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SYNOPSIS

The work presented in this thesis constitutes an investigation into
the use of computer methods for the non-linear analysis ot reinforced
concrete frames, Two computer methods are proposed, both of which use
a concept of gradually reducing flexural rigidicy of a section upto collapse.
The change in stiffness and properties along a frame are a~counted for by
dividing it into smaller submembers of constant stiffness.

The first method uses an incremental technique to account for the
non-linearity of the material, A series of linear analyses are pexrformed
for each increment of proporticnal loads applied to a frame uptoc collapse,
the stiffnesses of all submembers are modified at every increment accord-
ing to their induced curvatures. I[n this method, the instantanecus flexural
rigidity-curvature diagram of the material is used.

For the second methed, the smooth non-linear moment-curvature
relationship of reinforced concrete is assumed to consist of a serics of
straight lines. The poiuts joininy these lines are termed critical points.
An iterative technique is adopted prédict 10ad factors at which these
critical points are attained for each submember upto collapse,

To verify the accuracy ct these analyses, a set of twelve pin-ended
reinforced concrete frames were tested subject to proportional loading upto
collapse. The moment-curvature relationships of each section used in the
frames are obtained from tests performed on beams of identical section.

A method is also presented whereby these relationships can be found from
the properties of a section and its constituent materials. The effect of axial
load on these relationships is aiso examined.

Comparison of the results shows that the non-linear behaviour of

reinforced concrete frames can be predicted successfully by computer analysis,
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CHAPTER 1

INTRODUCTION AND HISTORICAL REVIEW

1.1 General Introduction
1.1.1 In recent years, rapid advancements have been made in the analysis and
design of engineering structures, The more sophisticated developments have been

associated with the analysis of steel structures. These developments include faci-
lities to deal with many non-linear effects prevalent in all types of structure.
Reinforced concrete is now becoming a widely used material in the construction of
many types of structure. There is, therefore, a need to devélop methods of analysis
for reinforced concrete structures parallel in sophistication to those existing for the
analysis of steel structures. |

1.1.2 The prime requirement of any analysis is to predict the behaviou‘r‘of real
frames as accurately as possible. To accomplish this, the combined and overall
behaviour of all the members of a frame, and a true representation of their -
properties must be known. The new unified code of practice (1) in its general require-
ments for analysis states :

" The methods of analysis used in ass‘essing compliance with the requirements of the
various limit states should be based on as accurate a representation of the behaviour
of the structure as is practicable. "

1.1.3- It is possible in certain cases to analyse reinforced concrete structures by
simplifying them into simple sub-frames. These simplified sub-frames are then
analysed by the classical methods such as moment-distribution, or the slope-deflec-
tion equations. If, however, a true prediction of overall structural behaviour of
frames with many degrees of freedom is required, resort must be made to use of
matrix methods of analysis in conjunction with a digital computer. It is, thus, desir-
able to formulate techniques which fully define the complete behaviour of any rein-
forced concrete frame and which utilise the actual properties of its members.

A more convenient method of expressing the property of reinforced




conerete is by its bending moment-curvature relationship. This relationship
has been used inthe work covered by this thesis. An analysis must also be
capable of coping with special situations which occur in a loaded rein.fprced
concrete frame, such as cracking of the concrete, the effect of axial loading
and the attainment of ultimate bending moment at various sections prior to
collapse.

1.1.4  The work presented in this thesis is an investigation to determine
‘whether an analysis is possible for predicting the non-linear behaviour of
reinforced concrete frames upto collapse. To verify the practicality of any

new analysis, it is necessary to perform investigations into the real behaviour
of frames, and then compare the results xviththosebbtained by the analysis. In
this thesis, the results obtained from the computer analyses have been compared
with the results obtained by a series of tests performed on reinforced concrete
frames loaded proportionally to collapse. The moment-curvature properties of
the different sections employed in these frames were determined from tests
carried out on reinforced concrete Jbeams of identical sections. In addition, an
analytical method for determining these relationships based upon the properties
of the concrete and steel has been presented, using the relationships obtained by
both these methods, the frames were analysed.

1.2 Analysis of Structures

1.2.1 Before any structural analysis can be performed accurately, a great deal

of information regarding the behaviour of a material and its response to loading

must be investigated. The more important considerations of these are now discussed.
1.2.2  The behaviour of structural materials are generally taken to fall into three
idealised forms. For the work described throughoutv this thesis, flexural deforma-
tions are predominant in members, and therefore, their bending moment-~curvature

relationships are utilised to define the behaviour. The three most common




idealisations of material behaviour are :-

1) Elastic
2) Rigid-Plastic
3) Elasric-Plastic

1

ne elastic response is shown in fig. 1.1(a). In this idealisation,
the range of interest is confined to the point at which the elastic limit of the
material is attained, denoted by a, ¢, in the figure. An analysis performed
using this philosophy assumes factored values of yield stress and strain to
ensure no section of a frame reaches its elastic limit, whilst subject to
working loads.

The rigid-plastic form is shown in fig. 1.1(b). This assumes no
deformation of a structure until plasticity is reached at point a. The deforma-
tion is then purely plastic a - b. This concept has been utilised in the develop-
ment of the rigid-plastic and ultimate load theories.

The final idealisation is the elastic-plastic theory shown in fig. 1.1(c).
This is the most representative of the three concepts, since it includes both the
elastic and rigid-plastic behaviour of the material, and so defines the overall
behaviour. These idealisations, however, apply mainly to steel and most
metal materials, and are not representative of the non-linear behaviour of
reinforced concrete.

1.3 Non-linearity in structures

1.3.1 Before dealing With‘the non-linearity of structures, it is important

to mention that most practical structures behave in an approximate linear
manner under their working loads. Linearity does suffer from certain draw-
backs, in that no consideration is made of the significant reserve of strength

to be gained from materials after yield takes place. No attempt can be possible

to define the behaviour when a structure is subject to high loading by an elastic




(linear) analysis. The assumption of linear behaviour is very uneconomic
from.the material aspect,

1.3.2 If an analysis is performed by any of the above three idealisations,
simplifying assumptions are nearly always necessary to render the analysis
practicable. These assumptions are concerned with the three main causes
of non-linearity in engineering structures which are :

-1) The non-linear behaviour of the material used inthe manufacture
of the structure,

2) The effect of large deformations compared with the undeformed

structure, i.e. the change in geometry of a structure under loading,

3) The effect of heavy compressive axial loads in members on their
bending stiffness, and on the distorted structure of 2) above. The effect can

‘be sé significant that there is a real likelihood of a structure becoming unstable
whilst still in the elastic state. Some other causes of non-linearity in structures
manufactured from steel and reinforced concrete are given below : -

(a) Steel

(i) Spread of plasticity in members
(ii) Stress reversal
(iii) Strain hardening of the material

(b) Reinforced Concrete

(i) Cracking of the concrete and yield of the reinforcement
(ii) ‘Spread of plasticity. in both the reinforcement and concrete
(iii) The,effect of creep in the concrete
(iv) Falling branch effects
1.3.3 The property of steel may be represented by the idealised elastic-

plastic relationship of fig. 1.2. The behaviour is assumed to be elastic upto
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Figure 1.2 Idealised elastic plastic moment-curvature relationship of steel




the attainment of the fully plastic moment Mp of the section, after which, the
behaviour is purely plastic. The effect of strain hardening of steel on the carry-
ing capacity of small structures is considerable, and an allowance for this should
be made if an accurate analysis is required. In large, multi—storéy structures,
heavy axial loading occurs in the lower columns, and the effect of the instability
is greater than that of strain hardening, for this type of structure the latter

effect may thus be neglected. The moment-curvature property of reinforced con-
crete is highly non-linear, and this will be discussed fully in Chapter 2. A brief
outline of the main problems will be given here. It is well known that concrete is
weak in tension and develops cracks when subjected to tensile flexure. This
results in a reduction of flexural rigidity of the material, after which, the behaviour
is essentially elastic, until the steel reinforcement yields. The stiffness of the
section is then reduced gradually until the maximum bending moment of the section
is reached. The curve then remain reasonably constant until the concrete crushes
and then falls. For under-reinforced concrete sections consisting of reinforce-
ment which exhibits strain hardening, a further increase in moment after yield of
steel is present. For over-reinforced concrete sections, the moment-curvature
relationship falls immediately after the attainment of maximum moment. This

is referred to as 'falling branch’ behaviour. In practical structures, it is not
always necessary to consider this behaviour as constituting collapse. In most
cases, any extra loading from these falling branch sections as they unload is
&mgferred to other parts of the structure. Both these abm}e situations should be
allowed for in an accurate analysis.

1.3.4 In a linear énalysis, it is assumed that the deformations of a structure
are small compared with its overall dimensions. The equilibrium equations are
thereby formed using the undeformed geometry of a structure. For most

practical frames, especially those manufactured from reinforced concrete, the




deformations produced by loading, do not in fact alter their overall geomewry

significantly, even near the collapse state. The loss in accuracy resulting

Ep

om the assumprion of small deflections is not significant for these cases.
dowever, where tall, slender sway frames are subject to heavy compressive
axial loading, use of the undistorted structure in the solution of the equilibrium
equations may well lead to an overestimation of overall structural stiffness.
This is because the bending moments throughout the structure increase
due to the P Aeffect.

Use of the distorted frame geometfy is, therefore, necessary for
an analysis of this type of frame.
1.3.5 Axial loading also affects the moment-curvature properties of mate-
rials. In steel sections, the presence of compressive axial loads cause a
reduction in their fully plastic moment value. Compressive axial loads also
affect the moment-curvature relationship of reinforced concrete sections,
this effect wili be described latéf in the thesis,

1.4 Failure of Structures

1.4.1 Structural failure can be defined in many ways. The attain.ment of
ultimate bending moment at one section may be deemed as failure, even though
the structure may be capable of supporting further loadihg. In a rigid-plastic
analysis, failure is defined as that state when sufficient plastic hinges have

* formed in a structure to transform it into a mechanism. The most generally
accepted form of failure, however, is taken as that when a structure loses all

its stiffness, and is incapable of withstanding further loading.

1.4.2 Modern ideas concerning the analysis and design of reinforced concrete
structures has léd to the concept of Limit States (1). In a 'design' of a rein-
forced concrete structure, a combination of these limit states must be considered.

These limits are concerned with the state of a structure in its ultimate condition,
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and with its serviceability state such as extent of cracking and its durability.

1.5 Historical Review

1.5.1 For many years, the elastic approach to aralysis was used as the
basis for all the early work, the most prominent of these being the use of the
slope deflection equations, s;nd the more recent moment distribution method.
The manual use of either of these methods, even for the analysis of
structures with few redundancies, requires a great deal of'effort and
time on behalf of the analyst. Elastic methods, however, are stﬂi
used by engineers, but many simplifying assumptions are neéessafy
for a frame analysis.In an elastic analysis or design, member sizes are
selected on the basis that they do not develép stresses greater than certain
permissible values when the structure is subject to its working loads. These
loads ref)resent the maximum values which a structure is expected to carry
in its working life,
1.5.2 For an elastic analysis, therefore, no load factor against collapse
can be obtained, only safety factoxs are imposed to ensure no part of a struc-
ture reaches its elastic limit. Most structural materials, however, exhibit
a greét deal of reserve strength, even after the attainment of yield. This
led to an investigation for a more rational approach to the analysis and design
of ffarnes. For steel structures, the result was the formation of the rigid-
, plastic theories of structural analysis by J. F. Baker and his team {2)(3).
These theories are ‘based.upon the state of a frame at collapse. At this ulti-
mate state, the bending moment distribution in a frame must' satisfy three
main conditions.

(i) The equilibrium condition, for which the internal bending moments
must be in equilibrium with the externally applied Joading.

(ii) The mechanism condition, where the bending moments must be equal
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to the {fully plastic moments at a sufficient number of sections for the whole or
part of a structure to become a mechanism with plastic hinges.

(iii) The yield condition where the ultimate (fully plastic) moment must
not be exceeded at any part of a structure.
Other conditions which must be adhered to are that plastic hinges possess
unlimited rotational capacity, whilst the bending moment there remains constant
at the fully plastic value. Also, premature c.ollapse does not occur due to
member instability. Finally, the deflections of a frame are negligible until
the collapse state is rea’ched. The rigid-plastic theory yields a more economi-
cal design, as the full range of properties of a material are utilised, and a
speéiiied load factor against collapse can be imposed.

Horne (4) developed a plastic moment distribution method which
utilised most of the above conditions, By this method, a structure could be
designed so that-a given set of loads would jus.t cause collapse. The object
of this method was to establish various distributions of bending moments
throughout the structure that are in equilibrium with the given loads. Another
method which makes use of the above characteristics of the distribution of
bending moments to determine the collapse load of a trial design, is that due
- to Neal and Symmonds (5). In this method, individual mechanisms were com-
bined to determine the actual collapse mechanisms.

1.5.3 The foregoing rigid-plastic approaches to analysis and design cannotbe
universally applied to all steel structures, in particular, tall, slender, multi-
storey sway frames, where the effect of instability may cause collapse at loads
far below those predicted by a rigid-plastic analysis. For the analysis of low

. steel frames and continuous beams in which the non-linear effects of axial

load and gross deflections are émall the rigid-plastic theory can be used with

a high degree of accuracy. The effect of instability in the elastic-plastic range
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-of behaviour of a steel frame was the subject of most of the subsequent research

on the design and analysis of frames. Wood (10) discussed the importance of
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ases where sway was unrestrained. He stressed that fail-
ure may well zake place before a mechanism is formed.

1,5.4 AMethods which include an allowance for instability in the ultimate

load analysis and design of multi-storev steel sway frames have been suggested
by Heyman (11) and Holmes and Gandhi (12). Extensive work has also been
carried out in the design of tall swav frames subject to instability effects by

the Lehigh University Group (13).

1.5.5 In most of the foregoing methods, assumptions of structural behaviour
regarding the plastic hinge pattern at failure have been made. A true prediction of
this Abehaviour is only possible if a rigorous analysis is adopted. With the

advent of the electronic computer, it was realised that a rigorous analysis of
structural frames was possible by means of suitable computer programs, used

in conjunction with the matrix displacement method of structural analysis (19).

In this method, expressions relating the external loads L applied to a frame,

to the resulting joint displacements X are formed. This is achieved by applying
the conditions of joint equilibrium and compatibility to the equilibrium equations
of individual members. The equation which relates the loads to the displacements
of a frame is given in matrix form as :

L=KX (1.1)
where K is the overall stifﬁﬁess matrix of a structure, In any anajlysis by this.
method, the external loads L and the matrix K are known, so equation (1.1) can
be solved for the unknown joint displacements X. The member forces P of a
frame are then found using P = k A X, where k is the member stiffness matrix
and A is the displacement transformation matrix.

- 1.3.6 Livesley was among the first in this country to use a computer for




the analysis of frames. He presented a paper (14) for the computer analysis
of rigidly jointed elastic frames in which an allowance was made for the pre-
sence of instability, This work was later developed to include the elastic-
plastic behaviour of frames, by among others, Livesley (15), Jennings and
Majid (16). These developments enabled the complete non-linear load deflec-
tion history of a frame to be traced upto and inciuding collapse. Refinements
were made to these methods by Anderson (17)and Majid and Anderson (18).

By reducing the required storage space for the ovexall stiffness matrix of

a structure, they were able to analyse large multi-storey steel structures
elastic plastically.

In (18), the elastic plastic behaviour of a steel frame is examined
as plastic hinges develop under increasing proportional loading. Allowance is
made of the non-linear effect of axial loads in members at these load factors
on the reduction cf the stiffness (using the appropriate stability functions (9))
and fully plastic moments of the members, by use of an iterative technique.
The axial loads which are expected to occur under the predicted load factors
are extrapolated in each cycle of the iteration. A plastic hinge is formed when
the predicted load factors at the current and previous cycle of the iteration,
satisfy a tolerance test. The hinge is inserted in the frame and the process
continued to predict further hinges. At the insertion of each hinge in a frame,
the sign of the determinant of the stiffness matrix is found, if it is negative,
the frame has lost all its stiffness and has collapsed. The program has faci-
lities to allow for the state where plastic hinges become inactive.

1.5.7 The program described above can deal with the analysis of very
large multi-storey frames, by virtue of the reduced computer space required
for storage of the overall stiffness matrix, and reduced computation time

required for the solution of the stiffness equation (1.1). The overall stiffness




matrix for the frame of fig. 1.3(a) is shown in fig. 1.3(b). In this figure, the
non-zero elements of the matrix are shown shaded, it is also noticed that the
non-zero elements are grouped around the leading diagonal of the matrix in
an irregular band-width. This arrangement is true of the stilfness matrices
of most plane frames. The matrix is also seen to be symmetric about the
leading diagonal.

For the storage and solution of the stiffness equation (1.1), the
compact elimination technique due to Jennings (20) was adopted. In this method,
only the elements which lie between the first non-zero one and leading diagonal,
inclusive of each row, are stored. The result is a series of half band-widths
of eiements, for each row of the stiffness matrix. These eler‘nents are then
stored in vector form in a 'main sequence'. In addition, the positions of each
location in the main sequence which stores the leading diagonal element of each
row is defined in another vector termed the 'address sequence'. Some zero
elements will, however, occur in the main sequence, but these can be reduced
by careful numbering of the joints in a frame.

Computer time and storage was further reduced by inserting the
rows corresponding to plastic hinges just below the rows corresponding to the
jqints near to which they develop. With the matrix stored in this main sequence
form, Jennings' elimination technique was used to solve the equation:

X=K 'L (1.2)
The technique is based on the well known Gaussian elimination method for the
direct solution of linear simultaneous equations. A rapid solution is obtained
as only the stored elements are operated upon.

This computer method includes most of the significant advances

which have been made in the understanding and prediction of the true non-linear

behaviour of steel frames. Majid and Anderson have also produced a program (21)
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Figure 1.3 The overall stiffness matrix of the 2-storey 2-bay frame
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for the elastic plastic design of steel sway frames. Further work is now in
progréss (22) (23) (24) which deals with the elastic plastic analysis and design
of complete building structures of steel frames with concrete shear walls and
slabs, and of frames with infill panels.
1.5.8 The foregoing review shows the dcvelopments that have been made
for the analysis of steel structures in particular. Most of these methods
cannot, however be applied directly for the analysis of reinforced concrete
frames. This is because the concept of a plastic hinge cannot be assumed for
reinforced concrete in the same way as for steel, since reinforced concrete
has a limit on its available plastic deformation. For under-reinforced concrete
sections, there is a significant reserve of strength after the tensile steel yields,
this is not true, however, for over-reinforced sections which fail as soon as
the concrete crushes, with no steel yield taking place. Other differences between
reinforced concrete and steel sections are that concrete sections crack prior
to the attainment of steel yield, resulting in a reduced stiffness. The properties
along a member may also change due to varying percentages of tensile reinforce-
ment. In addition, the strength of concrete varies from mix to mix, even for
those with identical constituents. The problem can then be one of statistics in
the definition of concrete strength. These factors together with others, such as
the effect of joint detailing, contribute to the main differences in the properties
and behaviour of reinforced concrete frames.

In any analysis which is to predict the true behaviour of a reinforced
concrete frame, the above factors together with those discussed for steel frames
must be considered.

1.6 The developments in reinforced concrete frame analysis

1.6.1 The need for an analysis which represented the true behaviour of

reinforced concrete frames was realised early. Investigation by Glanville and
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Thomas (25), carried out on fixed ended beams, continuous beams and portal
frames showed a redistribution of bending moments in the structures as
collapse was approached. It was concluded from these tests that reinforced
concrete structures were capable of exhibiting some ductility. The extent

of this ductility for the redistribution of bending moments in the application

to reinforced concrete frame analysis was the subject of subsequent research.
1.6.2 This work was primarily to inveétigate whether reinforced concrete
frames possessed sufficient ductility to redistribute bending moments as col-
lapse was approached, and thus, not fail immediately an ultimate bending
moment was reached for the first time in the frame. Parallel to this, research
was. being undertaken (26) to analyse reinforced concrete secfions in the ultimate
state, This increased the knowledge of the behaviour of reinforced concrete
sections and was incorporated in frame analyses. In this country, Professor
A.L ., L. Baker pioneered the research on m(;ment redistribution in reinforced
concrete frames, his first paper on this subject (27) was published in 1949.

He later developed the ultimate load theory for the design of reinforced concrete
frames, and published it in book-form (28) in 1956.

In his method, a simple elastic-plastic moment rotation relation-
ship was assumed for the material., This was defined by the initial flexural
rigidity EI, the ultimate moment of resistance and a limited plastic rotation
capacity. For a frame with n indeterminancies, the load at which the nth
hinge forms was termed the ultimate load. The positions of plastic hinges
were selected using the bending moments obtained from the slope deflection
equations. The rotations of each hinge were calculated by use of virtual work
equations in combination with a trial and error prodecure. If rational and '
safe estimates were made of tﬁe moment rotation parameters, design was

possible by allowing redistribution of bending moments to such an extent that
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the resulting hinge rotations are compatible with the hinge moments, and
their magnitudes within safe limiting values. An appropriate relaxation
technique was used to check deflections and crack widths.

This method defines the ultimate load of a given structure, but is
cumbersome, and no check is made of frame instability prior to the attainment
of ultimate collapse load. Improvements have been made to this technique,
however, the basic approach outlined above was used in their formation. Baker
later presented a method (29) for the ultimate load design of concrete frames,
in which the concepts of an idealised frame, an elastic-plastic {frame and a
prac;tical frame were introduced. The idealised frame is one which based on
the assumption of the plastic hinge theory has the correct ultimate strength
for a particular case of loading. The calculations in this are based on safe
1imitihg values of parameters that govern strength and deformation. The
members of a frame are designed elastically between hinges. The elastic-
plastic frame is similar to the idealised frame, with the exception that plas-
ticity is here distributed at 'hinge sections according to the elastic-plastic bending
moment distribution, The practical frame is the actual designed frame. In
the design, a frame was assumed to consist of a series of elastic members
joined by frictionless hinges. A general arrangement of the frame and its
concrete sections appropriate to its loading were assumed. Sufficient hinges
were then inserted in the frame to make it statically determinate and resis-
tance moments assumed to act at hinges to yield an economic distribution of
bending moments. The positions of hinges and values of rotations were checked
at ultimate load by a similar method to that described in reference (28), and
adjustments made until a satisfactory solution was obtained for each case of
the idealised frame. A practical frame was then designed to be at least as

strong in all parts as each of the idealised frames.
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This method was an advance on the previous work, but still
requifed a great deal of work on behalf of the analyst. Developments leading
to a technique for the design of inelastic space frames (30) were later made,
Future developments in Baker's method (31) (32) prompted the European
Committee for Concrete (CEB) to initiate an extensive Aprogramme of tests into
the flexural behaviour of reinforced concrete members, the object of which
was to obtain safe limiting values for the parameters necessary in a design
by Baker's method. The CEB utilises this method in the proposed limit
design philosophy (33). The latest developments of Baker's method are given
in his book (8) " Limit Design of Reinforced Coucrete."

1.6.3 The ultimate load theoxry has been accepted as a basis for the
analysis and design of reinforced concrete structures for a number of years.
The previous code of practice for the structural use of concrete (6), CP114,
was amended in 1965 to allow the load factor &ethod to be used as an alter-
native to the elastic method for design. In this load factor method, a value

of 1.8 was suggested as the ratio of the ultimate strength of a member to its
working load. The code also allowed a 15% reduction in bending moment in
statically indeterminate structures provided the bending moment diagram is
redrawn on this basis.

1.6.4 The methods described above are essentially hand methods. The
need for a computer analysis of reinforced concrete frames was suggested
amongst others by Cranston (34). He carried out his work with the object of
developing ultimate load design procedures for reinforced concrete frames
upto and beyond maximum load. He followed the work suggested by the
Comumittee set up by the Institution of Civil Engineers (31). He suggested that
reinforced concrete shows a further reserve of strength even after the point of

first crushing of concrete, and that the rotations which should be allowed for
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in reinforced concrete plastic hinges are, in many cases, much greater than
those previously coasidered reasonable. Cranstoa siressed the need for
setting up mathematical models for the simulation of behaviour of reai frames.
The specific factors which affect the behaviour of reinforced concrete, such
as its high noa-linearity, were discussed. .T he behaviour of loadad concrete
members is described with particular reference to their moment-rotation
(M - 8) relationships. The relation to be expected from an under reinforced
member is given by curve A in fig. 1.4 (a). It is shown that the curve flattens
out gradually after steel yield and then remains essentially coastant until
crushing of concrete occurs, it then decreases. If the tension steel exhibits
strain hardening, the curve may show an increase in moment when 8 becomes
large, as indicated by curve B in fig. 1.4 (a). For over-reinforced members,
the M - 9 relation generally has the form shown in fig. 1.4 (b), where it can
oe seen that the moment decreases immediately after the maximum moment
is attained. This is referred to as falling branch behaviour.
The more important assur;zptions Cranstoa made in the formation of
his analysis were :-
(i) The curvature at any point is a function of only the moment of that
point.
(ii) Deformations of the frame due to axial and shear strains may be
neglected.
(iii) Members of a frame can be idealised into a number of segments
separated by divisioa points.
(iv) Loads are oaly applied at division points.
(v) The effect of unloading of zones into the inelastic range can be neglected.
A frame is reduced to the state of statical determinancy by the insertion of !

sufficient hinge releases. The redundant moment values are proposed, and the
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resulting deflected shape and discontinuities at the releases are computed by
numerical integration. A solution to the proposed shape is found when con-
vergence of the deflected shape is made, this reduces the hinge discontinui-

ties to zero,

1.6.5 To verify the accuracy of this proposed computer analysis, Cranston
carried out a series of tests on portal frames (35) (36). The first of these con-
sisted of pin;ended reinforced concrete pertal frames, the second was fixed
ended portals. In the first set (35), a series of tests on 8 frames are described.
The dimensions of a typical frame together with its loading geometry and
instrumentaticn are given in fig. 1.5. The concrete sections were constant
throughout, and were reinforced with 2 No., 3/8" diameter bars for compres-
sion steel and between 2. 2% and 4.4% tension steel at sections where plastic
hinges would form. These percentages gave sections in which both the moment-
rotation characteristics shown in fig. 1.4 would occur. Deflections and slopes
were measured by dial gauges and inclinometers. The frames were tested
-subject to varying combinations of vertical and sway load.

Two of the 8 frames failed prematurely due to local failures at
joints. The remaining 6 frames failed by the expected mechanism. The results
of these tests were presented in the form of moment against rotation for each
hinge, and load, moment and sway against deflection at mid-transom. The
main conclusions drawn from this test series were that the recommendationsfor
the assessment of permissible hinge rotations‘:(SZ) were safe. The behaviour
of a frame subject to short term loading is predicted with reasonable accuracy
by an elastic analysis. Also from this test series, Cranston suggested that
further tests were needed on frames with more redundancies to broaden the
scope of his conclusions,

Further tests were performed on fixed ended reinforced concrete
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portal frames (30). From these tests, Cranston was able to make more
confident conclusions. These were that collapse loads computed on the

basis of a mechanism behaviour are reasonable, provided the plastic

moments are calculated using the stress block data given in (37). The degree
of binding in the compression zone has an influence on the rotation capacity.
Special attention must be paid to the stress concentration around joints, He
also mentioned that the effects of heavy axial loading in columns and the secon-
dary details around joints, both require further attention.

The computer method presented above is fully comprehensive and
can deal with any shaped moment~-curvature relationship. The complexity of
the method is such, however, that the size of a frame that may be analysed
by it is limited. Also, the program requires a great deal of work from the
analyst in preparation of data prior to running an analysis by computer.

1.6.6 Much of the Cement and Concrete Association’'s recent work has
been conqentrated on the effects of heavy axial loads in columns, and of locali-
sed stresses at joints. Cranston (38) presented a method for determining the
relationship between bending moment, axial load and curvature in structural
members. A numerical technique is proposed for use with a digital computer
for determining this relationship. This led to the computer analysis of re-
strained columns (39). Here, a method is described which can analyse columus
of different materials, inelastically. All stages of the column's behaviour upto
and beyond maximum load are con'sidered. An iterative procedure was evolved
which determines the response of cross sections under specified axial loads
and moments. Solutions for a given column are obtained in stages as loading

is applied from zero to its maximum value. These solutions correspond to
either specified load or deflection. This method was later developed and together

with the conclusions of further parallel research and experimental evidence, a




report (40) was published which sets out a practical method for the design of
reinfdrced concrete columns,

The effect of shear on the rotation capacity of reinforced concrete
beams has been obtained by a series of tests performed by the C and CA (41).
It was shown that the final failure at hinge regions under large shear forces
is dominantly of a shear type. However, no significant reduction in available
rotation capacity is prevalent, if the shear force is designed for, under the
provisions set out in the draft code of practice (7).

1.6.7 The detailing of joints in reinforced concrete frames is of prime
importance, if bending moments are to be transmitted to their members. If
this detailing is poor, then there is a great likelihood that localised failure
will take place at the joints, This has prompted the Cement and Concrete
Association to investigate the effect of joint detailing on the strength of rein-
forced concrete connections.

An investigation into the effects of right angled bends of portal
frames sﬁbject to opening and closing bending moments was carried out by
Swann (42). From his investigations, he concluded that for cases where the
bending moments tended to open the corner, the details shown in fig. 1.6
(a & b) performed better than the remaining details. Where the bending moment
tended to close the corner, the detail of fig. 1.6(c) was the only one in which
bearing failure of the concrete at the bends of the main reinforcement did not
limit the strength of the specimens.

Sommerville and Taylor later investigated the influence of rein-
forcement detailing on the strength of concrete structures (43) and reported on
its influence on structural efficiency for half joints, joggled splices in columns,
flexural corners and in-situ beam column joints. They concluded from this

that the most efficient arrangement of reinforcement can generally be found
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from a simple consideration of the forces involved. Where flexural corners
are be.ing opened, their strength depends greatly upon the type, detail and
amount of reinforcement being used.

1.6.8 The effect of instability in tall reinforced concrete sway frames
is of great importance. Among others, Baker (44) and later Nahhas and Yu
(45) studied its effect, In reference (45), the effect of overall frame instabi-
lity in the elastic-plastic design of reinforced concrete sway frames was
discussed, The secondary effect of axial loads in members acting on the
deformed structure was suggested as a real threat to the overall stability of
tall, slender sway frames. They stated that if a thorough analysis was to be
obtained, this effect must be allowed for. They pointed out that even though
Baker (8) had extended his method to allow for this action, no attention is
paid to the sequence of formation of plastic hinges., The design method is
based upon an allowance for the sway P A effects, by means of a magnifying
factor applied to thelateral loads. Theoretical moment-curvature relation-
ships aré obtained by the known stress-strain curves of the materials based
on the assumption of a linear distribution of strain. A brief description of the
" method is given below,

In a design, if a suitable estimate of the relative lateral sway
between two consecutive floor levels 4 is made, and the frame is designed
to resist lat.eral loading of magnified load, allowance would thus be made for
the equilibrium of the internal moments and externally applied loads as affected
by the sway deflection. Approximate expressions are présented for the cal-
culation of magnifying factor. To satisfy serviceability and ductility require-
ments, hinges are taken to form at the leeward beam support sections, only
at the design load. A check on ductility is made by comparing resultant plastic

rotations at hinge sections with safe, permissible values. Compatibility is
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checked for which a statically admissible bending moment distribution must
be seiected in equilibrium with the applied loads, including the magnified
lateral loads; also a check that premature instability failure does not take
place at the location of critical sections because of a deterioration of stiff-
ness.

The design metth was verified by a computer analysis carried
out on a 7 storey - 3 bay frame designed by their proposed method. The method
can be applied to most practical frames, and also an economic design can be
obtained, where there is a limited amount of plastic deformation in members.
1.6.9 Other computer techniques for the inelastic analysis of reinforced
concrete frames are presented below. Chin (46) developed a computer method
for the non-linear analysis of plane frames subject to proportional loading., The
analysis utilises the matrix displacement method and is suitable for a frame
with membexrs having an arbitrary moment-curvature relationship. The analysis
is split into a main sequence, correction sequence and a prediction seqﬁence.

In the méin sequence, a set of trial displacements are used to calculate the
forces required to maintain equilibrium. If these forces are not sufficiently
close to the chosen loading, the trial displacements are corrected using the
stiffness properties of the structure. When the forces are close, the predic-
tion sequence forms a new array of trial displacements for the next step of the
load-displacement curve.

For this method, the curvature is assumed to be a function of moment
only, and shear deformations are neglected. The method includes the non-linear
effects of axial loads on the reduction of member stiffness. The program was
used to analyse identical frames to those previously analysed by Cranston (34).
The results obtained were shown to be in good agreement with those of Cranston's,

Chin's analysis requires less work from the analyst, and the computer time




required is small compared with that given in refercnce (34).

Other methods which analyse reinforced concrete frames inelasti-
cally are due to, Nahhas (47), Wilson (48), Cohn (49), and Poologasumdram (50)
to list a few.

In 1972, the British Standards Institution published the new code of
practice (1) for the Structural Use of Concrete, This code makes use of Baker's
work and includes the latest findings of the Iﬁstitution Research Group.

1.7 Scope of the Present Work

1.7.1 In light of the foregoing review, it is clear that a more rational and
universal analysis, similar to those existing for steel, is needed to predict the
ove£a11 non-linear behaviour of reinforced concrete frames. ‘The majority of

the available methods require the selection of hinge positions prior to an analy-
sis, and a constant re-analyse with modified hinge positions. A reliable method
is required which will analyse a frame of any‘configuration comprising of mem-
bers with any moment-curvature relationship. |

1.7.2  The object of the work covered by this thesis is to present computer
methods for the non-linear analysis of reinforced concrete frames upto and
including the state of collapse, and to test their validity by tests performed on
reinforced concrete frames, loaded proportionally to collapse.

1.7.3 The properties of reinforced concrete members are most conveniently
defined by their bending moment-curvature (M-@J) relationships. Chapter 2
describes this relationship, and a method is proposed by which the M-@ relation-
ships may be constructed theoretically from the properties of the concrete and
steel, The effect of axial load on the M-@ relationships is also discussed here.
1.7.4 The following Chapter describes the incremental approach to the
non-linear analysis of reinforcéd concrete frames. It is shown here that the

overall non-linear behaviour can be predicted by summing a series of linear
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analyses for small increments of load applied to a frame. A computer

progrém which uses this analysis is described in this Chapter. Reference

is élso made of an iterative approach for use with the above method.

1.7.5 Chapter 4 details a second analysis and computer program which

is a development of that by Majid and Anderson (18), to enable the analysis

of reinforced concrete frames to be performed. For this method the M-

relationship of reinforced concrete is represented by a series of short,

straight lines connected at points which are termed critical points. At each

critical point, a reduction in flexural rigidity occurs. The analysis computes

load factors at which these critical points are feached upto collapse of a frame.

| In both these computer analyses, the overall stiffness matrix of

a frame is constructed and the stiffness equations solved by the method out-

lined in 1.5.7.

1.7.6 The validity of these analyses havé been checked by a series of

tests carried out on reinforced concrete portal frames. These are described

in Chapte'r 5. Each frame was proportionally loaded vertically and in sway, upto

collapse, and the load-deflection response recorded.

1.7.7 Moment-curvature relationships were obtained for each of the

seétions used in the portal frames from tests performed on beams of identical

sections. These tests are described and the results reported in Chapter 6.

A comparison is also made of the relationships obtained by experiment and by

the theory of Chapter 2.

1.7.8 The results obtained for the analysis of the reinforced concrete

frames of Chapter 5 by the two computer methods are presented and compared
ith the experimental results in Chapter 7. The results of each test are also

described here, and a comparison also made with the collapse loads predicted

by the rigid plastic theory.




General conclusions of the validity of the computer analyses are

drawn in Chapter 8,

29
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CHAPTER 2

MOMENT-CURVATURE RELATIONSHIP OF REINFORCED CONCRETE

2.1 Introduction

In this chapter, the properties of Reinforced Concrete sections will be
investigated. The properties must be known before an analysis of a reinforced
concrete frame can be performed. In rigidily jointed frames, it is the ability
of members to deform, under the action of bending forces, which gives them
their stiffness. A knowledge of the force-deformation characteristics of member
sections is necessary. The most convenient method 6f representing this
behaviour for reinforced concrete is by its bending moment-curvature relationship.
Before obtaining this, the characteristics of the constituent materials, i.e.
concrete and steel, must be investigated.

2.2 Properties of Reinforced Concrete Sections

2.2,1 Reinfor‘ced Concrete sections derive their strength in flexure, primarily,
by the concrete resisting the high compressive stresses in the compressive zone,
and the steel reinforcement resisting the large tensile stresses induced in the
tension zone, Tlle.exfent of the resistance provided by each material is
repreéented by its stress-strain diagram.

2.2.2 The stress-strain characteristics for concrete in uni-axial compression
is shown in fig.v 2.1. It is seen that the curve is non-linear in shape. The initial
stage, however, is reasonably linear and the slope at this point is the short term
modulus of elasticity Ec. After reaching the ultimate compressive stress f'cy,
the stress decreases until crushing occurs at the ultimate compressive strain ecy.
2.2.3 The stress-~strain characteristics of a steel reinforcing bar, subject to a
direct tensile force, is shown in fig. 2.2. From this figure, it is seen that the
steel behaves linearly from zero stress up to the stress at which it begins to

yield (point a). This is the yield stress fgy and yield strain egy. The slope of the




curve in this lincar region is the Young's modulus of elasticity Eg. There may
be an increase in stress at point a for certain steels, but if the bar has been
"cold-worked", this phenomenon disappcars. Between points a and b the stress
femains constant for increasing strain, this is termed pure plastic flow. At
point b, there is a further increase in stress as the bar strain hardens. Af
point c, the steel reaches its ultimate tensile stress fgy. For further increases
in strain, the stress decreases, and the bar ruptures at point d.

2.2.4 The stress-strain diagram of steel can be idealised as the material's
moment-curvature relationship by two straight lines, see fig. 2.3. Initially,

the behaviour is linear elastic up to the attainment of the fully plastic moment
Mp of the section. This state is reached when the yield spreads throughout the
depth of the steel section. The second line is horizontal, representing pure
plastic deformation on which no limit is imposed. From fig. 2.3, it is seen that
.only the values of Mp and the initial ﬂexural rigidity EI, (Young's modulus of
elasticity * second moment of area) of the.section are needed to fully define the
relationship. In this idealisation, the effect of strain hardening in the material
is neglected as it is a\ssumed that the effect of axial load on the reduction of
member stiffness compensates for its omission.

2.2.5 The moment curvature relationship of reinforced concrete is far more
complex than that of steel. This relationship défines the combined resistance of
concrete and steel to bending. It can therefore_. be expected that the relationship
will be non-linear in nature. A typical moment-curvature diagram for an under-
reinforced rectangular concrete section is given in fig. 2.4. It is seen in the
diagram that the relationship is in fact smooth and non-linear, Initially, however,
the curve is reasonably linear to point a, at which the concrete at the extreme
tensile fibre begins to crack. This results in a decrease in flexural rigidity EI,

which then remains reasonably constant up to point b. At this stage, the tensile
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steel reinforcement begins to yield. Beyond yield, there is a small gradual rise
in bending moment up to point ¢. This is the ultimate bending moment ofvthe
section. This increase in moment is primarily due to a rise in the neutral axis

of the secticn, and the increased tensile resistance of the steel at the develop-
ment of strain hardening., Failure occurs at point d when the concrete reaches

its ultimate compressive strain and crushes.

2.2.6 The percentage of tensile reinforcen'lent r present in a section influences
its moment-curvature relationship significantly. The extent of this influence is
shown in fig. 2.5 where it is seen that for the initial stage of the curves, i.e. up
to first cracking of concrete, the percentage of tensile reinforcement r has little
effect. In the cracked state, however, an increase in percentage of reinforcement
results in increased flexural rigidity EI. This is to be expected since there are
larger areas of steel resisting the tensile forces in the section. A section which
contains large percentages of tensile reinforcement is termed "over—reinforced".
For this type of section, the cracked stiffness does not vary significantly from that
in the uncracked state. These sectionsare dangerous because they fail by crushing
of concrete with little or no yielding of the steel. No warning is given of over-
loading as is prevaient with under-reinforced sections which crack and make use
of the ductility of the steel, to supply a reserve of strength.

2.3 Determination of the Moment-Curvature Relationship of a Reinforced

Concrete Section

2.3.1 Moment Curvature relationships of reinforced concrete sections can be
obtained by two methods. The first is to perform rests on beams of the required
section, and to measure curvatures for applied bending moments. This method
will be described in Chapter 6 The second method is to determine the vaiues
of bending moment and curvature by consideration of the state of stress and
strain in a section at points a, b and ¢ in fig. 2.4. This method will be

described overleaf.
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For practical purposes, the moment-curvature diagram of reinforced

concrete can be represented by three straight lines. A typical M - @ diagram

of this form is shown in fig., 2.6. In this figure changes in initial flexural

rigidity are ssen to occur after first cracking of concrete, and first yield of

nis curve, it is necessary to obtain the following
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Mc ; @ - values of bending moment and curvature at which coacrete cracks
at the exireme teasile fibre of the section.
(EI) - the flexural rigidity of the section in the uncracked state.
M , @ - values of bending moment and curvature at which first yield of
the tensile reinforcement takes place.
(EI)C - the flexural rigidity of the cracked section.
M , @ - values of bending moment and curvature at which the concrete
reaches its ultimate state,
(EI)u - the flexural rigidity of the section between yield and the ultimate
states.
2.3.2 One method of obtaining the M - @) relationship is to use the non-linear
stress-strain relationship of reinforced concrete, but a simpler and more practical
method is the use of a tri-linear representation. A method for constructing the
tri-linear moment-curvature diagram for an "under -reinforced', rectangular
concrete section is presented. In addition to the usual reinforced concrete theory
éssumptions, the following are also made to construct the diagram theoretically :-
(1) The coacrete behaves elastically upto the first yield of steel. The value of
the elastic constant is takea as the short term modulus of elasticity Ec' (see
fig. 2.1).
(2) Cracking of concrete occurs when its ultimate tensile strength fct is
reached, The beading moment at this state depends oaly upon fct.
(3) The section modulus z , and secoad moment of area 1, in the uncracked state

G G

are given by coasidering the gross area of tte section,including tha reinforcemeat.
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(4) - In the cracked state, the stiffncss of the section is complex. Empirical
formulae are used to evaluate the cracked flexural rigidity (EI)..

(5) Yield is deemed to occur at first yield of the tensile reinforcement, the
stress and strain at this point in the steel are taken as fgy and egy (see fig. 2. 2).
(6) The ultimate moment, M,;, is greater than the yield moment, My, due to
a rise in the neutral axis, and the increased tensile resistance of the steel asit
strain hardens. This condition is reached when the strain in the extreme
compressive fibre is eg;, the ultimate compressive strain of the concrete.

(7) The ultimate curvature, @, is obtained from the strain diagram at the
ultimate state,

(8) At the ultimate state, the neutral axis is at the level of the centroid of
the compressive reinforcement.

2.3.3 The uncracked state

The bending moment at which fhe concrete cracks is in fact fictitious. In
reality, the first branch of the M~@ diagram shades off into the second branch.
Cracks occur before the value of cracking moment, M, is reached. The value
of M. is therefore approximate. Using the usual elastic theory, the bending
moment at first cracking of concrete is given by :-

Mg = fop* G A (2.1)
where: f.¢ is the ultimate tensile strength of concrete.

ZG .is the gross section modulus of the section including the

reinforcement.

The flexural rigidity of the uncracked section (EI)yy is given by
the product of the short term modulus of elasticity of the concrete E_ and
the gross second moment of area of the section including the reinforcement, Ig.
It is assumed that the material is behaving perfectly elastically in this state.

Thus,

(EDypy = E¢ * I ‘ (2.2)




.The value of E. may be found experimentally (54), or from CP110(1)
where it is related to the cube strength of the corcrete., A linear relationship
between moment and curvature is assumed up to the first cracking of concrete,
and hence the curvature at this point is found from the so-formed triangle
in fig. 2.0.
@c = Mc /(EDyp (2.3)

2.3.4 The cracked state

The state of a section after cracking of concrete is complex, since
thgre are both cracked and uncracked sections between cracks. To define the
flexural rigidity (EI)¢ in this state by theory is involved. Empirical relation-
ships, however, exist which define the value of (EI).. The draft unified code,
what is now CP110, suggested the following relationship :-

(EI)c = 0.85 Ec I (2.4)
where lg is the transformed second moment of area of the section
From observations acquired from extensive tests carried out on beams, Monnier
et al in the Netherlands (51) was able to relate the flexural rigidity in the cracked

state to the percentage of tensile reinforcement r in the section as :-

()
(ED)¢ = (-2. 5¢2 4+ 13,97 - 1, 1) bd® * 10° kgfcm™ (2.5)

where b - is the breadth of the section in cm

d - is the effective depth of the section in cm
The range of steel percentages for which this expression is valid is between
the minimum possible, and that for which the cracked and uncracked flexural
rigidities, are equal. Monnier's observations also indicated that the grade
of steel, diameter of reinforcing bar used, and the presence of compressive

reinforcement, had little effect upon the value of (EI)._
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Both these relationships were used to calculate the magnitude of (ED¢»
and a comparison of the results obtained by these and by experimental obser-
vation is made in Chapter 6.

The state of stress and strain at first yield of steel in a section is
shown in fig, 2.7. The symbols used below in the derivation of the bending
moment and curvature at yield are also defined in this figure. To calculate
the bending moment at yield, 1\/%,, the lever arm of the couple, z, for the total
compressive and tensile forces must be found. This is done by first calculating
the depth x of the neutral axis.

For equilibrium T=C=C,+Cq | (2.6)

A check must be made to ensuxe that the éonllvressive reinforcement is within
the compressive zone throughout the calculation, if not, its position is allowed
for in equation (2. 6).

From fig. 2.7

The total tensile force T=Ag. fsy (2.7)a
The concrete compressivé force

CC = (fcc.x.b) / 2 (2. 7)b
The compressive steel force Cg=1fgc.A'g (2.7)c

From the strain diagram, the strain at the extreme compressive fibre in the

concrete is given by : ecc = (esy-X) /- %) (2.8)

Now from assumption (1) fe = eCC.EC (2.9)a

also, fse = € e E (2.9)b
Thus, €y = ecc.(x -dy) /x (2.10)
Substituting equations (2.7) to (2.10) in (2.6) we obtain :

AsfSy = esy.x (ES.AS' (x -d")+E..b.x)

d-x X 2
(2.11)
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0 o |-l- ,
X — W.._Lf_S_C_ =
z ‘esc *Bg
h |d
1lo o T o
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—
As - area of tensile reinforcement
A's .- area of compressive reinforcement
b - breadth of the section
h - depth of the section
d - effective depth of the section
d' - depth to centroid of compressive reinforcement
X . - depth of neutral axis from top of section
T - total tensile force
C - total compressive force
Cc - compressive forece due to concrete
Cs - compressive force due to compressive reinforcement
Yc - depth of centroid of compressive force
z - lever arm of resisting forces
fec,ecc - stress, strain in concrete at extreme cbmpressive fibre
fsc,esc - stress, strain in compressive reinforcement
fsy, esy - yield, stress, strain in tensile reinforcement
Es - modulus of elasticity of compressive reinforcement
Ec - short term modulus of elasticity of concrete

Figure 2,7 Stress-strain diagram of a section at first yield of steel
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From equation (2.11) the depth x, of the neutral axis from rhe top of the section,
can be found. The centroid of the total compressing force Y., and hence the
lever arm 2, may then be determined. The bending moment at yield is thus

given as :
My = As.fsy.z (2.12)

By reference to fig. 2.6, the curvature at yield can be found by considering the
triangles formed by the straight lines.

By = ((My - M) / (EDc) + Gc (2.13)
N.B. The curvature at yield may also be determined from the state of strain in
the secticn, by :

By = (ecc + €gy) / d (2.14)
where the values are as defined in fig, 2.7.

A comparison is made of tle values of (Zy, obtained by equations (2.13),
(2.14) and experiment, in Chapter 6.

2.3.5. The ultimate state

The bending moment increases from its value at yield to the ultimate
value My, The ultimate state is assumed to occur when the extreme compressive
fibre of the concrete attains its ultimate compressive strain, e.,;. The stress-strain
diagrams for the section at the ultimate state, together with a definition of the
symbols used, is given in fig. 2.8. The neutral axis is assumed to be at the centroid
of the compressive reinforcement. It is also assumed that the plasticity in the
concrete spreads throughout the depth of the compressive zone. The lever arm of
the resisting couple forces of the section is given by :

z=d-d"/2 (2.15)

Owing to the effect of strain hardening in the tensile reinforcement, an
increased tensile stress, f'sy» is assumed, the extent of which is taken as a portion

of the actual gain of stress from yield f to the maximum value, fgy. The ultimate

Sy?




b €cu kf'cy
bar -
o o NA, ) 2 .
Z
e'sy' f'Sy
! ]

b,h,d,d',C, T,z (defined in fig. 2.7)

f' Sy’
e'sy
~€cu

kf'cu

increased tensile stress in steel

plastic strain in steel
ultimate compressive strain in concrete

ultimate compressive stress in concrete for the depth
of the compressive zone

Figure 2.8 Stress-strain diagrams of a section at the ultimate state
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bending moment of the section is now given by :
M =A .f' .z : (2.16)
u S sy

The corresponding curvature is obtained from the state of strain of the section,

+

hu

r
wn

= + ' 9
G T e Sy) /d (2.17)
From fig. 2.6 the flexural rigidity (EI)u of the section in the ultimate state is
given by the slope of the third line of the relationship, i.e.
= % - ’ 2.
(ED= (M, - M) /(@ -9 (2.18)

2.4 Properties required for the constructioa of the theoretical M- diagram

The squations necessary for the theoretical construction of the moment-
curvature relationship have been derived. The properties of the coacrete and
steel required for the construction are :-

H Tﬁe tensile strength of concrete - phis can be measured by the split
cylinder test as detailed in reference (53), or the modulus of rupture test.

(2) The short term modulus of elasticity of concrete. This may be measured
experimentally or related to the cube strength of the concrete as is given in CP110.
(3) The tensile stress, strain curve of the steel, the modulus of elasticity of
the tensile and compressive steel. These values are obtained from direct tensile
and compression tests of the steel bars.

(4) | An estimate of the increased tensile strength due to strain hardening of
‘the steel (found in the same manner described above).

(5) - The ultimate compressive strain in concrete. Values set out in codes of
practice CP110.

The above method of constructing the M - @ relationship theoretically is,
however, restricted to under-reinforced concrefe sections. A comparisoa of the
moment-curvature relationships obtained by the method described in (2. 3), and
from experimental observations of tests carried out on beams is given in Chapter 6.

* Although the method is essentially semi-empirical, it will be referred to as

the theoretical method throughout this thesis.
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2.5 Instantancous flexural rigidity

In a frame analysis, it is the flexural rigidity (stiffness) of a member
which is of most importance. It is more convenient to relate the flexural
rigidity of a member to its curvature. The instantaneous flexural rigidity (EI);
is the slope at any point on the moment curvature diagram. For the moment-
curvature diagram of fig. 2.9(a), the instantancous flexural rigidity at point bi,
is defined as :-

(EDyy = (dM/dQ)4 (2.19)
2.5.1 The instantaneous flexural rigidity-curvature diagram is constructed by
measuring the slope at points along the M~@ diagram. This slope is then plotted
against the curvature at which it was measured e. g. point i in fig. 2.9(a) and (b).
The main advantages in using this diagram are :
(1) the flexural rigidity is given directly for a specific value of curvature.
(2) the accuracy of the diagram can be improved by measuring the slopé at
points closer together.
(3) A comvletely smooth M-~@ relationship can be represented by a series of
short straight lines.

2.6 Representation of the (EI)¢ - @ diagram

The (EI); - @ diagram is represented for use in a computer analysis by
a set of straight lines joining specific points, These points correspond to particular
values of flexural rigidity and curvature. For the non-linear M- diagram
of fig. 2.10(a), the (EI)t - @ diagram is constructed by measuring the slope of the
moment-curvature diagram at, e.g. eight points. These slopes are plotted against
the curvature at each of the points. This is shown in fig. 2.10(b). The points are
joined by straight lines. More points are selected in the curved regions of the
M -~ @ relationships. Straight regions of the M ~ (J relationship are shown as

horizontal lines on the (EI), - @ diagram.
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Figure 2.10 (a & b) Construction of (EI)t-@ diagram from a typical moment
curvature relationship .
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To present the (EI)¢ - () diagram in a suitable manner for data in a
computer analysis, the following approach is used. A two dimensional array
is assigned for both the instantaneous flexural rigidity and curvature values.
Each point of the (EI); - ¢ diagram is numbered from one (zero curvature-
initial flexural rigidity), upwards. The corresponding values of (EI); and ¢
are assigned to these numbers. The number of points used depends upon the
accuracy required for representing the moment-curvature relationship.

For the three line relationship derived in 2.3, the (EI), - @ diaéram of
fig, 2.11 is obtained, From this figure, it is seen that abrupt changes of stiffness
occur at the three main stages in the behaviour.

2.7 Axial load effect on moment-curvature relationships

2.7.1 In multi-storey frames, heavy compressive axial loading is present in
their lower columuns. It is necessary, therefore, to examine the effect of axial
1oad on the moment-curvature relationship of cclumn sections. In the preceding
text, the M ~ @ relationships have been discussed with no axial load present in a
section.
2.7.2 In fig, 2.12, the effect ’of axial load upon the M - @ relationship of a section
is shown. The curves are for different ratios of axial load P to the maximum com-
pressive load the section can withstand viz :

Py =Ac f'ey (2.20)
where, " Ac is the area of the section

f'cuis the ultimate compressive stress

From this figure it is seen that as this ratio P/P, increases, the initial stiffness
of the section increases. This is because the section is initially in compression
and tensile stresses do not develop so quickly. The limit of this ratio for which

an increase in initial stiffness always occurs is approximately P/ P,=0.4.
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Figure 2,11 (El)¢ - ¢ diagram from the tri-linear M~ relationship of
Art, 2.3
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Figure 2.12 The effect of the presence of axial load in a section on its M~(
relationship




For values greater than 0.4, it is shown that the extent of plastic deformation
is reduced. The percentage of tensile reinforcement present in a s2ction
influences the effect of axial load on the M - (§ relationship. This effect is
reduced by increasing the percentage of reinforcement.

2.7.3 To allow for the presence of axial load in the lower columns of a
structure, a suitable method for adjusting their moment-curvature relation-
ships is needed. In this thesis, the axial load effect is neglected since small
axial loads are present in the frames tested. To verify this, tests were
carried out for the M - @ relationship of reinforced concrete beams subject
to a constant axial load. These are described in Chapter 6.

A method for determining the relation between axial load moment and |
curvature (P - M - ¢§) for a section has been presented in a report by Cranston
(38), where a numerical procedure for determining the relationship is presented.
The bending moment and axial strain in a section corresponding to specified
values of curvature and axial load are found.

2.7.4 For a reinforced concrete member subject to both compressive axial

forces and bending momeﬂts, the relationship between its ultimate bending

moment 1\/1u and ultimate compressive axial load Pu, can be represented by

the interaction curve shown in fig, 2.13,

where P/Pu is the ratio of the axial load in the member to its ultimate axial
load

and M/ Mu is the ratio of the bending moment in the member to its ultimate
bending moment.

Point A on this curve represents a failure of the szcticn in pure com-
pression, i.e. for P/Pu =1 and I\/I/Mu = 0. Point D represents a Zzllure in
pﬁre bending for which M/’Mu =1 and P/ Pu = 0. Failure with a combination of

compressive load and bending moment can be found by drawing a straight line




such as 0B through the origin 0 and with a slopzs equal to the particular ratio
.Of end load to moment. Point B, where the line iﬁtersects the interaction
curve, marks failure.

It can be seen from this curve that when low values of compressive
axial load exist, the ratio of ;\E/T_\Iu can be greater than unity (at point C),
indicating that the member can withstand bendiﬁg moments in excess of its
ultimate bending moment due to th2 increase in resistance of its saction

under the action of low axial loading.
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Figure 2.13 Moment-Axial Force Interaction Curve
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CHAPTER 3
THE NON-LINEAR ANALYSIS OF REINFORCED CONCRETE FRAMES
BY AN INCREMENTAL TECHNIQUE

3.1 Introduction

In this Chapter, an incremental approach for the non-linear analysis |
of reinforced concrete frames wiil be presented. A'computer technique which
utilizes this procedure is then described.

The main causes of non-linearity in reinforced concrete frames have
been discussed in the preceding chapters. . In the analysis to be presented,
it is the non-linear material properties which are assumed to be the dominant

cause of non-linearity in reinforced concrete frames.

3.2 Numerical techniques for the non-linear analysis of structures

3.2.1 ‘Struc'tu‘res which exhibit non-linearity in their »loaded behaviour may be
analysed with a great deal of accuracy by using certain numerical techniques.
In this thesis, it is the load-deflection characteristics of frames which are
investigated and so these techniques will be discussed ﬁith particular reference
to the load-displacement of structures.
3.2.2 The overall behaviour of a structure which exhibits non-linearity may
be predicted by uéing an incremental technique. In this method, increments
of proportional loading are applied to a structure., The displacements produced
by the application of each load increment are then computed. The complete
load-displacement history can then be obtain.ed by summating the increments
of load and each of the resulting displacements.

To reduce the computa‘;ional effort in this type of analysis, the stress (f) -
strain (e) relationship of each element of a structure is transformed in_to its
instantaneous (tangent) modulus (E)t - strain diagram. Consider the f - e

/ relationship shown in fig. 3.1 (a), at any value of strain e the slope of the
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(a)




curve is the tangent modulus Eti' Hence, a relationship between Et' and e
, i
can be obtained by computing the slope at various strains on the f - e curve,

A typical relationship of this form is given in fig. 3.1 (b). Using this

1g
representation of the propertizs of a member, the non-linear load-cdeilection

i . -

nistory or a structure may be traced by an incremental method in the following

manner,

To simplify the description of this method, the non-linear behaviour
of a single member subjec; to axial extension is considered. The Et -e
diagram of the member is represented by the curve of fig. 3.2. In the

unloaded state, the tangent modulus E " of the member is represented by

1

Ob in the figure. Consider now the application of an increment of load
APl to the member. This load produces a displacement A uy in the

member. The magnitudé of this displacement can be found from the solution

-1

of the stiffness eqdation Aul = K1

A P, If APl is sufficiently

small, then the initial tangent modulus Etl can be used to calculate the

stiffness coefficient K,. This is while increasing the load from zero to AP

1 1°

Since Aul is known, the increment of stress Af‘l’ and hence, strain Ael
produced in the member, can be eyaluated using the initial value of E ¢ in

thé elastic equation. This value of strain is then plotted on the Et - e curve,
and the corresponding value of Et found. This value is represented by Ok

.in fig. 3.2.

Consider the application of a further increment of load APZ, then

during the analysis of the member subject only to APZ , the new value of

tangent modulus Et given by Ok may be used to represent the tangent modulus

2
of the member, The displacement Auz, and hence, strain Aez produced

by this new load increment is then computed as before. Under the load

APl + APZ’ the total strain in the member is Ael + Ae., which is

2’
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represented by Of in fig, 3.2, Once again, a new Et for the bar can be obtained

from the dicoram

‘This process of using the current tangent modulus to solve the stiffness
S¢-ztion for an increment of displacement Aul, produced by a load AP, -
i
atting aicze, can be continued upto failure, At the end of each solution to the

stifiness and celastic equations, the load, displacement and strain after j

increments is given by : -

Z:AP.
1

Load P. =
J
i=1 ‘
j .
Displacement u, = Z Aui (3.1)
i-1

i1

j J

Strain e Z:Aei = ZAfi/Eti
i=1 i=1

In this manner, the overall load~-displacement characteristics of the
member may be found, It is possible to extend this_method enabling complete
frames to be analysed. bThis can be achieved by using the foregoing analysis
in conjunction with the matrix displacement method.,

It is clear that this method will incur some drifting from the true
equilibrium path at the end of each load increment application. This is

because the value of tangent modulus E computed from the state of

t(i-1)
.strain in a member after the application of the previous load increment is
used to compute the new strain induced by the most recent load increment.
The true value of Et’ 'however, lies somewhere between Et(i— 1) and that
value corresponding to the total strain of the.member after the application of
the most recent load increment. It is assumed, however, that this drifting

may be reduced to a tolerable level by using small values of load increment

throughout the analysis,
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3.2.3 A more accurate method of analysing non-linear structures riumerically

is by using an iterative-incremental approach. This will ensure that equili-

brium is being maintained throughout an analysis. One such techaigue is
that referred to as the Nevw:on Raphson procedure. By this method, 2 set of

nen-linear equations of the form -

fl(xlx2 s e ee 0®) =0
.f2 (XlXZ e ee e ee X;;)' = O (3.3)
fn(X1X2 e e ee e xn) =0

can be solved by an iterative procedure involving a series of solutions to a_
"linear" set of equations. In the present context, these are the joint equili-
brium equations resulting from the matrix displacement method of structural
analysis, oo

Let the unknowns (x1 Ko ae Xn) be denoted by X and the functions

2
(f, £, .. fn) be denoted by F where n is the number of unknowns. At any

172
given round of iteration k for which F (&)k # 0, the value of the function F
at (X + A_}g) K is given in a 1ineari.sed form by the first two terms of the
Taylors series expansion of (E)k about Q(-)k as:

E(@),+ AKX P=F®, + [2F/ 2] &), (3.4)

where §k are the assumed displacements at the current kth iteration and
A(E)k are small differences in the values of displacements (Z(_)k. The

first term in the brackets in equation 3.4 is a 1 x n matrix and the second

is aﬁ n x n matrix, To obtain the values of A(X)k which will result in an

improved approximation of the values of X, the linearised expansion of

X+ A(_}_(_)k is equated to zero, i.e:

E®, + LK]. A, =0 (3.5)

B
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and is the Jacobian matrix called the tangent stiffness matrix. Equation 3.5

is called the linear incremental ecuilibrium equation and. it gives the
linearised approximation to the relationship between the residual load
Vector_(_Ii)]L< and the resulting increments of displacements A(Z_(_k) as:
_l .
®, = - [x] @, (3.6)
from whence a new approximation to the total displacements is given by :-
K q = @+ A, | (3.7)
Equations 3.6 and 3,7 represent the Newton Raphson method of
solution to the set of non-linear equations 3.3. The updated solution (E)k 41
is once again substituted into equation 3.6 to obtain a new correction as

(X)

e 49 At each iteration, the residual loads (E)k are calculated, these

give a measure of the inbalance and when this is sufficiently small,
equilibrium is assumed to be achieved,

To improve numerical stability and also to trace the overall non-
~ linear load-deflection history, the loads can be applied in a series of
increments and a solution for (X) being found for each load increment.

The Newton Raphson process requires a great deal of computational
effort, since [K] has to be recalculated and inverted at each iteration and
consequently, some adaptations have been devised for use with the method
to reduce the effort, One such épproach is to calculate K for the first iteration

of the first load increment and then to keep it constant throughout the analysis.

S
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The method is then equivalent to the "initial stress" technique. If the Newton
Raphson' method is only allowed a single iteration per load increment, the
method generates to the "Incremental Stiffness Procedure’ which may be
charecterised by the need Zcr many small increments of load to ave:id drifting
of the solution frbm the true equilibrium path,

Other variants of the Newton Raphson process which have been used
are to allow two iterations per iczd increment in the "incremental stiffness
pr.ocedure" in an attempt to reduce drifting. Another is where three load
steps are applied before using the Newton Raphson iteration to achieve
equilibrium.

As is prevalent with certain linear problems, ill-conditioning may

arise if the functions, in this case the load-displacement curves, are nearly

-horizontal in the neighbourhood of the solution. This is because a small

difference in the applied loading causes a much larger change in the displace-
ments. The Newton Raphson method will not converge if the starting point is
too far away from the final solutioh, and will ﬁrobably give trouble if the
curve has discontinuities..

3.3 Non-linear analysis of reinforced concrete frames by an incremental

technique.

In the previous section, an incremental approach to the non-linear

- analysis of structures was discussed with reference to a single member.

In this secﬁon, a development of this incremental approach for the non-linear
analysis of reinforced concrete frames will be described. Here, the prime
cause of non-linearity is that due to material properties, i.e. M-¢ relationship.
3.3.1 Pfior to the development of an analysis for any type of structure, the
specific factors which influence their behaviour under loading must be con-

sidered. There are many factors to be considered when develcping an analysis
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In the development of the analysis, the following assumptions have

L In e majority of loading cases, the bending moments in a frame vary
. The curvawre J (which is a function of moment), and
flexural rigidity, therefore, also varv. This variation may be accounted for
by dividing the members of a frame into smaller submembers, each of which

is assumed to have a constant stiffness.

2) All the applied loads act at joints.

3) The loading is proportionally applied to a frame upto collapse,

4) Small deflections compared with the overall geometry of a frame are
produ.ced.

5) The effect of axial load on the M-(} relationship of a section is negligible

for the range of loads enccuntered in this thesis.
6) The properties of the submembers are defined by their instantaneous
flexural rigidity-curvature (EI)t - (J diagrams.
7) For the purposes of calculation, the curvature (J of a submember, the
bending moment M along its entire length is assumed to be constant. Its value
is equal to the larger of the bending moments acting at its ends.
. 8) The curvature @ of a submember is a function only of this bending
moment M. The curvature at any stage of the loading history is given by :-
@ = M/EI : (3.8)
where EI is the current flexural rigidity of a submember.
Adopting these assumptions, the analysis is formulated in the following
manner,

3.3.2 Consider the instantaneous flexural rigidity-curvature (EI)t -

. =




diagram of a typical submember of a frame shown in fig. 3.3. In the unloaded
state of the irame, the flexural rigidity of a submember is given by the

AL

1Y)
()
W

ordinate Ob, and will be denoted by (EDto’ A small increment of load
is then applied to the frame, I A L1 is sufficiently small, the overall
stiffness matrix Eo of the irame can be constructed using the initial values
of flexural rigidity of each sutmzmber i.e. (EI)tO. This matrix Eo will
represent the stiffness of the frame while the loading increases from zero
to AL..

1

The joint displacements of a frame A§1 produced by the load

increment AL, are then found by solving the stiffness equations : -

1
AX, =K' AL, | | (3.9)
Using these joint displacements Ag(_l, the increment of member
fofces (bénding moment and axial force) in the frame are given by :-
A_Iil = l(_ofs_ Azi__l (3.10)
for WhiChEO is the member stiffness matrix constructed using the (EI)to values.
A is the displacement transformation matrix.
For each submember, the larger of the bending moments A_lyl_l
acting at its ends are then found. The curvature Agl of each submember
resulting from the application of A,T__._l only is computed by the following
equation : -
Agl = AMl / (EI)tO (3.11)
This value of curvature A_(Zl is then plotted on the (EI)t - @
diagram. This is shown by Oa in fig. 3.3. The corresponding value of
tangent flexural rigidity (EI)tl may then be found and is denoted by Oc in
the figure. This value is acquired by interpolating between the points on
the (EI)t - (J diagram.

A further increment of loads A L, is then applied to the frame,

2




60

J
By

(B}

I)t - (J diagram for a typical member of a frame

B

3

fig. 3.




61

During the analysis of the frame subject to the loads AL,) acting alone, the
instantaneous flexural rigidity given by Oc in the diagram can be used to

represent the tangent modulus for the submembers in both the owavall and

CGvoldll

rmorbhayr or

member stiflness matrices, —El and }_c_l. The stiffness equations are solved
again. Tnese are now in the Sorm :-
aX, = K1 AL | (3.12)
A new set of joint displacements Azi_z are obtained. The member
forces AP—Z are now given by :-
A_liz = El A A§2 (3.13)
and once again, the induced curvatures A.(Zg of the éublnembers are given
by :
AQZ = A_lyf_.z / (EI)tl (3.14)
Uﬁder the loads A}._l + AEZ acting together, the total curvature
produced in a submember is given by‘ Agl + A_qz. ‘This is represented on
fig. 3.3 by Om. A new set of values (EI)'L_2 corresponding to the total curvatures
- in the submembers may then be found, and are given by the ordinate Oh,
This process of using the current (EI)t value to solve the structure for
a new set of displacements A_)gi under an increment of loads A-Iii acting

alone, can be continued upto failure. After each load increment, j, the total

load, displacement, member forces and curvature are given by :-

(a) the total loads j
= | AL, (3.15)
_J —1
i=1
(b) the total displacements j j
-1
X, - AX, = K., AL (3.16)
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(c) the total member forces
] ]
;\ N .
P, = ! Ap = K, AAX ~ (3.17)
i=1 i=1
{&) =2 total curvature
J ]
Qj = A—Q?i = ‘\’ ( A_i\_/[_i/(EI)t(i _ l)) (3.18)
R |
i=1 i=1

By this procedure, the loading of a frame can be increased upto failure,
This state is reached when the determinant of the most recent overall stiffness
matrix Ei is eéual to zero. At this stage, the analysis is terminated.
3.3.3 It is clear that this method will incur some drifting from the true
equilibrium path at the end of each load increment. This is because the tangent
flexural rigidity (EI)t(i-l) computed from the total curvature after the ('i -1)th
increment, has been used to represent the flexural rigidities of the submembers

' to (L, . + AEi)' In reality, however,

=(i-1) *© ie)
the flexural rigidity changes during the application of A}_i. This may result

while the loading increases from

in an overestimation of the true stiffness of a frame. However, it is assumed
that this drifting may be reduced to a tolerable level by using small values of
load increment throughout the analysis.

'3.3.4 Reinforced concrete is an ideal structural material because the proper-
ties of a section can be adjusted readily to provide almost any required
resistance to applied stresses, This may be achieved by one or a combination
of the following methods : -

(a) by increasing the depth and breadth of a section.
(b) by increasing the percentage of tensile reinforcement.

(c) and by adding compressive reinforcement,




As a result of this flexibility, it is possible for a reinforced concrete structure
to consist of members with "Jarymg properties, Consideration is now given to
some causes of this variation.

The size and number of reinforcing bars may vary along the length of
the members. This results iz verving percentages of tensile reinforcement,
and hence, varying M-(J proverzi=s. The percentage of reinforcement may
vary due to the following factors :

(1) Curtailment of main reinforcement at points where the bending moments
are small.

(2) Where bond réquirements result in an overlapping of bars.

' (3) Where clauses in the codes of practice require certain reinforcement
detailingf

When reinforced concréte frames are loaded 1atera11y and vertically,
two points of contraflexure exist in the cross members. The bending moments
produced are such that the top or bottom of a member is in flexural tension
at some point along its length. If there is a difference in the position and
percentage of reinforcement at these "tensile" regions, then a change in

séction is present,

For certain frames, architectural constraints may require the séction
depth to vary along the length of a member. This will also result in a membex

- of varying properties.

It is possible that for most reinforced concrete frames, one of the
above situations will occur. Allowance for these changes of properties along
a member must, therefore, be made, This may be achieved by dividing the
full members of a frame into smaller membexrs, each of which defines a

particular section property.
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3.4 Particular factors to be considered in the formartion of the incremental

3.2, The anaivsis nresented above must be ranslated into a suitable form
—=-2I% & COIMDUTSr program can be written, One of the assumptions made for

PN RIS JUR
-l

CImZ Ut the analysis :s that for the purposes of calculating the curvature
of a submember, the bendinz momen zlong its entire length is constant and
equal to the larger of the bencizz moments at its ends. Fig. 3.4 shows the
bending moment diagram for a pin-z=ded portal frame. If joints are inserted
at the numbered points shown, and the lengths of frame between these joints
termed members, it may be seen that the bending moment is not constant
along a member. This is particularly seen to be the case between joints

4 and 5.

Under these conditions, the assumption is unrepresentative of the
actual behaviour of the frame, This will result in an underestimation of its
load carrying capacity, because the representative bending moment of each
member is too large., This will ﬁréduce larger curvatures and hence reduce
the flexural rigidity of the members.

This situation can be improved by dividing the members of a frame
into smaller submembers. If this is performed on the member between joints
4 and 5 as shown in fig. 3.5 (a), and the larger of tte bending moments of each
submember taken to represent the bending moment of the entire submember,
then the loss of accuracy becomes insignificant. By decreasing the length of
the submembers, the accuracy of the assumption is thus improved.

It is obvious from fig, 3.4 that the gradient of the bending moment
diagram is of great importance, For a relatively flat diagram as indicated
in fig, 3.5 (b), fewef subdivisions are necessary to describe the state of

bending in a member accurately.
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Figure 3.4 Bending moment diagram for a portal frame

e m om e e w o m o w =\ -y

(a) ' (b)

Figure 3.5 Subdivision of a member.
(a) for a steep bending moment diagram
(b) for a shallow bending moment diagram
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The larger and not the average of the bending moments in a submember

is taken to be representative of the state of bending as this avoids the possi-

—h
8]
93}
e
O
U
t

bilicy of a sh ength of a member reaching its ultimate state without being

detected,

he use of this subdivision technique increases the number of degrees
of freedom of a frame. A greszt=r number of stiffness equations will therefore
require solution, and consequerzy, more computer time and storage space
is used. It is therefore necessary irom the economic aspect to limit the
number of subdivisions used in a frame. However, any reduction in the
number of subdivisions must not interfere with the accuracy of the analysis.
3.4.2 To assess the effect of the number of subdivisions used in a frame
with reggrd to the accuracy of répresentation, a series of computer analyses
were carried out on Frame F1 (see later). The results are presented in
fig. 3.6 as the 1qad deflection curves for sway of the frame. The range of
subdivisions used were from the full members of the frame to 106 sub-
members, In the case of the latter analysis, 317 simultaneous equations were
solved for each load increment. From the graph, it can be seen that as the
number oii’ subdivisions increase, the collapse load becomes larger while
the deﬂections at particular loads decrease, This indicates an increase in
the stiffness of the frame. It may also be noticed that for values of sub-
- division greater than 28, there is no significant change in the results obtained
for'lthe léad deflection response. For Frame F1, a value of 28 subdivisions
may therefore be used with confidence,

If larger frames are subdivided in the same ratio to that used above,
a similar degree of accuracy from the subdivision aspect may be assumed.
3.4.3 It would be desirable to further reduce the number of subdivisions

whilst maintaining a similar degree of accuracy. This may be zchisved by
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fhe following approximation. Fig. 3.7 shows a tipical bending miocment diagram
for a portion of a frame. In this proposed method, a value of bending moment
which lies between the values Ml and M2 is used to represent the bending
moment along the whole length of a member. This bending moment is calcu-
lated by the following expression :- ‘

M‘k = 1\/[l +k (M2 - Ml) (3.19)
where 1\/[2 > Ml and k is a factor by which the difference in the end moments
are factored, to represent the bending moment of a member wheﬁ computing
its curvature. In the analysis extra joints are inserted, apart from the
main joints, at points of zero bending moment. These points are easily
determined by a single load increment analysis of an undivided frame. The .
slightly subdivided frame is analysed as previously described, but the

curvature of each member is calculated using the factored bending moment .
M,

For Frame F1, a number of vaiues of k were tried, the results are
presented in fig, 3.8 as the sway load-deflection curves. The results are
also compared with a fully subdivided frame analysié. The best value of
k is taken to be 0.93. This modified analysis provides an economic method
for testing different configurations and section sizes prior to a fully sub-
divided analysis.

3.4.4 The magnitude of the lczd increment used in an analysis is of great

importance and its effect or the accuracy of the analysis will now be investi-

gated. It has been shown previously that the overall noz-Iizear behevicur of
a reinforced concrete frame can be cbeined by summing its TespCoss o s
application of small increments of loacd. As the megmitude CI tigse incre-

1

ments becomes smaller, the accuracy of utilizing the value of ('EI)t obtained

from the current total curvature, in the formertion of the cstiffness
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Figure 3.7
- a frame

end

Typical bending moment diagram for a portion of
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€cuations at the next load increment, is enhanced.

However, for each load increment applied to a frame, the stiffness
equations must be assembled and solved. If the increments are very small,
the computer time necessary for a complete analysis is large and may be
uneconomic. It is therefore necessary to examine the effect of the magni-
tude of load increment used in an anélysis,

Comnsider the typical (EDt - diagram of a reinforced concrete member
shown in fig. 3.8, Initial load increments produce small increases in the
curvature of the members of a frame because the members are initially
very stiff. As the loading increases, the stiffness of a member reduces
according to its total curvature. Ata particulaf stage in the loading, Li’
the total curvature of a member is Qi and the corresponding flexural rigidity

(EDti' If a further increase i load from Li to L causes an increase in

i+1

the total curvature of a member from Qi to ¢ then from fig, 3.9, itis

i+
apparent that the stiffness of the member has been overestimated for this
curvature increase, This is because (EI)ti has been asspmed to represent
the flexural rigidity of a member for the entire increase in curvature from
Qi to (Zi 41 In reality, however, EI is reducing in magnitude. At regions
where (EI)t varies rabidly with curvature, e.g. between points A and B on
fig. 3.9, the inaccuracy resulting from using large load increments may be
quite significant.

This overestimation ¢ the stiffness of a frame is accentuated at the
total lead at which the first vieiZ cZ steel develops anywhere in the frame,
At this stage, large increases of curvature result from smzll increases in
applied loading. It is therefore necessary to further reduce the meaznitude
of the load increment at this stage in the analysis.

To examine the effect of the magnitude of load increment on a
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{Garerm,

'(EI) - (J diagram of a member

(EI)

t

Figure 3.9
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typical aralysis, two sats of computer analyses were carriad out for Frame F1.

In the first of these, the load increment was varied berveen O, 12 and 10% of

the experimental colizpse load. The range of loading of interest in this set
25 UDI0 ThET 2t which first vield of tensile steel occurred anywhere in the

Zams, e results are presented in fig. 3.10 in the form of the sway

load-deilection curves, Tre Zirst yvisld of steel occurs at approximately 3kN
side load.

From the graph, it may be seen that as the magnitude of load incre-
ment decreases, the deflections corresponding to particular summed loads
increase. This is because the overestimation of a frame's stifiness is
reduced, i.e. a value of flexural figidity nearer the true value is being
utilised. It can also be seen from this figure that for values of load inc;rement
.iess than 100 N (¥2% .of the coilapse load), no significant change in the
_resﬁlts ocCurs.'

For the second set of anaiysés, the load increment was kept constant
at 2% of the collapse load upto the *total load at which first yield of steel
oc_curred in the frame. Subsequently, the load iﬁcrement was varied between
5% and 100% of this initial value. The results obtained are expressed as
the sway load-deflection curves in fig. 3.11. Again, it may be seen that
deﬂec.tions increased as the magnitude of the load increment was reduced.

.. The load deflection curves did not change significantly when the load incre-
ment was reduced below 25% of its initial value.

From the two sets of analyses, it is indicated that no significant
change occurs in the results, if the load increments are made smaller

than 2% of the collapse load initially and 0. 5% after the steel has yielded.
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3.5 A computer program for the non-linear incremental analvsis of
reinforced concrete frames
A compuier program was written in FORTRAN IV for t-e non-linear
anz:ysis of reinforced concrete frames by an incremental method, The main
steps zc:lowed by the program zre given in the flow diagram of fig. 3.12.

This procedure is described iz —oars datail below.

3.5.1 Firstly, the data concerzizz the geometry of the frame and the
properties of its submembers are read in, The next data to be read is the
magnitude of both the initial and reduced load increments. The arrays which
store the joint displacements X, the load vector L and the member forces P,
are all made equal to zero. This eliminates the possibility of an incorrect

number being stored.

For the analysis, the (EI)t - (J properties of the submembers are

represented by a piece-wise linearized curve. The values of (EI)t and ¢J

at the critical points of this curve are stored in two separate, two-dimensional

arrays, From this curve, the values of instantaneous flexural rigidities.

corresponding to the curvatures in the submembers can be obtained by inter-

polation. The initial values of (Ei)i'and @ (which is zero) are assigned to

: eac‘h submember,

| The number of locations required to store the overall stiffness matrix

. K of the frafe is then computed and the array which stores the matrix is
made equal to zero. The first increment of loads & Lt 1 is then applied to
the frame and the K matrix is constructed in the manner referred to in section
1.5.7 of this thesis. In this matrix, the flexural rigidity of each submember

| is represented by the initial (EI)t value, The joint equilibrium equations are
then solved by the compact elimination technique. This technique is also

referred to in section 1.5.7. The solution is for the frame with ozlv the




READ GENERAL FRAME AND MEMBER DATA

| READ LOAD INCREAENT L |
i
ZERO LOAD, D'SPLACEAENT & MEMBER
FORCE VECTORS

¥

ASSIGN INITIAL (EI)L' - VALUES TO MEMBIERS

v i
CLLEAR SPACE FOR K MATRIX
¥
TEST iF THE O APPLY NEXT |
CURVATURE | LOAD INCREMENT i
OF ANY MEMBER AL ;
HAS ATTAINED
THE YIELD VALUE
QY
%YES
REDUCE LOAD
INCREMENT AND s 1
APPLY AL Y ?
R -
SUM ALL LOAD INCREMENTS
L= Z AL ;
¥ é‘
- i
FORM KX AND SOLVE AX =K Lo |
¥ i
S ——— — YES TERMINATE
TEST iF DE;‘ K 1S - VE = ANALYVSIS

1'\10

CALCULATE MJEMBER FORCES
g
CALCULATE MEMBER CURVATURES 4@ = A M/EI
SUUM ALL PREVIOUS = @'s & EVALUATE NEW
(E); VALUES
FROM (EI)_ - @ DATA

3
[SUM DISPLACEMENT & MEMBER FORCE VECTORS |
' ¥

PRINT OUT CURRENT SUMMED LOAD, DISPLACEMENT
AND MEMBER FORCE VECTORS

Figure 3.12 Flow diagram for Incremental Program
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i loads A}_l applied. A test is then performed to ascertain
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if tne determinant of tha K matrix is negative, If the determinart is positive,

the analysis is coxtinued and the submember forces APl producad by the

- oI each submemzer, the curvamre AQ produced by the larger of the
bending moments AM actinyz =t ts exds is computed using the equation

AQ = AM /EI, where EI is to2 initial value of (EI)t. The total value of
curvature of a submember is thez Zsund by adding A@ to all the previous
values of curvature increments, Using the piece-wise linear (EI) - (J data
of each submember, the Valﬁes of (EI)t corresponding to the summed yalues
of curvature are then found by interpolation. These values will replace the
initial (EI)t,S as the flexural rigidities of each submember.

The increments of displacement and member forces are then sumrﬁed
and the resulting values are printed to‘gether with the total load vector. The
total curvature vector ( Z AQ@) is then tested for each submember to ascertain
whether any submember has reached a value of curvature equivalent to that
at yield of its tensile reinforcement. If this curvature has been attained any-
where in the frame, the load increment is reduced to A Lno otherwise the
next full value of the load increment A L is applied. This increment, together
with all the previous load increments, are summed to give the total loads

acting on ﬁhe frame.

The K matrix of the frame is then constructed. In this matrix, the
flexural rigidity of each submember is represented by that value computed
for the total curvature of the member at the end of the previous load application.
The stiffness equations are then solved for the unknown joint displacements
resulting from the application of the second load increment A L2. The sign

of the determinant of the overall stiffness matrix is determined and if it is
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positive, the whole procedure is continued, This procedure is repeated for

further load increments until the determinant of the overall stifiness matyrix

is negative, At this stage, the analysis is terminated.

t

T 2

.2 In ecpendix (1), the Zrame reference system and the data usad for
each irzme in the above comzuter program are prasented.

3.6 Results

The portal frames tested, z=¢ the results bf which are reported in
Chapter 5, have been analysed by the incremental method. The (EI) ¢ @
properties of the submembers used in the analyses were those obtained
by theory an-;i experiment (Chapter 6). The results are presented in
Chapter 7. |

3.7 General Discussion of the incremental method

3.7.1 The computer analysis déscribed in this Chapter is an incremental-
variable-stiffness procedure which involved repeated solution of the joint
‘equilibrium equations under successive values of applied load increments.
After each solution of these equatfons, the increment of curvature produced

in every submember in a frame was computed. It was then possible to obtain
the total curvature of each submember and hence the corresponding value of
instaﬁtaneous flexural rigidity. These values of (EI)t were then used to
represent the flexural rigidity of the submembers throughout the next increase
- in loading.

3.7.2 It was realised that by utilizing these values of (EI)t in the solution of
the stiffness and member force equétions at the next load increment, a certain
amount of drifting from the true equilibrium path would result. This is because
the flexural rigidity is not constant, but variés duri