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SUMMARY. 

This thesis deals with the solution of certain problems 

in 2-dimensional, linear orthotropic elasticity theory, which 

are of particular interest to engineering. 

The types of problems analysed, can be classified accord- 

ing to their geometrical configuration, into the following four 

categories: Layered half-plane; quarter-plane; infinite strip, 

and, half-plane with irregular boundary. 

Solutions to problems related to the layered half-plane 

have been obtained using a Fourier integral approach, whereas 

solutions to problems related to the quarter-plane and the half- 

plane with irregular boundary, have been obtained using a 

superposition technique, This technique is an extension of 

the method used by Hetényi (1960) to obtain a solution for the 

isotropic quarter-plane, In the case of problemsrelated to the 

infinite strip, both of the above methods of solution have been 

used. 

Salient numerical results have been presented to the 

problems cited earlier, In addition, the solutions of certain 

quarter-plane and half~plane problems have been verified 

experimentally through a series of laboratory conducted tests.
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LIST OF SYMBOLS 

  

   

Cc. 5 Constants. 
as 

D : Distance. 

BL : Young's modulus in i direction, 

i 3 Modulus of rigidity between i and j directions. 

H : Distance, 

P : Concentrated force/unit thickness. 

Tooter, : Force/unit area, in x,y,z directions respectively. 

W : Strain Energy function. 

X,Y,2 : Orthogonal coordinate axes, 

a : Distance; unit length. 

b : Thickness. 

Cas : Elastic compliances, 

ki kg 3 Orthotropic elastic constants. 

& : Half-width of distributed loads. 

#35 : Elastic compliances, 

ns : Direction cosines. 

p r Stress applied normal to a plane, 

q : Stress applied tangential to a plane. 

u,Vv,W : Displacements in X,Y,Z directions respectively. 

Vy : Volume fraction, : 

X,Y,2 : Orthogonal coordinates. 

rer : Orthogonal dimensionless coordinates. 

45 : Shear strain between i and j directions. 

& : Direct strain in i-direction, 

u : Refractive index. 

iG 3 Poisson's ratio = str in induced in j-direction/ 
strain in direction, 

Pise, 3 Constants. 

oF : Direct stress in i-direction, 

ij Shear stress in the i-direction on a plane specified 
by its normal in the j-direction.



(iv) 
LIST OF SYMBOLS (contd) 

: Stress function, 

Angle. 

Load parameter. 

n
s
e
 

6
 

& 

Constant. 

  

ile



Summary 

CONTENTS 

Acknowledgements 

List of symbols 

Contents 

CHAPTER 1. 

CHAPTER 2. 

21.) 

2.2) 

255) 

2.4) 

2.5) 

2.6) 

2.7) 

2.8) 

2.9) 

2.10) 

CHAPTER 3. 

as) 

3.2) 

3.3) 

3h) 

INTRODUCTION 

THEORY OF ANISOTROPIC ELASTICITY 

Introduction 

State of stress in a body 

Stress-strain relations and energy function 

Elastic symmetry 

2.4.1) Three planes of elastic symmetry 

2.4.2) One axis of elastic symmetry 

2.423) Complete symmetry 

Plane stress and plane strain 

Differential equation in 2-Dimensional 
elasticity and constants ky and kg 

Transformation of the compliance matrix 

Anisotropic materials 

Composite materials 

Elastic constants of composite materials. 

ORTHOTROPIC INFINITE PLANE 

Introduction 

Orthotropic infinite plane subjected to 
a concentrated force 

Orthotropic infinite plane subjected to two equal 
and opposite forces acting a small distance apart 

Orthotropic infinite plane subjected to a moment 

Page No. 

(4) 

(43) 

(444) 

(v) 

o
r
n
 

n
w
 

11 

42 

15 

15 

17 

17 

a) 

20 

25 

25 

28 

50



CHAPTER 4.. 

41) 

4.2) 

4.43) 

a) 

4.5) 

4.46) 

4.7) 

4.8) 

4.9) 

4.10) 

CHAPTER 5. 

5.1) 

5.2) 

5.3) 

5k) 

5.5) 

5.6) 

5.1) 

5.8) 

5.9) 

ORTHOTROPIC HALF-PLANE 

Introduction 

Concentrated force normal to the boundary 

Concentrated force tangential to the boundary 

Uniformly distributed load normal to the 
boundary 

Uniformly distributed load tangential to 
the boundary 

Concentrated normal force applied through 
a rigid punch 

Concentrated force at the interior, acting 
in the positive Y-direction 

Concentrated force at the interior, acting 
in the positive X-direction 

Orthotropic half-plane X > O 

Uniformly distributed loads at the interior 

LAYERED ORTHOTROPIC HALF-PLANE 

Introduction 

Assumptions and conditions 

Stress function 

Layered half-plane sub jected to sinusoidal 
loads; perfect continuity 

Layered half-plane subjected to sinusoidal 
loads; Smooth interface 

Two-layer half-plane sub jected to sinusoidal 
loads 

5.6.1) "Perfect continuity" conditions 

5.6.2) "Smooth interface" condition 

Two layer half-plane subjected to partially 

distributed uniform load; concentrated load 

Numerical results 

Conclusions 

(vi) 
Page No. 

32 

33 

35 

36 

38 

38 

39 

43 

50 

51 

52 

58 

61 

62 

65 

67 

68 

68



CHAPTER 6. 

6.1) 

6.2) 

6.3) 

6.4) 

6.5) 

6.6) 

6.7) 

6.8) 

6.9) 

6.10) 

Tal) 

7-2) 

7.3) 

ORTHOTROPIC QUARTER PLANE 

Introduction 

General solution 

Convergence of the method 

Concentrated force acting normal to the 
boundary 

Partially distributed uniform load acting 
normal to the boundary 

Concentrated force acting at the interior 

Evluation of the stresses 

Numerical results 

Conclusions 

Suggestions and recommendations 

ORTHOTROPIC INFINITE STRIP 

Introduction 

Jele1) Definitions 

71.2) Historical background 

7.1.3) Scope of investigation 

Orthotropic infinite strip subjected to 
symmetric boundary loads 

7.2.1) Sinusoidal loads 

7.2.2) Partially distributed uniform load; 
concentrated load 

72.3) Numerical results 

7.2.4) Conclusions 

Orthotropic infinite strip subjected to 

arbitrary loads 

7.3.1) Formulation of the problem 

7.3.2) Method of solution 

7.33) Basic state of stress 

7.3.4) Corrective state of stress 

7.3.5) Numerical results 

(vii) 

Page No. 

70 

76 

78 

fe 

80 

82 

83 

86 

88 

89 

91 

92 

92 

96 

98 

100 

100 

101 

102 

103 

108



CHAPTER 7 

CHAPTER 8. 

8.1) 

8.2) 

8.3) 

8.4) 

8.5) 

(contd) 

7.3.6) Presentation of results 

7.3.7) Conclusions 

HALF-PLANE WITH IRREGULAR BOUNDARY 

Introduce ti on 

Method of solution 

Basic equations 

8.3.1) Concentrated force acting in the 
X-direction. 

8.3.2) Concentrated force acting in the 
Y-direction 

8.3.3) Notation 

Basic state of stress 

Corrective state of stress 

8.5.1) Determination of the functions 

F,6,P,Q 

8.5.2) Determination of the stresses 

Conclusions and recommendations 

EXPERIMENTAL INVESTIGATION 

Introdue tion 

Plane strain tests 

9.2.1) Constituent materials 

9.2.2) Orthotropic material 

9.2.2.1) Manufacture of rubber block 

9.2.2.2) Prediction of elastic constants 

9.2.2.3) Experimental determination of 
elastic constants 

9.2.3) Apparatus 

9.2.4.) Method of testing 

9.2.5) Analysis of test results 

(viii) 

Page No. 

109 

110 

Ly 

112 

114, 

114 

5 

116 

117 

118 

118 

125 

126 

127 

130 

130 

134 

134. 

135 

135



CHAPTER contd) 

9.2.6) 

9.2.5.1) Method of analysis 

9.2.5.2) Accuracy anderrors 

Presentation of results 

9.2.6.1) Half-plane/quarter-plane 
concentrated force 

9.2.6.2) Half-plane/quarter plane; 
partially distributed 
uniform load 

9.2.6.3) Half-plane/quarter plane; 
rigid punch 

9.3) Plane stress tests 

APPENDIX 1 

APPENDIX 2 

APPENDIX 3 

APPENDIX 4. 

APPENDIX 5 

REFERENCES 

9.341) 

9.3.2) 

9.3.3) 

9.344) 

9.3.5) 

Constituent materials 

Orthotropic material 

9.3.2.1) Moulding of fibreglass 
composite 

9.3.2.2) Prediction of elastic constants 

9.3.2.3) Experimental determination of 
elastic constants 

Method of testing 

Analysis of results 

Presentation of results 

(4x) 
Page No. 

Al 

142 

148 

149 

150 

151 

153 

153 

15k 

154 

154. 

155 

160 

161, 

162 

164. 

“165 

166 

168 
170 

172



 



The theory of anisotropic elasticity is a mathematical 

model devised to describe physical response of certain materials, 

which exhibit directional elastic characteristics, This theory, 

which is based on the generalized Hooke's law of proportionality 

between stress and strain, has been summarized and presented in 

three classical books on Elasticity, by Love (1906), Green and Zerna 

(1954) and Lekhnitskii (1963). 

In the first two books, the authors presented a general 

account of the theory of elasticity with special references to 

anisotropy, whereas Lekhnitskii dealt exclusively with the 

anisotropic elasticity theory and its applications. A brief summary 

of the theory is given in Chapter 2 of this thesis. 

A special case of anisotropy, is orthotropy. In this 

case, the directional elastic characteristics are assumed to be 

symmetric about three mutually perpendicular planes. Since most 

naturally occurring or artificial engineering materials are 

orthotropic, the theory of orthotropic elasticity has received 

considerable attention. Many investigators have employed the 

theory of orthotropic elasticity to obtain solutions to 3-dimen- 

sional or 2-dimensional problems of engineering interest. Various 

netics: of solution have been used, ranging from simple Beale ticale 

to Fourier integral or numerical methods. At this stage we shall 

not list the numerous important contributions. A historical back-— 

ground will be presented for specific problems in the introductions 

to the ensuing chapters. 

This thesis deals with the solution of certain problems 

in 2-dimensional orthotropic elasticity. In particular, problems 

related to the layered half plane, the quarter plane, the infinite 

strip and the half-plane with an irregular boundary are considered. 

The development of a solution to the above problems, re-



quires the solution of a number of fundamental problems which are 

related to the orthotropic infinite-plane and the orthotropic half- 

plane. A collection of such problems and their sclutions is 

presented in Chapters 3 and 4. These solutions are not meant to be 

original in any way. Most of the information has been drawn from 

the works of Green and Taylor (1939), Green (1939), Conway (1953, 

1955) and Lekhnitskii (1963). However, since these solutions form 

the basis of the subsequent work, they are included in the thesis. 

In Chapter 5, problems related to the layered half-plane 

are considered. The half-plane is assumed to consist of'n' orthotropic 

elastic layers and the interfaces between the layers are assumed to 

be either rough (perfect continuity) or perfectly smooth (friction- 

less interface). The method of solution to layered half-plane 

problems, is based on a Fourier integral representation of boundary 

loads. The special case of a 2-layer half-plane is examined in 

detail and numerical results are presented for the stress distributions 

along the interface when the layered half-plane is subjected on its 

boundary to a normal concentrated force. The numerical results are 

presented for a range of orthotropic materials and the effect of 

orthotropy on the stress distributions are considered. 

In Chapter 6, a method of solution is developed eo problems 

related to the orthotropic elastic quarter-plane. This method is 

based on a superposition technique developed by Hetenyi, for the 

solution of the isotropic elastic quarter-plane, The solution is 

presented in a general form, for an arbitrary loading system, which 

may be applied at the boundaries or at the interior of the quarter- 

plane. Numerical results for the stresses, are presented for the 

cases in which a concentrated force is applied normal to a boundary 

of the quarter-plane, or at the interior. 

In Chapter 7, we concentrate on problems related to the
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orthotropic infinite strip. A method of solution is developed for 

the problem in which the infinite strip is subjected to an arbitrary 

self-equilibrating loading system, acting at its boundaries or at the 

interior. This method is based on the repeated superposition of known 

solutions to orthotropic half-plane problems, so that the resulting 

stress field satisfies the traction boundary conditions of the infinite 

strip. This procedure leads to a sequence of infinite integrals of 

recursive pattern. Numerical results are presented for the case of 

an orthotropic infinite strip which is subjected at its interior to 

two equal and opposite concentrated forces acting a small distance 

apart, in the longitudinal or in the transverse direction. 

The problem of an infinite strip which is subjected on its 

boundaries to equal and opposite loading systems, is dealt with 

separately, using a Fourier integral technique. Due to the symmetry 

of loading, this problem is equivalent to that of an elastic layer 

resting on a smoothrigid bed, Green's (1939) method of solution, 

for problems of this type, is employed to obtain numerical results 

for the stress distributions along the axes of symmetry, when the 

infinite strip is subjected to concentrated or partially distributed 

uniform loads. The way in which the orthotropy of the material affects 

the stress distributions is examined in detail, by considering a number 

of orthotropic materials. 

In Chapter 8, we consider the problem of an orthotropic 

elastic half-plane with an irregular boundary in the form af a "step", 

which is subjected to an arbitrary loading system. The proposed 

method of solution to this type of problem, is an extension of the 

superposition technique used by Hetényi for the solution of the 

isotropic elastic quarter-plane. The method consists of successive 

reversals of stress on certain planes of’ an orthotropic half-plane 

and the superposition of the corresponding solutions, so that after 

a number of reversals, the resulting stress field satisfies the



traction boundary conditions of the irregular half-plane. 

In Chapter 9, we describe the experimental work that was 

carried out, with the objective of investigating the applications 

of various solutions, in predicting stress or strain fields in real 

orthotropic materials, The work consisted of a series of tests 

under plane strain and plane stress conditions, using a laminated 

rubber and a glass reinforced polyester resin as orthotropic 

materials. 

The problems considered in this thesis, are of particular 

interest to Civil Engineering since they represent cases which may 

be encountered in Civil Engineering practice. For example, the 

use of fibre-reinforced composites as structural materials in the 

construction and aerospace industries and the treatment of many 

types of rocks or soils as anisotropic materials, present a variety 

of problems, The analysis of these problems, using the theory of 

anisotropic elasticity, results in a better assessment of the 

behaviour of the materials under load and consequently in a more 

economical design.



 



Ded) Introduction. 

In this chapter, we shall describe the fundamental 

concepts of the theory of anisotropic elasticy and its 

applications to real materials. 

The theory of elasticity is essentially a 

mathematical model devised to describe physical response 

of materials, and is based on laws of proportionality 

between stress and strain. The relation between stress 

and stain can either be linear (directly proportional) 

or non-linear, but we shall limit our discussion on the 

former case. 

The development of the theory requires that: 

a) At any point in an elastically deforming body, the 

stresses are in a state of equilibrium. 

b) The displacements are continuous within the 

boundaries of the body. 

Additionally, the bodies to which the theory is apolicable, 

are assumed to be continuous homogeneous media; and 

that all elastic deformations take place under isothermal 

or adiabatic conditions.



2.2) State of stress in a body. 

The state of stress at a given point of a body is 

uniquely determined by six stress components on three mutually 

perpendicular planes passing through that point. 

Assuming the planes to be perpendicular to the 

Cartesian coordinate axes X,Y,2: 

a) the normal stresses in the X,Y,Z directions are denoted 

by Oy» oy G respectively; and are assumed to be 

b) 

positive if compressive and negative if tensile; and 

the shear stresses on XY, YZ, ZX planes are denoted by 

a respectively. 
xy? Ty2? Tax 

The stress components satisfy the equilibrium 

eqnations, which in the absence of body forces reduce to: 

  

  

ce + oy + ore =0, 
ox oy a2 

ey 4 Oy. + Tye 0, ee 
ox oy a2 

a + ys + OE = Oo 
ox oy dz 

At points on the boundaries of a body, the stress 

components should be in equilibrium with the externally 

applied loads. This condition is expressed by the following 

  

relations: 

pee eet ny T +5, 7 oe 

Sh og ee eg 
Ty x "xy ty Y 2 "ys? 
tT, = Bx tex T ny Ty, HID) NG) 

where Th» Ty tT, denote the components of external forces 

per unit area in the X,Y, 2 directions respectively, and 

ny ee) n are the direction cosines of the outward normal to 

the boundary at the point considered. 

The displacement of a point in a body undergoing



2.2) 

253) 

7. 

contd. 

elastic deformation is represented by three components 

u,v,yw in the positive X,¥,Z directions respectively. 

The state of deformation in the neighbourhood of 

a given point, is characterized by six components of strain, 

which can be expressed in terms of displacements u,v,w. 

In the case of small strains, when the derivatives of 

displacements are small compared with unity, the relations 

are: 

= & oe ot ao Cet Yay = ot ee 2 

ov, ov aw 

sy Ria WE Aa 8 2.25 
= a a. a yg 

Pa) gnc? Yeeouear an? 

where &,, > &, are the normal strains in the X,Y,2 

directions, and Yay? Yyn? Yor are the shear strains on 

XY, YZ, 2X planes. 

For the integrability of equations (2.2-3), the strain 

components should satisfy the compatibility conditions ex- 

pressed by the following six relations: 

  

Pe. ce Py. x + xe xy 2.2-4. 

a 0: oxay F 

2d ee Z (- %ya + Yen + Vay | . 
ay az Ox a oz 

The other four equations can be obtained by interchanging 

the subscripts x,y,z in cyclic order. 

Stress-strain relations and energy function. 

The effects of the elastic properties of the body 

on the stress and strain distribution, are introduced by 

the stress-strain relations, The relations are based on the 

generalized Hooke's law, that each component of strain is 

a linear function of the six components of stress, Thus 36



2.3) contd. 

independent constants of proportionality are necessary for the 

most general linear relation between stress and strain, 

In matrix form the relations are: 

    

[* Gag iCag | bag Wee Cag] oO; } 

ed Cas . oy | 

&, = |esa : oy 23-1 

Vy : Ty2 

Vox * : | = 
oe ee we wee Cc Yay Ces 66 Tay 

The 36 constants C5 5 (for 5. 3144659) = 1eec6)) waa 

be referred to as elastic compliances. Existence of a strain 

energy function W, such that 

a wl o. = ae, , y dey eos CtC, 

gives 

Cee Cia ’ 2.3-2 

thus reducing the number of independent elastic compliances to 

21. 

For an elastic material, the form of the compliance 

matrix Rig changes with the choice of the reference coordinate 

system. 

The energy function can be employed as a criterion 

for the distinction of materials into isotropic and anisotropic 

categories. If the strain energy function remains unchanged 

for a rigid body transformation of the reference coordinate ; 

system, the material of the body is said to be isotropic, 

otherwise is called anisotropic. 

2.4) Elastic Symmetry 

When a body possesses symmetry of internal structure, 

its elastic properties expressed by means of its elastic 

compliances, should show this symmetry, and the stress-strain



9. 

2.4.) contd. 

relations for the symmetric cases should be identical. 

To ootain relations between the elastic compliances, 

introduced by the elastic symmetry of the body, one has to 

consider the strain energy function. For the symmetric cases, 

the strain energy per unit volume should be the same; and for 

the equality to be fulfilled some of the elastic compliances 

must be equal to zero. 

We shall limit our discussion to only the following 

cases of elastic symmetry: 

1) Orthotropic symmetry, 

2) Transversely isotropic symmetry, 

3) Isotropic symmetry. 

2.4.1) Three planes of elastic symmetry (orthotropy). 

An orthotropic material is one which possesses 

three orthogonal planes of symmetry. If the axes of 

orthotropy (perpendicular +o the planes)coincide with the 

reference coordinate axes X,Y,Z, the stress strain relations 

(2.3-1) reduce to: 

ey Gran Van a6 [% | 

¢ Cc, c. Sy. a4 a2 as oy 

&, a Coa Casa Cas oO, 24-1 

Yyz Caa Tyn 

Yox Cs5 | iS | 

7 Yay, Pane avy. 

It is convenient for purpose of comparison to 

introduce the following definitions of the elastic compliances 

©5 53 we shall write (2.4-1) as:



2 .l-e1) 

10. 

    

contd. 

ze v. v 
ey E, ™ ax + OF 

J z 

Te 2 eee = &| = ~ i, oe gy 2ek-2a 

x Z 

~~. - v. eli &, a yZ 5 a, 

x By y D 
and. 

1 Y, — re Ya Gye yz 

y, Fi = F 2.4-2b 2x 2x 2x 

y ak. fe 
G. xy oe Ba : 

where 

B; : Young's modulus in i-direction, 

My 3 Poisson's ration - Ratio of strain induced 
in j-direction by strain in i-direction, 

&i5 3 Modulus of rigidity between i and j 
directions. 

From the symmetry requirement (2.3-2), it follows 

that: 

Uxy = vyx 3 ex = Yxn ; vay = Mya. 2eh-3 
By BY Ey B gy By 

The engineering elastic constants must satisfy the 

following conditions (see B,M.Lempriere (1968), 

BBE Gy GyyrG 20 » 2 haha 
4 

"a3) < (8, /8,)? 5 2.heyd 
vod 

a = Yoey Yy°¥ ax a eS 2.4-4e 

For orthotropic bodies, nine independent elastic 

compliances or engineering constants are necessary to describe 

its elastic behaviour.
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2.4.2) One axis of elastic symmetry (transverse isotropy). 

  7 

Pig.2.1 

A transversely isotropic material is one for 

which there exists a preferred plane (XZ) (see Fig.2.1), 

and the form of the strain energy function remains un- 

changed for rotation of the reference coordinate system 

about an axis (Y) normal to this plane. Consequently, all 

directions in the preferred plane are equivalent with respect 

to their elastic properties. 

For a transversely isotropic material therefore, 

the stress-strain relations (2.3-1) reduce to: 

eign ee we badd) ae [es 
x EE Ky Mc 

phe ae. 1 v. 2.4-5a 
8 [Fl- a Eh ae Sy g 

By. J By 

By alae oe ee 3 o, 
By. E x ‘y ’ 

and 

sale - 
‘yn oy yz 

— 264-50 
Yox| = Gor x2 

ene a 
ay Soy D0 

Again, for symmetry of Ra 38 

v. 

ew = Pye 2h-6



2.4.2) 

2ahe3) 

12. 

contd. 

In the plane of isotropy: 

= = B - EB, = 5, and G = x ; 224-7 
2(l+ v__) 

XZ 

thus reducing the number of independent elastic constants to 

five. 

For transversely isotropic materials, equation 

(2.4-4a) should be satisfied and additionally: 

-l< ve * 1l- XY oa Rie 2.4-8 

Complete symmetry (isotropy). 

For an isotropic material, the strain energy 

function is independent of the choice of the reference 

coordinate system, and only two elastic constants are 

necessary for a full description of the elastic behaviour 

of the material. 

The stress-strain relations are: 

Z az ay 
Les E Eg E ox 

. a i -2 = &, es |- 3 E 7 a 204-9a 

v v i 
*: ae ate B % 

2.4-9b 

mi
e 

al
e 

—
—
$
—
1
 

a 
4 

Ss S 

: 
x —
—
e
 

P
i
r
 

a
s
s
 

= 
a 

8 

E aaa 224-90 

For isotropic materials, equation (2.4~8) 

reduces to: 

=< pre 0a5~ 2.4-10



13. 

2.5) Plane stress and plane strain, 

  

  

  

        

NN
 

  
Fig.2.2 

Plane stress or plane strain is assumed to exist 

in a certain plane (say XY plane; see Fig.2.2). 

For plane stress conditions, the components of 

stress are taken to be the average values of the stresses 

over the thickness'b'of the plate. The value of o, is 

negligible as compared with o, o 
ren) Ty 

assumed to be equal to zero. 

and therefore is 

For plane strain conditions, the displacement 

w in the Z-direction is zero; therefore: 

Be 106 

For an orthotropic body under plane stress con- 

ditions, the stress-strain relations (2.4-1) reduce to: 

ih v, 
& Boanin ie ge 9 o 

y 
5] ~ Pay z 0 g, 2.5-1 

E E x 7 
a: 

QO 0 — 7, Vary om xy Jy 

and for plane strain conditions:



265) 

dhe 

contd. 

e = — vax “x2 o vy iv Vax' yn o = x x! - x yf 

x x 

vi o+v ov. lev ov 
&=-_ as xe 0, + 2y yz oy ; 2.5=2 

B: y 
i eric cae eee 

xy xy W 

Equations (2.5-1) and (2.5-2) can be expressed 

in the following form: 

&, | baa faa 0 o, 
as fas faa 0 % 25-5 

0 0 & Ka 66 Ty 

where 435 can take their appropriate values (from equations 

2.5-1, 2.5-2) depending on whether the body is under plane 

stress or plane strain conditions. By writing the stress— 

strain relations in the form (2.5-3), we establish mathematical 

equivalence between the plane stress and plane strain conditions. 

For a transversely isotropic body, os for plane 

stress are specified by equation (2.5-1), and for plane strain 

are given by: 

1+? vy (1+ 
  

fa, = x2 ? fag = - Lyx Yan) | . 25-4 
BY x 

faa = 1 yy > fee = = . 2.5-h. 
gE xy 

For an isotropic body under plane stress, we 

have’ 

i 2(1. 
fan @ Pua 8 Gy fs— * -% » %e6 = 2s) 2.5-5 

and for plane strain conditions: 

oe 2 > 

fais tan = SR, tag = - HO), 20s) 2.5-6 
The 2-Dimensional equations of equilibrium (2.2-1) 

(valid for plane stress and plane strain), take the form:



2.5) 

2.6) 

15. 
contd. 

Bet ay =. 0 
my 

2.5-7 
+ 2%) = 0, 

a al
a 

and the compatibility equation is: 

a 2 a eS ie Pe - ay. I 2.5-8 

oy’ ox oxoy 

Differential equation in 2-Dimensional elasticity 

and constants ky and ka. 

We introduce a stress function @(x,y), such 

  

that, the stress components given by: 

_ 8 . ee = eee 
Oar % = ae? Ty = Seay? 2.6-1 

identically satisfy the qquations of equilibrium (2.5-7). 

Using these equations (2,6-1) and the stress- 

strain relations (2.5-3), the compatibility condition 

(2.5-8) can be reduced to the fom: 

4a 4 

faa 3 + (2ls2 +06) sep + a4 a = 06 2.6-2 

Assuming that fg, 4 0, the above equation can 

be expressed in the following form: 

Fo ae /P% Po (at! He) Cee + ke? or " o 2.6-3 

where 

key? tp? = Sd ona k,® + ky? = Saatbes | 2.6-k 
faa faa 

The constants k, and kg may take real or imaginary 

values (Green & Taylor (1939), Leknilskii (1963)), 

but for the present discussion we shall assume that they are 

real and positive, as this is the case for a large number of 

materials (see Table 2.1). 

Making the substitutions:
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contd. 

2b4att, é = Saat =6s - a pa laa and pa tea? 2.6-5 

we have: 

ny? | ——s—— 
s }- pr + pa” pa » 2.6-6 

Ka 

with pz > O and Dae 2 Pae 

For plane stress conditions, p, and pg can be 

expressed in terms of the engineering elastic constants 

in the following form: 

B-2i & Ez 
fa = a Vy WV PRN = oY 2.6-7 

2G. Eo 
xy = 

For isotropy, 

Pa =~2 = 1, and from equation (2,6-6) 

Ki ke Sh Ly 2.6-8 

It can be shown that equation (2.6-8) is also valid for plane 

strain conditions. 

The variation of k,? and kg” with pi,pa is 

shown in Fig.2.3. From these graphical results, we make 

the following observations: 

i) A material can exhibit anisotropy, with either one of kor k, 

being equal to unit independently. 

ii) For a given value of p,, there are upper and lower 

limits for ki? and ka*, such that 

pi & ka” © 2px, Ove kee < pa. 2.6-9 

iii) Since the parameters ky and ka (or pa and pa) 

are independent of each other, a straight forward 

comparison between orthotropic materials as to their 

relative degree of anisotropy cannot be made. Never- 

theless, it can be deduced from the graphs that, the 

more k, AND kg deviate from unity, the more anisotropic 

a material becomes.



  

    nue 2 ied. f 
FIG. 2.3 Variation of ki ké with e, & e
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2.8) 

17. 

Transformation of the compliance matrix. 

In Section 2.3, it was mentioned that the elastic 

compliances BSG of an anisotropic body, can be defined for 

a specific orientation of the reference coordinate axes 

relative to the body. 

For a new orientation, expressions for the elastic 

compliances can be obtained in terms of the compliances of 

the original system and the angles of rotation of the axes. 

Lekhnitskii (1963) formulates the derivation of the 

expressions for an orthotropic body under plane stress 

conditions, using the strain energy function. In terms of 

the engineering elastic constants, the expressions in their 

final form are given by Lekhnitskii (1963) and Ogorkiewicz (1973). 

For reference purposes are reproduced in Appendix [1]. 

Of particular interest is the effect on ky and kg 

of 90° rotation of the axes. It can be shown (see 

Appendix [2]), that for the new orientation of the reference 

axes: 

Pheer is thee saat 

ie egestas ae nan 2.91 

' ' 

where ky and kg are the orthotropic constants of the material 

for the new orientation, 

Anisotropic materials. 

Anisotropy, as a mathematical model for the des- 

cription of physical response and behaviour of materials, 

generally stems from non-homogeneity in the microscale 

structure of the material. 

Examining various anisotropic materials, either 

naturally occurring ones,like the different types of wood, 

or artificial ones, like reinforced plastics or plywood,
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18. 

contd. 

we observe that on the microscale are non-homogeneous. To 

treat them as such, is a complicated lengthy process and 

from an engineer's point of view, rather impractical. 

The problem can be very much simplified by assuming 

the materials to be homogeneous on the macroscale, but with 

different properties in different directions, thus intro~ 

ducing the concept of anisotropy to explain the effects 

of microscale non-homogeneity. 

The basic assumption of "homogeneity on the 

macroscale" is always open to question as to whether it 

is justified or not. For a specific problem, that would 

depend on the ratio of length parameters characteristic of 

the 'macro! and ‘micro! scales. 

On the microscale, the length parameter Astevo? 

should represent the non-homogeneity of the material (e.g. 

diameter of reinforcement in composites, thickness of 

laminations in wood, etc.). 

On the macroscale, the length parameter Aone? 

should generally be equal to the "unit length" of the 

particwlar problem (e.g. the width of an external load; the 

distance from a boundary that the load is applica, etc.). 

Now, if 

Anicro 
——— ec 1, 
macro 

the assumption of homogeneity on the macroscale is usually 

justified. 

In view of the experimental work to be undertaken, 

we shall limit our discussion on a certain type of non- 

homogeneous materials, namely orthotropic composites, that 

can frequently be treated as homogeneous, anisotropic and
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“ “ “ . 
continuous media. 

2.9) Composite materials. 

    

  

  

        
    

eoeeoe 

eeee 

eeeoe0 3 

a) Reinforced b) Laminated 

  

Two types of composite materials will be con- 

sidered, and are shown diagrammatically in Fig.2.4. 

a) 

b) 

ii) 

iii) 

Reinforced materials. 

One material (reinforcement), in the form of 

rods or fibres, is embedded into another (matrix) to 

form a continuous medium. 

Laminated materials. 

Two or more different materials, in the form of 

laminas are joined together on their flat surfaces, in 

alternating sequence, to forma continuous medium. 

In both cases, it is assumed that; 

The constituent materials are homogeneous, isotropic 

and linearly elastic. 

The displacements are continuous over the mass of the 

body. This implies that there is no slippage at the 

interfaces between the constituent materials. 

The stresses are continuous in the composite body. 

Obviously, this assumption is not justified locally, 

but since average stresses are considered (being the 

object of the anisotropic elasticity approach to 

non-homogeneous materials), continuity is onsured. 

196
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contd. 

iv) The longitudinal dimensions of the composite material 

are very large compared with the diameter of the re- 

forcement or the thickness of the laminations. 

The advantages that such combinations of materials 

offer are many, but is not in the scope of the present work 

to analyse them or to treat composite materials as such. We 

will concentrate on the assumption that the theory of 

orthotropic elasticity can predict their behaviour by 

treating them as homogerieous, continuous media, 

Blastic constants of composite materials. 

ee am 
(2) 

(2) 
(2) 

  om   

  

          

  

The elastic constants of orthotropic composites, 

can be predicted with a certain degree of accuracy from the 

elastic properties of the constituent materials, taking into 

account their geometrical configuration. 

We shall limit our discussion on the case of 

orthotropic composites which consist of two isotropic, 

linearly elastic materials, denoted by the subscripts (1) 

and (2) (see Fig.2.5). The two principal directions, parallel 

and normal to the direction of the reinforcing fibres or 

layers, will be denoted by the subscripts '€' (longitudinal) 

and 't* (transverse) respectively.
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21. 

contd. 

There are three basic techniques for the 

determination of the elastic constants of a composite 

based on: 

a) The mechanics of materials theory, 

b) the theory of elasticity, and 

c) bounding techniques using variational principles of 

the theory of elasticity. 

Techniques (a) and (b) can be applied to re 

inforced and to laminated composites, while technique (c) 

is usually applied to fibre-reinforced composites which 

require a more rigorous approach, due to the many variables 

involved (e.g. type, shape and distribution of fibres in 

the composite). 

We shall now present a summary of the formulae 

used in the prediction of the elastic constants of composite 

materials: 

1) Prediction of E,. 

Regardless of the theory used, it is generally 

accepted that the law of mixtures given by the equation: 

EB, = v1 Ey + va Ea, 2.10-1 

where v4 and vg are the volume fractions of materials 

(1) ana (2) respectively, is a good approximation for 

the longitudinal modulus, Equation (2.10-1) can be 

derived using the mechanics of materials approach with 

the assumption that plane sections remain plane during 

deformation. 

2) Prediction of Eye 

Using the mechanics of materials approach and 

assuming that both materials are subjected to the same
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2.10) contd, 

2) 

3) 

contd. 

transverse stress ops it can be shown that: 

-—sBa_ , 
t= Save tev. 2.10-2 

Ekvall (1961), introducing a biaxial slate 

of stress in conjunction with the mechanics of 

materials theory, obtained: 

2 lm ym me (Bie)? 
° 2.10-3 

Be Beg Re (v8 /eae,) 41) 

Tsai (1961) developed an expression for Ey» 

for reinforced composites, by considering circular 

fibres and representing the surrounding matfix material 

as cylindrical inclusions. 

Tsai's equation is: 

By = 2[1 = va + (va-va)va] { 

K +Gy )-Gp (K. y; 
a) ae 

Ky (2K, +6) +G4 (Ky-K, )v, 
c Se oe . + Ka +Ga)-2(Ka-Ki va ie 2,.10-ha 

where K, = B,/2(1-v1), 

Kg = B,/2(1-va), 2.10=4b 

Qyes B,/2(1+va), 

Gy = By/2(1+va), 

and C is a contiguity factor which varies linearly 

between C = 0 for isolated fibres and C = 1 for fibres 

in contact. 

Prediction of Yer 

Using the mechanics of materials approach, it 

can be shown that:
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contd. 

3) contd. 

Yon = V4 Va + Va Va. 2.10-5 

For reinforced composites, Rosen et al.(196,) 

using the variational bounding method, found that the 

bounds on You coincide for random arrays of fibres. 

Their expression is: 

= Nakslyt+vaRalay si Yee Rea ea 7 2.10-6a 

where 

Lg = 2v,(1 = va*)vat va(1+va) va, 

Ig = va(1 - va - 2v,") 7 2.10-6b 

Lg = 2(l<vg")va + (1l+va)va. 

Tsai (196), using the same technique, along 

with the contiguity factor C, obtained the following 

relation; 

V4 (2a +Gg ) Ka va (2K +6, )v, 
Yee = C0) Ae Coes) Ge qk ] 

Vg (2K 4 +4) vo 4Kyv. +G4 )v; 
a f Ka (Ka+Ga)+G1 (Ka-Ki ) va i 2610-7 

where the various terms are defined by equation (2.10-Ub). 

4) Prediction of Gey 

Using the mechanics of materials approach and 

assuming equal shearing stresses in the constituent 

materials, it can be shown that: 

Giles ie uegGaa cS Met vaGanvata oe 

For random arrays of fibres, Rosen et al.(1%6\), 

using the variational method obtained: 

Pe Gy (1+ vi)+ Gave | Gee = & | Geter a oe 
Finally, Tsai (1%) developed an expression 

for Gp, , in the following form:



  

2.10) contd. 

4) contd. 

\ 264— he 
Gy = (1-6) Ge eee | 

+G3)=- Ni + 0 (ase ee 1 2.10-10 

eee « ; By 

om ape a: cpeeiheear > ratio vy, can be 

Ooi Bees chy cer B eens Biya y      
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3.1) Introduction, 

A solution to the problem of an infinite isotropic 

elastic plane, loaded over its thickness by a concentrated 

line load applied parallel to the plane, has been developed 

by Flamant and Boussinesq (1892), The analogous solution 

for the orthotropic plane has been developed by Conway 

(1953a). 

Since Conway's solution is employed in the 

ensuing chapters, we shall present here a brief summary of 

the infinite plane problem and in particular tha case of the 

infinite plane loaded by a concentrated force; by a moment; 

and by two equal and opposite concentrated forces acting a 

small distance apart. 

3.2) Orthotropic infinite plane subjected to a concentrated force. 

  

  

  

    WY, 

(b) 

  

Fig.3.1 

The problem of the orthotropic infinite plane 

subjected to a concentrated force, is shown diagrammatically 

in Fig.3.1la. 

The force P/unit thickness, is applied at the 

origin of the coordinates 0, in the positive X-direction. 

The axes of orthotropy are assumed to coincide 

with the reference coordinate axes.
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O%(Xsy) 

o, (x,y) 

26. 

contd. 

It may be verified that the general form of Airy's 

stress function: 

° -@ ea ~ oY. 
-[% (s Bea oe, ein ey of) singx ag 5) 

where Cy «e. Caare arbitrary constants, satisfies the 

general differential equation (2.6-2). 

From (3.2-1), the stress components are given by: 

ic re ‘ Sa, a ae 7. Sa, ze + Sa *) singx df,  3.2-2a 
4, 2 - 

oO 

Ka 

uw 

» ni cata 
[emia cB ak nti Face a, 3.2-2b 

° 

1 

2 &y 
Tygy (59) a (a ote 2 e 9 - 2 & - - ) cosgx dt, 3.2-2c 

° 

The boundary conditious of the infinite plane re- 

quire that the stresses should vanish at y = + «, and this 

implies: 

Co = Ca = Oo 5.2-3a 

The remaining constants Cy, and Cg, can be determined 

by stress and displacement conditions on surface (%,0): 

Considering the infinite plane as composed of two 

half planes Y > 0 and Y < 0 (see Fig.3.1b), each loaded by a 

concentrated tangential force P/2 at (0,0), the stress boundary 

conditions can be written in a Fourier integral form: 

P ; 
Ty (0) = oY if ae as costx df. 3.2-3b 

co an 

From symmetry, the displacement boundary condition 

iss 
v(x,0) = 0. 3.2-30 

Equation (3.2-3b) in conjunction with (3.2-2c) gives:
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Cy Cae a 
iS + ican wape 3.2-ha. 

The displacement v(x,y) can be obtained from the 

indefinite integral: 

v(x,y) = [4 ust [uve fae, 

and: for v(x,0) = 0: 

faa(Gikit Cake) = C19 Ce + im) 3.2-4b 

Cy and Cg, evaluated from (3.2-4a and b) are given 

  
areal P “ a_ Lia), a_ £42 (o4s oa = ogi”) [m6 (ee we) Ka (ka gay]. 3425 

Substituting the expressions for the constants 

Caeee Ga from (3.2-3a, 3.2-5) into (3.2-2), we obtain: 

ue ee 
[a3 oy | Shay: ae me) 

[eserssen x(lexéssrtatas Cae) ] ’ 32-62 

  

  

where 

2 

Oy Bhs. far 4 atin o aoa foe ee 
keys 
3 

and n= a. 3.2-6b 

In the case of the concentrated force being applied 

in the positive Y-direction, the stresses are given by: 

P 
Os 5 T. ee 

ene 2n(k,?—ka”) 

[2 (se gua Kees) s y(k1° éa17Ko°é12); x(i6a° ga anko® Ex) | } . 3.2-7 

where bs; are defined by (3.2-6b).
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3.3) Orthotropic infinite plane subjected to two equal 
and opposite forces acting a small distance apart. 

  

  

    
(a) (b) 

Pig.3.2 

The solution to this problem (for convenience 

we shall refer to this as the "unit pinch" problem), 

shown diagrammatically in Fig.3.2a, can be obtained as 

a superposition of two concentrated force solutions ,given 

in the previous section (3.2). 

The stress components are given by: 

lo, OTe = a m*) {as val ta; wis? P4 ;-1a?s] 
(ky = 
  

* a4 Ta [eas key? FQ 5 ia*3| 

+ aa ral f13 -ka*f1; ~xa?x| 

+ Oa val-t5 Ka*fa; ia?x| |: 3.3-1 

where 

ea oy Ka(1-n ka?) /2, 

fa ae ka (1-71?) /2 , C
S
A
)
 

" 4 I+
 y .
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wa aot 

oe }: [is?a? +(y 4 o)*]. , ia . [a2 +(y + D)? i. , 
va M%, 

Sasa 
Tt lane 

Aty =0 

G,(x,0) = = as {exe See ee } 5.3-2 
aks#= kg") ka ?x? 4D? kg?x?+D 

and since 

- 2% o k, 

| e * costx dt = , 303-3 

° aa eee 

equation (3.3-2) can be written in the following form: 

me elope be i 
anna {/ (ax KL apes ig cosgx as | By 
y m(ky2= ka?) i 

  

The above expression for (x50) 5 will be used in 

section (4.7) to develop a solution to the half-plane problem 

loaded at the interior by a concentrated force P, normal to 

the boundary and at point (0,D). 

When the concentratéd forces are applied as shown 

in Fig.3.2b, the stress components are given by: 

[o,5 os ray| a So xky? 5 -f4 

+ cara x3 =xk,? ; “ 

a, 
+, ee xka* ;-f1 

+ aara(x 3 *; 2] 5.3-5 

The expression for the shear stress Tey? for 

y = 0, can be modified, by substitution of equation (3.3-3), 

into the following form:
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x 
BL oberg: By) ee Ty (40) = ce cet (fe +7 e ‘post a | 523-6 

° 

3.4) Orthotropic infinite plane subjected to a moment. 

  

    
(a) (») (ce) 

Fig.3.3 

A solution to the problem of an orthotropic infinite 

plane subjected at the origin to a moment M, can be obtained 

from superposition of a set of concentrated force solutions 

(see Fig.3.3b and c). 

Equal and opposite forces P and -P are aperied at 

distances '‘h'apart. The distance th'is decreased in such a 

way that as h + 0, Ph remains constantly equal to ¥. 

The resulting stresses are given by: 

olay) == Ezy —— + —a»— |, Zelda 
(ka? x? +y?)? (ka? x? 4y? )? 

M k,§ 
Gilxy) = = xy [ — oo 3.4—1b 
a a (ka?x84y9)? (kg 8x®+y?) 

2,2 2 2.2 2 7 

Ty (2.5) = ie [ ey (ca*atmy") , Ka (ca xy") | 3.h-1e 
(272? 4y?)? — (ka®x?+ y?)? J 

For an isotropic material (i.e. ki= ke= 1),
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equations (2.4-2) reduce to: 

[pe ty | a ae aya ieteyt 
(aay? | 

  

(Bay?) a(t ay?)? 
Sol?



of cement 
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Introduction. 

Problems associated with isotropic semi-infinite 

bodies (henceforth referred to as half-plane problems), have 

received considerable attention. 

Flamant (1892) obtained a solution to the problem 

of a half-plane subjected to a concentrated force acting 

normal to the boundary, while Michell (1902) extended the 

solution to the case of a uniformly distributed load. Several 

cases of distributed loadings on the straight boundary have 

been discussed by Carothers (1920). 

Similar solutions were obtained for anisotropic 

or orthotropic elastic bodies by Lekhnitskii (1963), 

Green and Taylor (1939), Okubo (1951), Brilla (1962), 

Conway (1953a), Akoz and Tauchert (1973) and others. 

Conway (1953b) developed a solution to the ortho- 

tropic half-plane subjected to concentrated forces applied 

at the interior; and recently Saha et al. (1972) investigated 

the same problem for a generally anisotropic material. 

Several cases of rigid body indentations on the 

straight boundary of the half-plane have been discussed by 

Okubo (1940), Sen (1954), Conway (1955) and Brilla (1962). 

In the following sections of this chapter we shall 

summarize solutions to various "half-plane" problems, which 

will form the basis for developing solutions to a number of , 

problems in the ensuing chapters, 

Unless otherwise stated, it is assumed that the 

material of the half-plane is orthotropic, with the axes of 

orthotropy coinciding with the rectangular coordinate axes. 

The general method of solution is based on the 

use of Fourier integrals to represent the externally applied 

loads (see Conway (1953a,b), Lekhnitskii (1963)).
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The assumed stress function @ is of the form: 

(x,y) = [ em) cosgx dt, hel-1 

6 

where £(€,y) depends on the roots of the characteristic 

equation (2.6-4). 

For ky,ka real and positive (see Lekhnitskii (1963)): 

~al . 

£(0,y) -@ (* >t + Cn, e *). 41-2 

422) Concentrated force normal to the boundary 

  

Fig.4.1 

The orthotropic half-plane (occupying the region 

=~o<x< +0 and 0 <y <+o) is subjected at its free 

boundary to a concentrated normal force P/unit Detinenes 

acting in the positive Y-direction (see Fig.4,1). 

It may be verified that the stress function 

© aae 
@ -| a (% ae Cae cosfx dg , de 2-1 

° 

satisfies the governing differential equation (2.6-3). 

“The constants C, and Cg can be determined from 

the following traction boundary conditions: 

i) The normal stress on the free boundary is zero at all 

points, except point (0,0) where it is infinite. To
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4.2) contd. 

i) contd. 

overcome the singular behaviour at the point (0,0), we 

may assume that the concentrated force P is equivalent 

to a uniformly distributed normal stress p, symmetrical 

about the Y-axis and of width 2c, such that the total 

load is given by 2pc. As c +0, the total load remains 

constant and equal to P. : 

This condition can be expressed in a Fourier 

integral form (see Conway 1953a): 

éimit Pf singe g,,(x,0) States aaa cosgx df. 4..2—3a 

- ° 

ii) The shear stress at any point on the free boundary is 

equal to zero, 

Txy(¥20) = 0. 4..2—3b 

The components of stress can then be obtained through 

equation (2,6-1) in the following form: 

. . s ( 4+ a 2 3. 

[ss re tere [ers rem | Same 

The displacement v in the Y-direction can be 

determined by integration of the stress-strain relation 

for 6.3 
y s 

v(x,y) . (C120, + faac,)ay + f(x). 4 2-5a 

The function f(x) may be shown to be a com tant, 

and we shall assume that it represents rigid body rotation. 

Therefore: 

. - 
v(x,y) = aleacka) {esentistatay”) - tata (ka? ay*) | + const. 

where
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€, = laa x ~ és , for i= 1,2. 4..2-5e 

At the boundary (y = 0): 

v(x,0) = oy {eetiks-tatnatton(ie*-Ka*)En[x| | + const. 
42-6 

Away of interpreting the arbitrary constant is 

to make the displacement v at a point on the boundary 

x= + a, y = 0, equal to zero, such that: 

v(xj0) = © taa(Kitie) ta 
  
= | he2-7 
a 

Concentrated force tangential to the boundary. 

  

  

The orthotropic half-plane Y > 0 is subjected at 

its free boundary to a concentrated tangential force P/unit 

thickness, applied at the origin of the coordinate axes and 

in the positive X-direction (see Fig.4.2). 

The assumed stress function is: 

0 _& - & 

e= | ze (% o 4 Ca e o singx a. 43-1 

oO 

Expressing the concentrated tangential force in 

a Fourier integral form, the boundary conditions for the 

half-plane are;
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9, (x50) =10) 4 5-20 

_ ¢imit P f singe re Ty (240) Fe ge eS cosgx af , 4..3-2b 

and the components of stress can then be obtained in the 

following form: 

8. a | = —P Kiko (Kyte) 205 2y75 UY). badn3 
[> 5 Ty5 ta Mi m(ky?x? +y? ) (eg? x? +y*) 

el) Uniformly distributed load normal to the boundary. 

Pfinit area 
  

                
0 x 

28 
      

    
ai 

Fig 4. 

In this case, the orthotropic half-plane is sub- 

jected at its free boundary to a normal uniformly distributed 

load of intensity p/unit area and width 2£, applied ~ 

symmetrically about the Y-axis (see Fig.4.3)o 

A solution to this problem can be obtained by 

treating the uniformly distributed load as a series of closely 

spaced concentrated forces, and by integrating the expressions 

for the stresses (4.2-4) between the limits -¢ and +¢. 

The stress components are then given by the following 

relations: 

T 5 

[534,375] ~ “T(ka-Ka ) (é = Z) i(Ta-Th la )5 2 o()| cee 

, 

where
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contd. 

i tan, ks (xt¢) tart HiG¢) | por i= 1,2, dele 2a 
iv : % 

and + 
e = 

t, = “i, t) = yee? (xtC)*. for d= 12. hehe 2b 
* = * 1 

t, 
2. 

The displacement v at any point (x,y) is then given 

by the following relation: 

a Tee; T,2. 

tea) * acy CAE es) > 
hs eles lines a [(xte)en we (x-€) én cm | 

1 

ni
s [(xre)en + * = (x-€)én t, | ] + const. 

Yolind 

where ¢, - €ag k,"-¢sg , for i = 1,2. 4 4 ? 

For y = 0, equation (44-3) reduces to: 

v(x,0) = | { 26(€,nky—la lta) + 

(€1-€a) [ oe) en(ae)—(x-t)en(e-6)| | + const. 

teem h 

The arbitrary constant in equation (4.4-4) can be 

eliminated by considering relative displacement v(x; 0) between 

points (x,o) and (0,0), 

ae v,,(x,0) = v(x,0) ~ v(o,0), 

such that 

v(x, 0) = E ta atca)} (x+€) ea re| (0-6) en] xt ~2¢ ent | beled
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4.5) Uniformly distributed load tangential to the boundary. 
  

22 
Q/unit area 

x 

Y 

Fig .4./ 

In this case, the orthotropic half-plane is 

subjected to a uniformly distributed shear stress of 

intensity q/unit area and width 2€, applied symmetrically 

about the Y-axis (see Fig.4.4). 

A solution to this problem can be obtained from 

the solution to the half-plane subjected to a concentrated 

tangential force (section 4.3), by integrating the equations 

for the stresses (4.33) between the limits -¢ and +é. 

Retaining the notation adopted in Section 4.4, the 

stress components are given by: 

[563%] * z(t) | ene ape) 2 | 

e5-1 

4.6) Concentrated normal force applied through a rigid punch, 

      p(g)ag 
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4.6) contd. 

In this case, the orthotropic half-plane is subjected 

to a normal concentrated force P/unit thickness, applied through 

a rigid block of width 2¢ (see Fig.4.5). 

Let p be the pressure distributio underneath the 

block. 

Since the block is rigid, it is assumed that: 

v(x,o) = constant, for -€ < x < &, 46-1 

From equation (4.2-7): 

& 

v(x,0) = see | o(¢) en 
-t 

46-2 

  

Since v(x,o) is constant over the loaded region 

of the half-plane: 

  

  

& 

[2 a | | ag =constant, lees 

et 

Solving (4,6-3) and considering equilibrium we have: 
ce 

¥ : 4G 
We — x 

The stress distribution in the half-plane can then 

be obtained by treating the applied stress p as a series of 

closely spaced concentrated forces, of magnitude p(x)dx, 

and integrating expressions (4.2-4) between the limits -¢ 

and €. 

4.7) Concentrated force at the interior, acting in the positive 

Y-direction. 

P(x) 

  
  

  
  yi Y i) 

Fig.4.6 fe)  
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The orthotropic half-plane is subjected to a con- 

centrated force P/unit thickness, applied at point (0,D) and 

in the positive Y-direction (Fig.4.6a). 

Solutions to this problem have been developed by 

Conway (1953b) using Fourier integrals ani by Saha et al. 

using complex variables. We shall concentrate on Conway's 

solution . 

The infinite prtetrepie plane (Fig.4.6b) is sub- 

jected to two equal and opposite forces P and -P acting along 

the Y-axis at points (0,D) and (0,-D) respectively. Because 

of symmetry of loading, the shear stresses are zero along the 

X-axis; and the normal stress distribution ,°(x,0) is given 

by equation (3.3-4). 

We can nullify the normal stresses and make the 

X-axis a traction free boundary, by superposition to the 

infinite plane , of a half-plane subjected along its boundary 

to a normal stress distribution (see Fig.4.6c): 

b p(x) == &, (es 0).6 Ae7-1 

Let the indices 'b'and'c'refer to the "infinite" and 

"half" plane problems respectively. Then, the stresses induced 

in the half-plane by an "internal" concentrated force 

P (Fig.4.6a) are given by: 

Deb! b 
[34,3754] = [o 195 re | + [o,°9,°s7,° |. 47-2 

b pb i. 
The stress components oy 30), IT xy are given by 

equation (3.3-), while sy Ty can be determined by 

considering the half-plane subjected along its boundary to 

a normal stress distribution p(x). 

Finally:
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eA ere i [fas - 2. sy] [39,579] = Fk Fakg?) | (@atae)ra |fa5 —faks?5 —ky | 

+ O4r2 [-tas fak,?; x1? 

i (aa- a4) 29) 4 3 fake? ~ka*s| 

+ Gara |-fa3 faka*; Ka*x| 

+ asrs [tos fake"; ix?i?x| 

15> 
+ aare | ea; fak?; ~Ki7 ka | j ; 

4a 7-3 

where 

fa fs = ki(ksy+kaD), 
} 9 py 

fa fa = ka(kay+k41D), 

r a ra m4 
| [is?*+(o0)?] ’ }- [a®x*+(ya0)*} % 

Ta TM%; a 

=a “2 
Ts = [ks Pia 838+ (kaDeicay)*] Te = [ista?x+(ieadekay)?| ‘ 

aa = ka(1-9 ky”)/2, age = Heaton ke*) Ki- ka 2 

= ‘a2 (en s*) @g = ~ka(1~n k,*)/2, us ao * , 

é ase. ha7ale 

4.28) Concentrated force at the interior acting in the positive 
X-direction. 

  

G(x) 
  

      
  

  
    (a)   Fig.4.7
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contd. 

A solution to the problem of a half-plane loaded at 

point (0,D) by a concentrated force P/unit thickness (Fig. 

4.7a), can be obtained using the method outlined in the previous 

section. The stress systems to be superposed are shown 

diagrammatically in Fig.4.7b and c. 

The shear stress distribution q(x) (Fig.4.7c) is 

defined as being equal and opposite to T yy (20) of an infinite 

plane loaded as shown in Fig.4.7b. An expression for 

Ty (x50) is given in equation (3.36). 

Finally, the stresses induced in the half-plane 

by the concentrated force P (Fig.4.7a) are given by the 

following relations: 

ot ob Kiko a aaa Be [sping] «EB (laren pene 38] 
+ Gara [ x pox ky? 5 ts | 

+(ax+a4) 9 [—x 3 xk? 5 = #, | 

+ Gars 

+ dere | a? sansa; #4] } 16a 

QOrthotropic half-plane ¥ > 0. 

  
Fig.4.8
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In this case, the orthotropic half-plane occupies 

the region 0 & x < tw, -o < Y < +m, and the concentrated 

force P/unit thickness is applied at the origin of the axes 

in the positive X-direction (See Fig.4.8). 

The state of stress is defined by the stress 

function: 

oe | = (ss er tey ee ae! eosty af, oe 
oO 

and the corresponding stress components are given by: 

Bee) hs ne, oe 1 a: 
Deets | Tal [aI Fr] » 

Uniformly distributed loads at the interior, 

The expressions for the components of stress that 

have been developed for the problem of a half-plane subjected 

to concentrated forces at the interior (sections 4.7 and 4.8), 

can be employed to obtain solutions to the problem of a half- 

plane loaded at the interior by uniformly distributed stresses 

of finite width, 

We shall limit our discussion on uniformly: distri- 

buted direct/shear stresses, applied on a plane parallel to 

the XZ/YZ plane, 

In each case, the method of solution is the same, 

that of integration of expressions (4..7-a) or (4.8-1) between 

the prescribed limits. The uniformly distributed loads are 

of total width 2¢, and is assumed that the centre of the load 

coincides with point (0,D). 

The applied direct stresses are denoted by p/unit 

  

area, aud the shear stresses by g/unit area.
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a) Uniformly distributed direct stress applied on a plane 

parallel to XZ plane, 

  

  

                

      

  

  

oO 

Pp D xX 

28 

y, 

Fig.4. 

cbt ii cane O50 37} = ;—Kitaa 5 - gO, 3 a ee [fost [( 3 ~kaTas 5 > 

S ie : 
+ Oy (- os 3 KaTaa 5 = 

Ty, iy + (aa-ay)| Fe; miegnty 5 - He 

Ta: - La 
vm [Bes ams Be 

a ne 
+ as [- Ga + alia 3 een 

+ + 
T, L 

+ Oo [ Gb s eet, 5 - 

410-1. 

where 

+ a = tar? kyle, (xe) tant kk. (x-€) 

~ Kiyt ep eee 

i kek. (x4) 94(e, y+ kD)? 
Li; = én a) aes yl 4.10-2 

2,2 2 2 
kk (x= : ke) + (ij ytkD) 

for tS lj es je 152 

and 4 sso a4 are given by equation (4.7-4). 

b) Uniformly distributed shear stress, applied on a plane 

parallel to XZ plane,
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b) contd, 

Xx 

+ + 
[39,5745] ares a {(aa-a4) [- Be 3 Lia 5 ~ Fs | 

(eq 7=Kg*) a 

+ Og [ 2 3 Lia 3 as | 

+ + 

+(ai+as) [- 2 jeces 5 - Baa | 

ps4 [ = 3 -Laa 5 Sa | 

+ + 

mace Bb athe 5 ~ i] 
+ + 

tm Let ams |] 
410-3 

by a 
where L, , and 5 are defined by equation (4.10-2). 

c) Uniformly distributed direct stress, applied on YZ plane, 

0 
  

  

  

      28 
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4.10) contd. 

c) contd, 

oe ee [va eae Te agit, ; Ha | [exi95 Fray] =~ 2 eta) { (omnes) [Ee- -ats S | 
+ da [Bes satis Ha | 

at = 
+(a1#0) | te 3 —kaTSa 5 daa | 

Ene ane 

+a, [Tas Tis ; Ye | 
a s 

k,T a k. 
+ Oy — ~k,Tha5 ce Hs | 

2 2 

kata A at, ie Ths 
+ as Sey kaTaas ka 

410-l 

where 

+ 
T,, = tat Bye) eas Kye Oy 

J ig Ky kox Kee 
a) J 

and 

= 
me (ie, kx) 94[lc, yale (D420) J? 
Ly, = én a Ef i 4.10-5 

a) 

(ey 2) 4, yak 5 (D-£) ie 

Uniformly distributed shear stress applied on the YZ plane. 

Oo 
  

    

  

  

  
Fig.4..12
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d) contd. 

  

(astas) [= Tt. ¢ ke? Th 5 2k Fhe 

+ as [- Dees, Ke? tee oP 2 ey 

(aac) [= Tha ¢ Ma? Tha 5 2a Tha 

| 

+00 [- Tia + Me" Tan 5 2k The | 

+ I+
 

where T, qj and Ty are defined by equation (4.10-5).



 



5.1) 

48. 

Introduction. 

The analysis of layered elastic systems has mainly 

concentrated in the past, on problems related to the two- 

layer half-space, which is subjected on its plane boundary to 

axially symmetric (3-dimensional) or strip loads (2-dimen- 

sional). 

The two-layer half-space was assumea to consist 

of two isotropic elastic materials, one in the form of a layer 

of finite thickness and infinite horizontal extent, overlying 

a second material which was assumed to correspond to an elastic 

half-space. 

Different properties have been assigned to the 

layers by different investigators, who, in addition assumed 

that the interface between the layers was either smooth 

(frictionless) or rough (perfect continuity). 

Biot (1935), developed expressions for the stresses 

and displacements in an isotropic elastic layer resting on a 

rigid base for line or axial loadings. Both conditions of 

smooth and rough interface were considered. Similar results 

we obtained by Pickett (1938). 

Burmister (1943), established equations for the 

stresses in the isotropic two-layer system subjected aD a 

radially symmetric load. He assumed a value of Poisson's ratio 

vy = 0.5, for conditions of perfect continuity and zero friction 

at the interface, In 1945, Burmister (1945) extended his theory 

to the three-layer system. 

Lemcoe (1960), derived expressions for the stresses 

in multi-layer systems, which were assumed to be in a state 

of plane strain, He presented numerical results for the 

stresses in a two-layer isotropic half-plane, subjected to 

line and strip loadings, for a given value of Poisson's 

ratio v = 0.25 for both materials. Lemcoe considered a
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range of values for the ratio of the Young's modulii of the 

two materials. 

Approximate solutions for surface displace- 

ments in multilayer systeins due to circular uniform loads, 

have been developed by Ueshita and Meyerhoff (1967). 

Gerrard (1967), considered the problem of an 

anisotropic elastic layer resting on a smooth rigid base 

and subjected to a strip load. He assigned different values 

to the elastic constants of the material and in each case, 

he presented numerical results for the stresses in the 

elastic layer. 

Gerrard and Harrison (1971), formulated mathe- 

matical solutions (without mathematical evaluation) for 

stresses and displacements in a half-space, consisting of 

any number of anisotropic layers and subjected on its plane 

boundary to a radially symmetric uniform load. 

In this chapter, we shall employ Lemcoe's 

method, to obtain a solution to the layered half-plane, 

which consists of any number of orthotropic elastic layers, 

Numerical results will be presented for the particular case 

of a two-layer half-plane, which is subjected to a line 

load.
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5.2) Assumptions and Conditions, 

The assumptions and conditions necessary for a 

full description of the problem can be classified into three 

categories: 

I) Notation. 

The layered half plane is assumed to consist of 

(n=1) layers, each of finite thickness and infinite 

extent, and the on layer corresponding to a half plane. 

In general, a layer is designated by the subscript i 

(4 = 1,2 see n) (s80 Fig.5.1). 
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Fig.5.1 Layered half plane. 

II) Properties of the material. 

All layers in the half plane are assumed to be 

of homogeneous, orthotropic, elastic materials. The
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II) contd. 

axes of elastic symmetry for each material are assumed 

to be parallel to the coordinate axes X and Y. Their 

elastic properties are specified by it and ie and are 

assumed to be different for each layer. 

III) Boundary conditions, 

The boundary conditions for the layered half plane 

ean be divided into two categories: 

a) Those they deal with the half plane as a whole; and 

b) those they specify the conditions at the interfaces 

between layers. 

a) The complete layered half plane should satisfy: 

1) fraction or displacement boundary conditions at y = 0. 

2) The stresses should tend to zero as y > w 

b) The interface conditions considered are: : 

1) Perfect continuity. 

at the 1° interface (y= vy): 

sage] = ego Ay 
2) Smooth interface. 

At the i” interface: 

[ot ; | is (oi; “a 

x 

and 

5.3) Stress function. 

The layered half plane is subjected at its free 

boundary to two sinusoidal loads: 

a normal stress 

p(x) =p, cos(dx), 5.3-1
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and a shear stress 

a(x) = q, sin(Ax). 5.52 

The assumed Airy's stress function (see 

Timoshenko & Goodier) is; 

® = f(y) cos(Ax), 55-3 

where f(y) is a function of y only. 

The stresses are defined by: 

oles _ gs ie 
v= ay eS ‘amt ? "xy =~ Oxay * 5k 

Using the assumed form of @ (5.3-3) and the 

general differential equation for plane orthotropic 

elasticity: 

Pe a F\/ a FN 
(are e)(et® #) =0, 

we obtain © as follows: 

d= (ss eo 40, 0% + Ce fv 5 Ca o) cos(Ax), 523-5 

where 

a=2,P= F and Cy oe Ca are constants 
Ky Kg 

that can be determined by the boundary conditions. 

Layered half plane subjected to sinusoidal loads; Perfect 
continuity. 

é .th 
The stresses in the i layer of a layered half 

. 

plane, under the action of normal and shear sinusoidal 

stresses at the free boundary (y = 0), are given by the 

equation: 

s 3 g eC , 5ebela 

where
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contd. 

i 7 
if o% i cx | 
g = ot Gee ct 

= & 

| ct , , 
and 

ay -a.y BY. . -B.y 1 | 
vos(ar) [hes bey pte gt el 

ay -a.y B.y ~B.y 5-1 wie ~j2 cos( Ax) [ eos Suas ays oe : 

  

a.y -a.y B.y - Bp. 
A sin(Ax) [a Ce ina, @ #4 Be iB, @ # 

The constants 5 can be uniquely determined from 

the boundary conditions of the ae layer. These are: 

a) Normal ani shear stress continuity, and 

b) Compatibility of displacements at the (i-1) and oo 

interfaces. 

Since the externally applied loads are sinusoidal, 

we may assume that the normal and shear stresses on any inter- 

face are also sinusoidal. 

Let p, cos(Ax) and ay sin(Ax) be the normal and 

shear stresses on the ava interface. For equilibrium at the 

boundaries of the fa layer : 

a) on the i") interface (y = y;) 

= Py cos(Ax) 5 Top idy sin(Ax), 

1 th. b) on the (i-1)”" interface (y = Yy_4) 

eee cos( Ax); Tae = ce sin(Ax). 

Substituting the above expressions into equation 

(5.4-1), four relations can be obtained between



Dee 
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(Py Ms Pyige Qa) amd Ge : 2 

Pia 

isch ey 5 .in2a 

Pa 

af 

where 

a. AY aed Savas eine, <tt ie] 

ays 2 “O74. BY -B;Y3- a t r [ 4,6 aod a a, a5 Ae ia * 56,0 20 a 5 he 2b 

~ ~B,y 
me [ ee 3 $ as ; if a4 jars | 

LY; -a.y. By. -B.y. 
r [ ae" x ; -a,e jing 5 ; Bye Sed, i-B,e en | 

x is known (for each layer), since its elements 

are functions of a, By and the y-coordinates of the boundaries 

of the ee layer. 

Let 

daa 
4 P x 
ie kl » and p* = fi 

Then 

Bie Oe Balle3 
Assuming that |a| #0, the inversion of (5.4-3) 

gives: 

Ge eee Ball, 

where 

Ns alert. 56nd 

Let AY be partitioned according to: 

a, ws [gt
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Then, er 

: k 

eee ; tt 4 | si 
Le , 

or 

pe aes 2a ery 5al-6 

Considering the displacements at the oe inter 

face (y = ¥,), for perfect continuity, 

[ af | 2 {uit | au [ | = [vi] 5 ee? 

v5 Ya V4 Va 

It can be shown (see Appendix [3 ]), that the 

th 
displacements at the i” interface can be expressed in 

terms of the constants c by the following relations: 

[u* } eg gt sin(ax), 5 wlnBa 

V4 

[#] =¥ gi cos(ax), 5 ah-Bb 
Vi 

[wir] e yt gitt Bn) 5 seBo 

Vi 

[v4] = vi*Git*  cos(ax). 5 .h-8a 

Vy 

Substituting equations (5.48) into (5.4-7) and 

expressing the system of the two simultaneous equations, 

2 m Gea cer . 

ct = yitt gits ; 

2a
 

2s
. 

2.
..
 

@ 

in matrix form: 

an ak ita ita 
c 3

 

2a
 u ww
 

e 5lnJa
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where 

; wu 
pes [| . 5 she 9b 

Using the appropriate expressions for je and ca 

(equation 5.4-6), and adopting the notation: 

B =p a, 5 .4-10a 

and 

BY = [ : BI, 5 .4=-10b 

equation (5.4-9) can be expressed in tho form: 

Bt it # Bi te 7 eae te iS aoe co ; 

Of Lume 4 tL ee, 5.h-Lla 

whe re 

éo fT ees]. a 
ana Wie a |? Brea 5 einile 

For the (net) interface, and since J is a null 

matrix, equation (5.4-lla) gives: 

vei 2 Ace is : 

or 

ee eae chr oy © Serle 

where 
wa 

yo = [e+ J. i 5 ele12b 

By considering the (n-2) 94 interface, and the 

result (5.4-12b), we can obtain a relation between i 

and L°. This takes the form: 

fig a nant ee 5 ye l3 

The same procedure can be followed through all 

t] 
the interfaces, so that for the (i+1) h snterface Git 

follows from 5.4-12a),
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ah = gts ey Bruel 

Substituting the above equation into (5.)-lla) 

gives: 

Lite (x* + gags] Li 5 sha15 

Inverting (5.4-15) we obtain: 

i =F tae ‘ 5 4-l6a 

where 
: {ey aid 

Ff = (x +x ee : 5 elie 16b 

For i =n, equation (5.4-16a) gives 

SA 5 
but since Le = 0, being the stresses at y = w, it follows 

that for the equation to be satisfied, 

FY =0. 
ae 

Since WC and are known for all the layers, and 

and since x = 0, then x can be determined for each layer 

through equation (5.4-16b). 

It follows from equation (5.4-16a) that: 

be s F ro Fs Hii ¥ Ff ie 

or 

ie rt 1. awe 
We shall note here that for i = 0, the term = 

appears, which has not been previously defined. But referring 

to equation (5.4-17), for i = 0 the equation becomes an 

identity and ® must be the unit matrix for the identity to 

be satisfied for all values of L°. 

Once the boundary loads for each layer have been 

specified in terms of the external loads u° (see 5.4-17), 

the constants ee can be determined from equation (5.4-6):
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ct [ab ae F | yet p12, 544-18 

2 
The above equation can be simplified by making the 

substitution: 

Ae (at +a | Bot, 5.b-19a 

such that 

Cte hers 54-19 

Once the constants ¢* have been established in 

terms of the external losds, the stresses at any point in 

the half plane can be determined from equation (5.4-1). 

Layered half plane subjected to sinusoidal loads; Smooth interface. 

The method of solution of this problem is identical 

to the procedure outlined in the previous section, Whenever 

possible, the notation adopted earlier has been retained. 

The normal and shear stresses at the interfaces are 

given, as before, by: 

Py cos(Ax) and a, sin(Ax) =0, 

and the matrices “ and me remain unaltered. 

It follows that the general relationship: — 

a a ea ae 551 
as defined by (5.486), is still valid, but since the shear 

stresses are zero at the interfaces, certain simplifications 

can be achieved. 

By partitioning aS and 1s according to: 

i a 
a [a 

> 
Pe 

e
e
e
 

> 
1 " 

  

equation (5.5-1) reduces to
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ct = [at nae [P,_ at : at [ p 55-2 
ied [Rtg he | i Reaves Uae Ven 

sy ay 

and since 

Gir & a 

for i> 1 

bh i eh 
Beet Ara tasata rene a 9-9-3 

For i = 1, and since q) #0, the constants C+ are 

given by: 

aoe prepuce te = 
is a ae 5 ke, y Z Aaa Pa.’s 505k 

° 4, 

The compatibility of displacements in the Y-direction, 

at the interfaces, requires that: 

Belaeeier.- bars 
% V4 

No relation can be established between the displace- 

ments in the X-direction, since the layers are free to move 

relative to each other, 

By means of equations (5.4-8b and c), the compatibility 

condit! on (5.5-5) can be expressed as: 

cE ct = yitt cits, 5.5-6 

Upon substitution of values for c* ana ¢*** given by 

(5.5-3), we obtain: 

a) For iol, 

  

a eh B 5 
a Pua? . a ae ita?” 5018. 

where 

Bo av ks) Por 4 = 1,2) k= aye, 545-7 fa es 
7 

We note that B is a scalar quantity. 
ik
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a) contd. 

i 
ac B EO or BY #0, 

4 ; 

Ping Pet Pays : 5.5988 

where 

4 ita J ¢ ita 
-~B 

we BR om we By. 5.5=8b 
Be 4 
a2 a4 

b)) For i = 1, 

pt 4 Bt = Bt pe iL aoe 
te fou Brat veoppea Pate + eae oe 

From here onwards the procedure to determine the 

constants c interms of the external loads (PoG5)s 

is identical to the one followed in the previous section 

and therefore it will not be considered in any great detail. 

It can be shown that a relation can be obtained 

bpetween the normal stresses on adjacent interfaces, in the 

form: ; 

For 45 1, 

i PL *F Pi, 5.5-10a 

and for i = 1, an expression for Pp, can be obtained through 

equation (425-9) in the form: 
a 

= Ft Baa rs pL =F [ro = a ; 5 .5=10b 
a4 

where 

Pee eh eet os 5.5-10c 

For i = 0, equation (5.5+10a) becomes an identity, 

and to be satisfied, F° =1. 

Let 

=P av Sia qa Pp = , 
eqve o 4 ° 

ay 

5eS-i1 

the, it follows from equations (5.5-10a and b):
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-F et ppeF: Poavi 5.5 

and consequently the constants gr can be determined for all 

the layers through the following equation: 

Skea a 2 5-13 v A, Pogv. , 5.5-13a 

where 

(a : F | pean et ee 5 5-13b 
a ned 

  

Two-layer half-plane subjected to sinusoidal loads. 

The 2-layer half-plane constitutes a special 

case of the general problem described in the previous 

sections (5.4 and 5.5), and is of interest to many engineer— 

ing situations, particularly those involving design of 

pavements, embankments or continuous footings, where the 

interaction of two materials (structure and soil), 

approximately resembles the 2-layer system. 

Investigations into the elastic properties of 

soils and rocks has shown (see Barden (1963), Berry (1961), 

Salamon (1968), Pickering (1970)), that various types of soil 

(overconsolidated or fissured clays, stratified soils) and 

many rocks (stratified sedimentary, folded, faulted etc.) 

exhibit orthotropic behaviour. Similarly, reinforced con- 

crete can be treated as orthotropic material (Isenberg and 4 

Adham (1970)). 

In view of its applications to Soil Mechanics 

and Civil Engineering in general, we shall consider the 

2-layer half-plane problem in some detail. 

The two types of interface between the layers, 

namely "perfect continuity" and "the smooth interface" 

are considered separately. In each case, a solution is
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sought to the problem, where the surface of the layered 

half plane is subjected to external sinusoidal loads. This 

solution forms the basis for the treatment of’ half-plane 

problems, in which the surface of the half-plane is sub- 

jected to either concentrated or uniformly distributed 

loads. 

In the following sections, the symbols which 

refer to the second layer, namely the half-plane, are 

denoted by a dash ('), e.g. on 

The thickness h of the top layer (see Fig.5.2), 

can be set equal to the unit length, such that: 

»>ye 566-1 x = me 

h
e
 

5.6.1) "Perfect continuity" condition, 

  

      

  

    

  ¥ 
Fig.5.2 

The externally applied loads are: 

% (x, 0) =P cos(Ax) 

— Ser as 5.6-2a 
Ty (Xe 0) =q sin(ax) J, 

and the stress distribution on the interface is assumed 

to be composed of:
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Gy (%» 1) = pt cos (Ax) ] 5.6-2b 
Ty Hs 1) = q!' sin(Ax) 7’ 

Equation (5.4-1) in conjunction with (5.6-2a and b) 

Bives: 

Pp =" -° -” [es 

Ge) | Ae -Aa re ~AB Ga 546-3 
Bs wate® Lazare =)? of uqhere Cs 

qt rae® -arte"* nfo -ngorPl Icy 

A comparison of (5.42) and (5,6-3) defines A. The 

inversion of A is rather lengthy and will not be examined 

here. It is sufficient to represent the elements of the in- 

verteu matrix A by a ( 

complete expressions for as 5 are given in Appendix [4 ]. 

PE Le sssly JS. 2 coe) e The 

Therefore, we canwrite (5.6-3) as: 

where 

[ss aaa a3 aya | 

ile fileieamemce oct tale ee 
fue iin aaa bad ¥ 

The boundary conditions for the s econd layer (half- 

plane) are: 

oy, (x) @) #0, 

os (x, ~) = 0, 5.6-6a 

and 

oy (x, 1) = p' cos(Ax), 
= si 5 .6-6b 
x, 1) = ei ° reg Go 1) = at sin( v3) 

By an inspection of equation (5.4-1), we observe, that 

for conditions (5.6-6a) to be satisfied, we require:
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C, =Csa = 0; 

therefore: 

fp | ie oP!) i 
= 56-7 Lael he anata agian) Leff, 

and 

t 

Gs aaa aaa] [P*] 
iPS Sea ' | 5-6-8 

Cy Aq Aga at 
, 

' 
where agi .e. etc. are given in Appendix [4 ]. 

Considering the displacements at the interface 

(¥ = 1), we can establish the matrices D and D', in the 

following form: 

-- aoAra (2%; ov4) 
x : x 

te 5.6-9a 

byo-Mag [6% onal , BPbsa—Moa [# Fi | 
a B 

r 1 

: fate Us a, 12g! 93) <P! 1 

A : a | 5.6-9b 

Ri = |PesomatMee ooo! | Pearp'2eia eB" 
at ss , Bt S ) 

It follows that since B aD) A (see equation 

(5.4-10a), the elements of B are given by: 

4 
Gon oa (4,5 a.) » form Seen = 1 eye ky 

JFa 

and the elements of B' by: 

' ' 
le a. a5)» for ii= 1,2 4 n= 1,2,



5.6.1) 

5.6.2) 

656 

contd. 

' 
where od and a5 are the elements of D and D' respectively 

(see equations 5.6-9a and b). 

From the partitioned B and Bt (see equation 5.4-10b), 

we can determine F through the following relation: 

1 es 

r= 2[a- al. 
The constants C and C' are then given by: 

. Pp ee]- (es) (2), ne 
where 

AS = A + ALF, 5.6-12a 

and 

1 1 

Aye A, Be 5.G-12b 

We rewrite equation (5.4-lb) in the following 

form: 

a 
cos (AX) 

i . 56-13 
y= B cos (AX) 

x sin(Az) 

Then, the stresses at any point in the 2-layer 

half-plane are given by: 

os io 

[is ; s']= Ue ! we i | 5.6-lha 
[Ry : RB] cos (Ax) q 

[Ryyt Ry Jein( a) 

where 

R; sR] = (4,5 4,1 [es 85], 5.6-14b 

for J = X,y, xy. 

"Smooth interface" condition. 

The case of the "smooth interface" condition will
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not be described in detail, since all the matrices re- 

quired for the solution of the problem have already been 

given in the previous section. 

For example: 

' 
A A A,, are the first columns of Ay Ag Ay 
nad? nad? Aaa 

respectively (see equations 5.6-5 and 5.6-8). Similarly, 

Vand Y' are the second rows of D and Dt (see equations 

5.6-9a and b). 

Then 

Pe fu, 516-15 
a4 a4 

Finally, the stresses of any point in the 2-layer 

half-plane are given by: 

' = 
4 R, +B] cos(ax) | 

83 8']= ; Ee 
r [R, 5B, 1 cos(ax) oe 5.6-16a 

x -, 

[Ray Ry] sin (ax) 

whe re 

' ' 1 

(Ry 53] = [As 4], 5 8) 

for j = x,y, xy, 
' ' 

Bp > Ait AuaP ss A Ae, 

Cone eet ua q, 5.6-16b 

' 
and B59B, are defined by equation (5.6-13).
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5.7) Two layer half-plane subjected to partially distributed 
uniform load; concentrated load. 

We consider the case of an orthotropic 2-layer half- 

plane, which is subjected on its boundary to a partially dis- 

tributed uniform normal stress of intensity w and width '2¢', 

applied symmetrically about the Y-axis. 

This type of load can be expressed in a Fourier 

integral form, as follows: 

p(x) — Bint) oos(az) aa, 57-1 
e ne 

where 2 = £/h. 

Equation (5.7-1), represents a summation of an 

infinite number of sinusoidal loads, of the type: 

[ 2x sete) os | cos( Ax), 5.72 
ma 

which can be identified as the applied load 'p' on the layered 

half-plane, as given by equation 5.6-2a. 

Using the representation in (5.7-1), the stresses 

in the layered half-plane due to a partially distributed 

uniform load, can be expressed in the following form: 
: . = 

20e i = = oye (39,57, a — [r,208 (A) sR, 208 (22) iB, ysin(X) |r, 

5ol=35 

By making use of the condition: 

éimit sin(Aé) 
Ge ig ae 

and the condition 20 +P as £+0, we can mtain from equation 

(5.7-3) the solution to the problem of an orthotropic 2-layer 

half-plane, which is subjected on its boundary to a normal 

concentrated force P/unit thickness. The stress components are
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then given by: 

P = 2 = [oie try | = a | [R009 (a) sR, cos (Ax) FR, 9in( Ax) Ja 5 olmak 

Numerical results. 

The method of solution developed in Section 5.6 

for the 2-layer half-plane, assuming perfect continuity 

between the layers, was employed to obtain numerical results 

for the stress distributions induced along the interface by 

a concentrated force, applied normal to the boundary of the 

half-plane, which is assumed to defor under plane strain conditions 

The evaluation of the stresses was accomplished 

in two steps: 

Step 1 involved the determination of the functions 

Risks Rey? for a range of values of A, where 0 < A < Anax? 

Nak was increased until the magnitude of Bay was less 

than 104, 

Step 2 involved the determination of the stresses, 

by numerical evaluation of the integrals in equation (5.7-4), 

using Simpson's rule. 

Numerical results are presented for the ane on 

of normal stress o along the interface, for a range of values 

for the elastic constants of the materials which constitute 

the two orthotropic layers. 

The elastic constants of the materials are 

varied through the following ratios: 

E E E %, 3% % Bev tay Me 
E G E x xy Y 

Because of the many variables involved, six 

are kept constant, while different values are assigned
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Hid the Serexihiene Tu ie wssumedithat yoo =v. = 0.25. 
xy xy 

5.9) Conclusions. 

From the graphical representation of the results 

in Fig.5.3-5°h6 can make the following observations. 

a) Decreasing values of 3/8, reduce the magnitude of 

the oe F 

b) The ratio B/E, affects the stress distribution con- 

siderably. When B/k, increases, the stresses are reduced 

and a "spreading out" effect is introduced. 

c) Increasing values of ee the magnitude of op 

while increasing values of B/G, reduce it. 

ad) The distribution of % along the interface is mainly 

governed by the properties of the first layer. The 

stress a is relatively insensitive to changes in B,/8, 

1 

but is affected to a small degree by 8/6,
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10. 

Introduction. 

The elastic quarter-plane constitutes a special 

case of the more general class of elastic wedge problems, 

which have received considerable attention. 

Stress distributions in isotropic elastic wedges 

subjected to concentrated or distributed loads acting on its 

sides, and/or to concentrated forces or couples acting at its 

apex, have been analysed by Levy (1898) and Carothers (1912). 

Also, integral transform techniques, such as Mellin transforms, 

have been discussed by Tranter (1948), Sneddon (1951), 

Godfrey (1955) and Sternberg and Koiter (1958), in connection 

with the above class of problems. The problem of an elastic 

quarter-plane with arbitrary loadings on the boundaries has 

been solved by Iyengar (1962), using a Fourier-integral 

approach. 

Stress distributions in anisotropic elastic wedges 

due to various surface loadings have been analysed by 

Lekhoitskii (1963), Benthem (1963) and Baker (1964). 

Hetenyi (1960) developed a method of solution 

for the isotropic quarter-plane due to either concentrated 

or distributed loads acting on its boundaries. Craft and 

Richardson (1970), employed Hetenyi's method to obtain the 

state of stress in an isotropic quarter-plane containing a 

circular inclusion, 

Hetenyi's method of solution for the isotropic 

quarter-plane, is basically a superposition of the solutions 

to three half-plane problems, The half-planes are loaded on 

their straight boundaries in such a manner, that the resulting 

stress distribution satisfies the traction boundary conditions 

of the quarter-plane, The loadings on the half-planes can be 

determined by repeated superposition of known solutions for the
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half-plane. Such a procedure leads to a sequence of infinite 

integrals of recursive pattern. Hetenyi has shown that this 

sequence of integrals leads to a convergent result; therefore 

the superposition technique may be continued to obtain the 

solution to the quarter-plane problem, to any required order 

of accuracy.s 

In this chapter, Hetenyi's method is employed to 

formulate a general method of solution to problems associated 

with an orthotropic elastic quarter-plane. It is assumed 

that the axes of orthotropy coincide with the Cartesian 

coordinate axes X,Y. Examples are given, in which the 

quarter-plane is subjected to surface or interior loadings. 

Numerical results are presented for the special cases, when 

the orthotropic material is a Boron-epoxy or 4 graphite-epoxy 

composite. 

6.2) General solution. 

Arbitrary 'surface' or ‘interior’ 
loading 

  

    
    

x 

Ex 

Fig.6.1 

We consider an orthotropic half-plane occupying 

the region = 0< xX < +, 0<y <, (see Fig.6.1), where 

= x ae 
Se ey eee 5 6.2-1 

are dimensionless coordinates and 'a' is a typical length 

parameter.
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We assume that this half-plane is subjected to 

force systems (applied either at the boundary or at the 

interior) in such a manner that the resulting state of stress 

is symmetric about the Y-axis. We shall refer to this state 

of stress as the "basic state of stress". By virtue of the 

symmetry of this basic state of stress, the shear stresses are 

zero on the plane of symmetry. The plane KX = o is therefore 

subjected to only a norinal stress Fo(y), where y denotes y 

coordinates of points on the x = o boundary (i.e. y = (0,y)). 

(Similar definition follows for x). 

Therefore, for the basic state of stress 

  

  

  

  

(fs oP, 72)s 

(0,7) = Fo(¥) , Tey lO) = 0 6.2-2 

~_ 

xX 

- Fly) FAY) Step 1 

y, 
Fig.6.2 

We consider now the problem of the half-plane 

0 €X < w, -0 < y < w (see Fig.6.2), which is subjected to 

a symmetric stress distribution -Fo(y) on its boundary 

X = o (step 1). 

The resulting state of stress can be determined
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by an integration of the stress components due to the Flamant 

problem (see equations 409-2). The resulting expressions can 

be written in the form: 

[ess ots wt ] = - sataltatt)f,(5 Ga, Hy a, xy 

6.2-3a 

where I, (9) = If(v)+ 350), 

J,(¥) = Hf (F)+ FG), 6.2-3b 
Ig W= HOw), 

and 

[eat @]- (es x7 2 9)" 5 PG 45)1 eee 
(ea? (yA)? I Clea 29+ (Ga)? ] 

Thus combining the stress components derived from 

step 1 with those of the basic state of stress, renders the 

plane XK = o free of normal traction, but gives rise to a 

non-zero normal traction ~F,(x) on the plane Y = 0, 
where 

Bs oe ~~ “a ~ 

F(z) = Hee arg) een y dy 6 22h 
J (4? x+y) (eq ®x24y?) 

(Again, by symmetry of loading Tey (20) BOs) 

gel 

Fa(y) 

F. (x) 

  
  

  

  
Fig.6.3
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To eliminate -F, (x), we consider the orthotropic 

half-plane O < y < wy -0o < x< eo, subjected on its boundary 

to a symmetric stress distribution F,(x)(Fig.6.3) (step 2). 

Again, the stress components os City) ean be determined 

by an itegration of equations (4.2-4.) for the concentrated 

force problem. We have: 

ky +k, ee ~ ~ ~]~ [esas |= Hatha fo. [Gx Baz, 6.258 
° 

where K(x) = KY(x) + K(x), 

K() = 1G) +15), 6.25 
K,,(2)= Ky (e+ K@) 

and 

4 ( (eax) *y sy; Geax)? ¥7] SG a) x8, @)] 2 
y [ica (xa)? 4y7 ]ka? (xx)? 4y? ] 
  ~ 6.2-5¢ 

It can be verified that the state of stress re- 

presented by (6.2~5a), eliminates the normal stress -Fi(x) on 

the plane Y = 0, but in doing so, gives rise to a normal 

traction Fa(y) on the plane X = 0, 
where 

e ~~ ye N ON 

Pa(y) = gre ayaa ge . 6.2-6 
4 (ka9x*4y") (ea? x? +y?) 

It is now evident that the techniques outlined 

in steps 1 and 2 have to be repeatedly applied in order to 

satisfy traction boundary conditions on the planes X = 0 and 

Y=0. This procedure leads to a set of integrals of 

recursive pattern and the combination of these individual 

states of stress, henceforth referred to as the "corrective 

state of stress" gives :
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[ofsersr°, | # a [os os -| 3 6.2-7 

which in the orthotropic quarter-plane satisfies the 

boundary conditions: 

(00) = ~ Fol¥), Of (%,0) = rE Ho) = TE (oy) = 0. 6.208 

Using equations (6.2-3a) and (6.2-5a), the 

relation (6.2-7) can be written in the form: 

[es abe as | — Katke 
"Hh meer el a 7a 

a mae | [5,(7)39,5) 13,4) , Fy) ay + 
° 

M=0 52,4000 

f [3 6, 3, } 3 24% | 6.249 

M=4,9,5000 

The functions Fe) and Ay) are given by 

the recurrence relations: 

oe oe em ~_ ~ 

Fils) = alka (ieariea) on (y)x y* ay F 6.2-10a 
> (k29x*4y?) (ica*x*4y") 
  

F (j= tate ar (x) x* ¥ ax 
M+4 Ta 

x (i49x" 49") (Ika? x?4y?) 

  . 6.2-10b 

The complete solution to the orthotropic quarter 

plane problem is obtained by combining the basic state and 

the corrective state of stress: 

el Bhs ae 5 
[s34,37.4| [eesapsr2, | a [egseaz,| a 

Therefore, a solution to any quarter-plane 

problem can be obtained, as long as the equivalent basic
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state of stress can be fully defined (oo Fo(y))« o 
> , 

xy 

Convergence of the method. 

  

  

       

aa P| 

IP lr oO Oo 

% x 
Ey 

Ex 

Y Y 
(a) ¢) 

Fig.6o4 

We consider the orthotropic half-plane 

0 <¥, -» <<, Which is subjected at its boundary to 

@ normal concentrated force P/unit thickness at point (a,0). 

By integration of the expression for o, (see 

equation 4..2-4) with respect to y between the limits 0 and 

ew, we have: 

° - 
2 foes = PO (xea)?_y dy 

° 

6.3+1 

The result, which is the total resultant force 

in the X-direction on a plane parallel to the Y% plane is 

seen to be independent of the position of the load or of the 

location of the plane. Since any normal Joad on the boundary 

of a half~plane can be represented as a series of concentrated 

forces, it can be stated that: 

ee on & 

Td Dea? (ea)®4y? Jeo? (xa)? 49) J Co
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Total lateral thrust = 

Total finite normal load on boundary x Serpe go « 665-2 

For ky= kg = 1 (isotropic material), the expression 

én(ki/ka)/m(ki-ka) can be evduated by means of L'Hospital's 

rule to give 1/7, which is the result obtained by Hetenyi (1960) 

for isotropic materials. 

Applying equation 6.3-2 to the F-functions (see 

equations $.2-10a and b) we obtain: 

r oh sms. Bey ady re Ss 
Prava®) ae ee ako | ar, (Fay, 63a 

oO ° 

and 

hig ~~~ énk. =6) i ~ 

Prasat cies [ae 6.5-3b 
° 

° 

For the F-functions to be convergent, the coefficients 

in equations (6.3-3a and b) should satisfy the following 

condition: 

2(enke,~6 " SE (2 ; ake | ote 6 

For various combinations of values for k, and kg, 

inequality (6.3-4) is not satisfied. However, if we consider 

successive F-functions on the same plane (say the X=0 plane), 

we have: 

Bie ea en SE. 
| Pan = Ptr) | 8, (7) a. 6.55 
° °o 

(A similar expression can be obtained for the Y=0 plane). 

Then, it can be shown (see Appendix [5]),that 

for ky > kg > 0,
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2(énk,~¢ 2 
er eeree Kika < 1, 6.3-6 

which guarantees the convergence of the recurrent integrals 

(6,2-10a and b). 

It is therefore concluded that the speed of 

convergence depends on the orthotropic constants ki,kg of 

the material. 

Concentrated force acting normal to the boundary. 

2 

‘a     x<
t 

  % 
(a) 

  

Consider an orthotropic quarter-plane X > 0, Y > 0, 

which is subjected to a concentrated force P/unit thickness, 

acting at point (a,o) and normal to the boundary (see Fig.6.5a). 

The basic state of stress can be obtained by com 

bining the results for two concentrated normal forces, acting 

equidistant from the origin, on the boundary of a half-plane 

(Y > 0) (see Fig.6.5b). The components of stress are then given 

by the following expressions (see equations 42-4): 

309572 | = POstte) [5.5.5 | 
x 

: ; Weta rye sy Ta Pig? Sy) Sricie 

where
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contd. 

tus, & * oe at Fs gt - | [5,38,38,,| = [st ses Bot Sy; 8a | 6.4-1b 
, 

and 

eae [ee1)*73 793 (Gay? coe = beel)*ys y°s (xu1)y7] eo (sso | = ; ; baeio 
[iea? Gen) °49* ILica® G1) 247" J 

The distribution of normal stress on the plane of symmetry 

(f =10)) 4383 

Foy) = = EE Nie 6.hn2 
(4? 4y?) (a? +y*) 

6.5) Partially distributed uniform load acting normal to the boundary. 

G Gg Q 

na na na 

    

  

    

                              
  

  

    
Fig. 6 

We now consider the problem of an orthotropic 

quarter-plane (X > 0, Y > 0), which is subjected to a 

unifirmly distributed stress of intensity p acting normal 

to the Y = 0 boundary. The applied load extends from 

X = (1-n) to k = 1 (see Fig.6.6a). 

The basic state of stress (see Fig.6.6b) can be 

obtained from the results for the uniformly distributed load 

solution of the half-plane problem (see Section 44), and it
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can be expressed by the following relations: 

[<es08 57°, | Bepres) (@ - 2) 5 (Taka~Take); 4 en) |, 6.5-1a 

where 

cy Wee aon Fatt ees 3 Poe ye Tse, 
and 

  

+ _- «1 k,[x 4 (1-n)] =a, %,(% + 1) 1, * [art Eee - tan ay aaa oer |. 

  

y i y 

¢ - Vee es aayP . 6.5-1b 
+ (x 41)* 

The distribution of normal stress on the plane 

of symmetry X = 0, is given by: 

09) = seecia)| i [tains : 

6.6 Concentrated force acting at the interior. 

  

  

  

  
Fig.6.7
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We consider the case of an orthotropic quarter- 

plane (x >0, 25 0) which is subjected to a concentrated 

force P/unit thickness acting at point (a,na). We shall limit 

our discussion on the case of the concentrated force being 

applied in the positive Y-direction. 

The basic state of stress can be determined from 

the results for the interior concentrated force solution for 

the orthotropic half-plane (see Section 4.7). 

The stress components for the basic state of 

stress are given by the following relations: 

  [ops 3 4,| a P {extn [ta —fiks?; -k,! *x | 
xP ny? I) a(.?=Keg?) 

+ Q4ra [-t5 fgk," 5 x*x | 

+(aa-04)75| 45 fako?; -ka?x | 

+0ara [-t05 faka*; iat | 

+085 [-t0s faka?; ie*a| 

+0are [ 45 faka?; ~k.ka*s| ] 

467-3 

where 

ty = Ty + Ty Mirfak i 25152) ae 6) 

and 

Cae fo = kilt, ¥+ Kan), 
piss 2 ; 

fa = Ka(key + kin), 

= [eetGneGen)*| 4, ae = [eaten] *, 

: = [io (aa)*+(Fen)*] = = fa an)*+Gn)* |, 

= faa eee = =ya|7* 
= |e ka Gea)" + (rane)? » Te = [isha (1)*+(leamenay)* | . 

a, (for i= 1 se. 4) are defined by equation (4.7-4),
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The normal stress distribution on the plane X = 0, 

  

Fo(7) = -& { 7n) eng ‘nae | a 
qa(k,"=kg?) 447+ (¥+n)? ka*+(y+n)?* 

eGeh) | es ot] 
k4?+(y-n)? kg?+(y-n)* | 

2 aigks (Kan+ky ) : 

[ica *ka7+(kantkay)? ] 

co (Iegnt gy } 6.6-2 
[ica ka +(kantkay)? ] 

6.7) Evduation of the stresses. 

Numerical values for the stresses induced in an 

orthotropic quarter-plane by an arbitrary loading system, can 

be obtained in the following five steps; 

Step 1: The basic state of stress (ose sty) and Fo(y) 

are evaluated for the particular loading system, 

Step 2: The F(x) and Fy) functions are determined by 

numerical evaluation of the integrals (equations 6.2-10a and b), 

in the logarithmic scale, using Simpson's rule. 

Step 3: The boundary stresses applied on the two overlapping 

half-planes are then calculated by summation of the applied 

stresses for each reversal of loading: 

o, (0,7) = y Fy), 
M = 0,2,4e00 

3, (%0) = % F(z). 
M = 41,3,5006 

6.7-1



6.7) 

6.8) 

83. 

contd. 

Step 4: The corrective state of stress (2 OT) in the 

quarter-plane is calculated by combining the stresses induced 

in the respective half-planes by the boundary stresses(6.7-1). 

In order to evaluate Os OF aT? the boundary stresses (on 

the half=planes) are represented as a series of uniformly 

distributed loads of finite but variable width. It is found 

that this particular uniform load representation of the 

boundary stresses leads to a better convergence of results 

when evaluating the stress components in the vicinity of the 

boundaries of the quarter-plane, 

Step 5: The basic state of stress is combined with the 

corrective state of stress to yield the complete solution 

to the orthotropic quarter-plane problem. 

Numerical results. 
  

In order to obtain numerical results for the state 

of stress in an orthotropic quarter-plane due to various loading 

systems, two main computer programs were written. 

The first program computes the boundary stresses on 

the two overlapping half-planes, for a given initial stress 

dis tribution Fo(y) on the plane of symmetry X = 0. 

The accuracy of the numerical integrations involved, 

depends mainly on the following parameters: 

i) the upper limit of the integration, and 

ii) the number of slices used for the application of Simpson's rule. 

Both parameters are increased during the first integration for 

the evaluation of F,(x) until F(x) is accurate to at least 5 

decimals and Fa(x) at the upper limit is less than 0.005% of 

F(x). - 

For the orthotropic materials considered,namely,
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unidirectional graphite-epoxy and boron-epoxy composites, it 

was found that an upper limit of x,y = 150 and 120 slices 

produced results that satisfied the above requirements. 

The reversal of loading is carried out until the 

boundary stresses are accurate to at least 5 decimals. It was 

found that for the materials considered, this order of accuracy 

was attained in 30 reversals of loading. 

The second of the computer programs written, com- 

putes the corrective stresses in the quarter-plane. In this 

program, the boundary stresses are treated as a series of 

uniformly distributed loads of finite but variable width 

(see Fig.6.8) 

Actual stress distribution    
Assumed stress distribution 

  

Fig.6.8 

Attempts to traat the boundary stresses as a series 

of concentrated forces, resulted in high stresses in the vicinity 

of the boundaries to a depth of xy = 0.5. For xy > 1,5, the 

two solutions gave the same resultsto at least 3 decimal places, 

Finally, a separate program was written for each 

type of loading considered, to compute the stresses for the 

basic state of stress and combine them with the stresses of the 

corrective state of stress.
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Numerical results are presented for two types of 

loading: 

i) A concentrated force acting normal to the boundary of the 

quarter-plane, at point (a,o). 

ii) A concentrated farce acting at the interior of the quarter— 

plane, at point (a,a), in the positive Y-direction. 

The properties of the materials considered are 

listed in Table 6.1 (Saha et al. 1972). It is assumed that 

the X-axis of the quarter~plane coincides with the direction 

of the fibres (i.e. high modulus axis). 

The stress distributions,induced in the quarter~ 

plane by the two types of load, are shown in Fig.6.9-6.20. 

The results are presented as a variation of stress [ O3037, la/p 
yo xy 
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Conclusions. 

From the graphical results developed for the two 

composite materials (boron-epoxy and graphite-epoxy) (Fig.6.9- 

6.20), the following observations can be made. 

1) The stresses oe and ca diminish rapidly as x increases 

and become relatively insignificant for x > 4. Similar 

behaviour is observed for y >4e 

2) The stress oy diminishes very slowly, particulary for 

y < 0.5. For example, g,,a/P at the point x = Sol y =-Osdy 

for graphite-epoxy composite under surface load, is 20% 

of its value at point x =4, ¥ = 0.1. On the other hand, 

G,, diminishes rapidly with y and for y > 3 it becomes 

relatively insignificant. 

3) Comparing the results for the two orthotropic materials, 

we observe that as the ratio 5 /B, increases (in this case 

for E, = constant) % increases, while a decreases, te 

is practically unaffected by the change in B/t,. 

Suggestions and recommendations. 

The analysis of the quarter-plane presented in the 

previous sections of this chapter can be employed in a number 

of problems encounted in engineering practice. For example, 

the quarter-plane loaded by a concentrated force at its interior, 

represents the situation which can occur in the vicinity of a 

metal connector in timber or fibre reinforced structural elements. 

In the special case when the concentrated force migrates to the 

boundary of the quarter-plane, we have a condition that may be 

encounted at the support of a structural element. Similar con- 

ditions may arise in Geotechnical and Foundation engineering 

(e.g. continuous footings near large excavations or embankments,
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anchorage of suspension cables in bridges, etc.) where the 

loadings are better approximated by uniformly distributed or 

parabolic loadseither at the boundary or at the interior 

of the quarter plane. 

The analysis of the quarter plane was presented 

in a general form, so that it is possible to obtain the 

state of stress for oblique loads, concentrated couples, or 

finite distributed loads. 

Further investigation can be made into the effects 

of transporting the internal concentrated force to various 

positions in the quarter-plane. 

The analysis presented in this chapter is valid for 

orthotropic materials with their axes of orthotropy coinciding 

with the reference coordinate axes. However, a similar method 

of solution can be employed for the case in which the ortho- 

tropic axes are inclined at an angle to the coordinate axes. 

Assuming that the corresponding basic state of stress can be 

fully defined, the plane X = 0 is not a plane of symmetry 

and consequently shear stresses as well as normal stresses 

will devalop along its surface. Therefore, each reversal of 

load should include a reversa of both normal and shear stresses.
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We consider a rectangular plate of length '2c', 

width '2h' and thickness 'b', with its sides parallel to 

the Cartesian coordinate axes X,Y,Z (see Fig.7.1). The 

centre of the plate is assumed to coincide with the origin 

of the coordinate axes 0. 

The plate, which is assumed to be in a state of 

plane stress (with b << h), may be subjected to load systems 

acting on its boundaries or at the interior. 

We distinguish between the following cases: 

a) The length (2c) of the plate is comparable with its width 

b) 

c) 

(2h). 

beam" or simply as "plate", 

The length (2c) of the plate is 

width (2h), but 'c'’ is finite. 

usually referred to as "beams", 

In the third case, the plate is 

In such cases, the plate is referred to as a "deep 

much greater than its 

Plates of this type are 

assumed to be of infinite 

length, and then it is usually referred to as "infinite 

beam" or "infinite strip".
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We shall limit our discussion on problems 

associated with the infinite strip. In particular, the 

strip is assumed to be composed of an orthotropic elastic 

material, with the axes of orthotropy coinciding with the 

Cartesian coordinate axes X,Y,Z. The half width (h) of the 

strip is considered as the characteristic length of the 

problem, and, the dimensionless coordinates x, Y> are defined 

bys 

Sees Hes 7-1-1 

Historical background. 

The first analytical and detailed work on the 

problem of determining the stresses and displacements in an 

isotropic elastic rectangular plate, loaded along its sides by 

any system of tractions,was presented by Filon (1903). Filon's 

analysis was based on Fourier series representation of the 

boundary loads, and, on the assumption that the normal and 

shear stress distributions over the terminal sections 

(x = 4 ¢),could be replaced by total resultant forces and 

moments, This technique produced accurate results, only if 

the length of the plate was large compared with its width, in 

which case, according to Saint-Venant's principle the 

assumption was justified. 

Howland (1929), employed Filon's peteen to develop 

a solution to the problem of a concentrated force acting at 

the interior of the strip and in either of the coordinate 

directions. The strip was regarded as of infinite length, 

so that Fourier integrals were used instead of Fourier series. 

A similar method was used by Girkmann (1943). 

Biot (1935), employed the elastic beam theory to
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develop expressions for the stresses in a soil layer, resting 

on a "slippery rigid bed" or on a "rough rigid bed", and sub- 

jected on its boundary to a concentrated normal force. He 

also produced numerical results for the normal stress distri- 

bution along the inferf'ace between the layer and the rigid 

bed. 

Green (1939), employed Howland's method to in- 

vestigate problems related to the orthotropic infinite strip. 

In particular, he considered the case of an infinite strip 

subjected to either a longitudinal or a transverse concentrated 

force, acting at any point of the strip. Green's work was 

limited to the derivation of the equations for the stresses 

and no numerical results were given. 

Conway (1955c) presented numerical results for the 

stresses induced in an orthotropic infinite strip by two equal 

and opposite concentrated forces, acting centrally and parallel 

to its long sides. 

Hashin (1967), investigated stress and displacement 

distributions in an anisotropic beam, under any polynomial 

loading applied on its long sides and for given force and 

moment resultants on the terminal sections (x = +c). 

Gerrard (1967), considered the problem of an 

anisotropic infinite strip resting on a smooth rigid bed and 

subjected on its boundary to a partially distributed uniform 

normal load. He obtained a limited number of solutions, in- 

dicating the effect of anisotropy on the stress distribution 

beneath the strip. Since Gerrard's work was mainly on soil and 

rock mechanics, the infinite strip was assumed to be in a state 

of plane strain, 

Finally, Yu (1973) obtained a solution for the
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bending, shearing and normal stresses in an orthotropic beam, 

subjected to a transverse concentrated force, acting at the 

boundary y ==h. Numerical results were presented for two 

orthotropic materials, namely three layered plywood and pine 

wood. 

Scope of investigation. 

The work on the orthotropic infinite strip, deals 

with the following problems, 

2) 

2) 

An investigation into the effects of orthotropy on the 

stress distributions in an infinite strip, which is sub- 

jected on its boundaries y = +h, to symmetric, equal and 

opposite concentrated or distributed loads, 

The development of a method of solution to the problem of 

an infinite strip which is subjected to an arbitrary self- 

equilibrating load system, acting either at the boundaries 

or at the interior of the strip. The work described in this 

section, is not meant to be in any way original; the basic 

purpose of the investigation is to illustrate an alternative 

method for the analysis of infinite strip problems. This 

method is based on the superposition of known solutions to 

infinite-plane and half-plane problems, such that the re- 

sulting stress field satisfies the boundary conditions of 

the infinite strip.
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7.2) Orthotropic infinite strip subjected to symmetric boundary loads. 

7.2.1) Sinusoidal loads. 

  

  
VY 

Fig 7,2 

We consider the case of an orthotropic infinite 

strip subjected on its boundaries y = +h to a normal stress 

distribution p(x), where 

p(x) = p cos(A*x), 7.2-1a 

and A* is a constant, 

let w= 4, 7.2-1b 

Then, equation (7.2-la) can be written in the 

form: 

p(x) = p cos(A x), “72-2 

where x = x/h (see equation 7el-1). 

The assumed stress function is: 

® = (Cr 0 + Coe Y + Ca oY + 6, PY) cos(a x), 722-3 

where 

a a 
@=€ »B =F and Cross Cqa are constants that can ky Ky 

be determined by the boundary conditions (see Section 5.5) 

Expressions for the stress components can be 

obtained by substituting (7.2-3) in (2.6-1). These stress 

components can be written in the following form:



936 
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cos(A x) 

  

a, =~ . e® 46g oY + Cy of 4 cy of | cos(AX), 742M 

J 

ga: (Ga 2 Sa =a Cs (fy _ Sa AY] 5; es Tact [© Eee ton me? sin(A x), 

The boundary conditions for the infinite strip problem 

are: 

a) o(%, -1) = p cos(ax), 

b) + ag HD) 0; 702-5 

ce) a(x, 1) = p cos(Ax), 

" 

a) Ty Cs 1) =0. 

By substitution of equations (7.2-4) into (7.2-5), 

we obtain a system of our simultaneous equations, which we 

can then solve, to obtain expressions for the constants 

Ca coe Ca, in the following form: 

Cy = Co = Ay 4 ’ 

7-2-6a 

Cg= 0, = Ay rd ’ 

where 

Ay = (A &°)/a, 
eee 7.2-6b 

Ag =-Ka(e"-e *)/d, 

and 

ye ka (e%e7%) (eF+e7F) - ka (e%07%) (ee F) 

The stresses at any point in the infinite strip, 

can then be obtained by substitution of equation (7.2-6) 

into (7.2-4): 

o, =p R, cos(A x), 

og, =p R cos(A x), 7.018 

foe Ry sin(A x),
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where 

= At (6% 4 oh) 4, A 4 ooh: a" a +e Bart +6"), 

R Mle + oo) ~ y(t s oP), 1.2-70 

a = : (o% - oW) + = (AF - oY), 

Tee) Partially distributed uniform load; concentrated load, 

  

  

  

  

h h 
0 0 

Xx Xx 

a 
ty E, P 

iN; 

(a) Ey () 

Fig. 

  

We consider the case of an orthotropic infinite 

strip, which is subjected on its boundaries y = th, toa 

partially distributed normal stress of intensity w and width 

"26", applied symmetrically about the Y-axis (see Fig.7.3a). 

This type of load can be expressed as a Fourier 

integral, in the following form: 

p(x) = | aay e cos(A x)aa, 722-8 
Ae 

° 

where € = e/he 

Equation (7.2-8) represents a summation of an 

infinite number of sinusoidal loads, of the type:



7.2.2) contd. 

Ase sin(A ¢) aa | cos(A x). 722-9 
cs | 

We can then identify this sinusoidal load, as that 

applied on the infinite strip; namely p(x) as given by 

equation (7.2+2). 

Using the representation in (7.2-8), the stresses 

in the infinite strip due to a partially distributed uniform 

load, can be expressed in the following form: 

C= a * Sin(a ¢) cos (A x) da, 
AL 

° 

oe -. 

_ 2we sin(A & = i an [» AZ cos(Ax) da, 722-10 

e _, 

pe oe i inlA 4) sna Z) ar. 
Ae 

° 

By making use of the condition: 

Gimit sina Z)  _ 7, 
Dre Nese Oo -atRATe, 

and the condition 2ué +P as € + 0, we can obtain from 

equation (7.210), the solution to the problem of an infinite 

strip which is subjected on its boundaries y = + 1 to equal 

normal concentrated forces P/unit thickness, The stress 

components are then given by: 

5 = 
72 / cos(A x)da, 

oO 

ao =| R. cos(a x)aa, 72-11 ae 2 
° 

Toe —eef Boe eean(X ZG
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Numerical Results. 

The expressions for the stress components in an 

infinite orthotropic strip, due to symmetric , partially dis- 

tributed uniform loads (equation 7.2-10), or due to symmetric 

concentrated forces (equation 7.211), are functions of the 

orthotropic constants of the material k, and ka. In the 

case of the uniform load, the stresses are also functions of 

the half-width of the load 'é', 

The orthotropic constants k, and kg, which are 

functions of the constants 455 (see equation 2.6-4), can be 

expressed in terms of the following ratios: 

Cat ae 
faa’ faa” ae 

Therefore, the effects of orthotropy on the 

stress distribution in an infinite strip can be investigated 

by varying the values of the three ratios, which in the case 

of plane stress reduce to: 

EB. E 
Voy ? oth 9 ol 

G. E xy ie 

For the purpose of the numerical computations, 

we assume vy = 0.2 This value of v. is frequent, iy D ney q ~ 

encountered, particularly in connection with fibre-reinforced 

composites (Saha et al.(1972), A€-Khayatt (1974)). We then 

assign a value to one of the ratios, say E/E,» while varying 

the other (8/6) The process can be repeated for various 

values of B)/i,. 

It must be pointed out, that owing to the symmetry 

condition Wy zy = Vy EL and the condition (see equation 

2.4-hb) 

  

E 
My < & , 7.2-12 

for ve 0.25, the upper limit of the ratio B/E, is 16,



IT» 

7.2.3) contd. 

In addition, for ky and kg to be real and positive 

(see Section 2.6) 

1) 

2) 

xy > 2] f& +” B Jeerl5 ete toe] 
Infinite strip subjected to concentrated forces. 

The stresses induced in an infinite strip by equal, 

concentrated forces acting normal to the boundaries y = +1 

(see Fig.7.3b), were obtained from equation (7.2-12) by 

numerical evaluation of the integrals, using Simpson's rule. 

The number of slices used and the upper limit of the inte- 

gration procedure were varied, so that the results obtained 

were accurate to at least three decimal places ( on average 

2,000 slices were used and an upper limit of 2)). 

The results for the stresses (e.g. o,, mh/P) are pre- 

sented in a graphical form (see Fig.7.4-7.11) as a variation 

of stress with x ory, for various values of B/G» when: 

a) B)/B, = 1, and, b) B/E, = 0.05, c) B/E, = 5. 

In addition, the variation of oy 

0,0) with E/E and B/G, is presented in Fig.7.12 and 
med xy ‘ 

and o at point 
x 

7.13. 

Infinite strip subjected to partially distributed uniform load. 

The stresses induced in an infinite strip by the above 

type of loading (see also Fig.7.3a), were obtained by numerical 

evaluation of the integrals in equation (7.2-10), using 

Simpson's rule, The stresses were determined for points 

along the X-axis when @ =1 and @ = 0.5, for various values 

of B/G, and B/B,5 and are shown in Fig./7.14-7.21.
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98. 

7.2.4) Conclusions. 

From the graphical representation of the results 

in Fig.7.4-7.21, we can make the following observations: 

1) Concentrated force. 

The stress Gs on the X-axis, diminishes very 

rapidly with increasing X and becomes relatively in- 

significant for x> 2.5. The distribution of G is 

greatly affected by changes in B/G,» but is re- 

latively insensitive to changes in B/E. In the 

case of an isotropic material, the distribution of 

g, is in agreement with Biot's (1935) results. 

The distribution of 9g, along the X-axis (see 

Fig.7.5 and 7.7), indicates that if 2/2, xl, stresses 

of high magnitude are encountered only for x< 2656 

if B/S, <<1, © does not diminish rapidly with 

increasing X. The effect becomes more prominent for 

small values of B/ty- It can be concluded that the 

distribution of cy along the X-axis, is affected by 

the magnitude of both ratios B/a,, and B/G. 

The maximum stresses (c, and o,) along the X-axis, 

are encountered at the origin (0,0). The magnitude of 

these stresses is mainly governed by the ratio B/G, 

(see Fig.7.12 and 7.13) and for B/¢y > 10, the 

stresses may be assumed to be independent of 8/5, 

rf B/e, < 10, the magnitude of the stresses is 

affected by the ratio B/E, particularly if E/E, > Olle 

The stress distribution (a and o,) along the 

Y-axis, follows the general pattern, with g, mainly 

governed by the magnitude of the ratio B/G» while 

G, is governed by both ratios 8/6. and B/B,»
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Tots) contd. 

2) Uniformly distributed load. 

The distribution of % along the X-axis (Fig. 

7.14, 7.16, 7.18, 7.20), indicates that, in general, 

for ¢/ne 1, ce diminishes rapidly with x/h and becomes 

relatively insignificant for x/h > 2. This distribution 

is mainly governed by the ratio B/G. Only if 

B/G <5, the effects of 3/5, become significant. 

If ¢/n = 1 and 3/3, = 1, o at the point 

(0,0) is always equal to the applied pressure, 

irrespective of the magnitude of B/G» 

The distribution of oe along the X-axis is 

greatly affected by 2/8, with oe increasing for de- 

creasing values of B/B,. Similar behaviour is 

observed for decreasing values of B/G.



7.3) Orthotropic infinite strip subjected to arbitrary loads. 

7.3.1) Formulation of the problem. 

  

  

100. 

  

  

  
vY 

(a) 

Fig.7.22 

  ry 
(b) 

We consider the case of an orthotropic infinite strip, 

which is subjected to arbitrary load systems, acting on its 

boundaries or at the interior. 

We distinguish between the following two cases: 
4 

a) The applied load system is self-equilibrating, so that the 

stresses diminish with increasing X and they tend to zero 

as Xx *> +o. In addition the resultant moment of the load 

system about any point of the strip is zero. Such a case 

of loading is shown in Fig.7.22a, 

b) The applied load system is not self-equilibrating, in which 

case non-zero stresses exist at all points of the strip, 

even at x =+o. Such a case of loading is shown in 

Fig.7.22b. 

We shall limit our discussion on the former case, 

that of a self-equilibrating load system.



lol. 

7.3.2) Method of solution. 

P°(x) 

  De
 

> b lb 

  

  
  B 

    
vy   

    

A superposition technique is adopted for the purpose 

of accomplishing the infinite strip solution. This technique 

involves the superposition of known solutions to the following 

three problems, 

a) The orthotropic strip is assumed to occupy the region 

AA'B'B of an infinite plane (see Fig.7.23a), where AA 

and BB' are parallel to the X-axis of the plane and at 

distance y = + 1 respectively. The resulting stress field 

will be referred to as the basic state of stress and the 

° ° Oe? 

stress components will be denoted by Os Gs Taye 

b) The second problem is an orthotrpic half-plane, occupying 

the region =o < xe< ow, “1 § y < owhich is subjected on 

its boundary to normal and shear stress distributing P (x) 

and Q(x) respectively (see Fig.7.3b). 

ce) The third problem is an orthotropic half-plane ,occupying 

the region -w < X < «, -« < y €1 which is subjected on 

its boundary to normal and shear stress distributions Pt (x) 

and Q*(x) respectively (see Fig.7.23c). 

The resulting stress field from the combination of
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the two half-plane solutions, will be referred to as the 

corrective state of stress and the stress components will be 

denoted by o> oy pak 

The problem then involves the determination of the 

functions Ho and ates so that after superposition of the 

three systems (a), (b), (c), the resulting stress field 

satisfies the boundary conditions of the infinite strip. 

The proposed method for the evaluation of the 

functions FG) and wte)s is an extension of the superposition 

method used by Hetényi (1960) in the analysis of the isotropic 

quarter-plane. It involves the successive elimination of the 

stresses on surfaces AA' and BB’, by superposing solutions 

to suitably loaded half-planes. We shall describe this method 

in detail in Section 7.3.4. 

Basic state of stress. 

We assume that the basic state of stress can be 

uniquely determined from the theory of the infinite plane and 

that the stress components are given by: 

° 2 ° & ° ° ° 

o5 5 Tey * 5 | 8 5, 3 ay | - 73-1 

where % is a load parameter, 

Furthermore, the normal and shear stress distri- 

butions on surfaces AA' and BB' (i.e. y = +1), due to the 

ahaa ae 
basic state of stress, are denoted by F (x) and G (x), where 

[Fe ; oe | =¢ Pe ; Sy e , eee vee 
[FY@)s G* (x) | = . (sy Sy ie :
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7.3.4) Corrective state of stress. 

    
  

    

    
      

  

(a) 

Step 1. In order to eliminate the stresses (F (x) and ¢ (x)) 

on the surface AA' of the infinite plane due to the basic state 

of stress (see Fig.7.2ia), we consider a half-plane (-1 < y < «) 

_which is subjected on its boundary to normal and shear stress 

distributions F(é) and G(€) respectively, where 

Rg) =-¥F(), 
ri 7.393 

G(€) = - @ (x). 
(see Fig.724b). 

Then, the combination of the solution to the half- 

plane problem together with the solution to the infinite 

plane, renders the surface AA' free of traction, but in doing 

so, gives rise to normal and shear stresses F'(x), G'(x) 

respectively on surface BB'(y = + 1), where
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73 oh) contd. 

= er e)a, F ucle)(z=e)ae ) 1G) = (ette[ f EBM 6 nay f scbenae ) 
= Be 7.3-ha 

G(z) = (Katka) [Hd GRadde 4, [ 20(e)Gre)Pae } = atka Dé A. Dé 3 , 

(see equations 42-4 and 4.3-3) % 

and 

(4) = [ia®Gne)*+ af [ie®Gee)? + 4 | 7.3aub 

Therefore, the problem reduces to a half-plane 

-1 < y < my 0 < x< wy with a traction free boundary 

(see Fig.7.2hc), and with total stresses on the surface BB! 

given by: 

Normal stresses : F'(x) + F*(x), 7.365 

G'(x) + G*(x). 

  

        

      
    

  

      

  

    

Step 2. In order to eliminate the stresses oh the surface 

BB! (y = 1) of the half-plane (see Fig.7.24c), we superpose 

the solution to a half-plane (-. < X < w, -» <y <1), which 

is subjected along its boundary to normal and shear stress
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distributions Fo(é) and Go(é) respectively (see Fig.7.25a), 

where 

rol) =~ [rv +#G) |, 
75-6 

Go (€) u * [or) + G(x) | ‘ 

The combination will render the surface BB"' free of 

traction, but will give rise to normal ani shear stresses 

F, (x), Gx (x) respectively, on surface AA', where 

F(R) = (rata [BAGH a a Geeae i 

s é Co 

Ga (x) = 

Step 3. In order to eliminate the stresses Fi(x) and G1(x) 

from the surface AA' (see Fig.7.2a), we superpose the solution 

to a half-plane (w < X < , -1 <y <«), which is subjected along 

its boundary to normal and shear stress distributions -F,(é) 

and ~Gy(¢) respectively (see Fig.7.25b). This will give rise to 

stresses -Fa(x) and -Gg(x) on the surface BB', where - 

u . 133 
Ga(x) = Cr )f i‘ Hane + kaka is 2tal Ye aq } " 

oe L sank 

It is now evident that the techniques outlined in 

Steps 2 and 3 have to be repeatedly applied in order to 

satisfy traction boundary conditions on the surfaces AA’ and 

BB'. After an infinite number of reversals, the total loads
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applied on AA' and BB' are: 

a) On AA’ (y =~ 1) 

P@--F@- \ 3,0, 
M = 153,5e00 75-9 

o®) =- €@) - » @, (2), 
TM = 45855000 

b) On BBt (y = 1) 

P*(x) = 2 F(x), 

= Os8yhove 

7-35-90 

v@) = » a (3), 
TM = O92 phos 

where 

Fuga (2) 7 tuto [Be a — au[ peoee }; 

: . 73-10 

G.(®) = (rtha){ [ it sens Fhe [? oo } ; 

where Q = = Goa, 

The stress components for the corrective state of 

stress are then given by: 

[esos |= ¢ Cathe) f 

EO leeoae) saw) s aa? | a 
wi, BCE) 

sey? ; Gar] ae
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al Hie [HOO 5 (ae)? Re) (a-y)? | ag 
Lr | 

ot ie ie. bie ie ttyl >; 

+kaka i ata Kee 3 —(x€)(1-y)? (x2)? (1-y [ae |, 
=o D (é) 

A oa: 

3 7o3-1la 

where 

= ry en = ie 
oe) = [eatGee)*(aay)? | farGeeyecasy)? | 711d 

The total stresses at any point of the infinite 

strip due to the applied arbitrary load canbe obtained by a 

summation of the corresponding stress components due to the 

basic and the corrective states of stress: 

a, 5 a 57, ef eae” +[&s esx } ase reat ms 7 hy Eh 9 Beg el
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7.3.5) Numerical results. 

The method of solution developed in the previous 

sections, was employed to obtain numerical results for the 

stresses which are induced in an infinite orthotropic strip 

by the following self-equilibrating loading systems: 

a) Two equal and opposite concentrated forces, acting in 

the X-direction at points x = + 0.2, y = 0 (see 

Fig.7.26a). 

b) ‘Two equal and opposite concentrated forces, acting 

in the Y-direction at points x = 0, y= + 0.5 (see 

Fig.7.26b). 

The evaluation of the stresses was accomplished 

in two steps. 

Step 1, involved the determination of the 

functions F(z), G(x), by numerical evaluation of the 

integrals in equation 7.3-10, using Simpson's rule. The 

numerical integration was carried out on a logarithmic scale, 

using 268 slices between the limits -40 and +40, Due to the 

geometrical and loading symmetry of the problems considered, 

the function F(z) and a) should satisfy the following 

conditions: 

P*(x) = P(x) and Q*(x) = - Q(z). 7.3413 

This conditionwas used as a criterion for the 

number of load reversals to be carried out. It was found, 

that with 9 reversal of load, P*(x) was equal to P(x) to 

within an accuracy of + 0.2%, and, lo*(x)| was equal to 

lo (x)| to within an accuracy of 0.1% At X ="+ 40, the 

magnitude of' F(z) was 0.4% of its maximum value at x = 0, 

whereas oe) was 5% of its maximum value at x = + 0.38. 

Step 2, involved the evaluation of the stresses
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at various points of the infinite strip, due to the 

corrective and the basic states of stress. 

With regard to the corrective state of 

stress, the boundary loads PG) and a) were con- 

sidered as a series of partially distributed uniform loads 

of variable width, instead of as a series of concentrated 

forces, This resulted in a better representation of the 

boundary loads and facilitated accurate evaluation of 

the stresses at points near the boundaries y = +1 of the 

infinite strip. 

With regard to the basic state of stress, 

the stress components were determined using the theory 

of the infinite orthotropic plane (see Section 3.3). 

Presentation of results. 
  

In both problems considered,the infinite 

strip is assumed to consist of an orthotropic elastic 

material, which has the following hypothetical properties: 

- = 0.05, 4 = 2.5, v= 0.25, 
x xy 

and 

ka = 1.5667 , ke = 0.1427. 

Numerical results are presented for the dis— 

tributions of stress (©, o, T. ), on cross sections 
xy 

at various distances from the origin of the coordinate 

axes and are shown in Fig.7.27-7.32. Due to the symmetry 

of the stress distribution in the two problems, only the 

first quadrant is considered.



  

    

      
  
ney, 

PRG 7* 266 Infinite strip; longitudinal loads. 

  

        

  

FIG: 7-266 Infinite strip; transverse loads.
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73-7) Conclusions. 

From the graphical representation of the results 

in Fig.7.2/7-7.32, we can make the following observations: 

1) 

2) 

Longitudinal loads. 

The distribution of o over the width of the 

infinite strip, indicates that regardless of the position 

of the cross section on which the stress is determined, 

©, is of significant magnitude only for y/h < 0.5 (see 

Fig.7.27). Along the longitudinal axis of the strip, 

g diminishes very slowly, thus indicating that in 

orthotropic strips, the effects of self-equilibrating 

localized loads are not restricted in the vicinity of 

the loads. 

The variation of ue with y/h, (see Fig.7.29) 

indicates that maximum shear stresses are encountered 

for 0 < y/h < 0.2. 

Transverse loads. 

©, diminishes slowly with x/h, and attains high 

values of points near the boundaries of the infinite 

strip. gy decreases rapidly with x/h, and for x/h > 1 

it is relatively insignificant,
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tid. 

Introduction. 

The elastic analysis of the half-plane with a 

straight boundary, provides a convenient method for the de- 

termination of stresses or displacements in materials, whose 

boundaries can be approximated to those of the half-plane. 

Nevertheless, in many cases the boundary surface of the 

material cannot be approximated to the straight boundary of 

a half-plane. Such cases arise when the boundary is irregular 

and the size of the irregularities is large compared with the 

other length parameters of the problem (e.g. width of applied 

load). 

Such cases are frequently encountered in Civil 

Engine@ring practice, in connection with soil mechanics and 

foundation engineering problems. Embankments of rivers or 

motorways, large excavations, coastal works, abutmerts of 

bridges and earth dams, present a variety of problems that fall 

into this category (see Fig.8.1). 

It is the usual practice to treat such problems 

with "finite element" or "finite difference" techniques. These 

techniques, when applied without refinement, fail to give 

satisfactory results in the vicinity of re-entrant corners, 

or highly localized loads, where the accurate determination 

of the stresses is important. It is believed therefore, that 

an analytical solution to this type of problem would offer 

the advantage of accurate evaluation of the stresses or dis- 

placements, at any point of the material. 

Such an analytical solution is developed, for 

the particular case of a half~plane with a "stepped" boundary 

(AO*0C), as shown in Fig.8.2
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Fig.8.2 

The inclined part of the boundary (00*) is 

assumed to coincide with the Y-axis, while O*A is parallel 

to the X-axis. The Cartesian coordinates are expressed in a 

dimensionless form x,y, where 

x ef, y= & Solel: 

and 'h' is the height of the "step". 

The solution is developed for an arbitrary 

load, acting either on the boundary or at the interior of 

the "stepped" half-plane. 

Method of solution. 

The proposed method of solution for an ortho- 

tropic "stepped" half-plane, is a method of superposition 

of two half-plane solutions, such that the resulting stress 

field satisfies the traction boundary conditions of the "stepped" 

half-plane. 

First, the "stepped" half-plane is assumed to 

occupy the region AQ*OCD of an orthotropic half-plane (see 

Fig.8.3b). The state of stress in the "complete" half-plane 

will be referred to as the basic state of stress and the stress
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contd, 

i 98D 
components will be denoted by Os Gs T,.» The basic state 

xy 
of stress can be determined using the theory of the ortho- 

tropic half-plane and the corresponding equations for the 

particular type of loading (see Chapter }). 

We then consider an orthotropic half-plane 

(-w < X < «, 0 € ¥ < a) which is subjected on the x = 0 

plane (for 0 <y €1) to a normal stress F(y) and a shear 

stress G(y), and on the y = 1 plane (for -» <x <0) toa 

normal stress P(x) and a shear stress Q(x) (see Fig.8.3c). 

The state of stress induced in the orthotropic half-plane 

by the above loading system, will be referred to as the 

corrective state of stress and the stress components will be 

denoted by x , os tay The corrective state of stress can 

be determined by considering the applied stresses (given by 

the functions fT, 6; P and d as a series of closely spaced 

concentrated forces applied at the interior of the half-plane. 

The stress components can then be obtained by integration of 

equations (447-3) and (4.8-1) between the appropriate limits. 

The functions ¥, ‘e, P ant Q can be evaluated, 

using the superposition technique developed by Hetbnyi(1960) 

for the solution of the isotropic elastic quarter=plane., In 

relation to the "stepped" half-plane this procedure consists 

of successive reversals of the stresses on the planes OO* and 

O*A (see Fig.8.3a), which lead toa convergent result. The 

functions , ee, P and a can then be obtained by a summation 

of the stresses applied on each plane (00* or O*A) by the re- 

versal procedure, We shall describe this procedure in detail 

in Section 8.5.
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8.3) Basic equations. 

  

  

  

(a) (b) 

  

The solution to the problem of an orthotropic 

half-plane which is subjected at its interior to a concen- 

trated force acting in either coordinate direction, has been 

presented in sections 4..7 and 4.8. Since some changes in 

the notation are necessary, equations (4.7-3) and (4.8-1) 

are reproduced in the following paragraphs. 

It is assumed that the concentrated force 

P/unit thickness is applied at point (x9,yo), as shown in 

Fig.8.4a and b. 

GetL) Concentrated force acting in the X-direction. 

The state of stress in the orthotropic half- 

plane is given by: 

PB [os % 7] == [oes Tyys Te if 8.318 

where
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3 i ] 2S 
[oz i xy. m(kq9-ka*) 

(Qg-aq) ra Kka"fo 3 fa 

+ gla fo “ki7fo 5 fa 
+ “fo * 
» Es 6 | Hy x (agt0g )r'g 

-k,*fo ky7kg*fo3 = Ky
 

° + Gqrs 

ky*fo ~ky7kg*f0; ie
 

* e + ds Te 
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8.3-1b 

and fo =X=%, 

fa abceiae fs oS Ps8 
J+ F2% , J sie epee 

fa fq Ky, 

TA eres ec ei ae 
} [isto BS 70)". }- [kato (y+ 0)". 

ta rq ‘i 

= [Cita to)*e(leeFeaFoF) * sre = [(cckate)*+(haFoeato)*) | 
8.3-1e 

The constants a4 «so @&, are as defined by the equation 

(oe Pde) « 

8.3.2) Concentrated force acting in the Y-direction. 

The state of stress in the orthotropic half-plane 

is given by: 

z Yo. VV 2 VW 
[3,39,57,| i (33 Jyy3 x | 3 8.3-2a 

where
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[a3 sy] = es, ( 

(ay+ag) ra [ ; eRassbant 3 -ky7fo | 

+ a4 ra [-ts ; tes ka" fo | 

+ (@g-%) 9 [ 3 wke*f,  ; ~Ka"t6 | 

+ Og Ta (-#2 3 ie" fa 5 ato | 

+ a Ts (-r6 3 ky*fyg 5 itis ty | 

+ 4 re [ fa 5 wki*fg 5 -ky7ka*fo | ] < 

Notation. 

With regard to the corrective state of stress, 

a concentrated force P, applied at the interior of the half- 

plane in the X-direction, is interpreted as a force which 

can act normal to the plane 00* or tangential to the plane 

O*A. Similarly, a concentrated force applied in the 

Y-direction, can act normal to the plane O*A or tangential 

to the plane 00*. 

In all the above cases, it is necessary to de- 

termine the stresses which are induced on the planes 00* 

and O*A by the corresponding concentrated force. For that 

purpose, we shall adopt the notation ay to denote the 

expressions ey Dy? se etc. (see equations 8,.3-lb and 

8.3-2b) when applied to points on the planes 00* and O*A, 

where
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i: denotes the direction in which the concentrated 

force is applied, 

jo: denotes the direction of the normal to the plane 

on which the force is applied, 

k : denotes the direction in which the stress is 

determined, and, 

& +: denotes the direction of the notmal to the plane 

on which the aveese is determined, 

For example, i denotes the expression for 

the evaluation of the normal stress at a point (0,y) on the 

plane 00*, due to a concentrated force applied at a point 

(Xo,1) and acting tangential to the plane O*A. We can then 

write ay (Xo sy) 

In general, we have: 

3 Go) = [uy Gosv) | , 
Yorl, x =0 

and 8.3-3 

33 Gro) = [Gr]. 
xo=0, y=1 

8,4) Basic state of stress. 

We assume that the basic state of stress can be 

uniquely determined from the theory of the half-plane, and 

that the stress components are given by: 

Cn - Jor tue 1 d6 co 
[os a Tey = # [ses 5,3 sy | , 84-1 

where ¢ is a load parameter.



118, 

8.4) contd. 

0 
F(y) LY 
G(y) 

‘ cA 
i 

P(x) ax) | 

  

  sy
 

  

    

  

  

    

  

  
VY 

Fig 8.5 

Let F(y) and G(y) denote the normal and shear 

stress distribution respectively, induced on the plane 

00* by the basic state of stress. Similarly, let P(x) and 

Q(x) denote the normal and shear stress distribution re- 

spectively on the plane O*A (see Fig.8.5). 

Then 

_ -, o ° [PcG ]= ¢ [sss], 
yx = 0 

and B.4n2 
_ =, gv ° ° 

Pesem ]- 2 [asa]. 
xyal. 

8.5) Corrective state of stress. 

8.5.1) Determination of the functions ¥,0,P,q. 
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In order to successively reduce the stresses on 

the planes 00* and O*A, we proceed by considering the plane 

00* first, 

Step 1. Consider an orthotropic half-plane -» < x < 0 

Os y < «, which is subjected to a normal stress distri- 

bution Fo(é) and shear stress distribution Go(¢), along 

the x = 0 plane, for 0 <y <1 (i.e. the plane 00* in 

Fig.8.6). We define Fo(é) and Go(é) as follows: 

Fo(€) = - F(y) , G(é) = - G(y) 8.5-1 

This system of stresses will in general give 

rise to normal and shear stresses on both planes 00* and 

O*A. These stresses can be written in the following form: 

a) Normal stress on 00* 

a a 

POH) =[Poledarsteda + [ cols e)ae. 8.5-28 
° 

b) Shear stress on 00* 

a 4 

Gol) =[roCedapaedag + [ooCedaynce)ac. .5-20 
° ° 

c) Normal stress on O*A, 

vole) = froledsyy(edag + [oo(e)s¥x(eas. 45-20 
° ° 

d) Shear stress on O*A, 

CoC) =f nolelagrle)ag + [0o(e)az%( eae. 9.520 
° 

Th 
The prime ('), e.g. Fo(y), denotes stress distri- 

butions on the plane where the load is applied; in this 

case 00*. The double-prime (") e.g. FX), denotes stress



120. 

8.5.1) contd. 

distributions induded by the load, on the other plane 

considered; in this case O*A. 

Combining the stress system given by equation 

(8.5-9, with the basic state of stress, the total normal 

and shear stress distributions on the plane 00* are given 

by: 

Normal stress : -Fo(y) + Fo(y), 8.5-3a 

Shear stress : -Go(y) + Go(¥), 

and on the plane O*A, are given by: 

Normal stress : P(x) + Fo(x), 
8.5-3b 

Shear stress : Q(x) + Go(x). 

  

  

Step 2. In orer to reduce the stresses on the plane O*A 

(equation 8.5-3b), we consider an orthotropic half-plane, 

mw <k< w, O€ y < , which is subjected along the 

ye plane, for -. <x <0, (see Fig.8.7) to a normal 

stress distribution Po(é), and, a shear stress distribution 

Qo(é). We define Po(é) and Qo(é) as follows:
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Po(é) SUlEE(s) 4 tolx | 
[-@ }, 8.5-h 

1 ote) =~ [ aCe) + 09%) |, 

The application of Po(¢) and Qo(¢) on the plane 

O*A, will give rise to normal and shear stresses on both 

lanes 00* and O*A, given by the following expressions: 

RO: ee = [ Pole) | ae see ag 

a 

+ [ ve) fiat ; 0 | ag, 8.5-5a 

and ; 

eo 1 = [ Pete) jee ayy (é) is 

+ [ e0te) pete m8 | ag, 8.5-5b 

The combination of the stresses given by the 

equations(8.5-3) and (8.5-5), will result in a total 

normal and shear stress distribution on the plane. 00*, 

given by 

Normal stress : -Fo(y) + Fo(¥) + Po(7), Boece 

Shear stress : =Go(¥) + Go(¥) + Qo(¥)» 

and on the plane O*A, given by: 

Normal stress ; =Po(x) + Po(x), 8.5-6b 

Shear stress : -Qo(x) + Qo(X).
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Step 3. The stresses on the plane 00*, given by equation 

(8.5-6a), canbe reduced by superposing the solution to 

an orthotropic half-plane (0 < x < », 0 <y < «), which is 

subjected along its 00* plane, to normal and shear stresses 

Fi(é) and Gi(€) respectively, where 

mi) == [ -Fo(7) + OG) + Po) |, 
8.5-7 

ag) =~ [ -Go(¥) + G09) + 007) |. 

This loading system, will induce stresses 

(Fi(¥), Ga(¥), Fa(%), Gi(x) on both planes 0O* and OFA. 

These stresses can be evaluated using equation (6.5-9, by 

replacing ¥9(é) by F,(g) and Go(é) by Gi(é). 

Then,the total stresses on the plane 00*, are: 

a he 
Normal stress : -Fa(y) + Fi(y), 

~ no 8.5-8a 
Shear stress: =Gi(y) + Ga(y), 

and on the plane O*A, are 

-, -, Ws, 

Normal stress : -Po(x) + Po(Z) + Fa(x), 
8.5-8b 

Shear stress: -Qo(x) + Qo (x) + Giz 

Step 4. The stresses on the plane 0*A, giveh by equation 

(8.5-8b) can be reduced by applying equal and opposite 

stresses P4(€), Qi(€) along the plane O*A of an orthotropic 

half-plane (-» < X < », 0 <y < «), and superposing the two 

solutions. 

The functions P,(¢) and Qi(€),are given by: 

Pi(é) ~ [Pot + Po) + iG) |, — 

Qu (€) 
=. te, fhe = eo) + eo) + 1G) |. 

The resulting stress distributions pn the planes 

00* and O*A, by the superposition of the two solutions, 

are given by:



123. 

8.5.1) contd. 

On the plane O*A: 

i, a 
Normal stress: =P4(x) + Pa(x), 

i Ce 8.5-10a 
Shear stress: -Qi(x) + Qa(x). 

On the plane 00*: 

a he Hie 
Normal stress: =Fi(y) + Fa(y) + Pa(y), 

8.5-10b 

Shear stress: =G,(y) + ci(y) + (7), 

where Pi (3), Qa(x), Pi (x) and a(x), can be evaluated,using 

equation (&5-5) and by replacing Po(€) and Qo(€) by Pi(é) 

and Q1(€) respectively. 

It is now evident that the techniques outlined 

in Steps 3 and 4 have to be repeatedly applied, in order 

to satisfy traction boundary conditions on the planes 00* 

and O*A, The functions Fé)» G(é), PECé) and Q,(€) > are 

then given by the recurrence relations: 

Payal) == [-F,07) + #2) +PLG) |, 
m+4, 

eal) == [-2,F) + G) +H) |, 8.511 

es [--,@) + PL) + F@]> 

= 1 = [-0,) + 9G) + eG], 

where 

[Ps og)s wus 02) | = 

[alo [Fos FEO 5 HHO) 3 HO Jae 
° 

+f e4(€) [ay ce); a te)s WRe)s Ee) Jace , 8.5-12 
°
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and 

[Pas Qs PAHs aH | = 

[ Pate) [es P%e)s WM e)s Me) | a 

+ [ ate) (2? (e)s Ce); A e)s Te) Jag. 8.5-13 

When the functions F(é), G,(é), P_(é) and Q,(é) 

are evaluated(from equation 8.5-11), we can then obtain 

F(é), G(é), P(é), Q(é), by @ summation of the stresses 

applied on each plane 00* and O*A, by every reversal 

of load. 

Then, 

Fe) = 5 FA(é)s 
m=0 

Gg) = G (é) 
= ra a’, — 8.5-Uy 

m=0 

Ble) = y P(é)» 
m=O
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8.5.2) Determination of the stresses. 
  

The corrective state of stress induced in the 

orthotropic half-plane by F,G,P,Q can be determined by 

using equations (8.3-12) and (8.3-2a). The stress com 

ponents are then given by: 

sk 
eae, ae = S XK. sk , ok (oe By x] = | He) (oes 5 o Jag 

° 

0 

+ [ Xe) = ay ¥] ag 

° 

° 

Pp . . + | P(é) [a4 ws #,| ag 

=o 

+f ue) (oz, Tes =] ag. 85-15
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8.6) Conclusions and recommendations. 

The method of solution developed for the "stepped" 

half-plane, was based on successive reversals of stresses 

on the planes 00* and O*A, located at the interior of the 

half-plane (see Fig.8.5). In each reversal, the stresses were 

only partially eliminated from the planes, since the induced 

stresses were in general not equal and opposite to the original 

ones. Under these conditions, the speed of convergence of 

the method would be relatively slow, Nevertheless, certain 

steps can be taken to improve the speed of convergence. For 

example, in order to reduce the normal stress F(x) on the 

plane 00*, we apply an equal and opposite normal stress 

F(é). Then, the induced normal stress on the same plane is 

=F (x)/2. It is then obvious, that if meg) is of magnitude 

~2F (x), the normal stresses on the plane 00* will be com 

pletely eliminated. 

Similar techniques can be used, in the reversal 

of the shear stresses on the plane 00*. 

The method of solution presented in the previous 

sections, was developed for the particular case of a "stepped" 

half-plane, i.e. the part 00* of the boundary was assumed to 

be at right angles to the rest of the boundary of ‘the half- 

plane. However, the solution can be extended to cases when 

the part 00" is inclined at an angle #90°. Then, the applied 

Loads F,,6,,P,,@, will be functions of X and y.
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9.1) Introduction. 

In the previous chapters (Chapter 3 - Chapter 8), 

analytical or numerical solutions were developed for a number 

of problems under "plane deformation" conditions, employing 

the theory of linear orthotropic elasticity outlined in 

Chapter 2, Whether these solutions can predict accurately 

stress or strain distributions in real orthotropic materials, 

was the object of the experimental work undertaken, 

Two types of tests were carried out, namely: 

1) Plane strain tests, and 

2) Plane stress tests. 

In both cases, stress or strain distributions were 

investigated in a "half-plane" and in a "quarter-plane", which 

were subjected to the following loading systems: 

1) Plane strain tests (boundary loads). 

a) Concentrated normal force, 

b) partially distributed uniform normal stress, 

c) parabolic normal stress, applied through a rigid block, 

2) Plane stress tests (interior loads). 

a) Concentrated force applied in either of the coordinate 

directions. 

The problems were so chosen as to cover a variety 

of cases, ranging from an analytical solution (half-plane; 

concentrated force at the boundary) to a numerical solution 

(quarter-plane; concentrated force at the interior). 

The choice of materials ani testing techniques for 

each test category was influenced by the following factors: 

1) Plane strain tests. 

i) Plane strain conditions can be simulated in the 

laboratory by considering a body of very large 

thickness (loaded uniformly over its thickness), so
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1) contd. 

i) 

ii) 

iii) 

contd. 

that the end-effects are negligible on the centre- 

line where its behaviour is investigated. With this 

technique, observation of deformations is limited to 

the boundaries of the body and therefore stress or 

strain fields cannot be determined at the interior. 

Alternatively, a body of relatively small 

thickness (in the fom of a plate) can be enclosed 

between two rigid, smooth blocks held a small fixed 

distance apart, In this way, the conditions of zero 

displacement (in the direction normal to the plane of 

the plate), of zero shear stress (on the sides of the 

plate) and of continuity of direct stress (between 

the plate and the blocks), necessary for plane strain 

deformation are ensured, Since tensile stresses cannot 

be transmitted between the body and the rigid blocks, 

the number of problems that can be investigated by this 

method is limited, unless, if precautions are taken to 

ensure that tensile stresses do not develop (e.g. by 

precompressing the body). 

Of these two methods, the latter was adopted, 

because it facilitates observation of displacements at 

the interior of a body. 

To enable the measurement of displacement fields within 

the elastic medium by optical methods, one of the rigid 

smooth blocks was constructed from a pane of glass. 

The accuracy of optical methods in measuring displace- 

ments is limited by the resolving power of’ the optical 

instrument used. Therefore, if displacements of points
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1) contd. 

iii) 

iv) 

contd. 

are to be measured with a certain degree of accuracy, 

and if large loads are to be avoided (for reasons of 

stability, handling, safety etc.), the elastic modulii 

of the material to be tested must be low. In view of 

the requirements it was decided to perform the plane 

strain tests with a rubber-like material. 

The orthotropic properties were induced in the rubber- 

like material by constructing it in the form of a 

laminate, This laminate was composed of alternating 

layers of hard and soft isotropic rubber-like materials 

which were glued together, The overall behaviour of 

the composite in the direction normal to the layers was 

then predominantly governed by the soft rubber, while 

in the direction parallel to the layers the behaviour 

was governed by the hard rubber. 

2) Plane stress tests. 

i) 

43) 

The plane stress condition is assumed to exist in a body 

which is composed of a thin plate or sheet-like element 

(i.e. the longitudinal dimensions are very large compared 

with its thickness). 

Fibre-reinforced plastics can be moulded in plates of 

small thickness, which exhibit orthotropic elastic 

behaviour depending on the type and orientation of the 

fibre reinforcement. The properties of the orthotropic 

plate can be varied by using different type and/or per 

centages of reinforcing material, 

For the reasons just mentioned and in view
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2) contd. 

ii) conta. 

of the wide applications of fibre-reinforced composites, 

it was decided to perform the plane stress tests using 

an E-glass-reinforced polyester resin, 

iii) Strain fields in fibre-reinforced plates can be observed 

with electric strain gauges located at salient positions. 

9.2) Plane strain tests. 

9.2.1) Constituent materials. 

The following materials were used in the construction 

of a rubber block for the plane strain tests: 

a) "Soft rubber". Shotblast, 70% natural rubber. Shore 

hardness 40-15%. 

b) “Hard rubber". Vinyl, (Trade name: Velbex). Shore hardness 

80%. 

c) Adhesive. Dunlop rubber adhesive $738. 

(The above materials were supplied by: 

Rubber and Plastics Industries Ltd. The two types of 

rubber were supplied in strips 3.5m x 150mm x 3mm). 

The elastic constants of the two types of rubber 

(denoted by Ey» ¥, for hard rubber and B, and v, for soft 

rubber) were determined from tension and compression tests. 

From these results, the modulii of rigidity G, and & were 

predicted from the relation (for isotropic bodies) G = B/2(1+v) 

1) Determination of E in tension. 

Specimens for the tension tests were cut from the 3mm 

thick strips with a Dumbell specimen cutter (Type A,B.S.903, 

pt.Al6). These were subjected to static loads. Elongations 

were measured using a travelling microscope and the
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1) 

2) 

contd. 

corresponding strains were plotted against the average 

stress computed for the initial cross section of the 

specimen. (The fact that no area correction was incor- 

porated in the calculations introduced an error in the 

slope of the curve, Assuming v = 0.5, and for a strain 

of 4% the error is of the order of 3%). 

Six tests were carried out with each type of 

rubber; a typical set of curves is shown in Fig.9.10, 

Both types of rubber were tested for strains up to 10% 

and were found to behave linearly elastic. ‘The Young's 

modulii were directly calculated from the slope of the 

curves, giving the following average values from six tests: 

By = 7.5 N/mm, By = 3.2 N/am? 

(see also Table 9.1). 

Determination of B and v in compression. 

The elastic constants (8, Bos Mp v,) in compression, 

were determined by subjecting rectangular rubber blocks 

to compressive loads at a constant rate of strain (0.1524 

mm/min), The blocks were built up from 3 mm thick rect- 

angular pieces of soft or hard rubber, glued together with 

rubber adhesive. The blocks were then machined to the 

required size (45 x 45 x 27 mm). 

During testing, the applied compressive loads were 

measured with a calibrated proving ring, while the dis- 

placements in the two principal directions were measured 

with mechanical dial gauges (see Plate 9.1). (To ensure 

uniform deformation of the rubber blocks, the end-plates 

of the compressive machine were lubricated with silicone 

grease).



9.2.1) contd. 

2) contd. 

In analysing the results, the strains in the two 

principal directions were plotted against the applied 

load and from the ratio of the slope ofthe curves, 

Poisson's ratio of the material was determined, The 

value of Poisson's ratio was later employed to effect 

an area correction for the stress-strain curve used 

for the determination of the Young's modulus. 

Four tests were carried out with each type of 

rubber and the following average results were obtained. 

B, 7.2 N/mm* , Y, = 0-48, 

B, 2.9 N/mm? , vy 0.48 s 

(see also Table 9.1). 

A typical set of curves is shown in Fig.9.2. Both 

types of rubber were tested for strains ranging from 

0-7% and they exhibited linearly elastic characteristics 

during both loading and unloading paths. 

The values of Young's modulii in compression were 

found to be less than the corresponding ones in tension. 

The difference may be attributed, partly to different 

elastic behaviour of rubber in tension ani compression 

and partly to the thin layers of adhesive present 

between the rubber layers. The presence of a second 

soft material (7.5% by volume) would also effect the 

value of Poisson's ratio (0.48 compared with 0.495-0.4.99 

Which is a usual value for solid rubber), 

From the two values of Young's modulii that were 

determined experimentally in tension and compression 

for each type of rubber, those in compression were 

adopted in the sudsequent analysis since the effects
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9.2.1) contd. , 

2) conta, oe 

of the adhesive layers were included in the final 

result. 

3) Determination of Ge 

The modulus of rigidity for each type of rubber : : 

was predicted from the corresponding values of B a 

“in compression, ant the folloning results 
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13h. 

9.2.2) Orthotropic material. 

9.2.2.1) Manufacture of rubber block. 

The manufacture of a rubber block for the 

tests under plane strain conditions, was accomplished 

in the following steps: 

1) 

2) 

3) 

4) 

The supplied rubber strips (3.5m x 150 mm x 3 mm) 

were cut into 820 mm long pieces, cleaned with 

tricloroethylene and neutralized with ammonia. 

The "basic unit" for the construction of the rubber 

block consisted of 5 strips of hard ruvber and 5 

strips of soft rubber glued together in alternating 

sequence with rubber adhesive. These "basic units" 

were later glued together in pairs and the process 

was repeated until the required thickness was attained. 

This technique of building up the block in steps was 

followed, so as to avoid excessive loads on the lower 

layers of the block and undue straining of the soft 

rubber at the early stages when the adhesive was still 

in liquid form, 

In the final form the block consisted of 83 layers 

of hard rubber and 82 layers of soft rubber,.and had the 

following dimensions: 

Height: 535 mm; width: 820 mm; thickness: * 150 mm. 

The large surfaces of the rubber block were machined 

with abrasive paper to remove any irregularities and 

were then covered with approximately 0.5 mm of Latex 

(trade name; Revoltex) to obtain a smooth flat surface. 

A grid, 10 mm square, was drawn on one of the Large 

surfaces of the block with white rubber paint. 

(see Plate 9.2).
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9.2.2.2) Prediction of elastic constants. 

  9.2.2.3) 

The notation for the elastic constants of 

the rubber block is as follows: 

E, : Young's modulus in the direction parallel to the 

layers. 

BE. : Young's modulus in the direction normal to the 

layers (see Fig.9.3). 

Since the material is transversely isotropic, 

we have FE =E, 
x z 

Employing the mechanics of materials approach 

(see Section 2.10) and since the volume fractions of 

hard and soft rubbers are approximately the same, we have: 

    

  

E, +E Vi+V 
eockit es Greate 2 Peed Wage 

Pe) Lt N/on? , yh a 0.48, 

28, s zB, 
5, = it, = 4.13 N/mm* , aes z = 0.39, 

2G, G, 2 ‘ G_ = ““h’s = 1.43 N/mm (see also Table 9.2a) 

eae, 

Experimental determination of elastic constants. 

Four of the five elastic constants required for 

the complete description of elastic behaviour of the trans- 

versely isotropic rubber block were determined experimentally



9.2.2.3) contd. 

while the fifth one (modulus of rigidity Cp was obtained 

by the'law of mixtures'from the elastic properties of the 

constituent materials (equation 2,10-8). 

Specially manufactured rubber samples (45 x 45 x 27 mm) , 

identical to the large rubber block, were subjected to 

compressive loads at a constant rate of strain 

(0.1524 mm/min) along one of the principal directions. 

The Young's modulii (8, 58,) and the Poisson's ratios 

Gaye Vy) Veq) were determined through a procedure, identical 

to that outlined in section 9.2.1/2. 

The results of the tests are listed in Table 9.2a, 

The elastic compliances 435 and the orthotropic constants 

k, and kg of the material are listed in Table 9.2b. 

Comparing the experimental results with the 

theoretical predictions (see Section 9.2.2.2) we observe 

that the theory overestimated Ey by 7.5%, EB by 5.5%, and 

underestimated We by 5%e
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Apparatus . 

The apparatus for the plane strain tests consisted 

of a steel container (tank) to accommodate the rubber block, 

a 20 mm thick glass plate (1.09 x 0.855 m) and a set of 

loading devices capable of applying the concentrated force, 

the uniformly distributed stress and the "rigid punch" type 

of load. 

1) 

2) 

Steel tank. 

The tank was constructed out of 10 mm thick mild 

steel plates. Drawings of the tank and its dimensions 

are shown in Fig.9.4 (see also Plates 9.3a and 9.3b). 

The front face of the tank consisted of a rectangular 

frame containing a groove 30 mm. wide and 30 mm. deep. 

The upper part of the frame could be dismantled so that 

the glass-plate could be slid into its position. 

The rear plate of the tank was stiffened with four 

25.4 x 25.4 mm* steel bars and the interior surface was 

covered with a layer of formica to improve its friction- 

less characteristics, 

Loading devices. 

As was mentioned previously, three types of loads 

were considered. 

The loads were applied on to the material through 

a cylinder (20 mm in diameter and 150 mm long) for the 

concentrated force problem, and through a rigid plate 

(100 x 150 x 20 mm) for the rigid punch problem (see 

Plate 9.4a). In both cases a T-beam lever (4:1 ratio) 

was used for the application of loads (see Plates 9.3a 

and 9.3b). 

The uniformly distributed load was applied through 

a specially designed pressure cell (see Fig.9.5 and
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9.2.3) contd. 

2) contd. 

Plate 9.4b). The cell was made out of brass and it could 

be used with air, water or oil, but air was chosen as the 

pressurising medium, 

A membrane, through which the pressure would be 

transmitted on to the material, was moulded to fit 

exactly the interior of the cell. 

The vertical sides of the cell were made into sharp 

edges, so that the loaded area could be determined more 

accurately. In addition, two of the vertical sides 

were made of two separate plates Pl and P2 (see Fig.9.5). 

The inner plate Pl was part of the basic cell, while the 

outer one P2 was capable of sliding over Pl and f'ollow 

the deformation of the material and the expansion of 

the membrane, That enabled a constant width of the 

applied pressure to be maintained at all stages of 

loading.
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9.2.4) Method of testing. 
  

The surfaces of the rubber block and the internal 

surfaces of the steel tank were lubricated with silicon 

grease to minimize the friction between the rubber and the 

glass and metal surfaces, The block was then placed in 

the steel tank and the glass plate was slid into position 

and secured with the fixing screws. Two I-beams 

(38.1 x 76.2 mm) were placed at the front of the steel 

tank (see Plates 9.3a and 9.3b) to reduce the lateral 

deflection of the glass plate during loading. 

The actual testing under any of the three loading 

systems was accomplished in the following steps: 

1) The appropriate loading device was fixed into position 

(at the centre of the rubber block for "half-plane" 

problems or near a corner for “quarter-plane" problems), 

and the thickness of the rubber block was measured with 

a large micrometer, 

2) ‘Two dial gauges were positioned, one at the front and one 

at the rear of the steel tank to record any lateral de~ 

formations and the initial readings were taken, 

3) A camera (Hassleblad 500C) was fixed 500 mm from the 

steel tank; opposite the region of application of loading, 

and an initial photograph of the grid was taken (see 

Plate 9.5). 

4.) The load was then applied in steps and for each step 

a photograph of the deforming grid was taken and the 

readings of the dial gauges were recorded. 

The load increments, the maximum attainable loads 

and the maximum strains in the Z and Y directions, for each 

type of load, are shown in Table 9.3, 

Photographs of the deformed grid under the various 

types of load are shown in Plates 96-94
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4) contd. 

TABLE 9. 

Loading Load Maximum Maximum Maximum 

Problem Condition increment Load & = 

Half C.L. 20.4 kg. | 300 kg 0.0009 0.1169 

plete R.P. 32 kg | 415 kg | 0.0012 0.0155 

U.D.L. 34.05 KN/o* | 242 kN/m? 0.0018 0.0155 

Quarter cC.L. 20.4 kg. | 320 kg 0.0010 0.1082 

pier RP. 32 keg | 392 kg | 0.0012 0.0229 

U.D.L. 305 KN/m® | 172.5 KN/m? 0.0017 0.0275 

where 

C.L. : Concentrated load 

R.P. : Rigid punch, 

U.D.L. : Uniformly distributed load.



  

PLATE 9.5 Apparatus for plane strain tests.



 



  

PLATE 9.8 Half-plane; uniformly distributed load. 

  
PLATE 9.9 Quarter-plane; uniformly distributed load.
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9.2.5) Analysis of test results, 

9.2.5.1) Method of analysis. 

h 

4o(xo Yo) S Aa (x4 34) 

' 
Ao (Xo 5¥o) 

h F meee 
Ag (x2 594) 

Aa (Xa ,Ya) Ag(xa5¥s) 

aa(xa,ya ) 

Fig.9.6 

In each test, the strains induced in the 

material by the loading system were determined from 

the deformation of the grid which was drawn on the 

material (see Section 9.2.2.1). 

Let Ao,A1,Aa,4a, be the points (nodes) at the 

corners of an element of the grid when the rubber 

block is in its unloaded state and Ae eRe By hy the 

respective points after the application of the first 

load increment (see Fig.9.6). 

The length of sides of the element 'h' is 

assumed to be sufficiently small, so that the 

variation of displacement between the points As and Aas 

or de and Ay can be assumed linear. 

Then, the strain e, at point E (the mid-point
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of Ao Ax) is given by: 

1 ' 

X4-Xo)=(x,- 
e, (x,y) = Sse 7 9.2.5-1 

where 

+ xX x= MEM, yy. WM, 

Similarly, the strain ss at point F (the mid- 

point of AyAg) is given by: 

ey(xy) = 5 9.2.5-2 
Ya-yo 

where 

+X + x= a » y= Wk, 

Using such a procedure, it was possible to de- 

termine the strains at a number of points on the grid 

system. 

The coordinates of the nodes, for each load 

increment, were determined from the corresponding photo- 

graph of the grid, using a "Universal Wild Plotter". 

From the results, the lengths of the sides of each element 

were calculated and plotted against the applied load, Then, 

the ratios of strain/load were determined from the slope 

of the curves. 

Accuracy and errors. 

All the tests under plane strain conditions 

involved the measurement of loads (either the total load 

or the pressure) and the measurement of lengths. The 

accuracy of the results was influenced by the accuracy 

with which the loads and displacements were measured. 

In addition, the conditions under which the
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tests were carried out should satisfy the assumptions 

made by the relevant theory. Any discrepancies would 

affect the results by introducing errors. In many cases 

the errors could not be eliminated but only minimized, 

and then it became necessary to consider their effects 

on the final results. 

We concentrate first on the accuracy involved 

in the various measurements. 

a) Measurement of loads. 

Total loads presented no problem, since they 

were static loads applied on to the material through 

a4:1 lever, The experimental set up ensured that 

friction at the pivots or supports would be minimal, 

and, compared with loads varying from 20 kg to 300 kg 

could be assumed to be negligible. Pressure was 

measured with a Budenberg oil pressure gauge to an 

accuracy of + 0.00172 N/mm*. 

b) Measurement of lengths. 

The Universal Wild Plotter that was used for 

measuring the dimensions of the grid elements, was 

accurate to 0.01 mm, With the camera positioned at 

520 mm from the grid, an area of 240 x 240 mm was 

imprinted on 2544 x 25.4 mm? of film. For approximately 

4:1 enlargements, 10 mm on the grid were equivalent 

to 4.6 mm on the prints. It follows then, that stains 

over an average length of 4.6 mm could be measured to 

an accuracy of + 0.22%,
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The main sources of error encounted in the plane 

strain tests are discussed in the following paragraphs. 

1) Refraction in the glass plate. 

’ 
—— 0 

  

  
  
  

  

              

  

        

  

      

Fig.9.7 

Due to defraction of light in the 20 mm thick 

glass plate at the front of the steel tank, the nodes 

of the grid appeared to be in a different position than 

they actually were (see Fig.9.7a) and therefore the 

image of the grid imprinted on the film of the camera 

was distorted. 

Consider point A in Fig.9.7a and b. A, which is 

assumed to represent a node of the grid, would appear 

to be in position A' on the line OA, where O is the’ 

projection of the centre of the camera on to the plane 

of the grid. The apparent displacement AA' of point A, 

is a function of distance OA, the refractive index (y) 

and the thickness of the glass (t+), and,the distance of 

the camera from the glass-plate (H). 

For small angles of incidence (i) (see Fig.9.7a), 

when



1456 

9.2.5.2) contd. 

  

1) contd. 
sini . tan i 

w= ‘Sinr ~ tanr’ Fo2eo-5 

where r is the angle of refraction, 

AA' is given by the following relation: 

AA' = OA (2 |. 9.2.5-h. Hu + t 

Therefore, AA' is maximum for points near the 

corners of the grid, where OA is maximum, 

AA' can be analysed into its components BB' and 

CC' along the X and Y axes, so that the apparent dis- 

placements of point A relative to the coordinate axes 

X,Y can be found. 

0 

  

  

    
  

  
Fig.9.8 

We now refer to Fig.9.8. Let A and B be two 

adjacent nodes of the grid, distance ho apart, in 

the initial unloaded state. Due to refraction, they 

would appear as points A' and B' respectively, distance 

h, apart. After the application of a load increment, 

ho changes to ho. Then, according to the convention 

that compressive strains are assumed positive:
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Senet 9.2.5-5 

At this stage’ we have to distinguish between 

the following two cases: 

' 
a) ho remains in the vicinity of h,, and its 

1 
apparent length is bys Then, 

1 

ee 
a = te 

a 

922.5-6 

The difference between e and e, is the 

error introduced by the refraction in the glass 

plate and increases as distance OB (Fig.9.8) gets 

bigger. For maximum OB (0B * 120 mm) and for a 

maximum strain e = 10% over a length of 10 mm, the 

error is of the order of 0.0001%. Errors of this 

magnitude are insignificant and therefore corrections 

were not necessary. 

b) ty undergoes a rigid body movement to points C-D 

(see Fig.9.8). This occurs to grid elements in the 

vicinity of the applied loads. Then, for an apparent 
" 

length h,, the strain is given by: 

Sng So peuras 922.5-7   

For a maximum rigid body displacement of 

15 mm, and for a strain e = 10% over a distance of 

10 am, the error introduced is of the order of 0.1%. 

Therefore, for rigid body displacements of more than 

5 mm, a correction was incorporated in the results.
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2) 

3) 

Deformation of the grid. 

The displacements of the nodes of the grid 

were determined relative to a fixed pair of axes. The 

origin and the orientation of these axes were established 

on each print, from two characteristic marks that had been 

made on the glass-plate (the uppermost corners of the 

white tape; see plate 9.2). The axes of the plotter 

were made to coincide with the coordinate axes of the 

print. The marker of the plotter was then brought 

over a node of the grid and its coordinates were de- 

termined, 

In measurements like this, errors frequently 

occur in the process of Placing the marker over the 

nodes (usually classified as a human error). Errors of 

this type were accounted for, by plotting the lengths 

of adjacent grid elements against the applied load on 

the same graph (see Fig.9.9). The errors were then de- 

termined by visual inspection of the curves. In addition, 

the slope of each curve was determined by a "least square! 

technique. 

Displacement in the Z-direction. 

As discussed in Section 9.2.4, some deformation 

of the material was observed in the Z-direction, i.e. 

the direction along which the displacements are assumed 

to be zero, for plane strain conditions to exist. 

The maximum observed strains &> at a point 

near the point of application of the loads (for both 

concentrated and distributed loadings) are shown in 

Table 9.3. 

Strains of this magnitude (0.1%-0.2%), compared



13
0-
01
 

S
c
a
l
e
 

L
E
N
G
T
H
 

        
FIG. 9-9 

= u—o— 
oO, 

GhMM pe l= 492 56 G20) 384 
LOAD Kg



148. 

9.2.5.2) contd, 

3) contd. 

with the corresponding strains in the X or Y 

directions, which are of the order of 2%-10% can 

be assumed to be negligible, 

4) Shear stresses at the boundaries. 

In order to ensure minimum friction at 

the interfaces between the material and the sides 

of the tank, all surfaces were lubricated with 

silicone-grease. The interface between the loading 

devices and the material was also lubricated to 

minimize frictional effects. 

9.2.6) Presentation of results. 

The series of tests that was carried out 

under plane strain conditions, had as an objective, the 

experimental determination of strain fields induced in a 

half-plane or a quarter-plane by the action of externally 

applied loading systems and a comparison of the results 

with the strain fields predicted by the relevant theory. 

For all the tests, the results are presented 

as a variation of the strains e,/1oad and € /load, with 

the dimensionless x and y coordinates, where xX and y 

are defined in terms of a characteristic length parameter 

of the problem. The dimensional quantities (i.e. strain/ 

load), are expressed in units of mm?/N or N+.
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9.2.6.1) Half-plane/quarter-plane; concentrated force. 

Experimental investigation of concentrated 

force problems, present a difficulty due to the singular 

behaviour at the point of application of the force and 

the high stresses associated with it. Rubber-like 

materials, when subjected to high stresses do not 

exhibit linearly elastic characteristics and as a 

consequence the "concentrated force" had to be applied 

on an area wide enough, so that the stresses in the 

vicinity of the load should not exceed the linear 

elastic limit. 

Therefore, it was decided to apply the 

"concentrated force" through a steel cylinder 20 mn, 

in diameter, The distribution of contact stress was 

assumed to be uniform and its magnitude was given by 

the applied load (per unit thickness) over the average 

Length of contact (2¢). The length of contact for each 

loading stage, was measured from the corresponding 

photograph, and its average value was found to be 

12.5 mm, for both the "half-plane" and "quarter-plane" 

problems, 

The results from the test of the "half-plane" 

problem are shown in Fig.9.10 and 9.11. The half- 

width of the average contact area (&) was taken as the 

characteristic length of the problem. 

Referring to Fig.9.10, which shows the 

variation of e, with x/£, we observe that there is 

good correlation between the experimental results and 

the theoretical curves. Similar correlation is ovserved 

in the variation of &y with x/é (Fig.9.11), but for
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xX <3 andy < 9, that is in the vicinity of the applied 

load, the experimental results deviate considerably 

from the theoretical curves. In most cases, the observed 

values of the strain are less than the theoretically 

predicted ones, thus indicating that the effective 

length of contact was larger than the assumed average 

of 12.5 mm. 

We now refer to the case in which the concen- 

trated force is applied normal to the boundary of a 

quarter plane, at distance a = 100 mm. from its apex. 

In this case 'a' is assumed to be the characteristic 

iength of the problem, The variation of 6, and ey 

with x ana y is shown in Fig.9.16 and 9.17 respectively. 

The theoretical curves were obtained using 

equations (64-1 and 6.211). The process of load re- 

versal was carried out 20 times, using 120 slices in the 

application of Simpson's rule for the numerical evaluation 

of the integrals (see equations 6.2.9 and 6.2.10). ‘The 

upper limit of the integrals was taken as 50. 

Half-plane/quartermplane; partially distributed 
uniform load. 

In both cases (half-plane and quarter-plane) 

the half-width of the uniformly distributed load 

(@ = 60 mm) was assumed to be the characteristic length 

of the problem. The results from the tests are shown in 

Fig.9.12, 9.13 for the half-plane problem and in 

Fig.9.18, 9.19 for the quarter-plane one, The load in 

the ratio strain/load, is the applied pressure 'p', and 

for consistency in the units it must be given in N/mm, 

The theoretical curves for the quarter-plane
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problem were obtained through equations (2.5-1) and 

(2.52), with 20 reversals of load. 120 sliceswre 

used for the numerical evaluation of the integrals with 

an upper limit of 50. 

Half-plane/quarterplane; rigid punch. 

In both cases, the half-width of the rigid 

plate = 50 mm, was taken as the characteristic 

length. 

The theoretical determination of the stress 

(and strain) components in a half-plane (or quarter- 

plane) due to a rigid punch type of load, presented 

some difficulty for the following reasons: 

a) The stresses for the half-plane problem (and for 

the basic state of stress in the quarter-plane 

problem) were determined by numerical integraion 

(see Section 4.6) and therefore were not exact. 

b) The pressure under the rigid plate becomes infinite 

when x = 4 @ (ive. X = 41). 

In order to overcome the problems due to the 

singularity at points X= +1, it was decided to adopt 

the following procedure: 

The applied pressure was treated as‘a series | 

of uniform load elements of finite width. The spacing 

of the elements (and their width), was done on a 

logarithmic scale, such that the magnitude of the 

pressure for each load element was given by: 

eG) = ——= , 
adl-x? 
  

where xX =1- , for =o < én ¢ <0,
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In this way, it was possible to consider load 

elements as close to x = + 1 as necessary, 

It was found that the best correlation between 

theory and experiment for the half-plane problem, was 

obtained for a minimum ¢ = -2.5, and a spacing of the 

elements based on d{ = 0.1 (i.e. 25 elements). The 

results for the half-plane problem are shown in 

Fig.9.14 and 9.15. 

The same values for minimum { and df were used 

for the solution to the quarter-plane problem, The 

load reversing process was carried out 20 times, with 

120 slices and an upper limit of 50. The theoretical 

curves and the experimental results are shown in 

Fig.9.20 and 9.21. 

In both cases (half-plane and quarter-plane), 

the strains are presentéd as a ratio of strain/load, 

where ‘load’ is the total concentrated force applied 

on the rigid plate, For consistency in the units, the 

force must be given in Newtons (N).
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9.3) Plate stress tests. 

A series of tests was carried out under plane 

stress conditions in order to investigate stress distri- 

butions in an orthotropic plate, whose boundaries can.be 

approximated to those of a half-plane or a quarter—plane, 

The material used for the tests was a unidirectional glass- 

fibre reinforced polyester resin, henceforth referred to 

as a fibre-glass composite. 

9.3.1) Constituent materials. 

a) Glass. The fibre reinforcement was E-glass uni- 

directional cloth, type Y-996, supplied by Fothergill 

and Harvey Ltd., 

b) Resin, The resin used was preaccelerated Beetle 

Polyester resin 837, supplied by B.I.P. Chemicals Ltd., 

This type of resin requires the addition of a suitable 

peroxide catalyst to effect rapid gelation of room 

temperature. The catalyst used was Bestle catalyst 347 

(methyl ethyl ketone peroxide). A curing time of 

approximately 45 min, was obtained with 0.1% by weight, 

of catalyst. 

The physical properties of the fibre-glass re- 

inforcement and resin, are listed in Table 9.4. 

  

  

TABLE 964 

Ez G Specific 
N/mm? v kN/inm? Gravity 

E-glass* 70 0.2 29.16 2095 
hd Eee del 0.33 15h 1.19           
  

* G.R.P. Parkyn (1970) 

** B.I.P.Chemicals Ltd., Leaflet No.10. 
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9.3.2) Orthotropic material. 

9.3.2.1) 

9.3.2.2) 

Moulding of fibre-glass composite. 

A fibre-glass reinforced composite was moulded 

into the form of a plate, 3.5 mm thick, using a wooden 

mould 800 x 800 mm. Three layers of E-glass cloth were 

used and during placing of each layer, care was taken to 

avoid air being trapped between the fibres and the 

resin, 

The plate was left in the mould under pressure 

for 24 hrs., after which it was removed and left for a 

week on a flat surface under a small pressure, 

Square specimens (20 mm x 20 mm) were cut from 

the plate, for the determination of fibre and resin content 

(by volume). 

The following average results were obtained 

from five tests: 

Vp = 28.5%, ve = 68.9% , WF 2.6%, 

where the subscripts f,r,v. refer to fibre, resin and 

voids respectively. 

The plate was then trimmed to a size of 

700 mn x 700 mm. 

Prediction of elastic constants, 

As was discussed in Section 2.10, the elastic 

cors tants of composites can be predicted with a certain 

degree of accuracy from the properties of the constituent 

materials and their geometrical configuration. For the 

particular case of unidirectional fibre reinforced com- 

posites, we shall adopt the following notation: 

The subscripts 'é' and 't' denote the directions 

parallel (longitudinal) and normal (transverse) to the
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direction of the fibres respectively, e.g. Ey sBy, You? etce 

The longitudinal modulus Ey was determined by 

the law of mixtures (equation 2,10- 1 ), while the 

transverse modulus EL, the Poisson's ratio vp, and the 

shear modulus Gots were determined from the corresponding 

Tsai's equations (see Section 2.10). Since the composite 

was hand-layed, and, for a fibre volume fraction of 28.5%, 

a contiguity factor of 0.5 was considered. 

The following values for the elastic constants 

were obtained: 

By = 22.77 kN/mm® =, B= 8.9 KN/mn® , 

Veg = 00255 » Gop = 4679 KN/mm? . 

Using the symmetry relation ve By = Ye eBer 

the value of Vig was found to be 0.099 (see also ~ 

Table 9.5). 

9.3.2.3) Experimental determination of elastic constants. 

The elastic constants of the orthotropic com- 

posite were determined experimentally with specimens cut 

from the ‘rectangular plate (the specimens were cut after 

the main tests had been carried out, so that the properties 

of the material actually tested were found, 

Aé-Khyatt (1974), using the same type of glass 

cloth and resin, found that the values of Ey and By for a 

unidirectional composite (vp = 0.3), determined in compression, 

were 4% less than the corresponding values of the modulii 

determined in tension. Differences of this order of 

magnitude can be assumed insignificant, particularly in 

cases when the analysis of a problem is based on the
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contd. 

orthotropic elastic constants ky and ky, which change 

by only 2%, Therefore, the elastic constants of the 

composite were determined in tension only. 

1) Determination of E Be Me pale 

Rectangular specimens (197 mm x 19 mm) were 

cut parallel (for the determination of E ) ana eet 
normal (for the determination of Ei, yz) to the 

direction of the fibres. Aluminium "end-pieces" 

(45 x 19 x 3 mm) were fixed on to the ends of the 

specimens with araldite adhesive in order to avoid 

stress concentrations and to obtain a uniform stress 

distribution over their width. The specimens were then 

subjected to static tensile loads in a Denison tension/ 

compression machine, 

The strains in the two principal directions 

were measured with electric strain gauges (Type GFLA-6; 

length: 6 mm; Gauge factor 2.16), connected to a 

Compulog Alpha 16 Computer. The strains were thus 

measured to an accuracy of 10°°, 

For each test, the principal strains: were 

plotted against the applied load and the relations 

were found to be linear, From the ratio of their 

slopes, the corresponding Poisson's ratio was determined. 

The value of Poisson's ratio was employed to apply an 

area correction to the stress-strain curve, from the 

slope of which the corresponding Young's modulus was 

calculated (see Fig.9.22a and b). 

From 14 tests (7 for each principal direction), 

the following average values were obtained (see also 

Table 9.5).
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= 2 = Ey = 21.2 kN/mm' Yee = 0.252 

= 2 = Ey = 8.27 kN/mm' Ye = 0.098. 

2) 

It can be verified that the above results 

satisfy the symmetry condition: 

Yes Ey Bovey Bye 

Determination of Gey 

Referring to the equations given in Appendix 

[1], for $ = 45°, equation (Al-1) reduces to: 

  

wz a eee e+ =: 9.341 
s Ee 65 et 

where Iys denotes the Young's modulus of the material 

in a direction inclined at 45° to the longitudinal 

axis. Ep, B, and v,, in equation (9.31) can be 

determined experimentally, as described in the previous 

paragraph.Eys can be found by subjecting specimens cut 

at 45° to the fibre direction, to a state of uniform 

tension, Then, the only unknown left in equation (9.3-1) 

is Goes which can be calculated. 

The determination of yg presents some proolems, 

due to the fact that it is extremely difficult to subject 

off-angle specimens to pure tension. Pagano and Halpin 

(1968), investigated the influence of end—constraint and 

showed that if conventional clamping devices are used, 
* 

the apparent Young's modulus E, determined in the tests, 
¢ 

is related to the actual ae by the following relation: 

B= (az) 9.352 
ed 

where 

ile pee Seca cee asf Wy 923-3 
e 

C41(6cect+cas %)
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9.3.2.3) contd. 

2) contd. 

14 are the elements of the compliance matrix 

(see equation 2.3-1); ¢ and h are the length and the 

half width of the spcimens respectively. 

The magnitude of X cannot be determined without 

a prior knowledge of the value of cg.¢ ie 1/G,,)> but 

its value would tend to zero as the ratio ¢/h becomes 

large (see equation (9.3-3)). As a consequence 

  

    

        

  

* 
Se ao 

45 120 

Fe 

1 19 
| | 

iG r 100 | 

220     

(All dimensions in mm). 

  

Based on the above condition, the overall length 

of the specimens cut at 45° to the direction of the 

fibres, was increased to 220 mm, In addition, the 

specimens were machined as shown in Fig.9.24, to 

reduce their width to 11 mm, Thus, the ratio ¢/h 

was increased to approximately 12. We could then assume 

% 

that x2 O and eis ao 

The average result from seven tests was:
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9.3.2.3) contd. 

2) contd. 

Eys = 8.92 kN/mm® (see Fig.9.23) 

and from equation (9.3-1): 

Gy, = 3429 KN/nm? (see Table 9.5). 

TABLE 9.5 

Number of 
Theory Experiment tests S.D,. 

Ey 22.77 21.20 t a O04 

By 8.90 8.27 uf ct 0.3 

Yen 0.255 0.252 7 oS 

Yee 0.099 0.098 Yi i 

G 4.79 5.29 of + 0.4 

(All dimensional quantities in kN/mm®) 

e412 laa lia les Ka Ka 

0.0471 0.1209 -0.0118 0.3039 144.609 0.4275               

(All dimensional quantities in mm*/KN) . 
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Method of Testing. 

Three different tests were carried out with 

the orthotropic composite plate, and are shown 

diagrammatically in Fig.9.25. In cases (a) and (b), the 

plate was suspended from points A, and Ag, while static 

loads were applied through a pin (3 mm in diameter) and 

hanger system at points Ag for the "half-plane" problem, 

and point Ag for the "quarter-plane" one, In both cases, 

the loads were applied in a direction normal to the 

direction of the fibres. 

In case (c) (see Fig.9.25c), the plate was 

suspended from points Ag and Ay, so that the load was 

applied in the direction of the fibres. 

The strains at points in the vicinity of the 

loads were measured with electric strain gauges (Type: 

GFLA-3; length 3 mm; Gauge factor 2.13) positioned as 

shown in Fig.9.26a and 9.26b (see also Plate 9, 12).At each 

point two strain gauges were used, one on each side of the 

plate and at right angles to each other, so that the strains 

could be measured in both X and Y-directions. 

For each one of the tests, the plate was loaded 

in steps of 10 kg to a maximum of 120 kg and then unloaded, 

while readings 0: the strain gauges were taken by the 

Compulog Computer for each load inerement. Each test was 

repeated three times,
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Analysis of results. 

The strains &, and &, for each of the points 

considered, were plotted against the applied load. The 

relationship was found to be linear (a typical example 

is shown in Fig.9.27), although in some cases an origin 

correction was necessary. This form of non-linearity 

at the initial stages of loading indicated either that 

the plate was slightly curved in the unloaded state or 

a local non-linearity of the fibres. 

During unloading, the strain-load curves were 

found to be identical to those of the loading stage, with 

no signs of creep (each test was carried out in approximately 

20 min). 

Heating of the strain gauges (which is a major 

problem when measuring strain on plastics, due to their 

low conductivity of heat) was minimized by using the 

Compulog Alpha 16 computer, with a reading time for each 

strain gauge of = 0.1 sec. - In addition, one "dummy" 

strain gauge was used with every four strain gauges on 

the material. 

Each test was repeated three times and a 

remarkable consistency of results was observed, 

Average values for strain/load were used whenever 

necessary.
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9.3.5) Presentation of results. 

The strains e,/P and e/P at a point, were 

used in conjunction. with the elastic constants of the 

material to determine the direct stress components at 

that point (the stresses were determined in dimension- 

less form, e.g. a/P, where P is load per unit 

thickness) 

Theoretical values for the stresses were 

obtained through equation (4.7-3) for the half-plane 

problem and equation (6.6-1) for the quarter-plane one. 

These values were plotted against X for various values 

of y and are shown in Fig.9.28, 9.29 (half-plane) ana 

Fig.9.30-9.33 (quarter-plane), The experimental results 

were marked on the same graphs for comparison. 

Referring to Fig.9.28 and 9.29 (half-plane 

problem) we observe that for x > 0.3 and y > 1.5 there 

is good correlation between theory and experiment. For 

X<0.3 and 0.5 <y <1.5 the experimental results 

deviate from the theoretical curves, as it would be expected 

for points in the vicinity of a concentrated force. The 

stress component os which attains high values at pointe 

near the boundary of the half-plane diminishes very rapidly 

with y and for y > 1.5 it becomes relatively insignificant, 

We now refer to Fig.9.30-9.33 for the quarter 

plane problem. The correlation between theory and experiment 

is somewhat inferior compared to that of the half-plane 

problem, but the pattern of stress distribution indicated 

by the experimental results is correct, 

A point worth noticing is the development of 

relatively high stresses in the X-direction, at points 

near the Y = 0 boundary of the quarter plane, when the
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_ longitudinal axies of the unidirectional composite 

  

coincides with the direction of the applied load 

(see Figure.9.32). 
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Fig.Al.1 

The engineering elastic constants of an orthotropic 

body index plane stress, in the X'Y' coordinate system (see 

Fig.Al.1) are given in terms of the constants in the XY system, 

by the following relations: 

4 a2 

ao = sore + & ~ PY ) sin® cos*¢ + a » Re 
x x xy E ¥y 

<4 2 

ea = eae + as = =x) sin*¢ cos*p + a > Ale2 

a x xy iE y 

2 

= S (3 + 2 + Vy ) sin?¢ + ae , tee 
xy x % E, xy 

: v. ars ale J 2v. als ee 
vy =8 Ey aS ee ce oe ) sin*2¢ AL-4. 

Pes E 4 (3, By E Sy a x x
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The symbols which refer to the new orientation of 

the coordinate axes are denoted by a dash (') Sue. kt ke etc. 

It can be verified that the elastic constants 1a 

and €g6 remain unaltered, while ¢,, and ga are replaced by 

fy, and £4, respectively 

As a consequence: 

  

  

s &; 
pr =e Te A2=1 

and 

(a) = fae A2-2 
© baa 

From equation (2.6-4) we have: 

= . . A2-3 
aa ieee 

Substituting (A2-3) into (A2-2), and since k,,k, > 0: 

1 1 

kK, = % ,& = % A2-4.
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i th interface 

  

Fig.Aj.1. 

The displacements of uw, vi of a point (x.,y,) of the ea 

a layer on the oe interface are given by: 

J J J [4] = afar d, |g a+ x), 

4 AB-1 

[*] = pew te a, ay + (y), 

where i=1...nandj=i, i+i. 

The functions f(x) and f(y), which are assumed to re- 

present rigid body rotations, can be excluded from the follow- 

ing equations since they do not affect the subsequent analysis 

(see equation 5.4-9). 

Substituting the expressions for the stresses o, and 

oy, from equation (5.4-1) into (A3-1), we have 

= yg? sin(ax), 
V5 Aj-2a 

S
S
 

—
 

4 
5 

ee
 

a 

" 
it 

=y’ Q® cos(ax), fori=1...n, j =i, itl, 

where



167. 

ae { Gas ) a a 3 frets ves fa ee } 

xf cee Poe ; eon “ee ) cee i ‘ 

A3-2b 
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The elements of the A matrix are given by the follow- 

ing expressions: 

S44 
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a= {808 + (ap)? [om + 27 (28) | (asp? [omF ot (ob) | } 2 Abn? 

The elements of the A' matrix are given by: 

  je Cale ke a ate 
wae) 7 23 (a'=p") 

6 . Mp5 
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For the F-functions to be convergent it must be shown 

thats 

2 

2 (gnky-énlg ) 2 
[ 7 (aKa | ee ae 

The above inequality is simultaneously satisfied if: 

2 

ee kake <1. A5~2 
Ki-k, | 

Let 

= & - Ky = a= and f = én I * AD-3 

Then, for ky > kg > 0, 

@> 1 and p> 0. Ad5-4. 

Inequality (A5-2) can be written as follows: 

a = (2+67)a +1 > 0 A5=5 

a) Reece te) A5-6 

1+8 8 iPr > 0, Ao-7 

inequality (A5-5) is simultaneously satisfied if 

arisl 48 iH. A5-8 

We can write A5-8 in the following form: 

a= Pais pL + Beer i+! 2 PT, ase 

which reduces to: 

p+ Be ue> 8 Pa. A5=9 

Finally, considering the first two terms of the series (equation 

A5-9), it can be shown that (A5-9) reduces to:



Beko a 5-10 

which is true for all values of p. 
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