1 2
(A+;51na-a =g (1+27) + —7 (1+16)17) + —— (1+4) ))

K = da 4B 2a 5.24
= 3 2 o
Sy a-dsin B 00 ey @ Zpein AL 2

4a” o 4B AT * Am

It should be emphasized at this point that the correct limits

of integration in the x-direction, -A and A, are the actual dimen-
sions of the plate, that is 2A = L'; this means that the applied
load is considered as acting along the whole length of the plate.
It is worthwhile noting that for a = A equation (5.24) becomes
identical to equation (5.12), for the case (a) when all the edges
are simply supported and the wavelength is equal to the length

of the plate. By denoting F = 2 and p = %-then equation (5.24)

B

can be rewritten as:

Rage %EJ ((1+:\2)+ 1+16%) | (1+412)}

(D T 4 4 2
K = 4F 2F 5.25
2 3 ¥
1 E_. wh, 64X G 2 D 2F 2F ... mD
(D-=sin—) —= + —(1+4)7) (=+—- =— sin -
4P§ T F g_ﬂ_Z 4D 3 DﬂZ DZWS F

where C = 12I/BLdt and therefore y, given by equation (5.15) could

be written in the form:

L1 1k &
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e) Longitudinal Edges Fixed and Vertical Edges Free

The loading conditions remains the same as for the previous
cases, the only difference being that the longitudinal edges are
now fixed and the vertical edges free. An expression for the
deflected shape which satisfies these new boundary conditions can
be written in the form:

%%—+ A sin %XJZ 0

™
w=w_cos — (cos

0 2a Rk

A\
=
A
(3

and it is shown in figure (5.3d). The limits of integration
for the wavelength a are the same as for case (d) and the expression

obtained for the buckling coefficient K is given by:

K= "0 0
T 5.28.1
0
where
. I TA
Po B A imisifi o) 5.28.2
A%, 5. o % g U 2 4
Q = (—7 G+ 3"+ 32 + = (4+280° + 6m") +
16a 4B
2 2 22 4
(1% 164" « o+ 407} 5.28.3
4a
1 a . TA 4 3
Ty = (=5 (A - = sin =) ——— (90162 + 291841") +
° 4a° - 2 " 110257
A 2&3 TA 232 2 4
L2(g--—zjsina-—+—-—2-(1-|-10>\ + 421)) 5,28.4
4B A"m AT

By substituting a = A in the above expression it becomes identical

to equation (5.19), for the case when the vertical edges are simply
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supported and the loaded edges are fixed; the wavelength is equal

to the length of the plate, that is 2a

2A = L' similarly to

the latest case, setting F = % and D = % and by substituting back

into equation (5.28) this becomes:

2 e
k& == 5:29.1
where
F mD
P= D+ —sinie] 5.29,2
I 3 2iig g Y 2 4
Q = (;;Z'(Z'+ AT+ ZAT) + 7 (448207 + 6407) 4
Lot it B '’
E‘j‘c * 1607 - gy ¢ 407)) 5.29.3
F
1 F . D 4 3
T=(— (D - =sin =) (90162 + 291841%7) +
ap? U F 7 1102502
G D 2F D  2F% 2 4
5 G- Fxsing+—) @+ 100" + 447)) 5.29.4
F 2
D D

5.3 DETERMINATION OF THE BUCKLING COEFFICIENT

It is obvious that the buckling coefficient K for a particular
plate, that is when the quantity 2B has a fixed value, is a function
of the wavelength and in order to determine the smallest possible
buckling load it is necessary to minimize K with respect to the
wavelength. The resultant expression obtained for K can be written

in the form
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T Numerator
‘Deyomin ator

F and setting %%-: 0, a value for F and therefore for the wave-

and by differentiating this with respect to

length a can be obtained for which K is a minimum, that is

< - d -
%% = Denominator x %F (Numerator) - Numerator x %f-(Denomlnator) =0
The resulting expressions, after differentiation are given in

Appendix 2 with the flow chart of a computer program, written

to solve this problem.

5.4 CALCULATION OF THE ELASTIC CRITICAL LOAD

As could be seen from equations (5.25) and (5.28) the buckling
coefficient K can be obtained for various aspect ratios D(= A/B)
of the plate and for different values of bending stresses by
altering the quantity G(=12I/LdtB).

A universal beam section, namely 406 x 140 x 39 kg has been
chosen for demonstrating the procedure for calculating the elastic
critical load. The first step is to keep the bending stresses
constant and obtain the variation of K with the aspect ratio A/B,
say for simply supported conditions, using equation 5,25, for a
0.5 m span, The aspect ratio A/B versus the buckling coefficient
K plot is marked, in dotted line, as (a) in figure (5.4). As has
been mentioned before there is a limitation in the value of the
wavelength a, therefore, the case when the vertical edges of the
plate are simply supported will be considered as well. For the
same values of aspect ratio A/B and the quantity G a plot of the
aspect ratio versus the buckling coefficient, using equation 5,16

is obtained and it is marked, in dotted line, as (b) in figure
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(5.4). Now these two curves, marked (a) and (b) are combined and
the resultant curve is marked, in solid line, as (c) in the same
figure.

Exactly the same procedure is repeated for different lengths
of span, obtaining a series of graphs. The next step is to repre-
sent in a graphical form the variation of the critical load P with

the span L. Rearranging equation (5.13), P can be obtained from:

81
P = NO " TXe 5.30
where No is given by the expression below
Dlﬂz
N = K
o (23)2
and equation (5.3), therefore, becomes:
2
P = o o 5,51
_7(283 at i

If the overhang at each end of the beam is denoted by X, then the
total length of the plate will be L + 2x (=2A). By considering
the curve (c) in figure (5.4), the buckling coefficient for this
particular case is obtained utilising equation (5.31), and the
elastic critical load can be calculated. The same steps are
repeated for the other case when the longitudinal edges are fixed
and the vertical edges free and simply supported for the proper
limits. Finally the two theoretical extreme curves corresponding
to the cases when the longitudinal edges are simply supported and
fixed are obtained. These two curves are shown in figure (5.5).
In the first case the restraint provided by the flanges is zéro

and in the other case the flanges provide infinitely large restraint.
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The same procedure is followed for determining the two theoretical
extreme curves for other beam sections. For the purpose of this
work theoretical curves are shown only for those sections used

for testing.

5.5 EXPERIMENTAL CRITICAL ELASTIC LOAD

In the previous sections the theoretical elastic buckling
load for various boundary conditions has been determined. For the
purpose of any comparison, the load at which the web of each beam
attained its elastic critical load must be established. There are
two possible ways of achieving the above by utilising the test
observations. The first one is from the strain behaviour and the
other one from the deflection behaviour in the web of the beam.

These ways will be discussed in more detail, as follows.

5.5.1 Web Behaviour from Strain Recordings

If the web plate of the beam is considered as an isolated
plate, it is then a stable symmetrical system. Such systems when
they reach their critical elastic load have an alternative
equilibrium position to the flat position, a similar behaviour to
struts when they reach their critical load they have an alter-
native equilibrium position to the flat one. At this stage the
out of plane deflections, especially at the vicinity of the applied
load, increase considerably and such increases would influence the
membrane stress, obtained by the strain gauge recordings, attached
to the extreme fibres. It can be seen from the deflection and
strain observations of the tested beams, presented in chapter 3 and
the strain and deflection recordings in Appendix 1, that the only
time that sudden changes in these readings were obtained was at

failure,
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Hence, from the strain gauge recordings of the beams it
appears that these did not attain their elastic critical load

before the overall failure load.

5.5.2 Critical Load Using Southwell Plot

Southwell (67) in 1932 devised a method of obtaining the
critical load from observations of applied loads and lateral
defiections.from tests; these tests were conducted on struts
having small imperfections. He verified that equation (5.32)

below, as it is given also by reference (12) is true

W, = Do

where

w_ is any initial lateral deflection present at the centre of

the strut.

En is the additional deflection at a load.

P, 1is the nth critical load for the perfect strut, the smallest
is pcr’

P is the axial force

W and Eh are represented by a Fourier series. As Pn approaches its
critical value the first term of deflection, 015 becomes pre-
dominant and the deflection § at the centre of the strut can be

represented by a rectangular hyperbola as
8= w) = —— 5.33

This hyperbola has asymptotes the P-axis and the line P = Pcr’
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as is shown in figure (5.6a). Equation (5.33) can be expressed
as

8 ——
Pcrﬁ—ﬁ—wl

Hence by measuring P and & during testing pcr can be estimated
from the inverse slope of the best straight line fitted through

the points of the § versus §/P plot. It should be borne in mind,
though, that this Southwell approach for calculating the elastic
critical load of an imperfect structure is based on small deflection
theory. The deflections should also be large enough to be signifi-
cant and more predominant than the initial deflectionms.

The Southwell approach has been adopted by other investigators
(68), (69), (70) for considering cases with shells, plates and
frameworks. In such cases the load/deflection curve is affected
by the large initial geometrical imperfections and the critical
load obtained from the Southwell plot must be considered with the
post-critical behavipur of the structure. In these cases the load/
deflection plots are not rectangular hyperbolas but have perfect
equilibrium curves as asymptotes, as it is shown in figure (5.11b).
The plot of & versus &/P gives rise to a curve line in thé post
critical region and it is termed by Roorda (71) as Southwell lines.

When the initial deflection is large and therefore more
dominant than the deflections under load, this initial deflection
can be avoided by shifting the origin of the rectangular hyperbola.
In such cases the resulting plot proved to yield a better straight
line. Southwell in his original paper refers to the change in

slope of the plot when the restraint to the loaded ends is changed.
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5.5.2.1 Southwell Plot for the Beams Tested

It was observed from the test results that yielding occurred
in the web of the beam in the vicinity of the applied load, for a
large number of beams; and this of course, will affect the appli-
cability of the Southwell plot procedure in these cases.

There are many complications when performing the Southwell
plot, such as the 'squaring up' of the flanges., This effect
produces, in many cases, initial deflection to the web which is
more dominant than the deflection under load. In such cases,
if this effect of initial deformation of the web is avoided by
shifting the origin, the Southwell plot yields more satisfactory
results. Also the lateral movement of the flanges under load
reduces the restraint provided to the web and, therefore, affects
the applicability of the Southwell plot.

Figure (5.7) shows typical Southwell plots for beam Nos 25a
and 26b in series IV, tested for end failure. These plots show
an initial curve followed by an ill-defined straight line. It
was found that for many beams which failed at the end, the Southwell
plot could not work.

Figures (5.8) and (5.9) show typical Southwell plots for
beam Nos 54, 55 and 56 respectively in series VII, which were
tested for central failure. These plots show well defined straight
lines, giving critical loads quite near to the test failure load
of the beams.

In general, the Southwell approach for determining the critical
elastic load was found to be inapplicable to the beams of the
present work and further comments at this point would be of little

use,
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5.6 COMPARISON OF THE DEVELOPED THEORY WITH OTHER

PUBLISHED ANALYSES

The results achieved by the elastic theory cannot be directly
compared with other results, since t@ the author's knowledge such
a loading type has not been considered before. However, if the
bending forces, acting along the longitudinal sides of the plate,
are ignored, then the case of a plate compressed by two equal
and opposite forces acting in the plane of the plate is obtained;
these forces are parabolically distributed and the case when all
edges of the plate are simply supported is considered. As has
been mentioned earlier in this chapter, similar cases to this have
been examined by Timoshenko (12) and Leggett (26), and it is worth-
while comparing them.

Table (5.1) shows the values for the buckling coefficient
K, for different aspects ratios, obtained by Timoshenko, Leggett
and by the author. These values are also presented in a graphical
form in figure (5.10). From the results of the calculation for
various values of the aspect ratio, the critical load P for a
square plate obtained by the theory is 2.766n2Q/b, while that
obtained by Leggett is 2,456 nzq/b and by Timoshenko 1.907 wzq/b,
The fact that the results obtained by this theory are higher by
about 11,17% and 31.06% of those obtained by Leggett and Timoshenko
respectively can be seen from a consideration of the loading.

For this case it is assumed that the load is applied along the

whole length of the plate and not as a concentrated one. As the
aspect ratio increases this difference in the value of K reduces,
and for an aspect ratio of 2 this theory gives lower results than

those by the other two investigators.
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1.5 1.416 - 1.652
2.0 1,310 1.507 1,338
255 1.282 1.470 1.207
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o 1.274 - <

TABLE 5.1 VALUES OF THE BUCKLING COEFFICIENT
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The applicability of this theory is discussed in more detail
in the next section, where it is compared to the test results of

the beams.

5.7 COMPARISON OF THE DEVELOPED THEORY AND

THE TEST RESULTS

It has been shown earlier that the elastic critical load of
the beams could not be determined from the test observations, and,
therefore, the test ultimate loads of the beams attained are
used, when the developed elastic theory is compared to the test
results.

Figures (5.11) to (5.15) show the extreme theoretical curves
for the beam section sizes used in the tests and the test ultimate
loads of the beams,

Figure (5.11) considers the 406 x 140 x 39 kg U.B. section
and the failure load of all the beams of this section, tested
for central failure, in series VI and VII, Theoretically, if
the failure of these beams was an elastic one, and the initial
assumptions fully applied, the test ultimate loads should lie
between the two extreme curves. Unfortunately this does not happen
for some cases; this can be explained by the fact that these had
a relatively long length of span and were loadéd through small
lengths of stiff bearing. For short lengths of span the flanges
provide larger restraint to the web than for long lengths of span.
Similarly, when the load is applied through large lengths of
stiff bearing the flange provides more restraint to the web than
when it is applied through zero or small lengths of load, where in
such a case the beam is more likely to crush under the load point.

As has been observed from the tests, the area of the web at its
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junction with the root radius, under the load point, yields at
relatively low loads and thus reduces the restraint of the loaded
edge.

Figure (5.12) considers the 245 x 102 x 22 kg U.B. section
and as can be seen only two of the test results lie between the
theoretical extreme curves, namely beam Nos 34 and 79. These had
1.0 m span and loaded through a 250 mm long stiff bearing. The
rest of the test results lie below the lower extreme curve and could
be explained in the same way as for the previous section.

Figure (5.13) considers  the 254 x 102 x 28 kg U.B. section
and as could be seen all the test results for these beams lie below
the lower extreme curve. These beams were of different length
of span and loaded through a 12.7 mm long stiff bearing.

Figure (5.14) considers the 457 x 191 x 98 kg U.B. section,
for the beam Nos 60 and 61. These were of the same span and loaded
through a 12.7 mm and 100 mm long stiff bearing respectively;
both results lie below the lower extreme curve.

Figure (5.15) shows the extreme curves for the section
254 x 102 x 22 kg U.B. section and considers the beams which
failed at the end. The ultimate loads shown are those attained
by the beams, that is the total loads. As could be seen from
this figure the majority of the test results lie below the lower
extreme as these beams were supported by relatively small lengths

of stiff bearing.

5.8 CONCLUSIONS FROM THE COMPARISON

It appears, from the comparison of the developed theory to the
test results, that only a few beams failed elastically, Figures

(5.11) to (5.15) show that the restraint provided by the flanges
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is more for the slender beams than for the less slender ones,
However, despite the fact that slender beams have thicker
flanges than the less slender, namely beam section 406 x 140 x 39 kg
which has the highest slenderness ratio of all the universal

beam sections, these flanges are far smaller than necessary to
provide sufficient restraint to the loaded edges.

It was noticed that beams indicating elastic buckling failure
were of the 406 x 140 x 39 kg U,B. section, mainly of small lengths
of span and loaded through relatively large lengths of stiff
bearing. Such type of loading provides more restraint to the
loaded edge and represents best the loading and conditions assumed
in deriving the theory. The other less slender beam sections used
in the present work do not appear to indicate an elastic buckling
failure, particularly when the beams were loaded through small
lengths of stiff bearing or knife edge load. In these cases the
restraint of the loaded edge is reduced at low loads, due to the
effect of yielding at the area of the web at its junction with the
root radius.

Even so, in cases where a beam appeared to have an elastic
buckling failure, this was accompanied by a local crushing and

flange yielding in the vicinity of the applied load.
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CHAPTER ©
LOCAL CRUSHING THEORY

6.1 INTRODUCTION

When a universal beam is subjected to concentrated loads on its
flanges in the plane-of the web, yielding occurs at the junction of
the web and the root radius in the vicinity of these loads. This
local failure probably initiates the failure of the beam as a
whole; it could either be an elastic buckling failure, due to the
reduction in the restraint provided by the flanges to the web, or
a local crushing failure, as the flanges are distorted and the web
undergoes large out of plane deflections reaching its yield stress
at the outer fibres at a load much lower than the elastic critical
load.

In this chapter a local crushing in the flanges accompénied
by a yield line pattern in the web is examined. Most current
design practices, when considering local crushing, assume that the
beam fails when yielding occurs at the junction of the web with
the flange, without considering the flange strength or web
resistance in the area which has not yielded. Also no consideration
has been given to the bending of the beam as a whole. The theory
developed considers such factors and its applicability is examined
when compared to the test results.

Also in this chapter an expression for the minimum thickness
of the load spreader is formulated, since in the derived theory
it is assumed that the load is applied through stiff bearing

plates.
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6.2 LOCAL CRUSHING THEORY FOR CENTRAL FAILURE

The local crushing failure and the flange yielding mechanism
assumed to form is shown in figure (6.1). The applied load
P has moved through a vertical distance A, causing distortion in
the flange and thus formation of the plastic hinges due to rotation.
At the same time the web, at the region of the root radius has
yielded a total length of 2L1 +1a, where L1 is to be defined
later and la is the length of the stiff bearing plate.

According to the principle of virtual work, the work done by

the external forces will be equal to the work done by the internal

forces.

8+ 2w L E+wlaa 6.1

Poll = 2 MPF g +12 MPT 13

The displacements and rotations are assumed to be small.. The
axial stresses in the flange due to bending are assumed to be
small enough to not significantly affect the plastic moment of
resistance of the flange. In equation (6.1) MPF is the plastic
moment of resistance of the flange under the applied load and
MPT is the plastic moment of resistance of the flange at the ends
of the failed zone and could be written as MPT = QMPF, where «

is a factor describing the shape of the 'T-section' of the flange
and web taking part. The value of this factor will be determined
empirically and it could be said at this point that considering
the effect of bending stresses'in calculating MPF and MPT would
only change the value of a. As the angle 6 is small it could be
written that 6= tan € =1&/L1 and equation (6.1) after simplification

becomes
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0L, + M.
Pt e 6.2
Ll I a

In this expression the only variable is the quantity L, and the

1

failure load will be a minimum when

~2(Mpp + Mpp) I
)
1

oP

—= 0 =

aL4 L

and rearranging, L1 is obtained from:

20 + M)
L, =/ - 6.3

By substituting this value of Ll and the corresponding one for

MpT into equation (6.2)

P =V2w M (I+a) + w 1 6.4

As shown in figure (6.1) w = fbt, where fb is the compressive
stress, assumed to be uniform. This stress cannot exceed the
value of B fyr’ where B is a factor and fyr is the yield stress of
the section at the root radius. The value of the factor B depends
on the overall bending in the section, that is on the longitudinal

compression and on the length of the applied load and it will be

determined in the following section. By substituting MPF" 1 pr? frf

and w =B t fyr into equation (6.4).

P = TV 2Bgt (1+u]fyrfyf + Btfyr 1a S

In this expression both the factors a and B are unknown and by

rearranging, a is obtained in terms of B, thus
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P - Stfvrla
o = - - 1 6.6

2
2T BBtfyr fyf

6.2.1 Determination of the R-Factor

The B factor may have values greater than, equal to or less
than 1,0, For zero or small lengths of stiff bearing, the limit
to be defined later, R is greater than 1.0 and it is obtained from
the Distortion Energy theory or Von Mises yield criterion. For
large lengths of stiff bearing B is obtained from a yield line

analysis,

6.2,1.1 Von Mises Yield Criterion

According to Von Mises yield criterion yielding begins when
the distortion strain energy equals the distortion strain energy

at yield in simple tension. For the general case of stresses 9

9, and oz the condition for yielding is

2 2 2 2
(Ul— 02) - (02 - GSJ + (cl - cs) = va G

o

In this particular case, considering two dimensions only, Og = 0

and equation (6.7), by substituting gy ™ fbc and o, = fb’ becomes
B owf £ wf = F 6,8

where fbc is the bending stress in the beam. After substituting for

f, and rearranging, g can be obtained from

e e +/1_£"fb_C)2 6.9
Nt 4\ f 3

and thus the o factor can be examined utilising equation (6.6).
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6.2.1.2 Yield Line Pattern 1

Consider the yield line pattern formed in the web of the beam,
as is shown in figure (6.2); this yield line pattern depends on
the length of the applied load. The work Wi, done by the yield

lines in bending, is given by:

(7] ¥

Wai = i1

1 i tan al) 38 Mw + 2d ¥ Mw 6.10

where M, is the ultimate moment of resistance in bending per unit
length of the web, that is Mw = fth2/4, The work Wz, done by the
bending stress fbc at top to move a horizontal distance AH at

top, is

1
W2 = fbc td QH 6,11

and the work W3, done by the applied load to move through a ver-

tical distance;a, as is shown in figure (6.2), is
s R o g-tan a) A 6,12
3 b a 3 1 =

Equating the work done by the external forces to the work done by

the section in bending along the yield lines, that is W, + W_ = W

2 3 1
L g-tan a.) A+ l-f tdaA =
b a3 1 3 “be H
(1 + E-tan a,) 3 eM + 2dyM 6.13
] 1 w v W X

By substituting £ = 8 f}r’ 8= 6w1/d, Y = 8/ tan a, and

b 1
Mw = f&w t2/4 into equation (6.13) and rearranging
A

d 1 H _

fyr (la + g-tan al) + -3--fbC d e

w 3f w

9 t 1 yw 1

TR, (1a+-3-tanal)a_'+tanat3_ 814

1
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From the derived theory in section 6.2 it was found that the

length Ll_is given by
2
B _(MPF+ MPT) B /B(l+a}fyf
1 W . 28f_t
T

and by considering figure (6.3) this length should be identical

to the length L2, that is

/B(1+a)f
L: = T -————-—XE- = tan a

d
1 28f 't 1 6 Sle
yr
{5(1+a)ff
If the quantity _5?_—??11_ is denoted by M then tan a, can be
yr
obtained from
tana1=§-ﬁ 6.16
/8
By substituting this expression into equation (6.14) and re-
arranging
£ w
3/2 1
1 W -l
1.8 +(M+>5td —Lf T
yr
(ldfl’&é}i_gﬁf_‘il m_l);_gf;fy_wmuil.=o 6.17
5 - £ A 2 d a A d £ A .
yr yr G

The only unknown in this expression is B and can be solved by
using any convenient method. For the present case the Newton
Raphson method is used to solve the equation, which can be

written in the form
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3 2
AOX - Alx + A2X + AS =0 6.18.1
where
A =1 6.18.2
0 a
f w
L 1 w 171
Al = 2M + §-t d 3 i 6.18.3
yr
f 0
1 . %bc AH 9t vy |
Ay=gde =->3 dii e 6.18.4
yTr V&
£ w
u T yw 1
AS ENEi) I 7 M pes 6.18.5
vr

Equation (6.17) can further be simplified, since in practice it

can be assumed that £ . = f = f . By substituting this into
yE | Cywaay

equation (6.17)

£ A 5
3/2 1 1@y (1 be “H 9% . %
1, 8" +(Mszragalies(za 22 A-221 s
[#V]
t )
-9 M =0 6,19.1
and
A =1 6.19.2
(o] a
K B L 2
A =M+ 5tds = 6.19,3
£ A w
o be "H ¢ 1
Az--s-d__fy -3zl 1T 6.19.4
w
4 t 1
Ay = =9 M5 6.19.5

where M now is given by M = TV E_él%il . For the purpose of
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comparing the theory with the test results, equation (6.17) will

be used since this gives more accurate results.

6.2.1.3 Yield Line Pattern 2

Consider the yield line pattern shown in figure (6.4). This
is similar to the previous one, with the only difference being
that the span of the beam is taken into account. The section
shown in figure (6.4) is that one drawn through the line of action
of the applied load.

The work Wl done by the section along the yield lines is

wl = (la + 2x1 + 2L;) 3 8}%r+ 2d ¢Ba¢ 6.20

and the work wz, done by the bending stress fbc at top to move

a horizontal distance AH’ is

1
W2 = g-fbc td &H 6.21

Finally the work W3, done by the applied load to move a vertical
distance A is

Wy = fb t (1a + 2L1} A 6.22
By equating the external work done to the internal work done,
that is W, + W, = W

2 3 1

1 "
Sg ity ar g f t =

(la + 2x1 + 2L1} 3 BMW + 2d ¢Mw 6,23

From the geometry of the figure,
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L - 1a - 2L1 6w 12y
Xy = ;, 6= ~—= and ¢ =
1 12 d L-1 2Ll
and as for the previous case f, = B f and M = f t2/4°
b yTr w yw

After substitution of these parameters into equation (6.23) this

becomes

£ A £ W
1 be H_ 3¢t yw 2
Bt il Be wd o ongg L w8 F 10k o
yr yr
f w
d £ W 2
+ 6 T o1 7 T 6.24
adievi vr

As for the yield line pattern 1, the length L,, obtained from

the theory in section 6.2, is L, = M/VB, shown in figure (6.5),

1

and by substituting into above equation and rearranging.

5 32 2 d % 2B
1,(1-1,)8% + 2(1-21 ) Mg -(4M -(-1) £

3 2 o2t Sy P W“z)
+Z(41aL+L_51a)Ef E_+6dt E_B

[ 4
28]

7 0 6.25

The unknown in this equation is B and can be obtained by any
convenient method of solution. As for the previous case this
expression can be written as

4

= 2
Box + le + B2x + B3x + B4 = 0 6.26.1
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where
BO B la(L—la} 6.26,2
By = 2(L-21)) M 6.26.3
; £ A
S b S e e 2 2
B2 = -k M- - (L-la) 3 ?:;- T T (41a L+ L7 « 51 )
fr w w
o r %
:1: — L 52 . 8a ___f""‘ E:J 6.26.4
Yy yT
£ A £ w
2 be H T VW 2
= - - — 3 2 s .- | e L
B3 SdeY 7 + (La Sla)de ,J_\.) 6.26,5
T yT
f W
r t o2 W 2
B4 = 15 E-M igtees = 6.26.6
yr
and can further be simplified by assuming fyr = fyw - fyfa fy for

design purposes.

6.3 LOCAL CRUSHING THEORY FOR END FAILURE

The mechanism assumed to form in this case is shown in
figure (6.6). By following the same procedure as for central
failure, that is by equating the work done by the external forces

to the work done by the internal forces

21 A
Plr‘}. = MPF e+ MPT 8+WLI 5 * wlaﬂ

and after substituting and rearranging

4 LWy > Wl < g
Mg pnts 7= 2

w L + wl 6.27
1 1

a
BPI

The crushing load P1 will be a minimum when o 0. After
1



w fun tttttttt

¢/¢ T
”‘”\HH‘ T I
2 L'_ e . s



/2 My + M)
differentiation and back substitution for LI::/ = ——
equation (6.27) becomes

P1 = TV 0,5B8 t (1+a) fyr fyf + Btla fyr 6.28

In equation (6.28) 1a’ generally, is the distance from the inner

face of the bearing plate to the end of the beam,

6.3.1 Determination of the B Factor

As for central failure the B factor for end failure is
obtained according to the length of the bearing plate. For small
lengths of bearing it is obtained using Von Mises yield criterion

and for longer lengths from a yield line analysis.

6.3.1.1 Von Mises Yield €riterion

For this type of failure the bending stresses are very small
and the value of B, obtained from equation (6.9) is about 1.0, as
fbc tends to zero. For the sake of accuracy though, the exact

value of B will be calculated for comparing the theory with the

test results. For design purposes it could be assumed as 1.0.

LV

6.3,1.2. Yield Line Pattern 1

Consider the yield line pattern, formed at the end of the

beam, shown in figure (6.7). The work Nl done by the section in

bending along the yield lines is

61

- a 4
w1 o Mw ( G e tan a,

) Wy 6.29

and the work wz, done by the compressive stress to move through

a vertical distance A, is
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W, m £ £l +1)4 6.30,

By equating the work done by the external forces to the work

done by the section in bending along the vield lines, that is

Wy = W2 and setting fb = B fyr
61a 4
R fyr(la + Ll]ta =03 Mw {"H" + tan Bt 39] &3
or
3 R 4 %3
B f}r’r (la : - L1) = I fyw t (—-&-- + tan 32 + tan a‘)_ E— 6,31

In equation (6.31) the angle a, is unknown and can be expressed
in a similar way as for central failure, that is by equating the
length Ll from crushing theory and X for the present case,

Therefore,

tan a, =q/'ﬁ(MPT + MPF]

where M has
6 w

6
or tan az = E

M
43
been defined before. By substituting the above for tan 2, back

into equation (6.31), after simplifying and rearranging

3/2 fw O frw 93 12
4+ M) 8 -2t %- D Eé-s-ls §,1 S EE g
vr ? *yr
# W
t YWY
- 18 E.M T 0 6,32
yr

By setting VB = x as before equation (6.32) can be written as

3 2 '
C0 X o+ C1 X o+ C2 X + C3 =0 65,3351



where
CO = 4 (la + M) 6582
f :
. d "yw ©“3 F
Cl = -2¢ T Bo5A 3
yT
f W=
T ]
C2 = -18 3 1a 7 = 6.33.4
yr
£ w
L t YW '3 "
C3 - -—18 a— M f E_ 6;-‘."5.5
yr
and further be simplified by assuming f _=f _=f = f as for
yr Sy Tyw Ty

the previous cases.

6.3,1.3 Yield Line Pattern 2

Consider the yield line pattern shown in figure (6.8). Although
this yield line pattern looks the same as yield line pattern 1,
the analysis differs because the span of the beam is taken into
account for this case.

The work Wl, done by the section in bending along the yield
lines, is

21, 2L W L1 4d

=6M (— + w 6.34

W J g L
a 1

1

and the work Wy done by the compressive stress fb to move through

a vertical distance A, is

Mo = £ T ) A 6,35

By equating the external work done to the internal work done and
by substituting L, = M/VB, as has previously been obtained, after
simplifying and rearranging, the factor g is finally obtained

from,
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.F
2 = 3’2 3 o .VW 4
161 (L-laJB + M(L-.sla)B - (35?— i SR (i P Ry A <
VT
f w f w 2 w
& YW A e 3tyww R ST, 5. 2
61:c1f ﬁ+_l.}e-23.1f (51+L}ﬁ8+d———é~0
yr yr
6,36
As previously, by substituting VB = x, equation (6.36) can be
written in the form
D x4 + D x3 + D xz # P ¥4 D=0 6.37.1
0 1 2 3 4 5 i
where
%0 =1 (1-1) 6.37.2
% Sa a i o
Dl = M(L-Sla) 63753
£ w £
Dy * -~ Gae— QL & L) (-1} —-6-tid Fogt M) 6.37.4
yT yr
n=--3--t-M5’-‘i(51+L)-m-‘l 6.37.5
3 20 di=F a b S
yr
2 w
_2M™ 4
[)4 T 6.37.6

These terms, as before can further be simplified, by writing

£ =f .=f =f, as it is more likely to happen in design.
o P i

6.4 MINIMUM THICKNESS OF LOADING PLATE

In the theory, derived in the previous section, it was assumed
that the loading plate is stiff, that it cannot bend and can dis-
tribute the load satisfactorily. To satisfy these requirements in

this section a formula for the minimum thickness of the loading
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plate is derived.

6.4.1 Minimum Thickness of Loading Plate for Central Failure

In the theory developed in section 6.2 it was assumed that
the loading plate, used to spread the applied load is stiff and
the mechanism formed has been shown in figure (6.1). A theory
will be developed for the case when the load is applied through
thin spreaders, which may yield at failure, as shown in figure
(6.9a).

Consider the locelcrushing failure and flange yielding
mechanism formed, as is shown in figure (6.9a). The notation
remains the same, as explained in section 6.2 and ¢ is the width
of the secondary member. By equating the work done by the
external forces to the work done by the internal forces in the

system

- ¥ J -ﬂ—
PSA = ZMpﬁi - ZMPTe - ZMPP g+ Zhy 3 + we A 6.38

where Mpp is the plastic moment of resistance of the plate

M_=bt > f /4 and b is the length, t_ is the thickness and
PP P YpP P

fyp is the yield stress of the plate. Since rotations and dis-

placements are assumed to be small, after substitution, equation

(6.38) becomes

K 2(Mpp *+ Mpp + Mpp)

P3 ; + W (L1 + ¢) 6,39
1
aP
and P, will be a minimum when —— = 0, thus
3 3L,
BPS 2
EEI & D= ; (MPT + Mpp + Mpp) + w and therefore

1
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i / 20y + Mpp * Mop)

e e 6.40
By substituting now the above value of Ll into equation (6.39)
2 e -
and the corresponding values for w, NPT’ MPF and Mpp’ Ps is

finally given by

2 2
= BT"
P, /ZBtfyr /r £ p(1+a) + b AL RS 6.41

When the spreader is stiff it was found that the crushing load

is given by

P = TV 2BBt (1+a) E e BBV

At the point when the spreader will just start bending the crushing
load is given by equation (6.41). By equating therefore the

expressions for P and Pz, that is

TV2BE t (lva) £ %

yE + Bt 1a fyr =

2

3
/2 Bt F JBT 1+a)f . + bt f + Rt 1 6.42
yT (1+a)f ¢ p oy Tl

The thickness of the plate tp can be determined by simplifying

and rearranging the above equation as

7
l//zTcla-c;) (ZBEEa) £ F o+ Bt (1-0) £

t= 6.43
P 2bf
ypP
In the case when the applied load is a knife edge load tp is
obtained by setting ¢ = O into equation (6.43), thus
2
J/ 2TlaJ'ZBBt(1+a) fyr fyf + Bt la fvr e

P
2b £
¥P



6.4.2 Minimum Thickness of Loading Plate at Support for

End Failure

When the spreader at the supports of the beam is stiff and
failure occurs at the end it was previously found that the crushing
load is given by equation (6.28). When the spreader is thin,
which may yield at failure, the failure mechanism formed is
shown in figure (6.9b). By equating the work done by the external

forces to the work done by the internal forces it is obtained,

A
P4 A= (MPT - MPF + MPP} 6 +w L1 » # wch
or
M. +M +MP)
=4 PT PF P 1
P4 = L1 - 5 W L1 + we 6,45

The crushing load P4 will be a minimum when

aEy" Mo + Mpp + M)
e == - + =W 6.46
oL 2 2
1 L1
and therefore
2(M .+ M__ + M_)
Lf/ PT wipr- Mpp 6.47

Back substitution of the above expression for L1 into equation

(6.45) and the corresponding values for w, MPF’ MPT and MPP gives

2 2
" 6.48
Py= / 0.58t f ./BT (1+a) fyf - btp £f +Btec f'

As for central failure, the crushing load given by equation (6.48)

above will be equal to the load given by equation (6.28), at the
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point when the plate just starts to bend. Thus,

TV 0.588 t(I+a)f__

vE + Bt 1a fyr =

i 4
JIO,SBt f VHBT“(l+a) £ & bt i £ + Bt ¢ f 6.49
yr yf P Yyp yr

After simplifying and rearranging the above equation, the minimum

thickness of the plate is given by

2
J/ZT(la—c)J 0.5B8t(1+a) £ f .+ Bt(l )" £

t =
¥ 0.5b f
yp

6.50

and for the case when the beam is supported by a knife edge support

that is c =10, tP is obtained from

2T1 ¥ 0,5BRt(1+a) £ f g * Bt 1 25
- a ¥2 v G S 6.51

P 0.5b f
yp

6.5 SUITABILITY OF CRUSHING THEORY AND DETERMINATION

OF OTHER FACTORS

a) Central Failure

The suitability of the crushing theory can be examined after
determining the various factors involved. It was stated previously
in this chapter that, according to the length of the stiff bearing,
the B factor is obtained using different methods. The determin-
ation of the o factor is dependant upon the method used for the
calculation of B. The limit for the length of stiff bearing will

be decided from the comparison of the experimental ultimate load
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and the theoretical crushing load of the tested beams.

The value of a for beams loaded with zero or small lengths
of bearing, that is when B is obtained by Von Mises yield criterion,
can be obtained empirically. The variation of a«, obtained from

equation (6.6), was examined with different variables such as

3 2 AR
%—3 ti and | —%5) for various values on n; finally it was found
2 £ 16
that o varies best with the (-%%) ratio. This variation of

a is given by the following expression

bc

£ 16
)

a = 5,35 - 3.2( Gl

for a web depth to web thickness ratio up to 45. For d/t > 45

o is obtained from

£ . 6
. e )E
o = (5,35 - 3.2 (fy ) T 6.52.2

and for both cases the maximum valué of ¢ is taken 3.75, that is

O g 3.75 65203

In cases where the above expression for o gives a negative value,
this value should be taken as zero. A hegative value of a
indicates that the outer hinges are formed outside the span of
the beam, as shown in figure (6.10), and such a situation cannot
exist. By taking a = 0 it is assumed that these hinges are
formed at the points of support.

At this stage the theoretical crushing loads can be compared
with the test results. The crushing loads for all the beams tested

for central failure, that is beams in series VI, VII and VIII,
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are shown in the fourth column in table (6.1). The B factor is
obtained by Von Mises yield criterion. It can be seen from the
comparison that the theory gives quite satisfactory results for
beams loaded with zero or small lengths of bearing and unsatis-
factory results for beams loaded with relatively large lengths of
bearing. For these cases, as previously suggested, the g factor
is obtained from a yield line analysis. When the yield line
pattern 1 is considered the a factor is obtained from equation

(6.53) below

d L i
o =(7.24 Tie: 1.01 7} for 7= > 1.0 6.53.1
and
24 8 j & sslac 18L<1o 6.53.2
a = (7. g = 1,0 'd—) £y, -&-— ror a— . . °

and for both cases the maximum value of o is taken 5.75 and the

minimum value is zero, as explained before; therefore
D<o g 5.75 653,53

Exactly the same equations are used for determining o when the
yield pattern 2 is considered.

When the yield line patterns are considered for determining
the B8 factor, two variables other than o are involved and must

A

be determined. These variables are the %- and Eﬂ ratio as have

been defined in the theory. As for the a factor, these variables

are empirically derived. When the yield line pattern 1 is con-

w
sidered the El ratio is given by
wl 1

= =(14.75 - 5.6125 &) for - < 5.0 6.54.1
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and
Wy a d
T = @475 - 5615 B aoxE sor ks 6.54.2
®s
When the yield pattern 2 is considered the E:' ratio is
given by
2 L L
Er—=[5u95 - 0.6174 a—] for 3 > 3.0 6.55,1
and
2 L L L
T (5.95 - 0.6174 aa 0.3 I for 3£ 3.0  6.55.2
ﬂH
The ;i ratio for both yield line patterns is given by the
expression

A £
H bc
= = 0.3 - 0,185 (—-—fy ) 6.56

A
: : : H .
The determination of the factors a,-f and ;— is purely
empirical within the ranges of beam sizes tested.

b) End Failure

As for central failure, different methods have been employed
for calculating the 8 factor for end failure. When the beam is
loaded with zero or small lengths of bearing and consequently 8
is calculated by Von Mises yield criterion o is given by the

following expression
d
o =(1.35 + 0.29 ) 5.57.1
a

and the maximum value of a for this case is 4.5, thus
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D <hgli< vd ok B ool

For larger lengths of stiff bearing, when B8 is obtained from a
yield line analysis, a is calculated from the same expressions,
that is from equation (6.57).above. For this case the %- ratio,

for both yield line patterns is constant and it is expressed by

blwe

W
4
oo 175 6,58

For end failure, in general, as 1a was taken the distance of
the inner face of the stiff bearing to the end of the beam and the
failure mechanism formed is that shown in figure (6.11a). As the
stiff bearing moves towards the centre of the beam and consequently
1a increases the failure mechanism is as given in figure (6.11b).

For both mechanisms the crushing load P. is obtained from

1

b Tv 0.5B8t (1+a) £t vBEL o 6.59

yf

Where 1 =1"'" +1
a a e

For further increases in the value of 1a a stage is reached where
the above mentioned mechanism cannot be formed. Instead of that
the yield mechanism shown in figure (6.11c) is assumed to form

and the crushing load P2 for this case is given by

P, = TV 2BRt (1l+a) fyr f

yf flBt 1a fyr

where 1 = 1"
a a

Therefore, for large lengths of 1, both expressions should be
examined and that one which yields the lowest crushing load should

be used in design.
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6.6 COMPARISON OF LOCAL CRUSHING THEORY TO THE

TEST RESULTS

The theoretical crushing loads, calculated using the developed
theory, are shown in table (6.1), with the test ultimate load,
for all the beams. As can be seen from this table three values of
theoretical load are obtained for all beams. The three values are
obtained for different values of the g factor using 1) Von Mises
yield criterion, 2) yield line pattern 1 and 3) yield line pattern
2o

For beams loaded through relatively large lengths of stiff
bearing, as explained in the previous section, the g factér is
obtained from a yield line analysis; the crushing loads are cal-
culated when both yield line patterns are considered. Included
in the same table is the ratio of the experimental failure load
to the theoretical crushing load of the beams to be taken for
design purposes. This theoretical load has been calculated con-
sidering the various methods for obtaining B, depending on the
d/la ratio.

It can be seen from table (6.1) that the theoretical load
for the beams in series I to V which failed at the end, is close
to the test failure load and in a few cases only the theory failed,
by a small margin, to predict theltest ultimate load. When the
8 factor is obtained by Von Mises yield criterion, the theory gives
safe results for beams supported by small lengths of bearing and
unsafe results for beams supported by relatively large lengths of
bearing. For these cases when the B factor is obtained from the
yield line patterns, the calculated theoretical loads given by

this method are quite safe,
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Series | Beam No P?;E g ?iNI-M "2 3iN¥.LJ,P3 ?iNI;LGZ pg:p pgzp pg:P %;_ E;g :ga%
11a 255.0 | 224,91 164 .46 257.18 1.134 | 1,551 | 0.992 | 17.677 [224,91 | 1.134
7a 260.0 | 228.39 168.11 260,94 1.138 | 1.547 | 0.996 | 17,677 | 228,39 | 1.138
7b 270.0 | 229.55 168.11 260,94 1,176 { 1.606 | 1.035 | 17.677 |229.55 | 1.176
I 6b 2575 216.65 164,64 251.89 1.188 1.564 1,022 17,677 |11216.65 | 1.188
8a 260,0 | 218,98 167,21 257,24 1,188 | 1.555 { 1.011 17.677 | 218.86 | 1,188
8b 285.0 | 219.98 167,21 257.24 1,295 1.704 1.108 17.677 | 219,98 | 1,295
3 280.0 | 233.89 162.43 249,32 gt 1.724 3.123 17.677 | 233,89 | 1,197
l1a 255.0 | 224,91 164,46 257.18 1,154 | 1.551 | 0,992 | 17.677 |224.91 | 1.134
S5a 310.0 | 235,22 168.92 260,88 918 | 1,855 ¢ 1,188 | 13.731 | 235.22 | 1.318
5b 320,00 09270,75 173.79 265.29 1,181 1,841 1.206 10515 | 270,75 |'1.181
- 6a 339.0 | 329.08 180.67 250,52 150301 1,876 1,353 7.161 | 329,08 | 1,030
10a 410.0 | 364.90 204,32 291.28 1e124- | 22007 1.407 5.429 [364,90 | 1.124
12a 450.0 | 359.64 211,86 295,78 1. 251 2,124 1.521 4,372 | 211,86 | 2,124
* V.M. Indicates Von Mises Yield Criterion
+ Y.L.l Indicates Yield Line Pattern 1
t+ Y.L.2 Indicates Yield Line Pattern 2
P

th Theoretical Load for Design According to the d/la ratio

TABLE 6.1 COMPARISON OF THE CRUSHING THEORY TO THE TEST RESULTS



Series| Beam No p?:l{\!) Pl l;z_l\lv’” PZ bjk;'L°l p3 b;k:;“l"z f_g_;fﬂ E%(R pT?;cB (li—a ?lt}l:‘ 1:%!}11
1 315.0 | ‘270.54 297,17 259,74 1.164 106001 1.213 | 17.677 270,54 |1.164
I1 2a 325,01 271,77 299,17 261,03 1.196 | 1,196 | 1,245 | 7.161 | 271.77 |1.196
2b 340.0 272,81 306,28 283.11 1.246 1,110 1.201 7.161 272.81 [1.246
4b 245.0 215.50 165.07 246,70 121357 1.484 0993 ' 17.677 215:.50 P13 ST
11b 265.0 261,96 173,16 282,95 1.012 15530 | 0.937 | 10.515 261.96 |'1.012
13a 297.5 284 .55 190.72 280,59 1,045 1,560 | 1,060 | 7,161 284,55 |1.045
13b 340.0 | 314.91 200.40 286.85 1.080 1.696 1,185 5.429 314,91 |1.080
14 390.0 | 359,56 234,80 280.34 1.085 1.661 1.391 4,844 359.56 |1.085
5 15 400.0 | 400,84 370,93 330,73 0,998 1.078 1.209 3.384 370.93 |1.078
16 420,0 | 540.14 365.49 349,84 0.778 1.149 1.201 25530 365.49 |1.149
18 440,0 | 582.61 356.57 355,76 0.755 | 1:;234 | 1,237 | 2.111 | 356.57 |1.234
20 450,0 | 740,92 379,59 387.87 0.607 1.185 1.160 1.777 379.59 | 1.185
22 455.0 | 783.10 377,56 389,36 0.581 | 1.205 | 1.168 | 1.534 | 377.56 |1.205
TABLE 6.1 (CONTINUED)
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soriduli i Bl B by V.M{ P, by Y.L.1P, by Y.L.2 o ol s i Py fgzp
/kN /kN /KN /kN P P, P, 1 /KN Pth

36 330,0 | 307.38 200,12 350. 85 1,074 | 1.649 | 0,941 | 5,429 | 307.38 | 1.074

37 310.0 | 285.99 183.03 321.71 1,084 | 1,694 | 0,964 | 5.429 | 285,99 | 1,084

38 290.0 | 277.26 232,79 312,42 1,046 | 1.246 | 0.928 | 5.429 | 277,26 | 1.046

39 407.5 | 371,43 216.22 483,09 1,097 | 1,885 | 0.844 | 5,429 | 371,43 | 1.097

o 40 400.0 | 355.42 214,39 405,34 1,125 | 1,866 | 0.987 | 5.429 | 355,42 | 1,184
41 397.5 | 335.76 203.63 384,14 1,184 | 1,952 | 1,035 | 5,429 | 335,76 | 1.184

42 390.0 | 327.81 215,64 385,08 1.189 | 1,809 | 1.013 | 5.420 | 327.81|1.189

43 385.0 | 303.49 199,33 353,76 1,268 | 1,931 | 1.088| 5.429 | 303,49 | 1,268

4b 245.0 | 215.50 165,07 246,70 1,137 | 1,484 | 0.993 | 17.677 | 215.50| 1,137

26a 258.0 | 256.26 175.28 268,97 1,007 | 1.472 | 0.959 | 11.225 | 256.26 | 1,007

IV 25a 270.0 | 276,13 178.09 262,71 0.978 | 1.516 | 1,028 | 7.483 | 276.13 | 0,978
25b 320.0 | 315,08 148.83 183.43 1,016 | 2,150 | 1.745| 5.613 | 315,08 | 1,016

26b 340.0 | 342,24 201.26 283,31 0.993 | 1.689 | 1.200| 4.490 | 201,26 | 1,689

TABLE 6.1 (CONTINUED)
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e Pexp |P1 DY VeM| P, by Y.L.IP; by Yi,2 et | 4 Pis EEEE
/KN /KN /XN /KN Py 7 e a /KN Pth

24b 350.0 | 377.88 320.61 . | 283,63 0.962 | 1.092 | 1.234 | 3,742 | 320.61 |1.092

27 390.0 | 439.25 351.20 523,53 0.888 | 1,110 | 1.205 | 3.207 | 351.20 [1.110

70 28 420.0 | 472.70 354.56 336.80 0.889 | 1,185 | 1.247 | 2,806 | 354.56 | 1.185
R1b 295.0 | 313.16 204,71 313.09 0,942 | 1.441 | 0,942 |11.225 | 313,16 | 0,942

Rla 420.0 | 396.11 283,50 330.53 1.060 | 1.481 | 1.271 | 4,490 | 283,50 | 1,481

R2 460.0 | 478.70 397.26 375.81 0.960 | 1.158 | 1.224 | 3,207 | 397,26 | 1.158

4b 245.0 | 215.50 165,07 246.70 1,137 | 1.484 | 0.993 | 17,677 | 215.50 | 1,137

23b 198.0 | 198,50 153,80 231.53 0.998 | 1.287 | 0.855 [17.677 | 198.50 | 0,998

v 23a 180.0 | 170.15 131,82 198,45 1,058 | 1.365 | 0.907 [17.677 | 170.15 | 1.058
29a 140.0 | 140.13 115.35 173.65 0.999 | 1.214 | 0.806 |17.677 | 140.13 | 0,999

29b 140.0 | 131.89 108.56 163.44 1.061 | 1.289 | 0.856 |17.677 | 131.89 | 1,061

31 208.0 | 174.25 148,27 205.82 1.194 | 1.403 | 1.011 o | 174.25 | 1.104

3 30 270.0 | 266.35 218.00 251.69 1.014 | 1,239 | 1.073 | 4,490 | 218,00 | 1,239

TABLE 6.1 (CONTINUED)
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s L Poxp |P1 Y VM| P, by Y.L.1 Py by Y.L2 M | Tasp P s d Pon S
/KN /XN /kN /XN b B P, i /KN Pth
32 310.0 | 366.14 307,33 286.76 0.847 | 1.009 | 1,081 | 2,245 | 307.33 | 1.009
33 350.0 | 420,87 369.66 360,32 0.832 | 0.947 | 0.971 | 1,497 | 369.66 | 0.947
34 395.0 | 594,56 383.31 410.11 0.664 | 1,030 | 0.963 | 0.898 | 383.31 | 1.030
50 185.0 | 166.00 140.41 168.13 1.114 | 1,318 | 1.100 o 166.00 | 1,114
51 217.5 | 204.32 185,54 190.13 1.064 | 1,172 | 1.144 | 4,490 | 185.54 | 1.172
52 240.0 | 296.08 209.31 219.20 0.811 | 1.147 | 1.095 | 1.497 | 209.31 | 1.147
53 265.0 | 575.07 259,99 233,96 0.461.| 1.019 | 1.133 | 0,898 | 259.99 | 1.001
- 62 322,5 | 269.51 201,73 259,89 1.197 | 1,599 | 1,241 o 269.51 | 1.197
63 495.0 | 598,24 410,62 489,59 0.827 | 1.205 | 1,011 | 2.383 | 410.62 | 1.205
60 860.0 | 853,99 931.14  |1018.30 1.007 | 0.924 | 0.845 |31.843 | 853.99 | 1.007
61 1060.0 | 1157,53 1122,38 (1013.70 0.916 | 0,944 | 1,046 | 4,044 [1122.38 | 0.944
64 285.0 | 182,54 191,57 207.20 1.561 | 1,488 | 1.375 ® 182,54 | 1,561
65 350,0 | 239.35 253.79 262,98 1.462 | 1.379 | 1.331 | 7.148 | 239.35 | 1.462
66 460.0 | 425,82 319,87 262.32 1.080 | 1.438 | 1.736 | 2.383 | 319.87 | 1.483
TABLE 6.1 (CONTINUED)
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p P, by V.M| P, by YL.1|P, by Y1.2| P P d P P

Series | Beam No| $x 1 2 .3 gfp gzp gzp ;;— /;E i
67 530.0 | 656.34 389,87 | 338.81 0.808 | 1.359 | 1.564 | 1.191 | 389.87 | 1.359

68 190.0 146.90 111,79 182,91 1,293 1.699 1.039 o 146,90 | 1,293

69 180.0 | 128.12 93,11 | 183.11 1.405 | 1,933 | 0.983 | o | 128.12|1.405

70 207,5 | 321.77 295,87 | 343.29 0.925 | 1,006 | 0.867 | 1.497 | 295.87 | 1.006

VI 7l 260.0 295.96 259.52 338.48 . 0.878 1.002 0,768 1.497 259,52 | 1.002
72 140,0 146,80 11352 199.59I 0,954 1255 0.701 co 146,80 | 0,954

3 12755 127,56 91.96 155.18 1.000 1,386 0.822 o 127.56 | 1.000

74 190.0 384,37 203,53 187.91 0.494 0.934 F 011 1,497 203,53 | 0,934

75 172.5 296.54 184,25 193.04 0.582 0,936 0,894 1.497 184.25 | 0,936

44 237.5 206,33 180,82 230,18 1 355 | 1,313 10321 17,677 206,55 | 1,151

35 2150 215.00 181.64 225,62 1.000 1.184 0.953 | 17.677 215.00 | 1,000

VIT | 45 145,0 | 143.56 136.24 61.44 1.010 | 1.064 | 2.360 | 17.677 | 143.56 | 1.010
46 100.0 | 116.56 116.18 75.50 0.858 | 0.861 | 1.324 |17.677 | 116.56 | 0.858

48 300.0 | 265.92 284,99 | 279.82 1.128 | 1.053 | 1.072 | 17.677 | 265.92 | 1.128

TABLE 6.1 (CONTINUED)
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N Pexp |P1 PY VeM| P, by Y.L/ P. by Y.I.2 Biag - . a P EEEB
/KN /KN /KN /KN 2 b, B I /XN Pth
47 272.5 | 265.05 274,94 242,38 1.028 | 0,991 | 1.124 | 17.677 | 265.05 | 1,028
49 135,0 | 129.32 178.99 98,25 1,044 | 0.754 | 1.374 | 17,677 | 129.32| 1.044
58 250.0 173.91 192,88 97.96 1.437 1.296 2.552'1 28,142 17390 | 1 437
59 168,75| 207,27 261.39 91.98 0.814 | 0.646 | 1,835 | 9,283 | 207.29 | 0.814
bl 470.0 | 824,47 402,33 416.11 0.570 | 1,168 | 1.130 | 3.574 | 402.33| 1.168
55 430,0 506,26 378.79 423,06 0.849 1 I B g 1.016 5,574 378.79 | 1.135
56 350.0 | 459,61 333,74 315,74 0.762 | 1.049 | 1.100 | 3.574 | 333.74 | 1.049
57 280.0 | 465,81 271,54 125,08 0.601 | 1.031 | 2,239 | 3.574 | 271.54| 1.031
77 240,0 | 189.43 160,18 247,30 1.267 | 1.498 | 0.970 | 4.490 | 160.18 | 1.498
76 260,0 | 281.41 161,16 249,96 0.924 | 1.613 | 1.040 | 4.490 | 161.16| 1.613
VIII 78 300.0 604,27 232.91 381.48 0.496 1,288 0.786 0,898 232,91 ] 1,288
79 390.0 620.19 385.79 400,65 0.629 1011 0.973 0,898 385,791 1.011
80 250,0 | 264,22 173.14 224,26 0.946 | 1.444 | 1,115| 4.490 | 173.14 | 1.444
TABLE 6.1 (CONTINUED)
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cuntid | P, by V.M[ P, by Y.LafP, by Y.L.2 ;o Pexp oo i Pe Pm{p
/kN /kN /kN /kN P, P, Py L /kN Pth

t CAG 345.0 | 330.99 263.80 287.93 1,042 | 1.308 | 1.198 (28,142 [ 330.99 | 1,042
¥ cC1 312.0 | 239.79 236.54 321.62 1.301 | 1.319 | 0.970 |28.142 | 239,79 | 1.301
- CCc2 305.,0 | 232.39 235.79 385,04 o520 1. 294 1N 0. 792:128.142 | 232.%9] 1.512
¥ (oo 275.0 | 214.40 244,16 | 361.3 1.283 | 1.126 | 0.761 (28,142 | 214.40( 1,283
¥ CD3 400.0 39.9.,44 327.02 324,66 1,001 1,223 1:252 7,148 | 399.44 | 1,001
* CH1 280.0 | 249,77 187.09 280.44 1.121 | 1.497 | 0,988 | 5,506 | 249,77 | 1.121
v 97 11,3 268.75 309.74 328,31 1.157 1.005 | 0,948 o0 268.75| 1,157
. 98 385.0 | 467.61 375,71 413,13 0,823 1.030 | 0.932 3,574 373.71 | 1.030

T Reference (55)

** Reference (56)

TABLE 6.1 (CONTINUED)
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Examining the latter cases, the ratio of the depth of the sec-

tion between the root radius to the length of the stiff bearing

is greater than 4.5; this is taken as the criterion for choice of
calculating the B factor and is obtained by inspection of the
results, Therefore, for beams having d/la < 4.5 the B is less
than 1.0 and is calculated using a yield line analysis,

Similarly, the theoretical loads calculated for the beams in
series VI, VII and VIII, which were tested for central failure,
when the 8 factor is obtained by Von Mises yield criterion, are
safe for small lengths of bearing and unsafe when the load is
applied through large lengths of stiff bearing. The factor of
safety for the latter cases increases when the yield line analysis
is used in obtaining the B factor. From the two yield line
patterns examined that one which gives the minimum theoretical load
should be considered further; although it was found that for most
of the cases the results given by the two yield line patterns are
quite close. However, yield pattern 1 appears to give more satis-
factory results and is recommended for design.

The beams in series VIII were loaded through thin spreaders,
of different thicknesses and as can be seen from table (6.1) the
factor of safety varies by different amounts.

The same criterion for choice of the Von Mises yield criterion
or the yield line analysis for calculating the B factor applies
for central failure as for end failure. Therefore, for cases where
d/la > 4,5 the B8 factor is obtained from the Von Mises yield.
criterion and for cases with d/la < 4.5 a yield line analysis is
used. The above limit has been imposed empirically,

In table (6.1) the test results in references (55) and (56)
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are included and as could be seen from the comparison the developed
theory predicts safe results for these beams.

It is worth noting that where the developed theory failed to
predict safe results this is by only a small margin, except for
two cases namely beam Nos 46 and 59. The ratio of the experimental
failure load to the theoretical crushing load is 0.858 and 0,814
respectively. Beam No 46 was of 3.0 m span and loaded through
a 12.7 mm long stiff bearing and beam No 59 was of 0.75 m span,
loaded in the same way as the former one.

During testing of beam No 46 a horizontal movement of the
beam was noticed under the load probably initiated due to the
initial eccentricity of the web, being 0.5 mm, and that it was
carrying almost the full plastic moment. These factors possibly
caused a premature failure of the beam.

Beam No 59 was of the 152 x 98 x 17.09 kg joist section, the
only beam tested from this serial size. The values of the yield
stress, obtained from the tensile test for this beam, are relatively
high and this is probably the reason the theory over-estimates
the crushing load for this beam. The short piece used in the test
was a straight piece cut from an otherwise bent beam. The tensile
test pieces may have been affected by cold working of the bent

part of the beam.

6.7 CONCLUSIONS FROM THE COMPARISON

Assumptions made when deriving this theory include small
rotations and deflections. However, this is not quite true
since the flanges were severely distorted, especially in cases
where the load was applied through small lengths of stiff bear-

ing.
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When the B factor is obtained from the yield line analysis,
the yield line patterns were assumed to have vertical yield
lines in the web. In fact such yield lines cannot be formed
unless the web provides enough restraint away from them; this
could only happen when the beam is sufficiently long.

A

& and ) included in the

The various factors, that is a, = T

theory and considered in section 6.5 are purely empirical, It
should be emphasized that the satisfactory results for the load-
ing and beam section sizes relate specifically to this work, as
these factors for other types of loading and beam serial sizes
may vary.

The current design practices assume that there is a linear
variation between the length of the stiff bearing and the
crushing load. From the test results it was found that such a
variation does not appear to be true, particularly for relative
large lengths of bearing. The theory developed deals with this
point, as the factors o and R are expressed in terms of this
variable.

If the assumptions considered in this theory are correct,
then the values of the ratio of the test ultimate load to the
minimum theoretical load, given in table (6.1) should be con-

sistent.



CHAPTER 7/
A SIMPLIFIED APPROACH TO THE CRUSHING THEORY

7.1 INTRODUCTION

In the preceding chapter a theory was developed for predicting
the crushing load of the beams. Certain factors in the final
expressions had to be determined and in cases where relatively long
lengths of stiff bearings are considered, the calculations involved
are rather lengthy.

Although the results obtained from this theory are quite satis-
factory, especially for cases where the current design codes fail
to do so, this theory is not likely to be used as a basis for design
of beams unless it is recast in a reasonably simple form, easily
used by designers.

In the present chapter an attempt is mdde to express the crushing
theory in a much more simple form, which at the same time gives

quite satisfactory results, as is shown in a following section.

7.2 SIMPLIFICATION OF THE CRUSHING THEORY

a) Central Failure

When developing the crushing theory in chapter 6, it was
assumed that the outer hinges of the failed zone have a plastic
moment MPT = q MPF and the o factor had to be determined by con-
sidering various expressions. The resistance w provided by the
web was taken as w = Bt fyrn This analysis can be simplified,
somehow, by assuming o = 1, that is all the formed plastic hinges
have the same plastic moment Mppe The resistance provided by the

web is taken as w = t P where P, is the compressive strength,

calculated according to the Draft Standard Code (8).



The failure mechanism assumed to form is shown in figure
(7.1a). By equating the work done by the external forces to the

work done by the internal forces it is obtained

Pali= 4MPF 8 + 2wl

2| =

1 +wlaﬁ

and after substituting for A and 6 the above expression becomes:

Yp

F
p=4.___L +wL.l+u1a 7+1
1
The crushing load P will be a minimum when %%—-= 0. By differ-
1
entiating, therefore, equation (7.1) with respect to Ll and

setting %%— = 0, Ll,is obtained from

1
1 w

By substituting for L1 and w into equation (7.1), the crushing

load P is obtained from

P=2T-,/Btfnyc+tpc 1 7.3

Equation (7.3) can be written in a more general form as

P = 221 TYB t fyf ﬁ: * 22 t Pc 1a 7.4
The inserted factors Z1 and 22 are determined in a following
section,
b) End Failure

The same argument holds when considering failure at the end.
The failure mechanism assumed to form in this case is shown in

figure (7.1b). Following the same assumptions and procedure, as



i
ot

FIGURE 7 1. FAILURE MECHANISM



for the previous case, the crushing load Py is obtained from

Py=TyBt £ .p +tp I 7.5

By introducing the factors 23 and 24, equation (7.5) can be
written in a general form as

= =
R fed Bt‘_vf Do W 0 A, 7x0

The factors 23 and 24, as the factors Z

in a following section, empirically.

1 and 22, are determined

7.3 MINIMUM THICKNESS OF LOADING PLATE IN A SIMPLIFIED FORM

a) Central Failure

The theory derived in chapter 6 for the minimum thickness of
the loading plate can further be simplified, in a similar manner
to the simplification of the theory made in section 7.2.

The failure mechanism assumed to form is shown in figure (7.2a).
By assuming, therefore, that o« = 1 and the resistance provided by
the web as w= tpc and by equating the work done by the external
forces to the work done by the internal forces it is obtained.

o A
?3.&—4MPF9+2MPPB+2WL1§-+W{:£\. 1ol

Following the same procedure as before and substituting for the

various variables into equation (7.7), P3 is obtained from the

following expression.

_/ 2 e
Ps-tpC/4BT fpe * 28 B £ 7.8

When the loading plate is stiff, the crushing load was found to be
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given by equation (7.3), that is

P=2T/B t f_\rf AR 1

da

and when the plate is thin the load is given by equation (7.8).
At the point, therefore, when the loading plate will just start
bending the two values for the crushing load, given by equations

(7.3) and (7.8), should be equal. Thus,

2T/Bt £ _p. + tpcla=/tpc/4BT2fyf+2tp2bf 7.9

yf “c YP

Rearranging, the minimum thickness of the loading plate 1:p is

obtained from

)
/4T(1a-c)v Btf}r_f P, * T P {la-c)

t = rish e
P 2bf
A P
and by inserting a factor 25 into the above expression this
becomes
2
. 4T(la-c] v Btfyf Pe +'rpb(la-c}
t = 25 7.:11
P 2bf

yP

b) End Failure

The failure mechanism assumed to form, when failure is
obtained at the end, is shown in figure (7.2b). By following
exactly the same procedure as for the previous case, the minimum

thickness of the loading plate tp is given by
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2
//ZT (la-c]fB t fvf Mgt P. (la-c)”

tP = 025 5 F el2
ypP
and by introducing a factor 26 into the above expression this
becomes:
2T (1-cWBEE-p. +tp (1-c)
a vE ¢ e
£ = Zﬁ — Jadiy
P 0.5b f
Yp

7.4 EMPIRICAL ASSESSMENT OF INSERTED FACTORS

2 23, 24, Zg and Zg are deter-

mined empirically in this section. It must be emphasized, though,

The introduced factors Zl, Z

that the expressions representing the above mentioned factors
give satisfactory results for the beam serial sizes and loading
conditions considered in the present work.,

The 21 factor is determined by considering beams loaded by
knife edge loads, so eliminating the 22 factor in equation (7.4).
This factor found to vary best with the d/L ratio, as given by

the following expression

Z, = (25 % i 8583 for L/d > 5.0 7.14.1
and
d d
z = (25%-3.4) 128 for 1/d < 3.0 7.14.2

The 22 factor is determined from beams having constant span
and different lengths of stiff bearing. It was found that this

factor varies with the la/L ratio as it is given by equation (7.15).
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p—t

Z, =(1 - 0.5 &) and 0,5% Z, < 1.0 7,15

2

For end failure, the introduced factors 23 and 24 were found to

have a constant value and are taken as

S d
23 = 2:5 and Z, = 10 for T;' a6 e
and
ZoB2 2.5 and Z, = 0,85 for é~‘ 2 &0 Tal6. 2
3 o 4 . 1a ~ - L] L]

For the cases, where the loading plate was thin, it was found
that for the case of central ‘failure when Zo = Z, and for the

case of end failure when 26 =

<4

obtained. The 25 and 26 factors are obtained from equations (7.11)

and (7.13) respectively.

, satisfactory results are

The applicability and validity of these factors will be
indicated when the test results are compared to the simplified

crushing theory as follows.

7.5 COMPARISON OF THE SIMPLIFIED CRUSHING THEORY

TO THE TEST RESULTS

The theoretical crushing loads of all the beams, calculated
according to the simplified crushing theory, are shown with the
experimental ultimate loads in table (7.1). As can be seen from
this table of results, the loads predicted by the theory are quite
safe and the factor of safety.varies by different amounts.

The crushing loads calculated using the theory for beams in
series I to VI, which were tested for end failure, are safe for
all the beams except for one case, beam No Rlb. The theory for this

case overestimates the test failure load by 3.17%.
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Series Beam No ?iﬁ iig | ngﬁ
i th

11a 255.0 | 211.51 | 1.206

7a 260.0 | 203.21 | 1,279

7b 270.0 | 203.21 | 1.329

I 6b 257.,5 | 203.56 | 1.265
8a 260.0 | 204.96 | 1.269

8b 285.0 | 204.96 | 1.391

3 280.0 | 199.72 | 1.402

11a 255.0 | 211.51 | 1.206

Sa 310.0 | 213.04 | 1,455

5b 320.0 | 228.23 | 1.402

6a 339.0 | 238.60 | 1.420

II |. 10a 410.0 | 266.78 | 1.537
12a 450.0 | 284,93 | 1,582

1 315.0 | 225.54 | 1.396

2a 325.0 | 290.84 | 1.117

2b 340.0 | 290.84 | 1.169

4b 245.0 | 213.44 | 1,148

11b 265.0 | 227.98 | 1.162

13a 297.5 | 244.88 | 1.215

13b 340.0 | 263.61 | 1,290

14 390.0 | 287.31 | 1.357

15 400.0 | 328.74 | 1.216

111 16 420.0 | 351.87 | 1.194
18 440.0 | 375.19 | 1.173

20 450.0 | 412.39 | 1.001

22 455.0 | 438.71 | 1.037

36 330.0 | 245.60 | 1.344

37 310.0 | 218.17 | 1.421

38 290.0 | 209.07 | 1.387

pth is the Theoretical Load

TABLE 7.1 COMPARISON OF THE SIMPLIFIED THEORY
TO THE TEST RESULTS
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E P
Series | Beam No ?iﬁ /Eg —%52
th
39 407.5 | 353,21 | 1,154
40 400.0 | 332,92 | 1.201
{G 41 397,5 | 307.01 { 1,295
42 390.0 297.52 1.311
43 385.,0 | 265.04 | 1,453
4b 245.0 | 213.44 | 1,147
26a 258,00 | 221.95 | 1.167
25a 270.0 231.95 1.164
25b 320,0 | 249,29 | 1.284
26b 340.0 | 272.46 | 1.248
IV 24b 350.0 | 286.41 | 1,222
27 390.0 | 333,91 | 1,168
28 420.0 | 361.24 | 1.163
R1b 295,0 | 304,36 | 0,969
Rla 420,0 | 371.03 | 1,132
R2 460.0 | 423.14 | 1.087
4b 245,0 | 213,44 | 1.148
23b 198,0 | 176.51 | 1.122
Y 23a 180.0 | 151.30 | 1.189
2%9a 140.0 | 123,60 | 1.132
29b 140.0 | 116.33 | 1.203
31 208.0 | 160.25 | 1.298
30 270.0 | 212,59 | 1,270
32 310,0 | 269.11 | 1.152
VI 33 350.0 | 312.88 | 1.118
34 395.0 | 353.48 | 1.117
50 185.0 73.18 | 2,528
51 217.5 118,06 1.842
52 240.0 | 189,51 | 1,266

TABLE 7.1 (CONTINUED)
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Series | Beam No ?EE jig ngﬁ
th
53 265,0' | 257,85 | 1,028
62 322.5 | 280.58 | 1.149
63 495.0 | 365.95 | 1,353
60 860.0 | 427,10 | 2.014
61 1060,0 | 589,29 | 1.799
64 285.0 | 100.40 | 2.839
65 350.0 | 129,81 | 2.696
66 460.0 | 180.54 | 2,548
VI 67 530.0 | 264,62 | 2,003
68 190,0 | 157,60 | 1.381
69 180.0 | 124,09 | 1.451
70 297.5 | 268,14 | 1,109
71 260.0 | 251.28 | 1.035
72 140.0 64.42 | 2,173
73 1275 55.73 | 2.288
74 190.0 | 193.11 | 0.984
75 _ 172.5 | 185.67 | 0.929
44 257.5 | 194,37 | 1,222
35 215.0 | 187.08 | 1.149
45 145.0 81.51 1 1.778
46 100.0 80.76 | 1.238
48 300.0 | 299.70 | 1.001
VII 47 272,5 | 244,43 | 1,115
49 135.0 | 118,08 | 1,143
58 250.0 | 102.23 | 2.445
59 168.75| 113,34 | 1.489
54 470,0 | 374.42 | 1,255
55 4300 |- 192,73 | 1,231
56 350.0 | 168,75 | 2,074
57 280.0 | 158,85 | 1.762
TABLE 7.1 (CONTINUED)




Series | Beam No Pexp pth PEER
/kN /kN Pth

77 240.0 | 210.85 | 1,138

76 250.0 | 211,54 | 1,182

VIII 78 300.0 | 214.74 | 1.397
79 390.0 | 346.78 | 1.125

80 250,0 | 260,07 | 0,961

% CAé6 345.0 | 288,44 | 1.196
X CCl 312.0 | 246.81 | 1.264
= CE2 305.0 | 170.66 | 1,787
* CC4 275.0 | 101.11 | 2,720
¥ Ch3 400.0 | 291,21 | 1.374
& CH1 280.0 | 121,14 | 2.311
97 311.3 | 193.67 | 1.607

98 385.0 | 366.70 | 1.050

* Reference (55)
t Reference (56)

TABLE 7.1

(CONTINUED)
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For beams in series VI, VII and VIII, which were tested for
central failure, the theory predicts safe results for nearly all
the beams except for three cases, namely beam Nos 74, 75 and 80.
Beam Nos 74 and 75 were of 1.4 m span and the load was applied
through a 150 mm long stiff bearing plate. The width of the flanges
of these beams was reduced and this is the reason the theory
overestimates the ultimate load for these beams, since the inserted
factors Zl and 22 do not involve the flange width of the bean.

Beam No 80 was of 1.0 m span and the load was applied through a
50 mm long thin bearing plate. It was noticed, during testing,
that this plate has yielded and lost contact with the beam at its

ends.

7.6 CONCLUSIONS FROM THE COMPARISON

It is noticable from table (7.1) that the theory in some
cases predicts very conservative results as the obtained ratio of
the experimental failure load to the theoretical crushing load is
greater than 2.0. Tﬁis happens to beams with relatively long
spans or to beams loaded through zero or small lengths of stiff
bearing.

However, the fact that the two expressions obtained for cal-
culating the crushing load, that is equations (7.4) and (7.6) as
well as equations (7.11) and (7.13) for the minimum thickness of
the loading plate are in a simple form which can easily be used
by designers combined with the safety in the predicted results
makes this simplified theory appear promising. An advantage of
this theoretical approach is that the values for the comnressive
strength p. are already calculated and are given in the Draft

Code. If the results obtained by this theory are compared with
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those obtained by the method suggested in the Draft Code, and
examined in chapter 4, it is clear that the former results are
safer than the latter ones especially for cases with long lengths
of span .

The accuracy of this theory, hopefully could be improved by
re-examinination of the inserted factors 21, 22, 23, 24, 25 and

Z6°
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

8.1 INTRODUCTION

Although a lot of theoretical and experimental work has already
been done on various types of steel beams, when subjected to con-
centrated loads, it is not yet established what actually initiates
their failure and the exact mode of failure.

Most of the researchers assumed that the beams fail by buckling
of the web or by crushing of the web under the applied load or
reaction and adopted theoretical or empirical approaches to fit their
experimental results.

It was shown earlier in this work that the developed theories
and approaches are not satisfactory, since they do not predict safe
results for a large number of the beams tested here. It was, there-
fore, concluded necessary to develop more theories which would be
based on the experimental observations and give, hopefully, more
satisfactory results, Each theory could then be compared with the
test results of the present work as well as with other published

experimental results.,

8.2 CONCLUSIONS FROM THE EXPERIMENTAL CBSERVATIONS

It was noticed during testing that yielding took place at various
locations of the beam; the degree of yielding varied between tests,
depending on the stresses. Areas of high stresses were detected
by the flaking of the white-wash in positions such as,

1) The flange in the vicinity of the applied load and at the
support, for beams which were tested for end failure.
2) The web at its junction with the root radius at the vicinity of

the applied load and support, for beams which tested for end
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failure.

The high stresses were due to direct and bending stresses pro-
duced due to the loading. These stresses, possibly, have an
influence on the load carrying capacity of the beams.

Areas of high stresses in the web were always accompanied by
large out of plane deflection at failure. The rate of increase
of the web deflections varied. In some beams they were apparent
at low loads and increased until failure and in some other beams

were very small up to the failure point where they suddenly increased.

8.3 (CONCLUSIONS FROM THE COMPARISON OF THE DEVELOPED

THEORIES TO THE TEST RESULTS

The theories developed in this work, although containing
empirical factors, when compared to the tested beams give quite
satisfactory results. The Elastic Buckling theory considers the
stability of the web-plate and the Crushing theory the stress systenm
attainable at the web root combined with the ultimate moment of
resistance due to bending of the web and the flange.

The comparison of the test results to the Elastic Buckling
theory shows that the only beams that attained their elastic critical
load are those having a relatively short span and loaded through
large lengths of bearing. The rest of the beams failed at a load
less than their elastic critical load. This, aS explained earlier,
is due to the loading conditions and the restraint provided by the
load application. It was observed that the top flange of the beams
after failure does not remain perpendicular to the web, due to the
rotation at the junction with the web root. The restraint provided
was also reduced at the junction of the web with the yielding flanges

due to yielding in the vicinity of the applied load or support.



The Crushing theory gives consistent results when compared with
the tested beams. In cases where the load was applied through
relatively long lengths of bearing and the current design practices
and theories failed to predict safe results, this theory appears to
be quite satisfactory. Depending on the length of stiff bearing,
the g factor involved is calculated by considering different methods.
For d/la > 4.5, B is obtained from Von Mises Yield Criterion, and
for d/la <€ 4.5 B is obtained from a yield line analysis,

As has been indicated in chapter 7, it is possible to place the
crushing theory in a simplified form, suitable for design purposes.,
The results obtained when this simplified theory is compared to the
tested beams are satisfactory, although in some cases are very
conservative.

It must be emphasized here that the results obtained here are

not exhaustive and can further be improved.
8.4 CONCLUSIONS

When the universal beams are subjected to concentrated loads,
they behave in a rather complex way. Due to the many factors involved,
which influence the load carrying capacity of the beams, the various
design guides and practices used in design are not efficient, since
they apply to certain loading and restraining conditions,

In Great Britain the most commonly used design guide, BS 449,
uses the Perry formula for calculating the stresses, which over-
estimates the restraint provided by the load when applied across the
flange. Similarly, the recent introduced draft code uses a modified
'"Perry Formula', which in some cases gives more satisfactory results
than the former method,

Due to the non linear stress-strain effects, which have not been

considered in the present work, it is not possible to determine the
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restraint a beam will have when it is loaded on its flanges., If
such non linear effects would be included then the finite element

method may be the most suitable for such an analysis,

8.5 RECOMMENDATIONS FOR FURTHER RESEARCH

Completing the present work it is felt that further experimental
work is needed to be carried out to develop the state of knowledge.
The theoretical work advanced here should be continued for
different constraint types of the top flange of the beam, with

special consideration of the empirical factors.
For the cases were failure was obtained at the end, due to the
large number of variables examined, the majority of the tests were
performed on the 254 x 102 x 22 kg. U.B section and the span was
kept constant throughout these cases. For cases where failure was
obtained at the centre, although various serial sizes were tested,
‘'similar experimental work needs to be carried out on different beam
section sizes not considered.
Additional experimental work is, therefore, required such as.
a) Tests to investigate the influence on the failure load when the
beam is loaded eccentrically.

b) Tests to investigate the interaction of multiple loads acting
on a universal beam section,

c) Tests to investigate the variation of the failure load and span,
when failure is obtained at the end.

d) Tests to investigate the effect of horizontal forces.

e) Tests on built-up sections to investigate the effect of the
involved variables.

f) Tests to investigate the effect of stiffeners for central and

end failure.



ADDENDUM

In this addendum a method for predicting the collapse load of
slender plate girders subjected to patch loading in the plane of the
web, very recently published by Roberts and Rockev (72), is con-
sidered.

Despite the fact that this investigation concerns slender plate
girders and not universal beam sections, the theoretical analysis
appears to be similar to the derived Crushing theory in chapter 6
and it is worthwhile considering.

The presented analysis is based on a plastic mechanism solution
which involves consideration of the plastic hinges which develop
in the flanges and the yield lines which form in the web plate.

The mechanism assumed to form, between web stiffeners, is shown in
figure (Ad. 1). Certain approximations and empirical modifications
are introduced, to make this design method simple for hand cal;

culations. The collapse load for slender plate girders is obtained

from
M 2 M
P=4Mf+4ﬁ""+ c“’-an“’ Ad.1
u 3] o cos B a cos B o cos B8 ¥
where
2 oM o / Ad.2
B—fucos Mh, -

Mf and Mk is the plastic moment of the flange and web
respectively

B, a, and c are lengths, as shown in figure (Ad. 1)

8 is the hinge rotation

n is the length of the web plate beneath the load which is

assumed to have yielded, due to the presence of compressive
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membrane stresses,

For stocky girders the collapse load is obhtained from

4Mf
Pu Eae— ﬂqﬁu (B + c) Ad, 3
2
B™ = 4M_ /o t Ad. 4
f W w

where

0y and t, is the yield stress and thickness
of the web respectively

Most of the experimental results from references (731, (65) (68),
(74) and (75), used to verify this method, have a d/tw ratio ranging
from 150 to 400, Although the d/t ratio for the universal beams
is well below these values, the experimental results of series
VI, VII and VIII from the present work are compared with this
method, as displayed in table (Ad. 1). The predicted loads have
been calculated using equations (Ad. 3) and (Ad. 4). As could be
seen from the comparison, the proposed method is very unsatisfactﬁry
for cases where the load is applied through large lengths of bearing
and for cases with relatively long lengths of span. Although,
this method fails to predict safe results for the same cases the
other examined design codes failed too, the crushing theory derived
in chapter 6, as has been shown in table (6.1), gives quite satis-
factory results.

An advantage of the crushing theory over the method proposed
by Roberts and Rockey is thé consideration of the failure mechanism
when failure is obtained at the end, such a case has not been
examined by Roberts and Rockey. Another advantage of the theory
presented in this thesis is that it takes account of the global

bending stresses. When deriving the crushing theory the global
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bending stresses have been taken into consideration since this
term, as indicated from the experimental results of beams in series
VII, has an effect on the collapse load.

The crushing theory, therefore, when compared with the experi-
mental results gives better agreement than any other theory or design

method known to the author, and this makes it appear promising.
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Series | Beam SE;“ ;ﬁm p?i; /E; gzp
31 1.00 0 208.0 | 108.13 | 1,923
30 1.00 56.0 | 270.0 | 211,97 | 1.273
32 1,00 (| A00.0.4 510,00 323,03 | 20,960
33 1,00 | 150.0 | 350,00 | 426.67 | 0.820
34 1.00 | 250.0 [ 395,0 | 604.66 | 0,653
50 1.40 0 185.0'| 106.16 | 1.732
51 1.40 500 2175 | 174,59 |+1.,.245
52 1.40 | 150,0 | 240.0 | 350.20 | 0.685
53 1.40 | 250.0 | 265.0 | 527,29 | 0,503
62 0.50 0 322,5 | 175,58 | 1,837
63 0.50 | 150.0 | 495.0 | 508,36 | 0.974
60 .25 12.7 | 860.,0 | 531,28 | 1.619

VI 61 1225 12,7 |1060.0 | 799.46 | 1.326
64 2.00 0 285.0 | 184,11 | 1.548
65 2,00 50.0 | 350.0 | 292,75 | 1,196
66 2.00 | 150.0 | 460.0 | 506.51 | 0,908
67 2,00 | 300.0 | 530.0 | 851.63 | 0.622
68 1,00 0 190.0 95.82 | 2.025
69 1.00 0 130.0 92,93 | 1.937
70 1.00 | 150,0 | 297.5 | 398.64 | 0.746
Tk 1,00 | 150.0 | 260.0 | 385.99 | 0,674
72 1.40 0 140,0 92,74 | 1.510
73 1.40 0 Y2755 82,77 | 1.540
74 1.40 | 150.0 | 190.0 | 396.86 | 0.479
75 1.40 | 150,0 | 172.5 | 387.33 | 0.445
44 0.50 12,7 | 257,85 '] 135,48 { 1,735
35 1.00 12,7 | 215.0 | 142.48 | 1.508
45 2,00 12,7 | 145.0 | 134,15 | 1.081
VII 46 3.00 1271106 00 152575 [ Q735
48 0.50 127 | 300:0'[" 179.51 | 1.671
47 1.00 12,7 | 272.5 |+178.24 | 1,529
49 3.00 12.7 | 135.0 | 172,25 | 0.784

TABLE Ad. 1 COMPARISON OF TEST RESULTS TO THE
PROPOSED METHOD BY ROBERTS AND ROCKEY
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i

Series Beam Sg;n Foy P?;E /ig f;iﬁ
58 | 3.50 | 12.7 | 250.0 |218.53 | 1.142

59 | 0,75 | 12.7 | 168.75 | 136.50 | 1.236

o 54 | 0.50 |100.0 | 470.0 | 437.31 | 1.075
55 | 1.00 |100.0 | 430.0 | 436.72 | 0.984

56 | 2.00 |100.0 | 350.0 | 442.95 | 0.790

57 | 3.00 |100.0 | 280.0 | 461.13 | 0.607

77 | 1.00 | 50.0 | 240.0 | 208.84 | 1.149

76 | 1.00 | 50.0 | 260.0 |213.70 | 1.217

VIIT* | 78 | 1.00 |250.0 | 300.0 | 614.13 | 0.488
79 | 1.00 |250.0 | 390.0 |609.80 | 0.640

80 | 1.00 | 50.0 | 250.0 | 208.85 | 1.197

* The Thickness of Loading Plate Varied

TABLE Ad.1l

(CONTINUED)
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APPENDIX 1

A 1.1 STRAIN AND DEFLECTION RECORDINGS

The strain and deflection recordings for all the tested beams
are shown in table (A.1). The beams in this table are given in the
same order as the other test results in table (2.2) and table (3.1).

The strain and mechanical deflection gauge reference numbers
are in accordance with figure (2.5) and figure (2.6) respectively.

In cases where the strain readings were manually recorded, the strain
at failure is not included in these recordings. However, if such
readings were recorded their accuracy could not be guaranteed due

to instability of the test beam at that point. The same reasoning
applies to the absence of any deflection recordings at failure.

The readings in table (A.1) are:

Strain x 10”° for the strains and

Deflection x 10”2 (mm) for the deflections,



Test No 1la

Load (kN) a0 | 80 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 4535
Failure

Strain Gauge 1 -159 | -285 | 1346 |-416 |-490 |-571 |-647 |-726 | -815 |-9s0
2 4116 | 222001 <2860 | <347 |-413 |-492 |-566 |-634 | -709 |-806

Deflection Gauge 1 44 59 65 71 84 108 144 191 256 341
2 58 o1 | 106 | 122 | 140 | 163 | 193 | 220 | 272 | 329

3 g IR M e 12 | <11 | <10 | =10 | -12 | -16

4 7 7 7 5 I 7 11 13 24 47

TABLE A.1 STRAIN AND DEFLECTION READINGS

9LT



Test No 7a
Load (KN) 40 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 i
Failure
Strain Gauge 1 -139 | -275 | -343 | -410 | -488 | -573 | -657 | -751 | -838 | -938
2 -93 -238 -297 -355 -439 -435 -618 -701 -792 -917
Deflection Gauge 1 52 68 75 81 95 119 150 190 246 331
2 58 89 105 121 141 165 189 220 258 317
3 -17 -31 -32 -30 -29 =31 -36 -43 -51 -61
4 24 26 38 46 54 62 72 77 85 91

TABLE A.1 (CONTINUED)

LLT



Test No 7b
270

Load (kN) 40 80 120 140 160 180 200 220 240 260 Pailures
Strain Gauge 1 -89 [ -192 | -291 | -341 | -399 | -468 | -523 -603 | -686 | -680
2 -179 | -326 | -469 | -557 | -670 | -783 | -896 | -1053 |-1251 |-1612y
Deflection Gauge 1 44 58 69 82 100 122 152 198 263 367
2 54 78 107 125 145 167 193 227 271 336
3 =21 -36 -42 -41 -37 -37 -36 -34 -31 -30
4 25 27 39 48 58 65 70 73 80 82

TABLE A.1 (CONTINUED)

8LC



Test

No 6b

Load (kN) 40 | 80 | 100| 120| 140| 160| 180 | 200| 220 | 240 Fi?;&ie
Stfuin Csghll 2120 | -243 | —303 | -358 | -412 | -467 | -528 | -586 | -642 | -666
2 -133 | -262 | -325 | -388 | -492 | -630 | -770 | -913 | -1082 |-1350
Deflection Gauge 1 48 62 67 73 83 104 132 169 219 297
2| 62| 78| 89| 100]| 120| 142| 167 | 195| 220 | 277
g ORI 17 | 10| 18] 19| 19| 18

TABLE A, (CONTINUED)

6LC



Test No 8a

Load (kN) 40 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 200
Strain Gauge 1 -8 -F7 -120 | -173 =235 -344 -446 -612 =777 -061
2 -259 -426 | -510 | -591 -675 -794 -917 -1090 | -1249| -1381
Deflection Gauge 1 63 76 82 89 99 112 130 153 186 227
2 78 106 119 134 139 167 186 207 252 275
3 6 16 17 17 15 13 14 15 17 22
4 59 75 83 91 99 105 110 119 136 176

TABLE A.1 (CONTINUED)

08¢



Test No 8b

Load (kN) 40 | 80 | 120 | 160 [ 180 | 200 | 220 | 240 | 260 | 280 | 285
Strain Gauge 1 124 | -238 | -362 | -501 | -590 | -647 | -712 | -784 | -242| _gaa4
2 138 | -268 | -390 | -566 | -689 | -816 | -962 | -1148| -1426] -1620v
Deflection Gauge 1| 67 | 83 | 99 | 125 | 150 | 183 | 222 | 272 | 336 376
2| 103 | 133 | 165 | 202 | 226 | 2535 | 285 | 320 [ 64| 304
sl xR s | 27 | 3| o34 | -] —a
sl s | s1 | 73| o 02| o5

TABLE A.1 (CONTINUED)
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Test No 3

Load (kN) 40 80 120 140 160 180 200 220 240 260 Fagfgre
Strain Gauge 1 -48 | -136 | -233 | -280 | -327 | -365 -404 -443 -492 -542
2 -145 -228 -300 | -333 -361 -394 -434 -478 -530 | =592
Deflection Gauge 1 23 37 46 56 68 84 105 135 185 245
2 49 82 111 123 139 157 178 203 283 288
3 0 23 63 78 92 99 104 104 102 99
4 50 59 60 57 53 49 47 46 42 31

TABLE A.1 (CONTINUED)
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Test No 5a
Load (kN) 40 80 120 160 200 220 240 260 | 280 300 ?10
Failure
Strain Gauge 1 -111 -232 -354 -485 -626 -687 -763 -879 -1030 | -1121
2 -162 -293 -434 -566 -707 | -788 -874 -995 ~1151 | -1302
Deflection Gauge 1 26 43 67 104 155 190 240 307 388 479
2 53 73 98 131 177 206 241 288 344 404
& 2 18 28 31 38 49 49 53 66 85

TABLE A.1 (CONTINUED)
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Test No 5b

Load (kN) 40 | 80 | 120| 160 200 | 220 | 240 |[260 | 280 | 300 Fagfgre
Strain Gauge 1 -130 | -245 | -372 | -503 | -716 | -837 | -942 | -1066| -1190| -1330
2 -118 | -232 | -339 | -454 | -617 | -696 | -773 | -839| -924| -904
Deflection Gauge 1 36 52 66 78 105 123 146 179 214 259
2 48 69 89 | 114 | 147 | 167 | 191 219| 252| 290
3 3 12 11 4 5 6 8 11 14 20

TABLE A.1 (CONTINUED)



Test

No 6a

Load (kN) 40 80 120 | 160 | 200 | 240 | 260 | 280 300 | 320 Faffire
Strain Gauge 1 -97 | -208 | -325 | -442 | -s40 | 650 | -773 | -916 | -1075| -1214
2 <125 | =227} =315 }'-410 | -521 | -705 | -799 | -017 | -1029| -1159
Deflection Gauge 1 50 #6i e | 105 | 114 | 127 | 140 | 157 177|190
2 39 56 75 97 | 120| 145 | 160 | 178 108 223
3 27 40 | 47 52 57 63 65 68 71 74

TABLE A,1 (CONTINUED)
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Test

No 10a

Load (kN) 40 80 120 | 160 | 200 240 | 280 [ 320 | 360 |400 Faiigre
Strain Gauge 1 ~124 [NS2130 0% 8N Suaot | —526 | 635 | -763 | -934 | <1069 | -1071
2 -55 | -128 | -195 | -251 | -324 | -421 | -540 | -744| -1103 | -1740v
Deflection Gauge 1 40 50 57 64 68 74 79 87 27 111
2 57 86 | 116 | 145 | 168 | "194 | 221 | 253 320 | 592
3 2 4 SRR | w24 | <81 | <38 a5l —ad
4 6 12 15 10 9 9 8 5 _24'| =105

TABLE A.1 (CONTINUED)
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Test

No 12a

Load (kN) 80 160 | 200 [ 240 | 280 | 320 | 360 | 400 | 420 | 440 | 90
‘ailure
Strain Gauge 1 -108 -267 -338 -410 -505 -589 -623 -420 -272 -7
2 =171 -281 -340 -415 -482 -587 -860 | -1246 |-1565 -1878Y

Deflection Gauge 1 38 48 53 59 65 71 76 89 102 122

2 83 138 162 187 213 247 318 588 913 1498

3 64 59 50 50 47 36 2 3 17 33

4 14 12 13 15 14 -2 69 139 195 256

TABLE A.1 (CONTINUED)
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Test No 1

Load (kN) 40 | 80 120 | 160 | 200 | 220 | 240 | 260 | 280 | 300 Fag}ire
Strain Gauge 1 -60 | -135| -215 | -300 | -390 | -410 | -460 | -490 | -s530 | -540
2 -135 | -235 | -330 | -440 | -565 | -645 | -725 | -865 | -1025 |-1205
Deflection Gauge 1 22 30 37 42 48 52 60 70 89 130
2| s 89| 118 | 143 | 166 | 180 | 199 | 218 243 | 280
s el 271 66| 909 | 109 | 106 | 93| =4 62 28
4 8 9 9 9 ol 41| &2 | a5 46 7

TABLE A.1 (CONTINUED)
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Test

No 2a

Load (kN) 40 | 80 | 120| 160 | 200 | 240 [ 260 | 280 | 300 | 520 [ %%
Strain Gauge 1 -70 | -140 | -250 | -340 | -420 | -460 | -480 | -640 | -680 | -700
2 120 | -220 | -310 | -420 | -460 | -660 | -720 | -830 | -800 | -oss
Deflection Gauge 1 15 % 2 R i e ] 67 76 | 94 | 101 | 106 | 112
2| 60| 92| 121| 147 | 173 | 104 | 200 | 226 | 242 | 280
3| =2 B 2 7 7 T T Y 20 7
s| 10] 11 14| 14 il 20| =22 |oss 24 18

TABLE A.1 (CONTINUED)
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Test No 2b

Load (kN) 40 | 80 120 | 160 | 200 | 240 | 260 | 280 | 300 | 320 Fafigre
Strain Gauge 1 80 | -170 | -270 | -370 | -460 | -575 | -650 | -750 | -840 | -940
2 130 | -220 | -305 | -400 | -495 | -610 | -700 | -780 | -860 | -930
Deflection Gauge 1| 17 | 24| 30| 35| 30| 46| s7| 71| 90| 100
2| 71 | 102 '120] 157 | 182 | 208 | 226 | 247 | 268 | 305
g| Tor PSRN 47| a0 | 46 | as.| aa | 4s
Al R s | 23] 23| 24| 23| s0

TABLE A.1 (CONTINUED)
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Test

No 4b

Load (KkN) 0 | 80 | 100 | 120 | 140| 160 | 180 | 200 | 220| 240 Fafﬁre
Strain Gauge 1 -103 | -204 | -288 | -341 | -383 | -415 | -447 | -487 | -525| -549
2 159 | -280 | -348 | -415 | —495 | -578 | -669 | -776 | -902 | -1071
Deflection Gauge 1| 40 | 62 | 77| 101 | 136 | 172 | 228 | 288 | 369| 461
2| 73 [ lHoniRa oM ie 190 | 234 | 272 | 315 | ses| 424
31 2070 e e | 77 | 112 | 220 | 139| 160

TABLE A.1 (CONTINUED)
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Test

No 11b

Load (KN) 40 | 80 | 120 140| 160 | 180 | 200| 220 240 | 260 Faifgie
Strain Gauge 1 -94 | -206 | -312| -362 | -411 | -481 | -547 | -613 | -694 | -883
2 -153 | -275 | -395| -465 | -559 | -676 | -759 | -871 | -984 |-1066
Deflection Gauge 1 46 61 70 76 ¥88 | 110 | 143 184 | 234 324
2 58 SRR N Y | 177 | 200 ] 233 | 272 | 308
3 6 RSt s —a0 | =31 | 37| =45 | 54| -63
4 13 15 23 31 38 45 50 63 85 | 218

TABLE A.1 (CONTINUED)
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Test

No 13a

Load (kN) 40 80 120 | 160 | 180 | 200 | 220| 240 | 260 | 280 | 297-5
Failure

Strain Gauge 1 =75 |-170 | -281 |[-391 |[-477 | -500 | -714 | -844 | —965 | -1085
2 -135 |-258 | -361 |-498 |-604 | -731{ -801 |-1011 [-1133 | -1263
Deflection Gauge 1 32 44 56 67 77 o4 | 119 159 | 199 255
2 48 77 | 100 | 141 | 157 | 178 | 202 | 232 | 264 300
Bl ~25 {WEZ W NEEINIRE N oy L 27 | o7 31 | -33 _33
4 2 7 14 26 30 32 34 38 46 80

TABLE A.1 (CONTINUED)

$6Z



Test

No 13b

Load (kN) 40 80 120 | 160 | 200 | 240 | 260 | 280 | 300 | 320 Fagigre
Strain Gauge 1 -478 | -556 | -639 | -739 | =882 | -1144 | -1281 |-1399 |-1500 | -1549
2 -104 | -226 | -337 | -468 | -681 | -1048 | -1268 |-1468 | -1687v| -1882y
Deflection Gauge 1| 39| 50| 66| 71| 92| 130| 172 | 211| 257 | 311
2 7S {SNREENINOEsNINges | 38|  as1 | a1z | ase | 401 | sas
3| asl | 2wl -3 -1 - e e R R
4 o f azel Rl Sar ] 9o gal uoule wss | 75 | 110

TABLE A,1 (CONTINUED)

¥62




Test No 14
Load (kN) 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 380 |_ 390
Failure
Strain Gauge 1 -107 | -190 | -288 | -387 | -499 | -688 | -o49 |-1238 | -1410 |-1342
2 -30 |-107 | -177 | -256 | -394 | -662 | -1141 |-1717y| -2104y |-2452v
Deflection Gauge 1 34 43 52 65 82 118 184 263 366 424
A 74 | 104 | 131 | 158 | 200 | 257 | 334| 467 | 614
5] ol S e 11 16 27 51 52 55 58
4 -3 1 7 20 | 32 55 | 112 | 137 175 | 239

TABLE A, 1 (CONTINUED)

S6Z



Test No 15

Load (KN) 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 380 | 490
Failure
Strain Gauge 1 -76 | -144 | -230 | -314 | -442 | -610 | -868 |-1240 | -1604Y| -1836Y
2 -53 | -94 | -148.| -198 | -288 | -448 | -659 | -970 | -1245 | -1304

Deflection Gauge 1 32 44 55 65 79 106 152 227 307 360

2 58 89 121 152 181 218 | 265 334 430 | 533

3] =16 | ~17 | «=25 | =36 | -39 | -42 | <50 | -m;1 O

4 =3 -9 -11 -7 -5 -2 2 -2 38 77

TABLE A.1 (CONTINUED)

962



Test No 16

Load (kN) 40 .| 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | . 420
Failure
Strain Gauge 1 -10 -23 -49 | =71 | -96 | -140 | -185 | -211 | -170 | -192
2 -26 -47 -74 | -104 | -158 | -235 | -314 | -392 | -479 | -521
Deflection Gauge 1 26 32 42 52 59 79 130 179 262 326
2 38 38 96 125 155 191 235 299 408 815
3 -2 -2 -11 -10 -10 -10 -12 -13 -29 -47
4 17 17 21 23 24 24 21 26 43 71
TABLEA,1 (CONTINUED)

L6Z



Test No 18

Load (kN) 40 80 120 160 200 240 280 | 320 360 440 Faiigre
Strain Gauge 1 -3 -14 -49 -86 —125 -166 | -231 | -259 | -960 | -280
2 -10 -43 -46 -46 -72 -103 -133 -144 -88 91
Deflection Gauge 1 96 99 107 115 128 163 193 240 297 339
2 75 112 141 171 202 238 285 348 457 27
S 7 1 2 10 11 16 24 36 57 76
4 23 24 29 34 42 41 44 37 30 42

TABLE A.1 (CONTINUED)

86¢C



Test No 20

Load (kN) 80 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | 440 Fagfgre
Strain Gauge 1 49 | 79 | 84 | 81 | 8 | 79 I BT M (T
2 64 1 ogsU R ey | 84 | 134 | -282 | -563 |.1397
Deflection Gauge 1| 57 | 58 | 68 | 8 | 105 | 143 | 186 | 250 | 261 208
2| 108 | 140 | 175 | 210 | 248 | 204 | 366 | s05 | 929 | 144n
3| 76| s2| 8| 94| 1010 | 112 156 | 223 | 26 | 401
sl ex it EY 4 | 73 71 52 26, 4571

TABLE A.1 (CONTINUED)

66¢



Test No 22

Load (kN) 80 | 120 | 160 | 200 | 240| 280 | 320 | 360 | 400 | 440 Fagfire
Strain Gauge 1 59 70 75 78 85 102 131 220 394 835
2 S0t R 50 | 46 | 19 37 159 330
Deflection Gauge 1| 39 | 51 63 | 78 | 102 142 191 264 262 222
2| 100 | 142 | 175 | 200 | 245 200 | 352 | 478 | 792 | 1422
5] =2 9 IS Tean | -39 53l L5 43 | -49
a| -18 | =2z | =270 |55 | =37 250 |  =5% | =1% 82 151

TABLE A.1 (CONTINUED)

00g



Test No 36

T0¢

Load (kN) 40 | 80 120 | 160 | 200 | 240 260 280 | 300 T EE ]
Strain Gauge 1 105 | -214 | =317 | 430 | -675 | -1038 | -1165 | -1287| -1436 | -1618y
2 -112 | -192 | -305 | -465 | -731 | -1122 | -1271 | -1429 | -1544 | -1576v
Deflection Gauge 1 46 60 82 101 139 197 244 290 345 390
2| 57| 96| 137 | 176 | 222 | 284 szl Saeml . 492|502
3t 26| 66l "or | 105 | 104 100 | 100 | 116 17| 145
al a7 | a8 ol e 66 76 81 82 70

TABLE A.1 (CONTINUED)




Test No 37

z0¢

Load (kN) 40 | 80 | 120 | 160 200 | 200 | 240 | 260 | 280 o R B
Strain Gauge 1 -74 |-173 |-297 | -444 | -691 | -865 | -1021 |-1017 | -1161 | -1171
2 -136 | -213 |-292 | -431 | -753 | -943 | -1185 |-1382 | -1610Y| -1008Y
Deflection Gauge 1| 39 | 49 | 61 | 77| 117 | 142 168 p1g . 257 | 314
2| 59 | e8 | 135 | 170 | 225 | 254 202 | 338 | 398 | 495
5] s [enSiNE Wt 4 | 33 33 32 31 15
4 2 8 | 19| 25| 44 | a8 61 85 118 | 185

TABLE A.1 (CONTINUED)




Test No 38

Load (kN) 40 80 120 | 160 | 180 | 200 220 240 260 280 299
Failure
Strain Gauge 1 -100 | -215 | -315 | -478 | -602 | -785 -973 |[-1180 -1380 | -1690Y
2 -69 -114 | -205 -349 -472 -642 -818 -973 -1053 -989
Deflection Gauge 1 42 56 72 88 105 127 159 196 234 284
2 65 102 143 182 206 236 275 326 382 491
3 -11 -3 43 48 49 50 58 59 79 93
4 -12 -3 6 6 6 8 13 19 19 8

TABLE A.1 (CONTINUED)

£0¢



Test No 39

r0g

Load (kN) 40 | 80 | 120| 160 | 200 | 240 | 280 | 320 | 360 | 400 F:?{Gie
Strain Gauge 1 -12 | -51 | -120 | -185 | -283 | -430 | -619 | -815 | -964 | -1000
2 -183 | -272 | -350 | -462 | -626 | -881 | -1234 | -1950y | —1050y | -2285Y
Deflection Gauge 1| 46 | 58 | 67| 77 | 86| 115 150 | 186 | 251 325
2| ag | so il 167 | 100 | 202 208 | 345 472
3| -92 | TR0 f e Wug | a9 | -a9 -46 -47 -55 =75
4| -12 1 11 v 26 31 45 66 136

TABLE A.1 (CONTINUED)




Test No 40

Load (kN) 40 80 120 | 160 | 200 | 240 280 320 360 380 Fag?gre
Strain Gauge 1 -102 | -206 | -286 | -401 |-581 | -818 | -1133 | -1443 | -1763v] 1804y
2 -108 | -166 | -258 | -373 | -518 | -764 | -1041| -1314 | -1562Y| -1640v
Deflection Gauge 1 42 53 64 77 90 112 148 192 246 286
2| se | 22 i ase | ies | 107 238 280 | 352 | 308
3] <12 Rl B REEE R 29 | o5 13] s 39| .74
4| -3 6 9 | 15 18 | 18 18 19 19 18

TABLE A.1 (CONTINUED)

S0¢



Test No 41

90¢

Load (KN) 40 | 80 | 120| 160 | 200 | 240 | 280 | 320 | 360 | 380 !
Strain Gauge 1 -74 | -194 | -206 | -320 | -528 | -758 | -1040 | -1334 | -1566Y| -1710v
2 -137 | -212 | -201 | -406 | -577 | -847 | -1173 | -1496y| -1722v| -1781y
Deflection Gauge 1| 44 | 48| 71| 92| 110 | 138 177 | 227 | 204 | 335
2| 53| 93| 122| 152 | 180 | 215 250 | 322 | 402 | ss
3 o | a6l 7a| 72| 79| 79 82 80 80 76
4 5] 150 2| 22| 32| 38 38 45 23

TABLE A,1 (CONTINUED)




Test No 42

LOg

Load (kN) 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 380 | 390
Strain Gauge 1 -113 | -213 | -316 | -422 | -623 | -915 -1264 | -1639V | -1951Y| -2074Y
2 -209 | -301 [-371 |-482 | -635 |-802 | -1153 | -1426 | -16d0Y| -1746v
Deflection Gauge 1| 34 | 47 | s9 | 75 | o1 | 122 163 | 215 | 287 | 326
2| 372 | 67 |10t fias1 | 159 | 197 242 | 300 | 412 | 485
31  ap | o ey el g 5 26 g 7| 1m
sl et 3 2 1 1 11 13 15 16

TABLE A.1 (CONTINUED)




Test No 43

Load (kN) 40 80 120 160 200 240 280 320 360 380 385
Failure
Strain Gauge 1 -76 | -186 [ -271 |-410 |-634 | -934 -1279 | -1554Y | -1811Y | -1918Y
2 -105 | -129 | -211 |-351 | -532 | -831 -1197 | -1494Y | -1743Yy | -1827Y
Deflection Gauge 1 62 79 101 118 142 181 238 312 396 446
2 65 96 133 165 201 246 309 389 534 651
3 -3 22 40 38 35 34 31 24 10 | 6
4 7 22 30 31 39 51 59 56 50 41

TABLE A.1 (CONTINUED)

80¢



Test No 26a

Load (kN) 40 | 80 | 100| 120| 140 | 160 | 180 | 200 | 220 | 240 | 2B
Strain Gauge 1 -140 | -268 | -334 | -393 | -475 | =527 -606 -688 -797 -947
Z -188 | -323 | -391 | -448 | -517 | -601 -664 ~744 -818 —593
Deflection Gauge 1 45 57 63 72 85 99 123 155 193 245
2 55 93 111 132 154 174 198 230 262 300
3 103 125 126 125 125 128 131 134 135 15
4 42 30 19 9 2 -3 -10 -17 -31 -66

TABLE A.1 (CONTINUED)

60¢



Test No 25a

01¢g

Load (kN) 4 | 8 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 270
Strain Gauge 1 =72 | -193 |-306 |-362 | -404 | -460 -525 -607 -707 ~-852
2 -178 | -307 |-428 |-504 | -580 | -655 | -730 | -817 | -886 | -962
Deflection Gauge 1| 39 | 53 | 61 | 67 | 70| 79 o5 | 118 | 146 | 190
2| 101 | 272 | 348 | 389 | 420 | 473 | s18 | 572 | 640 | 734
3 “IoNIRGRMEER N s | 36 | w36 | 37 | a2 | -as
41 20 PNsoRi s hae | 51| 66 70 78 | 100 | 168

TABLE A,1 (CONTINUED)




Test No 25b

Load (kN) 40 | 80 120 | 160 | 200 | 220 | 240 | 260 280 | 300 Faifgre
Strain Gauge 1 -129 [-205 | -295 | -391 517 -593 -664 -725 ~786 -840
2 -68 (-183 | -294 | -349 | -562 | -652 | -755 | -902 | -1066 | -1242
Deflection Gauge 1 14 | 47 56 63 72 79 89 105 128 159
2 56 | 102 | 115 | 140 | 173 | 188 206 224 247 277
3 45 | 40 48 et T 56 55 52 49 41
4 20 | 25 27 29 40 41 41 45 46 39

TABLE A.1 (CONTINUED)

I1g



Test No 26b

Load (kN) 40 80 120 | 160 | 200 | 240 260 280 300 320 Fafigre
Strain Gauge 1 -189 | -295 | =430 | =517 630 | =771 | -849 | -012 | =960 | -965
2 <110 Eore el ol aos | 727 | -840 | 1004 | -1212 | -1504
Deflection Gauge 1| 140 | 158 | 166 | 171 | 177 | 187 194 202 213 232
2| e9| 1} 139 | 165 | 193 | 221 236 252 273 | 300
3| 24 6 14 6 6 7 8 10 13 19
a|l 45| 631 82 o7 | 100 | 134 143 153 173 211

TABLE A.1 (CONTINUED)

clg



Test No 24b

Load (kN) 40 80 120 | 160 | 200 | 240 280 300 320 340 Faffgre
Strain Gauge 1 -157 | -263 | -379 | -479 | -570 | -708 -897 | -1051 .| ~-1218 -1416
2 -54 | -140 | -224 | -305 | -399 | -535 | -730 | -sso | -907 | -1168
Deflection Gauge 1 18 77 84 | 106 | 105 | 105 121 120 134 162
2 81 | 114 | 147 | 178 | 206 | 231 223 280 305 346
3 42 78 1 Moo il s | 132 | 145 157 163 164 171
4 25 27 34 36 36 31 20 6 -18 -81

TABLEA.1 (CONTINUED)

g1s



Test No 27

vig

Load (kN) 40 80 120 | 160 | 200 | 240 280 320 | 360 380 .
Strain Gauge 1 ~-108 [ =TBARIE ST SERNIS 426 | 517 | -637 | -746°| 720 -301
2 -55 | -132 | -212 | -285 | -369 | -514 | -704 | -1021 | -1642Y| -2307Y
Deflection Gauge 1 39 48 56 64 70 76 84 95 110 123
2] 66| 98 § 128 | 156 | 181 | 206 235 280 | 360 | 485
3 vl e 8 161 17 13 6 o T ~34
4 15 | =26 | 37 46 50 | 58 68 01 184 302

TABLE A,1 (CONTINUED)




Test No 28

SIS

Load (kN) 40 80 120 | 160 | 200 | 240 280 | 320 360 400 Faﬁgre
Strain Gauge 1 -70 [ =142 [-226 [-289 |-364 |-444 | -547 | -668 | -700 | -960
2 <18 49N INCo1 i sse |23 |-341 | -457 | 589 | -788 | 1194
Deflection Gauge 1 34 47 60 67 74 80 87 93 100 ¥ 107
2| 157 | 233 | 322 | 386 | 454 | 518 592 675 869 1595
3] «1n ln-g2 Bt 5 8 9 15 18 56 111
4 17 31 41 41 50 53 57 59 65 74

TABLE A.1 (CONTINUED)




Test No

R1b

Load (kN) s0 | 8o | 120 160| 180 | 200 | 220 | 200 | 260 | 280 | . 30>
ailure
Strain Gauge 1 124 | -269 | -412 | -s61 | -634 | -708 | -795 | -898 | -1008 | -1106
2 165 | -320 | -422 | -566 | -647 | -721 | -806 | -898 | -1009 | -1154
Deflection Gauge 1 34 52 67 93 109 127 151 180 218 265
2| ss | o3| a2z | 159| 176 | 195 | 216 | 239 | 261 300
3 8 | 17 18| 21 TS 38 45 50
Al
g1 LR s | e | 35 | 20 13 20
TABLE A.1(CONTINUED)

91I¢



Test No Rla

F.
Load (kN) 40 | 80 | 120| 160 | 200 | 240 | 280 | 320 | 360 | 400 Fa;‘fgre
Strain Gauge 1 -83 | -180 | -288 | -385 | -475 | -500 | -717 | -984 | -1357 | -1721Y
2 ;121 | -231 | -321 | -421 | -541 | -662 | -810 | -980 | -1189 | -1342 |
Deflection Gauge 1 52 64 69 75 80| 87 | 9 | 12| 13| 170 | |
2| s | 119 148 174 | 107 | 210 | 243 | 260 | 200 | 364 E
3 a| 12| 13| o 10| 12| 16| 24 28] - A% - g
£ ar R e 0] 0| 40| 0|

TABLE A,1 (CONTINUED)

LIS



Test No hZ
Load (kN 80 120 | 160 | 200 | 240 | 280 | 320 | 360 400 440 460
oad (kN) Failure
Strain Gauge 1 -194 | =300 | =426 |-528 |-se1 | -640 |{-751 | -851 | -85¢ | -604
2 -212 | =312 | -402 |-504 |-508 | -711 |-878 |-1106 | -1478 | -2084y

Deflection Gauge 1 84 91 98 104 109 117 127 138 155 179

2| 142 | 178 | 206 | 220 | 249 | 273 | 299 320 379 495

5 [V -a8 | aallenauateel Loy [ 52 | 53 -53 76. | -153

4 35 51 51 68 81 90 | 111 137 184 270

)

TABLE A.1 (CONTINUED)

8I¢



Test No 23b
Load (kN) 20 | 40 | 60 80 100 | 120 | 140 | 160 180 190 Lh
Failure
Strain Gauge 1 -41 -119 -191 -281 -337 -340 -493 -564 -708 -905
2 -126 -210 -285 -364 -442 -530 -615 -727 -824 -858
Deflection Gauge 1 44 59 74 86 104 141 191 270 364 464
2 45 67 85 103 125 162 206 268 340 405
3 66 68 75 82 84 87 90 91 95 97
4 -5 -5 -5 -4 2 17 28 45 80 162

TABLE A,1 (CONTINUED)

61¢



Test No 23a

0z¢

Load (kN) 20 | 40 | 60 | 8 | 100 | 120 | 140 | 150 | 160 | 170 | 130
Strain Gauge 1 62 | =125 | 237 | -312 | 420 |-s16 | -503 | -620 | -668 | -722
2 112 | =214 | =328 | =306 | 478 | -s85 | -701 | -766 | -saa | 042 | |
Deflection Gauge 1 42 Bh 67 83 118 172 255 300 dg;g_" "Hgéb
2 | s2| 74| oo | 110 | 142 | 188 | 201 | 300 | 436 | 4se |
s || AOIREEERRTE NS | 52| so| o1 55 61
s | 18| 27| 30| 30| a1 | as| 63| 75 08 | 134 i

TABLEA.1 (CONTINUED)




Test

No 29b

Load (kN) 20 40 60 70 80 20 100 110 120 130 !40
Failure
Strain Gauge 1 -139 -245 -356 -420 | -478 -540 -604 -678 -755 -844
2 -104 -222 =342 -398 -453 -526 ~-592 ~-668 -745 -857
Deflection Gauge 1 DAMAGED GAUGE
2 94 132 154 172 198 237 265 305 350 407
3 25 41 39 37 34 30 29 58 29 30
4 4 20 27 27 28 27 27 29 33 37

TABLE A.1 (CONTINUED)

45



Test No 29a
Load (kN) 20 40 60 70 80 90 100 110 120 130 %40
Failure
Strain Gauge 1 -49 -254 -403 -518 -579 -690 -801 -922 -1041 -1162
2 -108 -175 -197 =212 -224 -243 -268 =276 -289 -325
Deflection Gauge 1 43 66 91 109 152 157 190 230 276 341
2 80 107 134 149 168 193 224 262 305 363 |
3 23 8 4 Ly 9 12 30 32 31 30
4 27 25 14 i & 10 9 3 1 -15 -58

TABLE A.1 (CONTINUED)

XA



Test

No 31

Load (kN) 20 40 60 80 100 | 120 | 140 | 160 180 200 Faf?ﬁre
Strain Gauge 1 5 -46 | -115 | -159 | -101 | -250 | -350 | -452 | 571 -833
2 =118 {188 | 256 | 319 | -381 | -457 | -552 | 665 | -sos | -1132
Deflection Gauge 1 7 9 19 33 47 50 50 47 40 21
2 18 15 27 44 56 57 57 56 52 23
3 9 10 21 36 44 46 47 48 48 36
4 63 81 90 | 116 | 132 | 148 | 165 | 184 209 245

TABLE A.1 (CONTINUED)

£Ce



Test No 30

Load (kN) 40 80 120 | 140 | 160 | 180 | 200 | 220 240 260 Faﬁsre
Strain Gauge 1 120 -26 | -185 | -261 | -329 | -422 | -548 | -687 -890 -1242
2 -326 -454 -549 -572 -605° | -635 -667 -674 -662 -611
Deflection Gauge 1 7 44 69 76 85 93 96 103 111
2 49 62 66 61 61 65 71' an 112
3 55 81 92 92 93 94 94 102 106
4 96 126 156 178 191 197 Zi] 227 250

TABLE A,1 (CONTINUED)



Test No 32

Load (kN) 40 | 80 | 120 | 160 | 200 [ 220 | 240 | 260 | 280 | 300 [ 310
Strain Gauge 1 -5 -68 -166 =311 -449 -517 -586 -639 =712 -787
2 -186 -281 -380 -444 -522 -551 -578 -629 -693 -721
Deflection Gauge 1 40 32 26 66 88 105 117 132 150 172
2 0 -10 -17 22 42 58 67 74 81 77
3 -4 -13 =21 0 14 23 34 41 50 65
4 81 i 4 [ 147 173 200 214 230 248 269 295

TABLE A.1 (CONTINUED)

SZ¢g



Test No 33
Load (kN) 40 | 80 | 120| 160| 200 20| 280 | 300 | 320| 340 o
Failure
Strain Gauge 1 -89 | -150 | -217 | -239 | -322 | -417 | -492 | -535 | -s82 | -558
2 -98 | -190 | -282 | -371 | -443 | —s12 | -606 | -650 | -706 | -770
Deflection Gauge 1 -6 27 54 56 52 47 42 G 32 20
2 2 | ozl 4n 51 51 51 51 48 40 37
AN 16 o 2| 42| 44| a4 33 33 28
a | 76 | 11| 141 | 167 | 108 | 222| 253 | 274 299 342

TABLE A.1 (CONTINUED)

Ll



Test No 34

Load (kN) 40 80 120 | 160 | 200 | 240 | 280 | 320 360 | 380 M
Strain Gauge 1 -88 | -129 | -170 | -230 | -249 | -340 | -395 | -435 -418 -383
2 3| -46 | -105 |-150 | -198 | -237 | -262 | -277 | -270 | -2m
Deflection Gauge 1 8 38 68 77 79 80 81 81 86 86
2 | ‘<13 3 2 | 22 32 31 31 31 31 27
5 10 a4 -4 17 19 20 20 20 20 19 19
4 90 | 121 | 151 | 180 | 205 | 236 | 268 | 308 368 421

TABLE A.1 (CONTINUED)

LCS



Test No 50

Load (kN) 20 | 4o |60 | 80 | 100 | 120 | 10| 160 | 170 | 180 | 185
Strain Gauge 1 -20 -52 -81 | -110 | -136 | -162 | -188 -207 -217 -224 -257
2 -22 | -52 | -77 | -106 | -136 |-168 | -203 | -238 | -262 | -268 | -223
3 6 4 4 6 9 13 21 39 53 71 153
4 5 11 15 17 17 18 20 21 19 10 -45
5 -34 -98 | -145 -197 -244 -305 -394 =512 -613 -809 208
6 -55 | -107 | -161 =223 | -291 -376 | -499 -662 -779 -904 -1505
7 11 11 14 17 19 23 30 48 61 83 151
8 SN R | 2 | | ] ] -z | -m
9 -9 | -31 [ -55 | 78 | -115 [-153 [ -101 | -210 | -262 | -245 | -267
10 -36 -73 -102 | -134 -153 -168 | -188 -209 -232 -242 -177
11 -91 -219 | -319 | -425 | -527 -655 -829 -1100 | -1104 -1033 579
12 -118 | -216 | -318 | -431 | -554 | -696 | -893 | -1078 | -1448 | -2036v| -676
Deflection Gauge 1 -2 7 S -3 -13 -21 -26 ~24 -16 -28
2 -1 5 2 -5 -13 -20 | -25 -28 -26 -58
3| 106 | 145 | 172 | 200 | 227 | 255 | 200 | 333 | 363 | az0

TABLE A.1 (CONTINUED)

8ce



Test No 51
Load (kN) 20 | 40 | 60 | 80 | 100 | 120| 140 | 160 | 180 | 200 Fﬁi;;ie
Strain Gauge 1 37 | 64| -89 |-112 |-137 | <162 | -187 | -217 | -255 | -207 | -316
2 -9 -34 -59 -88 -116 -143 -169 -191 -212 -233 -247
3 YR N 0 3 o| 17| 25 34 44 56
4 52| 88| "aatl sl 51| sa| 6| ss 57 48 35
5 126 |-188 | -255 [-318 | -380 | -454 | -511 [ -s58 | -609 | -663 | -669
6 19 | -23 | -67 |-103 | -140 | -179 | -227 | -200 | -369 | -460 | -s11
7 -8 | s e 5| -2 1 6 12 18 26
8 27 | 29k 20 sl 52| 30| 40| a0 39 33 22
9 -43 -65 -81 -91 -100 -110 -123 -141 -163 -189 -194
10 -16 | -51 | -92 |-136 | -185 | -220 | -275 | -313 | -353 | -303 | -am;
11 228 | -329 | -444 |-550 | -684 | -705 | -886 | -951 | -1036 | -1157 | -1200
12 31 -45 -124 -194 -266 -341 -435 -554 -697 -845 -946
Deflection Gauge 1 -30 -29 -40 -57 -73 -88 -100 -103 -104 -104
2 19 f cia GRS ENINt s | s | a0 | -79 78 | -79
3 87 | 103 | 148 | 182 | 200 | 235 | 263 | 201 321 | 359

TABLE A,1 (CONTINUED)

6C¢



Test No 52
Load (kN) 4 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240
Strain Gauge 1 36 | -62 | -89 | -115 | -134 | -143 |-157 | -162 | -180 | -100 | -221
2 67 | -92 | -122 | -185 | -185 | -235 |-277 | -320 | -303 | -448 | -49s
3 23| 24| 3| 36| 42| a8 | 53| 54 63 67 79
4 20 (Lot ANECRINET Y s [ <i0 | -83 | -46 -82 | -105 | -109
5 43 | -86 | -124 | -168 | -214 | -285 [-340 | -405 | -453 | -s07 | -s03
6 103 | -137 | -172 | -205 | -229 | -234 |-254 | -262 | -288 | -202 | -267
7 23 || SRR s | ox | 23 | 20 24 21 29
8 8 | agilvzsail 2as il a2 | -8 o | 1% Gl 13 _28
0 125 | -4l g RENme R iio | —115 | -136 | <181 | -189 | -210 | -243
10 -802 | -511 |-1065 | -247 | -358 | -353 |-580 |-1021 | -1278 | -s00 | -1798Y
1 =25 | 67 | <107 | -149 | -206 | -207 |-366 | -444 | -507 | -578 | -e61
12 490 | -569 | -674 | -421 | -682 | -442 |-674 |-1303 | -935 | -380 | -1077
Deflection Gauge 1 0 0 -3 3 14 50 71 95 108 133
2 11 [N S Ty | 31 | a6 | 64 78 | 101
3 14 | 142 | 170 | 197 | 223 | 253 | 279 | 306 332 | 336

TABLE A.1 (CONTINUED)

(075



Test No 53
Load (kN) 40 | 80 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 Faf?ﬁre
Strain Gauge 1 -97 | -179 | -270 | -308 | -342 | -376 | -406 | -440 | -a74 | _z23 | _so3
2 SO ISR RS N0 | g3 | 107 |- | 174 | 108 | 223
3 46 | ~aolncamteEs i Cae | 38 | 36 | 37 4o | 47 -85
4 51 | ettlamas i mNERMl S as | a3 | 43 | 38 28 21 43
5 -153 | -194 | -223 | -243 | -263 | -283 | -208 | -308 | -316 | -206 | -211
37 | -21 | -98 | -110 | -139 |-150 | -182 [-210 [ -217 | -232 | -327
7 <351 | -ont | oy e N es | 31 | <35 | 38 47 | 93 | -tes
8 15 1 1] e 8 | 30| 23| 37 23 49 109
9 -88 | -167 | -240 | -278 | -318 |[-357 | -308 | -443 | -so1 | -566 | -ces
10 -130 | -187 | -297 | -286 |-332 |-342 | -369 | -414 | -a56 | -455 | -408
11 -205 | -236 | -248 | -257 | -273 |-280 | -203 [-285 | -283 | -211 08
12 91 | 20 | -56 | -79 | 97 |-121 | -140 | -140 | -134 | _13s | -250
Deflection Gauge 1 7 | =28 6sRNERENE S | 80 | 101 |-118 | 131 | 190
2 25 | e INE NN INss | 56 | -7 | s | -112 | 133
3 154 | 174 | 226 | 252 | 278 | 304 | 333 | 363 203 | 450

TABLE A.T (CONTINUED)

|5



Test No 62

Load (kN) 40 | 80 | 120 | 160 | 200 | 240 | 260 | 280 | 300 | 320 szf;ie
Strain Gauge 1 147 |18 el se [ 98 | .50 | 55 | -38 25 | .1y7
2 -286 | -423 |-520 | -600 | -679 | -792 | -852 | 026 | -1035 | -1053
Deflection Gauge 1 173 | 175 | 169 | 178 | 183 | 192 | 201 | 210 218 | 232
2 4 =a s ies i 180 | 178 | -164 | -1m -86 | -60
3 =53 | =66 =711 62l 56 | -52 | -a9 | -aa _24 27
4 60 | 78 | 8| o1 | 98 | 100 | 107 | 111 117 | 121

TABLE A.1 (CONTINUED)

A%



Test No 63
Load (kN) 80 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | 440 | 4s0 e
Failure
Strain Gauge 1 -41 | -172 | -203 | -250 | -304 | -331 | -328 | -311 -188 340
2 -186 | -364 | -437 | -501 | -502 | -697 | -828 | -983 | -1246 | -1838Y
Deflection Gauge 1 74 76 | 82| 89 o5 | 101 | 106 | 111 107 08
2 -2z | <11 =aa6 | iy faido | -12s | -i3s | <151 =202 | -326
3 .2 13 13 12 8 Y Qe 2106 | -159
4 a8 | s} e V72 79 | 88| 103 | 113 132 153

TABLE A.1 (CONTINUED)

g£ee



Test No

60

Load (KN) 100 | 200 | 300 | 400 | s00 | 600 | 700 | 750 | 800 | ss0 Faf?gre
Strain Gauge 1 -45 |-110 |-180 |-255 | -340 | -410 |-505 |-565 | -685 | -900
2 -90 |-175 |-270 |-345 | -400 | -495 |-610 | -670 | -745 | -73s
Deflection Gauge 1 4 4 3 -5 -11 -16 -22 -23 -24 26
2 5 SNIREa R s e oa | o5 | -19 | .o 17 | 110
3 7 5 e RV R 2 58 | 208
4 TR 7 2 1 BT 55 | 393
5 25 | s dnpil e 71 90| 16 | 22 50 | 300
6 22 | 29 | 30| 30| 3| 3| 30| a7 70 | 130
7 87 | 114 | 138 | 150 | 181 | 206 | 234 | 255 285 | 327

TABLE A.1 (CONTINUED)

14%3



Test No

Load (KN) 100 | 200 [ 300 | 400 | 500 | 600 | 700 | 800 | 900 |1000 | 1960
Strain Gauge 1 -70 |-140 | -215 | -280 | -355 | -470 | -495 | -600 | -710 | -825
2 -60 |-105 | -180 | -265 | -345 | -420 | -s0s | -620 | -770 | -9ss5
Deflection Gauge 1 81 98 104 114 L35 121 123 121 96 83
2 ~as SR | s | o7 | -2 | s | -eo
3 as | eo | ol 74l 77| 82| 7 70 21 | -28
4 ~63 | EoNINRE NI BRI 5 | 5z | .35 | <39 | .77 | -1m
5 211 42| 48] 521 86| 50| ss 54 35 -3
6 13| 19| 19| 20 24| 30| 37 39 35 28
7 o | 141 | 175 | 218 | 252 | 276 | 305 | 342 | 396 | 467

TABLEA.1 (CONTINUED)

See



Test No 64

Load (kN) 40 80 120 | 160 | 180 | 200 | 220 | 240 260 280 et
Strain Gauge 1 62 26 | -20 | -87 |-126 |-184 | -245 | -331 -467 | -829
2 -201 |[-287 | =367 | -437 |-458 | -487 | -513 | -540 -535 | -273
Deflection Gauge 1 104 120 | 148 165 156 166 198 | 201 202 206
2 73 T 144 169 | 165 | 161 149 | 133 94 [ -100
3 81 | 31| ‘154710148 | 136 | 128 | 115 95 51 -20
4 57 132 | 174 | 215 | 235 | 256 | 279 | 302 332 370

TABLE A.1 (CONTINUED)

9¢¢



Test No 65

Load (kN) 40 80 120 | 160 | 200 | 240 | 280 | 300 | 320 340 Fafigre
Strain Gauge 1 35 ORI W R 00 | 155 | -176 | <174 | <186 | -80
2 -152 | -230 |-308 |-392 | -477 | -s66 |-686 | -764 | -sss | -1120
Deflection Gauge 1 -29 | -37 -7 24 59 56 35 30 14 -17
2 a5 | s1 | o1 | 120 | 142 | 149 | 143 | 130 - B
3 60 | 68 | 96 | 123 | 141 | 148 | 152 | 152 144 02
4 100 | 145 | 200 | 239 | 200 | 332 | 382 | 420 440 | 481

TABLE A.1 (CONTINUED)

LES



Test No

66

Load (kN) 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | a40 | 40
Strain Gauge 1 -162 | -252 |-323 |-399 | -478 | -557 | -640 | -739 -867 | -1129
2 -85 | -142 |[-179 | -225 | -276 | -318 | -346 | -356 -314 -108
Deflection Gauge 1 25 -7 -19 -18 -8 -4 19 38 57 87
2 48 22 18 23 42 55 66 93 143 258
3 48 34 35 43 58 73 91 123 171 309
4 118 174 199 237 290 320 363 407 449 503

TABLE A,1 (CONTINUED)

8ge



Test No 67
Load (kN) 80 160 240 280 320 360 400 440 480 520 ?30
Failure
Strain Gauge 1 -123 -297 -484 -567 -654 -751 -863 -968 -1086 -1140
2 =71 -109 -136 -147 -154 -156 -147 -141 -101 -17
Deflection Gauge 1 64 130 223 251 289 325 367 400 457 495
2 59 146 251 284 326 370 420 457 530 701
3 34 100 Li7 216 254 289 332 SIS 438 550
4 118 221 298 346 - 376 416 458 500 5572 639

TABLE A.1 (CONTINUED)

6EE



Test No 68

Load (kN) 20 40 60 80 100 120 140 160 170 180 Fa;?gre
Strain Gauge 1 -108 | -178 |-243 | -300 | -353 | -422 | -500 | -615 -687 ~707
2 3 -32 -70 | -124 | -185 | -271 | -394 | -531 -634 -794
Deflection Gauge 1 30 54 67 73 .93 170 245 351 421 525
2 49 71 84 90 97 162 212 284 342 462
3 44 68 78 80 81 123 151 195 228 301
4 47 69 88 119 128 142 162 208 228 247

TABLE A.1(CONTINUED)

074



Test No 69
Load (kN) 20 40 60 80 100 120 140 150 160 170 !80
Failure
Strain Gauge 1 -77 | -147 | -210 | -273 | -334 | -426 | -570 | -643 -749 -849
2 -49 -89 -133 -188 -264 -349 ~-443 -513 -585 -688
Deflection Gauge 1 22 44 56 59 59 76 151 184 219 250
2 11 28 37 36 29 37 98 121 149 176
3 8 20 27 25 18 22 62 80 101 118
4 41 62 88 100 119 139 166 189 213 238

TABLE A,1 (CONTINUED)

Ive



Test No 70
Load (kN) a0 | 80 120 | 160 | 180 | 200 | 220 | 240 260 280 49755
Failure
Strain Gauge 1 150 |-240 | -325 |-405 |-450 | -495 |-sas5 |-570 | -725 | -_ass
2 -20 | -90 | -160 |-235 |-270 | -300 |-330 [-300 | -100 | -4s5
Deflection Gauge 1 as | 45| 26 | 10 Bk 12 | 20 | as 275 1, eas
2 s7-f 62| "soM 40| 39| 46 | 57 81 303 | 688
3 a3 ] 27 3] .5 0.1 5 | a3 | 58 213 | 403
4 67 | 94 | 125 | 167 | 172 | 187 | 205 | 231 272 | 348

TABLE A.1 (CONTINUED)

e



Test No 71

eve

Load (KN) 40 | 80 | 100 | 120 | w0 | 160 | 180 | 200 | 220 | 240 B
Strain Gauge 1 -28 | -88 | -116 |-143 | -171 | -201 | -231 | -256 -276 | -434
2 -112 | -181 | -218 | -258 | -298 | -337 | -372 | -394 -404 | -285
Deflection Gauge 1 9 7 -1 -9 -18 -21 -22 -18 -6 236
2 -6 G0 2 el | 27 | 20| -29 | -26 ~18 225
3 <14 | IGNCIoRENear 2% | 35 | -37 | -37 31 145
4 50 91 | 102 | 116 | 133 | 157 | 184 | 197 219 275

TABLEA.1 (CONTINUED)




Test No 72

Load (kN) 20 |40 |60 | 70 | 80 | 90 100 | 110 120 130l he g 1S
Strain Gauge 1 -140 | -290 |-370 | -420 |-485 | -535 | -610 | -660 | -735 | -821
2 5 5 5 AR el 20 | <50 | <1257 | 225 | -262
Deflection Gauge 1 46 | 93 | 133 | 152 | 177 | 210 | 275 | 447 570 | 02
2 60 | 120 | 172 | 198 | 231 | 268 | 333 | 477 560 | 596
3 64 | 121 | 166 | 188 | 215 | 241 | 285 | 376 475 | 550
4 68 | 113 | 146 | 159 | 176 | 102 | 217 | 245 200 | 308

TABLE A.1 (CONTINUED)

vve



Test No 73

Load (kN) 20 40 50 60 70 80 90 100 110 120 Fif?;ie
Strain Gauge 1 -65 -125 -150 | -175 -195 -215 -220 | =265 -280 -295
2 -65 -130 | -155 -190 -230 | =275 -345 -400 -505 -620
Deflection Gauge 1 25 47 58 62 63 65 95 224 281 330
2 19 34 42 46 46 48 63 164 194 219
3 16 27 32 34 40 51 59 90 91 110
4 81 106 124 142 167 186 202 227 262 294

TABLE A.1 (CONTINUED)

Sve



Test No 74

Load (kN) 20 | 40 | 60 80 100 | 120 | 140 | 160 170 180 Fa;?gre
Strain Gauge 1 -85 | -165 |-240 | -315 | -390 | -465 | -535 | 500 | -630 | -635
2 To I MoN IR e Mo | 35 | 55 |. 75 85 100
Deflection Gauge 1 23 53 63 66 69 72 80 96 108 118
2 31 | 75 | g mel os | 111 | 120 | 153 168 182
3 31| 62| 80 | 95 | 100 | 125 | 148 | 178 197 | ns
4 58 | 110 | 131 | 163 | 210 | 230 | 265 | 311 | . 331 357

TABLE A.1 (CONTINUED)

ove



Test No 75

Load (kN) 20 40 60 80 100 120 140 150 160 170 F;zfaie
Strain Gauge 1 -50 | -125 -190 [ -265 -345 -400 | -400 | -410 -450 -485
2 -30 =50 -60 -65 -60 =75 -20 -5 -10 -15
Deflection Gauge 1 27 57 67 68 63 63 76 84 93 115
2 17 48 64 15 80 89 120 135 148 179
3 14 37 55 70 84 98 125:.}. 151 166 200
4 55 114 138 172 220 250 313 330 362 411

TABLEA.1 (CONTINUED)

LyE



Test No 44
Load (kN) 40 |60 | 80 | 100 | 120 140 | 160 | 180 | 200 | 220 2alen
Failure
Strain Gauge 1 -88 |-131 | -177 | -216 | -253 | -282 | -303 | -315 -315 -295 ~127
2 8 0 -5 -19 -42 =730 ~111 § 141 -187 -250 1389
3 -93 |-114 | -134 | -153 | -169 | -170 | -162 | -133 -80 27 581
4 69 71 72 65 47 22 10} =39 -83 -153 -845
5 -188 |-241 | -294 | -338 | -380 | -414 | -448 | -480 -520 | -575 471
6 -13 -62 | -117 | -169 | -223 | -294 | -374 | -471 -604 -780 -226
7 -93 |-105 | -116 | -129 | -146 | -145 | -134 -96 -28 89 699
8 43 30 14 =, =22 -60 | -101 | -146 -198 -262 -846
9 -98 [-129 | -166 | -201 | -241 | -268 | -291 | -295 -287 -271 -97
10 3 -15 -33 -53 =71 | -104 | -144 | -187 -244 ~321 ~477
Deflection Gauge 1 -12 -14 -13 -14 -13 -13 -13 -8 1 33
2 69 81 95 107 119 129 138 150 164 186

TABLE A.1 (CONTINUED)

8re



Test No

35

Load (kN) 20 | 40 | 60 |8 | 100 | 120 | 140 | 160 [ 180 | 200 | 215

Strain Gauge 1 16 | -48 | -90 |-133 | -175 | -215 | -226 | -242 | -273 | -335 | _365

2 =38 | s TERNG 07 | o125 |-a3a | aas2 | 194 | 20 243

3 49 | sa| s2| 49| as| 3| m 26 B0 116 _34

4 <38 | csa it eaon el 0 | 1 14 | 28 L8N T Y 176

5 a1 0 | -43 | -90 | -138 | -200 | -246 | -300 | -467 | -669 | -833

6 170 | -237 3010|367 | =421 | -467 | -477 | -500 | -545 | -573 | -s09

7 99 | 60| 62 | 64 | 64 g5 57 1\ im6 55 50 47

8 45| canh i RERalNRE N 4y | o35 | -22 | 15 -12 53 80

9 ~18 | 47 =6l cise |Ciro |-228 | -284 | -5 | 332 | -381 -405

10 -46 | =77 | =95 |-100 | -120 |-125 |-129 | -13:1 138 | -156 .| -170
Deflection Gauge 1 28 32 40 51 60 67 68 64 55 39
2 43 | 65 | 82 | 102 | 121 | 141 | 150 | 178 200 | 231

TABLE A.1 (CONTINUED)

6vE



Test No 45

Load (kN) 20 |40 [60 |8 | 90 |100 |10 120 | 130 | 1m0 [ 1S

Strain Gauge 1 -21 |.-48 | -84 |-123 |-139 |-157 |-170 |-183 |-191 | -204 -194

2 =30 | =63 |20 |~104 || -118 |-131 |-147 |-164 |-184 | -199 -242

3 16 16 128 27 27 27 24 25 18 13 -14

4 =1 -4 12 20 21 24 23 29 31 41 71

5 2 | -39 | -89 |[-139 |-166 |-198 [-240 |-300 |-376 | -470 -700

6 -62 | -99 |-146 |-193 |-214 |-235 |-253 |-278 |-306 | -327 -380

7 4 0 15 18 19 16 12 9 <1 .8 -43

8 i 2 0 -1 0 0 1 4 12 20 53

9 -21 | -53 | -76 |-108 |-125 |-142 |-156 |-172 | -177 | -184 -161

10 -35 | -63 | -88 [-115 |-126 |-138 [-154 |-169 | -190 | -210 -265
Deflection Gauge 1 29 35 49 65 74 82 90 101 108 121
2 100 | 170 | 236 | 303 | 336 | 369 | 405 | 444 493 560

TABLE A.1 (CONTINUED)

0S¢



Test No 46

Load (kN) SO0 0 | 50 | e | 70 | 80 | w0 [ 3%
Strain Gauge 1 Sl a1 | -56 | -67 | -80 | -94 | -127 | -146
2 So4 i aniense il Jog | -115 | <134 | -143 | <147 | -169 | -167
3 54 <61 =3 Sl raae | <17 | =18 | <16 | <17 | -18
4 A 0 o] -13 -9 0 13 5 0
5 £33 | =37 | ~67'| -94 | -128 | -166 | -205 | -243 | -298 | -366
6 AT S N Tag 127 | -160 | =185 | 214 | -245 | -303 | -374
7 A4 1 A5 | -4 =6l <1 |. -13 7 6 3 )
8 2 1 0 1 7 3 3ol =30 -18. ) ~20
9 w25l -ss | -4} -60 | -89 | -101 | -108 | -106 |-133 | -138
10 SioNEsseTes b T67 | =82 | <98 | -117 | -137 | -162 | -172
11 =22 | =60 1~-93"] =140 | -187 | -239 | -288 | =336 | -465 | -621
12 -88 |-140 [-176 | -227 | -269 | -305 | -340 | -381 | -499 | -671
Deflection Gauge 1 23 29 30 33 37 49 62 73 88
2 | 133 | 245 | 339 | 434 | 535 | 640 | 744 | 854 | 1089

TABLE A.1 (CONTINUED)

1059



Test No 48
Load (kN) 40 | 80 120 | 160 | 180 | 200 | 220 | 240 260 280 300
Failure
Strain Gauge 1 -94 | -144 | -193 | -236 | -259 | -281 -300 | =317 -334 -332 -270
3 -41 -91 -147 -176 -208 -245 -290 -345 -420 -559
8 -83 -103 -122 -135 -139 -140 ~-137 -124 -90 -7 382
4 54 32 8 -27 -45 -69 -93 -122 -162 -225 -610
5 -156 | -242 | -322 | -385 | -417 -447 | -477 | =513 -552 -565 -585
6 -21 -118 | -219 | -331 -395 | -467 -545 | -636 ~-758 -918 -874
7 -80 -101 -128 -141 -141 -137 -128 -113 -73 7 398
8 33 8 -20 -67 -92 -120 -148| -179 -220 -287 -715
9 -83 | -139 | -201 -246 | -264 -282 | -296 | -313 =325 -321 -268
10 -14 -54 -92 ~-150 -187 -225 -268 -314 -374 -458 -618
11 -331 -514 -676 -814 -895 -976 | -1041 | -1139 -1259 -1267 3467Y |
12 =51 | =247 | -456 -694 | -827 | -973 [ -1107 | -1244 -1421 -1641Y | -4927Y
Deflection Gauge 1 24 17 14 17 21 23 26 27 25 2
2 9 22 34 42 52 61 66 7t 74 89

TABLE A.1 (CONTINUED)

Zse



Test No 47
" Load (kN) 40 | 80 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 2725
Strain Gauge 1 -42 | -104 | -164 | -192 | -218 |-242 | -268 | -292 -319 -342 -65
2 -59 | -104 -153 | -180 | -210 |-246 | -285 | -327 -376 -432 -239
3 -4 -11 -15 -16 -17 -18 ~-20 -16 7 -1 37
4 20 26 33 37 40 43 44 51 58 57 -135
5 -122 -210 | =294 -334 -378 -426 -482 -537 -596 -665 -183
6 -80 | -187 -296 -345 -401 -456 -514 -592 -700 -822 152
7 -23 -19 -17 -17 -16 -13 -11 -6 4 10 -8
8 40 51 62 68 68 68 67 67 67 58 -165
9 -87 -139 -198 -230 -262 -289 -318 -347 -383 -419 -134
10 -12 -62 | -104 | -126 | -163 |-199 | -240 | -287 -344 -409 -300
11 -242 -430 | =596 -668 -746 -837 -955 |-1061 -1160 -1045 1779Y
12 -155 -359 -559 -663 -735 -835 -926 |-1058 -1136 -1213 -1618Y
Deflection Gauge 1 -21 -20 -14 -8 -7 -7 -5 -1 4 29
2 53 76 101 112 123 136 149 165 183 215

TABLEA.1 (CONTINUED)

£S8¢g



Test No

49

Load (kN) 20 |4 |60 |70 | 80 | 90 | 100 | 110 | 120 | 130 Faifire
Strain Gauge 1 20 | -SZRRISSEEREE 00 | <138 | -158 |-172 | 2177 | <165 | -188
2 15 |-samimeE i s T “80 | -89 |-100 | -124 | -165 | -165
3 4 3 0 Bl s | 7| ;18 | -32 74
4 10 | 16| 19 f ;2] 226| 24| 26 | 27 32 45 81
5 57 ole104 LR B 70 192 [ -215 | 235 | <25 | 275 | -390 | 707
6 -7 g0 {124 Teco C04 | 229 | <269 {-308 | -355 | -4s4 | -4m
7 0 1 0 0 0 gl 41 n R ~64
8 18 (- 0PI B f o7 | 25 | 53 37 48 83
9 25 LI e e L yos | 142 fo153 | 164 | -1810 | o211
10 15 ST e L 78 | -87 |-1o1 | -113 | <121 | -11s
11 -86 |-141 [-190 |-214 | 238 | -265 | -286 |-303 | -320 | -486 | -699
12 =24 | =73 |=128 |-156 |'-184 | 211 | 201 |-281 | -344 | -s00 | -1130
Deflection Gauge 1 50 57 53 44 34 30 29 31 36 13
2 164 | 311 | 473 | 563 | 649 | 740 | 837 | 968 | 1124 | 1304

TABLE A.1 (CONTINUED)
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Test No 58

Load (kN) 40 |80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 Faiiﬂre
Strain Gauge 1 -36 | -110 |-155 | -198 | -265 | -368 | -492 | -683 -712 -810
2 -99 | -165 |[-195 | -220 | -241 -258 | -268 -269 -280 -299
Deflection Gauge 1 0 -23 -29 -33 -35 -42 -43 -59 -62 -79
2 =31 -26 -16 -18 -11 16 63 241 258 278
3 -33 -23 -17 -9 11 41 88 130 170 200
4 235 435 534 625 715 810 905 1020 1065 1135

TABLE A.1 (CONTINUED)

SS¢



Test No

59

Load (kN) 20 | 20 | ¢0 | a0 100 | 120 | 130 | 140 150 160 I{gflgie
Strain Gauge 1 70 | -20 | -110 | -205 | -355 |-530 | -660 |-835 | -965 | -1435
2 -275 | -420 | -545 | -645 | -745 | -800 | -795 | -s15 -790 | -785
Deflection Gauge 1 -2 1 4 6 6 6 4 -4 -13 -29
2 38 | 61 g2 ans [V ias | 144 | 156 | 111 193 227

TABLE A.1(CONTINUED)

995



Test No 54

Load (kN) 80 120 | 160 | 200 | 240 | 280 | 320 | 360 400 | 440 Fﬂ‘i‘ :Sre
Strain Gauge 1 -197 | -287 | -378 | =466 | -565 | -670 | -786 | =966 -1343 | -1648
2 -61 | -103 | -143 | -181 | -214 | -234 | -235 | -184 107 421
Deflection Gauge 1 6 32 52 68 81 94 117 141 232 254
2 46 55 67 82 98 119 160 227 427 539
3 64 69 79 91 104 128 158 224 404 534
4 46 59 70 76 86 95 106 120 134 144

TABLE A.1 (CONTINUED)

LSE



Test No 55
Load (kN) 40 | 80 | 120| 160 | 200 | 240 | 280 | 320 | 360 | 400 430
Failure
Strain Gauge 1 -206 | -301 | -373 | -467 | -550 | -632 | -711 -792 -918 | -1100
2 98 56 21 =23 -54 -89 | -129 | -152 -141 -49
Deflection Gauge 1 -91 | -131 | -158 | -151 | -142 | -131 | -115 -97 -74 -48
2 29 15 -5 4 22 20 26 S 59 83
3 54 47 42 46 55 65 75 86 113 153
4 200 260 261 271 284 299 313 328 344 365
TABLE A.1 (CONTINUED)

8S¢



Test No 56
Load (KN) 40 80 120 | 160 | 200 | 240 | 280 | 300 320 340 25
Failure
Strain Gauge 1 52 | -19 | -96 | -175 | -273-| -362 | -473 | -535 | -628 | -708
2 -135 | -172 | -229° | ~282 | =333 | -304 | -432 | -461 | -435 | -427
Deflection Gauge 1 IR il ol 122 | 131 | 168 177
2 53 52 47 67 79 95 | 123 | 148 197 237
3 20 27 25 2= 47 59 83 | 104 146 175
4 226 | 384 | 332 | 378 | 420 | 464 | 507 | 531 555 581

TABLE A,1 (CONTINUED)

w



Test No 57
Load (KN) 40 80 120 | 140 | 160 | 180 | 200 | 220 240 260 280
Failure
Strain Gauge 1 ~-13 -57 -110 -138 -161 -186 -210 -236 -271 -296
2 -130 -203 -294 -340 -383 -417 -455 -493 -540 -597
Deflection Gauge 1 -26 3 42 49 52 55 59 62 67 77
2 20 52 41 47 55 63 72 79 99 125
3 50 64 73 82 93 107 124 142 157 178
4 171 301 431 489 551 607 664 F21 786 848

TABLE A.1 (CONTINUED)

09¢



Test No 77

Load (kN) 40 60 80 100 | 120 | 140 | 160 | 180 200 220 Fagigre
Strain Gauge 1 -205 |[-300 | -400 |-500 |-590 | -665 | -740 | -795 | -830 | -750
2 5 | -10 0| -15 | -25 | 50| -80 | -130 | -245 | -4s0
Deflection Gauge 1 73 | 87 | 96 | 103 | 115 | 126 | 144 | 160 | 207 274
2 92 | 116 | 136 | 155 | 174 | 194 | 216 | 247 286 | 352
3 72 | 93 | 112 | 1290 | 145 | 162 | 178 | 197 | 222 245
4 44 | 64 | 76 | o5 | 105 | 118 | 120 | 145 167 | 198

TABLE A.1 (CONTINUED)

19¢



Test No

76

Load (kN) s0 st o | 1so 200 220 240 Fag?gre
Strain Gauge 1 -133 [ -226 | -268 | =209 | -337. | -387 | -431 | -447 | -492 | -4ss
2 -58 | -176 | -243 | -300 | -354 |-417 | -496 | -503 | -719 | -961
Deflection Gauge 1 <147 {130 | 1eeR el bses | o161 | 144 | <127 | a1 -14
2 o | 17 9 s P e 12 |' 27 66 119
3 -3 G R g | <io | -1 | -3 17 40
4 49 | 85 | 100 | 125 | 146 | 170 | 188 | 210 | 230 | 258

TABLE A.1 (CONTINUED)

cog



Test No 78

Load (kN) 40 80 120 160 180 200 220 240 260 280 Fag?gre
Strain Gauge 1 -160 | -350 |-545 | -735 | =790 | -895 | -960 | -990 -1030 | -1020
2 -20 -35 =45 -60 -72 -80 | -110 | -160 -240 -320
Deflection Gauge 1 51 76 97 112 120 139 156 174 199 247
2 60 104 144 180 198 223 246 266 293 256
3 48 88 126 159 174 196 211 221 236 267
4 68 86 112 142 153 175 192 211 232 266

TABLE A.1 (CONTINUED)

£9F



Test No 79
Load (KN) 40 80 120 | 160 | 200 | 240 | 280 | 320 360 380 590
Failure
Strain Gauge 1 10 | -65 |-130 | -190 | -230 | -230 | -15 | -60 =R BRGTL
2 -60 | -125 |-190 | -280 | -370 | -510 | -845 | -940 -900 | -790
Deflection Gauge 1 -26 -25 -10 3 11 20 105 118 i 76
2 23 | -24 | -14 -3 6 24 | 142 | 150 155 105
3 26 | =171 =i -4 A 25 | 132 | 147 143 08
4 53 79 | 100 | 150 | 171 | 207 | 255 | 234 345 365

TABLE A.1 (CONTINUED)

¥9¢



Test No 80

Load (kN) 40 80 100 [ 120 | 140 | 160 | 180 | 200 220 240 Faffsre
Strain Gauge 1 -200 | -410 | -520 [-610 |-670 | -720 |-770 | -800 | -ss0 | -870
2 35 | -45 | -50 | -90 |-110 |-170 |-250 | -360 | -550 | -s10
Deflection Gauge 1 51 | 8 | 90 | 98 | 100 | 125 | 143 | 177 262 | 4si
2 59 | 100 | 127 | 139 | 150 | 162 | 178 | 201 249 | 336
3 51 | 197 | 114 | 125 | 136 | 143 | 140 | 150 181 224
4 55 | 85 [ 102 | 122 | 143 | 148 | 161 | 180 221 | 252

TABLE A,1 (CONTINUED)

59¢
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APPENDIX 2

A2.1 CALCULATION OF THE CRITICAL COEFFICIENT

The buckling coefficient K is a function of the wavelength
2a and in order to obtain the smallest possible buckling load it
is necessary to minimise K with respect to a. By setting %% =0,
the wavelength parameter F which gives the smallest buckling
coefficient K and therefore the smallest critical load can be obtained
by utilising equation (5.31).

The buckling coefficient K, given by equation (5.25) when the
longitudinal edges are simply supported and equation (5.29) when

the longitudinal edges are fixed can be written as:

when the first case is considered P, ) and T are given by

- e % By
P=(D+ = sin "i?a Ao2.1

16° | 1:16% 1452

Q = ( ) A.2.2
45" & 28
patle o B wD, 1. G o .20 D2 2B e Lol
iy e i STt m tu i s
4F Foon Dr° D

By differentiating equation (A.1l) with respect to F and setting

8. B el )
3F - 0 it is obtained
gk 9P . 3Q. oT
r - Gy Q *Pap) TP Qg

or
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oK 2
5?-: {UQ+PV)T-P Q W A3
where
oP 1 . D D D
U = SF- C; sin £ - ¢ cos ?—J A4, 1
1 12 1 4 “
V:g-%-:-(: + +3A) A.4.2
B F
aT 2 Eov-_ 7D i | D mD 1 . 7Dy, 64X
W==—=-=( (D - —sin —) + — (% c0S =— - — sin —))—
oF 4F3 m F 4F2 B F i F 9w2
o SRR J6EL o D 28 . ab; =
4D s Sl g Bl o ey 0L w iy
Dm Dw Dm
Equation (A.3) can further be simplified by writing
R=(UQ+PW T A.5.1
and
S=PQ W A.5.2
and, therefore, be written in the following form:
3K _
T » R-S A.6

The same equations hold for the other case, when the longitudinal

edges are fixed, where

P=(D+ ; sin g—[’) A.7.1
PR 3"4) + = (s ZeeY) « Lo (1+1632 2, ©mhy A7.2
e g il 2 = 117 7o



1 g 1 3
- (D-= sin 725 (90161+291841°) +
4F2 T F 1102542

2 2
G D 2F 2F .. D 2 4
D Gg + E;? - B?;§ sin ?—J (1 = '10% * 4)%) A.7.3

and similarly to the previous case

9P 1 ™ D 7D
8] i ['_F 51n—15-—-ic05 ‘IE"—) A.8.1
IR G T I S RN n? | & K.E.2
'aF";S'cl 4 -ZFS g 5
aT 1 HE D 1 D mD 1y 4
W=o——= (-——— (D-—sin—) + (zco0s — - = sin—)
2 2pp - % F g FOOF TWCUUFC inos?
3. G AF 6F> ™ 2F T
(90163+29184217)+ — (—==( N » S c08a— )
VT 2 F e o
Dm Dm Dm
1 + 1002 + oY A.8.3

The value of F, for the equation (A.6) to be equal to zero, can

be determined either by a computer analysis, or by a graphical
method. For the purpose of the present work the formerly mentioned
method was chosen.

This process involves an iteration technique. The flow diagram
of the computer program used is shown in figure (A.1). 1In this
program the value of F is increased in large steps until expression
(A.6) changes sign and then increased in smaller steps for the last

value before the change of sign, until the expression changes sign
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F = 0,001 '
ST = 10 <
S R i §
»— ST = ST/10
!
J=1
|
»~ R =8 =0
5.0 = 17 188
v No
F=F+ ST Y
I

Calculate K,P,Q,T,U,V,W,R,S.

FROM EQUATIONS A.1, A.2, A.4, A.5 etc

I
FNA (J) =R - S

No No
CIs A () <02 >>—<TIs AA (3) = 07 @-
! Yes ;
SDF(J) = 1 Yy No
Yes + XX =F
J=J+1 -—<—<Is J =17 SDF(J) = O B 1

Y lNo

K=CP| Yes
<IsSDF(J)=SDF [J—1)> poxx —<<Is F > 107 >

A

Y No * vV No
Yes
I=I’*1'——<——<E=4 >/writexand1=/ F=F+0.1
i v No
F=F- ST

FIGURE A.1 FLOW DIAGRAM FOR COMPUTER PROGRAM
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again. This process is repeated until sufficient accuracy is
obtained for the value of K corresponding to the value of F

determined.

A2.2 PLATE LOADED BY A UNIFORMLY DISTRIBUTED COMPRESSIVE STRESS

ON THE LONGITUDINAL EDGES AND BENDING STRESS ON THE OTHER

TWO EDGES

a) All Edges Simply Supported

Consider the simply supported plate, shown in figure (5.6a)
loaded in the middle plane by the evenly distributed force Ny

given by.

The longitudinal force distribution is given by

= "~ By
N, = N, (-a, EEHJ

The approximate representation of the lateral deflection can be

assumed as
w = w, cos E— (cos~z-+ A sin %Xg A< x< A A.9.1
e
UJ=0 g -741(-:5-}\ Aognz
3 L
w=20 AR X g 5 A.9.3

where 2A is again an undetermined parameter. The equation (A.9)

above satisfies the boundary conditions for this case, which are:

w=0atx=+Aand y =+ B A.10.1

2 2

8 g + ¥ 3J%‘= 0 at x == A ATOC2
X oy




(2]
~1
48]

E._%J_q.\)i—% =0 aty=iB ’ A.10.3
By ax”

By substituting for Nv’ Nx and equation (A.9) into equation (5.10)
in chapter 5, after integration between the correct limits, No is

obtained from

2

_ 7D
N, -—15. K A1

(2B)

where K is the buckling coefficient given by

(%)2 (1+12) + (1+16}\2} ¥ 2 (1+4;\2)
) 326 )
(1+17) + E’) + (%.)2 (1+4>\2)
On”

’

A.12
1+A2 -

] @
(o]

It is worthwhile to notice that the above equation by setting

% =1, =0, vy =0 and a, = 0, that is to say a square plate

subjected to a compressive force in the longitudinal direction,
yields K = 4 as given by Timoshenko (12). As has been mentioned
before the case when the vertical edges are subjected to bending
forces are to be considered and this is so when 0, = 2. There-

fore, equation (A.6) becomes

(%)2 an? + (%)2 (1+4162%) +2 (1+42%)

K A.13
64 A2 2
== (g) (1+417)
9w
As before, y can be expressed as
1 41
YR Ia a
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b) Longitudinal Edges Fixed and Vertical Edges

Simply Supported

The loading remains the same as for case (a) but the longitudinal

edges now are fixed. The new boundary conditions are:

w=20 at x=*A and y=+B A,15.1
32 Bzm

“2’+v—2-=o at x = £ A A.15,2
9x ay
ow
- O at "V = t B AolSoS
oy

An expression for the deflected shape which satisfies the above

boundary conditions can be written as.

= TX TY . TY<2 e
w = w, COS = (cos =5 * A sin = A €t A A.16.1
LI
w=20 - 2—'/< X <=-A A.IG.Z
Li
w=0 A= ¥ < 5 A.16.3

By following the same procedure as before the buckling factor K
is obtained from equation (A.17)

2

@2 Gntph « @° wsntent) + 4 - Zsnh
K = T
4 3 A 2 2 4 An17
Tiooss (9016 + 2918417) +v ()~ (1 + 100" + 417)

and the numerical factor y is obtained from equation (A.14).

c) Longitudinal Edges Simply Supported and

Vertical Edges Fixed

The loading remains the same as for the previous cases, but

the edges x = + A are now fixed., An expression for the deflected
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shape must be formulated which satisfies the following boundary

conditions:
w=20 at x=+A and y==+B A.18.1
LIS at x = * A A.18.2
ax
Bzm 32m
3y oy
Such an expression can be written in the form:
- 2IX eostt e X0 =
W= cos A (COSZB + X sin B ) -A< x <A A.19,.1
-L'
w=0 - %X <-A A.19,2
Ll
W = O A ‘E X 5 "'2""_ Aolgos
Following exactly the same procedure as before the buckling
coefficient K can be obtained from:
B2 . 2 . A2 L e
(E] (1+27) + ('g) 3 + =
K = A.20
162 A2 (1+422)
el e Sl e
m™

and y is again given by equation (A.14)

d) Longitudinal Edges Simply Supported and

Vertical Edges Free

The longitudinal edges y=+ B are simply supported and the
vertical edges x = A are now free. The deflected shape can be

expressed as:
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™ Ty . WY
7Y (cos 75 * A sin B 0

A
I=
7
w

w = mo cos A.21

where 2a is the wavelength, as already has been explained in
chapter 5, section (5.2.4.1). The loading remains the same as for
the previous cases and following the same procedure finally the

buckling coefficient K is given by:

2 2
a . mA B 2 a 2 2
{A+;51nE—J {;E-(1+A ) + ;7 (1+16)7) + 2 (1+40°)

K = A.22

2
a . mA, 64X a oA 2
(A-'T—T'S 1nE-) — ? (A-t- sm;——) (1+4J\ )

Qﬂz

It is worthwhile noting that equation (A.22) for a = A becomes
identical to equation (A.13) fhat is when the edges are simply

supported and the wavelength 2a equals the length at the plate 2A.

s _a oA = 1.4 : »
By writing F = E—and D = 5 and y = T T4 equation (A.22)
becomes:
(D+-:-sin-g—[-}-) (1—2 1% + F2 (14162 +2 (1+02%)
K = £ A.23
F . 7D, 64) 1 41 2 B ..aD 2
(i 2 E Blae ¢ ety ()

o

e) Longitudinal Edges Fixed and Vertical Edges Free

The loading remains the same as for the previous cases. The

longitudinal edges y = * B are now fixed and the vertical edges

x = + A are free. The deflected shape can be expressed as:
s T s Y2 e
w=w, €os 5= (cos;% + X sin 5 ) 0<A<a A.24

By following exactly the same procedure, the buckling coefficient

K is given by equation (A.25) which by setting a = A becomes
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identical to equation (A.17)

K = Po . %
T
0
where
P = (A+ 2sin Iﬁ]
o m a
2 2
B 8 200 a 2 4
Qo = G;f GZ+3A +Z% ) + gﬁ-(4+82k +64) ) +2 (1+
7. = ((A-%sirr@—) ——4—2 (90161 + 29184)°) +
110257

2
a . TA
Y Eg'(A+51ﬂE—J (

and finally by substitu

K is obtained by

L Py
K
where
B .. =D
P=(D+ — sin F—J
-3 2054 2
Q= f;i{z+31 +z% ) + F
T = F ™D
110257
a1 2 F
pipeg F P+ 3F#

141002 + 43\4))

s

ting for v, %-and B

2

(4+82) +64A4) +2 (1+16)

{ (D-=sing) ——‘1-—7 (9016) + 2918425 4

2

in) (1+100% + )

2
22 4

oA 11m

2
22X 4
117w 42

4

))

A,25,.1

A 25,2

A.25.3

A.25.4

into above expression

A.26.1

A.26.2

A,26.3

A.26.4
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A 2.3 PLATE LOADED BY A COMPRESSIVE FORCE OF TRIANGULAR

FORM ON THE LONGITUDINAL EDGES AND BENDING FORCES

ON THE OTHER TWO EDGES

In this case instead of a uniformly distributed compressive
force the longitudinal edges are subjected to a triangular force
distribution, as is shown in figure (5.1b). This force distribution
approximates to a concentrated force applied at the middle of the |
longitudinal edges. The vertical edges are still subjected to
bending forces. The three cases, for different boundary conditions

are considered again for this type of loading.

a) All Edges Simply Supported

The longitudinal force distribution remains the same as for
the previous type of loading and it is given by equation (A.8), which

for the case of bending, with a = 2 becomes
- A
N N ) A, 27

The compressive force in the y-direction, Ny is given by:

=
n

N, Y1+ %} AZ2x<0 A.28.1

and

N
y

£ z |
No y 4 - A) < x< A A.28.2

The deflection is given by the same expression as for case (a) of
the previous type of loading, that is by equation (A.9). By sub-
stituting equation (A.27) and (A.28) into equation (5.10) and after

evaluation the buckling factor K can be obtained from:

(%]2 (1+123 - (%)2 (1+16x2) +2 (1+4;\2)
K =

A.29

L Il s T
- B
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It should be noticed that the factor vy is different from the one
used for the previous loading case and can be obtained in a similar

way as

2 2 W
A ° Ldt

A.30

b) Longitudinal Edges Fixed and Vertical Edges

Simply Supported

The loading remains the same, and the expression for the
deflected shape which satisfies the boundary conditions is given by
equation (A.16). Following the same precedure as for the previous

cases the buckling coefficient K is given by:

2
B2 Sl + &2 wanZent) 2 a6l
0 @3y 5 Ii7
K A.31
—2 (90162 + 291842%) + y (%32 a + 1002 + ah
110257

The factor y is obtained from equation (A.32).

c¢) Longitudinal Edges Simply Supported and

Vertical Edggs Fixed

The loading remains the same as for cases (a) and (b) and the
deflection can be obtained from equation (A.19). Following the

same procedure as previously, the buckling coefficient K is obtained

from:
B,2 2 2 1+16l2 (1+412)
@° an? + @ 2. L2
ko= A,33
16X A2 (1+412]
97

and y is obtained from equation (A.30). The critical load P can
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be obtzined by following exactly the same procedure and equations

as for the previous loading case given in chapter 5.

d) Longitudinal Edges Simply Supported and

Vertical Edges Free

The loading conditions remain as for the other cases. The
longitudinal edges y = * B are simply supported and the vertical
edges x = + A are now free, An expression for the deflected shape
which satisfies the boundary conditions is given by equation (A,21)
and after evaluation the buckling coefficient K is given by:

2 2
(A+ZsinlD) (55(1+4>\2)4iz (1+160%) + 2(1+42%)
Kl a B A.34
k. 64X 8% A1 a’

a a . TA 2
(A-;51nE—J ;;§+E§wY(A+§51nE-+K-;§-(1+cosE—J) (1+42°)

By setting a = A into equation (A.34) this becomes identical to

equation (A.29), when the vertical edges are simply supported.

1 81

14 B - D into equation (A.34), K

TR

Finally, by substituting vy =

is obtained from:

(D+§5in;—D) (1—2 2y + P (14162 2 1+
F

K = A.35
g 2
F . nD, 64X 1 8I 2 R...mD DP mD Z
(D-;S:LTIF—) %—zi-ﬁ.m, E (D+551'I\-F—-+ ﬂT(l-FCOSF—‘) (14’47\ )]

e) Longitudinal Edges Fixed and Vertical Edges Free

In this case the longitudinal edges are fixed and the vertical
edges free. The loading conditions remain the same as for the
previous cases. The deflection is given by equation (A.24) and
following the same procedure as before the buckling coefficient K

is obtained from:
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P
(=00 A.36.1
T
)
where
£ TA
P0 = (A + — sin E—J A.36.2
2 2 2

2 3.4 a 2 2 2) <

_ a _._ TmA 4 3
Tb = ((A - = sin E—J -—-—-—7-(9016A + 29184)%7) +
110257
a’ (A+Esin15+1.53-(1+co ™) as100%ah A.36.4
Y B2 T a A2 %2 ) =

By setting a = A into the above equation, it becomes identical to

equation (A.31), that is when the vertical edges are simply supported.
8 a b E

I B F and g D into

equation (A.36) K finally is obtained from

As previously by substituting y = %

K = E%él A.37.1
where
P = (D+isinil) A.37.2
T F

= Cl €§+3k2+§%4) + Fz 4+82l2+64l4) 472 (1+16x2 333+4A4 A.37.3
Q= AL T ( 1)) iy
T = ((D%in%g) —4—-7 (90161 + 291841°) +

110257

2
1.8 2 . F . oD DE D 204
5 Tacs F (D+551nﬁ—+;7—-(l+cos?—9) (1+101°+427)) A.36.5
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