Aston University

Some parts of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately




INTERACTION BETWEEN FOUNDATIONS AND STRUCTURES

Md. AZADUR RAIMAN BSc¢ Eng, MSc

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF CIVIL ENGINEERING
THE UNIVERSITY OF ASTON IN BIRMINGHAM

OCTOBER 1978




INTERACTION BETWEEN FOUNDATIONS AND STRUCTURES

Md. AZADUR RAHMAN

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
1978

SUMMARY

The thesis considers the interaction between complete structures
and their supporting soil., The finite element method is applied
and computer programs are developed for the three dimensional
non-linear analysis of the superstructure, the foundation and the
soil as an integral system., The non-linear properties of the soil
are determined from triaxial tests and represented by a set of
graphs of octahedral shear stress and strain. These are mathe-
matically formulated in terms of the cubic spline functions and
followed by an incremental analysis technique, When the long-
term settlements of soils such as clay are given by Terzaghi's
consolidation theory, an iterative method of analysis is proposed.
Tensile separations at the foundation-soil interface and within
the soil mass are represented by incorporating dummy joints in the
mesh and activating them to introduce a physical crack.

The data preparation for the computer programs is largely automated
so that they can be used with a minimum of manual effort and with-
out a knowledge of the details of the analytical method. Two
methods of the construction of the overall stiffness matrix which
require little or no core storage are presented. Economy in the
computer time is achieved by formulating the element stiffness
matrices in terms of explicit expressions. A comparison of the
cost of the analysis and the size of the problem is presented,

The results of a series of experiments on the models of two space
frames, a box culvert and a tall structure resting on a bed of sand
are reported and compared with the analytical results, Two large
practical structures and their supporting soil are analysed and
their interactive behaviours are investigated,

Key words: Interaction, finite elements, non-linearity, cracks,
large structures,
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1.1 INTRODUCTION

A structure and its supporting soil always form an integral
unit. A study of the interaction between the two leads to a better
understanding of the behaviour of both. Traditionally, however,
these two components have been isolated and treated separately. In
this manner, any interaction that may take place between the two
has been overlooked. While such an approach is irrational and often
incorrect, it sometimes produces a "safe' design. This is achieved
by limiting the movements of the foundation to a low value, which
results in an uneconomical design.

Meyerhof (1947) appreciated the interaction of building frames
with their supporting soil and suggested the inclusion of structural
rigidity when calculating settlement of their supports. A growing
interest has since been shown in this field which has become
increasingly important with the necessity of building cheaper and
more complex structures on less favourable grounds. It has also
become possible because the modern approach to structural analysis
and the existence of computer have brought such an approach within
the reach of the engineer. Two committees were formed by the
Institution of the Structural Engineers who published their reports
in 1974 (Littlejohn and MacLeod) and in 1978 (Thorburn). Both these
reports recommended research into analytical methods of solving the
structure-soil interaction. It is considered that the effect of the
interaction is to redistribute the forces and the bending moments

in the structure. Thorburn (1978) in his foreward to the report



stated that the engineer is faced with a choice between the following

two actions:

(1) To avoid the interactive forces by realizing a nerfectly
unyielding ground, or

(2) To include these forces in the structural design.

An unyielding support does not exist, while.the interactive analysis
permits the structure to be designed to carry the redistributed forces
and moments. This results either in a more realistic design or a
more economical one or both,

It should be pointed out that the purpose of an interactive
study is not to select a foundation which is more suitable for a given
soil condition. The purpose is to find out the manner in which
the structure and the soil influence one another, whichever tyne of
foundation is used. Only after such a study it is possible to select
a suitable foundation.

The methods of interactive analysis available to date are
inadequate and oversimplified. For this reason one aim of this
thesis is to produce an improved approach to this problem, The
limitations of classical mathematics in analysing this complex
problem are overcome by discretization and the application of
numerical techniques. Another aim of this thesis is to make the
approach efficient to the extent that large present day engineering
structures can be analysed economically. Any method that can not
deal with large problems is ofa limited use. Several large engineer-
ing problems are considered in this thesis. This is done for three
reasons:

(1) To demonstrate the capacity and the capabilities of the

present approach,



(2) To carry out a study into the behaviour of these
structures which are hitherto unknown.
(3) To find out the actual cost of analysing such large

problems.

1,2 A REVIEW OF INTERACTION METHODS

While the need for an interactive analysis is appreciated, few
exhaustive methods are available, Most of these simplify the behav-
iour of the structure or the soil and give insufficient or inaccurate
results, 42 years after the production of the first computer, the
die hard traditional concept still persists., This approaches the
problem as a two-phase system., The structure is one and the soil
is the other. Attempts are then made to account for the interaction
between these two phases by some simplified approach. Either the
soil is analysed,with the structure being represented by an artificial
model, or the structure is supported by a fictitious soil, An
example of the model used for the structure is the equivalent raft
by Meyerhof (1953). This will be described in detail later in the
chapter. The relative complexity of the soil behaviour has lead to
more drastic simplifications of the various soil models that have
been proposed., Some of these are described below,

1,2.1 Simple soil models

The soil models can be classified into two groups. These are
either mechanical or mathematical, The simplest and the most widely
used mechanical model is the Winkler spring, The soil is replaced
by a series of discrete springs giving rise to a linear relationship
between the vertical pressure and the vertical deflection of a

point on the surface of the soil. Hetenyi (1946) gave analytical



solutions for a beam resting on such a foundation. This simple
spring has been modified by many authors to extend its applicability.
Galletly (1959) described a modification of the Winkler foundation
by assuming a linear relationship between the moment and the angle
of rotation in addition to that between the vertical pressure and
the vertical deflection. Morris (1966) used visco-elastic Kelvin
spring-dashpots coupled with elastic springs to represent the
foundation and anlaysed an orthogonal space frame resting on it,
Tsai and Westmann (1967) introduced a modified Winkler spring
foundation with different elastic properties in tension and in
compression.

As the Winkler foundation consists of a series of unconnected
springs, it deflects only directly under the loaded area and is not
affected outside this area. This is in contrast to the continuous
deflection profile of the surface of most soils., Hetenyi (1950)
introduced such continuity in the Winkler spring by an embedded
beam connecting the various springs. Fletcher and Hermann (1971)
adopted a similar concept and modified the pressure-deflection
relationship of the Winkler foundation by including higher derivative
terms of the deflection. Reissner (1958) introduced a visco-elastic
Winkler foundation which had shear continuity between the springs.
Pister and Williams (1960) extended Reissner's model by including
the horizontal displacements at the surface of the foundation.

Kerr (1961) described a shear connected spring-dashpot model to
represent a visco-elastic foundation with lateral continuity. An
account of the other foundation models has been given by Kerr (1964),
These include linear springs connected by a stretched membrane and

linear springs connected by incompressible shear connectors,



The spring models are simple and therefore attractive, How-
ever, it is sometimes difficult to correlate the soil properties.
with the spring constants. This has lead to the development of
empirical or mathematical models of the soil, The most commonly
used is the hypothesis that the soil behaves as an elastic,
isotropic, homogeneous and semi-infinite continuum, The mathe-
matical solution of this continuum is based on the classical
Boussinesq problem of a point load on the surface of a semi-infinite
body., Solutions for various cases of uniform and linearly varying
loaded areas on a semi-infinite continuum are available in the
literature, Love (1929), Newmark (1942), Poulos (1967a),

Giroud (1968) and Poulos and Davis (1974), Gorbunov-Posadov and
Serebrjanyi (1961) analysed rectangular slabs resting on an
elastic continuum. The solution for a moment loading on a rigid
plate resting on a semi-infinite continuum has been given by Lee
(1963), The assumption of homogeneity of the continuum in these
solutions is not adequate for many soils. Gibson (1967) and Gibson
and Sills (1971) gave solutions for a non-homogeneous elastic
continuum for two-dimensional problems,

Many soils have only a limited depth and are supported by
rigid rock. They also occur in layers of limited depths. Therefore,
they cannot be treated as a semi-infinite continuum, Such soils
have been assumed to behave as elastic homogeneous layers, The
solutions for a perfectly flexible distributed loading on layered
soils have been given by Burmister (1945, 1956), Sovinc (1961) and
Poulos (1967b). Milovic and Tournier (1974), on the other hand,
analysed an elastic layer with a perfectly rigid loaded area on its

surface, The intermediate case of a semi-rigid plate on an elastic



layer of soil has been investigated by Pickett and McCormick (1951).

The inclusion of structural rigidity gives rise to mathematical
difficulties in the continuum representation of the soil. This has
lead to the development of simplified continuum representations,
including the use of the lattice analogy to represent the continuum
by Hrenikoff (1941), McHenry (1943) and McCormick (1963). Vlasov
and Leontiev (1966) used the variational approach to obtain the
solution of an elastic continuum with certain restrictions imposed
on its possible deformations. Kameswara Rao, Das and Anandakrishnan
(1971) extended the applicability of Vlasov's foundation by including
the horizontal displacements of the foundation,

1,2,2 Simplified interactive analysis

Simplified methods of interactive analysis with the soil
represented by one of the models described above have been proposed
by some investigators. One variation of this is the use of the
semi-infinite elastic continuum theory for calculating the stresses
in the soil and the use of the soil mechanics data to compute the
settlements, In fact this is the conventional method of calculating
the ground settlements used in a non-interactive analysis,
Zbirohowski-Koscia and Gunasekera (1970) used this method and the
Ritz variational approach to analyse a semi-rigid raft resting on
the ground. The influence of the superstructure was not considered.
Grasshof (1957), on the other hand, analysed a combined footing
resting on a semi-infinite elastic continuum with the structure
assumed to be either perfectly rigid or perfectly flexible.

The behaviour of a raft or a footing is influenced by the
structure it supports. An interactive analysis must consider this

influence. Lee and Harrison (1970) and Seetharamulu and Kumar (1973)



analysed a framed structure supported on soil, The soil was
represented by a Winkler spring bed and the foundation was treated

as a beam on an elastic foundation. Lee and Brown (1972) performed
a similar analysis with the soil being assumed to be an elastic
semi-infinite continuum, They compared the resulting bending moments
with those obtained by using a Winkler soil model., A large
variation between the two was found for a multi-bay frame, showing
the effect of lateral continuity of the foundation.

Meyerhof (1946) used an empirical pressure-settlement relation-
ship of the soil under the footings of a framed structure. He
calculated the settlements of the footings by a semi-graphical
method, The structural rigidity was accounted for in the settlement
equations by considering the slope and deflection of the structural
members. However, the interaction of the different zones of the
soil under each footing was neglected. A simplified method of
considering the structural rigidity has also been proposed by
Meyerhof (1953). The complete structure and the foundation were
represented by an equivalent raft, The flexural rigidity of the
equivalent raft was obtained as the sum of the flexural rigidities
of the framed structure and the foundation., The settlement of this
raft was calculated by assuming the soil to be an elastic semi-
infinite continuum. The contact pressure distribution under the
raft was taken from the solutions obtained by Borowicka (1936, 1938).
The redistributed bending moments in the frame were obtained by
a separate analysis of the structure subjected to the computed
settlements of its bases, Sommer (1965) used a similar method of
combining the flexural rigidities of the structure and the foundation.

In addition to the settlements, the bending moments in the foundation



were also obtained, The equivalent raft method of considering the
structural rigidity in settlement calculations has also been
endorsed by an ACI committee, De Simone (1966),.

Chamecki (1956) proposed a method for calculating the settle-
ments of structural supports in which the rigidity of the structure
was considered in terms of some load transfer coefficients. These
coefficients corresponded to the influence lines of the support
reactions for unit settlements and could be calculated from the
elastic constants of the structural members. The stresses in the
soil were calculated from Newmark's charts assuming the soil to be
a Boussinesq continuum. The settlements were then calculated from
the void ratio - log of pressure relationship of the soil, A
process of iteration was necessary to obtain a convergent set of
settlements and support reactions. Larnach (1970) employed a
similar method of settlement calculation to account for the inter-
action of the structure and the soil, This utilized Terzaghi's (1943)
one dimensional consolidation theory to calculate the settlements
of the soil with the stresses being calculated from Boussinesq's
semi-infinite continuum solutions., The procedure was programmed
on a computer and therefore structures with more complicatéd geometry
than Chamecki's could be analysed. Chamecki (1969) extended the
above method to include the visco-elastic material behaviour of
reinforced concrete structures,

Larnach and Wood (1972) generalized the above method by using
the matrix displacement method to analyse the structure., They also
considered the progressive time-dependent settlements of the soil,
For the purpose of calculating the soil stresses, this was assumed

to be an elastic semi-infinite continuum, The progressive settlements



of the s0il were calculated from a finite difference solution of the
Terzaghi-Rendulic one dimensional pore pressure dissipation equation.
The stiffness matrix of the structure was modified to include the
terms corresponding to the support settlements. An incremental
analysis technique allowed the non-linear soil characteristics to

be included in the analysis.

Komornik and Mazurik (1974) also considered the time-dependent
settlement characteristics of the soil and analysed a structure
interacting with such a soil. The saturated clay under the discrete
structural supports were considered to act independently of the
neighbouring soil with a one dimensional consolidation settlement.

1.2.3 The use of finite elements in interactive analysis

All the methods of interactive analysis described above are
based on some simplifying assumptions. These methods do not analyse
a complete structure and the soil as an integral system or as they
are in reality. Only the vertical settlements of the structural
supports are calculated while their effects on the structure are
estimated by a separate analysis., With the development of numerical
techniques such as the finite element method, such simplifications
are no longer necessary.

Cheung and Zienkiewicz (1965) presented a finite element
method for the analysis of slabs and tanks resting on an elastic
foundation. The foundation was included in the analysis by adding
its stiffness coefficients, at nodes connected to the structure, to
the stiffness matrix of the structural elements, These stiffness
coefficients were obtained by assuming the foundation to be either
a bed of Winkler's springs or a semi-infinite elastic continuum.

This assumption gave explicit pressure-displacement relationships
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at the plate-foundation boundary nodes., Only the vertical settle-
ments of these nodes were considered and the tension separations

at the boundaries were neglected. These and the assumption that

the soil is elastic are untrue. Chung and Nag (1968) extended the
above method by including the horizontal contact pressure and vertical
tension separation at the plate-soil boundary, The soil was again
assumed to be a semi-infinite elastic continuum and was represented
in the analysis by explicit stiffness coefficients of the plate-soil
interface nodes.

In both the above analyses the soil behaviour was simplified
to that of a series of springs or of an elastic homogeneous continuum,
Smith (1970), on the other hand, used triangular axisymmetric
finite elements to represent the soil to analyse a circular plate
resting on it. The soil behaviour was assumed to be elastic, but
inhomogeneity of the soil was accounted for by using different values
of the modulus of elasticity for different elements.

Most soils exhibit a non-linear stress-strain behaviour. The
assumption of linear elasticity for the soil can therefore lead to
large errors in the interactive analysis, Majid and Craig (1972)
used an incremental technique to perform an interactive analysis with
a soil showing non-linear properties. Only two dimensional problems
were considered with the structure being represented by plane frame
members and the soil by plane strain rectangular and triangular finite
elements. Girija Vallabhan and Jain (1972) also used two dimensional
triangular finite elements to represent a concrete navigation lock
structure and the surrounding soil, A direct iteration method of

analysis to take care of the non-linear material properties was employed.
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Finite element interaction analysis assuming a two-dimensional
behaviour is of a limited applicability. In most practical cases
the stresses in the soil disperse in three dimensions. Ruser and
Dawkins (1972) analysed the problem of a rigid pile and the surroun-
ding soil by using three dimensional hexahedral finite elements,
The non-linear properties of the soil were taken care of by employing
a direct iteration scheme of analysis. Tensile failure in the soil
elements was simulated by reducing the shear modulus of the soil
element where it occurred, The flexibility of the structure was not
accounted for and only an analysis of the soil loaded by a rigid body
was performed.

King and Chandrasekaran(1974) described a method for analysing
a multi-storey space frame on a raft foundation supported by a non-
homogeneous soil, The structure was preliminarily analysed assuming
fixed supports. This yielded a fixed end load vector at the support
points on the raft; In addition, a 'boundary stiffness matrix' was
evaluated to represent the response of the structure to the move-
ments of the raft, The soil was represented by three dimensional
finite elements with variable properties to account for the non-
homogeneity, Its re;p0nse to the raft movements was evaluated as
a 'foundation support stiffness matrix', The raft was analysed under
the external constraints of this matrix and the boundary stiffness
matrix of the structure,with the fixed end loads of the structure
applied to it. The displacements of the column-raft junctions were
then applied on the structure together with the external loads, The
structure was reanalysed to obtain the forces and the bending moments
in its members. The method is exhaustive and can consider a wide

variety of structures and soil, However, the two components were not
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treated as an integral unit and the influence of one on the other
was considered in several separate analyses,

Cunnell (1974) and Majid and Cunnell (1976) proposed a three
dimensional finite element interaction analysis method in which the
non-linear stress-strain property of the soil was followed, The
structure, the foundation and the soil were represented by suitable
three dimensional finite elements and analysed as an integral system,
Several simplifying assumptions were made regarding the soil behaviour,
These included a hyperbolic representation of the non-linear stress-
strain curves for the soil. This resulted in a bad correlation
between the theoretical and the experimental load-deflection curves
of the model structures studied by them., Furthermore, the soil was
assumed to posses the same properties in tension as in compression.
Thus the separations in the soil mass as well as the soil-foundation
interface due to the development of tensile stresses in these zones
were ignored. This is unrealistic, as such separations cause non-
linearity and discontinuities in the load-deflection curves and the
load-bending moment relationships, Above all, Majid and Cunnell
were only successful to analyse simple structures with a limited
number of degrees of freedom. This is because they used the comput-
ationally expensive isoparametric hexahedral solid elements to
represent the soil. The techniques of constructing the overall
stiffness matrix and solving the simultaneous equations were also
very inefficient, For these reasons, their approach could not
successfully be applied to analyse engineering structures of any

significance.
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1.3 ESSENTIAL FEATURES OF STRUCTURE-SOIL INTERACTION

A realistic interaction problem has the following features:
(1) The problem is three dimensional. Even for an isolated plane
frame resting on the ground, the stresses disperse in all three
directions., A two dimensional idealization of the problem is there-
fore unrealistic, The three dimensional nature of the problem must
not be avoided.
(2) The mechanical behaviour of the soil is non-linear. A linear
elastic approach oversimplifies the problem, The errors involved
in assuming a linear behaviour for the soil was demonstrated by
Majid and Cunnell (1976). A realistic analysis must also adopt
an acceptable stress-strain representation,
(3) Soil is heterogeneous, Its properties vary with depth and
laterally, The assumption of a homogeneous continuum to represent
the soil is not true, The non-homogeneous nature of the soil must
therefore be considered in an interactive approach.
(4) The mechanical behaviour of the soil is dictated by its
initial state of stress which is caused by the body forces. Thus
the stiffness and the strength of the soil increase with depth,
(5) The soil is weak in tension. Local tensile stresses create
tensile failure zones. This results in a complete redistribution
of stresses within the soil and the structure, It makes the soil
more flexible which in turn alters its mechanical behaviour., An
interaction analysis must cater for this fact,
(6) Tensile stresses can also develop at the interface of the
structure and the soil, The foundation and the soil are thus sepa-
rated, This also results in a redistribution of stresses everywhere.

Such separations must not be overlooked.
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(7) The distribution of the contact pressure under the foundation
is complex. A real foundation is subject to vertical loads,
horozontal loads as well as moments, As a result, the foundation
not just settles but rotates and moves sideways., Assuming a simple
pressure distribution is unacceptable. A realistic analysis must
not assume hny specific pressure distribution, The evaluation of
the actual distribution must be an outcome of such an ahalysis,

(8) As was stated, the junctions of the structure and the soil
settle vertically, move horizontally and rotate, The base rotations
are responsible for a significant redistribution of bending moments
in the structure, It will be shown in chapter 8 how a symmetrical
structure loaded symmetrically suffer a redistribution of bending
moments due to the rotations of its bases., The horizontal trans-
lations cause redistribution of column bending moments and are very
significant in sway frames.,

(9) The method of analysis must be able to consider the complete
structure, the foundation and the soil as an integral system., A
mere analysis of the foundation with or without a simplified rep-
resentation of the structure is inadequate., Various components of
the structure exhibit different behaviour at different stages of
the loading process.

(10) Engineering structufes are often irregular, complex and large,
An interaction method should be flexible, capable of including
irregularities that are obvious at the beginning of the analysis or
may develop later, It should be versatile so that it can tackle
different structures with varying soil conditions. The method must
be economical in the use of computer time and available computer

storage so that these expensive factors do not become an obstacle



15

in treating large structures. An interactiye method should also be
economical to the engineer who is often sceptical about the financial
advantages of the elaborations involved,

It should be stated in no uncertain terms that the interaction
problem is neither limited to the field of soil mechanics nor to that
of structural analysis. It is much wider than both and include
numerical methods., Without these numerical techniques it is not
possible to cover all the above aspects cheaply. One purpose of
this thesis is to consider each of these and develop methods of
tackling them in an exhaustive yet economical way. The resulting
mathematical and programming problems are complex but need not be
grasped by the user fully., The finite element method is particularly
suitable in this field and is adopted here. The structure, the
foundation and the soil are represented by an assemblage of suit-
able finite elements and analysed as one complete system, This
scheme of analysis is logical and allows for the inclusion of all
the essential features of an interactive problem in an adequate manner.
The soil involved is non-linear and the use of spline functions

becomesnecessary to cope with its representation.,

1.4 ASSUMPTIONS AND LIMITATIONS OF THE PROPOSED APPROACH

The proposed finite element interaction analysis approach
takes the following assumptions:
(1) The soil is isotropic. While it is possible to include aniso-
tropic material properties in a finite element analysis, their
exact extent in soils in unknown,
(2) Soil behaviour can be represented sufficiently accurately by

available laboratory and field test results,
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(3) While the material non-linearity of the soil is catered for,
the geometric non-linearity due to large deformations is excluded,
This is adequate for working load conditions as large deformations
are usually associated with failure states,

(4) Time-dependent deformations of the soil are excluded from the
present approach, However, the long term consolidation settlements
of clay are treated.

(5) The structural elements are assumed to be elastic., This is
realistic because under working stress conditions they are designed
to remain so, The possible material yielding due to the redistribution
of the forces and the moments is not considered, The non-linearity
due to the effects of axial forces in prismatic members is also
neglected.

(6) The interaction is considered for static loads only. The

dynamic effects of earthquake and wind forces are not included,

1.5 THE FINITE ELEMENT METHOD

The limitations of classical mathematics in solving continuum
problems have lead to the development of two categories of dis-
cretization techniques. In the first, the differential equations
governing the continuum are formed directly and solved by a math-
ematical discretization method, such as the finite difference
approximations. The second method is based on a physical division
of the continuum into finite elements, This method has become
particularly popular among the engineers because of the more physical
nature of the discretization, The advantage of the method lies in
the fact that the steps of the analysis of a continuum are analogous

to those for a discrete structure with well defined beam and column
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components interconnected only at the joints. The steps in the
finite element approximation of a continuum are summarized below
after Zienkiewicz (1977). The continuum is divided by imaginary
lines or surfaces into a number of finite elements. These are
assumed to be interconnected at a discrete number of nodes situated
on their boundaries. In the stiffness approach, the displacements
of these nodes are the basic unknowns. A set of functions is chosen
to describe the internal displacements of the element in terms of
the nodal displacements, The internal strains are also expressed
in terms of the nodal displacements by using the displacement
functions. The state of stress is defined by these and any initial
strains. The concentrated forces at the nodes are determined by
the equilibrium of the boundary stresses and the distributed loads.
This gives the characteristic stiffness relationship of the continuum.
The application of the finite element method requires the use
of a digital computer to carry out the numerical processes. The
steps in the finite element analysis of a complete structure and its
supporting soil are described below.
(a) The structure, the foundation and the soil are idealized as an
assemblage of a number of elements, While some structures are
composed of discrete well defined components, the soil is always a
three dimensional continuum,
(b) The element displacement functions are chosen to specify the
pattern in which the elements deform, On the basis of these the
element stiffness matrices relating the element nodal forces to the
element nodal displacements are evaluated, The stiffness matrices
are formulated in such a way that the strain-dependent non-linear

properties of the element materials can be catered for economically,
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(¢) The element stiffness matrices are superimposed to develop the
overall stiffness matrix of the structure; the foundation and the
soil,

(d) The joint displacements of the complete system are obtained by
solving a set of linear simultaneous equations governing the equili-

brium conditions at the nodes. This takes the form:
{L} = X {X}

where {L} is the vector of applied loads at the joints, X is the
overall stiffness matrix and {X} is the vector of unknown joint
displacements.

(e) The joint displacements are used to calculate the other required
values such as the strains, the stresses, the forces and the bending
moments at various points in the system,

The accuracy of the finite element method depends on the fine-
ness and the accuracy of the discretization of the continuum, The
process of the analysis of the discrete system is exact. Therefore
each element of the mesh should be chosen carefully to represent the
various components of the continuous structure-soil system closely,
The general procedure for the formulation of a finite element is
summarized in the following sub-section.

1.5,1 Formulation of a finite element

The formulation of a finite element implies the operation of
obtaining the element stiffness matrix k required in step (b) of the
analysis. It also means the calculations of the strains, the stresses
etc, at apoint in the element from the nodal displacements, as
mentioned in (e).

For a typical element the displacements"{g} at a point can be
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expressed as a function of the co-ordinates of that point. Such

displacement functions are generally expressed as:

(U} = N {a) 1,1

where the components of N are prescribed functions of the co-ordinates
and called the displacement functions and {¢} is a column vector
containing constant terms which can be expressed in terms of the

nodal displacements {§}. Thus:

{8} = C {a)

and {a} = 9;1 {s} 1.2

in which gfl is a matrix containing the constant terms of the element
dimensions. It may be noted here that the displacements {U} at a
point in the element can be expressed in terms of the nodal dis-
placements {8} by substituting for {a} from eguation (1.2) into

equation (1.1). Thus:

wy =N (8

The strain-displacement relationship for a point in the element
gives:
{e}l=v {U}

where {e} contains the components of strain and V is a linear operator.
By performing the partial differentiations of the displacements in

equation (1.1),

{e} = A {a} 1.3

where A is a matrix containing the terms of the co-ordinates of
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the point. Substituting for {a} from equation (1.2) into equation

(1.3),
fe} = A C &) = B {8} 1.4

The matrix B relates the strain within the element to the nodal
displacements and is sometimes called the element strain matrix.
Using the stress-strain relationships given by the generalized

Hooke's laws, the components of stress {o} are:
{o} =D {e} 1.5

where D is the matrix of the elastic properties of the materal.

The stiffness matrix of the element, k, relates the nodal
forces to the nodal displacements by making the nodal forces
statically equivalent to the boundary stresses, This is achieved
by imposing an arbitrary virtual displacement at the nodes and
equating the external and the internal work done by the various
forces and stresses during the displacement, Let such virtual
nodal displacements be {6*}, This produces virtual strains {e*}
at a point within the element. By equation (1,4) the virtual

strains are:
{e*} = B {8%) 1.6
The total virtual strain energy in the element is therefore given

by:

S

T
volume &} {gtdv

Substituting for {c*} and {g} from equations (1,6) and (1.5)

respectively, the total virtual strain energy becomes:
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s, BN D eI av

Substituting for {e} from equation (1.4), virtual strain energy
=/, BN DBLEYAV

AR B RON-R 1.7

In this equation {é*} and {8} contain virtual and real nodal dis-
placements which are constant for the element, Therefore, these
two vectors can be taken out of the integration sign and eauation

(1.7) can be written as:
: : T T
Virtual strain energy = {§*}" (/ B D B d V){§} 1.8

The external virtual work done by the real nodal forces {B} in

undergoing the virtual nodal displacements {§*} is given by:
external work done = {Ef}T {p} 1.9
The stiffness matrix k relates {p} to the real nodal displacements
{6} as
{p} = k {8}
Substituting for {p} in equation (1,9),
external work done = {_:s_*}T k {3} 1.10

Equating the external work done given by equation (1.10) and the

virtual strain energy given by equation (1.8),
()T x 18} = (%' ¢/, BT DB AV (&)

This equality holds for any arbitrary set of {6*}and {6}, Therefore,

the following equality must also exist:
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T

k=/ B DBAV 1,11

v
Equation (1.11) explicitly defines the stiffness matrix of an

element and is derived with respect to a local set of co-ordinates.
Generally the overall global co-ordinate axes do not coincide with
the local axes of all the elements. A transformation of co-ordinates
is therefore necessary, to express the element stiffness matrix in
terms of the global co-ordinates, before the overall stiffness
matrix can be assembled. This is achieved by defining a trans-
formation matrix H which contains the direction cosines of the

local co-ordinates with respect to the global axes. The matrix H

is of the same order as the element stiffness matrix k. The
transformed stiffness matrix K is given by:

k=H kH

and thus {L} = K {X}

where {L} and {X} are joint loads and displacements in the global

system,

1.5.2 Convergence criteria

In the above formulation of a finite element, the basic unknown
parameters were selected to be the displacements, The variation of
the displacements within the element was defined by the displacement
function of equation (1.1). To ensure a close approximation to the
exact result the displacement function must satisfy certain conditions
of convergence. These are stated below,

(i) The displacement function and its derivatives should be con-
tinuous within the element. The order of derivatives upto which
the function has to be continuous is decided by the nature of the

problem,



23

(ii) The displacement functjon .should not permit straining in the
element when the nodal displacements are caused by rigid body trans-
lations and rotations, This means that the strain energy in the
element must not change due to the rigid body displacements.

(iii) The displacement function should allow for all states of
constant strain, if the nodal displacements are compatible with a
constant strain condition within the element,

(iv) The displacement function should satisfy internal compatibility
within the element. It should also maintain compatibility of
displacements between adjacent elements at the nodes and along the
boundaries. When the displacement function for a finite element

satisfies all the above conditions, the element is conforming.
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1,6 SCOPE OF THE WORK

The essential features of the problem of interaction between a
structure and the supporting soil were listed in section 1.3. It
was decided to use the finite element method to consider these
factors. This, however, necessitated the modification of thel
technique in several ways.

Laboratory tests on a soil specimen were performed to obtain
a set of non-linear stress-strain curves. These represented the
behaviour of the soil for various states of initial stresses. To
follow the non-linear properties of the soil in the analysis a
functional representation of these curves was necessary. Chapter
2 presents the development of such a functional representation.
The behaviour of the soil is first represented in terms of the
octahedral shear stress and strain for a given initial octahedral
normal stress. Since the latter is equal to the cell pressure in
a conventional triaxial test, the soil properties were obtained
uniquely by performing a series of tests with different cell pfessures.
Each of these was then represented mathematically using the spline
functions. These functions are superior to other mathematical
representations and give a better correlation between the theory
and the experiment, Results obtained by Cunnell (1974) using a
hyperbolic idealization of the stress-strain curves showed that the
load-deflection graphs obtained did not fully agree with experiments,
A listing of the computer program which carried out these spline
formulations for a set of curves is given in Appendix I,

The three dimensional finite element discretization of the

soil introduces a large number of degrees of freedom. The element
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used should therefore be formulated in an economical manner. To
ensure this, the stiffness matrix of the element must be derived
explicitly so that no computer time is wasted in formulating this
matrix for each element in turn. A rectangular parallelopiped
solid element was thus selected and its stiffness matrix is derived
explicitly in chapter 3.

A linear analysis is not sufficient to cover the non-linear
behaviour of the soil. It was therefore decided to adopt a non-
linear incremental approach. In this approach the total applied
load is divided into a number of small increments and the system
is analysed repeatedly with these incremental loads. The dis-
placements, the strains, the stresses etc, at various points are
successively accumulated. The material properties of the soil are
altered to correspond to the current level of stresses., This gives
an updated stiffness matrix in each increment. Thus the stress-
strain curves are followed closely as the applied loads are
increased, In this manner the complete load-deflection history of
the structure and the soil is traced upto the final stage of load-
ing., This approach is described in chapter 3,

It waé pointed out that the soil is weak in tension., This
results in local tensile failure zones in the form of cracks,
cavities and separations. The boundary between the soil and the
foundation is unable to carry tensile stresses. This results in
the separation of the structure from the soil wherever these stresses
develop, Such separations cause a redistribution of stresses within
the system and aggravate its non-linear behaviour, A method of
representing these cracks and separations is developed in chapter 4,

This method is general and can represent a wide variety of cases,
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A crack is physically introduced by separating the elements surrounding
it., The method used calculates the crack widths and follows the
propagation of cracks as the loads are increased. The method also
detects and closes a crack whenever this takes place;

The incremental method of analysis developed in chapter 3
follows the non-linear stress-strain properties of the soil by using
the spline functions developed in chapter 2, This is done when the
three dimensional soil properties can be obtained explicitly by
field or laboratory tests. In the more conventional soil test
techniques such explicit curves are not obtained. This is specially
true for clay where a one dimensional consolidation test is used to
predict the long term settlements, However, in such a scheme the
three dimensional nature of the problem and the effect of Poisson's
ratio are often ignored. A method of finite element interaction
analysis, in which the three dimensional soil properties are evaluated
from such a consolidation test,is developed in chapter 5. The
dependency of the soil behaviour on the state of stress is also
included in the analysis., Here an iterative technique is used.

Chapter 6 describes the computer programs developed for various
aspects of the analysis. A complete structure analysed with its
foundation and the soil requires the use of various elements. The
- structure is represented by an assembly of space members and rect-
angular plates in bending and/or shear. These elements are described
in Appendix II. The general computing method for the analysis of
a large finite element mesh is developed in chapter 6, The storage
and the execution time problems associated with the computer analysis
of such problems are solved. Two methods of constructing and storing

the overall stiffness matrix are developed, An economical method of
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solving the simultaneous equations governing a large finite element
problem is-also presented: The efficiency of the method in terms
of the cost of the analysis is examined.

The accuracy of a method must be assessed before it can be
applied to large problems. In the absence of adequate laboratory
or field observations, a series of laboratory experiments were
undertaken. These were performed on structural models resting on
sand of controlled density. The models tested were:
(a) A single-bay space frame model originally tested by Cunnell
(1974) to obtain load-deflection diagrams: The tests were repeated
with measurements of bending moments by means of electrical resis-
tance strain gauges. The tests furnished load-deflection and load-
bending moment diagrams which were compared with analytical results,
(b) A twin-chambered box culvert model partially buried in
sand¢ It was tested under vertical point loads with various
eccentricities which provided a complete picture of the behaviour
of such structures as a vehicle travels along them,
(c) A tall structure with a latticed foundation which resembled
an oil platform: This experiment provided the data for a slender
structure with a high ratio of height to base area.
(d) A three-bay space frame model:? Two types of foundation were
used for this model. The first consisted of separate pads under the
columns and the second was a pair of strip footings. Several tests
were performed for various positions of a point load on the structure,
They allowed the study of the influence of the foundation stiffness
on the behaviour of a structure with a low height to span ratio,

In all the tests; the readings of displacements and strains

were obtained by using a number of dial and strain gauges. The
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tests involyed the modification of an existing test rig which was
capable of producing a uniform bed of dry sand repeatedly, The
loading system was designed to suit each of the different models.

It was necessary also to measure the mechanical properties required
to describe the non-linear response of the sand in the test bed.

A series of triaxial tests was carried out on the sand at the
porosity prevailing in the test bed for various confining pressures.
The cell pressure range used was particularly low to conform with
the confining pressures expected in the test bed, An account

of the experimental work is given in chapter 7,

The results of the experiments with the model structures are
presented in chapter 8. These are compared to the results ohtained
analytically. Particular emphasis is placed on the interactive
behaviour of the structure with the soil rather than on the behaviour
of the sand. The effects of the base movements and the role of the
structure-soil interaction for the models are critically examined.

The agreement between the experimental and the analytical results
of the models lead to the application of the method to large problems.
A silo complex resting on a chalk foundation and a fifty-storey framed
space structure with shear walls resting on clay were selected for
this purpose. These are described in chapter 9 together with a
critical assessment of their behaviour, It is shown that by the
method developed in this thesis,suchllarge and complex problems can

be dealt with.,
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2.1 INTRODUCTION

Soil - structure interaction analysis based on a single and
linear stress-strain function, with constant E and v, is considered
unsatisfactory and often unacceptable, This is because the properties
of soil, if at all definable, not only vary in three dimensions but
vary non-linearly. The analysis of a structure resting on soil
should, therefore, give a non-linear load-deflection curve., For
this reason, such an analysis must take account of the non-linear
properties of the soil.

Furthermore, results obtained from testing a soil sample does
not always produce a smooth stress-strain graph, Such a graph is
often discontinuous at random points along it, To avoid these facts
and to linearise the soil properties oversimplify the problem.

The analysis of a structure resting on soil by the finite element
method, on the other hand, requires an explicit representation of
the soil properties. At each stage of loading, properties like E,

v and G, may be non-linear, but should be kept uniquely defined.
This is because the stiffness matrix of the individual elements
must be constructed explicitly before the analysis can proceed.

It is, therefore, necessary to convert the sample test results
to smooth and representative functions, These functions should be
sufficiently accurate so that the finite element analysis at least
gives acceptable results, This is particularly needed when an
incremental analysis is carried out and the soil properties are

defined by more than one graph, Discontinuities in these graphs
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can lead to incorrect results thus spoiling an expensive analysis.,
In this chapter a method to represent the non-linear and discon-
tinuous soil behaviour is presented. This makes use of the highly
efficient "spline'" functions. While the mathematics involved in
the derivation of these functions is advanced, they are originated
from the draughtman's spline, which is a strip used to draw smooth
graphs of variable curvature, The application of these functions
to soil representation need not be difficult, Their derivatibn

here is presented in simple terms for clarity,

2.2 REPRESENTATION OF THREE DIMENSIONAL SOIL PROPERTIES

In a general three dimensional condition, most soils undergo
shear dilation accompanied by elastic strains. Utilization of
stress dilatancy laws to predict such behaviour is possible. The
associated mathematical problem, however, makes it unsuitable for
practical purposes.

A non-linear elasticity model has been used successfully by
many authors including Cunnell (1974), Girija Vallabhan and Jain
(1972) and Ruser and Dawkins (1972). The dependency of the state
of stress on time and on the history of loading is excluded in
this approach. The state of stress is thus assumed to be a function
of the state of strain only,

Such a method is also utilized here. The essence of the approach
is that the stress-strain relationship is assumed to consist of a
series of elastic steps. The laws of elasticity are, therefore,
applicable in each of these steps, The formulation of the laws of
elasticity in a three dimensional state is facilitated by the use of
the octahedral stress components, For the sake of clarity and

completeness, the octahedral components of stress and strain are
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derived in the following sub-section,

2.,2.1 The octahedral components

The general state of stress at a point may be described either
by six components of stresses in orthogonal directions or by three
principal stresses and their direction cosines. In figure (2.1)

X, y and z are an arbitrary set of orthogonal axes and ABC is a
plane whose normal has direction cosines %, m and n with respect
to these axes, If X, Y and Z are the components of stress on ABC
along x, y and z respectively the equilibrium equations for the

tetrahedron in figure (2.1) can be written as

Ux Txy sz L = X
Txy dy Tyz m Y 2.1
sz Tyz °z n Z

where the stress notations are as shown in the figure., If N is
the resultant stress on plane ABC and Usct and Toct 2T its normal

and shear components, then from equation (2.1),

B . 2 2 2
Toce ™ XL + Ym + Zn Oy LT+ uy m- + o n" + ZTxy m + Ztyzmn

- Zsz n 2.2

and T " (Nz -0 2)H 2,3

oc oct

where N2 = X2 + Y2 = Z2

Now, if the x, y, 2 axes are chosen to coincide with the principal

axes, so that



FIGURE 2.1 GENERAL THREE DIMENSIONAL STATE OF STRESS AT A POINT

Sign Convention : The computer programs developed in this
thesis use the right hand screw rule, but the soil stresses
presented in diagrams in this thesis consider that compressive

stresses and strain are positive.
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Oy = Oys 9y = oy, Oy = Oy and Txy = Tyz e 0
where 05 9y and 0 are the principal stresses,
equations (2.2) and (2.3) can be written as

2 2 2
ook ulz + 02111 + 03n 2.4

Q
n

22 2 2 2.2 2 2.5

[ol g+ oy"m” + 0" - (0,07 + ozmz - asnzjz]ﬁ

and Toct

where &, m and n are now the direction cosines of the normal to the
plane ABC with respect to the principal axes.
If the plane ABC is so chosen that OA = OB = OC, such that

g =m=nse= J; , equations (2,4) and (2,.5) reduce to
3

= P |
g = 3 "'E 2.6

and =7

oct = F@y=0p" % (oy - 99 + (o5 - o)1

2 2.7

1 N
=3 (23,° - 63,)

where J1 and J2 are the first and the second stress invariants

respectively, Such a plane ABC is called an octahedral plane,
because it forms one face of a regular octahedron with vertices on

the principal axes. The stresses o .. and t . are termed the

ct ct
octahedral normal and the octahedral shear stresses respectively,

Expanding the stress invariants in terms of the general
cartesian components of stresses, equations (2,6) and (2.7) can

be written as
Jl Ux + 0 + 0

= b AS— 2.8

%ct © 3 3
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_ 1 2 b
and T = -‘,:,»-(ZJ1

oct - 6‘:’2)

1 2 2 2 2 2 2
= 5lloyg = o)+ (o) =007+ (o, = 007 + 66,7 + 1,7 ¢ Ty

Girija Vallabhan and Jain (1972) have shown that the general
state of stress at a point can be divided into a hydrostatic component,
responsible for the change in volume, and a deviatoric component,
responsible for the change in shape of the body, The octahedral
normal and shear stress components give a measure of these two

components, thereby defining completely the general state of stress.

The strain components corresponding to the octahedral stresses

may be written as:

S - 2.10

2 2 11
and Yoo, = 5lley = )% ¢ (5 = €9+ (g5 - €T e

in terms of the principal strains,

2 2 2 2
and Yoor ™ -3-[(5x - ay) + (ey - :z) + (ez - cx)
3 2 2
AR} 2.11b

in terms of the general Cartesian strains,

The bulk modulus K, the ratio of mean stress to volumetric
strain, and the shear modulus G can be written in terms of the

octahedral stresses and strains as

o
oct Uoct

3 " = :, » Where €y is the volumetric strain,
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d s

and G = £e

Yoct

The octahedral stress approach described above has been used
successfully by Girija Vallabhan and Reese (1968), to describe
stress-deformation behaviour of soils, and by Cunnell (1974) and Girija
Vallabhan and Jain (1972), to perform finite element analyses of

soils in conjunction with triaxial test results.

2.3 REPRESENTATION OF TRIAXIAL TEST RESULTS IN TERMS

OF THE OCTAHEDRAL COMPONENTS

The most ideal way of representing the properties of soil is,
of course, the determination of all the octahedral parameters
under arbitrary conditions by laboratory tests. While it is possible
to do so by using sophisticated and expensive testing, the triaxial
test results can be utilized to develop the octahedral parameters.
The effect of ignoring the intermediate principal stress in the
triaxial test, on the final results of the analysis, is not alarming,
Girija Vallabhan and Jain (1972)., Substituting o, for o, and e,
for e, in equations (2.6), (2.7), (2.10) and (2.11), the octahedral

2
components can be derived from the triaxial test results, Thus:

Ouct = (cl + 203)/3 : 2,12
Toct = %/g, (o) = 03 2,13
€t = (€7 * 265)/3 = FV/3 2,14
Toos 5202 Loy = ing) » 22 (36 = o) 2.15

A series of triaxial tests was performed on a dry sand, This

will be described in chapter 7. The results of the tests are
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presented in octahedral form in figure (2.2), Each curve in this
figure correspond to a different cell pressure in the test, which

is equal to the initial octahedral normal stress, o It is

octi’

noticed that the curves are highly non-linear throughout their

entire range.

* Yoot CURVES

2.4 MATHEMATICAL FORMULATION OF THE Teat

Having obtained the non-linear stress-strain response of
the soil as given by figure (2.2), it is now necessary to incorporate
this information in the non-linear finite element analysis, One
possible method is to use a digital scheme by supplying a number
of pairs of co-ordinates of the curves and performing suitable
numerical differentiations to obtain the shear modulus at any point,
A more convenient method is to represent the curve by a mathematical
function. Hyperbola and some variations of the hyperbola have
been very popular in the past for this purpose. These have been
used by Kondner (1963), Kondner and Zelasko (1963a, b),Duncan and
Chang (1970), Domaschuk and Wade (1969) and Cunnell (1974). This

last investigator formulated the 7 curves by the relation-

oct ~ Yoct
ship

Yoct

oct a+b Yot 2,16

T
where a and b are constants. Although this equation is simple

and straight forward, in which the constants a and b have some
physical significance, it is unable to represent the curves of
figure (2,2).sufficiently closely over the entire range. Cunnell's
work showed that a hyperbolic representation under estimates the

initial deflections of a structure resting on soil, while it over-
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estimates it at later stages.
In fact, there can probably be no single polynomial or

functional representation of such arbitrary curves over their
entire length. The approach suggested here is, therefore, to
divide the curve into a number of segments and to obtain a separate
functional representation for each of them, so that certain con-
ditions of continuity are satisfied at the joints, The conditions
are:

(2) that the two functions representing the segments to the left and
to the right of a joint must give the same value of the ordinate

at the joint, and (b) that the functions must have the same deriv-
atives at the joint, Such functions are known as "spline" functions,
In the following sections the theory of spline functions will be
described and a spline representation of the curves in figure (2.2)

will be developed.

2,5 THE THEORY OF SPLINES

A spline function y = £(X) has the following powerful properties:
(1) It interpolates between n given points (xl, ylj, (X5 y2) soees

(xn, yn) in which x varies between a and b, Thus

a$x1 <x2 seessecnsne <xn-1 <xn‘b 2.17

The intervals (xi - xi_ll and (xi+1 - xi) need not be equal,
The points (xi, yi) are called the nodes of the spline function.
These are the specified data points which are obtained beforehand,
from experiments for instance,

(2) The function f(x) overcomes discontinuities in the inter=-
polation between any two intervals x; ;, , X, and x4,y  because

it has continuous derivatives upto order k, where k is more than 1
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but less than n, Thus not only it ensures that the value of y is
satisfied at the nodes but also it satisfies the slopes of f(x) at
these nodes and in fact its higher derivatives, Notice that between
the nodes, the function can be highly non-linear.

(3) The function ensures the accuracy of the interpolation by

minimizing the integral

1= P £ 01% o 2.18
a

Here fk(x] is the derivative of £(x) k times,
A spline function or spline is often denoted by S(x). This
notation is also adopted here. From now on, h, i and j are three

sucessive nodes of the spline, thus

h=1i-1, j=1i+1
2,19

and xh<xi<xj
In any interval x; to xj, S(x) is a piecewise function., It is a
polynomial whose degree is either less than 2k-1 or equal to it,
Generally, there will be a different polynomial in each interval,
Nonetheless, the two polynomials that represent S(x) to the left
and to the right of a node (xi, yi) have the same ordinates, They
also have the same derivatives of order 1, 2, upto (2k -2). In
this manner the polynomial arcs join smoothly at the data points,

The two properties that characterize a spline function S(x)

of degree m with nodes at
xl < x2 < xs ouoottn‘:xn
are:

(i) 1In any interval (xi to xj), withi =1, 2 40ee, n = 1 and
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j =2, 3 ceveess N, the spline S(x) is described by a polynomial of

a maximum degree m, This polynomial continues from == to X] on one
side and from X to « on the other,

(ii) S(x) and its derivatives of all orders upto (m - 1) are
continuous in the interval - « to + «, Continuity of the derivatives
upto the order (m - 1) is sufficient to ensure a smooth fit at the
nodes, Continuity of the derivatives of order m also, means a simple
single polynomial,

A "natural" spline function is a spline of odd degree (2k - 1),
which rgduces to a polynomial of degree (k - 1) in each of the
intervals (- « to x;) and (x_ to «), In general these two poly-
nomials will be different, From now on, a natural spline function
will be denoted by s(x). In mathematics, the smooth interpolation
and the good approximating properties of the natural spline functions
have been demonstrated by Greville (1967) and Ahlberg et al (1967).
In the following sections a natural spline function of the third
degree will be described and utilized to represent T .. = Yoot

curves of sand,

2.6 THE CUBIC SPLINE FUNCTION

A cubic spline s(x) is a natural spline in which k = 2 and
thus the degree of the function, 2k - 1, is 3, Thus in the
interval xi to xj! withi =1, 2 seeey N =1land j =2, 3 seeee,n,
s(x) is a polynomial of the third degree at most, Outside this
range, that is from - « to x, and from x, to + =, the spline

reduces to a straight line because k - 1 is equal to 1,

2.6.,1 Formulation of the cubic spline function

The first requirement for a successful spline interpolation
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through a given set of points (xi, yi), with i = 1, 2 ,4e.,n, is
to force the function s(x) to pass through the nodes (xi, yi).
Thus s(xi) becomes exactly equal to the ordinates Y; for all values
of i, This means that the values of the spline at the boundary
points, defined by X, and xj, are known, Furthermore, it is also
known that, for a cubic spline, the second derivative, ¢, is
linear between the nodes at i and j., The values of ¢i and ¢j’
however, are yet unknown and later on in this chapter a method will
be given for finding them., Here, we derive a cubic spline function
for the interval Xy to xj, which will be in terms of the nodal
values Yir Y5 and the second derivatives ¢, and ¢j‘ The linear
variation of ¢ between the nodes i and j is shown in figure (2,3).
Between the intervals - = to X and X, to+ <, the cubic spline
reduces to a straight line. Thus ¢1 = ¢n = 0, which means that
the second derivative of the spline vanishes outside the range
under consideration,

From figure (2.3), it is evident that a linear interpolation
can be performed between ¢4 and ¢j to obtain ¢ at any intermediate
point, Thus,

X = X
i 2,20

R N

where the primes denote the order of the derivatives and

X < x < xj. Writing tj = xj - Xy and rearranging equation (2.20),

X, = X X = xi
S"(x) o tj ¢1 + tj ¢j 2,21

Solving this differential equation by integrating equation (2,21)
twice with respect to x, the expression for the spline function

is obtained as:



FIGURE 2,3 LINEAR VARIATION OF THE SECOND DERIVATIVE

¢ BETWEEN NODES i and j
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x, = x)3 (x =- xi)s
3 o * e b5

s(x) = + Ax + B 2422

where A and B are the constants of the integration. To evaluate

these, the boundary conditions are utilized., These are:
at X = Xso s[xi) =Y
= X,, S(x;) =y,
and at X = Xj, ( J) Y
where y; and Y3 are the known ordinates at the nodes. Therefore,
equation (2.22) gives:

(1) At i, where X = X;, and therefore,

xj - X = tj' while X = X; = 0,

¢ 2

¢ B —%— Py * Ax; +B 2,23a

(2) At j, where x = xj, and therefore,

xj - x = 0, while x =~ x; = £,

2

vy = —%u b+ Axs+B 2,23b

Solving equations (2.23), the constants A and B are obtained as,

Y- yi tj
AnJ;;--— - =5 (45 - ¢;)
y "yi ts Xi 1’..2
and B=y, - T b iy~ )~ by

Substituting these values into equation (2.22) and rearranging:
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X, = X X = X, (x, - x)

2 2
s(x) = %j Yi * tj Yj * -%rqi;—— [(Xj - x) 'tj ] ¢i
x - x;)
i 2 2
+ — tj [(x - xi) - 1:j ] ¢j 2,24

This equation completely defines the cubic spline function s(x)
in the interval X; € X% J:.j in terms of the nodal values Y;» yj. ¢i

and ¢j. In matrix form, the equation is written as:

s(x) = E )} 2.25
in which
[x1 - XX =X (xJ - X) El. :
E = t AP 6t g Ry x)i
(x - xi)3 EJ.
th - (x = xii] . 2:25.1

An examination of equation (2,25) shows that the second
derivatives ¢; and ¢j at the nodes i and j are the only unknowns
in the evaluation of s(x) between these two nodes, These can be
readily determined as follows, The slope s'(x) is continuous over
the nodes. This means that the slope of the spline at the node i in
the interval (h to i) must be equal to that in the interval (i to j).

Differentiating equation (2.25),



' 2 2 W
e it By R BB YT,
s'(x) = |-t %, 1% 2t L2t 6 i
d 1 d J ' J
¢
b5
--¢j--|
This is the slope of the curve between the nodes i and j. A suit-

able substitution of subscripts in equation (2.26) gives the slope
between the nodes h and i. Evaluating this slope at the point
(x = xi) and équating it to the value of s'(x) at (x = xi),given

by equation (2.26), the following relationship is obtained.

2.26

t: 1l | -t. =t [,
1 1 i 1 }’ = - .1_ l__ __l y 2.27
[} t, t; 0 3'{] 3 {: t. T, 3 'T?L .
i i J J
®y b5
| 2] 93]
Carrying out the matrix multiplication in this equation and
rearranging the terms, we obtain:
Yi = ¥y SR
L+t b, =6 (L - = 2,28
It was stated earlier that outside the range, ¢, = ¢n = 0, By
applying these conditions to the recursive relation of equation
(2.28), the following system of simultaneous equations, for the
nodal values of ¢, is obtained,
i {8 = {1} 2,29

in which
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+ t3)
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Equation (2.29) is a tridiagonal set of linear simultaneous equations
in ¢, which has dominant diagonal terms. A solution of this set
yields the values of the nodal second derivatives b5 with

i =2, 3, 4, seseen-1, for the cubic spline, The substitution of
these values in equation (2.25), together with the values of ¢1 and
o equal to zero, defines the spline completely in the interval

X5 to xj. In addition, the tangent slope s'(x) of s(x) is also
obtainable from equation (2,26), by substituting the values of

¢35 and ¢j in this equation,

In the above derivation of the cubic spline function it is
made sure that the spline gives the exact values of y; at each node,
with i = 1, 2, «esee Do It also gives a continuous first derivative
at all the nodes. Thus the first two of the three properties stated
in section (2.5) are readily satisfied, The third property of
minimizing the integral

I= Ib [sk(x)]2 dx
a
is demonstrated below.
In the case of a cubic spline, k is equal to 2 and the above
integral is written as
2 2
1= -f [s" (x)]° dx 2,33
a
To prove that the cubic spline s(x) gives a minimum value of the
integral in equation (2.33), let g(x) be an arbitrary function other
than the spline. Further, let g(x) and its derivatives, upto order

n, be continuous and pass through all the points (x,, yi), with

is= 1, 2, sesss Do Thus
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g[xiJ = S(xi) =Y for i = 1; 2, sses N

However, the arbitrary function g(x) does not possess any other quality
of the cubic spline s(x).

The integral I given by equation (2.33) must be a minimum if

b b
f [g" (x)]2 dx > J’ [s" (x)]2 dx
a a

Utilizing the rules of definite integrals, the following equation

is written:

b b b
I =_£ [gil (lez dx ='£. [5"(}()]2 dx +fa [g" (x] - S”(X]]z dx

b
-2 j s (x) [g"(x) - s" (X)] dx =1 +J -2k 2,34
a

The second derivative of the cubic spline vanishes outside the range

X, to x » Thus s" (x)=s" (x) = 0. On the other hand, s'"" (x)

1
is a constant. Taking the limits of the integration from a = x; to

b=x the term K in equation (2.34) can be integrated by parts to

give
X X = X
f s" (x) [g"(x) - s"(x)] dx =[s"(x)g'(x)]
g X = X
%
&« I _[ g'(x) s''' (x) dx
i=1,n-1 "
j=2,n
X=X X
- g n )
st (x) s' (D, o X, Y1k, 0 .& s'(x) s''' (x) dx
w2, B i
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This can be reduced to:

n
.f s" (x) [g"(x) - s"(x)] dx

X =X
ey (x) [s (x) - gx)
1, n-1 ’ . ]x " xi
2,1

L]
Won e

Now at all the nodes [s(x) - g(x)] is zero, which means that, in
equation (2.,34), K = O, On the other hand, J is a complete square
and thus non-negative., Hence I' =1 + J and I' > I, This proves

that I is a minimum for the cubic spline s(x).

2.7 APPLICATION OF THE CUBIC SPLINE FUNCTION TO DESCRIBE

Toor ™ Voot CURVES OF SAND

The versatility and the flexibility of the cubic spline
function, derived in the previous section, make it readily applicable

to describe the Toct ~ Yoot CUTVES of figure (2,2)., The curves in

this figure describe the stress-strain properties of the sand used
during the experiments reported in this thesis, Each curve is for

a particular initial value ¢ and each set of data requires a

octi

different spline formulation, Some form of interpolation is necessary

to predict the T .. = Y .t behaviour for an intermediate value of

ocC

_— Desai (1971), for instance, suggested the establishment of

a number of secondary splines between the tangent slopes and ¢

o

octi
for various values of stress or strain, It is also possible to

formulate a bicubic spline in a three dimensional space of Yoot
»

- and o Desai (1972), Trial solutions revealed that the

Yoet octi’
variation of the tangent slope at a particular strain level between

two consecutive values of docti was not far from linear. It was

-
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decided, therefore, to use a linear interpolation at any strain

level to find the shear modulus for an intermediate value of Octi®

The cubic spline function s(yoct) describing any particular
curve in figure (2.2) is defined completely by substituting Yoct
for x and Tson for y in equations (2,25), (2.26) and (2.29). The
solution of the simultaneous equations (2.29) can be performed by
any standard solution technique. The finite element program developed
and described in chapter 6 included a computer routine for this
purpose. But the special nature and purpose of this routine made
it undesirable to be applied to solve such a simple problem., For
this reason a separate program was written to formulate a cubic
spline function for any number of curves. The program reads the
nodal values of t . and vy . for each curve and sets up the system
of equations (2.29). The equations are then solved by a simple
elimination technique to obtain the values of ¢i, with i = 2, 3,

4 ....e, n-1, The nodal values of 7 and ¢ for each value

oct’ Yoct

of Opcti WET® written into a permanent disc file, ready to be read
by any program that required these, This procedure also reduced
the execution time of the main program, A listing of the cubic

spline formulation program is given in Appendix I,

Figure (2.2) shows the nodal points and some intermediate
computed points of the spline functions representing the set of

experimental <t curves, Experience showed that a successful

oct ~ Yoct
spline interpolation was obtained if a smooth curve was first passed
through the experimental points. The nodes were then selected on

this curve rather than using the raw experimental points,
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2.8 COMPARISON OF THE SPLINE AND THE HYPERBOLIC REPRESENTATIONS

For comparison purposes a hyperbolic formulation of the Roet =

% curves of figure (2.2) was also obtained and used, Equation

oct
(2.16) may be rewritten as

oct
T "atbyy,
oct

This is a straight line with slope b and intercept a, For a number

of values of t and Yoct OF each curve of figure (2,2), a linear

/T

oct

regression analysis between ¥y and Yoct W2S performed. This

oct’ "oct

yielded a pair of values for a and b, Substitution of these values
in equation (2.16) completely defined the hyperbolas representing
the curves in figure (2.2). One of these hyperbolas is shown in
dashed lines in figure (2.2). The extent of inaccuracy of the
hyperbolic representation is obvious, The spline formulation can
certainly claim a greater closeness of fit than the corresponding
single hyperbolic function.

It may appear, from figure (2,2), that the hyperbolic approxi-

mation of the 1 curve is acceptable, The apparently little

oct ~ Toct
difference between the two curfes, however, influencesthe load-
deflection curve of the structure resting on soil in a much markéd
way, Load-deflection diagrams obtained by Cunnell (1974) shows
that these hyperbolas do not give results that agree with those

obtained experimentally. Such curves obtained using spline functions

will be compared with experiments in chapter 8,

2,9 SOME ANALOGIES OF THE SPLINE INTERPOLATION

The cubic spline function is a mathematical representation of
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a continuous elastic beam with simple supports at the nodes. In
this beam, the bending moment varies linearly between the supports
with a change of slope of the moment diagram at the nodes, The
resulting shape of the axis of the beam is thus a smooth curve.

2 - weEl,

The equation of bending, applied to this beam, is dzy/dx
where M is the moment and E and I are the beam's constants. The
second derivative ¢ of the cubic spline function is also a straight
line between any two nodes X4 and xj. This is sometimes called the
moment of the mathematical spline. The nodes through which the
spline is made to pass are analogous to the simple supports of the
beam and the value of the function at these points is s(xi) = Ve
for all i = 1, 2, «ees N. The third derivative of the cubic spline
is constant between the nodes Xy and xj. but has a discontinuity

at the nodes. This is analogous to the discontinuity of the rate of
change of curvature of the beam at the support points.

The spline interpolation between a given set of data points or
nodes is also analogous to the finite element method of discret-
ization of a continuum. The individual pieces of the curve are
analogous to the finite elements, the nodes in both cases having a
similar meaning. The spline functions, representing the piece of
the curve, are analogous to the displacement functions in the finite
elements approach. The conditions of continuity of the derivatives
of the spline are similar to the compatibility requirements at the

finite element boundaries,
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CHAPTER 3

THE_NON=LINEAR ANALYSIS OF SOIL.

3,1 INTRODUCTION

The interaction analysis of a structure resting on soil can
be carried out by the finite element approach. In that case the
soil is represented using three dimensional solid elements. The
element should be so chosen that it can conveniently and economic-
ally be included in a finite element program for solving large
problems., A hexahedral solid element is described and developed
for this purpose in this chapter,

The properties of the soil are non-linear and, therefore, the
analysis using the three dimensional solid elements for soil must
take account of this. A method of analysis, which follows the
complete load-deflection history of the structure as well as the
non-linear stress-strain paths of the three dimensional soil

elements, is also described in this chapter.

3,2 A SOLID ELEMENT

3.2.1 Selection of the solid element

The isoparametric concept of finite element formulation offers
a virtually unlimited choice of shape and order of elements, All
of these stem from the same two basic element families, The essence
of the concept is that the same interpolation functions used to
determine the field displacements from their nodal values are used
to determine the co-ordinates of any point in the element from the
nodal co-ordinates. These functions are called "shape" functions,
as they completely define the element shape., A suitable choice of

these functions can define any element with an arbitrary shape.
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The eight noded isoparametric hexahedral element shown in
figure (3.1a) was used by Majid and Cunnell (1976) and was avail-
able to the author., When used, it was discovered to be very
expensive on the computer time, The weakness of such an element
is that it has to be formulated, starting from the shape function
and following the entire process of constructing the matrices B

D B dV in every step of the

L] 2 = T
and D in the integral k Ivolume B

analysis. Furthermore, the integration has to be carried out
numerically. The difficulty increases especially when there are a
large number of different element sizes. The stiffness matrix for
each element has to be constructed separately, The transformation
of the local co-ordinates of each element to the global system is
also an integral part of the analysis using isoparametric elements.
This too adds to the computer time, For these reasons, in the
non-linear analysis of large structures, in which the element
properties are changing continuously, it was discovered that the
use of isoparametric elements becomes very uneconomical,

The finite element approach can be useful only if it can deal
with large structures using existing computers with their limited
capacity. Even then the cost of the analysis must be low, These
aims can be achieved without any loss of accuracy provided that
the stiffness matrix of a solid element is prepared and programmed
in explicit form. Elements used to represent soil need not be of
an irregular shape, The fact that Majid and Cunnell (1976) used
elements with irregular shapes was merely to reduce the size of
the problem so that larger ones could be solved, Not only they
failed to achieve this aim but in fact, reduced the accuracy of
their results by using larger elements, The fictitious boundary

planes of the elements can be selected in a flexible manner, This



q= -1

a) Linear isoparametric hexahedral element

w

b) Isoparametric rectangular parallelopiped element

FIGURE 3,1 EIGHT NODED LINEAR HEXAHEDRAL ELEMENTS
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fact can be utilized to reduce the computer time considerably by
developing a fixed shape rectangular parallelopiped element. The
explicit derivation of the stiffness matrix of such an element is
possible. Once this is done it becomes possible to solve real
life problems quickly with the existing computers.

The rectangular parallelopiped element shown in figure (3.1b)
is a special case of the arbitrarily shaped isoparametric element
in figure (3.1a). The same set of shape functions N to describe
the field variables ¢ with respect to the nodal variables ¢e can

be used for both of them, So that

e

¢ = N¢
The shape functions of the element shown in figures (3.la and b)
are linear, as only a linear variation of displacements can be
defined along the edges. Higher order variations of displacements
are, however, possible by having intermediate nodes inside the
element and/or on the edges. An isoparametric hexahedral element
of the Lagrangian family with a quadratic variation of the dis-
placement is shown in figure (3,2a)., The shape functions of this
element are given by the products of the Lagrangian polynomials,
The equivalent quadratic element of the Serendipity family with
nodes on the element edges only is shown in figure (3.2b). How-
ever, in both the families the linear element is the same and is
the one shown in figure (3.1a and b),

The two linear elements in figure (3.1) are defined by the
same set of shape functions. They also satisfy the same conditions
of continuity and convergence. Therefore, the same degree of
accuracy is obtained by using either of them. However, the

rectangular parallelopiped element of figure (3,1b) is superior,



a) Lagrangian family - 27 Nodes

b) Serendipity family - 20 Nodes

FIGURE 3,2 QUADRATIC ISOPARAMETRIC HEXAHEDRAL ELEMENTS
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because its stiffness matrix can be prepared once and for all and
programmed in terms of simple and explicit expressions. Before
writing the computer program, the integrations involved are per-
formed manually and, therefore, the stiffness matrix is obtained
uniquely, In fact, the finite element mesh can be designed in

such a way that the various solid elements can be grouped into a
few elements of the same size, It is only necessary to construct
the stiffness matrix of each group once, Later, as the material
properties of these elements change, their stiffness matrices need
not be constructed again but merely updated, Likewise, explicit
expressions for strains and stresses within the element are obtained
once and then used repeatedly during the entire process of the non~-
linear analysis. Thus a considerable reduction in computer time
can be achieved by using the rectangular parallelopiped solid
element to represent the soil under a structure. An important fea-
ture of this element is that its local axes can easily be made to
coincide with the global axes and, therefore, no co-ordinate trans-
formation is required, This too saves further computer time. It
should be pointed out that the analysis of large structures requires
both computer time and large storage, It will be shown later in
this chapter how a great deal of computer storage is saved by the
systematic use of the parallelopiped element, Later, in chapter 6,
it will be shown that by constructing the overall stiffness matrix
one joint at a time, the usage of the storage facility is improved
to the extent that present day engineering structures can be solved

with available computers,

3.2,2 Stiffness formulation of the rectangular parallelopiped

element

While the displacement functions of the parallelopiped element
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are given in the texts, e.g. Coates et al (1972), the explicit
derivation of its stiffness matrix is not available., Because of
its usefulness and for the sake of completeness, the stiffness
matrix of this element is derived explicitly below in accordance
with the procedure outlined in chapter 1,

Consider the rectangular parallelopiped element with the node
numbering scheme as shown in figure (3.3). The origin of the
local co-ordinates is chosen at node 1, while their directions
are parallel to the element boundaries. The dimensions of the
element are a, b and ¢ along x, y and z directions respectively.
Each node of the element is given three translational degrees of
freedom, u, v and w in X, y and z directions respectively. The

displacement functions of the element are written as:
U=t a, Xtagy g2 + QXY + Qg YZ + G, XZ + O XyZ 3.1a

VR by F Gy X Uy PR 0ys 2T Oy IV N My Y2 R0 YRS gy ANE

9

w=a17+(1183{4‘&19)’*0202+G21X}’+u22}’2+&23 xz+u24 XyZ

The displacement functions given by the above equations satisfy all

3.1b

3.1lc

the compatibility conditions of a conforming element given in chapter

1,

The values of the constants Gis oy Oz seeee, O in equations

24
(3.1) can be expressed in terms of the nodal displacements Ups Vos

Wys Ugs Voy Wy seses, Ug, Vg, Wee This is achieved by sutstituting

the values of the co-ordinates of each node in turn in equations (3.1)

and solving for Gys On sennsyln,e Thus, at node 1, x =y = z = 0

and u = u). Substituting these values in equation (3.la),

3.2a
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Similarly, at node 2, X =a, y =z =0and u = Uy, and, therefore,

u =C£1+Ctza=lll+0‘.28.

1

Proceeding in the same manner and substituting the co-ordinates of
nodes 3, 4 veves, 8 in turn in equation (3,1a), the following values

of a are obtained,

1
gz = B--(u3 - ul), 3.,2¢C
g, = E B, « U 3.2d
4 ¢ 4 1 ¢
0. = e (u, ~u, =u, +u.) 3.2¢e
5 ab "1 2 3 B e *

o, = 5 (u, =u, =u, +u) 3.2f
6 be i | 3 4 6"’ ¢
- 1 (u, = u, = u, +u.) 3.2g
7 ac 1 2 4 b i s

. 1
and g = Zpc ("Up * Uy * Uz *uy - uUg - ug - u, v ug) 3.2h

Similar expressions for Ogs Gyg eeves, e and Oygs Gyg evsssy Oy
can be obtained by substituting the nodal co-ordinates in equations
(3.1b) and (3.lc) respectively. The solutions of Ggs O3gr Oyp *oes B¢
are given by replacing u,, Uy, ug etc, by Vis Vg» Vg etc, in equations

(3.22, b, eses, h) respectively, Likewise, the solutions for
Q,my G y C sesey O

17* 718" 19 24 are given by replacing Uy Uy, U, etc, by
Wiy Wy Vg etc, in the same equations, Thus the following relation-

ship is obtained.

@r= ¢l @y 3.3
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where {g} =I {0‘-1 Uz Cls cecos ﬂ24},
{1} = {ul vl wl u2 vz wz senne us \'8 ws},

and -1 is a 24 x 24 matrix containing constant terms of the
element dimensions a, b and ¢ only.

The strain vector {g} is obtained by utilizing the strain-
displacement relationships. By performing the appropriate partial
differentiations of the displacement equations (3,1), the following

relationship is obtained.

gy = [ | = %/ ax = A @) 3.4
Ey QVfay
ez QW/BZ
BU/ BV/
ay + X
ny y
sz SV/az + Bw;ay
BW/ 2u
sz_ N 3X + /az_

where A is a 6 x 24 matrix containing terms of x, y and z only,

Substituting for {a} from equation (3,3) into equation (3.4),

€}= A CTU X = B (X} 3.5

The 6 x 24 matrix B is obtained by performing the matrix multi-
¢ 2o -1
plication A C ". The elements of this matrix are given below

explicitly:
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= 1 z z
= - = b = =b = s - E o= - Lo b & & Yz _
bl, 1 bl, 4 4, 2 4, 5 bﬁ, 3 bﬁ, 6 2 " a5 " ac " &b
bl, 7 b]-; 13 b4.| 8 b4| 14 bﬁ, S bﬁ, 15 ab ¥ abc

- - - = - = = - E = nE—n &
by 10 = " b1, 19 P4, 11 % P, 20 = P, 12 % “Pe, 21 * " &t * @be

1 X
by, 2= Py, g P, 1% P4, 7 Ps 35 9= "5 b
2 X
be abc
b = -b =b = -b b R

c

by 3= -bg 12 %P5, 2% "5, 11 %%, 1% P, 10 be
by, %= bx, m "5, 50, 0™ Ve My e . B KL
b = -b =b ‘V— X

3, 9 5,187 75, Bmaby jambe omebe o mofTrD
bs, 15 = 3, 24 = Ps, 14 7 " P5, 23 % Pg, 137~ Pg, 22 7 " XL
All the other elements of B are zero.

The stress-strain relationship is given by:
g} = D f} : 3.6

The elastic properties matrix D , in three dimensional stress

analysis, is given by:
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— 306|1
26 [

D = Ty lav v v 0 0 0

v l-v v 0 0 0

v v l-v 0 0 0

0 0 o0 l'g" 0 0

o 0 0 0 1'2" 0

o 0 0 0 o L

e _

in which G is the shear modulus and v is the Poisson's ratio,

Finally, the stiffness matrix of the element is obtained from

B D B dxdydz 3.7

Performing the matrix multiplication indicated in equation (3.7)

and carrying out the integration over the volume of the element for
each term of the product, tﬁe stiffness matrix is explicitly obtained.
It is noticed that the factor 2G/(1-2v) in the expression for [

in equation (3.6,1) is constant throughout the volume of the element
and can be kept out of the integrations. Thus the stiffness matrix
is expressed as a matrix of constant terms, with the Poisson's

ratio being assumed to be a constant, multiplied by the variable
shear modulus G, This facilitates the computation as only the

shear modulus changes in the non-linear analysis procedure, In any
step of the analysis, therefore, the current stiffness matrix of

an element is obtained simply by multiplying the previously computed
terms of this matrix by the instantaneous value of the shear
modulus. The stiffness matrix of the rectangular parallelopiped

element, expressed in this form, is explicitly given below:



59

=11 3.8

symmetrical

291 272 273 ko4 k9s ko6 koy

key kg kgz  kgy  kgs kg kg7 Kgg

in which each kij is 2 3 x 3 submatrix, The submatrices are written
explicitly below. In each case a, b and ¢ are the element dimensions

and the other symbols are as follows:

L2 _2(1-v) 2(1-4v)
fepmr e 1Ty 0 Pean
ab . be ac
r=-§-5a S-QaJ t.ﬂ-é'g
. i 5
kjg "kgg= |88 *T T Symm.
é% gt + r + s
%% %% gr+ s+t
1‘:.22 " k66 = gs +t+T Symm.
£
- E%- gt + T+ 5
b fa
"'24 "2‘2‘ gr+5+t




k3p =

Kr6 =

gs+t+rT symmetrical
—-g% gt + r+s
fb fa
% T st
gs+t+r symmetrical |
'2%‘ gt + T + s
b fa
--2—4— -5-4— g’I’+S"‘t——

—' t . T he hb

stz 3 24 24
-\-‘h_E "g—-t—'lb-:-‘...s gf‘-

24 2 2 48
. hb fa g, r.
24 48 2 2

(s LI . he o
I 27 78
7 A A S 7y
- ha  gr. s,

| 8 aY 27

—

RN fc _hb
2 "7%7% 32 5
fc gt s .1 ha
e "T7I'T wm
m "ZB' 4--2--

B

|
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T R b
2 2 48 24
fe gt s ha
78 e Tg-E 73
hb ha s t
27 24 “ERt Yy
- sl
[Ces,t.r e B 7]
A TR 48 74
He g _r_s _ha
48 4 22 Y
£b ha g s .t
24 48 T2 7TYT%
f_éi t_r he _hb o
4 " 272° 73 48 vy
he yt s T fa
"®m  -~F ;-3 £
hb fa y 5t
23 23 'gl“d"z
g _r.r o L hb
2 277 24 78
fe gt . r s ha
7 I e ] Y]
- a2 -ha g st
| 48 48 4 272
[_— B
gs r he _
2" "ty 24 48
he S ha
B L 23
fb ha r . s
L " iz %‘*"2"1:___
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kes ® k'
g4 =

Key = ¥'g2
kg2 =

ks = K72

s+£+£ _11..9..
=82 %3 " 24
he gt .t
24 aal R
hb fa
=24 " 48
-
gs _t_zI fc
! 4" 4 - 28
_fc_gt _T_S
28 4 "3 %
b fa
g 3
L_ 4 8
gs _t_<X _he
T "2°72 48
he g _ .3
48 2 27 2
hb . fa
48 24
s t T fe
-E-3-7 i3
I—f-?— OLt'-'I’.'-
48 y
£b _fa
43 48
[ gs  t fc
%“* Gk T 38
fc gt s
" I8 - " T*Y3
hb . ha
2% 24

- e———




63

S S ST S _B
ksy = ¥ g3 > Y772 28 5%
hc gL ... 8 ha
~ 438 4 " 272 - 38
- i ha By & it
L 24 38 2 "2 1|
= (e _t_.r £ .
=73 4 4 4 48 48
fe gt s e
48 4 4 4 48
fb fa gr s _t
~ 28 48 B W R
) e . t_.r _fc -
kgy = 4 7773 78 28
L R T 8
48 4 4" 7 T 43
b fa gr s _t
” © 78 Ty "4 T 7

The stiffness matrix k 1is symmetrical, This implies that

the submatrices have the relationship

ki = kjiT for'd = 1,5 connnyB 8 1% Ly 2 siseen Bs

The stiffness matrix given above is derived with respect to the
local co-ordinates shown in figure (3.3)., Since these axes are
chosen parallel to the element boundaries, the same set of local
co-ordinates can be used for all the solid elements, These, in
turn, can be chosen to be parallel to the global axes of the
complete system, As mentioned earlier, a co-ordinate transformation
is thus unnecessary. Therefore, the stiffness matrix given above

can be used in the form presented,
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The stiffness matrix of the solid element is a full 24 x 24
'matrii. However, it is also symmetric, Therefore; only 300
elements in the lower triangle need to be constructed once and for
all and stored. In the program this lower triangle, for each type
of element, was stored in a one dimensional row by row sequence.

A unique relationship exists between the location of an element in
the stiffness matrix and the address of that element in the one

dimensional storage array. This is:

g = 31%21) + 3 3.9

with iz i
where i is the row number and j is the column number of an element

in the stiffness matrix, and 2 is the address of the same element

in the one dimensional array.

3,2.3 Calculation of the strains and the stresses in the

solid element

Once the vector of the nodal displacements {X} is obtained
from an analysis, the strains at any point in the element can be
calculated from equation (3.5). This is achieved by substituting
the co-ordinates of the point in the B matrix derived in the
previous sub-section, The stresses at the same point are calculated
from equation (3.6) by premultiplying the strain vector by the D
matrix evaluated for that element from equation (3.6.1).

It is usual to compute the stresses and the strains at the
centroid of the element, Substituting the centroidal co-ordinates,
é; %3 %D, in the expression for B , the matrix can be evaluated

at this point, The B matrix for the centroid is given in table
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(3.1). The storage of this matrix for all the elements with different
values of a, b and ¢, for use in equation (3.5) to calculate the
strains in each step of the non-linear analysis, needs 3 x 24 x NTE
elements, Here, NTE is the number of types of elements with different
sets of a, b and c, On the other hand, repeated evaluation of this
matrix for all the elements at each stage of loading is expensive

on the computer time. It was, therefore, decided to perform the
matrix multiplication of equation (3.5) by hand and write down

explicit expressions for the strain components., These are,

1
€, = ZE'(-ul +u, - Uz = U, *ug - u, tu, 4 us) X 3.10a
1
ey = ZE'(-VI - v, * Vg =V, - v5 Ve = Vgt vs) 3.,10b
.-1 - - -
€, = 75 ("wl Wy = Wg ¥ Wy We * We + Wy + wB) 3.10¢c
1 1
AL (=V; * Vg = Vg = Vg % Ve = Vi 4V, # vg) + g5 (ug
-u, * Uz - Uy *ug U - Uy + u8) 3.10d
1
Yoy * 75 (=Wy = Wy + Wg = Wy + We + W = W, & wg) + 7 (-v,
-V, = Vg Yy 5V Ve ¥ VS v8) 3.10e
Y -1—-(-w * Wa =W, =W, + W, = W, + W +w)+-1-
zx 4a ° 1 2 3 74 5 6 7 Mg) + 72 =y
- uy - Ug b U - Ug UL U, uB) 3.10f

These expressions were used in the computer program to calculate
the strains at the centroid of an element from its nodal displace-
ments. Similarly, direct expressions for stresses in terms of
the strains were written by expanding equation (3.6). These

expressions were used in the program to calculate the stresses at
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the centroid of an element. This scheme of calculation of the
strains and the stresses resulted in a considerable saving in both

computer time and storage.

3,2,4 Calculation of the principal stresses

In figure (3.4) the Cartesian components of stress at a point

in space are o, Ops Oy Tyys Ty and 1,4+ Let o, be a principal
stress acting on the principal plane ABC, Also let the normal to
this plane have direction cosines £, m and n.with respect to the
X, Y, 2 axes.

The equilibrium of the tetrahedron OABC can be expressed as:

— e R - —
(5. .. t..]1-0, 1 0 o 2] =gy 3.1

X Xy ZX A
Uy o 0 1 ognm
T,y Tyz g, LO 0 1_/ R

k_ w—

This equation can also be written in the form:
M- Al =)

which has a non-trivial solution only if the determinant
|M=-2A1] =0 3,12

The eigenvalues of equa;ion (3.11) are the principal stresses and
the eigenvector for each gives the corresponding values of £, m and
n. It is possible to compute the principal stresses and their
direction cosines by using a self-programmed or a package eigenvalue
routine (e.g. NAG library routine FO2ABA/F), But for a 3 x 3
matrix it was found that the repeated use of such a routine was

uneconomical, A closed form solution proved to be more economical,
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Expanding the determinant in equation (3.12), the following

cubic equation is obtained.

°A3 - J1°A2 * J2°A - J5 =0 3,13
in which J1 =0y % °y * 0,

Jg = 0x% ¥ Oy% * 0,0 - Tyzz ) szz - Txyz’
and I3 = 0399, ~ UxTyz2 - Gyszz - Uztxyz * 2Txyryzrxz

are the first, the second and the third stress invariants respectively.
A closed form solution for the three roots of a cubic equation has
been given by Spiegel (1968). The solution of equation (3.13) is

given explicitly below:

33, - le
Let Q= —25—t
-0J.J. + 273, + 23

172 3 1
and R = £7

3

When equation (3.13) has three real and unequal roots, the discriminant,

d = Q3 + Rz,

is negative. The principal stresses, in this case, are given by:

6, I
op = 27-Q cos (3) + =% 3.14a
8 o, . %1
Opp = 2{-Q cos Qi + 1207) + ™~ 3.14b
W e (] 'Jl .
Opz = 2V=Q cos Gf + 2407) «+ 7~ 3.14¢c

where cos € = R/¢C53

If d is equal to zero, at least two of the principal stresses are

equal, The principal stresses, in this case, are given by:
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1/ J
~ 3.V
a1 2R o 3.15a
1/ J
_ 3 1
Op2 =%z =R t3 3.15b

Having obtained the values of the principal stresses from
equations (3.14) or (3.15), it is necessary to calculate the direction
cosines of each of these. Substituting the value of a principal
stress, 0y, in equation (3.11), a set of simultaneous equations is

obtained; thus:

(cx -UA) L+ Txy m+ 1,, n=0 3.16a
Txy 2+ (cy - UAJ m-rtyz n=0 3.16b
Tos [ Tyz m + [cz - cA) n=0 3,16¢c

Solving these by elimination, and remembering that £2 > m2 = n2 % 1,

explicit expressions for the values of %, m and n for this principal

stress are obtained. These are:

2 = b,n 3.17a

2
m = bln 3.17b
1
and ns= 3,17¢
/(1+b 2. 2) '
1 2
12 - (0. =-0,) (6. - q,)
ZX P2 A z A
where bl =
Tyz(c s UA) Txy sz
T b, + 7
1 zX
and b = - _EL————-
2 o = oy

A subroutine, PRINC, was written and included in the main finite

element program to calculate the principal stresses and their



direction cosines from equations (3.14), (3.15) and (3,17) directly.

3,3 NON-LINEAR ANALYSIS TECHNIQUE

3.3.1 Introduction

The rectangular parallelopiped element developed earlier in
this chapter is used extensively in this thesis to represent the
soil under a structure, Most soils exhibit a non-linear stress-
strain behaviour, This causes non-linearity in the load-deflection
and the load-bending moment diagrams of the structure resting on
the soil, The non-linearity of the soil properties must, therefore,
be taken into account in the finite element analysis of the stru;;
ture and its supporting soil., A functional representation of the
highly non-linear T ., =~Y,., curves of soil was developed in
chapter 2, A technique of analysis, in which the properties of the
solid elements are represented by these curves, is described in the

following sections.

3.3,2 Non-linear finite element analysis

In the general finite element formulation, the following two
basic assumptions are made.

(1) The strain-displacement relationship is linear and is given
by

{g} = v {U}
where {¢} is the strain at a point in the element and {U} is the
displacement vector at that point, V is a suitable linear operator

well known in the theory of elasticity, cf, Timoshenko and Goodier(970).

(2) The stress-strain relationship is linear and is given by
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{gy= D (g}
where ¢ 1is the stress vector and D is the elastic properties
matrix.

The violation of the first of these two assumptions means
that the fundamental variational formulation of the finite element
method need to be 'altered. However, for small displacements, the
linear strain-displacement relationship is considered to be suffi-
ciently accurate, Geometrical non-linearity due to large displace-
ments is excluded from this thesis, Non-linearity of the material
properties, on the other hand, can be catered for without changing
the fundamental finite elements concept. This is achieved by
invoking the non-linear elasticity principle described in chapter 2.

Thus the stress-strain relationship can be modified to:

{g} = [D(o,€)] (g} 3,18

\
Here the material properties matrix D(o, e) is a function of
the stress and the strain level and is no longer a constant,

Similarly, the load-displacement relationship of the system can

be written as:

{L} = [k, X)] {X) 3.19

where {L} is the known vector of applied loads and {X} is the
vector of unknown displacements, The stiffness matrix K(L, X)
is a function of the applied loads and the displacements.,

The methods of non-linear analysis, utilizing the relation-
chips (3.18) and (3.19), are either of an iterative or of an
incremental form, Zienkiewicz (1977). Both of these methods

require a repeated solution of the set of equations (3.19).
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A typical load-deflection diagram of a structure supported on soil
is represented in figure (5.5]; where L is the applied load and X
is the resulting deflection., In this figure point A represents
the actual state in the structure when the total load acting is L*
and the resulting displacement is X¥,

Several schemes of iteration can be adopted to obtain the
point A by the analysis, In the direct iteration method, shown
in figure (3.5), the first solution is obtained by constructing the
stiffness matrix, Eb’ with the initial tangent moduli of the
non-linear elements. This stiffness matrix is successively
modified to K,, K, etc. by utilizing the secant moduli of the
elements at the current levels of strains. Each time the structure
is subjected to the full load, L*,

The convergence of iteration is improved by the Newton-Raphson
method, figure (3.6a). The analysis is started as before with the
initial tangent moduli, However, the solution is successively
improved by reanalysing the system for the "unbalanced" loads,’

AL, AL, etc., as shown in figure (3.6a). In each analysis, the

1
stiffness matrices, K,, K etc., are constructed with the tangent
moduli at the current level of strain in the elements. The
unbalanced loads are calculated by transforming the difference,

o, between the computed and the actual stresses for the current

value of strain, Thus:

{aLl} = f

T
volume B {go} v

In both the above schemes of iteration, the stiffness matrix
has to be constructed and equation (3,19) has to be solved explicitly
in each cycle, A modification of the Newton-Raphson method,

in which the same initial stiffness matrix, Ky» s used repeatedly,
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is shown in figure (3.6b). However, the convergence in this method
is relatively slow. The Newton-Raphson iteration schemes are also
called the '"stress transfer'" methods, as the residual stresses are
converted to forces and transferred to the element nodes.

In all the above schemes, convergence is not always guaranteed,
while the speed of the convergence is often unpredictable, Further-
more, the analysis produces only the final point on the load-deflection
diagram and no knowledge of the intermediate states can be gained,
In the non-linear "incremental' analysis, on the other hand, not
only convergence is guaranteed but the load-deflection history can
be traced upto the final applied load, Such a method has been
extensively used in the past to analyse structure and/or soil
problems, Majid and Craig (1972), Desai (1971) and Majid and
Cunnell (1976). An incremental analysis technique is also used in
this thesis, It is described here in the context of the three
dimensional finite element analysis of a structure and its suppor=-

ting soil,

3.3.3 The incremental method

The non-linear three dimensional soil properties are expressed
in terms of curves of octahedral shear stress and octahedral shear
strain, Solid elements representing the soil under a structure
have different values of initial octahedral normal stress. This
influences their stress-strain behaviour under subsequent loading.
Let the T ., = Y, CUTVE shown in figure (3.7b) represent the
stress-strain properties of a particular solid element in the mesh.

In the incremental method of analysis, the total load on the
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structure is divided into a number of small increments. The

system of equations (3.19) is solved repeatedly with each of these

incremental loads. The stiffness matrix is obtained each time by

substituting the values of the shear modulus, G, that correspond

to the current level of the octahedral shear strain in each element.
At the unloaded state, the solid elements do not have any |

stress or strain, The initial tangent shear modulus, Go’ for

each element is calculated from a spline function representation

of the T curve shown in figure (3,7b), This is used to

ct ~ Yoct
construct the initial stiffness matrix, Eo’ figure (3,7a)., A small
increment of load aLl is applied and the resulting displacements

4X, are obtained by solving the equation:

1

Ly, = K, {axy 3,20

The increments of strain due to this increment of load are calculated

from:
{ag}, = B {AX} 3.21

The incremental stresses are calculated from the incremental strains

as:

(agh = D fbe} 3.22

The elastic properties matrix D o in equation (3.22) is obtained

by using the initial shear moduli, Go' of each element, For the
solid element whose t_ . - Yoct Curve is represented by figure (3.7b),
the increments of the octahedral shear stress and the octahedral

shear strain due to the load ﬁLl is Gtoctl and &y respectively.

octl
These represent the point A' on the figure, The point on the load-
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deflection diagram of figure (3.7a) obtained after the application
of the first incremental load, AL;, is a'. Point A corresponds to

curve in figure (3.7b).

i on the a al -
the strain GYoctl n ctu Toct Yot

The amount AA' is thus the error in the theoretical Toct of this

element. The corresponding error in the load-deflection diagram
is the amount aa' in figure (3.7a).

The tangent slope of the 7 curve at point A is

oct ~ Yoct
evaluated by the spline functions. The value Gl’ thus obtained,
gives the tangent shear modulus of the element at the current level
of Yooe® These new values of the shear modulus for each element

are substituted into the stiffness matrix to obtain a new matrix.

A further increment of load ALz is now applied and the structure and
the soil are reanalysed with this new stiffness matrix, Such an
anlaysis gives a new set of displacements sz for the increment of
load AL, alone., Equations (3.21) and (3.22), applied to this
increment, give the increments of strains and stresses respectively,
The corresponding increments in it and Yoot in the single element
respectively, The total octahedral shear

are dro and &y

ct2 oct2

strain is obtained as the sum of &t and §t and the total

octl oct2

octahedral shear strain as the sum of sYoctl and &y The tan-

oct2’

gent shear modulus at point B on the ¢ curve corresponding

oct ~ Yoct
to the current total y .. is obtained. This defines the stiffness
matrix for the next increment of the load, The procedure is
repeated for successive increments of load until all the loads have
been applied or failure has been reached,

In general, the incremental analysis number j is performed

with the incremental load-{aL]j and with the tangent stiffness matrix

[}g]j_1 corresponding to the shear moduli values at the end of the
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last increment. The displacements, the strain and the stresses
are successively accumulated to give the current state of these
values.,

It is evident that this method traces the load-deflection
diagram of the structure and the soil system as well as the structural
member forces and the stress-strain diagram of each soil element.
However, in each increment .there is a discrepancy between the com-
puted points A' and a', and the actual points on the curves, A and a.
For most structures and soils these curves are convex downwards, as
shown in figure (3.7). In such cases the theoretical curves always
under estimate the displacements and the strains, Nevertheless,
this discrepancy can be kept to a minimum by choosing a sufficiently
small increment of load in each step. An improved solution can also
be obtained by performing a Newton-Raphson type of iteration for
each increment., However, this is only achieved by performing addit=
ional repetitive solutions of equation (3.19). The results obtained
by using the procedure just described indicate very good agreement
with those obtained experimentally, It is, therefore, considered
that improving the method by making use of the Newton-Raphson method,
while possible, is costly and unnecessary.

The incremental analysis technique has the merit of producing
a convergent solution in all the cases. The accuracy of the results
up toany desired degree can be achieved by choosing suitable incre-
ment sizes, Sharp changes in the curvature of the load-deflection
diagrams can also be traced by applying small increments of loads
in these regions. The method is readily applicable to problems of
non-linearity due to crack propagation. This problem is described
in chapter 4. The incremental analysis scheme is extensively used

in this thesis.,
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CHAPTER 4

TENSION SEPARATION AND CRACK PROPAGATION

4,1 INTRODUCTION

Brittle materials undergo physical separation in the form of
cracks and fissures due to the development of tensile stresses.

Such separations cause a stress redistribution in the system and
account for itsnon-linear behaviour. A degree of strain softening

can be detected in such a cracked system, The stress concentrations
around the cracks may lead to a drastic increase in the extent and

the size of these cracks, which in turn cause further tensile stresses
at the cracks.

In a complete system of a structure, its foundation and the
supporting soil, non-linearitydue to cracks and/or separations is
possible., Separation may occur in any zone where the tensile stresses
exceed the tensile strength of the material, This may be either
within the soil mass or at the interface between the soil and the
foundation. Experiments described in chapter 7 confirm this. Such
a behaviour may also be experienced in many other types of structures
and foundations,

As the soil is weak in tension, stress redistribution also occurs
due to unsightly separations in the soil mass, However, such a
separation within the mass of such materials as dry sand, is expected
to be filled up by the neighbouring body of sand., This causes a
complete redistribution of stresses as well as the actual material,

In some circumstances, the changed geometry of the system, due
to cracks, may on subsequent loading, result in relaxation of the

stresses in the cracked zone. This may cause the crack to close again,
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On the other hand, new cracks can develop elsewhere in the system.
Some of these may widen, bifurcate, extend in length or change
direction. All these indicate a continuous change within the system
until either equilibrium has been restored or failure is reached.

The purpose of this chapter is to develop and incorporate into
the finite eleﬁent analysis program,a method that takes the irregular
behaviour described above into consideration. The method proposed
is able to predict and allow the separation of the soil mass and/or
the interface in a complete three dimensional system, The method
is also able to follow the propagation of cracks and to arrest those

that may show evidence of closure,

4,2 ANALYTICAL REPRESENTATION OF CRACKS

Appreciation of tensile weaknesses in the foundation materials
has been shown by many research workers in the past. Leonards and
Harr (1959) analysed an axisymmetrically loaded circular plate which
was partially separated from the soil due to warping caused by tem-
perature and shrinkage stresses., The foundation was assumed to be
a Winkler model and the separation was only allowed to take place
away from the central zone of the circle,

Tsai and Westmann (1967) extended Hetenyi's (1946) solution for
a beam on an elastic Winkler type foundation to account for the poor
tensile strength of the foundation, They introduced a modified
relationship of load and displacement of a Winkler foundation with
no tensile strength,

More recently finite element techniques have been applied to
take account of cracking in physical systems, Ngo and Scordelis (1967)

used triangular two dimensional finite elements to analyse reinforced
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concrete beams with a predefined crack. The crack was included in

the geometry of the finite element mesh as a gap of zero width between
adjacent elements, Both the propagation and the arrest of cracks

were beyond the scope of their approach,

Nilson (1968) used a similar technique in conjunction with a
non-linearincremental analysis to predict the occurrence of a crack.

A separation was manually inserted and the mesh reanalysed, Such a
manual approach to the problem of crack propagation is possible.
The effort, however, seems to be too high even for the simplest of
problems,

Zienkiewicz, Valliappan and King (1968) utilized a stress
transfer method for redistributing the tensile stresses by some
restraining forces applied to the system. This was then reanalysed
linear elastically with a reduced modulus in the direction of the
tensile stress.

Phillips and Zienkiewicz (1967) used the above method of
adjusting the stress level and the material property in the cracked
zone to analyse concrete structures., Plane and axisymmetric finite
elements were used in a non-linear incremental analysis.,

Trikha and Edwards (1972) used a similar technique to predict
cracks in prestressed concrete beams which had material nonlinearity,
Only a two dimensional finite element approach was considered.

Riddington (1975) and Stafford Smith and Riddington (1977) used
stiff linkage elements at the boundary between a masonry wall and
its supporting beam to predict the separation between the two. When
separation occurred at any point on the interface, the stiffness of
the linkage element at that point was reduced to a low value to simu-

late a2 tensile failure.
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The stress concentrations and the stress field singularities
near a sharp crack have been investigated by workers in fracture
mechanics. Alsharqi (1977) used an axisymmetric triangular finite
element representation to analyse a solid of revolution with a
sharp crack. The stress intensity at the tip of the crack was
catered for by a special core type element which incorporated
analytical solutions of stresses and displacements at the tip.

Most of the approaches described above are either inaccurate
or inadequate because they consider cracking as a zone of material
weakness., Majid and Al-Hashimi (1976) pointed out that a crack
does not change the material properties, It only introduces a
physical separation of the two parts of the material on either side,
The separation was carried out by first introducing initially inactive
joints to be associated with every active joint, These were then
activated each time a crack occurred, This was done by separating
the elements on one side of the crack from the parent joint and
rejoining them to the new joint, For this purpose plane strain
"triangular" and "isoparametric" quadrilateral finite elements were
employed., Soil-cement samples with a constant elastic modulus in
compression were considered, An incremental technique was used to
follow the crack propagation upto and including failure. Cunnell (1974)
also used the same technique with two dimensional isoparametric quad-
rilateral elements to analyse similar problems,

Majid and Al-Hashimi's (1976) method was used for two dimensional
problems. It is considered that this method can be extended to
cover the three dimensional cases studied here, This approach offers
the possibility of initiation, extension, bifurcation, widening and

closure of any pattern of cracks in the finite element mesh, It also
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means that the crack width can be calculated at any stage of the
loading. The logic of the method is easily programmable and an
automatic crack propagation scheme is easily adaptable. This method
constructs and solves the stiffness equations repeatedly as the load-
ing progresses. The number of equations to be solved increases as
new joints are activated. In this manner, as the cracks develop,

the system becomes more flexible,

Based on the above approach, the development of a tension sepa-
ration scheme applicable to non-linearthree dimensional interaction
problems is feasible, Such a scheme will be developed in the fol-
lowing sections, As the method would be included in a non-linear
finite element program for complete structures and foundations, it

is made entirely automatic,

4,3 DEVELOPMENT OF A TENSION SEPARATION METHOD

The method of automatic tension separation in a three dimen-
sional finite element structural analysis proposed here is of a
general nature. It can be applied to a wide variety of crack prob-
lems. Various forms of separation within the soil mass as well as
at the interface between the structure and the soil can be experienced.
Some typical patterns are shown in figure (4.1). Separations can
occur between a wall or a slab of the structure and the surrounding
soil, These are labelled AB, CD and EF in the figure. Separation
may also occur between the soil and a boundary or a plane of symmetry
as shown by GH., Cracks such as JK and LM within the soil mass both

in the horizontal and the vertical directions are also likely.

4,3,1 '‘Method of introducing a separation

The essence of the method is to assign two numbers to each joint

in the finite element mesh that is likely to suffer a tension sepa-



Plane of symmetry
or boundary

FIGURE 4.1 TYPICAL CRACKS IN A STRUCTURE-SOIL SYSTEM
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ration. The joints are disconnected when such a separation is
indicated. This takes place either within the soil mass or between
a wall or a slab and the surrounding soil, This disconnection
physically introduces a gap between adjacent elements ﬁeeting at
that joint.

In figure (4.2a), (I) is a general joint in a three dimensional
finite element mesh, which is considered to be likely to suffer a
tensile stress. The joint is surrounded on all sides by eight
rectangular parallelopiped solid elements. A joint (N) is associated
with joint (I) and has the same co-ordinates in space as those of
(I). Joint (N), however, has initially no degree of freedom and
is simply a dummy joint associated with the active joint (I). To
begin with, therefore, joint (N) will not take part in the finite
element analysis and will not influence the calculation in any way,
After the application of a number of increments of the loads, con=-
sider that tensile stress develops in a direction perpendicular to
the plane ABCD, see figure (4.,2), If the loading is continued, con-
sider that at (I) the tensile stress is likely to exceed the tensile
strength of’the material. To cater for this, a separation at (I) is
necessary to be introduced in the x-direction normal to the plane
ABCD. This is achieved by altering the compatibility conditions
between the elements on either side of the plane ABCD. The elements
can no longer have a common node at (I), The elements p, q, r and s
to the right of the plane ABCD must be disconnected from this joint,
These are now connected to (N), which is activated by giving it its
appropriate degrees of freedom., During the subsequent loading of
the system, joint (N) is thus brought into action in the finite
element analysis, The new "cracked" mesh, thus developed, is shown

in figure (4.2b). The straight lines j1 and km in the uncracked
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mesh are now split into lines jIl, jNI1, kIm and kNm with joint I to
the left of N. These joints can now act independently and displace
relative to each other in all directions,

In the uncracked state, all the eight elements e, £, g, h, p,
g, T and s, contributed stiffness terms to joint (I). After the
separation new rows and new columns are introduced to the stiffness
matrix to correspond to the degrees of freedom of joint (N). Elements
e, £, g and h will continue to contribute stiffness terms to (I).
On the other hand, elements p, q, r and s will now contribute to
rows and columns of joint (N)., The dimension of the stiffness matrix
thus increases by the extra number of rows and columns corresponding
to the degrees of freedom of (N). As further cracks develop, the
stiffness matrix continues to increase in size and the system becomes
less stiff, It should be pointed out that, in the actual program,
only the lower triangle of the stiffness matrix is stored and operated
upon. Thus the increase in the stiffness matrix due to the columns
of joint (N) is disregarded,

In the foregoing description a separation was permitted only in
a direction normal to the boundaries of an element, In reality a
separation occurs normal to the major principal tensile plane, The
non-coincidence of element boundaries with this plane may lead to
some error in the pattern of cracks. However, this is not a problem
at the interface of a foundation and the soil, since the actual
separation does, in fact, take place normal to such an interface.
In a three dimensional stress system, the directions of the principal
stresses are generally inclined in an arbitrary manner to the global
axes, They are also changing continuously, This is due to the fact

that as the applied loads increase and cracks propagate, the stresses
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throughout the system change both in magnitude and in direction.
However, it is not practicable to design the finite element mesh

with element boundaries parallel to the principal planes at all the
points, Neither is it viable to redesign the mesh with every change

in the direction of the principal stress, An approximation is thus
unavoidable., In the present method, a separation at a general joint
was permitted only in the direction of the maximum tensile stress.,

It was considered that this would be a good approximation to the

actual direction of the major principal tensile stress. During the
theoretical analysis of the structures discussed in this thesis, the
Cartesian axes were considered as the co-ordinate axes. Since the
loads applied were always vertical it was considered that it is rea-
sonable to assume that the principal axes were also parallel to the
Cartesian axes, Furthermore, in the mass of the soil under a structure,
a knowledge of the existence of a crack is considered to be significant
even if its exact direction is not predicted, This is because the
flexibility of the system in the cracked zone is increased by the

inclusion of the separation whatever its direction is.

4,3,2 Criterion for the development of a crack

The structure - soil interaction problem is analysed by dividing
the structure and the soil into suitable finite elements., Initially
the finite element mesh is uncracked. The non-linearanalysis is per-
formed by an incremental technique, The total load is applied in
small increments 6P and the mesh is analysed repeatedly for these
incremental loads. After each analysis the stress and the displace-
ments are accumulated and the material properties are altered to
conform with the current level of stress. A full description of the

incremental approach has been given in chapter 3,
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Figure (4.3a) represents the variation of the stress at a point
with the external load., Consider that the system has already been
analysed j times with j increments of load, each having a magnitude
6P, Point 'A' in figure (4.3a) indicates the level of the applied
load on the system and the corresponding state of a normal stress
at a joint 'n' at this stage of the loading., As the loads are
jncreased, let the letters i, j and k indicate three successive
increment numbers. P, and Pj are the total loads at the ends of
increment numbers i and j respectively., The corresponding stresses

at n are o, and T A linear extrapolation predicts the load P *

at which the stress at n reaches the tensile strength Oy Thus,
from figure (4.33),
* - - - -
Pk PJ i L cJ 4.1
Pj - Pi cj i

Now &P = Pj “: Py and if ¢6P* = P, * - Pj and Boj =05 = Oy equation
(4.1) becomes:

spx _ %t = % 4,2

33 80
j

If equal increments of load are used, then the total stress at n
will reach the tensile strength Oy when (8P*/8P) reaches a value
of unity. A crack is then introduced at joint n for the next
increment of the load,

In the above approach it can be seen that a value of (6P*/6P)
slightly greater than unity would exclude a crack, On the other hand,
a negative value of this fraction would initiate a crack in the next

increment, It can be observed from figure (4.3a) and equation (4.2)
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that a negative value of (&§P*/&P) means that the tensile strength

o, has already been exceeded by the current stress Oy Thus limiting
the value of (6P*/6P) to unity tends to under estimate the pro-
pagation of the cracks. As a measure of weighting against the chance
of this happening, it was decided to limit the value of (§P*/éP) to
1.5 instead of unity. The criterion for the development of any new

crack was thus selected to be,

€ 1,5 4,3

In this manner cracks that are likely to occur at any load between

pj - E%- and Pj + E%- are included in the jth incremental analysis.,

So far it has been assumed that cracks can only take place in
a zone which is initially in tension and continue to remain so,
Experience showed that, during the loading process, the variation
of stress in a zone can have different forms. Three such cases ére
shown in figures (4.3b), (¢) and (d). Figure (4.3b) shows a case
where the stresses are initially compressive and remain so through-
out the loading history. A separation can never occur in this case.
Nevertheless, this case should be detected and isolated to save
the unnecessary computations. Figure (4.3c) shows a case where the
initial stresses are compressive up to a stage and then tend to
become tensile at later stages of loading, This case is characterized
from that shown in figure (4.3b) by the fact that the increment of
stress due to the jth increment of load, éaj (= Uj - Ui)’ is positive.
A check for the possibility of a crack is, therefore, necessary here,

Figure (4.3d) shows the case of a tensile stress reversing to a
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compressive one. In this case also ch is negative, Separation is
not possible at this stage and need not be detected, On the other
hand; this case is likely to indicate the closure of an existing
crack; which should be catered for,

It is noticed that in both the cases of figures (4.3b) and
(4,3d) a crack does not really take place, This is in spite of
the fact that the criterion given by equation (4,3) is satisfied,
This is merely because while (ct - Uj) is positive, ch is negative
and hence the fraction is less than 1,5, A modification of equation
(4,3) is thus warranted.

Rearranging the criterion in equation (4,3),

Gt - g,
—~ 1 _15¢0
so,
J
U - 0, = 1!5 609
or t %c <o 4.4

j
The fraction in equation (4.4) is negative if

(a) ' Ut - Uj - 105 ch < 0 4.5

while ﬁaj >0 4,6
and (b) 0, - Uj - 1.5 ch >0

while Gdj < 0

Obviously, satisfaction of the criterion (b) above does not really
mean the initiation of a crack, as this represents the cases in
figures (4.3b) and (4.3d). Criterion (a) in equations (4.5) and

(4.6) is therefore selected for the initiation of any crack,

4,3,3 Classification of crack types

In the previous sections the method of tension separation was
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developed for a general joint. The joint was surrounded on all sides
by eight rectangular parallelopiped solid elements, The same tech-
niques can be extended to joints at the interface between a plate or
a member and solid elements., But the details of the action taken

by the program, after each crack, would be different, Also the tech-
nique for the detection of the closure of a crack would be different.
Futhermore; joints on a plane of symmetry or a boundary do not need a
dummy joint associated with them,

To tackle all the different cases of separation a systematic
approach is necessary. To facilitate this, the various types of
separations expected are classified into five different groups. Each
joint that is likely to suffer a separation is given an index number
indicating the type of separation expected, The various types of

cracks are shown in figure (4.4) and described below,

Crack type 1: Joints having a crack of this type are given the index

number 1. These joints are connected to plates and/or space frame
members with rectangular parallelopiped solid elements on both sides
of the plate or member, as shown in figure (4,4a), They are allowed
to separate in the vertical direction only, The resulting cavity is
thus horizontal. If the plates tend to move up from the solid
elements below them, then the solid elements below the joint are
separated from the parent joint (I). These are then attached to the
corresponding dummy joint (N), as shown in the cracked configuration
(i) of figure (4.4a2). The plates and the solid elements above the
joint remain attached to the parent joint, If, on the other hand,
the plates exert downward pressure on the solid elements below them
the opposite of the above is performed, as shown in configuration

(ii) of figure (4.4a). The two configurations are determined by
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testing the sense of the vertical displacement of the joint when a
type 1 crack is indicated there. An example of this case is the

separation of a horizontal footing or raft buried in the ground.

Crack type 2 (Figure 4.4b): This case is similar to type 1 except

that the solid elements are present only on one side of a plate or
member. The separation is in the vertical direction and it is
performed by disconnecting the solid elements from the parent joint
(I) and attaching them to the dummy joint (N). An example of this
case is the vertical separation of a footing or raft resting on the

ground surface.

Crack type 3 (Figure 4.4c): This is the case when the separation

takes place in the horizontal direction., The plates and the members
are vertical, as the side walls of a culvert, the abutments of a
bridge or the walls of a basement floor. After a crack has taken
place, the solid elements are attached to the dummy joint (N). The

plate and member elements continue to remain connected to the parent

joint (I).

Crack type 4 (Figure 4.4d): This is the case considered in section

(4.3.1). The joint is surrounded by solid elements only. The sepa=-
ration is free to occur in any direction, depending on the relative

magnitudes of the normal tensile stresses, It is necessary to cal-

culate the normal stresses in all three co-ordinate directions,

If more than one stress satisfy the criterion of equations (4,5) and
(4.6), then a separation is initiated only in the direction of the

stress which gives the lowest value of (S8P*/6P).

Crack type 5 Figure 4.4e): This is for a joint on the boundary of

the soil in contact with a rigid plane such as rock. This is also
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the case for a joint on the plane of symmetry, on one side of which
only the body is analysed. The.joints in this category need a
different treatment from the others. No dummy joint need be
associated with such joints. These joints would normally have
freedom of in-plane movements only, the out of plane degree of
freedom being restrained. When a tensile separation; out of the
plane, takes place, the restriction on the out of plane degree of
freedom is lifted. The separation can take place in two directions
at the intersection of two boundary planes and in all three directions

at a corner, as shown in figure (4.4e),

4,4 'CLOSURE OF CRACKS

It was indicated earlier that some of the cracks may show
signs of closure at a later stage of loading, The method presented
here takes account of this fact and closes such cracks as the load-
ing progresses, This is achieved by calculating the width of the
crack at each stage of loading and checking its sign, If a negative
width is detected indicating an overlapping of the two planes on
either side of the crack, the crack is closed, This is done by
simply rejoining the elements to their parent joint, The degree
of freedom of the dummy joint is reset to zero, For the closure of
a boundary separation_it is necessary to remove the out of plane

degree of freedom of the joint,

4,5 PROCEDURE FOR A CRACK PROPAGATION ANALYSIS

To utilize the above method of determination, initiation,
propagation and closure of cracks satisfactorily, an initial knowledge
of the zones where cracks may develop is necessary, The problem may

first be analysed without any crack and the directions and positions
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of the tensile stresses determined. The finite element mesh may
then be redesigned if necessary., The joints and tﬁe mesh are
renumbered. This finite element mesh is then analysed by the non-
linear incremental procedure with facilities of crack propagation.

Initially the mesh is uncracked and the analysis starts in the
normal way. Once a crack is detected at a point, the elements on
either side of the crack are separated by activating the dummy joint.
At this stage the crack width is zero and both the parent and the
dummy joint have the same values of co-ordinates and displacements.
Further loading will cause these joints to displace relative to each
other., The crack width is given by the relative displacement of the
joints, If the joints displace towards each other and overlap, the
crack is closed, As the loading progresses new cracks develop else-
where in the mesh in both the horizontal and the vertical directions,
A crack may also increase in length by the separation of more joints
along the crack. Thus the system becomes less and less stiff and

the stresses alter continuously.

4,6 AN EXAMPLE ON CRACK PROPAGATION

To ascertain the credibility of the procedure given above, an
example analysis problem was undertaken, A non-linear three dimen-
sional problem with analytical or experimental results is not availw
able in the literature. It was, therefore, decided to analyse the
three dimensional equivalent of one of Majid and Al-Hashimi's (1976)
two dimensional examples,

This was a 9:1 soil-cement specimen, The soil consisted of 90
per cent sand and 10 per cent clay, The modulus of elasticity of the
material was 3,34 kN/mmz, the tensile strength was 830kN/m2 and the

Poisson's ratio was 0,065. The experimental specimen was a square prism
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100 x 100 x 300 mm with line loads applied as shown in figure (4.5a).

The finite element mesh used to analyse the specimen is shown
in figure (4.5b) and (c). Only a quarter of the prism was analysed
by taking advantage of the symmetry. Joints shown by crosses had
dummies. These joints were type 4 and were free to crack in the
direction in which the ratio (&P*/8P) of equation (4.3) was the
least. Joints on the horizontal plane of symmetry were type 5.
These were free to separate in all three directions., No other joint
was expected to crack.

An equal increment of load of 7,25 N/mm was used, All the
cracks detected by the analysis were in the y-direction, denerally,
at lower loads, the cracks occurred all at once in a row of joints
parallel to the z-axis. At higher values of loads, they tended to
start at the joints on the boundary parallel to and awaf from the
xy co-ordinate plane., This was immediately followed by separations
of all the other joints in that row parallel to the z-axis. The
progress of the cracks for the centroidal xy plane is shown in
figure (4.6). The numbers indicate the order of formation of each
crack. The variation of crack widths with load at the points A and
B in figure (4.6e) is shown in figure (4.7).

As the finite element program was not written to perform a
failure analysis, a precise evaluation of the failure load was not
possible. But, as can be seen in figure (4.6) at a load of 145 N/mm
the sample cracked severely. A further increment of load in the
ﬁnalysis resulted in substantial increases in the widths of the
cracks., The value of p = 145 N/mm may, therefore, be taken as the
failure load, This is about 3,58 per cent higher than the experi-
mental value obtained by Majid and Al-Hashimi (1976); The theoretical

failure load obtained by Majid and Al-Hashimi was 145,1 N/mm,
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CHAPTER 5
ANALYSIS OF STRUCTURES RESTING ON CLAY

5.1 INTRODUCTION

In clay soils a distinction is often made between the short
term or immediate settlement and the long term consolidation settle-
ment. The total settlement is expressed as the sum of these two

components. It is possible to obtain Paoe =T curves to give

oct
the total settlement of a clay soil by performing drained triaxial
tests.on the clay sample. However, settlements of such soils are
frequently calculated from the results of oedometer tests by assuming
a one dimensional strain condition., Under true one dimensional
conditions, however, the immediate settlement is zero., The total
settlement is therefore assumed to be equal to that obtained from
the results of the ocedometer test, However, under most structures
the strain conditions are not one dimensional and the effect of
lateral strains may be quite significant, Nevertheless, the
utilization of the consolidation test data in a three dimensional
analysis is possible. A method of analysis of a complete structure
resting on clay is developed in this chapter. The method makes use

of the consolidation test data for computing the ultimate long

term displacements of clay under three dimensional conditions,

5.2 SETTLEMENT CALCULATION IN CLAY

Terzaghi's (1943) theory of one dimensional consolidation
assumes that during any one increment of load the ratio , m_, of
v
the change of the volumetric strain to the change of the vertical

effective stress remains constant with time. The constant m is
v
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commonly known as the coefficient of volume compressibility., 1In
an oedometer test the strain takes place in the vertical direétion
only. Therefore the volumetric strain is equal to the vertical
strain. Thus, Terzaghi's proposition leads to a piecewise linear
relationship of the vertical strain and the vertical effective
stress., The slope of each linear segment is the value of m,
corresponding to a particular range of effective stresses.

In the conventional soil mechanics method, the settlement of
a layer of clay is calculated by employing the above theory of one
dimensional consolidation. The layer is usually divided into a
finite number of sub-layers each of thickness dy. The increase,

4S, in the total long term settlement of the layer, due to an

increase, bay, in the vertical effective stress is given by:
AS = I m,, ﬁq& Sy 5.1

The principal drawback of equation (5.1) is that it neglects
Poisson's ratio, This means that it assumes that the lateral
stresses do not have any influence on the vertical settlement of
the layer. This assumption may lead to a significant error in
the predicted settlement for cases where Poisson's ratio v is not
zero., Davis and Poulos (1968) have calculated the settlements of
a uniformly distributed circular loading area resting on the sur-
face of an elastic, isotropic and homogeneous clay layer. Even
for this axisymmetric case the settlement calculated by equation
(5.1) underestimates the true settlement for values of v greater
than 0.25. The error is likely to be more pronounced in an
arbitrary three dimensional case of a non-linear and non-homogeneous

clay.
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In the conventional approach, simplification is also made in
the calculation of the stresses to be used in equation (5.1).
The soil is usually idealized as an elastic, isotropic and homogeneous
semi-infinite continuum, A uniform or linearly distributed sur-
face load is applied on the. continuum and the vertical stresses at
various depths are calculated. All the analytical solutions of
such a problem originate from the classical Boussinesq solution
for a point load on the surface of an elastic semi-infinite continuum,
The applicability of this solution to soils, which may be non-
linear, non-homogeneous, anisotropic and of a finite extent, is
questionable., Burland, Broms and deMello (1977) have quoted results
for several such cases., The Boussinesq stresses for most of these
cases differ significantly from the actual stresses, The inadequacy
of the Boussinesq solution in a finite layer even with the assump-
tions of linear elasticity and homogeneity has also been confirmed
by Girija Vallabhan and Reese (1968), They have shown that the
finite element results of the settlements of an elastic layer sup -
porting a uniform circular load coincide with the Steinbrenner
solution (Terzaghi, 1943) of an elastic layer. But the Boussinesq
solution assuming a semi-infinite continuum grossly overestimated
their results, '

Therefore, the use of equation (5,1) and Boussinesq stresses
oversimplifies the problem. The finite element method overcomes
many limitations of the conventional approach., Non-homogeneity

and non-linearity of the soil are easily accounted for.

5,3 REPRESENTATION OF THE NON-LINEAR PROPERTIES OF CLAY

In an oedometer test sample the coefficient of volume

compressibility is given by:
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m R 5.2

where Aey is the increase in the vertical strain due to an increase
Aay in the vertical stress. But due to the presence of the lateral

stresses, Acx, the true vertical strain is:

Ao 2vic
—Z—""——x
Aey = e A 53

The lateral strain is given by:

Ao vAg

N Y -
&sx Wl (1-v) = 0 5.4

Combining equations (5.2), (5.3) and (5.4) and eliminating the

stress and the strain terms, the following relationship is obtained.

Al ol e ) &b

As each value of m., corresponds to a particular range of
pressure, a non-linear relationship between E and the stress is
obtained by using equation (5.5). A method of analysis of a
structure resting on clay that follows this relationship is des-

cribed below.

5.4 FINITE ELEMENT INTERACTION ANALYSIS OF THE

STRUCTURE AND THE CLAY

The structure, the foundation and the soil are represented by

suitable finite elementsand are analysed as an integral body,
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The non-linear soil properties are supplied as a table of the values
of m, and the corresponding stress range, An iterative scheme of
analysis is employed to follow the non-linear properties given by
this table.

The analysis starts with the determination of the vertical base
reactions of the structure assuming a fully fixed foundation.
These reactions are then applied on the surface of the soil as
uniformly distributed foundation pressures, The vertical stresses
at the centroids of each soil element are calculated by assuming
the soil to be an elastic and isotropic semi-infinite continuum,
This is conveniently achieved by making use of the direct express-
ions for stresses due to a rectangular area loaded on a Boussinesq*
medium given by Love (1929). A value of m, corresponding to the
vertical stress in each soil element is chosen from the supplied
table, The corresponding values of E are calculated from equation
(5.5) for each soil element,

The structure, the foundation and the soil are then analysed
as an integral body by the finite element method., This gives
a new set of stresses throughout the soil mass, The value of E
for each soil element are modified to correspond to these new
stresses by using the values of m, at different stresses. The
finite element analysis is then repeated with these new values of
E. The convergence is tested after each analysis by calculating
the differences in the displacements at all the joints given by two
successive analyses. The analysis is stopped when these differences
become less than a specified percentage of the current displace-

ments. The iteration scheme is summarized below:

It should be stated that throughout this thesis the term
Boussinesq refers to the conventional approach of stress
calculation in soil neglecting the structure.
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1 Analyse the structure assuming fixed supports and obtain the
reactions,

2 Neglecting the structure, apply these reactive loads on the sur-
face of the soil and calculate the stresses at the centroid of
each soil element by Boussinesq's equations.

3 Obtain values of m, corresponding to the Boussinesq stresses in
each element and calculate E from equation (5.5).

4 Analyse the structure, the foundations and the soil as an integral
system by the finite element method,

5 Obtain the stresses at the centroid of each soil element from
the finite element analysis and modify the values of E to
correspond to these new stresses.

6 Repeat steps 4 and 5 until convergence is achieved, This is
given by the condition that the differences in the displacements
of all the joints obtained by two successive analyses are less
than a specified tolerance.

The method developed above is very comprehensive and can be
used to analyse-various configurations of structure and soil, It
starts with the conventional soil mechanics approach and gradually
corrects the results., Thus, a check of the discrepancy of the two
can readily be made, The scheme of iteration proposed here has a
very high convergence rate. For the problems analysed in this
thesis between 3 and 6 interations were required to achieve a

tolerance of 1% for the deflections of all the joints,

5.5 'TENSION SEPARATION IN CLAY

The method of tension separation presented in chapter 4 was
developed in the context of an incremental technique of analysis,

A crack was included in the finite element mesh if an extrapolation
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of the stresses indicated a tensile failure in the next increment

of the load, In the iterative method of the analysis of clay,
described in the previous section, the full value of the load is
applied in each cycle. A modification of the method of initiation
of a crack is therefore mnecessary, In this case a crack is
initiated if the stress at a point given by the previous cycle of
jteration has already exceeded the tensile strength of the material.

The rest of the method remains unaltered,

5.6 EXAMPLES OF THE ANALYSIS OF STRUCTURES

RESTING ON CLAY

5,6.,1 Four-bay plane frame

The plane frame, shown in figure (5.1), was analysed by
Larnach (1970) by using an interactive analysis method proposed
originally by Chamecki (1956). Only the vertical settlements of
the column bases were considered by Larnach and the conventional
method of the calculation of stresses by Boussinesq's equations
was used. The settlements were calculated by equation (5.1)
which neglects the effect of Poisson's ratio of the soil, The
settlements were then successively modified by taking the flexural
rigidity of the frame into account,

The same frame is analysed here by the method developed in
the previous sections. The frame rests on a layer of clay sup-
ported by a rigid permeable stratum, The property of the clay is
assumed to be represented by a single value of m, of 0,6527 x
10"3 mZ/kN for all values of the stress. The structural members
are made out df steel with the values of E, I and v as shown in

figure (5.1) and the uniform load is 32.69 kN/m., Each column is
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supported by a 1.22 m square steel pad of 75 mm thickness.

Although the frame is two dimensional, the stresses in the
ground disperse in three dimensions, A three dimensional finite
element representation of the soil is therefore necessary., Because
the frame is symmetrical about column CH and also about the
longitudinal centroidal axis of the beams, it is only necessary
to analyse a quarter of the frame. A zone of the soil around the
frame is influenced by and interact with the frame, An extent
of 15.24 m, which is equal to half the total length of the frame,
was considered on either side of the frame along its length., In
the lateral horizontal direction an extent of 9,144 m, which is
equal to the largest bay span, was also considered on either side.
Experience showed that, as the stresses in the soil diminished
rapidly away from the footings, the zone considered was quite
adequate, The boundary of this zone was considered to be rough
and completely rigid.

Two mesh sizes were considered, The coarser one is shown in
figure (5.2a). This consists of 441 joints, 260 solid elements,
5 plate and 23 prismatic member elements. The finer mesh is shown
in figure (5.2b) and has 1309 joints with 924 solid, 5 plate and
23 member elements. The analyses showed that tensile stresses
developed near the surface of the clay mid-way between footings B
and C, The fine mesh in figure (5,2b) was therefore modified to
allow tensile separations. 63 dummy joints were included in this
zone as shown by the crosses in figure (5.2b). Thus a total of
three different finite element meshes were used for this problem.
These are:

FEl: A coarse mesh with 441 joints,
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FE2: A fine mesh with 1309 joints but no cracks were allowed.

FE3: The fine mesh with 1309 active joints and 63 dummies to
allow for crack developments.

In the design of the finite element meshes consideration was

given to the high stresses developed directly under the footings. A

finer division was therefore used in these zones, transforming gradually

into a coarser division away from the footings, as shown in figure
(5.2a and b). In all the cases a large number of joints were
placed on the top beam to represent the uniformly distributed
applied load closely. These loading points are shown in figure

(5.2) by small dark dots.

5.6.2 Results of the plane frame example

5.6,2.1 The influénce of Poisson's ratio

Several analyses were carried out with different values of v
for each of the cases described above. Some of the results obtained
for the case FEl are shown in figure (5.3). Curve 1 shows the
influence of v on the differential settlement between columns A
and B while curve 2 shows this influence on the differential
settlement of columns B and C. The value of m,, was kept constant.
It is noticed from these curves that the differential settlements
are significantly influenced by Poisson's ratio. Notice in figure
(5.3), that there is not much change in the differential settle-
ments up to a value of v of about 0,25, This is what Davis and
Poulous (1968) also observed; but as v exceeds this value, there
is an alarming increase in the differential settlements. These
change rapidly and the curves become asympototic to the line
v = 0.5, As computational difficulties arise with a value of

v = 0.5, the maximum value of v used here was 0.49. It is
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noticed that the settlement can beof very severe magnitude in

clays with a high value of v, Consequently, the simple calculation
suggested by equation (5.1) assuming a zero Poisson's ratio will
lead to a gross underestimation of the settlements of such soils.

A detailed analysis of the kind suggested in this thesis may

therefore become necessary.

5.6.2.2 Comparison of the results

A summary of the results of the base reactions of the plane
frame, obtained from the various analyses, is given in table (5.1).
Corresponding results of the settlements and the rotations at the
base are given in table (5.2). The reactions in row 1 of table
(5.1) are those of a fixed base frame., These are then used to
calculate the settlements by a conventional method, using equation
(5.1). These settlements are given in row 1 of table (5.2). The
second row in both the tables gives the results obtained by Larnach
after modifications made to the settlements due to the stiffness
of the structure. The rest of the tables gives the results
obtained by the analysis of the complete system by the finite
element method, It is noticed that when the interaction of the struc-
ture with the soil is considered, a complete redistribution of the
reactions takes place. Generally, this redistribution alters the
base reactions of the external columns A and B considerably, But
the change at the central column C is less significant. This
indicates that the support reactions are affected by the rotation
of the column bases. Bases A and B both settle and rotate while
base C only settles but does not rotate. The rotations of the

column bases A and B obtained by the finite element analyses are
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Base reactions, kN
Row Analysis
No method
A B C
1 Fixed bases 79.3 262.,0 313,8
2 Larnach (1970) 113.4 234,2 301.3
3 v=0 97.3 244,6 312.6
4 v=20,2 98.7 243,.6 311,8
FEl1
5 v = 0,33 100.8 241,8 311,2
6 v = 0,49 120.0 233,8 288,8
7 v=20 99.2 243.7 310.6
FE2
8 v=0,33 102,9 240,7 309,2
9 vel 99.0 243,2 312,0
FE3
10 v =0,33 103.8 239,2 310.4

TABLE 5,1 RESULTS OF THE BASE REACTION OF PLANE FRAME
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Differential Rotations,
Row Analysis Settlements, mn settlements, mm| X10-3 radians
No method
GA GB GC GB-GA SC-GB GA GB
Conventional
1 method 40,4 | 126,8 | 151.3 | 86.4 24.5 - -
2 Larnach (©70)} 45.7 92.4 | 116.8 | 46,7 24.4 - ~
3 v=20 24 .4 55.6 69.8 | 31,2 14,2 2.10 1,05
4 v = 0,20| 27.1 61,9 | 78,2 | 34.8 16,3 1,61 0.68
FE1
5 v = 0,33} 33,2 75.8 96.4 | 42.6 20,6 0,95 0.07
6 v = 0,49{ 219 429 547 210 118 {-27.5 {-19.2
IFE2
8 v = 0,33] 40,7 90,3 115 | 49.6 24,7 1,10 |-0,10
9 v=20 29.1 65.3 82,9 | 36,2 17.6 2,23 0.52
FE3
10 v = 0,33 40,7 90,5 116 49,8 25,5 0,89 -0,38
1. v=_0 29,5 64,9 82,1 25.4 17.2 - -
FE42
12 v = 0,33 31 65,8 83.6 | 34,8 17.8. - -
13 ve0 29,5 64,9 82,1 35,4 17,2 - -
E4
14 v = 0,331 46.5 98.6 | 125,3 | 52,1 26,7 - -
TABLE 5,2 SETTLEMENTS AND ROTATIONS OF COLUMN BASES OF THE PLANE FRAME
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given in table (5.2). The rotation of A is generally more than
that of B, As a result, the reaction at A changes more than that
at B for all the finite element analyses, Both of these reactions
change more than that at C. Table (5.2) shows that as the value
of v increases the base rotations change ranidly and then reverse
sign and become excessive for v = 0,49, The reactions also change
markedly, with an increasing v, from those obtained by a fixed
base analysis,

The conventional method calculates the stresses at various
depths in the soil by applying the fixed base reactions on the
soil surface and using Boussinesq's equations. The values of the
settlements obtained by this method may be expected to coincide
with those of the finite element analysis for v = O, However,
comparing the results given in row 1 of table (5.,2) with those in
rows 3, 7 and 9, it is noticed that this is not so. In the finite
element interaction analysis the structure plays its part in reduc-
ing the differential settlements. As one base begins to settle
excessively, the rest of the structure comes to its aid, In this
process the stiffness of the beam plays an important part in redis-
tributing the loads among the columns., By comparing the settlement
values in rows 1 and 3 of table (5.2), it is seen that the settle-
ments of all the columns have reduced due to the interaction. How-
ever, the settlement at A has reduced by only 40% compared to the
reductions of 56% and 54% at B and C respectively, This indicates
that column A now carries a bigger share of the load; which is also
obvious from table (5.1). As a result the differential settle-
ments are also reduced,

Larnach's analysis included the stiffness of the structure but

used the conventional method of settlement calculation from
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Boussinesq stress and equation (5.1). The settlement values
obtained in this manner are given in row 2 of table (5.2). These
do not coincide with the finite element results even when v is
taken to be zero. In fact, Larnach's results, with v = O corres-
pond to those obtained by the finite element analysis but with v
nearer 0.33, see figure (5.3). This discrepancy is due to the
disagreement between the Boussinesq stresses for a semi-infinite
continuum and the true stresses in the finite clay layer.

The vertical stresses, % in the soil under the frame are
shown in figures (5.4), (5.5) and (5.6). In these figures the
full lines represent the vertical stresses obtained by the finite
element analysis FE2 while the dashed lines show the stresses
calculated from Boussinesq's equations, Figure (5.4) shows the
variation of oy in the horizontal x direction at various depths
below the surface. The variation of o along the depth directly
under the footings is shown in figure (5.5). Finally, figure (5.6)
shows this variation in the lateral z direction at various depths
below the surface, It can be seen in all these figures that,
directly under the foundations, the Boussinesq stresses are consid=
erably higher than the finite element stresses. However, deeper
in the soil and also away from the footings the difference between
the two stresses becomes less marked. Larnach's settlements are
calculated on the basis of the Boussinesq stresses directly under
the footings., Therefore, these settlements are considerably higher
than those obtained by the finite element analysis for a zero
Poisson's ratio, As mentioned earlier, results obtained by Girija
Vallabhan and Reese (1968) for the settlements of a shallow elastic

layer also demonstrate that Boussinesq overestimates the stresses.
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It is clear that using Boussinesq stresses compensates for the lack
of consideration for Poisson's ratio, This fact also partially
accounts for the high, and therefore 'safe', values of the settle-
ments obtained by the conventional method in row 1 of table (5.2).

In this table, the analysis FE4a was performed by calculating
the settlements from equation (5,1), but with the stresses obtained
from a finite element interaction analysis, The stresses are not
much different for different values of v, as shown under the central
footing C in figure (5.5). Thus the differential settlements for
v =0 and v = 0.33 given in rows 11 and 12 respectively of table
(5.2) are nearly equal, This is because equation (5.1) does not
consider the effect of Poisson's ratio. These values in turn are
close to the results for v = O obtained by the finite element
analyses FE1, FE2 and FE3, This points out the limited adequacy
of equation (5.1) which can only be applied to cases where v = O,
Even in this case, the value of the stress to be used in eauation
(5.1) should be calculated by a refined analysis.

The analysis FE4b was performed in the same way as FE4a except
that the effect of the Poisson's ratio was included in the expression
for the settlement, as given below:

85 = In . Ao . by . (—-1-—'2--_2.) 5.6
leave2y
For a zero Poisson's ratio equations (5.1) and (5.6) are identical,
Thus the settlements in rows 11 and 13 are the same. But those for
v = 0,33 obtained from the two equations are markedly different,
These are shown in rows 12 and 14 of the table. The values of
the differential settlements obtained from equation (5.6) are not

far from those obtained by the finite element interaction analysis,
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see rows 8, 10 and 14. This suggests that a modification of the
one dimensional settlement equation to the expression in equation
(5.6) is in order. But for predicting the settlements under
structures with any accuracy, the stresses to be used in equation
(5.6) must be obtained by a refined interaction analysis,
The values of the settlements obtained for the fine mesh
FE2 are somewhat higher than those for the coarse mesh FE1l, This
is because a model with a finer finite element mesh has more degrees
of freedom and is therefore less stiff, The maximum variation
of the differential settlements between the two meshes FE1 and FE2
is 16.6%. This indicates that a fairly coarse finite element
mesh may be adequate to obtain an acceptable interaction analysis.
The inclusion of tensile separations in the soil in the analysis
with mesh FE3 did not alter the values of the differential settle-
ments to a significant extent for this particular frame. These
are shown in rows 9 and 10 of table (5.2). The maximum difference
between these results and those obtained with the same mesh FE2
but without dummy joints is 3.4 per cent, This is because the
magnitude and the extent of the tensile stresses developed were
very small, see figure (5.4). However, in many cases such separations
will govern the interactive behaviour of the structure and the
soil as will be shown in chapter 8, Consideration must therefore
be given to tensile separations to avoid an underestimation of the
settlements.
The bending moment diagrams for the columns and ‘the beams
of the frame are shown in figures (5.7) and (5.8). In these
figures, curve 1 represents the bending moments obtained by a finite

element interaction analysis with v = 0.33, Curve 2, on the other
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hand, indicates those obtained by assuming the column bases to

be completely fixed, The bending moments obtained for the other
values of v were similar to those for v = 0,33, The maximum
difference between these for v = 0 and v = 0,33, for example,

was about 22%., The redistribution of the bending moments due to
the interaction is significant in both the beams and the columns

of the frame. The maximum difference between these obtained

by the interaction and the fixed base analyses is as high as 187%,
The interaction analysis shows very low and even reverse bending
moments at the column bases, see figure (5.7)., This is caused by
the rotation and the consequent relaxation of the moments at these
points. This reduction in the base moments increases the column
top bending moments by as much as 187% at the point G in the

column BG. Neglecting the base rotations increases the bending
moments at the bases and reduces them at the top due to the "carry
over" effect. Instead of a carry over factor of 0.5, it is noticed
that only between -0.006 and 0.038 of the bending moments developed
at the top of the columns are in fact carried over to the bases,
Even in the beams, the difference between the bending moment
diagrams obtained by the two methods is significant. The maximum
difference is some 59% at the end G of the beam FG, see figure
(5.8)., However, this difference is mainly due to the differential
settlements and not so much as a result of the base rotations., It
is noticed that the fixed base analysis generally underestimates
the span moments and overestimates the end moments in the beams,
This is inaccurate and can produce a faulty design specially of a
reinforced concrete frame. It is concluded that an accurate analysis

requires the consideration of base rotations as well as the differential
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settlements of these bases. A fixed base analysis or the con-

sideration of the differential settlements only leads to gross

inaccuracies,

5.6.3 Analysis of the plane frame resting on a

non-linear clay

In the last sub-section, m, was assumed to be constant, In
reality m_ is variable and dependent on the stress level. The
plane frame was therefore reanalysed by varying the value of m,
with the stress level but keeping the thickness of the clay layer
the same as before. The properties of the clay were taken from
an oedometer test data given in the text by Peck, Hanson and
Thornburn (1974). The values of m, for this clay and the corres-
ponding stress range are shown in table (5.3),

The problem was analysed first with the coarse mesh FE1 and
then with the fine mesh FE3 with facilities for crack propagation,
The results are presented in table (5,4), where it is noticed that
the differential settlements are lower than those given in table
(5.2) for a fixed m,e This is because, at moderate and high stresses,
the clay is stiffer as indicated in table (5.,3)., The same trend
of results as with the linear clay is also observed here. Both
the redistribution of the reacitons and the increase in the differ-
ential settlements become exaggerated for values of v closer to
0.5. The difference in the results of the coarse mesh analysis and
the fine mesh crack propagation analysis is again not very pronounced,
The maximum difference of differential settlement between the two
analyses is 9.1 per cent for a value of v = 0,33,

The bending moment diagrams are shown in figure (5.9). The

full lines indicate the bending moments obtained by the finite




. m.,
Vertical gtress Void ratio v_s )
. (kN/m™) (X.10 " m"/kN) .
0 0.959 .
0.7214
6,3681 0,950
0.4026
12,7363 0.945
0.,5652
25,4725 0,931
0.,4464
50,9930 0.909
- 0,4734
101.8902 0.863
0.,4101
203.,9719 0.785
0,2362
407,9438 0,699
0.1198
815,.8877 0,616
Larnach's m_ used in 0.6527
‘section 5.6.2

TABLE 5.3 PROPERTIES OF THE NON-LINEAR CLAY

Base reactions (kN)

Diff, settlements (mm)

Analysis method
A - -
B C (GB GA) (GC ED]
Conventional method 79.3 | 262,0 | 313.8 62,0 11,8
v=0,2 96,7 244.8 | 313.,4 31,7 14,2
FE1
v = 0,33 99,3 242,9 | 312.0 38.6 17.9
v = 0,49 124,6 226,8 | 293.6 194,0 108,0
FE3 |v = 0,33 99,3 242,5 |} 312.8 39.3 16,4
TABLE 5.4 RESULTS OF THE PLANE FRAME ON NON-LINEAR CLAY
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element analysis FE3 with v = 0,33 and the dashed lines indicate
those obtained by assuming the supports to be fixed., The redis-
tribution of the column bending moments due to the rotations of the
bases is again significant, The maximum difference of the column
bending moments obtained by these two analyses is as high as 135%

occuring at F, In the beam this difference is as high as 49%,

5.6.4 Analysis of a single-bay space frame

As a second example, the single-bay space frame shown in fig-
ure (5.10) resting on a confined mass of clay was analysed. This
was a model structure made out of 25 mm square mild steel bars,

Thé footings were 150 x 150 x 25 mm thick mild steel plates. The
material properties of the members and the footings are also given
in figure (5.10). The non-linear properties of the clay are
assumed to be those given in table (5,3).

A single vertical load of 3,5 kN was applied eccentrically
on the central beam, The structure was symmetrical about the
vertical plane passing through this beam and therefore only half
of the structure was considered. The finite element mesh for the
complete structure and the soil is shown in figure (5.11). The
divisions on the top beam were necessary to facilitate the grouping
of the joints to be described in chapter 6. Three separate analyses
were carried out.

These are:

1 The complete structure and the soil as an integral unit,
see figure (5.11),

2 The structure was then removed, The pads and the soil were
analysed, subject to the vertical loads obtained from a fixed

base analysis of the frame. This model is shown in Figure (5.12),
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3 Analysis (2) was repeated but this time with vertical loads and
moments acting on the pads, as shown in figure (5.13). The
base moments were also obtained from a fixed base analysis,

The differential settlements between the left (A, E) and the
right (D, F) footings as obtained by the various analyses are given
in table (5.5). The same trend of results as that of the plane
frame example is also experienced here. The conventional method
of settlement calculation using Boussinesq stresses and equation
(5.1) again gives a higher value than that obtained by the finite
element analysis with v = O, This is so even when the structure
is removed. The increase of the differential settlement with v
is once again demonstrated. The effect of the interaction of the
structure with the soil in reducing the differential settlements
is also demonstrated. Analysis (1) gives the lowest values while
analysis (3) gives the highest differential settlements. The
discrepancy between these results is as high as 12%, This figure
is likely to be higher for more complex frames with greater stiff-
nesses.

The bending moments about the z-axis, for the part ABCD of
the frame, are shown in figure (5,14). Lines 1, 2 and 3 represent
the bending moments obtained by the finite element interaction
analysis (1) with values of v equal to 0, 0.33 and 0,45 respectively.
The bending moments obtained by assuming fixed supports are shown
by lines 4. The redistribution of the bending moments in both the
beams and the columns are evident in the figure, As v increases
the bending moments become more and more different from those
obtained by a fixed base analysis, However, even with v = 0, an

interaction analysis redistributes the bending moments significantly.



Method of analysis

Differential

settlement
()
Conventional method 4.3
Finite element interaction =0 3.3
—
7]
'5‘ analysis of complete struc- = 0,33 4.8
E
=
< ture and soil = 0,45 9.8
Finite element analysis of the = 0 3.5
~ footings and the soil with
0 vertical fixed base reactions
'n | applied as external loads on = 0,33 5.1
EE the footings.
s
= = 0.45 10,6
Finite element analysis of the =0 3.7
M footings and the soil with
" fixed base vertical reactions
‘s | and moments applied as external = 0,33 5.3
Ef loads on the footings.,
< = 0.45 10,9

TABLE 5.5 RESULTS OF THE ANALYSIS OF THE SPACE FRAME
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CHAPTER b

THE FINITE ELEMENT COMPUTER PROGRAMS

6,1 INTRODUCTION

The essential features of an interaction problem have been
listed in chapter 1. In the subsequent chapters,methods of con-
sidering non-linearity and crack propagation have been described.
The purpose of this chapter is to utilize these methods and develop
finite element programs for the analysis of a complete structure
together with its foundations and the soil. The nature of the
programs is general and they can be used to analyse large practical
structures. The largest example given in this thesis is a 50-storey
space frame resting on clay with 1632 joints and about 4500 degrees
of freedom. The programs are written in such a way as to reduce
the use of the computer core storage and the execution time, The
input data is largely automated so that only a small amount of
manﬁﬁl effort is necessary to run the programs, All the programs
described here are written in FORTRAN to be run on the CDC 7600

computer at the University of Manchester Regional Computer Centre,

6.2 THE FINITE ELEMENTS USED

Majid and Williamson (1967) used a combination of space frame
members and rectangular plates to perform a linear analysis of
complete three dimensional structures. Most structures can be
discretized by a number of glements of these two basic types. The
soil, however, is a three dimensional continuum, requiring the use
of a three dimensional solid element, Therefore a total of three
different finite elements were included in the programs., These are

listed below:
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(1) Space frame member elements

These elements were developed by Majid (1972). 1In addition
to representing the centre line of the frame members they can take |
account of the irregularities at the ends of the members. The
element can also be used to represent plane frame members by
restricting the out of plane movements of its end joints, The
element is described in Appendix II,

(2) Rectangular plate elements

These elements have both in-plane and out of plane forces
and displacements. They can either be used as plate bending
elements or as shear wall elements by a suitable selection of the
degrees of freedom and the stiffness terms, These elements were
taken from a package developed by Bray (1973), The element is
also described in Appendix II,

(3) Rectangular parallelopiped solid elements

This is a regular prismoidal element with eight nodes and a
linear variation of displacements between the nodes, Each node of
the element can have three translation degrees of freedom. The
element has been fully described in chapter 3,

For all the above elements the stiffness matrix was formed
explicitly and no numerical integration was required. In this
manner considerable computer time was saved, A suitable combination
of these elements enables the analysis of a large variety of
problems., However, for structures which do not lend themselves to
a discretization to these elements alone, it is only necessary to
add a few more elements to the program library. The overall method

of analysis remains unaltered,
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6.3 THE COMPUTER PROGRAMS

The non-linear analysis is performed by two distinct methods.

When the mechanical properties of the soil are given by an explicit
- emental method described in

set of Toct = Yoct curves, the incremen
chapter 3 is used. On the other hand, an iterative technique is
used with soils whose properties are given by a set of m, and
their corresponding stresses. A suite of programs was written to
perform each of these two types of analysis. The programs are
jdentical except for the processes of updating the non-linear

material properties and controlling various stages of the analysis.

6.4 STORAGE OF THE STIFFNESS MATRIX

Two classical computer problems associated with the displace-
ment method of analysis of large structural problems are the stor-
age of the stiffness matrix and the mill time required for the
solution of the simultaneous equations, The analysis of a complete
structure,lits foundation and the soil gives rise to a large,
sparse, symmetric and positive definite stiffness matrix. The
number of equations to be solved is also very high., Therefore,
the scheme of storage of the stiffness matrix was carefully selected
to reduce the use of the core space without an ﬁndue increase in the
execution time.

The stiffness matrix of a structural system is symmetrical
containing a large number of zeros, The non-zero elements are
concentrated near the leading diagonal, as shown in figure (6.1).
Advantage is frequently taken of these features by storing the lower
triangle of the matrix, As a further improvement Jennings (1966,
1977) proposed a variable band width storage scheme in which only
the elements between the first non-zero and the leading diagonal

element in each row are stored. This is achieved by storing the
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elements in a continuous row-by-row sequence. Thus only the area
of the stiffness matrix bounded by the full stepped lines in figure
(6.1) is stored, This compact storage scheme is also adopted here.
The saving in storage of this scheme over a fixed band width

scheme is evident in the figure.

The compact storage scheme is illustrated in figure (6.2), in
which each blank square indicates a zero element which is disregarded.
The numbers in this figure indicate the address locations in the
one dimensional sequence where the elements are stored, For example,
the element in row 6 and column 4 is stored at address 14, To
locate an element of the stiffness matrix in the storage array,
it is necessary to know the address of the diagonal element in each
row, A one dimensional diagonal address sequence array, DAS, was
declared to hold these addresses, A list of the variables and the
arrays in the programs is given in Appendix III. The array DAS
for the matrix in figure (6.2) is:

DAS = [1 3 5 8 11 16 18 24]
The length of this array is equal to the number of rows in the stiff-
ness matrix, Thus the location, 2, of the element in row i and

column j of the matrix is given by:

2 =DAS (1) -1+

6.5 CONSTRUCTION OF THE STIFFNESS MATRIX

The compact storage scheme of Jennings is very efficient in
saving computer storage. Nevertheless, the storage requirements
of a large structure can still be high, For some of the large
problems analysed in this thesis as many as one million storage

locations were needed, Such a huge number of elements necessitated
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the use of the backing store facilities so that only a vart of
the stiffness matrix is held in the core. Care is needed to
reduce the time to transfer these elements to and from the back-
ing store. The backing store facilities are best utilized by
constructing the stiffness matrix K in a sequential order, When
a part of this matrix is fully constructed it is written into the
backing store. The same area of the core space can then be used
to construct the next part of the stiffness matrix, To reduce
the number of transfers, matrix K should be subdivided in such

a way as to make its parts independent of each other.

The stiffness matrix is constructed by superimposing the
stiffness contributions of the individual elements. The element
stiffness matrices, whose stress-strain relationships are linear,
remain unaltered throughout the analysis, These are therefore
constructed only once. On the other hand, the properties of the
soil elements are altered after each cycle of the analysis. The
overall stiffness matrix is therefore constructed in two phases.
In the first phase, the matrix is constructed with the contributions
from the elastic elements only, This incomplete stiffness matrix
remains unaltered in the successive analyses, In the second
phase of constriction, the contributions from the non-linear ele-
ments are superimposed on this matrix, In each increment of the
load or in each iteration, only the second phase of the construction
is repeated.

However, when new rows and columns are introduced to the
stiffness matrix due to the development of a crack, the overall
stiffness matrix changes, In this case the first phase of the

construction has to be repeated. Two different methods of the
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construction of the overall stiffness matrix by keeping only a
part of it in the core at any one time have been developed.

These are described in the following sub-sections,

6.5.1 The method of joint groups

6.5.1.1 Development of the method

In this method the fundamental consideration is that the
construction of the stiffness matrix should proceed element by
element. Thus each element is taken in turn and its contributions
are superimposed on the rows and the columns of the stiffness
matrix., All the elements contributing to this particular portion
of the stiffness matrix are considered and the construction
proceeds to the element contributing to the next part of K.

To achieve this sequence of construction, the joints in the finite
element mesh are divided into a number of groups. The joints in
group number i are only connected to the joints in groups h and

j. Here h = i-1 and j = i+l, Thus an element that contributes
to the rows and the columns of group i can also contribute to groups
h and j. In the computer program, care was taken to ensure that
only groups i and j are kept in the core simultaneously, The
parts of K corresponding to the groups j and j+l1 are constructed
after transferring group i to the backing store, Thus the con-
struction of the stiffness matrix proceeds using only a limited
core storage corresponding to two consecutive joint groups,

6.5.1.2 Computer implementation of the method

The division of the joints into groups is carried out
automatically. The only data necessary is the highest joint
number of the first joint group, NJ1. To each joint in the finite

element mesh, the program associates a joint, which is the lowest
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numbered joint directly connected to it. This is called the least
joint number of a particular joint. With the last joint number
NJ1 of group number 1 known, the program automatically assigns

the last joint number of each subsequent group. Thus each joint
group contains a number of consecutive joints.

The subroutine JGROUP divides the joints into groups. The
procedure is demonstrated by the example finite element mesh shown
in figure (6.3). A convenient value of NJ1 for this problem is
4, The program scans through successive joints to check if the least
joint number of a joint is less than or equal to the last joint
number of the preceding group. The highest joint number satisfying
this requirement is the last joint number of the current group.

All the intermediate joints also belong to this group. The highest
joint number with the least joint less than 4 is 9 in figure (6.3).
Although a lower numbered joint, 7, does not have its least joint
number in group 1, all the joints from 5 to 9 are included in group

2. This ensures that no element contributes to more than two con-
secutive groups. The last joint numbers of groups 3 and 4 in the
figure are 14 and 19 respectively. The subroutine also calculates the
solid, plate and member element numbers belonging to each group. An
element is said to belong to a joint group if its lowest numbered
node is in this group. Thus the elements that belong to each joint

~group in the figure are as follows:

Joint Group Solid Element Plate Member
No. No. No.
1 1
2 ‘ 2 1,2
3 3 1 3,4
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However, these elements may also contribute to the next joint group.
The flowchart of subroutine JGROUP is shown in figure (6.4). The
symbols are:

NJG = Total number of joint groups,

NOJ = Total number of joints in the mesh,

JGRP(J) = Last joint number of group J,

NEJG(J) = Number of solid elements in group J,

LGRP(J,I) = Solid element number I in group J,

NPJG (J) = Number of plate elements in group J,

LPGRP(J,I) = Plate number I in group J,

NMIG(J) = Number of member elements in group J,

IMGRP(J,I) = Member number I in group J,

Another basic information necessary is the last element number
in the one dimensional stiffness array, see section (6.4), that
correspond to each joint group, This is calculated in subroutine
FORMDAS where the diagonal address sequence of the stiffness
array is formed. These basic joint group informations are stored in
the core in a COMMON block to be accessed during the construction of
K.

As mentioned earlier the global stiffness matrix is constructed
in two phases, with the first phase being performed only once. In
this phase, each pair of consecutive joint groups is considered in
turn, The stiffness contributions of the plate and member elements
that belong to the first group of this pair are superimposed on the
global K. If this group does not have any element of these two
types the construction proceeds to the next pair. Otherwise, the part
of K corresponding to the first group of the pair is written into

the direct access backing store unit DA6, The part corresponding to
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the second group is moved forward in the core and the same area
is uséd for the next pair of joint groups., If at any stage during
the construction it is indicated that the second group in a pair
does not have any plate or member element, then both the groups are
written into DA6 at the same time. By following this procedure the
stiffness contributions of the plate and member elements are
placed in their appropriate locations in the one dimensional stiff-
ness array at the same time as they are evaluated. At the end of this
procedure the entire stiffness array is in the backing store unit
DA6. However, this array is still incomplete and is yet to receive
contributions from the solid elements, The incomplete stiffness
matrix after the first phase for the mesh in figure (6.3) is shown
in figure (6.5a). The flowchart for this phase of the construction
is shown in figure (6.6).

The contributions to the stiffness matrix from the solid elements
are calculated in the second phase, The scheme of construction
is shown diagrammatically in figure (6.7), Each pair of joint groups
is again considered in turn. At a particular stage, the first
group i of this pair has already received contributions from the
solid eiements belonging to the preceding group h., If joint group
i also receives contributions from a plate or a prismatic member, the
part of K corresponding to this group is copied from DA6 into the
space in core reserved.for the second group, j, of the pair. This
part is then superimposed on the part of the stiffness matrix in core
which correspond to group i, The stiffness contributions of the
solid elements belonging to group i are then evaluated and superimposed
on K, Some of these elements also contribute to the part correspond-

ing to group j. When all such solid elements have been considered,
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the part of the stiffness matrix corresponding to group i is
complete, It is then written into the backing store unit DAIO

ready to be read during the solution process, The part of the
stiffness matrix corresponding to the second group j is shifted
forward to the start of the stiffness array in the core. The con-
struction of K then proceeds to the next pair of joint groups j and
j +# 1, At the end of the second phase of construction the stiffness
matrix of the system is complete and is held in the backing store
DA10. The completed stiffness matrix of the problem in figure (6.3)
is shown in figure (6.5b), This matrix is used in the current
increment or iteration of the analysis, The procedure is repeated
and a new stiffness matrix is written into DA10 in each increment or
iteration. On the other hand, the incomplete stiffness matrix
residing in DA6, is kept unaltered and used over and over again,

The validity of the joint grouping method was established by
comparing the results of an analysis using this method with one
storing the full matrix in the core. There was no discrepancy between
the two. The method was used extensively to analyse a structure,
jts foundation and the soil., But for very large problems, in the order
of 1000 joints, the method was found to be inadequate., This is
because it needs a core space sufficient to store twice the size of
the part of the stiffness matrix that correspond to the largest
joint group., The maximum core space available for this purpose when
using the CDC 7600 computer was found to be between 35000 and 40000
elements. Although the size of the joint groups can be kept fairly
uniform by a careful numbering of the joints, it can not be reduced
sufficiently to fit into this space for the very large problems. A

second method of constructing K was therefore necessary, This is
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described in the next section and its superiority is emphasized by
the fact that it does not use any core storage space exclusively
for the stiffness matrix.

6.5.2 Construction of K by joints

In this method the stiffness matrix is again constructed in two
phases by making use of the backing store units DA6 and DA1O. In
each phase the construction proceeds one joint at a time. In the
first phase, all the elastic elements having one of their nodes
connected to a particular common joint are considered in turn, Their
stiffness contributions to this joint are evaluated and super-
imposed on the stiffness matrix. The part of K corresponding to this
joint is then written into the backing store unit DA6. The same
space in core is then used for the construction of the next joint.

In the second phase of the construction, each joint is again
considered in turn. If there is a plate or member element connected
to this joint, the part of X corresponding to this joint is copied
into the core from the backing store DA6, The solid elements con-
nected to this joint are then considered in turn. Their stiffness
contributions to this joint are evaluated and superimposed on the
part of the stiffness matrix in the core. This part is then written
into the backing store unit DAlO ready to be read by the solution
routine. The same area of the core is then used for the next joint,

It is noticed here that this method considers an element more
than once during the construction of the stiffness matrix., However,
the stiffness terms of the elements are evaluated from explicit
expressions once and for all. Therefore, the method does not involve
any extra computation. As the solid element stiffness matrices are

kept in the backing store the number of transfers is somewhat
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increased, This method is superior to the last one because it

does not need any storage for the joint group information or any
computation to evaluate these. The only core space necessary is to
hold the stiffness array for one joint, which does not exceed six
rows., In the actual program this array is in fact kept in a tempor-
ary store which is subsequently used for other purposes. Thus,

the storage requirement for this method is nil, For the moderately
sized problem of a space frame on a sand bed, with 1197 degrees of
freedom, the joint by joint method needed about 10 per cent more

time for 15 increments of the load than the joint grouping method,

6.6 SOLUTION OF THE SIMULTANEOUS EQUATIONS

6.6.1 PreEaration

For large problems Jennings and Tuff (1970) have proposed the
segmentation of the stiffness matrix into a number of blocks con-
taining some contiguous rows of the matrix, Choleski's triangular
factorization was used to reduce successively each of these blocks.
However, Choleski's factorization sometimes gives problems with
negative arguments under the square root, Croxton (1974). Indeed
the method was tried by the author and similar problems were
encountered when the stiffness matrix did not have particularly dominant
diagonal terms. In the method of solution described below the seg-
mentation technique of Jennings and Tuff is used with a Gaussian
elimination method instead of Choleski's factorization.

The stiffness matrix is divided into a nunber of segments in
such a way that each segment contains a number of complete rows,
The direct access backing store unit DAIO is also divided into

fixed length blocks in which each complete segment wholly or partially
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fills the block. For an efficient transfer between the core and

the backing store the length of the blocks is kept equal to a
multiple of the buffer size. The buffer size on the CDC 7600
computer is 1000 octal (512 decimal) words capable of holding 512
real elements. Therefore, a block size of 512 elements is used

for most of the problems analysed in this thesis, For very large
problems, it was found that sometimes a single row of the stiffness
matrix contained more than 512 elements. In such cases a block
length equal to two buffers (1024 elements) was used. A facility is
included in the program to print out a message when any row contains
more elements than the specified block size, The block size can
then be increased to suit the problem,

The methods of the construction of X described in the previous
sections consider a single joint or a group of joints at a time,
The number of elements in the part of X corresponding to a joint
or a group of joints is not necessarily equal to the block size
used, A fixed length block of the stiffnéss matrix can contain more
than one joint or joint groups. The stiffness matrix is divided
into the solution blocks in a subroutine CSDIV, The subroutine
stores the last row number of each block in an array IC. For an
efficient transfer between the core and the backing store, it is
necessary to manipulate the stiffness array in blocks of the same
size, In the second phase of the construction, the final stiffness
matrix is written into DA1O ready to be solved., A subroutine WRITW
was written to transfer the completed part of X corresponding to a
joint or a group into DAIO in units of a fixed length block, A
temporary working array A is used to copy the elements forming a

block in the current part of X, This array is then written in full
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into the backing store DAlO., Thus if a joint or group does not
contain a round number of blocks, the array A is used to store the
fractional block until the rest of the block have been constructed.
The flowchart of the subroutine, for a block size IZ, is shown in
figure (6.8). The symbols in the flowchart are:
I = block number being written
LEFT = number of elements left over from the previous joint
or joint group
MC = location of the start of this block in DAl1O
and IML = location in the overall stiffness array of the last
element of the previous joint or group.

6.6.2 The solution routine

The method of solution presented here uses the Gaussian
elimination technique modified to suit the compact storage scheme and
the backing store facility. In the elimination method the co-efficient
matrix is reduced to an upper triangle by successive row elimination.
During this process, for any row PQ in figure (6.9), only the elements
in the triangular area RPQ are involved, During the reduction of
any block, only those blocks with the last row number greater than
or equal to the first non-zero column number of this block are
involved. The block being reduced is the active block and resides
in the core, The blocks whose elements are necessary for the
reduction are copied into the core successively and afe passive,

Thus, in figure (6.9), the following are the passive blocks of each

active block;




Gs LEFT = o:*}—”-‘-’—

.Yes

Initialize A to zero

L1 = 1lst element of block I
L2 = last element of block I

\

Yes Yes
Is L2 > last element of the _
current joint or joint group? Is L1 > last elementf)r-*-—

{ No No
K2 = L2 -IML Kl = L1 - LML + LEFT
X1 = L1 - LML + LEFT K2 = last element - LML
M= LEFT + 1 M= LEFT + 1
L =K1 L =Kl
; ~AM) = K(L) A(M) = K(L)
\
\
M=M+1 M=M+1
\ L=L+1 L=l +1 “
y 3
Is L > K2? Is L > K27 No
;;C'_D s L > K2t
Yes ] Yes

Write A in DAlO starting
at location MC

LEFT = K2 = K1 + LEFT + 1

MC = MC + IZ
I=1I+1

I
LEFT = 0f«~—1s I > total no. of blocks?>
No

‘ Yes

LEFT = O

( Ret;;;ﬁwzz

A

FIGURE 6,8 FLOWCHART OF SUBROUTINE WRITW



Row No.[T ‘
1 o
2 ° °
3 e Re block 1
A ® ° ®
5 pe—e—e |Q
block 2
%) ® ® L] o ®
7 ° ® [ ° ° °
block 3

8 oW j =——-—9 —— & — OWT
5 M ®

l
10 row i . o— Kij —e— o block &
11 ® [ [

Column No. 1 2 3 4 5 6 7 8 g 10 11

Coefficient matrix K

————— —— N —— T —— — ——— — ———————

W G W RSP A SN WS G GRS RS S SR B Su e VS S SR e e

Temporary storage array C

FIGURE 6.9 REDUCTION PROCESS OF THE SOLUTION ROUTINE




124

Active block Passive blocks
1 1
2 1y @
3 1, 2, 3
4 2, 3, 4

An array, IB, is constructed in the subroutine CSDIV to contain

the first passive block number required by each active block. The
reduction continues from block to block with each block being brought
successively into the core from the backing store. After the
reduction, each block contains the reduced‘elements of the upper
triangle in a transposed form, The reduced blocks are written back
into DAlOIat the same locations as they previously occupied, The
reduction process requires some temporary reduction factors Cij for
each element Kij' An array, C, was declared in the routine to have
the same number of elements as the active block, The elements of
this array has a one to one correspondence with the elements of the
active block. These are also stored in a one dimensional sequénce.

The reduction factor Cij for an element K,, is:

ij

C.. =K,. - T C, K, 6,1

Here r is the greater of Ty and rj, with Ty being the column number

of the first non-zero element of row i and r, that for row.j. The

J
elements Kij are then replaced by Cij ij and the diagonal elements
Kii by the reciprocal of Cii' In figure (6.9) it is assumed that the

elements KlO 8 in block 4 is about to be reduced and that block 3 is
currently in the core as the passive block. By equation (6.1), the

reduced element K,, o becomes:
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C K

K10,8 = X3,8 10,8 = €10,6 Ks,6 = C

10,7 Xg,7)

Here i = 10, j = 8, j=1 =7, Ty » 6, rj =5and r = 6,

The reduction of the right hand side vector, b, proceeds in parallel
with the stiffness matrix. For any row i the quantity b, in the

right hand side is replaced by:

by = g— () = % Cyp by 6.2

At the end of the reduction process, the backing store unit
DA10 contains the transposed upper triangle of the reduced stiffness
matrix. The reduced last block of this matrix and the reduced
right hand side vector are in the core, The back substitution process
requires the subtraction of the product Kim bi from each element bm
of the right hand side, Here i is the successive row number from the
last to the first for each value of m from T, to i-1., The back
substitutions on all the elements bm of the right hand side, involving
a particular row i of the reduced stiffness matrix, are porformed in
one operation. This reduces the block transfers from the backing
store, When all the rows of the last block, n, of the stiffness
matrix have been considered, the next block n-1 is copied into the
core. The back substitution of the right hand side continues for
the rows in this block, The process is repeated until the first
block has been copied into the core and operated upon. At the end
of the back substitution the right hand side vector is transformed
into the solution vector of the system of equations,

Tﬁe flowchart of the sequence of operations during the reduction

process is shown in figure (6,10), The detailed flowchart of the
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reduction of a typical active block P with a passive block Q is
shown in figure (6.11), The back substitution process is illustrated

in the flowchart in figure (6.12).

6,7 THE USE OF SPLINE FUNCTIONS

In the incremental analysis, the non-linear 7 curves

oct - Yoct
of the soil are represented by spline functions. As stated in

chapter 2, a separate computer program was written to formulate the

spline functions for a set of 7 curves, For any particular

oct ~ Yoct
set of curves obtained for a given soil, this program is run only

once and the output is used repeatedly for all the analyses with
this soil, The output of the program consists of the nodal values

of 1 Y and the second derivatives ¢ of each curve. This

oct’ oct

output is recorded in a permanent disc file,

The main finite element incremental program reads the data
written in the disc file by the spline formulation program., A
subroutine GVALUE is included in the main program to calculate the

The routine is entered

values of T and G for any value of’yoc

oct £
before each increment of the load to obtain the instantaneous shear

modulus of each solid element,
The flowchart of the spline subroutine GVALUE is shown in
figure (6.13). For a particular solid element the routine first

establishes the two T . - Yoer SUTVes in the immediate neighbour-

ocC

hood of the o value of the element., For each of these curves

octi
the two nodes i and j to the left and to the right of the given

value in the element are determined, By using the input values

of ¢i and ¢j together with the values of Toct &t the nodes i and j,

ct
the value of the shear modulus is calculated as the first derivative
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of the spline function for the given value of Yoe A linear

tl
interpolation of the values of G obtained for the two curves gives

the shear modulus for the required value of ety

6.8 COMPUTER INPLEMENTATION OF THE CRACK PROPAGATION METHOD

A method of following the crack propagation and tension separation
in a structure-soil system has been developed in chapter 4, To
implement the method, a subroutine SEPRTN was written and is included
in the general finite element program, A call is made to this sub-
routine, after each increment of load or after each cycle of iteration,
to detect any new separation or the closure of any existing crack.

The input data to the program, for this purpose, consists of
the tensile strengths of the soil at the joints where a crack check
is to be performed. These are held in an array TS(3,ITS), where ITS
is the total number of such joints. The tensile strengths of clay
and other cohesive soils can be determined experimentally, Loose
and cohesionless material, such as the dry sand used in the experiments
described in chapter 7, is incapable of sustaining any tension, The
tensile strengths of such materials can be taken as the compressive
stresses developed due to the body forces, A crack can only occur
when these compressive stresses have been counteracted by the tensile
stresses developed due to the applied load,

Another array IX(4,NOJ), where NOJ is the total number of joints
in the mesh including the dummy joints, is used to hold the various
informations about each joint., The first row of the array contains the
degrees of freedom of the joint in an index form. The index of the
degrees of freedom is a six digit integer, Each digit can have a value

of 1 or O to indicate the presence or the absence of a degree of
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freedom, The first digit refers to a translation in x direction

Ss the second to that in y direction and so on, as follows:

Degree of freedom1l 1 1 1 0 1

In the example above the degree of freedom 111101 of a joint means
the joint is free to have translations 8» sy and Bz in x, y and 2z
directions respectively, It is also free to rotate about x and
z'axes, but the rotation By about the y-axis is suppressed. All
the dummy joints are initially given a zero degree of freedom in all
directions.

The second row of the array IX holds the least numbered joint
directly connected through an element to each joint. For a dummy
joint this is initially generated as the same joint to be changed
later to the appropriate number when the joint becomes active. In
figure (6.14), the joint indicated by a dark dot at the centre of
the mesh is given two numbers 14 and 15. The least joint number of
joint 14 is 1. At the uncracked state this number for joint 15 is
also 15, as this is a dummy joint, When it becomes active due to the
development of the crack shown in the figure, its least joint number
is altered to 4., Thus the second row of IX changes continuously as
each dummy joint becomes active or an active joint returns to the
dummy state due to the closure of a crack,

The third row of this array contains the crack index numbers
denoting the type of separation each joint is expected to suffer,

An index value of zero is given to all joints that are not likely to
suffer any separation or is itself a dummy joint,

The fourth row of IX is used as a working space., An integer

quantity is held in this row for each joint, This is denoted by ICS
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and is called the crack state indicator, ICS is a four digit
integer of the form 'kamn', The first digit k facilitates the
detection of the closure of a crack, It can have a value of 1, 2

or 5. A value of k = 1 is given to the joint at a separation, for
which the displacement of the parent joint minus that of the dummy
joint would have a positive value to indicate a closure. This
relative displacement would have to be negative to show a closure
when k = 2, The value of k = 5 indicates a boundary separation
where no dummy joint is used. The other three digits of ICS, 2,

m and n, have a value of 1 or 0, indicating the presence or the
absence of a separation in X, y and z directions, The initial value
of ICS is zero for all the joints and remains so for those that

do not suffer any separation. As each separation occurs, the value
of ICS for the joint involved is changed to indicate the presence of
a separation and the type of such a separation,

Each joint that is likely to suffer a separation is given two
numbers, one being the dummy and having a zero degree of freedom,
Joints on the boundary, separating normal to the boundary, do not
need an associated dummy. The parent joint and its dummy are
numbered consecutively, This eliminates the necessity of storing
the information about the dummy joint number of each joint, Further=-
more, this approach would result in a narrow band width of the stiff-
ness matrix after separation,

6.8,1 Description of subroutine SEPRTN

The formal parameters of subroutine SEPRTN consists of informations
about the current increment number, the number of joints and solid
elements in the system and two integer indicators, INDDOF and INDCRK.

On entry, INDDOF and INDCRK both have zero values, As each crack is
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initiated or closed, they are increased by 1, INDCRK is increased
only when a new joint becomes active or a joint returns to the
dummy state. INDDOF is increased for the above reason as well as
when any change in the degree of freedom of a joint is made.
Various operations in the general finite element program are depen-
dent on these two variables. A non-zero INDCRK would mean a total
change in geometry and connectivity of the mesh while a non-zero
INDDOF on its own would mean a change in the structure of the stiff-
ness matrix, All the other data are kept in COMMON blocks and
accessed by the subroutine.

The flowchart of subroutine SEPRTN is shown in figure (6,15).
The stresses are calculated by the finite element program at the
centroid of each solid element, The nodal stresses, which are of
importance here, are calculated in this subroutine by averaging the
centroidal stresses of the solid elements connected to each joint,
A check is then made to ascertain whether the current increment
number is the first one, as in this case the closure of cracks has
no meaning and need not be checked, Otherwise, each joint with a
non-zero ICS is checked for a negative crack width and if this is
indicated, the crack is removed in the manner described in section
(4.4). The flowchart of the part of the subroutine for this operation
is shown in figure (6.16). Next the crack prediction loop is
entered to implement the procedure developed in section (4.3) and
its sub-sections. The flowchart for this program loop is shown in

figure .(6.17).

6.9 AUTOMATIC DATA GENERATION

To reduce the manual data preparation, a facility is included in

the programs to generate automatically most of the finite element
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data, The programs automatically perform the finite element division
of the soil into rectangular parallelopiped solid elements and assign
the joint numbers at their nodes. They also generate the x, y and
z co-ordinates of these joints as well as their degrees of freedom
and least joint numbers. As the finite element mesh for a structure
resting on soil can often be irregular, the automatic data generation
process is made very flexible. Thus any arbitrary grid of finite
elements can be generated,

An example grid is shown in figure (6.18), This consists of
a frame resting on an irregular body of soil, The actual joint
numbers are shown outside the parentheses beside each joint., Three
figures on the data specify the directions in which the number of
subdivision of the soil is the least, the next and the most., In
the example of figure (6.18), these are y, z and x directions
respectively. The program reads the x co-ordinates of the yz dividing
planes, y co-ordinates of the xz planes and z co-ordinates of the xy
planes. The body of the soil is then divided by these orthogonal
planes, In this manner, the basic grid of solid elements enclosed
within the block ABCDEFGH in the figure is obtained, Joint number
(1) is assigned to the joint nearest to the origin of co-ordinates
and the other joints are numbered in an uniterrupted sequence, The
numbers vary most rapidly in the direction with the least number of
divisions and least rapidly in the direction with the most number of
divisions, In the figure, these basic joint numbers are shown within
the parentheses next to each joint, The solid elements are also
numbered in the same sequential order as the joints, The basic

solid element numbers are shown encircled in figure (6,18),
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As can be seen in the figure, the actual grid is irregular and
does not coincide with the basic grid generated so far, The solid
element number 2 generated by the program does not exist, Further-
more the joints on the frame resting on the soil have not been
included in the basic joint numbering seauence., The basic grid
is therefore gradually modified by the program to transform it to
the actual mesh, In figure (6.18), the joint numbers (1) to (4) of
the basic grid are correct. But joints (5) and (6) are missing.
Therefore, two joints of the basic grid have to be missed out at
joint number (7). The program reads the number to be added to each
basic grid joint number at such irregularities to obtain the actual
joint number. For joint (7) of the basic grid this value is -2,
Thus 2 is subtracted from the joint numbers (7) onwards, until
another irregularity is encountered, This occurs at joint number
(11), since two joints 9 and 10 of the structure have now to be added,
Thus at this stage a value of +2 appears in the data which is added
to the basic joint numbers. This and the previous number of -2 are
accumulated and the sum is added to the basic joint numbers until
the next irregularity of numbering is encountered. This occurs at
basic joint number (17) where a further value of 2 has to be added,
At the end of this process the numbers of the joints in the soil
part of the mesh are the actual numbers.

The solid element numbers are also modified in the same way,
In the example, a value of -1 is to be added to the solid element
number (3) and onwards of the basic grid. The program then assigns
the actual joint numbers at the various nodes of each solid element
in such a way that the local axes of the elements are the same.as

the global axes.
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The x, y and z co-ordinates of each joint are then calculated
from the co-ordinates of the various dividing planes that intersect
at a joint, The degrees of freedom of the joints are calculated by
checking their positions in the grid. All the internal joints
that do not lie on a boundary are given three translational degrees
of freedom, 111000, The degree of freedom normal to the boundary
is restrained for a joint that lies on the boundary. Thus for a
joint on the xz boundary the degree of freedom is 101000, and for a
joint at the the intersection of the xz and the yz boundaries this
is 001000, The rotational degrees of freedom of joints such as 8
and 16, where a member element meets the solid elements, remain
undefined., For these joints the generated degree of freedom is
modified by adding a quantity to it, For joints 8 and 16 this

quantity is 111, so that their final degree of freedom is
\ 111000 + 111 = 111111

This facility can also be utilized to remove a degree of freedom from
the generated one, If, for example, the same data for the problem
in figure (6.18) is used to perform a fixed base analysis of the
structure alone then a quantity -111000 is supplied to the program
for joints 8 and 16, This reduces their degree of freedom to zero.

The dummy joints for a crack propagation analysis pose no
problem in the automatic data generation. These are dealt with by
considering an irregularity in the basic mesh joint numbering at the
joints immediately following them, The co-ordinates of a dummy
joint are automatically equated to those of its parent joint and the
degree of freedom is set to zero.

At the end of the data generation process the solid elements and
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the joints connected to them are completely defined. But the data
for the joints, such as 9, 10, 17 and 18 in the example, which are
not connected to a solid element in any way have to be input manually,
The connectivity and the properties of the plate and the member
elements have also to be supplied manually., However, the least
joint number for each joint is automatically calculated by the
progran by checking through the connectivity of the various elements,
The programs also contain the option of supplying all the data
manually, if the special geometry of the finite element mesh warrants
this. For some of the larger problems analysed in this thesis the
method of data generation described above was slightly modified to
suit the special need of the problem, For example, for a multi-storey
framed building the space member data were also automatically gener-
ated, However, these modifications are entirely problem dependent and

not general, Therefore, they are not described in detail here,

6,10 THE STRUCTURE OF THE COMPUTER PROGRAMS

Each computer porgram was developed by a logical combination of
a number of subroutines. The only differences between the programs
are in the control of the analytical procedure, The various sub-
routines used can be classified into four groups according to their
functions. These are described below.

(a) Control routines:-

Main Segment: This segment of the program is used to read aﬁd

generate the data of the problem, The joint numbering and the solid
elements connectivity data are automatically generated from a few
input parameters, It also generates the initial values of the non-

linear elastic parameters, It carries out the first phase of the
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construction of the global stiffness matrix and controls the over-

all method of the analysis.

‘Subroutine ASMBLRP: This routine performs the second stage of the

construction of the global stiffness matrix. It reads the incomplete
stiffness matrix from the backing store DA6 and superimposes on it
the stiffness terms of the non-linear solid elements before each
stage of the analysis. It then transfers the complete stiffness

matrix to the backing store DAlO.

Subroutine CONTROL: After each increment of the loads or each

cycle of iteration, this subroutine alters the material properties
of the non-linear elements to conform with the current level of
stresses. It accumulates the joint displacements and the element
stresses and strains in an incremental method of analysis, In

the iterative program, it tests for the convergence of the joint

displacements.

(b) Ancillary subroutines:-

The subroutines in this category are listed in Table (6.1) with

a note on each of their functions.

(c) Element subroutines:-

These subroutines are used to formulate each type of element
used in the program, Two functions of these routines are to evaluate
the element stiffness matrices and to calculate the stresses, the
strains, the forces and the moments. The subroutines in this group

are listed in Table (6.2).

(d) Speciality subroutines:-

Subroutine SEPRTN: This routine controls the crack propagation

and the tension separation in the analysis, It has been described



Functions

Name

LJNO Generation of the least joint number of each joint

JGROUP Division of the jointsinto groups

GVALUE To calculate the instantaneous values of G from the
spline functions of 7 . - Yoct Curves for the
incremental programs only

BOUSSTR| To calculate the Boussinesq stresses at the centroids
of the solid elements due to the applied point or
distributed loads on the surface

LOADS To reconstruct the right hand side vector after each
increment of load or each cycle of iteration

CSDIV Division of K into fixed length solution blocks

WRITW To copy parts of X into backing store DAIO in fixed
length blocks

DISVEC Formation of the joint displacements matrix from the
solution vector

OPENWF To declare workfiles for use as backing stores

CLOSWF To close the workfiles at the end of the analysis

WRITWF To write strings of elements into a backing store
in fixed length records to minimize indexing of the
element locations

READWF | To read strings of elements from a backing store in
fixed length records

MOVARR | To shift the positions of elements in an array

TABLE 6,1 ANCILLARY SUBROUTINES




Name Functions

SKRPPD To construct stiffness matrices of the rectangular
parallelopiped solid elements and to write them in

backing store

RPPDST To calculate the stresses and strains in solid
elements from nodal displacements

PRINC To calculate principal stresses at the centroids
of the solid elements

STIFMEM To control construction of stiffness matrices of
the space frame member elements

FORMDC To calculate the direction cosines of members
ASELTER To form stiffness terms of the members
CONSMKA To construct kA matrices of members for the cal-

culation of forces and moments

MEMFCOM To calculate forces and moments of members

WRITE1l To superimpose the on-diagonal stiffness sub-
matrix of end 1 of member on global K

WRITEZ21 To superimpose the off-diagonal stiffness sub-
matrix of member on the global K

WRITE22 To superimpose the on-diagonal stiffness sub-
matrix of end 2 of member on global X

RECTPLT To control construction of stiffness matrix of
rectangular plate elements

RFDC ‘To calculate direction cosines of plate axes

RECWRIT To superimpose stiffness terms of plates on the

. global .K
RPSTRES To calculate stresses and moments in the rectan-
RPDBA gular plates

TABLE 6.2 ELEMENT SUBROUTINES
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fully in section (6.8.1).

Subroutine SOLVE: This subroutine solves the system of equations

L = KX by using the compact storage scheme and the backing store
facilities by the method of Gaussian elimination., The subroutine

has been fully described in section (6.6,2).

6.11 USE OF THE CORE STORE

In the computer programs a significant part of the available
core space is required for storing the program instructions and the
local variables. The rest is used by the arrays declared to hold
the various matrices and vectors. Some of these arrays are however
temporary and can either be destroyed or copied into the backing
store when they are no longer needed, The operations in the programs
are logically ordered in such a way that the same area is used
repeatedly for storing the various arrays., In a FORTRAN program this
is accomplished by using the COMMON blocks and the EQUIVALENCE
declarations, The more frequently used permanent arrays are however
always kept in the core as a large number of core-backing store
transfer increases the running time.

The use of the core store for the temporary arrays in the incre-
mental program which constructs the stiffness matrix by joints is
shown in table (6,3)s The available core space is divided into three
units each of .which.stores different arrays at different times. The
arrays AA, BB, CC, JMISS and IMISS are required during the automatic
data generation and are stored in unit 1, When this is completed,
the unit stores the stiffness array that corresponds to a particular
joint during the construction and the solution processes, Core

unit 2 is occupied by the load vector AL and subsequently by the



Core crea unit No

S;gp Operations
1 2 3

1 Arrays required for automatic data ' AA, BB, CC,

generation JMISS,

LMISS

2 Construct lst phase of K K
3 Construct 2nd phase of K X
4 Construct load vector AL
5 Solve simultaneous equations K aX
6 Incremental joint displacements DOSP
7 Incremental element stresses DSQ
8 Total element stresses ™
9 Copy TQ to backing store, calculate

total joint displacements TOSP
10 Incremental joint stresses SNQ
11 Form total displacement vector,

calculate plate and member forces X
12 Copy TOSP to backing store and

bring TQ in core, calculate new

element properties TQ
13 Total joint stresses TNQ to share SNQ,

Unit 1 with SNQ TNQ
14 Copy TOSP into core, perform crack

propagation analysis TOSP
15 Repeat steps 2 to 14 if mesh geometry altered due to crack; other-

wise repeat steps 3 to 14,

TABLE 6.3 USE OF CORE SPACE IN INCREMENTAL PROGRAM
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displacement vector 4X. The latter is used to calculate the joint
displacement matrix DOSP which occupies unit 1, AX is then over-
written by the incremental element stress matrix DSQ. Core unit 3

is occupied alternately by the total element stress matrix TO and
the total joint displacement matrix TOSP, one being sent to the
backing store when the other is in use. The incremental joint stress
matrix SNQ is constructed from the element stresses DS0O, the latter
being overwritten by the total displacement vector ¥. The total
joint stress matrix TNQ shares unit 1 with SNQ during the crack
propagation analysis. The procedure is repeated for each increment

of the loads.

6.12 TESTS ON THE COMPUTER PROGRAMS

6.12,1 Tests of accuracy

The accuracy of the various finite elements was established
by analysing simple problems under tension, compression and bending
loads, The results were checked against hand calculations and a
very good agreement was found, For larger problems the accuracy of
the programs have been determined by model tests., The tests are
described in chapter 7 and the experimental results are compared
with the theoretical computed results in chapter 8, Again a good
agreement is obtained.

6.12,2 Computer time

Further tests were carried out on the programs to ascertain the
cost of running large jobs. The problems analysed had various con-
figurations of the finite element mesh and various total numbers of
degrees of freedom. Non-linear problems, with upto 4500 unknown

degrees of freedom, have been analysed by these programs, However,
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the dimensions of the arrays in the programs are so adjusted that
still larger problems can be analysed. Generally the execution times
of the programs increase with the increase in the number of degrees
of freedom, This is because the stiffness matrix becomes larger and
there are more numbers of equations to be solved. The mill time

of the computer for one cycle of iteration or one incrcment of

the load is plotted in figure (6.19) against the total number of
degrees of freedom for a number of problems. A mean curve is drawn
through some of the points as a rough guide, While this curve
indicates a parabolic relationship, some of the points show a wide
scatter, This indicates that the cost of a problem does not depend
on the number of degrees of freedom alone, Besides, in a problem
where crack propagation is included, the number of degrees of freedonm
changes continuously. In figure (6.19) the computer time is plotted
against the initial number of degrees of freedom for such problems,
In a fixed band width storage scheme a parabolic relationship is
known to exist between the band width of the stiffness matrix and the
computer time, In the present method a variable band width storage
scheme is adopted and a different number of elements are stored and
operated upon for each row of the stiffness matrix, The computer mill
time is plotted in figure (6.20) against the total number of elements
of the stiffness matrix stored, A parabolic relationship is also
indicated here. However, the points are less scattered about the
mean curve in figure (6.20) than in figure (6.19). This shows that
the estimate of the cost of analysing a prnb;cm can be obtained more
accurately by assessing the size of its stiffness matrix stored in
the compact scheme than from its number of degrees of freedom,

The total number of elements stored depends on the number of
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elements between the first non-zero element and the leading diagonal
of each row of the stiffness matrix, The length of this row is
decided by the difference between the number of a joint and its
least joint number. This difference can be kept to a minimum by

a careful joint numbering so that the difference between the joint
numbers at the various nodes of an element is small. The cost of a
problem thus depends largely on the design and numbering of the
finite element mesh apart from the size of the problem, A bad joint
numbering can introduce a large number of zero elements to be stored
between the first non-zero element and the leading diagonal of a
row. In the automatic data generation method described in section
(6.9), the joints are numbered in such a way that the numbers vary
most rapidly in the direction with the minimum number of joints

and least rapidly in the direction with the maximum number of joints.
This generally results in a low difference between the joint numbers
at the various nodes of a solid element.

6,12.3 Commerical cost

The commercial cost of running a job varies from one computer to
another. Furthermore, the efficiency and speed of the machine, the
priority or urgency of the job, the facilities for data preparation
all affect the cost of a job.

The problems analysed in this thesis were all run on the CDC7600
computer at the University of Manchester Regional Computer Centre,

As the centre did not operate a computer bureau service, a quotation

on the commerical price of running a job was not available, However,
based on other centres which operate such a service, a rough estimate
of £3000 per 3600 seconds of mill time of the CDC7600 computer is

obtained., This means that the cost of a job in pounds sterling can
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be estimated roughly from figure (6.19) and (6.20) by multiplying
the appropriate mill time by 0,833, For the largest problem analysed
in this thesis the computer time was about 800 seconds per cycle.
This is a fifty storey three dimensional framed structure resting on
a bed of clay and is described in chapter 9. Five cycles of
iteration were necessary for the convergence of the displacements.
The cost of running this job is estimated to be about £3300, which
is considered to be quite reasonable for the size of the problem.
Another large problem described in chapter 9 is that of a complex of
four silos resting on a bed of chalk. The total cost of analysing
this probleﬁ is estimated to be about £1000. This is also a reason-

able figure for the magnitude of the problem.

6.13 CONCLUSION

The finite element computer programs described in this chapter are
of a versatile nature and can be used to solve a wide variety of
structure-soil interaction problems. They can also be used to analyse
isolated systems of structures or three dimensional and irregular
solids. The various finite elements included in the programs can be
applied in any arbitrary combination to represent many physical problems.
The automatic data generation scheme reduces the manual data input
and results in an economical use of the programs.

The cost of analysing a structure interacting with its supporting
foundation and soil is not exhorbitant, as is commonly believed it
would be. The programs thus offer a promising possibility of obtaining

exhaustive analytical results for structure-soil interaction problems,
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CHAPTER 7/

MODEL _EXPERIMENTS

7.1 INTRODUCTION

The experiments were performed on model structures resting
on a prepared bed of sand, The model tests were designed to
obtain a three dimensional condition in the test system, Testing
of a two dimensional system or of an isolated pad or strip footing
resting on soil, as has normally been done in the past, cannot
unveil the complex interaction of a complete structure with the
soil, Therefore, it was decided to test models of complete struc-
tures of different shapes and supports as a continuation to tests
carried out by Cunnell (1974).

The measurement and the study of the stresses and the strains
in the soil are useful but difficult, However, they are only
important in as much as they affect the behaviour of the structure

which produces them. It was considered that if the analytical

behaviour of the structure agrees satisfactorily with the experimental

ones, then it is safe to assume that the analytical soil behaviour
can also be taken as sufficiently accurate, Equally important is
the fact that the measurement of stresses in the soil under a
structure is usually associated with expensive gadgets and thus
increases the cost of the experiments, For the above reasons, it
was decided to measure the displacements and the bending moments
at various points on the structure alone. No attempt was made to
determine experimentally the contact pressure and the stresses

within the soil underlying the model structure,
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7.2 VARIOUS TESTS PERFORMED

There were two basic elements in the experiments. These are
the model structure and the soil. The soil was represented by a
controlled uniform bed of loose dry sand contained in a concrete
tank. While it is possible to represent soils other than sand in
the theoretical analysis, dry sand was used in the tests because
it is easy to manouver and control its properties., The same
conditions of uniformity and density of the sand bed was reproduced
for each and every experiment that was performed. This enabled the
same set of stress-strain curves of the sand to be used to analyse
all the model tests. This was achieved by emptying the sand tank
after each test and refilling it under controlled conditions and
with a standard procedure before each new test,

The other element of the system, the structure, can be altered,
Various structures exhibit various modes and degrees of interaction
with the soil. These depend on the shape of each structure, the
manner it is supported as well as the overall stiffness of the
structure and the relative stiffness of its components., There are
an unlimited choice of structures each of which would exhibit a
different behaviour from the other. In the present investigation,
four representative models were chosen for test purposes, These

are described below,

7.2.1 Test series A - Single-bay space frame model

This was a single-storey single-bay three dimensional frame
resting on four separate footings as shown in figure (7.1). The
footings rested on the surface of the sand bed contained in the test

tank, This structure was tested under similar conditions by Cunnell
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(1974), but without the measurement of the stresses in the structure,
The tests were repeated by the author with measurements of the
strains by electrical resistance strain gauges to obtain the
experimental bending moments data,

The beams and the columns of the model were all made of
25 x 25 mm square solid section black mild steel bars and the
footings of 25 mm thick mild steel plates. The joints were 100%
arc welded except the ones at the ends of the central beam which
were securely bolted,

For each test the model was loaded, by slowly applied incre-
ments of dead weights, at single points on the central beam JK
(see figure 7,1b). The position of the load was varied along this
beam to test the structure under loads of various eccentricities.
Four tests were performed on this model with values of eccentricity,
e = 0, 0.33, 0.67 and 0,85, with the load at Ll' Lz, L3 and L4
respectively, Here e is the ratio of the distance of the load
ffom the centre of beam JK to the half-length of the beam,

Displacement readings were taken by dial gauges of 0,01 mm
and 0,001 inch gauge divisions at various points on the structure
to read values of the differential settlement and the sway., These
were placed at A, E, H and D to record the vertical settlements
of the footings and the horizontal displacements of the column
bases., They were also placed at B, F, G and C to read the dis-
placements at the top of the columns, Gauges at J, L, and K
recorded the deflections of the beam JK, Strain gauges with gauge
length 5 mm were located at the base, the mid-height and the top
of each column as shown in figure (7.1b). A pair of gauges were
used at each point on the opposite faces of the column to measurc the

bending moments about the 2-axis, For this and cach of the other
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structures, the surfaces in contact with soil werc covered by

sand paper to prevent any slip between the two,

7.2.2 Test series B - Box culvert model

Box culverts are normally buried almost completely in the soil
and they exhibit a considerable degree of interaction with it. To
the author's knowledge these have never been tested, This series
of tests was performed on the model of a twin box culvert as shown
in figure (7.2). The model was made of 3.15 mm thick mild steel
plates welded together in a jig to form a twin-chambered section,
Two 3,15 x 6 mm strips of the same plate were welded to the top
deck of the culvert to represent the parapets, For each test the
culvert was buried in the sand up to the top level on the two sides,
while the twin box and its fronts were kept empty. The arrangement
of the culvert in the sand bed is shown in figure (7.3) where the
trapeziodal spaces such as LMANBQW are empty, This situation
simulated the clear drainage way and an approaching and a leaving
roadway connected by the top deck ABCD of the culvert.

Six tests were performed on this model for various load cases,
The loads were vertical and applied on the top deck at points H,

G, F, E, J and K in figure (7.2) by means of a hydraulic jack.

The loading scheme for the box culvert tests is given in table

(7.1).
Load
case ey ez Point
Bl 0 0 H .
B2 0.33 o g Note: Oy and e,
B3 0.67 0 F are defined in
B4 1,0 0 E figure (7.2)
BS 1,0 0,36 J
B6 1,0 0,72 K

TABLE 7.1 LOADING SCHEME FOR BOX CULVERT TESTS
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Vertical displacements were recorded by dial gauges on the
top deck of the culvert along the edges AB and CD and also along
the centre at E, H and I, see figure (7.4a), 50 mm high metal
flags, glued to the corners of the culvert at A, B, C and D,
were used to measure the horizontal displacements in x and 2
directions, as shown in the figure, Strain gauges were fixed
around the culvert at a cross section 150 mm from the front edge.
The locations of the strain gauges are shown by the numbers 1 to
14 in figure (7.4b). A pair of strain gauges,each of 5 mm gauge

length,were used at each location on both sides of the plate.

7.2.3. Test series C - A tall structure

This consisted of four slender columns with a latticed
foundation structure as shown in figure (7.5). It resembles a
gravity type offshore oil production platform., Although such an
oil platform is subjected to the forces of waves, the precise
treatment of these is beyond the scope of the present work., The
interaction of a structure, with a high ratio of height to base
area, and its supporting soil was the item of interest in this
series of tests., The configuration and the depth of the base
structure were altered to investigate the effect of changing
structural rigidity on the interaction between the soil and the
structure, In one of the tests, column AB was removed and a three-
legged model was tested to show the effect of the failure of a
column on the interactive behaviour of the structure and to
investigate the effect of irregularities,

The four main columns, AB, CD, EF and GH, of the model were
19 mm diameter bright mild steel bars thrcaded at the top and the

bottom. The bottom of the columns were machined to a pointed end




Metal flag for Dial pauge
recording horizontal
displacement

s)

x U\ G R
/ l——— 550 mm ——-n‘/

(a) Dial gauge locations

10 11 12 13

Straoin gauge
=] 14 qou9

12 3 45 6 78

SECTION X=X
X
L X ol |°
o
Lopc!tigg
oin
P W\
6 H
600 O o e i ¢
Strain gauge
/—-—
Y -
- ™ 4 [ R
X1 o 112 138 X
150 oK
| AN QB
U R
e 550 mm
BLAN

(b) Loading points and strain gauge locations

FIGURE 7.4 GAUGE LOCATIONS AND LOADING POINTS ON CULVERT




o

T
51
B (40, !
F ;H 12.5 mm
1000 mm

-~ =—18 mm
diameter

400 mm
FRONT VIEW
fe—— 400 MM ——r
-1
0
F H
400
©) (©)
B D
Column AB
TOP VIEW

.. ren
D,,f.; LHT
B g F
10mm
G—I.T—.. Z1clal E'G imdiumeter
6—1_[= = t
25
75]—-125—]—-125—1 75 -
Lo0mm »
SIDE VIEW
Dimensions (mm)
Model No Hb d
Cl 150 150
C2 75 225
C3 0 300
c4 150 150 (Column AB removed)
C5 0 0

FIGURE 7,5 DETAILS OF THE TALL STRUCTURE MODEL



146

to facilitate the positioning of the structure in the sand., The
top platform BDFH was 12 mm thick mild steel plate and the two
base plates ACEG and A'C'E'G' were 6 mm thick mild steel. The
four vertical members such as LM at the corners of the base were
10 mm diameter bright mild steel bars, The diagonal members in
the base were bent strips of 3 mm x 25 mm mild steel plate.

The various elements of the model were joined together by
nuts and bolts and no welding was used, The basic modél Cl
had a height Hb between the base plates of 150 mm, Two other
models were derived from this by altering Hb’ each time
keeping the height of the columns AB, CD, EF and GH constant at
1 m. The base height was reduced to 75 mm for model C2 by using
a new set of vertical and diagonal elements in the base and shift-
ing the lower plate A'C'E'G' upwards., Model C3 was made by
removing the base members altogether and reducing the distance Hy
to zero., Finally, model C4 was made identical to Cl (Hb = 150 mm)
except that column AB was removed as shown in figure (7.6b).

The loads on the model were applied by a lever arm arrange-
ment at two points.S,S or T,T on the top plate as shown in figure
(7.6a), Separate tests were performed with the loads at S (e = 0)
and at T (e = 0.4). Strain gauges were fixed at three points on
each column, just above the base at A, C, E and G, at mid-height
points Yl' Yz, Y3 and Y4 and at the top at B, D, F and H, Dial
gauges were located to record horizontal displacements at the base
and the top of each column as shown in figure (7.6a). They were
also used to read vertical deflections at N and R at the base,
along the centre lines of the upper base plate and the top plate

and at the corners of the top plate. A total of 24 strain gauges
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and 24 dial gauges were used for most of the tests in this series.
A further test was performed on model C3 with the portion of

the legs below the base plate cut off, leaving no protruding pile

in the soil, This test was done with e = 0,4 and will be called

test C5., A summary of the tests in this series is given in table

(7.2).
Test | Base Column extension | No, of Eccentricity
Model | No. height, Hb in sand, d (mm) columns | of load, e
(mm)

Cl Cl a 150 150 4 0.0
Cl Clb 150 150 4 0.4
C2 C2 a 75 225 4 0.0
c2 C2b 75 225 4 0.4
Cc3 C3 a 0 300 4 0,0
c3 C3b 0 300 4 0.4
c4 C4 150 ‘ 150 3 0.0
C5 Cs 0 0 ) 4 0.4

TABLE 7.2 SUMMARY OF THE TESTS IN SERIES C

7.2.4 Test series D - Three-bay space frame

The last series of experiments was performed on a single-storey
three-bay steel frame shown in figure (7.7). All the members were
made of 19 mm square black mild steel bars and welded together,

Two different foundation structures were used to study the effect
of the foundation stiffness. Tests D1 were performed with the
frame supported by individual square pad footings under cach
column, The pads A, C, E, G, J, L, N and Q were 19 mm thick

mild steel plates and are shown by firm lines under the columns in
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figure (7.7). These footings were later replaced by two strip
foundations under the four columns on each side of the frame for
the tests D2, The strips were 12 mm thick mild steel plates and
are shown by the dashed lines in the figure.

L

The load was applied at a single point such as L Ly and

1* =2*
L, on the central beam ST of the frame by a dead weight mechanism,
Four tests were performed on each of the models D1 and D2 with the
load at different eccentricities, The loading points are shown in
figure (7.7),where the eccentricity e is the ratio of the distance
of the load from the centre of the beam ST to half the total

length of this beam,

Strain gauges were fixed at the base, the mid-height and the
top of the outer columns AB, JK, GH and QR. Dial gauges were
located to read the horizontal and the vertical displacements of
the footings A, J, G and Q and the vertical displacements of
footings C, E, L and N, They were also used to record the horizon-
tal displacement of the column tops at B, K, H and R and the

vertical displacements along the central beam ST.as shown in

figure (7.7).

7.3 MECHANICAL PROPERTIES OF THE STRUCTURE MATERIAL

The materials used in the model structures of all the tests
were mild steel, The tests were designed so that the models were
stressed within the elastic limits of their materials., The modulus
of elasticity, E, and the Poisson's ratio, v, are the only para-
meters necessary to describe their mechanical behaviour, Samples
were collected from the material used to construct the various

components of each model. They were then tested in tension
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according to BS 18, A summary of the results obtained from these

tests is shown in table (7.3).

7.4 PROPERTIES OF THE DRY SAND

The same sand was used in the test bed for all the tests. This
was a washed Leighton Buzzard brown sand of a fairly uniform grading.
The particle size distribution of the sand is shown in figure (7.8).
The sand had a black material mixed with it mainly between the sizes
of 0,15 mm and 0.3 mm. The specific gravity of the sand was deter-

mined to BS 1377 as 2,655,

7.4,1 Determination of the stress-strain properties of the sand

Soils in general, and the dry sand used in the test bed in
particular, exhibit an essentially non-linear stress-strain relation-
ship. In order to represent closely the properties of this sand in
the non-linear finite element analysis, it is essential to determine
these properties under the conditions pertinent to the test bed.

It is most likely that a generalized state of three diménsional
stress exists in the experimental bed. Ideally, therefore, the test
used to determine the soil properties should be able to control the
three principal stresses independently, Such tests are too expensive
and too involved to justify their application to anything but special
research in soil mechanics, Therefore, a choice has to be made from
the more standard methods of laboratory testing of dry sand,

As the soil particles are unlikely to crush in compression
under the applied stresses and also as a general tensile failure is
unlikely, the predominant strength characteristic is likely to be
that in shear. The shear box test, however, seems to be inappropriate

because it simulates a plane strain behaviour, The axi-symmetric
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: Ultimate Yield Modulus of,
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. Beams and Mild steel - - 206.9
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frame Footings Mild steel - - 170.6
plates
Series B Body and kerb Mild steel 348,1 258,5 223,4
Box culvert plates
Main columns Bright drawn 519,0 364,6 205.4
mild steel
bars
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0il Vertical members| Bright drawn 601,6 473.,3 204,3
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type bars
tall
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in base plates
Top platform Mild steel 476,9 300,2 193,5
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Base plates Mild steel 365,5 251,8 218.1
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Series D columns bars
Three-bay
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plates.

432,1

272,5

TABLE 7,3 MECHANICAL PROPERTIES OF MODEL STRUCTURE MATERIALS
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cylindrical compression test seems to be the obvious alternative
because of its relative proximity to three-dimensional state, Such
tests are more generally known as the triaxial tests and were used
to determine the mechanical properties of the dry sand,

The test conditions were dictated solely by the conditions in
the model test bed. Some of these were that the initial confining
pressures in the sand bed were very small, the sand was dry and the
air in the voids was likely to escape under pressure to allow the

volume changes to take place,

7.4.2 The Triaxial Apparatus

The apparatus was assembled in a manner recommended by Bishop
and Henkel (1957) and Cunnell (1974), It was designed to perform
the following functions:

(a) to apply a low all-round pressure,

(b) to apply and measure the deviatoric stress ensuring that

the major principal stresses are vertical throughout
the length of the sample, |

(c) to allow and measure volume changes of the sample under

stress by draining air out of or into it, and

(d) to check for the extent of anisotropy in the sand by

measuring volumetric and axial strains under hydrostatic
stress conditions,

The assembled apparatus is shown diagrammatically in figure
(7.9). The triaxial cell was a standard one used for 100 mm
diameter samples,slightly modified to accommodate a dial gauge inside
the cell. The justification for placing the dial gauge inside the

cell was that the axial deformations of the sample were to be
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recorded together with the volume change readings under hydrostatic
conditions to satisfy the requirements of function (d) stipulated
above. The conventional method of attaching the dial gauge to the
loading ram above the cell proved to be unsuitable because of the
considerable weight of the ram that acted on the sample disrupting
the hydrostatic state. The gauge used was a Baty, 0,01 mm per
division, with a full range extension of 25 mm.

The triaxial loading frame was a conventional device manufact-
ured by Wykeham Farrance and had a capacity of 10 imperial tons.

It was fitted with a motor and gear box assembly, capable of applying
a constant rate of strain to the sample by raising the cell base
against the top frame of the apparatus, The load was transferred

to the top beam of the frame through a Wykeham Farrance cone face
eletronic load cell which had a capacity of 450 kg. The load cell
was located inside the cell eliminating the necessity of taking
account of the friction between the loading ram and the bush in

the cell cap. Readings of voltage changes in the load cell were
obtained on a Modulog data logger made by Intercole Systems Limited,
The machine incorporated a digital display voltmeter and a paper
tape punch and tele-writer unit for automatic recording of data.
The voltmeter had a sensitivity of between 0,15 mV and 1 mV per
digit.

The cell pressure range used for the tests was extremely low
and, so, extreme care was taken in their application and measurement.
The pressure was applied by the head difference in a self-compen-
sating mercury pot arrangement, It consisted of two Hg pots, one
resting on the groﬁnd and topped up with water, and the other

connected to it by a flexible tubing., The second mercury pot was



152

attached by a spring to a trolly travelling along a vertical rail
by operating a hand winch. The stiffness of the spring was so
adjusted that any change in the levels of the mercury in the two
pots, due to a change in the volume of the sample or a slow leakage,
was compensated by an appropriate change in the length of the spring,
thereby keeping the head difference, h in figure (7.9), constant.
The cell pressure was measured by an electronic pressure transducer
made by Consolidated Electrodynamics., Readings from the pressure
transducer were also obtained on the Modulog data logger.

The volume change measuring device consisted of a mercury
manometer connected to a mercury pot resting on the ground, The
pot was topped up with water and connected to a control cylinder
which could be operated to induce a change of pressure in the pot.
A very sensitive light oil manometer was connected in parallel to the
mercury manometer., The specific gravity of the oil used being
very low compared to that of mercury, a slight difference of level
in the mercury manometer limbs was reflected in the oil manometer
to a magnified scale. The device was connected by a flexible tube
to the sample through a porous stone located in the base platten,
Any volume change of the sample was accompanied by a corresponding
change in pressure in the air in the sample. This was readily
reflected in the sensitive oil manometer, By operating the control
cylinder 1,the oil in the manometer limbs was brought back to equal
heights, indicating the return of the air pressure in the sample to
atmospheric. The level of the mercury in the other manometer changed
due to this process, but still remained at equal heights in the two
limbs. Since, a change of pressure in a fluid is inversely propor-

tional to that of its volume, the change in volume of air in the
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sample was related to the alteration of the height of mercury,

which was read off a scale attached to the manometer.

7.4.3 Calibrations

It was necessary to calibrate the load cell, the cell pressure
transducer and the volume change device to correlate the readings
obtained from them with the quantities they were used to measure,

(a) The load cell: The load cell was seated on a wooden block

with a hole to accommodate the lower part of the ram, figure (7.10a).
The terminal was connected to the data logger and the voltage read-
ing for zero load was obtained. Weights with radial slots were then
slid on the ram in increments of about 4,5 kg. Readings for each
increment were obtained on the data logger. Similar readings were
obtained for the unloading sequence. A linear regression analysi§
of the readings gave a correlation coefficient of 0.99998 and a
calibration factor of 0,6353 N/digit on a X50 scale on the data

logger with a constant supply voltage of 10V,

(b) Cell pressure transducer: The transducer was calibrated by

comparison with a standard test gauge made by Budenberg Gauge
Company. The test gauge was connected to the apparatus assembly as
shown in figure (7.9). Valves e, f and g were shut and valves i
and j were opened. The transducer was wired to the data logger,
Valve k was opened and the transducer reading was obtained at
atmospheric pressure, It was then shut and control cylinder 2
operated to record a pressure on the test gauge, Corresponding
pressure transducer reading was obtained on the data logger, The
process was repeated in increments for a complete cycle of loading

and unloading. A linear regression analysis of the readings gave
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a correlation coefficient of 0,99991 and a calibration factor of
0,0475 kN/mz per digit on a X50 scale on the data logger with a

constant suvply voltage of 10v,

(¢) Volume change device: The sample end of the volume change device

was filled with water and connected to a sensitive paraffin volume-
change gauge. The paraffin gauge consisted of a calibrated tube
enclosed in a larger diameter jacket, figure (7.10b). The tube was
calibrated in tenth of a ml. The jaéket and the tube were partly
filled with a coloured paraffin at the top and water in the rest.
The inner tube was connected to a control cylinder, Valve a was
kept shut and valves b and c were opened. A small pressure was
introduced in the inner tube of the paraffin gauge by operating the
control cylinder 2 of figure (7.10b), This caused a movement of
fluids in the system and was observed as a change in the level of
paraffin in the inner tube of the paraffin gauge, The volume of
the displaced fluid was read off the calibration on this tube.

This displacement of fluid and the corresponding change in pressure
were reflected in the mercury manometer of the volume change device.
Valve b was then shut and the mercury in the two limbs of the mano-
meter were brought back to level by operating the control cylinder 1.
The new level of mercury was recorded and the difference between
this and the initial reading gave the reading on the volume change
device that corresponded to the displaced volume of fluid indicated
in the paraffin gauge. The process was repeated for various values
of the volume change. A linear regression analysis of the data gave
a correlation coefficient of 0,99895 and a calibration factor of
0,2588 ml per cm reading on the volume change device, The linear

regression analyses of all the calibration results were performed
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by a program on a Texas SR56 programmable pocket calculator.

7.4.4 Preparation of the sample

A sample size of 100 mm diameter and 100 mm height was used and
was formed in a purpose made assembly, shown in figure (7,11), The
sample former assembly consisted of a two-piece split former, a
pair of aluminium plattens for the top and the bottom of the sample,
and a rubber membrane to fit inside the split former. Both the top
and the bottom plattens had polished surfaces and porous stones were
inset into them., The stones were connected to the channels in the
cell base, in order to establish drainage of fluid to and from the
sample. The plattens were made larger than the sample area and had
a diameter of 118 mm, The top platten had a ball seat where the
loading ram could rest. The split former was built in such a way
that the top and the bottom plattens could fit loosely and rest in
the lips at its ends, The lip at the top had a slot in it to allow
the displaced air to escape when the sample was formed, The inside
diameter and the height of the split former were both 100 mm,

The various channels and tubes were cleared using compressed
air, Four 90 mm diameter latex rubber discs with central holes
of 20 mm diameter and a few radial slits were prepared., Silicon
grease was applied lightly on the two plattens taking care not to
block the central porous stones. One latex disc was applied on cach
piatten and smoothened with further grease applied on it, A second
disc was then applied over it, This arrangement was adopted to
reduce the horizontal constraints at the ends of the sample.

Five O-rings were slid on the split former to hold it firmly,
A rubber membrane was fitted squarely on the bottom end of the former.

Two of the O-rings were rolled down over the membrane to hold it
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tightly against the former. The end of the membrane inside the
former was stretched gently and fitted over the top end of the
former, Any air trapped between the membrane and the former could
be removed by stretching the membrane over the gap in the top
lip of the former. Two O-rings were rolled up and the membrane was
held against the former. The completed former was then placed on
the bottoﬁ platten and the lower two O-rings were rolled up to allow
the lower part of the membrane to be rolled down against the side |
of the platten. Compressed air was then blown through the porous
stones to remove any possible blockage by grease,

The assembly,complete with the cell base,was then carried
down to the model test rig for pouring the sand into the former
under test conditions. A polythene jacket was put over the assembly
to cover all parts except the top opening and was held in place by
an O-ring., The former was placed at the centre of the test bed and
filled by a pass of the hopper. The test rig and the hopper is
described in section 7.5, The assembly was then recovered from
the bed and excess sand removed from the top leaving the sample
about 3 mm taller than the former for an easy removal of the former.
The polythene jacket was taken off and the assembly carried back
to the triaxial testing laboratory. It was then cleaned throughly

on the outside using compressed air,

7.4.5 Experimental procedure

The cell base, complete with the sample in the former, was
placed on the triaxial testing machine. The top platten was
placed on the sample and pressed gently into contact,letting the

air escape through the gap in the former lip. The O-rings holding
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the top of the membrane were rolled down and the membrane rolled
up against the platten. Two O-rings were rolled up to fix the
membrane to the top platten. All the taps were connected and the
valves shut, Valves b and c, figure (7.9), were opened and air
was gently sucked by mouth,out of valve c,to introduce a small
suction,which was recorded as about 2 cm of Hg on the volume
change manometer, Valve c was shut and the sample left under
suction until the suction maintained itself for about 10 minutes,
otherwise it was readjusted and the process repeated, Failure to
maintain the suction after a few adjustments would mean a leak
somewhere in the system rendering it unusable, While the sample
was still under suction the O-ring holding the split former to-
gether was gently rolled down on the bottom platten and the former
carefully removed without disturbing the sample, The diameter of
the sample was measured with a micrometer fitted with broad brass
feet to avoid indenting the sample, The height of the sample was
measured using a Vernier scale,

The back cover of the dial gauge was taken off and the inside
was sprayed with a water-proofing silicon compound, It was fitted
to its stand which was then screwed into a hole in the cell base.

The ball bearing was mounted on the top platten and the cell,
complete with the load transducer, was placed over the sample and
secured to the cell base. Valves d, e and f were opened and
de-aired water was introduced into the cell. When water flowed out
of valve d, valves e and f were shut and then valve d was also shut,
This sequence was adopted as closing valve d before the others
would subject the specimen to the full head of water in the supply

mains,
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The load cell and the cell pressure transducer were connected
to the data logger which was set to display the two readings
alternately and continuously at 2 second intervals. Valve g was
opened and the height h was adjusted to give the desired reading
of the cell pressure transducer, The self-compensating device was
then isolated by shutting g. Valve i was opened and control
cylinder 2 was operated to produce the same cell pressure reading
as that with the mercury pot, This eliminated the necessity of a
large readjustment by the self-compensating device which was then
brought into action by opening valve g,

Valve ¢ was opened and then shut again to bring the voids in
the sample back to atmospheric pressure, Valve a was opened to
bring the oil manometer of the volume change device into operation,
Initial readings on the volume change scale and the dial gauge
were recorded. The sample was then subjected to the cell pressure
set up by the self-compensating mercury pots by opening valve e,
The sample was left to 'consolidate' under ambient pressure,.while
control cylinder 1 was continuously operated to maintain level in
the oil manometer of the volume change device indicating atmospheric
pressure inside the sample. Volume change and dial gauge readings
were taken at intervals during this state of hydrostatic pressure
to furnish data for checking the extent of anisotropy.

When no further movement could be detected the load cell was
brought down to rest on the ball bearing on the top platten, The
cell was moved up until the top end of the loading ram touched
the ball bearing underneath the reaction beam, The readings of
the dial gauge and the load cell were noted at this stage, The

gearbox was set for a constant displacement of 0.04 mm per minute,
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This corresponded to an axial strain of about 2.4 per cent per hour
on the sample. The motor was switched on and the sample subjected
to the deviatoric stress, Control cylinder 1 was operated contine-
uously to maintain atmospheric pressure inside the sample while it
kept on undergoing volume changes. The self-compensating mercury
pot device eliminated the necessity of readjusting the cell pressure
with the volume changes. But for very small cell pressures, in the
order of 3.36 kN/mz, it was found that, the head difference h being
very small, the device did not perform well and control cylinder

2 had to be used from time to time to maintain a constant reading
on the cell pressure transducer,

Readings of volume change, load and axial deformation were
taken at convenient intervals of strain, care being taken to appreci-
ate the changes in curvature of the stress-strain curve. When the
load readings had dropped off or remained constant for a long time
the loading was discontinued by switching the motor off and lowering
the cell base, The cell was drained and dismantled, The sand was

collected and weighed to calculate the initial porosity of the

sample.

7.4,6 Calculations

Several corrections to the experimental readings had to be made
to calculate the true stresses and strains in the sample, The cell
pressure was measured at the cell base which was acted upon by the
full head of water inside the cell, At mid-height of the sample
the pressure was less than that recorded,by an amount H,, where H,
is the height between the centre of the sample and the cell base.

The true cell pressure at the centre of the sample was therefore
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Ub' =G~ Yy Hc’ where % is the indicated cell pressure
and Ty the unit weight of water,

The rubber membrane offered some resistance to axial
deformations when it was stretched and acted upon by the cell
pressure, Poisson’s ratio of rubber being close to 0.5 the hoop
tension was negligible and no correction was made to the cell pres-
sure for this effect. The correction to axial pressure was made
in accordance with BS 1377 and was based on the assumptions that
the membrane was capable of taking compression under cell pressure
conditions and that the sample deformed as a right cylinder. At

axial strain €y the unit resisting stress due to the membrane is

given by

7D Me
0

y where M is the compression modulus of the membrane
per unit width, Dj is the initial diameter of the sample and a is
the corrected area of the sample at strain €10

The compression modulus of rubber membrane could not be
measured directly, but it is reasonable to assume that it is equal
to the extension modulus. The extension modulus was determined in
accordance with BS 1377, by hanging a 25 mm wide circumferential
strip of membrane between two glass rods and applying loads in a
pan attached to the lower rod, figure (7.,12), A value of M of
0.37 N/mm was obtained,

One other correction that had to be made to the load readings,
was that due to the weights of the top platten, the ball bearing
and the load cell. If W is the combined weight of these, the
correction is W/a, No correction was made for the self weight of

the sample,as it was judged to have negligible effect on the principal

stresses.
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The major principal stress o, was obtained from the expression,

1 a
c=E(L+w-nnouel)+cc'(1-52) 7.1

1
where L is the load recorded by the transducer, and ap is the
area of the loading piston. The axial strain e, and volumetric

1
strain €, were calculated respectively from

®1 " H v

A and e =%‘l 7,2
o] 0

where A is the axial deformation recorded on the dial gauge, &V the
measured volumetric deformation and HD and Vb are the initial
height and the initial volume of the sample respectively. The
corrected area of the sample at axial strain € and volumetric

strain Ev was calculated from:

a= Eg ( "
Ho 1

) 7.3
- 31

assuming that the sample remained a right cylinder after deformation,
The intermediate and minor principal strain s:_4 was calculated as:
es = (cv - el)/z 7.4

All the above calculations were programmed on the Texas SR56

pocket calculator,

7.4,7 Results of the triaxial tests

The results of the triaxial tests performed under various cell

pressures are shown in table (7.4). The table shows the major principal
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Test Uocti2 o R = °1f Porosity | , _ €vh
No. (kN/m*) 1f Oocry | Mol%) EEI;
1 14,03 48,61 3,46 42,60 1,10
2 9,58 37,75 3.94 41,89 1,13
3 5.19 25,05 4.83 42,35 1.10
4 3.36 15.90 4.73 42,90 1,15

TABLE 7.4 TRIAXIAL TEST RESULTS

/

stress at failure 9, ¢ stress ratio R at failure and the initial

porosity n. The anisotropy ratio A in the table is given by:

A=3-E-'E' 7.5 -

where € and €1 2T the volumetric and the axial strains respectively
under hydrostatic conditions., For an isotropic material under true
hydrostatic conditions the volumetric strain is equal to three
times the axial strain so that the value of A is unity, The
observed values of A being greater than 1, indicate that the sand
was layered having less strain in the axial than in the lateral
direction,

The deviatoric stress (cﬁ - 0;) and the volumetric strain ¢

v

are plotted against the major principal strain e, in figure (7.13),

1
The decrease in volume at low stresses is characteristic of a
fairly loose sand. The effect of increasing cell pressure in
reducing the volumetric strain is noticed in figure (7.13b),
Mohr's circles for the principal stresses at failure and Coulomb's

failure envelope are shown in figure (7.,14)s The values of the

apparent angle of internal friction ¢' and the apparent cohesion ¢!
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were obtained as 28° and 1,5 kN/m2 respectively, The results of

the tests agree well with those obtained by Ponce and Bell (1971).

7.4.8 Calculation of Poisson's ratio

The value of Poisson's ratio, v, for sand can be calculated
from the measurements of volumetric strains in the triaxial tests.
Assuming isotropy and elasticity at a particular level of stress
and taking the elastic modulus, E, as the tangent slope of the
stress-strain curve at that point, the generalized Hooke's law
can be applied to the triaxial test parameters. In terms of

principal stresses, Hooke's law may be written as

€ = %"“1 = vg) 7.6
1
ez = § (07 = vo; = vog) 7.7

From equations (7.6) and (7.7), the volumetric strain is given by:

€, = €y * 2E, = l-(c - 2vo, + 2 4va,) 7.8

' 1 3 E ‘1 % 0y = 4vog .
Replacing Young's modulus E by 2G(1+v), where G is the shear modulus,
and factorizing equation (7.8),

1-2v

& 2(1+v) G (al ¥ 203)

T+v O, * 20 7.9

Solving equation (7.9) for v,
0, + 204 - %, G 7 10
%(cl + 203 + G ev) .

Ve
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It is clear from this derivation that v is a function of the
stress level, Taking the values of G from the spline function

representation of the t curves, the values of v for

oct ~ Yoct
various Yoct 3T€ obtained from equation (7.10), These values for

the tests with various o

octi 2re shown in table (7.5). As the

sand undergoes volume contractions at low values of Yoct,Poisson's

Values of v
YDCt o o % g = a = o =
octi 2 octi 2 octi 2 octi 2
3,36 kN/m 5.19 kN/m 9,58 kN/m 14,03 kN/m
0 0.5 0.5 0.5 0.5
0.005 0.501 0.516 0.515 0.526
0.01 0.481 0.484 0,501 0,510
0.015 0.441 0.449 0.461 0.469
0.02 0,431 0.437 0,441 0,451

TABLE 7.5 VALUES OF POISSON'S RATIO

ratio becomes greater than 0,5, While it is possible to include
a variable v in the finite element analysis, there is evidence
that this does not influence the final results of the analysis to
a significant degree, Girija Vallabhan and Jain (1972). Besides,
as the value of v approaches 0,5 numerical difficulties are
encountered., It was therefore decided to use a constant value of

v = 0,45 for all the stresses.

7.5 THE TEST RIG

Two basic elements of the test rig were the sand bed and the

loading frame. The rig was similar to that designed and used by
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Cunnell (1974). However, several modifications were made to the
design and the whole rig was reconstructed. The sand was contained
in a rigid concrete tank instead of a perspex one as used by
Cunnell, This was done to avoid any bulging out of the tank as it
was filled with sand or when the structures were loaded. Such
deformation of the tank was harmful as a rigid boundary of the
soil was assumed in the analysis, Furthermore, Cunnell observed

a settlement of the sand bed due to the disturbance caused by
traffic and vibrating machinery. This was prevented in the present
rig by constructing it in an underground laboratory away from

such disturbances. The concrete tank and the reaction frame sur-
rounding it are shown in figure (7.15), The components of the rig

are described in the following sections,

7.5.1 Sand bed and deposition apparatus

The most important single factor for a satisfactory sand bed
is the creation and the repeated reproduction of a known uniform
porosity, It was therefore necessary to use a suitable apparatus
and a standard procedure to form the bed,

The rectangular reinforced concrete tank used to contain the
sand bed had dimensions 2,1 x 1,2 x 1.2 m as shown in figure (7.15).
The 150 mm thick walls and the 100 mm thick base of the tank were
precast in separate units and joined together by bolts, The tank
was elevated 460 mm from the floor to facilitate emptying of the
tank through a hole (A) in the base, as shown in figure (7,15).
The 75 mm hole was situated at a corner and could be opened and shut
by operating a lever attached to a sliding cover plate,

The sand was deposited in the test tank by a travelling hopper

sand rain device. As the hopper was moved across the tank a rain
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of sand poured from it and gradually filled the tank. The wedge
shaped hopper was attached to a steel framed trolley travelling on
the top beams of the reaction frame. The length BC of the hopper
was the same as the inside width of the tank and its capacity was
0.28 ms. It had two perforated plates at the base, one of which
could be slid against the other by operating two levers at the ends
of the hopper. This produced a variation in the size of the opening
of the perforations which varied from O to 11 mm, The trolley had
two axles and four wheels travelling on and guided by the top beam,
A long piece of stranded steel wire DEFG was attached at the centre
of each axle which ran along the top beam of the rig and passed
over the pulleys at E and F attached at an angle at the ends of

the beam, The end G of one rope was attached to and wound over the
drum of the worm geared winder W, This had a very low worm gear
ratio of 19:1 and needed only a moderate effort to move the hopper
assembly, Manual winding was adopted as a suitable motor and
gearbox could not be obtained, After some practice a constant
speed of the trolley of about 30 mm per second at an angular

speed of worm of 1.5 revolutions per second was achieved and
maintained. A counterweight L was attached to the rope at the
other end of the trolley, This reduced the jerks of the hopper

as it moved over the top beam EF, The counterweight was sufficiently
heavy to ensure a reverse travel of the empty hopper after a pure

as the worm gear was unwound,

7.5.2 The reaction frame

The reaction frame JEFK, see figure ¢,19 and plate (7,1),

was constructed of 150 x 100 x 6.25 mm steel box sections, formed




PLATE 7.1 THE RIG WITH A TEST OF SERIES A IN PROGRESS
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into two parallel right-angled rigid frames, laterally interconnected
by pieces of the same section. As mentioned earlier it also served
as a support for the travelling hopper trolley., For this reason
the frame had to surround the sand tank and be high enough to
ensure that the decreasing height of fall of sand rain with the
filling of the tank had little effect on the uniformity of

porosity in the bed., The columns of the frame were welded and
screwed by gussets to two 535 mm X 1070 mm x 25 mm thick steel
plates which were in turn secured to the floor by four 16 mm

Rawl bolts on each side. A general view of the rig with a test of

series A in progress is shown in plate (7.1).

7.5.3 Standardization of the sand deposition method

The sand deposition apparatus was calibrated by checking
and controlling the porosity of the sand bed and a standard
method of pouring was adopted, The apertures at the bottom of the
pouring hopper could be varied in size by operating the lever which
had four stops, 1 through to 4, giving an increasing size of
opening, The height of fall varied, as the tank was filled,
between 1.9m at the bottom and 0.7 m at the top of the tank. To
calibrate the apparatus, trial runs of the hopper were made at
various aperture settings. The porosity was measured by placing
density tins of a known volume under the sand rain and weighing the
sand collected in them, These tins were brass cylinders 50 mm in
diameter and 38 mm high with a perforated base covered by a fine
wire gauze to help the trapped air to displace. Seven tins were
placed in a cluster at the centre of the bottom of the tank and

a run of the hopper with each aperture setting was made. Each
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time the speed of the hopper was kept fixed by revolving the hand
winch at 1.5 revs per second. The sequence was repeated with the
tins placed at mid-height and at the top level of the sand tank.
The values of the porosities obtained are shown against the
aperture settings for various heights of the tins in figure (7.16a).
It is observed that the height of fall has some effect on the
porosity, specially so at narrower aperture settings. But this

was considered as acceptable because the variation reduced from
6.9% at aperture setting 1 to only 0.4% at aperture setting 4.

The very low porosity at aperture setting 1 may be attributed to
the fact that the tins could not be filled by one Tun of the hopper
and a second layer of sand over the first was necessary, It

was decided to use the aperture setting 4 and a constant speed

of revolution of 1.5 r.p.s. for all the tests.

Next, the variation of porosity along the longitudinal
direction of the tank due to a decreasing level of sand in the
hopper was checked for aperture position 4, Fifteen density tins
were placed equidistant from each other on the base of the tank
along its longitudinal centreline. The resulting porosities are
shown in figure (7.16b). It can be seen in this figure that no
more than a random variation occurs and no distinct effect of
decreasing level of sand in the hopper is detected, The maximum

variation of porosity was 4.4%,

7,6 THE LOADING SYSTEMS

Because of the variable geometry of the different models
tested a single loading system could not be used for all the

tests. A lever arm and dead weight arrangement was used for the
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tests in series A, C and D, while a hydraulic jack had to be
resorted to for applying loads on the partly buried box culvert

model of test series B.

7.6.1 Loading device for test series A, C and D

The dead weight system for the models of series A, C and D
consisted basically of a horizontal lever beam AB and a vertical
reaction shaft CD, as shown in figure (7.17). The reaction shaft
was clamped to a top beam T of the rig by means of a heavy
clamping block K, The shaft could be raised or lowered by drilling
extra holes at appropriate locations to match the height of the
structure being tested. Fine adjustments of the height could be
achieved by operating the vertical bolts at G and H in the clamp,
The shaft was made from 75 x 50 x 3 mm steel box sections, equipped
at the lower end C by a steel piece machined to a knife edge.

The horizontal lever beam AB was also made from the same box
section. A steel piece was pushed in at the end B of the beam and
a 90° V-notch,R,was machined on it. This formed the seat for
the knife edge of the shaft, The apex of the notch was made to
lie on the longitudinal centroidal axis PQR of the beam, Two circular
holes were drilled through the box section, at points P and Q in |
figure (7.17a and c). These were countersunk to a sharp edge and
aligned in such a manner that the longitudinal centre line of the
beam was tangential to the top of the hole at Q and to the bottom
of that at P. This ensured that all the contact points lay on the
centre line of the lever AB, as shown in figure (7.17c). The
distance PQ was made three times the distance QR to obtain a lever

ratio of 1:4, The load was applied by placing weights on a pan
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attached to a hanger supported by a U-bracket and pin at P on the
lever beam.

The load was transmitted to the model structure by means of
a loading arm EF in figure (7.17a). For the models of series A
and D, the loading arm consisted of two U-brackets, of the type
shown in figure (7.17d), connected by a link with a universal
joint. A pin was passed through the holes in the upper U-bracket
and over the central beam of the models. The lower U-bracket
was connected to the lever beam AB by a pin passing through the
hole at Q. A different loading arm was used for the models in
series C, as in this case the load was to be applied on a plate.
The arrangement is shown in figure (7.18) and plate (7.2). It
consisted of two 32 mm diameter steel rollers L and M connected
by two steel plate slings. Each roller had two 25 mm groves
G and H shown in figure (7.18) cut at 450 mm on centres. The
top roller M had two 50 mm collars J and K,in the same figure,
fitted on it equidistant from the grooves G and H. The bottom
roller L had a third groove N cut at the centre and a sharp
edged ring was passed around it. The ring S,in figure (7.18), was
connected by a link TY and a U-bracket to the lever beam AB at
the point Q.

All the holes in various parts of the loading system were
countersunk to a sharp edge and made at least 50% larger in
diameter than the pins or rollers passing through them. This

reduced the friction at the contact points.

7.6.2 Loading device for test series B

For the reason that the box culvert model of series B was

buried in the sand bed,a dead loading arrangement,with a lever
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beam passing through the model, was not practicable. A hydraulic
jack system was therefore adopted. The arrangement used is shown
in figure (7.19). Each end of the reaction beam AB in the figure
was connected by a sliding clamp C to the flange of a channel
section D. The channel D was preﬁsed firmly against the columns
of the test rig by using a second channel E and tightening the
bolt at F. Thus the reaction was transmitted to the rig by friction
only. The system was designed so that the point of application

of the load could be moved freely from one point to another. The
hydraulic jack was fitted with a proving ring R of 1 tonne cap-
acity. The jack was operated by a hand pump situated remote from
the assembly. The load was transmitted to the top deck of the
culvert by a 20 mm diameter hemispherical point Q. The proving
ring R was calibrated using a universal testing machine and was
found to have a sensitivity of 5.8 N per division. The hydraulic
jack was found to have one drawback in that the load reading fell
off slightly as the structure settled in the sand. To alleviate
this, the hand pump was continuously operated and a constant read-

ing on the proving ring dial was maintained.

7.7 EXPERIMENTAL PROCEDURE

The experimental procedure was similar for all the tests per-
formed, except for some details. The procedure is described in
general terms in the following sub-sections pointing out any

special operation for a particular structure.

7.7.1 Preparation of the sand bed

Some sand was placed in the empty tank and banked at the

ends to minimize a heap at the centre as the bed was filled.
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Sand was collected in small tins from the storage containers and
placed on the platform of a fork lift truck. The truck was
driven to the rig, the platform raised and the tins emptied into
the hopper at the top of the rig. The operation was repeated
until the hopper was full. The hopper was then moved across the
length of the bed by operating the hand winch at ground level.
The aperture was set at position 4 and the speed was maintained
at 1.5 revolutions per second. At this speed and aperture size
the hopper was empty at the end of the run. The hand winch was
then wound in the reverse direction and the hopper travelled back
to the starting location.

The hopper was filled again and the operation of pouring
was repeated until sand was deposited to the required level in
the tank. For the tests in series A, C and D, where the model
structure rested on the surface of the sand, the surface was
screeded level and the model, complete with the strain gauges
and wiring, was placed centrally on the sand bed with the help
of a fork 1lift truck and aided by plumb bobs.

For the box culvert tests in series B, the pouring was con-
tinued until the required level of the base of the model was
reached and the surface was screeded level, The model was then
placed centrally on the sand surface with the strain gauge con-
nection cables tucked neatly on it. A wooden trough was rested
on the sand tank directly over the box culvert. Two sheets of
polythene AB and CDwere hung over its sides to form a curtain
around the culvert, as shown in figure (7,20a)., A barrier EFGH
made of two pieces of hard board and latex rubber sheets, figure

(7.20c), was placed at each corner of the box culvert to form
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the shape of wing walls. A light weight rectangular block of
foam was placed on each open end of the culvert. A triangular
piece of hard board was then placed in each of the triangular
spaces between the foam block and the wing. This arrangement
prevented sand from depositing above or in front of the culvert
openings. A few more passes of the hopper were made in the usual
way until the sand level had reached the top level of the culvert.
The sand surface on both sides of the culvert was screeded level.
The trough with the polythene curtains was then removed carefully.
The sand deposited in the triangular spaces between the wings and
foam blocks was then cleared by vacuum pump, taking care not to
disturb the culvert and the main body of sand in any way. The
foam blocks and the triangular pieces of board guarding the pre-
vious surface of sand were carefully removed. The culvert was
now partially buried in sand in the manner shown in figure (7.3).
The hard board barriers forming the wings had to be kept in place
to prevent sand from falling off. The low stiffness of the latex
rubber holding the barrier was not enough to resist any lateral
deformation of the sand thus supported. For every filling of the
tank several density tins were placed at different heights in the

tank to check the porosity after the test had been completed.

7.7.2 The test procedure

After a model has been placed for test on a freshly filled
bed of sand a frame of light angle sections was built around it
to hold the dial gauges. The frame was supported by the walls
of the sand tank and the top beams of the rig. The dial gauges

were checked and fitted to the frame at the required positions.
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The wires leading from the strain gauges were connected to
the strain indicator extension box. A data logger was not
available in the testing laboratory and manual strain readings
had to be taken. The strain indicator used was a Peekel recharge-
able battery operated model. Initial readings of the dial gauges
and strain gauges were obtained and recorded in a tabular form.

The loading system was then placed over the model structure,
the loading point being carefully located at the desired position.
Plasticene was used to aid the location of the point. Extreme
care was taken to ensure that the reaction shaft and the loading
arm were both absolutely vertical, checking them with a spirit
level. With the hydraulic jack loading system it was made sure
that the reaction beam was level and the jack itself vertical,

A set of dial and strain gauge readings were taken with the
weight of the dead loading system only acting on the model.

With both systems of loading the basic approach to the test
was to obtain displacement and strain readings at slowly applied
increments of load until an appreciable amount of settlement
had occurred. Care was taken to ensure that no part of the
structure yielded or buckled rendering it useless for further
tests. This was necessary also because the post-yield behaviour
of the stuctural material was not included in the analysis.
Approximately 18 to 20 increments of the load were applied for
most of the tests. A time lapse of about 20-25 minutes was
allowed between the application of a load and the recording of
the readings to ensure that all movements due to this load had
stopped. The interlocking and the reorganization of the sand |

grains in the test beds caused this delay in the displacements.
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A test of series B and one of series C in progress are shown
in plates (7.3) and (7.4) respectively.

At the conclusion of a test the structure was gradually
unloaded and the loading system dismantled. The strain indicator
was disconnected, the dial gauge frame removed and the model
structure recovered from the sand bed. The tank was then emptied
by opening the hole in the base and collecting the sand in small
tins. It was necessary to shovel the sand in the tank towards
the hole from time to time. Each complete sequence of filling,
testing, dismantling and emptying took approximately six man-

days of laboratory work.
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CHAPTER 8
COMPARISON OF EXPERIMENTAL
AND THEORETICAL RESULTS

8.1 INTRODUCTION

In this chapter the experimental results of the model structures
described in chapter 7 are discussed and compared with the theoretical
ones. This is done for the settlements of the foundations and the
deflections and bending moments in the structure, for which experi-
mental readings were obtained, The stresses in the soil obtained
by analysing the complete system are also presented, The notations

used to describe the models are the same as those of chapter 7.

8.2 FINITE ELEMENT ANALYSIS OF THE MODELS

The sand supporting the model structures was reproduced with
the same density for each test. The properties of the sand were
determined by triaxial tests and represented by the set of T ..=Y,.¢
curves shown in figure (2.2). The spline function representation
of these curves given in chapter 2 were followed in the analysis
by the incremental method described in chaptef 3.

Each 7 curve of the set in figure (2.2) corresponds

oct Yoct
to a particular value of the initial octahedral normal stress o ..;e
These stresses are caused by the action of the body forces before
the structure is loaded. The sand in the test tank was divided into
a number of solid finite elements, each of which had a different
value of T depending on its location, To determine these

Ogeti for each finite element, the soil was analysed on its own,
subject only to the body forces applied at the joints., The resulting

value of Sobi at the centroid of each element was stored in a disc
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file to be read as data by the main analysis program., The normal
stresses at the joints were also calculated and stored to give the
tensile strengths required by the crack-propagation analysis.

The finite element meshes used for the various model structures
are described below. In each case the joints on the boundary of
the tank were given freedom of displacement in the plane of the
boundary but was restrained against any out of plane movement. This
is because the interior of the tank was finished to a smooth surface
giving a low frictional resistance to the sand grains, A joint
connected only to the soil elements was given Gx, Gy and Gz degrees
of freedom, while for a joint on a plate element the in-plane
rotation was suppressed. For each analysis between 12 and 15 incre-
ments of the load were used.

8.2,1 Model A: A space frame

This model is shown in figure (8,1a) and was also analysed by
Cunnell (1974) using isoparametric elements for the soil, It is
symmetrical about the central beam JK on which the load was applied
at points L, L2’ L, and L, with the eccentricity e equal to O,
0.33, 0.67 and 0,85 respectively. Only one half of the structure
and the soil was analysed, The finite element mesh for this pro-
blem is shown in figure (8.1b). The soil was divided in such a way
as to reduce the number of solid elements with different dimensions,
The divisions on the beams JK and BC were used to reduce the size
of the joint groups, Joint L3 in figure (8.1b) was moved to the
left to point L, in figure (8.1a) when the load was applied at
e = 0,85, The same data was used for the various load cases each

time altering the position of the load, The mesh consisted of 554

joints, 350 solid elements, 8 plates and 16 members,



No. of Jeinte 554
Kco, of solics 350

Ne. of members 16

FIGURE 8.1 FINITE ELEMENT MESH FOR SPACE FRAME MODEL
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8.2.,2 Model B: A box culvert

The finite element mesh of the box culvert and the soil is
shown in figure (8.2). This mesh with the full culvert was used
for the cases when the load was applied at points J and K. The
eccentricity ey for these points is unity and the eccentricity e,
is 0,36 for J and 0,72 for K. In the actual experiments the sand
in the trapezoidal area such as LMANBQVW at the front and the rear
of the culvert was removed, see figure (7.3). This zone was approxi-
mated in the finite element mesh by removing the solid elements
from the front and the rear of the culvert as shown in figure (8.2b).
The soil model was represented by 816 solid elements. The parapets
AB and CD in figure (8.2a) were each divided into four prismatic
member elements and the culvert itself was represented by 108
plate elements.

"It was observed during the test with the load at J and K that
the edge TY of the base of culvert sevarated from the soil as shown
in plate (8,1). The wall BDQT separated from the soil in the hori-
zontal x direction, but the cavity created by this separation was
subsequently filled up by the sand, A trial analysis revealed that
tensile stresses developed in the soil in these regions and also to
the right of the edge RS and to the left of the edge UX of the base,
see figure (8.3). To cater for the separation due to these tensile
stresses, 130 dummy joints were introduced at the joints shown by
the circles in the figure. The final mesh consisted of 1192 joints
in addition to the dummies,

When the load was applied on the centre line EI of the culvert,
see figure (8.2a), only half of the culvert was analysed utilizing

symmetry about this line., The finite element mesh for this case is
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PLATE 8.1 A VIEW OF THE BOX CULVERT SHOWING SEPARATION OF THE BASE FROM
SOIL
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shown in figure (8.4),where the loading points are shown by the
letters H, G, F and E having e, ™ 0, 0,33, 0,67 and 1 respectively,
In the tests wiih these load cases no separation was observed and
therefore no dummy joint was used in the analysis., The finite
element model consisted of 656 joints, 408 solid elements, 57
plates and 5 member elements,

8.2.3 Model C: A tall structure

The finite element mesh for the tall structure model and the
soil is shown in figure (8.5). The models in this series which had
four main columns were symmetrical about the x centre line shown
in the figure. For these cases only half of the finite element
mesh in front of the centre line in figure (8.5) was analysed.

The height H of the base was varied between O and 150 mm and the
same data was used for analysing the cases Cl, C2, C3 and C5; all

of which had four columns. The main columns AB, CD etc, and their
extensions in the soil were represented by prismatic members, The
members inside the soil were connected to the soil at all the joints
on them, In soil mechanics the friction piles are sometimes assumed
~ to be attached to’the soil at a single point at the centre or at

the two-third point, As the column extensions were considered to
behave as piles, the analysis of model C2 was repeated by connecting
thém to the soil at 2/3 point only, The loads were applied either
at the points S to obtain an eccentricity e equal to 0.0 or T to
obtain e = 0,4,

Column AB was removed in model C4 and thus symmetry was lost.
For this case the full finite element model shown in figure (8.5)
was analysed but column AB was removed, The model consisted of 991
joints, 672 solid elements, 52 plates, 24 member elements and 2678

unknown degrees of freedom,
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8.2.4 Model D: A three-bay space frame

Two different foundations were used in the experiments with
this model., The first consisted of eight individual pad footings
under the columns and the second was a pair of strip footings.

The finite element mesh for the ‘frame with the pad footings is

shown in figure (8.6). The structure was symmetrical about the central
beam ST and therefore half of the frame and the soil was analysed.
During the experiments with this model, footings E, N, G and Q
separated from the soil when the load was applied at points L, and

Lz' To cater for these separations in the analysis, 18 dummy

joints were introduced at footings E and G which are shown by the
small circles in figure (8.6b). The finite element model consisted

of 710 active joints, 18 dummy joints, 450 solid elements, 16 plates,
32 members and 1831 initial degrees of freedom,

When the strip footings were used the structure and the soil
were represented by the finite element mesh shown in figure (8.7).
In the experiments with this model, the parts of the footings to
the right of columns CD and LM were observed to separate from the
soil when the load was at L, and Lz' To cater for these separations
30 dummy joints were introduced at the joints shown by the small
circles in figure (8.7b). The finite element model consisted of
710 active joints, 30 dummies, 450 solid elements, 28 plates, 32

member elements and 1849 initial degrees of freedom,

8.3 RESULTS OF MODEL A - SINGLE-BAY SPACE FRAME

8.3.1 Experimental calculations

As stated in chapter 7, dial gauges were placed on the footings
A, D, E and H of the frame to record the vertical settlements., How=-

ever, these could not be located exactly at the centre of the footings
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and were placed about 30 mm from the columns, A linear extrapolation
of the gauge readings was performed in a manner suggested by
Cunnell (1974) to obtain the settlements directly under the columns.
The differential settlement was calculated as the difference between
the average settlement for pads A and E and that for pads D and H,
see figure (8.1). The sway was calculated as the difference of the
average horizontal displacement of points B, C, F and G at the top
of the columns and that of ‘the column bases A, D, E and H,

A pair of strain gauges on opposite faces of a column were
used at three points on each column, These recorded the surface

which contained both the axial component e_ and

i and €
strains 51 a

2
the bending component €» See figure (8.8a). They were separated

as shown in the figure and the bending strain was multiplied by the
section modulus and E to obtain the bending moment, The gauges

could not be located exactly at the column base A or at the junction
B of the beam and the column axes, see figure (8.8b), These were
located at three points L, M and N on each column, A mean straight
line was passed through the bending moment ordinates at these three
points and extended. This gave the bending moment at any point along
the column, As the space frame was symmetrical about the central

beam JK, the moments at corresponding points in frames ABCD and

EFGH, see figure (8.1),were averaged.

8.3.2 Deflections and settlements of the structure

The single-bay space frame was also tested by Cunnell (1974)
for deflection measurements. These did not agree with the theoretical
values as he used a hyperbolic representation of the soil properties.
Figure (8,9) shows the variation with the load of the average

settlement of footings A, D, E and H when the load is applied at
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FIGURE 8,8 EXPERIMENTAL BENDING MOMENT CALCULATION
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point L, with eccentricity e = 0. Curve (1) in the figure represents
the experimental load-settlement relationship, Curve (2) represents
the footing settlement obtained by the author using the finite
element analysis of the frame and the soil, The spline function
representation of the soil properties was used here. Curve (3) was
obtained using the hyperbolic representation. As shown in chapter

2, the huperbola underestimates the soil strains at low stresses and
overestimates them at high stresses, This is also reflected in the
load-settlement diagram, The settlement is underestimated initially
but as the load increases these are overestimated.

The analysis using the spline functions, on the other hand,
underestimates the settlement consistently, The difference is due
to the inherrent approximation involved in the incremental method.
At a load of 3 kN curve (3) overestimates the settlement by 33%
while curve (2) underestimates it by only 9%. This shows that the
spline functions give a closer approximation of the load-settlement
curve. These were therefore used to analyse all the model structures
and the analytical results presented in the rest of this chapter were
all obtained by using these functions,

The differential settlement between the left hand pads A and
E and the right hand pads D and H are plotted against the load in
figure (8.10). These are shown for eccentricity e = 0,33, 0.67
and 0,85 when the load was at L,» L3 and L, respectively, The sway
of the frame is plotted against the applied load in figure (8.11).
The variation of the differential settlement and the sway with the
eccentricity of an applied load of 2 kN is shown in figure (8.12),
The load-deflection curves in figures (8.9), (8.10) and (8.11) are

non-linear, reflecting the non-linear material properties of the
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soil, The soil elements immediately under the footings are near

the surface and therefore have a low value of o These

octi®
elements are weakér than the ones deeper in the soil. At early
stages of the loading these elements are highly stressed and reach
the peak of their stress-strain curves, see figure (2.2)., This
may be the reason for the initial non-linearity of the load-def-
lection curves,

As the loading progresses the highly stressed zone spreads away
from the footings and more and more elements reach the peak of
their stress-strain curves, Consequently, the load-deflection
curves lean towards the horizontal and tend to straighten up. This
shows that the failure of a structure-soil system is gradual and
a rigid plastic type of failure does not occur,

In figure (8.9), (8.10) and (8,11), the theoretical curves
underestimate the deflections. This is in spite of the fact that
the spline functions represent the stress-strain curves very closely.

The actual T

Y curve for a point directly under column AB

oct 'oct

of the frame for load case e = 0 is shown by curve (1) in figure
(8.13). The incremental method calculates the tangent slope of the
Toct Yoct SUTVE at a particular value of Yook and uses this to
construct the stiffness matrix, As explained in chapter 3 and
figure (3.7b), this method does not follow the true stress-strain
curve exactly, The error accumulates as the loading progresses.,
The

Y curve actually followed in the analysis is shown by

ToctVoct

curve (2) in figure (8.13). The error in the analysis was however
kept small by using small increments of the load, This did not

exceed 15% of the actual Toct 3t MY Yo.. level for the point

under column AB. This error was much lower elsewhere in the soil,
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For the differential settlements at a load of 2 kN, shown in

figure (8.12), the errors are 9,6% for e = 0,33 and 7% for e = 0,67
and e = 0.85. The corresponding errors in the sway are 12,2%,
10.7% and 12.6% for e = 0.33, 0,67 and 0.85 respectively. These
are considered to be within acceptable engineering accuracy.

8.3.3 Bending moments

The bending moments about the z-aiis in frame ABCD at an
applied load of 2,8 kN are shown in figure (8.14). The dashed
lines and the values in parentheses in figure (8.14a) indicate the
bending moments obtained by analysing the space frame together with
the soil using the spline function representation, The solid lines
in the same figure indicate the experimental bending moments. The
diagrams in figure (8.14b) were obtained by analysing the structure
assuming its bases to be completely fixed., A very good agreement
between the theoretical and the experimental bending moments is
obtained in figure (8.14a) except where the values are very low,
The maximum difference for the significant bending moments is about
11% which occurs at the top of column CD for e = 0,85, For e = O
this différence is only 4%, An analysis of the structure and the
soil for this load case using a hyperbolic representation of the
soil properties gave a maximum difference of as much as 22%. The
disagreement between the lower bending moment values obtained by
using the spline functions and those obtained experimentally may
have been caused by the inadequacy of the rather small, 5 mm,strain
gauges in recording such low strains,

It is noticed in the figure that there is a considerable
difference between the actual bending moments and those obtained

for a fixed base condition., This is so even when e = 0 and the
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frame does not suffer any sway or differential settlement. However,
the moments at the column bases cause a non-uniform pressure dis-
tribution under the footings thus rotating the bases., This rotation
reduces the bending moments at the supports and alters their

value elsewhere in the frame., This points out the importance of
considering the base rotations in addition to the other displace-
ments in an interactive analysis, As the eccentricity of the load
increases, the redistribution of the bending moments becomes more
pronounced due to the effects of sway and differential settlement,
At e = 0,85 the bending moments at B and D are opposite in sign to
those obtained by the fixed base analysis, As in this case the
load is applied near column AB, the fixed base analysis gives low
values of the moments throughout the frame, As this column settles
the stiffness of the beams causes column CD to come to its aid.

As a result CD also settles. In this process column CD takes a
higher share of the load and its bending moments increase. The
.load-bending moment graphs for the columns of the frame with e = O
are shown in figure (8.15a)., Those for column CD with e = 0,85

are shown in figure (8.15b)., The firm lines indicate the experimental
moments and the dashed lines show the theoretical ones. While a
good agreement of these two curves exists at the initial loads,
they become separate after a load of about 2 kN tending to coincide
again at higher loads. The maximum error at a load of 2 kN is
15,8%,which occurs at the top of column CD for e = 0,85, This
discrepancy is considered to be caused by the development of a
failure surface under the footings which was not exactly represented

in the analysis,
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ABC in figure (8.13) represents the actual stress-strain
curve of a point in the soil. As the load increases, more and
more elements in the soil reach the post-peak zone BC of their
stress-strain curves. As the negative value of G in this portion
introduces difficulties in the solution of the simultaneous equations,
the spline function followed the straight line BD with a slope equal
to that of the curve at B, It is considered that since in reality
the soil elements fail and follow the drooping curve BC, a body
of the soil under the footings rotates in a slip surface causing
the increased column moments. Following curve BD in the analysis
could not reproduce this failure, This may be the cause for the
difference between the theoretical and the experimental bending
moments at higher loads,

8.3,4 Stresses in the soil

The contours of the various stresses in the soil under this
frame have been given by Majid and Cunnell (1976) and are not
repeated here., A distinct column of high vertical stress directly
under the footings was also observed by the author. The contours
of m = cosB, in the two vertical planes passing through the left
footing, A, of the frame are shown in figure (8.16) for e = 0, Here
B is the angle between the major principal stress and the vertical,
The concentration of the lines of high m under the footings shows
that the major principal stresses were nearly vertical under the

footings.

8.4 RESULTS OF MODEL B - THE BOX CULVERT

8,4,1 'Deflections

As the box culvert was loaded along the centre line EI, at
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points E, F, G and H, see figure (8.17), the settlements of
points on the edges AC and BD were nearly uniform. When the load
was applied along the edge AC at points J and K, edge AB settled
more than CD. In fact CD moved upwards. The vertical displace-
ments of point E are plotted against the applied load in figure
(8.17) for various eccentricities. The theoretical curves, shown
by the dashed lines, underestimate the experimental results and the
errors accumulate as the load increases, The error at a load of
4 kN is 12% for case Bl falling down to 4% for B6. In general,
however, there is good agreement between the theoretical and the
experimental results.

The settlement of point E is plotted against the eccentricity
e, in figure (8.18a) for load cases Bl, B2, B3 and B4 with . 0
at a load of 4 kN, As the load moves from H to E, the deflection
at E increases steadily. For ey = 1, the settlement of the same
point is plotted against the eccentricity e, in figure (8.18b).

As the load moves along EA, with e, increasing, the settlement at
E increases further. With e, = 1, the settlement at E is 7.1%
higher for e, = 0.72 than for e, = 0.

Both experimental and theoretical observations showed that,
with e = 1, the side CD moved up away from the soil, This happened
when e was 0.36 and 0,72, A view of the culvert tested with
e, = 0.72 is shown in plate (8,1).where it is noticed that a part
of the culvert is separated from the soil, Confirmation of this
separation theoretically is given later, Evidently, the separation
of the culvert base from the soil reduces the contact arca and
aggravates the settlement of the part in contact,

In figure (8,19), the vertical displacement of point C is
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plotted against the eccentricity e . This is when the applied load

is 4.8 kN and e, = l. Ate = 0, point C moves down by some 3,5 mm,

As e, increases, the downward settlement of C reduces and at e, ™ 0.72,
this point moves up by 1.4 mm,

The behaviour of the culvert is in direct contrast to that
assumed in conventional analyses in which the load is assumed to be
distributed on infinitely flexible area. In this manner, the stiff=
ness of the structure is neglected and movements are considered to
be downward throughout,

A comparison of the experimental and the theoretical load-
displacement diagram of corner A is shown in figue (8,20) for load
case B6 with e = 1 and O 0.72, Curves (1) and (2) indicate the
horizontal displacements Gx and 62 respectively and curve (3)
shows the vertical displacement Gy' Although the culvert sways in
the horizontal directions, the predominant displacement is in the
vertical direction as the applied load is vertical, The displace-
ments recorded by curves (1) and (2) are small but significant as
they point out that the culvert is being distorted in three directions
even under a vertical load,

The theoretical and the experimental displacements agree
well in all the cases. The difference between the theoretical and
the experimental values, at a load of 4 kN, are 19,2%, 13,5% and
4,.4% for ax, 62 and Gy respectively. The higher errors in the
first two displacements are considered to be experimental as it was
found to be very difficult to measure such small values,

For load case B6, the culvert distorted as shown by the exagge-
rated diagram in figure (8,21), The relative vertical displacements
of corners B, C and D with respect to cbrner A are shown by curves

(1), (2) and (3) in figure (8.,22), This figure relates to load
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case B6 withe =1 and e, = 0,72, see figure (8.17). Corner B,
being nearer A than the others, suffers the least relative dis-
placement and corner D, being the furtherst, suffers the most. The
higher relative displacements of C and D are also caused by the
fact that they move upwards while A and B both move down, Figures
(8,21) and (8.22) indicate that the culvert undergoes displacements,
distortions and a rigid body rotation,

The theoretical curves in figure (8.22) underestimate the experi-
mental values by 11.3%, 8.2% and 9.4% for corners B, C and D res-
pectively at a load of 4 kN, Generally, however, there is good
agreement between the theory and the experiment,

The deflected shape of the top plate ABCD of the culvert for
load cases B4, BS and B6 are shown in figures (8.23a, b and c)
respectively. The diagrams are plotted for the vertical displace-
ments only at a load of 4,8 kN, The theoretical values are shown
in the parentheses beside the experimental ones, The percentage
errors at corner A which suffers the largest displacement are
shown beside each diagram and do not exceed 9.3%,

8,4.2 Tension separation

In cases B5 and B6, as the applied load was increased, part of
the base and wall BDQT, see figure (8,2), separated from the soil,
To cater for the separation in the analysis, dummy joints were intro-
duced and cracks were allowed to take place, Tensile stresses
developed at some of these joints and the analysis followed the
cracks as the load was gradually increased.

Figure (8.24) shows the progress of the separation of base
URXS of the culvert from the soil for case BS and figure (8,25)

shows it for case B6. The crosses on the diagrams indicate a
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FIGURE 8,23 DEFLECTED SHAPE OF THE TOP PLATE OF CULVERT
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separated joint and the numbers on them indicate the order of
formation of the cracks. The shaded part indicates the portion of
the base still in contact with the soil. In figure (8.24) eight
joints separated simultaneouslyat ¢load of 0.6 kN, acting at J.
These joints are marked number (1). As the load was increased,

the separated area increased., Each diagram in the figure represents
the occasion when a new joint separated, At a load of 2.4 kN,
(stage 4), a total of 11 joints separated and about 30% of the

base lost contact with the soil. No further separation occurred
after that.

As e, was increased from 0,36 to 0,72 in case B6, with the

load acting at K, the cracks became more widespread, see figure (8.25).

Twelve joints separated at stage 1 at a load of 0.6 kN and 18 at
stage 3 at a load of 1.8 kN, Although more joints separated in
this case than in B5, a stable situation was reached earlier when
cracks stopped spreading at a load of 1,8 kN, About 50% of the
base lost contact with the soil,

Figures (8.26) and (8.27) show the separation in the horizontal
x direction of wall BDQT of the culvert obtained analy;ically for
load cases B5 and B6 respectively. In addition to allowing a sep-
aration to take place, the computer program allows the closure of
a crack when this takes place., The program can also reopen a crack
if necessary at a later stage of the loading., In the figures a cross
indicates a crack, the letter c indicates a crack that has just
been removed and r indicates a joint where a separation takes place
for a second or subsequent time. In both cases BS and B6 the sep-

aration continued to alter its extent throughout the loading history.
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It is considered that as the load is increased, the part of the
soil above the protruding base QTRS, see figure (8,2), is lifted
up, This causes some of the cracks between this part of soil and
wall BDQT to close. While 50% of the wall separated from the soil
at a load of 0.6 kN, only 28% remained separated at the end of the
analysis in load case B5, The sudden separation at a low load and
the continuous change of the cracked configuration were also observed
in case B6, as shown in figure (8.27), In this case 61% of the
wall separated at a load of 0,6 kN and only 39% remained separated
at the end of the analysis.

The width of a crack is initially zero and increases with the
load. The variation of the width of separation with the load at
points Z and T on the base of the culvert is shown in figure (8.28).,
It is noticed that the width of a crack increases when the eccentri-
city e, increases from 0,36 to 0,72, The difference between the
width of a crack for the two eccentricities is 78% at point Z and
77% at point T at a load of 4,8 kN, This example demonstrates the in-
tricate - behaviour of a structure-soil system. Such a behaviour
is difficult to be traced experimentally or by an analysis of the
structure or the soil on their own,

8.4.3 Bending moments®

Strain gauges were fixed at several locations around the
culvert, see chapter 7, to obtain the experimental values of the
bending moments at these points, These bending'moments are com-
pared in this section with those obtained by analysing the complete
culvert and the soil., They are also compared with the bending
moments obtained by an analysis of the culvert ignoring the soil,

The finite element analysis of the culvert and the soil gave

the bending moments at the centroids of the plate elements, The
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strain gauge positions do not coincide with the centroids of

these elements., To compare the theoretical and the experimental
moments a linear interpolation of the values was performed. In
figure (8.29a) the experimental bending moments are known at points
M

MZ' M., and M4 on the top plate ABCD and are shown by the values

1* 3
beside a cross, The theoretical bending moments are located by
the circles and their values withiﬁ the parentheses, In the top
plate ABCD, the theoretical points are connected by straignt lines
and extended as shown in the figure. The theoretical bending
moments at points Ml' My, M3 and M, are then interpolated.

Figure (8.29b) shows the bending moments in the base plate
URXS of the culvert. The theoretical bending moments are known
at points M., M, M, and Mg on this plate. In this case the
experimental points shown by the crosses are connected and the
interpolated experimental moments are obtained at Me, H6' M7 and
MB .

It is considered that, due to the non-uniform soil pressure,
the bending moments in the base plate URXS do not vary linearly.
Therefore, the experimental values obtained by a straight line inter-
polation at MS’ Mﬁ’ M7 and Mg are only approximate. In the top
plate ABCD however the straight line interpolation was found to be
reasonable. In one analysis of the culvert and the soil a fine
division on this plate was used and 14 points with known theoretical
moments were obtained, When plotted, these moments showed ﬁ straight
line variation,

For comparison, a conventional analysis of the culvert alone,
ignoring the soil, was also performed, For this analysis the |

contact pressure under base URXS was assumed to be uniform for the
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central load case and linearly varying for the eccentric load
cases, as shown in figure (8,30a and b), In both cases, a linearly
varying horizontal pressure yy was assumed to act on the walls.
Here, y is the unit weight of the soil and y is the depth below

the surface, A unit strip of the culvert was analysed using a
plane frame analysis program. This was subjected to the above
pressures and the external load, The applied load and the assumed
contact pressure were under equilibrium and it was assumed that

all the joints in the structure were free to displace. The bending
moment diagrams obtained by this analysis are shown by the dashed
lines in figure (8.29). It is noticed that there is a gross dis-
agreement between these moments and those obtained experimentally
and by analysing the culvert and the soil together,

A comparison of the bending moments at an applied load of
4 kN, at points M1 to MB of the culvert, for various loading points,
is shown in table (8.1). There is a good agreement between the
experimental and the finite element analysis results for points M;,
Mz, M3 and M4 on the top plate ABCD for all cases, The analysis
generally overestimates the moments but the maximum error is only
11,2% which occurs at M3 for case B4, The analytical errors are
larger at points M, M, M, and Mg in the base plate URXS as the
- true experimental bending moments at these points are not known.
Even so the maximum error is 20,4% which occurs at M for load case
B4,

The bending moments obtained by the non-interactive analysis
of the culvert alone are significantly different from the experimental
ones, While this analysis overestimates the moments by as much as
56.8% for case Bl, it generally underestimates them for the

eccentric load cases B2, B3 and B4, At point M,,for case B3, it
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shows a reverse sign of the moment and gives a magnitude 10 times
higher than the actual,

It is noticed in figure (8.29) that as the load was applied on
the left hand side wall ACNY, the non-interactive analysis shows
negligible moments at points MS' M4, M7 and M8 on the right hand
side of the culvert, In reality the right hand side suffers sig-
nificant bending moments due to the non-uniform settlement of the
structure. The culvert distorts due to the settlement and this
causes increased moments throughout the structure.

8,4.4 Stresses in the soil

The distribution of the vertical stresses at various depths
under the culvert is shown in figures (8,31), (8.32), (8.33) and
(8.34) for load cases Bl, B2, B3 and B4 respectively., The stresses
are for the vertical section 4-4, shown on the top left hand side
diagrams in the figures. This section was chosen because it was
nearest to the centre of the culvert for which the theoretical
stresses were calculated. In all the figures the applied load is
2,5 kN, The firm lines indicate the stresses obtained by the
finite element analysis of the whole system., The dashed lines and
the values in the parentheses are the stresses obtained by Boussinesq's
solution using Newmark's charts., As the scale of these charts
become very large at shallow depths, indicating the incompatibility
of Boussinesq's solution at the surface, these latter stresses
could not be obtained at a depth less than about 100 mm.

In figure (8.31), the contact pressure was assumed to be uniform
when using the charts. This accounts for the relatively uniform
pressure distribution obtained from these, On the other hand, as

the point load was applied directly on the central wall, the finite
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element analysis gives a high stress at the centre. The difference
between these and Boussinesq stresses reduces with depth and the
two curves almost coincide at a depth of 350 mm., The finite element
stresses are slightly higher than the Boussinesq ones at 637.,5 mm
due to the proximity of the rigid base of the sand tank., The
influence of this rigidity is neglected in Boussinesq's solution
as the soil is assumed to be a semi-infinite continuum,

When the load is applied at points G and F in figure (8.32)
and (8.33) respectively, a concentration of stress directly under
the left hand side wall ACNY and the central wall is observed. As
the load rests on wall ACNY in figure (8,34), the stresses are high
directly under it and diminish rapidly away from it., The disagree-
ment between the finite element and the Boussinesq stresses increases
with the eccentricity of the load as the walls of the culvert
interact with each other and share the load., The difference between
the two stresses at the maximum ordinate is 0,6%, 9.8%, 51.2% and
60.6% for cases Bl, B2, B3 and B4 respectively, In all the cases
the difference reduces with depth and the finite element stresses
are slightly higher near the base of the tank,

The vertical stresses under the culvert for various load
cases are superimposed and a stress envelope is drawn in figure
(8.35). At a point such as A', the curves intersecting the vertical
line B'C' give the stress ordinates at this point as a point load
travels along the centreline EI of the top deck ABCD. The stress
envelope shows high stresses directly under the walls reducing
between two walls and also away from the culvert, This is because
the loads are transmitted to the base through the walls which

interact with each other and share them, The realistic analysis
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of a box culvert must consider such a stress envelope created by the
moving load instead of assuming a uniform or linearly varying con-
tact pressure distribution,

The contour lines of the vertical stress in section 4-4 for
load case B4 are shown in figure (8.36)., A distinct column of high
stresses is observed directly under the loaded wall ACNY with a
concentration of the stress at the toe of the protruding base UNXY.
Some tensile stresses developed and their loci are shown by the
dashed lines, The extent and the magnitude of these stresses are
very small and are not considered to develop significant separations
in the soil, '

The distribution of the vertical stress on a horizontal plane
25 mm below the base of the culvert is shown in figures (8.37),
(8,38) and (8.39) for load cases Bl, B4 and B6 respectively. Even
for the central load case Bl in figure (8.37) the stress variation
is highly non-uniform in both x and z directions., The non-uniformity
is more pronounced in the x direction than in the z direction in both
figures (8.37) and (8.38), The difference between the maximum and
the minimum stresses in the x direction is in excess of 96% and
that in the z direction is about 57% in both cases, As the load
is applied at point K in figure (8.39) the non-uniformity of stress
becomes excessive, While the maximum stress is 23.16 kN/mz near the
load it reduces to zero away from it, Beyond this area the base
sepﬁrated from the ground,

The distribution of the horizontal stress o, on the sides of
the culvert is shown in figures (8,40) and (8.41) for load cases
Bl and B4 respectively. While the magnitudes of these stresses are

small their distribution is again highly non-uniform and non-linear.
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This is in distinct contrast with the linear stress variation normally
assumed in such cases. The non-uniform pressure distribution is
caused by the pressure exerted by the wall as the culvert deforms.

The variation of this stress for the other load cases was similar

and is not presented,

8.5 RESULTS OF MODEL C: TALL STRUCTURE

8.5.1 Deflections

The notations used to discuss the results of this model are
shown in figure (8.42). The average settlements at points N and
R for the four-column models with loads at the centre points S
(e = 0) are shown in figure (8.43)., The solid lines indicate the
experimental load-deflection curves and the dashed lines indicate
the theoretical ones. As the height of the base H increases the
settlements also increase, These are plotted against H at a
load of 5 kN in the figure. The increased settlement is considered
to be caused by two factors: (i) As Hb increases the foundation
becomes more flexible and its contribution in reducing the settle-
ments decreases. (ii) The length of the columns in the soil below
the base reduces as H is increased. As these columns act as piles,
the reduction in their length increases the settlement.

The theoretical curves underestimate the experimental settle-
ments and the difference increases at high loads due to the accumu-
lation of the errors in the incremental method, At a load of 5 kN
the errors are 16.3%, 7.9% and 7,7% for tests C3a, C2a and Cla
respectively. The high error in the first case is considered to be
due to the experimental errors in measuring small displacements,

The differential settlements between the points N and R, on
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the base plate, are plotted against the load in figure (8.44) for
the eccentrically loaded four-column frames, These also increase
with an increase in Has shown by the inset diagram, The solid
lines in the figure indicate experimental values and the dashed
lines show the theoretical ones. The curve with the dark dots
indicate the values obtained by the finite element analysis by
attaching the piles to the soil at two-third points only. While
connecting these to the soil throughout their length results in an
underestimation of the settlements in all the cases, attaching them
at the 2/3 length overestinates these, For case C2b, for which
this analysis was done, the first method underestimates the differ-
ential settlement at 5 kN by 9,.8% and the second method overestimates
it by 25.4%, It is considered that; with.the computer program avail-
able, connecting the piles to the soil throughout their lengths is
more accurate for this type of problem. The theory underestimates
the settlements by 14,9% and 9,2% for the cases with Hb = 0 and
| Hb = 150 mm respectively at a load of 5 kN, |

The sway was calculated as the difference of the average
horizontal x displacement of the points B, D, F and H, see figure
(8.42), and that of points A, C, E and G, These are plotted against
the applied load in figure (8,45) for the same cases as those in
figure (8.44). Once again it is observed that connecting the piles
to the soil at the 2/3 point overestimates the deflection, This
amounts to 22,3% at a load of 5 kN while the analysis with the
piles connected to the soil elements throughout their lengths under-
estimates the sway by 10.8%; The underestimations for the cases of
H =0 and Hb = 150 mm amount to 12,8% and 10.5% respectively,

In both models C3b and CS, Hb was zero and the load was applied
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at e = 0.4, but the piles in C5 were cut off, The load-differential
settlement and the load-sway diagrams of these two cases are com-
pared in figures (8.46) and (8.47) respectively, As expected,
removing the piles increases both the differential settlement and
the sway., The former is increased by 25.5% and the latter by 19%

at a load of 5 kN. It is observed in figures (8.46) and (8.47) that
when the piles are not present there is a closer agreement between
the theory and the experiment. At a load of 5 kN the theory under-
estimates the differential settlement of the model with piles by
14.9% and that of the one without piles by only 8.6%. The difference
in the sway is 12.8% and 7% for the cases with and without the piles
respectively, It is considered that connecting the piles to the
so0il throughout their lengths causes the increased discrepancy
between the theory and the experiment, This indicates that a cer-
tain amount of slip occurs between the piles and the soil which is
not represented in the analysis, As was shown earlier, connecting
the piles to the two-third points overestimates the deflections.
Therefore, the exact representation lies somewhere between these
two cases.

To aggravate irregularity, one of the columns was removed. The
vertical settlement of point R on the base plate is plotted against
the load for the three-column model C4 in figure (8.48). The theory
underestimates the settlements by 10,5% at a load of 5 kN, The
values of the settlements are higher than the average base settle-
ments of the four-column model Cla with the same Hb given in figure
(8.43). At a load of 5 kN this difference is 18,5% for the experi-
mental values. This is considered to be due to the fact that as

column AB is removed, the other columns are more heavily loaded
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causing the structure to settle more on the right hand side.

8.5.2 '‘Bending moments

The bending moments about the z-axis in columns AB and CD for
a load of 4 kN acting at the centre (e = 0) of the four-column
models are shown in figure (8.49). The diagrams in figure (8.49a)
are obtained by the analysis of the complete system and the values
in the square brackets are experimental. The latter values were
not recorded in the portions AA' and CC' of the columns inside
the base and therefore only the theoretical values are given. There
is a good agreement between the experimental and the theoretical
bending moments, the maximum difference being only 9.9% which
occurs at end A of column AB in the model with Hb = 150 mm,

The bending moments obtained by assuming the base of the model
to be fully fixed are shown in figure (8.49b)., It is noticed that
these moments in portions AB and CD of the columns above the base
are almost the same as those in figure (8.,49a). However, the
redistribution of the moments in portions AA' and CC' in the base
for f% = 150 and 75 mm and that at the column base for H_= 0 are
quite significant, While the maximum difference between the column
moments of the fixed base and the flexible base analyses for the
first two cases is only 11,7%, this difference at A and C for
Hb = 0 is 26,5%, Inside thé base for the cases of Hb = 150 and 75 mm
there is a reversal of sign of the moments, The difference is as
high as 167% at A and C for Hb = 75 mm., This indicates that in a
tall structure the redistribution of the moments is more significant
near the base of the structure than at points at the top. This is
also observed in a 50-storey space frame and will be shown in

chapter 9,
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The bending moment diagrams of the same models for the
eccentric load case e = 0.4 are shown in figure (8.50). The
maximum difference between the theoretical and the experimental
values in figure (8.50a) is 10.6% which occurs at C for Hb = 0,

The difference between the bending moments obtained by the flexible
base analysis and that by the fixed base analysis is again more
prominent near the base than at the top. The maximum difference

at the top is 35% occurring at D for H = O and that at point A

in the same case is 59.8%. Inside the base in columns AA' and CC'
this difference is as high as 361% which occurs at A for Hb = 150 mm
The high redistribution of the moments in the base is considered to
be caused by its stiffness playing a part in reducing the base
rotations. These moments are not carried over to the top as the
columns are rather slender.

The bending moments in the columns of the three-column model
C4 about the z-axis and the x-axis are shown in figures (8.51a) and
(8.51b) respectively at a central load of 4 kN, The firm lines in-
dicate the bending moments obtained by the interactive analysis
and the dashed lines indicate those obtained by assuming a fully
fixed base, The experimental values are shown within the square
brackets. The maximum difference between the experimental and the
theoretical values is recorded as 11.8% which occurs at end G of
column GH,

The axial forces in all the columns of the four-column model
Cl, with a central load, were equal, However, when column AB
was removed in model C4, the two diagonally opposite columns CD
and EF carried most of the axial load. At a centrally applied load

of 4 kN, CD and EF carried 2,02 kN and 1,96 kN respectively while
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column GH carried only 0.02 kN. While this is the case, it is
noticed in figure (8.51) that column GH suffers quite significant
bending moments. These moments are very much in excess of those
predicted by a fixed base analysis, being as much as 20 times for
Mz at the top of column GH, While a fixed base analysis predicts
both low axial force and low bending moment in this column, it
actually suffers a low axial force and a high bending moment,
This situation can be critical if the column is made of concrete.

8,5.3 Stresses in the soil

The vertical stresses at various depths in section 1-1, see
figure (8.42), are shown, for case Cla, in figure (8.52). These
stresses in the vertical section 2-2 are shown in figure (8.53).

In both these figures it can be seen that there is a column of

high vertical stresses directly under the base, which diminishes
rapidly away from it. The stresses are higher at a depth of 137.5 mm,
which is near the end of the piles, than at the shallower depth.

The difference is as much as 48,3% at the centre. At a shallower
depth of 37,5 mm the stresses are higher near the piles at P and Q
and lower between the piles at R, see figure (8.52), It is con-
sidered that high stresses develop near the piles and these are

the maximum at their tips.

The vertical stresses in section 1-1 under the same structure
with the load at e = 0.4 are shown at various depths in figure (8.54).
While the stresses are higher near the tip of the piles (y = 137,5 mm)
than at' the shallow depth of 37,5 mm,they are also more non-uniform.
This is because the left hand side columns AB and EF are more
heavily loaded than the right hand side ones. The stresses in

section 2-2 passing through the maximum stress ordinate in figure
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(8.54) are shown in figure (8.55)., Again a zone of high stress
under the base is noticed which reduces rapidly away from the base.
The stresses under the three-column model C4, in sections

1-1 and 2-2, are shown in figures (8.56) and (8.57) respectively,
The same observations as the centrally loaded four-column model

are made here. At a depth of 787,5 mm the maximum stress ordinate
reduces to about 21% of its value at a depth of 137.5 mm, In the
lateral direction the reduction of stress is more rapid at shallow
depths than at deeper levels, This is because the stresses tend
to become uniform at great depths. At a depth of 37.5 mm, the
stress in section 1-1 reduces to about 3% of the maximum ordinate
at a distance of only 150 mm beyond the base, In section 2-2, at

the same depth, this distance is about 300 mm,

8.6 RESULTS OF MODEL D: THREE-BAY FRAME

8.6.1 Deflections and settlements

Since the structure is symmetrical about the central beam ST,
the results of the two frames ABHG and JKRQ, see figure (8.6),'are
identical and only frame ABHG is discussed, The settlements of
the points A, C, E and G at the column bases are shown in figures
(8.58) and (8.,59) for the pad and the strip footings respectively.
As the eccentricity e of the load increases, there is an increase
in the settlements of both types of foundation. This is because
when the load is applied in the outer bay ABCD, column bases E
and G separate from the ground and move upwards, This reduces
the bearing area of the foundation and increases the contact

pressure,

The points shown by small circles in the figures indicate the
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theoretical values, which show a good agreement with the experimental
curves., The maximum error in the case of the strip footings is
about 9%. The difference is somewhat higher in pad footings as the
values are small and the experimental error is likely to be more,
The maximum error in the larger values is in the order of 13%.

The vertical displacements of E and G are the ones that vary
the most with the change in the load position., The variations of
the vertical displacements at E and G with the load position are
shown in figures (8.60) and (8.61) for the pad and the strip footings
respectively, In figure (8.60), for pad footings, point E has a

downward settlement when the load is at L,, L. and L,. For strip

2?73 4
footings, this point moves upwards when the load is at L,. This
indicates that the strip footings, being more stiff, suffers a
more severe separation'from the soil when the frame is loaded
eccentrically,

The deflections of points A and G with varying eccentricity
are compared for the two types of foundation in figure (8.62). A
similar comparison for points C and E is shown in figure (8.63).
The firm lines indicate the strip footing case and the dashed lines
indicate the pad footings. The diagrams are drawn for an applied
load of 1.2 kN, Under summetrical loading, e = 0, the settlements
of A and G in figure (8.62) are equal, small and downwards for
both footings., The settlement of the pad footings is however some
83% higher than that of the strip footings, As the eccentricity
increa;es the downward settlement of A iﬁcreases. This increase
is more rapid in the case of the pads, At e = 0,9, point A in the

pad footings settles 244% more than that in the strip, The dis-

placement of point G on the other hand reverses direction at a
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value of e between 0,33 and 0,36 and increases rapidly in the up-
ward direction for higher eccentricities; This increase is also
more pronounced in the pads than in the strip, The same trend is
also noticed in the displacements of points C and E in figure (8.63).
It is observed in figures (8.62) and (8.63) that the pad footings
displace more than the strip footings even at e = O and that these
displacements become excessive at high values of e, It is con-
sidered that the following are the reason for this:
(1) The strip footings connect the various column bases and make
the structure more rigid. As one column settles, the stiffness of
the beams and the strips transmit the forces to the other columns
and involve them in reducing the deflections., When pad footings
are used the columns are interconnected onl} by the beam at the
top. The system is thus more flexible and the columns act more
independently of one another., This reduced interaction between
the columns contributes to the increased settlement of the pad
footings.,
(2) As the separation of the foundation from the groundltakes
place, the strip footing arches down still holding the separated
columns as part of the structure, These columns continue to
contribute stiffness to the structure and interact with the other
members in reducing the deflections, In the case of the pad
footings, the separated columns hang from the beams and do not con=-
tribute to or take part in the deformation of the structure. In
fact when the load is in the outer bay ABDC and both footings E
and G 1ift up, the entire portion DFHGE, see figure (8.60), acts
as a cantilever without an applied load and do not contribute to

the stiffness of the structure. This accounts for the large post-

?
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separation displacements of the pad footings in figures (8.62) and
(8.63).

8.6.2 'Bending moments

The bending moments in the columns with a load of 1.5 kN acting
centrally on the frame are shown in figure (8.64). Line (1) rep-
resents the theoretical bending moments for the strip footing case
and line (2) shows that for the pad footing case. The moments
shown by line (3) were obtained by analysing the frame assuming
the column bases to be completely fixed. Both types of footings
show a wide variation of the bending moments from the fixed base
case, The pad footings rotate almost freely and give very small
moments at the column bases. The moments at the top are greatly
increased and there is a reversal of the sign in column AB. The
difference in the column top moments between this case and the
fixed base analysis is 113.8% in AB and 52,1% in CD. In the case
of the strip footings the column bases are interconnected and there-
fore offer resistance to the rotation. Consequently there is an
increase in the bending moments both at the base and the top of the
columns. There is also a reversal of the sign of the moments in
column AB, The maximum difference between these moments and the
fixed base moments is 123,4% in AB and 69.2% in CD. The diagrams
show that it is wrong to assume the columns, with strip footing,
are fixed base.

The variations with the eccentricity of the bending moments
at the top of columns AB and GH are shown for a load of 1,5 kN in
figures (8.65) and (8.66) respectively, In figure (8.65) the high
negative bending moment in the strip footing case reduces after

e = 0,4 and becomes positive at e = 0,89 increasing steadily after-
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wards. The negative moment in the pad footing case starts reducing
early at e = 0,25 and becomes positive at e = 0,69, This is agaln
due to the relative freedom of rotation of the pads. While the
fixed base curve initially gives positive moments, it becomes
negative at e = 0,33. As e approaches unity all three curves
become parallel, with the pad footing showing the highest and the
fixed base case the lowest moment,

In figure (8.66) the fixed base moment at the top of column
GH is opposite in sign to the other two cases, for e less than 0.25.
As e increases further in the fixed base case, the axial force in
GH becomes tensile due to its tendency to 1ift up from the support.
The bending moment remains almost constant and then reduces when
e is close to unity, As was stated, after separation of footing G
from the soil at e = 0.67, column GH acts as a free cantilever in
the case of the pad footings., Therefore, the moment in this column
becomes zero, In the strip footing case the column remains an
active part of the structure after the separation, The bending moment
reverses the sign and continues to increase in magnitude.

8.6.3 Stresses in the soil

The vertical stresses in the soil, obtained analytically, in
a vertical section passing through the footings, are shown for a
typical case, with e = 0,25,in figure (8.67). At a depth of 50 mm
below the surface, the stress profiles for the two types of foun-
dation are quite different, High stresses develop directly under
the pad footings, reducing rapidly between the pads and diminishing
away from the structure. On the other hand, there is a more uniform
stress distribution under the strip footing as this distributes the
column loads more efficiently. Deeper in the soil however the

difference between the two stress profiles reduces to almost zero,
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CHAPTER 9

INTERACTIVE BEHAVIOUR OF PRACTICAL STRUCTURES

9.1 INTRODUCTION

The method of analysing a complete structure together with
its foundation and the supporting soil developed in this thesis
has so far been applied to simple frames and model structures.,
Its usefulness is now tested by analysing complex practical
structures, Two such structures, for which an exhaustive
interactive analysis would normally be considered either impossible
or expensive, were selected for this purpose. The first was a
complex of four silos resting on a chalk foundation and the second
was a 50-storey space frame resting on a bed of clay., Both are
described in this chapter.

9.2 A SILO COMPLEX

Burland and Davidson (1976) published a detailed report of
the observed behaviour of a silo complex resting on chalk with non-
linear material properties, The structure had concrete columns that
developed severe cracks during the filling of the silos. The
recordings of settlements of the silo bases and cracking of the
columns constituted a useful case history of structure-soil inter-
action, However, an exhaustive interaction analysis of the silos
and their foundations was not performed by Burland and Davidson.
The structures were designed and the foundation settlements were
calculated on the assumption that each silo acted independently,
The purpose here is to present an analysis of the silos together

with their foundations and the supporting soil., It is shown that
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not only the soil and the structure interact but the loading of

one silo influences the others via the soil,

9.2.1 Description of the silo structure

The complex analysed consists of a batterv of four polygonal
silos placed side by side in a row, as shown in figure (9.1)., Each
silo has a plan area of 336,5 n® and a height of 50 m, They are
separated from each other at the base level and throughout the
height. The walls of the silos are 230 mm thick and they rest
directly on a 1.22 m thick raft, as shown for a typical silo in
figure (9.2). The raft has the same area in plan as the silo
cross section and the wall is constructed monolithically at its
circumference. Each silo contains a 1,065 m thick flat floor
elevated 2,5 m from the raft by 32 columns., The floor and the
columns are structurally separated from the walls. The diameter
of columns 3, 4, 5 and 10, see figure (9.2), is 431 mm while that
of the rest is 610 mm,

The rafts of the silo were made of reinforced concrete with
a nominal cube strength of 25,8 N/mmz. This value for the concrete
in the columns was 41.3 N/mmz. In the present analysis the modulus
of elasticity of the material of the raft was assumed to be 27 x 10°
kN/m2 and that for the columns, the floors and the walls was
31 x 10° kN/mz. In all the cases the value of v was assumed to
be 0,15, The self weight of each silo is 4100 tonnes and the weight

of the stored material is 12000 tonnes,

9.2,2 Description of the supporting soil

The boreholes sunk at the site of the silo complex indicated

that the ground consisted of chalk overlaid by a shallow layer of
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stiff sandy clay with flints and gravel. Plate loading and standard
penetration tests were pérformed on the site to determine the
mechanical behaviour of the chalk., In the settlement calculation

of the raft, Burland and Davidson assumed a uniform quality of

chalk to a great depth. Plate loading tests with different diameter
plates yielded different pressure-settlement curves. All of these
were approximately bilinear, with the initial modulus of elasticity
ranging between 135 and 617 N/mm2 and the final value between 11

and 20 N/mmz. The values of the moduli obtained from the relation-
ship between the average settlement and the average bearing pressure,
observed after the silos were constructed, were however different.
The values reported for silo 3 are 686 N/mm2 for the initial and

26 N/mm2 for the final modulus of elasticity.,

A randomly heterogeneous soil can be analysed by the method
presented in this Thesis. However, the insufficient data available
made the author to assume a2 uniform quality of chalk, The stress-
strain property of the soil was taken from the observed pressure-
settlement relationship of silo 3 as reported by Burland and
Davidson, The stress-strain curve is shown in figure (9.3), in
which the central portion, shown dashed, was approximated by a
straight line, This gave a trilinear representation of the stress-
strain relationship of the chalk., The value of Poisson's ratio
was assumed to be 0,24 which is the same as given by Burland and

Davidson,

9.2.3 Finite element idealization of the problem

The silos in the complek were side by side, thus they were

interconnected by the ground and interacted with each other. This
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is in spite of the fact that the silos themselves were entirely
separated from each other. The analysis of an individual silo
neglecting the influence of the others on its behaviour is thus
inadequate. The complete battery of silos together with their
supporting soil was therefore considered as an integral system.

A three dimensional body of soil under the silos was enclosed by
rough rigid planes and included in the analysis. A depth of 100 m
below the ground surface, a distance of 50 m on the longitudinal
sides and 19.5 m on the lateral sides were considered, Because of
symmetry about the vertical plane passing through the longitudinal
centre line of the silos, only half of the structure was analysed.
The finite element mesh used for this problem is shown in figure
(9.4). As the silos and their bases are structurally separated
from each other, they were represented as separate structures with
a zero distance between them., Joints, such as A in figure (9.4),
on the ground surface at the junction of two silos were given two
numbers with the same co-ordinates and degrees of freedom, Thus
all the joints at the boundary between two silos acted independently
and displaced relative to each other., The soil was represented

by three dimensional solid elements, The walls, the floors and the
rafts were represented by rectangular plate elements while the
columns were represented by prismatic members. The cylindrical
shape of the walls of the actual silos was approximated by plane
rectangular plates as a curved plate element is not included in the
program, The finite element mesh consisted of 1580 joints, 252
plates, 64 members and 936 solid elements, The total number of
degrees of freedom was 3934 and the number of elements of the
stiffness matrix stored by the program was 671,928, The load of

the content of the silo was divided between the wall and the floor
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by assuming that the floor carried the material contained in a

60° cone above it. The load was assumed to be uniformly distributed
on the floor and was divided among the floor joints. The load
carried by the wall was divided among the joints at the top of the
wall,

The detailed finite element mesh of a typical silo is shown
in figure (9.5). The trianguiar portions of the floor and the
raft such as PQS, P'Q'S', STV and S'T'V' were represented by the
rectangular plates PQRS, P'Q'R'S', STUV and S'T'U'V' respectively.
The silo itself was represented by the line ACPSVHFEDB, which was
connected to the base only at the points A', C', P*, S', V', H',

F', E', D' and B', This representation is unlikely to cause an
appreciable error as no load was applied at the corners R, U, J and
G of the floor., The corners R', U', J' and G' of the raft were
separated from the ground by giving them two numbers each. The
contribution of the additional triangular portions PRS, SUV, P'R'S'
and S'U'V' etc., to the total stiffnesses of the floor and the

raft is considered to be negligible,

The joints A, C, P, S, V, H, F, E, D and B, shown by small
circles in the figure, were on the floor and not connected to the
silo wall, Therefore, the entire floor together with the portions
PRS, SUV, HJF and FGE intersecting the wall deflected independently
of the wall. This was done to keep the floor structurally separated
from the wall as it is in the actual silo, At the base level however
the joints A', C', P', S', V', H', F', E', D', and B' were connected
to the raft, the wall and the soil, This was because the wall and

the raft were constructed monolithically in the actual silo,
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9.2.4 The analysis of the silos

The non-linear analysis described in chapter 5 was used for
this problem, A uniformly distributed load due to the self weight
and the contents was first applied on the rafts assuming them to
be infinitely flexible and neglecting the silo structures. The
vertical stresses in the soil were calculated for this‘case by
Boussinesq's equations. The properties of the solid elements
corresponding to these stresses were taken from figure (9.3).

The complete silo structure and the soil were then analysed by the
finite element method. The stresses and the elastic moduli were
successively modified in each cycle of the analysis until conver-
gence was obtained.,

Five different load cases were considered and a separate
analysis was carried out for each of these, The load cases are:
1 Loads due to the self weight and the contents in silo

1, while the rest were subjected to self weight only. As

stated earlier, the contents within a 60° cone above the

floor were assumed to be carried by the floor, the rest
being taken by the walls. The floor loads were applied at
the joints on the floor and the wall loads were applied at
the joints along the circumference at the top of the silo,

2 Loads on silo 2 only, while the rest were unloaded,

3 Silos 1 and 2 loaded simultaneously,

4 Silos 1, 2 and 3 loaded simultaneously,

5 All the silos loaded simultaneously,

In this manner it became possible to study the behaviour of
the structure due to sequential loading., The cases of silos 3

and 4 loaded individually were not analysed and were obtained from
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load cases 1 and 2 utilizing symmetry.

9,2.5 Results of the analysis

9,2.5.1 Deflections and settlements

As the loads were applied the silos settled; swayed and dis-
torted circumferentially, The settlement profiles of the silo
bases along the longitudinal centre line,with the different silos
loaded individually, are shown in figure (9.6). These diagrams
indicate that the rafts deflected into domes with the circumference
deflecting more than the centre, This also happened in practice
and was observed by Burland and Davidson, This observation is
significant, because it disagrees with the conventional, non-
interactive analysis which suggests that the rafts deflect more
at the centre. The domed type of settlement indicates that the bulk
of the load was transferred to the soil via the walls and the outer
columns, ‘

It is observed in figure (9.6) that when silo 2 or 3 is loaded
the two silos on either side settle symmetrically about the centre
of the loaded one, When the outer silos are loaded they tilt
towards the neighbouring silo, The tilt and the sway of the silos,
when the load is in silo 1 only, are shown in figure (9.7). This
diagram shows that silos 1 and 2 lean towards each other and in
fact their walls overlap, Silo 2 sways to the left in spite of
the fact that it was not loaded. The overlapping of the walls
at the top of the silos is as much as 183.1 mm, In practice, this
means that silos 1 and 2 rest against each other causing stresses
in both of them. In the analysis, two neighbouring joints showing

such an overlap can be joined together and replaced by a single



SILO 1 2 3 L

17-5
Loads distributed between the wall
and the floor in the manner described
in sections 9.,2,3 and 9.2.4

33.6 mm

3l.e 3i.g mm

3G 31.6 mm

33emm
FIGURE 9,6 SETTLEMENT PROFILES WITH INDIVIDUAL SILOS LOADED




AINO d3avVOoT T O1IS HLIM SOTIS FiL 40 LTIL ANV AVMS L°6 FHNOId

: papeo]
v Ol1s ¢ O11ls ¢ OI1s 1 o11S

(- ————————— —“F= ] Tt nwe—re = T e e T ————TT
| )
| )
| (|
i 1
| |
i
| | : ,
I
| ! _
wge | “ : d 3
Z€ _ » | odeys Jeurlstip
[ ' ! _
i ] | '
| 1 | __
m _ “ __
! | : 'y
1 | i 1
| | “ |
1
_ _ { |
— ! K i1
X | | 1 'Bh
. | [ o i
: | 1 I !
| ] {! T oS b :
“ 1 1 “ Jo odeys “ _Tn Z O11s JoO |
" " “ i PERRE] £ : “ ! oadeys poisarjeq “
I | I , !
i b ‘
| | I
" " it 3 !
| ! it L |
— . n
e e o A e ”. |||||||||| U| m.m|11|I“|F..I|I1I||1I.tI.|iI1_




215

joint. This needs a modification of the computer program for which
the author did not find time. The circumferential distortions and
the overlapping of the silo cross sections, at the top and at
section X-X, 32 m above the base, are shown in figure (9.8). It
is noticed that at both levels the cross sections tend to elongate
in the longitudinal x direction and contract in the lateral z
direction. At the top,the distance between the opposite walls of
silo 1 increases by 83.4 mm in the x direction and decreases by
57.2 mm in the z direction. For silo 2,these values are 61.2 mm
and 45 mm respectively. The cross sections nearer the base were
observed to suffer similar distortions but of a lesser magnitude.
At the base, the distortion was found to be negligible.

The settlement profiles in figure (9.6) and the sway and the
distortions shown in figures (9.7) and (9.8) indicate that when
an individual silo is loaded the neighbouring silos form a group
and act together. An unloaded silo comes to the aid of its loaded
neighbour and deflects with it, The group as a whole tends to form
a sagging settlement profile with the maximum ordinate under the
loaded silo and reducing away from it, This can be seen in figure
(9.6) when silo 2 or 3 is loaded, In this case the loaded silo
settles by 20 mm at the centre and by 31,6 mm at the edges. The
neighbouring silos settle by about 17,5 mm at the edges nearer the
loaded one and as little as 4,2 mm at the far edge.

Figure (9.9) shows the vertical deflections of the rafts when
more than one silo are loaded simultaneously, Curve (1) indicates
the value obtained by superimposing the settlements in figure (9.6).
Curve (2) shows the settlements obtained by analyses 3, 4 and 5 with

a group of silos loaded simultaneously, It is seen in the figure
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that the settlements are higher when the silos are loaded progres-
sively, The difference is more pronounced when the load is applied
on all four silos. This indicates that applying the loads on 2
group of silos simultaneously results in a more favourable stress
distribution in the soil, However; the analysis with the silos
loaded one after the other is more realistic and gives higher
settlements.

The sway and the tilt of the silos when silos 1 and 2 are loaded
are shown in figure (9.10). It is seen that silos 1 and 3 lean
on silo 2 while the walls of silo 2 itself open up. The relative
horizontal displacement between the top of silos 1 and 2 is 371 mm
while that between silos 2 and 3 is 173,1 mm. The walls of the
three silos press against each other, causing a redistribution of
stressés. The deformation of silo 4 for this load case was neglible
and is not shown in the figure,

The overlapping and the circumferential distortions of the
silos for the same load case are shown in figure (9,11)., All the
silos are observed to suffer an elongation in the x direction and
a contraction in the z direction,with silo 2 suffering the maximum
distortion, Its diameter along the x-axis increases by 285.8 mm
and that along the z-axis decreases by 224 mm.at the top of the
structure., At a height of 32 m,these values are 137,2 mm and 145,6 mm
respectively. The distortions at lower levels decreased and became
negligible at the base,

The sway of the silos for the case when silos 1, 2 and 3 are
loaded is shown in figure (9,12), In this case the deflections are
significant for all the silos. Silos 2 and 3 open up in the x

direction while 1 and 4 lean towards the centre of the group, The
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overlapping is maximum at the top between silos 2 and 3 which is
460 mm, This overlapping is 357 mm between the walls of silos 1
and 2 and 68,4 mm between silos 3 and 4, It is observed in this
figure that while silos 1, 2 and 3 are loaded, the unloaded silo 4
sways towards its neighbour by 41.8 mm at the top, However, when
silos 1 and 2 are loaded in figure (9;10]; silo 3 sways towards
silo 2 by as much as 78,3 mm, This indicates that loading more
silos in a group reduces the deformation of the unloaded ones.

The cross sectional deformations of the structure with silos 1,

2 and 3 loaded are shown in figure (9,13), It is observed that
silo 2 suffers the maximum distortion which is also the case when
only silos 1 and 2 are loaded., The increase in its diameter along
the x-axis is 344 mm at the top and 165.8 mm at a height of 32 m
above the base, The decrease in this distance in the z direction
is 266 mm at the top and 174,4 mm at 32 m above the base.

The sway of the structure when all the silos are loaded is
shown in figure (9.14). The silos deform symmetrically about the
vertical centre line between silos 2 and 3 and therefore only half
the structure is shown. The overlapping at the top of the walls is
191.5 mm between silos 1 and 2 and 187,2 mm between silos 2 and 3.
The circumferential distortions for the same load case are shown
in figure (9.15). 1In this case also,silo 2 suffers the maximum
distortion, in which the diameter along the x-axis increases by
186,4 mm at the top and 89.8 mm at 32 m above the base, The
decrease in this distance in the z direction is 144,6 mm and 94,4 mm
at the top and at 32 m respectively, These values are lower than
the case when silos 1, 2 and 3 are loaded and silos 1 and 2 are

loaded as described above, Table (9,1) shows a comparison of the
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Overlapping of walls (mm) at
the top between silos

Maximum

Maximum
contraction of

Loaded elongation of
silos cross section in | cross section
¥ and 21 2 and 31 2 and 4 x direction (mm) | in z direction (mm)
1 183.1 - - 83.4 57.2
1 and 2 371 1731 - 285,8 224
1,2 and 3 357 46.0 68.4 344 266
1,2,3 and 4 | 191.5 187.2 191.5 186.4 144.6

TABLE 9.1 OVERLAPPING AND DISTORTIONS OF THE SILOS

overlapping between the silos and the maximum cross sectional dis-

tortions for the different load cases.

It is clear from this table

that the circumferential distortions are the maximum when silos

1, 2 and 3 are loaded.

This is also the load case when the columns

of the silos reported by Burland and Davidson developed the cracks.

§pP
The tilts

‘D of the silo bases as obtained by the computer

are shown in table (9.2). Here, §p is the differential settlement

across the raft along the longitudinal centre line and D is the

length of the raft in this direction,

The values of the hogging

Tilt SP/p Hogging ratio 4/D
il —
Silo 1 |Silo 2 | Silo 3 | Silo 4 [Silo 1 | Silo 2 | Silo 3 | Silo 4
1 and 2 1/579 |1/2235 | 1/2346 0.65 0.79 | 0.31 0,17
1, 2 and 3| 1/491 - 1/2183 | 1/766 | 0.68 0.95 | 0.92 0,32
1,2,3 and 4 | 1/429 - - 1/429 | 0.84 0.96 | 0.96 0.84

TABLE 9.2 TILT AND HOGGING RATIO OF SILO BASES
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ratio A/D in the same direction are also shown in the table,
Here, 4 is the maximum displacement relative to the line joining
two diametrically opposite points on the circumference of the
raft, The results show that whereas silo 1 suffers the largest
tilt, silo 2 experiences the largest relative deflection A, This
is in agreement with the values reported by Burland and Davidson
for the direction perpendicular to the longitudinal centre line.

The settlements of the rafts obtained by the computer analysis
are less than those observed under the actual silos, as shown in
figure (9.9). This is considered to be due to the following
reasons:

(1) The representation of the soil properties by a single stress-
strain curve based on the average bearing pressure and settlement

of silo 3 is inadequate., Visual site investigation by Burland

and Davidson after the failure of the silos indicated that the
quality of the chalk varied both with depth and in the horizontal
directions. A more elaborate soil test data is therefore necessary
for a realistic representation of its properties in the analysis.

(2) The actual silos were filled successively from left to right.
Thus as one silo was filled all the settlement due to this load

took place, The stresses in the soil under the unloaded silos also
increased and their modulus of elasticity decreased, When the next
silo was filled the soil underneath was therefore less stiff than
its unloaded state. This increased the settlements, This sequence
was not truly represented in the present analysis as the other silos
were considered unloaded when the load was applied on a particular
silo,

(3) Wind forces on a tall and solid structure like this are import-

ant, These are generally neglected in the calculation of long term




settlements because of their short duration and the time-dependency
of the soil behaviour. In the paper by Burland and Davidson it is
noticed that although the immediate load-dependent settlement was
followed by time-dependent settlements, the bulk of this took place
during the loading. It was also observed by them that the columns
in the structure began to crack by the time the third silo was
being loaded., It is therefore considered that the settlement of the
chalk was rapid. If this is the case,then it makes it necessary
that the effect of wind loads should be included in the analysis.,
It is tﬁerefore evident that the silos should be reanalysed with
wind loading which could not be performed by the author for lack
of time.

The actual silos were observed to suffer a tilt in the direction
perpendicular to the common longitudinal centre line and to lean
forward, In the analysis, symmetry about this line was assumed and
therefore no such tilt could be reproduced., Site investigation by
Burland and Davidson after the failure of the columns indicated that
the chalk was weaker under the front edges of the silos than else-
where. This and the part played by the wind forces are considered
to aggravate the lopsided settlement of the silos.

(4) The silos were loaded after being constructed. The initial
settlement of the silos due to self weight was not included in the
analysis,

(5) The ?act that the silos lean against each other causes further
settlement of the foundation during a sequential loading and this
fact was not included in the analysis.

9,2,5,2 Bending Moments

The columns of the actual silos developed severe cracks as

they were being filled., The cracks were first noticed when silos
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1, 2 and 3 were loaded. It was shown in table (9.1) that at this
load case the silos suffered the maximum distortion of the cross
section. The bending moments in the columns supporting the floor
were plotted and compared for the various load cases, The highest
bending moments were obtained when silos 1, 2 and 3 were loaded.
The maximum difference between these moments and those for the case
where all the silos were full was as high as 98%, Therefore, the
bending moment diagrams are presented here for the case with silos
1, 2 and 3 full, The bending moments about the z-axis in the
columns of silo 1 are shown in figure (9.16). The same bending
moments in silos 2, 3 and 4 are shown in figures (9.17), (9.18) and
(9.19) respectively. In all these diagrams it is observed that the
largest M, occur in columns 11 and 16 at the circumference of the
silo. The next largest moments occur in columns 6, 9, 12 and 15
which are approximately midway between the circumference and the
centre. These are the columns where the maximum relative rotations
of the raft occur. The bending moments in these columns in each
silo are given in table (9,3). The moments obtained by analysing
a typical silo by assuming the raft to be completely fixed are
also shown in the table, These moments are the same in all the
silos and are shown in figure (9,20)., It is seen from the table
that the maximum column bending moments always occur in silo 2
and the minimum in silo 4. This is in direct relation to the
magnitude of the relative deflection given in terms of the hogging
ratio in table (9.2), in which the maximum value of 4/D = 0,85 x 10°5
was recorded for silo 2, The fixed base analysis gives bending
moments which are not only extremely low but always opposite in

direction to those obtained by the analysis of the complete system,
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(1) Bending moments obtained from | (2) Fixed % difference
Column flexible base analysis (kNm) base between
No analysis | (1) and (2)
silo 1| Silo 2 |Silo 3 |Silo 4 moments | for silo 2
(kNm)
6 top 550 882 617 67 -8,1 100.9
bot | -558 -900 -632 -68 4 100.4
g top -584 - 882 -579 -66 8.1 100.9
bot 597 899 590 68 -4 100.4
11 top 707 1252 984 67 -15.1 101.2
bot | -741 -1313 - 1045 -66 7.5 100.5
12 top | =681 -936 -582 63 -8 100.9
bot | -597 -947 -670 -63 4 100.4
;s top| -681 -936 -582 -62 8 100,9
bof 692 947 588 63 -4 100.4
16 top| -985 -1250 | -717 -79 15.1 101.2
bot | 1048 1310 747 80 -7.5 100.6
TABLE 9.3 BENDING MOMENTS IN THE COLUMNS OF THE SILOS

This is partly because of the rotations developed at the column bases

as the raft deforms into its domed shape. The percentage difference

" between the bending moments in silo 2, obtained by analysing the

complete system and those obtained by the fixed base analysis is

shown in the last column of the table,

between 100,4% and 101.2%.

This difference varies

The inadequacy of the fixed base

analysis in predicting the actual bending moments is therefore

clearly demonstrated,

The bending moments about the x axis in the columns of silo 1

with silos 1, 2 and 3 loaded are shown in figure (9.21). These
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FIGURE 9,21 BENDING MOMENTS Hx IN COLUMNS OF SILO 1 WITH

LOADS ON SILOS 1, 2 AND 3
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bending moments in silos 2 and 3 are shown in figures (9,22) and
(9.23) respectively, The figures show that the largest Mx bend-
ing moments always occur in columns 1 and 2 which are on the cir-
cumference, The magnitude of this is a maximum of 212 kNm which
occurs in column 2 of silo 3, However, the Mz bending moments

in these columns are low compared to the others as shown in
figure (9.16) to (9.19). The resultant of M, and M, are there-
fore low in these columns. The resultant bending moment com=-
puted as the square root of the sum of the squares of M, and M,
are shown in table (9.4), This is done for columns 1 and 2 where
Mx is high, columns 11 and 16 where Mz is high and columns 6, 9,
12 and 15 where both are high., It is seen that the columns in
silo 2 suffer the highest resultant bending moments, The value
of this is 1313 kNm in column 11 which is 77% higher than the
corresponding moment in silo 1 and 26% higher than that in silo 3.
In all the silos the maximum bending moments occur in the cir-
cunferential columns 11 and 16. The next highest ones occur. in
columns 6, 9, 12 and 15 which are approximately halfway between
the centre and the circumference of the silos, These are the
columns that are reported by Burland and Davidson to have suffered
severe cracks, Columns 1 and 2, on the other hand, suffer low
resultant bending moments, The cracks in the circumferential
columns 1, 2, 5, 10,11 and 16 were observed to be less severe,
High bending moments but minor cracks occurred in columns 11 and
16, It appears, as stated by Burland and Davidson, that these
columns were close to the silo wall and came within its zone of
influence, The central columns 7, 8; 13 and 14 were near the

crown of the domed raft and did not suffer significant rotations
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FIGURE 9,22 BENDING‘NIOMENTS Hx IN COLUMNS OF SILO 2 WITH
LOADS ON SILOS 1, 2 AND 3
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i
2 2 5
Resultant bending moment M = J(Mx“ + HZ“J
obtained by flexible base analysis, (kNm)
Column
No )
Silo 1 Silo 2 Silo 3
top 349 360 270
1 pot 395 379 266
,| top 161 359 358
bot 210 377 358
top 582 884 521
61 pot 596 902 643
top 565 884 585
9 pot 612 900 594
top 707 1252 984
1 pot 472 1313 1045
12| top 590 940 668
bot 599 952 504
top 688 940 591
151 pot 699 952 594
16| top 986 1250 . 718
bot | 1049 1310 747

TABLE 9.4 RESULTANT BENDING MOMENT IN THE COLUMNS

at the bases, This is why both Mx and Mz are low in them and

+

their cracks were less severe,

The value of M obtained by the fixed base analysis are
shown in figure (9.24). Again these moments are very low compared
to those obtained by the analysis of the complete system. At the
top of column 2, the fixed base moment is 45 kNm while that obtained

by the flexible base analysis is 212 kNm in silo 1, This again
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shows the inadequacy of the conventional fixed base analysis.,

The variation of the bending moments, Mz’ in the silo rafts
along their longitudinal centre line is shown in figure (9.25).
These are for the case when silos 1, 2 and 3 are loaded, The
bending moments reflect the hogging deflection profile of the rafts
being the highest near the centre and lower at the edges. The
maximum moment occurs in silo 2 in which the column moments also
were shown to be the highest, The value at the centre is 1505 kNm/m
which is 24.5% higher than the maximum moment in silo 1 and 18%
higher than that in silo 3. Silo 4 not being loaded its raft
suffers negligible bending moments,

9.2.5.3 Stresses in the soil

It was shown in the last two sections that the worst case of
the distortions of the silo walls, the deflections of the rafts and
the bending moments in the columns occurred when silos 1, 2 and 3
were loaded. The stresses in the soil for this load case are shown
in figure (9.26). The solid lines in this figure indicate the
variation of the vertical stress obtained by the finite element
analysis along the longitudinal centre line of the silos at various
depths. The dashed lines show the corresponding stresses calculated
from Boussinesq's equations by neglecting the structure, At a
depth of 7.5 m the Boussinesq stress distribution is fairly uniform
under the silos decreasing rapidly away from them. The stresses
obtained by the finite element analysis show a highly non-uniform
variation. At greater depths the difference between the two
stresses reduce as shown at a depth of 25 m in the figure,
Boussinesq stresses are lower by a maximum of 46,4% at this depth.

As stated earlier the bulk of the load of the silo is
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transferred to the soil via the wall and the outer columns. The
finite element stresses are therefore higher at the circumference
than at the centre of the rafts at shallow depths. At a depth of
7.5 m the stress under the edge A of silo 1 is 285 kN/m2 while
the minimum stress occurring at the internal point M is only
75 kN/mz. This pattern of stress variation conforms with the
hogging deflection profile of the rafts. The stress near the sur-
face at end A of silo 1 is higher than that at end B. This is
in spite of the fact that the settlement at B is higher, which
is considered to be due to the influence of silo 2. As stated
before, the group of silos tend to form a sagging settlement pro-
file with the maximum settlement under the central silo, Thus
point B being at the edge of silo 2 settles more than point A,
The stresses at the circumference of the rafts exceed the
elastic limit of 200 kN/m? and are well within the range JK of
the stress-strain curve shown in figure (9.3). This indicates
that the soil yields beneath the edges of the rafts which aggravates
the settlements at the circumference and accounts for the hog-

ging deflection of the rafts,

9,2.6 Conclusion

The stress-strain diagram of the chalk, shown in figure (9.3),
indicates that the post-yield stiffness of the soil is very low.
As the soil yie}ds under the circumference of a raft the settle-
ment there is aggravated, The stiffness of the structure and the
raft resists this settlement and reduces it. It was shown that
by including the soil in the analysis the column bending moments

increase drastically over the fixed base case, It appears that
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the stiffness of the structures and the rafts did reduce the
soil settlement sufficiently,

It was shown that loading the silos sequentially caused higher
settlements than those obtained by loading them simultaneously.
The largest settlements and bending moments were obtained when
silos 1, 2 and 3 were loaded. Thus the loading sequence plays
an important part in determining the behaviour of the structure,
A fixed base analysis neglects this sequence and assumes that
loading one silo does not affect the others.

The sway and the distortions of the silos indicated that
they leaned against each other, This produced new stresses in
the structure which may have been one of the reasons for the
development of cracks in the columns., The structure should
therefore be reanalysed by connecting the joints when they show
an overlﬁpping. This and the analysis with the wind loads could
not be performed by the author for lack of time. Nevertheless, it
is considered that these should be included in the analysis to

obtain a more realistic representation of the problem,

9.3 ANALYSIS OF A -50-STOREY SPACE STRUCTURE

As another example the 50-storey three dimensional structure
shown in figure (9.27) was analysed. This was subjected to both
vertical and wind loads. A typical internal frame and an external
frame are shown in figure (9,28). The members of the frame were
selected to give acceptable deflections under fixed support
conditions. The external frames were stiffened by some diagonal
bracings and shear walls to prevent excessive sway, The shear wall

is shown in figure (9.28) marked by the letters F to T, The members



=
o
ﬂe (4]
E £ waLl =
: 3 g
e W -4
GYq - — w mr
od (v} ts -
=
Cm m -~ o m...w.
= o - = o o o~ [ Vo N =4
< & a._- .~ 0o b
- — 3 = H = 2 —t
. — (53] L w (&)
> m
o
o

ST IR T R R S L)
RTINS MRSt

e\ \ ¥
@.wn‘ \ 7777777777777 717777/////////[//// ]/ /) /)]
2\

T, «0\\\\\ /

iy

,_“,. . N

\ ’/Jﬁ%’ﬁf///ﬁrﬁ#f///&ﬁﬁf//

5

L5@3

WIND DIRECTION
Q
z
Enl

FIGURE 9.27 THE 50-STOREY SPACE STRUCTURE



L0@35m

® b s —f— Bm—

L9@3.5 m
L~

176m

Wind

v
bracings<

e
a-‘"" [

[\l

Shear ————————te=

w

m

|

o~

vall

v W ¥ - ...{_ E
™

wn

@

AD U 2 BE_|_ AD

l1,5mtodm
thick raft

s

—
n
—
o

5~

(a) A typical internal frame (b) A typical external frame

FIGURE 9.28 AN INTERNAL AND AN EXTERNAL FRAME OF THE
50-STOREY STRUCTURE



228

were all assumed to be mild steel universal beams and columns.

The beam section was kept the same throughout the structure while
the column sections were reduced with the height, The T-beam effect
between the beams and the slabs was considered and the beam sec-
tion was increased to account for this, The sectional properties

of the frame members are given in table (9.5), in which I, and I2

are the second moments of area about the major and the minor axes
respectively. The thickness of the concrete shear wall in the

bottom ten storeys was assumed to be 0,5 m,

Floor Area I, m»| 1, @

Ground to 0,324 0.11 0.039
10th

11th to 0,282 0,0825 0.0295
20th

1 2lst to 0.242 0,085 0,0196
Columns 30th

31st to 0.202 | 0,0413 0.0147
40th

41st to 0.162 | 0.0275 0,0098
50th

Beams and wind

bracings in all 0.31 0,304 0,0128
levels

TABLE 9.5 SECTION PROPERTIES OF MEMBERS

The structure was supported on a 46 m X 60 m concrete raft

ABCD whose thickness was varied between 1,5 m and 4 m, The soil

was assumed to be clay supported by a rigid permeable stratum,
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The properties of the clay were those used for the examples in
chapter 5 and given in table (5.3). The value of Poisson's ratio
for the clay was assumed to be 0,33, The thickness of the clay

layer was varied between 15 m and 175 m,

9.3.1 Loads on the structure

The dead load was taken as 1,8 kN/m2 on each floor of the
building. The live load, for a general office block, taken from
CP3 (Chapter V, Part 1, 1967) was 2.5 kN/m2, These vertical loads
on the floor were_applied as concentrated forces at the joints,

The wind forces recommended in CP3 (Chapter V, Part 2, 1972)
depend on the location, topography, building size and height,
ground roughness and building life. The code gives a variable
wind pressure distribution along the height of the building with
the maximum at the top reducing towards the bottom, This pres=
sure is to be used for.designing the structural elements utilizing
an unyielding base assumption, For foundation design certain
reductions in the wind forces are permissible, The reason fof
this is the generally short duration of the high wind given as the
'basic' wind speed in the code, It was considered that taking
50% of the wind forces given by CP3 for a basic wind speed of
40 m/sec (London) would be adequate. The resulting wind pressure
distribution is shown in figure (9,29), This pressure was applied

as concentrated horizontal forces at the joints on the windward

face of the building,

9.3.2. The finite element analysis

The horizontal extent of soil beyond the raft included in the

analysis was 40 m on the side of the structure facing the wind and
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60 m on the opposite side. On either of the other two sides a
distance of 40 m was considered, Because of symmetry about the
ky plane, shown in figure (9.27), only half of the structure

was analysed,

The finite element mesh is shown in figure (9,30). The depth

d of the soil was varied between 15 m and 175 m for the various

analyses. Each time the pattern and the number of divisions in

the vertical direction were kept the same, The detailed dimen-
sions of the finite element mesh are shown in figure (9.31a and

b). The raft ABCD in figure (9.31b) was divided into 40 plate

elements, The shear wall was represented by 6 plates such as

FGJH, HJLK, etc, in figure (9.31a)., The beams, the columns and

the diagonal bracings were all represented by prismatic members.

The model consisted of 1632 joints, 833 solid elements, 46 plates

and 876 members with 4419 unknown degrees of freedom.
A total of ten analyses were performed, These are:

1 A fixed base analysis with no soil.

2 The analysis of the complete structure, the foundation and the
soil, with the depth of the clay layer taken as 175 m and the
thickness of the raft as 4 m,

3 The same as analysis 2 but 25 m deep piles werc embedded in
the soil, These were assumed to be a group of piles under
each column with an equivalent diameter of 0.9 m. The raft
was considered to act as pile cap.,

4 The same as analysis 2 but the depth of clay was reduced to 50 m,

-5 The same as analysis 4 but with 15 m deep piles,

6 The same as analysis 4 but the thickness of the raft was

reduced to 1,5 m,




l_ x
— wisg o0} wisl _\

ﬂ // // / / P/
8 m.. AN // ,,/ wV
L @ ot gs NN

\—uwse —¢— s¢ s - s lvAlEmm\/M\v

e 1 RO

o

™ > - A ] - —T l.__‘r A -

L\ IR i L K
SN\ T [ T [ e [ '

=y
PR

4

35m

Plane of
symmetry
N
S
S

Wind direction

: d varies between 15 m and 175 m

Note
FIGURE 9.30 FINITE ELEMENT MESH OF 50-STOREY STRUCTURE



P_zﬂm.,lom_
L \ T )| | ‘
‘;‘f
'S " E
(Tg]
FAUNI ™
J AN
J AR | | l
At ‘
‘e iAW
Y
——— Ho &
Wind direction %
3.5m i
\ W ALW
e _l_ \VARY
v THHE 8
i f\xr\
o
~ E
ER AW ALY
(=, 1/
o Y\ 0
[\ 1 b
i Y
I \‘ A
M Q[T w0
a3
e[ J] L| P| S
v 2
‘ AD F| H K| N R| Bg|
1 d
L@Tﬁ
d d
L 3@-5'
‘ 20 —ote—3610 8a@5 le—3 @10~} 220 l-x
@ ® ®20m
a0 e i Al -
{a) ELEVATION
160m
" il 1 —
Column The raft edge

m -

: Sk —f1omp— E’_/ i
;gr' —&‘ V# Y4 o ‘é
o~
T LA K INCTIR 9
g D c

E kY
™ ™
© -%_
l -
™~
; {
' (b) BLAN

Note: Depth d varies between 15 m and 175 m
FIGURE 9.31 DETAILS OF THE FINITE ELEMENT MESH FOR 50-STOREY STRUCTURE



231

7 The depth of clay was 15 m, the thickness of the raft was
4 m and no pile was used,

8 The same as analysis 7 but with 1,5 m thick raft,

9 The same as analysis 8 but 9 m deep piles were used,

10 The same as analysis 9 with the pile depth increased to 15 m.
This was equal to the depth of the clay used in this analysis
and therefore the ends of the piles were bearing directly on
the rigid stratum underneath, In the analyses with piles,
all the surrounding soil elements were connected to them
throughout their lengths, The piles themselves were represented
by prismatic members.

In the method of chapter 5, the analysis starts with the
calculation of the Boussinesq stresses in the soil assuming fixed
support reactions. The resultant dead and imposed load acted
eccentrically on the raft as the building was subjected to wind
forces. It was therefore considered that the final contact
pressure distribution under the raft would be non-uniform with the
maximum ordinate along the edge BC and the minimum along the
edge AD of the raft, see figure (9,31), To speed up convergence,
it was initially assumed, that the pressure under the raft was
not uniform but varied linearly from 27,3 kN/m? at the edge AD to
a maximum of 61.9 kN/m® at the edge BC.

The Boussinesq stresses due to the above distribution of
surface pressure were used to choose the appropriate my values
for the solid elements from table (5.3), These were then used to
carry out the first cycle of the finite element analysis, The my
values, the displacements, the stresses and the strains were

successively modified by using the stresses given by the finite

element analyses,
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9.3.3 Results of the analyses

9.3,3,1 The deflections of the structure and the raft

A summary of the deflections obtained by the various analyses
is given in table (9.6). The sway is the maximum horizontal
deflection of the internal frame at the top of the building.

The maximum and the minimum settlements of the raft occurred at
points B and A, see figure (9.31)., The differential settlement
is the difference between these two values,

A fixed base analysis gave the sway as 1/1913, The structure
is therefore considered to be stiff in the horizontal direction,
When the soil was included in the analysis this sway increased.
For the deepest layer of clay (175 m) the ratio of the sway to
the height was as high as 1/68, This was accompanied by a tilt
of the raft. The tilt, defined as the ratio of the differential
settlement to the length AB of the raft, was as high as 1/71 for
analysis 2 which was considered to be excessive, Analysis 3 with
25 m deep piles was performed to study the effectiveness of the
piles in reducing the deflections, The reduction in both the
sway and the differential settlement was about 18%, The ratio
of sway to height obtained from analysis 3 was 1/83 and the tilt
was 1/87, It was concluded that the deflections were unacceptable
even when piles were used.

In reality, a depth of 175 m of clay is rare and the above
analyses were performed to examine the effect of depth of soil
on the deflections. The sway and the differential settlement are
plotted in figure (9.32) against the depth of the clay. The
values were obtained from analyses 1, 2, 4 and 7,see table (9.6).

In all these cases the thickness of the raft was 4 m with no piles.




ongs | T | 2, | B, | S, | Bzt | teten

Noo | %% Gy ™ ) (m (m) (m)
1 Fixed supports 0.092 0 0

2 175 0 4 2,58 0.841 1.08

3 175 25 4 2.117 0.687 0.92

4 50 0 4 2.355 0.767 0.848
S 50 15 4 2,118 0.689 0.764
6 50 0 1.5 2.486 0.779 0.855
7 15 0 4 1.292 0.353 0.379
8 15 0 1.5 1,42 0.358 0.383
9 15 9 1.5 1.25 0.282 0.318
10 15 15 1.5 0.155 0.009 ' 0.0136

TABLE 9,6 DEFLECTIONS OF THE 50-STOREY STRUCTURE
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It is observed in figure (9.32) that there is a rapid increase in
both the sway and the differential settlement as the depth of the
clay increases up to about 50 m, Beyond the points B and E, the
portions BC and EF are relatively flat and nearly horizontal
indicating that increasing the depth of clay beyond 50 m does
not significantly increase the deflections of the structure,
As the depth was increased from 50 m to 175 m both the sway and
the differential settlement increased by only 9.6%., The reason
for this small increase is that the stresses in the soil reduce
with the depth, Thus most of the settlement is caused by the
compression of the highly stressed top region of the soil and the
contribution of the deeper regions with low stress is negligible.
This will be explained in greater detail later in the chapter
while describing the stresses in the soil.

Analysis 6 with 50 m deep clay, 1,5 m raft and no pile gave
a sway of 2,486 m, see table (9,6), which is 1/71 of the height of
the building, It also gave a tilt of 1/77, Increasing the
thickness of the raft to 4 m in analysis 4 reduced the sway by
only 5.3% and the differential settlement by 1,5%. As 15 m deep
piles were also included, in analysis 5, the sway reduced by
14,8% and the differential settlement by 11,6%, The deflections
are however still too high to render the structure usable. This
indicates that neither the use of a heavier raft nor the inclusion
of the 15 m piles solves the foundation problem of this building
when the depth of clay is 50 m,

The depth of clay was then reduced to 15 m for analyses 7 to 10
in which a significant reduction of the deflections was observed,

When no pile was used in analyses 7 and 8 the sway reduced by 45%
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from the case with 50 m clay for a raft thickness of 4 m and by

43% for a raft thickness of 1,5 m, The reduction in differential
settlement for both the rafts was about 54%, The inclusion of the
piles in the 15 m clay in analyses 9 and 10 reduced these deflections
still further. The sway and the differential settlement are plotted
in figure (9.33) against the depth of piles for analysis cases 8, 9
and 10,with 15 m deep soil and 1.5 m thick raft, The portions AB
and DE of the curves are flat indicating that the deflections do

not reduce significantly as the pile depth is increased upto 9 m,
indicating that short piles do not strengthen the foundation, This
is because a 15 m deep layer of clay is highly stressed throughout
the depth as will be shown later in the chapter.

As the length of the piles was increased further both the sway
and the differential settlement decreased rapidly as shown by the
portions BC and EF in figure (9.33), When the piles were 15 m long
and rested directly on the rigid stratum under the clay layer the
sway reduced by 98% of that for the case with no pile and the
differential settlement reduced by 97%, The ratio of the sway to
the height for this case is only 1/1135 and the tilt is 1/6667.
These low values are due to the fact that the loads of the structure
were transmitted directly to the rigid stratum by the end bearing
piles. The piles themselves carried most of the load and the soil
did not settle appreciably, It is considered that the use of the
piles penetrated down to the rigid stratum gives an acceptable
foundation for this structure,

The sway and the settlement of the internal frame UVWXYZ, sec

figure (9.27) and (9.28), are plotted in figure (9.34)., The sway
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shown in this diagram is the horizontal displacement of the

joints on the external column YZ in the frame., It was observed
that the axial deformations of the beams were negligible and

the horizontal displacements of the other columns were almost the
same, The sway diagrams obtained by the various analyses are
indicated by the analysis number encircled beside each curve. The
settlements of the raft for analyses 8 and 9 are shown in figure
(9,34b)., In analysis 8, as the raft tilted from the position AB
to A'B', the column YZ assumed the new position Y'Z', This is
because the rigidity of the joint Z between the column and the
raft and the in plane stiffness of the frame UWWXYZ forced the
column to rotate with the raft, Notice too that point Z moves
horizontally to Z' which is due to the deformation of the soil,
ZZ' was 0,1 m for analysis 2., A conventional analysis neglects
this, It is considered that while the building is subjected to
wind forces, sway is aggravated by the accompanying differential
settlement of the raft, When the differential settlement was reduced
to 0.609 m in analysis 10 by using the end bearing piles the sway
reduced to only 0,155 m at the top, The resulting sway diagram
is almost coincident with the one obtained by analysis 1 assuming

fixed supports.,

9,3.3,2 The bending moments

The bending moments in the members of the frame obtained by
the various analyses were examined by comparing them with those
obtained by assuming a fixed base, It was observed that the
difference in these moments was in direct proportion with the sway

and the differential settlement suffered by the structure. As a
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15 m depth of clay is thought to be a practical figure, analysis
8 was singled out for a detailed study of the bending moments.

The redistribution of the bending moments was most significant
at the base of the building. At point Z, in column YZ, see
figure (9.28), the fixed base bending moment was 325 KNm and the
flexible base moment was -5600 kNm showing a reversal of the sign.
The difference between these moments reduced rapidly along the
height of the building and vanished at the top. The column moments
in the bottom 7 floors of the internal frame UVWXYZ, are shown
in figure (9.35). In this diagram the solid lines indicate the
bending moments obtained by analysis 8 and the dashed lines indicate
those obtained by analysis 1 which assumes a fixed base. In the
bottom four storeys the fixed base moments are very small while
the flexible base ones are very high. In column YZ these moments
are opposite in sign in the lower three storeys. In the other
columns the maximum difference between the flexible base and the
fixed base moments is as high as 92,.6%, This occurs at point 2!
at the base of the internal column Y'2', see figure (9.35)., Above
the 4th floor the difference reduces rapidly and becomes a
maximum of only 27.6% at the 6th floor level, From this floor up-
wards the two bending moments converged rapidly and the difference
became negligible, The column bending moments in the top eight
floors of the internal frame are shown in figure (9,36).

The bending moments in the beams of the bottom seven floors
of frame UVWXYZ are shown in figure (9.37). Again the difference
between the flexible base and the fixed base moments is most
significant near the base of the building and reduces along the

height. In the lst floor there is a reversal of sign of the
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moment in beam BIB2 but they become of the same sign in the 2nd
floor in 3334 directly above BIBZ' The maximum difference of the

beam moments in this floor is 89,6% which occurs in B.B This

3°4°

maximum difference reduces in the higher floors becoming only 4.4%

at the 7th floor., It was observed that by about the 20th floor the
difference between the flexible and the fixed base moments reduced

to almost zero. The beam bending moments in the top eight floors

of frame UVWXYZ are shown in figure (9,38), The fixed base moments
were almost the same as the flexible base ones and are shown only

at the top of the frame where a difference of only 0.2% is recorded.

The maximum difference between the fixed and the flexible
base moments were calculated for all the beams and the columns of
the whole structure at each floor level and expressed as o percentage
of the flexible base moment, These maximum differences for the
beams and the columns are plotted in figure (9.39) against the
floor level, There is a sudden change in curvature of both the
curves in the figure at about the 5th floor level where the number
of bays of the structure reduces from 4 to 2, It is considered
that the bottom 5 floors of the building are stiffer and suffer
the most by the tilt and the sway of the building,

The rapid dissipation of the difference between the fixed and
the flexible base moments in the structure is in agreement with the
findings of Litton and Buston (1968) who analysed a symmetrical
S5-bay 23-storey plane frame subjected to an applied vertical dis-
placement of each leg in turn, Although the structure considered
here is three dimensional and subjected to both sway and differential
settlement the influence of these become insignificant in the higher

leOI‘S‘.
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9,3,.3,3 Stresses under the structure

The maximum vertical stresses in the soil were directly
under the raft and reduced with the depth., The variation of
the vertical stress with depth under the column YZ, see figure
(9.30), is shown in figure (9.40). Curve (1) in this figure
shows the stresses obtained from Boussinesq's equations for the
applied surface loads ignoring the structure, Curve (2) shows
those obtained by analysis (2) assuming the depth of clay as 175 m,
curve (3) represents the stresses from analysis 4 with 50 m
clay and curve (4) shows the stresses for a 15 m deep clay in
analysis 8, It is observed that the Boussinesq stresses are higher
than those given by curves (2) and (3) throughout the depth,
However, the stresses reduce with the depth and the difference
between curves (1) and (2) become negligible at a depth of about
150 m, Curves (2) and (3) almost coincide, with curve (3) showing
about 10% more stress at a depth of 50 m, This is because in the
case of curve (3) there is a rigid boundary at this depth which
increases the stresses, Below this depth the stresses indicated
by curve (2) are small and therefore it is thought that the soil
below this depth does not significantly contribute to the total
settlement of the 175 m thick layer, In both analysis 2 and
analysis 4 the total settlement is caused mainly by the compression
of the top 50 m of the soil, Hence these two settlements differed
by only 9.6% as shown in section 9.3.3.1. Curve (4), on the other
hand, indicates high stresses throughout the 15 m deep layer of
soil. At the bottom of this layer the stress is 34% higher than
the one obtained for a 50 m deep soil, However, since the deptb

of the compressible soil is only 15 m in analysis 8 the total
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settlement reduced by 54% from analysis 4 with 50 m clay. This
is because of the considerable stresses in the soil between 15 m
and 50 m in the case of curve (3) which contributed significantly
to the settlement,

When piles were included in the 15 m clay there was a consider-
able change in the variation of the stresses in the soil. The
vertical stress under the column YZ is plotted against the depth in
figure (9.41) for a 15 m deep soil with no pile, 9 m piles and
15 m piles. The inclusion of the 9 m piles reduced the stresses
by as much as 34% in the top 9 m of the soil, Below 9 m, however,
the stresses increased by 20% over the no pile case, Thus while
the settlement of the top 9 m of soil redﬁced due to the presence
of the piles, that of the bottom 6 m increased, This is why the
settlement of the raft was reduced by only 21% by using the 9 m
piles as stated in section 9,3.3.1. When the pile length was
increased to 15 m, analysis 10, to penetrate them down to the
rigid stratum the load was directly transmitted to this stratum
through the piles. The stresses in the soil throughout the depth
were negligible as shown by the dashed curve in figure (9.41). As
the piles themselves were quite stiff there was a significant
reduction in the settlement,which was only about 3% of that with no
pile,

The distribution of the vertical stress in the soil in x-direction
for analysis 8 is shown in figure (9.42), The stresses are plotted
at various depths for the vertical section E-E shown in the top
figure. The corresponding Boussinesq stresses obtained by neglecting
the structure are shown by the dashed lines, Near the edge AD of

the raft, the Boussinesq stress is high with a value of about 30 kN/m2,
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while that obtained by analysis 8 is almost zero. This is because
the Boussinesq stresses were calculated for a linearly varying
surface load with an ordinate of 27,3 kN/m2 at the edge AD and
61.9 kN/m2 at the edge BC of the raft. As the structure tilted
about the edge BC the stresses given by the finite element
analysis reduced along AD. At shallow depths, there is a sudden
reduction in the stress to the right of BC. This sudden reduction
in stressesbecomes less marked at the deeper levels, The depth
of the layer was only 15 m and therefore the whole thickness was
highly stressed, The maximum stress reduced by only 19% at a
depth of 13.5 m from the value at 0.75 m.

The curves in figure (9.42) show that the stresses reduced
rapidly at points to the left of AD and to the right of BC, This
was also observed in the stress distribution in z-direction which
is shown in figure (9.43). The stresses are plotted for the
vertical section F-F passing through the maximum stress ordinate
in figure (9.42). In both figures (9.42) and (9.43) it is noticed
that a column of high vertical stress developed directly beneath
the raft which diminished rapidly away from it., This indicates
that the lateral extent of soil included in the analysis could be
reduced, This reduces the number of solid elements in the problem
and thus renders the analysis cheaper. It is considered that an
extent of 10 m on side AD and 25 m on side BC beyond the raft as
shown in figure (9.42) and a distance of 17 m in z-direction beyond
the edge CD shown in figure (9,43) would be adequate, The maximum
stress on this boundary is only about 4% of the maximum stress

under the raft.
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CHAPTER 10
CON ONS SUGGESTIO

Several features of a realistic interaction problem were listed
in chapter 1. One of them is that the non-linear behaviour of the
system must not be ignored. In fact it has been demonstrated that
the load-bending moment and the load-deflection relationships of a
structure are essentially non-linear. This is caused by the non-
linear soil properties which must be adequately represented in the
analysis.

The spline functions used in chapter 2 to represent the stress-
strain curves of the soil were found to be very efficient. These

gave an exact fit with the experimental <t curves, The load-

oct Yoct
deflection curves obtained by using them compared favourably with
the experimental results. An analysis using the hyperbolic rep-
resentation was found to be inadequate, Although the mathematical
formulation of the spline functions is more involved than that of
a single polynominal or hyperbola, the procedure can easily be pro-
grammed into a computer. In fact,for the soil in the model experi-
ments, this program was run only once and the resulting spline
parameters were used repeatedly for the analyses of all the models.
It is concluded that not only do these functions give an exact
representation of the non-linear soil properties they are also in-
expensive to use,

The saving of the computer time has been a major aim in the
development of the computer programs. An isoparametric hexahedral

and a rectangular parallelopiped element were used to represent

the soil, It was found that since the former requires numerical
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integration, a considerable saving can be achieved by deriving the
stiffness matrix of the latter in an explicit form. This was done
in chapter 3. Furthermore, by dividing the soil into a limited
number of elements of the same dimensions, a finer mesh can be
used, This improves the accuracy of the analysis, Using rectangular
parallelopiped elements also enabled the data preparation to be
automated.

As stated in chapter 1, the tensile weakness of the soil causes
cracks within the soil mass and at the boundary between the soil
and the foundation. The finite element method was extended in
chapter 4 to represent these cracks in a three dimensional struc-
ture-soil system. By using dummy joints, the procedure allows
physical cracks to take place, propagate as well as close at a
later stage of the loading. This method was found to be superior
to those that treat the cracks as zones of material weakness,
because the actual propagation of the cracks can be followed and
their widths calculated. The computer program is made entirely
automatic so that the complete crack propagation history is obtained
in a single analysis. The program successfully reproduced the
cracks observed during the model experiments,

A method of analysing structures resting on clay was proposed
in chapter 5,in which the long-term settlements were considered,
It was demonstrated that the conventional method of settlement
calculation in clay is erroneous in three respects: (i) It ignores
the structure, (ii) it ignores Poisson's ratio and (iii) it uses
Boussinesq's equations to calculate the stresses in the soil by
assuming it to be an elastic continuum. It was shown that even for

a plane frame, the stresses in the soil disperse in three directions



243

and the influence of lateral stresses on the vertical settlements

is quite significant, As the value of Poisson's ratio approaches

0.5 the settlements become excessive. Therefore, for such soils one
dimensional settlement calculation is grossly inadequate and exhaustive
analyses of the type proposed here are warranted.

The large finite element meshes analysed in this thesis required
a large computer storage for the stiffness matrix. To solve this
problem, two methods of sequential construction of the stiffness
matrix have been developed in chapter 6, The first divides the
joints in the mesh into groups so that only two consecutive are kept
in the core store at any time. The second method, which is a
further development to save space, constructs the stiffness matrix
one joint at a time. The core requirement for this method is nil
as the small temporary storage required is allocated to other arrays
after the construction of the stiffness matrix,

In this method however, an element has to be considered several
times, Nevertheless, it was found that this method needs only
slightly more time than the joint group method. This is because
the stiffness terms corresponding to each node of an element are
explicitly and separately defined in the program. By using this
method, it is possible to obtain finite element analysis of large
structure-soil systems without an excessive core or time require-
ment, In fact the investigation into the cost of running a job
proved that the actual commercial cost of analysing large problems
is not exhorbitant. This is contrary to the belief of the advocates
of simplified analysis methods who are often sceptical about the

elaborations involved in the finite element approach,

Chapter 8 showed that a good correlation of the experimental
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and the theoretical results is obtained by analysing the complete
system. The non-linear behaviour of the structure and the separation
of its foundation from the soil can be studied only by performing
such an analysis.

The stiffness of a structure was found to have a definite
influence on the settlements of its foundation, When the stiffness
of the tall structure model was reduced,by increasing its base
height, the settlements increased, In the three-bay frame there
was a reduction in the settlements when the pads were replaced by
a pair of strip footings. When a structure is loaded at a point,
the unloaded parts contribute to the reduction of its deformations.,
Therefore, if the soil under one part of a structure is weak,
stiffening the structure elsewhere will reduce the deflections.

The sway and the bending moments in the model structures were
compared with those obtained by a fixed base analysis., The following
conclusions are drawn from this study:

1) As the applied loads are vertical, the fixed base sway is negli-
gible in all the models even when the eccentricity of the load is
maximum, The actual sway is several hundred times higher than that
shown by such an analysis. This is caused by the tilt of the struc-
ture due to the differential settlements of the foundations.

2) The difference between the fixed base and the flexible base sway
increases as the structure becomes more slender and decreases as it
spreads in the horizontal direction. At the maximum eccentricity
of a load of 2 kN, the sway in the single bay space frame was some
220 times higher than that given by a fixed base analysis. This
factor increased to 350 in the tall structure model and reduced to

110 in the case of the three-bay frame resting on strip footings,
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3) The overall stiffness of the structure reduces the sway. The
sway of the three-bay frame with pad footings was about 150 times
that given by a fixed base analysis, while this factor was only 110
for strip footings. "In the case of the box culvert model, which

had a stiff cross-section, the actual sway was only 33 times higher
than the fixed base sway.

4) The bending moment redistribution due to a flexible foundation
medium depends on the geometry and the stiffness of the structure.
In both the single-bay and the three-bay framed structures, the
bending moments changed throughout the beams and the columns. On
the other hand, in the slender tall structure model with a latticed
base, the change in the moments was confined only inside the base.
While these moments were sometimes opposite in sign and had a mag-
nitude as much as 30 times higher than the fixed base moments,

the difference was negligible at the top of the structure., In the
cross-sectionally stiff box culvert model the moments were only

2 to 3 times higher than those given by the conventional analysis.,
5) The magnitude of the bending moments at the base of a structure
depends on the type of the foundation, When individual pad footings
were used in the single-bay and the three-bay space frames, the
column bases were relatively free to rotate and the bending moments
were nearly zero under symmetrical loading. On the other hand, when
the columns or the walls were interconnected by a combined footing,
in the tall structure, the box culvert and the three-bay frame, the
magnitudes of the base moments were considerable, In some cases
they were opposite in sign to those given by a fixed base analysis

and had high values,

The economy in the use of the computer programs was demonstrated
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in chapter 9 by analysing two large practical structures. The
adequacy of the analysis Qas proved by reproducing the domed
deflected shape of fhe rafts and the high bending moments in the
columns, which were observed in the actual silo, It is concluded
that when a series of unconnected structures are constructed

side by side they influence each other via the soil, They lean
towards each other and become interconnected causing stresses in
their members. Such tall and slender silo structures are considered
highly susceptible to foundation movements and they warrant an
elaborate analysis of the type performed here.

In the analysis of the 50-storey space structure, the depth of
the soil was varied. The investigation showed that reducing the
depth of soil does not significantly reduce the settlements, It is
inferred that most of the settlement is caused by the compression
of the top few metres of the soil as the stresses become insignificant
at greater depths. The use of a thick raft or of piles that are
confined only in the top highly stressed zone of the soil does not
appreciably reduce the settlements, The choice of a foundation for
such a structure must be based on a study of the type performed here.
Such a study gives a direct assessment of the stresses in the struc-
ture due to the settlements and the sway caused by various types
of foundation.

To increase the applicability of the proposed computer programs
certain modifications can be done.. A linear interpolation was

performed between two neighbouring < curves of the soil to

oct Yoct

obtain the shear modulus for an intermediate value of 9 This

ti’
was found to be adequate for the sand used in the model experiments,

However, in a general case, a more realistic representation of the
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soil properties may be obtained by the spline interpolation of the

three dimensional surface of « and o using the bicubic

oct’ Yoct octi

spline functions.

The incremental method was found to underestimate the deflections
of a structure for a particular load. A better correlation between
the theoretical and the experimental results may be obtained by
performing a mixed iterative and incremental analysis. But the
use of Newton-Raphson type of iteration in every increment of the
load increases the computer time, A restricted number of iterations
with a large increment size may however prove to be beneficial,

As mentioned in the thesis, the prismatic member and the plate
element subroutines were taken from an existing program and in-
corporated into the author's computer programs. These subroutines
were written in such a way that they could be used easily in con-
junction with other isoparametric elements. This resulted in many
unnecessary storage and computations and were kept basically
unaltered by the author. However, a major alteration of the pro-
gramming technique will enable these unnecessary operations to be
avoided, thus reducing the storage and the time considerably.

For instance, the direction cosines of the members are cal-
culated from the joint co-ordinates whenever the mesh geometry
changes due to a crack, At present, this requires the storage of
all the joint co-ordinates in a permanent and large array. This
can be avoided by calculating the direction cosines and storing
them on a disc for future use.

The degrees of freedom of the joints are stored in three
different ways in separate permanent arrays. The array IX contains

the degrees of freedom in the index form as supplied in the data,
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These are then used to construct an array IR containing 6 rows

and as many columns as there are joints. Each element of a column
contains the numbers 1, 2, 3, 4, 5 or 6 indicating the presence of
ax, Gy, Gz, ex, By or Bz. This array facilitates the calculation

of the location of an element in the overall stiffness matrix

where a particular contribution from a member or plate should go.
Another array DF contains the accumulated degrees of freedom upto
and including each joint of the mesh. This is used to locate the
rows of the overall stiffness matrix that correspond to a particular
joint, Both the arrays IR and DF can be avoided and the same infor-
mations can be derived directly from array IX.

The k A matrix of each member, required for the calculation of
the forces and the moments, is evaluated in advance and sent to the
backing store, These are then repeatedly transferred to the core
to calculate the forces after each increment of the load, On the
other hand, the DBA matrices of the plates are repeatedly evaluated
after each increment and used to calculate the stresses from the
nodal displacements. Both of these are time-consuming procedures.
The computer time can be reduced considerably by writing explicit
expressions for the member forces and the plate stresses in a manner
very similar to that described for the solid elements in chapter 3.
The programs proposed in this thesis already proved to be capable
of analysing large structures and the improvements suggested will
improve the efficiency of these programs,

The results obtained bring out new features of the behaviour
of various structures resting on soil., However, it is considered
that many other structures should be analysed and tested in order to

improve our understanding of soil-structure interaction.
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The stiffness matrix for a solid soil element can be
generalised so that the material property G may vary éithin the
element and hence the soil mass. This may become necessary for
two reasons: (1) in ahomogeneous soil G varies with depth and
(2) G also varies in x and z directions for non-uniform soil, To
obtain this generalised stiffness matrix, matrix D must be altered
so that G is a function of x, y and z. A linear variation of G
then requires eight values of G, one at each node, Referring to
the solid element in figure (3.3), let the shear modulus at the
nodes be G, G2 vesse GB' Along the line 1 to 3, the value of
G at a distance y from node 1 is By13 given by:

B3 = 6 * Y63 - G,)/b
Similarly along the line 2 to 5, the value of G is
8y25 =Gy + y(G5 - Gz)/b.

In the xy plane 1235, the value of G at any point (x, v) is

Zey1235 = Sy13 * ¥ (85 - 813072
Similarly in the xy plane 4678, the value of G is

8ya678 = Byas * X (By7g = Byye)/a
Finally the value of G at any point (x, y, 2) is given by:

Sxvz = Bxy1235 * 2(Bxyag7s ~ Bxy1235)/C
Substituting for gxylzss etc, we obtain

8.y = 6y * ¥(G5=G))/b + x[G, + ¥ (Gg = G,)/b - {6, +y (6g - Gy)/b}])/a

yz
+z [:F4+y(G6-G4)/b+x[G7+y(G8-G7)/b-{ Gy+y (Gg=G,)/b}]/a=[6y+y (65-Gy) /b

This expression for gxyz should replace G in D matrix given in

equation 3.6.1 on page 58.
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Similarly if v varies within the solid element, then the

value of v at any point é, Y, z1 will ke given hy:

";';yfvl*ycvs'vll/m'*[uzﬂrCvS'vZ)/b;{ul+ycv3-01)/b}]/a+
z E,4+y (vg-v,)/b+x [v7+y(_\:8-v7)/b;{u4+ycvs-v4)/b}]/a- [v1+y (vs-vl)/b
+x{v2+y(u5-v2)/b- (\JI+)’Cv3-v1)/I:D }/aﬂ /c

It should be pointed out that while it is simple to include a
variable G iﬁ matrix D, the variation of v makes the integration
process in equation (3.7) of page 58 rather difficult.

It should be pointed out that the value of v calculated in
this thesis assuﬁed that during the triaxial test, both 9y and
oz are variables, In fact 9z is constant and thelvalue of v

should be calculated as follows:

Since os is constant, the axial strain £, is g, = dale where

1
&cl is the change in the axial stress. The lateral strain

+g, =

€5 i553 = -vAcle. The volumetric strain €y is E; 2e 1

3

4oy (1-2v)/E = €y (1-2v). Thus v = 0.5 (1 - ev/el). This

indicates that when the volume is expanding and e, is compressive,

1
v will be greater than 0,5, This means that with v<0.5, the

strain in the soil should not exceed point A in figure (7.13a).

For strains larger than point A, the finite element methods pro-
posed in this thesis are not valid, It is therefore suggested

that methods should be developed to deal with cases where excessive
strains are developed so much so that v exceeds 0.5.

In figure (3.7a) it should he noted that the incremental

analysis actually follows the line 0a'b", where a'b" is parallel



251

to ab', This is one reason why the theoretical approach under=
e;timates the deflection undér‘a given load. One way of over-
coming this difficulty is to assume upper and lower bounds of the
stress-strain curve. Whenever the stress at a point exceeds a
bound the incremental load should be altered to bring the stress

within the tolerance imposed,



APPENDIX 1

LISTING OF THE SPLINE FORMULATION PROGRAM

The FORTRAN Program listed below is written for running on
ICL 1900 series computers. It requires a core storage of about

9000 words for loading and execution.

PROGRAMCAZAD)

COMPRESS INTEGER AND LOGICA
INPUT I= CRO :
QuTPUT 2= LPO

QUTPUT a=LPI

TRACE 2

END

TKACE 0

MASTER SPLINE
ThlS PROGRAM FORMULATES THE CUBIC SPLINE S(X) FOR A SET OF X AND Y.
IT CALCULATES DY/DXx AND ALSU THRE CRORD SLOPE IN THE NEIGRBJURNOOD
OF GIVEN POINTS FOk COMPARISONs THE QUTPUT OF CHAMNEL 2 1S PKINTED
ON LINE PRINTERe CHANNEL 4 SHOULD BE ASSOCIATED WITH A PEKMAMNENT
FILE NAME. ThE QUTPUT TO ThlS FILE wlLL CONSIST OF TRE DATA REGUIKED
BY THE MAIN FINITE ELEMENT PROGRAM FOR THE NON=LINEAR ANALYSIS OF
STRUCTURE=SOIL INTEKACTION PROBLEMS.

ooooOoo0o0ooOGC

REh%l:(gg:oltaﬂ)oLtaﬂ)aLHtST)oBET(29a30)¢CPlIU):GT!IO-:D):XURriaﬂi
1.CS .
INTEGER SEQ(29%)
READC1.,100) HP:EG e
C MP=NO. OF CURVES», MGsNO+ OF POINTS WHERE Y & Dys :
READC1,103) (XORY(1),1m]1,MG) ¥Y/Dx ARE TO BE PRINTED
C XORY VALUES SHOULD BE IN ASCENDING ORDERe THESE ARE INTERMEDIATE
C X VALUES WHERE Y» DY/DX ETC ARE TO BE PRINTED.
READC1,1U3) (CPC(1)sl=]amP)
C CPCI)=CONFINING PRESSURE OF CURVE NQ+!
WRITECQs4l1) MP
401 FORMATC(IDJ)
DU 12 JJsl.MP
C N IS THE NUMBER OF NODE POINTS
KEADC1,1012 N
NaN=2
wWrITE(4,402) CPUJJ)IaN
402 FORMATC(E20.10.110)
DO | I=laie2
READC12102) x¢1)oYC])
C X & Y VALUES AT EACH NODE.
I WRITEC42,403) XC1),Y(L)
403 FORMATC(2E2U.10)
DO 2 Isdatved
2 LOlisxCleld=xtl)
LMUL)=2s (LUl del(R))
SEQ(1)=0
SEQ(R)={
DO 3 I=2,N
LM(Bel=2)sL(])
LM(2el=])u2s(LCl)eLCle)))
3 SEQUle])s2s]e]
DO 4 l=j»N
4 BET(To 1086000t CCY(ToR2) oY tleog))/LtToqd)mtiY oy dorclddzLtIdd)
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201

Ni=N+]

NA=SEQINI)

CALL SOLUTIONCLMsBET2NaNA21.SEQsNL)

WRITE(2,205) JJ:CPCJJ)

FORMATC1H1s *CURVE NUMBER=®'513,7/,°' CUNFINING PRESSURE®'sF10+627)
WRITE(2.2012

FORMATC1HO» 'VALUES OF PH1 AT MODE POINTS's/»' NOTE: PHI 1S5 THE SE
1COND DERIVATIVE OF THE SPLINE FUNCTIUN's/»' PHICIISPRI(N+2)=0'2//»

210X, *NODE NOs'27X2 *PHI ')

5
202

S0
404

203

161

DO S I=1.N

IPix]+]}

WRITE(2,202) IP1.BET(l,1)

FORMATC10X,15:2X5E1546)

DO 50 l=lsN

WR1TEC4,404) BETC(l,1)

FORMAT(E20.10)

wRITE(2,203)

FORMAT (1H0» *VALUES UF X» Y AND SLODPE AT VARIOUS POINTS On THIS CU
IRVE's/7+" POINT'»11X2"X"27X» "CURRESPONDING Y ON SPLINE', 55X, 'MODULU
2S5's ) 1Xs *CHORD SLOPE'*»/)

ICUUNT=1

DO 60 KK=1lsMG

XOCTsXURY (KK

1JK=]

IF(XOCT-GE«X{N+2)) GO TO 20

1FCRUCT-LE-XC122 GO TA 7

DO 8 Is=2a.N+2 =

IFCXOCTLE-XCI)) GO TO 9

CONT INUE

Jsl

IFCJ=N=1) 0,010

IFC¢J=2) 029820

G?(JJ-KKJ-(-G-Y(J-I)*6¢Y(J)-(a-(IXIJ)-XDCT)ocei-CL{J-I)}tiz)'BET(J
l-2al)¢(a-ttXUCT-XCJ-I):ttz)-(L{J-l)-taJ)taEItJ-l:l:)l(éiL(J-l>1

SE(6oCXCUI=XOCTI*Y(J=1)+64CX0CT=XCJ=1) )oY I+ CIXCJI=XOCTIweI=C(LCJ
l'l))ttabltxtd)-xDCTJ)-BET(J-E:l)vG(XDCT-XtJ'll)-*a-(IL(J‘I}J"B)‘(
2X0CT=XCJ=12))»BETC(J=121)0/7C6*LCJ=1))

GO TU 6

GT(JJ-KK)l(‘&*YtJ'lJOGGY(J)-tS-(lxtJ)-XDCTﬁﬁtei-(LtJ'l))O*B}OBET!J
1=2212)/7¢C6%LUJ=1))

SECE68CXCJI*XUCTISYC(J=1)¢ 60 CXDCT=X(J=12)8Y(J)+((XCJI=XOCTIweI=C(LLJ
l-é));tEJltx(J)-ZDCT)J-BETCJ-aal))ltthtJ-l))

GO0 TA 6 -

98 GTC(JUsKKIB(=6enY(J=1)*6eYCU)* (30 (XOCT=XCU=1))%22)=(LJ=1)%s2))%

I1BETCJ=121))706enL(J=1))
SEC6eo(XCII=XOCTI*Y(J=])*6ev(XOCT=X(J=1))2Y L)+ ((XACT=X(J=1))»*]=(
2LCJ=1)282) s (AUCT=XC(J=1)))*BETCJ=121))/7(6e®L(J=1))
GJ TJ 6

7 GT(JJoRKIS(=bomYC])obewY(2)=CLL])**2)eBET(151))/C6s0L(]1))

20

99

6 IF(IJK=1) 0.,0.62

SEYCL)+GTC(JJsKKI®(XUCT=X(1))

GO T4 6

IFCICOUNT«NE-1) GU TO 99
CT(JJIKKIE (o Y (N 1)+ 68 YCN2)S(LIN+1)es2)2BETINs 1))/ (E8LIN®ID)D
SEY(N+2)*GTC(JJsKK)# CAQCT=X(N*2))
1COUNT=2

Gd TO 6

GT(JJsKKI=EGG
SEY(N+*2)+GT(JJsKK)#(XOCT=XI(N*2))
XOCT=XORYC(KKI=0+001

55=5

GGaGT(JJaKK)

1JKs JJK+ 1]
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63

GO TO &l

IFCIJA=2) D»0, 43
X1=x0CT

Yi=§

XOCTs XORY(KKI+ 0001
1JKs ] JK+ ]

GJd TOD &l

X2=x0CT

Y2=:S

© GT(JJsKKI= GG

60
204
100
101
i02
103
12

—

11
10

CSCJJsKKI=(Y2=Y]1)/(X2%X1)
WRITE(25204) KKsXORYCKK)2S5S5sGTCJJsKK)»CSCJIsKK)
FORMAT (13,2E20+ 602E21 4 6)

FORMAT(210)

FORMATC10)

FORMAT(2F0+0)

FORMATCSFD +0)

CONTINUE

STOP

END

SUBROUTINE SOLUTIONCA»BsNaNASNRHSs1SoNL)
DIMENSION ACNA) »BUNsNRHS)2 1SINL)SC(2)
INTEGER RsRJ282RI

DA 1 1s=)uh
RI=]=]1S(]+1)+]5C1)+]
J=Rl
RJaJ=15(Je12*]lSCJ)*]
R=R1 *

IFCRJ«GT«R) R=RJ
1JelS(l+l)=1+J
LaJ-R1l+]

CiLI)=sACLlD)
IF(R«GT+J=1) GO TO 2
DO 3 K=RadJ=1"
JEKBIS(J*])=J*K
M=K=Rl+|
ClLI=CILI=CIMI®ALJIK)
IFCJ=1) 0sra.0
JJulSCJ+1)
ACLJ)=sCILIYsACJL)

DO 5 Q@=1sNRHS
Bll,Q)=B(]l,Q)=C(L)*B(J,0)
JeJde]

GD Td &

11=]15(1«1)
Al(ll)=].0/C(L)

DO 7 Q=] ,NRHS
BlJsQI)=B(J,QI®ACL])
CONTINUE

IsN
Kel=1S5(I+])*15C1)+]
IF(K+EQ+]) GO TOD 8
IKnlS(]l+1)=1+K

Dd 9 8=1,NRHS
B(KsQ)=B(K,B)=ACIKI®B(1,Q)
KeKe]

IF(KeLT+12 GO TO 10
lz]=|

1FC]«GTeld GO TO 11}
RETURN

END

FINISH
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THE FINITE ELEMENTS

A2,1 SPACE FRAME MEMBER ELEMENT

The element is shown in figure (A2.1) in which the direction
of the p-axis is always from end 1 to end 2, Each end of the member
can have all three translations and three rotations as shown in
figure (A2.1b). The eight possible member forces and moments are
shown in figure (A2.1c). These are the axial force p_, two shear

forces SR and S., torque T and the moments at the two ends about

Q’
q and r axes MQI’ MQZ' MRl and MRZ‘
The irregularities due to the non-coincidence of the ends of
the member with the specified joints and that of the centroid of
the section with the shear centre are taken care of. In figure (A2.2a)
i and j are the joints specified at the ends of the member while A
and B are the actual centroids of the end sections. PCA and PCB
are the distances in p direction of the ends A and B from the joints
i and j respectively. QC and RC are the offsetsin the q and the r
directions of the member axis AB from the line ij. QS and RS in
the figure are the distances in q and r directions between the

centroid G and the shear centre C of the member cross section, as

shown for an angle section in figure (A2,2b).

A2,2 RECTANGULAR PLATE ELEMENT

The node numbering and the local axes of the element are shown
in figure (A2.3a)., Each node can have a maximum of three translations
and two rotations as shown in figure (A2,3b). The in-plane rotation
of the nodes about the r axis is suppressed. The in-plane displace=-

ments u and v and the out of plane freedoms w, ep and 6 are



(a) Reference axes

(¢) Forces and moments

FIGURE A2,1 SPACE FRAME MEMBER ELEMENT
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(a) Reference axes and node numbering

(b) Nodal displacements

FIGURE A2,3 RECTANGULAR PLATE ELEMENT



formulated separately, The element can be used either as a plane
element by supressing the out of plane displacements or as a

bending element by allowing these.
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ARRAYS AND VARIABLES IN PROGRAMS
DESCRIBED IN CHAPTER b

A Working space array.

AA Temporary array of co-ordinates of dividing planes for
automatic data generation,

BB Temporary array of co-ordinates of dividing planes for
automatic data generation,

¢ Temporary array holding reduction factors during
solution, -

cc Same as AA and BB,

DAS Diagonal address sequence array,

DOSP Incremental joint displacements matrix,

DSQ Incremental element stresses,

IB Array containing the numbers of the first passive block
required by each active block,

IC Last row number of each block,

ICS Crack state indicator,

INDCRK Indicator of a crack formed by activating a dummy joint.

INDDOF Indicator of a crack of any type,

ITS Number of joints where a check for crack is made.

IX Array containing the informations for each joint.

1Z Block size,

JGRP Array containing the last joint number of each joint
group.

JMISS Temporary array containing the number to be added to
each joint of the basic grid for automatic data gener-
ation,

LEFT Number of elements of stiffness array left over from

the previous joint or group in a solution block.
LGRP Solid element numbers belonging to each joint group.

LMGRP Member element numbers belonging to each joint group,



LMISS

LML

LPGRP
MC
NEJG
NJG
NJ1
NMJG
NOJ
NPJG
SNQ
TNQ
TOSP

TS

Temporary array containing the number to be added to
each solid element of the basic grid for automatic
data generation,

Location in the stiffness array of the last element of
a joint group.

Plate numbers belonging to each joint group.
Location of the first element of a block in DAlO.
Number of solid elements belonging to each joint group.
Total number of joint groups.

Last joint number of the first group.

Number of members belonging to each joint group.
Total number of joints in the finite element mesh.,
Number of plates belonging to each joint group.
Incremental joint stresses array,

Total joint stresses array,

Total joint displacements matrix,

Total element stresses array,

Array containing tensile strengths of the joints that
are likely to crack,
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