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SUMMARY. 

The finite element method is now well established as an 

extremely useful tool for the displacement and stress analysis of 

problems with complicated boundary conditions. One aim of this 

thesis is to investigate the suitability of the method in the 

solution of the range of Civil Engineering problems usually 

associated with Soil and Rock Mechanics. A further aim has been 

to extend the method into the analysis of complete structures 

integral with the foundation material. 

A suite of programs has been written to carry out finite 

element analysis in two or three dimensions using the new families 

of Isoparametric elements. The accuracy and efficiency of these 

elements has been assessed in relation to a typical foundation 

problem which can be analysed using more conventional methods. 

Two important non-linear two dimensional problems have been 

investigated namely the analysis of the plane strain compression 

test, involving the idealisation of smooth interfaces,and, crack 

propagation. In the former an iterative process has been followed 

to analyse the test and compare results with experimental conclusions, 

The process of crack propagation has been followed using an incremental 

method which involves changing compatibility conditions to introduce 

separations at element boundaries. 

The major part of this thesis is concerned with a method for 

analysing complete three dimensional structures together with their 

foundation materials. With this method it is possible to include the 

complex interactions of structure and foundation as well as the non- 

linear stress-strain response of the soil. In order to assess the 

accuracy of the method it was necessary to construct a model testing 

apparatus and conduct a series of experiments.
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1.1) Introduction. 

Except for a few very simple problems the inherent 

non-linearity of soil deformations cannot be analysed by 

normal techniques, It is the usual practice in soil 

mechanics to differentiate clearly between two different 

classes of computations of the state of stress and deformations 

in a soil mass. Terzaghi( ®*) referred to the two groups as 

the "elasticity problem" and the "stability problem". 

The stability problem is solved using limit 

analysis, which is performed by invoking a particular failure 

criteria, using a corresponding value of ultimate strength 

characteristic derived from a laboratory test. By this method, 

problems involving slopes, retaining walls and foundations 

have more or less successfully been treated. This method is 

considered adequate to check overall stability but it cannot, 

by definition, give any indication of the state of stress and 

deformation up to failure. Deformations are assumed to be 

zero up to failure, which is then sudden and catastrophic. 

The method provides at best an upper or kinematic bound to 

the problem. 

Stability analysis is useful in giving a first 

check to a design but the governing criterion is more likely 

to be one of working load deformations, Well before failure, 

as indicated by limit analysis, the interior panels and 

structure of most buildings would have suffered extensive 

damage, making the structure unstable. At present, common 

practice is to predict deformations on the assumption of 

linear elastic theory. A typical example of this is the 

design of footings on sand. Plate loading tests are carried 

out from which a representative value of Young's modulus is 

calculated. This modulus is then used in one of the classical
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solutions to calculate the deformations, which are invariably 

severely underestimated, 

There is obviously an urgent need for more realistic 

deformation analysis, particularly under general conditions. 

This need becomes even more urgent in the light of the 

pressures design Engineers are under, not only to create 

cheaper structures, but to build in areas formerly considered 

unsuitable. Engineers need rational scientific methods of 

analysis and as classical mathematics is capable of solving 

only very idealised field problems, it becomes necessary to 

turn to the field of numerical analysis for the answer. 

The Finite Element Method. 

The field of numerical analysis offers two 

main methais of solution. One, to solve the governing 

differential equations defining the displacements or stresses 

and then solve them numerically by methods such as the finite 

difference, or, jibe matrix methods, The latter methods have 

proved more powerful and adaptable than the finite difference 

methods in the field of structural and continuum analysis 

particularly because complex boundary conditions and shapes 

present easier solution. The matrix methods have evolved in 

the field of structural analysis where it is assumed that 

any structure consists of elements, each with a defined stiff- 

ness, which, when assembled into a structure behave as nearly 

as the actual structure. The matrix displacement method has 

proved the most popular. This expresses the internal member 

forces in terms of displacements at the nodes, and then proceeds 

to solve a set of joint equilibrium equations to determine the 

unknown displacements.
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The matrix displacement method has been extended 

to include the analysis of two and three dimensional continua. 

Conventional engineering structures can readily be idealised 

to an assemblage of elements interconnected at a discrete 

number of nodes. In a continua the true number of inter- 

connections is infinite so the application of the method is 

not immediately obvious. The concept of Finite Elements, 

introduced by Turner, Clough, Martin and Topp‘®®) attempts 

to surmount this problem by assuming the real continuum to be 

divided into elements interconnected at a finite number of 

points, at which, fictitious forces représenting the loading 

are assumed to act. This reduces the problem to that of a 

conventional structural type on which matrix methods can be 

used. 

In a text by Bienkiewic2z’**) five points are listed on 

how the approximation is made; ‘ 

(a) The continuum is separated by imaginary lines or surfaces 

into a number of finite elements. 

(b) The elements are assumed to be interconnected at a dis- 

crete number of nodal points situated on their boundaries. 

These nodal displacements are the basic unknown parameters. 

(c) A function (or functions) is chosen to define uniquely 

the state of displacement within each element in terms 

of the nodal displacements. 

(4) This function inowwo +<ed-te definesthe state of strain 

within an element in terms of the nodal displacements. 

These strains together with any initial strains and the 

elastic properties are used to calculate the stress 

throughout the element. 

(e) A system of forces concentrated at the nodes and equilibrating
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the boundary stresses and any distributed loads is 

determined resulting in the characteristic stiffness 

relationship. 

A finite element analysis is carried out by the 

use of relevant computer programs. The logical steps carried 

out in such a process are described briefly below; 

(1) Idealisation of the structural system. This requires 

the selection of the type and size of finite elements 

to generate the mesh to describe the system geometrically. 

It also requires a definition of the elastic properties, 

boundary and loading conditions. 

(2) Generation of the stiffness matrix quantities for the 

elements. 

(3) Superposition of the element stiffness matrices to develop 

the overall stiffness matrix of the total structural system. 

(4) Determination of the unknown nodal displacements of the 

problem by the solution of the system of linear simultaneous 

equations obtained using the equilibrium conditions at the 

nodes. 

(5) Computations of all other required values such as stresses 

and strains associated with the problem. 

Usually the accuracy and effectiveness of the 

finite element method will depend on the type and number of 

elements used in the mesh generation. Indeed, it may be noted 

that the finite element method provides an exact mathematical 

solution to a simplified structural idealisation of a given 

problem, so the idealisation is all important. By comparison, 

the finite difference technique provides an approximate Mathematical 

solution to equations which 'exactly" represent the physical system.
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Finite Element Formulation. 

For a typical element the components of dis- 

placement {f} are defined in terms of the nodal displace- 

ments {5}, by; 

ff} = ON] {3}, (2.2) 
where [nu] is a shape function matrix and is defined in such 

a way that the convergence criteria (discussed later) are 

obeyed. The strain at a point in the element can be de- 

termined from the differentiation of {f} to give a relationship 

of the form; 

te}, = B Lo}, (2.2) 
Following usual elastic theory the stress {o},, 

can be obtained from; 

to}, = DIle}, - fe},] + to} (1.3) ° 

where D is the elasticity matrix containing material properties, 

and fe 5 and {9}, are initial strain and stress vectors 

developed independently. 

The nodal forces, which are statically equivalent 

to the boundary stresses and distributed loads on the element, 

are defined as; 

3}, = Bs Fae Bend, } (1.4) 

where each of the forces 3 contains the same number of 

components as the corresponding nodal displacements fo, 3. The 

distributed loads {P} are defined as those acting on a unit 

volume of material within the element corresponding to the 

components of fe} at that point. 

To satisfy equilibrium the nodal forces must be 

statically equivalent to the actual boundary stresses and 

distributed loads. The simplest procedure, Zienkiewica‘ 9) 

is to impose: an arbitrary nodal displacement and*to equate
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the external and internal work done by the various forces 

and stresses during the virtual displacement. 

If the virtual displacement at the nodes is 

{3}, then from equations (1.1) and (1.2) the resulting 

displacements and strains are; 

aff} = Male}, (1.5) 
and ate}, =B dfs bo (1.6) 

The work done by each of the nodal forces is 

equal to the sum of the products of the individual force 

and corresponding displacement components; 

oe afey? tf), (2.7) 
and, similarly the work done per unit volume by the stresses 

and distributed forces is; 

afe}” fo} - afe}” [pj (1.8) 
which using equations (1.5) and (1.6) become; 

ajay - X"}) (2.9) 

Equating the external work with the total internal 

work, obtained by integrating over the volume of the element, 

the following expression is obtained; 

ajay. fF, = afsi9( [ate eirare)) - [ He rar)) (1.10) 

It can readily be seen that the above expression 

is independent of the value of the virtual displacement. 

Substitution of equations (1.2) and (1.3) into (1,10) yields 

= Gi. DB a(vol) {a}° | 2 D {eo} a(vo2) 

+/[* {op} a(vol) -[# {p} a(vo1) (1.11) 

This equation is the characteristic stiffness 

relation which is usually written as;
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f= xii + @), + 1, + (1.22) 
= Pp ° 

where the stiffness matrix is; 

i. 
k=/ B DB d(vol) (S35) 

and the nodal forces due to distributed loads are; 

FL, = - | N" fp} a(vo1) (1.14) 

those due to initial strain are; 

° 
Fh = me D fe,} a(vol) (1.15) 

and those due to intial stress are; 

for} 
Fl, = | BT jg} a(vol) (2.16) 

Requirements for Convergence. 

The division of a continuum into elements with 

prescribed displacements introduces the approximation of 

reducing the number of degrees of freedom of the system to 

a finite number. All the elements described in this thesis 

are displacement models and the stiffnesses are obtained 

from the minimisation of their total energy. Veubeke'*5) , 

showed that this leads to a lower bound of the strain energy, 

so that in general the structure will be too stiff and hence 

displacements are underestimated. To ensure convergence to 

the correct solution by finer mesh sub-division there are 

certain requirements that the assumed displacement function 

must satisfy .(467 66298) 

The displacement function should be able to re- 

present the true displacement distribution as closely as 

possible, which gives rise to the following requirements;
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(a) Internal and interface compatability of displacements, 

between adjacent elements should be kept. 

(b) Rigid body motions should be possible without straining. 

(ce) Any required constant strain could be reproduced. 

Historical Review of the Finite Element Method. 

Technological advancements have created a need for 

fast and accurate analysis of large and complex structural 

systems which present great difficulties to obtaining rigorous 

mathematical solutions. The development of high speed electronic 

digital computers has generated great interest in numerical 

methods related to the solution of engineering problems. 

Parallel development has occurred in matrix concepts and 

operations which have proved very adaptable to the logical 

operations of the digital computer. It is against this back- 

ground that the Finite Element method, together with the dis- 

placement model, has developed to become one of the most 

powerful and adaptable tools available to the Engineer for 

analysis, relieving him from long hours of tedious mathematical 

computation. 

It was as long ago as 1872 that Navier first suggested 

a method of analysis based on taking the deflections as the 

unknowns. The method received little attention at the time 

because of the amount of computation involved. Livesley‘®°?64) 

was one of the first to adopt the matrix displacement method 

for the computational analysis of bare frameworks. At about 

the same time Argyris‘*) comprehensively formulated the matrix 

force and displacement methods. It was shown that the two 

methods stemmed from the concepts of complementary virtual 

work and virtual work respectively. Argyris also derived a
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stiffness matrix for a two dimensional rectangular plate by 

assuming linear distribution of displacements, imposing unit 

displacements at each corner and adding the stiffnesses for each 

imposed deflection to build up the stiffness matrix of the 

plate. 

It was really Turner et al.‘*®) two years later 

who laid the foundation of the Finite Element technique by 

deriving the stiffness matrices for various spar, rib and 

cover plate elements. The ‘in plane' stiffness matrix of a 

triangular element was derived by assuming constant strain 

over the element. This was shown to lead to a linear distri- 

bution of displacements. To equilibrate the nodal forces to 

the stresses, the basic stress patterns, that could be expected, 

were considered and the forces obtained by direct equilibrium, 

It was pointed out that the same result could have been obtained 

using Castig@iano's energy theorem. The stiffness of a quadrilateral 

element was also found by splitting the area up into triangles 

and summing the contributing stiffnesses. 

Clough‘ 48) extended the idea of assumed stress to derive 

the stiffness matrices of triangular and rectangular plate elements. 

The valuable contribution was the introduction of the principle 

of virtual work which was used to obtain the overall equilibrium 

of the element. 

The next development was provided by Melosh’ *®) when 

the finite element method was extended to ‘out of plane! or 

bending action. The stiffness matrix of a rectangular plate, whose 

nodes were allowed one translation normal to the plate and two 

rotations, was derived. 

By this time definite methods of derivation of the 

stiffness matrix were being formulated and these were reviewed
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by Gallagher‘ *?) to be; 

(1) Inversion of a flexibility matrix(*4) 

(2) Direct formulation *® 

(3) From virtual work or, unit displacement theorem‘®) , 

Formulation by Castigliano's theorem might well have been in- 

cluded as the fourth. Although the interrelation of some 

derivations was noticed and, in fact, that they would give the 

same results of stiffness for particular elements, the actual 

implications of the basic assumptions were not yet realised. 

The majority of elements thus formed were known to 

converge to a good value for solutions as their sub-division 

was refined but the extent of the accuracy that could be expected 

was not defined. It was Melesh‘®®) who first tackled this 

problem. Errors were classified as those involved inthe structural 

idealisation, the computation, or the finite element itself. In 

the investigation of the latter it was shown that solutions 

obtained using extremum variational theorems of elasticity 

could be bounded between upper and lower limits. It was shown 

that using a displacement function 'minimised' the potential 

energy of the system and hence formed a lower bound. It was 

concluded that, as long as the structural idealisation was not 

redefined on subdivision, monotonic convergence would exist but 

not necessarily to the correct solution. It was stated that for 

this to be so, the function must satisfy certain requirements, 

namely ; 

1) Strains should be continuous over the elements. 

2) Inter-element displacement continuity must exist, i.e. conform. 

3) Functions must be expressible in the form of equation (1.1). 

And optional requirements were; 

4.) They should exhibit monotonic convergence as previously 

described.
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5) Rigid body movements should not cause straining. 

The last option, in fact, should not be violated, 

as extra energy not existing in a structure, would be in- 

troduced into the idealisation. 

Fraeijs de Veubeke! #4285) proved upper and lower 

limits for ‘equilibrium and displacement models' but, while 

agreeing with Melesh's requirements, thought that different 

element patterns might cause convergence to an erroneous answer. 

The difficulty in forming a stiffness matrix from an equilibrium 

model (that is by inverting a flexibility matrix) that would 

include all possible rigid body deformations was pointed out. 

It was de Veubeke who first derived the quadratic triangle. 

This was mimportant contribution as it was the first high order 

element to be developed. To achieve this a special set of area 

coordinates was used. It was pointed out that this triangular 

element had a number of nodes such that a complete polynomial 

expansion was ensured. 

Irons and Draper‘ 46) relaxed Melésh's requirements 

for convergence and accuracy by proposing that; 

(1) They must be able to exhibit all rigid body movements. 

(2) They must have a continuous displacement within and 

across interfaces. 

These reiterated Melésh's proposals but, in addition; 

(3) They must be able to represent constant stress. 

This last fact was substantiated by the fact that 

an infinite sub-division implies constant stress in the limit. 

These three criteria are now generally accepted and have been 

stated earlier, 

The finite element technique developed along these
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lines with the improvement of existing concepts and appli- 

cations until 1966 when Irons‘ 47) published a paper on the 

use of high order elements. It was proposed that the use 

of numerical integration in finding the various matrices 

needed for stress, stability and dynamic calculations would 

enable a greatly increased number of different problems to 

be solved for a given programming effort, but at the sacrifice 

of some computer time. It was further proposed that engineers 

were restricting thanselves to trivial problems by using 

analytical integration, and that the finite element technique 

would only reveal its full potential when research workers 

were liberated from the time wasting effort of deducing matrices 

afresh for each new problem, The exposition took the form of 

a series of examples such as plane elements with curved edges, 

solid elements with curved edges and faces, with applications 

to plane stress, torsion and solid elasticity. It was thought 

that the economic value of decisive checking and numerical 

reliability would justify the extra computer time. 

Irons explained that elements were too simple and 

that it was worthwhile to try more complicated dlements, but it 

was not possible to forecast at what stage in the elaboration 

the economic optimum would be. It was pointed out that shape 

functions (usually known as displacement functions) were merely 

multipliers in a more or less complicated interpolation 

formula. The procedure recommended in numerical integration 

was towrite a sub-routine to calculate the values of the 

shape functions at given points which could be easily checked 

numerically by calculating the known values at the nodes. 

In the derivation of the stiffness matrices of the 

various elements the important assumption that the unknown
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displacements and the coordinates should obey the same inter- 

polation formulae was made. Irons went on to show that with 

simple modification individual nodes could be included or 

omitted at will. This introduced mixed elements whereby regions 

where the stresses were important, or where curved boundaries 

were needed, midside nodes could be included and elsewhere 

omitted. Irons proposed that the Gauss rule for numerical 

integration should be used. It was also shown that the elements 

all obeyed the convergence criteria. 

In another paper the same year Irons‘ 48) recognised 

that the pioneer work on stiffnesses was done by I.C.Taig but 

was not published and Irons recognised Taig's quadrilateral 

as the first of a powerful series of elements. The concept 

of elements having special'osculatory' nodes was introduced to 

provide extra degrees of freedom and thus increase the nodal 

valency. 

The term ‘isoparametric', to describe these 

quadrilateral elements, was introduced by Ergatoudis, Irons 

and Zienkiewicz‘**), It was pointed out that such elements 

were able to follow prescribed boundaries and allow a good 

degree of approximation to curved shapes, Some examples were 

presented to illustrate the extreme accuracy of the higher 

order members of the family, and the disadvantage of the simple 

constant strain-triangle was highlighted. The case for the 

use of these isoparametric elements was further advanced by a 

series of papers‘ 49) ang (°7) where further examples were 

presented. The development of isoparametric membrane and 

thick shell elements was presented by Ahmad, Irons and 

Zienkiewicz‘*), In these elements the thickness was allowed 

to vary according to the same function controlling the coordinates
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and displacements. 

The use of the finite element method up until the 

mid-sixties was restricted to various conditions. Some of 

these were that the analysis should remain in the linear 

elastic range and that deflections should be small. It was 

therefore a logical step to extend the analysis into the 

non-linear range. In order to analyse such problems it was 

assumed that the non-linear behaviour could be represented 

by a series of linear steps. 

Elastic-plastic material properties were used in 

the finite element analysis by Popes 74) and Marca‘ Se) ain 

their approach the elastic properties were adjusted according 

to the stress level, as the load was applied in a series of 

increments. Each time the elastic properties were altered this 

changed the terms in the stiffness matrix and so this became 

known as the modified stiffness method. Argyris(®) and 

Gallagher‘ *®) adopted a different approach to non-linear 

analysis. The load was still applied in a series of increments, 

in this case the elastic properties were not altered but the 

initial stress or strain vectors, as in equation (1.3), were 

adjusted, As the stiffness matrix did not alter, this method 

became known as the constant stiffness one. 

Problems involving geometric non-linearities due 

to large displacements were investigated by Martin‘ 64) ana 

Argyris’*), As the displacements become large the small strain 

approximation is in error, and to overcome this a new stiffness 

matrix was introduced to represent the additional terms in the 

strain-displacement equations. This matrix was then super 

imposed on the conventional stiffness matrix to furnish the 

complete stiffness matrix. The extension of the finite element
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method to problems involving time, such as the dynamic behaviour 

of structures, was carried out by Zienkiewicz, Irons and 

Nath‘®®) ana Clough and Chopra‘+®) 

: It was shown by Zienkiewicz‘®®) in his text that 

the finite element technique was not limited to structural 

problems, but was applicable to many other physical problems, 

such as, heat conduction, seepage, wave transmission and the 

distribution of electrical potential whether in a steady or 

transient stage. From the development up tothis time, the 

finite element technique has become a major analytical, and, 

hence design, tool with applications to an extremely wide range 

of problems in engineering. 

The Application of the Finite Element Method to Soil and 

Rock Mechanics. 

It was in 1965 that Cheung and Zienkiewicz‘*®) ae- 

termined the stress distribution and settlement beneath a 

foundation slab represented by rectangular plates. The 

foundation material was idealised as a Winkler foundation or 

a Boussinesg half space.Severn ¢ 76) carried out a similar 

analysis except that a spring coupling action was included to 

simulate shear resistance. Chemg and Nags 44) followed a similar 

approach using the Flamant half plane to represent the foundation 

material. A non-linearity was introduced in that separation 

between the footing and soil was allowed at points with negative 

contact pressures. smith’7?) further extended this approach 

and analysed axi-symmetric footings allowing the elastic modulus 

to vary linearly with depth. All the above methods added the 

stiffness of the idealised foundation material to that of the 

slab in the vertical direction. The results gave reasonable
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comparison with closed form solutions, but the method was 

restricted to cases of assuming isotropy, homogeneity and 

linearity. 

It was Clough and Woodwara‘*?) who first demonstrated 

the power of the finite element method in soil mechanics, when 

@ large earth dam was analysed. The embankment itself was 

idealised as a number of triangular elements, undergoing plane 

strain, Several important problems were investigated including, 

the effect of incremental loading, as compared to a single step 

load, and the effect of the flexibility of the base. In the 

incremental loading the dam was assumed to be constructed in a 

series of layers, each imposing a body force. It was shown 

that while this had little effect on the stresses, the displace- 

ments were much larger than those predicted from a single step 

loading. These investigators then went on to make the important 

step of introducing a non-linear material model. Triaxial tests 

were carried out over a range of confining pressures from which 

a series of values of the shear modulus were calculated. An 

incremental analysis was then carried out, and at the end of 

each load (construction) increment the elastic properties were 

adjusted according to the stress level. The result of this 

analysis was compared to field measurements and good agree- 

ment was found. 

Girijavallabhan and Reese‘ 6) analysed model tests 

carried out on an axi-symmetric footing on clay and a retaining 

wall pushed into a bed of sand by using rectangular finite 

elements. In this analysis another non-linear material model 

was used which involved deriving a unique relation, over a 

small range of initial stresses, between the octahedral components 

of shear stress and strain, The shear modulus could then be
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calculated using an iterative procedure. The experimental 

and analytical results were in close agreement. Desai and 

Reese’#?) followed a similar approach but here a degree of 

non-homogeniety was introduced, in that the clay beneath a 

circular footing was made up of two distinct layers. As 

before close agreement was found between the theoretical and 

experimental results. 

In all the preceding investigations it was assumed 

that excess pore pressures were not developed and that all 

stresses were effective. Christian and Boehmer‘+®) developed 

a finite element technique to solve problems of consolidation 

of a linearly elastic material in plane strain. It was pointed 

out that the finite element method was not directly applicable 

to incompressible solids because the material is infinitely stiff 

with respect to volumetric stress. This difficulty was overcome 

by carrying out the usual type of analysis and then applying 

Pore pressures to prevent change of volume, thus, the pore 

pressures became unknowns along with the displacements. The 

number of equations was balanced since the change in volume was 

considered to be zero. The extension to consolidation was made 

by realising that some change of volume, other than zero, could 

be specified in each element. The procedure gave displacements, 

pore pressures and effective stresses for any known distribution 

of volumetric strain, Hence, an incremental procedure could be 

followed starting from the known stress and volumetric strain 

distribution, and proceed to the zero pore pressure state using 

D'Arcy's law to calculate the increments of volume change from 

the pore pressures. The method was compared to various 

analytical solutions and some improvement was found.
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Dunlop and Duncan‘ #9) investigated the development 

of failure around clay slopes as excavation took place. In 

an approach similar to that of Clough‘ +?) it was assumed that 

the excavation was made in a series of layers or increments. 

A bi-linear relation was used to représent the behaviour as that 

of a linear elastic perfectly plastic material. Various important 

field effects were included, like a variation of strength with 

depth, and initial stress conditions for normally and pre-consolidated 

clays. The development of plastic zones was shown and compared 

with stability analysis with which excellent correlation was found. 

Duncan and Chang‘ a5) analysed model tests, using a non- 

linear material model. In this model the non-linear stress strain 

curve was represented by a particularly simple function, namely 

the hyperbola developed by Kondner‘®®), This curve is described 

by two constants, the initial slope ana the asymptote. These 

two constants correspond to physically important properties 

namely the initial modulus and the ultimate strength. It was 

therefore possible to carry out a series of laboratory tests to 

establish relations between these parameters, and the porosity 

and confining pressure. This meant the relation could cover 

almost any range of conditions. This relation was then used in 

an incremental finite element method to analyse a model footing 

buried in sand at maximum or minimum porosity states. Good 

agreement was found between the theoretical and experimental 

results. 

Duncan and Clough‘ #®) used this method of analysis 

in a field problem when they investigated the earth pressure 

distribution on a concrete navigation lock, as construction 

progressed, to clarify the design needs am to help field
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instrumentation. The interface between the concrete and back 

fill was represented by one dimensional line elements to allow 

relative displacements to occur. Good agreement was found 

between this analysis and field measurements for pressure and 

deflection at several positions. The idealisation of the in- 

eremental construction procedure as a series of layers became 

known as ‘gravity turn on, or off loading. 

All the previously discussed non-linear analyses 

were carried out in the United States where there was easy 

access to large and fast digital computers. Because of this 

there was no great need for sophistication and all the investi- 

gations used simple triangular or rectangular elements, and 

simple, easy to establish constitutive relationships, with the 

modified stiffness method. Despite the over-simplifying 

assumptions made, the analyses all gave good agreement with 

measured results. Most important of all the finite element 

method was used, and proved, in real situations where 

comparison could be made with field measurements. 

Elsewhere, the concentration was centred more on 

further sophistication of the constitutive relations and the 

use of better elements. Zeinkiewicz, Valliapan and King‘°4?*°) 

completely formulated the constant stiffness, initial stress ; 

and strain, methods using elasto-plastic theory in the form 

of Von Mises yield criterion and Hills plastic potential 

hypothesis. From these it was possible to derive a relation- 

ship between the incremental stresses and strains which could 

represent a perfectly plastic or work hardening material. A 

number of examples were solved involving plastic and creep 

behaviour including a lined tunnel and a strip footing. Some 

problems with convergence were encountered but in general the
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methods worked well although no comparison with experimental 

results were made. 

It was noticed that a hypothetical material capable 

of sustaining only compressive stresses, without resistance to 

tension was similar in behaviour to an ideal plastic material. 

The stress transfer method could be applied to this problem by 

yielding a solution where all principal tensile stresses had 

been eliminated. In the examples solved a large difference was 

shown to exist between thd elastic stress distribution and that 

of a material in a 'cracked' (no tension) state. 

Naylor and Zienkiewic2‘®79®5) showed that the methods 

developed above were applicable to any theory provided it could 

be formulated in a similar way. Thus, it was possible to include 

a constitutive relation which had been specifically developed for 

a soil rather than one 'borrowed' from material mechanics, namely 

the Critical State Model developed at Cambridge’?5°7?), this 

critical state concept had led to the formulation of the Cam Clay 

and Modified Cam Clay theories to represent the behaviour of clay 

under two dimensional conditions. A further departure was made 

from usual practice when eight noded isoparametric quadrilateral 

eleméntswere used, instead of the familiar triangles, to make up 

the mesh, Two hypothetical problems were solved namely the re- 

strained sample in a triaxial test and an infinite strip footing. 

The results from the latter analysis were compared to a 

theoretical result based on the standard oedometer test and 

reasonable agreement was found. 

Smith 7°) and Smith and Kay‘®°) 180 used the critical 

state theories in conjunction with the finite element technique. 

A second approach to the fomulation of a stress strain relation- 

ship for soil was made using the concept of stress dilatancy
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(78) | which gives a particularly simple developed by Rowe 

relation for the behaviour of drained sand. These relations 

were used to analyse the classical plane strain problem of 

a thick walled hollow cylinder subjected to a steadily in- 

creasing bore pressure. Comparisons were made between these 

results and experimental results carried out on hollow 

cylinders of sand and clay. Good correlation was found 

despite the fact that simple triangular elements made up the 

mesh, 

Hoeg\ 44) used a simplified version of the cam 

clay theories in the finite element analysis of strain 

softening clays. It was pointed out that it was impossible 

to apply the usual non-linear elastic theories to this problem 

because of the necessity to introduce negative slopes. Results 

from computations with or without strain softening were com- 

pared and the model was applied to analyse the undrained be- 

haviow of a soft clay under a large, instrumented ,circular 

test fill. Good agreement was found and quite dramatic 

increases in deformations were found for only relatively modest 

amounts of strain softening. 

smith‘7®) used the finite element method to in- 

vestigate the lateral pressure developed as a rigid retaining 

wall was rotated about its toe. It was pointed out that in 

any computed solution of a non-linear boundary value problem 

there are two major aspects; 

(a) Adequate and general constitutive relationship for the 

material under consideration. 

(b) Efficient and accurate techniques of computation. 

Majid and Graig‘®®) used an incremental method to
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carry out non-linear analysis using amaterial model similar 

to that of Girijavallabhan‘**). The method was used to 

analyse a model strip footing resting on a bed of sand. A 

mixture of triangular and rectangular elements was used to 

form the mesh allowing for large variations of stress near 

the footing to be adequately represented, but in regions of 

small stress changes triangular elements could be used to 

minimise computer time and effort. Good agreement was found 

between the theoretical and experimental results, and the 

importance of choosing an adequate number of load increments 

was highlighted. 

Penman, Burland and Charles‘ &®) reported one of the 

few cases outside America, when the finite element technique 

was used on an actual field problem. The method was used to 

predicts movements at a number of points in Scammonden Dam, 

a large earth embankment, during construction. Detailed 

measurements of the movements inside the dam were made enabling 

a comparison, In an approach similar to that of Clough‘ +7) the 

incremental form of ‘gravity turn on' leading was followed, 

but as the dam fill was not always placed in horizontal layers, 

the construction sequence was modelled as closely as possible. 

For the sake of simplicity, instead of adopting a non-linear 

material model, a constant value of Young's modulus was 

calculated from an equivalent value of compression modulus for 

a number of layers, It was emphasised that this kind of approach 

applied only during construction. This simplified analysis 

gave results which were in reasonable agreement with observations, 

and it was suggested that the method was sufficiently accurate 

for design purposes.
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Scope of the Work, 

The power of the finite element method as a tool 

for displacement and stress analysis has been highlighted in 

the previous sections. The basis of any finite element method 

is obviously an efficiently programmed library of elements and 

the various ancillary operations necessary to complete the 

method. The many advantages of the new families of Isoparametric 

elements have also been pointed out, and hence a large part of 

the project was taken up in programming these families of two 

and three dimensional elements, 

Appendix (2) presents the development of the stiff- 

ness matrices of the various elements. In a novel approach 

the element stiffness matrix has been treated as the summation 

of a number of contributions from the combinations of pairs of 

joints to which the element nodes are connected. It was possible 

to derive a general expression for the contribution of one pair 

of nodes to cover all combinations and all elements. This meant 

that any element could be inserted into the library once its 

shape functions had been established. The programming of the 

elements, and ancillary routines, and the development of the 

finite element package for two and three dimensional analysis 

is given in Appendix (3). 

It is obviously necessary to check the results of 

any finite element program carefully. As there are also quite 

a number of elements available, it was desirable to carry out 

an assessment of the performance of the various elements under 

some typical conditions, and hence, to select an element giving 

the best return for the effort. 

An assessment and comparison of the various two 

dimensional elements is made in Chapter (2). The boundary 

conditions in a finite element mesh are most easily displacement
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defined, whereas, the opposite is the case for mathematical 

solutions where boundaries are most easily defined by stresses. 

It was therefore necessary to use the principle of super- 

imposition on a classical solution to obtain the case of a 

flexible strip footing, loaded uniformly and resting on a 

block of material restrained by perfectly smooth rigid boundaries. 

Despite the large number of publications concerning 

the finite element method, several important boundary value 

problems have not yet been satisfactorily resolved. Amongst 

them is the problem of representing smooth interfaces in a 

finite element mesh. A typical example of this arises when 

trying to analyse a compression test carried out under so 

called ‘free end' or frictionless end conditions. While 

numerous investigations have examined the axially loaded 

cylinder with restrained ends, no comparison has been made to 

an analysis of the desired non-restrained case. Problems of 

this nature arise in many important field problem including 

footings and retaining walls where the interface condition has 

an important effect on the stress distribution. 

Chapter (3) uses a particularly simple method of 

representing a smooth interface, or indeed any degree of 

roughness between that and full friction. These elements are 

used in a non-linear iterative finite element procedure to 

analyse the plane strain compression test under fixed and free 

end conditions. A comparison of the results is also made with 

an experimental one. 

Another important problem that has been investigated 

is the development and propogation of cracks in materials 

of lov tensile strength. The occurrence of cracks, considerably 

changes the distribution of stress from that predicted by
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elastic theory, and the stiffness of the mass is reduced, thus 

reducing the load bearing capacity. 

Chapter (4) suggests a method of analysis using 

the finite element method, whereby the compatability conditions 

are changed at boundaries where cracks occur, That is to say, 

that unlike most previous methods, a physical crack is allowed 

to occur in the mathematical model, rather than attempting to 

represent it as a zone of weak material, by allowing separation 

at joints along element boundaries. An incremental finite 

element procedure was designed as an interaction process of 

selection of crack position and then change of topology. The 

method was applied to the problem of an underground opening 

for which some experimental results were available, enabling 

a comparison to be made, 

A good deal of interest has been shown in the ue 

of the finite element technique in two dimensional conditions 

of plane strain and axial symmetry, but a large number of 

problems encountered in Geotechnical Engineering are three 

dimensional, particularly when concerned with foundations. 

Sophisticated methods of analysis are used as an aid to the 

design of structures, but in general, these analyses all make 

the assumption that the bases are rigidly fixed. The effect of 

settlement, particularly when it is not uniform across the 

structure, considerably changes the stress pattern. With the 

pressure on structural designers to make buildings cheaper they 

are necessarily becoming more flexible and it is therefore of 

the utmost importance to have an accurate picture of the settile— 

ment pattern and to include these efforts in the structural 

design. The extra design costs should be more than met by 

the savings in materials from a more accurate analysis.
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It seemed logical to include the foundation 

material in the structural analysis and to analyse the whole 

structure - soil interaction process together, and the rest of 

the thesis is devoted to this end. The structure can be 

idealised as an assemblage of beam and plate elements resting 

on a foundation material which can be idealised as an assemblage 

of isoparametric hexahedral elements. 

In proposing a method of analysis for space 

structures and their foundations it was necessary to have a 

number of test cases to analyse. In Chapter (5) an apparatus 

is described for performing such tests. The models were proto- 

type space frame structures founded onto a bed of sand. To 

carry out these tests it was necessary to first design and 

construct the apparatus. These included a method of depositing 

a honovendous bed of sand at known porosity into a test bed. 

It also involved making a loading frame, a measurement frame 

and evolving an efficient and reliable testing technique. These 

were then used to carry out tests on a variety of model structures 

loaded incrementally at a number of points. 

Chapter (6) describes the measurement of the 

mechanical properties necessary to describe the non-linear 

response of the sand in the test bed. This involved the Author 

indesign and construction of a triaxial test apparatus capable 

of imposing a known uniform state of stress on any specimens 

at the relatively low confining pressures which could be 

expected to be present in the test bed, and to be able to 

measure the various deformations. The results from these 

triaxial tests were used to define the stress-strain relation 

of the sand over the expected range of initial confining
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pressures using the simple but effective hyperbolic response. 

A non-linear method of analysis was developed to 

analyse the model tests. Some problems were encountered with 

the convergence of the iterative technique and so finally an 

incremental method of solution was adopted. The finite 

element program developed in this way is described in 

Chapter (7). The experimental model test results are 

discussed in some detail in Chapter (8).. A comparison 

between the theoretical and experimental results is made for 

one of the model tests and particular emphasis is laid on the 

effect of the settlement on the structure rather than on the 

behaviour of the sand.



CHAPTER 2 

A CRITICAL ASSESSMEN? OF ELEMENT 
PERFORMANCE.
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Introduction. 

Having written a series of programs to carry out stress 

analysis using the Finite Element Method it was clearly necessary 

to be able to check their accuracy. For a meaningful check, 

the solution that is compared with, must be one in which the 

assumptions inherent in the finite element method are applicable. 

The most obvious assumption about the method is that the boundary 

conditions are displacement defined. 

Six elements y@re discussed for the analysis of 

two dimensional protlems in Appendix (2) and programmed in 

Appendix (3). Faced with the limitless number of isoparametric 

elements that could be defined the Engineer has to make a choice 

of which one to use to obtain reasonable results at reasonable 

cost. In the finite element method, the cost will be made up 

from the computing costs and the data preparation costs. A great 

deal has been published about the choice of elements but the 

Author could find no quantitative comparison, from which a 

sub jective evaluation of element performance could be made. 

The three dimensional hexahedral elements, also 

discussed in Appendices (2) and (3) can be tested under two 

dimensional conditions. Hence, results could be checked against 

the two dimensional elements whose reliability had already been 

established. 

Two Dimers ional Equations of Blasticity. 

To determine the distribution of stress in a per- 

fectly elastic isotropic material under plane strain conditions, 

and in the absence of body force, it is necessary to solve the 

equations of equilibrium of force:
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together with the geometric equations 
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and the stress strain relation 
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differentiation of equation (2.2) gives the compatability 

relation for strains: 

ae dren, hi oe 

ox ~ a xay i 

expressing the strains in terms of stresses from equation (2.3) 

gives the compatability relation for stresses, thus 

Paar) | + Pf ere 5) | =a oa (2.5) 

By supposing that there is a function X such that 

ooo 2.6 rae aay (2.6) 

and substituting it into the equilibrium equations (2.1) 

2 Exh af exe at = BF) = 0 and fe, a =0 (257) 

it follows that, 

es 4 and o, = of ; (2.8) 

and that the compatability relation (2.5) is satisfied if
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This is known as the biharmonic equation and is 

written in shorthand form as 

Vs* x =0 (2.10) 

where a. is the Laplacian operator and x is the Airy stress 

function. 

Stress Distribution in a Thick Plate. 

Consider the case in Figure (2.1) of a two dimen 

sional elastic media bounded by two parallel planes (x = + b) 

to form a thick plate. The plate is deformed by the application 

of normal pressure to infinitely long strips on the two surfaces. 

It can be seen that the plane x = O is a plane of symmetry, 

and hence on this plane vertical displacements (component u) 

and shear stresses will be zero. Thus, this plane represents 

a smooth rigid boundary, a condition easily imposed on a 

finite element mesh, 

Sneddon‘ ®) obtained a solution for this case. ‘The 

steps to the solution are given in detail in his text so that 

only a brief outline is presented here. By applying the theory 

of Fourier transforms to the Laplace operator; 

i t(y)et¥ ay = (= - “) f tly) (2.11) 

and defining 

G= fe an (2.12) 

It follows from equation (2.12) that if x is a
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Figure 21 Symmetrical loading of a_ thick plate
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solution of equation (2.10) then G is a solution of 

a : (= - 9) G=0 (2.13) 

whose general solution is 

G = (A+Brx) oo ltl + (C+Drx) ot #1 (2.14) 

Fourier inversion of equation (2.12) yields 

Hea 5, [een onan (2.15) 

The Airy stress function for this case can be derived fran 

equations (2.1) and (2.15) when the arbitrary constants 

A,B,C,D are known. ‘The constants depend upon the boundary 

conditions under consideration. To determine these constants 

the stresses are required in terms of the function G(x,r) and 

its derivatives with respect to x. Multiplying the first of 

equation (2.8) by ey and integrating the result gives; 

7 iry P Py ary = 
ae, a= { 2 ey ays-r*° G& 

-© 0 

(2.16) 

Similar expressions can be obtained for the other stress 

components. Fourier inversion of these will yield, 

eee | Go? ar 
20 

er ge (2.17) 

on Gr T. == = gece 
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Now consider the case of a thick plate with the
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following boundary conditions 

(i) o, =~ pa(y) & etc x= 6 

(33) == pay) 1 = 0 ab xs 

From vertical equilibrium 

[ost = [ more (2.18) 

Since pa(y) and pa(y) are even functions then the odd parts 

of equation (2.17) can be ignored and only half the integral 

need be evaluated, thus 

2 
Gao ap G Cos(ry)dr 

Tt =< a xr x Sin(ry) dr (2.19) 

mae fF ae og ah a Cos(ry) dr 

° 

Similarly equation (2.14) can be simplified to 

G = (AsBrx) Cosh(rx) + (C+Drx) Sinh(rx) (2.20) 

The applied pressure can be expressed in terms of a 

Fourier cosine transform. In the particular case of 

pi(y) = pa(y) = p over the region -a < y < a on the plane 

x=4b, further simplification is possible: 

Bape ey ee) (2.21) 
2 

Inserting equation (2.20) into the first two parts 

of equation (2.19) and inserting the known boundary conditions 

yields four equations containing the four unknowns A,B,C and D.
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Solving these equations and substituting their values back 

into equation (2.20) gives an expression for the function 

G(x,r) which can then be back substituted into equation (2.19) 

to obtain the solutions: 

- 
— _ (sinhr+rcoshr)cosh(rg)-rgq sinhr sinh(r 

ae 2r + sinh (2r (2.22.1) 
° 

x Scr cos(rp)dr 

[eae ‘ ; is 4p rq sinhr cosh(rq)-r coshr sinh(rq) sin(cr) 
Tos ar 2r + sinh(2r) r (2.2222) 

° 

x sin(rp) dr 

o 
_ . BS (sinhr-rcoshr)cosh(rq)+rq sinhr sinh(r ) 
aes Ge 2r + sinh(2r 

° 

sin(or) cos(pr)dr 
a 

(2.22.3) 

where c = a/b q=x/b p=y/d. 

Sneddont ®#) pointed out that the evaluation of these 

integrals would be troublesome, and suggested that it would 

be easiest to determine values by a series of numerical inte- 

grations. 

Before the application of numerical techniques it 

is advisable to inspect the shape of the integrand. Consider 

equation (2.22.1), for a value of r = 0 the integrand is 

indeterminate, however taking limits: 

Limit etc Limit i 
aon f= 2 nom 1 =.0 

Figures (2.2a) and (2.2b) show the shape of the 

integrand for two values of q on the plane y = 0 (or p = 0),
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the first close to the applied pressure and the other some 

distance inside. The shape of the former reveals that decay 

is taking place very slowly. It must also be realised that 

at relatively large values of r the hyperbolic functions 

Sinh(r) and Cosh(r) diverge, which leads to numerical rounding 

errors in their evaluation, It is clear that numerical 

integration cannot be applied successfully to points relatively 

close to the loaded area. However, Figure (2.2b) shows that 

away from this zone the value of the integrand decays rapidly 

to zero and here numerical integration would give an accurate 

solution. It is in the zone near to the applied pressure 

that the largest stress changes occur, and so it is necessary 

to have accurate values. It was therefore necessary to look 

at other techniques. 

Sneddont §*) pointed out that it is the appearance 

of the function (2r + Sinh(2r)) in the denominator which makes 

analytical integration troublesome. This difficulty can be 

overcome by employing an approximate expression of the form; 

tu -u 
fi(u) = (sutg)e + Que (2.23) 

to represent the function, 

f(u) = TEE) (2.24) 

over the entire range of integration. 

From equation (2.23) it can be seen that f4(u) +4 

as u>o and that f4(u) X Que asu+o. The arbitrary 

constants s and t are chosen to ensure that the fit is close 

for large values of u, because the function appears in the 

integrand as a product with an exponential factor, Any 

variation near the origin may be compensated for by keeping
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the area under the curve (#, (a) - f(u)) as small as possible. 

These conditions are satisfied by choosing 

s = -1.55 and t = 1.40 (2.25) 

Substituting this approximation into equation (2.22.1) 

gives: 

Oo, == 2) (Sinhr+rCoshr) Cosh(rgq)-rgSinhrSinhrq oe Cos (pr) 

° 

x ee + de aa dr (2.26) 

Some values of the new integrand in equation (2.26) for 

a few values of r are indicated by small crosses in Figure (2.2a) 

and (2.2b). It can be seen that the approximation gives an 

excellent fit over the entire range of integration and throughout 

the plate. 

The analytical integration of equation (2.26) can now 

proceed, rearranging the hyperbolic and trigonometric function 

products as sums gives:~ 

ed ay Peg sinter e 

° 

x pao ee fe eats —: oot ee pe (2.27) 

Expanding the hyserbolic functions in terms of exponentials 

a, = - te fi [sro or (lea)r,(-a)r_.-G-a)r,(_gy (a)? i 

+r(1-q) ot 149) n(14q)f-D) he (l+q)e7 ee 

* * e 3 patr, 1 patr * [sin(cep)r+sin(c »)| [3.6 + soar € is é 7?! dr (2.28)
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Multiplying out equation (2.28) 

~(-1-q+2t)r a2 / fl [Za-a)+ Gee 
52r ple 

a [ga-a+ (cissiea) ele —(1+q+2t)r 

‘ [gords (4s+l+q +o jets) 
32r 3a" 

(-4s+1+q) a -(1-q+2t)r 
[ (1+q)+ Sor JoaF | e 

. [2 i Gea)} ( ~1-q+2)r z -2 + 29)|. -(L+g+2)r 

i [+ z+ Gea) 6 -(-l+q+2)r 

+ [-2 + (ae Jo?) [sin(cro) e8in(o-p)a)ar (2.29) 

Multiplying out equation (2.29) will yield forty 

products, each of these products require integration, They will 

all be combinations of trigonometric functions, exponentials 

and powers and fall into one of the following three classes:- 

ey 

(a) a = [ sim fx eo &* ax 

(b) Ip =| Sin fx e & & 

The values of these integrals are (Gradshteyn and 

Ryzhik( 4) ;
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(a) Tn = = g>0 

G)uh t= tar) g>0 

f 2? ah? 
(c) Is =S log, (—\ off) _ -1/f\ g>0 9 ~°%n fag? +h tan i g tan zg) h>0 

Each of the exponential powers has to be positive and 

since, -1 ¢< q <1 and t 21 the condition is satisfied so 

the integration proceeds to yield 

3 (4s. asee28)| an” +/_o+P ee 
(ee ~1-q+2t 

= 4, + tan ea P). + tam 

Cassge c+p =4/_c+p =a c-p : teas ee ae) nee ae — (aa) 

  

  

c ) (c: ) ( = 
+8 (2-2) |G) i Comp) ot)* : cattkar 

(c-p) (c+p) 
* Copy aey } a+ leather + * Copy aap 

*TapPTeP + Teas steaane|+ GP foe, fezhesthseaeh 

+ oe (SSRSPSRE) | « fine (BERRA, 
+ 206, SEER.) | +t | sat +e) + = a) 

tel Ee ao )) ican CEES) 2 eG a) a Gr q+2 eT 

  

  

x (1<q) (c+p) ) ~tar* a 2 | = it Sa eae ie (c+p)* = ye * 

co 
e=p)*+(-1-q+2
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( st (2+4)[___(cap (c+p) 
< =e 1+q+2 | * i ae 44 (=1+q2)? Fa Gata 

Ls) Ga 4] 
© ay +(—1+q+2)* . = +(1=q+2)? | ] (2.30 ) 

In an identical manner a solution can be obtained 

  

from equation (2.22.3) for the horizontal stress. 

oe~ paar a [tax wns aa ~ tan ee ) 7 32 geet a —g+2t 

2 rag c-p 
eatery . qt+2t es q+ot Z 

, f4st2a42t =tann+/_c#2. ater tL O22. 
32 -l+g+2t l+q+ a ae +2 *(Teaez 

C+ C+ 

g(-1+a) I c+p Z miaqret)® * (cap)*+(lsqree)® 7 

ex 7 ex) 
o=p)*+(—1-qret)? c-p)*+(1+q42 t)® 

8 ct ct 
= Ka-a)| c+p)*+(-1+q+2t)* is (oxp)*+(1-qeat)? * 

epi araa * (py Gat | 

* a miei) * 206s) | 

+ [ese - aeGier) + ras ar (ar) 
- vat (Pg ) ~tast* (Es )- tan +(-— PR. 

  

  

(leq +2 L-qt+2 
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+ (-1+9) (c+p) a (c+p) 
4 (c+p)*+(-1-g+2)? (cep)? +(1+q+2)* 

c=) Kk x c= ] 
* Te=p +(—1=9+2)? (c-p)*+(1+q+2 | 

(=1-9) [ (c+p) (cp) 
+S [Comrise * Top) *+Cinaray 

c-) c— | 4 

4 Catia - ott | ] (2.33 

A solution can also be obtained for equation (2.22.2) 

the shear stress, but the product Sin(cr) Sin(pr) cannot be 

treated in the same way because of the integral 

| eo * tos px c= = 
x 

° 

By following similar steps, as before, equation 

(2.22.2) becomes 

a 12 / { [Renee 3 (a2) eo(d-at2)2 | 

* x ayn) eo (ltar2t)r 

= (a4) 7 (14442) ms 3 (qe1)o7 A+9+2t)r ‘ (aut eo (-l+at2)2 

8( qs) 97 (1-9t2t) 2 - al qtl)e 

- ae nee | seo) rans + 

lor 
ba eo (-1-a+2t)r _ (god g-(l+qt2t)r 

+ GE g(-asar2tye _ Cas) gowns |[aintointn] ar (2.32) 
i
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In this case the products fall into only two classes with 

values as shown (Gradshteyn and Rhyhik’ 4°) . 

(a) | e & cos fx dx = oe 

° 

—8X a. “ de = 2 ane +(f+n)? | (b) [: Sin fx Sin hx = i 1 

° 

The integration proceeds to yield 

= Ap (gel! f-1-9+2+)?+(c+p)? (1+g+2t)?+(c+p)? T= 
xy 7 ae 1087 { —1-q+2t)*+(e-p ” 108, { (Leq+2t)*+(o=p 

(g+1) ~1+942+)?+(c+p)? 1~q+2t)?+(c+p)? 
tee log, -1+q+2t)*+(c-p ae see 7 1-g+2t)*+(c=p 

5/ E1)\= -1-9+2t " 1+g+2t 
+ gia (-1-q+2t)*+(c+p)? (1+q+2t)*+(c+p 

—1-9+2t. a 1+q+2% 
1-q+2t)*+(c-p (1+9+2t)*+(c—p)? 

3 (-14g+2t 1-g+2t 
* Hon] =1+9+2t)*+(c+p)? i 1-g+2t)*+(c+p 

. -1+g+2t a 1-g+2t 

=14+q+2t)"+(c-p)? 1-9+2t)*c-p 

(g-2) j_ __(-1-9+2) (+g+2) 
ic 4 (-1-q+2)7+(c+p)* fe (14+9+2)"+(c+p)? 

—1-q+2 a 1+q+2 

—1-q+2)"+(c-p 1+q+2)*+(c+p
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(asa) | _ __(asraz2) (1-942) 
+h | Chat eny + Tas ep + 

- -1l+g+2 1-q+2 

(-1+q+2)7+(c-p)? 1-q+2)7+ (c—p 

It has already been noticed that at points away 

from the loaded area numerical analysis would give an accurate 

solution. It is therefore possible to check values obtained 

from equations (2.30), (2.31) and (2.33) against those obtained 

from the numerical integration of equations (2.22). 

To do this, the Author wrote a program incorporating 

an I.C.L. scientific subroutine(4®) called FLINTGSS. This 

routine carries out numerical integration at a point using Gauss 

4. and 6 point rules with a self adjusting step length. ‘The 

routine shortens the step length until both rules agree to 

a specified accuracy (here 0.00005). Table (2.1) shows how 

the answers compared. 

  

POSITION o, o T. 
=x J xy 
  

P q AS. N.I.8. A.S. | N.I.S. AS. N.I.S. 
  

0.25 0.75) -0.7779 | -0.7752| -0.3492| -0.3455 |-0.1830 | -0.1867 

0.25 0.25) -0.5741 | -0.5667|/-0.1069 | -0.1074. |-0.0609-] -0.0622                     

TABLE (2.1 AS - Author's Solution 

NIS - Numerical Int.Solutio 

2.2.2) Periodic Loading of a Thick Plate. 

Having obtained a solution to the problem in Figure (2.1) 

it is possible to use the principle of superimposition to obtain 

a solution for the case in Figure (2.3). This figure shows an
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infinite number of loaded strips at a period of €. Thus the 

planes y=+ #/9 now are both planes of horizontal symmetry 

and by the same reasoning as before they can be considered as 

smoth rigid boundaries, The region a,b,c,d in Figure (2.3) 

then represents an elastic material bounded on three sides by 

smooth rigid boundaries, and loaded by a region of applied 

pressure on the free surface, 

To obtain the values of the three stress components 

at the point i in Figure (2.3) it is necessary to sum the 

contributions from a number of loaded strips each having a 

different y-coordinate. These coordinates will be (X,Y), 

(X,I-¥), (X,L+¥), (X,2l-Y), (X,2l+Y) etc, or in general terms 

(X,nLl+¥) where n = 0,1,2 etc. In practice it was found only 

necessary to add in three strips on either side of the central 

one, for beyond this the contributions became insignificant. 

(St.Venants Principle). 

Finite Element Analysis. 

The chosen test problem is illustrated in Figure (2.4). 

In the finite element idealisation the smooth rigid boundaries 

will be represented by joints on rollers. The programs described 

in Appendix (3) did not include a facility to allow for the 

application of general surface pressures so these were converted 

into equivalent nodal forces, using the distribution coefficients 

quoted by Zienkiewic2‘®®) in his text and illustrated in 

Figure (2.5). 

The Finite Element meshes used to analyse the problem 

in Figure (2./,) were all designed as a regular grid of joints 

so that all the elements were rectangular. This was done to
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facilitate the process of refinement of the mesh without changing 

the idealisation. Each of the six two dimensional elements was 

used to analyse the problem with three meshes. Each of these 

meshes was a definite sub-division of its predecessor. The 

eighteen Finite Element meshes are shomin Figures (2.6a)-(2.6f). 

In the analysis using Isoparametric elements, the number of Gauss 

points was varied to find the least number which each element 

required. 

Results. 

The normal stress components on and oe on the 

plane X = 0.0 of Figure (2.4), resulting from Finite Element 

analysis of each of the meshes in Figures (2.6a)-(2.6f), 

are plotted against depth in Figures (2.7a)-(2.7f). Also 

plotted in these figures is the result of the explicit solution 

obtained in the manner described in Section (2.2.2). The shear 

stress in the plane X = 0.0 is theoretically zero, due to 

symmetry, and all the finite element solutions yielded 

Ty < 10*°, The minimum number of Gauss points that could 

be used in the numerical integration of the stiffness matrix 

for the isoparametric elements without any significant loss 

of accuracy in the calculation of the stress components is 

given in Table (2.2) below. 

  

  

        

Quadrilateral Number of Minimum Number 
Element name nodes of Gauss Points. 

Linear 4 2 

Quadratic Serendipity 8 2 

(Cubic Serendipity 12 3 

Quadratic Lagrangian 9 3) 

ubic Lagrangian 16 yb 
  

TABLE (2.2
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2535-2) Discussion of Results. 

It can be seen from the results in Figures (2.7a)= 

(2.7f) that all the Finite Element analysis results were 

reasonable. The triangle and limar quadrilateral elements 

clearly converged towards the explicit solution as the meshes 

were refined. The higher order elements, while showing some 

convergence, did not exhibit this clear trend because the 

results were quite accurate forall the meshes. The Isoparametric 

quadrilaterals all overestimated the value of the supplied 

surface pressure, and the stresses generally close to the 

applied load. For.the higher order elements, the refined 

idealisation of the load associated with mesh refinement had 

a greater effect than the actual number of elements. The 

results from the Isoparametric elements showed that the stress 

was overestimated for a region of one element depth beneath the 

applied load. Thus, as the mesh is refined, the elements become 

smaller, the equivalent nodal forces also become smaller and so 

the area of overestimation of stress becomes less. 

To compare the cost of running each of the analyses 

in Figures (2.7), the stress component ce at X = 0.0, Y = 200.0 

is plotted against computer store, mill time and number of input 

records, in Figures (2.8a)-(2.8¢). The value of Me at the mid- 

depth point should be free of any distortion due to the loading 

idealisation, and only dependent on the element properties. 

Assuming the explicit solution is exact, the lines of stress 

level corresponding to + 1%, 5% and 10% error are shown in 

Figures (2.8). The results obtained from the stress at this 

point, using the meshes in Figures (2.6), are plotted in the 

Figures (2.8), against the corresponding number of core units, 

mill units or input records.



oy at Y=200 

0:75 

-0:70 

- 0-70 

-0:65 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

X=0'O —9 noded guad. 

16 noded guad. eeicatenGs 

se ara a 5 
: REN O°b error 

8 noded quad—> Ze _|Sioverro 

eo ey 

Zs 12 noded guad. 

/ ote 
i/ 4 ee 

-5% error 

triangle 

10% error 

Atlas 
1 2 exedtion 

sO 100 blocks 

Figure 2.8a 

+1% error 

RA Oo erro 

-1% erro 

v2 =5 % erro 

-10 % errc 

Atlas 
1 L 1 = exediion 

20 xl0° 40xI0* 60x10* — mill units 

Figure 2.8b



oy at y= 200:0x=0-0 

+1% error 
O% error 

“1% error 

T oe
 

-O-75 

  

Pea -5 % erro -O-70, 

O, 
= lO error 

number of 
-0-65 ! 

reco 200 600 1000 records 
  

Figure 2.8.c



2.5.2) 

2.4) 

45. 

contd. 

It can be seen from Figure (2.8a) that all the 

results lie within 10% of the explicit solution, all the iso- 

parametric elements lie within 5% and a lot of these within 

1%. The weakness of the constant strain triangular element 

is clearly seen in all three figures. This element gave very 

poor results as compared to the isoparametric elements using 

the same number of core and mill units, and is most expensive 

in data preparation, 

The highest order element, the cubic Lagrangian 

quadrilateral gives consistently the best results but is clearly 

very expensive in computer mill time, because it requires 

four Gauss points for the integration. The cubic serendipity 

element can also be seen to be very efficient from the cost 

point of view, but both these elements suffer from over— 

estimating the stress near to the applied load. This effect 

is more serious for the cubic elements where to be efficient 

in cost, only a relatively few large elements are used. The 

quadratic Lagrangian element is again fairly expensive in mill 

time and it can be seen from the figures that the results are 

erratic when only a few elements are used. The serendipity 

quadratic element, for which only two Gauss points are required, 

seems efficient, relative to the other elements, on all grounds. 

The linear quadratic element gives relatively poor results 

compared to the higher order elements, for the same order of 

cost, but is clearly much better than the triangle. 

Hexahedral Element Testing. 

Having established the reliability of the 

quadrilateral elements against an explicit solution it should
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be adequate to check the hexahedral element results against 

theirs under two dimensional conditions. 

Consider the test problem shown in Figure (2.9). 

This is a linearly elastic isotropic homogeneous block of 

material surrounded on all sides and the base by smooth rigid 

boundaries. The material is loaded by a uniformly distributed 

surface load on the centre line. Because of symmetry only half 

the block need be analysed. The smooth rigid boundaries and the 

symmetry of loading prevent deformation in the Z direction so 

the problem can be considered as a two dimensional plane strain 

one. 

The problem in Figure (2.9) was analysed by the 

hexahedral elements described in Appendix (2) using almost 

identical mesh designs. The quadrilateral elements corresponding 

to these hexahedral elements were used to analyse the plane 

strain problem in Section B-B of Figure (2.9) using corresponding 

mesh arrangements. 

Results. 

The results for the two normal stress components 

o, and a obtained in the a described, are shown in 

Figure (2.0). The various results obtained from the meshes 

using the hexahedral elements compared exactly with those obtained 

from the corresponding quadrilateral elements. The erratic 

behaviour of the Lagrangian quadratic element is again illustrated 

by the results, As a further check the orientation of the global 

axis was changed twice, the problem reanalysed, and the results 

compared. 

It was not thought necessary to carry out a rigorous
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comparison of costs for the hexahedral elements because the 

properties discovered in the quadrilateral elements should also 

apply here. 

Discussion of Results. 

In Section (2.3.2) it was pointed out that the 

quadratic serendipity elements appeared to be the most 

efficient providing that two Gauss points were used and it 

seems that the same can be said for the hexahedral element. 

The choice of two or three Gauss points is even more important 

for hexahedral elements because the operations in forming the 

overall stiffness matrix have to be repeated n® times as 

opposed to n* times for two dimensional elements. This means 

that the relative time taken to form the overall stiffness 

matrix is 9:4 using two or three Gauss points for the quadri- 

laterals, but, the ratio is 27:8 for hexahedral elements, which 

is a considerable difference. 

The same effect can be seen on the core required 

as the higher order hexahedral elements have 20 or 27 nodes 

which leads to a bandwidth of some considerable size. 

Conclusions. 

The two and three dimensional elements described 

in Appendix (2) that were programmed in Appendix (3) all give 

reliable results. 

The quadratic serendipity elements seem to be 

the most efficient provided only two Gauss points are used in 

the numerical integration of the element stiffness matrix. It 

is reasonable to use two Gauss points except on the coarsest
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of mesh divisions where the stresses could be overestimated 

by up to 10%
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Solution of Non-Linear Problems. 

In this chapter, non-linearity is taken to mean 

that the basic stress-strain law is non-linear rather than 

geometric effects. A number of investigations have been 

carried out into the use of Finite Element Method for the 

analysis of structures and materials exhibiting a non-linear 

load deformation response. These investigations have in 

general idealised the material as either non-linear elastic 

or as work hardening plastic which both have been treated in a 

similar manner. The work has always been based on the 

assumption that a non-linear problem can be reduced to a linear 

one, over some increment of load, and at certain points in the 

Mass. 

In general the procedure consists of represent- 

ing each element as a homogeneous, linear isotropic material 

defined by two pseudo-elastic constants. It is assumed that 

these pseudo-elastic parameters are constant within the boundaries 

of the element. The solution of a load deformation problem for 

a given set of boundary conditions can be achieved by Finite 

Element analysis using pseudo-elastic parameters if each of the 

elements satisfies the true relation between the state of stress 

and the state of strain in the soil. Using this procedure 

two methods have emerged called the modified and constant 

stiffness methods. 

In the modified stiffness method, as the name 

suggests, the terms of the elasticity matrix in: 

fo} =D {e} (3.2) 
are varied, and each variation creates a new stiffness for the 

element. The method is used in an incremental or an iterative 

process. In the incremental process the change in loading is 

analysed in a series of steps as shown in Figure (3.la). At the
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beginning of each new increment an appropriate tangent modulus 

(do/de) is selected for each element on the basis of the stress 

or strain in that element after the application of the last 

increment of the load. This method has been used by Clough 

and Woodward’ +7) Dunlop and Dunean‘#®) ana Craig’? , By 

the iterative procedure shown in Figure (3.1b) the same load 

is analysed repeatedly until the values of stress and strain 

within each element satisfy the appropriate non-linear relation. 

Thus, after the application of a load the analysis is carried 

out using some initial values of the pseudo-elastic constants, 

if after this iteration the stresses and strains are not within 

some tolerance of the non-linear relation, then the process is 

repeated using new values of the constants calculated from the 

secant modulus (o/ «) at the end of the last iteration. Thus a 

process similar to the Newton-Raephson method is used to converge 

to the solution. This type of process was used by Girijavallabhan 

and Reese‘®®) and Duncan et al.‘#®), 

The constant stiffness methods, on the other hand 

do not alter the terms in the elasticity matrix. The element is 

assumed to be always linearly elastic, and the stress or strain 

by which the element exceeds the linear case, due to non-linearity, 

is converted into fictitious nodal forces. Thus if the 

constitutive law can be written in the form:- 

fo} = f{e}) (3.2) 

then the basic equation; 

fo} = D({s} - {e0}) + loo} (3.3) 

where feo} and {oo} are initial strain and stress vectors, can 

be made to coincide with equation (3.2) by adjusting the initial 

strain or stress vectors as shown in Figure (3.2a). The corres- 

ponding equivalent nodal forces are calculated from;
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fle, = [BB feo} avon) (3.4) 

or Ela, = | BF foo] a(vor) (3.5) 

and added to the load vector. Thus, an iterative process is 

followed until convergence is achieved, as shown in Figure (3.2b). 

The initial stress method has become more popular because the 

constitutive law can usually be expressed like equation (3.2). 

However, if it is only possible to determine strains in terms 

of stress, then the initial strain method would be used. This 

method has been used by Ualliapan‘®®), Naylor and Zienkiewicz‘*”) 

and Kay‘ 54) , 2 

is The incremental method of non-linear analysis is 

the easiest to program, but it requires extra store to hold 

the accumulating values of the stress and strain components, 

Because this method uses the tangent modulus, calculated after 

the last increment of load, to represent the pseudo-elastic 

constants over the next increment, it is clear that the accuracy 

of the solution will depend upon the size of the load increment. 

The accuracy of the method could be improved if some iterative 

process were used during each load increment. Initial stresses 

and strains can be readily accounted for but it is not possible 

to simulate post peak or peak conditions when the tangent modulus 

becomes negative or zero. 

The other variable stiffness method of the iterative 

type can represent peak and post peak conditions but it is ex- 

tremely complicated to account for non-zero initial stress or 

strain conditions. The method has the advantages that a specified 

accuracy to the stress-strain relation can be followed and minimum 

store is required because the total load is applied each time.
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It is advantageous to use the secant modulus if the stress— 

strain law is approximated by some function. It is often true 

to say, that while the function is close to the real curve the 

slopes can be quite different, If a great number of points are 

required on the load deformation curve then this method is ex- 

tremely expensive. 

In the constant stiffness methods, if the 

elasticity matrix is kept constant the overall stiffness matrix 

ean be kept in its inverted form and obviously will not need 

reassembling. Valliapan‘®®) found significant savings over the 

variable stiffness methods in a non-linear analysis using 

triangular elements. Equation (3.5) can be integrated analytically 

for triangular elements but requires numerical integration for 

the higher order elements. When the elasticity matrix is held 

constant the number of iterations required to converge to the true 

solution diverges. For this reason, Zienkiewicz‘ 98) suggested 

altering the D matrix after each increment to accelerate the 

process. Thus, it seems that there can be little computational 

advantage in this method over the variable stiffness method 

when higher order elements are used. The great advantage of the 

method is that constitutive laws which are not formulated in terms 

of all the cartesian components of stress and strain can be 

used. This means that Rowe's Stress-Dilatancy theory or the 

Cambridge Critical State model, which are formulated in terms 

of principal and octahedral stress components could be used. 

The Interpretation of Laboratory Tests. 

A great deal of research has been involved in im- 

proving the methods of testing currently in use in Soil Mechanics. 

One of the most significant developments has been the introduction
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of the so called 'free end' loading plattens for the triaxial 

test. These free ends have meant that the ends of the sample, 

hitherto held by friction, could expand over the plattens allow- 

ing uniform radial strains throughout the sample and ensuring 

that the major principal stress was vertical. Laboratory investi- 

gations‘ 74) 9(52) 9(8)9(7)9(27) hove shown that the end restraints 

have caused dead zones adjacent to the loading plattens causing 

internal pore pressure gradients and non-uniform volume changes. 

It was also shown that the relative size of the sample could be 

reduced if free ends were used and that a sample of height: 

diameter ratio of 2:1 with fixed ends gave the same strength as 

a free ends sample with a ratio of 1:1, but peak was reached at 

lower strain levels in the former case, 

While the research into the need to improve the 

triaxial test has been mainly experimental several analytical 

investigations have been carried out. Balla‘ ®) analysed the 

triaxial compressions test assuming elastic theoxy allowing for 

any degree of roughness and length to diameter ratio. Haythornwaite*®) 

carried out a similar analysis but assumed the material in the 

sample to be ideally plastic. The Finite Element method has been 

used to analyse the triaxial test by Perloff and Pembo'®®) ana 

Kraft and Krishnamwthy‘®®) using non-linear methods and triangular 

elements. 

Perloff and Pembo'®*) said very little about their 

Finite Hlement idealisation but Kraft and Krishnamwthy‘5®) 

suppressed the horizontal degrees of freedom of the joints at 

the top and bottom of the sample and applied a surface loading, 

which is not a true representation of the loading condition. 

However, both these Authors showed how useful the Finite Element 

method can be in interpreting test conditions. Now that the
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technology of triaxial testing is being extended to plane 

strain conditions it was decided to we the Finite Element 

method to analyse the plane strain compression test using "better" 

elements and a more realistic idealisation, and to compare fixed 

and free ends analytically. 

There is one important problem that arises when 

the Finite Element method is used to analyse conditions involving 

smooth interfaces. Consider the pilaue strain sample in Figure (3.3a) 

and the rather crude Finite Element idealisation below it in 

Figure (3.3b). When fixed end conditions are idealised the 

joints number 1 to 5 would be given no degree of freedom and 

joints 18 to 22 would be prevented from moving out sideways by 

the stiffness of the beam elements to which they are connected. 

For the other condition when free ends are assumed, joints 1 to 5 

would be given a sibways degree of freedom, equivalent to a roller, 

but joints 18 to 22 must still be connected to, and hence restrained 

by the beam elements. Indeed, this same problem would arise in 

the finite element idealisation of smooth foundations and retaining 

walls or when conditions are neither perfectly rough nor smooth. 

Representation of Non-Restrained Interfaces. 

There seemed to be a direct analogy between the 

problem here and that faced by investigators trying to achieve 

free ends experimentally. Free emis were achieved experimentally 

by inserting a thin latex membrane between the sample and the 

polished loading platten. Because the membrane has handel 

stiffness compared to the sample, it provides little restraint 

and expands with the sample over the platten. The Author proposed 

to improve the finite element idealisation using the same kind of 

approach by inserting a thin sandwich element between the elements
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representing the sample and those representing the loading 

platten, as shown in Figure (3.4). For fixed end conditions 

the two elements numbered 5 and 6 in the figure would be given 

the same properties as the other sample elements. Free end 

conditions can be approximated to by reducing the stiffness of 

the sandwich elements relative to the other elements represent- 

ing the sample. Any condition of roughness or restraint could 

then be imposed on the joints numbered 17-21 by varying the 

stiffness of the sandwich elements between the two previous 

limits. 

Test Problem. 

The plane strain compression test is not common, 

particularly tests in which the value of the intermediate 

principal stress has been measured. Among tests reported are 

a series by Green’44) on samples of Ham River sand. Of these 

tests the one named ISC/3 was selected ani its dimensiorws are 

shown in Figure (3.5). 

In this test the cuboidal sample was isotropically 

consolidated under an ambient pressure of 30 psi, then the cell 

pressure (03) was kept constant, the vertical stress (04) was 

increased while deformation in the other direction (og) was 

prevented by rigid plattens. The intermediate principal stress 

was measured. The results of the test Isc/3 as reported by 

Green'**) are shown in Figure (3.6). 

Analytical Model. 

The simple isotropic model is described by two 

pseudo-elastic constants. This model has been used by numerous 

investigators who have all obtained good results for little
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effort in establishing the constitutive relation. This 

relation cannot be used to predict deformation in conditions 

when the load is decreasing, but this is not a serious draw- 

back because Engineers are almost always interested in settle- 

ments that occur with the application of a load. The pseudo- 

elastic theary does not allow volume change to occur under 

shear, a condition which is inherent with sand. However, 

the volumetric strains are usually relatively small compared 

to the shear strains which should minimise any effects due to 

this error. 

The majority of investigators using the isotropic 

model have used the two pseudo-elastic constants E, the Young's 

modulus and y, the Poisson's ratio to describe the material 

properties. Under the conditions that exist in the plane strain 

compression test the deformation is likely to be mainly due to 

the shearing action of the deviatoric stress which makes it seem 

more logical to choose G, the shear modulus as one of the constants. 

Indeed, the stress can be divided into two components, a hydro- 

static stress accounting for volume change and a deviatoric stress 

accounting for the change in shape. This is in line with the work 

done at Manchester‘ 79) which suggests that the deformation of 

particulate materials can be divided into the elastic deformation 

of the sand grains due to mean normal stress and the irrecoverable 

deformation due to a change in geometry produced by interparticle 

shear forces resulting from deviatoric stress. The octahedral 

components of shear and normal stress and strain are often used 

to represent these two components. The octahedral shear stress 

and strain under plane strain conditions (ee = 0) are calculated 

from:
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and they are linked by the relation; 

Toot ~ © Yoo 

Figure (3.7a) shows a graph of Togs plotted 

against y,, calculated from the test result in Figure (Gua 

The natural choice for the other pseudo-elastic 

constant would be the bulk modulus. However, the relationship 

between the octahedral normal stress and strain, from which the 

bulk modulus would be calculated, is also non-linear, It is 

very difficult and expensive computationally to iterate along 

two non-linear curves. This is why many investigators have used 

constant values of bulk modulus or Poisson's ratio to complete 

the isotropic relation, 

From the equations of elasticity under plane 

strain conditons, Poisson's ratio can be calculated from; 

er) (3.8) 
Figure (3.7b) shows a graph of the above ratio plotted against 

octahendral shear strain. It can beseen from Figure (3.7b) 

that the value of Poisson's ratio is roughly constant or more 

accurately a linear function of octahedral shear strain. Similar 

results to these have been obtained by Comforth’*9) , It therefore 

seemed reasonable to choose Poisson's ratio as the second constant 

and to make it a function of shear strain level. A linear re- 

gression analysis was carried out on the points in Figure (3.7b) 

to obtain a least squares fit which gave the relation; 

V = 0.296 + 0.56 y (3.9) 
et
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The adoption of the constants G and v to describe 

the material properties meant that the elasticity matrix became; 

  

(ev) 2a 
De a teep T-2v 2 

2vG 2c(1-v) 0 (3.10) 1-2v {mop 

0 0 G 

It would have been possible to represent the non- 

linear relation between Tee and Yoot 28 8 function but to obtain 

better accuracy it was decided to use the actual points on the 

curve in Figure (3.7a) as the relation, in a similar way to 

Craig(?°) - Intermediate points can be easily interpolated. 

This procedure is possible because the sample is prepared to be 

homogeneous and it is not large enough to be affected by body 

forces, thus the properties of each element obey the same two 

functions. 

Finite Element Analysis. 

Representation, 

The Finite Element mesh used to represent the plane 

strain compression test described in Figure (3.5) is shown in 

Figure (3.8). The mesh consisted of 48 eight noded isoparametric 

quadrilaterals, 6 sandwich elements and 12 beam elements. The 

member elements are shown separately from the sandwich elements 

for clarity in Figure (38), in reality they share common joints. 

The quadrilateral elements were all assumed to obey the two functions 

shown in Figures (3.7a) and (3.7b), and all the other elements 

were assumed to be linear, 

As described in Section (3.3), the joints at the 

base were free to move in the x-direction for the free ends 

analysis, when the sandwich elements were also given a low 

stiffness. Several analyses were carried out to find which
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values of the elastic constants gave the sandwich elements a 

stiffness low enough to prevent any barrelling effect in the 

deformed shape of the loaded sample. For the analyses assuming 

fixed ends the joints at the base were rigidly fixed and the 

sandwich elements were given the same properties as the beam 

element. The sandwich elements were only 0.2 cms. thick and 

this had an insignificant effect on the overall vertical dis- 

placements. 

The Program. 

The subroutines describing the eight noded quadri- 

lateral were joined with those of the member element and the 

standard library routines as described in Appendix (3) to form 

the basis of the program. To complete the program it was 

necessary to write a master segment and one other subroutine 

called CONTROL to control the non-linear interative procedure. 

The general procedure followed by this program is shown in 

flowchart (3.1). It can be seen from the flowchart that the 

operations labelled 5, 6 and 7 are the familiar operation 

earried out in a linear finite element analysis and all the 

other operations are concerned with the iterative procedure. 

The Iterative Procedure. 

The iterative procedure is designed to make the 

stresses and strains within each element representing the sample 

follow the curve in Figure (3.9) which represents the non- 

linear behaviour of sand. A load is applied, and then the Newton- 

Raephson method of solution and resolution followed, until the 

stresses and strains in each element fall on or near the curve. 

When all the elements have achieved this fit the correct
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solution will have been found for this load. 

To obtain a first approximation, initial values 

are assigned to the two pseudo-elastic parameters G, the 

shear modulus and vy, Poisson's ratio. The initial value 

for the latter is taken as the ordinate corresponding the 

zero octahedral shear strain level in figure (3.7b), while 

the value of G is arbitrary provided it is relatively high. 

A finite element analysis was then carried 

out which resulted in cartesian stress and strain components 

at each joint in Figure (3.8). From these values, the octahedral 

shear stress and strain components were calculated at the centre 

of each quadrilateral element and then used to compute the new 

values of G and v for each element. For any element having 

octahedral shear components Tee and Voce the next value of 

the shear modulus could be calculated from the curve in 

Figure (3.9). The value cae is the value of octahedral shear 

stress corresponding exactly to Yoot the curve and was 

interpolated from; 

Toot = 75 [Yoo pT 44 (3.11) 

  

where 5 and Vans are points describing the curve between 

whose values Vout has been found to lie, and ae and Tao 

are their corresponding stress ordinatesfrom the curve. 

The new value for G is the secant modulus of 

the curve at the strain level Vent which is calculated from; 

rt 
G= “oct (3.12) 

Yoot 

The new value for Poisson's ratio was calculated 

directly from the linear relation; 

veartby 
oct (3-13)
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as in Figure (3.7b). 

On the first run the problem would then be 

reanalysed using the improved approximation repeating the 

above process. On all subsequent runs the closeness of the 

stress-strain state in each element to the required behaviour 

would be measured using the quantity; 

A= |(7! oot | Tae / Tee (3.14) 

It would have taken a great number of operations to make 

the quantity A become zero in every element. To overcome 

this it was assumed that the element had converged to the 

curve if the measure A was inside a specified tolerance, 

usually 0.05. When all the elements fell within the tolerance 

then the process was finished for this value of applied load and 

a complete solution had been found. Otherwise, the problem 

would be reanalysed and the process repeated until they were. 

Once a complete solution had been found the load was in- 

creased and the process repeated to find the next solution, 

The load was increased until the last increment had been pro- 

cessed when a complete non-linear load-deformation response 

would have been found. 

The process described above is shown in more 

detail in flowchart (3.2). 

Results. 

It was found that when the sandwich elements 

were given approximately the same Poisson's ratio as that 

given to the elements representing the sample, and, a 

constant value of shear modulus of approximately +/1000 of 
-lneart 

the initial values assigned to the non/elements, then no
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significant barrelling resulted in the sample shape. 

Figure (3.10) shows the comparison between 

the three load-deformation curves, from the fixed and free- 

end analyses and the experimental result. Both theoretical 

analyses failed under the application of a load of 0.54KN 

in the sense that no solution could be found. Figure (3.11a) 

shows the distribution of the stress component o across 

the width of the sample, immediately adjacent to the loading 

platten (Y = 8.41) and at the mid-height of the sample 

(XY = 4.20) for both analyses at an applied load of 0.48 KN. 

The distribution of the vertical stress inthe free ends analysis 

was completely homogeneous, and, no distortion under the applied 

load was encountered as the homogeneous stress level corres— 

ponded exactly to the value computed from load over area, 

and hence there is only one line in Figure (3.lla) for the 

free ends case. Figure (3.1lb) shows the distribution of 

stress in the bottom half of the restrained sample expressed 

as a percentage of the homogeneous stress level in the other 

free ends case. In the fixed ends analysis the direction 

of the major principal stress varied from 25° to the vertical 

on the edge of the top platten to zero at the centre and the 

principal stress was approximately vertical between y = 2.1 

and Y = 6.3 and no further rotation occurred with increase 

in applied load. 

The distribution of horizontal displacement, 

together with the deformed shape of the sample for both 

of the analyses are compared in Figure (3.12). The distri- 

bution of horizontal displacement is also shown in 

Figure (3.13) as a function of increasing applied load. It 

was found that the vertical strain was constant throu ghout
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the sample in both cases, 

Discussion of Results. 

Bishop and Green‘®) showed that under triaxial 

test conditions a sample with an L/D ratio of 2:1 (Length 

+o diameter) with restrained ends gave the same strength 

(reweak) as that of a free ends sample with L/D = 1:1 but 

at a lower strain level, and this effect can be seen in 

Figure (3.10) where the axial deformation from the fixed 

ends analysis is significantly less than that in the free 

ends case, The length to width ratio in this case is just 

over 3:2 and hence under plane strain conditions the samples 

could be expected to reach approximately the same peak, It 

can also be seen from Figure (3.10) that tlere is a reasonable 

agreement between the theoretical and experimental results. 

The theoretical free ends curve is in exact agreement with 

the experimental result up till a load of 0.2) KN but there- 

after both theoretical results overestimate the axial de- 

formations. This could be due to interpretation of the ex 

perimental results which were read off a graph and then re- 

calculated backwards. Excellent agreement was found between 

all three peak values of load. 

The non-uniform distribution of vertical stress 

due to tt restrained ends is shown clearly in Figures (3.11). 

The stress concentrations under the corner of the platten 

which have been found are in agreement with tle findings of 

other theoretical investigators. It can also be seen from 

these figures that the middle of the fixed end sample has a 

relatively homogeneous distribution of stress which supports 

the presumption of the experimental investigators that in the
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taller samples the end effects are reduced. 

It is extremely interesting to note that the stresses 

throughout the free ends sample were completely homogeneous. 

Quite severe overestimations had been found under the load in 

Chapter (2) but these had all been damped out by the beam 

and sandwich elements. It was noted in Chapter (2) that 

the overestimation occurred for a one element depth and this 

is amply supported here. 

The dead end zones measured experimentally by 

Kirkpatrick and Belsahaw'®?) are shown up in the contours 

in Figure (3.12) from which it can also be seen that the 

middle half of the restrained sample undergoes relatively 

uniform horizontal strain, but at generally smaller levels 

than those in the free ends case as can be seen from 

Figure (3.13). The exception to this is at the sample mid- 

height where the horizontal displacements of the restrained 

sample exceeds those of the free ends case. The mode of dis- 

placement at y = 7.88, Figure (3.13) corresponds well in shape 

to that measured under triaxial conditions by Kirkpatrick 

and Belshaw‘5?? 

It can be seen from all the graphs of the free 

ends case that the sandwich elements successfully eliminated 

the effects of end restraint on the sample elements. 

Conclusions. 

Sandwich elements givmrelatively small stiffness 

can be used to represent smooth interfaces when inserted 

between the bulk of the elements and the loaded boundary. 

Best results are achieved when the sandwich elements are
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given the same Poisson's ratio as the other elements but 

a reduced elastic modulus. 

When the load is applied through a smooth rigid 

boundary, such as the loading platten in the free ends 

example, nom of the severe over-estimations of stress, 

encountered in Chapter (2), occur. 

The complicated boundary and loading conditions 

that occur in the plane strain compression test can be 

handled with ease by the Finite Element method. The 

simple isotropic analytical model assumed to govern the 

behaviour of the sand elements led to a good agreement with 

the experimental results. 

The restraint imposed by fixed end loading 

plattens in the plane strain compression test leads to 

non-homogeneous distribution of stress and strain and 

reduces the vertical displacements. It is quite impossible 

to make a quantitative comparison with other investigators 

because they have all been interested in axi-symmetric 

conditions but as expected there are a great number of 

similarities in the results.
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Introduction, 

An important cause of non-linearity is that 

due to material cracking. A mass of fissured material or 

material of relatively low tensile strength is incapable 

of sustaining a tensile stress which leads to the development 

of cracks, which in general reduces the stiffness of the 

mass. If subject to compressive stress, these same materials 

will transmit forces and exhibit approximately linear load— 

deformation behaviour. This type of effect is important 

in rock mechanics, and structural concrete because the 

occurrence of cracks considerably changes the distribution 

of stress from that assumed by linear elastic theory, and, 

of course reduces the load bearing capacity. 

The Use of Finite Elements in Crack Propogation. 

Blake(*°) used triangular finite elements to 

analyse the problem of a circular underground opening and 

compared results with a classical solution of the Kirsch 

problem, Blake went on to analyse the same problem with a 

fault above the opening, similar in principle to a crack. 

The fault was simulated by a number of elements having only 

small stiffness, 

Watson’ **) used a similar approach to analyse 

material with no tensile strength. The problem was first 

analysed as an isotropicmaterial, and, then where elements 

developed tensile principal stress, they were assumed to be 

anisotropic with a very small elastic modulus normal to the 

tensile stress. The problem was then reanalysed and so the 

crack or weak zone developed. 

Zienkiewics, Valliapaiand King‘®4) pointed out the
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weakness in these methods and proposed a method called 

the 'stress-transfer' method. The problem is again analysed 

as an elastic one, but in this case the tensile stresses 

were eliminated by replacing them with temporary restraining 

forces, which are removed by equal but opposite nodal forces. 

The structure is then reanalysed and the process repeated. 

Further improvement in the solution was obtained by also 

reducing the modulus in the direction of the tensile stress. 

Trikha and Edwards‘®5) used the stress-transfer 

method in conjunction with a non-linear material model to 

predict the crack pattern and mode of failure in concrete 

box girders. Analytical and experimental results were 

compared and found to be within normal engineering accuracy. 

Other investigators including Watwood ®?) applied 

the finite element method in conjunction with fracture mechanics. 

Watwood examined the state of stress around a sharp crack and 

calculated stress intensity factors. Recently, A€-Hashimi‘#) 

used triangular elements in conjunction with fracture mechanics, 

and a method similar to that used by the Author to examine 

the behaviour of brittle stabilised soil. 

Most of the previously discussed methods of pre- 

dicting crack propogation have represented the crack as a zone 

of weakness. Ina real mass of material however, the excess 

tensile stresses are relieved by a physical separation, the 

effects of which have been studied by those investigators 

using fracture mechanics. There has been little work done 

into incorporating the kind of physical separation, that 

occurs when a crack appears, into an automatic finite element 

analysis. Crack propogation can be studied‘? by allowing 

physical separations to occur in the element mesh.
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The advantages of such a method are that cracks 

are allowed to start at any point and to change direction o» 

branch off. It also caters for the possibility of cracks being 

arrested and others initiated. Over and above any other method, 

this approach means that crack widths can be calculated and the 

physical representation is clearly carried out in a more 

realistic manner. 

The disadvantages of such a method are likely to 

be mainly on grounds of cost. The physical introduction of 

a crack will mean joint separation, which in turn means that the 

mesh will be redefired and, therefore som data changes will be 

necessary. Cracks will only be able to occur along element 

boundaries, so to some extent, the crack pattern will have been 

decided by the mesh design. 

All the previous investigators used the simple 

triangular elenent which, asshown in Chapter (2), seriously 

underestimates the stress, so some improvement can be made by 

using higher order elements. 

Theory. 

Consider a point 'i' in the finite element mesh 

shown in Figure (4.1). For a crack to appear at this point, 

the principad stress must be tensile and exceed the tensile 

strength of the material. Cracks occur in a direction normal 

to the principab tensile stress, but it is clear from the 

figure that cracks can only occur along the element boundaries, 

which means that it is the stress normal to the element boundary 

which in this case will cause cracks. If it should happen 

that the principal tensile stress direction is not in reasonable 

agreement with the direction of the normal stresses then the



  

    

      
  

Figure 4.1 A finite element mesh
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finite element mesh would have to be redesigned to avoid 

errors. Indeed, the best practice is to first analyse a 

very coarse mesh to get an idea of what the crack pattern 

and principad tensile stress direction would be, and then 

to design the refined mesh using these first results as a 

guide. 

Assuming this exercise has been carried out, 

if an increment of load au, is then applied to the mesh 

this will produce increments of stress aor 5» acy, and 

dregs at point i. The increment of stress normal to the 

element boundary can be calculated from; 

ey al As i a i 
= * ~)-t)do.-do. 2 do, ; do, 5 + a3} if o, 55 | Cos( 26") 

+ ary; Sin(26%) (461) 

: i 

where, 6” = tan” (| (4.2) 
ancx 

The increment of normal stress at point 'i' is plotted 

against the applied load increment that caused it in 

Figure (4.22). To calculate the total load which would cause 

a crack to appear at point 'i' it was necessary to take into 

account the previous stress history, as shown in Figure (4.2b). 

a is the total load that caused a crack, somewhere in the 

mesh, after the last increment of load. a5 is the total load 

that would cause the normal stress at point i to reach the 

tensile strength of the material, and hence cause a crack 

to occur, during the application of the 5 load increment. 

Its value can be interpolated from;



dL 

dj 

gj 
don 

d otnj 

Figure 4.2a 

  

      
  

Figure 4.2.b 

=> On



4.3) 

70. 

contd. 

i i i 
= = A; - Bae. . AP =A, + tan $5 {% oa (44.3) 

where, tan $5 = Be $ (4.4) 
na 

doy; 

C5 p is the accumulated normal stress up to 

the last increment, and o is the tensile strength. 

Equations (4.3) and (4.4) are applied to all 

joints in the mesh and hence a whole series of values of 

a5 are obtained. It is the joint with the smallest positive 

value of 4 at which the next crack should appear, because 

this joint requires the smallest increment of load to crack. 

This chosen least value then becomes Aj Hence, the total 

normal stress, due to the action of ay can be calculated for 

each joint,using; 

C5 oy ip os = (425) 

A radial crack could then be introduced into the 

mesh, at the joint which had had the smallest value of ee by 

allowing the element boundaries to separate. 

This effect was achieved by having two joints at 

each point that a crack might be expected to occur one of which 

is a dummy joint with no degress of freedom and not defined 

in the element topology. Effectively this dummy joint takes 

no part in the analysis until a crack appears at its position. 

In the small part of a mesh shown in Figure (4.3a) the dummy 

joints are the numbers in a small box. The element numbers are 

encircled. It can be seen from this figure that cracks have 

not been allowed to develop everywhere, because in some cases



  
Figure 4.3.6
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this would entail dividing an element. If active joint 33 

was the point at which the crack was next due to appear, 

then the mesh would be modified to that shown in Figure (4.3b). 

Joint 34 is no longer a dummy and would be activated by giving 

it two degrees of freedom. The data describing elements 21 and 

22 would also be amended to include the new active joint. That 

is to say that joint 33 would be replaced by joint 34 at the 

two corner nodes. The next increment of load would then be 

applied to the new mesh and the whole process repeated. 

It can be seen from the meshes in Figures (4.3) 

that dummy joints were only provided at places that cracks 

could appear without dividing elements. If cracks consistently 

wanted to appear across element boundaries this would require 

redesigning the finite element mesh. The method could be 

extended allowing for tangential, as well as radial cracking, 

the meshes would have to be designed with one dummy joint at 

each element mid-side node position and three dummy joints at 

each corner node. Thus allowing for two way separation. It 

is only the equation (4.2) that requires any alteration for 

the method to apply to cracking in either direction. 

Crack Propogation Program. 

The isoparametric quadratic quadrilateral finite 

element was again used. The program for analysing the path 

of crack development used the sub-routines that described 

this element (see Appendix (3)) and one other subroutine. 

The sub-routine named CRACKPROP carried out the procedure 

described in the previous section. 

It was noted in the previous section that cracks
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cannot occur everywhere in the mesh, so, a variable IN; was 

introduced for each joint. This variable could be specified 

as lor 0. A zero allowed a radial crack, and a 1 did not. 

Crack suppression was achieved by not allowing any joint 

with IN = 1 to be selected as the one having the minimum 

value of iS: that is the next crack position. It can be 

seen from equations (4.3) and (4.5) that the accumulated normal 

stress after the last increment must be known for each analysis. 

The accumulated stress, the array IN and the data describing 

the geometry and loading of the mesh, was stored on disc data 

files. 

The general crack analysis system to trace the path 

of a crack is shown in flowchart (4.1) where two complete runs 

of the program are illustrated. It can be seen from this flow- 

chart that three files constitute the input for the program. 

The file AFDAT2, assigned to card reader 1, contained ue 

(i.e. minimum (total load) after last run) and the accumulated 

normal stress for each joint after the last increment. AFDAT1, 

assigned to card reader 0, held the data describing the finite 

element mesh as it was after the last increment. AFDAT3 con- 

tained ths array IN and was assigned to card reader 2. 

In the ae increment, the program calculates from 

thes€three input files the next joint to crack and writes 

the load that caused this crack, together with the new accumulated 

stress, to the next generation of the disc file AFDAT2. 

The program prints the result of the analysis and the crack 

calculations on the line printer for visual interpretation 

The user then interprets these results and modifies 

the mesh to allow the crack to develop at the correct point 

by separation of the element boundaries. This changes the data
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describing the topology of the mesh and hence a new version 

of AFDAT1 is created. The new finite element data is created 

by the user editting the old data file to activate the 

appropriate dummy joint. A new version of AFDAT3 was 

usually created so that the last joint to crack could not 

possibly crack again, 

The stress components from the finite element 

analysis were used as the main input to the routine 

CRACKPROP, which carried out the cracking analysis calculations 

described in the previous section. The procedure followed 

by this routine is shown in flowchart (4.2). It is possible 

for cracks to occur at more than one joint. It is very 

important that no points at which cracks wantéd to appear 

should be overlooked. If any points were overlooked, and sub- 

sequently cracks not inserted into the mesh, then the stress 

distribution after the next increment would not be correct, 

and if the overlooked point did not now want to crack, the 

whole pattern of crack development would have been distorted. 

To allow for this, a check was made after the accumulated 

normal stresses had been calculated to see if any of the 

stresses were within 0.1% of the tensile strength. This 

meant that if a crack wanted to appear in the middle of an 

element, it would not be overlooked either, and the mesh could 

be redesigned, if thought necessary, 

When interpreting the results from an analysis 

it was necessary to check that no cracks had been closed. 

Displacement compatability is, of course, no longer held when 

element boundaries are separated by a crack. It was possible 

for joints, previously under tension and cracked, to become
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compressive as other cracks develop. If this were not noticed 

a negative crack width could occur, when an element moved over 

its neighbour, To facilitate data preparation and checking, 

on what should be a well used program, another small program 

was written to check, and if necessary amend the data input. 

Analysis Problem. 

It was decided to test the proposed method against 

an experimental result in order that the accuracy could be 

gauged. An experimental study of the hehaviour of stabilised 

soil had been carried out by A€-Hashimi‘?) and seemed ideal for the 

analysis, The soil-cement mix consisted of blue ball clay, 

packington sand and blended cement. The test specimens were 

rectangular prisms with a preformed cylindrical opening across 

the centre, and were prepared in an initial homogeneous, unstressed 

and uncracked state and then subjected to a uniaxial compressive 

uniformly distributed load up to failure. 

The specimen details follow. The 300 x 100 x 100 mm 

prisms contained a 25 mm¢ flaw across the centre and they were 

made from a mix of sand:clay, 90:10 with 10% cement. The elastic 

parameters were measured at v = 0.065 and E = 33.4 x 10* kN/m*. 

The tensile strength was taken as 46 kN/m and a total failure 

load of 5600 KN had been measured experimentally for the particular 

test sample. 

Finite Element Analysis. 

Three analyses were carried out, for ease of identifi- 

cation they were referred to as runs A, B and C. In all these 

analyses, radial cracks only were allowed to occur. By use of the 

IN array, described previously, cracks were not allowed to occur
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which would cause element division. In runs B and C the IN array 

was also used to ensure that specific modes of crack formation 

were followed, by only allowing cracks to develop along specific 

radial lines. 

The finite element mesh used for these three 

analyses is illustrated in Figure (4.4). The mesh consisted of 

30 quadratic quadrilateral elements giving 147 joints of which 

34 were dummies. The uniformly distributed load was applied 

as fictitious nodal forces in the manner described in 

Figure (2.5). It can be seen that the mesh was designed not 

to inhibit the formation of radial cracks. Because of symmetry 

only a quarter of the test specimen was analysed, A constant 

load of increment of 500 KN was used, and this figure is purely 

arbitrary as can be seen from Figure (4.2a). 

Results. 

4.7.1) Run_A. 

The sequence and positions of the crack formations 

resulting from this analysis are shown in Figure (4.5). It 

can be seen from this figure that cracks appeared in a zone at 

the top of the circular flaw and that cracks arrested and 

restarted several times. Figure (4.6) compares the load versus 

vertical deflection curves resulting from Run A and experiment. 

Figures (4.7) and (4.8) show the crack widths against increasing 

load for the vertical crack (at joint 147) and the crack along 

the first inclined radial line (i.e. the difference between joints 

144 and 145). Run A was halted after the pth increment of load 

because application of the next increment caused about 10 

joints to want to crack, it can also be seen that from 

Figures (4.7) and (4.8) that the specimen had become unstable.
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  Figure 4.5 Sequence of crack formation, run A
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4.7.2) Run Be 

In this run, cracks were only allowed to occur 

along the vertical axis of symmetry of the specimen (i.e. 

starting from joint 147). The sequence of crack formation is 

illustrated in Figure (4.9). The crack width obtained in this 

manner is compared with that obtained from Run A in Figure (4.7). 

The run was halted when the experimental failure load had been 

exceeded by about 20% without apparently reaching failure. 

4.723) Run C. 

4.8) 

For this run, cracks were only allowed to occur 

along the inclined radial line next to the axis of symmetry, 

(i.e. starting at 144, 145). The sequence of crack formation 

is shown in Figure (4.9). The crack width obtained in this 

run is compared with that obtained in Run A in Figure (4.8). 

Like Run B this runwas halted without apparently reaching 

failure. 

Discussion of Results. 

The results obtained in Run A agreed well with the 

experimental results. The load-deflection curves were in good 

agreement although the experimental plot was more non-linear. 

This is probably the result of using a linear analysis, and an 

average value for the elastic constants, when the real response 

is only very approximately linear. The instability of the 

specimen around failure is well illustrated in Figure (4.7). The 

failure load is close to the experimental value. The reversal 

of displacement canbe taken as a sign of failure, Majia’®) and 

the mode of failure agreed with the experimental observations 

of A€-Hashimi‘*) that the cracks appeared in a general zone 

rather than in a specific plane. It is worth noting that failure



t 

LH ALA HHT GHP EP 
  

] 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 

        
Figure 4.9 Sequence of crack formation, runs B aC



4.8) 

4.9) 

Tle 

contd. 

is not apparent in Figure (4.6) in either the experimental 

or theoretical curves. The brittle behaviour of the material 

allowed it to have a large stiffness right up to the point of 

failure. In the experiment, failure was then sudden and 

catastrophic which could not be predicted theoretically but 

was indicated by the number of joi.ts that wanted to crack on 

the application of the 3 load increment in Run A. 

Runs B and C were carried out to see if the 

occurrence of either of the two major cracks, that occurred 

in Run A, could cause failure alone. This was not the case 

and indeed it can be seen fron Figures (4.5) and (4.7) that 

instability did not start until increments 7 and 8 when the 

two inclined radial cracks were opened into tle circular flew. 

Conclusions. 

The method and program give good results for the 

analysis of this particular case. It cannot be concluded from 

this that the method is wholly justified but it is clearly worth 

more attention and further examples. Some improvements can be 

made, the most obvious of which is to include tangential cracking. 

Further improvement might follow from making the elastic parameters 

stress level dependent. 

The program was not very expensive, each run costing 

about £1.00, but quite lengthy since user intervention was re- 

quired between each run to change the data, This kind of operation 

could be best carried out on an 'on line' terminal rather than 

using batch processing. It would speed up the process if the 

data modification could be automated, but this would seem to be 

a@ very complicated project.
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Introduction. 

In this Chapter a series of model tests are 

described. These model tests were designed so that the stress 

conditions in the underlying foundation material were three 

dimensional, but also represented a realistic situation. The 

purpose of the tests was to provide a controlled set of ex- 

perimental load-deformation curves with which theoretical 

analyses by the finite element method could be compared. These 

tests were necessitated by the fact that the Author could find 

no suitable experimental results reported, contrary to the 

situations which arose in Chapters (3) and (4). 

The type of model test carried out was that of 

a small prototype structure. For the results to be useful it 

was important that the model should conform with the assumptions 

inherent in the proposed method of analysis. From the tests 

and their comparison with theory, it should be possible to 

assess the accuracy of the method of analysis and also to confirm 

the relevance of the stress/strain theory, established from 

Some testing apparatus, in predicting the performance of the 

model. 

Numerous investigators have carried out model 

tests under two dimensional conditions of plane strain or axial 

symmetry. In almost all these tests the aim has been to obtain 

a better understanding of the behaviour of the foundation 

material. The aim of the tests described in this chapter and 

the analysis in Chapter (7), apart from those already stated, 

was to investigate the iteraction, that not only occurs in the 

foundation material, but also between the various structural 

members as differential settlement and sway occur. 

The philosophy has been that while the behaviour
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of soil is an interesting and challenging subject, when con- 

cerned with foundations, it is important only in so far as the 

behaviour of the soil affects the structure founded upon it. 

Following this philosophy only the displacements at various 

points in the structure under test were measured. No attempt 

was made to measure contact stress or the stress components in 

the test bed. 

The model tests were designed so that body force 

effects could not be ignored. The prototype structures were 

made of steel and about *;, real size. A granular material was 

adopted for the foundation material because of its ease to place 

and lack of problems arising from pore pressure or time effects. 

Test Series. 

The model tests were all carried out on framed 

steel structures founded onto a bed of sand. The prototype 

structures were made up of steel. beams and columns, the columns 

all rested on steel square pad footings. The three framed structures 

used in the test are illustrated in photographs (5.1a), (5.1b) 

and (5.1c), and detailed in Figure (5.1). Sand paper was glued 

to the underside of the pad footing to try and prevent lateral 

movement of the sand immediately under the footing. This problem 

was discussed in Chapter (3). 

Four tests were carried out on each frame. For each 

frame the applied load acted at four different positions of 

eccentricity. The four loading points are shown in Figure (5.1). 

It was practically impossible to apply a load directly over the 

column,so in this case the load was applied as close to the 

column as was possible.
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5.3) Materials Used in the Model. 

5.3.1) The Sand. 

It was estimated that at minimum porosity the 

proposed test bed would require about five tons of sand to 

fill it. In order to enable comparisons to be carried out 

it was decided to use a Leighton Buzzard sand which has been 

popular with many other investigators. The sand, classified 

as grade 21, arrived washed, graded and dried in 100 fifty 

kilogram bags. These bags proved a convenient size for 

handling and storing the sand. 

A standard sieve analysis was carried out on the 

sand and the particle size distribution obtained is shown in 

Figure (5.2). The analysis gave Dio = 0-34, Deo = 0.48 and 

the uniformity coefficient py = 1.40. It can be seen from these 

results that the sand was medium size and fairly uniform, 

largely falling between the 25 and 36 sieve sizes, 

The specific gravity of the sand grains was measured 

in accordance with the procedure laid down in BS 1377. The 

valw obtained was GS 2.66. This value was rather higher 

than expected but the test was repeated six times and consistent 

values were obtained, There was a fine black mineral mixed 

in with the quartz and it was presumed that this had led to 

a slightly higher specific gravity than that recorded by other 

investigators, 

The maximum porosity of the sand was measured 

experimentally using the so called tilting method of 

Kolbuszewski‘ +9 | This gave a consistent value of 

Dax of 43.9%. The minimum porosity of the sand was determined 

experimentally using a vibrating table. The mechanical vibrating 

table (usually used for concrete cubes) had a fixed amplitude
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and variable frequency. The table was not calibrated in 

any way so it was not possible to record the frequency 

= 33.7%. 

All these results were similar to those obtained 

giving minimum porosity. The result obtained was Doin 

by other investigators 5*) using a similar size Leighton 

Buzzard Sand. The mechanical properties of the sand are 

discussed later in Chapter (6). 

The Steel. 

The same square black mild steel bar was used to 

make all the columns and beams for the three model structures. 

Its properties were measured in accordance with BS 18. An 

average value of Young's Modulus of 2.11 x 10° kg/cm? was 

obtaimd. 

The pad footings were all made from the same 

strip of 6" x 1" section mild steel plate. Specimens were 

again prepared and tested in accordance with BS 18. An 

average value of Young's Modulus of 1.74 x 10° was obtained, 

The lateral strain was measured during the tensile test to 

enable the calculation of Poisson's Ratio, and an average 

value of 0.28 was thus obtained. 

Sand Diesposition Apparatus. 

When carrying out laboratory scale experiments 

involving granular materials it is essential to have a method 

for preparing the test beds of sand at known uniform porosities 

at will, over and over again. This has involved the use of 

one of two major methods. 

The first method is where the sand is deposited
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and then its porosity adjusted using some mechanical method 

such as tamping or vibration. This method has not remained 

popular because the beds are left with locked in stresses due 

to compaction and it has been shown by Feda‘®?) that it is 

very difficult to control the variation of porosity throughout 

a sand mass. 

The second, and currently most popular method, 

is where the porosity is controlled during deposition by varying 

the intensity and velocity of a rain of falling particles. This 

method has followed from the pioneer work of Kolbuszewski( °° 

who achieved variation of porosity by varying independently the 

height of fall of the grains and the rate of deposition. 

Kolbuszewski and Jones‘®4) used these principles 

to design an apparatus capable of preparing homogeneous samples 

over a wide range of porosities. The intensity of the rain of 

sand grains was controlled by means of a ‘variable aperture 

hopper'. The hopper was a rectangular box and had in its base 

a plate perforated with a regular pattern of holes. There were 

two other plates with the same pattern of holes above and below 

the base plate. By displacing these two plates relative to the 

base plate the effective aperture and hence the flow of sand out 

of the hopper could be varied. The sand then fell into a receiver 

which had the same plan dimensions as the hopper. The rain of sand 

was dispersed by a mesh underneath the hopper, but this seemed 

to have little effect. Kolbuszewski and Jones‘®4) found that 

the height of fall had practically little effect on the resulting 

porosity. Gisbourne‘*®®) used a similar apparatus and obtained 

good results. The main problems occurring with this kind of 

apparatus centres around the turbulence caused by the displaced
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air. Gisbourne provided a suction at the base of the re- 

ceiver to remove the air, but some turbulence was still 

encountered, 

A different approach, but using the same 

principles, was adopted by Walker and Whittaker °°) , In 

this method the bed was formed in a series of thin layers 

by a rain of sand falling from a hopper which passed back- 

wards and forwards across the receiver. An electric driven 

cylindrical roller was positioned below the open base of the 

hopper. The intensity of the sand rain was varied by altering 

the speed of rotation of the roller. Whittaker and Walker‘ 9°) 

meet some trouble with air turbulence in their relatively small 

eylindrical receiver, 

More recently Butterfield and Andrawes( +2) described 

another apparatus similar in principle to Walker and Whittaker, 

This apparatus again used the moving sand curtain technique 

by discharging from an ‘air activated spreader’. The sand was 

discharged from the hopper, through a horizontal slot, under 

air pressure. The intensity of the sand raincould be adjusted 

by altering the air pressure. Butterfield and Andrawes pointed 

out tm + the main defect associated with the moving sand spreader 

was that the sand was deposited in distinct layers which were 

detectable on X-ray photographs. 

Design Considerations. 

The size of the model test bed (8' x 4! in plan) 

precluded the use of a hopper the same size as the receiver 

and, anyway disturbance due to air currents seems less when 

using a travelling hopper because the displaced air can move 

away in front of the sand curtain. The methods described in
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the last section which used a travelling hopper seem re- 

latively complicated and gave only slightly better results 

than the simpler variable apgerture apparatus. The Author 

therefore decided to adopt a variable apperture hopper in 

conjunction with a moving trolley. 

A bed of sand about 3 to 4 feet deep was re- 

quired. It was therefore necessary to have the hopper high 

enough to ensure that the decrease in the height of fall of 

the sand grains would have little effect on the porosity. 

This meant putting the hopper as high as possible. Because 

of the size of the container there should be little problem 

with displaced air except at the extreme edges. However, 

the disturbance at the edge should have little effect on 

the model tests which would take place in the centre of the 

container. 

When the test bed was full it would contain 

4-5 tons of sand. The hopper could not have this kind of 

capacity, so a method of filling the hopper after each 

pour had to be devised. 

Description of Apparatus. 

The travelling hopper is shown in plate (5.2a). 

The hopper consisted of a steel frame chassis and wooden 

body panels to give a capacity of 0.28 m®*. In the base of 

the hopper there were two plates, shown in some detail in 

plate (5.2b). Both these plates were drilled with a regular 

pattern of holes */4." in diameter at 1" centre. It was 

found practically impossible to use 3" diameter holes because 

of the leakage that occurred. The inner plate was welded to 

the hopper chassis and the outer plate was allowed to move
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in a groove. In the zero position the holes in the inner 

plate coincided with the solid spaces in the outer plate, 

as shown as position 0 in Figure (5.3). The outer plate 

could be displaced by rotating the cam, shown on the left 

of the plate (5.2b), thus the holes in the outer plate 

could gradually be brought into full coincidence with 

those in the inner plate, A second cam was provided on 

the other side of the base of the hopper to return the outer 

plate to the zero position. 

The adjusting cam was calibrated for three 

positions between the zero position and full coincidences 

of the holes. These positions corresponded to nominal 

displacements of the outer plate of 2, =" and 2 as shown 

in Figure (5.3), where the shaded areas represent the 

apperture. The position could be created by bringing 

the first, second or third hole drilled in the cam into 

coincidence with its corresponding hole on the retaining 

plate above it and then secured by a tapered steel pin. 

The hopper could be attached to a trolley, shown 

in plate (5.2c), which ran along the top flange of the cross 

beam on top of the test rig, Figure (5.4). The hopper was 

connected to the trolley by means of four locating points, 

one at each corner of the hopper and trolley. These points 

which can be seen in the plates consisted of steel plates 

welded to the chassis and drilled with a 1" diameter hole. 

The plates in the trolley/ hopper were lined up and then 

secured by bolts. 

The trolley, which can be seen in plate (5.2c), 

consisted of four wheels, two axle and a steel frame.
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The wheels were supported, and guided by the top flange 

of the cross beam, 

The trolley and its attached hopper could be 

moved over the length of the test bed by the manner shown 

in Figure (5.4). A hemp rope was attached to the centre 

of the axle. and passed through and over two pulleys on the 

main support column and down to a worm geared winder. 

It was found necessary to use a fairly rigid hemp rope to 

avoid jerking. Less rigid materials stretched until the 

tension was high enough to move the hopper against the 

friction, at which time, the tension was relaxed as the 

hopper jerked forward, and then the process would be repeated 

This led to a considerable duning effect on the surface of the 

sand, The winder was a standard fitting to the test ring and 

was normally used to adjust the height of the cross beam. 

Its low gearing made it ideal for its new job because turning 

the crank handle at moderate effort ( ~1.5 revs/sec) gave 

a reasonable speed (~ 30 cm/sec) to the trolley. The trolley 

would have been more evenly propelled by a motor but as a 

suitable one was not available for these tests, hand winding 

was used, Experience showed that it was quite easy to maintain 

an even speed. 

The hopper was designed so that it could be filled 

at ground level and then lifted up to the trolley. To do this 

four struts made from steel channel section were welded to 

the hopper chassis, two on either side sand canbe seen in plate 

(5.2a). These were provided so that the forks of the fork lift 

truck would fit underneath them and hence lift the hopper up 

to the trolley on the cross beam.
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Measurement _of Porosity. 

The porosity of the sand was obtained by placing 

calibrated measuring cylinders, known as density tins, at 

different points in the receiver and weighing the sand de- 

posited in each. The measuring cylinders were nominally 

2" in diameter and 1" high made fron brass tubing. Density 

tins usually have a gauze base to allow air to be displaced, 

but the bases soon sag due to the small stiffness of the 

gauze which introduces errors, The Author had density tins 

made with bases of brass plate perforated by a number of " 

diameter holes and then the gauze was stuck to the inside 

face, Hach of the twenty cylinders could be identified by 

a number stamped on it. 

Calibration. 

To calibrate the variable apperture hopper the 

porosity was measured for each of the apperture settings in 

Figure (5.3). It was also necessary to investigate what 

effect the decrease in height of fall, and, the decrease in 

head of sand in the hopper had on the porosity variation. 

Ten density tins were placed close together in 

the bed at the mid-depth point of the receiver. The hopper, 

with the apgerture set at position 1, Figure (5.3), was then 

passed over the tins. The full tins were screeded level, 

weighed and the porosity calculated. This test was repeated 

for the other three apge rture positions. 

Next, ten density tins were placed along the 

length of the bed at the mid-depths. A pass of the hopper 

was made to fill the tins and the porosities along the bed 

were calculated. No more than random variation was found. 

This meant the decrease of head of sand could be presumed
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to have little or no effect. 

Lastly, the density tins were placed together 

at the bottom of the bed and filled from the hopper, and 

the porosities then calculated. These tins were then re- 

placed at the height of the proposed surface level of the 

bed and refilled. The difference between the average porosities 

calculated at this height and the bottom of the bed was again 

not higher than the random variation. The height of fall was 

reduced from 1.75 m. to 0.8 m. but this had very little effect 

on the porosity. 

As a final check two full size pours were carried 

out in the test bed with the apperture set at position 4. 

Four density tins were placed in the bed after each pass of 

the hopper. When the bed was full the surface was screeded 

level and the dimensions measured. The bed was then emptied 

and the sand weighed as it was removed. The density tins were 

carefully retrieved. The bulk porosity,calculated from the 

volume of the bed and the total weight of sand removed, 

differed by only 3% from the average porosity given by the 

density tins. This result was confirmed by both trial pours. 

Variation of Porosity. 

The porosity obtained from pouring with the 

apperture set at each of the positions in Figure (5.3) is 

plotted in Figure (5.52). The varying intensity of the 

sand rain at positions 1 and 4 is shown clearly in plates 

(5.3a) and (5.3b). The variation of porosity at a given 

apperture setting was never more than + 2% and the bulk 

porosities obtained in the two trial pours were the same,
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It can be seen from the Figure (5.5a) that using these four 

fairly arbitrary settings a good range of porosities was 

achieved. 

Figure (5.5b) shows the relative porosity of 

sani plotted against, what Kolbuszewski ani Jones‘ 54) called, 

the apperture coefficient. The relative porosity n, is 

calculated from: 

n= “nx” (5.1) 
a. 

max min 

where Dae and Doin Were measured in Section ($3.0). The 

apperture cosfficient y is the ratio Va/yca) where Vg is 

the actual maximum width of the appergture and y(4) is the 

apgerture size at full coincidence. These dimensions were 

measured with a vernier gauge. The resulting shape of the 

curve in Figure (5.5b) is very similar to those obtained by 

the investigators mentioned in Section (5.4). It can also be 

seen that the curve has the correct form as it becomes 

asymptotic to the ordinates of 0% and 100% relative porosity. 

5.5) The Test Bed. 

The test bed, which can be seen in plate (5.3b) 

and Figure (5.4), consisted of a perspex box inside a steel 

frame. The steel frame was itself restrained in several places 

by bands of steel angle section which went round the perimeter. 

The top of the tank was restrained across the width by three 

reinforcing bars. These bars were circular and only $" in 

diameter and hence did not interfere with the sand rain. The 

box was made from Pad perspex plate so that a visual check could 

be made on the result of the pours. The bed was designed large
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enough so that the effect of the sides should be negligible. 

The test bed was originally designed using standard 

engineering procedures but the maximum deflections were re- 

latively large (~ 3mm), during the trial tests. The original 

1g x 1$ x % steel angle section in the frame and bands was 

replaced by 3 x 14 x 2 angle section and this reduced the 

maximum deflection to less than $ mm. The bed rested on a large 

piece of 1" thick plyboard which rested on the base beam of the 

rig. The bed overhung the sides of the base beam and the edges 

were supported on solid wooden blocks. 

Loading System. 

Initially it had been decided to use an hydraulic 

jack as the method of applying the load to the model structure. 

The base of the jack was bolted to a plate fixed to the under- 

side of the cross beam. The load was applied, and thus measured, 

through a steel proving ring. It was not possible to use the 

self compensating hydraulic system installed in the laboratory 

because the vibration from the machinery visibly affected the 

sand, and so a hand pump was used. However, the system proved 

unstable. The pressure in the hand pump would decrease slightly 

with time, due presumably to a small leak. This decrease was 

found to be present in all the pumps tried. This effect was 

coupled with the fact that small settlements of the structure, 

which were largely irrecoverable, caused the load to decrease. 

The hydraulic pump had to be continually readjusted to maintain 

a comtant reading on the proving ring, Each readjustment 

caused a further small settlement. It was therefore decided to 

change to a dead load system where none of these problems could 

arise.
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The loading system that was made and used is shown 

in Figure (5.6) and plate (5.4). It consisted of four parts; 

the restraining strut, the lever arm, the loading arm and the 

hanger, The restraining strut could be fixed to the two 

flanges of the cross beam as shown in Figure (5.6). The strut 

had to be moveable, because the load would be applied at 

different points above the model, and removable, because 

otherwise it would obstruct the hopper. The knife edge at the 

bottom end of the strut located into the slot in the lever 

am at K, in plate (5.4). In making the lever arm it was 

essential that the three loading points at K, H and L should 

all be on the centre line of the beam, as shown in the figure. 

To keep any errors due to friction to a minimum, the holes were 

all made 50% oversize and countersunk to a sharp edge so that 

the area of contact was a minimum, 

The load was applied to the model structure by 

means of the loading arm. Connecting pins joined the loading 

arm to the lever arm and frame, by means of two 'u' brackets. 

These were connected through a universal joint to minimise any 

effects due to their not being aligned perfectly. 

The load was applied to the lever arm by placing 

weights on the pan of the hanger which was connected at L, in 

plate (5.4). 

The magnification of the lever arm was X3.9. 

Experimental Procedure, 

Preparation. 

Sand was placed in the bottom of the test bed and 

banked round the edges. Experience showed that if this was 

not done, the edges would be lower than the centre of the
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bed after the bed had been filled. 

Four density tins were placed on the surface of 

the sand and their numbers and positions noted. The hopper, 

now at ground level and resting on a fork lift truck, was 

filled with sand from the bags, plate (5.5a). The fork lift 

truck, carrying the full hopper, was driven forward under 

the trolley and the hopper raised up and connected to the 

trolley; plate (5.5b). The truck was then removed. The 

hopper was moved to the starting position, marked on the 

cross beam, and the apperture set using the adjusting cam. 

By winding the crank of the worm gear the hopper was drawn 

gently across the length of the bed. When it reached the 

other end, the aperture was closed. For all the tests carried 

out by the Author the apferture was set at position 4, 

Figure (5.3). In this case the hopper was empty when it 

reached the end of the bed, and could be merely pulled back 

to the other end, after releasingthe rope from the winding 

gear. When using other apferture settings the hopper would 

not be empty and so the apgerture would have to be reset and 

wound back down the bed to deposit the next layer. In pulling 

the hopper across the bed it was found essential to keep a 

reasonable speed otherwise the motionwas jerky leaving an 

undulating surface. When the hopper was empty it was lifted 

down from the trolley using the fork lift truck, This cycle 

of operations took about 15 mins. after practice, and the 

cycle had to be repeated until the bed was full. 

When the sand bedwas slightly deeper than re- 

quired the surface was screeded level. This was achieved by 

gently scraping off the top few millimetres of sand using 

a board, the width of the bed, that fitted onto the top
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channel of the frame of the bed. The model structure could 

then be placed centrally on the bed of sand. The largest 

space frame, plate (5.1c),weighed over 50 kg so lifting 

them on to the bed was aided by a rope over the cross beam 

to carry the weight, the frames could then be positioned 

with ease, 

Once the model structure was in place, the frame 

to hold the dial gauges was built round it. This frame was 

bolted to the three top restraining bars and to the frame 

of the best bed, The dial gauge frame for the plane frame 

model structure, plate (5.24)5 included two pairs of rollers 

which were placed against the columns of the model to prevent 

out of plane movement. 

The loading device was then assembled and hung 

on the model at the desired loading point. Care was taken 

to ensure that the restraining strut was vertical so that the 

lever arm did not twist. It was also necessary to ensure 

that the strut was positioned so that the loading arm hung 

vertically. 

The plane frame fully prepared for a test is shown 

in plate (5.5c). The plans frame itself is identified by the 

letters 'NMPO' in the plate and the loading device by the 

letters 'KJL'. : 

For this test there were only nire dial gauges, 

lettered 'A to I' in the plate. The dial gauges were all 

positioned to measure either settlement or sway. In the 

space frame models it was necessary to measure the deflections 

at twenty points. The preparation took about five hours per 

test.
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Testing. 

The initial readings of the dial gauges were noted 

and the positions of the dial gauges relative to the initial 

position of the model were marked on the model structure. The 

first weight was then placed on the hanger. The size of this 

weight was chosen so that the largest deflection of any of the 

pad footings was less than 1 mm. Settlements took place very 

quickly and it was necessary to place the weights gently on 

the hanger to avoid dynamic loading. The weight was left on 

the pan until no increase in dial gauge reading was taking 

place, which usually took about 15 minutes. When the dial 

gauge readings had been taken the next increment of load was 

placed on the hanger and the procedure repeated until one of 

the pad footings had settled 25-30 mm. Plate (5.5d) shows the 

differential settlement at the couclusion of a test on the plane 

frame model structure. The dark bands which can be seen in 

plate (5.5d) illustrate quite clearly the layering effect 

discussed by Butterfield and Andrawes‘*#) , These dark bands 

were formed by the smaller dust particles which settled after 

the main stream, The test took about a day to complete. 

Dismantling. 

The dial gauge frame, loading device and model 

structure were removed from the bed. The sand was then 

emptied from the test bed through the two plug holes provided 

in the base of the bed. When the plug holes were opened the 

sand ran out into a plastic bag held underneath 

as shown in plate (5.5e). The density tins were retrieved 

as soon as they appeared and were weighed. About 2 of the 

sand could be emptied without any interference, but the last 

4 had to be shovelled away from the centre of the bed into the
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corners where the plug holes were situated. The dismantling 

operation took about half a day.



CPAPTER 6. 

THE MEASUREMENT AND DERIVATION OF A CONSTITUTIVE 

RELATION FOR THE SAND.
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Introduction. 

In this Chapter the experimental apparatus and 

technique used to measure the mechanical properties of the 

sand filling the test bed are described in some detail. A 

simple constitutive relation is then derived, and developed 

into a comprehensive relation covering a range of confining 

pressures, from measured laboratory results. 

The Experimental Determination of the Mechanical 

Properties of the Sand. 

The parameters required for the non-linear analysis 

of a continuum should be measured under the particular stress 

or strain conditions expected to exist in the continuum itsel?. 

In the case of a general three dimensional continuum these 

conditions are mostly unknown, and even if they were known, 

itwould be extremely difficult to design an experimental 

apparatus capable of imposing arbitrary stress and strain 

paths. 

Laboratory axi-symmetric compression tests are the 

most common test in engineering practice, while tests under 

plane strain conditions are possible. In the model tests 

the confining stresses were small and from this point of view 

the shear box seemed ideal. However, the uncertain boundary 

conditions in this test make it unattractive, while the con- 

ditions in the test bed are likely to be nearer axi-symmetric 

than planestrain,. 

It was therefore decided to use the axi-symmetric 

compression test, commonly and inappropriately known as the 

triaxial test, to measure the sand properties. This apparatus 

has been the object of much improvement and by adopting these 

modern methods, the boundary conditions are accurately known.
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Apparatus Requirements. 

The triaxial apparatus had to be capable of achiev— 

ing two main functions; 

(a) +o apply a known uniform stress at low values, and 

(b) to be able to measure volume changes occurring in 

dry sand. 

The function (a) above was necessary because the scale of 

the model tests meant that the confining pressures were 

low. To achieve uniform stress conditions at both ends of 

the sample it is necessary to create so called ‘free end! 

conditions, when applied shear stresses are eliminated, 

ensuring that the major principal stress is vertical. At 

low stress levels it is important that the applied load is 

measured accurately. The effect of friction between the 

loading piston and sealing bush (in the top of the cell) 

could introduce large errors, which can only effectively be 

eliminated by measuring the load inside the cell. The 

apparatus will also have to be capable of applying and maintain-~ 

ing a low ambient pressure throughout the test. 

Function (b) follows from the fact that the model 

tests were performed on dry sand and hence it is necessary 

to measure the mechanical properties under similar conditions. 

This meant that the apparatus had to be capable of measuring 

volume changes of air. 

Description of Apparatus. 

The general layout of the apparatus is shown in 

Figure (6.1). It consists of three main parts, a self 

compensating mercury manometer, the triaxial cell itself 

and a volume change measuring device. 

The self compensating mercury manometer is
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described in Bishop and Henke1‘®) , it is capable of maintain-— 

ing low cell pressure throughout a test. It was very important, 

at these low pressures, to use a device like this, instead of 

say a control cylinder or fixed mannometer, because as the 

loading piston is pushed into the cell, and, the sample 

undergoes volume change, water must be able to leave the cell 

without changing the pressure, otherwise, large increases in 

cell pressure would occur, The hand winch was used to preset 

the head difference, H, of the two arms of the manometer, 

and the control cylinder A was used to adjust the initial levels 

of mercury. 

At low cell pressures it is possible that friction 

in the tubing will have a significant effect on the cell 

pressure. To check for this effect, a mercury manometer 

was attached directly to the cell and the cell pressure 

varied. The dimension H, Figure (6.1), and the head difference 

in the manometer were compared, and no difference could be 

measured. 

A conventional cell for testing 4" diameter 

specimens was modified to accommodate a load measurement 

transducer. This transducer had been designed for 13" 

diameter samples so a bush had to be machined to fit inside 

the collar already in the cap of the cell to accommodate 

the smaller diameter loading piston. The load transducer, 

manufactured by Wykeham Farance Ltd., type cone faced 

WF/17001, had a capacity of 1000 1b f. The transducer was 

energised by a constant supply of 10v dc. and set in a 

standard bridge, the output being measured ona digital 

display voltmeter, The transducer gave an output of 20 mv 

for a 1000 1b load. The digital voltmeter was reliable to 0.02 mv
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which meant a sensitivity of 0.5 KN/m? in the measurement 

of vertical stress and this proved adequate. 

The conventional 4" diameter nd plattens were re— 

placed by enlarged aluminium alloy plattens, 118 mm, in 

diameter, shown in Figure (6.2) and plate (6.1a), whose 

surfaces were ground flat and polished. Porous discs 

125 mm. in diameter were used at both ends of the sample to 

permit drainage to take place. To eliminate end friction, 

and hence allow the sample to expand uniformly over the plattens, 

two thin discs of latex rubber were placed between the sand 

sample and the plattens. The interfaces between platten and 

latex, ani latex and latex were coated with a thin smear of 

inert silicon grease. The bottom latex disc was slit radially 

around the circumference to remove any restraint that might be 

imposed by the latex disc at large strains. 

The tip of the load piston of the load transducer 

located into a collar on the top of the loading platten, shown 

in Figure (6.2), so that no tilting could occur. The vertical 

deflection of the top cap was measured by a stainless steel 

dial gauge inside the cell. The gauge could be read to 

0.02 mm. and had a full range extension of 13 mm. 

Volume changes were measured in tle device on the 

right hand side of Figure (6.1), it was taken from a design 

by Bishop and Henkel‘®) ana proved extremely effective. Any 

change of volume of the sample causes a small change in 

pressure which is registered on the sensitive oil manometer 

The control cylinder B is then used to adjust the level in 

the mercury manometer so that the levels in the oil manometer 

are equalised. Thus, atmospheric pressure was maintained in 

the sample and any volume change was proportional to the change
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in level of the mercury and could be read off the scale. 

Because of the extreme compressibility of air it was clearly 

important that atmospheric pressure was maintained in the 

sample. The volume change device was calibrated using a 

sensitive paraffin gauge and a factor of 0.193 ec/om 

change in height was obtained. 

Sample Preparation. 

The sample size was chosen as approximately 100 mm. 

high and 100 mm. in diameter. To form the specimen a two 

piece split former was made and is shown in Figure (6.2). 

The former had to be designed to fit the bottom platten, 

produce a sample of the correct dimensions and allow the 

loading platten to be placed centrally without effort. The 

former was made in two pieces so that it could be removed 

once the enlarged top platten was in place, A gap was cut 

into the lip of the former to allow the air trapped under the 

top platten, as it was placed, to escape. 

In an effort to faithfully reproduce the sand pro- 

duced by the hopper, the samples were prepared in the test 

bed where they were filled from the hopper sand rain. 

Experimental Procedure. 

To renove any blockages or dirt the cell base and 

drainage leads were cleaned using compressed air. The surface 

of the bottom platten was lightly coated with silicone grease 

and a latex disc applied. This disc was then smoothed using 

a straight edge, itself greased, another latex disc applied 

and smoothed, see plate (6.1a) The excess grease from the 

smoothing operation was wiped around the side of the platten,
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as experience showed this grease improved the seal between 

the platten and the sample membrane, The sample membrane 

was then placed on the bottom platten, adjusted to an upright 

position and secured by four rubber o-rings. 

Silicone grease was also smeared on the outside 

of the membrane where it was stretched over the bottom 

platten, to ensure the membrane was not pinched and hence 

punctured when the sample former was placed round it. The 

two halves of the former were joined on the bottom platten, 

the top drainage lead passed through the circlip and the circlip 

placed round the former and tightened. The rubber membrane 

was gently stretched up and folded over the top lip of the 

former and held taut by 3 o-rings, see plate (6.Jb), This 

operation had to be carried out with great care to avoid 

wrinkling the membrane. 

The complete base was then carried down to the 

test bed and placed under the hopper. All the taps and 

various holes were covered to prevent sand entering, the 

hopper was opened to the required apperture and the former 

filled. The top few millimetres of sand could then be 

carefully spooned out to leave a level surface. Latex discs 

were placed on the top platten in the manner described 

earlier for the bottom platten. Extreme care was taken to 

ensure that the inner surface of the membrane which would be 

in contact with the side of the top platten was free of all 

particles. It was essential to have the two contact surfaces 

scrupulously clean to avoid the occurrence of leaks. The 

platten was then placed on top of the sand and gently pressed 

into contact with it, displaced air was let out through 

the gap in the former lip. It was found necessary to make
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the sample somewhat tall, otherwise, if the top cap rested 

on the inner lip of the former it was impossible to remove 

the former without upsetting the top cap and spoiling the 

sample. The o-rings holding the membrane tight were rolled 

down and the membrane itself pulled up, while the top platten 

was held down, the o-rings were then rolled up on to the top 

platten to secure the membrane and seal the sample. 

The complete base, now with a sample, was carried 

back to the testing laboratory and placed on the machine 

base. Excess sand was gently removed with compressed air. 

Particular care was taken to clean all taps and threads. 

The various leads were connected to the base and all taps 

closed. Tap k was then opened and control cylinder B used 

to induce a small suction (approximately 1.5 cms of Mercury) 

which could be measured on the volume change manometer, and 

was applied to the sample by opening taps, g, h and i. It 

was found necessary to adjust the control cylinder once or 

twice until the suction was maintained. The sample was left 

under suction for about ten minutes to check for leaks. If 

the suction were maintained throughout this period then the 

circlip was loosened, removed and the two halves of the former 

carefully separated and removed, see plate (6.2). 

The dimensions of the sample could then be measured. 

The overall height was measured using a vernier gauge and 

the diameter was measured several times using a micrometer, 

see plate (6.26) Some difficulty was encountered using the 

micrometer because it was not easy to ensure that the diameter 

was actually being measured, and while doing so, it was easy 

to punch the sharp tips of the micrometer into the sample. 

To overcome this, some large brass feet (30 mm. in diameter)
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were made to fit onto the micrometer jaws, These can be 

seen in plate (6.26) The dial gauge stand was next screwed 

into the base, the dial gauge placed on it and fully com 

pressed against the top platten. The dial gauge and volume 

change readings were noted and the sample was ready for 

testing. 

The cell, complete with load transducer, was put 

on the base and secured. Taps a,b,c and d were opened and 

the cell filled with de-aired water, When water flowed out 

of tap d (cell full) tap a was closed and then taped. It 

was essential to close tap a before d otherwise the sample 

would have been subjected to a cell pressure equal to the 

natural head of the water system, in this case about 

20 KN/m*., The suction was then reduced to zero by readjusting 

control cylinder B and tap f was opened to bring the oil 

manometer into operation. 

The next step was to check and adjust the levels 

in the mercury pots of the self compensating manometer to 

ensure they did not empty during a test. The cell pressure 

was then set to the desired value by adjusting the head 

difference H, and tap e opened. The sample was then allowed 

to consolidate under ambient pressure as shown in plate (6.3). 

Volume change and axial deformations were measured during 

consolidation. 

When no further movement was detected, the loading 

piston was brought into contact with the top platten by ad- 

justing the loading frame. The constant rate of strain motor 

was then started at a rate equal to about 2.5% compression 

per hour. Readings from the load transducer on the digital 

voltmeter, the dial gauge and volume change scale were read at
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convenient intervals of strain. The test was stopped after 

the load transducer readings had dropped off or not in- 

creased for a long time, The load could then be removed, 

the cell water discharged to waste and the cell dismantled. 

The sand from the samplewas carefully removed for weighing. 

Corrections to Experimental Results. 

The rubber membrane that encloses the sample in 

the cell contributes a small amount of strength that becomes 

significant when testing specimensa+t low pressures. The 

stiffness of the membrane was measured by the method suggested 

by Bishop and Henkel‘®), A circumferential strip of the membrane 

was hung between two glass rods which had been coated with 

French chalk to eliminate friction. The membrane was loaded by 

placing weights in a pan hung on the lower glass rod, and the 

extension measured with a vernier gauge. The compression 

modulus is assumed to be equal to the extension modulus in 

the correction factor and is calculated from, 

M = load per cm (6.1) 
strain, 

The Author obtained an average value of 0.36 kg/cm. This was 

the value for membranes after they had been soaked in water. 

Fresh membrane had an average modulus 30% lower. The stiffness 

of the membrane meant that the vertical stress had to be in- 

creased by an amount Som where; 

Gus dMe,(-es) , (6.2) 
cm Do 

where Do is the original diameter of the sample, «, is the 

major principal strain which is assumed to be vertical and 

M was defined in equation (6.1).
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The weight of the top platten and load transducer 

were taken into account when calculating the vertical stress 

by a correction factor oy in; 

Vo to 
Oy = ( TP ua) A (6.3) 

a 

where Wop is the weight of the top platten Wop is the weight 

of the load transducer, and, a, the area of the sample. 

The tip of the loading piston fitted neatly into 

the collar on top of the loading platten, so the cell pressure 

could not act over the whole top surface area. The full 

value of cell pressure was not used to calculate the vertical 

stress. The amount used was; 

o,! = @ = 5) o, (6,4) 
a 

where a, is the area of the loading piston and a is the 

céll pressure. 

The self compensating mercury manometer is 

connected to the base of the cell, therefore the cell pressure 

at the mid-height of the sample will be less than this. This 

correction becomes significant at very low pressure and 

is taken as; 

Soe = wee (6,5) 

where H, is the height from the base to the mid-height 

of the sample. 

No correction was made for the self weight of the 

sample and equation (6.4) was not modified in the manner 

described above, as the two different effects approximately 

cancel each other out.
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6.2.6) Calculations. 

The quantities recorded during the laboratory test 

were the axial deformation T, the scale readings of volume 

change § and the digital voltmeter reading L, which recorded 

the axial load. The major principal plane is assumed to be 

horizontal . 

€4 = log, (1 + T/Ho) (6.6) 

where €, is the major principal strain and Ho is the original 

height of the sample. 

CG. = log, (1 + 8.8 _/Vo) (Gn7) 

where os is the volumetric strain, and 8, is the calibration 

factor for volume change and Vo is the original volume. 

The minor principal strain can be calculated from; 

es = (e, - €1)/2 (6.8) 

The major principal stress can be calculated 

from; 

ee ; 
O = - Orcs ato io (6.9) 

  

where Ly is the calibration factor for the load transducer 

and a, the cross sectional area of the sample, is calculated 

from; 

a= (Vo - 8.8,)/(Ho - 7) (6.10) 

The minor principal stress is calculated from; 

Seyret On. (6.11) 

where Yn is the density of mercury and H is the head 

difference. 

A program was written to process the experimental 

data.
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Results. 

Five tests were carried out at different values 

of cell pressure to cover the expected range of initial 

stress conditions. The results are presented in Figure (6.3) 

as plots of major principal stress and, volumetric strain 

against the major principal strain. Some details about the 

tests are given in the table below. 

  

  

TABLE (6.1) 

Cell Stress Ratio Porosity 
Test Pressure at after 
Noe KN/n? Failure Consolidation 

A 5023 5.0 40.5 
2 9299 Aad 59.9 
3 14.74 3.5 40.2 

A 19.74. 3.5 40.5 
5 25.68 5.3 39.9             

Mohr's circle of stress is plotted in Figure (6.4) 

and this gave Coulombs ¢' = 29° and an apparent cohesion 

Ct = 3 KN/n*. 

Discussion of Results. 

The value of the principal stress ratio at failure 

at the higher cell pressures agrees with values quoted by 

other investigators testing at moderate pressures, The value 

of the angle of shearing resistance, also agrees with quoted 

values, and this seems little affected by the value of cell 

pressure. It can be seen from Table (6.1) that as the cell 

pressure decreases the value of R increases markedly, This can 

be explained by the apparent cohesion intercept giving an 

increased shear strength. The other departure from expected 

behaviow is shown in the volumetric strain. The samples all 

expanded almost from the start of shearing, whereas at moderate
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pressures a loose sand would be expected to compress, Indeed, 

the volume change characteristics of loose sand at low pressure 

seem similar to those of a dense sand at moderate pressure. 

It can also be seen in Figure (6.3) that, as could be expected, 

increase in cell pressure decreases the volume change. 

Ponce and Be11‘ 7°) who tested over a wide range 

of porosities and pressures obtained very similar results 

to those reported here. It was pointed out that the increase 

in strength at confining pressures below 5 psi was mainly due 

to the increased effect of the component of total strength 

associated with expansive volume change. The increase in 

dilatancy rate requires that more energy be spent during 

shear which causes a corresponding increase in the principal 

stress ratio at failure. 

The result of the Mohr-Coulomb plot in Figure (6.4) 

was obtained by drawing the best straight tangent line through 

the circles, and this is why there is an apparent cohesion 

intercept. It is not plausible fora dry clean sand to have 

a coheasion, ani so the Coulomb envelope is more likely in 

reality to pass through the origin. This agrees with the 

observations of other investigators and means in fact that 

the Coulomb envelope is curved near the origin, meaning that 

Coulomb's ¢ is much higher than stated, although the two quoted 

parameters provide a convenient way of expressing strength. 

It is apparent from Figure (6.3) and the table in 

the previous Section, that Test 3 does not fit in with the 

pattern of the other tests. The Author would like to have 

repeated Test 3 and performed one more test at a lower 

pressure. Unfortunately the pressure on equipment in the
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testing laboratory made this impossible. On reflection, it 

would have been better to have developed a method for pre- 

paring the samples in the testing laboratory, rather than 

removing the cell base. It can be seen from the table that 

the porosity varied and was slightly less than that measured 

in the test bed. 

A Constitutive Relation. 

Given the problem of analysing the model tests a 

constitutive relation is needed to govern the behaviour of the 

sand, There has been little research into the behaviour of sani 

under general three dimensional conditions and the choice of 

relations lies between the stress dilatency laws or. the 

assumptions of non-linear plasticity or elasticity. 

The most scientifically appealing approach would 

be to use the stress dilatancy laws in conjunction with a 

Herzian elastic model‘ 2) to predict the complete behaviour of 

slip and elastic strains under general conditions. The adaption 

of the model and the testing programme required to describe the 

model over a range of general conditions, is a project on its own. 

The non-linear elasticity model has proved the 

most popular and was successfully used in Chapter (3) to analyse 

the plane strain compression test. In that analysis an actual 

experimental stress-strain curve was used to calculate the 

shear modulus and an almost constant value of Poisson's ratio 

was used. For the model tests described in Chapter (5) body 

forces will be important, so a relation is needed which can be 

described by differing initial stress levels. It must also 

be borre in mind that the relation should be able to be used in 

less ideal conditions than those that existed in the test bed,
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such as, soils other than sand and non-homogeneous conditions. 

Girijivallabhan and Reese‘*®) pointed out that the 

stress in a perfectly elastic material can be divided into two 

components, a hydrostatic stress accounting for volume change. 

and a deviatoric stress accounting for change in shape. The 

octahedral normal and shear stresses and strains are the best 

measure of these components. A soil composed of particles, 

however, experiences volume change during shear deformation. 

Both of these are dependent on normal and shear stress and could 

be found from a relation of the form; 

fect 9% #a(0oc43 Roce! (6.12) 

Yoo = fa(oog Toot) (6.13) 

for a sand at a given porosity. This approach was then used to 

obtain a unique relation, over a small range of confining 

pressure, for Gee eae against Yoot* The elastic modulus was 

obtained from this curve and a constant value of Poisson's ratio 

was assumed. A similar approachwas used by Craig(#°) and both 

he and Girijivallabhan‘*®) obtained good results. However, in the 

model tests here the scale is larger and a wider range of initial 

stress levels is expected. 

Similar relations have been proposed by other in- 

vestigators including Nelson and Baron‘*°S) who proposed a re 

lation of the form; 

2 

K = Ko + Ka €,.4 + Be cog (6.14) 

G=Go + ys Poot t Ya Ja" (6.15) 

where Jg is the second invariant of the stress deviatom, 

similar to octahedral shear stress. To establish the constants 

required in the polynomial a relatively large number of tests 

are required, However, this relation is one of the very few
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hypo-elastic relations which tries to take into account the 

fact that most soils dilate under shear. 

The most popular and successful relationship has 

been that proposed by Kondner and Zelasko( 58957), when a 

hyperbola is used to represent the stress-strain curve, This 

approach has been studied by numerous investigators including 

Domaschuk and Wade‘?*) and used in conjunction with the finite 

element method by Kraft‘®®), Duncan‘ ?5) ;Clough’?®) ana 

Kulhawy‘+°), It was also used by Smith and Kay$® in con- 

junction with the stress dilatancy model, Apart from the simplicity 

of the curve, the great attraction is that few tests are needed 

to establish the parameters, and, that these parameters are of 

physical significance, namely the initial slope and the ultimate 

strength, These parameters can be related to initial stress 

conditions and porosity, enabling a complete description of be- 

haviour to be formulated. 

Kondner‘55) showed that the hyperbola could also 

be applied to cohesive soils. Amendments to this relation have 

been proposed by Hansen‘4?) for use with cohesive soils, when 

the initial part of the curve is non-linear and strain soften- 

ing occurs after peak, 

In a recent paper by Desai‘#*) it was pointed out 

that despite its simplicity a hyperbola or one polynomial might 

not give a satisfactory representation over the entire stress 

range. It was shown , that the use of a spline function, which 

is made up of a number of polynomials, gave a better fit. For 

future improvements this type of relation looks rewarding but 

there is a considerable amount of testing and processing involved 

in obtaining the polynomials to cover a wide range.
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Proposed Relation. 

The soil response to an imposed stress system 

is best characterised by the use of a bulk and shear modulus 

each of which is associated with a separate physical component 

of behaviour. In terms of octahedral stress; 

Teoh a a Yoot (6.16) 

Sot = (6.17) 

Under triaxial test conditions the octahedral stress and 

and Kare, 
oct 

strain components can be obtained from; 

4 Sa 12/3 (oa-o8) (6.18) 

Yost = 22/3 (ex~es) (6.19) 
Top = (at 208)/3 (6.20) 

cy ef (6.21) 

Equations (6.18) and (6.19) were used to calculate the 

experimental results and a plot of these is shown in 

Figure (6.5). It is clear from this figure that the 

resulting octahedral shear stress-strain response is highly 

non-linear and dependent on the initial stress level. 

Kondner ani Zelasko( 525 7) proposed a hyper- 

bolic response of the form 

G 
~ atbe 
  (6.22) 

which is shown in Figure (6.64). Differentiating equation 

(6.22) yields; 

iciaeantes 7a 
de Tar beP Moret 

do 1 F 5 
and therefore at « = 0, Wes and hence, a is the reciprocal 

of the initial tangent modulus. Equation (6.22) can be 

rearranged into the form;



Toct ) KN /m* 

3O-r 

THEORETICAL 
Sate Soct (i) =26.1 

   

   

Soct (Lt) =20.1 

Soct (L)=15-2 

Foct (i) =10-4 

    
oct 

Figure 6.5 Graph of Toct against Woct 
showing theoretical and 
experimental curves
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ae (6.24) 
a 
=+b 
€ 

Lim a : ‘ 
Therefore » ©== and hence, b is the reciprocal 

€> © b 

of the ultimate value of stress reached. 

The hyperbola in equation (6.22) can also 

be rearranged into the form; 

Sate mn Bee be (6.25) 

which is the equation of a straight line, 

yee etx (6.26) 

and this is shown in Figure (6.6%). The parameter ais the 

intercept on the a axis and b is the slope. As equation 

(6.22) can be transformed to a straight line statistical 

methods can be used to select the parameters a and b to 

give a "best' fit over the entire range of experimental 

data. 

It was pointed out by Kondner and Zelasko 

that theoretically the hyperbola will only reach the ultimate 

stress at infinity,so the relation must be rewritten as; 

  o =—£ Z (6.27) 

* ko. 
ai ft 

ti
le

 

where K is a factor, usually about 0.95, necessary to push 

the curve up to the asymptote at finite strain. If b is 

calculated from a transformed plot, as in Figure (6.6b), 

then this effect is already included. Kondner and Zelasko 

went on to propose that the parameters could be linked to 

initial conditions by linear equations of the form;



stress O& 

   strain 
= €   

  

Figure 6.6 a. Rectangular hyperbolic representation 
of stress- strain 

  
  

  
Figure 6.6.b. Transformed  hyperboia
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0 = aloo n) (6.28) 

and 

it
he
: = fo(o,,5 n) (6.29) 

where n is the initial porosity. 

Domaschuk and Wade‘#®) rewrote equation 

(6.22) in the form 

7; = ocr (6.30) oct 
a+b yest 

and this is the form required here. This equation can 

also be transformed to a straight line in the form 

(6.31)   

eas Yong 

Using equation (6.31) a Gaussian least squares fit to the 

experimental data can be obtained from the equation; 

y-y= St (xx) (6.32) 

O85 ee 

g
e
 x+ G - He *) (6.33) 

Hence a= y - re 

and Be Ea (6.35) 

al
 

(6.34) 

  

  

n 

where Hage et eS eee (6.36) 

n-1 

- 2 and ea ee (6.37) 
n-1 

where X and y are the mean values of the n experimental 

points x, and y,. Equation (6.31) is a regression analysis 

of y on x and should only be used to estimate y from x. As
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a check on the closeness of the fit, the correlation co- 

efficient can be calculated from; 

= iu. r= 35 7 (6.38) 

" where Sy? (6.39) 

  

when, r= 1 this is perfect positive correlation, that is 

to say all points lie on a straight line of positive slope. 

A program was written to carry out the analysis 

described above and applied to the experimental data in 

Figure (6.5), when the following parameters were obtained. 

  

  

Test a b 

No. om? /ke cm /ke zr 

2 0.04041 10.000 0.9976 

2 0.02223 6.173 0.9991 

3 0.01818 5814. 0.9995 

4 0.00952 4.167 0.9997 

5 0.00585 3.546 0.9996             

TABLE (6.2 

From the above table it can be seen that very 

good correlation was obtained. The parameters in the table 

were used to predict the shape of stress-strain curve and 

compared with the experimental result in Figure (6.5). 

This figure shows that reasonable agreement was obtained, the 

maximum difference being about 7.5%. The experimental result 

is tending to curve more gently than the hyperbola, and this 

is probably the result of assuming the first part of the 

curve to be linear, 

The parameters */a and +/b are plotted against 

the initial octahedral stress in Figures (6.7a) and (6.7b)
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respectively. Both curves are drawn through the origin 

because without an initial octahedral stress the sand 

sample cannot exist. The linear relations proposed by 

Kondner and Zelasko’5®?7) in equations (6.28) and (6.29) 

obviously do not hold at low stress levels. It is worth 

noting that Figure (6.7b) is a failure criteria for this 

sand, which is very similar to the generalised Mohr 

Coulomb hypothesis proposed by Drucker and Prager‘ ?4) . 

The other pseudo-elastic modulus, K, the 

bulk modulus, was measured under conditions of hydrostatic 

stress, that is during the consolidation stage. For each 

of the five tests the volumetric strain resulting from con- 

solidation is plotted against the consolidation pressure 

(equal to the initial octahedral normal stress) in 

Figure (6.8). Domaschuk and Wade‘#®) proposed an exponential 

relation but it can be seen from the figure that the re- 

lationship is reasonably linear over this range of pressure. 

A single value of bulk modulus was calculated using 

equations (6.17) and (6.21). ‘The value obtained from 

Figure (6.8) is about 20 x 10° KN/n*. 

It is clear that this gives a much higher value 

of bulk modulus than shear modulus, from Table (6.2) that 

the initial value of shear modulus for test 1 is about 

0.5 x 10° KN/m?, Assuming isotropy the value of Poisson's 

ratio can be calculated from; 

V = (3K-C)/(G+6K) (6.40) 

and using the above values in this equation, a value of 

Vv of about 0.42 is obtained, It can be seen from equation 

(6.40) that as the value of G, the shear modulus, decreases, 

Poisson's ratio becomes equal to 0.5. Values of Poisson's
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ratio near 0.5 gives rise to difficulties in the finite 

element method, because the bulk modulus becomes infinite, 

and for this reason it was decided to use a constant value 

of ¥ = 0.45.



CHAPTER Z 

THEORETICAL ANALYSIS OF COMPLETE THREE DIMENSLONAL 

STRUCTURES.
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Introduction, 

This chapter describes the procedure followed 

to analyse space frames together with their underlying 

foundation soils. Some detail is given of the main analysis 

program and of the mathematical model, 

General Procedure. 

The complete procedure that was followed in 

an analysis is shown in flowchart (7.1). It consisted of 

a number of steps, which wherever possible were automated. 

As in any other problem the first step was to 

decide exactly what the problem was. This was followed 

by laboratory testing of the various materials both in the 

structure and the foundation. In the case of the latter 

this involved triaxial testing of the soil at the right 

porosity and confining pressure. These triaxial test results 

were then used to form an outline constitutive relationship. 

In this case, the two parameters a and b necessary to describe 

the Kondner hyperbola were derived from a statistical least 

squares fit from the transformed hyperbola of the experi- 

mental results. These two parameters were related to conditions 

of initial stress forming a comprehensive stress-strain 

relationship as described in Section (6.3). 

The next step was to create the finite element 

data. In the large amount of data required for a three 

dimensional mesh there were bound to be errors and these 

were checked for using a program which collated the geometrical 

and topological data. 

The corrected finite element data was used in a 

body force analysis program which computed the initial 

octahedral normal stresses at the centre of each hexahedral
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element. The results of this analysis were used to calculate 

the values of the parameters a and b for each element from the 

curves illustrated in Figure (6.7). This body force analysis 

served another important purpose by establishing the accuracy 

of the mesh. This was possible because the vertical stress 

could be hand calculated at certain points and compared to the 

computed values. 

The output from the body force analysis together 

with the finite element data file formed the complete input 

to the non-linear analysis program which was then run. The 

results of the non-linear finite element analysis program were 

checked by scrutinising the accuracy of known stresses and loads. 

If the results were satisfactory then the analysis 

was complete, if not a decision would have to be made concerning 

what changes were necessary. If the tolerance of fit to the 

stress-strain relation were not good it could be simply a 

matter of changing the number and size of the applied load 

increments, Other possibilities could be refining or amending 

the finite element mesh, changing the stress-strain relation, 

or, in the extreme reformulating the problem. 

Non-Linear Incremental Program. 

This program in the main consisted of the follow- 

ing finite elements that are described in Appendix (2). 

(i) Space member element, Section (42.2.1) 

(ii) Rectangular plate bending element, (Section (A2.2.2) 

(iii) 8 noded, linear hexahedral isoparametric element, 

(Section (A2.2.3) 

The linear hexahedral element was chosen instead of the
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more desirable 20 noded quadratic element because of the 

problem involved in storing the stiffness matrix. From 

the results of Chapter (2) it is clear that for the same 

number of joints the quadratic element gives a more accurate 

result compared to that of the linear element. However, 

the connectivity in a 20 noded element is far greater than 

that in a linear element which gives rise to a much larger 

bandwidth for the same number of nodes. Another disadvantage 

of the 20 noded element is that distributed loads can only 

be applied around the edges of faces. This fault is not as 

serious with the linear element because the mesh is finer. 

This also leads onto the fact that the rectangular plate 

bending element, could not be matched to the twenty noded 

element without allowing a discontinuity in the mesh, The 

quadratic Lagrangian element would avoid these problems 

but the degree of connectivity with 27 nodes is even higher 

leading to a still larger bandwidth. From the results of the 

comparison of the various two dimensional elements in 

Chapter (2), it canbe expected that, for a medium fine 

mesh, the stresses should be underestimated by not more 

than 5%. This is for the case of a mesh consisting of 

linear elements. When this accuracy is considered beside 

the various assumptions inherent in the constitutive relation- 

ship, it should prove adequate. 

The model structure itself could be represented 

using the two structural elements in items (i) and (ii) 

above. The member elements idealising the frame and the plate 

bending element the pad footings. 

The program was created by joining together the 

various subroutines of each of the elements in items (i), (ii)



teeel) 

121. 

contd. 

and (iii) and the various ancillary operations required 

by the finite element method. The subroutines were, with 

one exception, unchanged. The exception was that the 

elasticity matrix in the subroutine forming the stiffness 

terms of the isoparametric element had to be changed. This 

was because the shear modulus G and Poisson's ratio v had 

been chosen to represent the hypo-elastic behaviour in 

Chapter (6). The elastic matrix D became; 

2G [(1-v) v v 0 0 0 
>= Ty) 

In v (l-v) ov 0 0 0 

  

v yo > Clap) Eo 0 0 

0 0 0 ae 0 0 

1-2y 
0 0 0 3 0 

Bs oe oe 

The program required a new maStey segment to 

handle the various input/output facilities, assign initial 

values and initiate the incremental analysis. A further sub- 

routine, called CONTROL, carried out the extra operations 

necessitated in following a non-linear incremental analysis. 

Further details of this routine are given later, 

Initially the subroutine CONTROL had been written 

to control an iterative procedure identical to that used 

successfully in Chapter (3), where the relative merits of 

the incremental and iterative processes was discussed. Initial 

runs using the iterative process proved extremly lengthy with 

convergence taking place very slowly. This was particularly 

the case at the low stress levels. A tolerance level of 5% 

had been chosen and although almost all the elements were
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near this accuracy after one iteration, a further 20 iterations 

were required to force all the elements within the 5% band. 

Examination of the various iterations revealed that this was 

due to the fact that the slope of the stress/strain curve was 

changing very gently, particularly near the origin where it 

was almost constant. It was therefore decided to adopt an 

incremental method as a reasonable alternative for operating 

on the relatively soft stress/strain curves used. The pro 

cedure followed by an incremental analysis was illustrated 

in Figure (3.la). A value of the tangent modulus is calculated 

at the current strain level to represent the hypo-elastic 

modulus over the next increment of load. This means that 

the modulus is always too large, and the amount of error this 

leads to will depend upon the size of the load increment and 

the degree of curvature of the stress-strain curve. A check 

was kept upon the closeness of the calculated stresses to the 

stress/strain curve. 

The procedure followed by the non-linear incremental 

analysis program is shown in flowchart (7.2). The corrected 

finite element data was read into the program and stored, as 

was the data containing the two curve parameters for each 

element. From the element topology the various control arrays, 

concerning positioning within the stiffness matrix and the 

division of the stiffness matrix for the solution procedure, 

were computed. These arrays were computed before the incremental 

applied loads were read in. The incremental load vector was 

thus formed at the same time as the data was read. At this 

stage the initial value of the shear modulus was also set 

from the inversion of the first curve parameters as;
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Here G is the initial value of the shear modulus and 

A, the first curve parameter of element i. 

The next step was to calculate the stiffness 

terms of the rectangular plate elements and to add them 

into the overall stiffness matrix. The same operations 

were then performed for the space member element. Because 

the structural elements remain in the elastic range their 

stiffness terms remain constant. These terms could be con— 

structed once, written onto disc storage and then used 

repeatedly. 

The first step in an increment was to initiate 

the stiffness matrix. The stiffness terms of the 

hexahedral elements were then computed using the current 

values of the pseudo-elastic parameters, and added into the 

stiffness matrix, The details of forming the stiffness matrix 

and solving the simultaneous equations are given in 

Appendix (3). The incremental displacements 8{X} were 

obtained from: 

aix}= K* sf} , (7.1) 

where K is the overall stiffness matrix and 8{L} the applied 

incremental load vector. 

The incremental strains and stresses could then 

be calculated by the usual finite element procedures 

b{<} 

alo} 

" Baix} (7.2) 

D d{e} (73) " 

The subroutine CONTROL calculated the total com 

ponents of displacement, strain and stress by keeping a 

running total. From these the octahedral shear components were
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computed and used to calculate the new values of the shear 

modulus for each element, The final operation in this 

routine was to print the summed results. The last operation 

was to calculate and print the stresses and moments in the 

rectangular plate elements and the forces in the space 

member element. 

If all the required increments had been com 

puted then the analysis would finish, otherwise, the program 

would return for the next increment. 

Subroutine Control. 

This subroutine was written especially for the 

incremental analysis program and calculated the elastic 

Parameters for each new increment. The input to the routine 

consisted of the incremental displacements, strains and stresses 

calculated earlier in the program and which were first summed 

to obtain the values of the total components, 

ix}, = 0, + 6ix}, 5 (74) 
fe}, = tele + Bfe}, ’ (7.5) 

and {o}, = {oh + a{o}, . (7.6) 

where Og, and {Xx}. jay are total components of displacement 

respectively after and before the ie increment of load and 

8 ixh, is the incremental displacement due to the ace load 

increment. {e} and {o} are components of strain and stress. 

From these Cartesian components of strain and 

stress the octahedral shear strain and stress components 

were calculated at the centre of each element. These ares
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Yoot = af (oa) + (eres) - (Gee 

% 

Bay tet Yee) (7.7) 

Toot = ${ to, - 9)? + (9, -o)? + (o, - oz)P 

te 

+ 6Ge + a Ee a) (7.8) 

The accuracy with which the analysis was 

following the theoretical stress-strain curve could be 

assessed by comparing the value Te calculated above with 

that value lying on the curve for the same value of Vest® 

The theoretical value can be calculated from the hyperbolic 

relation: 

Y, Tare ‘oct (7.9) 

en Yoot 

uw 

where a and b are the two curve parameters. The accuracy 

can be calculated from 

t 

A, = Toct ~ Toot (7.10) 
mrss 

Toot 

The value of the shear modulus G for the next 

increment of load was calculated from; 

a 
—————_.. (7a) 

(a ow ont) 

G= 

This equation is obtained by differentiating the hyperbolic 

relation with respect to Vane which gives the tangent modulus. 

The above procedures were carried out for all the block 

elements.
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Finite Element Analysis of the Smaller Space Frame Model. 

Details of the stress-strain relationship data have 

already been fully described in Chapter (6) and the previous 

sections. The model tests were all loaded at the mid-depth 

of the structure, and this symmetry was used to simplify 

the finite element data. 

The finite element mesh used to represent the sand 

is shown in Figure (7.1). The mesh was symmetric about the 

centre line. For simplicity therefore only half of the actual 

mesh is shown, It can be seen from the figure that the mesh 

was refined close to the pad footings, where the greatest 

stresses could be expected. The representation of the model 

structure is illustrated in Figure (7.2). The complete mesh 

consisted of 205 nodes, 114 hexahedral elements, 8 rectangular 

plate bending elements, 9 space member elements, with a total. 

of 527 degrees of freedom. All the outer boundaries, except the 

upper surface which was free, were assumed to be smoth and rigid, 

In the tests, sand paper had been glued to the underside of the 

pad footings. It was therefore assumed that the sand and footing 

remained in contact and no sandwich elements were required. 

The four load cases corresponding to the four 

experimental positions of the applied load were analysed. 

The four cases were, X = 0, 0.33, 0.67 and 0.91. Each load 

case was achieved by changing the geometry of the loaded joint 

shown in Figure (7.2). The value of the applied load increment 

varied from12 to 18.5 kg according to the load case. The 

number of increments was kept constant at15. Tests revealed 

that increasing the number of increments beyond this figure 

had little or no effect on the results. 

All the non-linear finite element analyses were 

performed on the ICL 1906A computer at the Atlas Computer
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Laboratory. Hach analysis took 30 minutes of execution time, 

at a total cost of about £18.



CHAPTER 8. 

ANALYSIS OF RESULTS «
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8.1) Introduction. 

In this Chapter the experimental results of three 

frames are presented and discussed. These are: 

i) The plane frame described in Chapter (5), which will be 

referred to here as frame No.1. 

ii) The larger space frame described in Chapter (5), which 

will be referred to here as frame No.2. 

iii) The smaller space frame of the same chapter, which is 

referred to as frame No.3. 

This is followed by a comparison of the theoretical 

and experimental results obtained for frame No.2. This frame 

was selected for the purpose of the comparison mainly because 

the results demonstrate the interaction between the foundations 

of the frame, 

Each frame was loaded with four different types of 

loading. Each time the eccentricity of the loading was altered. 

A comparison between theoretical results obtained for frame 5 

and those of a similar frame fixed to a rigid foundation are 

also presented. This reveals the manner in which the interaction 

between the foundation and the structure alters the distribution 

of the bending moments throughout the frame when differential 

settlement of the foundations occur. It also highlights the 

effect of non-linear behaviour of the materials of the foundation 

upon the redistribution of the bending moments in the members of 

the frame. 

The results will demonstrate that when structures are 

resting on a flexible non-linear soil, two different kinds of 

bending moment redistribution take place. These are 

i) That due to the relative settlement of the foundations, and 

ii) That due to the non-linear behaviour of the actual soil,
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which aggrevates the bending moment redistribution. 

Results of the Model Tests. 

To save time, it was considered that the compari- 

son of the experimental results should be limited to that 

of selected displacements of the foundations and the side 

sway of the frames. Once this has been ascertained, the 

bending moments throughout the frame can be calculated by an 

ordinary matrix method of structural analysis. The points 

where displacements were measured were: 

1) Vertical displacement at: 

a) each of the pad footings, A,G,K and D shown in 

plate (5.1b), 

b) at the column heads B,C,H and J shown in the same 

plate, 

ce) the displacement of the beam under the applied load, and 

d) at points E and F at either end of the beam to which 

the load is applied. 

2) Horizontal displacements in the direction of the sway at: 

a) the column heads B,C,H and J, 

b) at the mid-height of each column. 

3) The horizontal out of plane displacements of the frame, as 

stated in Chapter (5), were prevented by rollers. To check 

the efficiency of this, measurements were also taken at 

the column heads B and J. 

As it is impossible to measure the vertical displace- 

ment of the footing at its centre, a dial gauge was placed along 

the centre line of each footing, 25 mm away from the columns,
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as shown in plate (5.5c). In the same plate, it can be seen 

that the dial gauges for measuring the sway of the column 

heads are slightly below the top. These gauges were initially 

placed 30 mm below the beam level to ensure that they remain 

in contact with the columns as these settle during the loading 

process. 

In order to obtain the correct vertical deflections 

of the footings at their centre, @-linear interpolation 

of the gauge readings was performed in the manner shown in 

Figure (8.1). In this figure 8, and 5) are the gauge readings 

while Bay and 8pe are the deflections at the centre of the 

footings. The results obtained in this manner were then averaged 

for the two columns on either side of the frame. 

It was noticed that the sway deflections at the 

column heads were nearly equal. Hence the four gauge readings 

were averaged. The vertical displacements of the footings 

together with the horizontal sway at the top of the columns are 

considered to be the most significant when designing structures 

of the type presented here. These are therefore singled out 

in this chapter for detailed consideration. Figure (8.2) shows 

the notations adopted for presenting these results. In this 

figure x is the distance of the load from the centre line of the 

structure. The eccentricity ,e, of each load is calculated 

from 

ee /is (8.1) 

where 2L is the total span of each frame. 

The differential settlement of the frame was cal~ 

culated, using Figure (8.2), as bpp frome 

opp St aad (8.2)



  

  

  

Figure 8.1 Interpolation of Gauge Readings. 
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where 5, and 8p are the vertical displacements at the centre 

of the left and right footings respectively. Finally, Soy 

is the sway of the structure. 

Analysis of the Experimental Results. 

8.3.1) The Plane Frame No.l. 

Figures (8.3a) and (8.3b) show the graphs of 

the vertical deflections &, and a of frame No.l against 

the applied load, for various eccentricities. Figure (8.4) 

gives the differential settlements oop of the structure 

obtained from equation (8.2), and the graphs of figure (8.3). 

Finally Figure (8.5) gives the sway displacement 3gy OF the 

frame. These graphs indicate that the deflections under 

consideration are of a non-linear nature, each graph becoming 

flatter as the applied load increases. As expected, increasing 

the eccentricity of the load increases the settlement a, 

and reduces > thus aggrevating both the sway of the frame 

and differential settlement of the footings. 

At the initial stage of loading, high stresses 

develop in the soil immediately under the footing, to the 

extent that the flat portion of the stress-strain diagram is 

reached, The stiffness of the soil here is therefore reduced 

considerably. Away from the footing however, the mass of the 

soil is subject to lower stresses and therefore exhibits non— 

linear behaviour. This indeed is the reason for the non- 

linearity of the graphs at the ifitial stages of the loading 

process. Later on, as the load is increased, the highly 

stressed zone spreads through the soil mass away from the 

footing. More and more soil therefore reaches the flat 

portion of the stress-strain relationship which forces the
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settlement graphs to flatten out towards the horizontal. 

The above observation was substantiated during 

the unloading process. When this was completed, no recovery 

in the settlement of the footings was observed, indicating 

the development of a failure zone in the soil. As explained 

above, the failure zone is gradual, spreading downwards from 

the footings. A rigid-plastic type of collapse, as proposed 

by Meyerhof rt 208). did not occur during the process of loading 

of this or the other frames tested. 

It can be seen from Figure (8.4) that there is a 

small imperfection in the loading system. This is the reason 

for recording negative deflections under the symmetrical 

load case, The order of this error is not only small but 

nearly the same for all three frames tested, In a later graph 

of the differential settlements of this and the other frames, 

this imperfection is rectified by a small shift of the origin 

of the graph. 

The Space Frane No.2. 

The deflections a, and 8a» the differential 

settlen nt oop Sw 

plotted against the applied loads in Figures (8.6), (8.7) 

and the sway 6, for this larger frame are 

and (8.8) respectively. These graphs are similar to those 

obtained for the plane frame ani warrant no further comment. 

Obviously, the load required to produce the same magnitude 

of displacements here is almost twice that required for the 

plane frame, The difference between the behaviour of the 

different frames will be discussed in detail later.
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The Space Frame No.3. 

Load displacement graphs for this smaller space 

frame are given in Figures (8.9), (8.10) and (8.11). A 

detailed comparison of the results obtained for the three 

frames are given in the next section. 

Comparison of the Frames. 

In Figure (8.12) the settlements 6, and 6, of the 

footings are plotted, for the frames, against the eccentricity 

of the loading e. This is carried out for the case when each 

space frame is subject to a load of 200 kg, while the plane 

frame is subject to 100 kg. The small defect in the loading 

system is here corrected for by an origin shift of the graphs. 

This resulted in moving the curve for a of a given frame 

slightly to the left while the curve for 5, moved to the right. 

The two graphs thus intersected on the 6 axis at points A and B. 

This figure reveals the nature of the interaction 

between the footings, the effect of the stiffnesses of the 

various structures on their individual behaviour and the manner 

in which the bending moments are redistributed in the frame, 

due to the differential settlements of the foundations on 

the one hand and the non-linear behaviour of the soil on the 

other. To begin with, when the applied load is symmetric, 

with e = 0, the settlement of the footings for the plane frame 

and larger space frame are almost equal - see point A on the 

6 axis of the graph. This indicates that the larger space 

frame behaves as two separate plane frames. On the other hand, 

point B on the graph gives the settlement of the footings for 

the smaller space frame 3. This shows that under symmetrical 

loading the settlement of this frame is 18.7% more than those 

of the other two frames, This can only be due to the inter-
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action between the foundations of frame 3. The footings of 

this frame are so close together that the settlement of one 

of its footings is influenced by the loads acting on the 

adjacent footing. 

In regions C and D of the graphs, it is noticed 

that the curves for the space frames coincide while the 

plane frame behaves differently. This is due to the fact 

that the stiffness of the space frames are nearly equal to 

each other, but both differ from that of the plane frame. Far 

more significant than this is the fact that graphs in the regions 

C and D reveal the interaction between the columns of the 

structures. Considering region D, for instance, the settlement 

a, at the left hand footing of a frame is retarded by the 

stiffness of the right hand portion of the structure. Since 

the space frames are stiffer than the plane frames, this re- 

tarding effect is more pronounced. This is why the settlement 

6, of the plane frame,for a given eccentricity, is larger than 

those of the space frames. On the other hand the reverse of 

this behaviour is evident in region C. Because the right hand 

side is holding up the left hand side, the settlement of this 

footing is aggrevated. This is naturally more so for the space 

frames. Obviously the interaction between the various parts 

of the structure does not play a part in the case of symmetrical 

loading. 

At point E in the figure, the eccentricity of the 

load is unity. The applied load is thus acting vertically 

over the left hand column. Normally,therefore a settlement of 

the right hand footing is not expected, unless, of course, 

redistribution of bending moments takes place. The figure 

shows how, in fact, the right hand footing of all three frames
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have suffered settlement. This is due to the enforced rotations 

in the joints in the right hand columns, 

Figure (8513) shows the graphs of the nett differ— 

ential settlements oop of the footings against the eccentricity 

of the load. Figure (8.14) shows the sway displacements of 

the frames against the eccentricity of the loads. Both these 

diagrams are for the case when the applied load is 200 kg 

for the space frame and 100 kg for the plane frame. In both 

these figures it is noticed that both oop and Soy for the 

plane frame are larger than the corresponding values for the 

space frames. The difference is due to the fact that the plane 

frame No.1 is more flexible than the space frames, 

The graphs also show a more significant fact than 

the mere relative stiffness of the frames, In the two space 

frames, it was pointed out that the smaller suffers from the 

interactions between the foundations. However, Figures (8.13) 

and (8.U,) give the results for the two space frames, These 

show identical behaviour, which indicates that the interaction 

of the foundations of this frame is compensated for by the 

greater stiffening effect of the members. The nett result is 

that the interaction between the foundations is not as significant 

as it may appear, This fact is further substantiated by the 

identical behaviour of the space frames in regions ¢ and D 

of Figure (8.12). It appears therefore tht many analysts 

and experimentalists have over-enphasised the relative importance 

of the interaction of the foundations, at the expense of the 

interaction between the various connected parts of the super— 

structure, 

Figures (8.12), (8.13) and (8.14) further indicate
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conclusively that to exclude the structure and treat each 

foundation as an unconnected body is indeed an over 

  

simplification of the prob. - Later in this chapter it will 

also be demonstrated thatto exclude the foundation effects 

and concentrate on the behaviour of the superstructure alone 

is also an oversimplification. 

Comparison of Theoretical and Experimental Results. 

It was stated earlier that the smaller space frame 

No.3, exhibited some interaction between the founiations. 

This frame was therefore selected for theoretical non-linear 

analysis, using prismatic members to represent the structure 

and solid hexahedral isoparametric elements to represent the 

soil. In Figure (8.15) the theoretical graphs of the differential 

settlement of the footings are compared with those obtained 

experimentally. Figure (8.16) makes the same comparison for 

the sway of the structure. Figure (8.15) shows that as the 

eccentricity of the load increases, the agreement between the 

experimental and theoretical results improves. The effect of the 

adoption of a hyperbolic stress-strain response, as shown in 

Figure (6.5), is also noticed in Figures (8.15) and (8.16). 

Initially the theoretical analysis, for a given eccentricity, 

unierestimates the sway and differential settlement. On the 

Gther hand at higher loads, the theoretical analysis over 

estimates both 6, and 6. Aclearer presentation of the 
DF sw 

results is given in Figures (8.17) and (8.18), where the be- 

haviour of the frame for various eccentricities under a vertical 

load of 200 kg has been singled out for inspection. The 

experimental resultsare those presented in Figures (8.13) and 

(8.14) which contained a correction for the experimental errors.
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While reasonable agreement exists between the two sets of 

results, the theoretical results, at the load level selected, 

consistently overestimte the values of oop and Saye This 

reflects that the theoretical results were on the safe side. 

In the theoretical analysis, the tangent modulus 

method was adopted for following the hyperbolic stress-strain 

relationship. It is known that the errors in the tangent 

modulus approach accumulate and are dependent on the size of 

the load increment. To ensure an accurate analysis therefore, 

the loading increment was made as small as practicable for 

computer time, Altogether fifteen load increments were used 

and it was discovered that no significant gain is achieved by 

using smaller increments. To check the accuracy of the tangent 

approach, after each loading increment, the stresses computed 

in each element were compared to those given by the hyperbola. 

Figure (8.19) shows the percentage difference calculated in this 

manner for the most highly stressed elements, These are elements 

numbered 20, 32 and 45 which are immediately below the left hand 

footing, as shown in Figure (7.1). Element 20 is the most highly 

stressed and also the smallest. Figure (8.19) shows that the 

percentage error in this element is about 10% after ten loading 

increments, rising to 18% at the end of the analysis. The errors 

in elements 32 and 45 are noticed to be less than 10% throughout. 

Elsewhere the errors were insignificant and it was concluded that 

the theoretical approach was reasonable for the type of problem 

under consideration, 

Redistribution of Bending Moments, 

In this section the results obtained by the computer,
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for the bending moments, for different values of eccentricity 

are presented for the smaller space frame No.3. The purpose 

here is to show the manner in which the bending moments are re- 

distributed throughout the frame due to the non-linear behaviour 

of the soil and the subsequent differential settlement of the 

footings. The results obtained are compared with an identical 

frame, but supported on a rigid foundation, known hereinafter 

as frame No.4. 

Figure (8.20) shows the geometry and loading of both 

frames 3 and 4. The joints are lettered in the same manner as that 

shown in plate (5.1b). The figure also shows a set of Cartesian 

X-Y-Z axes. Because of symmetry in the Y~Z plane through EF, only 

half of each structure was analysed. 

For both frames Figure (8.21) shows the bending moments 

about the X axis. Figure (8.22) gives the bending moments about 

the Z axis. Finally Figure (8.23) gives the bending moments in 

beams BH, CJ and EF about the X axis, 

Considering Figure (8.21) first, figures a and a! are 

the bending moments for frames 3 and 4 respectively, for the 

symmetrical load case. These figures show how the magnitude of 

the bending moments in frame 3 is considerably different fron that 

of frame 4, There is no differential settlements and the loading 

is symmetrical. The footings of frame 4 are rigidly fixed to their 

foundations. This produces considerable moments at the column ends 

A and D. Consequently a non-uniform stress distribution develops 

under each footing in the plane ABCD as shown in Figure (8.242). 

On the other hand, frame 3 is supported on a flexible bed of sand, 

Any non-uniform stress distribution that may develop across a 

footing of this frame, causes these to tilt in the manner shown 

by N'P* and Q'R' in Figure (8.24b). This leads to a rotation of
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a- Distribution of Stress under the Pads of Frame 4 
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Figure 8.24
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the column ends A and D which relieves the excess bending moments 

at these points. The values of the moments developed at A and D, 

in frame 5, are given in Figure (8.21a). Naturally this change 

in the rotation of the column ends gives rise to a redistribution 

of the moments throughout the members ABCD in the frame. 

An inspection of Figures (8.21) a,b,c and d shows 

that as eccentricity of the load increases, leading to an 

increase in the differential settlement of the footings, the 

bending moments throughout frame 3 alters considerably. Most 

significant in these figurés is the manner in which the bending 

moments at point D are changing. It is noticed that the bending 

moment here changes from a small positive value of +3 kg cm, 

for the symmetrical case to -141 kg cm for the case when e = 0.91. 

The stiffness of the column CD plays its part to retard the 

differential settlement of the frame, This forces the column 

to rotate about point D which gives rise to high negative bending 

moments there, In effect, therefore, column CD and indeed the 

entire right hand portion of the structure is contributing to 

reduce the development of high differential settlements - a 

fact that was substantiated experimentally and referred to earlier, 

A comparison of the bending moments in frames 3 and 

for a given eccentric loading indicates that the redistribution 

of bending moments alters due to the position of the load, but 

most significantly due to the development of differential 

settlements in frame 3. 

It is noticed in Figure (8.22) that there is little 

difference in the bending moments about the Z axis, between frames 

5 and 4. This is fully expected since these moments are not 

directly influenced by differential settlements to any great extent.



8.5) 

8.6) 

140. 

contd. 

The effect of eccentric loading on the bending 

moments in beams BH, CJ and EF about the X axis are shown in 

Figure (8.23). No significant difference was recorded in the 

values of these moments between frames 3 and 4. 

It is therefore concluded that differential settle- 

ment mainly affects the bending moments in the frames ABCD 

and GHJK about the X axis. 

Stresses in the Soil. 

Figures (8.25) and (8.26) show the distribution 

of the vertical stress Ts obtained by the analysis, below 

the left and right hand pad for various eccentricities when a 

vertical load of approximately 200 kg is acting on the frame. 

An attempt was made to check the vertical equilibrium of the 

forces to which each pad was subjected, For pad A, for instance, 

the vertical stresses at points a,b,c,d,e,f,g,h and A were 

averaged and multiplied by the area of the pad to give the 

average vertical reaction. The values of these reactions are 

also shown in the figures. The manner in which these forces 

were calculated eliminated the effect of bending stresses. 

Comparing these reactions with the vertical load in each column, 

which are also given in the figure, it is noticed for the left 

hand pad that the mximum difference is 9.2% for the symmetric 

load case, falling to 2.4% for the most highly loaded pad. 

For the right hand pads the difference is 9.2% fore = 0.0, 

13.1% for e = 0.33, 12.8% for e = 0.67 and 35.0% fore = 0.91. 

The worst case is the last where it is noticed that tensile 

stresses have developed under the right hand pad. This was 

not allowed for in the computer finite element analysis and 

suggests that future development of the work should provide
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facilities to allow for theseparation of the footing and the 

soil. It should be pointed out that the stress level under 

the right hand pad is so low that averaging does not necessarily 

lead to realistic values. Furthermore, as can be seen in the 

figures, the distribution of stresses under a pad is non-linear 

and hence the above averaging process is approximate, 

Figures (8.27) and (8.28) give the stress contours 

after vy, and oe throughout the depth of the soil foundation in 

the plane YX through the centre of the left hand pad. It is 

evident that in most cases a distinct column of high stresses 

is developed unier the footing. This was also observed by 

Majid and Craig’? for the case of a two dimensional model. 

It should be pointed out that the present model deals 

with a three dimensional frame supported by a deep bed of non- 

linear sand, in which the stiffness of the structure and the 

soil are both taken into consideration. The pad footings unlike 

the model of Majid and Craig are therefore subjected to both axial 

forces and bending moments. For these reasons, it is expected 

that the results obtained here could not have been achieved by 

the above workers, Indeed Figures (8.27) and (8.28) show how 

eccentric loading results in a complete redistribution of both 

o, and gy throughout the foundation. In particular the existence 

of bending moments has given rise to the development of high 

stresses under the footing in an unsymmetrical manner. On the 

other hand the results also suggest that the analysis should 

be altered to cope with tensile zones that develop in the sand. 

Noticed in the figure are small zones of zero stress which 

are developed away from the pad. Finally figures (8.29) and 

(8.30) show the distribution of g, in the plane Y-Z through the 

eentre of the left and right hand pads. On the other hand
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Figure 8.30 Contours of the Stress 9, under both Pads, 

in Kg/cm’.
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figures (8.31) and (8.32) show o, in this plane. These figures 

lead to the same conclusions as those stated earlier.
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This thesis has investigated the use of the Finite 

Element technique in various problems in Civil Engineering. In 

all these problems the main considerations have been to obtain 

both a realistic structural idealisation and a realistic repre- 

sentation of the material behaviour. 

To satisfy the first criterion, a major part of the work 

has involved producing a number of computer algorithms. These 

algorithms have been formed into various programs to carry out 

Finite Element stress analysis using the new families of two and 

three dimensional Isoparametric elements. It was essential that 

the techniques for forming the various stiffness matrices, should 

be both efficient and general. The former, because the Isoparametric 

elements require numerical integration, and the latter so that 

other elements could be added without major reprogramming. 

From comparing the results obtained using the various 

two dimensional elements, several conclusions were drawn. Firstly, 

all the elements developed, were proved to be in good agreement 

with the analytical solution, showing that their development had 

been accurate. Secondly, the linear triangle gave much the worst 

results and they were also the most expensive to obtain. The 

eight noded Isoparametric quadrilateral was shown to give the best 

value for effort in terms of computer time, storage and data pre- 

paration. 

It was noticed that the stresses near to the applied 

load were over or under estimated. The effect counted most 

against the cubic elements because of their larger size. The most 

significant effect of mesh refinement was that a better repre- 

sentation of the applied uniform pressure was achieved. From this 

point of view it would be worthwhile adding a special loading element 

to the element library. This element would have a large number of 

nodes on one face to which the pressure would be applied.
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It was further noticed from these analyses that a large 

number of zeros were stored in the overall stiffness matrix. This 

was particularly apparent in the three dimensional elements, be- 

cause of the large numbers of element nodes involved. This 

unnecessary storage could be saved by writing the element stiffness 

terms straight to the blocks required by the solution routine. 

Other possibilities are to revert to the traditional sparse matrix 

techniques, or, the frontal solution techniques. 

The analysis of the plane strain compression test proved 

that the finite element method could be very useful in interpreting 

laboratory test results. It was concluded that, in agreement with 

experimental observations, the applied shear stresses caused by 

the friction on the surface of the loading platten led to zones of 

low stress under the centre of the platten. It was also demonstrated 

that it was possible to represent smooth surfaces, realistically 

and simply, by using sandwich elements of relatively low stiffness. 

It was noticed from the results that the vertical stress at every 

node under the platten was in exact agreement with the average 

applied pressure. In most Civil Engineering situations the load is 

applied through some body, so the errors involved in the Finite 

Element method, when using surface pressures, may not be as import- 

ant as they first appeared. 

The Finite Element technique was also used in Chapter (4) 

to follow the path of crack propagation. The method allowed separation 

to occur along element boundaries, and was shown to be in excellent 

agreement with an experiment result. In these analyses cracks were 

only allowed to develop in one direction. In reality cracks may 

go in any direction, thus the method could be improved by allowing 

separation along any element boundary. Automating the mesh changes 

necessitated by activating dummy nodes would considerably speed
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up the procedure. 

The major part of this thesis has been devoted to the 

model tests and their theoretical analysis. These proved to give 

very promising results, but clearly there was room for improve- 

ment and further research on both theoretical and experimental 

sides. 

The sand deposition apparatus described in Chapter (5) 

was shown to be capable of forming large uniform beds of sand over 

almost the complete range of porosity. The model testing apparatus 

and technique proved reliable but a good deal could be gained from 

automating the test procedures. The twenty or so dial gauges could 

be replaced by displacement transducers, which could be automatically 

logged. This would avoid the need for the experimentor to clamber 

around the bed to read the dial gauges, with obvious danger to both 

himself and the test. The sand pouring technique could be improwed 

by replacing the hand propulsion of the hopper by an electric motor, 

allowing exactly uniform speeds to be followed. 

Extensions to the model testing should include the measure-— 

ment of other quantities apart from displacements. Strain gauges 

on the model structure would allow bending moments to be calculated 

and stress transducers in the bases of the pads could measure contact 

stresses. Both the strain gauges and the stress transducers could be 

logged automatically, and would be a further valuable check on any 

proposed analysis method. All the model tests reported here were 

loaded symmetrically, founded on a uniform bed of sand and possessed 

members of the same section. Most structures are unsymmetrically 

loaded and most soils gain strength with depth. Both these conditions 

could be achieved, the first by applying the load on one of the side 

beams and the second by varying the apperture setting as the bed 

filled. It was shown that the stiffness of the structure played a very 

important part in determining the differential settlenents. This



146. 

could be further confirmed by testing other frames of the same 

overall dimensions, but with different sections for the members, 

It was seen from the theoretical analyses that the assumed 

hyperbolic relation for the sand behaviour, led to a reasonable 

agreement between the theoretical and experimental results, This 

hyperbola was chosen because of its simplitity and relation to 

physical parameters. However, recent work has shown that a single 

curve cannot adequately represent the stress-strain curve, and this 

was readily seen in the theoretical results. The use of spline 

functions would lead to a better representation of the stress-strain 

response. 

However, a constant value of Poisson's ratio was assumed 

for the second hypo-elastic constant. In reality, sand could have 

a ratio greater than 0.5, because of dilatency under shear. Further, 

the stress-strain parameters were measured under conditions of axial 

symmetry, with a constant cell pressure and monotonically increasing 

vertical load. In the model, axi-symmetric conditions were only 

approximated to under the centre of the pads. The magnitude of the 

horizontal stresses in the test bed were dependent on the vertical 

stress. The actual stress path followed by the soil elements 

appears, from the results, to be nearer to a constant ratio of 

vertical to horizontal stress, rather than a constant horizontal 

stress. 

It is from a truer representation of the material behaviour 

that the greatest benefit will be gained. This depends upon further 

research into the three points outlined above. However, whatever 

method is decided on, if it is to be used in practice then long 

laboratory programmes and complicated testing equipment must be 

avoided. 

Improvements in the theoretical analysis can be derived
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from three parts. First, the material model which has just been 

discussed, second, a higher order element and lastly a better 

method of following the non-linear stress-strain curve. The 

second point involves a change in the method of storing the overall 

stiffness matrix. It was shown from the results that the errors 

involved in the tangent modulus method accumulate. The problems 

that arose with convergence of the iterative secant modulus 

method were a function of the properties of sand at low pressure. 

At higher pressures, such as those in Chapter (3), no such problems 

would be encountered. The immediate problem of speeding convergence 

for model test analyses could be helped by some process such as 

overrelaxation. The non-linear procedure should also include a 

facility to allow the footings and sand to separate should tensile 

contact stresses arise, This could easily be achieved using dummy 

joints in a very similar manner to the crack propagation metiod. 

It has been shown by both the theoretical and experimental 

results for the model space frame that the stiffness of a structure 

has an extremely important effect on differential ani sway displace- 

ments. This effect is caused by a redistribution of bending moments 

in the superstructure and is so significant that it compensates 

for other effects such as interaction. Design approaches consider- 

ing the superstructure alone, or the footings alone, severely 

oversimplify the problem, It is only by including both parts 

in the analysis that a realistic representation is achieved,



 



This report ie based on the SI system of uni 
a'Uaités and the international abbreviation 
organized system of units introduced by the 
Measures in 1960 and later endorsed ty the 

148, 

The name Systeme International 
are used for the systematically 

Qn e of Weights and 
ernational Organization for Stan- 

ts. 
  

   G 

  

derdization. The SI system is constructed sround six base units which are: 

Quantity Unit Symbol 

Jength netre a 
mass kilogranme kg 

time second 8 
electric current ampere A 
thermodynamic temperature kelvin K 
luminous intensity candela ed 

All derived units are stated in terms of the: 
derived units special names and symbols exis 
coherent unit of force called the newton. 
when applied to a boty having a mass of cne 
one metre per second per second and is thus 
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se six base units and for some of the 
+. The system provides a naturally 

This is defined as the force which, 
kilogranme, gives it an acceleration of 
independent of gravitetional acceler- 
their equivalents in British values 

Quantity: Unit: Symbol: Equivalent: 

length metre n, 39.3701 in 

area square netre n@ 1-550 in® 

volume cubic metre mn 61 023.7 in? 

vosnme 1 0.22 UK gall 

velocity n/s 3.280 84 ft/sec. 

acceleration econd/second n/s? 3.230 84 ft/sec’ 

mass kilogramre ke 2.204 62 1b 

density kilogramne /metre> kg/m 0.062 428 1/rt> 

force newton u 0.22% 809 lot 

torque newton metre Nm 0.737 562 lof ft 

pressure newtor/squ’ N/m? 0.000 145 038 1bt/in® 

dynamic viscosity newton sec! N s/n? 0.020 885 1pr s/ft® 

kinematic viscosity metre squared/second nm /s, 10.763 9 ft®/sec 

stress newton/square metre N/m 0.000 145 038 apf /in® 

energy joule a 0.737 562 ft lve 
energy joule J 0.277 778 Wo 

heat Joule z 0.000 947 613 Btu 

power watt W 0.001 341 bp 

frequency nertz Hz 1fsecond 

Multiples and subrultiples of the units are 
added to any unit is subject,to any pover ap, 
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k kilo 103 m milli 1073 a atto 10} 

*h hecto 10? miero 1076 
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A2.1 Two Dimensional. Elements 

In order to analyse general two dimensional structures and the urnder- 

lying foundation material it is necessary to include a member element in 

the library, It also means that no assumptions have to be made about the 

stress distribution beneath footings of various rigidity. It is also de- 

sirable to include the triangle since traditionally this has been the most 

popular element, Both these elements are well knowm so they are only dealt 

with briefly. 

Any modern Finite Element analysis must make use of the new powerful 

families of Isoparametric curvilinear quadrilaterals, It is these elements 

which are being considered in detail in this thesis, 

A2.1,1 Member Element 

Figure@iz. .1) shows a menver situated in the plane XY and defined in 

this global system. For convenience of: formulation the member is also de- 

fined in local axes pq such that the p-axis is in the direction end 1 to 

end 2 and the q-axis is perpendicular to it, as shown in the figure. 

The stiffness matrix of an element is shown below. This is the one 

quoted by Majid (62) in his text. 

4] a u, 
aL - 

Vs B F v. 
a1 ae 

M, ~C -t e 6. 
pe 2 

(A2.1} 
H. “A 3B é A u, 

J J 

Ne -B -F uy B F ve 

M | -C -2 £ C 2 e| 6. 
j i



  
     

     

Joint j 

joint i 

  

Figure A. 2,1. Plane member element
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G = ab F = aM* + dM? Gf = /du 
P q 

and _ EA p = 22eL 4 oe 
ea eee ic ~ < 

- St Bera: es $ = Be 

where E is the modulus of elasticity 

I the moment of inertia 

A the cross sectional area 

L the length of the member, 

and oe ac _ and Sh are direction cosines, Each end of the member is 

allowed three ‘in plane' degrees of freedom, two translational and one 

rotation, 

A 2.1.2 Iviangular Element 

This element was the first Finite Element and it is still popular to- 

day. It is very easy to formulate and has been proved ideal for mesh 

grading and refinement, The triangular shape is probably the most conve- 

nient one being a polygon with the least number of sides, 

Figure(A2.2) shows a triangular element situated in the plane pq of its 

local axis, The p axis runs from node 1 to node 2 and the q axis is perpen- 

dicular to it in the direction of node 3, Each node of this element is 

allowed two translational degrees of freedom. As the element has only three 

nodes the displacement function is the simplest complete polynomial, The 

stiffness matrix of the triangular element can be represented by equation 

(A2.2). 

K = [Rat 

Kes Kee (A2.2) 

Kea Kse Kgs 

The on-diagonal terms K,1,, Kee and Kgg are defined by:



y\   
  

(0,0)! 

Figure A.22. Trrangular element. 
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q mm 
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pp le qP p el pq me 

+ML)kK,+MLk + M ?k 
pq me qq mm q mm 

where Ky a and Ku are defined in equation(A2.5) and m= 21, = m1. 

The off-diagonal terms Kp,, Kg, and Kge are defined by: 

  

3 2 Ey = | pene * Tg ap TM Kae * Mylgkoe 

+k + L +MLk +MLk 
ot) * Yq"Kop qpmp aq op 

(A2 4) 
LMk , +MLk wWk +MM (k 
ppm Pq mp p ml pq mp 

+MLk,+MLkK +k) +mk 
qpol “qq op of q op 

where j >k and O = 2j, m= 0-1, p = 2k and @ = p-t. The terms k,, etc 

are defined below and 3% Lie a and a are again direction cosines, 

  

  

  

  

  

                

See ae 
+ 

oe (p,-P,)?a, 
~a, (P,P, )¢, (P, -p,)*a, ee 

a, (ps-P,)%,| 975% 

=o dg (Py-Pa)%_ | 15%, 
+ + + 

-a°(p,-p, )a,| P,a.0, PAG, 

F 3Ap ~4,(Py-P)o, =o" a, 3%, + + + + 

4, (P.-Pp)%y -9? 4, Ps te%s dade 

Pa (P5-Pa)%5 74 sP 2% “PsPo%s | Peis%s Peat, 

“4 5P 2% pi (P,-P,)4, IsP 2% “d5P5%,| 9 Prats 

(A2.5) 

where p,, P, and q, were defined in the figure and a,, a, and a, are de- 

fined below as the D matrix in {of = Die} as 

DS. lay. a, 0 

a, a, 0 (A2.6)
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A2.13 Higher Order Elements 

The two previous elements are both constant strain elements, in that 

the strain, and hence the stress, is independent of position, Where large 

variations of stress occur in a continua many elements would be required to 

obtain an adequate solution, An increase in the number of nodes of an ele- 

ment adds extra terms into the polynomial and hence improves the accuracy 

of the solution, In the case of complex boundary shapes, often curved, 

methods other than Finite Element analysis are very difficult to apply. It 

is therefore necessary to have elements able to distort into arbitrary shapes. 

A2.1.3.1 Rectangular Elements 

Traditionally shape functions for rectangles possessing any number of 

nodes are formulated by writing a polynomial to define the unknown displace- 

ments, For example, for a rectangle having n nodes this polynomial is 

defined as: 

casesescls (A2.7) S 2 u = a, + ax + ayy + a xy + a,x’ + ay? 

Substituting the known co-ordinates at each node into equation(A2.7) a set 

of equations is obtained: 

{8}. = Cla} (42.8) 

where [6] = {u, u, se. u,} 

ye Can ee al} 

and C contains coefficients depending upon the position of the nodes, To 

obtain the unknown constants this set of simultaneous equations are solved: 

fa} = o*{8} (2.9) 

Back substituting these constants the interpolation formula is obtained 

(A2.10) ui= Nu, ONE heeeee N, uy 

One property of the shape function is revealed by equation(A2.10) that is 

ifus= u, then N; = 4 and all other functions must be zero,
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For rectangles having only four nodes considerable effort is involved 

in arriving at equation (42.10) and the effort grows rapidly with increase 

in the number of nodes, The method does have the advantage that the right 

terms are visibly selected from a polynomial, The polynomials should be 

complete up to a certain degree, 

Considerable savings can be made by obtaining equation (A2.10) directly. 

Displacement fields can be constructed satisfying the various criteria, in 

certain polynomials, These give rise to two basic families called Lagran- 

gian and Serendipity by Zienkiewicz (03) in his text, 

A 2.1.3.1 Local Co-ordinates 

Before going on to describe the families it is worth considering the 

role of the local co-ordinate system, In the triangle the origin of the 

system was chosen at corner one and its directions defined from there, For 

rectangles it seems more logical to have the origin at the centre, orien- 

tated parallel to the sides as shown in figure(A2.3a). Thus, the bottom 

left hand corner is defined as (-b,-a). It is more convenient if these co- 

ordinates are normalised such that p = z and q == so the local co-ordinates 

p and q vary between the limits -1 and +1 as illustrated in figure(A2.3b). 

A2.131.2 Lagrangian Family 

A complete family of rectangular elements can be derived from the cross 

multiplication of one dimensional Lagrangian interpolation formulae of 

varying degrees, By having (n+1) nodes in the p direction and (m+1) nodes 

in the q direction, a total of (n+1)(m+1) nodes, the displacements can have 

up to an re degree of variation in the p direction and an m2 degree in 

the q direction, 

In general the lagrangian polynomial at a point i can be expressed as: 

n  __(B-,)(B-py) eee (D=P;_, (0-4) (p-,,) 
iL (pyrP,) @y-Pg) eee. (y-y_,) @s-Py yy) eee (Bp-P,) 

    
(A2.41) 

and hence the interpolation function for a two dimensional element is
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Figure A23a. Local co-ordinates 
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Figure A. 2.3.5 Normalised local co-ordinates
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Ny; = U'y() 1",(a) (A2.12) 

where i and j define the node in a regular grid such as that in figure 

(a2 4b), The first three members of this family are shown in figure(A2.4). 

As an illustration of this family, consider the quadratic element shown 

in figure (A2.4b) and form the shape function at node 6 (i.e. i = 3, j = DY 

: (p-p,)(p-p,) 
° = @-2,)@,- 2, (A2.13.1) 

(a-a,)(a-a,) 
ee 3 ot3, +> Taare) Wes 

: (p-p,) (p-p,) (a-a, ) (a-a,) ls Ne s 1 2 4 3 (A2.14) 

P,P, ) (P,-Py) (4974, ) (4g-4, 

and substituting in the values of the co-ordinates Py» Py etc. 

4 Ne = 3(p + p?- pa? - p?q") (A2.15) 

It is clear that the shape factors for the lagrangian elements can 

be generated automatically, 

4 A2.1.3.1.3 Serendipity Family 

  

This other family of rectangles is where the nodes are concentrated 

on the boundaries of the element as much as is possible. The cartesian 

polynomials are complete with the addition of a few extra terms, The shape 

functions were derived intuitively using the property discovered in 

equation(A2.10) with the convergence criteria, The first three elements 

of this family are shown in figure (A2.5). 

The shape functions quoted by Zienkiewicz (8) in his text are:- 

(4) Linear Element (Fig.A2.5a) 

ae N, = (1 #p,)( + 4,) (A2.16) 

where Po = PPs 

a adds, 

This is identical to the first member of the Lagrangian Family.



  

  

Figure A2.4. a. Linear element (4 nodes) 
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Figure A2.4.b. .Quadratic element (9 nodes) 
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Figure A2.4.c. Cubic element (16 nodes) 

Lagrangian family of rectangular elements



  
Figure A2.5.a. 

  

Figure A2.5. b. 

  

Linear element (4 nodes) 

  
Quadratic element (8 nodes) 
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Figure A2.5.c. Cubic element (12 nodes) 

Serendipity family of rectangular elements.
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(2) Quadratic Element (Fig.A2.5b) 
‘i 

Gorner nodes N, = mad + p,)(1 + a,)(e, ad ay (42.17.1) 

Wid-Side nodes p, = 0 N, = 4 - p?)(4 + 4) (A2.17.2) 

a, = 0 Ny e H(t + (1 - a?) (2.17.3) 

(3) Cubic Element (Fig.A2.5c) 

Gorner nodes N, = 45(1 + p,)(1 + a,)(-10 + 9)(p® + a?) (42.18.1) 

Mid-Side nodes p, = #1, 4 = 4 N, = a + p)(1 = 4%,)(4 + 9a,) l02.18.2) 

Pp, = ty, a, = #1 Ny = $5(1 + a,)(4 - p?)(1 + 9p.) (n2.18.5) \ se : Fe wh
e 

pe
 

A2.1.3.2 Isoparametric Quadrilaterals 

Quadrilateral elements cannot be formulated satisfactorily from 

cartesian polynomials, like those in the previous sections, They require 

the introduction of a curvilinear co-ordinate system having the same range, 

-1 to +1, as the normalised local cartesian system for the rectangles. 

Hence, precisely the same shape functions used for the rectangles can now 

be applied to these elements, It is for this reason that the rectangles 

are known as parent elements, 

The 'Isoparametric' concept is to use the same interpolation function 

to transform the co-ordinates as that which defines the unknown displace- 

ments, This considerably facilitates the formulation of the curved elements, 

The isoparametric quadrilaterals born from the two families of parent rec- 

tangles are shown in figures(A2.6) and (a2.7). The element titles in figures 

(a) ana (A2.5), linear, quadratic, etc. describe the shape into which the 

element sides can be distributed. 

A2.4.3.3 Stiffness Formulation 

This is shown most conveniently by means of an example, Consider the 

four noded quadrilateral in figure(A2.8) which is shown together with its 

parent element. The node numbers are shown circled and are particular to



  

Figure A2.6. a. Linear quadrilateral 

  

Figure A2.6.b. Quadratic quadrilateral 

  

Figure A2.6.c. Cubic quadrilateral 

Lagrangian family of 1soparametric quadrilaterals



  

Figure A. 2.74. Linear quadrilateral 

  

Figure A. 2.75 Quadratic quadrilateral 

  

Figure A 2.7¢ Cubic quadrilateral
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Figure A28 Linear element
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the element. The letters on the other hand are the joints to which the 

nodes are connected, Each node is allowed two translational degrees of 

freedom, defined here as u in the X direction and v in the Y direction, 

where X and Y are the global cartesian axes, Table(A2.1) below shows the 

local and global co-ordinates of nodes 1-4, 

  

  

  

        
  

NODE LOCAL AXES GLOBAL AXES 
p q x y 

1 -1,0 -1.0 ent, 

2 4,0 --1,6 Tou Ye 

3 “120 1.0 Xs Ys 

A 0-9 1.0 % Ye 

Table(A2.1) 

The displacement interpolation functions will have the form: 

uo = Niu, + Nou, + Niu, + Nu, (42.191) 

¢ ' Nove + Lv, + Nov, + Nyy (4219.2) 

where the shape functions are defined in equation (A2.16) . After substi- 

tuting in the values of p and q 

A 
Ny = 7,(1-p-a+pq) 

4 
Nz = 7(1+p-a-pa) 

, (A2.20) 
Ng = 7,(1-p+a-pa) 

41 
Ng = 7,(1+ptatpa) 

By invoking the isoparametric principle the transformed co-ordinates must 

obey the same interpolation function as the displacements, thus: 

x Nix, + Nel, + Nota + Nake 
(A2.21) 

Y " NgY, + NeYg + NeYg + NgYa 

The first derivatives of equation(A2.1 9) become 3
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gu _ aM, u, , Mev, , ONo us , Ne uy 
ap ap tap "* ap ** ap ee) 

and similarly for the other terms oe ap and a and these can be expressed 

in matrix form as: 

ap ap ap 

0 aN, 0 Me 0 BM 
op a oP (a2.23) 

ON, 0 Ne to) ONs 0 

aq aq aq 

0 Ns 0 aNe 0 Ns 
aq oq aq    

where differentiation of equations (42.20) gives 

Be = 1-10) alae) 

Mtoe = im Ps 
A2 2k. 

- = 1-1-4) oe = Lt») 

a + ttt) Re = ip) 

However, the derivatives = etc are of little interest since strains are 

required with respect to the global axes, Since p and q are functions 

of x and y the derivatives in equation(Q2.23) can be written as: 

eu . da ox, du ay 
op’) ox © Op * a * ap (A2.25) 

Similar operations for the other derivatives Oe a and a a other 

expressions which can be expressed in matrix form as:- 

  

= fax 0 ay O]fau 
ap dp ox 

0 gx 0 ayllav 
ap dp| | ax (a2 26) 

Jax 0 ay 0 |fau 
aq aq ay 

0 gx 0  ayllav 
aq aq\ lay.



where the above square matrix is known as the Jacobian matrix [J]. 
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The ele- 

ments of this matrix are the first derivatives of equation(A2.21) which are 

formulated in a similar way to equation(42 222), such that: 

ox 
ap a) ap 

ay, ax and so on for ae od 

ON: X, + oe X2 + Gis xe 5 
P 

ON Xs 
a (a2.27) 

and The derivatives on the right hand side of 

equation (2.26) are required, so the Jacobian needs inverting, yielding: 

éy| = 
ox 1 

av 
ox 

au 
ay 

av 
oy. 

The right hand side of equation (A2.28) contains the terms of equation (A2.23), 

substituting equation(A2,23) into equation (A2,28) one obtains: 

  

jay 0 ~<@ 
aq op 

0 g 90 
éq 

maze 0) igax 
aq ap 

0 -dx 0 
oq 

  

(A2.28) 

  

du) = 4/ ay ONa ay Ne 
ox C| dq ap dq Op 

“ay aN, “dz INe 
ov ap aq ap dq 
ox 

ay Ns 
aul Ome cee? ag 
oy “ay ONs 

ap dq 

Z| |-ax an, ~2x aNe 
v @q Op 9 «od OP 

pean +x aNa 
ap aq ap aq 

=0x ON 
dq Op 

0 +x ON 0 

LY ap oq 

= HY _ Wo where C = ap og Op ea 

From the Cauchy definition 

ay as ay ae }P 
dq Op dq ap 

0 Vv 
dy aNs oy ONs 2 
ap aq ap aq 

er) 

ay ae ay aNs ay Me 
aq apg dq dp 0 aq op ||"2 

dy aNg ay ON, “Oy ONa! Ju, 
dp dq ap dq ap aq 

Vs 
ox INs ~ax INg 

0 éq Op 0 dq op 0 Uy 

+0x ONs +u ON 
ap aq dp dq Va 

~2x ag -ax aM ~ax Ms 
dq Op dq ap éq ap 

tox MN, ° 48x MMe +on Me 
ap aq ap aq ap aq | 

(42.29) 

(A2.30) 

of strain using the usual small strain
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approximation: 

_ au _x - uu, ow 
Sree Ox ey) 7 Oy Voy = ay * Gx (02.31) 

Collecting together the terms of equation(A2.31) 

ey |= Al) oy ans SF SNe Sy IMs oy ane a 
C| éq dp dq dp dq Op dq Op 1 

0 0 0 o 

3 ~ay Os ~ay Wa ~ay Ms nay Ms vy, 
Wl ee oP od. ap dq ap aq ap aq 

u 

‘xy. 0 dq Op 0 éq ap 0 dq dp 0 dq ap v, 

+x ON +0x ONe dx INs +9x IN| |, 
dp dq dp aq ap dq 6p aq 3 

v 
-dx ON, dy ON,--dx INe dy WNe -0x Ns By INs ~Ox INg Ay Na}| 9 
dq dp 0g dp 9=4q Op Aq Op dq Op Og Ap 8g Bp 4g Ap 

+x ON, -dy ON, +2x Nady INe 40x ONs —dy ONs +x IN4 dy Ne 
ap dq Op dq +4Aap aq Op Aq Gp Aq Op dq Ap dq dap dq iv 

(A2.32) 

where equation (A2.32) can be rewritten as: 

fe} = Bis} (A2.33) 

From elastic theory stresses and strains are related by a D matrix, fora 

homogeneous material this will in general have the form: 

o. = [B(1) 23(2) 0 ey 

o (2) E(3) 0 |e, (2.3) 

oxy. 0 o E(t) | [Yay. 

where, for example, an isotropically elastic material undergoing plane 

strain deformation would have: 

B(1) = B(3) = rote 

E(2) = Ev 

(44+v)(4-2y) 

B(3) = wat . 

WhereE is Young's modulus of elasticity and v is poisson's ratio, In
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shorthand form equation(A2.3).) is rewritten as: 

fo} = D fe} (42.35) 

From chapter 1 it is known that by considering the principle of virtual 

work, the element stiffness matrix is: 
area 

K = I B’ DB ax ay (A2.36) 

It would be very difficult to determine the limits for the integration 

above, but it is known (33) that: dx dy = det[J] ap dq where det[J] is 

the determinant of the Jacobian matrix in equation(A2.26). Changing to 

the local co-ordinate system means that the limits are now straightforward. 

+1 +4 

k= B DB aet[J] ap aq (42.37) 

- (aay _ wy ox} where det[J] = e aa a0 a (A2.38) 

defining B, in B = 43, as in equation(A2.31) then 

eh 

ae | GB DBs ap da (A2.39) 

where K is the stiffness matrix of one linear isoparametric quadrilateral 

element, in this example, As each node is allowed two degrees of freedom 

the K matrix will be of order 8 x 8, The stiffness matrix is square and 

symmetrical so only the lower triangle terms are considered, The element 

stiffness matrix can be divided into parts, called sub-blocks, as shown in 

Pigure(A2.9). There are two types of sub-blocks, Triangular sub-blocks 

(Kia, Kee etc.) which fall on the diagonal, and, rectangular sub-blocks 

(Kea, Kse etc.) which fall below the diagonal. 

The only difference between sub-blocks is the node number (or numbers) 

that define it; it was therefore possible to formulate two general rectan- 

gular and triangular sub-blocks to represent all the others, By using the
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Figure A. 2.10 Representation of B* matrix
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B, matrix represented in figure(A2.1 0) and carrying out the triple mlti- 

plication By D B,,where D was defined in equation (a2 .34,) , these general 

sub-blocks were formed, The results are shown in figures(A2.11a) and la2.11b). 

It must be remembered that the equation(42.39) has not been integrated 

yet, so these sub-blocks contain values of the integrand, The reasons for 

dividing the element stiffness matrix into parts will be made apparent in 

Appendix (3). 

A2.1.3.4. Numerical Integration 

In the last section the integrand in the equation: 

it 

R= | G(pjqa) dp dq (2.40) 

where (p,q) is itself very complex, It would be very difficult if not 

impossible to define (p,q) explicitly, and then integrate it algebraicly. 

For these reasons, numerical integration has become a special feature of 

Isoparametric Quadrilaterals and has helped speed the formulation and pro- 

gramming of many elements, 

The numerical integration technique used is Gaussian Quadrature, which 

is known to be some twice as efficient as an equivalent Sgmpson type rule. 

The method is exact when n sampling points are used to integrate a function 

of degree (2n-1). +1 

Gauss quadrature replaces the definite integral | f(x) dx by the 
n 

summation . H; £(a,) 

where Hj is a weight coefficient, f(a;) is the value of the function at 

the specified point a. and n is the number of gauss points used, Thus 
J 

equation(42.40) is replaced by the double summation: 

n n 

K = by 2 G(a;, a;) Hi Hy (A211) 

ist j=
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A2.4.3.5 Stiffness Formulation of other Isoparametric Quadrilaterals 

In section (A2.4..3) the element stiffness matrix of a linear quadrila- 

teral was derived, The same procedure can be used for any Isoparametric 

element. In general, for higher order elements the various matrices (in 

equations (A2.32) for instance) will have more columns, The B matrix will 

be of order 3 x 2n if the element has n nodes, The pattern of all the 

derived equations will be unchanged, Thus, the general sub-blocks derived 

and shown in figures (A2.11a) and(A2.11b) are applicable to all Isoparametric 

quadrilaterals, The essential difference between the various elements will 

be in the different shape functions (equationA2.20) and their first deri- 

vatives (equationA2.2)).
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A2,2 Three Dimensional Elements 

To analyse general three dimensional structures and the foundation 

material it was necessary to include the space member and rectangular 

plate bending elements in the library of elements, These two elements are 

well known and are only mentioned briefly. 

The three dimensional equivalent of the quadrilateral elements des- 

ceribed in the previous section are called Hexahedral elements. It is 

these Isoparametric Hexahedrals which are mainly considered in this sec- 

tion. 

A2.2.1 Space Member Element 

The space member routines were obtained from the Prismatic Member 

Package of Bray (11), Figure (42.12a) shows this element in which the 

local axis P, Q and R are orientated according to the right hand screw 

rule, Hach end of the member is allowed six degrees of freedom as illus- 

trated in figure @2.4 2b). The eight resultant member forces are shown in 

figure (A2.13b). 

To cope with the various irregularities that occur in structures at 

the joints, the member description included facilities to allow the rep- 

resentation of gusset plates and haunches as rigid portions, and, allow 

the centroid of the member section to be offset from the joint. These 

rigid portions and offsets are detailed in figure(A2.1 3a). 

A2.2.2 Rectangular Plate Element 

This plate bending element was also taken from a package by Bray (11), 

Each node of the element was allowed five degrees of freedom, FigureA2.1)a) 

shows the three in plane degrees of freedom and figure(A2.14b) the three 

out of plane ones, The in plane rotation dp is always suppressed, 

N2.2.3 Higher Order Elements 

The reasons for adopting the Isoparametric Quadrilateral equally 

apply to the three dimensional elements, The equivalent families of Hexa- 

hedral elements are described in this section.



End B    
    

  

Sp 

Figure A.212 aq Member reference axes 

Waa 
&q A. 

EndA 

Ord 

Vr 

Figure. A 2.12 b Member deflections at each end



“Peb 
— 

line connecting specified | | 
Fea Q jomts +45 

eae! a. a 1 ' | i 

  

Figure A 2.134 Rigid portions and offsets of a members 
ends from the Specified joints 

  
Figure A 2.13.b Member forces on each member .



  
Figure. A 2.14b Out of Plane displacements



Loh. 

The derivation of the element stiffness matrix of an Isoparametric 

Quadrilateral was discussed in some detail in section(A2.1 Eads As the 

formulation of the Hexahedral Element is basically similar, it is only 

dealt with briefly. Details are included in so far as they are necessary 

to define the terms in the general sub-blocks that are derived. 

A2.2.3.1 Rectangular Prismoidal Elements 

Each node of these elements is allowed three translational degrees 

of freedom, u, v and w parallel to the axes of the global cartesian system 

X, Y and Z, The role of the local co-ordinate was explained in section 

(a2a a6 ule The addition of another dimension creates another axis r with 

usual range from -1 to +1, The direction of r is arbitrary except that the 

local axes and the global axes must obey the same sign convension, 

These elements were again divided into two families by Zienkiewicz 

(9%). The first element, with linear displacement along the edges, is 

common to both families, 

A2,2.3.1.1 Lagrangian Family 

The first two members of this family are shown in figure (2.15). 

Their shape functions can be formed from:- 

N, = Ui(p) Ua) B(z) see (A242) 

where n is the number of nodes on any side, ae) is a lagrangian inter- 

polation formula, defined in equation(A2.11), of degree n, The letters i, 

j and k define the node ¢ in a regular three dimensional grid, 

A2.2.3.1.2 Serendipity Fanily 
The first two members of this family are illustrated in figure (A2.16). 

Like the two dimensional family, the nodes are concentrated around the 

boundary, so that variation of displacement is achieved with a minimum num- 

ber of nodes, The shape functions quoted by Zienkiewicz (9%) for these 

elements are:- 

(4) Linear Element (Figure A2.16a)



 
 

element (27 nodes) Figure A 2.15. b Quadratic 

- lagrange family . Rectangular prisms



  

Figure A 2.16q Linear element (8 nodes) 

  

Figure A 2.16.b Quadratic element (20 nodes) 

Rectangular prisms — serendipity family
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1 
Ni = g(t + p.)(4 +4,)(1 + 4) eee (42643) 

where Py = PPi2 49 = 99; and Re Ser, 

(2) Quadratic Element (Figure A2.16b) 

Corner nodes: Ny = £1 +p)(1+a)+r) pee A2 ..4) 

Mid-side nodes: 

1 
Py = 0,4, = 44, ry = 215 Ne = 71m?) (440,)(140,) oe (A2 old .2) 

Py = 44, 4, = 0, 7, = 415 My = T(44,)(1-a?)(1-2,) oe (A2M.3) 

py = it, ay = #1, ry = 05 Me = T(14p,)(140,) (1-29) 0. (AZ std) i i 

A2.2.3.2 Isoparametric Hexahedrals 

These elements were formated in terms of the curvilinear co- 

ordinate system p, q, r. The Isoparametric concept is again invoked to 

facilitate the formulation of the element. The Isoparametric elements 

that are generated from the two parent families of rectangular prisms are 

illustrated in figures(A2.17) and(A2.18). 

A2.2.3.3 Stiffness Formulation 

Consider the linear hexahedral element in figure (A2.18a) and its 

parent element in figure (a2.16a). The shape functions for this element 

were defined in equation(A2.43). The three components of displacemen’ 

anywhere within the element can be interpolated from:- 

ui= Nyu, + Neu, + Ngu, ..2. Nety 

v = Nav, + Nev, + Nev, eee Nev, eee (42.45) 

w = Naw, + Now, + Now, seo. Now, 

From the Isoparametric concept the coordinates are transformed by:- 

Pp 1 Matin Nola. + Nokave.<oe Nokes 

HK i NaYs + NeYo + Neg .20- Neg eos (12.46) 

Z = NyZy + NeZe + NgZg coce Node



 
 

Figure A 2.[72a. Linear element  
 

tc hexahedral elements parametr



  

Figure .A 2.18.a. Linear element 

  

Figure. A 2.18b. Quadratic element 

Isoparametric hexahedral elements — serendipity family
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Differentiation of equation(A2.45) with respect to p, q and r yields a 

set of equations which can be expressed in matrix form as:- 

    

      

  

[au] = [ew aNe Ng fe] aa ae 0 0 a 0 0 Seccsioee ap 0 0 2 

a an. a ou ON Ne ONe 2a aq ao 035° 0 seeeeeee Gq 0 0 wm, 

oa ON Ne Ne U, a eer 0 ae 0 seseeeee FE 0 Oo 

Ve 
ov. ONs ae als ies. CMOS, 0 seensess 0 95 9 Wg 

a ON aNe Ne . a ae 0 0 3q O ce seeee selma) caniae, O 1}; | (42.47) 

ay aN, ap Ne : ee oa 0-0 0 seccceee O FF 0 i 

ow aN ag ae |* as Opies 8 oo 0 Ones a, 

is Ons ae 2Ne} |" aa 0 0 er 0-0 3a 0 0 emcee 
w 

axe an aN, ane| 1 ks —_s 
Lor] ie Q o or Oe or 6 o or |       
where the derivatives 7 ete are obtained from the differentiation of 

equation (A2.43) containing the substituted values of the local co- 

ordinates for p, etc. The derivatives = etc, on the left hand side 

of equations (A2.47) are related to the derivatives 2 ete. using the 

chain rule of differentiation, which can be expressed in matrix form 

asi-



  
Inversion of the 

{au] = 
Ox 

du 
ay 

    

[ax 
ap 

ax 
aq 

ox 
or 

0   
aA 
CG 

  

ay 
ap 

ay 
aq 

ay 
or 

B 

az 
ap 

az 
aq 

az 
or 

D 0 

ax 
ap 

ax 
aq 

ox 
or 

equations (A2, 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 . 

Orato a 

oo 

48) gives:- 

  

ay 
ap 

ay 
aq 

ay 
or 

aw 
op 

‘aw 
aq   Lar]   
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(A248) 

(A249)
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Where C = QXA + OE + oZH= det [ J], eee (A250) 
aP aP @aP i 

det [J] is the determinant of the Jacobian matrix in equation (A248) , 

andA = a aZ- a% ay, B= a% av - ay az, 
dq or dq or ap or op or 

D = a am- a ay, E = a Ok - ax ou, 
op ar ap or dq or aq or 

@p dr dp or ap aq Op dq * ieve \(A2.51) 

Ho = ax oY - aX ox, K = oY aX - ax ov, 
dq Or eq or ap or Op or 

andL = aX aY- o& ox. 
Op 0g %p dq 

From the Gauchy definition of strain using the usual small strain 

approximation the six components are defined as:- 

SE = 00g ef = 2% 4 cx = Om, soe (42552) 
ox oy 02 

yay = du+ adv, yes = du+om, ys = av+ dw 
ay ax 02 Ox az ay 

By placing the right hand side of equation (A2.49) with equation 

(42.43) ani then collecting the terms on the left hand side to form the 

required components of strain in equations (A2,52) the B matrix in 

fe} = B {a} is obtained as; (see fig. (A2.53) over page). 

Where the terms in the matrix can be formed from:- 

Bl,j = A @Nn +B aNn+D aNa, 
op aq er 

B2,k = Em + F am + G Nn, woe (42.54) 
“Op Oq “Or 

B3,1 = H @Nmi+ K Nm + L QNm, 
ap aq ar 

and Bh,j = B2,k, Bh,k = B1,j, 

B5,j = 85,1, B5,1 = B1,j, 

B6,k = B3,1, B6,1 = B2,k. 

Where m is the node number and 1 = 2m, k = 1-1, j = 1-2. The stresses 

are related to the strain by the elasticity matrix in;
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a " o fe] 

Where D = H(1) E(2) (3) 0 0 8 I
 

B(2) E(4) (5) 0 0 0 

E(3) B(5) E(6) 0 0 0 

0 0 0 E(7) 0 0 oem Che 55) 

0 0 0 0 (8) 0 

0 0 6.4 10 0 E(9) 

For a isotropic, homogeneous material for example; 

B(1) = B(4) = B(6) = __E(1-v)_ , 
tv, 1-2v 

E(2) = E(3) = B(5) = Ev ’ wie 1 (A2 556) 
ltv) (1-2v 

ul ico
) and ——-B(7) = E(8) £(9) 

2(14+v 

By considering the principle of virtual work the element stiffness 

matrix is calculated from: 

vol i 
KE = | B’ D B 4 (vol) ere (42.57) 

The integration in equation (A2.57) is most easily carried out with 

respect to the local axies whose limits are known, thus 

+1 ptl - +l ie 

K = I | I B’D B det [J] ap dq ar eee (A258) 
-1 -1 J-1 

The B, matrix is defined in equation (6.13) asB=1 B,, thus 

c 
t+lpp tl +1 x 

K = i l 123,’ DB ap dq ar, eos (42,59) 
ol =1 -1 c 

The triple multiplication in the equation above yields a matrix of 

order 2). x 2h for the linear (8 nodal) element, This mtrix which represents 

a 
the integrad of the element stiffness mtrix can as usual be divided into 

sub-blocks, The two general sub-blocks derived from this product are shown 

in figure (A2.19).
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SORE CAE CM PS MRE aI EL OOO 

+ B(6,3) B(6,m) B(9) 
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+ B(6,4) B(6,1) B(9 
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A2.2,3.4 Numerical Integration 

Gaussion quadrature was used to carry out the triple integration in 

equation (A2.59). The equation was replaced by the triple summation; 

n n n a AA 
a 2 3 y G(ai, aj, ak) Hi Hj Hk ee (42.60) 

$51 j-l el 

Where G(ai, aj, ak) is the value of the integrand at the various sampling 

points ai, aj, and ak, Hi etc. is the weight coefficients and n is the 

number of gauss sampling points. 

A.2.2.3.5 Stiffness Formulation of other Isoparametric Hexahedrals 

Like the general sub-blocks derived for the quadrilateral elements 

(figure A.2.11) the sub-blocks in figure (A2.19) apply to any hexahedral 

element, The only difference is formulating the stiffness items for other 

elements is in the choice of the shape functions ani the number of columns 

in the various matrices, 

A2.3 Gonvergence Criteria 

To ensure convergence to the correct solution by finer sub-division 

of the mesh, the assumed displacement function must satisfy the convergence 

criteria which were discussed in Chapter (1), The three min criteria are:- 

(1) Displacements must be continuous over element boundaries. 

(2) Rigid body movements should be possible without straining. 

(3) A state of constant strain should be reproducible, 

The arguments used by Ergatoudgis (64) to show that the Isoparametric 

elements conformed to these convergence criteria are outlimed here for 

completeness, 

To satisfy criterior (1) the displacements must be uniquely defined 

over the face of the element, by the displacements of the nodes on that 

face only. The shape functions for nodes not on the face are zero, there- 

fore the variation of displacements on that face is identical for both 

elements,
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Criteria (2) and (3) are closely related and both are associated 

with a displacement function of the form ; 

U=a+ bx + cy + dz (A2.61) 

This is because the first derivatives of the above equation contain 

only the arbitrary constants a, b, c and d. The displacements anywhere 

within an Isoparametric element can be interpolated from ; 

U=N,U, + NU, + AU, + seeeee (A2.62) 

Substituting equation (A2.61) into equation (A2.62) for each node of 

the element gives ; 

Us N,(a + bx,+ cy,+dz, )4+N ola + bxp+ C¥yt az) Steers (K2565) 4 

or, Us= a(N,+ Not «- )+ b(n, X,+ Noxpt «+ )+ o(N,y4+ Nyyot + ) 

+ a(n, 24+ NoZpt ) (42.64) 

From the definition of x, y and z in equation (A2.46) , and the property 

of the shape functions that Pare that was discussed in section 

(A2.1.3.1) , it can be seen that equation (A2.64) is an identity with 

equation (A2.61) as the element size decreases to zero and xxx . 

Further , as the shape functions are functions only of p,q and r , the 

local axes, and since any change in the origin of the global axes does 

not alter the position of any point (p,q,r) relative to the nodes no 

straining can be incurred .
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A3.1 Introduction 

In problems concerning the analysis of continua it is difficult to 

determine initial strain conditions, while it is common practice to ignore 

body forces as their effect is usually small compared to an applied load. 

The analysis of slope and embankments, where body forces are important, 

was dealt with as a special case, Conditions such as non-homogeneity and 

orthotropy are common and were allowed for, The input data had to be pre- 

“pared by hand and punched on to cards, Careful thought was given to this 

and the effort was kept to a minimum, 

It is advisable to check the performance of the various ele- 

ments against an explicit solution, To ensure that the results are 

indicative of the element efficiency, a series of programs were written, 

n fs
 

one for each of the elements outlined in Appendix(2) « The routines 

these programs formed the basis of all the future programs, 

tel
 

A3.2 Solution of the Equations and Storage of the Ov:     
The method of storage and solution of the equations adepted by the 

author was that due to Jennings and Tuff (59) - This metnod stored the 

equations using a variable band width technique using Choleski triangular 

Pactorisation method for their solution, 

During the reduction of a set of sparse equations by any variant of 

Gaussian elimination, the zeros before the first non-zero term remain zero 

  

if there is no row or colum interchange, A variable band storage sch 

makes use of this property by storing for each row only those coefficients 

between the first non-zero term and the leading diagonal, The rows are 

stored consecutively in a uni-dimensional array (W), while another 

  

is used to store the locations of +! 

    

within the ay . For example, the matrix: 
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Row 

1 155 

2 0.2 4ie2 

3 1.1 0 Bee 

& 0 0 5.1 10.6 

5 0 0 0 0 2.6 

6 0 0 -1.2 0 0 6.1 

would be stored as:- 

Location 1 2 3 4 See a 8 9 40,44) 422-415 

WwW 1.5 Wee. Wee lol 0: 2.2 5.1 40.6 286 1 geueOmOmGe) 

and the address sequence becomes: 

mowmnos et 81 92°95 kh 5 6 7 

DAS Cae 6 8 O45 

Some zero terms however will be stored, the number of these depends 

upon the least joint number, which in turn depends upon the efficiency 

of the overall joint numbering scheme. 

Jennings and Tuff further improved their method by using backing 

store facilities, This is achieved by the division of the storage array 

into a number of segments, each segment containing an integral number of 

rows, The segment size can be chosen to match the core store available, 

When the address sequence is known it is relatively easy to obtain the 

maximum number of rows that can fit into each segment, 

Choleski factorisation of the equations L = K X yields a matrix of 

the form 

gg =k (321) 

where G is the lower triangle matrix with positive diagonal terms, 

Substituting equation(3.1) into L = K X gives:
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Gefx} = {1} (43.2) 

or GY = {x} (43.3) 

where ¥ = Gfx} . 

The variables in Y are the modified right hand side coefficients 

after elimination, The back substitution process to complete the solution 

is the determination of {X} from: 

iG ix) ew ‘(3 ott) 

i-1 
4/2 

= = 2 : 
S39 {a g ax for diagonal terms, and 

k=1 

js 

835 = [5 - by &| + Es, for off-diagonal terms, 

k=1 

These relations show that to form any coefficient 85 only rows i and j 

of the stiffness matrix are required to be stored, The segment containing 

row j is known as the passive segment and that containing row i the active 

segment, 

Adoption of the variable band width storage scheme makes it unneces- 

sary to call all the passive units up to the area to be reduced if this 

area lies entirely to the left of the stored elements, To determine the 

first passive unit required by an active unit it is necessary to inspect 

the column numbers of the first element in each row of the active segment. 

If the least of these is cq it is possible to determine in which segment 

the corresponding row occurs, and this will be the first passive segment to 

be called. Figure(43.1) shows the area in which elements 835 will be deter- 

mined for a given active segment q and passive segment p. 

As the matrix {L} is kept in the core during the reduction of K, the 

reduction of {1} to form [Y] is carried out simultaneously with the
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determination of G. When reduction is completed qieeceruer ts of G are 

called in the reverse order to perform the back substitution to obtain {Xx}, 

which overwrites {L}. 

Jennings and Tuff also showed that random access disc facilities were 

the most efficient method of handling the segments provided that their 

size corresponds to a multiple of a bucket size. The maximum bucket size 

is 512 variables (102) words) on I.C.L. 1900 series facilities and this was 

therefore chosen as a convenient segment size, 

3.3 Formation of the Overall Stiffness Matrix, Two Dimensional Elements 

It was seen inAppendix (2) that the stiffness matrix of one linear 

quadrilateral is of order 8 x 8, each row or column represents one of the 

two possible degrees of freedom at each node. The finite element mesh 

shown in figure(A 3.2a) has only one element (number 3) which is allowed two 

degrees of freedom at each node, The other elements are connected to joints 

with some degree of freedom suppressed, 

The lower triangle of the stiffness matrix for this mesh is shown in 

Pigure(A3.2b), where the shaded area represents stiffness coefficients. 

The limits of the band are shown by double lines and only those terms bet- 

ween it and the diagonal will be stored, The band width depends upon the 

lowest numbered joint attached to any particular joint. Thus, the overall 

joint numbering system must keep the degree of connectivity to a minimum 

otherwise a great number of zeros may be unnecessarily stored, The DAS 

array is calculated by inspecting the least joint numbers, and the result 

for this mesh is shown below the figure(A3.2b). 

The problem in forming the overall stiffness matrix was to 

select the right terms from the general sub-blocks of the element stiffness 

matrix and then insert them into the correct position in the overall stiff- 

ness array; to do this the author followed a method proposed by Bray ay 

for structural elements, 

The degrees of freedom were input in the familiar structural notation, 

in which the digit 1 indicates an allowed degree of freedom
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and the digit 0 indicates a suppressed one. In two dimensions, three 

degrees of freedom are possible as shown in figurg A 3.38) Figure(A 3.3b) 

shows how the joints in figurdA 3.2a) would be represented in structural 

notation, FigurgA 3.3c) shows another way of representing the degrees of 

freedom in what was called indicator form, These values are stored in the 

IR array in a left justified fashion, This is called indicator form be- 

cause the digit 1 actually indicates the existence of a degree of freedom 

in the X-direction, the digit 2 indicates a degree in the Y direction and 

3 indicates a rotation. 

Consider the general rectangular sub-block, which was derived in sec- 

tion(A21,33), illustrated in figurdA 3.4a). This sub-block represents the 

combined contribution of nodes i and j of an element e, If either of these 

nodes are connected at joints with some degree of freedom suppressed then 

the sub-block will not be the same shape, Hach row or colum exists for 

one particular degree of freedom, If either of the joints has no degrees 

of freedom then the sub-block will not exist, Consider the sub-block 1350) 

of element 2 in the mesh shown in figure(A 3.28). These nodes are connected 

at joints 5 and 2 respectively. The position of this sub-block in the 

overall stiffness matrix is shown by the heavily shaded area in figure(a 3.2). 

This sub-block is not the only contribution to this area because the sub- 

block [4,2] of element 1 will also add into the space, The sub-block 

allowed by the degrees of freedom of joints 5 and 2 is shown in figure 

(4 3.46). The subscripts for the terms are those allowed by the combination 

of the two rows of the indicator array (figure (43 .3c)) for joints 5 and 2, 

Joint 5, the larger joint number, determines the number of rows, while 

joint 2 determines the number of columns, The two dimensional array known 

as the code array (IAA) is shown in figurd (3.40) « 

It was also necessary to introduce another array (DF), containing, 

for each joint, the summated degrees of freedom up to and including that 

joint. The result for this example is shown below .- figurdA 3.2b). The
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degree of freedom of any joint a A 1 is DF(a)-DF(a-1). The code array 

contains labels for the terms in a general sub-block, three degrees of free- 

dom being allowed, The combinations of the IR array terms of the two joints 

defining the sub-block gives the desired terms. For the example of sub- 

block{3,1] in figure(A3.4b) this would be labels 1 and 2, 

Only one problem remained and that was to put these terms into the 

right place in the stiffness array. Only the lower triangle of the stiff- 

ness matrix is stored and thus only those sub-blocks that fall below the 

diagonal are required, Any sub-block[i,j],where nodes i and j are con- 

nected to joints A and B respectively, will be constructed and written away 

only when joint number A is greater than that of B, 

The position of the sub-block in the overall stiffness matrix is de- 

fined by its row number and its distance from the diagonal, The first row 

of the sub-block(m,n](attached to A and B, A> B) will be DF(A-1)+1 and the 

distance, from the diagonal to the first term, is DF(A-1)-DF(B-1)+1. In 

general, for the i degree of freedom at joint A and the ae degree of 

freedom at joint B, the location in the W array is given by:- 

L = DAS{DF(A-1)+i+1} - {DF(A-1)-DF(B-1) }+i-j (a3.5) 

The procedure shown in the flowchart(A3.1) shows how the terms for 

rectangular sub-block|m,n] were selected and written away into the stiffness 

array. Nodes m and n are connected to joints A and B, where A is greater 

than B. It can be readily seen that the process can be applied to any two 

dimensional element, The method was also independent of the order of the 

quadrilateral. The only difference between the treatment of the linear 

quadrilateral and say the cubic lagrangian element is that the latter has 

many more sub-blocks, 

Triangular sub-blocks were treated as a special case of the rectangular 

sub-block, Here only one joint decides the shape and position, An element 

having n nodes will contribute a maximum of n triangular sub-blocks and



FLOWCHART/A 3.1) 

The terms were 

defined in 

figure(A2.11b). 

H is the 

weight coeff- 

icient produ- 

et HH 
PQ 

  

   
DA=DF(A)-DF(A-1 

DB=DF(B)-DF(B-1 

) 
) 

  
  

  

  
ie 
  

  

      

  
TI=TAB{ITR(T,A)- 

-,IR(J3B) }      

    

  

L=DAS(DF(A-1)- 
+I+)-(DF(A-1)- 
DF(B-1))-J+I 

  

     

YES eit 

2 

=)07 

ay : 

  

9 
  

W(L)48(1)B. B 
am in 

  

  

eB) BoaPont 2) 

  

  

44 
(1) 48(2)B, By 

3i_sn 

13 

  

Le(4)B. .B tha) 

  

TORO, By   5(4)B,,B, feW(L)         
 



FLOWCHART( 43.1) 
  

(.——y 

    

  

(1) 4B(2)B BS 
2) Mote       

    

  

  

      

  

    

    

  

   OPERATION 
COMPLETE



179. 

0.5x (n-1)n rectangular sub-blocks, The required rectangular sub-blocks, those 

below the diagonal, are selected by inspecting every possible permuation 

of node numbers, ignoring diagonal terms and those permutations where the 

joint number attached to the first node is less than that at the second, 

A34.1 Numerical Integration 

It was shown in section(A2.1..3.4) that the complexity of the stiffness 

matrix of an Isoparametric quadrilateral element required the use of nume- 

rical integration, This was achieved by the double summation: 

K = % G(a,,a,)H Hy (A 3.6) 

n n 

je 41 

where a is the position of the gauss point and H its associated weight co- 

efficient, Thus, if an n point Gauss rule is used, the operations discussed 

in the previous section have to be repeated n® times, The B matrix will 

have to be calculated for each value of p and q associated with the rule, 

formed into sub-blocks, multiplied by the weight coefficient, and written 

into the stiffness array, The final coefficients are thus summed up in the 

stiffness array. 

This operation required the use of a table of values for a and H, from 

which the various values of p and q together with their weights were se- 

lected, These values were stored, in a BLOCK DATA segment, as two two- 

dimensional arrays, The values for up to a six point rule were only included 

as these were judged to be adequate, These values were taken from Kopal (3) 

and are illustrated in figure(A3.5). The equation(A3$) was modified to 

become: 

n n 

wee 5 3 G{AB(n-4,4) ,AB(n-1 ,3)} H(n-1 ,4)H(n-1 ,3) (13.7) 

The complete process of forming the overall stiffness matrix, including 

numerical integration is shown in flowchart(a3.2).
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A344 Calculation of Stresses, Two Dimensional Elements 

In general, engineers are interested in the stress distribution through- 

out a media, The stresses should therefore be calculated at as many points 

as it is convenient, It seemed logical therefore to treat the stresses in 

a similar manner to the displacements calculated at each point, InAppend- 

ix (2) it was shown that strains are calculated from the displacements 

fe} = B 183 (4 3.8) 

and the stresses are then calculated from 

fo} = 2 fe] (43.9) 

For any element the strain can be calculated at a mode by forming the B 

matrix, using the local co-ordinates of that node, and then multiplying 

it by the displacement vector associated with the element. Four nodes are 

connected to joint 5 in figure (43.2a) so the calculation of strain at one 

of these nodes would seem adequate. However, the convergence criteria for 

the Finite Element method, with the displacement modelysensures displacement 

continuity throughout the mesh, Approximate slope continuity is achieved 

by careful mesh design, The strain at joint 5 (figura 3.2a) is best ex- 

pressed as the average of the strain at each of the appropriate nodes of 

the elements surrounding it. When the average strain was known at each joint 

the average stress could be calculated using equation: 3.9). Soils usually 

gain strength with depth thus to make the procedure general it is 

advantageous to calculate the average stress at each node in a similar 

way to that used for the strains. 

The routine to calculate strains and stresses uses an array (CD) to 

hold the local co-ordinates of each node, The final average stresses and 

strains were stored in another array (SQ) which has seven rows and a column 

for each joint, Six of the rows hold strains and stresses while the 

seventh row holds a counter, 

For each element the routine calculated the stress and strain at
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each node, These values were added into the array SQ at the joint the node 

is attached to, Each time SQ is entered at a joint the count at that joint 

is increased by one, When all the elements are finished the average strains 

and stresses are calculated by dividing the sums, now stored in the SQ array, 

by the counts. The procedure is shown in the flow char{A3.3). 

A3.5 Other Two Dimensionalobhements 

The procedures described in the two previous sections are applicable 

to any elements, The method of formation of the overall stiffness matrix 

only requires the construction of the two general sub-blocks, In the case 

of triangular and member elements, numerical integration is not required 

and the process is only carried out once, 

The strains in a triangular element were relative to the local co- 

ordinate system, which was not very convenient, This element is a constant 

strain element not requiring strain calculation at each of its three nodes, 

For these reasons the strain was calculated at the centre of the element and 

then transformed to the global axes using the transformation: 

€. ly i? LB fe 
iz P qa Pal] Pp 

© uM? uM? MM | le A 3.10 
vy, P ts pa} aq me 210) 

Mb ML ML 
“oy. pp aa a?ll%pq 

+ 

ML 
P 

where a? eae SS and . are direction cosines of the element, 

The stresses are then calculated using the transformed strains and 

the results added into the SQ array for each of the three joints attached 

to the triangle, Average strains and stresses are again calculated when 

all the elements have been processed, 

A326 Plane Strain Linear Elastic Analysis Programs 

Initially six programs were written, One for the triangular element 

and one for each of the Isoparametric elements dealt with in Appendix(2) 

All these programs were very similar, Indeed, one program could have been
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written containing all the element sub-routines, However, this would have 

been very innefficient for the series of analyses carried out in Chapter(g), 

where meshes were composed of only one type of element. The ease with which 

files are handled under the I.C.L. GeorgeIV operating system meant that 

new programs, and even new suites of programs, could be assembled from the 

various available sub-routines without much difficulty. These programs all 

carried out linear elestic analysis of an isotropic homogeneous continuum 

subject to surface loading. The procedure followed by each of the programs 

is shown in flowchart (A3.4). 

Several of the routines, like those involved in reading the load vec- 

tor and solving the equations, are exactly the same for all elements. 

These were stored as library routines. Hence, a program like the one in 

flowchart (A3.4) would be formed by a Master segment, the two routines 

ISOQUADn and ISQnSAS, for the formation of the overall stiffness matrix and 

calcutation of stresses, plus the standard routines in the library. 

Once a routine has been called and used it may not be needed again. 

To make the most efficient use of the core store these routines were kept 

on dise and called as required. This technique is usually called overlaying 

and was performed under the I.C.L. system by selecting areas of core, the 

routines are put into these areas as they are called, overwriting the rou- 

tines called previously. The overlay scheme is shown in figure(A3.6).
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A3.7_Formation of Overall Stiffness Matrix, Hexahedral Elements 

All the points discussed in the previous sections can in general be 

extended to three dimensional elements. The method adopted for storing 

and solving the equations applies to all elements. The differences arise, 

in that a joint is in general allowed six degrees of freedom as shown in 

figure(A3.7a). 

The method of forming the overall stiffness matrix, as it applies to 

three dimensional elements, is again most conveniantly illustrated by 

means of an example. Consider the four linear Hexahedral Elements represénting 

a material enclosed in a smooth sided box shown in figure(A3.7b). The degrees 

of freedom in structural notation and in the indicator form are shown in 

figures(A3.8a) and (A3.8b) respictively, for the joints numbered 1 to 12. 

The general rectangular sub-block derived for the Isoparametric 

Hexahedral element in Appendix(2), figure(A2.19b) is represented in 

figure(3.9a). The code array (IAC) for three dimensional elements is shown 

in figure(A3.9b).. This array contains labels identifying the terms in the 

general sub-blocks. Consider the formation of the sub-block (5,3), of 

element 2 (figure(A3.7b)), the nodes of which are connected to joints 8 and 

5 respectively. Figure(A3.9c) shows the sub-block (5,3) formed from the 

combination of the degrees of freedom in figure(A3.8b). In the program this 

would mean selecting the terms labelled, 1 , 4, 8 , and 5 as shown beside 

the sub-block, would be selected and calculated. The process of forming the 

sub-block (I,J) of an element is shown in flowchart(A3.5). Triangular sub- 

blocks were again treated as a special case, since they are dependant upon 

one joint only. 

The complete process followed in forming the overall stiffness matrix 

of a mesh of Hexahedral Elements, including numerical integration, is shown 

in flowchart (A3.6). 

A3,8 Stress Calculations y.Hexahedral Elements 

The method discussed in section(A3.4) is applicable to these elements. 

The only modification necessary is that since there are six components of
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stress and strain, the SQ array must have thirteen columns, 

Initially three programs were written, one for each of the elements 

described in section (A2.2). These programs were all intended to analyse 

linear elastic homogeneous isotropic materials subject to surface loading, 

thus enabling accurate checks to be made. However, all the routines were 

written bearing in mind the fact that their future use would be in less 

ideal conditions. The procedure followed by the program is shown in 

flowchart (A3.7).
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