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SUMMARY.

This thesis deals with the solution of certain problems
in 2-dimensional, linear orthotropic elasticity theory, which
are of particular interest to engineering.

The types of problems analysed, can be classified accord-
ing to their geometrical configuration, into the following four
categories: Layered half-plane; quarter-plane; infinite strip,
and, half-plane with irregular boundary.

Solutions to problems related to the layered half-plane
have been obtained using a Fourier integral approach, whereas
solutions to problems related to the quarter-plane and the half-
plane with irregular boundary, have been obtained using a
superposition technique, This technique is an extension of
the method used by Hetényi (1960) to obtain a solution for the
isotropic quarter-plane, In the case of problemsrelated to the
infinite strip, both of the above methods of solution have been
used.

Salient numerical results have been presented to the
problems cited earlier. In addition, the solutions of certain
quarter-plane and half-plane problems have been verified

experimentally through a series of laboratory conducted tests.
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LIST OF SYMBOLS

C, : Cons tants.
%

D ¢ Distance.

E. : Young's modulus in i direction.
L

. Modulus of rigidity between i and j directions.

ij
H H Distance.
P : Concentrated force/unit thickness.
T ’Ty’Tz : TForce/unit area, in x,y,z directions respectively.
W i Strain Energy function.
X,Y,Z2 : Orthogonal coordinate axes,
a ¢t Distance; unit length.
b : Thickness.,
cij : Elastic compliances,
ki ka ! Orthotropic elastic constants.
& ¢ Half-width of distributed loads.
13 ¢t Elastic compliances,
n, : Direction cosines.
p : Stress applied normal to a plane,
q : Stress applied tangential to a plane,
u,v,w : Displacements in X,Y,Z directions respectively.
vy ¢ Volume fraction, "
X2 : Orthogonal coordinates,
X,¥,2 : Orthogonal dimensionless coordinates.
yij : Shear strain between i and j directions.
&, ¢ Direct strain in i-direction.
u : Refractive indax..
uij : Poisson's ratio_: gtrw%n in@uced in j-direction/
strain in direction,
P, 1P, : Constants.
o : Direct stress in i-direction.
Tij : Shear stress in the i-direction on a plane specified

by its normal in the j-direction.
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The theory of anisotropic elasticity is a mathematical
model devised to describe physical response of certain materials,
which exhibit directional elastic characteristics. This ftheory,
which is based on the generalized Hooke's law of proportionality
between stress and strain, has been summarized and presented in
three classical books on Elasticity, by Love (1906), Green and Zerna
(1954) and Lekbhnitskii (1963).

In the first two books, the authors presented a general
account of the theory of elasticity with special references to
anisotropy, whereas Lekhnitskii dealt exclusively with the
anisotropic elasticity theory and its applications. A brief summary
of the theory is given in Chapter 2 of this thesis.

A special case of anisotropy, is orthotropy. In this
case, the directional elastic characteristics are assumed to be
symmetric about three mutually perpendicular planes. 8ince most
naturally occurring or artificial engineering materials are
orthotropic, the theory of orthotropic elasticity has received
considerable attention. Many investigators have employed the
theory of orthotropic elasticity to obtain solutions to 3-dimen-
sional or 2-dimensional problems of engineering interest. Various
methodslof solution have been used, ranging from simple an;lytical,
to Fourier integral or numerical methods. At this stage we shall
not list the numerous important contributions. A historical back-
ground will be presented for specific problems in the intfoductions
to the ensuing chapters.

This thesis deals with the solution of certain problems
in 2-dimensional orthotropic elasticity. In particular, problems
related to the layered half plane, the quarter plane, the infinite
strip and the half-plane with an irregular boundary are considered.

The development of a solution to the above problems, re-



quires the solution of a number of fundamental problems which are
related to the orthotropic infinite-plane and the orthotropic half-
plane. A collection of such problems and their sclutions is
presented in Chapters 3 and 4. These solutions are not meant to be
original in any way. Most of the information has been drawn from
the works of Green and Taylor.(l939), Green (1939), Conway (1953,
1955) and Lekhnitskii (1963). However, since these solutions form
the basis of the subsequent work, they are included in the thesis.

In Chapter 5, problems related to the layered half-plane
are considered. The half-plane is assumed to consist of 'n' orthotropic
elastic layers and the interfaces between the layers are assumed to
be either rough (perfect continuity) or perfectly smooth (friction-
less interface). The method of solution to layered half-plane
problems, is based on a Fourier integral representation of boundary
loads. The special case of a 2-layer half-plane is examined in
detail and numerical results are presented for the stress distributions
along the interface when the layered half-plane is subjected on its
boundary to a normal concentrated force. The numerical results are
presented for a range of orthotropic materials and the effect of
orthotropy on the stress distributions are considered.

In Chapter 6, a method of solution is developed écr problems
related to the orthotropic elastic quarter-plane. This method is
based on a superposition technique developed by Hetenyi, for the
solution of the isotropic elastic quarter-plane, The solution is
presented in a general form, for an arbitrary loading system, which
may be applied at the boundaries or at the interior of the quarter-
plane. DNumerical results for the stresses, are presented for the
cases in which a concentrated force is applied normal to a boundary
of the quarter-plane, or at the interior.

In Chapter 7, we concentrate on problems related to the
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orthotropic infinite strip. A method of solution is developed for
the problem in which the infinite strip is subjected to an arbitrary
self-equilibrating loading system, acting at its boundaries or at the
interior. This method is based on the repeated superposition of known
solutions to orthotropic half-plane problems, so that the resulting
stress field satisfies the traction boundary conditions of the infinite
strip. This procedure leads to a sequence of infinite integrals of
recursive pattern. Numerical results are presented for the case of
an orthotropic infinite strip which is subjected at its interior to
two equal and opposite concentrated forces acting a small distance
apart, in the longitudinal or in the transverse direction.

The problem of an infinite strip which is subjected on its
boundaries to equal and opposite loading systems, is dealt with
separately, using a Fourier integral technique. Due to the symmetry
of loading, this problem is equivalent to that of an elastic layer
resting on a smoothrigid bed. Green's (1939) method of solution,
for problems of this type, is employed to obtain numerical results
for the stress distributions along the axes of symmetry, when the
infinite strip is subjected to concentrated or partially distributed
uniform loads. The way in which the orthotropy of the material affects
the stress distributions is examined in detail, by considering a number
of orthotropic materials.

In Chapter 8, we consider the problem of an orthotropic
elastic half-plane with an irregular boundary in the form of a 'step!,
which is subjected to an arbitrary loading system. The proposed
method of solution to this type of problem, is an extension of the
superposition technique used by Hetényi for the solution of the
isotropic elastic quarter-plane. The method consists of successive
reversals of stress on certain planes of an orthotropic half-plane
and the superposition of the corresponding solutions, so that after

a number of reversals, the resulting stress field satisfies the



traction boundary conditions of the irregular half-plane.

In Chapter 9, we describe the experimental work that was
carried out, with the objective of investigating the applications
of various solutions, in predicting stress or strain fields in real
orthotropic materials, The work consisted of a series of tests
under plane strain and plane stress conditions, using a laminated
rubber and a glass reinforced polyester resin as orthotropic
materials.

The problems considered in this thesis, are of particular
interest to Civil Engineering since they represent cases which may
be encountered in Civil Engineering practice. For example, the
use of fibre-reinforced composites as structural materials in the
cons truction and aerospace industries and the treatment of many
types of rocks or soils as anisotropic materials, present a variety
of problems., The analysis of these problems, using the theory of
anisotropic elasticity, results in a better assessment of the
behaviour of the materials under load and consequently in a more

economical design.






2.1) Introduction.

In this chapter, we shall describe the fundamental
concepts of the theory of anisotropic elasticy and its
applications to real materials.

The theory of elasticity is essentially a
mathematical model devised to describe physical response
of materials, and is based on laws of proportionality
between stress and strain, The relation between stress
and stain can either be linear (directly proportional)
or non-linear, but we shall limit our discussion on the
former case.

The development of the theory requires that:

a) At any point in an elastically deforming body, the

stresses are in a state of equilibrium,

b) The displacements are continuous within the

boundaries of the body.

Additionally, the bodiess to which the theory is applicable,
are assumed to be continuous homogeneous media; and
that all elastic deformations take place under isothermal

or adiabatic conditions.



2.2)

8tate of stress in a body.

The state of stress at a given point of a body is

uniquely determined by six stress components on three mutually

perpendicular planes passing through that point.

Assuming the planes to be perpendicular to the

Cartesian coordinate axes X,Y,Z:

a) the normal stresses in the X,Y,Z directions are denoted
by ) ?&"5 respectively; and are assumed to be
positive if compressive and negative if tensile; and

b) the shear stresses on XY, YZ, ZX planes are denoted by

Txy’ 7yz' er respectively.

The stress components satisfy the equilibrium

eqnations, which in the absence of body forces reduce to:

At points on the boundaries of a body, the stress
components should be in equilibrium with the externally

applied loads. This condition is expressed by the following

relations:
& 9 + n n
T e Ol v rxy 0, Tesh
T =T + a. + n T
y % '3y T oY Y z 'yz’
= + n (o3
T, By Tox ¥ O Tyz 5 o8

where Tx’ Ty, ’I‘z denote the components of external forces

per unit area in the X,Y, Z directions respectively, and

n, ny, n are the direction cosines of the outward normal to
L

the boundary at the point considered.

The displacement of a point in a body undergoing

2.2-1

2.20=2



2.2)

2.3)

?.

contd.
elastic deformation is represented by three components
u,v,w in the positive X,¥,2 directions respectively.

The state of deformation in the neighbourhood of
a given point, is characterized by six components of strain,
which can be expressed in terms of displacements u,v,w.
In the case of small strains, when the derivatives of

displacements are small compared with unity, the relations

are;
= G TRE R
By %’ Yyz = % +%' . dient
sz=%’ yzx=%+%; #

where &, %y’ B, are the normal strains in the X,Y,Z
directions, and Yey? Yyz? Yax are the shear strains on
XY, YZ, ZX planes.
For the integrability of equations (2.2-3), the strain
components should satisfy the compatibility conditions ex-

pressed by the following six relations:

e fj &’y

a” d oxay ;
o a—i[- Wys + Vxa o« Vg J
oy oz ax o 92

The other four equations can be obtained by interchanging

the subscripts x,y,z in cyclic order.

Stress-strain relations and energy function.

The effects of the elastic properties of the body
on the stress and strain distribution, are introduced by
the stress-strain relations. The relations are based on the
generalized Hooke's law, that each component of strain is

a linear function of the six components of stress. Thus 36



2.3) contd.
independent constants of proportionality are necessary for the
most general linear relation between stress and strain.

In matrix form the relations are:

rEx 1 Cia Cia Caga seo Cig 1 -Uk 1

&y oy %

Sz = Cad : gz 2.5'—1

Yyz . E TYZ

Yax . S Tax

yxy Cgl » = » & & & = = Cgs J Txy

The 36 constants o 5 (for 1 = leesb,J = leesb) will
be referred to as elastic compliances. Existence of a strain
energy function W, such that
il _ M
O'x = B_Sx il U'y - aﬁy ] etc’

gives

thus reducing the number of independent elastic compliances to
21.

For an elastic material, the form of the compliance
matrix &4 3 changes with the choice of the reference coordinate
system.

The energy function can be employed as a criterion
for the distinction of materials into isotropic and anisotropic
categories, If the strain energy function remains unchanged
for a rigid body transformation of the reference coordinate
system, the material of the body is said to be isotropic,

otherwise is called anisotropic.

2.4) Elastic Symmetry

When a body possesses symmetry of intemal structure,
its elastic properties expressed by means of its elastic

compliances, should show this symmetry, and the stress-strain



2.4) contd.

9.

relations for the symmetric cases should be identical.

To ontain relations between the elastic compliances,

introduced by the elastic symmetry of the body, one has to

consider the strain energy function.

For the symmetric cases,

the strain energy per unit volume should be the same; and for

the equality to be fulfilled some of the elastic compliances

must be equal to zero.

We shall limit our discussion to only the following

cages of elastic symmetry:

1) Orthotropic symmetry,

2) Transversely

isotropic symmetry,

3) Isotropic symmetry.

2.4.1) Three planes of elastic symmetry (orthotropy).

An orthotropic material is one which possesses

three orthogonal planes of symmetry.

If the axes of

orthotropy (perpendicular +to the planes)coincide with the

reference coordinate axes X,Y,Z, the stress strain relations

(2.3-1) reduce to:

€y i1 Caa
%Y Cas Caa
Ez Cal Caa
Yz|

yzx

|

Cia
Cas

Caa

Caa

Css

Cee

It is convenient flor purpose of comparison to

2.}4-"1

introduce the following definitions of the elastic compliances

03 33

. we shall write (2.4~1) as:
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10.

contd.,.
o - v , [
€y Ex - %x gx o&
N'g z
%V = - % - uzx q& 2441=2a
Ex Y Ez
- P - v ]!
sz Exz Y2 bl U;
I_ _ L X Ey yj L dy
and
r A Pl b r e
Y, e—e— i g
ya G'yz ya
= 1
ZX sz ZX
¥ ade by
G
Sl R o e IR
where

E, ¢ Young's modulus in i-direction,

vij : Poisson's ration - Ratioc of strain induced
in j-direction by strain in i-direction,

Gij ¢ Modulus of rigidity between i and j
directions,

From the symmetry requirement (2.3-2), it follows

that:
& = _yx ; vzx ='xz ; sy =y 2.4-3
Ex Ey Ez Ex Ez EY :

The engineering elastic constants must satisfly the

following conditions (see B,M.Lempriere (1968)),

Ex’Ey’Ez’G:w’ yz'sz SUAS ' SeHies
1
"$3} < (Ei/’Ej)E 3 2.4=4b
3
vxy. ”yz'”zx < B, 2. =le

For orthotropic bodies, nine independent elastic
compliances or engineering constants are necessary to describe

its elastic behaviour.
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2.4.2) One axis of elastic symmetry (transverse isotropy).

.

o

Vi

I

Pig.2,1

A transversely isotropic material is one for
which there exists a preferred plane (XZ) (see Fig.2.l1),
and the form of the strain energy function remains un-
changed for rotation of the reference coordinate system
about an axis (Y) normal to this plane. Consequently, all
directions in the preferred plane are equivalent with respect
to their elastic properties.

For a transversely isotropic material therefore,

the stress-strain relations (2.3-1) reduce to:

p EY Ex
N v 1L v 2.4~5a
& 7|~ 2 i - e ?
x y By
v v 1
€, L - IR . E j 0;
L B B, X (s SR
and
e ™ 'l - r -
%yz o T&z
Xy
Lt 2 J4=5b
sz = sz sz
i
Yxy G Txy
L A L W_ = A L

X =y 2.4-6
B
.
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2.4 3)

12.

contd.
In the plane of isotropy:

3 s B =
E, =B, and G = % : 2l

2il+ D)

X2

thus reducing the number of independent elastic constants to
flive.
For transversely isotropic materials, equation

(2.4=4a) should be satisfied and additionally:

2v B
Al T B 1 3% xs 2.4-8
y

Comple te symmetry (isotropy).

For an isotropic material, the strain energy
function is independent of' the choice of the reference
coordinate system, and only two elastic constants are
necessary for a full description of' the elastic behaviour
of the material.

The stress-strain relations are:

- - l -_1!: -2 - - -
Ex [ 5 E E %%
= oA 4 e 4
. B i B %, 2408
v v 1
€z ~E E E %
e o L p by - »
and
- ']-: - _T >
xyz & ya
1
Yox| = & T ox e
Y. [ X T
— W G - L }w ’
where

B

¢ = nT - 2.1-90
For isotropic materials, equation (2.4-8)
reduces to:

=1 < Ry 2.4-10
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2.5) Plane stress and plane strain,

NN

vY

Fig.,2.2
Plane stress or plane strain is assumed to exist
in a certain plane (say XY plane; see Fig.2.2).
For plane stress condilions, the components of
stress are taken to be the average values of the stresses

over the thickness'b'of the plate. The value of o, is

negligible as compared with T q&, rxy and therefore is

assumed to be equal to zero.
For plane strain conditions, the displacement
w in the Z-direction is zero; therefore:
e, = 0.

For an orthotropic body under plane stress con-

ditions, the stress-strain relations (2.4-1) reduce to:

Pl P v 9 .
x o = [ o
¥

e | =~ i 0 , 2.5-1

E B

& y

1

0 0 7, ¥

e I Gy R B L

and for plane strain conditions:



2.5)

lh--

contd.
1l=v v v_v
e = X XZ O = “yx ZX V2 G-
x = 3
x By
vV 4V v l=v v
E‘.y:- Xy sz Xz O+ z.ix Yz O'y_ ’ 2.5-2
x o
54
Yoo = T Ty
Xy xy xy

Equations (2.5-1) and (2.5-2) can be expressed

in the following form:

€y ] 11 {12 0 o,
= & & O .
& 21 23 Z v 2.5-3
0 0
%KF 66 Tiy
where 6ij can take their appropriate values (from equations

2.5-1, 2.5-2) depending on whether the body is under plane

stress or plane strain conditions. By writing the stress-

strain relations in the form (2.5-3), we establish mathematical

equivalence between the plane stress and plane strain conditions.
For a transversely isotropic body, &ij for plane

stress are specified by equation (2.5-1), and for plane strain

are given by:

Ly = l"v;z ’ ta = =" x(l+vxz), : 205=l
B E
x Y
lag = l—vﬂv,}:l_ﬁ ’ Lee = 'G—l"" . 2.5=U
Ey Xy

For an isotropic body under plane stress, we

have:
il 2(1
41 = €33 = SR ig = = % y fLes = —Lﬁizl, 2.5=5

and for plane strain conditions:

1~p?
£11= L33 = B Lig = = Ei%iﬂl

e
> Les = —(%l- 2.5-6

The 2-Dimensional equations of equilibrium (2.2-1)

(valid for plane stress and plane strain), take the form:
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2.6)

15.

contd.

+ 6752 = 0y
ay
a.

Q)
5

=

2.5-7
d

T il
ay

i

0,

N

and the compatibility equation is:

Pe. &g Py

X + = E! - 2.5—8
> ax axay

Difflerential equation in 2-Dimensional elasticity

and constants ks and kg.

We introduce a stress function &(x,y), such
that, the stress components given by:

_ e . s __ 2%
R 5" w v =y i

identically satisfy the gqquations of equilibrium (2.5-7).

Using these equations (2,6-1) and the stress-
strain relations (2.5~3), the compatibility condition
(2.5-8) can be reduced to the fomm:

4 4
'&aa %;C-g + (2‘&;9 -Ivcsg) %ﬂ o 811 ‘g'yTQ =0 2.6—2

Assuming that &za # 0, the above equation can

be expressed in the following form:

(g—:}+kia %:;) (%? + kg?® -3-;-3)_

|
o
-

2.6=3

ki®* ky® = £aa and k12 + kg3? = 2biatlaq = 2 6=l
&gg ‘6'32

The constants k; and kz may take real or imaginary
values (Green & Taylor (1939), Leknilskii (1963)),
but f'or the present discussion we shall assume that they are
real and positive, as this is the case for a large number of

materials (see Table 2.1).

Making the substitutions:
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2.6) contd.

284 a+L £
= =Vie 88 = =14 .
pa TP and pa A 2.6-5
we have:
k,® ° —
12 J =psx Aps - pa, 2.6-6
ka

with ps > O and pia Z Pas
For plane stress conditions, p; and pg can be
expresgsed in terms of the engineering elastic constants

in the following form:

E ~2v.__G E :
Py = ¥ —YEXY , pa = Y . 2.6-7
26 B
Xy x

For isotropy,

ps =ps = 1, and from equation (2.6-6)
Xiaks = 1, 2.6-8

It can be shown that equation (2.6-8) is also valid for plane
strain conditions. '

The variation of k;2 and k3® with pi,ps is
shown in Fig.2.3. From these graphical results, we make
the following observations:

i) A material can exhibit anisotropy, with either one of klor K

being equal to unit independently.

ii) For a given value of p;, there are upper and lower

limits for ki and k3®, such that

pi € k™ € 2p1, 0€ks® € pie g | 2.6=9

iii) Since the parameters ks and ka (or ps and pa)

are independent of each other, a straight forward

comparison between orthotropic materials as to their

relative degree of anisotropy cannot be made. Never-

theless, it can be deduced from the graphs that, the

more ki AND ks deviate from unity, the more anisotropic

a material becomes,
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2.7) Transformation of the compliance matrix.

In Seetion 2.3, it was mentioned that the elastic
compliances Cij of an anisotropic body, can be defined for
a specific orientation of the reference coordinate axes
relative to the body.

For a new orientation, expressions for the elastic
compliances can be obtained in terms of the compliances of
the original system and the angles of rotation of ths axes.
Lekhnitskii (1963) formulates the derivation of the
expressiona for an orthotropic body under plane s tress
conditions, using the strain energy function. In terms of
the engineering elastic constants, the expressions in their
final form are given by Lekhnitskii (1963) and Ogorkiewicz (1973).
For reference purposes are reproduced in Appendix [1].

Of particular interest is the effect on ky and kg
of 90° rotation of the axes. It can be shown (see

Appendix [2]), that for the new orientation of the referance

axeg:
t " .J; 1 o -]; |
k’- b kﬂ a-.nd. kﬂ = kj_ 2.7_1

1 ]
where k; and ks are the orthotropic constants of the material

for the new orientation.

2.8) Anisotropic materials,

Anisotropy, as a mathematical model for tﬁe des-
cription of physical response and behaviour of materials,
generally stems from non-homogeneity in the microscale
structure of the material,

Examining various anisotropic materials, either
naturally occurring ones,like the different types of wood,

or artificial ones, like reinforrced plastics or plywood,



2.8)

18,
contd.
we observe that on the microscale are non-homogeneous. To
treat them as such, is a complicated lengthy process and
from an engineer's point of view, rather impractical.

The problem can be very much simplified by assuming
the materials to be homogeneous on the macroscale, but with
dif'ferent properties in different directions, thus intro-
ducing the concept of anisotropy to explain the effects
of microscale non-homogeneity.

The basic assumption of "homogeneity on the
macroscale” is always open to question as to whether it
is justified or not. For a specific problem, that would
depend on the ratio of length parameters characteristic of
the 'macro’ and 'micro’ scales.

On the microscale, the length parameter Ahicro’
should represent the non-homogeneity of the material (e.g.
diameter of reinforcement in composites, thickness of
laminations in wood, etec.).

On the macroscale, the length parameter Amaero’
should generally be equal to the "unit length" of the
particular problem (e.g. the width of an external load; the
distance from a boundary that the load is applicd, etc.).

Now, if .

Amicro
——— 4% 1,
macro
the agsumption of homogeneity on the macroscale is usually
Justified.

In view of the experimental work to be undertaken,

we shall limit our discussion on a certain type of non-

homogeneous materials, namely orthotropic composiles, that

can frequently be treated as homogeneous, anisotropiec and
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" : i r
continuous media,

2.9) Composite materials.

T

cece SN N
cecee ST

a) Reinforced b) Laminated

Fige.2.4

Two types of composite materials will be con~-

sidered, and are shown diagrammatically in Fig.2.4.

a) Reinforced materials.

ii)

1i1)

One material (reinforcement), in the form of
rods or fibres, is embedded into another (matrix) to
form a continuous medium,

Laminated materials.

Two or more different materials, in the form of

laminas are joined together on their flat surfaces, in

alternating sequence, to form a continuous medium,

In both cases, it is assumed that:
The constituent materials are homogeneous, isotropic
and linearly elastic.
The displacements are continuous over the masslaf the
body. This implies that there is no slippage at the
interfaces between the constituent materials.
The stresses are continuous in the composite body.
Obviously, this assumption is not Justified locally,
but since average stresses are considered (being the
object of the anisotropic elasticity approach to

non-homogeneous materials), continuity is cnsured.

19.
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20,
contd,

iv) The longitudinal dimonsions of the composite material

are very large compared with the diameter of the re-

forcement or the thickness of the laminations.

The advantages that such combinations of materials
offer are many, but is not in the scope of the present work
to analyse them or to treat composite materials as such. We
will concentrate on the assumption that the theory of
orthotropic elasticity can predict their behaviour by

treating them as homogerieous, continuous media,

Blastic constants of composite materials,

N

(1)
(2) i
(1)
(2)

Ve

Fig.2,5

The elastic constants of orthotropic composites,
can be predicted with a certain degree of accuracy from the
elastic properties of the constituent materials, taking into
account their geometrical configuration.

We shall 1limit our discussion on the case of
orthotropic composites which consist of two isotropic,
linearly elastic materials, denoted by the subscripts (1)
and (2) (see Fig.2.5). The two principal directions, parallel
and normal to the direction of the reinforcing fibres or
layers, will be denoted by the subscripts '¢' (longitudinal)

and 't (transverse) regpectively.
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21,

contd.

There are three basic techniques for the
determination of the elastic constants of a composite
based on:

a) The mechanics of materials theory,

b) the theory of elasticity, and

c) bounding techniques using variational principles of
the theory of elasticity.

Techniques (a) and (b) can be applied to re-
inforced and to laminated composites, while technique (c)
is usually applied to fibre-reinforced composites which
require a more rigorous approach, due to the many variables
involved (e.g. type, shape and distribution of fibres in
the composite).

We shall now present a summary of the formulae
uged in the prediction of the elastic constants of composite
materials:

1) Prediction of E,.

Regardless of the theory used, it is generally

accepted that the law of mixtures given by the equation:

E& =vs E1 + vy Ea, 2,10-1
where v, and vz are the volume fractions of materials
(1) and (2) respectively, is a good approximation for
the longitudinal modulus. Equation (2.10-1) can be
derived using the mechanics of materials approach with
the assumption that plane sections remain plane during
deformation.

2) Prediction of Ey.

Using the mechanics of materials approach and

assuming that both materials are subjected to the same
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2.10) contd,

2)

3)

contde.

transverse stress Op» it can be shown that:

E = DiFa

t = Biva+Bavs " o

Ekvall ( 1961 ), introducing a biaxial slate
of stress in conjunction with the mechanics of

materials theory, obtained:

2
t : [(VaEi/vaEa)+l]

Tsai (1961) developed an expression for Ey»
for reinforced composites, by considering circular
fibres and representing the surrounding matfix material
as cylindrical inclusions,

Tsai's equation is:
Et = 2[1 - Vg + (Uj_-va)'\fa] [
K +ig ) =Gy (K4 =Kq )v
e
(1=£) tzxﬁcgga,ztxﬁeaiva *
Ky (Ko 4Gy )46 (Ko=K, ) v
C
i "t'a(as+G-:.3-2zKa“Ks.jVa }, e
where K; = E;/2(1-vs),
Ka = Ea/2(1-va), 2.10-4b
Ga = Eq/2(l4va),
Gy = Ea/2(1+V9),
and C is a contiguity factor which varies linearly
between C = 0 for isolated fibres and ¢ = 1 for fibres
in contact.
Prediction of vﬁt

Using the mechanics of materials approach, it

can be shown that:
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contd.
3) contd.
Vor = Vi Vi + V3 va. 2.10-5

For reinforced composites, Rosen et al.(196))
using the variational bounding method, found that the
bounds on Vot coincide for random arrays of fibres.
Their expression is:

TR e e A Gl
where

Ly = 2p(1 = v;’)v1+ va(l+va)vg,

Lz = va(l = vy = 2v,2) 5 2.10-6b

Ls = 2(1=va®)vy + (l+va)va.

Tsai (1964, using the s ame technique, along
with the contiguity factor C, obtained the following
relation;

Ve = (1=C) ; 2& +0g ) Ko vg (K, 4G5 ) v ]
1(ZKa+Gg )=Gg (K41-Kz )vg
where the various terms are defined by equation (2.10~4b),
4) Prediction of G&t

Using the mechanics of materials approach and
assuming equal shearing stresses in the constituent

materials, it can be shown that:

- . —_

For random arrays of fibres, Rosen et al.(1%y),

using the variational method obtained:

e Ga(1+ vi)+ Ggva |
Syp = [Wﬁﬁ] : ekln
Finally, Tsai (1%.) developed an expression

for G,y , in the following form:
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2.10-10
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5.1) lntroduction.,

A solution to the problem of an infinite isotropic
elastic plane, loaded over its thickness by a concentrated
line load applied parallel to the plane, has been developed
by Flamant and Boussinesq (1892), The analogous solution
for the orthotropic plane has been developed by GConway
(1953a).

Since Comway's solution is employed in the
ensuing chapters, we shall present here a brief summary of
the infinite plane problem and in particular thea case of the
infinite plane loaded by a concentrated force; by a moment;
and by two equal and opposite concentrated forces acting a
small distance apart.

3.2)  Orthotropic infinite plane subjected to a concentrated force.

- X

=
Of B2

(b)
Fig.3.1l

The problem of the orthotropic infinite plane
subjected to a concentrated force, is shown diagrammatically
in Fig.3.la.

The force P/unit thickness, is applied at the
origin of the coordinates 0, in the positive X-direction.

The axes of orthotropy are assumed to coincide

with the reference coordinate axes,
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3.2) contd.

It may be verifiied that the general form of Airy's

atress function:

00 -Q -’y
@:f%-n(()iek"+cge%+cae
(o]

oy Ca ek9> sin{x dg Jeml

where C1 ... Cgqare arbitrary constants, satisfies the
general differential equation (2.6-2).

From (3.2-1), the stress components are given by:

o, (x,) %

[ﬂ(%:a e-% + %g-n e- % + %:a e% . _12_1,‘ a%) sinfx df, 3.0-2a

o

- § g
- f (Cg. e % + 0y o ka + Cg 9% + Cq 9% sinlx df, 3.2=2b
o]

O'y(x:Y)

el e pl e W B
-rw(x,y) =f ('E'c: 8 ¢ E:' ) -'EE g - - T{: o ) cos{x dg, 3.2-2c
0
The boundary conditions of the infinite plane re-
quire that the stresses should vanish at y = + «, and this
implies:
Ca = Ca = 0o 3.2=3a
The remaining constants C4 and Cz, can be determined
by stress and displacement conditions on surface (X,0):
Considering the infinite plane as composed of two
half planes Y > 0 and ¥ < O (see Fig.3.1b), each loaded by a
concentrated tangential force P/2 at (0,0), the stress boundary

conditions can be written in a Fourier integral form:

_ &imit P gin Lfc
Tw(x,o) W 21?[ o coslx df. 3.2-3Db
~ 0
From symmetry, the displacement boundary condition
s

v(x,0) = 0. 3.2=3¢

Equation (3.2-3b) in conjunction with (3.2-2c) gives:
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.=
Ei + I Fe2=ha,

The displacement v(x,y) can be obtained from the

indef'inite integral:
v(x,y) =f5ydy=‘519 fo'xdbf'l'&aafo'ydy’
and for v(x,0) = 03
€as(Caky+ Caka) = €4 (%i + ?—3) 3.2-4b

Cy and C3, evaluated from (3.2-4a and b) are given

il - —k, (13- La2), a_ Laay], .2
[o. &) 217(1{13%5)[1&(1@ 48); i (- )] 50005

Substituting the expressions for the constants

Cieee Cq from (3.2-3a, 3.2-5) into (3.2-2), we obtain;

e
[UX’ %; rﬂ} T 2 (k a_i,%)
|:x(k:.€ns-kafu); x(szu-‘kafaa); Y(kifﬂs“k'ae:A)} } 3 3.2-6a
where
a
fij‘-' l-nki ) P L = 1,2 and 3 = 1,2,
kj_"x°+ y?
and = -%11. : I 5-2—6b

In the case of the concentrated force being applied

in the positive Y-direction, the stresses are given by:

o

o o 7| = —E— L
AR 2m(ky®~kg®)
[y(bfiﬂ"kifai)i ¥(ka®ga1=ka€12); X(kﬂ.aéai‘kﬂafia)J J ’ 3.2-7

where gij are defined by (3.2-6b).



28.

3.3) Orthotropic infinite plane subjected to two equal

and opposite forces acting a small distance apart.

Fige3.2

vY

(b)

The solution to this problem (for convenience

we shall refer to this as the "unit pinch" problem),

shown diagrammatically in Fig.3.2a, can be obtained as

a superposition of two concentrated force solutions,given

in the previous section (3.2).

The stress components are given by:

P
m(ks?=kg?)

[31 ri[fi; ‘kiafii‘kiaxi

+* 1 T3 [-fa; kigfg; kia‘X]

+ 02 ra[ f1; =ka®f4; —ka“x]

+ a3 Ty ["fa; kaaf:a; kaax] ]s 3e5-1

where

= kai(1-q ka®)/2 ,
5 o - R(eki®)/2,
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-1 -1
a }= [kiax’ +y % D)"‘}, ’ r"J = {ka“x“ +(y + D)? J ’
I'a Ta
= %2
1 €11 °
Aty =0,
0. (x,0) = = = {aik:_ kD + agka "—-1532'—2 j, 3432
4 w(ki®= kg?) kq?x?4D? ka?x?4+D
and since
j' e - coslx df = ——{‘ED—DQ- » 363=3
o 4 ok for i = 1,2,

equation (3.3-2) can be written in the following form:

- X e
o (x,0) = = =2 U @m %4 4 agkae k’) cosgx d;] 3.5
D4 Tr(kia- kaﬂ) .,

The above expression for o'y(x, 0), will be used in
section (4.7) to develop a solution to the half-plane problem
loaded at the interior by a concentrated force P, normal to
the boundary and at point (0,D).

When the concentratéd forces are applied as shown
in Fig.3%.2b, the stress components are given by:

[ o AR

AR = = ry|-x; xky? ; -f
e o TW] Tr(kia_kaa)[aa "[x’ e

+ agl'a [x; -xk,?; fy

2
+ aira[—x; xka" ;=4

3
+ &11‘4[]{ H —xkaa; fa] j. 3455
The expression for the shear stress 7, for

y = 0, can be modified, by substitution of equation (3.3-3),

into the following form:
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§ g

'rxy(x,o) i n(k a—ka [] El e- kﬂ):osg'x d;:g 343=6

o

3.4) Orthotropic infinite plane subjected to a moment.

(a) (b) (e)
Fig.3.3

A solution to the problem of an orthotropic infinite
plane subjected at the origin to a moment M, can be obtained
from superposition of a set of concentrated force solutions
(see Fig.3.3b and c).

Equal and opposite forces P and -P are appiied at
distances 'h'apart, The distance 'h'is decreased in such a
way that as h » 0, Ph remains constantly equal to x

7y
The resulting stresses are given by:

0 i3:¥) = = %w [—k‘;—a + —ka——] 3.h~1a
(ka®x*+y?) (ka?xP4y®)?
cry(x.y) = 2anr [ a2 + = ] ’ 3 4~1b
J (ka?x24y%)*  (la?x?+y2)?
S e | '
(x,y) = Eﬁ [ (o xoy) , Sl oyt 3.4-1c

(ke?2® +y2)2 (ka®x?+ y2)2 4

For an isotropic material (i.e. ka= ka= 1),
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equati ons f;(n--z.-ﬁg.-fz) reduce to:

- s 3 s __L % J=2
(PP (P S(x’w’}“

' ﬂ'x,e'y,‘rﬂ -
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Introduction.

Problems associated with isotropic semi-infinite
bodies (henceforth referred to as half-plaue problems), have
received considerable attention.

Flamant (1892) obtained a solution to the problem
of a half-plane subjected to a concentrated force acting
normal to the boundary, while Michell (1902) extended the
solution to the case of a uniformly distributed load. Several
cases of distributed loadings on the straight boundary have
been discussed by Carothers (1920).

Similar solutions were obtained for arisotropic
or orthotropic elastic bodies by Lekhnitskii (1963),

Green and Taylor (1939), Okubo (1951), Brilla (1962),
Conway (1953a), Akoz and Tauchert (1973) and others.

Conway (1953b) developed a solution to the ortho-
tropic half-plane subjected to concentrated forces applied
at the interior; and recently Saha et al. (1972) investigated
the same problem for a generally anisotropic material.

Several cases of rigid body indentations on the
straight boundary of the half-plane have been discussed by
Okubo (1940), Sen (1954), Conway (1955) and Brilla (1962).

In the following sections of this chapter we shall
summarize solutions to various "half{'-plane" problems, which
will form the basis for developing solutions to a number of
problems in the ensuing chapters,

Unless otherwise stated, it is assumed that the
material of tne half-plane is orthotropic, with the axes of
orthotropy coinciding with the rectangular coordinate axes.

The general method of solution is based on the
use of Fourier integrals to represent the externally applied

loads (see Comway (1953a,b), Lekhnitskii (1963)).
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The assumed stress function & is of the form:
i’(xJY) =[f(§l5’) cos{x dag, Lhod=-1
0

where f({,y) depends on the roots of the characteristic
equation (2.6-4).

For ki,ks real and positive (see Lekhnitskii (1963)):

_ﬁl &
£(¢,y) = ‘]Eb (Ci e + Gy e kg)- Lol=2

4

4.2) Concentrated force normal to the boundary

P

Figaliel
The orthotropic half-plane (occupying the region
~w<X < +o and O €y <+ew) is subjected at its free
boundary to & concentrated normal force P/unit thic];mess,
acting in the positive Y-direction (see Fig.l.l).

It may be verified that the stress function

-

[ =[ (Ci e oy Ca coslx df , Le2-1
0

satisfies the governing differential equation (2.6-3).
‘The constants C4 and Cz can be determined from

the following traction boundary conditions:

i) The normal stress on the free boundary is zero at all

points, except point (0,0) where it is infinite. To
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4.2) contd.
i) contd.

overcome the singular behaviour at the point (0,0), we
mey assume that the concentrated force P is equivalent
to a uniformly distributed normal stress p, symmetrical
about the Y-axis and of width 2c¢, such that the total
load is given by 2pc. As ¢ » 0, the total load remaing
constant and equal to P. y

This condition can be expressed in a Fourier

integral form (see Comway 1953a):

_ &imit P [ sinlc X
q}(x,o) e 7o coslx dg. 4e2=3a
- o]

ii) The shear stress at any point on the free boundary is
equal to zero,

rw(x,O) = 0 L 2=3b

The components of stress can then be obtained through

equation (2,.6-1) in the following form:

P (kg +kg) [ s :
C’iO‘BT]— ys piyxt ol by
TN (ka2 4y?) (ke 2 4y?)
The displacement v in the Y-direction can be
determined by integration of the stress-strain relation

for &.3
y )
v(x,y) =f (L2209, + Laao )dy + £(x).  4.2-5a

The function f(x) may be shown to be a coms tant,
and we shall assume that it represents rigid body rotation.
Therefore:

. i
v(x,y) = Tl [61&n(k1°x3+y3) - 69&n(kgax2+ya)j + const,

le2=5b

wnere
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he?) contd.

e, = £aa ki’ w g sofor & = 1,2 Uy 2=5¢

At the boundary (y = o0):

£
v(x,0) z';(E::E;) {&1&nk1-&g€nka+5za(kla—ksq)&nlxlJ + const.
L 2-6

A way of interpreting the arbitrary constant is
to make the displacement v at a point on the boundary

X =+a, y =0, equal to zero, such that:

X

a

v(x,0) = % L33 (ki+ky) &n L

4.3) Concentrated force tangential to the boundary.

P

>

The orthotropic half-plane ¥ > O is subjocted at
its free boundary to a concentrated tangential force P/unit
thickness, applied at the origin of the coordinate axes and
in the positive X-direction (see Fig.k.2).

The assumed stress function is:

i

[ =[ Eg (Cg_ B-ka' + Cg B_ %> sin{x df. 4e3-1
o

Expressing the concentrated tangential force in
a Fourier integral form, the boundary conditions forr the

half-plane are:
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o =0 L, 5=2a
y(xio) +
_ 4imit P sinlc 0
Txy(x’o) R .[ = coslx d¢ , lyo3=2b

- 0
and the components of stress can then be obtained in the

following form:

P k; ko (ky+icg) 8 a, 3] P
o 0 2 IR o = X5 Xy XY (e bad-3
[ X 9& ny 7(ka? %2+ ) (Ka?x3+y?) [ J

4.4) Uniformly distribufted load normal to the boundary .

P punit area

0 X

Fig.h.

In this case, the orthotropic half-plane is sub-
jected at its free boundary to a normal uniformly distributed
load of intensity p/unit area and width 2¢, applied
symmetrically about the Y-axis (see Fig...3).

A solution to this problem can be obtained by
treating the uniformly distributed load as a series of closeiy
spaced concentrated forces, and by integrating the expressions
for the stresses (4.2-4) between the limits -£ and +&.

The stress compouents are then given by the following
relationg:

: ‘ 8 o,
I:Ux;o-y;rny = T(ki-Kg) { sz a T‘i) (Lla-Tok); 2 &TG_":)J apsd

»
where
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contd.
T, = tan* K(xr8) | papt k (x=0) y forl = 1,2, loli=2a
y 2 ¥
and
+
¥ z 2
by w4 5 ¥, = y‘+ki"(xi'a) o Pobi e Tyoy L oli=2D
4
&

The displacement v at any point (x,y) is then given

by the following relation:

955 Toda  T.l
v(x,y) = ﬁtki-kﬂ) [“'( kﬂ v k1 A 2

+

roles

¢ [(xw)&n 6 - (x-¢)en t] } %

1
POl

[(x+&)&§ + t: - (x=¢)en t; ] } + const.
ba "-F‘"j

where &, - ¢aa ki“"’i’ , for 1 = 1,2,

For y = o, equation (4.4=3) reduces to:

v(x,o) = Rk_fm [ 2&(&14111:1—&3&111(9) +

(€1=£a) [(x+&)&n(x+&)—(x—£)&p(x—&)}J + const.
Leoli=ly
The arbitrary constant in equation (4.4=4) can be
eliminated by considering relative displacement vr(x', o) between
points (x,0) and (o0,0),
Kets vr(x,o) = v(x,0) = v(0,0),

such that

v (x,0) = -P; &99(k1+k9)[(x+&)6n[x+£|-(x—-&)£nl x=|~22 6n€,j boli=5
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4.5) Uniformly distributed load tangential to the boundary.

‘ 2R
q /unit area

-

In this case, the orthotropic half-plane is
subjected to a uniformly distributed shear stress of
intensity g/unit area and width 2¢, applied symmetrically
about the Y-axis (see Fig.l.k).

A solution to this problem can be obtained from
the solution to the half-plane subjected to a concentrated
tangential force (section 4.3), by integrating the eguations
for the stresses (4.3-3) between the limits -& and +&.

Retaining the notation adopted in Section 4.k, the

stress components are given hy:

ol = 9 kikg éatg _&nty \ L, , X1, ,/T1 _1Ia
[O'xldysrny 21‘?(1{1—1{3)[ (? _E? b £n ta 1-2@1 kg)
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In this case, the orthotropic half'-planc is subjected
to a normal concentrated force P/unit thickness, applied through
a rigid block of width 2¢ (see Fig.4.5).

Let p be the pressure distribution underneath the
block. |

Since the block is rigid, it is assumed that:

v(x,0) = constant, for -¢ € x € &, Lo6=1

From equation (4.2-7):

£
v(x,0) = fﬂ-(;-kr"i&lf p(g) ¢n ac. o 6=2
-¢

ﬂ

Since v(x,0) is constant over the loaded region

of' the half-plane:

j.p(c) én |£E£| d{ =constant, L.6~3
~£
Solving (4,6-3) and considering equilibrium we have:
P
p = ) o 6=l
wWe - X

The stress distribution in the half-plane can then
be obtained by treating the applied stress p as a series of
closely spaced concentrated forces, of magnitude p(xjdx,
and integrating expressions (4.2-4) between the limits —£€

and €.

4.7) Concentrated force at the interior, acting in the positive

Y-direction.

P(x)

N Y 1rY
(b)
Fig.b.b (c)
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The orthotropic half-plane is subjected to a con-
centrated force P/unit thickness, applied at point (0,D) and
in the positive Y-direction (Fig..4.6a).

Solutions to this problem have been developed by
Conway (1953b) using Fourier integrals and by Saha et al.
using complex variables., We shall concentrate on Comway's
solution .

The infinite arthotropic plans (Fig.L.6b) is sub-
Jected to two equal and opposite forces P and -P acting along
the Y-axis at points (0,D) and (0,-D) respectively. Because
of symmetry of loading, the shear stressas are zero along the
X-axis; and the normal stress distribution o&b(x,o) is given
by equation (3.3-4).

We can nullify the normal stresses and make the
X-axis a traction free boundary, by superposition to the
infinite plane , of a half-plane subjected along its boundary
to a normal stress distribution (see Fig.l.bc):

p(x) = = q}b(x,o). h.?;l

Let the indices''and'c'refer to the "infinite" and
"half" plane problems respectively. Then, the stresses induced
in the half-plane by an "internal" concentrated force
P (Fig.4.6a) are given by:

C

- — b. hl b c‘ c.
[oi,q&,rxy] = [ck ,0& s T&y } + [ci ,9& ’Txy'}' h.7=2

b
The s tress components & ;O&b,r are given by

Xy

¥

congidering the half-plane subjected along its boundary to

- siid c :
equation (3,34), waile okc,O'c,Txy can be determined by

a norm2l stress distribution p(x).

Finally:
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5 .
[O'xiﬂ’y;f}w} = Tk, P5") {-(&1"'“3)1'1 [fi; ~fak?; "ka.ale

+ QpTa -fz; faka?; kgaxJ

+ Qars [—i‘a, faka®; kigkaax]

+ qare [:fa.; faki?; -klakaaxJ ] 9
Lai=3

fa fa k;(k1y+kaD),
} =y + D,

fa fa = ka(kay+kiD),
I'q "3 I's -1
] = [k,_’x’-r(y_-l_-_D)’] » } = [kanxa"'(y}_n)a] ’
r'a 1] Ty E
9, 3.9 a|”? B
Ir's = [:ki kg x -I"(kaD"l‘kﬂ) :I g I'g = [kiaka’x“-i-(kil}-rkay)aj »
ki?(1-n ka?
@z = ke(1-1 ka®)/2, ag= - k; ot )
2 a
@ = -ka(1-7 ks%)/2, e Rlloniad)
1=Ka i
£
= . b 7=

}.8) Concentrated force at the interior acting in the positive
X-direction.

q(x)

o P e e e T a— =Y
-

0

><

F‘l.:‘:."i.?
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A solution to the problem of a half-plane loaded at
point (0,D) by a concentrated force P/unit thicknmess (Fig.
4L.7a), can be obtained using the method outlined in the previous
section, The stress systems to be superposed are shown
diagrammatically in Fig.4.7b and c.

The shear stress distribution q(x) (Fig.4.7c) is
defined as being equal and opposite to rw(x,n) of an infinite
plane loaded as shown in Fig.4.7b. An expression for
rxy(x,o) is given in equation (3.3-6).

Finally, the stresses induced in the half-plane
by the concentrated force P (Fig.4.7a) are given by the

following relations:

P kiks
= =- —i——u— - - s
[O'x O'y JQ":] " (kﬁ.a"kna) [(Ga &)I‘i 3y X k:l. 4

B
+ Gglg [x 3=x ky?
[

-a
!

L

| o

+(ar+ag)rs [=x 5 x kp?

+ a1ra X 3-x ka®

-
%°
U= BT e

e
o

| SRR

+ O4rs [ X.k:]_g inakna;—fa
+ OGare [-
L

xkg? ;=xk4? ka ; f‘J] ] 4o8~1

4.9) Orthotropic half-plane X > O.

0

Fig.4.8
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In this case, the orthotropic half-plane occupies
the region 0 € X < +wy =0 < ¥ < +w, and the concentrated
force P/unit thickness is applied at the origin of the axes
in the positive X-direction (See Fig.4.8).

The state of stress is defined by the stress

function:
d = j' %, (?1 o ¥aly Ca e“k“gy> cosly d¢, o 9=1
0

and the corresponding stress components are given by:

P kgkg(lyeky)
"

: [xs; s 2y ]. Iy G2
(ka?x?45%) (ka®x?4y?)

b it

4.10) Uniformly distributed loads at the interior,

The expressions for the components of stress that
have been developed for the problem of a half-plane subjected
to concentrated forces at the interior (sections 4.7 and 4.8),
can be employed to obtain solutions to the problem of a half-
plane loaded at the interior by uniformly dis tributed stresses
of finite width.

We shall limit our discussion on uniformly distri-
buted direct/shear stresses, applied on a plane parallel to
the X2/YZ plane,

In each case, the method of solution is the same,
that of integration of expressions (4.7-a2) or (4.8-1) between
the prescrived limits. The uniformly distributed loads are
of total width 2¢, and is assumed that the centre of the load
coincides with point (0,D).

The applied direct stresses are denoted by p/unit

area, aud thes shear stresses by q/unit area.
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a) Uniformly distributed direct stress applied on a plane

parallel to XZ plane,

0 A
P 0 X
1 EX
2¢ Ey
'Y
Figelie
|: Y IS ) 3 X Ly |
0,0 ;T ] = [(m+aa [ ; =kaTqs ; -
S et i "
+ ay [" %‘1‘ 3 keTgy 3 ‘I-%J‘
1 -
TS + 1]
+ (019"'“4)[ iaaj' ; ~kaTaaz 3 ""321_
Ta - Laa |
+ O ["’ E:E ;3 KaTag —;'3 |
T+ L+ i
+ Qs [- -l-cgﬁ H kaTIa 3 —32'3-_:
+ -
T L
+ o [ﬁl;"kiTai;--%j‘}
"-}‘-10"'1-
where
+
T, = ted"? ks (xe8) | pora Kyki(x-e)
‘ kiyi kJ.D kiyiij
x kaka(:ﬁ&)aa-(k v+ k.D)?
Lij = &n x| n A Le10-2

3. 2 2 Setiny
k.k, (x= :
5 J(x L) +(kly_-|;ij) J
Eap e dt s ol R e EiRe ] 0
and a1 eso 04 are given by equation (L4.7-4).
b) Uniformly distributed shear stress, applied on a plane

parallel to XZ plane.
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b) contd.
X
Fig.h-.lo
+
0" - 4 H ——M—- - - L - + L
5] = & (14 ka?) e E
Y &
+ ag [ B =Lia ;
I +
+(ag+ag) [-'EE% ;3 Laz ; -
2
I, -
+ @y [ Eﬁé 3 ~Laa ;
L+ +
+ 04 [" -E:i- 3 Laia : T8
+
L +
L4 10-3

-+

X
where Lyj and Tij are defined by equation (4.10~-2).

¢) Uniformly distributed direct stress, applied on YZ plare.
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c)

a)

contd.

["xwy;rm] oF %-(%i};%k—az) [ (vastq) [
+ U3 [
[

+ =+

B
P
I

A

—

2
bk . kE" . _E_ij. i
ol et SO B
e &
o=t L
+(ases) | D22 ; -igT3s 5 123 |
3 e 3
- s =
o [P wT |
G =+
kT - 2 T
* . [ k.® ; =k T3a; E: 32
T =+
k5T -+ T
Lo 10-4
where
+ —
Ti; = tan 2 kiyik°(D+’e’) & et kiy_-,r_ kj(D 2)
q ki jx : kiij
and
- (k. k,x)%+[k, yk,(D+2) J?
ke 4210-5

(g ke %) 3 [le; vk 5 (D) 2

Uniformly distributed shear stress applied on the YZ plane.
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5.1)

L8,

Introduction.

The analysis of layered elastic systems has mainly
concentrated in the past, on problems related to the two—
layer half-space, which is subjected on its plane boundary to
axially symmetric (3-dimensional) or strip loads (2-dimen-
sional).

The two-layer half-space was assumea to consist
of two isotropic elastic materials, one in the form of a layer
of finite thickness and infinite horizontal extent, overlying
a second material which was assumed to correspond to an elastic
half-space,

Different properties have been assigned to the
layers by different investigators, who, in addition assumed
that the interface between the layers was either smooth
(frictionless) or rough (perfect continuity).

Biot (1935), developed expressions for the stresses
and displacements in an isotropic elastic layer resting on a
rigid base for line or axial loadings. Both conditions of
smooth and rough interface were considered. Similar results
we obtained by Pickett (1938).

Burmister (1943), established equations for the
stresses in the isotropic two-layer system subjected fo a
radially symmetric load. He assumed a value of Poisson's ratio
v = 0.5, for conditions of perfect continuity and zero friction
at the interface., In 1945, Burmister (1945) extended his theory
to the three-layer system.

Lemcoe (1960), derived expressions for the stresses
in multi-layer systems, which were assumed to be in a state
of plane strain., He presented numerical results for the
stresses in a two-layer isotropic half-plane, subjected to
line and strip loadings, for a given value of Poisson's

ratio v = 0.25 for both materials. Lemcoe considered a
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range of wlues for the ratio of the Young's modulii of the
two materials.

Approximate solutions for surface displace-
ments in multilayer systems due to circular uniform loads,
have been developed by Ueshita and Meyerhoff (1967).

Gerrard (1967), considered the problem of an
anisotropic elastic layer resting on a smooth rigid base
and subjected to a strip load. He assigned different values
to the elastic constants of the material and in each case,
he presented numerical results for the s tresses in the
elastic layere.

Gerrard and Harrison (1971), formulated mathe-
matical solutions (without mathematical evaluation) for
stresses and displacements in a half-space, consisting of
any number of anisotropic layers and subjected on its plane
boundary to a radially symmetric uniform load.

In this chapter, we shall employ Lemcoe's
method, to obtain a solution to the layered half-plane,
which consists of any number of orthotropic elastic layers.
Numerical results will be presented for the particulaf case
of a two-layer half-plane, which is subjected to a line

load.
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5.2) Assumptions and Conditions.

The assumptions and conditions necessary for a
full description of the problem can be classified into three
categories:

I) Notation.
The layered half plane is assumed to consist of
(n=-1) layers, each of finite thickness and infinite
extent, and the n-bh layer corresponding to a half plane.
In general, a layer is designated by the subscript i

(i = 1,2 see n) (886 Fig.5.1).

0 &
1 : X
2
3 ;

, . )i -1
i {i
‘f1 . !m
y . . ‘n_3

n-2 ’n—z
n-1 ]n-1
n
vy

Fig.5.1 Layered half plane.

II) Properties of the material.
All layers in the half plane are assumed to be

of homogeneous, orthotropic, elastic materials. The
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axes of elastic symmetry for each material are assumed
to be parallel to the coordinate axes X and Y. Their
elastic properties are specified by ki and ki and are
assumed to be different for each layer.
III) Boundary conditions.
The boundary conditions for the layered half plane
can be divided into two categories:
a) Those they deal with the half plane as a wholej and
b) those they specify the conditions at the interfaces
between layers.
a) The complete layered half plane should satisfy:
1) Traction or displacement boundary conditions at y = 0.
2) The stresses should tend to zero as y = .
b) The interface conditions considered are: ’

1) Perfect continuity.

At the i'B interface (y = yi)z
i < T ivs  den 4 i
[°§; L Sl J - [3} i i 71+1].

2) Smooth interface.
th

At the i interface:
[qi ; ?1 ] = [°;+1; it } )
and
i i+a
'r = = .
. T Y

5.3) Stress function.

The layered half' plane is subjected at its free
boundary to two sinusoidal loads:

a normal stress

p(x) = P, cos(Ax), 5.¢35=1
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and a shear stress
q(x) = g, sin(Ax). 5 3=2
The assumed Airy's stress function (see
Timoshenko & Goodier)is:
¢ = f(y) cos(ix), 543=3
where f(y) is a function of y only.

The stresses are defined by:

AL _ P I o
G= T 092 aF T T Grey * 5¢3-4

Using the assumed form of & (5.3-3) and the
general differential equation for plane orthotropic
elasticity:

e a 20\ / 2% a 79\ _
(Z+x" F)(Fn" ) -0

we obtain @ as follows:
3 = (Fi o™ 4050V &6y M . Ca e-ﬁy> cos(Ax), 5.3-5

where

a =£1, B = 1—); and C, o.e Cq are constants

that can be determined by the boundary conditions.

Layered half plane subjected to sinusoidal loads; Perflect

t
The stresses in the i % layer of a layered half'
plane, under the action of normal and shear sinusoidal
stresses at the free boundary (y = 0), are given by the

equation:

XA
1

=

bl

.5-)4-"'13

where
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S i
: % ; il
- BN : Q'l 5 :
R = q; s
- 3
tey Ca
b Ca
» >
and
7 oy -,y B.y =B.y
cos(Ax) [a; a5 ale g ﬁi i ﬂi i i J
.y -,y B.y =Py
E} & -2 cos(ax) [ ot ; e T ; o 1 ; P }
@,y -a.y By =Py
A sin(Ax) [“i o ;-ai o 3 ﬁi & ;-pi o ly]
The constants E} can be uniquely determined from
the boundary conditions of the i#h layer. These are:
a) Normal and shear stress continuity, and
b) Compatibility of displacements at the (i-1) and i

interfacas,

S5e4=1b

Since the externally applied loads are sinusoidal,

we may assume that the normal and shear stresses on any inter—

face are also sinusoidal.

Let p., cos(Ax) and q, sin(Ax) be the normal and
i 94 :

th

shear stresses on the i interface.

boundaries of the ith layer :

a) on the i*® intersce (y = yi)
o, =Py cos(Ax) ; Top iy sin(Ax),
: th ,
b) on the (i-1)"" interface (y = yi_i)
% = Py, cos(Ax); Ty = Yo sin(Ax) .

For equilibrium at the

Substituting the above expressions into equation

(544=1), four relations can be obtained between
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i
(Pl’ qil pi"‘i'qi")- and ﬁ, .

where

i

are functions of @, pi and the y-coordinates of the boundaries

of the ith layer.

Let

N
il
>
e F . ¥ | e | T
L
@
"
P-
frs

il 5.4~2a
-aiyi"'i 2 eﬁiyi"i X —piyi-i] -
’ »
-a.y B.Y. -B.Y.
= i-i ""1. -—
a6 ; ﬁie s gt ¥ ’-ﬁie i%i=-a ]
-Q. ¥ B.Y. -P;¥y
§ C A IR e ]
-a.y - % 2 -B.Y.
= i g SR : <7 WO 31
@ ; ﬂie ; ﬁia :|

5)4--

A” is known (for each layer), since its elements

5-‘14-""5 :

Assuming that ]£?| £ 0, the inversion of (5.4-3)

Then
E? i A? Q}
gives 3
i it i
L =4 R »
where
A
Let &1 be partitioned according to:
i .
A s Az 1.

[4;

o
-
-
L]

Dali=ly

5 -J-P"r)

5e4~2D
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Then, -
N
e, goie i
Q. - [&15 A'a—l [L‘l
- ’
or
i 3 1= i i
Y Vol A i ik 5.4=6

Considering the displacements at the ith inter-

face (y = yi),for perfect continuity,

[ ul ] 3 [ui+1 ] . [ e} } i [viﬂl ] 5u4=T
I3 I I3 A
It can be shown (see Appendix [3 ]), that the
displacements at the itb‘ interface can be expressed in

terms of the constants Ql by *the following relations:

[ui] =t & sin(ax), 5.4~8a
Y

[vi ] = & cos(), 5.4-8b
Ii

[Fi+1] £ u}+z Q}+1 sinl ), 5. 4-8c
Ty

[viﬂ'} = f‘hi'ri cos(Ax). 5.4=8d
Vi

Substituting equations (5.4~8) into (5.4-7) and
expressing the system of the two simultaneous equa tions,
T i+l i+
Q? ¢ = Q? ¢ ]
Vl c:|. - e it ;

~

L § i4d Li+a .
C 5¢)-I-—9v.'1

b=
X

i
i)
¢
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where

i v
e N S paol

Using the appropriate expressions for Q} and Q}+1

(equation 5.4=6), and adopting the notation:

B =04, 5.4=10a

A

and
B = [gi

(™)

Q} ]: 5.4-=10b

equation (5.4=9) can be expressed in the form:

Ei. ki—:. g Ei. ki = :'|.::|. I-Li H B:"H' I.{,iﬂ !
R A o 5.4-1la
where
¢ ] e 2]
il e it

For the (n—l)th interface, and since [ is a null

matrix, equation (5.4~1la) gives:

Ifﬂﬁ - E?Fi ani )
or
el ot B ol BN 5.4~12a
where
-1
) EM“" ]‘ ¢ 544121

By considering the (n—2)nd interface, and the
result (5.4-12b), we can obtain a relation between kﬁ-a

and kn-a- This takes the form:

Ln—a = g?“ﬂ Ln—a. 5 .4~13

The same procedure can be followed through all
t
the interfaces, so that for the (i+l) B interface (it

follows from 5.4-12a),

56,
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el Ny i 5 .41l
Substituting the above equation into (5.4-1la)
gives:
s [yf + 11'1.;,1*1'*’“] 1*, 5.4=15

Inverting (5.4-15) we obtain:

k? = E} &?-1 ’ 5.4=16a
where
. s 3 - -1
F o= [gl + N g“‘] . 5.4-16D

For i = n, equation (5.4-16a) gives

e A LT

but since E? = 0, being the stresses at y = o, it follows

that for the equation to be satisfied,

En = 0
i
Since ) and are known for all the layers,and
and since EP = 0, then E} can be determined for each layer

through equation (5.4~16b).
It follows from equation (5.4-16a) that:

E} x E? E}-a E}-n Xies E? E} &?,
or
A e B
We shall note here that for i = 0, the term E?
appears, which has not been previously defined. But referring
to equation (5.4=17), for i = O the equation becomes an
identity and E? must be the unit matrix for the identity to
be satisfied for all values of L°.
Once the boundayry loads for each layer have been
specified in terms of the external loads E? (see 5.4-17),

the constants Q} can be determined from equation (5.4-6):
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5 .14-—18

?

<2
|
I
e
-
B
5
Sh
=
[
gy

The above equation can be simplified by making the

substitution;

R e 55
such that
¢ =£ e 5.4-19b

Once the constants Cl have been established in
terms of the external losds, the stresses at any point in

the half plane can be determined from equation (5.4-1).

Layered half plane subjected to sinusoidal loads; Smooth interface.

The method of solution of this problem is identical
to the procedure outlined in the previous section, Whenever
possible, the notation adopted earlier has been retained.

The normal. and shear stresses at the interfaces are
given, as before, by:

p; cos(Ax) and g sin(Ax) = 0,
and the matrices f} and é} remain unaltered.
It follows that the general relationship:

i T e | :

T g Y B

~ ~ ~ ~A 5.5-1

as defined by (5.4=6), is still valid, but since the shear
stresses are zero at the interfaces, certain simplifications
can be achieved.

and é; according to:

1 i
B.] s o4 -

By partitioning Ay

i 3
ﬂ; i [&11

I5

ae s
P
LM
e
-

equation (5.5-1) reduces to
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]

and since

for i > 1

1 i
Gl a K, Puy A By 5.5-3

For i = 1, and since qo # 0, the constants C* are

given by:
" Rwl D i
.g, = : ‘f.u 9 + A Py e 55k
g q

The compatibility of displacements in the Y-direction,
at the interfaces, requires that:

[vi] . [vi"*] . 5.5-5

Y3 Yy

No relation can be established between the displace-
ments in the X-direction, since the layers are free to move
relative to each other.

By means of equations (5.4=8b and c), the compatibility

condit’ on (5.5=5) can be expressed as:
S e s
Upon substitution of wvalues for c* and C**t given by

(5.5-3), we obtain:

a) For i> 1,

1 i i+1 i+1 .
. . = . B VR L.L'
11 p1-1+ B21 Py B11 pl a1 p1+1 ’ 2e5-Ta
where
3 S .
B> =¥ A for = 1,25 %k =1,2, 5.5=7b

3
We note that B is a scalar quantity.
ik
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Piwg = L, Piss 2 5.598a
where
i"‘ﬂ. i 1. 141
e 3 - B
M = B;; 2 and Nl = 82 . 5.5-8b
B- B
11 11
b) For i =1,
Bih 4 + B* = p2 + B2 . 5=
11 po b B:a () 21 P1 11P1 aipa 2+5=9

From here onwards the procedure to determine the
cons tants Ei interms of the external loads (Pos9) »
is identical to the one followed in the previous section
and therefore it will not be considered in any great detail.
It can be shown that a relation can be obtained
between the normal stresses on adjacent interfaces, in the
forms:

For' 4 5 1,

i
Py F pi_i, 5.5~10a

and for i = 1, an expression for B, can be obtained through

equation (4.5=9) in the form:

-
= wd Bas 5
p, =F [ Dt = qo} : 5.5-10b
24,
where
i X TR b i W 5.5-10c

For i = 0, equation (5.5-10a) becomes an identity,
and to be satisfied, =1,

Let

B
P e <
peqv. = po + Tiy 5.5-11

the, it follows from equations (5.5-10a and b):
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e 1 .H-12
Py, MR Peqv. ? 23

and consequently the constants ¢ can be determined for all

the layers through the following equation:

i i
= «5=13
E fp peqv. E denla
where
e ‘Al G J e P 5.5=13b
~0 L0 e

Two-layer half-plane subjected to sinusocidal loads.

The 2-layer half-plane constitutes a special
case of the general problem described in the previous
sections (5.4 and 5-5); and is of interest to many engineer-
ing situations, particularly those involving design of
pavements, embankments or continuous footings, where the
interaction of two materials (structure and soil),
approximately resembles the 2-layer system,

Investigations into the elastic properties of
soils and rocks has shown (see Barden (1963), Berry (1961);
Salamon (1968), Pickering (1970)), that various types of soil
(overconsolidated or fissured clays, stratified soils) and
many rocks (stratified sedimentary, folded, faulted etc.)
exhibit orthotropic behaviour. Similarly, reinforced con-
crete can be treated as orthotropic material (Isenberg and {
Adham (1970)).

In view of ita applications to Soil Mechanics
and Civil Engineering in general, we shall consider the
2-layer half-plane problem in some detail.

The two types of interface between the layers,
namely "perfect continuity" and "the smooth interface"

are considered separately. In each case, a solution is
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sought to the problem, where the surface of the layered
half plane is subjected to external sinusoidal loads. This
solution forms the basis for the treatment of half-plane
problems, in which the surface of the balf-plane is sub-
Jected to either concentrated or uniformly distributed
loads.

In the following sections, the symbols which
refer to the second layer, namely the half-plane, are
denoted by a dash ('), e.g. oi.

The thickness h of the top layer (see Fig.5.2),

can be set equal to the unit length, such that:

; =3 T].JE ’ ; = %u 5.6‘-1

5.6.1) !Perfect continuity" condition,

P, q

>

by
Fig.5.2
The externally applied loads are:

% (;, 0) =p cos(Ax)
5.6-2a

ro(® 0) = q sin(A%) }
and the stress distribution on the interface is assumed

to be composed of:
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o, (x, 1) = p' cos(Ax) ] 5.6-2b

T (% 1) = ' sin(ax) ~

Equation (5.4~1) in conjunction with (5.6-2a and b)

gives:
P -A2 -A? -\ -2 1 [ca
g ] Ad -Aa B =B 1 Ca 5.6-3
p' 6% )3 0 -APGﬁ -APe—ﬁ Cs
q! Ade®  aBe™%  asef Pl e,

A comparison of (5.4-2a) and (5,6-3) defines A. The
inversion of £ is rather lengthy and will not be examined
here. It is sufficient to represent the elements of the in-
verteu matrix A by 8 (R L wadhy 52 1 wev-l)y The

complete expressions for a,, are given in Appendix [4 ].

ij

Therefore, we can write (5.,6-3) as:

where
[811 faa a13 314]
A=, < | send A =, . 566=5
P ol

The boundary conditions for the s econd layer (half-

plane) are:

Gy (;) ©) = 0, :

T (x, ») = 0, 5.6=6a
and

o (x,1) = p!' cos(ix)

oA g 5.6-6b

Ty (x, 1) = q sin(Ax)s

By an inspection of equation (5.4-1), we observe, that

for conditions (5.6-6a) to be satisfied, we require:
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Ci = Ca - 0;
therefore:
p! —A’e_a' -A? o' 1 Ca'
= 5.6-7
[q' ~Adre™ 8 -A-,@'e'ﬂ'J Gl
and
L T 1
Gz-] agq dgn P'-]
gif = 1 ' | 5.6-8
Ca 841 843 ‘I'J
’

L]
where ags ... etc. are given in Appendix [4 ].
Considering the displacements at the interface
(y = 1), we can establish the matrices D and D', in the

following formg

-a"&“;hé” [ea; e-a] : g’e,i-m,a [ep : a-ﬁ] 1
3% 5.6-9a
Plia-Maa [a“; e-a:l g B2eia-2aa [ep : e-ﬁ:J
@ B
: f-a'a&' f‘ei'a wit! 2126' "')\.2-6' _pi .I
A o ; iy 9 | 5.6=9b
RY = )La&a'a-a'a&;a o' X - '36' oB' J
a 2 B! .

It follows that since B = D A (see equation

(5.4=10a), the elements of B are given by:
4
ok =Z (dmj ajn) s TOr M Sl 280 = 1 sue Uy
J=1

and the elements of B' by:

1 1
b = (d'm,j ajn)’ ferimi= 1,2 ¢ n = 1,2
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1
where dmj and dmj are the elements of D and D' respectively
(see equations 5.6-9a and b).
From the partitioned B and B' (see equation 5.4-10b),

we can determine F through the f'ollowing relation:

1 a5 1
r - 5[5 - 3.

The constants C and C' are then given by:

wele for 8] [2],
where
fp = &4 + &hnf 5.6=12a
and
Ay = A, F. 5.6~12b

We rewrite equation (5.4=1b) in the following

form:
o
cos (AX)
& {48
X = EY GDB(/\R)
E;.-W sin(AX)

Then, the stresges at any point in the 2-layer

half-plane are given by:

R_; R'] cos ( Ax) 0
[s;8']= sl o & { } 5.6-14a
(R, 5 Ryl cos(ax)| |a :
(R B,W]sin(&) .
where
;e d=0a 3 & 1 (5 ;5] 5.6-14b

for j = X,¥, Xye.

5.6.2) "Smooth interface" condition.

The case of the "smooth interface" condition will
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not be described in detail, since all the matrices re-
quired for the solution of the problem have already been
given in the previous section.

For example :

A A A . are the first columns of A Ay LA

=i S LTS
respectively (see equations 5.6=5 and 5.6-8). Similarly,
V and V' are the second rows of D and D' (see equations

5.6-9a and b).,

Then
F = T-E}'thﬁ_ ’ 5-6—15
44 21

where
[B:I.ﬂ.; Bag_] = Y\.[éﬁ.i ; 51]’

and Biﬂ.= K A.-\,ii'

Finally, the stresses of any point in the 2-layer

half'-plane are given by:

- 1 - =
o ge | Bei Ry o)
~ ; ~ s ' e
[gy 3 Ry ] cos(ax) T 5.6-16a
1 -
[R5 Ryl 10(3%)
whe re
1 1 1
(R, 3R] = 1[4 A  1[E; ;E.]
for J = X,V XY,
1 { ]
fo = Buo* A5.F Ay = A, B,
" Baa
Peqv_ =D+ 9] g, 5.6-16b

and E;,B; are defined by equation (5.6-13).
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5.7) Two layer half-plane subjected to partially distributed
uniform load; concentrated load.

We consider the case of an orthotropic 2-layer half-
plane, which is subjected on its boundary to a partially dis-
tributed uniform normal stress of intensity w and width '2¢',
applied symmetrically about the Y-axis.

This type of load can be expressed in a Fourier

integral form, as follows:

p(x) = 2ut aiﬁghﬁ) cos(Ax) da, 5.7-1
h
A
where € = &/h,

Equation (5.7-1), represents a summation of an

infinite number of sinusoidal loads, of the type:

[%h& si_nf\zﬁ)_m] cos()&'), 5.7=2

which can be identified as the applied load 'p' on the layered
half-plane, as given by equation 5.6-2a,

Using the representation in (5.7-1), the stresSeal
in the layered half'-plane due to a partially distributed

uniform load, can be expressed in the following form:"

2u¢ [ sin()E - - LA
{c&;c&;r&y] g Eéﬁééél ERxcos(Ax);Rycos(Ax);ny31n(hx)]dk.

507"’30
By making use of the condition:
¢init  sin(3E)

- 0 XE

=:|_’

and the condition 2w€ » P as £ » 0, we can obtain from equation
(5.7-3) the solution to the problem of an orthotropic 2-layer
half-plane, which is subjected on its boundary to a normal

concentrated force P/unit thickness. The stress components are
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then given by:

P — o 8
[U'xW'y;?W] ® ﬂ,i:;'j [Rxcos()a:) ;Rycos()oc) ;R}Wsin()\x) Jd/\.. 50 7=k

5.,8) Numerical results,

The method of solution developed in Section 5.6
for the 2-layer half-plane, assuming perfect continuity
between the layers, was employed to obtain numerical results
for the stress distributions induced along the interface by

a concantrated force, applied normal to the boundary of the

half-plane,which is assumed to deform under plane strain conditions

The evaluation of the stresses was accomplished
in two steps:

Step 1 involved the determination of the functions
R_,R_,R__, for a range of values of A, where O € A € Amax‘

xXT Yy Xy

Amax was increased until the magnitude of Rx,Ry,ny was less

than 1074,

J Step 2 involved the determination of the stresses,
by numerical evaluation of the integrals in equation (5.7-4),
uging Simpson's rule,

Numerical results are pregented for the v;riation
of normal stress q& along the interface, for a range of values
for the elastic constants of the materials which constitute
the two orthotropic layers.

The elastic constants of the materials are

varied through the following ratios:

L L i

E B ' E
_.YZ ] _.‘£ ] & ’ ]_EL ) vxy! v i —‘!—

E A
X Xy % Xy ¥

Because of the many variables involved, $1X

are kept constant, while different values are assigned
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to the sevewth ome. It is assumed that uw Vi 0.25.

Conclusions.

From the graphical representation of the results
in Fig.5.3-5°3a can make the following observations,

a) Decreasing values of Ey/Ex’ reduce the magnitude of
the o'y.

b) The ratio Ey_/E;, affects the stress distribution con-
siderably. When Ey/E;' increases, the stresses are reduced
and a "spreading out" effect is introduced.

¢) Increasing values of Ey'/c'nw’ increase the magnitude of' O’y,

' 1
while increasing values of E)/GJW reduce it,

d) The distribution of G'y along the interface is mainly
governed by the properties of the first layer. The
stress O'y is relatively insensitive to changes in E;/E;

1
but is affected to a small degree by Ey/ny.
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Introduction.

The elastic quarter-plane constitutes a special
case of the more general class of elastic wedge problems,
which have received considerable attention.

Stress distributions in Isotropic elastic wedges
subjected to concentrated or distributed loads acting on its
sides, and/or to concentrated forces or couples acting at its
apex, have been analysed by Levy (1898) and Carothers (1912).
Also, integral transform techniques, such as Mellin transforms,
have been discussed by Tranter (1948), Sneddon (1951),

Godfrey (1955) and Sternberg and Koiter (1958), in connection
with the above class of problems. The problem of an elastic
quarter-plane with arbitrary loadings on the boundaries has
been solved by Iyengar (1962), using a Fourier-integral
approach,

Stress distributions in anisotropic elastic wedges
due to various surface loadings have been analysed by
Lekhnitskii (1963), Benthem (1963) and Baker (1964).

Hetenyi (1960) developed a method of solution
for the isotropic quarter-plane due to either concentrated
or distributed loads acting on its boundaries. Craft and
Richardson (1970), employed Hetemyi's method to obtain the
state of stress in an isotropic quarter-plane containing a
circular inclusion,

Hetenyi's method of solution for the isotropic
quarter-plane, is basically a superposition of the solutions
to three half-plane problems, The half-planes are loaded on
their straight boundaries in such a manner, that the resulting
stress distribution satisfies the traction boundary conditions

of the quarter-plane, The loadings on the half'-planes can be

determined by repeated superposition of known solutions for the
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half-plane. Such a procedure leads to a sequence of infinite

integrals of recursive pattern. Hetenyi has shown that this

sequence of integrals leads to a convergent result; therefore

the superposition technique may be continued to obtain the

solution to the quarter-plane problem, to any required order

of accuracy.

In this chapter, Hetenyi's method is employed to
formulate a general method of solution to problems associated
with an orthotropic elastic quarter-plane. It is assumed
that the axes of orthotropy coincide with the Cartesian
coordinate axes X,Y. Examples are given, in which the
quarter-plane is subjected to surface or interior loadings.
Numerical results are presented for the special cases, when
the orthotropic material is a Boron-epoxy or a graphite-epoxy

composite.

6.2) General solution,

Arbitrary 'surface' or 'interior'

SO0 eCTTETS A0AdHI

\
Fig.6.1

We consider an orthotropic half-plane occupying
the region = » < X<+ w, 0 € ; < =, (see Fig.6.1), where

X

; = "é.' » Y = % » 6.2—1

are dimensionless coordinates and 'a' is a typical length

parameter,
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We assume that this half-plane is subjected to
force systems (applied either at the boundary or at the
interior) in such a manner that the rasulting state of stress
is symmetric about the Y-axis. We shall refer to this state
of stress as the "basic state of stress". By virtue of the
symmetry of this basic state of stress, the shear stresses are
zero on the plane of symmetry. The plane X = o is therefore
subjected to only a norimal stress Fo(;), where ; denotes ;
coordinates of points on the x = o boundary (i.e. y = (0,y)).
(Similar definition follows for x).

Therefore, for the basic state of stress

o
(U:! q;: TxY):
oh0,7) =Fo(3) , 7, (0%) = 0. 6.2-2
=Fel¥)
1rY
Fig.6.2

We consider now the problem of the half-plane
0 €X<m =w<y < o (506 Fig.6.2), which is subjected to
a symmetric stress distribution —Fg(§) on its boundary
X = o (step 1),

The resulting state of stress can be determined
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by an integration of the stress components due to the Flamant
problem (see equations 4.9-2). The resulting expressions can
be written in the form:

o oyt ] - - E&aﬁ%ﬁﬁfroc?) [un"r‘)my(?) ;ny(&‘)J] %,

Y w

6.2-3a
where J,ﬁ) = J;(E}')+ J;(SF),
~ 4+, P
Jy(y) = Jy(y)+ Jy(y), 6.2-3b
~ " o ~ . ~
JW(Y)-— Jw(y)ww(ﬂ,
and
'\u L V] e a '\oa ~ —
VR [(x*; x(y +¥)® ; (7 + 7)]
(55536305, 5] - e

[a®x*+(y47)? 1 [ka® %+ (y47)? ]
Thus combining the stress components derived from

step 1 with those of the basic state of stress, renders the

plane X = o free of normal traction, but gives rise to a

non-zero normal traction =F;(x) on the plane Y = 0
where

np Ml [ BOER G,

ki® X*4+3%) (ko®x34y2)

3

(Again, by symmetry of loading r;y(;,o) = 0,),

Fi(zj

Fig.6.3
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To eliminate -Fi(;), we consider the orthotropic
half-plane 0 < § < 0wy = < X < w, 8ubjected on its boundary
to a symmetric stress distribution F,(x)(Fig.6.3) (step 2).
Again, the stress components 0;, q;,fiy, can be determined
by an itegration of equations (4.2-4) for the concentrated

force problem. We have:

[";:o;;-rﬂw} Katiy ﬁi('f) € &) K (%) ;Kw(z)}d;, i

where Kx(ﬁj B K;(E) + K;(E),
K Jr(-.TE) = x;(;) + K;(SE), 6.2-5b

Kﬂ(?): K‘;WG)+ K‘W(Q),

and

[1(~) ;-,(..) + (.)] [ Geex) 37 55° 5 (xex)? 5] Loy,
;K H x)|= -_— — O = (] « =)0

b L A M T e

It can be verified that the state of stress re-
presented by (6.2-5a), eliminates the normal stress uFi(;) on
the plane Y = 0, but in doing so, gives rise to a normal

traction Fa(¥y) on the plans X = 0,
where

N - um (MA2TE__ e
A (ka®x%4+y%) (ks® x*+y?)

It is now evident that the techniques outlined
in steps 1 and 2 have to be repeatedly applied in order to
satisfy traction boundary conditions on the planes X = 0 and
Y = 0. This procedure leads to a set of integrals of
recursive pattern and the combination of these individual
states of stress, henceforth referred to as the "corrzctive

gtate of stress" gives:
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[Gi;ofr;riy] = L ["i; 0?; r:y] 3 6.2-7

which in the orthotropic quarter-plane satisfies the

boundary conditions:
gy e o 15y G = & =
oi(o,y) = - Fo(y), oi(x,o) = rxy(x,o) = rxy(o,y) = 0. 6.2-8

Using equations (6.2-3%a) and (6.2-5a), the

relation (6.2-7) can be written in the form:
[op;qf’;rc]:m[
d o0

-k [[1,03,055,®] ) 5,6 &

M=0,2 ,4 440

f [Kx(;) i, (%) ;Km(;)] i F_(%)dx } 6.2-9

1]1=:L,8,B-..

The functions ¥_(x) and ¥ _(¥) are given by
the recurrence relations:

-] ~ o~ ~
™~ _ kykg (kg 2F (y)x y* dy

o (ka®X2+7°) (ka*%%+7)

7 (y)= k: +1_(i ZFm(x) = S dx
m+a ma

o (k,®x%4y%) (ka® xP4y®)

S 6.2-10b

The complete solution to the orthotropic gquarter
plane problem is obtained by combining the basic state and

the corrective state of stress:

. . o ] c. - c -
[UX’Uy’TxY] . [U;’U;’Txy_’ 5 [GX’°§’TM} . St

Therefore, a solution to any quarter-plane

problem can be obtained, as long as the equivalent basic
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state of stress can be fully defined (o;,o;,r;y, Fo(y)).

6.3) Convergence of the method.

.
lp
0 b
X
Ey
Ex
Y ey
(a) (b)

Figsb.h

We consider the orthotropic half-plane
0 ‘;, - <X < w, Which is subjected at its boundary to
a normal concentrated force P/unit thickness at point (a,0).
By integration of the expression for o (see
equation 4.2-4) with respect to y between the limits 0 and

w0, We have:

oo

= P (i +iep) ; (x~8)? v dy N én
fc'xdy m 6/. [ka® (x=8)+y ] [ks® (x-a)9+y3) ; T(ks-Ka)

0

6.3+1
The result, which is the total resultant force
in the X-direction on a plane parallel to the Y2 plane is
seen to be independent of the position of the load or of the
location of the plane. B8ince any normal load on the boundary
of a half-plane can be represented as a series of concentrated

forces, it can be stated that:
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Total lateral thrust =

¢n kg — &n ke

T."(ki"ka) - 6.3"2

Total finite normal load on boundary x

For ki= kg = 1 (isotropic material), the expression
en(ky/kz)/n(ks=ka) can be evduated by means of L'Hospital's
rule to give 1/m, which is the result obtained by Hetenyi (19060)
for isotropic materials.

Applying equation 6.3-2 to the F-functions (see

equations 6,2-10a and bj we obtain:

. ~ ~ Lnk.~& - ~
meﬂ(x) dx = —#ﬁr k:.knf eF (v)dy, 6.3-3a
o ¢}

and

R N N i ~

-/.Fm.'_l(Y)dy T w(Ki=ka szm(;)d‘x' 6.3-3b
o

0

For the F-functions to be convergent, the coefficients
in equations (6.3=3a and b) should satisfy the following

condition:

2(enk =L {
—%ﬁﬁ [1 ; k,_kg] < iy 6434

For various combinations of'values for k; and kg,
inequality (6.3-L) is not satisfied. However, if we consider

successive F-functions on the same plane (say the X=0 plane),

we have:

1 ~ ~ [2(&nk,~&nks)]? AL

[Fmﬂ(}‘)d\v = [_(.(_x_j_a.ﬂ S )] ky kg [ F_(y)dy. 6.35
o 0

(A similar expression can be obtained for the Y=0 plane).

Then, it can be shown (see Appendix [5]),that

for k; > kg > 0,
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2(enk, ~¢nkg ) |2
[’LEZEiiﬁf%h)] kika < 1, 6436

which guarantees the convergence of the recurrent integrals

6.3) contd,

(6.2-10a and b).

It is therefore concluded that the speed of

convergence depends on the orthotropic constants ki,ks of

the material.,

6.4) Concentrated force acting normal to the boundary.
_i.l \.2_0_{

P ¥ lP
& ) ] 0

>\

Fig.6.5

Consider an orthotropic quarter-plane X > 0, Y > 0,
which is subjected to a concentrated force P/unit thickness,
acting at point (a,0) and normal to the boundary (see Fig.6.5a).

The basic state of stress can be obtained by com-
bining the results for two concentrated normal forées, acting
equidis tant from the origin, on the boundary of a half-plane
(Y > 0) (see Fig.6.5b). The components of stress are then given

by the following expressions (see equations 4.2-4):

X A

[on;on;.,o} . P(kjt+ka) [3 g J : e
S ) o XY,

where
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- - — + —U + e - + e 1 -
[sx,sy,sxy} = [sx + 835 87 + 87 By J 6.4-1b
»
and

[x:1)%y;5 ¥°;5 (x+1)7° ) 6.h4-1c

[ka? (x41) 2472 1[ka® (x+1)2+y? ]

) R R
[Sx; S5 Syy

The distribution of normal stress on the plane of symmetry

(X = 0) is:

~, P (k1+ka);
F y) oy o . 6.‘14-"2
"0 = W ) i)

6.5) Partially distributed uniform load acting normal to the boundary.

a a a

nd N a

Fig.6.6

We now consider the problem of an orthbtropic
quarter-plane (X > 0, Y > 0), which is subjected to a
unifirmly distributed stress of intensity p acting normal
to the Y = 0 boundary. The applied load extends from
x = (1-n) to x = 1 (see Fig.6.6a).

The basic state of stress (see Fig.6.6b) can be
obtained from the results for the uniformly distributed load

solution of the half-plane problem (see Section Lol), and it



80.

6.5) contd.

can be expressed by the following relations:

i) - ey (@ - ) 5 anemieds 4 o) ], 5m0a

where
+ - - .
Tl 8 Tl + Ti p ti tl tl ol U R (8
and
“+ —_
T, = + [tan""" klx g (1=n)] _ goprs Xy(x21) ],

3 y > y

6.5-1b

The distribution of normal stress on the plane

of symmetry X = 0, is given by:

-

- %:‘-: [tan'_" AS8) | gt -}—_{L ] o 6,5=2
y

6.6 Concentrated force acting at the interior.

Pl |

na

Fige6.7
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We consider the case of an orthotropic quarter-
plane (X > 0, ¥ > 0) which is subjected to a concentrated
force P/unit thickness acting at point (a,na). We shall limit
our discussion on the case of the concentrated force being
applied in the positive Y-direction.

The basic state of stress can be determined from
the results for the interior concentrated force solution for
the orthotropic half-plane (see Section L.7).

The s tress components for the basic state of

stress are given by the following relations:

¥ ol P R s il ¢ Ll
[O;’ 0;, Txy:l i ﬂa(kaa-kan {m+aa)r1 [fi’ ik

+ Qira ~fa; f3k,*; o
19

5

| s |
+(aa-°‘-|)1‘a fi; fika®; -ka®x ]
s |

+0UgTyq ~fa; faka?;
+0aT's ~fa; faka?; kz.akasx]
+aars fa; faki?; -kznkaax] J
bo7=3
where
F. = 1 4 1y for i = 1,2 6
158 +% e
and

Lyl fs = ka(ky ¥+ kan),
} A S -
fg fq, - kn(kny .5 kin)l

s B e s st LR i - = =2
r, = kia(xilja+(y+n)°] ; s = [kia(xi;)a+(y—n)aJ 4
* r o T -1 X = = -1
g ka“ui._n%(ym)ﬂ 7= [P ) Gn?]
- ‘ t & il -0
rs = ]-;,_ ka (x+l)= kgn+kiy) } s Pa = [kiakag(xil)a+(k1n+k3y)gj .

o, (for i = 1 +es 4) are defined by equation (L.7-4),
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The normal stress distribution on the plane X = 0,

Fo() = —2 [cm Lota) , _(mca) | _
(ks ks et Gen)?
Gon) | —— |
k4?+(y-n)? kz?+(y-n)? ]
agky (Kan+kyy) +
[k12ka?+(kan+kay)? ]
agka (i nvlesT) } o
[ka?ka®+(kan+kay)? ]

6.7) Evduation of the stresses.

Numerical values for the stresses induced in an
orthotropic quarter-plane by an arbitrary loading system, can
be obtained in the following five steps:

Step 1: The basic state of stress (o;,o;,r;’w) and Fo(y)

are evaluated for the particular loading system,

Step 2: The Fm(;) and Fm(s;) functions are determined by
numerical evaluation of the integrals (equations 6.2-;0:1 and b),
in the logarithmic scale, using Simpson's rule.

Step 3: The boundary stresses applied on the two overlapping
half-planes are then calculated by summation of the applied

gtresses for each reversal of loading:

o (0,3) = i F (),

m = 042,400

o (%,0) = i F_(x).

m = 1’3,5900

6-?"1
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Step 4: The corrective state of stress (oi,qi,riy) in the
quarter-plane is calculated by combining the stresses induced
in the respective half'-planes by the boundary stresses(6.7-1).
In order to evaluate ci, oi,rzy, the boundary stresses (on
the half-planes) are represented as a series of uniformly
distributed loads of finite but variable width, It is found
that this particular uniform load representation of the
boundary stresses leads to a better convergence of results
when evaluating the stress components in the vicinity of' the
boundaries of the quarter-plane,

Step 5: The basic state of stress is combined with the

corrective state of stress to yield the complete solution

to the orthotropic quarter-plane problem.

Numerical results.

In order to obtain numerical results for the state
of stress in an orthotropic quarter-plane due to various loading
systems, two main computer programs were written.
The first program computes the boundary stresses on
the two overlapping half'-planes, for a given initial stress
dis tribution Fo(§) on the plane of symmetry X = 0.
The accuracy of the numerical integrations involved,
depends mainly on the following parameters:
i) the upper limit of the integration, and
ii) the number of slices used for the application of Simpson's rule.
Both parameters are increased during the first integration for
the evaluation of Fi(;) until Fi(;) is accurate to at least 5
decimals and Fi(;) at the upper limit is less than 0.005% of
Fi(;)max.'

For the orthotropic materials considered,namely,
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unidirectional graphite-epoxy and boron-epoxy composites, it
was found that an upper limit of X,y = 150 and 120 slices
produced results that satisfied the above requirements.

The reversal of loading is carried out until the
boundary stresses are accurate to at least 5 decimals. It was
found that for the materials considered, this order of accuracy
was attained in 30 reversals of loading.

The second of the computer programs written, com-
putes the corrective stresses in the quarter-plane., In this
program, the boundary stfasaas are treated as a series of
uniformly distributed losds of finite but variable width

(see Fig.6.8).

Actual stress distribution

PR e~

Assumed stress distribution

|

Fi‘E.G.B

Attempts to treat the boundary stresses as a series
of concentrated forces, resulted in high stresses inlthe vieinity
of the boundaries to a depth of x,y = 0.5. For X,y > 1.5, the
two solutions gave the same resultsto at least 3 decimal places.

Finally, a separate program was written for each
type of loading considered, to compute the stresses for the
basic state of stress and combine them with the stresses of the

corrective state of stress.
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Numerical results are presented for two types of
loading:

i) A concentrated force acting normal to the boundary of the
quarter-plane, at point (a,o0).

ii) A concentrated farce acting at the interior of the quarter-
plans, at point (a,a), in the positive Y-direction.

The properties of the materials considered are
listed in Table 6.1 (Saha et al. 1972). It is assumed that
the X-axis of the quarter-plane coincides with the direction
of the fibres (i.e. high modulus axis).

The stress distributions,induced in the quarter-
plane by the two types of load, are shown in Fig.6,9-6.20.
The results are presented as a variation of stress [ o'x;cry;'r la/p

Xy
with x for different values of y.
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Conclusions.

From the graphical results developed for the two
composite materials (boron-epoxy and graphite-epoxy) (Fig.6.9-
6.20), the following observations can be made.

1) The stresses o and T diminish rapidly as x increases
and become relatively insignificant for x > 4. Similar
behaviour is observed for ; > 4.

2) The stress o, diminishes very slowly, particulary for
; < 0.5. For example, oia/P at the point X = 50, ; 240,23,
for graphite-epoxy composite under surface load, is 20%
of its value at point x = 4, ¥ = 0.1. On the other hand,
o diminishes rapidly with y and for y > 3 it becomes
relatively insignificant.

3) Comparing the results for the two orthotropic materials,
we observe that as the ratio Ey/Ex increases (in this case
for E, = constant) o inoreases, while o, decreases. T

is practically unaffected by the change in Ey/gy.

Suggestions and recommendations.

The amalysis of the quarter-plane presented in the
previous sections of this chapter can be employed in é numb er
of problems encounted in engineering practice. For example,
the quarter-plane loaded by a concentrated force at its interior,
represents the situation which can occur in the vicinity of a
metal connector in timber or fibre reinforced structural elements.
In the special case when the concentrated force migrates to the
boundary of the quarter-plane, we have a condition that may be
encounted at the support of a structural element. Similar con-
ditions may arise in Geotechnical and Foundation engineering

(e.g. continuous footings near large excavations or embankments,



6.10)

8?-

contd.

anchorage of suspension cables in bridges, etc.) where the
loadings are better approximated by unifommly distributed or
parabolic loadseither at the boundary or at the interior

of the quarter plane.

The analysis of the quarter plane was presented
in a general form, so that it is possible to obtain the
state of stress for oblique loads, concentrated couples, or
finite distributed loads.

Further investigation can be made into the effects
of transporting the internal concentrated force to various
positions in the quarter-plane.

The analysis presented in this chapter is valid for
orthotropic materials with their axes of orthotropy coinciding
with the reference coordinate axes. However, a similar method
of solution can be employed for the case in which the ortho-
tropic axes are inclined at an amgle to the coordinate axes.
Assuming that the corresponding basic state of stress can be
fully defined, the plane X = 0 is not a plane of symmetry
and consequently shear stresses as well as normal stresses
will devalop along its surface. Therefore, each reversal of

load should include a reversa of both normal and shear stresses.



PRl [




88.

7.1) Introduction

7.1.1) Definitions.

ik 2¢ X

Vy

Fig.7.1

We consider a rectangular plate of length '2¢',
width '2h' and thickness 'b', with its sides parallel to
the Cartesian coordinate axes X,Y,Z (see Fig.7.1). The
centre of the plate is assumed to coincide with the origin
of the coordinate axes 0.

The plate, which is assumed to be in a state of
plans stress (with b << h), may be subjected to load systeus
acting on its boundaries or at the interior.

We distinguish between the following cases:

a) The length (2c) of the plate is comparable with its width
(2h). In such cases, the plate is referred to as a "deep
beam" or simply as "plate".

b) The length (2c) of the plate is much greater than its
width (2h), but 'c' is finite. Plates of this type are
usually referred to as "beams",

c) In the third case, the plate is assumed to be of infinite
length, and then it is usually referred to as "inf'inite

beam" or "infinite strip".
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We shall limit our discussion on problems
associated with the infinite strip. Iu particular, the
strip is assumed to be composed of an orthotropic elastic
material, with the axes of orthotropy coinciding with the
Cartesian coordinate axes X,Y,Z. The half width (h) of the
strip is considered as the characteristic length of the
problem, and, the dimensionless coordinates x, }, are defined
by:

o8 ¥ o= £, y R

Historical background.

The f'irst analytical and detailed work on the
problem of determining the stresses and displacements in an
isotropic elastic rectangular plate, loaded along its sides by
any system of tractions,was presented by Filon (1903). Filon's
analysis was based on Fourier series representation of the
boundary loads, and, on the assumption that the normal and
shear stress distributions over the terminal sections
(x = + c),could be replaced by total resultant forces and
moments. This technique produced accurate results, only if
the length of the plate was large compared with it; width, in
which case, according to Saint-'h'snar.lt's principle the
assumption was Jjustified.

Howland (1929), employed Filon's methéd to develop
a solution to the problem of a concentrated force acting at
the interior of the strip and in either of the coordinate
directions. The strip was regarded as of infinite length,
so that Fourier integrals were used instead 01‘. Fourier series.
A similar method was used by Girkmann (1943).

Biot (1935), employed the elastic beam theory to
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develop expressions for the stresses in a soil layer, resting
on a "slippery rigid bed" or on a "rough rigid bed", and sub-
Jected on its boundary to a concentrated normal force. He
also produced numerical results for the nomal stress distri-
bution along the inferface between the layer and the rigid
bed.

Green (1939), employed Howland's method to in-
vestigate problems related to the orthotropic infinite strip.
In particular, he considered the case of an infinite strip
subjected to either a longitudinal or a transverse concentrated
force, acting at any point of the strip. Green's work was
limited to the derivation of the equations for the stressaes
and no numerical results were given,

Conway (1955¢) presented numerical results for the
stresses induced in an orthotropic infinite strip by two equal
and opposite concentrated forces, acting centrally and parallel
to its long sides.

Hashin (1967), inreatiéatad stress and displacement
distributions in an anisotropic beam, under any polynomial
loading applied on its long sides and for given force and
moment resultants on the terminal sections (x = + c).

Gerrard (1967), considered the problem of an
anisotropic infinite strip resting on a smooth rigid bed and
subjected on its boundary to a partially distributed uniform
normal load. He obtained a limited number of solutions, in-
dicating the effect of anisotropy on the stress distribution
beneath the strip. Since Gerrard's work was mainly on soil and
rock mechanics, the infinite strip was assumed to be in a state
of plane strain.

Finally, Yu (1973) obtained a solution for the
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bending, shearing and normal stresses in an orthotropic beanm,
subjected to a transverse concentrated force, acting at the
boundary y = =h. Numerical results were presented for two
orthotropic materials, namely three layered plywood and pine

wood .

7.1.3) Scope of investigation.

The work on the orthotropic infinite strip, deals
with the following problems.

1) An investigation into the effects of orthotropy on the
stress distributions in an infinite strip, which is sub-
Jected on its boundaries y = + h, to symmetric, equal and
opposite concentrated or distributed loads.

2) The development of a method of solution to the problem of
an infinite strip which is subjected to an arbitrary self-
equilibrating load system, acting either at the boundaries
or at the interior of the strip. The work described in this
section, is not meant to be in any way original; the basic
purpose of the investigation is to illustrate an alternative
method for the analysis of infinite strip problems. This
method is based on the superposition of known solutions to
infinite-plane and half-plane problems, such that the re-
sulting stress field satisfies the boundary conditions of

the infinite strip.
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7.2) Orthotropic infinite strip subjected to symmetric boundary loads.

7.2.1) Sinusoidal loads,

VY
Fig.7,2

We consider the case of an orthotropic infinite
strip subjected on its boundaries y = + h to a normal stress
distribution p(x),where

p(x) = p cos(A*x), 72618

and A* is a constant,

et A = &, 7.2-1b

Then, equation (7.2-la) can be written in the
f'orm:

p(x) = p cos(A x), 7.2-2
where x = x/h (see equation Ted=1) e

The assumed stress function is:

@ = (C4 % + Cae™ %V 4 cy oY 4 Ca e-ﬁY) 003(*I;): 7e2=3
where
A A P
@ =% s =% and Ci... C4 are constants that can
ky kg
be determined by the boundary conditions (see Section 503 ) e
Expressions for the stress components can be

obtained by substituting (7.2-3) in (2.6-1). These stress

components can be written in the following form:
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P {_Eia &% 4 Eﬂa % . Eaa A, gja o~ PY 1 cos(A,;),
k’ﬂ. kd. k? 1(2

o’y = "‘)La {cﬂ. ew +Cg e-q}r + 83 epy + Cq e— 1 CDS()L;)' Tel=l}
i
Sl Ve % - Ca ~ay Co Py _ Ca _=BY| et
Ty % Lk1 o a8 T © sin(A x)
The boundary conditions for the infinite strip problem
are:

p cos(A x),
0' 702—5

a) q&(;, -1)
b) T xy(}',-l)

c) Gy(;: 1) = p cos(A ;)_p

1]

d) rﬂ(i, 1) = 0.

By substitution of equations (7.2-4) into (7.2-5),
we obtain a system of our simultansous equations, which we
can then solve, to obtain expressions for the constants

Cy = Cg = Aa.‘%i’

?-2"6&
Cag = 04 = Ag E? »
where
Ay =.k1(9ﬁ‘ B-ﬁ)/ﬁ:
N e 7.2=6b
Ay ==k (e%e"%)/a,
and

A= kg(ea-e-a)(eﬁ+e"ﬂ) - ki(ea+a-a)(eﬁ—a_ﬁ).
The stresses at any point in the infinite strip,
can then be ocbtained by substitution of equation (7.2-6)

into (7.2-4):

o, =p R, cos (A x),
Uy = Ry co:.:()«. ;), f.2=7a

USSR ny sin(A X),
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where

By = J—\"a (eo&-+ e~ V) 4+ -A-Ba (eﬁy + e"ﬁy),

ky kg
R, -A1(e°°_’ + 6 °§) - h(eﬁ; + e ‘35) 7.2=To
ny = i}t—: (GW- - e"q}-) - ﬁ-: (eﬁ; - e_p})

7.2.2) Partially distributed uniform load; concentrated load.

A AT
| =
O S
: %t
0 i 0 -
X \ X
i i S . IP
'er
Ex 'IPY
(a) Ey (b)
Bl els

We consider the case of an orthotropic infinite
atrip, which is subjected on its boundaries y = + h, toa
partially distributed normal stress of intensity w and width
'2¢', applied symmetrically about the Y-axis (see Fig.7.3a).

This type of load can be expressed as a Fourier

integral, in the following form:
p(x) = 2‘1’:’[ sin(ik ¢) cos(A X)dA, 7.2-8
¥ AL

)
where € = e/h,
Equation (7.2-8) represents a summation of an

infinite number of sinusoidal loades, of the type:
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20¢ sin(\ €)

= da | cos(A x). 7.2-9
R

We can then identify this sinusoidal load, as that
applied on the infinite strip; namely p(;c.) as given by
equation (7.2-2),

Using the representation in (7.2-8), the stresses
in the infinite strip due to a partially distributed uniform

load, can be expressed in the following form:

wh AZ
0

o, = 208 fg? M cos()t;) da , 7+2=10
A

¥ wh 7
[+]

T, = _Za_ﬁfn Msin(k;) dAe
Al

Xy wh Xy
0
By meking use of the condition:
_&imit gingf 2) .1,
€ 5 0 AL

and the condition 2wé - P as € » 0, we can obtain from
equation (7.2-10), thepsolution to the problem of an infinite
strip which is subjected on its boundaries 3; = + 1 to equal

normal concentrated forces P/unit thickness. The stress

components are then given by:

Q'x = —T%fo CDS()L ;)d)\-,
(]

P —
 — Lo S
My fRy cos(A x)da, 7.2=11
o
— P . — -
Tow === R__ sin(A X)da
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Numerical Results.

The expressions for the stress components in an
infinite orthotropic strip, due to symmetric , partially dis-
tributed uniform loads (equation 7.2-10), or due to symmetric
concentrated forces (equation 7.2~11), are functions of the
orthotropic constants of the material ki and kg. In the
cage of the uniform load, the stresses are also functions of
the half-width of the load '¢',

The orthotropic constants ks and kg, which are
functions of the constants &, (see equation 2,6-4), can be

expressed in terms of the following ratios:

L3 fes L
az ’ &aa ’ zi: .
Therefore, the effects of orthotropy on the
stress distribution in an infinite strip can be investigated

by varying the values of the three ratios, which in the case

of plane stress reduce to:

B B
’xy I el T
G E
Xy x

For the purpose of the numerical computations,
we assume vxy = 0.25. This value of vKY is frequent}y
encountered, particularly in connection with f'ibre-reinf'orced
composites (Saha et al.(1972), A¢-Khayatt (1974)). We then
assign a value to one of the ratios, say Ey/Ex’ while varying
the other (Ey/ny)‘ The process can be repeated fﬁr various
values of Ey/Ex'

It must be pointed out, that owing to the symmetry
condition e Ey RV E , and the condition (see equation

2. 4=4D)

[E_
ng| < JEE - Te2=12

f or Ve = 0.25, the upper limit of the ratio Ey/Ex is 16,

96.
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7+2+3) contd.
In addition, for ki and kg to be real and positive

(see Section 2.6)

By 5o [ tx ¥ Dy Touls
G |_ B 0 g
Xy X x

1) Infinite strip subjected to concentrated forces.

The stresses induced in an infinite strip by equal,
concentrated forces acting normal to the boundaries y = + 1
(see Fig.7.3b), were obtained from equation (7.2-12) by
numerical evaluation of the integrals, using Simpson's rule.
The number of slices used and the upper limit of the inte-
gration procedure were varied, so that the results obtained
were accurate to at least three decimal places ( on average
2,000 slices were used and an upper limit of 24).

The results for the stresses (e.g. o, 7h/P) are pre-
sented in a graphical form (see Fig.7.4-7.11) as a variation
of stress with x orE, for various values of Ey/ny’ when

a) Ey/Ex = 1, and, b) Ey/Ex = 04054 ©) Ey/Ex = 5,

In addition, the variation of O'y

(0,0) with Ey/Ex and Ey/GW, is presented in Fig.7.12 and

and o, at point

el
2) Infinite strip subjected to partially distributed uniform load.
The stresses induced in an infinite strip by the above
type of loading (see also Fig.7.3a), were obtained by numerical
evaluation of the integrals in equation (7.2-10), using
Simpson's rule, The stresses were determined for points
along the X-axis when € = 1 and € = 0.5, for various values

of Ey/GW and Ey_/Ex, and are shown in Fig.7.14-7.21.
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7.2.4) Conclusions.
From the graphical representation of the results
in Fig.7.4=7.21, we can make the following observations:

1) Concentrated force.

The satress q&, on the X-axis, diminishes very
rapidly with increasing X and becomes relatively in-
significant for x > 2.5, The distribution of o is
greatly affected by changes in Ey/ny’ but is re-
latively insensitive to changes in Ey/Ex' In the
case of an isotropic material, the distribution of
o, is in agreement with Biot's (1935) results.

The distribution of o, along the X-axis (see
Fig.7.5 and 7.7), indicates that if Ey_/Ex ~ 1, stresses
of high magnitude are encountered only for X < ZeDe
If Ey/Ex << 1, o, does not diminish rapidly with
increasing X. The effect becomes more prominent for
small values of Ey'/G:W' It can be concluded that the
distribution of o, along the X-axis, is affected by
the magnitude of both ratios Ey/E L and Ey/GW.

The maximum stresses (05: and c'y) along the X-axis,
are encountered at the origin (0,0). The magnitude of
these stresses is mainly governed by the ratio Ey/G
(see Fig.7.12 and 7.13) and for Ey/ny > 10, the
stresses may be assumed to be independent of Ey/Ex'

i Ey/cky < 10, the magnitude of the stresses is
affected by the ratio Ey/Ex, particularly if Ey/Ex > Oolls

The stress distribution (o& and q&) along the
Y-axis, follows the general pattern, with q& mainly
governed by the magnitude of the ratio Ey/ny’ while

o, is governed by both ratios Ey/ny and by/Ex.
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contd.

2)

Uniflormly distributed load.

The distribution of q& along the X-axis (Fig.
Telh, 7.16, 7.18, 7.20), indicates that, in general,
for ¢/h& 1, g diminishes rapidly with x/h and becomes
relatively insignificant for x/h > 2. This distribution
is mainly governed by the ratio Ey/ny‘ Only if
Ey/bky < 5, the effects of Ey/Ex become signif'icant.

If ¢/h = 1 and Ey/Ex =1, o, at the point
(0,0) is always equal to the applied pressure,
irrespective of the magnitude of Ey/G:of'

The distribution of o, along the X-axis is
greatly affected by Ey/Ex with o increasing for de-
creasing values of Ey/Ex‘ Similar behaviour is

observed for decreasing values of Ey/G'ﬂ-
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7.3) Orthotropic infinite strip subjected to arbitrary loads.

7.3.1) Formulation of the problem.

(a) (b)
Fige7.22
We consider the case of an orthotropic infinite strip,
which is subjected to arbitrary load systems, acting on its
boundaries or at the interior.
We distinguish between the following two cases: ;

a) The applied load system is self-equilibrating, so that the
stresses diminish with increasing'; and they tend to zero
as x - + w. In addition the resultant moment of the load
systeé about any point of the strip is zero, Such a case
of loading is shown in Fig.7.22a.

b) The applied load system is not self-equilibrating, in which
case non-zero stresses exist at all points of the strip,
even at x = + o, Such a case of loading is shown in
Fig.7.22b.

We shall limit our discussion on the former case,

that of a self-equilibrating load system.
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7.3.2) Method of solution,

3

(a)

Fig.7s2

A superposition technique is adopted for the purpose

of accomplishing the infinite strip solution. This technique

involves the superposition of known solutions to the following

three problems,

a)

b)

The

orthotropic strip is assumed to occupy the region

AA'B'B of an infinite plane (see Fig.7.23a), where AA'

and BB' are parallel to the X-axis of the plane and at

distance y = + 1 respectively. The resulting stress field

will be referred to as the basic state of stress and the

(o] o  E

stress components will be denoted by ok, &y Tl

The

the

its

and

The

the

3t8

and

DECIRY;
second problem is an orthotrpic half-plane, occupying

region =wm < X < oy, =1 € ¥ < « which is subjected on .
boundary to normal and shear stress distributing P (x)
Q (x) respectively (see Fig.7.2b).

third problem is an orthotropic half-plane,occupying
region =w < X < w0, = < ¥y € 1 which is subjected on
boundary to normal and shear stress distributions P+(;)
Q" (%) respectively (see Fig.7.23c).

The resulting stress field from the combination of
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7.3.2) contd.

the two half-plane solutions, will be referred to as the
corrective state of stress and the stress components will be
denoted by oi, q?, T;y-

The problem then involves the determination of the
functions ?i(;) and di(;), so that after superposition of the
three systems (a), (b), (c¢), the resulting stress field
satisfies the boundary conditions of the infinite strip.

The prpposed method for the evaluation of the
functions P:'GE) and Qi(E), is an extension of the superposition
method used by Hetbnyi (1960) in the analysis of the isotropic
quarter-plane, It involves the successive elimination of the
stresses on surfaces AA' and BB', by superposing solutions
to suitably loaded half-planes. We shall describe this method

in detail in Section 7.3.4.

7.3.3) Basic state of stress,

We assume that the basic state of stress can be
uniquely determined from the theory of the infinite plane and

that the s tress components are given by:
o o o ﬂ o o o
0 9}’ Tiy - [ 3;’ Qy ;- Sxy }, ) 7.53~1

where ¢ is a load parameter.
Furthermore, the normal amd shear stress distri- -
butions on surfaces AA' and BB' (i.e. y = + 1), due to the

o o 240
basic state of stress, are denoted by F (x) and G (x), where

LEORACN N

1]
= ¥
[¥5)

[+]
-
w
o
et

Te3=2
[F*(E): 6" (x) }

1]
=l \=¥
(2]

=]
ta
o
| SE——
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7.3.4) Corrective state of stress.

- P N o) e | e | e |t | e | e | | e

F (x) ¢ (x) F(¢) G(¢)

>y
>V
k=i
—
b
SN
+
=]
+ +

0

Ly ki
(a) (b) (e)

F 82

Step 1. In order to eliminate the stresses (F (x) and G (x))
on the surface AA' of the infinite plane due to the basic state
of stress (see Fig.7.24a), we consider @ half=-plane (=1 € ¥ < @)
“which is subjected on its boundary to normal and shear stress

distributions F(¢) and G(¢) respectively, where

F(¢) = = F (x),

% 7.3-3
(g = =6 (x).

(see Fig.7.24b).

Then, the combination of the solution to the half-
plane problem together with the solution to the infinite
plane, renders the surface AA' free of traction, but in doing
so, gives rise to normal and shear stresses F'(%), 6¢'(x)

respectively on surface BB'(y = + 1), where
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contd.
- " gr(e)d i x=£)age )
F'(x) = (k,_+ka){ f TE?g—ﬁ+klkgf !&%%X_ﬁ)_ﬁj 3
S 3k 73=La
- "uE(8) (5-g)d " 26(8) (3-£)%a¢ )
G"(x) 2 (k1+ka)[ ’/’_L%E)ﬁi +k1kaf D(e) -j »
(see equations 4w2-4 and L4.3=3) 7
and
D(e) = [P Gme)s 4] [Ra2Gg)? + 4 | 7.3-4b
Therefore, the problem reduces to a half-plane
-1 < }- < o0y = < X < wy With a traction free boundary
(see Fig.7.24c), and with total stresses on the surface BB'
given by:
Normal stresses : F'(E) + F+(E), 2,35
G'(x) + G*(x).
A
X

’

Fi - .2 L]

Step 2. In order to eliminate the stresses on the surface
BB' (y = 1) of the half-plane (see Fig.7.24kc), we superpose
the solution to a half-plane (= < X < @y =~ Y € 1), which

is subjected along its boundary to normal and shear stress
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contd.
distributions Fo(¢) and Go(¢) respectively (see Fig.7.25a),

where

Fo(d) == 'R + ¥ ® |,
7+3-6

Go (&)

n

-le® @ |

The combination will render the surface BB' free of
traction, but will give rise to normal and shear stresses

Fi(x), Gs(X) respectively, on surface AA', where

£ 3) = ()| [ S - s, [algiGoges )
:. -w 7437
Ga(%) =

(k,_+k.){- [ 53_'9%‘&%;_‘33 + k,.k,- f&.ﬁ.ﬁ%.giﬁlﬁ } ’

- -

Step 3. In order to eliminate the stresses Fi(x) and Gi(X)
from the surface AA' (see Fig.7.5a), we superpose the solution
to a half-plane (m < X < @, =1 € ¥ < «), which is subjected along
its boundary to normal and shear stress distributions =Fi(¢&)

and -Gy (¢) respectively (see Fig.7.25b). This will give rise to

stresses -Fz(X) and -G3(X) on the surface BB', where -

@ - ) [ B e [ g G,
i i 703-3
6 (®) = (ky+ke U’ &%_Q_ﬁ 3 k:.ka[ 2G1(§)(K—E) de j

It is now evident that the techniques outlined in
Steps 2 and 3 have to be repeatedly applied in order to
satisfy traction boundary conditions on the surfaces AA' and

BB'. After an infinite number of reversals, the total loads
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7.3.4) contd.
applied on AA' and BB' are:
a) On AA' (¥ = = 1)
P (x) ==F(x) - Z F(x),
Il = 41,3500 T+ 5-9a
T = - & - E: ¢ (%),

"= 13835000

b) On BB' (¥ = 1)

P'(x) = i F (%),

033 y4ess

?.5"‘91]

¢*(%) = §: ¢ (%),

M= 0s2)8ees

where

(z) = (mk,){ -BFm(e)df sl j‘"mm(e) (x-¢)ag 1

m+1

D(¢ (%)
.' 7.3-10
£ UE_(&)(x=¢)ag 26 (&) (x-¢)%a¢
G Ky +ka :
L@ = ( +J{f nak mmf L ]

where Q = = (-l) J

The stress components for the corrective state of

stress are then given by:

[cr; ; cr; ; 'rfq,] = % (k:.+ka)[

— {(;‘5)(1‘5’) 3 (149)° 5 (x-9)(14)? Jl i
107

3 (=€)%(14y)® ; (E-a)“(l&)l ae
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7+.3.4) contd.

_%ﬂ [(x-e)(l-y) o ()7 5=(x-8) (1y)* J a
ke 5o Wil i
G f E‘x— ¥ 3 =(x=g)(1-y)%5(x=¢)* 1y |a¢ ¢},
] =
: 7s3~11a
where

+ — — —

5 () = [t@0)*+(1)" | |k Goe)?+(5)° | 73110
The total stresses at any point of the infinite

strip due to the applied arbitrary load canbe obtained by a

summation of the corresponding stress components due to the

basic and the corrective states of stress:

[o' . - ]_i [U-Oto-o. 5 [Uc. c. c ‘\ ? l")
xlcy’rw"h x,y'-rnr e x’c'y,rxy_ -j‘ -5_1.
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Numerical results.

The method of solution developed in the previous
gections, was employed to obtain numerical results for the
stresses which are induced in an infinite orthotropic strip
by the following self-equilibrating loading systems:

a) Two equal and opposite concentrated forces, acting in
the X-direction at points x = + 0.2, ; = 0 (see
Fig.7.26a).

b) Two equal and opposite concentrated forces, acting
in the Y-direction at points x = 0, y = + 0.5 (see

Fig.7.26'b) .

The evaluation of the stresses was accomplished
in two steps.

Step 1, involved the determination of the
func tions Fm(;)’ thg), by numerical evaluation of the
integrals in equation 7.3<10, using Simpson's rule. The
numerical integration was carried out on a logarithmic scale,
using 268 slices between the limits =40 and +40. Due to the
geometrical and loading symmetry of the problems considered,
the function P't(;) and q't(?c) should satisfy the following

conditions:.
P*(x) =P (x) and ¢*'(X) = - ¢"(x). 74513

This conditionwas used as a criterion for t}‘ue
number of load reversals to be carried out. It was found,
that with 9 reversal of load, P'(x) was equal to P (X) to
within an accuracy of + 0.2%, and, [Q*(x)| was equal to

R°(x)| to within an accuracy of 0.1%. At x = + L0, the

+
magnitude of P (x) was 0.4% of its maximum value at x = 0,
+ ——
whereas Q (x) was 5% of its maximum value at x X + 0.38.

Step 2, involved the evaluation of the stresses
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contd.
at various points of the infinite strip, due to the
corrective and the basic states of stress.

With regard to the corrective state of
stress, the boundary loads Pi(;) and Q (x) were con-
sidered as a series of partially distributed uniform loads
of variable width, instead of as a series of concentrated
forces, This resulted in a better representation of the
boundary loads and facilitated accurate evaluation of
the atresses at points near the boundaries ; =+ 1 of the
infinite strip.

With regard to the basic state of stress,
the stress components were determined using the theory

of the infinite orthotropic plane (see Section 3.3).

Presentation of results.

In both problems considered,the infinite
strip is assumed to consist of an orthotropic elastic

material , which has the following hypothetical properties:
B w008, "% 9,5, Vg = 0+25
Ex G X

and

Ks = 1.5667 , ka = 0.1427.

Numerical results are presented for the dis-
tributions of stress (oo, o, 7. ), on cross sections
20 Y
at various distances from the origin of the coordinate
axes and are shown in Fig.7.27-7.32., Due to the symmetry

of the stress distribution in the two problems, only the

first quadrant is considered.
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FIG: 7-26D Infinite strip; transverse loads.
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7.3.?) Conclusions.

From the graphical representation of the results
in Fig.7.27=7.32, we can make the following observations:
1) Longitudinal loads,

The distribution of ok over the width of the
infinite strip, indicates that regardless of the position
of the cross section on which the stress is determined,
o, is of significant magnitude only for y/h < 0.5 (see
Fig.7.27). Along the longitudinal axis of the strip,
q& diminishes very slowly, thus indicating that in
orthotropic strips, the effects of self-equilibrating
localized loads are not restricted in the viecinity of
the loads.

The variation of oy with y/h, (see Fig.7.29)

indicates that maximum shear stresses are encountered
for 0 < y/h < 0.2,
2) Transverse loads.
o, diminishes slowly with x/h, and attains high
values of points near the boundaries of the infinite
atrip. q} decreases rapidly with x/h, and for x/h > 1

it is relatively insignificant,
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A i %

Introduction.

The elastic analysis of the half-plane with a
straight boundary, provides a convenient method for the de-
termination of stresses or displacements in materials, whose
boundaries can be approximated to those of the half-plane.
Nevertheless, in many cases the boundary surface of the
material cannot be approximated to the straight boundary of
a half-plane. Such cases arise when the boundary is irregular
and the size of the irregularities is large compared with the
other length parameters of the problem (e.g. width of applied
load).

Such cases are frequently encountered in Civil
Engine@ring practice, in connection with soil mechanics and
foundation engineering problems. Embankments of rivers or
motorways, large excavations, coastal works, abutments of
bridges and earth dams, present a variety of problems that fall
into this category (see Fig.8.1).

It is the usual practice to treat such problems
with "finite element™ or "finite difference" techniques. These
techniques, when applied without refinement, fail to give
satisfactory results in the vicinity of re-entrant corners,
or highly localized loads, where the accurate determination
of the stresses is important. It is believed therefore, that
an analy@tical solution to this type of problem would offer
the advantage of accurate evaluation of the stresses or dis-
placements, at any point of the material,

Such an analyM¥tical solution is developed, for
the particular case of a half-plane with a "gtepped" boundary

(AO*0C), as shown in Fig.8.2



il

a) Abutments of bridges

v

b) Dams c) Motorways

d) Excavations; self-weight
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8.1) contd.

Br——=——-~-- -
\
LY
\ h
\
Y
A\_
vy
Fig.8=2

The inclined part of the boundary (00*) is
assumed to coincide with the Y~-axis, while 0*A is parallel
to the X-axis. The Cartesian coordinates are expressed in a

dimensionless form x,y, where

. = ﬁ » ? = % ] 8.1-1

and 'h' is the height of the "step".
The solution is developed for an arbitrary
load, acting either on the boundary or at the interior of

the "stepped" half-plane.

8.2) Method of solution.

The proposed method of solution for an ortho- .
tropic "stepped" half-plane, is a method of superpoéitibn
of two half-plane solutions, such that the resulting s tress
field satisfies the traction boundary conditions of the "stepped"
half-plane,

First, the "stepped" half-plane is assumed to
occupy the region AQ*OCD of an orthotropic half-plane (see
Fig.8.3b). The state of stress in the "complete" half-plane

will be referred to as the basic state of stress and the stress
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0 o ®

components will be denoted by Tp» q&, Txy' The basic state
of stress can be determined using the theory of the ortho-
tropic half-plane and the corresponding equations for the
particular type of loading (see Chapter ).

We then consider an orthotropic half-plane
(=0 < X < @, 0 € ¥ < ) which is subjected on the x = O
plane (for 0 € y € 1) to a normal stress F(¥) and a shear
stress G(y), and on the ¥ = 1 plane (for = < x € 0) to a
normal stress P(x) and a shear stress Q(x) (see Fig.8.3c).
The state of stress induced in the orthotropic half-plane
by the above loading system, will be referred to as the

corrective state of stress and the stress components will be

denoted by qi ’ qﬁ, r;y. The corrective state of stress can

be determined by considering the applied stresses (given by
the functions 'i", _G:, P and @ as a series of closely spaced
concentrated forces applied at the interior of the half-plane.
The stress components can then be obtained by integration of
equations (4.7-3) and (4.8-1) between the appropriate limits.
The functions .ﬁ, E-, P and _ﬁ can be evaluated,
using the superposition technique developed by Hetbnyi(1960)
for the solution of the isotropic elastic quarter-plane. In
relation to the "stepped" half-plane this procedure consists
of successive reversals of the stresses on the planes 00* and
0*A (see Fig.8.3a), which lead to a convergent result. The
functions F, E, P and E, can then be obtained by a summation
of the stresses applied on each plane (00* or 0*A) by the re-
versal procedure, We shall describe this procedure in detail

in Section 8.5.
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8.3) Basic eguations.

Fis oBl&

The solution to the problem of an orthotropic
half-plane which is subjected at its interior to a concen-
trated force acting in either coordinate direction, has been
presented in sections 4.7 and 4.8. Since some changes in
the notation are necessary, equations (4.7-3) and (4.8-1)
are reproduced in the following paragraphs.

It is assumed that the concentrated force
P/unit thickness is applied at point (xo,yo), as shown in

Fig.8.4a and b,

8.3.1) Concentrated force acting in the X-direction.

The state of stress in the orthotropic half-

plane is given by:

J =-lE [Jx - B ], 8.31a

[G;U;T xx’ yy? Cxy

S il

where
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) s |
(oa=ay) 14 : ~fo ; Xki"0s & ~fy |
+  ogrg ; fo 3 wkiPrs s 0y |
+ (ag+ag)rs : ~fo ; ka®fo 5 ~fy :
+ Ty : To 3 ~kfo ; fa }
+ s : =k,?fo ; ky®kg*fo; -fa J
+ Qs Te : ka®fo 5 =k,%ky*fo; f4:t },

and fo = x = %o,

4 fa - s
- - - k
J=y¢w ’ }=hhw +[* J
fa ¥

R R R O P
rs = I:(kd.knfo)%(k:.}.-i-ka;o)it‘ sTe = [(kikﬂf")’-!-(ks}w;}o)a]'i

8 - 3_10

The constants &y «eo @4, 8re as defined by the equation

(La?54)

8.3.2) (Concentrated force acting in the Y-direction.

The state of stress in the orthotropic half-plane
is given by:
- - ] .E. y . y . y
{Ux!dy!rw] P, h {JX}C’ Jyy’ JWJ » 8.3—2&1

where
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8.3.2) contd.

e
R
n
=
1 N

e
XX Yy Xy

(ks ~ka®)
(as+ag) 14 [ P53 S it SRR -k, *f, ;
+ 0y Ta [—fg ; ki fa 3 L e 0 :
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8.5=2b

8.3.3) Notation,

With regard to the corrective state of stress,
a concentrated force P, applied at the interior of the half-
plane in the X-direction, is interpreted as a force which
can act normal to the plane 00* or tangential %o the plane
O*A. Similarly, a concentrated force applied in the
Y-direction, can act normal to the plane 0*A or taﬁgential
to the plane 00*.

In all the above cases, it is necessary to de-_
termine the stresses which are induced on the plaﬁes 00*

and O*A by the corresponding concentrated force. For that

ij
k¢

expressions J:x’ J§Y’ Jiy etc. (see equations 8.3-1b and

purpose, we shall adopt the notation J._% to denote the

8.3-2b) when applied to points on the planes 00* and O*A,

where
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contd.

denotes the direction in which the concentrated

-

force is applied,

J '+ denotes the direction of the normal to the plane
on which the force is applied,

k : denotes the direction in which the stress is
determined, and,

£ : denotes the direction of' the normal to the plane

on which the stress is determined.

For example, ny

54 denotes the expression for

the evaluation of the normal stress at a point (0,y) on the

plane 00*, due to a concentrated force applied at a point

(Xo0,1) and acting tangential to the plane O*A. We can then
. <

write J_° (%04y)

In general, we have:

TP - N e
Jkg (xO’y) = [Ju (xo’y) ] ’
Yo=1l, x =0
. il i e
I (Xo¥0) = [Jk& (x,.vo)l_ Py
x0=0, y=1

Basic state of stress.

We assume that the basic state of stress can be
uniquely determined from the theory of the half-plane, and

that the stress components are given by:

o o (<] o o o
[Ux’ 0 rxy] = % [sx; Sy 3 Sxy] ) 8.4~1

where ¢ is a load parameter.,
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Fig.8,5

Let F(y) and G(y) denote the normal and shear

stress distribution respectively, induced on the plane

25

118.

00* by the basic state of stress. Similarly, let P(;) and

Q(;) denote the normal and shear stress distribution re-

spectively on the plane 0*A (see Fig.8.5).

Then
e | = & [ss,]
¥,x=0
and
@@ )= & [sp-s] .

8.5) Corrective state of stress.

8.5.1) Determination of the functions ¥.G,P,0.

0
Fo(§ :

8.h4=2
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In order to successively reduce the stresses on

the planes 00* and O*A, we proceed by considering the plane
00* f'irst,
Step 1. Consider an orthotropic half-plane -e < x < o0,
0 = ; < ®, which is subjected to a normal stress distri-
bution Fo(¢) and shear stress distribution Go(¢), along
the x = 0 plane, for 0 €y € 1 (i.e. the plane 00* in

Fig.8.6). We define Fo(¢) and Go(¢) as follows:

Fo(€) = = F(y) , Go(€) = = &(3) 8.5-1

This system of stresses will in general give

rise to normal and shear stresses on both planes 00* and

0*A, These stresses can be written in the following form:

a) Normal stress on 00*
1 1
Fo(3) =fFo(e)J§(e)de « [ sol@nzee. 8.5-2a
°
b) Shear stress on 00*

Go(¥) =[Fo(&)TN(&)ac + f@amﬁ(e)de. 8.5-2a

¢c) Normal stress on O%A,

Fo(x) = [Fo(f)Jg(f)&f ; feo(e)ar;’;‘(e)ag. 8.5-2
J _

o

d) Shear stress on 0*A,

1 1
Go(%) =f Fo(§)I5(£)ae +[G:»(§)J§(f)de- 9.5-24
0 0
The prime ('), e.g. F;(;), denotes stress distri-

butions on the plane where the load is applied; in this

case 00*, The double-prime (") e.g. FE(;)'denotes stress
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distributions induded by the load, on the other plane
considered; in this case 0*A.
Combining the stress system given by equation
(8.5=2, with the basic state of stress, the total normal

and shear stress distributions on the plane 00* are given

by:
— T =
Normal stress : =Fo(y) + Fo(y), 8.5-3a
-— |
Shear stress : =Go(y) + Go(y),
and on the plane O*A, are given by:
— “ —
Normal stress : P(x) + Fo(x),
8.5-3b

Shear stress : Q(x) + G:(;).

>V

P"(y)
Q" ()

Fig.8.

Step 2. In orer to reduce the stresses on the plane 0*A
(equation 8.5-3b), we consider an orthotropic half-plane,
- € X < o, 0 € ; < o, Which is subjected along the

; = 1 plane, for = < x € 0, (see Fig.8.7) to a normal

stress distribution Po(€), and, a shear stress distribution

Q(&). We define Po(¢) and Qo(&) as follows:
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Po(e) = - [ PG) + Bo(®) |

8.5-4
Qo(¢)

1]

- [o® +w® |

The application of Pg(¢€) and Qo(¢) on the plane

O*A, will give rise to normal and shear stresses on both

planes 00* and O*A, given by the following expressions:

[p;&); Q:;(;)J - [ weto {Jg(e);ﬁ,;(e)} a
e
+an(€) [Jﬁ(e) ; Jg(e)} a¢ , 8.5-5a
and “

[P:m; qﬂ(?)} - [ 2o [ﬁg(e); 7(e) Jae

0

+fQo(f) [Jﬁ(e); Jﬁ(é)] ag |, 8.5-5b
The combination of the stresses given by the

equations(8.5-3) and (8.5-5), will result in a total

normal and shear stress distribution on the plane 00*,

given by
Normal stress : =Fo(y) + F;(E) + P:(;), 8.5
Shear stress : -Go(?) + G;(E) + Q:(;):

and on the plane 0*A, given by:
Normal stress : —Po(;) + P;(;); 8.5-6b

Shear stress : =Qo(x) + Q;(;).
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Step 3. The stresses on the plane 00%, given by equation
(8.5-6a), canbe reduced by superposing the solution to

an orthotropic half-plane (-w < X < », 0 € ¥ < w), which is
subjected along its 00* plane, to normal and shear stresses

F1(¢) and Gi(&) respectively, where

R(§) == [ Fo(3) + BG) + 7ol |,
8.5-7

G1(g) = - [-%(E) + Go(¥) + Qo(¥) J
This loading system, will induce stresses
(F1(¥), 6(3), P2(X), C1(X) on both planes 00% and OA.
These stresses can be evaluated using equation (8.5-9, by
replacing Fo(¢) by Fy(¢) and Go(€) by Ga(€).
Then,the total stresses on the plane 00*, are:

— L B
Normal stress : =Fi(y) + Fi(y),

% 20 8.5-8a
Shear stress : =Gi(y) + Ga(¥),
and on the plane O*A, are
- | - L -~
Normal stress : =Po(x) + Po(x) + Fs(x),
8.5"8‘b

Shear stress : =Qo(x) + Q;(;) + G:(;).

Step 4. The stresses on the plane 0*A, giveh by equation
(8.5-8b) can be reduced by applying equal and opposite
stresses P4(€), Qi(€) along the plane 0*A of an orthotropic
half-plane (~w < X < ©, 0 € ¥ < ), and superposing the two
solutions.

The functions P,(¢) and Qi(&),are given by:

Pi(¢&)

k [.po(;) + ol s ) J =
Qa(&)

f— | Hppe— LI
- [ + @@ + 6@ |-
The resulting stress distributions pn the planes
00* and O*A, by the superposition of the two solutions,

are given by:
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On the plane QO%A:
Normal stress:
Shear stress:

On the plane O0*:
Normal stress:
Shear stress:

where P;(;), Q;(;), P:(;) and Q:(;), can be

=P, (%) + Pl(';?),

“Qu(x) + Ux).

By (3) + F1(3) + Pu(¥),

6. (Y) + &1(F) + U,

125.

8.5-10a

8.5-10b

evaluated,using

equation (8w5-5) and by replacing Po(€) and Qo(€) by Pai(€)

and Qs (&) respectively.

It is now evident that the techniques outlined

in Steps 3 and 4 have to be repeatedly applied, in order

to satiefy traction boundary conditions on the planes 00*

and O*A. The functions F_(¢), G_(¢), P (¢) and Q (&), are

then given by the recurrence relations:

(€)

G
m+1

O
—
i
~—
i

where

(5165 )3

[ 70 [5560s 50 5 53500 s 7510 Jae

0

£

+ f Gy(€) Xe)s s e 7N Jag

0

Py Ve i [—F (¥) + F (Y) +P (.Y) }
1
4

- |-

ik
il

2

6. () + 6,(3) + g KE)

P (x) + P (x) + F (x)}

m

(%) + Q%) + & (E)}.

P (%); ¢ () ] =

8.5-11

8.5-12
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and
PLR); 0u); 235 o) J .

[ 2o [3300s S0 550 e | e

[ 960 7560 7305 3505 7@ Jos. B.5-13

When the functions Fm(f), G (&), Pm(.g) and Qm(g)
are evaluated(from equation 8.5—11), we can then obtain
F(e), (), P(&), Q(€), by a sunmation of the stresses

applied on each plane 00* and O*A, by every reversal

of load.
Then,
F(e) = Z F (e),
m=0
G(¢) = G (&)
4 Z ', 8.5-14
m=o
Be) = Z P_(€),
m=o
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8.5.2) Determination of the stresses,

The corrective state of stress induced in the
orthotropic half-plane by'ﬁ,a,ﬁ,ﬁ can be determined by
using equations (8.3-12) and (8.3-2a). The stress com-

ponents are then given by:

+ [ Qe) [-TL; Ty Jx] i 8.5-15
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8.6) Conclusions and recommendations.

The method of solution developed for the "stepped"
half-plane, was based on successive reversals of stresses
on the planes 00* and O*A, located at the interior of the
half-plane (see Fig.8.5). In each reversal, the stresses were
only partially eliminated from the planes, since the induced
stresses were in general not equal and opposite to the original
ones. Under these conditions, the speed of convergence of
the method would be relatively slow. Nevertheless, certain
steps can be taken to improve the speed of convergence. For
example, in order to reduce the normal stress Fm(;) on the
plane 00*, we apply an equal and opposite normal stress
F_(¢). Then, the induced normal stress on the same plane is

-F_(x)/2. It is then obvious, that if F (¢) is of magnitude
—2Fm(;), the normal stresses on the plane 00* will be com-
pletely eliminated.

Similar techniques can be used, in the reversal
of the shear stresses on the plane 00*,

The method of solution presented in the previous
sections, was developed for the particular case of a "stepped"
half-plane, i.e. the part 00* of the boundary was assumed to
be at right angles to the rest of the boundary of.tha half-
plane., However, the solution can be extended to cases when
the part 00* is inclined at an angle # 90°. Then, the applied

loads Fm,Gm,Pm,Qm will be functions of X and y.
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9.1) Introduction,

In the previous chapters (Chapter 3 - Chapter 8),
analytical or numerical solutions were developed for a number
of problems under "plane deformation" conditions, employing
the theory of linear orthotropic elasticity outlined in
Chapter 2. Whether these solutions can predict accurately
stress or strain distributions in real orthotropic materials,
was the object of the experimental work undertaken.

Two types of tests were carried out, namely:

1) Plane strain tests, and
2) Plane stress tests.

In both cases, stress or strain distributions were
investigated in a "half-plane"” and in a "quarter-plane", which
were subjected to the following loading systems:

1) Plane strain tests (boundary loads).
a) Concentrated normal force,
b) partially distributed uniform normal stress,
c) parabolic normal stress, applied through a rigid block.
2) Plane stress tests (interior loads).
a) Concentrated force applied in either of the coordinate
directions.

The problems were so chosen as to cover a varie ty
of cases, ranging from an analytical solution (half-plane;
concentrated force at the boundary) to a numerical solution
(quarter-plane; concentrated force at the interior).

The choice of materials and testing techniques for
each test category was influenced by the following factors:

1) Plane strain tests.
i) Plane strain conditions can be simulated in the
laboratory by considering a body of very large

thickness (loaded uniformly over its thickness), so
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1) contd.

i)

ii)

iii)

contd.

that the end-effects are negligible on the centre-
line where its behaviour is investigated. With this
technique, observation of deformations is limited to
the boundaries of the body and therefore atress or
strain fields cannot be determined at the interior.

Alternatively, a body of relatively small
thickness (in the fom of a plate) can be enclosed
between two rigid, smooth blocks held a small fixed
distance apart., In this way, the conditions of zero
displacement (in the direction normal to the plane of
the plate), of zero shear stress (on the sides of the
plate) and of continuity of direct stress (beiween
the plate and the blocks), necessary for plane strain
deformation are ensured. S8ince tensile stresses cannot
be transmitted between the body and the rigid blocks,
the number of problems that can be investigated by this
method is limited, unless, if precautions are taken to
ensure that tensile stresses do not develop (e.g. by
precompressing the body).

Of these two methods, the latter was adopted,
because it facilitates observation of displacementslat
the interior of a body.

To enable the measurement of displacement fields within
the elastic medium by optical methods, one of the rigid
smooth blocks was constructed from a pane of glass.

The accuracy of optical methods in measuring displace-
ments is limited by the resolving power of the optical

instrument used. Therefore, if displacements of points
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1) contd.

iii)

iv)

contd.

are to be measured with a certain degree of accuracy,
and if large loads are to be avoided (for reasons of
stability, handling, safety etc.), the elastic modulii
of the material to be tested must be low. In view of
the requirements it was decided to perform the plane
strain tests with a rubber-like material.

The orthotropic properties were induced in the rubber-
like material by constructing it in the form of a
laminate. This laminate was composed of alternating
layers of hard and sof't isotropic rubber-like materials
which were glued together. The overall behaviour of
the composite in the direction normal to the layers was
then predominantly governed by the soft rubber, while
in the direction parallel to the layers the behaviour

was governsd by the hard rubber.

2) Plane stress tests.

i)

ii)

The plane stress condition is assumed to exist in a body
which is composed of a thin plate or sheet-like element
(i.e. the longitudinal dimensions are very large compared
with its thickness).

Fibre-reinforced plastics can be moulded in plates of
small thickness, which exhibit orthotropic elastic
behaviour depending on the type and orientation of the
fibre reinforcement. The properties of the orthotropic
plates can be varied by using different type and/or per-
centages of reinforcing material.

For the reasons Jjust mentioned and in view
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9.1) contd.
2) contd.
ii) contd.
of the wide applications of fibre-reinforced composites,
it was decided to perform the plane stress tests using
an E-glass~reinforced polyester resin.
iii) Strain fields in fibre-reinforced plates can be observed

with electric strain gauges located at salient positions.

9.2) Plane strain tests.

9.2,1) Constituent materials.

The following materials were used in the construction
of a rubber block for the plane strain tests:
a) "Soft rubber". Shotblast, 70% natural rubber. Shore
hardness 4O=-45%.
b) "Hard rubber". Vinyl, (Trade name: Velbex). Shore hardness
80%.
¢) Adhesive. Dunlop rubber adhesive S738.
(The above materials were supplied by:
Rubber and Plastics Industries Ltd. The two types of
rubber were supplied in strips 3.5m x 150mm x 3mm).
The elastic constants of the two types of rubber
(denoted by Ey, vy for hard rubber and E, and vg for soft
rubber) were determined from tension and compression tests.
From these results, the modulii of rigidity Gh and GS were
predicted from the relation (for isotropic bodies) G = E/2(1+v)
1) Determination of E in tension.
Specimens f'or the tension tests were cut from the 3mm
thick strips with a Dumbell specimen cutter (Type 4,B.5.903,
pt.Al6). These were subjected to static loads. Elongations

were measured using a travelling microscope and the
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1)

2)

contd.

corresponding strains were plotted against the average
stress computed for the initial cross section of the
specimen. (The fact that no area correction was incor-
porated in the calculations introduced an error in the
slope of the curve., Assuming v = 0.5, and for a strain
of 4% the error is of the order of 3%).

Six tests were carried out with each type of
rubber; a typical set of curves is shown in Fig.9.1d,
Both types of rubber were tested for strains up to 10%
and were found to behave linearly elastic. The Young's
modulii weraldirectly calculated from the slope of the
curves, giving the following average values from six tests:

By = 7.5 N/m®, B, = 3.2 N/mn®
(see also Table 9.1).
Determination of E and v in compression.

The elastic constants (Eh, By vp» vg) in compression,
were determined by subjecting rectangular rubber blocks
to compressive loads at a constant rate of strain (0.1524
mm/min). The blocks were built up from 3 mm thick rect-
angular pieces of soft or hard rubber, glued together with
rubber adhesive. The blocks were then machined to the
required size (45 x 45 x 27 mm).

During testing, the applied compressive loads were
measured with a calibrated proving ring, while the dis-
placements in the two principal directions were measured
with mechanical dial gauges (see Plate 9.1). (To ensure
uniform deformation of the rubber blocks, the end-plates
of the compressive machine were lubricated with silicone

grease).



9.2.1) contd.

2)

contd.

In analysing the results, the strains in the two
principal directions were plotted against the applied
load and from the ratio of the slopes of ,the curves,
Poisson's ratio of the material was determined, The
value of Poisson's ratio was later employed to effect
an area correction for the stress-strain curve used
for the determination of the Young's modulus.

Four tests were carried out with each type of
rubber and the following average results were obtained.

E 0.48,

h

7.2 N/mm® v,

E

g = 2.9 NM/ma® ,

0.48

8
(see also Table 9.1).

A typical set of curves is shown in Fig.9.2. Both
types of rubber were tested for strains ranging from
0-7% and they exhibited linearly elastic characteristics
during both loading and unloading paths.

The values of Young's modulii in compression were
found to be less than the corresponding ones in tension.
The difference may be attributed, partly to different
elastic behaviour of rubber in tension and compression
and partly to the thin layers of adhesive present
between the rubber layers. The presence of a second
soft material (7.5% by volume) would also effect the
value of Poisson's ratio (0.48 compared with 0.495-0.499
which is a usual value for solid rubber),

From the t wo values of Young's modulii that were
determined experimentally in tension and compression

for each type of rubber, those in compression were

adopted in the suvsequent analysis since the effects
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of ‘th aghesive Layers were included in the £ifal
result.

3) Determination of G

gidity for each type of rubber
rresponding values of B
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FIG. 9-1a Stress vs strain -Hard & soft rubber
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9.2.2) Orthotropic material.

9.2.2.1) Manufacture of rubber block.

The manufacture of a rubber block for the
tests under plane strain conditions, was accomplished
in the following steps:
1) The supplied rubber strips (3.5m x 150 mm x 3 mm)
were cut into 820 mm long pieces, cleaned with
tricloroethylens and neutralized with ammonia.
2) The "basic unit" for the construction of the rubber
block consisted of 5 strips of hard ruvber and 5
strips of soft rubber glued together in alternating
sequence with rubber adhesive. These "basic units"
were later glued together in pairs and the process
was repeated until the required thickness was attained.
This technique of building up the block in steps was
followed, so as to avoid excessive loads on the lower
layers of the block and undue straining of the soft
rubber at the early stages when the adhesive was still
in liquid form,
In the final form the block consisted of 83 layers
of hard rubber and 82 layers of soft rubber,.ani had the

following dimensions:

Height: 535 mm; width: 820 mm; thickness: ® 150 mm,
3) The large surfaces of the rubber block were'machined
with abrasive paper to remove any irregularities and
were then covered with approximately 0.5 mm of Latex
(trade name: Revoltex) to obtain a smooth flat surface.
L) A grid, 10 mm square, was drawn on one of the large
surfaces of the block with white rubber paint.

(see Plate 9,2).
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9.2.2.2) Prediction of elastic constants.

AN

II‘

T
Fig.9.3

The notation for the elastic constants of
the rubber block is as follows:
E_: Young's modulus in the direction parallel to the
layers.
BE_: Young's modulus in the direction normal to the
layers (see Fig.9.3).
Since the material is transversely isotropic,
we have Ex = Es'
Employing the mechanics of materials approach
(see Section 2,10) and since the volume fractions of
hard and sﬁft rubbers are approximately the same, we have:

E +E vh+vs

- 2 -
I - = 5.05 N/ma® , Yoy &=y

0.48,

=
]

0.39,

1

E
— = a - ._x
¥ B +Es 413 N/ma® vyx vxy Ex

Gl N L du N/mn® (see also Table 9.2a)

L
R

9.2.2.5) Experimental determination of elastic constants.

Four of the five elastic constants required for
the complete description of elastic behaviour of the trans-

versely isotropic rubber block were determined experimentally



9,2.2.3) contd.
while the fifth one (modulus of rigidity ka) was obtained
by the'law of mixtures'from the elastic properties of the
constituent materials (equation 2,10-8).

Specially manufactured rubber samples (45 x 45 x 27 mm) ,
identical to the large rubber block, were subjected to
compressive loads at a constant rate of strain
(0.152)4 mm/min) along one of the principal directions.

The Young's modulii (Ex’Ey) and the Poisson's ratios

(s vy
to that outlined in section 9.2.1/2.

x’vxz) were determined through a procedure, identical

The results of the tests are listed in Table 9.2a.
The elastic compliances &ij and the orthotropic constants
ki and kg of the material are listed in Table 9.2b.
Comparing the experimental results with the
theoretical predictions (see Section 9.2.2.2) we observe
that the theory overestimated E_ by 7.5%, E}r by 5.5%, and

underestimated Vo by 5%
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TABLE 9.2 a
No of
Theory | Tests 5. 0.
tests
Ey 5:05 4L:60 8 +006
Ey L-14 3.90 1" $0-1
Vyy 048 0-48 b i
VY! 0-40 0-41 11 +0-01
Vyz 048 0-L8 L $0:-01
All dimensional quantities in N/mm?
TABLE 9.2b
4 4 ¢ Ces " i
01673 01544 | 0-2277| 0:7692| 1332 0676
All dimensional quantities in mm N
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Apparatus.

The apparatus for the plane strain tests consisted
of a steel container (tank) to accommodate the rubber block,
a 20 mm thick glass plate (1.09 x 0,855 m) and a set of
loading devices capable of applying the concentrated force,
the uniformly distributed stress and the "rigid punch" type
of load.

1) Steel tank,

The tank was constructed out of 10 mm thick mild
steel plates. Drawings of the tank and its dimensions
are shown in Fig.9.4 (see also Plates 9.3a and 9.3b).

The front face of the tank consisted of a rectangular
frame containing a groove 30 mm, wide and 30 mm. deep.
The upper part of the frame could be dismantled so that
the glass-plate could be slid into its position.

The rear plate of the tank was stiffened with four
25.4 x 25.4 mm® steel bars and the interior surface was
covered with a layer of formica to improve its friction-
less characteristics,

2) Loading devices.

As was mentioned previously, three types of loads

were considered.

The loads were applied on to the material through
a cylinder (20 mm in diameter and 150 mm long) for the
concentrated force problem, and through a rigid plate
(100 x 150 x 20 mm) for the rigid punch problem (see
Plate 9.4a). In both cases a T-beam lever (4:1 ratio)
was used for the application of loads (see Plates 9.3a
and 9.3b).

The uniformly distributed load was applied through

a specially designed pressure cell (see Fig.9.5 and
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9.2.3) contd.

2)

contd.

Plate 9.4b). The cell was made out of brass and it could
be used with air, water or oil, but air was choseun as the
pressurising medium.,

A membrane, through which the pressure would be
transmitted on to the material, was moulded to fit
exactly the interior of the cell.

The vertical sides of the cell were made into sharp
edges, 80 that the loaded area could be determined more
accurately. In addition, two of the vertical sides
were made of two separate plates Pl and P2 (see Fig.9.5).
The inner plate Pl was part of the basic cell, while the
outer one P2 was capable of sliding over Pl and follow
the deformation of the material and the expansion of
the membrane. That enabled a constant width of the
applied pressure to be maintained at all stages of

loading.
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9.2.4) Method of testing.

The surfaces of the rubber block and the internal
surfaces of the steel tank were lubricated with silicon
grease to minimize the friction between the rubber and the
glass and metal surfaces. The block was then placed in
the steel tank and the glass plate was slid into position
and secured with the fixing screws. Two I-beams
(38.1 x 76.2 mm) were placed at the front of the steel
tank (see Plates 9.3a and 9.3b) to reduce the lateral
deflection of the glass plate during loading.

The actual testing under any of the three loading
systems was accomplished in the following steps:

1) The appropriate loading device was fixed into position
(at the centre of the rubber block for "half-plane”
problems or near a corner for "quarter-plane" problems),
and the thickness of the rubber block was measured with
a large micrometer.

2) Two dial gauges were positioned, one at the front and one
at the rear of the steel tank to record any lateral de-
formations and the initial readings were taken,

3) A camera (Hassleblad 500C) was fixed 500 mm from the
steel taﬁk, opposite the region of application of loading,
and an initial photograph of the grid was taken (see
Plate 9.5).

4) The load was then applied in steps and for each step
a photograph of the deforming grid was taken and the
readings of the dial gauges were recorded.

The load increments, the maximum attainable loads
and the maximum strains in the Z and Y directions, for each

type of load, are shown in Table 9.3,

Photographs of the deformed grid unier th: various

types of load are shown in Plates 9.6—9.*.1
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TABLE 9.
Loading Load Maximum Maximum Maximum
Problem Condition increment Load ez %1
Half C.L. 204 kg. 300 kg 0.0009 0.1169
plane R.P. 32 kg 415 kg 0.0012 0.0155
U.D.L. 3.5 kN/m® | 242 kN/m® 0.0018 0.0155
Quarter Cale 20.4 kg. | 320 kg 0.0010 0.1082
pluty R.P. 32 kg | 392 kg | 0.0011 0.0229
U.D.L. 34,5 KN/m® |172.5 kN/w® 0.0017 0.0275
where
C.L. : Concentrated load
R.P. : Rigid punch.
U.D.L. : Uniformly distributed load.
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PLATE 9.8 Half-plane; uniformly distributed load.

PLATE 9.9 Quarter-plane; uniformly distributed load.



-

Fas=m
T T T LR
JUNREEEENEE SHAL

A

NMERNAES
| | | | | |
I P : o A 3 R
i d ==IIII =111 T

FEasZruTEREEREErIREEREEEEr T
‘!

T T e ([ T 1 [ (P el [ T 1 1 [ [




14«
9.2.5) Analysis of test results,

9.2.5.1) Method of analysis.

- h ~po
Ao (x0,¥0) E As(x4,34)
Ko (X0 ,70)
h F1 .
hh\“h“ﬂa.ﬁi(xx,Y1)
1
Az (xa,ya) As(xs,ys)
83 (%a,ya )
Fig.9.6

In each test, the strains induced in the
material by the loading system were determined from
the deformation of the grid which was drawn on the
material (see Section 9.2.2.1).

Let Ao,As,A3,Aa, be the points (nodes) at the
corners of an element of the grid when the rubber
block is in its unloaded state and A;,A;,A;,A; the
respective points after the application of the first
load increment (see Fig.9.6).

The length of sides of the element 'h' is
assumed to be sufficiently small, so that the
variation of displacement between the points A; and A;,

L] "
or Ap and Az can be assumed linear.

Then, the strain €y at point E (the mid-point
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of AgAy) is given by:

X4=Xg )=\Xq1~

ex(x,y) = e 3 942.5-1
where
Xo+ X +
x = _ﬂﬁ__L , ¥ = XQE_XA 5

Similarly, the strain & at point F (the mid-
point of AyAg) is given by:

a&(x,y) = 5 9.2.5-2

Ja=Yo

where

Using such a procedure, it was possible to de-
termine the strains at a number of points on the grid
gystem,

The coordinates of the nodes, for each load
increment, were determined from the corresponding photo-
graph of the grid, using a "Universal Wild Plotter".

From the results, the lengths of the sides of each element
were calculated and plotted against the applied load, Then,
the ratios of strain/load were determined from the slope

of' the curves.

Accuracy and srrors.

All the tests under plane strain conditions
involved the measurement of loads (either the total load
or the pressure) and the measurement of lengbhs. The
accuracy of the results was influenced by the accuracy

with which the loads and displacements were measured.

In addition, the conditions under which the
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tests were carried out should satisfy the assumptions
made by the relevant theory. Any discrepancies would
affect the results by introducing errors. In many cases
the errors could not be eliminated but only minimized,
and then it became necessary to consider their effects
on the final results,

We concentrate first on the accuracy involved

in the various measurements.
a) Measurement of loads.

Total loads presented no problem, since they
were static loads applied on to the material through
& 4:1 lever. The experimental set up ensured that
friction at the pivots or supports would be minimal,
and, compared with loads varying from 20 kg to 300 kg
could be assumed to be negligible. Pressure was
measured with a Budenberg oil pressure gauge to an
accuracy of + 0.00172 N/mm®,

b) Measurement of lengths.

The Universal Wild Plotter that was used for
measuring the dimensions of the grid elements, was
accurate to 0.01 mm. With the camera positioned at
520 mm from the grid, an area of 240 x 240 mm® was
imprinted on 25:4 x 25.4 mm® of film. For approximately
4:1 enlargements, 10 mm on the grid were equivalent
to 4.6 mm on the prints. It follows then, that stains
over an average length of 4.6 mm could be measured to

an accuracy of + 0.22%.
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The main sources of error encounted in the plane

strain tests are discussed in the following paragraphs.

1)

’

— 0

Refraction in the glass plate,

Fig.9.7

Due to defraction of light in the 20 mm thick
glass plate at the front of the steel tank, the nodes
of the grid appeared to be in a different position than
they actually were (see Fig.9.7a) and therefore the
image of the grid imprinted on the film of the camera
was distorted.

Consider point A in Fig.9.7a and b. A, which is
assumed to represent a node of the grid, would appear
to be in position A' on the line QOA, where 0 is the
projection of the centre of the camera on to the plane
of the grid. The apparent displacement AA' of point A,
is a function of distance OA, the refractive index (u)
and the thickness of the glass (t), and,the distance of
the camera from the glass-plate (H).

For small angles of incidence (i) (see Fig.9.7a),

when
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Sin 4 o tan i
sinr © tanr

” ] 9'2.5_5

where r is the angle of refraction,
AA' is given by the following relation:

R, [Eie:&l'}- 942,54

Hu + ¢

Thereflore, AA' is maximum for points near the
corners of the grid, where OA is maximum,

AA' can be analysed into its components BB' and
CC' along the X and Y axes, so that the apparent dis-
placements of point A relative to the coordinate axes

X,Y can be found.

0/

We now refer to Fig.9.8. Let A and B be two
adjacent nodes of the grid, distance hg apart, in
the initial unloaded state. Due to refraction, they
would appear as points A' and B' respectively, distance
ha apart. After the application of a load increment,

1
ho changes to ho. Then, according to the convention

that compressive strains are assumed positive:
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. & Eoi—i‘n 9.2.5-5

At this stage we have to distinguish between

the following ftwo cases:

]
a) ho remains in the vicinity of h,, and its

L
apparent length is ha. Then,

]
& 8 h&_h&

a _E-" -

a

9.2.5-6

The difference between & and €, is the

error introduced by the refraction in the glass
plate and increases as distance 0B (Fig.9.8) gets
bigger. For maximum OB (OB ® 120 mm) and for a
maximum strain € = 10% over a length of 10 mm, the
error is of the order of 0.0001%. Errors of this
magnitude are insignificant and therefore corrections
were not necessary.

b) h; undergoes a rigid body movement to points C-D
(see Fig.9.8). This occurs to grid elements in the
vicinity of the applied loads. Then, for an apparent

n
length h,, the strain is given by:

E = a a , 9.2.5-7

For a maximum rigid body dispiacement of
15 mm, and for a strain & = 10% over a distance of
10 mm, the error introduced is of the order of 0.1%.
Therefore, for rigid body displacements of more than

5 mm, a correction was incorporated in the results.
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2)

3)

Deformation of the grid.

The displacements of the nodes of the grid
were determined relative to a fixed pair of axes. The
origin and the orientation of these axes were established
on each print, from two characteristic marks that had been
made on the glass-plate (the uppermost corners of the
white tape; see plate 9.2). The axes of the plotter
were made to coincide with the coordinate axes of the
print, The marker of the plotter was then brought
over a node of the grid and its coordinates were de-
termined.

In measurements like this, errors frequently
occur in the process of placing the marker over the
nodes (usually classified as a human error). Errors of
this type were accounted for, by plotting the lengths
of adjacent grid elements against the applied load on
the same graph (see Fig.9.9). The errors were then de-
termined by visual inspection of the curves. In addition,
the slope of each curve was determined by a 'least square!'
technique.

Displé.cemant in the Z-direction.

As discussed in Section 9.2.4, some deformation
of the material was observed in the Z—direefion, i.e,
the direction along which the displacements are assumed
to be zero, for plane strain conditions to exist.

The maximum observed strains €, at a point
near the point of application of the lodds (for both
concentrated and distributed loadings) are shown in
Table 9. 3.

Strains of this magnitude (0.1%0.2%), compared
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9.2.5.2) contd.,
3) contd.
with the corresponding strains in the X or Y
directions, which are of the order of 2%-10% can
be assumed to be negligible.
4) Shear stresses at the boundaries.

In order to ensure minimum friction at
the interfaces between the material and the sides
of the tank, all surfaces were lubricated with
silicone-grease., The interface between the loading
devices and the material was also lubricated to

minimize frictional effects.

9.2.6) Presentation of results.

The series of tests that was carried out
under plane strain conditions, had as an objective, the
experimental determination of strain fields induced in a
half-plane or a quarter-plane by the action of externally
applied loading systems and a comparison of the results
with the strain fields predicted by the relevant theory.

For all the tests, the results are presented
as a variation of the strains sx/load and € /load, with
the dimensionless x and } coordinates, where x and y
are defined in terms of a characteristic length'parametef
of the problem. The dimensional quantities (i.e. strain/

load), are expressed in units of mm®/N or N %,
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Half-plane/quarter-plane: concentrated force.

Experimental investigation of concentrated
force problems, present a difficulty due to the singular
behaviour at the point of application of the force and
the high stresses associated with it. Rubber-like
materials, when subjected to high stresses do not
exhibit linearly elastic characteristics and as a
consequence the "concentrated foree" had to be applied
on an area wide enough, so that the stresses in the
vicinity of the load should not exceed the linear
elastic limit.

Therefore, it was decided to apply the
"concentrated force" through a steel cylinder 20 mm.
in diameter. The distribution of contact stress was
assumed to be uniform and its magnitude was given by
the applied load (per unit thickness) over the average
length of contact (2¢). The length of contact for each
loading stage, was measured from the corresponding
photograph, and its average value was found to be
12.5 mm, for both the "half-plane™ and "quarter-plane"
problems,

The results from the test of the “hélf—plane”
problem are shown in Fig.9.10 and 9.11. The half-
width of the average contact area (€) was taken as the
characteristic length of the problem.

Referring to Fig.9.10, which shows the
variation of e, with x/€, we observe that there is
good correlation between the experimental results and

the theoretical curves. Similar correlation is ooserved

in the variation of & with x/¢ (Fig.9.11), but for
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X < 3 and ; < 9, that is in the vicinity of the applied
load, the experimental results deviate considerably
from the theoretical curves. In most cases, the observed
values of the strain are less than the theoretically
predicted ones, thus indicating that the effective
length of contact was larger than the assumed average
of 12.5 mm,

We now refer to the case in which the concen-
trated force is applied normal to the boundary of a
quarter plane, at distance a = 100 mm. from its apex.
In this case 'a' is assumed to be the characteristic
length of the problem, The variation of e, and &y
with X and y is shown in Fig.9.16 and 9.17 respectively.

The theoretical curves were obtained using
equations (6.4~1 and 6.2=11). The process of load re-
versal was carried out 20 times, using 120 slices in the
application of Simpson's rule for the numerical evaluation
of the integrals (see equations 6.2.9and 6.2,10). The

upper limit of the integrals was taken as 50.

Half-plane/quarter-plane; partially distributed
uniform load.

In both cases (half-plane and quarter-plane)
the half-width of the uniformly distributed léad
(£ = 60 mm) was assumed to be the characteristic length
of the problem. The results from the tests are shown in
Fig.9.12, 9.13 for the half-plane problem and in
Fig.9.18, 9.19 for the quarter-plane one. The load in
the ratio Btra.in/load, is the applied pressure 'p', and
for consistency in the units it must be given in N/mm®.

The theoretical curves for the quarter-plane
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problem were obtained through equations (2.5-1) and
(2.,5=2), with 20 reversals of load. 120 sliceswere
ugsed for the numerical evaluation of the integrals with

an upper limit of 50.

Half-plane/quarter-plane; rigid punch.

In both cases, the half-width of the rigid
plate £ = 50 mm, was taken as the characteristic
length,

The theoretical determination of the stress
(and strain) components in & half-plane (or quarter-
plane) due to a rigid punch type of load, presented
some difficulty for the following reasons:

a) The stresses for the half-plane problem (and for
the basic s'tate of stress in the quartéf—plane
problem) were determined by numerical integraion
(see Section 4.6) and therefore were not exact.

b) The pressure under the rigid plate becomes infinite
whenx:;&(ia.;t':_tl).

In order to overcome the problems due to the
ainguldrity at points'; = + 1, it was decided to adopt
the following procedure:

The applied pressure was treated as‘a series
of uniform load elements of finite width. The spacing
of the elements (and their width), was done on a
logarithmic scale, such that the magnitude of the

pressure for each load element was given by:
— P
x = e e —
p(x) = ’

where x = 1 - §, for = < €n { < 0,
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In this way, it was possible to consider load
elements as close to x = + 1 as necessary.

It was found that the best correlation between
theory and e xperiment for the half-plane problem, was
obtained for a minimum { = -2.5, and a spacing of the
elements based on d{ = 0.1 (i.e. 25 elements). The
results for the half'-plane problem are shown in
Fige9.1l4 and 9.15.

The same values for minimum { and df were used
for the solution to the quarter-plane problem. The
load reversing process was carried out 20 times, with
120 slices and an upper limit of 50. The theoretical
curves and the experimental results are shown in
Fig.9.20 and 9.21.

In both cases (half-plane and quarter-plane),
the strains are presentéd as a ratio of strain/load,
where 'load' is the total concentrated force applied
on the rigid plate. For consistency in the units, the

force must be given in Newtons (N),
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9.3) Plate stress tests.

A series of tests was carried out under plane

stress conditions in order to investigate stress distri-

butions in an orthotropic plate, whose boundaries can .be
approximated to those of a half-plane or a quarter-plane,
The material used for the tests was a unidirectional glass-

fibre reinforced polyester resin, henceforth referred to

as a fibre-glass composite.

9.3.1) Constituent materials.

a) Glass. The fibre reinforcement was E-glass uni-

directional cloth, type Y-996, supplied by Fothergill

and Harvey Ltd.,

b) Resin. The resin used was preaccelerated Beetle

155.

Polyester resin 837, supplied by B.I.P. Chemicals Ltd.,

This type of resin requires the addition of a suitable

peroxide catalyst to effect rapid gelation of room

temperature,

(methyl ethyl ketone peroxide). A curing time of

The catalyst used was Beetle catalyst 3,7

approximately 45 min. was obtained with 0.1% by weight,

of catalyst.

The physical properties of the fibre-glass re-

inforcement and resin, are listed in Table 9..4.

TABLE 9,4
E G Specific
kN/mm® v kN/mm® Gravity
E-glass* 70 0.2 29.16 2.55
%
T hal 0.33 1.54 1.19

*  G.R.P. Parkyn (1970)

** B,I.P.Chemicals Ltd., Leaflet No.l0.
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9.3.2) Orthotropic material.

9.3.2.1) Moulding of fibre-glass composite.

9.3.2.2)

A fibre-glass reinforced composite was moulded
into the form of a plate, 3.5 mm thick, using a wooden
mould 800 x 800 mm. Three layers of E-glass cloth were
used and during placing of each layer, care was taken to
avoid air being trapped between the fibres and the
resin,

The plate was left in the mould under pressure
for 24 hrs., after which it was removed and left for a
week on a flat surface under a small pressure.

Square specimens (20 mm x 20 mm) were cut from
the plate, for the determination of fibre and resin content
(by volume).

The following average results were obtained

from five tests:

Ve = 28.5%, v, = 68.9%, v, = 2.6%

where the subscripts f,r,v refer to fibre, resin and
voids respectively.
The plate was then trimmed to a size of

700 mm x 700 mm,

Prediction of elastic constants.

As was discussed in Section 2.10, the el astic
cors tants of composites can be predicted with a certain
degree of accuracy from the properties of the constituent
materials and their geometrical configuration. For the
particular case of unidirectional fibre rginforced com=
pogites, we shall adopt the following notation:

The subscripts '€' and 't' denote the directions

parallel (longitudinal) and normal (transverse) to the
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direction of the fibres respectively, e.g. E&’Et’ Vot? etco

The longitudinal modulus E, was determined by
the law of mixtures (equation 2,10- 1 ), while the
transverse modulus Et’ the Poiséon's ratio Vot and the
shear modulus G&t’ were determihed from the corresponding
Tsai's equations (see Section 2.10). Since the composite
was hand-layed, and, for a fibre volume fraction of 28.5%,
a contiguity factor of 0.5 was considered.

The following values for the elastic constants

were obtained:
B, = 22.77 kN/mm® y B =89 kN/mm®
i 2
Pou® 0.255 3 GZt = 4o79 kKN/mm®.

Using the symmetry relation "&tEt = vt&E&,
the value of v, was found to be 0.099 (see also

Table 9.5).

9.3.2.3) Experimental determination of elastic constants.

The elastic constants of the orthotropic com-
posite were determined experimentally with specimens cut
from the rectangular plate (the specimens were cut after
the main tests had been carried out, so that the properties
of the material actually tested were found).

Al-Khyatt (1974), using the same type of glass-
cloth and resin, found that the values of E& and Et for a
unidirectional composite (vf = 0.3), determined in compression,
were 4% less than the corresponding values of the modulii
determined in tension. Differences of this order of
magnitude can be assumed insignificant, particularly in

cases when the analysis of a problem is based on the



156.

9.3.2.3) contd.
orthotropic elastic constants ky; and kg, which change
by only 2%. Therefore, the elastic constants of the
composite were determined in tension only.
1) Determination of E ’Et’vet’ut&

Rectangular specimens (197 mm x 19 mm) were

cut parallel (for the determination of E ) and

¢’ Vet
normal (for the determination of B, vy,) to the
direction of the fibres. Aluminium "end-pieces"
(45 x 19 x 3 mm) were fixed on to the ends of the
specimens with araldite adhesive in order to avoid
stress concentrations and to obtain a uniform stress
distribution over their width. The specimens were then
subjected to static tensile loads in a Denison tension/
compression machine,

The strains in the two principal directions
were measured with electric strain gauges (Type GFLA-6;
length: 6 mm; Gauge factor 2.16), connected to a
Compulog Alpha 16 Computer, The strains were thus
measured to an accuracy of 10" °,

For each test, the pr&ncipal strains- were
plotted against the applied load and the relations
were found to be linear. From the ratio of their
slopes, the corresponding Poisson's ratio was determined.
The value of Poisson's ratio was employed to apply an
area correction to the stress-strain curve, from the
slope of which the corresponding Young's modulus was
calculated (see Fig.9.22a and b).

From 14 tests (7 for each principal direction),

the following average values were obtained (see also

Table 9.5).
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9.3.2.3) contd,

2)

E

" 21.2 kN/mm® Ver 0.252

B 8.27 kN/mm® v

1]
"

t 0.098.

te
It can be verified that the above results
satisfy the symmetry condition:
vet Et = vu E&.
Determination of Glt

Referring to the equations given in Appendix

[1], for ¢ = 45°, equation (Al-1) reduces to:

b 1'2"41; + i
E&U E& B

where Eqs denotes the Young's modulus of the material

+ E;" ; |
- £t

in a direction incliued at 45° to the longitudinal
axis. B,, E, and Vot in equation (9.3-1) can be
determined experimentally, as described in the previous
paragraph.Ess can be found by subjecting specimens cut
at 45° to tle fibre direction, to a siate of uniform
tension. Then, the only unknown left in equation (9.3-1)
is GZt' which can be calculated.

The determination of E,g presents some proolems,
due to the fact that it is extremely difficult to subject
off-angle specimens to pure tension. Pagano and Halpin
(1968), investigated the influence of end-constraint and
showed that if conventional clamping devices are used,

*
the apparent Young's modulus E, determined in the tests,

¢
is related to the actual E¢ by the following relation:
*
E = B 1 3 9-5"2
where
2
X = 6 228 . 9-:}_5

'62
C11(6cee+cay '-53)
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9.3.2.3) contd,
2) contd.

cij are the elements of the compliance matrix
(see equation 2.3-1); ¢ and h are the length and the
half width of the spcimens respectively.

The magnitude of X cannot be determined without
a prior knowledge of the value of cee (= l/Git)’ but
its value would tend to zero as the ratio €/h becomes

large (see equation (9.3=3)). As a consequence

5B el 1A 1
NG )
I 19
G 1
I 100 |
220

(All dimensions in mm).
Fige9d2h

Based on the above condition, the overall length
of the specimens cut at 45° to the direction of the
fibres, was increased to 220 mm., In addition, the
specimens were machined as shown in Fig.9.24., to
reduce their width to 11 mm. Thus, the ratio ¢/h
was increased to approximately 12. We could then assume
that x = O and E* ~ R

¢ ¢

The average result from seven tests was:



9:3e243)

contd.

contd,

Eas = 8.92 kN/mm?

and from equation (9.3~1):

(see Fig.9.23)

159.

G&t = 3.29 kN/mm® (see Table 9.5).

TABLE 9.5
Number of
Theory Expe riment tests 8.0,
E, 22.77 21.20 7 Ok
By 8.90 8.27 7 =+ 0.3
Vot 0.255 0.252 7 -
Vie 0.099 0.098 7 -
Gpi k79 3429 7 + 0.4
(A1l dimensional quantities in kN/mm®)
€11 Cag €12 Ces kq kg
0.0471 0.1209 -0.0118 0.3039 1.4609 0.4275

(All dimensional quantities in mm® /kN) ,




9.3.3)

Method of Testing.

Three different tests were carried out with
the orthotropic composite plate, and are shown
diagrammatically in Fig.9.25. In cases (a) and (b), the
plate was suspended from points Ay and Az, while static
loads were applied through a pin (3 mm in diameter) and
hanger system at points Ag for the "half-plane" problem,
and point Ag for the "quarter-plane" one. In both cases,
the loads were applied in a direction normal to the
direction of the fibres.

In case (c) (see Fig.9.25c), the plate was
suspended from points Ay and A4, so that the load was
applied in the direction of the fibres.

The strains at points in the vicinity of the
loads were measured with electric strain gauges (Type:
GFLA-3; length 3 mm; Gauge factor 2.13) positioned as
shown in Fig.9.26a and 9.26b (see also Plate 9, 12).At each
point two strain gauges were used, one on each side of the
plate and at right angles to each other, so that the strains
could be measured in both X and Y-directions.

For each one of the tests, the plate was loaded
in steps of 10 kg to a maximum of 120 kg and then unloaded,
while readings o. the strain gauges were taken by the
Compulog Computer f'or each load inerement. Bach test was

repeated three times,
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Analysis of results.

The strains €, and %Y for each of the points
considered, were plotted against the applied load. The
relationship was found to be linear (a typical example
is shown in Fig.9.27), although in some cases an origin
correction was necessary. This form of non-linearity
at the initial stages of loading indicated either that
the plate was slightly curved in the unloaded state or
a local non-linearity of the fibres.

During unloading, the strain-load curves were
found to be identical to those of the loading stage, with
no signs of creep (each test was carried out in approximately
20 min).

Heating of the strain gauges (which is a major
problem when measuring strain on plastics, due to their
low conductivity of heat) was minimized by using the
Compulog Alpha 16 computer, with a reading time for each
strain gauge of ® 0.1 sec. - In addition, one "dummy"
strain gauge was used with every four strain gauges on
the material,

Each test was repeated three times and é
remarkable consistency of results was observed.

Average values for strain/load were used whenever

necessary.
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9.3.5) Presentation of results.

The strains ex/P and € /P at a point, were
used in conjunction. with the elastic constants of the
material to determine the direct stress components at
that point (the stresses were determined in dimension-
less form, e.g. o a/P, where P is load per unit
thickness),

Theoretical values for the stresses were
obtained through equation (4.7-3) for the half-plane
problem and equation (6.6~1) for the quarter-plane one,
These values were plotted against X for various values
of y and are shown in Fig.9.28, 9.29 (half-plane) and
Fig.9.%0-9.33 (quarter-plane), The experimental results
were marked on the same graphs for comparison.

Referring to Fig.9.28 and 9.29 (half-plane
problem) we observe that for x > 0.3 and y > 1.5 there
is good correlation between theory and experiment., For
x < 0.5 8nd 0.5 ¢ ; < 1.5 the experimental results
deviate from the theoretical curves, as it would be expected
for points in the vicinity of a concentrated force. The
stress component T, s which attains high values at ﬁoints
near the boundary of the half-plane diminishes very rapidly
with y and for ; > 1.5 it becomes relatively insignificant,

We now refer to Fig.9.30-9.33 for the Quarter-
plane problem. The correlation between theory and experiment
is somewhat inferior compared to that of the half-plane
problem, bu% the pattern of stress distribution indicated
by the experimental results is correct.

A point worth noticing is the development of
relatively high stresses in the X-direction, at points

near the Y = O boundary of the quarter plane, when the



9.3.5) contd.

1 axies of the unidirectional composite
oincides with the direction of the applied load

(see Figure.9.32).
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Fig.Al,l

The engineering elastic constants of an orthotropic
body index plane stress, in the X'Y' coordinate system (see
Fig.Al.l) are given in terms of the constants in the XY system,

by the following relations:

a . 3
El' = °°; g 0% (.Gi- - 2”351 ) sin®¢ cos®¢ + —-—M; ’
x x xy Ex ¥

I

E

P | ]
El, s BABR c («-1'- - 2";_;!) sin®¢ cos®¢ + gos g ’
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2
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The symbols which refer to the new orientation of
the coordinate axes are denoted by a dash (') e.g. ki,kg' etc.

It can be verified that the elastic constants €13
and £ge remain unaltered, while £;4 and £33 are replaced by
Lyy and £,, respectively

As a consequence:

1 L ' 2
Be o Trin T P pa(%'ﬁ- A2-1
and
1.3 2 . 2
= Mdd y 8 2 —di . 2.2
(kﬁ-) &11 ki | (h) eii kﬁ A

From equation (2.6-4) we have:

éaj' = & . A2-3
11 k,.‘kgn

Substituting (A2-3) into (A2-2), and since ky,ka > O:

B

1
ks R W & A2~
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i th interface
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The displacements of u‘i, v of a point (x.,y.) of the
Bl

jth layer on the ith interface are given by:

[uj] = 831[°-xdx+&faf°}dx * Pix),
41 A3-1
[vj] = & f o dy + &) [ o ay+£0y),
¥4
where i =1 .o nand j=1i, i + 1.

The functions f(x) and f(y), which are assumed to re-
present rigid body retations, can be excluded from the follow-
ing equations since they do not affect the subsequent analysis
(see equation 5.4=9).

Substituting the expressions for the stresses o and

9% from equation (5.4=1) into (A3-1), we have

11 —U..j Q.J Sin()‘x)l
¥ A3-2a

e
;:Ll
L=
1

= HP QF cos(Ax), Fon & = I saw iy 3 = X 2l

g
&
[
L=
|

where
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The elements of the A matrix are given by the follow-

ing expressions:

814

843

dia

844 =

B34 =

dga =

dasa

n

dg4

43 =

843 =

44 =

where

1

- L Bl S

sl >

1>

s> il ol plr pl>» plk bl pl&

[—2aeﬁ

+(a+p)p e~ ¢ of
+(a+p)e” @ oP
+(anp)pe?

+(o+pB) oP

~(asp)pe’e™F
+(a+p)e% P
~(a+g)B of

+(a+p) &

+(a+p) ae®F
+(a+p)e% P
+(atp)as™"
+(arp)e”®
~(a+p)as™® o
+(a+p)e~ %P

~(a+p)a e®

+(a+B) e®

+ (a=p)pe ® e“ﬁ] .

- (a=p)e” e~P —

+ (a-p)p of
- (a=p)éP

- (a-p)pe® &
- (ap)e® &
- (w-p)p P
= (o=p) &P
- (=) ae"%P
+ (a-p)e %P
- (=)o & ®
+ (a-p)e”

+ (a-p)ae’P
+ (a-p)e%
+ (e=p)a e °

+ (a=p) ™%

¥ N TSESESS ) = s e

2

AL=1
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The elements of the A' matrix are given by:
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For the F-functions to be convergent it must be shown

that:

[2 (Lnky-eniy )

2
k.k o A5-1
= Ka~kg :l 1Kg < 1 5

The above inequality is simultaneously satisfied if':

3
[M kiks < 1. A5-2
ki“"kg J
Let
= K1 - kq g
a—kzandﬁ-&n e A5=3
Then, for k; > kg > 0,
a>1l and B > 0. A5l

Inequality (A5-2) can be written as follows:
@ - (246%)a +1 > 0 A5=5

[a-(l-l-g"i"gJM):' [a-(l+gs-gm):|>0 A5-6

Now, since

=

1+ 85 50, A5-7

inequality (A5-5) is simultaneously satisfied if
i i - gﬂ + g JE’:L. A5-8

We can write A5-8 in the following form:

q:eﬁ=l+ﬂ+gi+%a:‘+..o>l+ga+gdmsﬂ5"8

which reduces to:

%

B+ # cen P g B+l A5=9

N

1
Finally, considering the first two terms of the series (equation

A5-9), it can be shown that (A5-9) reduces to:



w8l A5-10

which is true for all values of f.
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