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SUMMARY

A subroutine to solve a set Sf simultaneous symmetric
equations is developed in this Thesis in which more than one
load case can be dealt with at the same time. Advantage is
taken of the backing store facilities to énhance the capacity
of the subroutine to solve large problemé.

Curved members are usually approximated with a nﬁmber of
straight members. fhe accuracy of the resulﬁs improves with
the increase in the number of sub-divisions. This, however,
increases the degrees of freedom of the structure which in turn
requires more core space and solution_time. Using the finite
element techniqué stiffness matrices ére formulated for curyed
eleménts. The suitability 6f the polynomial displacemeﬁt
functions is investigated by obtaining results for some simple
structufes and comparing these with those obtained by the
strain energy method. |

One factor which influences the performance of the finite
element method is the choice of the displacement functions.
Even with coarse sub-division, good results are obtained by
using the displacement functions which define the deformed
shape of the element more closely. More accurate displace-
ment functions are derived in this Thesis by considering the
equilibrium of a curved element with un%orm cross—-section.
Using these derived functions, results are obtained for arches
and bow girders. Thesg results are then compared with those
obtained by the strain energy method. The influence of further
sub-division on the accuracy of the results obtained by using

the displacement functions is also studied.
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The stiffness matrices for curved elements with variable
cross-sections are also developed. To obtain these, the dis-
placement functions derived for the curved elements with
uniform cross-sections are utilized. Results are obtained for
some arches and a bow girder with variable cross-sections by
using both the stiffness matrices and the experiments. The
suitability of the stiffness matrices for the curved elements
with variable cross-sections is established by comparing the
two sets of results obtained.

Finally, attention is also paid to the irregularities which
usually occur in civil engineering structures. Displacement
transformation matrices are constructed which allow for some of
these and particularly the effect of offsets and hinges. Two
structureé with these features are analysed. The first one
is a tied arch bridge frame. This is analysed by approximating
the arch with straight members as well as by representing the
arch with curved members. The second structure is a bow girder
with offsets and hinges. In addition to the theoretical
analysis using curved elements, the results for the latter
structure are also obtained by experiments. The two sets of
results obtained for each structure are compared to check the

validity of the theoretical work.
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CHAPTER 1

HISTORICAL REVIEW AND SCOPE OF PRESENT WORK

l.1 Introduction

Arches have been built since the beginning of the 19th
century. This is in spite of the fact that their design was
beyond the knowledge of that time. Bresse was the first to
present a theoretical method using equations similar to those
obtained by considering the bending strain energy. In 1872,
Castigliano published his strain energy theorems. These have
been used to analyse arches as well as other types of re-
dundant structures.

Modern structures are required to have longer spans and
carry heavier loads. One of the ways to meet these demands is
to use trussed-type structures. In the case of bridges, the
arches may be connected to deck girders by vertical struts or
hangers. Concrete arches can be strengthened further by con-
structing a slab monolithically with the arch rib. A good
example of this is in reference 15. The strain energy method
becomes unwieldy to analyse such complex structures.

Nowadays, multi-level exchanges are increasingly used in
highway engineering. It is desirable that these structures
should satisfy the following conditions:-

(a) for obvious reasons the roédway is curved
in plan;
(b) the overall depth of construction should be

a minimum to avoid longer approaches which

require more excavation or filling;

(c) To permit clear vision, the number of
columns should be reduced to minimum. Also



the site conditions may make it
necessary to offset the columns from
the centre line of the roadway.

Usually, the dimensions of these structures are such that
they can be analysed as bow girders. Again it is easy to
analyse simple bow girders by using the strain energy method
but the problem becomes more difficult as the structure be-
comes complex.

More efficient methods in structural analysis use matrix
algebra. The operations involved in the analysis are inde-
pendant of the size and the complexity of the structure. There-
fore, a computer can be used to carry out the complete analysis.

The structure is first idealised by dividing it into a
number of discrete elements. These elements are connected to
each other at their nodes only. For each type of element into
which the structure has been divided, the load-displacement
relationship should either be known, assumed or could be
determined. A set of matrix operations is then performed on
the idealised structure. It is assumed that the strain ener-
gies of the idealised and the actual structure are equal.

The exact load-displacement relationship for straight
prismatic members is known and some structures may be composed
of such members entirely. The strain energy of these struc-
tures is nearly equal to that of their idealised models. Hence,
more accurate results may be obtained for such problems. For
some types of structural elements, the exact load-displacement
relationship is not known and may be difficult to obtain by
solving the governing differential equations. In these cases,

the finite element method can be used to derive an approximate



stiffness matrix for such elements (2, 4). Then the strain
energies of the actual structure and its idealised model are
different and consequently the results are only approximate.
However, the aécuracy of these problems can be improved by
using a finer sub-division. This requires more computer core
space as well as solution time. The advantages of finding the
exact load-displacement relationship for structural elements

are, therefore, obvious.

1.2 The Finite Element Method

(i) The Displacement Functions

The displacement functions should describe the deflected
shape of the element as nearly as possible. Exact displacement
functions can, for certain elements, be obtained by solving the
governing differential equations. For most cases, however, it
is difficult to derive these. In these cases, the displacement
functions are assumed, often in the form of a polynomial. For
one dimensional elements, the polynomial displacement functions

are assumed to be of the form:-

Y = a Xi_l (1-1)

where aj are the arbitrary constants equal in number to
the known boundary conditions;

X 1is the distance to a point in the element which
is under consideration. This distance is
usually measured from the first end of the
member.

and y 1is the deflection of the point.

By substituting the boundary conditions into equations

(1.1) a set of simultaneous equations is obtained which can be



expressed in matrix form as:-
{6} = [c] {a} ‘ (1.2)

where {5} is a column vector which lists all the
nodal displacements of the element;

{a} is another column vector whose elements
are the arbitrary constants of the dis-
placement functions;

and [c] is a square matrix which relates the
nodal displacements to the arbitrary

constants.

The set of equations (1.2) may be solved explicitly to
express the arbitrary constants in terms of the nodal displace-

ments giving in matrix form:-

fa] = [C]-* {8} (1.3)

where [¢]~! is the inverse of matrix [¢] and the
vectors {az} and {8} have already been

defined.

The elements of matrix [¢] and its inverse [C]"* are con-

stants which depend on the properties of the structural elements
only.

(ii) The strain-displacement relationships

The equations relating the strains to the corresponding
displacements can be found in reference (1, 2). Substituting
the displacement functions into these equations yields the

following relationship in matrix form:-

{e] = [4] {a} (1.4)

where fel is the column vector of strains considered;



and [a] is a rectangular matrix which relates
the strains {e} to the arbitrary con-

stants {a} .

Combining equations (1.2) and (1.4) gives:-

{e} = [a] [c]~t {6} | (1.5)
or fe} = [B] {8} (1.6)
where [B] = [a] [c]°* (1.7)

Equation (1.6) relates the strains {e} to the nodal

displacements {8} through matrix [B] .

(iii) The stress-strain relationships

The stresses in an elastic body are related to the strains
by Hooke's law. The equations can be written in matrix not-
ation asi-

{o} = [D] {e} (1.8)

where {o} is the stress vector corresponding to
the strains, {e} ;

and [p] is a square symmetric matrix known as the
elasticity matrix whose elements may be
the extensional and flexural properties,
the shear and the torsional rigidity of
the element.

Substituting equation (1.6) into (1.7) leads to:-

{o} = [p] [3] {o] (1.9)

Equation (1.9) relates the stresses, {s}, to the corres-

ponding nodal displacements {§} .



(iv) The stiffness terms

The stiffness matrix can be obtained by applying either
the virtual work or the unit displacement theorem. The results
will be identical. Using the virtual work theorem, all the
nodes are given arbitrary virtual displacements. The strain

energy stored in the element is then calculated from:-
U = f fe*1T {o} avol (1.10)

where {e*] 1is the strain vector corresponding to
the virtual nodal displacements. The
supperscript T denotes the transpose
of a matrix or a vector.

From equation (1.6) the strain vector in its transposed

form is:-—
{e*]'= {537 3]* ; (1.11)

where {ﬁﬂ is the vector of virtual displacements.

Combining equations (1.9) to (1.11) the strain energy

stored in the element is obtained, viz:

U =fza"‘F (217 [0] [8] {8} avol - R

The work done by the nodal forces in moving through the

virtual displacements is:-
W= §5*}T {p} (1.13)

where {pP} 1s the vector of the nodal forces in

the element.
By equating the work done to the strain energy stored in

the element, and remembering that the virtual displacements are



scalar quantities, it is found that:-

P} = f (31" [p] (3] {8} avol (1.14)
i.e. P} = [K] {6} (1.15)
where K] = [ (817 [p] [2] avel (1.16)

Equation (1.16) gives the required stiffness matrix, ] »
of the element, while equation (1.15) is the equilibrium equa-

tion of the element relating the nodal forces and displacements.

1.3 Historical Review

Towards the end of the 19th century, relatively accurate
methods of structural analysis became available. Amongst these
are Castigliano's strain energy methods, Mohor's slope deflec-
tion equations and the principle of virtual work. Application
of any one of these methods leads to a set of simultaneous
equations whose number equals the number of unknowns. The
solution of these equations yields the unknown displacements or
the forces. Even for structures of modest size, this results
in a large number of simultaneous equations. Since it is
difficult to solve a large set of equations, considerable re-
search was devoted to devise methods to circumvent the solving
of these equations explicitly. This research led to the
development of model analysis as well as various iterative
methods such as moment distribution and finite differences.

(i) The Matrix Methods

During the 20th century, aircraft structures rapidly grew

in size and complexity. An accurate analysis of these struc-

tures is more desirable than in other fields. Therefore,



research in the aircraft industry was concentrated in two
directions; firstly, to find ways of solving simultaneous
equations accurately and quickly and secondly, to devise better
methods for obtaining these equations. This was helped by the
development of computers and matrix methods of structural
analysis.

It was found that matrix algebra is most suitable to use
with computers. There are basically two distinct methods known
as the displacement method and the force method. These are
well known and can be found in texts dealing with this subject
(2, 3, 5). In the displacement method, the forces in the
members are expressed in terms of the nodal displacements.

This step makes use of the stress-strain relationships, the
strain-displacement relationships and the compatibility con-
ditions. The application of the equilibrium conditions then
yields a set of simultaneous equations whose solution gives the
unknown nodal displacements. Finally, the forces in the members
are obtained by substituting the nodal displacements into the
load-displacement equations for the members. The fact that

the structure is statically determinate or indeterminate does
not influence the analysis. This is one reason for its pop-
ularity among engineers. Furthermore, this method can be
easily automised for a computer.

In the force method, the member end displacements are
expressed in terms of the unknown forces and the compatibility
conditions are used to obtain the set of simultaneous equa-
tions. The solution of these gives the required forces. Here
the redundant forces may be chosen arbitrarily, consequently

the whole process of structural analysis cannot be easily



automised. However, this method was favoured by engineers in
the beginning as it usually leads to a smaller number of sim-
ultaneous equations. In this Thesis, the displacement method
is used.

“ Argyris (9) was one of the first to employ matrix methods
to analyse structures. Livesley produced computer programmes
to analyse framed type structures in which the instability
functions were included to allow for the effect of axial loads.
It was shown that for tall, slender structures, the influence
of these axial loads can be considerable (3, 5).

In the case of several prismatic members connected to a
joint, it is not always possible to make their centroidal axes
meet at a point. In steel structures, members are sometimes
deliberately offset to reduce the size of the gusset plates.
Similarly an intermediate column supporting a bow girder may be
offset to counter some of the twisting moment in the girder.

To obtain representative results for structures with these
features, the mathematical model should allow for these offsets

(14).

There are two ways of allowing for irregularities such as
offsets and hinges. One is to modify the stiffness matrix for
the member (12, 41, 43). The other is to allow for these
effects through the displacement transformation matrix. The
latter method is neater and was introduced by Jennings and
Majid (11). The offsets contribute to the lateral displace-
ments at the ends of the member. These contributions are
proportional to the offsets and the end rotations of the
member in the local co-ordinates. Therefore, the member end

displacements were obtained by using an intermediate step.
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This method is also used in this Thesis.

(ii) The Finite Element Method

By using the unit displacement theorem Argyris (9) ob-
tained a stiffness matrix for a rectangular plate element
subjected to in-plane stresses. A node of the element was
given a unit in-plane displacement in a particular direction
while all the other displacements were maintained at their =zero
values. The forces and the reactions required to produce this
condition formed one column of the stiffness matrix. Similarly
each of the other nodal displacements contributed a column to
the stiffness matrix.

The. stiffness matrix for a triangular plate element suffer-
ing in-plane displacements was developed by Turner et al (16).
The notion of displacement functions was introduced for the
first time. Constant strains were assumed throughout the
element and then the strain-displacement equations were inte-
grated to obtain the displacement functions. It was pointed out
that the number of arbitrary and integration constants should be
equal to the number of nodal displacements. A stiffness matrix
for a quadrilateral element was also derived. This was carried
out by dividing the quadrilateral element into four triangles
meeting at a node within the element and then simply adding
the stiffnesses of these elements. Since the loads at the
fifth node within the element were zero, the corresponding dis=-
placements were eliminated. To represent a variable stress
field across the elements, the use of extra nodes was suggested.
For the case of triangular elements, for instance, these can

be at the mid-points of the sides.




11

The stresses in the aircraft skin are predominantly
membrane and the bending action is negligible. Making use of
this fact Argyris formulated the stiffness matrix for a
rectangular plate by considering the in-plane stresses only.
Melosh (17) produced a stiffness matrix for a thin rectangular,
plate element in bending. A polynomial displacement function,
for the out of plane displacements, was chosen in a manner
similar to that proposed by Turner et al. The strain energy
of the element in bending was calculated. The application of
Castigliano's theorem (part 1) then yielded the required stiff-
ness matrix. Melosh obtained a stiffness matrix for a triang-
ular plate element in bending by eliminating the fourth corner
of a rectangle, but this yielded unsatisfactory results..

The principle of unit displacement and the strain energy
method had been used to derive the stiffness matrices for
various structural elements. To these was added the concept
of virtual work. Zienkiewicz and Cheung (18) used this prin-
ciple to develop a stiffness matrix for a rectangular iso-
tropic or orthotropic plate in bending. A polynomial displace=-
ment function of twelve terms, one for each nodal displacement,
was assumed.

The uniformly distributed loads are, usually, equally
divided among the nodes and applied as concentrated forces.
This is a reasonable approach, particularly when the size of
the elements is small. However, a better approximation is
achieved by equating the work done by the equivalent nodal
forces to the work done by the uniformly distributed loads.
This yields bending couples as well as shear forces at the

nodes thus improving the results (18, 36).
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The polynomial displacement functions used in the deriv-
ation of stiffness matrices for triangular and rectangular
elements do not define the normal slope along the edges of the
elements uniquely. Therefore, discontinuities develop along
the common boundaries of the elements as the structure deforms.
This is one of the factors which contributes to the inaccur-
acy of the results. Harvey and Kelsey (56) rectified this
defect by enforcing slope compatibility. The normal slope at
the mid-point of a side was specified to be equal to half the
sum of normal slopes at the nodes bounding that side.

The strain energy due to shear is usually not included
when deriving the stiffness matrices. Melosh (48) and Utku (49)
obtained more accurate stiffness matrices by taking the trans-
verse shears into consideration. The rate of convergence of
results can be further improved by taking more terms of the
displacement functions as suggested by Pian (60) and used by
Stricklin and Haisler (54).

Shells were first approximated as an assembly of flat
plate elements (4, 48).° This assumed that there is no coup-
ling effect between the in-plane and out of plane displacements.
Within the small deflection theory, this assumption is only
true for straight members, but it is not so for curved elements
even when the deflections are small. For a very fine mesh
size,flat elements give equally good results as obtained by
using more refined curved elements (24).

Grafton and Strome (22) introduced a new type of element,
a frustum, to analyse axi-symmetric shells of revolution.

Here the nodal points were replaced by nodal circles, thereby

reducing the number of possible nodal displacements to three.
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For deep shells, the use of frustum type elements gave bending
moments in regions where only membrane forces were expected.
The magnitude of these, however, decreased as the number of-
elements representing the shell was increased (23).

Percy et al (42) improved the cone element of Grafton and
Strome by using a better approximation for the strain energy.
The displacements and the loads were expressed in Fourier
Series. A greater number of terms was taken in the displace-
ment functions as suggested by Pian (60). Finally, a more
accurate numerical integration was carried out whereas Grafton
and Strome had used the 'trapizoidal rule!'.

The surface of the shells in references (22, 23 and 42)
was assumed to be linear. A fine mesh is required when using
any one of these elements to obtain good results. For the
element developed by Jones and Strome (40), the surface of the
shell was assumed to vary quadratically, thereby approximating
it more closely. The polynomial displacement functions were
modified to include some trigonometeric terms which allowed for
the rigid body displacements. To improve the results even
further, the equivalent loads were obtained by using the
principle of virtual work. This element gave better results
than the cone elements, particularly when the curvature varied
more rapidly.

The polynomial displacement functions have also been used
to develop the stiffness matrices of shell elements (35, 46).
Bogner et al (46) developed a 48 x 48 stiffness matrix for a
cylindrical shell element by using polynomial displacement
functions both for in-plane and out of plane displacements.

Cantin and Clough (24) pointed out the inability of such
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functions to allow for the rigid body displacements without
straining the element. As in the case of curved element for
axi-symmetric shells (40), they incorporated some trignometeric
terms into the displacement functions to cater for the rigid
body movements of the element which improved the results.

The stiffness matrix for a triangular shell element of
uniform curvatures was obtained by Utku (49). He considered
the total potential energy and then used Ritz' procedure to
transform the integration into a summation over a finite
difference mesh. Dhatt (55) derived a better stiffness matrix
than that given in reference (49). The curved geometry of
the element was approximated by a shallow guadratic surface.
Conforming polynomial displacement functions were assumed by
taking more terms than the number of degrees of freedom. The
final stiffness matrix was reduced by minimising the potential
energy as well as by using the normal slopes at the mid-points
of the sides which were taken to be equal to half the sum of
the normal slopes ét the nodes bounding that side. - Excellent

results have been reported.

The similarity of shells to plates on elastic foundations
was made use of by Sabir and Ashwell (25). Polynomial dis-
placement functions were used to obtain stiffness matrices for
a shallow shell element that consisted of a bending stiffness
matrix, a matrix for the elastic foundation and a stiffness
matrix associated with fictitious loads due to in-plane strains.
These three matrices were then combined to obtain satisfactory
results with a fine mesh.

The -problem of a thin circular ring under radial load was

studied by Zagustin and Young (26). By considering the
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equilibrium of an element of such a ring, a differential
equation for bending was obtained. The form of this equation

is similar to the well known differential equation for de-
flection of curved bars. The differential equation for bend-
ing was used to investigate the stability of arches under radial
loads.

The curved shell element of Cantin and Clough (24) was
reduced to an arch element by Murray (61) and applied to an
arch along with other curved elements. The reduced shell
element yielded the best results. He also investigated the
influence of Timoshenko's and Fligge's theory of strain-
displacement relationship and found that the rate of conver-
gence was the same for both.

A circular ring can be loaded perpendicular to the plane
of initial curvature. Considering the equilibrium of an
element of such a ring Witecki (27) obtained the equation for
bending moment. In the derivation of this equation, it was
assumed that for shallow bow girders, the influence of the
twisting moments on the bending moments was negligible. The
twisting moments, however, were given as a function of the
bending moments and the applied torque, the latter being due to
the eccentricity of the load. The results showed that the
bending moments in shallow bow girders differed slightly from
those in straight beams of length equal to the curved length.

The unit load theorem was used by Basi et al (28) to
derive a flexibility matrix for a bow girder. The whole struc-
ture was first reduced to a cantilever by removing sufficient
restraints. A unit load was then applied for each restraint

released which yielded a column of the flexibility matrix.
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The redundant reactions were calculated by imposing the
compatibility conditions. The results showed the influence of
the curve on the bending moments. Witecki's assumption about
the effect of the twisting moments on the bending moments
being small was shown to be reasonable.

The stiffness matrices formulated for a sector (53, 63)
can be reduced to those for an element of a bow girder by
eliminating the variable for the radial direction. Alternative-
ly the strain energy method may be used to derive the required
stiffness matrices (7, 50). However, the latter method becomes
cumbersome when dealing with elements of variable cross-section.
(iii) Numerical Integration in the Finite Element Method

Explicit evaluation of the stiffness matrices has been
favoured in the past. This involves a large volume of algebra
and integrations which increases with the complexity of the
element and the displacement functions employed. Consequently,
the use of the finite element method has been restricted to
simple elements only and even for some of these numerical in-
tegration had to be partially used (22, 40, 42, 55). Employing
simple elements, it is necessary to use a finer subdivision in
the region of rapidly varying stress fields which sometimes
leads to an ill-conditioned overall stiffness matrix. The
alternative is to use larger and more complicated elements made
available by numerical integration.

In the formulation of the stiffness matrices, a number
of simultaneous equations are obtained which are solved ex-
plicitly to express the arbitrary constants in terms of the
nodal displacements of the elements. The simultaneous equa-

tions vary from element to element. Consequently, the stiffness
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matéix is developed afresh for each type of element. The
solution of equations is equivalent to the matrix inversion.
Irons (29, 57) has recommended the use of a computer to
perform this matrix inversion numerically. Similarly, the
numerical integration can be used, instead of the explicit
integration usually employed, to evaluate the stiffness terms.

Irons has asserted that by their reluctance to use
numerical integration, research workers are restricting thé
development of the finite element method. The extra computer
time required for calculating the stiffness matrices num-
erically is compensated by the savings made in solving fewer
simultaneous equations which result from the use of a coarser
grid.

During the past few years, Zienkiewicz et al (62) have
developed the isoparametric element with which curved bound-
aries can be easily considered. New methods of obtaining the
displacement functions have been put forward which obviate the
need for matrix inversions. Intermediate as well as the usual
corner nodes are used to definé uniquely the curved boundary
and the displacement function for the element. Naturally, the
expressions involved in the formulation of the stiffness matrix
become so complex that the use of numerical integration becomes
essential. It has been found that isoparametric elements have
a distinct advantage over conventional elements in the analysis
of three dimensional problems.

Several methods of numerical integration, varying in
degree of accuracy, are available (30). Grafton and Strome
(22) used the simple 'trapizoidal rule' to evaluate the stiff-

ness matrix for the conical element, while other authors
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(40, 42, 55) employed more accurate numerical integrations.
For two and three dimensional elements Irons (29, 57) and
Zienkiewicz (4, 62) have used Gauss' quadrature formulae which
are twice as efficient as the more simple Simpson's ruie. The

latter method is used in this Thesis because of its simplicity.
(iv) The Criteria for Choosing a Displacement Function

It has been found from previous research that a good dis-
placement function should satisfy the following conditions:-
(a) the displacement function should describe
the actual deformed shape of the element
as nearly as possible;
(b) the displacements and the siopes within
the elements and along the boundary should
be continuous and compatible with the
adjacent elements;
(c) the number of terms taken in the displace-
. ment functions should be equal to, or
greater than, the number of nodal displace-
ments; - |
(d) the displacement functions should allow
for the rigid body displacements without
straining the element; and
(e) the displacement of a point should not

alter when the element is sub-divided.

The displacement functions which satisfy condition (a)
yield good results even with coarse sub-division. Consider,
for example, the pin-ended strut shown in figure 1.l1. The

strut is in equilibrium under the action of the axial loads P.
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Choosing the origin of X and Y axis at the mid-point, the
deflected shape is better approximated by the following dis-

placement function:- : Y

FlaG. 1.1 T

Yy = A cos Bx (1.17)
T
where A and B are arbitrary constants.

A polynomial displacement function, though uses more terms,
gives poor results than equation (1.17).

Condition (c) makes sure that the inversion of matrix [¢] ,
equation (1.2), exists. When more terms than the number of
nodal degrees of freedom are taken, the principle of minimum
potential-energy is used to obtain the extra equations. It has
been claimed that inclusion of more terms improves the results
(20, 21, 38, 39, 60).

In the'rigidlbody movement, no work is done by the nodal
forces. However, if the element is strained®during rigid
body displacement, strain energy is stored in the element.

This violates the equality of the work done and the strain
energy stored. Cantin and Clough (24) maintain that the dis-
placement functions should allow for the rigid boyd displace-
ments explicitly, while Haisler and Stricklin (47) have claimed
that there 1s no need for this.

The criteria for choosing displacement functions dis-
cussed above is due to Melosh (19). Khanna and Hooley (44, 45)
studied various stiffness matrices and found that matrices

giving higher strain energy densities yield better results.
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(v) The Solution of Equations

The matrix analysis of structures leads to a set of
simultaneous equations. Gauss' methods of solving such
equations are well known. These are the direct elimination and
the iterative methods. Several variations of these two basic
methods have been developed, all of which can be found in texts
on numerical methods (30).

The above methods are general and, therefore, can be used
to solve any set of equations. The stiffness matrix of a
structure is always symmetrical. This follows from Maxwell's
reciprocal theorem. Choleski's method of solving the equations
makes use of this property. The details of this method are
given in reference (30). The matrix of the left hand coef-
ficients is reduced to an upper and a lower triangle. The upper
triangle is the transpose of the lower triangle, furthermore,
the product of the two is equal to the original matrix. This

can be expressed.as:-

[z] [1]%= [a) (1.18)

An intermediate vector f{y} is used in the solution, which

is found from the following equation:-

(] {3} = {v} | “ (1.19)
where {b} is the vector of the right-hand side coefficients.
Finally, the solution vector {x} is obtained from the

following reiationship:-
T
[L]" {x} = [y} (1.20)

Gauss' and Choleski's methods of solving a set of simul-
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taneous equations have been known for a long time. The
difficulties in using these in hand calculations are obvious.
Methods were, therefore, developed to bypass the solution of
the equations altogether. These are the moment distribution
method, the relaxation methods, model analysis and others.
The advent of computers revived the interest in solving the
equations explicitly. -Several authors (31, 34, 58, 59, 64)°
have contributed to this science.

The earlier programmes used sub-routines in which all the
coefficients of the left-hand side array were stored. The
limited core available in the earlier computers restricted the
size of the structures that could be analysed. To solve large
problems, the stiffness matrix had to be partitioned into sub-
matrices (31, 64). Furthermore, zero elements occuring inside
the sub-matrices only were stored. This method is akin to
analysis by substructures (37).

The stiffness matrices of structures have some special

features. These are:-

(a) the proportion of' non-zero elements is small.
This decreases with the increase in the size
of the structure;

(b) as already mentioned, the stiffness matrix
is always symmetric;

(c) by numbering the nodes in a certain way, the
non-zero elements can be brought within a
band parallel to the leading diagonal. The
width of this band is proﬁortional to the
1arge$t difference between any two nodes

connected by a member; and
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(d) zero elements outside the band remain

zero when using the direct elimination
method without row or column interchange.

Because of the symmetry of the stiffness matrices, only
half the symmetric elements need be stored. The band method
of storage (32), of which the tri-diagonal method (59) is a
special case, take advantage of the above-mentioned properties.
In the case of direct elimination method, a particular row is
used to reduce only a few of the subsequent rows. Hence, only
a few equations need be in the working core at a time, the rest
being in the backing store. The only drawback of this method
is the time spent in transferring the rows to and from the
backing store.

For large structures, the band is usually thin. The sol-
ution time for such problems is proportional to the square of
the band-width. Therefore, any reduction in the band-width
results in the saving of not only the storage space but also
in solution time.  Jennings (33) devised a method of locally
variable band-width. To increase the capacity of this method
even further, backing store has been used (34). In certain
computers, with the facility of buffer core; it is possible to
transfer.at once a block of elements of fixed size. It is
preferable to make few large transfers than several small ones.

A variation of this method is presented in the next chapter.

1.4 The Scope of Present Work

The curved members can be approximated by a number of

straight members. The results of such an approximation improve

with the refinement of the sub-division. This, however,
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increases the number of degrees of freedom in the structure
which in turn increases the required storage and the solution
time of the computer. Therefore, the advantages of obtaining
the stiffness matrices for curved elements are obvious.

There are several methods of obtaining the load-
displacement relationship of structural elements. For members
of uniform cross-section, the strain energy method can be used.
The easiest way is to use the unit load theorem (7, 50). This
gives the flexibility matrix which can be inverted to obtain
the required stiffness matrix. Another method is to use the
finite element technique which is adopted in this Thesis.

Two types of displacement functions are investigated, a
polynomial type and another derived ones. The polynomial
functions are chosen according to the recommendations of section
1.3 (iv). The governing differential equations are formulated
by considering the equilibrium of a curved element of uniform
cross-section. These equations are then solved to obtain the

derived displacement functions.

The above displacement functions are also used to obtain
the stiffness matrices for curved elements of variable cross-
section. Various structures are analysed by using the stiffness
matrices, the results are compared with those obtained by:-

(a) the strain energy method for simple arches

and bow girders of uniform cross-sections;

(b) approximating the arches and the bow girders

by a number of straight prismatic members; and

(c) experiments where the strain energy method

becomes too involved.
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The in-plane stiffness matrices are developed in Chapter
3. Three types of curvature - displacement relationships are

considered. These are:-

(a) the curvature, x =32 .
ax® ’
(b) the curvature, y = " 3; ; and
R
(c) the curvat " .
C e ¢ ur —— ;
va €y, X - +R =z ’

where w 1is the radial displacement;
u is the tangential displacement;

X 1s the distance to the point under consideration
measured along the length of the members from
end 1;

and R 1is the radius of the curve.

The curvature - displacement expressions (b) and (c) are
due to Fligge and Timoshenko respectively. It is noticed that
in both of these, the second term on the right allows for the
influence of the initial curvature. Furthermore, as the radius,
R, is increased to infinity both expressions reduce to that
given by (a) which is for straight beams. In the case of poly-
nomial functions, all three relationships are used. On the
other hand, the derived displacement functions utilize the first
two expressions only.

The in-plane curvature-displacement relationships for
curved members are well known. However, the curvature-
displacement reiationship for the out of plane case is not
known. This is derived in Chapter 5. The out of plane stiff-
ness matrices are then obtained using the cubic and the derived
displacement functions, both of which use the same curvature-

displacement relationship.
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Civil engineering structures are often irregular and
offsets of members from their joints are unavoidable in these
structures. In areas prone to appreciable unequal settlement,
mechanical pins are used to prevent structural damage. To
obtain representative results, the influence of these features
should be taken into account. In Chapter 7 displacement trans-
formation matrices, both for the in-plane and out of plane
cases, are constructed which allow for the effect of offsets
as well as the hinges. Results for two structures with offsets
and hinges are given. One is an arch bridge in which the arch
is part of a plane frame. The other is a bow girder. The

theoretical results for the latter are compared with those

obtained experimentally.
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CHAPTETR 2

THE SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS

2.1 Introduction

The sub-routine developed to solve a set of symmetric
simultaneous equations is described in this chapter. Because
of its efficiency in the use of store, a locally variable band-
width method of storage is used for the coefficients of the
variables. Both the left and the right-hand sides are divided
into blocks for storage in the backing store. This increases
the size of the problem that can be solved with a given core
space in the computer.

Choleski's method of factorisation is best suited to solve
such a set of equations, but it gives inaccurate results for
equations with weak diagonal elements which can occur in in-
stability problems. The direct elimination method does not
suffer from such draw-backs.  Furthermore, if used without row
or column interchange, more than one right-hand side can be

dealt with. A variation of the latter method is adopted here.

2.2 Method of Storage

The coefficients of the left-hand side matrix are stored
in a one-dimensional array. This is called the main sequence.
The elements are stored row by row, 5t§rting from the first non-
zero element up to and including the diagonal elements. The
zero elements outside the boundary of the locally variable band

remain zero during the solution process, hence they are not

stored.

The coefficients of the right-hand sides are also stored

row by row in a one-dimensional array. The solution vectors,
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whose elements are always non-zero, overwrite the left-hand
side vectors. The right-hand sides are, therefore, stored
in full. |

To use the backing store facilities more efficiently, both
sides are divided into blocks. The number of elements in any
block is equal to, or less than, a specified number. For
computers with the facility of buffer zone, the size of the
blocks should be equal to the size of the buffer zone. However,
when using a computer without a buffer zone, the user fixes
the block size. This is done according to the core store
available. Every block must contain an integral number of rows.
A block may consist of only one equation. This condition
imposes a restriction-gg the maximum number of elements to be
stored for any one row. Therefore, when numbering the nodes,
care should be taken to ensure that the number of elements,éo
be stored, for any row does not exceed the number of elements
permitted in a block. If necessary, extra nodes should be
introduced to reduce the bandwidth locally (32). Finally, a
block of the right-hand side contains the same number of rows
as the corresponding block of the left-hand side.

An address sequence array, IS, is used to locate the
elements stored in the main sequence. The elements of the IS
array give the position of the diagonal elements. Utilizing
this information, the position of an element aij for example,
is computed from the following formula:-

m = IS(i) =1 + j (2.1)

where IS(i) gives the position of the diagonal

element of row 1i.

The element ajj occupies the mth position in the main

sequence.
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2.3 Compact Elimination Method

In the direct elimination method, all the elements below
the leading diagonal are reduced to zero while those on the
leading'diégonal are reduced to unity. The elements in the
first column are eliminated by subtracting suitable multiples
of the first row from the subsequent ones. Then suitable
multiplés of the second, modified row are subtracted from the
subsequent rows to reduce the elements of the second column to
zero. This process is continued until all the elements below
the leading diagonal have been reduced to zero. Finally, each
element on the leading diagonal is made egual to unity by
dividihg the equation by the diagonal element itself.

Thus an element ai j occuring in the upper triangle may be
modified several times as its counterpart aji is eliminated. |
In the compact elimination method, an element is completely
modified in one step. It is easy to show that this compact
elimination is carried out as follows:=-

For the off diagonal elements:-

854 = C33 a3 (2.2)
where ¢, .=a . -:é; O Bk (2.3)
and for the diagonal elements:

a;; = _l/cii (2.4)
where o, =8y _;é; i B (2.5)

-

In equations (2.2) and (2.5) r is equal to the column
number of first non-zero element of row 1 or j; whichever is

the greater of the column numbers.
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From equations (2.2) to (2.5) it is obvious that the
coefficients cjj are needed to modify the subsequent elements
of row i. These coefficients must be stored until they are no
longer needed. The store space required for cij's is termed
the temporary store. For row by row elimination, the size of
the temporary store required is equal to the maximum number of
elements stored for any row. However, in the sub-routine
developed here, the elimination is carried out column by column.
The size of the temporary store required in this case is equal
to the block size.

Parallel operations are performed on the right-hand sides
as well. All the steps in the modification of an element of the
right-hand side can be expressed in compact form as:-

=t
by =a; b, "kfr c;

(2.6)

where r is the column number of first non-zero element

of row i.

Two subscripts for the element, bij, indicate that more
than one right-hand side can be dealt with.

After both sides have been completely reduced, the last
equation, n, gives the values of the unknowns xnj' Substitut-
ing these values of xhjinto equation n-1 yields the values of
the corresponding unknowns. This process of back substitution
is repeated until all the elements of the solution matrix have
been calculated. All the steps involved in the back substitu-
tion can also be expressed in compact form. Doing this, the

following expression is obtained:-

m
a . x . (2.7)
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where m 1is the largest row number of an element
stored for column k of the left-hand side

matrix.

2.4 Elimination by Blocks

The core space available may not be sufficient to solve
a large set of simultaneous equations. The use of backing store-
then becomes necessary. The transferring of the information to
and from the backing store is a slow process compared to the
speed of the fast store. It is better to make few large tran-
‘sfers than several small ones.

The coefficients on both sides are divided into blocks as
explained in section 2.2. If the division is done by hand and
the information fed into the computer as data, no problem
arises. However, the size and the shape of the stiffness matrix
changes with the structure and the method of numbering the nodes
of the structure adopted. Furthermore, the stiffness matrices
are, preferably, constructed by the computer. This reduces
the data to be fed into the computer. It is preferable to use
the computer to divide the stiffness matrix and the load array
into blocks. To do this, the computer needs the address se-
quence array which has been defined and explained in section
2.2.

In addition_to the address sequence array, two more arrays
are needed in the solution by blocks. The use of the latter
arrays will become clear later in this section. These arrays
are:-

(i) IR - array : this array holds the last row number

in each block; and
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(ii) IB - array : this array gives the first block
required by each block in ‘the

reduction process.

The tﬁree arrays mentioned above are constructed auto-
matically from the information supplied to the computer. How
this is done is explained in section 2.5. |

To reduce row i, row j may be needed. It is pbssible that
rows 1 and j are held in different blocks. Hence sufficient
working core is required to hold two blocks at the same time.
The block in which row i occurs is called the active block.

The block which holds row j is called the passive block. At
some stage of the reduction process an active bloék, P, is read
from the backing store. It is possible to bring the first block
into the working core.to act as the passive block. Then the
successive blocks act as the passive blocks, one at a time.

But the first few blocks may not be needed to feduce the active
block, P. This depends on the position of the elements of the
active block in the left-hand side matrix. To save computer
time, such unnecessary block transfers should be avoided al-
together.

The IB array, defined earlier, is used for this purpose.
It gives the first passive block, Q, required by an active
block, P. A test is made to determine whether block Q is
already in the working core. If it is not, then it is read
from the backing store into the working core. With these
blocks in the working core, the active block, P, is reduced as
much as possible. Block Q + 1 is then brought from the backing
store to reduce the active block further. Then block Q + 2

becomes the passive block and so on. Eventually a stage is
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reached when all the equations required to complete the re-
duction of block P are held within the active block itself.

The active block is then reduced completely and transferred to
the backing store. The contents of the temporary store are also
written into the backing store. Block P + 1 is then read into
the working core to become the active block. The whole process
is then repeated. In this manner, 'all the blocks are reduced
and written into the backing store.

Parallel operations can be performed on the right-~hand
sides. Alternatively, as is done in this sub-routine, the
right-hand sides can be reduced after the left-hand side has
been reduced completely. The process is similar to that used
in the reduction of the left-hand side.

From the information held in array IR, the row numbers of
the first and last row held in a block are determined. This
specifies which rows, of the active block, are to be reduced.
The row numbers of the passive block decide the extent to which
the active block can be reduced with a given passive block.
Thus the start and the finish of various reduction cycles, for
a particular active and a passive block, is determined by using
the IR array.

When both sides have been completely reduced, the process
of back substitution is started using the last blocks of both
sides first. The right-hand side block is transformed into
the solution block by back substitution. This solution block
is then transferred to the backing store where it occupies the
same space as previously occupied by the corresponding block
of the right-hand sides. The preceding blocks, to the last

ones, of both sides are then read from the backing store.
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Further back substitution and solution is carried out. After
a block of the right-hand sides has been transformed into a
solution block, it is written into the backing store. This
process 1s repeated until the right-hand sides have been com-
pletely transformed into the solution matrix and written into
the backing store.

Thus the process of back substitution is in some ways the
reverse of the elimination.
2.5 Automatic Construction of Address Sequence and Other

Arrays

The construction of address sequence and other arrays,
required to solve a set of simultaneous equations by blocks, is
b;st illustrated by an example. For simplicity, only a plane
frame is considered. The principle, however, is the same for
three dimensional structures. A rigid jointed plane roof truss
is shown in fig. 2.1. All the free nodes are numbered con-
secutively. The supports do not contribute to the stiffness
matrix. Alternatively, to render the stiffness matrix non-
singular columns and rows corresponding to the supports are
removed from it. The stiffness matrix is then as shown in fig.
2.2. As the matrix is symmetric, the elements above the lead- ;
ing diagonal have been left out. The shaded squares indicate
the possible non-zero elements. The elements within the bound-
ary are stored as the main sequence.
(i). .The Address Sequence Array

Consider a joint, j, of thesstructure. The lowest joint
number, i, to which joint j is connected by a member 1is
determined from the data supplied to the computer. The number

of elements stored for the first row for joint j is then cal-
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culated from the following expression:-
m = ne. (j-31i) +1 : (2.8)
where n is equal to the degrees of freedom of
the joints of the strugture.

For each subsequent rows, for the joint j, the number of
elements increases by one. This can be seen from fig. 2.2.

Starting with the first joint of the strﬁcture, the number
of elements to be stored for each row is computed. A simple
addition of the number of elements for m rows gives the location
of the diagonal element of mth. row in the main seduence. The
number obtained by adding the number of elements of m rows is
also the mth element of the address sequence.
(ii) IR Array

Given the block size, the computer divides the stiffness
matrix into blocks by scanning the address sequence array.
The blocks are required to contain an integral number of rows.
From fig. 2.2, it is seen that the last element stored for each
row is a diagonal element. Consider block P. Let the last row
for block P - 1 be q and the last row for block P be p. Then
the difference between the pth and gth element of the address
sequence array is equal to or just less than the block size.
The difference between the p + lth and the gth element is
greater than the block size. The row numbers q and p form two

of the consecutive elements of the IR array.

(iii) IB Array

R Wy

The IR array gives the row numbers held in a block. The

v

column number of the first non-zero element of each row can be

determined from the address sequence array. The column numbers,

c's, of each row in a block, P, are examined. The lowest, q,

et i ;-
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of the c's is determined. Then the first passive block, Q,
required to reduce block, P, holds row gq. Thus the Pth element
of the IB array is put equal to Q. Similarly, consideratian of

all the blocks completes the construction of the IB arraye.

2.6 The Flow Diagram

A detailed flow diagram for the sub-routine to solve a
set of simultaneous equations is given in figs. ‘2.3 and 2.4.
More than one right-hand sides can be solved. The computer
programme appears in Appendix A as sub-routine CDM. The flow
diagram is self-explanatory.

The size of the blocks is treated as variable. The left-
hand side is divided into blocks and stored in the backing
store block by block. The right-hand sides are stored in the
backing store as a continuous.array. The alterations are
simple and few to modify the programme so that blocks of fixed
size are transferred. At present, the arrays are transferred

to and from the backing store in parts.

2.7 Error in Solution

The substitution of a solution vector into the original
left-hand side yields a vector. Comparing this vector with
the corresponding original vector of the right-hand sides gives
an estimate of the error involved in the solution sub-routine.
The sub-routine, however, has been checked by solving some

problems whose solution was already known.

2.8 Conclusions

l. The locally variable bandwidth method used for the
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storage of the left-hand side matrix requires minimum
storage space (33).

2. More than one right-hand side can be dealt with.

3. The use of backing store facilities enables large pro-—
blems to be solved. -

4. The direct elimination method used is known to give
reasonable results, even for ill-conditioned equations (32).
5. The column by column elimination adopted for the left-
hand side requires more searching operations. Therefore,

it is better to use row by row reduction. Alternatively,
the left-hand side should be stored column by column as
suggested by Barron and Swinnerton-Dyer (58).

6. Both sides of the equations should be reduced simultan-
eously. This reduces the number of block transfers and ob-
viates the need to store the contents of the temporary
store. However, if a set of simultaneous equations with
the same LHS but different RHS is to be solved, it is better
to store thé contents of the temporary store for future use.
Alternatively, the whole problem will have to be solved

afresh..
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CHAPTER 3

CURVED MEMBERS LOADED IN-PLANE

3.1 Introduction

In this chapter, the stiffness matrices for curved ele-
ments are developed by using the finite element techniques.
Assumed as well as exact displacement functions are used. The
latter are obtained by solving the governing differential eqg-
uations which are obtained by considering an element of a
curved member of uniform cross-section. Finally, the same
displacement functions are also used to obtain the stiffness

matrices for curved elements with variable cross-sections.

3.2 Sign Convention

To interpret the results meaningfully, some datum is re-
quired for reference. ‘A set of orthogonal axes, called the
global axes, is-chosen for this purpose. It is possible to
obtain the stiffness matrix for a member in the global co-
ordinates directly (16). However, it is more convenient to
derive the load-displacement relationships in co-ordinates
local to the member. Like the global axes, the local axes are
also orthogonal and are so orientated that one local axis coin-
cides with the longitudinal axis of the member. The stiffness
matrix, in local co-ordinates, is dependant on the properties
of the member only. It is easy to transform the stiffness
matrix from local to global co-ordinates. A transformation
matrix is used for this purpose, the elements of which are

functions of the position of the member in the structure and

its inclination to the glcocbal axes.
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A set of global axes is shown in fig. 3.1. The forces
applied at the joints of the structure are positive when act-
ing along the positive directions of the axes. The positive
directions for the applied moments at the joints are as shown
in the figure. The resulting joint displacements are positive
when they follow the positive directions for the corresponding
forces or moments. The axes, forces and the displacements as
shown obey the right-hand screw rule.

Fig. 3.2 shows a set of. local axes for a curved member.
P-axis is chosen along the tangent and the Q-axis -lies along
the radial direction, directed towards the centre. The pos=-
ition and direction of the R-axis is then fixed by the right-
hand screw rule. The positive directions for member forces and

displacements are obtained by following the right-hand screw

rule.

3.3 The Stiffness Matrix by Assumed Displacement Functions
(1) The Displacement Functions
Using the criteria in section 1.3(iv), the following dis-
placement functions of polynomial form are assumed:-

For the radial displacements:-

3 3.1
Wwo=a; +ayX +a; X° +a X ( )

and for the tangential displacements:-

u = ag + agX {3.2)
where a, - ag are the arbitrary constants;
and x is the distance from end 1 to the point in

the member under consideration measured

along the curve.
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The displacement functions chosen, equations (3.1) and
(3.2), indicate that the radial and the tangential displace-
ments are independant of each other. This assumption is
reasonable for straight prismatic members within the small de-
flection theory. The displacement functions, equations (3.1)
and (3.2), are sometimes called the beam functions.

There are three in-plane displacements for each end of
the member, a displacement along the tangent, a radial dis-
placement towards the centre, and a rotation about the R-axis.
These six nodal displacementsdefine the six arbitrary constants,
a; - ag used in the displacement functions uniquely.

The equation for slope is obtained by differentiating
equation (3.1) with respect to x thus:-

2
dw = ay + 2a3x + 3a4x (3.3)

dx
Substituting the end conditions into equations (3.1) to

(3.3) gives:-

Forend 1l ; x= 0 :
The radial displacement - wy, = a8 (3.4)
The tangential displacement; u; = ag (3.5)
and the slope at end 1 $ 8 = @ (3.6)

For end 2, x= L; the curved length of the element:
From egn. (3.1), the radial displacement is given by:-

2 3 .
w, = a; + a2L 1 a3L + 3,L (3.7)

from eﬁn. (3.2), the tangential displacement is:-
u2 = a5 + aeL (3.8)
and finally from egn. (3.3), the slope at end 2 is:-

- . 2 .
3] = a, + 2a3L + 3a4L | (3.9)
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Solving the simultaneous equations, (3.4) to (3.9), the

six arbitrary constants are expressed in terms of the six nodal

displacements. Writing these relationships in matrix form
yields:- |
a; 1 0 0 0 0 0 wy
a, 0 1 0 0 0 0 64
a - 3 2 a 1 0 0 W
3 = = = = 2
- .2 L 1.2 L
a 2 1 -2 1 0 0 P (3.10)
a =3 T2 T3 = <
L L L L
ag 0. 0 0 0 i 0 Uy
a 0 0 0 0 -1 b & u
L% L A
or in compact form this is:-
-1
fa} = [c] {8} (3.11)

Equation (3.11) is seen to be the same as equation (1.3).

The vectors, {a} and {5} , and the matrix, [c]"i , are defined

in section l1l.2.

(ii) The Strain - Displacement Relationships
For curved members within the small deflection theory,

there are two components of strain. The first part is identi-

cal to that for straight members. The second contribution

represents the influence of the initial curvature, R, of the

member. The latter can be obtained by considering the radial

displacement of a curved member. The total strains are obtained

by adding the two components.

Fig. 3.3.shows a curved member of radius R. The curved

length AB subtends an angle ¢ at the centre. The member suffers
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radial displacements only as shown in the figure.
(a) The Axial Strain in the Member
The initial curved length AB of the member is given by:-

t = R+© (3.12)

After straining due to radial displacements, the length of

the member becomes:=-

1" = (R-w)+® (3.13)

From equations (3.12) and (3.13) the axial strain in the

member , due to w, can be obtained; viz:

'
L=t

e = — (3.14)

Substituting equations (3.12) and (3.13) into eqgn. (3.14),

yields:-
€ = - W . ’ (3.15)

R
Superimposing the axial strain due to the radial displace-

ment given by equation (3.15) onto that obtained for straight

member leads to the‘following relationship:-

e = du - (3.16)

5 w
dx R

(b) The Bending Cruvature
From fig. 3.3, it is obvious that after deformation the

radius, R, of the member reduces to R - w. This produces a

bending curvature in the member which is:-

x = | i (3.17)

L L
R=w R

Upon simplification, equation (3.17) becomes:-—
' w ‘ (3.18)
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The displacement, w, is very small compared to the radius,
R, of the member. The following approximation can, therefore,
be made:-

R-w =~ R ' ' (3.19)

Sdbstituting equation (3.19) into equation (3.18) gives

the bending curvature due to w as:-

X = (3.20)

W
r2

Once again, superimposing the strains due to the radial
displacement, w, given by egn. (3.20) onto that obtained for

straight members leads to the following expression:-

L = dow 4+ (3.21)

o |5

In equations (3.16) and (3.21) the radial displacement, w,
is assumed to be positive when towards the centre. This is
the reason for choosing the local axis, Q, as directed towards
the centre as shown in fig. 3.2 and discusséd in section 3.2.
It is noticed from equations (3.16) and (3.21) that the influ-
ence of the initial curvature, R, of the element is represented
by the second term on the right-hand side. For straight
members, the radius, R, becomes infinity. When this is sub-
stituted in equations (3.16) and (3.21) the second terms on the
right vanish and the equations revert back to those which are
obtainéd for straight members.

Differentiating equation (3.2) with respect to x gives:-

g& = a (3.22)
ax & -

Similarly, differentiating equation (3.3) with respect to

x vields:-
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dw = 2a3 - 68.4}{ (3.23)

Substituting equations (3.1) and (3.22) into eqn. (3.16)
and equations (3.1) and (3.23) into egn. (3.21) leads to the

following matrix relationship for the axial strain and the

bending curvature:-

a
TR s 1
B 2 3
€ -1 =x =X =X o 1 L)
= R R R R
— _ a3
5 (3.24)
3 4
X 3 X 2+x 6x+x~ 0 Q
] & rR® R R® i ag
9

In more condensed form, equation (3.24) is written as:-
fe} = [A] {a} (3.25)

Equation (3.25) is the same as eqn. (l1.4). The vectors,

fe} and {5}, and the matrix,[mj , have already been defined.
In matrix [p] the terms containing R account for the influence
of the initial curvature. Increasing R to infinity reduces
matrix '[p]~to that obtained for straight members.

For long thin members, the strain energy due to shear is
negligible compared to the strain energy due to bending and axial
forces. Therefore, only axial strains and bending curvatures
have been considered.

Following the steps outlined in equations (1.5) to (1.7),
the strains can be expressed in terms of the nodal displacements.

This strain-nodal displacement relationship is expressed by

equation (1.6).
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(iii) The Stress-Strain Relationships

The curved members dealt with in this Thesis are one-
dimensional. For élastic material which obeys Hooke's law, the
forces are related to the strains as follows:-

The axial force, . o = EA ex (3.26)

and the bending moment, M = E I X (3.27)
where E is the modulus of elasticity of the materialj;
A 1is the cross-sectional area of the member;
and I is the second moment of area of the member for
in-plane bending.

Writing equations (3.26) and (3.27) in matrix form:-

o i EA o Ex | -

M o EI X

or to write equation (3.28) more concisely:-

fo} = [D]. {e} (3.29)

Equation (3.29) is seen to be the same as equation (1.8).
The vectors, {o} and {e} , and the matrix, [D] , are already
defined.

The strain energy due to shear can be included. This adds
another row to the strain matrices, [A] and [B] , and the
elasticity matrix, [D] . The latter then becomes a 3 x 3
matrix; the third element being the shear rigidity of the member.
(iv) The Stiffness Terms

The stiffness matrix is'obtéined by carrying out the
triple matrix multiplication in equation (1.16) and integrating

the results. This exercise leads to the following recurssive
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formula for the stiffness elements:-—

L
o .

where B . are the elements of the strain matrix [(B] .

The integration in equation (3.30) is with respect to
length and not over the volume as was the case in equation
(1.16). This is due to the resultant forces in equation (3.30)
instead of the stresses that are implied in equation (1.16).

Carryiné out the integrations, equation (3.30) yields the
elements of the stiffness matrix for a member. These stiffness

elements for a curved member of uniform cross-section are:-

ky; =FEA(L3L y+EI 12 +13L =12 1,

11 == 2 e
.35 g2 3 35 ¥ 5 p2r
2 , 5
k12=EA(£_I_,_2_)+EIc‘%+11 L°-61,
210 | s 210 ;4 5 g2
kKina =BA ;9 L +EI ,-12 + 9 L + 121
ko ‘02 T3 Wwad §onT)
L R R L
2. 2
ky, = -EA (13 L% + EI 6 - 13 _L_—_l.__];é_)
120 ;2 T WA Ty
L w ER T (3.31)
15 (35) -
Kig = “¥15
3 3
kyp = EA |1 L_)+EI(4+1L_—_£_1__£2_)
105 o L 105 .2 T8 .2
kog = = Ky
3 3
k24=—EA(1 -I_u__)+EI (3-— 1 L_+__]_..__I_J__}
140 2. L 140 | 15 2
kyg = EA (Igﬁ’

Kog = = ko5

T N T



46

(3.31) Continued

kag = kg3

K3 = = Ky

ge W e

k3 =, ~ %5 |

kg =, *oo (3.31)
kKgs = = kg5

kse = kos

kg5 = E2

kpg ™ = ke

kg = Kss

Once again, substituting infinity for R in equations (3.31),
the stiffness terms are seen to reduce to those for straight
prismatic members. This indicates that the displacement func-
tions given by equations (3.1) and (3.2), are exact for straight
members.

Writing the load-displacement equations, it can be shown
that the axial forces are dependant on tangential displacements
only. Similarly, the shear forces and the bending moments are
functions of the radial displacements and rotations only. This
is due to the assumed displacement functions being independant
of each other.

The bending cruvature-displacement relationship expressed
by equation (3.21) is due to Flligge. Another expression

commonly employed for curved beams is due to Timoshenko. The
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latter is obtained from equations (3.16) and (3.21) as follows:-

From equation (3.16) the following relationship is ob-

:tained:—

(3.32)

Substituting equation (3.22) into equation (3.21) and

neglecting the effect of the axial strain, gy On the curvature

yields:-
2 \
x = dw + 1 du (3.33)
dxz R dx

However, for shallow beams, the influence of the initial
curvature can be ignored. _Equations (3.21) and (3.33) then

become identical to the expression obtained for straight members.

That is:-
X = d2w (3-3.4)
dx2

Stiffness matrices were also obtained using equations (3.33)
and (3.34) instead of equation (3.21). The stiffness terms for
these are not produced here. Results were obtained using all
three matrices for various arches to investigate the influence
of the three curvature-~displacement approximations, equations
(3.21), (3.33) and (3.34). Table 3.1 shows typical results for
an arch. fhe radius, R, of the arch is equal to 15 units and
the spanlis equal to 20 units of length. The cross-section of
the arch is uniform and is equa; to 1.0 x 1.0 unit. The arch
is fixed at both ends and carries a unit load at the mid-point.

The results tabulated overleaf are for the deflections under

the 1oad._
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TABLE 3.1
NM
2 4 6 8 10
d2w + W
- "l 0.3464 | 0.7175 { 0.8611 | 0.9147 | 0.9426
dx R
d2w + 1 du ' '
— T ax 0.3451 ] 0.7125 | 0.8574 | 0.9124 | 0.9411
X
dx
d2w
—= " 0.7073 | 0.8449 | 0.8964 | 0.9224
dx
Straight Members| 0.5155 | 0.9669 | 0.9903 | 0.9955 | 0.9974

The assumed displacement functions are approximate.  -To
obtain the rate of convergence of the results the arch was,
therefore, divided into various numbers of segments. The number
of members is shown in the row marked NM. The deflections ob-
tained by using various methods were divided by the deflection
obtained by strain energy. These ratios are tabulated. The
last row in the table shows the results obtained by approximat-
ing the arch by a number of straight members. The stiffness
terms obtained by using the cubic functions allow:for the influence
of the initial curvature, R, of the member. The cubic functions,
therefore, are expected to yield better results than those ob-
tained by approximating the arch with straight members. How-
ever, it is surprising to notice that the latter has yielded
better results than the cubic functions. Similar observations
have been made about the polynomial displacement functions fﬁr
curved shell elements (24, 61). ‘

It is further observed from Table 3.1, and other results
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not produced here, that various expressions for the bending
curvature have negligible effect on the results.

This confirms similar observatioﬂs made by Murray (61).
Perhaps the improvement in the results, due to the refinement
of the expression for bending curvature, is masked by the
approximations involved in the assumed displacement functions.
The results obtained by using the stiffneés matrix given in

equation (3.31) are presented in the next chapter and are marked

CIF.

3.4 Derivation of the Exact Displacement Functions.

Fig. 3.4 shows an element of uniform cross-section cut
from a thin circular ring of radius R. The curved length of
the element is dx and subtends an angle dé at the centre 0.
Also shown in the figure are the resultant forces transferred
from the adjoining elements. These forces are:-

(a).an axial force, P, at end 1 which increases

along. the length, dx , of the element to P +

dP at end 2;
(b) a shear force, S, at end 1 which increases to

S + dS at end 2; and finally.
(¢) a bending moment, M, at end 1 which increases

to M + dM at the second end of the element.
Consider the equilibrium of the element along the bi-

secting line OC:-

(2P + dP) sin d6 + (S + dS) cos d® = 0 (3.35)
2 2

For small angles the following assumptions can be made:-

sin de . de (3.36)
2 F
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and cos d& = 1.0 (3.37)
2

Substituting equations (3.36) and 3.37) into equation
(3.35), and ignoring the second order quantities equation‘(3.35)
reduces to:-

P.de + ds = 0 © (3.38)

Summing the forces along a line passing through the ends

of the element gives:~

(P + dP) cos d6 - (S + dS) sin de - P cos do -
2 2 2 (3.39)

S sinde = 0
2

" Again invoking the relationship for small angles, equations

(3.36) and (3.37), and ignoring the second order terms yields:-

dP - Sde = 0 (3.40)

Finally, summing the moments about an axis passing through
the second end of the element leads to the third equation of
static equilibrium. This equation is:- ‘

M+ dM~-M~ S.R sin d6 + P.R (1 = cos d8) =0 1 (3.41)

Once again making use of the approximations for small

angles and neglecting the terms of second order, equation (3.41)

is reduced to:-
dM - SRde = O (3.42)
The angle, d©, subtended at the centre is related to the

curved length, dx , of the element as follows:-

de = dx (3.43)

R
Substitution of equation (3.43) into the equations of

static equilibrium of the element leads to the following dif-

ferential equations for forces:-
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From egn. (3.38): P = -R dS (3.44)
dx
" " (3.40): S = R dP (3.45)
dx
and finally from egn. (3.42): S = dM (3.46)
dx

Elininating P and S among equations (3.44) to (3.46) yields
the basic differential equation for the bending moment in curved

beams. This equation is:-

aM o+ 1 dM = 0 (3.47)
de Ef dx

Equation (3.47) is similar to equation (6a) of reference
(26).
Using the bending curvature-displacement relationship for
straight beams, the bending moment is given by:-
2
M =-EI d°w (3.48)
g
dx
The term d2w is the curvature in terms of the radial dis-
placements, w,dﬁs given in equation (3.34). Differentiating
equation (3.48) appropriately and substituting the results into
equation (3.47) leads to the required governing differential

equation for the radial displacements, w. This equation, after

simplification, becomes:-

Sw + 1 ddw = 0 (3.49)
dxs E? dxz

The solution of this differential equation is:-

wo o= a; + azx + 533}‘-2 + a, sin %_+ ag cos %. (3.50)

where a, - ag are the arbitrary constants;

and X is the curved distance from end 1 measured along the
member.
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Eliminating S between equations (3.44) and (3.46) relates

the axial force, P, to the bending moment, M, as follows:=-

2
P = -Rd4d™M (3.51)

Differentiating equation (3.48) with respect to x twice

and substituting the results into equation (3,51) yields:-

P = EIR dw (3.52)

The axial force, P, is related to the axial strain,ex y

by Hooke's law as:-

P = EA du - w, (3.53)
rdx R

The quantity in parenthesis in equation (3.53) is the axial
strain in curved members and is the same as given in equation
(3.16). The right-hand sides of equations (3.52) and (3.53)
are equal to each other. From this equality the following

relatianship is obtained between the axial and the radial dis-

placements:-

du = R d4w + (3.54)

&l
I
)

Differentiate eqgn. (3.50) with respect to x four times
and substitute the results thus obtained, together with eqgn.
(3.50) itself into egqn. (3.54). This yeilds the required

differential equation for the tangential displacements whose

solution is:-
2

U = a; X+ a, X+ a, x> - a, (L +I__ycos X
R 2R 3R _ZAR R
+ag (L+I ) sin ‘g + ag : (3.55)
. AR
£
where a, - a are the same arbitrary constants as in egn. (3.50)
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and ag is an additional constant of integration.

Equations (3.50) and (3.55) are the displacement functions
for the radial and the tangential displacements respectively.
The displacement functions have been obtained using the curvature-
displacement relationships for straight members. Therefore,
these functions are expected to yield reasonably accurate re-
sults for shallow curved members for which the influence of the
initial curvature is small. These are called the approximate
functions and the results obtained by using these are marked
A.F.

More accurate displacement functions can be obtained by
using the curvature-displacement relationship given in equation
(3.21). All the steps involved in the derivation of these
functions are the same as used to obtain equations (3.50) and
(3.55). The following displacement functions are obtained:-

For the radial displacements:-

W= a; + a, sin x + a5 cos X + 3, X sin X +

R R R
(3.56)

d- X COS X

=|

and for the tangential displacements:-

Uu=a, x—-a, Cos X + a, sin X + a R - 2Iy sin X -~
1 R 2 R 3 R a [¢ AR) =
, x - ' (3.57)
X COS X + a R - 2T, cos X + X sin X .+ a
x 1+as [ y cos X X ] 6

AR,

where a, - a; are the arbitrafy constants.

The displacement functions, equation (3.56) and (3.57),
are called the exact functions and the results obtained by using
these are marked E.F. The influence of the initial curvature,

R, can be seen by comparing the two sets of displacement functions,
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It is observed that the form of the approximate functions,
equations (3.50) and (3.55), is similar to the displacement
functions obtained by reducing the Cantin and Clough (24) shell

element to an arch element (61).

3.5 The Exact Stiffness Matrix

Various steps involved in the formulation of the exact
stiffness matrix for the curved elements are the same as out-
lined in section 1.2 and used in section 3.3. The algebraic
expressions, however, become more complex than was the case with
the cubic displacement functions. Therefore, all the details
are given in Appendix B.

(i) The Displacement Functions

Only the exact displacement functions, equations (3.56) and
(3.57), are used here. Although the results for the approx-
imate functions, equations (3.50) and (3.55), are also presented
in the next chapter, the details for the development of the
stiffness matrix using these functions have been left out.

The equation for the slope at any point along the curve
of the element is obtained by differentiating equation (3.56)
with respect to X . Substituting the boundary conditions into
the equations for the displacements and the slope yields a set
of simultaneous eéuations which express the nodal displacements
in terms of the arbitrary constants. These equations are then
solved to express the arbitrary constants in terms of the
nodal displacemeﬁts. The final result is similar to that rép—

resented by equations (3.10) and (3.11) for the cubic functions.

(ii) The Strain-Displacement Relationships

The strain-displacement relationships employed in the
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derivation of the displacement functions are also used here.
These are given in equations (3.16) and (3.21). Differentiate
the displacement functions, equations (3.56) and (3.57), as
required and substitute the results into the equations for
axial strain, equation (3.16), and the bending curvature,
equation (3.21). The strains are then expressed in terms of
the arbitrary constants. Writing these relationships leads

to the following equations, in matrix form:-

!
a2
. (0 0o o ¥ v o] | 23| (3.58)
X 1 2 .
= : a
) 10 0 ¥y ¥ 0%
5 J _R ] as
where’ ¢1 = = 2I cos X ; ¥ 5 = 2T sin x
AR§ R AR2 R
(3.59)
¥, =2 cosx ; and ¥, = - 2 sin X
R R R R

Consideration of equations (3.58) and (3.59) show that as
the radius, R, becomes infinity, the strains vanish. The
exact displacement functions, therefore, cannot be used for
straight members by making R equal to infinity. Similar ob-
servations were also made for the approximate functions.

(iii) The Stress-Strain Relationships
The stress-strain relationships are the same as used in

section 3.3 for the cubic functions and are given in equations

(3.26) to (3.29).



56

(iv) The Stiffness Terms

The formula for the stiffness terms is the same as for
the cubic functions, equation (3.30). However, the various
expressions in the strain matrix are now more complicated and
the integrations involve trignometric functions. Final results

are given in Appendix B.

3.6 Curved Members with variable Cross-Section
(i) variation of Cross-Section

The cross-section of a member can vary in several ways.
The simplest way to represent the variation is to use a poly-
nomial expansion for the area and the second moment of area of
the cross-section. Any type of variation can be allowed for by
including sufficient number of terms of the polynomial. The
coefficients of the polynomial may vary from member to member.
These coefficients, therefore, will have to be calculated for
each member with variable cross-section and fed into the
computer as data. The alternative is to make the variation
of the cross-section less ambitious.

It is assumed that the dimensions of the cross-section
vary linearly from end one to end two of the member. The first
three terms of the polynomial give the cross-sectional area
at any point along the length of the member accurately. Sim-
ilarly the second moment of area is defined uniquely by the
first five terms of the polynomial. The coefficients of the
two polynomial equations are easily expressed in terms of the
dimensions of the cross~sections at the ends of the member.
Furthermore, these expressions for the coefficients are appli-

cable to all members with wvariable cross-sections.
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(ii) The Cubic Displacement Functions

The polynomial displacement functions, equations (3.1)
and (3.2), can be used to develop the stiffness matrix for a
curved element with variable cross-section. The equations
(3.1) to (3.25) remain unaltered as these are independent of
the cross-sectional properties of the element. The poly-
nomials for the area, A, and the second moment of area, I,
should be substituted into eqn. (3.30) before the integrations
are performed to obtain the stiffness terms.

(iii) The Exact Displacement Functions (as used for uniform
members) .

In section 3.4, the displacement functions were derived
by assuming that the cross-section of the curved element was
uniform. For elements with variable cross-section the area,A,
and the moment of inertia, I, of the cross-section should be
treated as variables. This makes the derivation of the dis-
placement functions more difficult. For this reason, the dis-
placement functions obtained for elements with uniform cross-
section are used to develop the stiffness matrix for a curved
element with variable cross-section.

In the displacement functions, the properties of the
cross-section, A and I, can be treated as variables. However,
since the displacement functions are for members of uniform
cross-section, it is more logical to use the values of A and I
for average cross-section. This means that the strains in the
curved member with the variable cross-section are the same as
in the member with uniform cross-section. The strain energy,
however, is obtained by integrating over the volume of the

member with the variable cross-section.
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It is more convenient to use numerical integration to
obtain the stiffness terms. It is easy to calculate the di-
mensions of the cross-sectign at the point under consideration
and use these to obtain the area, A, and the second moment of
area, I.

The details of the stiffness matrices for curved elements

with variable cross-section are not produced in this Thesis.

3.7 Uniformly Distributed Loads.

In‘the‘matrix analysis of structufééakhe loads are assumed
to act only at the nodes of the structure. Equivalent static
loads are applied at the nodes for the members carrying uniformly
distributed loads. There are two methods of calculating the
equivalent nodal forces more accurately. One method is to use
the principle of virtual work in which the work done by the
equivalent nodal forces is equated to the work done by the
uniformly distributed loaﬁs. The otherlmethod is to use the
strain energy method to calculate the fixed end reactions for
a curved member carrying uniformly distributed loads. The latter

method is used in this Thesis.
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CHAPTER 4

ANALYTICAL AND EXPERIMENTAL RESULTS FOR ARCHES
LOADED IN THEIR OWN PLANE

4.1 Introduction

The stiffness matrices for curved elements, subjected to
in-plane forces, were obtained in Chapter 3. 1In this chapter
these matrices are used to.obtain results for several arches
under various types of loads. .The strain energy method is also
employed to obtain results for arches with uniform cross-
sections and results for arches with variable cross-sections
are also obtained by experiments. Some of the arches are approx-—
imated by a number of straight members. Finally, the results
obtained by the various methods are compared with those given
by the strain energy method or with those obtained by ex-

periments.

4.2 Arches of Uniform Cross-=Sections

The fixed ended circular arch shown in fig. 4.1 is of
radius R and has a uniform cross-section. The following
dimensions and properties are assumed for the arch:-

254.0 mm,

I

The radius, R

the cross-section 25.4 x 25.4 mm,
and the modulus of elasticity, E, of the material of the arch
is 207.0 KN/mmz. The length ACB of the arch subtends an angle
a at the centre O as shown in the figure. Points D and E
divide the arch into three equal parts.

Arches with angle ¢ varying from 30° to 180° are investi-

gated. The results for these arches have been obtained by

using various methods of analysis. The curves on all the
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graphs are marked to indicate the method employed.. The mean-
ing of some of the abbreviations used, A.F., E.F., and C.F. has
already been explained in the preceding chapter. . In addition
to these, two more abbreviations are used. These two are
defined below:-
(a) S.E. indicates the results obtained by
using the strain energy method; and
(b) S.M. indicates the results obtained by .
approximating the arches with a

number of straight prismatic members.

(i) Concentrated Load at the Centre

A concentrated load of 1.0 kgf. was applied at the mid-
point C of the arch shown in fig. 4.1. To analyse the arch by
using the derived displacement functions, E.F. and A.F., the
arch was divided into two equal parts. For the analysis using
straight prismatic members, the arch was approximated by 4 to. 16
members. However,only the results obtained by simulating the arch
with 8 members are préﬁfnted here. The arch was divided into 2 to
16 equal parts for analysis by using the cubic displacement' ' -
functions. On the graphs the number in parenthesis indicates
the number of sub-divisions used to obtain those particular
results.

From the results presented here and from those omitted it
is observed that the exact displacement functions, E.F., yield
results identical to those obtained by using the strain energy
method. It is further observed that the results obtained by
using the derived displacement functions, E.F. and A.F., do
not improve upon further sub-division. The comments made in

this paragraph also apply to other load cases. This suggests
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that the derived displacement functions are correct.

The deflections under the load are shown in fig. 4.2.

It is seen that the straight member. approximation yields
results which are within 4% of those given by the strain energy
method. The curve for the approximate functions, A.F., shows
that the influence of  the initial curvature, R, is negligible
for arches with angle q less than 60°. For a semi-circular
arch, this influence causes an error of about 10%. The
results obtained by using the cubic functions are rather poor,
the deflections being about 50% for a semi-circular arch even
when it is split into 8 parts. Throughout,:all the percent-
ages are with respect to results obtained by using the' strain
energy method.

It is known (24) that the cubic functions cannot allow for
the rigid body movement of curved elements without straining
the element. The resulting stiffness matrix obtained by using
the cubic functions is over-stiff. Consequently, the dis-
placements are under-estimated. However, upon further sub-

boely
division, some rigid beyd mode is seen to be recovered and this

improves the results.

The slopes of the curves for the displacements shown in
fig. 4.2 are seen to vary with angle o . Two factors contri-
bute to the displacements, the axial strain and the bending
strain. The strain energies due to the axial thrust and the
bending moments vary with angle o at different rates. In arches
with o 1less than 20° membrane action predominates. On the
other hand, the bending action becomes predominant in arches
with , greater than 70°. This results in the curve for the

displacements being in three parts. The first and last part
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correspond to the membrane and the bending action, respectively,
being predominant. The middle part represents the trans-
itional state.

The results for bending moments at the mid-point, C, are
shown in fig. 4.3. The approximate functions, A.F., and the
straight member approximation, S.M., yield results which
compare well with those obtained by using the strain energy
method. The cubic functions give reasonably good results for
shallow arches with angle o less than 30°. For deeper arches,
the curve marked C.F.(2) is seen to diverge from the curve,
S.E., representing the strain energy method. Upon further sub-
division, the results near the shallow range improve, while
those near the deeper range deteriorate. This shows that the
convergence of results obtained by using the cubic functions
is not always monotonic.

Fig. 4.4 shows the results obtained for bending moments
at the fixed support. It is seen that the various curves are
very near to each other for angle g up to about 80°. Beyond
that;, the curves diverge from each other faster than is the
case in fig. 4.3. Observations made in the preceding para-
graph about bending moments under the load equally apply to
the results for bending moments at the support.

The magnitude of the bending moment at the support in-
creases with angle o up to about 40° and decreases beyond.

At angle ¢ equal to 70° the bending moment is seen to change
sign. This is as expected. Consider two extreme cases; a

very short arch and an almost complete ring. Both are carry-
ing a point load at the centre. With angle ¢ very small, the

arch behaves like a straight beam. Obviously the bending
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moment at the left-hand support is anti-clockwise. As angle

a Iincreases, so does the span which causes greater bending

moments at the support. Now consider the free body diagram

of the left half of the almost complete ring. This gives the

support moments as acting clockwise, i.e. opposite to those in

the short arches. This trend:is shown by~ the results in fig. 4.4.
Consider the static equilibrium of half of the arch. The

bending moment at the crown can be written in terms of the

shear force and thrust at the mid-point and the support moment

as follows:-

M. = SR sin.g - HR (1 - cos.%) - M, _ (4.1)
where S 1is the shear in the arch at the crown,
and H 1is the thrust in the arch at the crown.

An examination of equation (4.1) reveals that the thrust,
H, has very little effect on the bending moment, Mg, when
angle o is small. The magnitude of the support moment, Mp, is
in any case very small as can be seen from fig. 4.4. Therefore,
for small values of angle y the bending moment is approximately
equal to the first term in equation (4.1). With the increase
in angle a the magnitude of the thrust, H, increases as well as
its lever arm. For ¢ between 40° and 80° the increase in the
bending moment due to the first term appears to be offset by
the decrease due to the other two terms in equation (4.1). This
is shown by the nearly flat parts of curves in figure 4.3. As
expected, after reaching a maximum value at about 70° the
thrust, H, starts decreasing. At about the same instance,
the sign of the support moment changes as can be seen from fig.

4.4. The result is a net increase in the bending moment at the
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crown as o becomes greater than 80°.

It is noticed from fig. 4.2 that the deflections obtained
by using cubic functions improve upon further sub-division. On
the other hand, the bending moments do not always improve as
can be seen from figs. 4.3 and 4.4. When displacement func-
tions are used instead of the stress functions, better results
are usually obtained for displacements than for forces. The
inability of the cubic functions to allow for the rigid body
movement has already been pointed out. This seems to affect
the forces more than it does the displacements. Shallow arches
of the same radius undergo small deflections, hence the rigid
body displacements in these structures are also small. This is
one of the reasons for obtaining good results for the lower
range of angle g . The second reason is the small magnitude
of the quantities involved, the scales of the graphs do not
show the small differences.

(ii) Eccentric Point Load

A point load of 1.0 kgf. acts at the third point, D, of
the arch showﬁ in fig. 4.1. The arch is divided into three
equal parts for the analysis by using the derived displacement
functions. The results presented for the straight member
approximation of the arches are for 9 sub-divisions. The
number of sub-divisions employed to obtain the results by using
the cubic functions are shown in parenthesis alongside the
appropriate curves.

The horizontal and the vertical displacements of point
D, Xp and Yp respectively, are tabulated in Table 4.1. For
each arch, the first row of the results shows the displacements

obtained by using the strain energy method and the exact
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displacement functions. Those obtained by other methods have
been divided by the corresponding displacements obtained by
using the strain energy method. The ratios thus obtained appear
in the rows marked A.F., C.F. and S.M.

It is seen from the table that approximating the arches
to a number of straight members'yields excellent results; the
displacements being within 2% for a semi-circular arch. The
influence of the initial curvature, R, can be seen from the
results for the approximate functions. It is noticed that this
influence becomes appreciable for arches with angle a greater
than 60° and reaches approximately 23% for a semi-circular
arch. This appears to be a large error compared to the 10%
recorded for the arch loaded at the centre. A comparison of
the displacements in the two cases shows that the displacements
in the eccentric load case’are very small compared to those for
the symmetric point load case. Rounding off errors affect
small values more than larger ones. The cubic functions yield
poor results; being less than 50% for an arch with angle «
equal to 180°. The reasons given in the preceding section are
also valid in the present case. In addition to those, the small
magnitude of the results also contributes to the discrepancies.

The bending moments under the load are plotted in fig.
4.5. The straight member approximation yields results which
are very close to those given by the strain energy method.
The results obtained by using the approximate functions deviate
less for the bending moments than was the case for the dis-
placements. For a semi-circular arch, the error is less than
4%. The results yielded by the cubic functions remain poor.

However, it is noticed from the figuré that a finer sub-
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division improves results over the whole range of angle a .
The reasons for the poor performance of the cubic functions

have already been given.

(iii) Skew-Symmetric Point Loads

A load of 1.0 kgf. was applied at each third point of
the arch shown in fig. 4.1. The load at E being opposite to
that acting at D. The arches were divided in the same manner
as iﬁ the previous section.

The results for the displacements are tabulated in Table
4.1. It is observed that these are similar to the results
obtained for the eccentric load case. The results for the
bending moments at the support and at point D are plotted in
figs. 4.6 and 4.7 respectively. The graphs in fig. 4.7 are
similar to those in fig. 4.5. Therefore, various observations
made for the latter also apply for the present load case. It
is noticed from fig. 4.6 thét the bending moments at the
support obtained by using various methods differ from each
other by a vide margin. Results obtained by straight member
approximation agree very well with those obtained by using the
strain energy method. The er;or introduced by the curvature,
R, is about 27% for a semi-circular arch as can be seen from
the curve marked A.F. The cubic functions yield support
moments thch are good for shallow arches with a about 50°.
Beyond that the curve, C.F.(2) sharply deviates. Further sub-
division is seen to improve the results. However, the results
for deeper arches remain poor.

Results for other quantities not given in this Thesis
were closer to the corresponding results obtained by using the

strain energy method than those presented here.
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(iv) Uniformly Distributed Loads

The arch shown in fig. 4.1 was also loaded with a uni-
formly distributed load. Only the strain energy method and the
exact displacement functions were used to analyse the arches.
The arches were divided into frbm 2 to 16 members of equal
length to obtain results by using the exact displacement
functions. However, the results given are for 2 sub-divisions
only.

(a) Symmetric U.D.L.

A load of 1.0 kgf/mm of the horizontal span

acts over the whole span of the arches. The

results obtained are tabulated in Table 4.2. It

is noticed that all the results yielded by the

exact functions agreé very well with those obtained

by using the strain energy method.

(b) Skew Symmetric U.D.L.

The Uu.d.l. of 1.0 kgf/mm over hélf of the span

acts in the opposite direction to that acting over |

the other half. The results for this load case

are tabulated in Table 5.3. Again, excellent

agreement is noticed between the two sets of

results obtained. There is some difference be-

tween the displacements for shallow arches. This

is due to the very small magnitude of the dis-

placements concerned.

The results presented in Tables 4.2 and 4.3
are for the thrust, shear force and bending
moment. The subscripts refer to the point in

the arch shown in fig. 4.1. The columns marked
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by 6.are for the displacements of the mid-

point, C.

(v) Arches with Both Ends Pinned

Arches with both ends pinned were also analysed by using
the methods employed for the analysis of fixed arches. The
exact displacement functions gave results identical to those
obtained by using the strain energy method. Results obtained
by approximating the arches with a number of straight pris-
matic members were seen to converge towards the correct values
upon further sub-division. Once again, the approximate func-
tions demonstrated that the influence of the initial curvature,
R, was negligible for shallow arches and increased as the
arches became deeper. The point at which this influence became
appreciable varied for the various displacements and forces as
well as the load cases. It was further observed that the re-
sults obtained by using the derived displacement functions did
not improve upon refining the sub-division. Finally, the cubic

functions gave generally poor results.

4.3, Arches with variable Cross-=Sections

In the previous chapter, a stiffness matrix was developed
for curved elements with variable cross-sections by utilizing
the exact displacement functions obtained for a curved element

with uniform cross-section. This stiffness matrix was used
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to analyse some arches with variable cross-sections. Models
were made of the same arches and tested to obtain results which
are compared with those obtained theoretically.

The stiffness matrices were formulated by assuming that
the modulus of elasticity, E, of the material of a member is
constant. Structures composed of elastic materials only can,
therefore, be analysed by using these matrices.  Arches for
experiments could have been made more easily from.materials
such as perspex, wood or reinforced concrete. Unfortunately,
these materials exhibit non-linear characteristics which could
have invalidated the comparison between experimental and
theoretical results. It was, therefore, decided to use mild
steel which is almost exactly linear in the elastic range.

(i) Fabrication of the Arches

The dimensions and details of the arches are given in
Drawing Nos. 1 and 2. Further details can be seen from Plates
1l to 5.

Theoretically, an arch when loaded in its plane should
have zero displacements out of the plane, but due to some un-
controlable factors, this sort of movement can occur in actual
structures. The main factor is probably the misalignments in
arches or in setting up the experiments. To guard against the
possibility of the arches buckling out of the plane, a width
equal to several times the thickness was chosen.

The machine to roll the arches cold to the required radius
was not available. The alternative was to apply heat treatment
to the bent bars so that upon cooling they will retain their

curved shapes. This was adopted.

The oven available could not accommodate the whole arch.
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The arches were, therefore, made in halves. Two moulds were
prepared, one for arches of radius equal to 1270.0 mm and the
other for arches of 635.0 mm radius. The details of the
smaller mould can be seen in Plate 6. Suitable lengths of
mild steel plate with dimensions of 76.2 mm x 15.3 mm were cut
and machined down to the required size. The prepared bar was
bent to the required radius and clamped in position on the
mould. This whole assembly was put into the oven. The temp-
erature in the oven was raised slowly to prevent any temp-
erature gradients being set up in the mould which could deform
it. After reaching the maximum value, the temperature was
maintained at that level for three hours to allow the whole of
the material to achieve the same temperature. The oven was
then allowed to cool slowly.

After the heat treatment, the thin ends of two halves with
the same radius were butt welded to form an arch. The other
ends were welded to the pins or the hollow sections as required.
The pins for the loading brackets were only tack welded to the
arches to avoid local stiffening.

One half of each arch was divided into 8 equal parts. At
each eighth point, a 6.35 mm electrical resistance strain gauge
was fixed to each face of the arch. Where the eighth point
coincided with the loading point, the pair of strain gauges at
that point was moved to one side to avoid the loading pin.

The other half of each arch was divided into 4 equal parts.
At each quarter point, a pair of deflection dial gauges was
placed to measure the horizontal and the vertical displacements.
The pins of the deflection dial gauges rested against the

horizontal or the vertical face of the perspex packings which
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can be seen in Plates 1 to 3. Without any such packings, a
horizontal deflection dial gauge, for instance, with its pin
resting against an inclined surface will register a horiz-
ontal displacement even when the surfact moves vertically only.
Perspex packing was used because it is easier to fabricate
into the required shape. Furthermore, it does not add to the
stiffness of the structures as used here.

For obvious reasons, the strain gauges and the deflec-
tion dial gauges were placed over the same length of the
curved cantilevers.

Drawing No. 1 also shows details and dimensions of the
loading brackets made from mild steel. The load was applied
via a mild steel rod hanger threaded through the middle hole
of the bracket. The loading brackets and hangers can be seen
in Plates 1 to 4. A bracket transfers the load to the loading
pins as two equal knife edges. By centring the bracket, the
arches are loaded in their own plane. An out of plane eccen-
tricity of the load applies a torque to the arch about its
longitudinal axes. This in turn produces the undesirable out
of plane displacements mentioned earlier.

A frictionless pin is desirable for the pinned support.

A small error in the end rotation is magnified in displace-
ments along the length of the arch in proportion to the distance
of the point under consideration from the support. Any mis-
alignment in the structure causes the pin to bear heavily
against the bearings, thus increasing the resistance to
rotation of the pin. One way to avoid this is to provide some
play between the pin and its bearings. However, such a play

can cause displacements due to the lateral movement of the pin
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during loading. It was, therefore, decided to use the arrange-
ment shown in Drawing No. 2 and Plate 5. The ball.bearings
used not only reduce the friction, but also allow out of plane
rotation of the ends to accommodate any misalignment of the
arches. The pin can move parallel to its axis by 3.0 mm. This
helps in the setting up of the experiment without straining

the arches. The ball bearings are mounted from inside the
host plates as can be seen from the drawing. There is, there-
fore, no danger of the arch slipping off the bearings during
testing. Finally, the end plates are bolted to the base plate
as shown in the drawing and Plate 5. The same end brackets

can, therefore, be used for all pin ended arches.

(ii) Test Specimens

Two test specimens were prepared from the same material
and given the same treatment as the arches. The dimensions of
the test specimen are shown in Drawing No. 3. The width and
the thickness shown for each specimen is the average of three
measurements taken near the middle of the specimen. On each

test specimen, two 6.35 mm electrical resistance strain gauges
were fixed to measure the longitudinal strains and two strain
gauges to measure the transverse strains. One strain gauge
of each pair was fixed to one face of the test specimen.

The load was applied to each test specimen with a Denison
machine in 8 increments of 250.0 kgf. After reaching the full
load, it was decreased in the reverse order. For each stage
of the load, the strain gauge readings were recorded. From
these the average of the readings for the loading and un-
loading cycle at each load stage was calculated. The average

strain gauge readings thus obtained for each strain gauge were
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plotted against the load. . The best straight line was drawn
through each set of points and the strains corresponding to
a load of 2000.0 kgf. were computed from the graphs. The
average of the strains for a pair of strain gauges was ob-
tained for each test specimen.

The dimensions of a test specimen yielded its cross-
sectional area. The longitudinal stress was obtained by div-
iding the maximum test load by the cross-sectional area of the
specimen. With the stress and the strain known, it is easy
to calculate the modulus of elasticity, E. Poisson's ratio,

v , is simply equal to the ratio of the transverse strain to
the longitudinal strain. The latter property of the material
'is required to analyse bow girders in Chapter 6. The average
of the properties of the material for the two test specimens
were assumed to be the required values. These final values

obtained are:~

the modulus of elasticity, E 188.0 KN/mm2§

and the Poisson's ratio, v = 0.28

(iii) Tests on Arches

A general view of the pin ended arch with the radius
equal to 1270.0 mm is shown in Plate 1. The deflection dial
gauges are seen to be supported from a dexian frame. The
three loading brackets with the hangers in position are clearly
visible in the picture. Plate 2 shows the smaller pin ended
arch in position for testing. Some of the deflection dial
gauges were removed for clarity. For the same reason, only the
middle loading bracket with the hanger is shown. The pins of

the deflection dial gauges are seen to be resting against the
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horizontal and vertical surfaces provided by the perspex
packings.

The arch with the radius equal to 1270.0 mm was loaded in
6 increments of 4.0 kgf. and a final one of 1.0 kgf. After |
reaching 25.0 kgf. the load was decreased in the reverse order.
For each stage of the load, the strain and deflection dial
gauge readings were recorded.

The same procedure was followed for all the tests, only
the loads were different. The arches with the radius of 635.0 mm
were loaded in 5 increments of 8.0 kgf. The cantilever with
the larger radius was loaded in 5 increments of 2.0 kgf. The
load was applied in 5 increments of, 4.0 kgf. to the cantilever
with the smaller radius.

As for the test specimens, the average values for the
strain and deflection dial gauge readings were calculated.
These were plotted against the loads and the best line was drawn
through each set of points. From the graphs, the strains and
the deflections corresponding to the maximum load in each case
were computed.

Using the known cross-sectional properties and the modulus
of elasticity obtained in section 4.3(ii), the strains at each
section were converted into the axial force and the bending
moment. Some of the results obtained for the arches are pre-
sented in the next section.

(iv) Results for the Arches

A load of 25.0 kgf. was applied at the centre of the longer
arch. The results obtained for the deflections under the load
are plotted in fig. 4.8. For analysis by computer, the arch

was divided into 2 to 20 segments of equal length. The results
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shown in the figure have been obtained as follows:=-

(a) by using the stiffness matrix developed
in section 3.6 (iii) for the curved element
with variable cross—sectioh; |

(b) by using the exact stiffness matrix ob-
tained for the curved element with uniform
cross-section; and fihally |

(c) by approximating the arch with a number of

straight prismatic members.

The cross-section for a member in case (b) and (c).was
assumed to be equal to the cross-section at the mid-point of the
corresponding element in case (a). The theoretical results
were divided bylthe deflection obtained by experiment. The
ratios thus obtained are plotted in fig. 4.8. It is noticed
from the graphs that method (a) yields better results than
either (b) or (c). The latter two methods over-estimate the
stiffness of the structure. However, upon refining the sub-
division, the results are seen to be improving. Further sub-
division gives more marked improvement in the results by method
(a) in the range of coarse sub-division. After reaching the
90% mark, the curve is seen to level off. The 10% difference
between the theoretical and experimental deflections can be
due to several reasons. Among these is the modulus of elas-
ticity, E, for the actual structure being less than that
obtained from the control tests. Small defects in the fabri-
cation of the arch can make the structure more flexible or
rigid. ‘

The bending moment diagrams and the deflected shapes of

some of the arches are plotted in figs. 4.9 to 4.12. Results
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for other load cases are tabulated in Tables 4.5 to 4.7. The
computer results have been obtained by using the stiffness
matrix for. the curved elements with variable cross-section.
The arches were divided into 16 equal parts for the bending
moments and into 8 equal parts for the deflections. The
results for the cantilever are for 8 and 4 sub-divisions re-
spectively. It is seen that the theoretical and experimental
results agree remarkably well.

The fixity provided by the hollow sections was suspect.
A vertical bar was, therefore, welded to the arch near to one
support. . A deflection dial gauge was fixed to measure the
horizontal displacement of a point on the vertical bar 250.0 mm
above the centre line of the arch. This arrangement can be
seen from Plate 4. From the deflection dial gauge readings

the rotations of the ends of the arch were calculated.

- Fig. 4.10a shows the bending moment diagram for the fixed
arch. Thé.computer results have been adjusted to allow for
end rotations. Excellent agreement is observed between the
theoretical and the experimental results.

The deflected shape of the arch is shown in fig. 4.10b.
It is seen that the theoretical deflection at the centre is
about 80% of that obtained by experiment. Since no adjustment
was made for end rotations, some of the error is due to this
cause.

The bendiné mﬁmenf diagram for the same arch under eccen-
tric point load is shown in fig. 4.1la. The results have not

been adjusted to allow for end rotations. The influence of

these rotations is clearly discernible from the graph.
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The bending moments in a cantilever are not affected by
the fixed end yielding under load. The disagreement between
the two sets of results shown in fig. 4.12a could only be due
to the reasons discussed in the next section.

The end rotation of the cantilever, however, causes rigid
body displacements of all points in the structure. This move-
ment is a function.of the end rotation and the distance of the
point from the support. Since the end rotations of the cant-
ilevers were not measured, no adjustment has been made for
such movements. In spite of this, the two sets of results for
displacements shown in fig. :4.12b are seen to be close to each

other.

4.4 Conclusions

From the results presented in this chapter, the following
conclusions are dr%wn:- |
(i) Arches with Uniform Cross-sections
(a) The exact displacement functions describe‘the deformed
shape of curved bars accurately. The strain energy
obtaiﬁed for Ehe structure by using these functions is
the same as obtained by using the strain energy method.
Consequently, the exact functions yield results iden-
tical to those obtained by using the strain energy
method. |
(b) In the derivatioﬁ of the approximate functions, the
influence of-the curve of the member was ignored in
the expression for bending curvaturé. The results
show that for shallow arches no accuracy is lost by
neglecting the influence of initial curvature. The

boundary where this influence becomes appreciable
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shifts from quantity to quantity. ﬁrches with angle
a up to about 60° can be considered shallow for all
purposes.

(c) The exact displacemént functions represent the deflec-
ted shape of the curved member accurately. No improve-
ment, therefore, can be expected in the results upon
further sub-division. This is confirmed by the results
obtained. It was observed that the results obtained by
using the approximate functions do not improve either.
The reason for this is that the same expression for bend-
ing curvature was used both in the derivation of the
functions and the stiffness matrix. As alresult, the
strain energy of the structure obtained by using these
functions is not affected by the number of sub-divisions
used. The approximate functions will yield better re-
sults upon refining the mesh if a more accurate expres-
sion for bending curvature is used to formulate the
stiffness matrix.

(d) The inadequacy of the polinomial displacement func-
tions to approximate the deformed shape of curved
members has been substantiated. The displacements were
seen to improve upon further sub-division. The results
for forces, however, sometimes deteriorated as the L
mesh was refined. This is because displacement func-
tions have been used and not stress functions. The
cubic functions were expected to yield better results
than straight member approximation as an allowance was
made for the influence of the curve of the member in
the derivation of the stiffness matrix. The results,

however, showed that the straight member approximation
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always gave far better results than the cubic functions.
It can, therefore, be assumed that the rigid body mode
was not recovered in the case of cubic functions with
the mesh size employed. This may be recovered and

the results improved upon further sub-division.

(e) It was noticed that approximating semi-circular arches
with less than ten straight prismatic members yielded
results which were very close to those obtained by
using the strain energy method. Therefore, it is
better to use straight members to simulate an arch
where a large number of sub-divisions is to be used.
Using the exact functions derived in this Thesis,
however, only the minimum number of sub-divisions are
required to obtain accurate results. Thus saving the
core space and solution time of the computer. .

(ii) Arches with Variable Cross-sections

The stiffness matrix obtained for curved elements with
variable cross-section yields good results. The difference
between the theoretical and the experimental results could be
due to the following reasons:-

(a) The displacement functions used to develop the stiff-
ness matrix were obtained for a curved member with
uniform cross-section. The assumption that the strains
in the curved member with variable cross-section are
the same as in a member with uniform cross-section is
only approximate. Consequently, the stiffness matrix
is also approximate. This approximation, however,
becomes more accurate as the variation of the cross-

section of the member decreases upon further sub-
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division. The improvement in the results obtained con-
firms this. .

The modulus of elasticity, E, for the arches was obtain-
ed from the test specimens. In spite of the care taken
to give the test specimens the same treatment as given
to the arches, some deviation is unavoidable. It is,
therefore, possible that the .Young's modulus for the
arches was different from that obtained from the test
specimens. Indeed it was observed that the .two speci-
mens yielded results slightly different from each other.
Similarly, the two halves of an arch can be different
from each other. This accounts for the small horiz-
ontal displacements of the mid-point in symmetric load
cases. For the same reason, skew symmetric load cases
yielded some vertical displacements of the mid-point.
The asymmetry of the arches must have contributed to
the difference between the theoretical and the ex-
perimental results. No such check was made ofher than
the observations made above. This was not possible

as the strain and deflection dial gauges were placed
over one half of the arches only.

The inaccuracies in the strain gauges used. Table

4.6c shows the axial force in the pin ended arch under
a 40.0 kgf. load at the centre. The computer results
show that the axial compression does not vary much from
the support to the mid-point. On the other hand, the
axial force obtained by experiment not only varies

from point to point along the length of the member,

but is seen to be tensile at some sections. This is
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due to the errors in the strains measured.

(e) For the eccentri¢ and skéw symmetric load cases the
complefe results were obtaigéd by suﬁefimpoéiﬁg the
results of two tests. This was necessitateé-i& the
strain and defleétion dial gauges being placed over
one half of the arcﬂ only.

(f) The loading pins cause some concentration of stresses.

It is possible that this affected the readings of the

strain gauges in the vicinity of the loading points.
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FORCES, MOMENTS AND DEFLECTIONS IN FIXED
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TABLE 4.3

FORCES, MOMENTS “AND “DEFLECTIONS INYFIXED ARCHES UNDER SKEW

SYMMETRIC U.D.L.

Method [ T Sq B.M. g S 5 @
o| s-E. | o0.418 | -1.560 | -0.829 | -0.974 | 6.516 x 1077
307 E.p. | 0.362 | -1.569 | -0.835 | ~0.979 | 1.029 x 10~8
o| S-E. | 1.553 | -2.689 | -3.027 | -1.895 | 3.917 10”7
07| E.F. | 1.362 | -2.753 | -3.089 | -1.935 | 4.260  »
.| s-E. |3.081| -3.081 | -5.805 | -2.715 | 2.953 x 107°
20 E.F. | 2.798 | -3.228 | -6.020 | -2.810 | 3.115 "
o| s.e. |a.560 | -2.633 | -8.100 [ -3.325 | 1.113 x 107°
1207 1" g p. | 4.274 | -2.849 | -8.545 | =3.534 | 1.173 "
o S.E. 5.554 -1.488 -80892 "'3-909 2.830 "
1507 g.p. | 5.262 | -1.803 | -9.769 | -4.109 | 3.044 "
O S-E. 5.752 0.0 7-523 _4.248 5.419 n
1807 | g.p. | 5.435 | -0.55 3,165 | -4.559 | 6.065 "




TABLE 4.4 a

BENDING MOMENTS IN THE EXPERIMENTAL ARCH

Point
Load
case | Method 1 2 3 4 5 6 7 8
ZSKIf.

Exper. 6.5 12-.9 15-8 1607 14.8 9.1 —1028 ""8.0

Note:- Moments are positive when outer fibres in tension.
The units are KN - mm

TABLE 4.4 b

DISPLACEMENTS OF THE EXPERIMENTAI, ARCH

Load | Displ.
case [porrsg] 2 | 2 X | Ya | X6 | Y6 | *8 | Y8
25 K3f | Exper. |-0.395(0.52 |-0.38]0.70| 0.02 }-0.38 [0.015]-2.45
Compa -0-32 0.50 " Ol62 "'0-16 -0.36 0.0 -2115
Note:- The units of displacements are mm
TABLE 4.5 a
BENDING MOMENTS IN THE EXPERIMENTAL ARCH
Load Point
Case | Method] = 2 C 4 5 6 7 8
25}(’.{.
' Exper. |-11.0 |[-35.6 }-39.8 [-53.0 |-46.0]|-31.0(-12.7 [2.14
TABLE 4.5 b
DISPLACEMENTS OF THE EXPERIMENTAL ARCH
Load | Displ. X Yo X, Y4 X6 YG X8 YB
Case | Metnod"
25Y95| pxper. | 2.47 | =3.54 {3.55 | ~6.39 | 3.01 [ -6.0 |1.53 [0.0
/L7L5 Comp. 1.82 | -2.88 |[2.85 | -5.23]2.81 | -4.86 |2.48 | 0.0




TABLE 4.6 a

BENDING MOMENTS IN THE EXPERIMENTAL ARCH

Point
=9ad 1 |2 3 4 5 6 7 8
a5€ | Method
40 Kgf.
7 Exper. [11.8]16.5| 18.5 |16.5 |[12.3 |7.38 |-0.65 ~7.74
/’l‘\ Comp. [9.72[16.24 19.47]|19.38/15.95|9.24 |~-0.67 |-13.63 |
TABLE 4.6 b |
DISPLACEMENTS OF THE EXPERIMENTAL ARCH [
]
Load [RESPL-| x, | v, | X, [ Y, | X5 | Y5 | X5 | ¥ |
Case | Method i
40K3f | Exper. [~0.28[0.185 [-0.17|0.26 |-0.03 -0.26 |-0.04]~1.23 ;
|
TABLE 4.6 ¢ X
AXTAL FORCES IN THE EXPERIMENTAL ARCH :
Point :
o8p hﬁ\“‘*~a 1 2 3 4 5 6 7 8 i
85€ | Method :
405§ Exper. | -0.03 [0.0 [0.39 |-0.56 | 1.03 |0.8 0.01 | 0.6 i
Comp. 0.38 |0.39 s 0.3910.38.]0.36. | 0.34] 0.36 g
Note:- Axial force is positive when compressive. :
TABLE 4.7 a -
BENDING MOMENTS IN THE EXPERIMENTAL ARCH b
L°ad+*~EEEE§J 1 2 3 4 5 e 7 s |
Case Metho
40%f | Exper.|-11.8 |-22.6 [-34.8 |-38.7 [-28.4 [|-20.9 [-10.9 }1.9g'
Comp. |[-10.41 [-22.18(-35.15[-49.14[-37.44 |-25.25(-12.71 | 0.0 |
TABLE 4.7 b .
DISPLACEMENTS OF THE EXPERIMENTAL ARCH i
Load j-Rispl.| x Y, X Y X Y X Y ’
Case| Method , 2 4 4 6 6 8 8 i
:if?i' Exper. [1.55| =1.04 | 1.93 | -2.23 | 1.86 [-2.03| 1.0 [-0.1 ;
Comp. |1.44| -1.36 | 2.29 |-2.63[ 2.31 |-2.56] 2.06| 0.0 ;
!

B B hican s T ot
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CHAPTETR 5

CURVED MEMBERS LOADED OUT-OF-PLANE

5.1 Introduction

The curved members loaded out of plane are considered in
this chapter. The load-displacement relationships for these
are obtained by using the polynomial as well as the derived
displacement functions. The latter are obtained by consider-
ing the out of plane equilibrium of a curved element with uniform
cross-section. The strain-displacement relationships for the
curved members suffering out of plane displacements are not
given in text books and are, therefore, developed here. These
relationships are utilized in formulating the stiffness matrices
by using both the polynomial and the derived displacement
functions. Finally, as for the in-plane case, the above-
mentioned displacement functions are employed to obtain the

stiffness matrices for the curved elements with variable cross-—

sections.

5.2 The Strain-Diéplacement Relationships

A curved element of radius R, measured from the centre O
to the centroidal axis AB, is shown in fig. 5.l1. The arc AB
subtends an angle 6 at the centre. Also shown in the figure
are the cartisian axes X and Y with their origin at A.

The curved member twists when displaced out of the plane.
Therefore, a point, E, in the member displaces by a different
amount than another point, D. Thus the out of plane displace-
ment, w, is a‘function of the arc length AB and the radial

distance r . This relationship can be written as:-
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w = £ (p,r ) (5.1)
where p 1is the arc 1length AB measured from Aj;

and * r 1is the radial distance from the centroidal
axis to the point, E, in the member under

consideration. ' . _ e

From fig. 5.1 the following relationships are obvious:-

(R-r)2 = x% 4+ (R=-y)? (5.2)

Cos 6 = Cosp = R-y (5.3)
R R -r

and sin 6 = sinp = X (5.4)
. R R -r

'To obtain the variation of the out of plane displacement,

w, the variations of both P and £ are required. Differntiating

eqn. (5.2) with respect to X and comparing the results with

egqn. (5.4) gives:-

0r. = - sin P | (5.5)
ax ' R

* Similarly, it is easy to show that the variation of r

with respect to y is given by the following equation:-

Eaf = cos P (5.6)
oy R

The .1length of the arc, p , is a function of angle ¢ .
From the geometry of fig. 5.1, angle 6 and, therefore, p can

be expressed in terms of X and y as follows:-—

p = R.tan - X (5.7)
R~ ¥

Differentiating egn. (5.7) with respect to x and y and
making use of the eqns. (5.2) to(5.4) the variations of p are

obtained. These are:-

(5.8)

oo -

ap . R cos
ax R -r

fo T Y At e e L
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and L SR R sin p (5.9)
ay R =T R :

Applying the rule of partial differentiation to eqn. (5.1)

vields the following relationships:=-

ow = .@.!. .QB + aw ar - (5 10)
gx dp dx dr Idx
aw 0 d a d

and = . 2L =2 = (5.11)
oy ap dy or  dy .

Substituting egns. (5.5) and (5.8) into egn. (5.10) gives:-

ov o R p _ow _.op
% = 9p B %R " 7r siny = m (5.12)

To obtain the required curvature-displacement relationship
eqn. (5.12) is to be differentiated further with respect to x
and y. An intermediate variable, m,_has been introduced té-make
the differentiation easier. It is obvious that like w the

intermediate variable, m, is also a function of p and r.

Writing this relationship in the form of egn. (5.1) gives:-

n =f(p,r) (5:13)

where p and r are already defined for egn. (5.1).

Applying the rule of partial differentiation to egn. (5.13)

yvields:-
v om gp om r om
2x*  9p ox T or ox -  ox (5.14)
whenp = o3
ad R
From eqn. (5.8) : L. (5.15)
ox Repr -
ow T T e e W iU, ar R
and " L (5.5) : 3; =0 (5.16)

Substituting eqns. (5.15) and (5.16) into egn. (5.14)

reduceS the latter to the following equation.

l
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2

3w R am '
—_— = - — (5.17)
ax R-r ap

Differentiating egqn. (5.12) with respect top and sub-

stituting the results into egn. (5.1 7 yields:

2 %w R 2% R P w4 .. P
= = [ 57 cos - T == 3
ax R-r L ap R-r hd dP R-r R
62 3 (5-18)
. ghoy B W g 2
- oSy o8y |
Substituting the values of sin and cos when p = o0, equa-
tion (5.18) is simplified to become:-
2% ( 11)2' w4 ow | &
x> Rer op* R-r 9r =12

For thin circular members with the radius much larger

compared to the dimensions of the cross-section, the following

approximations can be made:-

R-r o~ R (5.20)
and o (5.21)
& Y

where ¢ 1s the angle of twist of the curved member.
Combining egns. (5.19) to (5.21) yields the required ex-

pression for the out of plane bending curvature which is:-

%
X =5

(5.22)

=<

Similarly, differentiating egn. (5.12) partially with
respect to y leads to the curvature-displacement relationship

for twisting which is given by the following equation:-

X =35 *R % (5.23)

Equation (5.11) can also be used to obtain the expression

for the twisting curvature,x)qr It is noticed from egns.
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(5.22) and (5.23) that the influence of the initial curvature,
R, 1s represented by the second term on the right. This term
vanishes as the radius, R, becomes infinity and the expressions

for the curvatures are, then, identical to those obtained for

a straight member.

5.3 The Stiffness Matrix by Assumed Displacement Functions
(1) The Displacement Functions

The assumed polynomial function, egn. (3.1), is assigned
to the out of plane displacements while the twist, y, in the
curved member is approximated by the linear function, equation
(3.2}

Due to the fact that the assumed displacement functions
are the same, some of the equations involved in the formulation
of the stiffness matrix for the out of plane case are identical
to those obtained in section 3.3 for the in-plane case. Except
that u is now replaced with y - Only the equations that are
different are produced here.

(ii) The Strain-Displacement Relationships

The strain-displacement relationships for curved member
suffering out of plane deformations are given in egns. (5.22)
and (5.23) but p in these equations is replaced by X . As
there is only one independent variable, x , the symbol of
partial differentiation can be dropped.

Differentiating the displacement functions appropfiately
and substituting the results into equations (5.22) and (5.23)

leads to the following relationships in matrix form:-
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= = 1
_ R R
0 1 2x 3% 0 1 B
Xxy | "~ R R R
_ _ 2
(5.24)
%4
a5
%6

Equation (5.24) is equivalent to equation (3.24) for the
in-plane case. The terms containing R represent the influence
of the initial curvature. As the radius, R, of the member
becomes infinity, all the terms containing R vanish and the

matrix becomes the same as obtained for straight members.

(iii) The Stress-Strain Relationships
The stress-~strain rélationships can be found in references
1l and 2. Expressing these in matrix form &

M EI 0 X
(5:25)

T 0 GI| | Xy

where M is the out of plane bending moment in the
element;
T is the twisting moment;
EI is the out of plane bending stiffness;

and GJ is the torsional rigidity of the element.

(iv) The Stiffness Terms

The elements of the stiffness matrix are calculated from

the following formula obtained from equation (3.30):

T
km_n = f ( EI B 13.ln + GJ 132m an ) dx (5.26)
0



% 5

12

13

14

15

16

22

23

24

25

26

33

34

35

36

44

45

46

55

56

il

The elements of the stiffness matrix are:-

88

BT (15 e
L . ; RL "
ET &6 GJ i
-y ( )
{ *10RT-
- k11
Ky2
(EI + GJ) 1_
RL
- le
EI ,4, + GJ ,2 L
(£ ‘s 2.
= Ki5
EI ;2\, - GJ ,1 L
il ‘T 2.

66

= K

55

(5.27)
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An examination of the stiffness matrix, egns. (5.27),
shows that the twisting moments in the members are independent
of the out of plane displacements and rotations. 1In turn, the
twist in the member does not contribute to the bending moments
and the shear forces. Furthermore, it is observed that-for
members with the radius, R, equal to infinity, the stiffness

matrix reduces to that well known for straight prismatic

members.

5.4 Derivation of the Exact Displacement Functions
An élement cut from a thin circular ring of radius, R,
and a uniform cross;section is shown in fig. 5.2. The length
of the element is dx aﬁd is measured along the curve. The
angle subtended by the curved length of the element at the
centre O is.de as shown in the figure. The adjoining elements
transmit the follbwing forces to the element under consideration:-
(a) a shear force, S, at end 1 which increases
along the length of the element to S + dS at.
end 25
(b) a bending moment, M, at end 1 which increases
to M + dM at end 2 of the element; and finally
(c¢) a twisting moment, T, at end 1 which increases
to T + AT at end 2.

All these forces are also shown in figs. 5.2 and 5.3, the

latter being another view of the element.

Summation of all the forces acting on the element along

Z-axis gives:=-
dS = o (5.28)

Since the rate of change of the shear force, dS, is zero,
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it is not included in the subsequent equations of static
equilibrium of the element.

Considering the rotational equilibrium about the bisect-
ing line OA and using the approximations for the trignometric
functions of small angles, equations (3.36) and(3.37), yields:-

dM + Tde + SRd = 0 (5.29)

Similarly, consideration of the rotational equilibrium
about a line passing through the ends of the element leads to
the following relationship:-

dr - Md® = 0 (5.30)

The second order terms involved in the derivation of
equations (5.29) and (5.30) have been ignored.

From the geometry of fig. 5.2, the following relationship

is obvious:-

R

Substituting equation (5.31) into equation (5.29) gives:-

dM + T + S = 0 {5.32)
dx R

Similarly from equations (5.30) and (5.31) the following

equation is obtained:-

dax R

Differentiating equation (5.32) with respect to x and

noting that dS is equal to zero, from equation (5.28), leads

tos-

d°M + 1 dT = 0 (5.34)

2 R dx
Equations (5.33) and (5.34) are the required differential
equations relating the bending and twisting moments in the

curved elements.
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The bending and twisting moments in the element are re-

lated to the curvatures as follows:=
2

The bending moment, M = -EI (d"w 1 9 (5.35)
ax® R
X
and the twisting " y T=26GJ,1 dw + dy (5.36)

(R & &
The expressions in parenthesis in equations (5.35) and
(5.36) are the strain-displacement relationships for curved

members obtained in section 5.2.

Substituting equations (5.35) and (5.36) into equation

(5.34) and carrying out the appropriate differentiations leads

to the following equation:-

2 4 2
d°y = R (.EI dw ~ GJ d W) (
dx2 EI + GJ dx4 Rﬁ dx2

which upon integration with respect to X becomes: -
2

¥y = R (BT dw - GJ wy+ by + byX (5.38)
EL + GJ ., 5,2 g2

Equation (5.38) relates the twist, y , to the out of plane
displacement, w, of a curved member. bl and b2 are constants of
integrations.

Differentiating equations (5.35) and (5.36) with respect

to x and substituting the results into equation (5.33) yields:-

EI + GJ d2w + GJ d2 - EI y = 0 (5.39)
R 2 E
dx dx R

Eliminating y from equation (5.39) by substituting
equations (5.37) and (5.38) gives the required differential eg-

uation for the out of plane displacements, w. This equation is:-

4 2

dw + 2 dw + w = C + . % (5.40)
- = = & i ) 2

dx R dx R4

where = and c2 are proportioned to bl and b2 respectively.
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The solution of equation (5.40) yields the required dis-

placement function which is:~-

w=al+a2x +a351n3% +a4cos% +a5x sin% +

agx cos-‘% (5.41)

where a; = ag are the arbitrary constants.

The constants ¢; and ¢, in equation (5.40) can be related
to the arbitrary constants ay and a, respectively by consider-

ing the particular integrals for egn. (5.40). Through S, and

C,, the constants b1 and b2 are related to ay and ase

The displacement function for the twisting of curved bars
is obtained by substituting eqn. (5.41) into eqn. (5.38) and

carrying out the necessary differentiation. The function

obtained is:-

Y = -assinng_ - a, cos X +
B R = R (5.42)

ag ( 2EL cos X = _ sin Xy~ ag ( 2EI sin_:_c_+_cos§)
EI+GT R R R EI+GJ R R R

Considering the displacement functions obtained, it is

observed that as the radius, R, of the element increases to
infinity, eqn. (5.41) degenerates into a linear equation while
egn. (5.42) gives twist, y , equal to a constant. Therefore,

as in the case of the derived displacement functions for the

in-plane case, equations (5.41) and (5.42) are expected to

yield poor results for straight members.

5.5 The Stiffness Matrix by the Exact Displacement Functions
The steps involved in the development of the stiffness

matrix using the derived displacement functions are the same

as used for the cubic functions in section 5.3. The details
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for the stiffness matrix are given in Appendix C. Equations
required to discuss particular points are produced in this
section.
(i) The Displacement Functions

The displacement functions are given in equations (5.41)
and (5.42) for the out of plane displacements and twists re-
spectively. These are called the exact displacement functions.
The equation for slope at any point in the element is obtained
by differentiating eqn. (5.41) with respect to x . Sub-
stituting the boundary conditions into the equations for the
displacements, slope and the twist yields a set of simultaneous
equations which express the nodal displacements in terms of
the arbitrary constants, a; = g The simultaneous equations
are explicitly solved to oﬁtain the arbifrarf constanfs in terms
of the nodal displacements. The final results from this step
are expressed by egn. (1.3).
(ii) The Strain-Displacement Relationships

The strain-displacement relationships were obtained in
section 5.2 and are given in equations (5.22) and (5.23). Sub-
stituting the displacement functions, equations (5.41) and
(5.42), into the expressions for the bending and the twisting
curvatures, differentiating the resplting equations as re-

quired yields the following relationships in matrix form:-

. alT
X o O o o el cos X —el sin x a
o 1 o o V¥ sinx ¥ cos x a,
R R R R R

o]

o o
[0)] wu i
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where ¥ = 2EI ; and e = 2 +¥ (5.44)
EI+GJ 1 R

Equation (5.43) can be used to study the pattern of the
strains in the curved elements. It is noticed that as the
radius, R, is increased to infinity, the strains yielded by
equation (5.43) are all equal to zero. The exact functions,
therefore, cannot be used for straight members by making R
equal to infinity.

(iii) The Stress-Strain Relationships.

The stress-strain relationships remain unaltered and are

given in egn. (5.25).

(iv) The Stiffness Terms

The recurssive formula, eqn.  (5.26), used for the cubic
functions is also valid for the exact displacement functions.
The elements of the stiffness matrix are given in Appendix C.

A survey of these shows that all the nodal displacements. con-

tribute to all the nodal forces of the element.

5.6 Curved Members with Variable Cross-Sections

The variations of the cross-section of an element were
discussed in section 3.6. As for the in-plane case, curved
elements whose cross-sections vary linearly are considered.

Several formulae, slightly differing from each othé?, g&e
used to calculate the torsion constants of rectangular sections.

Grashof's formula is one of these and is used in this Thesis.

This expression is:-

J = b3 (5.45)
3.6(b2 + t2)
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where J 1is the torsion constant of a rectangular
cross-section;

and b and t are the dimensions of the cross-sections.

(i) The Cubic Displacement Functions

As for the in-plane case, the calculation of the stiffness
matrix explicitly is straight forward. Polynomial expressions
for the second moment of area, I, and the torsion constant, J,
are substituted into egn. (5.26). The resulting equations are

then integrated to obtain the elements of the stiffness matrix.

(ii) The Exact Displacement Functions

The variations in the second moment of area, I, and the
torsion constant, J, should be taken into consideration when
deriving the displacement functions. It is obvious that this
makes the derivations difficult. The displacement functions
obtained in section 5.4 for the elements with uniform cross-
sections are, therefore, employed to formulate the stiffness
matrix of a curved element with variable cross-section.

Remarks made for the in-plane case, section 3.6, also
apply for the out of plane case. By using the linear variation
the dimensions of the croés-section under consideration are
calculated. From these it is easy to obtain the moment of in-
ertia, I, and the torsion constant, J, expressed by eqn. (5.45).
The stiffness terms are obtained by integrating equation (5.26)
numerically.

5.7 Uniformly Distributed Loads

The strain energy method can easily be used to obtain the

statically equivalent forces for the curved members carrying the

uniformly distributed loads. Alternatively, the principle of
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virtual work can be employed to obtain identical results. In

this Thesis, the strain energy method is used.
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CHAPTER 6

" ~THEORETICAL AND EXPERIMENTAL RESULTS FOR BOW GIRDERS

6.1 Introduction

The stiffness matrices for the curved elements which
suffer deformations out of the plane were developed in Chapter
5. In this chapter these matrices are used to obtain the
results for several bow girders under various types of loads.
The bow girders with the uniform cross-section are also ana-
lysed by using the strain energy method. Some of these girders
are also approximated by a number of straight prismatic members.
Only the stiffness matrix obtained by using the derived dis-
placement functions is employed to. analyse the bow girders with
variable cross-sections. Results for these are also obtained
by experiments. The theoretical results obtained by using
various methods are compared either with those yielded by the
strain energy method or with those obtained by experiments.
Finally, the influence of the shape of the cross-section is
investigated by obtaining results for a bow girder. The ratio

of the dimensions of the rectangular cross-section for this

bow girder is varied.

6.2. Bow Girders of Uniform Cross-Sections
" The circular bow girder shown in fig. 6.1 has the same
dimensions and properties as the arch shown in fig. 4.1. 1In
addition to those used for arches, the following properties
are assumed for the material of the bow girders:-
The Poisson's ratio, y = 0.3 ;

and the shear modulus, G = E

201 +y )
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The quantity E in the above expression for the shear
modulus is the modulus of elasticity of the material.

The length of the bow girder subtends an angle g at the
_ centre 6 as shown. Points D, C and E divide the bow girders
into 4 segments of equal length. Bow girders with angle g
varying from 30° to 180° are analysed by using various methods.
Some of the results obtained are presented in the graphs' where
the curves are marked to indicate the method used to obtain the
results represented by a curve. The meanings of various abbre-
viations used (S.E., E.F., C.F. and S.M.) have already been
explained in section 4.2.

The results obtained by using various methods are com-
pared with those yielded by the strain energy method. Thus
the percentages are with respect to results obtained by using
the strain energy method. From the results presented in this
chapter as well as from those results that have been omitted,
it is seen that the derived displacement functions. and the
strain energy method yield identical results. Furthermore, the

exact functions do not yield improved results upon further sub-

division of the bow girders.

(i) Concentrated Load at the Centre

A concentrated load equal to 1.0 kgf. is applied at the
mid-point, C, of the bow girder shown in fig. 6.l. The bow
girders are divided into two segments of equal lengths for
analysis by the derived and the cubic displacement functions.
The number of straight members used to simulate the bow
girders is shown in parenthesis along the curve for the corres-
ponding results.

The results for the bending moments under the load are
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plotted in fig. 6.2. Even with the crude sub-division used,

the cubic functions gave good results. For a semi-circular

bow girder, these are within 10% of the results obtained by
using the strain energy method. The bending moments obtained
by approximating the bow girders by a number of straight members
are seen to be rapidly improving upon further sub-division.

It was shown in references (27, 28) that bending moments
in shallow bow girders can be assumed to be the same as in
straight beams of length equal to the curved length. For bow
girders carrying point loads, this assumption leads to a
linear relationship between the bending moments and the lengths
of bow girders. Fig. 6.2 confirms this. An almost straight
line was also obtained for the bending moments at the support.
These results have been left out.

The cubic functions have yielded more accurate results for
twisting moments at the support than was the case for bending
moments. Twisting moments are plotted in fig. 6.3. It is
noticed that the results obtained by simulating the bow girder
with straight members deteriorate upon further sub-division.

Consider the bow girder shown in fig. 6.1 with angle g
equal to 180° and carrying a point load at the mid-point C.

It is obvious from the symmetry of the structure. and loading
that rotation, 6x , about an axis passing through both sup-
ports, X-axis, reaches its maximum value at C. For the same
reason rotation, ¢_ , about line OC must be zero at C. The
displacements at the fixed ends are, of course, zero. .The.
theoretical results obtained by using the exact functions con-
firmed the above observations made regarding the rotations. It

was noticed that the magnitude of %r was of negative sign,
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from A to C, as expected. The variation of both rotations was
parabolic. Simulating the bow girder with a number of straight
members the twist at an end of the member can be obtained

from the following equation:i=-

Y = chosﬁ + BY sinf (6.1)

where P is the angle of inclination of the straight member
to the X-axis. Consider the straight member whose one end is
attached to support A. It is obvious that p increases with
the number of sub-divisions. Since Qy is of opposite sign,
and both rotations change from point to point, it is possible,
for eduation (6.1); to yield twist in the member of very small
magnitude and even of negative sign. On the other hand, a
coarser sub-division may yield, as in the present case, a
positive twist.

The twisting moment at the support was given in references
(27, 28) as prhportional to the area of the bending moment
diagram. It is obvious that this yields a parabolic curve for
the twisting moments. The results in fig. 6.3 confirm this.

The results for the deflections and the angle of twist at
the mid-point of the bow girders are shown in figs. 6.4 and 6.5
respectively. The results obtained by various methods are seen
to agree very well with each other for shallow bow girders with
angle a less than 60°. The error in the results obtained for
a sime-circular bow girder by using the cubic functions is
over 20% for deflections and about 27% for thé twist. Approx-
imating the bow girders with only four straight members yields
better results than the cubic functions. Straight member
approximation of arches gave better results for displacements

than for forces. It appears that the same is true in the case
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of bow girders as well.
The curves for the out of plane displacements and twists
are all smooth curves. This follows from the similar curves

obtained for the bending and the twisting moments.

(ii) Eccentric Point Load

A load of 1.0 kgf. is applied at the quarter point, D, of
the bow girder shown in fig. 6.1. The bow girders are divided
into 4 equal parts for analysis by the exact and the cubic
functions. As before, the number of straight members used to
approximate tﬁe bow éirders are given in parenthesis along the
appropriate results. Table 6.1 shows the results for the bend-
ing moments at.the support, MA’ the bending and the twisting
moments under the point load, My and Th respectively. The
cubic functions are seen to have given good results. Straight
member approximation yields good results for bending moments,
but the results for wisting moments are poor. However, these
are seen to improve upon further sub-division.

The results for the twisting moments at the support are
plotted in fig. 6.6. The cubic functions have given very
accurate results; beihg within 8% of those obtained by using the
strain energy method. Simulating the bow girdérs with a number
of straight members yields results which differ by a wide mar-
gin. Increasing the number of sub-divisions does not improve
the resulfs over the whole range of angle 4 .

The curves representing the strain energy and the dis-
placement functions are smooth with the slope increasing uni-
formly. Tﬁis is to be expected for'the same reasons as given
for the Symmetric'point load case. The slopes of the curves

representing straight member approximation do not increase
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uniformly as-can be seen from fig. 6.6.

(iii) Skew Symmetric Point Loads

A load of 1.0 kgf. acts at each of the quarter points,

D and E, of the bow girder shown in fig. 6.1. The two loads
act opposite to each other. Table 6.2 shows the results ob-
tained for the same forces as tabulated in Table 6.1 for:the
eccentric point load case. Once again, the cubic functions
have yielded very good results, especially for the bending
moments. The twisting moments are slightly under-estimated.
The error varies from a negligible amount for shallow girders,
to about 10% for '‘a semi-circular one. Straight member approx-
imation of the bow girders gives reasonable results for bending
moments. There is some improvement in the results upon . further
sub-division. - The twisting moments under the load .are grossly
over-estimated by the straight member simulation. The results
are seen to improve upon further sub-division, but a large error
persists.

The results for the twisting moments at the support are
plotted in fig. 6.7. Again the curve representing the cubic
functions follows that for the strain energy method very
closely. Both these curves are seen to have slopes which are
increasing uniformly. The curves representing the-straight.
member approximation-diverge by a wide margin. From fig. 6.7
it is seen that further sub-division does not always improve
the results. Four members are inadequate to represent a semi-
circular bow girder. Doubling the number of members yields
nearly accurate results. Again doubling the number of members

gives zero twisting moments at the support.

s ot
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(iv) Uniformly Distributed Loads

Straight members have not been used to simulate bow
girders carrying uniformly distributed loads. For analysis
by the displacement functions, the bow girders were divided
into 2 to 16 equal parts. The results presented, however, are
for two sub-divisions only. All the results have been divided

by the product of total load, W, and the radius, R, of the

bow girders.

(a) Symmetric U.D.L.

A uniformly distributed load of 1.0 kgf./mm of the curved
length is applied to the bow girder shown in fig. 6.1. The
results for the bending and twisting moments, MA and TA re-
spectively, and the bending moments at the mid-point, C, are
tabulated in Table 6.3. It is observed that the cubic functions
vield bending and twisting moments at the support which agree
well with those given by the strain energy method. The results
for bending moments at C are good for girders with angle g
less than 90°. For a semi-circular girder, the error is about
17% which is quite reasonable considering the crude sub-
division used. Increasing the number of members to 16 yields
accurate results.

Deflections at the mid-point, 5, , are plotted in fig.
6.8. It is noticed that the results obtained by various methods
are very close to each other for bow girders representing up
to a guardrant. For a semi-circular bow girder, the cubic
functions give displacements which are about 80% of those ob-
tained by using the strain energy method. Increasing thel

number of sub-divisions from 2 to 16 brings the deflections

within 1%.
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(b) Skew Symmetric U.D.L.

The u.d.l. in the preceding load case, (a), over half of
the length of the bow girder acts in the opposite direction to
that acting over the other half. Some of the results obtained
are shown in Table 6.4. The cubic functions are seen to yield
fairly good results for the twisting moments at the mid-point
C. The results for the bending and twisting moments at the
support are good for shallow girders only. Twisting moments are
seen to deteriorate faster than bending moments as the bow
girders become deeper. Once again,.increasing the number of
members representing a semi-circular bow girder improves all

the results to within 2%.

6.3 The Influence of the Shape of the Cross-Section

The bow girder shown in fig. 6.1 is utilized to study the
influence of the shape of the cross-section. A unit load is
applied at the mid-point, C, of the bow girder. Angle a 1is
equal to 120°. The width, b, of the cross-section is kept
constant, while the depth, d, is varied in a manner so that the
ratio d/b is always an integer.

Table 6.5 shows the results for the bending and twisting
moments at the support, MA and TA respectively, and the bending
moments under the load, M_. The girders are divided into two
equal parts for analysis by the exact functions. To obtain
results by the cubic functions, the girders are divided into
2 and 16 members of equal length. Four and 16 straight members
are used to simulate the girders. The first row of the results
for each bow girder is for the coarser sub-division, and the

second row is for the finer sub-division. The ratios, r,
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obtained by dividing the flexural stiffness, EI, by the
torsional rigidity, GJ, of the girders appear in the second
column of .the table.

It is seen from the table that for the finer sub-division,
the cubic functions yield results which approach those ob-
tained by using the exact functions. A similar trend is also
observed in the bending moments obtained by straight member
approximation of the bow girders. However, as before, the
twisting moments yielded by the latter method are seen to deviate
even more upon further sub-division.

The results obtained by using the cubic and exact func-
tions are plotted in figs. 6.9 to 6.11. Results for the strain
energy method are also shown. These have been obtained from
reference (6). It is seen from the graphs that the curves
representing the exact functions and the strain energy method
are verylclose to each other. The results yielded by the
.cubic functi&ns are rather poor. These improve upon further
sub-division as was observed from Table 6.5. However, in all
the results the influence of the shape of the cross-section is

seen to be fading as the ratio r increases.

u

7.4 Bow Girders with Variable Cross-Sections
The separation of strains and, therefore, of stresses into
those due to bending and those due to twisting becomes compli-

cated. Consequently, the strain gauges have not been used for
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the bow girders. The stiffness matrix developed in the pre-
ceding chapter for curved elements with variable cross-sections

is used to obtain the theoretical results.

(i) Tests on the Bow Girders

The arch with both ends fixed was tested as a bow girder.
The deflections obtained were linear for small loads, but
became non-linear as the load was increased. This non—liﬁearity
was traced to the hollow sections to which the ends of the arch
were welded. Similar observations were also made in the case
of the two curved cantilevers when tested as half bow girders.
The hollow sections were, therefore, cut off and both ends
of the bow girder were welded to 250 x 250 x 19.1 mm fhick
mild steel-plates which can be seen in Plate 7. An isometric
sketch of the base plate and the end of the bow girder is

shown in Drawing No. 1.’

Three 4.8 x 15.9 x 270.0 mm long bars of mild steel were
welded to the girder in the radial directions. One of these
bars is near the centre and the other two are near the quarter
points. Slight offsets from the centre and the quarter points
are to avoid the loading brackets. By measuring the dis-
placements of two points on a bar, the angle of twist of the
girder can be calculated. The radial bars and some deflection
dial gauges are visible in Plate 7.

The loading pins required to test the structure as an arch
were removed in order to apply the out of plane loads exactly
at the centre and quarter points. The bow girder was tested
in an upright position. The loads were, therefore, applied
horizontally. Triangular frames were made from dexian. To each

of these a pully was fixed at the required height. One end of
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a rope was tied to the loading bracket and the other to a
hanger. The rope passed over the pully. Care was taken to
ensure that the rope between the loading bracket and the pully
was horiztonal. Otherwise, the applied load will have a com-
ponent in the plane of the structure. The loading arrangement
can be seen in Plate 7 which is a general view of the bow girder.
Other loading brackets and deflection dial gauges were removed
for clarity. The dimensions and details of the loading
brackets are shown on Drawing No. 5.

Three tests were carried out on the bow girder. In each
test the load was applied in 7 increments of 8.0 kgf. and a
final one of 4.0 kgf. After reaching 60.0 kgf., the load was
decreased in the reverse order. At each stage of the load
readings of all the deflection dial gauges were recorded. From
the readings for the loading and unloading cycles, the average
readings at each load stage were calculated. These average
readings were plotted against the load and the best line drawn
through each set of points. From the graphs thus obtained, the
deflections corresponding to the 60.0 kgf. load were calculated.
(ii) Results for Bow Girders with Variable Cross-Sections

Table 6.6 shows the results obtained for the bow girder
carrying a 60.0 kgf. load at the mid-point, C.. Points D and
E are the quarter points of the bow girder. The results are
for the deflections at D and C and the angle of twist at the
latter point. The bending and the twisting moment diagrams
are shown in figs. 6.12 and 6.13. As mentioned earlier no
results have been obtained for the forces by experiments. The

bending and the twisting moment diagrams are, therefore, of

academic interest only.

e e e, S s i
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The results for the eccentric and the skew symmetric point
loads are tabulated in Tables 6.7 and 6.8 respectively. Theor-
etical displacements were divided by the corresponding results
~ obtained by experiments. The ratios thus obtained appear in
the rows for computer results in Tables 6.6 to 6.8.

Tt is noticed from the tables that the two sets of results
differ from each other by a wide margin. Some of the factors
which may have contributed to the discrepancies were discussed
in section 4.4(ii). Other reasons for the errors could be:-

(a) Since the loads were applied to the bow girder via pullies,
a part of the load was resisted by the friction in the
pullies. This in turn reduces Ehe displacements obtained
by experiment.  The influence of the friction, however,
appears to be small as can be seen from the results in
Table 6.7. Theoretical displacements obtained for the
skew symmetric case are smaller than those obtained by ex-
periment. One reason for this is that the two increments
of load were not aﬁded exactly at the same time. - Load at
one point was increased first causing the bow girder to
displace in one direction. Then the load was added to other
hanger . This should have, theoretically, brought the
girder to the correct position but the friction may have
prevented this. This could be one of the reasons for the
non-zero displacement and twist at ¢ shown in Table 6.8.

(b) The torsion constant, J, for the cross-section is calcul-
ated by using an approximate formula for rectangular cross-
sections. The depth to width ratio of the cross-section
varies from 6 at the supports to 24 at the centre. It

appears that the torsion constant for thin rectangular -

o PRI 0 =
N T e A ST T T e e T T T T W L PR YT I
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sections is under-estimated. Under the eccentric and skew
symmetric loads, the thin portion of the bow girder twists
less. Consequently, the difference between the two sets of
results for these two load cases is markedly reduced.

It is observed that the magnitude of the displacements is
very small. Small values obtained by experiments are
usually more error prone. Large loads were not applied to .
obtain reasonable displacements due to the possibility of

the base plates or the girder itself buckling.

6.5 Conclusions

From the results presented in this chapter for various bow

girders, the following conclusions are drawn:-

(i)Bow Girders with Uniform Cross-Sections

(a)

(b)

The displacement functions derived in the preceding chapter
describe the deformed shape of curved bars almost exactly.
The strain energy of the structures composed of curved bars
obtained by using the deriéed displacement functions is

the same as obtained by using the strain energy method.
Consequently, as seen from the results ﬁresented, both meth-
ods yield identical results.

The bow girders were divided into a number of sub-divisions
for analysis by the exact functions. It was observed that
the results did not improve for finer sub-divisions. This
is to be expected because the displacement functions rep-
resent the out of plane displacements of curved bars accur-
ately. Upon further sub-division, the displacements of a
point in the member do not change. As a result of this the
strains and, therefore, the strain energy of the structure

remains the same for all sub-divisions. It is obvious that
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the use of the stiffness matrix.formulated by using the
derived displacement functions results in the saving of
core space and solution time without sacrificing accuracy.

(c) 1In contrast to the results obtained for arches, the cubic
functions have ylelded reasonable results for bow girders,
even with a crude sub-division. These results were seen to
improve upon further sub-division. For example, dividing
semi-circular bow girders into 16 equal parts brought the
results within 2% of those obtained by using the strain
energy method. However, it was noticed that the twisting
moments did not always converge monotonically. The reason
for this is that the cubic functions are accurate for str-
aight prismatic members only. Here these were applied to
curved members.

From the improved results obtained for displacements, it
is obvious that the strain energy of the structure is better
approximated with a finer sub-division. The eiements of
the member stiffness matrix also vary with the sub-division.
Those affecting the twisting moments seem to fluctuate a
1ittle while the other elements converge towards the. accu-
rate values.

(d) The approximation of bow girders with a number of straight
prismatic members. yields:good results for displacements and
bending moments. The results:obtained for twisting moments
are poor. - Sub-dividing the bow girders- further. improved
the results for displacements and bending moments. Twist-
ing moments are seen to deteriorate for some cases. An ex-
amination of the stiffness matrix:for a straight member

shows that the out of plane displacements-and rotations do
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not contribute to.the twistihg moments. From the'results,
it is seen that this contribution is substantial. The
twist in turn does not contribute to the shear foféeé and
bending moments in straight members. Again the results for
these forces show that the influence of twist is negligible.
The influence of the shape-of the-cross-section was seen to
diminish as the cross-section changed from a équére into a
thin rectangle. The shape of various curves was seen to

be the same as the one for the strain energy'hethod. The
reason for this is tﬁat the Same ekpfession was employed

to calculate the torsion constant, J, for all méthods. A
larger difference may occur between the theoretical results
and those obtained by experiments.

Bow Girders with Variable Cross~Sections

The theoretical and experimental results obtained for the

bow girder were not so conclusive as those obtained for the

arches.

The reasons for this were discussed in section 6.4(ii).

The following observations and recommendations are made for

model bow girders:~-

(a)

(b)

In order to obtain reasonable displacements, the bow gir-
ders should be made more flexible. This also helps to
achieve complete fixity of the ends more easily.

A better agreement exists between the theoretical and ex-
perimental results obtained for the eccentric and skew
symmetric point load cases than for the symmetric point load
case . This is in spite of the larger displacements ob-
tained for the latter case than for the other two cases.
From Tables 6.6 to 6.8 it is observed that in the symmetric

point load case, the thin part of the bow girder twists more
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than it does in the other two load cases. It is,therefore,
obvious that the error in the calculation of the torsion
constant, J, is passed on to the displacements. Better
agreement between 'the two sets of results may be obtained

by using the torsional rigidity, GJ, obtained by experiment,
or that obtained by pure application of Sain Venant's theory
of torsion although this will involve more complex cal-
culations.

Where possible, thin sections should be avoided. Alter-
natively, appropriate formulae should be employed to cal-
culate the torsion constant of such sections. An expression
for this can be found in reference (1).

Strain gauges should be used in model tests. The bending
and twisting moments obtained by experiments should be com-

pared with those obtained theoretically to ascertain the

accuracy of the latter.
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TABLE 6.1

BOW GIRDERS UNDER ECCENTRIC POINT

LOADS
Method M, /WR M, /WR T /WR
S.E. + E.F. 0.075 0.036 0.0025
C.F. 1" 1m T
o]
30 S.M. (4) " " 0.005
S.M. (16) " " 0.003
S.E. + E.F. 0.155 0.07 0.009
1" " "
600 C.F.
S.M. (4) " 0.067 0.017
S.M. (16) 0.154 0.07 0.011
S.E. + E.F. 0.24 0.098 0.018
11) "n
50° C.F. 0.0175
S.M. (4) " 0.09 0.033
S.M. (16) " 0.097 0.0227
S.E. + E.F. 0.335 0.120 0.0285
" 1t
1200 C.F- 0.027
S.M. (4) 0.345 0.102 0.050
S.M. (16) 0.34 0.118 0.0360
S-E. + E.F. 0.44 0.138 0.039
150° C.F. " " 0.0355
S.M. (4) 0.455 0.108 0.063
S.M. (16) 0.445 0.133 0.049
S.E. + E.F. 0.545 0.15 0.0475
"
S.M. (4) 0.57 0.107 0.072
S.M. (16) 0.554 0.142 0.06




TABLE 6.2

BOW GIRDERS UNDER TWO SKEW-SYMMETRIC POINT LOADS

Method M A/WR - MD/WR --TE/WR
S.Be + Bl 0.05 0.04 0.0005
300 C i F s " " [1]
S.M. (4) " " 0.0028
S.M. (16) " on 0.0012
) 0.105 0.08 0.0022
600 ‘a-s " E 1] "
above 0:102 " 0.00227
" " 0.0048
0.16 B.12 0.0052
1" 1m n
(@]
P " " 0.116 0.0112
I " " 0a12 ' 0.011
_ 0.225 0.16 0.010
120° " " " 0.0096
0.23 0.148 0.025
0.224 - 0.158 0.020
B 0.295 0.196 0.0176
150° " " " 0.0157
0.31 0.174 0.066
0.30 | 0.194 | 0.032
0.353 0.214 1 0.0268
180° . " " 0.0238
0.40 0.194 0.0914
0.38 0.226 0.0483




TABLE 6.3

BOW GIRDERS UNDER U.D.L.

—_—— M, /WR T, /WR M_/WR -
300 S.E.+E.F. 0.0443 0.1307x10'3 0.0215
| C.F. 0.0443 0.131x107° - 0.0215
o S.E.+E.F. 0.0923 0.002 0.0412
60 C.F. 0.0925 " 0.0412
. S.E.+E.F. 0.146 0.009 0.0578
20 C.F. 0.147 0.0093 0.0566
. S.E.+E.F.. | .0.2033 | 0.0251 0.0709
120 C.F. 0.206 0.026 0.0674
o SoEo"'EoF. 0.2623 0-0532 0.0806
=0 CuF. 0.267 0.0545 0.072
o S.E.+E.F. 0.3183 0.0947 0.087
180 C.F. 0.326 0.0945 0.072
TABLE 6.4 |
BOW GIRDERS UNDER SKEW-SYMMETRIC U.D.L.
— M, /WR T,/WR. ..T_/WR
- S.E.+E.F. 0.0165 0.0834x10-4 0.071x10~2
30 C.F. 0.0164 " "
. S.E.4+E.F. 0.0338 0.0138x10-2 0.0028
60 C.F. 0.0332 0.0065 ™ "
. S.E.+E.F. 0.0525 0.067x10~2 0.0063
90 © C.PF. 0.0504 | 0.032 n o
. S.E.+E.Ps 0.0736 0.0021 0.011
ded C.F. 0.0685 | 0.098x10™2 o
o S.E.+E.F. 0.097 0.0051 0.0167
150 C.F. 0.087 0.002 0.0164
. S.E.+E.F. 0.124° | "0.0105 ©0.0234
180 C.F. 0.105 0.0045 0.0226
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TABLE 6.6

DISPLACEMENTS OF THE BOW GIRDER UNDER A SYMMETRIC

POINT LOAD
dp 5c Yo
Experimental Results 0.089mm| 0.265mm |3.5x10™> rad.
Computer results for
4 sub-divisions 1.31 1.26 1.39
Computer results for
8 sub-divisions 1.41 1.48 1.63
Computer results for
16 sub-divisions 1.51 1.52 1.85
TABLE 6.7
DISPLACEMENTS OF THE BOW GIRDER UNDER AN ECCENTRIC
POINT LOAD
p 8¢ bg Yc
Experimental Results | 0.082mm |-O.11lmm {"0.02mm 9.0%10~%rad
Computer results for
4 sub-divisions 0.96 1.09 1.56 1.28
Computer results for
8 sub-divisions 1.0 1.16 1.64 1.48
Computer results for
16 sub-divisions 1.03 1.21 1.68 1.63
TABLE 6.8 ‘
DISPLACEMENT OF THE BOW GIRDER UNDER SKEW SYMMETRIC
POINT LOADS -
8p e Yc
Experimental results 0.059mm| 0.0l4mm |2.24x10~%rad.
Computer results for 4 0.81 0.0 0.0
4 sub-divisions
Computer results for
8 sub-divisions 8.84 0.0 0.0
Computer results for .
16 sub-divisions 0.87 0.0 0.0
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CHAPTER 7

DISPLACEMENT TRANSFORMATION MATRICES FOR CURVED MEMBERS
WITH OFFSETS AND HINGES

7.1 Introduction

The load-displacement relationships for the curved members
were obtained in their local co-ordinates in Chapters 3 and 5.
The capacity of a structural member to carry loads depends not
only on its properties, but also on its position relative to
the loads. The applied loads and the resulting joint displace-
ments are specified in the global co-ordinates. When assembling
the overall stiffness matrix for the structure, the stiffness
matrices for the individual members are trénsformgq from their
local axes into the global axes by using a displaceﬁeﬁt tran-
sformation matrix.

The displacement transformation matrices were tacitly used
to obtain the results presented in Chapters 4 and 6. In this
chapter, these matrices are constructed for a curved element
both for the in-plane and the out of plane case. As already
mentioned in Chapter 1, irregularities such as offsets and hinges
are unavoidable in civil engineering structures. ‘Efovisions

are made in the displacement transformation matrices to allow

for the effects of these practical features.

P

7.2 In-Plane Displacement Transformation Matrix

Figuxesﬂj.}_and 732 ﬁhow the two positions a curved member
of a plane %rame can occupy when connecting two joints of a
structure. The positive directions of the local axis, P and Q ,
and the displacements, u, w and 8 , at end 1 of the member are

also shown in both figures. In both cases, end 1 of the member
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must move through the same displacements in the global co- .
ordinates as joint i. Let the displacements for this joint

be given by the column vector:-

{X}i = [xi yi Gi 3 (7s1)

where X is the displacement in the x-direction;

" " " " y_ "

-

y- "

and Gi 1. " rotation.

The end displacements of the ﬁember in its local co-
ordinates are related to the joint dispiacements through angle
a which the P-axis makes with tﬁe X~axis. Considering the
two cases shown in figures 7.1 and 7.2, it can be easily shown

that the displacements are related as follows:-

The tangential displacements, u; = Xy 1p +y; m (7.2)
." radial n y W =T (xi 1Q + Yy mQ) (7.3)
and the end rotation y 64 =z-6i . (7.4)
where 1lp = cosa j; mp =, sing ;
(7:5)
1Q = =sin g and mQ = COS q

The constant r is equal to -1.0 when the arrow drawn from
end 1 to end 2 of the member is clockwise as shown in fig. 7.1.

For the case shown in fig. 7.2, the constant r is equal to 1.0.

(i) The Effect of Offsets
Only the in-plane offsets are considered here but similar
considerations also apply to the out of plane case. The two
cases for the curved members with the in-plane offsets are
shown in figs. 7.3 and 7.4. The offsets are assumed to be

positive if the end of the member is displaced in the positive
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direction of the local axes from the joint of the structure.
Thus the offsets, Py and q., are positive as shown in the
figures. Also shown in both figures is the positive joint

rotation %:

Due to the offset P and the joint rotation Qi, the end
of the member is displaced parallel to the Q-axis. Similarly,
the offset q. contributes to the end displacement along the
P-axis of the member as joint i rotates through £&. Consider-
ing the two cases shown in figs. 7.3 and 7.4, it is evident
that the contributions to end displacements of the member are

given by the following equations:-

For the tangential displacements, u, = -r.q. oj (7.6)

and for the radial " y W = r.p, 04 (7:T)

Similarly equatioﬁs can be obtained for end ‘2 of the member
which is connected to joint j of the structure. Writing these

for both ends of the member in the matrix form gives:-

e - : - -
Wy 1pl mle{ =~E9 . X3
w Y
1 rlg; Mgy FPey .0 i
& o o r . & 91
- ({7.8)
% ' 2 Mp2 T | %
Wy = o] rlQZ IMao rP.o Yj
$2 E < = 418
or {z}l= [a] Ix} , (7.9)
where {z} is the vector of the nodal displacements

in the local co-ordinates of the member;
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{x} is the vector of global displacements
of joints i and j to which the member
is connected.
and [A] is the displacement transformation matrix
for the member.

Equations (7.8) and 7.9) are the compatibility equations

for the member.

(ii) The Effect of Hinges

The hinge rotations are assumed to conform to the sign:
convention in the same manner as the joint rotations. Con-
sequently the column in matrix [A] corresponding to the hinge
rotation is identicai to the coluﬁn for the end rotation. For

further information, reference (5) can be consulted.

7;3 The Effect of Offsets on Equivalent Loads

In the matrix analysis of structures, equivalent loads
are used to represent the effect of the uniformly distributed
loads. These equivalent loads are obtained in the local
co-ordinates and act at the ends of the members. To obtain the
joint loads for the structure, the equivalent loads are trans-
formed from the local axes of the members to the global axes.
In the case of the members with offsets, the thrusts and the
shears at the ends of the members also contribute to the joint
moments. By resolving forces, it is noticed that:-

The force parallel to the X-axis, F_ = P.lp + S.r.lQ (7.10)

x
" " " " "oy s Fy = P,mp + S. r.mQ (7.11)
and the joint moment » My = r(M-P.q, + S.p_) (7.12)

where P is the thrust in the member due to a uniform load, S

is the shear and M is the fixed end moment in the member.
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7.4 Out of Plane Displacement Transformation Matrix

An orthogonal set of global axes X, Y and z is shown in
fig. 7.5. The origin of these axes is assumed to be at joint
i of the structure. A curved member which lies in the XY
plane is shown to be connected to joint i. Local axes for the
member are also shown in the figure. Fig. 7.6 shows the same
set of global axes but the member is curved opposite to that
in fig. 7.5. The local P-axis in each case makes the same
angle, a , with the X-axis. It is seen from the figures that
the local Q and R axes in fig. 7.5 are opposite to those in
fig. 7.6. The joint and member forces and the corresponding
rotations are also shown, in the positive sense, in both figures.

For ‘each case of the curved members shown in figs. 7.5 and
7.6 a set of equations is obtained which express the end dis-
placements in terms of the joint displacements and the direc-
tion cosines. A comparison of the two sets of equations leads
to the following general equations:-

The displacement along R-axis, wp = L.2; (7.13)

the rotation about the P-axis, Op = (&.lp + 0y mp (7.14)

ahd the rotation about the

Q-axis, 64 = Tr (ex'lQ‘+ 6y @Q) (7.15)
whére Z; is the displacement of joint i along Z-axis;

Gx "on rotation " " " about X-axis;

and ) w oo n " " " " Y-axis.
Y

(i) The Effect of Offsets

The contributions of offsets to the out of plane displace-

ments are obtained by multiplying the offsets by the appropriate
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end rotations of the member. As seen from equations (7.14)

and (7.15), the end rotations are themselves functions of the
joint rotations. Therefore, intermediate displacement trans-
formation matrices are used to obtain the final relationships
between the displacements at the member end and the joint.
Reference (11) adopts similar procedure for the case of straight

members.

Fig. 7.7 shows the offsets Py 9. and Yo for a member in
the positive directions. The joint of the structure is at A
and the end of the member is at B. Through A a set of ortho-
gonal axes is drawn parallel to the local-axes of the member.
The out of plane rotations, 6p and & are shown in the positive
sense. The contribution of the offsets to the out of plane
end displacement of the member is:-
(7.16)

Writing equations (7.13) to (7.15) for both ends of the

member in matrix form:-

WR1 r e 0 ® %
6p1 o1 Tp ° Ooea
te re.l r.m ayi
= % % (7.17)
6P2 o © lpZ mp2 exj
L s 4 L
Writing equation (7.17) in compact form:-
{3 = [Vl & (7.18)
where iy} is an intermediate vector for member
displacements;
and [V] is an intermediate displacement transformation

matrix
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The end displacements for the member in its local
co-ordinates can be expressed in terms of the intermediate

vector of displacements, {Y} . These relationships in matrix

form are:=-
Wy 1.0 9 -Pg WR1
- ]
01 o o 1.0 (0] p1
e
Yl o 1.0 o) Q1L
= (7.19)
Wy 1.0 9.,  -Peo WR2
62 0 o o -1.0 992

where Wy is the out of plane displacement of end 1j;

61 is the out of plane rotation of end 1;

and vy, is the twist of end 1 of the member.

Similarly, the other quantities are for end 2.
Equations (7.19) can be written more concisely as:-

{2} = [U] {Y} | . - (7.20)

where {Z} is the vector of the end displacements for
the member -in its local co-ordinates;
and [U] is another intermediate displacement trans-
formation matrix. -
Substituting eqn. (7.18) into egn. (7.20) yields:-
{2z} = [ul [Vv] {X] ’ (7.21)
Cbmparing eqn. (7.21) with egqn. (7.9) it is seen that the
displacement transformation matrix, [ A] , for the out of plane

case is equal to the matrix product, [U] [V] . Carrying out

e
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the matrix multiplication in equation (7.21) and writing the

results in full:-

[~ 7] B T 7
Wy r F1 Hl Zi
% © = rlg - My 0 Oi
Y o 1 m 0
1 _ pl pl yi
w2 r F2 H2 Zj (7.22)
6 0 - rl
5 o] r Q2 _ mQ2 6 %
(o] 1 m
Tz_J p2 P2 | ®v;
where Fl = q. - lpl - Pgy o rlQl (7.23)
and H, = q_ . My = Py + Mgy (7.24)

Similarly, F, and H, are for end 2 of the member.

Writing equations (7.22) in compact form leads to eqgn.

(7-9)

(ii) The. Effect of Hinges

In the out of plane case hinges can be introduced with
their axes parallel to the global axes. Alternatively, the
rotational restraints about the local axes, P and Q, of the
member may be released. Each one of these assumptions influ-
ences the displacement transformation matrix, [A] , in a
different manner. Ithis assumed here that the axes of the
hinges are parallel to either of the in-plane global axes, X
and Y. A hinge with its axis parallel to the X-axis con-
tributes a column to matrix [A] which is identical to the
column corresponding to the joint rotation, 0, ¢ Similarly for

a hinge with its axis parallel to the Y-axis, the corresponding
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columns of matrix [A] are identical.

7.5 The Effect of Offsets on Equivalent Loads

In section 7.3 the uniformly distributed loads were con-
sidered for the in-plane case. The uniformly distributed loads
for the out of plane case are dealt with in the same manner.

Thus the force along the Z-axis is:-—

FZ = r.s, (7025)

the moment about the X-axis is:~

Mo = Mp.lp + Mqelqr+ S (lp.qc—pc. r .1Q) | (7.26)

and the moment about the Y-axis is:-

M, = Mp.mp + Myer omg + S(mp.qc. - pc.r'.mQJ (7.27)

where S is the shear force due to out of plane uniform load;

=

M_ is the fixed end moment about P-axis;

and M. is the fixed end moment about Q-axis of the member.

7.6 The Out-of-Plane Offset

From fig. 7.7 it is obvious that the out of plane offset,
r_, contributes to the in-plane displacements. This contri-
bution is proportional to the offset and the out of plane
rotations, 6 p and 6 qs of the member. However, for the in-
plane case these rotations are suppressed. Consequently, there

is no contribution of offset r. to the in-plane displacements.

In the case of space frames, where all the degrees of
freedom are available, the out of plane offset re should be

taken into consideration.
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CHAPTETR 8

RESULTS FOR STRUCTURES WITH OFFSETS AND HINGES

8.1 Introduction

The displacement transformation matrices for the in-plane
and the out of plane case were constructed in the preceding
chapter. These matrices allow for the effect of offsets as well
as hinges. For reasons explained in section 7.6 only in-plane
offsets have been considered. Two structures with offsets and
hinges were analysed by using the stiffness matrices developed
in Chapters 3 and 5 together with the displacement transform-
ation matrices obtained in Chapter 7. The details and the re-

sults obtained for these structures are presented in this chapter.

8.2 The Arch Bridge

The details and dimensions for the arch bridge are shown
in Drg. No. 4. For further details, reference 15 may be con-
sulted from which this structure has been obtained. The arch
shown in Drg. No. 4 forms part of a three dimensional bridge
and was analysed as such. Here the structure is treated as a
plane frame only. Some of the dimensions were scaled from a
drawing which showed the elevation of the bridge. The loads and
moments applied at the joints were calculated for an approximate
dead load only. The idea was to analyse a structure with real-
istic dimensions and loads using the theory developed in this
Thesis rather than perform a rigorous analysis of the actual
problem for which only a three dimensional analysis 1s justified.

The vertical hangers are of mild steel and the rest Ef the

structure is composed of reinforced concrete. Values of
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207.0 KN/mm2 and 53.3 KN/mm2 were assumed for the modulus of

elasticity of steel and reinforced concrete respectively. The
effective length of a hanger was taken equal to the vertical
distance between the centre lines of the tie beam and the arch.
The cross-sections of the hangers are very small compared to
the cross-sections of the rest of the members of the structure.
Therefore, the bending stiffness, EI, of the hangers was ig-
nored throughout the analysis. Finally, it was assumed that
between two consecutive joints, the arch describes a segment of
a circle.

Fig. 8.1 shows the structure diagramatically. The joints
of the structure are numbered consecutively from 1 to 44 and
are enclosed in circles. Similarly, the members of the structure
are numbered from 1 to 54. An arrow is drawn along each member
pointing towards the second end of the member. The co-ordinates
of all the joints, up to joint 38, are tabulated in Table 8.1.
Table 8.2 shows the loads applied at the jolnts of the structure.
As éan be seen from Drg. No. 4, the longitudinal axes of all the
members meeting at the springing of the arch do not meet at a
single point and thus give rise to irregularities. In order to
study the influence of the offsets, the éame have been varied

from zero to their respective full values in 10 equal increments.

8.3 Results for the Arch Bridge

Two sets of results were obtained for comparison. For the
first set of results the arch was approximated by straight pris-
matric members. The second set of results was obtained by
assuming that the arch is composed of circularly curved members
of uniform cross-sections. The cross-section of a member was

assumed to be equal to that obtaining at its mid-point. This is
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quite a reasonable assumption since the variation of the cross-
section of a member is very small. It should be stressed that
it is the effect of the offsets which is being investigated

and not the stiffness matrices of curved members developed in
Chapter 3.

Various results obtained are plotted against the offset
ratio which is equal to the current values of the offsets div-
ided by their respective maximum values. The vertical deflec-
tions of joint 18 which is adjacent to the centre line of the
structure are plotted in fig. 8.2. It is seen that the two sets
of results are very close to each other. The difference being
less than 1% with the offsets equal to zero. The deflection is
seen to decrease almost linearly with the increase in the off-
sets. Total decrease in the deflection is about 11%.

Increasing the offsets decreases the flexible lengths of
the members with the offsets. The displacements are, therefore,
expected to decrease with the increase in the offsets. Fig. 8.2
shows that this is so. Using the curved members makes the struc-
ture a little more flexible than straight member approximation.
Both curves are close to each other as expected because the rad-
ius is very large and a straight member is a good approximation
of a curved one.

Both methods yielded' approximately the same thrust in the
arch at the springing. The thrust obtained by straight member
approximation was seen to be insensitive to the change in the
offsets. On the other hand, the thrust obtained by representing
the arch by curved members increased slightly with the increase
in the offsets. The radius of the arch being large, the direc-

tion of thrust in a straight member nearly coincides with that
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in the corresponding curved member. The external loads are the
same for both cases. Therefore, nearly the same thrust is to
be expected for both cases.

In curved members, both offsets contribute to the thrust
in the member in proportion to their magnitudes and the joint
rotation. However, the contribution of offset Pe decreases with
the increase in the radius and vanishes for straight members.
From Drwg. No. 4 it can be seen that offset d. is small for the
arch. Consider the straight member approximation first. The
results showed that, as expected, the joints rotate less as the
structure becomes more stiff due to the increase in the offsets.
The axial strain due to increase in offset d. is cancelled by
the decrease in joint rotation. Hence the constant thrust ob-
tained for this case.

Representing the arch with curved members gave rotations at
the springing which increased with the increase in the offsets.
This is possible. Results obtained for simple arches showed
that the support moment was reversed as the arch became deeper.
It is obvious that rotations of the ends of an arch with elas-
tic supports vary with the change in the moments. With the in-
crease in offsets a shallow arch becomes still shallower. This
increases the support moments which, in turn, cause greater
rotations at the éupports. In the present case, the influence
of offset Pe is small. Offset q is itself small as already
remarked. The effect of both offsets is to increase the thrust,
though by a small amount.

The results for the shear force at the springing are
plotted in fig. 8.4. For offsets equal to zero, straight member

approximation yields a shear force which is not only small in
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magnitude, but is opposite in direction to that obtained by
using curved memberg for the arch. This is not so strange.
Consider a semi-circular arch under a symmetric point load.

The shear force at the support is towards the centre. Replace
the arch with two straight members which connect the mid-point
to the supports. Shear force at the supports of this structure
is in the general opposite direction to that in the arch. In-
creasing the number of straight members representing the arch to
infinity should give identical results to those obtained for the
arch. The shear force, in changing its direction, must pass
through zero value. Therefore, the shear force in a member can
be of any magnitude and sign depending on the geometry of the
structure.

It is interesting to note that the two curves in fig. 8.3
have opposite slopes to each other. This is to be expected. As
the offsets become larger, the adjoining members become smaller.
It is obvious that a straight member represents a short curved
member better than a longer one of the same radius. Furthermore,
the directions of the shear vectors converge as the lengths of
the members is reduced.

The influence of offset d. on the shear forces and bending
moments in curved members fades away with the increase in the
radius and becomes zero for straight members. For the present
case the contribution of q. can be assumed to be negligible.
Only offset Pe» therefore, affects the shear forces and bending
moments. Consider the straight member approximation first. The
displacements of joints 2 and 3 are such that the member rotates
clockwise as the offsets are increased. This tends to increase

the shear force in the member. Offset pc produces a transverse
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displacement which tends to decrease the shear force. From the
results obtained it is clear that the contribution of offset is
greater than that of the displacements of joints 2 and 3. The
curved member rotates clockwise more than the corresponding
straight one. The transverse displacement due to offset P. is
approximately the same for both cases. The cord length between
joints 2 and 3 increases due to their displacements. This pro-
duces shear force in the curved member. The direction of this
shear force is radially away from the centre, the same as due
to rotation of the member. The net decrease in shear force
shows that the effect of offseté is smaller than the combined
effect of the other two factors mentioned above. It is noticed
that both curves are nearly straight for small offsets. For

large offsets, the assumptions made in formulating the equations

which allow for the influence of offsets are violated. The

maximum value of offset P is greater than the length of the

adjoining member.
The results for the bending moments in the arch at the

support are plotted in fig. 8.4. For small offsets it is seen

that the straight member approximation has yielded bending mom-

ents which are small and of opposite sign to those obtained by

representing the arch with curved members. The reasoning used

to explain similar results for shear force is equally applicable

to bending moments. Considering the results when offsets are

small, the structural member designed for forces obtained by
representing the arch with straight members will be grossly in-

adequate. However, in practice a curved member is approximated

by a number of straight members instead of the only one used

here. From the results obtained for simple arches, it can be
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assumed that generally the accuracy of results improves upon
further sub-division.

The curve representing curved members for the arch is seen
to droop a little before rising with the increase in the offsets.
On the other hand, the results obtained by straight member
approximation lie along an approximately straight line with a
positive slope. The various factors which affect the shear forces
in members also affect the bending moments. In addition to
these, the transverse displacement in curved bars also contri-
butes to the bending curvature and, therefore, to bending moments.
For reasons discussed for the shear force, the two sets of
results for bending moments are expected to converge with the
increase in the offsets.

Like the thrust in the arch at the springing, both methods
yielded the same tensile force in the tie beam. The influence
of offsets on the results obtained by straight member approxi-
mation is negligible. The axial force obtained by representing
the arch with curved members increases by about 4%. The ten-
sile force in the tie beam is caused by the thrust in the arch
which increases slightly as was noted earlier. This is to be
expected. The offsets decrease the length of the arch thus
making it shallower. It was observed from the results for simple
arches that the thrust increased as the arches became shallower.
Furthermore, with the increase in the offsets, the line of
action of the thrust rotates towards the tie beam, thus in-
creasing the horizontal component of thrust even further.

The tie beam has offsets. Of these, q. is very small and
Pc does not contribute to axial forces in straight members.

The results for the shear force in the tie beam at the
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support are plotted in fig. 8.5. The two sets of results are
seen to be fairly close to each other over the whole range of
offsets. The maximum difference between the results is within
15%. The curve representing the straight member approximation
is seen to rise gradually with the increase in offsets. Sev-
eral factors influence the shear force. The net difference
between the vertical displacements of joints 2 and 4 decreases
with the increase in offsets. The contribution of offset B
decreases this difference even further. The two effects should
decrease the shear force in the member. However, the member
becomes shorter with the increase in offsets. A short member
offers a greater resistance to transverse displacement than a
longer One. The rotations at the ends of the member also con-
tribute to the shear force. The results showed that these end
rotations decreased slightly. Due to the increased stiffness
of the shorter member, the rotations tend to reduce the shear
force. It is noticed from fig. 8.5 that the net result of all
these factors is an increase in the shear force. The curve
obtained by representing the arch with curved members is fairly
level over a wide range of offsets. All the factors disucssed
for straight members also apply in this case. Joint 2 now
rotates more. Offset'pc, therefore, decreases the transverse

displacement more than it did in the case of straight member

From the results it is seen that the

~

increase in shear force is balanced by the decrease. For reasons

approximation of the arch.

already given, results for large offsets are not reliable.
Fig. 8.6 shows the results for the bending moments in the
tie beam at the support. For offsets equal to zero, the straight

member approximation yields bending moment which is about 80%
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of that obtained by representing the arch with curved members.
The bending moments are seen to be decreasing proportionally
to the increase in offsets. At the extreme end of the range
bending moments obtained by both methods are approximately the
same in magnitude but opposite in sign to each other.

Consider the straight member approximation first.  As was
noted in the case of shear force in the tie beam, the trans-
verse displacement decreases with the increase in offsets. The
increased stiffness due to shortening of the member tends to
increase the bending moment. The change in joint rotations was
observed to be small. Bigger moments are required to maintain
the same end rotations as the member becomes smaller. The nature
of contribution due to end rotations is to reduce the bending
moment in the tie beam. From the results it is seen that the
influence of factors tending to reduce the bending moments is
greater than of those which tend to increase these forces. All
the above factors also influence the bending moments obtained
by representing the arch with curved members. In addition to
these it was noticed that the rotation of joint 2 increased with
the increase in offsets. The reduction in the transverse dis-
placement due to offset p_ becomes bigger. The result of these
is that bending moment in the tie beam at the support decreases
faster than in the case of straight member approximation. To=-
wards the extreme limit of offsets, the bending moment is re-
versed. It may not happen in practice. The reason for this is
that the offsets are no longer small compared to the lengths of

the adjoining members.

The bending moments in the arch at the joint adjacent to

the crown decrease gradually as the offsets increase. The
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maximum decrease is about 15%. The straight member approx-
imation of the arch yields bending moments which are approximatel
55% of those obtained by representing the arch with curved mem-
bers. There are two reasons for this. The first is the slight-
ly different end rotations obtained for curved members instead
of the same rotations expected in a symmetric structure. This
is perhaps due to the rounding off error. The second is the
bending moment caused in the curved member by its ends moving
towards each other. 1In the straight member representation, this
movement causes axial force only.

The bending moments in the tie beam at a joint adjacent to
the centre line also decrease gradually with the increase in
the offsets. The maximum difference between the bending moments
for the extreme limits of offsets is about 24%. With the offsets
equal to zero, the straight member approximation yields slightly
lower bending moment than that obtained by using curved members.
This is to be expected. Straight member approximation over-—
estimates the stiffness of the arch and thus over-estimates the
load carried by it. The load carried by the tie beam is, there-
fore, under-estimated. This is confirmed by the results. The
middle portion of the tie beam remains horizontal in both cases.
The end rotations of member 44 obtained by representing the arch
with curved members decrease faster. This yields a higher rate
of decrease in the bending moments. The smaller change of
rotations obtained by straight member approximation is also
reflected in the bending moments.

From the graphs plotted for various quantities, it can be
seen that, as expected, the influence of the offsets fades with

the distance of the member from the supports. The results for



132

the tension in the hangers most affected by the offsets, the
shortest ones, are plotted in fig. 8.7. With the offsets equal
to zero, the straight member approximation yields results which
are about 80% of those obtained by using curved members for the
arch. However, the curve for the latter case is seen to dip
more than that for the former case.

The force in the hanger is expected to decrease. Consider
the extreme case where the offsets are equal to the lengths of
members 3 and 36. The joints at the ends of the hanger, by
being connected to a rigid piece, cannot displace. The force in
the hanger in that case will obviously be zero.

To explain different slopes of the curves in fig. 8.7, con-
sider the curved member and the corresponding straight member.
It is obvious that the axial force in the straight member is
constant throughout its length while in the curved member this
is not so. Similarly, the bending moment in the straight member
varies linearly from one end to the other. In the curved member
this variation is non-linear. As the offset is increased, the
contribution to the strain energy due to axial thrust decreases
faster for the curved member than for the straight one. On the
other hand, the contribution due to bending decreases faster for
the straight member than for the curved member. The strain
energy due to bending is usually greater than that due to axial
forces. This causes the vertical displacement of the second end
of ‘the curved member to decrease less than is the case for the
straight member. It was noticed from the results obtained that
both methods yielded the same vertical displacement for the
joint at the lower end of the hanger. The result is a higher

rate of decrease of axial strain and, therefore, of axial force
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in the hanger obtained by representing the arch with curved
members.

The method used'in catering for the offsets is valid for
small offsets only. The accuracy of results towards the higher
range of offsets is, therefore, doubtful. More representative
results may be obtained by treating the piece of concrete which

gives rise to offsets as a straight member with variable cross- .

section.

8.4 Bow Girder with Offsets

The dimensions of the bow girder with the offsets are shown
in Drwg. No. 5. Further details can be seen from Plates 8 to 10.
For reasons given for the arches, the bow girder was formed
from a bar of bright milk steel with a rectangular cross-section
of 12.7 x 6.35 mm. Bright milk steel was used because of small-
er deviation in dimensions of the cross-section permitted than
that allowed for sections of black mild steel. The bar was bent
cold. to a radius of 600.0 mm with a roller. The curved length
of the bar forms a quadrant. A plate of bright mild steel with
dimensions of 50.0 x 19.0 x 300.0 mm was welded to each end of
the curved bar as shown in the drawing and plates.

Also shown in the drawing and plates are the dimensions and
details of two brackets which were fabricated from bright mild
steel. Two 6.35 x 35.0 x 55.0 mm long knife edges made from

hardened steel were welded to each bracket. These knife edges
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provide pinned supports to the end plates of the bow girder as
can be seen from the drawing and plates. An end of the bow gir-
der is effectively clamped by reversing the top plate with the
knife edge as shown in Plate 10.

The arrangement used to provide pinned supports for arches
was considered for the bow girder but was rejected for two .
reasons. The first was the possibility of some play in the axle
and the bearings. Small displacements at the support are magni-
fied along the length of the bow girder. The second reason was
that the bow girder was to be tested for various offsets and end
conditions. This would have required the fabrication of several
bow girders. It is impossible to make two girders identical and
this would have contributed to discrepancies in results. The
method adopted here eliminated the above-mentioned possible causes
of errors but itself introduced new ones. These are discussed
later in this chapter.

When deciding the dimensions of the bow girder and end
plates, advantage was taken of the experience gained by testing
the bow girders with variable cross-section, Chapter 6. A
reasonably flexible bow girder was chosen. The dimensions of the
end plates are such that their contribution to the deflections
of the bow girder is negligible. Larger plates would have pre-
sented difficulties when aligning the knife edges to obtain a
hinge effect. No strain gauges were employed to measure the
strains from which to calculate the bending and twisting moments.
Therefore, only theoretical deflections can be compared with

those obtained by experiment.

The same loading bracket was used as for the bow girder with

variable cross-section. The dimensions of this bracket are also
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shown in drwg. No. 5.

8.5 Test Specimen

A test specimen was cut from the same bar as the bow girder.
Two 6.35 mm electrical strain gauges were fixed to the opposite
faces of the test specimen to measure the longitudinal strain.
Similarly, two strain gauges were used to measure the transverse
strain. The load was applied to the test specimen with a
Denison machine in 7 increments of 250.0 kgf. After reaching
the full load, it was reduced in the reverse order. At each
stage of the load, the strain gauge readings were recorded.

From the strain gauge readings, the average readings were
calculated as was done for the test specimens for the arches,
Chapter 4. These average readings were plotted against the load.
Through each set of points for a strain gauge the best straight
line was drawn. From the graphs the strains corresponding to the
maximum test load were calculated. The average of the longi-
tudinal strains was assumed to be the required longitudinal strain.
Similarly, the average of the transverse strains was taken to be
the required strain in that direction.

The area of the cross-section of the test specimen is
computed from its dimensions. With the load, area and the strains

known, it is easy to calculate the following properties of the

material:-
198.0 KN/mm?

The modulus of elasticity, E

and the Poisson's ratio, v = 0.274

8.6 Experiments on the Bow Girder
The load was applied at the mid-point of the bow girder.
The offsets were varied in steps of 50.0 mm. Three types of

tests were carried out. In the first test the offset in the
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radial direction, q at end A was varied whilst end B was

)
clamped. For the second test end A was fixed whilst the offset
along the tangential direction, Pe.s at end B was varied. In the
final test both offsets de at end A and P. at end B, were varied.
The knife edges were seen to bite into the end plates as the
nuts were tightened. As a result the end plates behaved as
clamped for small loads. Some yielding of the plates occurred in
the region adjacent to the knife edges as the load was increased.
Therefore, the load was applied in a single increment of 5.0 kgf.

Furthermore, to ensure that the nuts were tightened to the same

degree, a torque wrench was used.

8.7 Results for the Bow Girder

For the analysis by computer the bow girder was divided
into two segments of equal lentgh. The exact stiffness matrix
for the bow girder element developed in Chapter 5, together with
the displacement transformation matrix constructed in the pre-
ceding chapter was utilized in the analysis. The results for the
deflection at the mid-point of the bow girder are tabﬁlated in
Table 8.3. It is seen that the theoretical results for offset P
and offset g_ agree reasonably well with those obtained by ex-
periments. The difference between the two sets of results varies
from 10% to 20%, even for large offsets. The deflections ob-
tained by experiment for the third case, both offsets p, and de
vary, are far below those obtained theoretically; being only
about 50%. The reasons for the discrepancies between the two
sets of results are discussed in the next section.

Theoretical results for the deflections at the mid-point c

are plotted in fig. 8.8. It is noticed that as the offsets are

increased, the deflections also increase, though at different
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rates for the three cases considered. This is to be expected.
In the case of the tied arch bridge, the offsets increased at
the expense of the flexible part of the structure. The deflec-
tions of the arch bridge, therefore, decreased. On the other
hand, in the case of the bow girder, the flexible part is not
affected by the offsets.

Consider the case when offset p. alone increases whilst the
other end is clamped. Two factors contribute to the displacements:
the strain energy due to bending and the strain energy due to
twisting. It was noticed from the results, not produced here,
that all these forces gently increased with the increase in the
offset Po* Consequently, the strain energy of the structure
also increased thus resulting in greater displacements.

For the case of the offset A alone, the twisting moments
at the two ends of the bow girder were seen to increase more
than in the previous case. The twisting moments at the mid-point
were not affected by offset q.- Therefore, it can be said that
the strain energy due to twisting increased. The magnitude of
the bending moment at the fixed end increased whilst at the other
end it was seen to decrease. The bending moment at mid-point c
remained unchanged. It can, therefore, be assumed that the
strain energy due to bending remained approximately the same for
all values of offset S The greater rate of increase in the
deflections obtained for offset q. than that obtained for off-
set p., therefore, suggests that the bow girder is more flexible
to twisting than it is to bending.

The third curve in fig. 8.8 shows the deflections at the
mid-point as both offsets, p. and d., are varied. It is noticed

that deflections increase more steeply than in the other two
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cases considered. Fig. 8.9 shows the bending moments at both
ends and at mid-point. It is noticed that the bending moment at
end A decreases whilst at the other two points it is increasing.
Therefore, it can be concluded that on the whole the strain
energy due to bending increases with the increase in the offsets.

Results for twisting moments are plotted in fig. 8.10. It
is seen that the magnitude of all the twisting moments increases
with the increase in the offsets. The increase in the bending
and twisting moments is greater for the present case than for
the other two cases considered previously. This fact is also
reflected in the greater deflections obtained for the present
case.

It must be pointed out that the results for the third case,
both offsets increasing, cannot be obtained by combining the
results for the other two cases. This is because the three

structures are not- the same.

In the third case, the shear force in the bow girder can be
calculated by considering the rotational equilibrium of the whole
structure about the axis of one hinge. With the shear force
known, the twisting moment at end A and the bending moment at end
B can be determined. This was the reason for plotting the bend-
ing and twisting moments for this case only. A check of the
twisting moments at end A and the bending moments at end B showed
that the results plotted in figs. 8.9 and 8.10 were correct. It
can, therefore, be assumed that the results for other forces

shown in the two figures are also correct.

8.8 Conclusions

From the results obtained, it can be concluded that the

influence of small offsets is easily allowed for through the
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displacement transformation matrices constructed in the pre-

ceding chapter. The theoretical results become unreliable as

the offsets increase beyond a certain limit. More tests on
simple arches and bow girders are needed to establish the limit
of small offsets. Furthermore, strain gauges should be used to
measure the strains. These can, then, be converted into forces
and moments which should be compared with those obtained theore-
tically.

It was noticed from the results obtained for the arch that
the two sets of results agreed, sometimes even for large offsets.
The reason for this is that both are theoretical results and the
same assumptions were made to obtain the equations which allow
for the influence of offsets. On the other hand, the theoretical
results for the bow girder differed always by more than 10%.

Some factors which can cause discrepancies between theore-
tical results and those obtained by experiment were discussed in
Chapter 6. Other factors which may have contributed to errors in
the results for the bow girder are:-

(a) Any misalignment of the knife edges causes the end plate to
behave as partially clamped. The knife edges were made
sharp and slightly longer than the width of the end plates
to help align them more accurately. In spite of this, some
misalignment may have occurred. The fixity of the end
plates is proportional to the misalignment of the knife
edges and the degree to which the nuts were tightened. To
reduce the error due to 1attef cause a torque wrench was
used to tighten the nuts to the same degree for all offsets.

(b) As mentioned earlier, the knife edges were seen to bite in-

to the end plates. As a plate rotates, two points on the
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opposite horizontal faces of the plate which were origin-
ally on the same vertical line move horizontally in the
opposite direction to each other. The knife edges, having
bitten into the plate, resist this type of movement. The
resistance is proportional to the thickness of the plate
and its angle of rotation. It is obvious that large deflec-
tions are usually accompanied by large rotations. It
appears that this cause greatly reduced the deflections ob-
tained for the case where both offsets were varied.
Retrospectively, more accurate results may be obtained for
the bow girder by using the type of pin supports used for the

arches instead of the knife edges employed here.
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Co-ordinates of the Joints of the Bridge Frame

Table 8.1

Joint No. X—fﬁ;?rd. Y-%g;?rd. Todnk No. X-%;;?rd. Y;%zg?rd.
1 0.0 838.2 20 3611.9 838.2
2 304.8 " 21 3916.7 1745.0
3 1173.5 12573 22 " 838.2
4 " 838.2 23 4221.5 1706.9
5 1478.3 1379.2 24 " 838.2
6 " 838.2 25 4526.3 1645.9
7 1783.1 1485.9 26 " 838.2
8 " 838.2 27 48310.1 1577.3
9 2087.9 1577.3 28 " 838.2

10 " 838.2 29 5135.9 1485.9
11 2392.7 1645.9 30 " 838.2
12 " 838.2 31 5440.7 1379.2
13 2697.5 1706.9 32 " 838.2
14 " 838.2 33 5745.5 1257.3
15 3002.3 1745.0 34 " 838.2
16 " 838.2 35 6614.2 "

27 3307.1 1760.2 36 6919.0 "

18 " 838.2 37 304.8 0.0
19 3611.9 1760.2 38 6614.2 0.0




Table 8.2

Loads for the Bridge Frame

soint o | VT | FAHS | sotne wo- | V5o | Yenegs
1 1627.9 - 19 178.4 -
2 1262.2 ~140.1 20 602.1 -
3 191.8 13.5 21 178.4 -
4 1083.8 109.1 22 602.1 -
5 100.4 - 23 127.1 2:7
6 602.1 - 24 602.1 -
7 100.4 - 25 100.4 -
8 602.1 - 26 602.1 -
9 100.4 - 27 100.4 -
10 602.1 - 28 602.1 -
11 100.4 - 29 100.4 -
12 602.1 - 30 602.1 -
13 127.1 - 2.7 31 100.4 -
14 602.1 - 32 602.1 -
15 178.4 - 33 191.8 - 13.5
16 602.1 - 34 1083.8 ~109.1
17 178.4 - 35 1262:2 140.1
18 602.1 - 36 1627.9 -

Note:

The moments not shown are equal to zero.
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Table 8.3

Deflections at the Mid-Point of Bow Girder with Offsets

Offsets PC Qc Pc & Qc
mm Exp. Comp. EXp. Comp. Exp. Comp.
0.0 2.8 1.33 3.065
25.0 2.93 1.45 3.66

50.0 2.52 3.05 1.34 1.61 2.48 4.45
75.0 3.16 179 5.43
100.0 2.96 3.27 1.49 1.98 3.35 6.59
125.0 3.36 2.17 7.87
150.0 3.05 3.46 1.93 2.36 4.70 9.33
175.0 3.54 2.54 10.93
200.0 3.30 3.62 2.47 2.71 5.40 | 12.66
225.0 3.69 2.87 14.52

250.0 3.42 3.75 3433 3.02 6.17 | 16.51

Note: All the deflections are in mm.
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CHAPTER 9

GENERAL CONCLUSIONS

The method of storage adopted for the coefficients of the
variables of simultaneous symmetric equations in Chapter 2, has
been shown (33) to be efficient in use of core space and sol-
ution time of the computer. The sub-routine for the solution
of equations uses the backing store facilities, thus enabling
large problems to be solved. The computer time required to
transfer the information to and from the backing store is min-
imised by making the block size as large as possible. The
efficiency of the sub-routine can be further improved by the
following modifications:-

(a) At present the RHS are reduced separately. This requires
the transfer of some blocks from the backing store. Elim-
inating both sides at the same time uses those blocks in
the reduction of the RHS as they are formed. Furthermore,
the contents of the temporary store need not be stored in
the backing store at all.

(b) The coefficients of the LHS matrix are stored row by row.
However, the elimination process is carried out column by
column. This combination of storage and elimination re-
quires searching operations to determine whether or not a
coefficient is stored. These searching operations can be
greatly reduced by storing the coefficients of the LHS
matrix column by column. Such a method of storage has been
claimed (58) to require less computer time to solve a set

of simultaneous equations.
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The inadequacy of the polynomial displacement functions to
allow for the rigid body movements without straining the curved
elements was pointed out by Cantin and Clough (24). This has
been confirmed by the results obtained for arches which were pre-
sented in Chapter 4. It is commonly assumed that the finiﬁe
element technique yields results which converge to the correct
solution as the mesh size is refined. This, however, was not so
for some of the results obtained for the arches by using the
cubic displacement functions. |

A scrutin? of the polynomial displacemént'functions reveals
that the two functions are independant of each other. This con-
dition is obtained in the axi-symmetric shells of revolution
under symmetric radial loads because the tengential diSplacements
vanish. This could be the reasbn why, in spité of the inade-
quacy of the polynomial displacement functions,‘very good results
were obtained for such structures (22, 23, 40, 42). It is,
therefore, likely that the cubic functions may yield good results
for arches or circular rings under radial loads. Hydrostatic
pressures in liquid containers give rise to radial loads. Stiff-
ening ribs in such structures can be treated as rings. |

Simulating semi-circular arches with only eight straight
prismatic members yielded results which were very close to those
obtained by using the classical theory of strain energy. Further- i
more, these results were seen to be improving-updh further sub-
division. Cantin and Clough's assertion (24) that equally good
results can be obtained by using flat elements for structures
divided into large numberﬁ of elements, therefore,‘seems to be
correct. |

More accurate displacement functions were derived in
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Chapter 3 for arch elements with uniform cross-section. Two
types of curvature-displacement relationships were utilized in
the derivation. This yielded two sets of displacement functions
called the approximate and the exact functions. The approx-~
imate functions were obtained by using the curvature formula
for straight beams. The exact functions were obtained by using
Flligge's formula for curvature for curved beams. The results
obtained by using both sets of derived displacement functions
show the influence of the initial curvature, R. It is seen that
for arches which subtend an angle less than 60° at the centre,
both sets of functions yield similar results. As the arches
become deeper the results diverge. However, the exact functions
always yielded results identical to those obtained by the strain
energy method. For the analysis by using the derived displace-
ment functions, the arches were divided into the minimum number
of sub-divisions. It was found as expected, that the results
did not improve upon further sub-division. Therefore, it is
concluded that the use of the exact displacement functions
derived here leads to saving in the core space and solution time
without sacrificing accuracy. _

The influence of Timoshenko's and Fllgge's theories yielded
similar results. It is possible that the difference in the
results, if any, was lost due to the crude nature of the assumed
displacement functions. Therefore, to obtain more conclusive
evidence, the displacement functions should be derived by using
Timoshenko's formula for curvature of curved bars. The results
obtained by using these functions should, then, be compared with

those obtained by using the exact displacement functions derived

in this Thesis.
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The exact displacement functions derived for curved element
of uniform cross-sections were employed to formulate the stiff-
ness matrix for a curved element with variable cross-section.
This presupposes that the pattern of strain in both types of
elements is the same. 1In spite of this assumption, good re-
sults have been obtained for the arches with variable cross-
sections. However, more accurate results can be obtained by
deriving the displacement functions for curved elements with
variable cross-section.

From the experiments on the arches with fixed ends the
difficulties in achieving complete fixity were realised. In
spite of the corrections applied to account for the end rota-
tions, some discrepancies lingered. The use of more flexible
arches for the experiments, if possible, 1s, therefore, re-
commended. The strength of hollow steel sections to provide
the fixity is deceptive and, therefore, such sections should
be avoided altogether.

In reference (61) displacement functions for cylindrical
shell element were reduced to beam element. The displacement
functions derived in this Thesis can be extended to cylin-
drical shell elements. This can be achieved by adding terms
to the displacement functions so that the displacement along a
line parallel to the longitudinal axis of the shell varies as
a polynomial.

The strain-displacement relationships for curved elements
suffering out of plane deformations were derived in Chapter 5.
These relationships were used in conjunction with the polynomial
displacement functions to obtain the stiffness matrix for a bow

girder element. Results obtained by using this stiffness matrix
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for some bow girders under various loads were presented in
Chapter 6. It is observed that the polynomial displacement
functions yield good results for bow girders, even with crude
sub-division. From the results obtained it appears that for
arch elements the influence of the displacement functions is
predominant while the curvature-displacement relationships play
only a minor role. For the bow girder elements, however, the
reverse seems to be the case.

Simulation of arches with a number of straight members
yielded good results which improved upon further sub-division.
On the other hand, the twisting moments obtained by approxim-
ating the bow girders with a number of straight members de-
teriorated as the mesh was refined. Reasons for this were given
in Chapter 6.

More accurate displacement functions were derived in
Chapter 5 for the bow girder elements of uniform cross-section,
These functions yielded results for bow girders identical to
those obtained by using the strain energy method. The bow
girders were divided into the minimum number of sub-divisions.

The stiffness matrix for a bow girder element with variable
cross—-section was developed by using the displacement functions
derived for elements of uniform cross-section. The theoretical
deflections obtained for bow girders with variable cross-
sections agree reasonably well with those obtained by experi-
ments. It was not possible to compare the results obtained for
the bending and the twisting moments because no strain gauges
were fixed to the bow girders. To assess the accuracy of the
stiffness matrix more conclusively, the forces obtained theor-

etically should be compared with those obtained from experiments.
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However, more accurate displacement functions can be derived
by considering the static equilibrium of bow girder elements
with variable cross-section.

The torsion constant of the cross-section, J, was cal=-
culated from an approximate formula for rectangular cross-
sections. The reason that the strain energy method and the
derived displacement functions yielded identical results was that
the same formula was employed in both to compute the torsion con-
stant. The cross-section of the experimental bow girder varies
from a thin rectangle at the supports to a very thin rectangle
at the mid-point. The validity of the formula to calculate the
torsion constant of these sections is questionable. It is pos-
sible that the error in the torsion constant is the major con-
tributor to the errors in the results for the bow girders.
Therefore, the recommendation of reference (6) that where possible
the stiffness, GJ, of a member should be obtained by experiment

has merits.

Finally, if possible, the bow ‘girders should be made

reasonably flexible. This helps to achieve full fixity of the

ends more easily.

The displacement functions were derived for the curved
elements with the forces acting at their ends only. No difficulty
arises when dealing with uniformly distributed loads. Using the
equivalent loads and the derived displacement functions, results
were obtained which were identical to those yielded by the
strain energy method. For the matrix analysis, the arches and
the bow girders were divided into two segments only. The equiv-
alent loads were calculated by strain energy method. The same

results can be obtained by employing the principle of virtual work
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The latter method is more attractive from the viewpoint of the
finite element technique.

Following the procedure adopted in reference (11), the
displacement transformation matrices were constructed which allow
for the effect of the offsets and hinges. The results for the
arch bridge seems to be reasonable over the whole range of the
offsets, but this is to be expected as both sets of results ob-
tained are theoretical. The results for the bow girder, however,
show that the theoretical method of catering for the offsets is
valid for small offsets only. More experiments are needed on
simple arches and bow girders with the offsets to establish the
limit of small offsets. Furthermore, in these experiments strain
gauges should be used. The moments computed from the strains
should be compared with those obtained theoretically.

For reasons explained in section é.G, only in-plane offsets
can be considered for plane frames. For a member in three di-
mensional space the in-plane and the out of plane stiffness
matrices cannot be assembled simply. The out of plane offset,x.c,

contributes coupling terms to the stiffness matrix in three

dimensional space.
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APPENDIX A

SUBROUTINE CDM (A,B,C,IB,IR,1IS,NG,NT,NIS,MA,MB,MXA,MXB,LQ)
INTEGER P, Q, R, S

DIMENSION A(MXA),B{MXB),C(MA),IS(NIS),IR(NT),IB(NG)

P =1 :

Q=2
IQ = Q -~ 2
Q = IB(P)

IF (Q .EQ. P .OR. Q .EQ. IQ) GO TO 1

IF (Q .EQ. P -~ 1) GO TO 4

K=(Q-1) * MA +1

CALL GETPART (10, K, A, A(MA + 1), A(2 * MA))
GO TO 1 ' :

DO S I =1, MA

A(MA + I) = A(I)

K= (P~1) * MA+ 1

CALL GETPART (10, K, A, A(1), A(MA))

MP = IR(P) + 1

NP = IR(P + 1)
MQ = IR(Q) + 1
NQ = IR(Q + 1)
NA = - IS(MP)
ND = MA -~ IS(MQ)
MQ = MP -

DO 7 I = MP, NP
Te=X-I5 (T 435 T8 L1 5 1
IF (MQ . GT. J) MQ = J
CONTINUE

IF (P .EQ. Q) ND = NA

DO 8 J = MQ, NQ

MJI = J -~ IS(J + 1) + IS(J) + 1
R = MP -

IF (J .GT. MP) R=J

DO 8 I = R, NP

MI = I ~ IS(X + 1) + IS(I) + 1
IF (J .LT. MI) GO TC 8
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IF (J .EQ. 1) GO TO 9
L=J-1

IF (I .GT. J) GO TO 10

S =1IS (I + 1) + NA

IF (L .LT. MJ) GO TO 11

DO 11 M= MJ, L

K=1IS (I +1)~-I+M4+ NA
A(S) = A(S) - C(K) * A(K)
CONTINUE

Cc(s) = A(S)

GO TO 8

IF (MI .LT. MJ) MI = MJ

S =IS(I+1)-I+ 1+ NA
IF L .LT. MT) GO TO 12

DO 12 M = MI, L

K=IS(I +1) I+ M+ NA
N =1IS(J+ 1) -J+ M+ ND
A (S) = A(S) - C(K)"* A(N)
CONTINUE ¢
N = IS(J + 1) + ND

C(S) = A(S)

A(S) = C(sS) * A(N)
GO TO 8
K=1IS(I+1)~-TI+ 1+ NA
C(K) = A(K)

IF (I .6T. 1) GO TO 13
A(K) = 1.0 / c(K)

GO TO 8

N =IS(J + 1) + ND

I

A(K) = C(K) * A(N)
CONTINUE

Q=Q+ 1

IF ( Q .EQ. P) GO TO 3
IF (Q .GT. P) GO TO 16
K=(Q~1) * MA +1

CALL GETPART (10, K, A, A(MA + 1), A(2 * MA))

MQ = IR(Q) + 1



150

NQ = IR (Q + 1)

ND = MA - IS(MQ)

GO TO 7

K=(P=1) * MA +1

CALL PUTPART (10, K, A, A(1l), A(MA))
K= (NG +P~-1) * MA +1

CALL PUTPART (10, K, C, C(1), C(MA))
P =P + 1

IF (P .LE. NG) GO TO 2

P =1

_.CONTINUE

MP-= IR(P) + 1

NP = IR(P + 1)

K=2*NG * MA+ IR(P) * LQ + 1

NE = ( NP - MP + 1 ) * LQ

CALL GETPART (10, K, B, B(1), B(NE))
K=(P~-1) * MA +1

CALL GETPART (10, K, A, A(l), A(MA))
K= (NG + P ~=1) * MA +1

CALL GETPART (10, K, C, C(1), C(MA))
Q =-IB(P) -

IF (Q .EQ. P) GO TO 17~

K=2 * NG * MA + IR(Q) *LQ + 1

NE = (IR(Q + 1) - IR(Q)) * LQ

CALL GETPART (10, K, B, B(MB + 1), B(MB + NE))
NA = - IS(MP)

NB = - IR(P) * LQ

ND = MB - IR(Q) * LQ

IF (Q .EQ. P) ND = NB

MQ = IR(Q) + 1

DO 18 I = MP, NP

NQ = IR(Q + 1)

MI = I = IS(I + 1) + IS(I) + 1

IF (MI .GT. NQ) GO TO 18

DO 18 J = 1, LQ

IF (I .GT. 1) GO TO 19

B(J) = B(J) * A(1)

GO TO 18

I



19

21

18

24

25

30

MT =
R =

IF (
IF (
IF (
DO 2
K =

L =

B(R)
CONT
IF (
L =

B(R)
CONT

MQ -

(T - 1) * 10 +
MJ .LT. MI) MJ
Q .EQ. P) NQ =
MJ -.GT. NQ) GO
1 M.= MJ. NQ
(M -1) * LQ +
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J + NB
= MI
I -1
TO 18

J -+ ND

IS(I + 1) = I + M + NA

= B(R) - c(L)
INUE

*+ B(K)

NQ .LT. I - 1) GO TO 18

IS(I + 1) + NA
= A(L) * B(R)
INUE

IF (Q E.Q. P) GO TO 24

Q =

Q + 1

Ir (Q .EQ. P) GO TO 20
K=2*NG* MA + IR(Q) *

NE =

(IR(Q + 1) IR(Q))
CALL GETPART (10, K, B, B(MB + 1), B(MB + NE))

LQ + 1
'LQ

K=2* NG * MAIR(P) * LQ + 1
GO TO 20
IF (P .EQ. NG) GO TO 25
(IR(P + 1) - IR(P))

CALL PUTPART (10, K, B, B(1), B(NE))

NE =

P=P + 1

GO TO 26

CONTINUE

I =NIS -1

IF(I .EQ. MP) GO TO 99
I=I-1

DO 29 J = 1, LQ
N=(I-1)*LQ+J+NB
DO 29 L = I+l, NP

IF(I .LT. L = IS(L + 1) + IS(L) + 1) GO TO 29

K
M
B(N)

1l

* 1.Q

IS(L + 1) -1 + I + NA
(L.-— 1) *LQ + J + NB

= B(N) - A(K)

* B(M)
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47

32

31

35

36

34

33
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CONTINUE
IF (I .GT. MP) GO TO 30

CONTINUE

K=2*NG * MA + IR(P) * LQ + 1
NE = (IR(P + 1) - IR(P)) * LQ
CALL PUTPART (10, K, B, B(l), B(NE))
IF (P .EQ. 1) GO TO 100

P=P-1

Q=Q-1

MP = IR(P) + 1

NP = IR(P + 1)

NA = - IS(MP)

NB = - IR(P) * LQ

IQ = Q

Q = NG

IFr (P .GE. IB(Q)) GO TO 31
Q=0Q~=1

GO TO 32

MQ = IR(Q) + 1

NQ = IR(Q + 1)

NC = MB - IR(Q) * LQ

ND = MA - IS(MQ)

IF (Q .EQ. IQ) GO TO 33

IF (Q .EQ. P) GO TO 33

IF (* .NE. P. + 1) GO TO 34

DO 35 I = 1, MA

A(MA + I) = A(I)

NE = (NQ - MQ + 1) * LQ

DO 36 I = 1, NE

B(MB + I) = B(I)

GO TO 33

K=(Q-1) * MA +1

CALL GETPART (10, K, A, A(MA + 1), A(2 *MA))
K=2*NG * MA + IR(Q) * LQ + 1

NE = (IR(Q + 1) - TIR(Q)) *LQ

CALL GETPART (10, K, B, B(MB + 1), B(MB + NE))
K=(P~-1) * MA + 1

CALL GETPART (10, K, A, A(l), A(MA))
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K=2* NG * MA + IR(P) * LQ + 1
NE = (IR(P + 1) = IR(P)) * LQ

CALL GETPART (10, K, B, B(1l), B(NE))

IF (Q .NE. P) GO TO 37

ND = NA
NC = NB
CONTINUE
MJ = MQ

DO 38 I = MQ, NQ
J=T1I=TIS(T + 1) + IS(I) + 1
IF (MJ .GT. J) MJ = J
CONTINUE

IF (MP .GT. MJ) MJ = MP
I = IR(P +1)

DO 39 J =1, LQ

IF (I .EQ. NQ) GO TO 39
N=(I-1) *1LQ+ J+ NB
IF (Q .EQ. P) MQ =TI + 1
DO 39 L = MQ, NQ

IF(I .,LT. L - IS(L + 1) + IS(L) + 1) GO TO 39

K=1IS(L+1) -L + I+ ND
M= (L=-1) *LQ+J+ NC
B(N) = B(N) - A(K) * B(M)
CONTINUE

I=I-1

IF (I .GE. MJ) GO TO 41

IF (Q .EQ. P) GO TO 43
Q=Q-1

IF (Q .EQ. P) GO TO 44
K=(Q=-1) + MA + 1

CALL GETPART (10, K, A, A(MA + 1), A(2 * MA))

K=2 * NG * MA + IR(Q) * LQ + 1
NE = (IR(Q + 1) - IR(Q)) * LQ

CALL GETPART (10, K, B, B(MB + 1), B(MB + NE))

MQ = IR(Q) + 1

NQ = IR(Q + 1)
ND = MA - IS(MQ)
NC = MB - IR(Q) * LQ
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GO TO 37
MQ = MP
NQ = NP
ND = NA
NC = NB
MJ = MP
GO TO 45

K=2%*NG * MA* + IR(P) * IQ + 1
NE = (IR(P +1) - IR(P)) * LQ

CALL PUTPART (10, K, B, B(1), B(NE))
IF (P .GT. 1) GO TO 47

CONTINUE

RETURN

END
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AFPPENDIX B

Stiffness Matrix for Curved Members with Uniform Cross Section,
1. The Displacement Functions.

The displacement functions were derived in Chapter 3 and are given by
equations (3.56) and (3.57). The equation for the slope at any point in the
member is obtained by differentiating equation (3.56) with respect to x, This

equation is:

g_!_a.}_cosz_a._lsing_’_a(sin_:v_c__!__:g X
dx ~ 2 R__ s R ®RT ¢ E'R R R"R R

Substituting the boundary conditions into equations (3.56), (3.57) and

(1) the nodal displacements become:

w = + 5

1 ai as ()
u =-a +a.,a+a (3)
1 2 s 6
6 =a .b+a (2‘_)
1 2 5
w =a +a,c+a.,d+a,e+a,f (5)
2 4 2 s 4 5
u=-'a.g-a..d+a.c+a.h+a.i+a (6)
2 1 2 s 4 6 6

and 6 =a , j+a.k+a,m+a.n (7)
2 2 s 4 5

where:

AR
'b=_1 H
R
c=sin_I_; H
R
d = cos L ;
_R
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e

L

R
h:(R-ZI)siné-LcosL H

(R

R R R
i= —g)cosl_..+1.sin§ H
AR . R R
J=1cos L H
R R
k=-1sinL ;
3 R

sin L + L cos 3

R R

B
]

L
R
and n = cos L -_Q Sii;l_I_a
R R R
Solving the set of eqns, (2) to (7)_and writing the results in matrix
form yields: (the equations shown on the following page).
Equations (8) have been obtained by making the following substitutions
during the solution process:

«=c-g=-h(a-1);
. e

p=g+i—a-;-g(f-g>j
b b e b

A=k -n(a-1)
e

Y=n-j-f_r&(f-£)i
b e b
B=gy = B\ ;

D:K(g—_}})+.g._n_'_l H

e

e/ e . . ;
E=%[k(l—df%>-d(d-%i>:|i
F=1(\- m ;

e ) .
g [ 2) (o)



157

(8)

-

(T+a®) ﬁzﬁ.ﬁi a-q] T

Alp

M

o)l =

qi’

c

q

(T+qe) @

1M




and

2. The

The

and (3.59).
The Stress

3

The stress

L.

The strain

arbitrary constants from eqn (8).
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1 (yh - fu) ;

€ .
1fr@-1) -2 (e -0

e b
1[6@-1) -p(f =-c) -B] ;
e b _
1[H(@-1) -E (£ -2)-Be] ;
e | b D :
1[3(@=-1)-F(r-g)+B] ;
e | b
1[p(@@-1)-o(f-2¢) ;
e | b

Strain - Displacement Relationships,
strain -

Strain Relationships,  _

The Strain Matrix.

displacement relationships are expressed by eqns. (3.58)

strain relationships are given in egns, (3.26) to (3.29),

matrix is obtained by substituting into eqn (3.58) for the

Carrying out the matrix multiplication yields

the elements of the strain matrix,. Thé following recurrsive formula is obtained

for the strain elements:

B =b ¥ +b_ ¥ (10)
1t i1 1 iz 2
d B =4 +DbD + b A= . P 11
an 2[ Li. li qrs lz 11[4 Where i a 1’ 2 -.-006 ( )
The coefficients b _ and d_ _ are derived belows
L LJ f
b =XK;b =23 b =M; b =D; b =N; b =E; B =-b
11 F 12 3 21 J 22 P s1 J 82 J 41 11
P =-b 3 b =P; b =F; b =QQandd =4
42 i2 51 B &2 B 61 B e2 B
d = d =B+G; d =H ;
d =4 ; 4 =J and 4 =
41 11 51 BR= 61 PR
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The following integrations are needed to obtain the elements of the

stiffness matrix:

>
I
=
o
™
~
(9]
o
w
I
1
[
A —

t
s
B
[
=

All the above integrations are from O to L, the length of the curved
member,

The elements of the gtiffness_matrix_are objained_by_aubstituting_the
strain matrix into eqn.(3.30) and carrying out the integrations, It can be

easily shown that the following reccurssive formula is obtained for the

stiffness terms:

K = EA |Db P A P AN)+D b A +b A
tJ [ Ji ( 11 1 * iz 2) ig ( 1t 2 itz =3 )]

EI [4 A P A b i A b A A
* F Ji (dta * bli 4 * iz s )+ Ji ((11 4 * l1 e * blz ? )

+b, (@ A
i1

+b, A +b_ A )]
Jja i1 7 iz 8

5

where:

EA is the extensional stiffness of the member;

and ET " " bendi.g 1" "t on ]
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APPENDIX C

Stiffness Matrix of Curved Members with Uniform Cross Section.

1. The Displacement Functions,

The displacement functions were obtained in section 5.4 and are given by

equations (5.39) and (5.40). Differentiation of eqn. (5.39) yields the follow-

ing equation for the slope at any point in the curved member:

dw = a +a._]_.cos§—a.lin§+a(sin§+§cos§>

&x * R R * R : R R R
+ a (cosz-; sin_:_c> (1)

= R R R

Substituting the boundary conditions into the equations for the dis-
placements and the slope, eqns. (5.39), (5.40) and (1) respectively yields

the following set of simultaneous equations:

For end 1;
W = a +a (2)
1 1 4
a
= =4, =a (3
'Y'i _Rg 5‘1’ )
a
and 6 = a + + a (%
g BRSO )
Similarily for end 2;
w = a +a L+ab+a,ct+a.d+a e (5)
2 1 2 3 4 5 6
y = @8 J =-a.g+a,h+a.l (6)
2 s 4 5 6
and 6 = a +a .,g2+a J +a.j+a.k (7)
2 2 3 + 5 e
where:
¥y = - 2B
ET+GT
b = sin L H
R
¢ = cos ;



lel

d = L.sinLl ;
R
e = L,cosL ;
R
f = ~-1sinkL ;
R R
g = lcoslL 3
R R
h = <LsinL -V ,cosl ;
R R R
i = ¥y¥.88nL~-L,coslL;
R R R
j = sinL+L ,cosL ;
R R R
and k = cosL ~-L , sin L
"R R R

Solving eqns, (2) to (7) yields the arbitrary constants in terms of the

nodal displacements, These relationships, in matrix form, are:

rai' B + D - E -F -D B - ] ’wi
a N P Q =N T U 0
2 i
a -R(N+H) R(B-P-J) R(K-Q) R(H+N) -R(T+a) R(A-U) Y, (é) '
=1
a Bl -0 -E F D -B ¢ w
4 ’ ‘ ) ’ 2
a Dq. Eq. -B -Fg -Dg_ Ba. -$q 0
& 1!! 2
a H J -K -H a =A Y
L ©] J L2
where:
m = 1l
bR-L
Q@ = 1 3
R ‘
n = n(c=-1.0-4dq) ;
p = m (e -bR) ;
a = -nfR -g - hq ;
B = i-pfR - fR 3;
A = n(1,0 - gR) +f - jqg ;
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e

¢ = p(1.0 - gR) + k - gR

B = ap - 4B ;
D = —¢.ufR - fn(1.0 - gR) ;
E = ¢.fr (1,0 - mbR) - p[mbR (1-gR) + gR] ;
F = {¢ (h-nmafR) - B [ md (1.0 - gR) + 31} /¥ ;
H = -AmfR - am (1.0 - gR) ;
J = AJR (1.0 - mbR) - a[mbR (1.0 - gR) + gR] ;
K = {A(h - mdfR) - af md (1.0 - gR) + 3]} /¥ ;
N == B, -D.,n + H,p ;
P = B,ubR -E.n + J.p ;
Q = F.n-k.p - 3Bmd ;
T = a.p - B.n ; '

and U = ¢.n - A,

2, The Strain Displacement Relationships

The strain displacement relationships are given by eqns, (5.43) and
(5.44). Substituting eqn. (5.43) into eaqn. (8) yields the strain matrix,

The elements of this matrix are:

B = b cosx+b sinx (9)
1l i1 R iz R - -
= d +d sinx+d cosx (10)
and B . a2 3 is 2
2L R

where { in egns, (9) and (10) varies from 1 to 6.

The coefficients b _ and dr..j in eqns, (9) and (10) are as follows:

iJ
b =-f_;_.Dq_ 3 b =.E.,.1-H ;
11 B s
b =-°, ,Eq ; b =% o T ;
s B . @ az B ° 2
b =3(fq+§>; b =—3.K;
st F v e B
b =-b b =-b
41 11 42 12

e e
b - = * b — .a-
T S



b =
81
d = =N
i1 B—R
d = =P
24 ﬁi
d = -
31 BR
il = =d
41 11
d =-T
51 ':ER
d =-U
61 BR

L 1]

e

e

-e

3. Integrations:
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e
b = -
62 Tﬁ ?
= =% D H @- ="'_‘}1_-I :
BR g i3 BR
BR ’ 28 BR
::jL(E + Fq) 3 d = 3
BR\ Y 83 BR
= -4 H d =-d ;
12 43 i3
= - ; d =-_q_g ;
BR 53 BR
E-j@g and d =_yé .
BR 63 BR

The fcllowing integrations are required to obtain the elements of the

stiffness matrix:

A =
1

>
I}

A=

A =

A =

>
n

A =

jLsin.; dx = R(cos

i

J

fx ccs x dx
R

/
J
/

R

cos X dx
R

R sin

L - 1,0)
R
L
R

x sin x dx = R® sin L - RL cos

R

dx

sin®

S B

sin x , ccs
R

cos® x dx =
R

L, The Stiffness Matrix

RL sin L - R® (cos

L
R R
L - 1,0)
R

The following recurssive formula is obtained for the elements of the

stiffness Matrix:

K, =EL[b

J

J1

e 2 5

b A b A b. b A +D A
( 12 =2 * iz 5) * Jz ( i1 )]
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+e7fa (@ L+da A +d A)+d (@ »
Jr tLa e 1 is 2 J2 i1

+d, (@ »

J3 i1

where:

ET is the flexural stiffness of the mermberjy

n " 1t -

ard GJ " " +torsional rigidity

i

2

+ d

+ d

iz

&
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