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SUMMARY,

The finite element method is now well established as an
extremely useful tool for the displacement and stress analysis of
problems with complicated boundary conditions. One aim of this
thesis is to investigate the suitability of the method in the
solution of the range of Civil Engineering problems usually
associated with Soil and Rock Mechanics, A further aim has been
to extend the method into the analysis of complete structures
integral with the foundation material.

A suite of programs has been written to carry out finite
element analysis in two or three dimensions using the new families
of Isoparametric elements. The accuracy and efficiency of these
elements has been assessed in relation to a typical foundation
problem which can be analysed using more conventional methods.

Two important non-linear two dimensional problems have been
investigated namely the analysis of the plane strain compression
test, involving the idealisation of smooth interfaces,and,crack
propagation. In the former an iterative process has been followed
to analyse the test and compare results with experimental conclusions.
The process of crack propagation has been followed using an incremental
method which involves changing compatibility conditions to introduce
separations at element boundaries.

The major part of this thesis is concerned with a method for
analysing complete three dimensional structures together with their
foundation materials. With this method it is possible to include the
complex interactions of structure and foundation as well as the non-
linear stress-strain response of the soil. In order to assess the
accuracy of the method it was necessary to construct a model testing

apparatus and conduct a series of experiments.
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1.1) Introduction.

Except for a few very simple problems the inherent
non-linearity of soil deformations cannot be analysed by
normal techniques. It is the usual practice in soil
mechanics to differentiate clearly between two different
classes of computations of the state of stress and deformations
in a soil mass. Terzaghil{®2®) referred to the two groups as
the "elasticity problem" and the "stability problem".

The stability problem is solved using limit
analysis, which is performed by invoking a particular failure
criteria, using a corresponding value of ultimate strength
characteristic derived from a laboratory test. By this method,
problems involving slopes, retaining walls and foundations
have more or less successfully been treated. This method is
considered adequate to check overall stability but it cannot,
by definition, give any indication of the state of stress and
deformation up to failure. Deformations are assumed to be
zero up to failure, which is then sudden and catastrophic.
The method provides at best an upper or kinematic bound to
the problem.

Stability analysis is useful in giving a first
check to a design but the governing criterion is more likely
to be one of working load deformations, Well before failure,
as indicated by limit analysis, the interior panels and
structure of most buildings would have suffered extensive
damage, making the structure unstable. At present, common
practice is to predict deformations on the assumption of
linear elastic theory. A typical example of this is the
design of footings on sand. Plate loading tests are carried

out from which a representative value of Young's modulus is

calculated. This modulus is then used in one of the classical
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contd.
solutions to calculate the deformations, which are invariably
severely underestimated,

There is obviously an urgent need for more realistic
deformation analysis, particularly under general conditions.
This need becomes even more urgent in the light of the
pressures design Engineers are under, not only to create
cheaper structures, but to build in areas formerly considered
unsuitable. Engineers need rational scientific methods of
analysis and as classical mathematics is capable of solving
only very idealised field problems, it becomes necessary to

turn to the field of numerical analysis for the answer.

1.2.1) The Finite Element Method.

The field of numerical analysis offers two
main methads of solution. One, to solve the governing
differential equations defining the displacements or stresses
and tlen solve them numerically by methods such as the finite
diffeerence, offz;gg matrix methods. The latter methods have
proved more powerful and adaptable than the finite difference
methods in the field of structural and continuum analysis
particul arly because complex boundary conditions and shapes
present easier solution. The matrix methods have evolved in
the field of structural analysis where it is assumed that
any structure consists of elements, each with a defined stiff-
ness, which, when assembled into a structure behave as nearly
as the actual structure, The matrix displacement method has
proved the most popular. This expresses the internal member
forces in terms of displacements at the nodes, and then proceeds
to solve a set of joint equilibrium equations to determine the

unknown displacements.
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3.2.1) centd.

The matrix displacement method has been extended
to include the analysis of two and three dimensional continua.
Conventional engineering structures can readily be idealised
to an assemblage of elements interconnected at a discrete
number of nodes. In a continua the trus number of inter-
conrections is infinite so the application of the method is
not immediately obvious. The concept of Finite Elements,
introduced by Turner, Clough, Martin and Topp‘®®) attempts
to surmount this problem by assuming the real coﬁtinuum to be
divided into elements interconnected at a finite number of
points, at which, fictitious forces representing the loading
are assumed to act, This reduces the problem to that of a
conventional structural type on which matrix methods can be
used.

In a text by Zienkiewicz{®®) five points are listed on
how the approximation is made; )

(a) The continuum is separated by imaginary lines or surfaces
into a number of finite elements.

(b) The elements are assumed to be interconnected at a dis-
crete number of nodal points situated on their boundaries.
These nodal displacements are the basic unknown parameters.

(¢) A functiou (or functions) is chosen to define uniquely
the state of displacement within each element in terms
of the nodal displacements.

(d) This function ‘nEW . ==ed—ts definesthe state of strain
within an element in terms of the nodal displacements,
These strains together with any initial strains and the
elastic properties are used to calculate the stress
throughout the element.

(e) A system of forces concentrated at the nodes and equilibrating
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contd.
(e) contd.
the boundary stresses and any distributed loads is
determined resulting in the characteristic stiffness

relationship.

A finite element analysis is carried out by the

use of relevant computer programs. The logical steps carried

out in such a process are described briefly below;

(1) Idealisation of the structural system. This requires
the selection of the type and size of finite elements
to generate the mesh to describe the system geometrically.
It also requires a definition of the elastic properties,
boundary and loading conditions.

(2) Generation of the stiffness matrix quantities for the
elements.

(3) Superposition of the element stiffness matrices to develop
the overall stiffness matrix of the total structural system.

(4) Determination of the unknown nodal displacemsnts of the
problem by the solution of the system of linear simultaneous
equations obtained using the equilibrium conditions at the
nodes.

(5) Computations of all other required values such as stresses

and strains associated with the problem.

Usually the accuracy and effectiveness of the
finite element method will depend on the type and number of
elements used in the mesh generation. Indeed, it may be noted
that the finite element method provides an exact mathematical
solution to a simplified structural idealisation of a given
problem, so the idealisation is all important. By comparison,

the finite difference technique provides an approximate Mathematical

solution to equations which 'exactly" represent the physical system.
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1.2,2) Finite Element Formulation.

For a typical element the components of dis-
placement {f} are defined in terms of the nodal displace~
ments {8}, by;

e} = 0] {5}, (2.1)
where [N] is a shape function matrix and is defined in such
a way that the convergence criteria (discussed later) are
obeyed. The strain at a point in the element can be de-
termined from the differentiation of {f} to give a relationship
of the form;

te}, = B {8}, (1.2)

Following usual elastic theory the stress [oie
can be obtained from;

{oly = Dliel, - e} ]+ {d3 (1.3)

o}
where D is the elasticity matrix containing material properties,
and {q]o and [oﬂo are initial strain and stress vectors
developed independently.

The nodal forces, which are statically equivalent
to the boundary stresses and distributed loads on the element,
are defined as;

iF]e = {F, Eaese EpomE } (1.4)

where each of the forces {B_l} contains the same number of
components as the corresponding nodal displacements {8,} . The
distributed loads {P} are defined as those acting on a unit
volume of material within the element corresponding to the
components of f{e} at that point,

To satisfy equilibrium the nodal forces must be
statically equivalent to the actual boundary stresses and
distributed loads. The simplest procedure, Zienkiewicz( ?8)

is to impose: an arbitrary nodal displacement and' to equate
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the external and internal work done by the various forces
and stresses during the virtual displacement.

If the virtual displacement at the nodes is
d{S}e, then from equations (1.1l) and (1.2) the resulting
displacements and strains are;

afe} =N afs}, (1.5)
and d{e]e =B dfs} (1.6)

e

The work done by each of the nodal forces is
equal to the sum of the products of the individual force
and corresponding displacement components;
afsly ¥, (2.7)
and, similarly the work done per unit volume by the stresses
and distributed forces is;
afel” {0} - afel® o} (1.8)

which using equations (1.5) and (1.6) become;

afo}l - N ip}) (1.9)

Equating the external work with the total internal
work, obtained by integrating over the volume of the element,

the following expression is obtained;
ajsls (¥}, = aza;T(f i d(vol) -[NT{p](vol)> (1.10)

It can readily be seen that the above expression
is independent of the value of the virtual displacement.

Substitution of equations (1l.2) and (1.3) into (1,10) yields

([a D B a(vol) {5}° fa D fe; 1 alver)
+fBT {oo} a(vol) -[f fp} a(vol) (124)

This equation is the characteristic stiffness

relation which is usuzlly written as;



1-202)

1.2.3)

?-

contd.
{F} = k{s} + iF}GO &P iFlp (1..12)
where the stiffness matrix is;
T
E=[§ D B d(vol) (1.13)

and the nodal forces due to distributed loads are;

i, = - [ & 3 atve) (2.14)

those due to initial strain are;

35

£ e jvg? D {ea} a(vol) (1.15)

and those due to intial stress are;

F}_ = f B" {5} a(vol) (1.16)

Oo

Requirements for Convergence.

The division of a continuum into elements with
prescribed displacements introduces the approximation of
reducing the number of degrees of freedom of the system to
a finite number. All the elements described in this thesis
are displacement models and the stiffnesses are obtained
from the minimisation of their total energy. Veubeke(®S),
showed that this leads to a lower bound of the strain eﬁergy,
so that in general the structure will be too stiff and hence
displacements are underestimated. To ensure convergence to
the correct solution by finer mesh sub-division there are
certain requirements that the assumed displacement function
must satisfy.(‘s’ss’ga)

The displaéement function should be able to re-
present the true displacement distribution as closely as

possible, which gives rise to the following requirements;
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contd.

(a) Internal and interface compatability of displacements,
between adjacent elements should be kept.

(b) Rigid body motions should be possible without straining.

(¢) Any required constant strain could be reproduced.

Historical Review of the Finite Element Method.

Technological advancements have created a need for
fast and accurate analysis of large and complex structural
systems which present great difficulties to obtaining rigorous
mathematical solutions. The development of high speed electronic
digital computers has generated great interest in numerical
methods related to the solution of engineering problems.
Parallel development has occurred in matrix concepts and
operations which have proved very adaptable to the logical
operations of the digital computer. It is against this back-
ground that the Finite Element method, together with the dis-
placement model, has developed to become one of the most
powerful and adaptable tools available to the Engineer for
analysis, relieving him from long hours of tedious mathematical
computation,

It was as long ago as 1872 that Navier first suggested
a method of analysis based on taking the deflections as the
unknowns. The method received little attention at the time
because of the amount of computation involved. Livesley‘©©261)
was one of the first to adopt the matrix displacement method
for the computational analysis of bare frameworks. At about
the same time Argyris(a) comprehensively formulated the matrix
force and displacement methods. It was shown that the two
me thods stemmed from the concepts of complementary virtual

work and virtuzl work respectively. Argyris also derived a
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stiffness matrix for a two dimensional rectangular plate by
assuming linear distribution of displacements, imposing unit
displacements at each corner and adding the stiffnesses for each
imposed deflection to build up the stiffness matrix of the
plate.

It was really Turner et al1.(88) tyo years later
who laid the foundation of the Finite El;ment technique by
deriving the stiffness matrices for various spar, rib and
cover plate elements. The 'in plane' stiffness matrix of a
triangular element was derived by assuming constant strain
over the element. This was shown to lead to a linear distri-
bution of displacements. To equilibrate the nodal forces to
the stresses, the basic stress patterns, that could be expected,
were considered and the forces obtained by direct equilibrium,

It was pointed out that the same result could have been obtained
using Castigiano's energy theorem. The stiffness of a quadrilateral
element was also found by splitting the area up into triangles

and summing the contributing stiffnesses.

Clough(15) extended the idea of assumed stress to derive
the stiffness matri;es of triangular anmd rectangular plate elements,
The valuable contribution was the introduction of the principle
of virtual work which was used to obtain the overall equilibrium
of the element.

The next development was provided by Melosh(®5) when
the finite element method was extended to 'out of plane‘_or
bending action., The stiffness matrix of a rectangular plate, whose
nodes were allowed one translation normal to the plate and two
rotations, was derived.

By this time definite methods of derivation of the

stiffness matrix were being formulated and the se were reviewed
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by Gallagher{®7) to be;

(1) Inversion of a flexibility matrix! ®4)

(2) Direct formulation(®®)

(3) From virtual work or, unit displacement theorem‘®’,

Formulation by Castigliano's theorem might well have been in-
cluded as the fourth. Although the interrelation of some
derivations was noticed and, in fact, that they would give the
same results of stiffness for particular elemsnts, the actual
implications of the basic assumptions were not yet realised.

The majority of elements thus formed were known to
converge to a good value for solutions as their sub-division
was refined but the extent of the accuracy that could be expected
was not defined. It was Meldsh!®®) who first tackled this
problem. Errors were classified as-those involved inthe structural
idealisation, the computation, or the finite element itself, In
the investigation of the latter it was shown that solutions
obtained using extremum variational theorems of elasticity
could be bounded between upper and lower limits. It was shown
that using a displacement function 'minimised' the potential
energy of the system and hence formed a lower bound. It was
concluded that, as long as the structural idealisation was not
redef'ined on subdivision, monotonic convergence would exist but
not necessarily to the correct solution. It was stated that for
this to be so, the function must satisfy certain requirements,
namely;
1) Strains should be continuous over the elements,
2) Inter-element displacement continuity must exist, i.e. conform.
3) Functions must be expressible in the form of equation (1.1) .

And optional requirements were;

4) They should exhibit monotonic convergence as previously

described.
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contd.

5) Rigid body movements should not cause straining.

The last option, in fact, should not be violated,
as extra energy not existing in a structure, would be in-
troduced into the idealisation.

Fraeijs de Veubeke!3®4238) ,.oveq upper and lower
limits for 'equilibrium and disylaceﬁent models' but, while
agreeing with Melesh's requirements, thought that different
element patterns might cause convergence to an erroneous answer,
The difficulty in forming a stiffness matrix from an equilibrium
model (that is by inverting a flexibility matrix) that would
include all possible rigid body deformations was pointed out.

It was de Veubeke who first derived the quadratic triangle,

This was an important contribution as it was the first high order
element to be developed. To achieve this a special set of area
coordinates was used. It was pointed out that this triangular
element had a number of nodes such that a complete polynomial
expansion was ensured.

Irons and Draper(45} relaxed Melesh's requirements
for convergence and accuracy hy‘proposing that;

(1) They must be able to exhibit all rigid body movements.

(2) They must have a continuous displacement within and
across interfaces.

These reiterated Melésh's proposals but, in addition;

(3) They must be able to represent constant stress.

This last fact was substantiated by ths fact that
an infinite sub-division implies constant stress in the limit,
These three criteria are now generally accepted and have been
stated earlier,

The finite element technique developed along these
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lines with the improvement of existing concepts and appli-
cations until 1966 when Irons‘47?) published a paper on the
use of high order elements. It ;as proposed that the use
of numerical integration in finding the various matrices
needed for stress, stability and dynamic calculations would
enable a greatly increased number of different problems to
be solved for a given programming effort, but at the sacrifice
of some computer time. It was further proposed that engineers
were restricting themselves to trivial problems by using
analytical integration, and that the finite element technique
would only reveal its full potential when research workers
were liberated from the time wasting effort of deduecing matrices
afresh for each new problem. The exposition took the form of
a series of examples such as plane elements with curved edges,
solid elements with curved edges and faces, with applications
to plane stress, torsion and solid elasticity. It was thought
that the economic value of decisive checking and numerical
reliability would Jjustify the extra computer time,

Irons explained that elements were too simple and
that it was worthwhile to try more complicated elements, but it
was not possible to forecast at what stage in the elaboration
the economic optimum would be. It was pointed out that shape
functions (usually known as displacement functions) were merely
multipliers in a more or less complicated interpolation
formula. The procedure recommended in numerical integration
was to write a sub-routine to calculate the values of the
shape functions at given points which could be easily checked
numerically by calculating the known values at the nodes.

In the derivation of the stiffness matrices of the

various elements the important assumption that the unknown
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displacements and the coordinates should obey the same inter-
polation formulae was made. Irons went on to show that with
simple modification individual nodes could be included or
omitted at will., This introduced mixed elements whereby regions
where the stresses were important, or where curved boundaries
were needed, midside nodes could be included and elsewhere
omitted. Irons proposed that the Gauss rule for numerical
integration should be used. It was also shown that the elements
all obeyed the convergence criteria.

In another paper the same year Irons‘4®) recognised
that the pioneer work on stiffnesses was done by I.é.Taig but
was not published and Irons recognised Taig's quadrilateral
as the first of a powerful series of elements. The concept
of elements having special'osculatory' nodes was introduced to
provide extra degrees of freedom and thus increase the nodal
valency.

The term 'isoparametric', to describe these
quadrilateral elements, was introduced by Ergatoudis, Irons
and Zienkiewicz!®), It was pointed out that such elements
were able to follo; prescribed boundaries and allow a good
degree of approximation to curved shapes., Some examples were
presented to illustrate the extreme accuracy of the higher
order members of the family, and the disadvantage of the simple
constant strain-triangle was highlighted. The case for the
use of these isoparametric elements was further advanced by a
series of papars(‘g) and ¢°7) where further examples were
presented. The devélopment of isoparametric membrane and
thick shell elements was presented by Ahmad, Irons and

Zienkiewicz{1)., 1In these elements the thickness was allowed

to vary accor&ing to the same function controlling the coordinates
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and displacements.

The use of the finite element method up until the
mid-sixties was restricted to various conditions. Some of
these were that the analysis should remain in the linear
elastic range and that deflections should be small., It was
therefore a logical step to extend the analysis into the
non-linear range. In order to analyse such problems it was
assumed that the non~linear behaviour could be represented
by a series of linear steps.

Elastic-plastic material properties were used in
the finite element analysis by Pope'7®) and Marcal¢®®), In
their approach the elastic properties %ere ad justed aécording
to the stress level, as the load was applied in a series of
increments. Each time the elastic properties were altered this
changed the terms in the stiffness matrix and so this became
known as the modified stiffness method. Argyris‘®) and
Gallagher(35) adopted a difflerent approach to non;linear
analysis. Tﬁe load was still applied in a series of increments,
in this case the elastic properties were not altered but the
initial stress or strain vectors, as in equation (1.3), were
adjusted, As the stiffness matrix did not alter, this method
became known as the constant stiffness one.

Problems involving geometric non-linearities due
to large displacements were investigated by Martin(®4) ang
Argyris{‘). As the displacements become large the small strain
approxima%ion is in error, and to overcome this a new stiffness
matrix was introduced to represent the additional terms in the
strain-displacement equations. This matrix was then super-

imposed on the conventional stiffness matrix to furnish the

complete stiffness matrix. The extension of the finite element
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method to problems involving time, such as the dynamic behaviour
of structures, was carrisd out by Zienkiewicz, Irons and
Nath¢®®) and Clough and Chopral?®),

‘ It was shown by Zienkiewicz{®®) in his text that
the finite element technique was not 1imitéd to structural
problems, but was applicable to many other physical problems,
such as, heat conduction, seepage, wave transmission and the
distribution of electrical potential whether in a steady or
transient stage. From the development up to this time, the
finite element technique has become a major analytical, and,

hence design, tool with applications to an extremely wide range

of problems in engineering.

The Application of the Finite Element Method to Soil and
Rock Mechanics.,

It was in 1965 that Cheung and Zienkiewicz'*®) de-
termined the stress distribution and settlement beneath a
foundation slab represented by rectangular plates. The
foundation material was idealised as a Winkler foundation or
a Boussinesq half space.Severn {78} carried out a similar
analysis except that a spring coupiing action was included to
simulate shear resistance. Chewg and Nagl?*4) followed a similar
approach using the Flamant half plane %o rep;esent the foundation
material. A non-linearity was introduced in that separation
between the footing and soil was allowed at points with negative
contact pressures. Smith{ 7? further extended this approach
and analysed axi-symmetric féotings allowing the elastic modulus
to vary linearly with depth. All the above methods added the

stiffness of the idealised foundation material to that of the

slab in the vertical direction. The results gave reasonable
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comparison with closed form solutions, but the method was
restricted to cases of assuming isotropy, homogeneity and
linearity.

It was Clough and Woodward‘*?) who first demonstrated
the power of the finite element method in soil mechanics, when
a large earth dam was analysed. The embankment itself was
idealised as a number of triangular elements, undergoing plane
strain. Several important problems were investigated including,
the effect of incremental loading, as compared to a single step
load, ani the effect of the flexibility of the base. In the
incremental loading the dam was assumed to be comstructed in a
series of layers, each imposing a body force. It was shown
that while this had little effect on the stresses, the displace-
ments were much larger than those predicted from a single step
loading. These investigators then went on to make the important
step of introducing a non-linear material model. Triaxial tests
were carried out over a range of confining pressures from which
a series of valuss of the shear modulus were calculated. An
incremental analysis was then carried out, and at the end of
each load (construction) increment the elastic properties were
adjusted according to the stress level. The result of this
analysis was compared to field measurements and good agree-
ment was found.

Girijavallabhan and Reese‘®®) analysed model tests
carried out on an axi-symmetric footing on clay and a retaining
wall pushed into a bed of sand by using rectangular finite
elements., In this analysis another non-linear material model
was used which involved deriving a unique relation, over a
small range of initial stresses, between the octahedral components

of shear stress and strain. The shear modulus could then be
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calculated using an iterative procedure. The experimental
and analytical results were in close agreement. Desai and
Reesel32) followed a similar approach but here a degree of
non—homoéeniety was introduced, in that the clay beneath a
circular footing was made up of two distinct layers., As
before close agreement was found between the theoretical and
experimental results.

In all the preceding investigations it was assumed
that excess pore pressures were not developed and that all
stresses were effective. Christian and Boehmer(18) developed
a finite element technique to solve problems of coﬁsolidation
of a linearly elastic material in plane strain. It was pointed
out that the finite element method was not directly applicable
to incompressible solids because the material is infinitely stiff
with respect to volumetric stress. This difficulty was overcome
by carrying out the usual type of analysis and then applying
pore pressures to prevent change of volume, thus, the pore
pressures became unknowns along with the displacements. The
number of equations was balanced since the change in volume was
considered to be zero. The extension to consolidation was made
by realising that some change of volume, other than zero, could
be specified in each element. The procedure gave displacements,
pore pressures and effective stresses for any known distribution
of volumetric strain., Hence, an incremental procedure could be
followed starting from the known stress and volumetric strain
distribution, and proceed to the zero pore pressure state using
D'Arcy's law to calculate the increments of volume change from
the pore pressures. The method was compared to various

analytical solutions and some improvement was found.
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Dunlop and Duncan®2®) investigated the development
of failure around clay slopes as excavation took place. In
an approach similar to that of Cloughci?J it was assumed that
the excavation was made in a series of 1éyers or increments.
A bi-linear relation was used to représent the behaviour as that
of a linear elastic perfectly plastic material. Various important
field effects were included, like a variation of strength with
depth, and initial stress conditions for normally and pre-consolidated
clays. The development of plastic zones was shown and compared
with stability analysis with which excellent correlation was found.,

Duncan and Chang§25)

analysed model tests, using a non-
linear material model., In this_model the non-linear stress strain
curve was represented by a particularly simple function, namely
the hyperbola developed by Kondner({®®), This curve is described
by two constants, the initial slope a;d the asymptote. These
two constants correspond to physically important properties
namely the initial modulus and the ultimate strength. It was
therefore possible to carry out a series of laboratory tests to
establish relations between these parameters, and the porosity
and confining pressure. This meant the relation could cover
almost any range of conditions. This relation was then used in
an incremental finite element method to analyse a model footing
buried in sand at maximum or minimum porosity states. Good
agreement was found between the theoretical and experimental
results.

Duncan and Clough‘?®) used this method of analysis
in a field problem when they invéstigated the earth pressure

distribution on a concrete navigation lock, as construction

progressed, to clarify the design needs amd to help field
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instrumentation. The interface between the concrete and back
fill was represented by one dimensional line elements to allow
relative displacements to occur. Good agreement was found
between this analysis and field measurements for pressure and
deflection at several positions. The idealisation of the in-
cremental construction procedure as a series of layers becanme
known as 'gravity turn on, or off' loading.

A1l the previously discussed non-linear analyses
were carried out in the United States where there was easy
access to large and fast digital computers, Because of this
there was no great need for sophistication and all the investi-
gations used simple triangular or rectangular elements, and
simple, easy to establish constitutive relationships, with the
modified stiffness method. Despite the over-simplifying
assumptions made, the analyses all gave good agreement with
measured results. Most important of all the finite element
method was used, and proved, in real situations where
comparison could be made with field measurements,

Elsewhere, the concentration was centred more on
Further sophistication of the constitutive relations and the
use of better elements. Zeinkiewicz, Valliapan and King§94’95)
completely formulated the constant stiffness, initial stress ¥
and s train, methods using elasto-plastic theory in the form
of Von Mises yield criterion and Hills plastic potential
hypothesis. From these it was possible to derive a relation-
ship between the incremental stresses and strains which could
represent a perfectly plastic or work hardening material. A
number of examples were solved involving plastic and creep

behaviour including a lined tunnel and a strip footing. Some

problems with convergence were encountered but in general the
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methods worked well al though no comparison with experimental
results were made.

It was noticed that a hypothetical material capable
of sustaining only compressive stresses, without resistance to
tension was similar in behaviour to an ideal plastic material,
The stress transfer method could be applied to this problem by
yielding a solution where all principal tensile stresses had
been eliminated. In the examples solved a large difference was
shown to exist between the elastic stress distribution and that
of a material in a 'cracked' (no tension) state.

Naylor and Zienkiewicz{®72°%)showed that the methods
developed above were applicable to any theory provided it could
be formulated in a similar way. Thus, it was possible to include
a constitutive relation which had been specifically developed for
a soil rather than one 'borrowed' from material mechanics, namely
the Critical State Model developed at Cambridge’75272) . mhig
critical state concept had led to the formulation of the Cam Clay
and Modified Cam Clay theories to represent the behaviour of clay
under two dimensional conditions. A further departure was made
from usual practice when eight noded isoparametric quadrilateral
elementswere used, instead of the familiar triangles, to make up
the mesh., Two hypothetical problems were solved namely the re-
strained sample in a triaxial test and an infinite strip footing.
The results from the latter analysis were compared to a
theoretical result based on the standard oedometer test and
reasonable agreement was found,

Smith¢ 7®) and Smith and Kay‘®®) also used the critical
state theories in coiljunction with the finite element technique.
A second approach to the fomulation of a stress strain relation-

ship for soil was made using the concept of stress dilatancy
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developed by Rowe(Ta), which gives a particularly simple
relation for the behaviour of drained sand., These relations
were used to analyse the classical plane strain problem of

a thick walled hollow cylinder subjected to a steadily in-
creasing bore pressure. Comparisons were made between these
results and experimental results carried out on hollow
cylinders of sand and clay. Good correlation was found
despite the fact that simple triangular elements made up the
me sh.

Hoeg( 44)

used a simplified version of the cam

clay theories in the finite element analysis of strain
softening clays. It was pointed out that it was impossible

to apply the usual non-linear elastic theories to this problem
because of the necessity to introduce negative slopes. Results
from computations with or without strain softening were com-
pared and the model was applied to analyse the undrained be-
haviour of a soft clay under a large, instrumented,circular
test fill. Good agreement was found and quite dramatic
increases in deformations were found for only relatively modest
amounts of strain softening.

Smith¢ 7®) used the finite element method to in-
vestigate the lateral pressure developed as a rigid retaining
wall was rotated about its toe. It was pointed out that in
any computed solution of a non-linear boundary value problem
there are two major aspects;

(a) Adequate and general constitutive relationship for the

material under consideration.

(b) BEfficient and accurate techniques of computation.

Majid and Craigcgg) used an incremental method to
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carry out non-linear amalysis using amaterial model similar
to that of Girijavallabhan{®®), The method was used to
analyse a model strip footing resting on a bed of sand. A
mixture of triangular and rectangular elements was used to
form the mesh allowing for large variations of stress near
the footing to be adequately represented, but in regions of
small stress changes triangular elements could be used to
minimise computer time and effort. Good agreement was found
between the theoretical and experimental results, and the
importance of choosing an adequate number of load increments
was highlighted.

Penman,Burland and Charles®®) reported one of the
few cases outside America, when the finité element technique
was used on an actual field problem. The method was used to
predicts movements at a number of points in Scammonden Dam,

a large earth embankment, during construction. Detailed
measurements of the movements inside the dam were made enabling

a comparison. In an approach similar to that of Cloughci7) the
incremental form of ‘gravity turn on' lcading was followeé,

but as the dam fill was not always placed in horizontdl layers,
the construction sequence was modelled as closely as possible.
For ths sake of simplicity, instead of adopting a non-linear
material model, a constant value of Young's modulus was
calculated from an equivalent value of compression modulus for

a number of layers. It was emphasised that this kind of approach
applied only during construction. This simplified analysis

gave results which were in reasonable agreement with observations,
and it was suggested that the method was sufficiently accurate

for design purposes.
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Scope of the Work.

The power of the finite element method as a tool
for displacement and stress analysis has been highlighted in
the previous sections. The basis of any finite element method
is obviously an efficiently programmed library of elements and
the various ancillary operations necessary to complete the
method..The many advantages of the new families of Isoparametric
elements have also been pointed out, and hence a large part of
the project was taken up in programming these families of two
and three dimensional elements.

Appendix (2) presents the development of the stiff-
ness matrices of the various elements. In a novel approach
the element stiffness matrix has been treated as the summation
of a number of contributions from the combinations of pairs of
Joints to which the element nodes are connected. It was possible
to derive a general expression for the contribution of one pair
of nodes to cover all combinations and all elements., This meant
that any element could be inserted into the library once its
shape functions had been established. The programming of the
elements, and ancillary routines, and the development of the
finite element package for two and three dimensional analysis
is given in Appendix (3).

It is obviously necessary to check the results of
any finite element program carefully. As there are also quite
a number of elements available, it was desirable to carry out
an assessment of the performance of the various elements under
some typical conditions, and hence, to select an element giving
the best return for the effort.

An assessment and comparison of the various two

dimensional elements is made in Chapter (2). The boundary

conditions in a finite element mesh are most easily displacement
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defined, whereas, the opposite is the case for mathematical
solutions where boundaries are most easily defined by stresses.

It was therefore necessary to use the prineiple of super-
imposition on a classical solution to obtain the case of a
flexible strip footing, loaded uniformly and resting on a

block of material restrained by perfectly smooth rigid boundaries.

Despite the large number of publications concerning
the finite element method, several important boundary value
problems have not yet been satisfactorily resolved. Amongst
them is the problem of representing smooth interfaces in a
finite element mesh. A typical example of this arises when
trying to analyse a compression test carried out under so
called 'free end' or frictionless end conditions., While
numerous investigations have examined the axially loaded
cylinder with restrained ends, no comparison has been made to
an analysis of the desired non-restrained case. Problems of
this nature arise in many important field problem including
footings and retaining walls where the interface condition has
an important effect on the stress distribution.

Chapter (3) uses a particularly simple method of
representing a smooth interface, or indeed any degree of
roughness between that and full friction. These elements are
used in a non-linear iterative finite element procedure to
analyse the plane strain compression test under fixed and free
end conditions. A comparison of the results is also made with
an experimental one,

Another important problem that has been investigated
is the development and propogation of cracks in materials
of low tensile strength., The occurrence of cracks, considerably

changes the distribution of stress from that predicted by
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elastic theory, and the stiffness of the mass is reduced, thus
reducing the load bearing capacity.

Chapter (4) suggests a method of analysis using
the finite element method, whereby the compatability conditions
are changed at boundaries where cracks occur. That is to say,
that unlike most previous methods, a physical crack is allowed
to occur in the mathematical model, rather than attempting to
represent it as a zone of weak material, by allowing separation
at joints along element boundaries. An incremental finite
element procedure was designed as an interaction process of
selection of crack position and then change of topology. The
method was applied to the problem of an underground opening
for which some experimental results were available, enabling
a comparison to be made.

A good deal of interest has been shown in the uwse
of the finite element technique in two dimensional conditions
of plane strain and axial symmetry, but a large number of
problems encountered in Geotechnical Engineering are three
dimensional, particularly when concerned with foundations.
Sophisticated methods of analysis are used as an aid to the
design of structures, but in general, these analyses all make
the assumption that the bases are rigidly fixed. The effect of
settlement, particularly when it is not uniform across the
structure, considerably changes the stress pattern. With the
pressure on structural designers to make buildings cheaper they
are necessarily becoming more flexible and it is therefore of
the utmost importance to have an accurate picture of the settle-
ment pattern and to include these efforts in the structural

design. The extra design costs should be more than met by

the savings in materials from a more accurate analysis.
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It seemed logical to include the foundation
material in the structural analysis and to analyse the whole
structure - soil interaction process together, and the rest of
the thesis is devoted to this end. The structure can be
id ealised as an assemblage of beam and plate elements resting
on a foundation material which can be idealised as an assemblage
of isoparametric hexahedral elements.

In proposing a method of analysis for space
structures and their foundations it was necessary to have a
number of test cases to analyse. In Chapter (5) an apparatus
is described for performing such tests. The models were proto-
type space frame structures founded onto a bed of sand. To
carry out these tests it was necessary to first design and
congtruct the apparatus. These included a method of depositing
a homogeneous bed of sand at known porosity into a test bed.

It also involved making a loading frame, a measurement frame

and evolving an efficient and reliable testing technique. These
were then wed to carry out tests on a variety of model structures
loaded incrementally at a number of points.

Chagter (6) describes the measurement of the
mechanical properties necessary to describe the non-linear
response of the sand in the test bed. This involved the Author
in design and construction of a triaxial test apparatus capable
of imposing a known uniform state of stress on any specimens
at the relatively low confining pressures which could be
expected to be present in the test bed, and to be able to
measure the various deformations, The results from these

triaxial tests were used to define the stress-strain relation

of the sand over the expected range of initial confining
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pressures using the simple but effective hyperbolic response.
A non-linear method of analysis was developed to
analyse the model tests. Some problems were encountered with
the convergence of the iterative technique and so finally an
incremental method of solution was adopted. The finite
element program developed in this way is described in
Chapter (7). The experimental model test results are
discussed in some detail in Chapter (8).. A comparison
between the theoretical and experimental results is made for
one of the model tests and particular emphasis is laid on the
effect of the settlement on the structure rather than on the

behaviour of the sand.



CHAPTER 2

A CRITICAL ASSESSMENT OF ELEMENT
PERFORMANCE.
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2.1) Introduction.

Having written a series of programs to carry out stress
analysis using the Finite Element Method it was clearly necessary
to be able to check their accuracy. For a meaningful check,
the solution that is compared with, must be one in which the
assumptions inherent in the finite element method are applicable.
The most cobvious assumption about the method is that the boundary
conditions are displacement defined.

Six elements vare discussed for the analysis of
two dimensional probems in Appendix (2) and programmed in
Appendix (3). Faced with the limitless number of isoparametric
elements that could be defined the Engineer has to make a choice
of which one to use to obtain reasonable results at reasonable
cost., In the finite element method, the cost will be made up
from the computing costs and the data preparation costs. A great
deal has been published about the choice of elements but the
Author could find no quantitative comparison, from which a
sub jective evaluation of element performance could be made.

The three dimensional hexahedral elements, also
discussed in Appendices (2) and (3) can be tested under two
dimensional conditions. Hence, results could be checked against
the two dimensional elements whose reliability had already been

established.

2.2) Two Dimers ional Equations of Elasticity.

To determine the distribution of stress in a per-
fectly elastic isotropic material under plane strain conditions,
and in the absence of body force, it is necessary to solve the

equations of equilibrium of force:
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differentiation of equation (2.2) gives the compatability

relation for strains:
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expressing the strains in terms of stresses from equation (2.3)

gives the compatability relation for stresses, thus

%"{Ux‘”( Gx+°'y)] * %{Gy-v(dx+ 03*)} i ;x%fx \&:5)

By supposing that there is a function X such that

WA
oy onay (2.6)

and substituting it into the equilibrium equations (2.1)

—g-x[crx - %}] = 0 and 'gy{‘fy - %‘J =0 (2.7)

it follows that,

o, = %} and o‘y:%} . (2.8)

and that the compatability relation (2.5) is satisfied if

29.
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2B L SO S (2.9)
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This is known as the biharmonic equation and is

written in shorthand form as
V.t x=0 (2.10)

where V;a is the Laplacian operator and X is the Airy stress

function,

2.2.1) Stress Distribution in a Thick Plate.

Consider the case in Figure (2.1) of a two dimen-
sional elastic media bounded by two parallel planes (x = + b)
to form a thick plate., The plate is deformed by the application
of normal pressure to infinitely long strips on the two surfaces.
It can be seen that the plane x = 0 is a plane of symmetry,
and hence on this plane vertical displacements (component u)
and shear stresses will be zero. Thus, this plane represents
a smooth rigid boundary, a condition easily imposed on a
finite element mesh,

Sneddont ®3) obtained a solution for this case. The
steps to the solution are given in detail in his text so that
only a brief outline is presented here. By applying the theory

of Fourier transforms to the Laplace operator;

f"w (o = (& - r«a)"‘ /‘” RS T

Gl

and defining

G :fx elry (2°l2)

- -}

It follows from equation (2.12) that if x is a
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Figure 2 | Symmetrical loading of a thick plate
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solution of equation (2.10) then G is a solution of
a2 2 '
T = ra) G=0 (2.13)

whose general solution is

r|x +| r|x

G = (A+Brx) e_l + (C+Drx) e (2.14)
Fourier inversion of equation (2.12) yields
= = ~iry
Hag) = B [ Sxm) 7 ar (2.15)

The Airy stress function for this case can be derived from
equations (2.14) and (2.15) when the arbitrary constants
A,B,C,D are known. 'The constants depend upon the boundary
conditions under consideration. To determine these constants
the stresses are required in terms of the function G(x,r) and
its derivatives with respect to x. Multiplying the first of
equation (2.8) by e integrating the result gives;

fo‘x ety dy =f %;-K ety dy = = 1 G (2.16)

- =co

ES

Similar expressions can be obtained for the other stress

components. Fourier inversion of these will yield,

da & -iry
Gi = 5o j. G e dr
e it S
o z,rf e e

s b B&  =iTY
Txy_ Zﬂflrdxe dr

Now consider the case of a thick plate with the
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following boundary conditions

(1) o =-ps(y) & TW=0at x=b
(i1) o =-pa(y) & T =08l 2sch
From vertical equilibrium
/?pi(Y)dy'==j?pa(y)dy (2.18)

Since ps(y) and ps(y) are even functions then the odd parts
of equation (2.17) can be ignored ani only half the integral

need be evaluated, thus

2
o, = - Trfr G Cos(ry)dr

T = - 721_/ T E Sin(ry) dr (2019)

Sere | Se
% Trf = Cos(ry) dr

(o}

Similarly equation (2.14) can be simplified to

G = (A+Brx) Cosh(rx) + (C+Drx) Sinh(rx) (2.20)
The applied pressure can be expressed in terms of a
Fourier cosine transform. In the particular case of
p1(y) = pa(y) = p over the region -a €y < a on the plane

x =+ b, further simplification is possible:

‘P-ﬂ.(Y) = .}.;a(Y) =P S.Ln(ﬁ)' (2-21)

r

Inserting equation (2.20) into the first two parts
of equation (2.19) and inserting the known boundary conditions

yields four equations containing the four unknowns A,B,C and D.
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Solving these equations and substituting their values back
into equation (2.20) gives an expression for the function
G(x,r) which can then be back substituted into equation (2.19)

to obtain the solutions:

(2.22.1)

e - dp (sinhr+rcoshr)cosh(rq)-rg sinhr sinh(rq)
x T 2r + sinh (2r)
)

Sa\CF cos(rp)dr

m!— ] g s
Lo 4o rq sinhr coshgrq)—r coshr sinh(rq){ sin(cr) (2.22.2)
Xy pe 2r + sinh(2r) r

°

x sin(rp) dr

[- -]

e e 4p (sinhr-rcoshr)cosh(rq)+rq sinhr sinh(rq)
y T
)

2r + sinh(2r) ( )
el

EEELEEL cos(pr)dr

I

where ¢ = a/b q =x/b p = y/b.

Sneddont 3} pointed out that the evaluation of these
integrals would be_troublesome, and suggested that it would
be easiest to determine values by a series of numerical inte-
grations,

Before the application of numerical techniques it
is advisable to inspect the shape of the integrand. Consider
equation (2.22,1), for a value of r = 0 the integrand is

indeterminate, however taking limits:

Limit _c Linit =
TR, T ) -0

Figures (2.2a) and (2.2b) show the shape of the

integrand for two values of q on the planey = 0 (or p = 0) s
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the first close to the applied pressure and the other some
distance inside. The shape of the former reveals that decay
is taking place very slowly. It must also be realised that
at relatively large values of r the hyperbolic functions
Sinh(r) and Cosh(r) diverge, which leads to numerical rounding
errors in their evaluation., It is clear that numerical
integration cannot be applied successfully to points relatively
close to the loaded area. However, Figure (2.2b) shows that
away from this zone thes value of the integrand decays rapidly
to zero and here numerical integration would give an accurate
solution. It is in the zone near to the applied pressure
that the largest stress changes occur, and so it is necessary
to have accurate values. It was therefore necessary to look
at other techniques.

Sneddon( 8% pointed out that it is the appearance
of the function (Zf + Sinh(2r)) in the denominator which makes
analytical integration troublesome. This difficulty can be

overcome by employing an approximate expression of the form;

fa(u) = (s.tu.+%)(a"tu + 2ue " (2.23)

to represent the function,

£(u) = mﬁ) (2.24)
over the entire range of integration.

From equation (2.23) it can be seen that fi(u) » &
as u > o and that fi(u) ~ 2ue " as u > w. The arbitr;fy
const;nts s and t are chosen to ensureﬁthat the fit is close
for large valuss of u, because the function appears in the

integrand as a product with an exponential factor. Any

variation near the origin may be compensated for by keeping
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the area under the curve (fi(u) - f(u)) as small as possible.

These conditions are satisfied by choosing

s = =1.55 and t = 1.40 (2.25)
Substituting this approximation into equation (2.22.1)

gives:

o, =~ %?./ (S8inhr+rCoshr)Cosh(rq)-rqSinhrSinhrq §£%§§£l Cos(pr)
o

X (2sr+%)e_gtr + 4r & 3% } dr (2.26)

Some values of the new integrand in equation (2.26) for
a few values of r are indicated by small crosses in Figure (2.2a)
and (2.2b). It can be seen that the approximation gives an
excellent fit over the entire range of integration and throughout
the plate.

The analytical integration of equation (2.26) can now
proceed, rearranging the hyperbolic and trigonometric function

products as sums gives:-

o =~ %?'/|{?inh(l+q)r+81nh(l—q)r+r(l-q)Cosh(l+q)r+r(1+q)Cosh(1-q)r}
o
% 5 » E natr L -gtr i =aT
x [Sln(c+p)r+81n(c p)r i e + 5.¢ dr (2.27)

Expanding the hype rbolic functions in terms of exponentials

o, = - & f' [e(hq)r_ o (1ra)r, (1-0)r_-(1-9)7, (;_oy,(1+d)r |

+r(l"Q)e_(l+q)r+r(l+q)§l-q)r+r(1+q)e—(l—q)r

g N 4 B -atr i I -atr l
x [Sln(c+p)r+31n(° P)I‘J [Sre T T

-~ -

e“r]dr (2.28)
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Multiplying out equation (2.28)

Ls+l- 1] -(-1-q#2t)r
ﬁﬂf[ (l )+ ¢ 32r_q) s 521«2}6' el
% [%(1_,;)_'_(-43;32-;@) & 332~r ] -(1+g+2t)r

: . i% - (=1 2t
2 [_.83__(l+q)+ (45-;]2-:(1) 5255_ :!e (-L+q+ )r

& |:l%t' S (l;ﬁ):le (-1-q+2)r [_ (_q)} -(l+q+2)r

1
L

" [l}r A 1_?)] <(eAagi2)e

+ [—E; + (1—;9») }e'("l"'q*'z)r}Sin(c+p)r+Sin(c—p)r)dr (2.29)

Multiplying out equation (2.29) will yield forty
products, each of these products require integration. They will
all be combinations of trigonometric functions, exponentizls

and powers and fall into one of the following three classes:-

oo

(a) Iy = f Sin fx e &F ax

(b) Ig =f.Sin fx o &% X

The values of these integrals are (Gradshteyn and

Ryzhik{4©) ;
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(8) In= g g >0
(b) g = tan-i('g) g>0

) 1o =faoes () 0 () - e e () £38

Each of the exponential powers has to be positive and
since, =1 € g € 1 and t 2 1 the condition is satisfied so

the integration proceeds to yield

~-1-g+2t

4 {( +2—21;) -1(_319__) <1+q+2t)

I ] 25000
+ tan” (1_ +2t + tan (

=1l+g+2t
--1+s+2+2t c+p = it (=i \
(l+q 21:) +tan (-q Bt | Yo 1(1 +2t>‘1“"‘“1 i( Eq+2t)
8 (c+p) (ctp) (c-p)
+g (@ ‘1)[(0+p)=+(_1-q+2t)= T T Lsarat)? * Top) +(-1mae2t)?

S=p 3 ( ) (c+p)
i (c-p)’s+(1+q+2t)""] g(hq} |:(c+p)“-?--zfl+q+2t)3 (c+p)=+2§_q+gt)=

d (c-p) ‘ (e=p) } 34(1+q+2t)?
(cmp)* +(-1+q+2t)* " Te-p)*+(1-a+rat)?|” 64 ( c+p )2 +(-1-q+2t
(c+p)®+(1-g+2t)? (c=p) o e=p)2+(1+q+2t)?
208, (EEFICTH) | + B2 [on((rtes
)2 +(1-g+2t)? 1 i -
+ 1og (‘S:IDJ)’:("1+Q+2'G)2>} L [ ﬂ'(1 o dapa %2_)

t -.1 C“"E t - c E e c+ C=
e (—l-—q+2 ) ¥ (1+q+ 2 ba Zl.+q 2 b o 1+qg+

(___‘1)_ (C+ ) (c+ )
( g %2 [( C*P)‘ft -1-g+2)* (c+p)=+?l+q+2 y
% (c=p)

(c-p)*+(-1-q+2)"
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c=p) (1+g) (c4p) (c+p)
j TE:p)af(1+q¢2) } 4 [(0+p)21;(~1+<1+2)2 * Tem )P +(T-a+2)?
(c=p) (c=p) 1
M ey o ervore LY ey L e ) } (2.30)

In an identical manner a solution can be obtained

from equation (2.22.3) for the horizontal stress.
c'y e % {E_ 5+2 a1 ‘t.a. -1( ~-1-g+2t (%)
e ) )
43+2 = [ aul™* '%f%?ﬁ%) $han’ %%%$R§€)'t (il+ +2t>+ 1i;+2£

(c+p)
¥ §<_1+Q)[(c+p)g+( d=qeot)® * (c+p)=f-(l+q+2t)a i

4+ —Lc=p) " (c-p ]
(c-p)2+(-1-g+2t)* (c-p)*+(1+q2 t)?

3 (otn) (c+
¥ g{ﬁl_q)[(c+9);+(-—l+q+2t)2 (°+P)B;€1‘Q*2t)2 j

(c=p) I (- o o
T(emp)T+(-I¥ar2t)®  T(cmp) (1-q+2%)” |

(c+p) [ c+p ) +(1+g+2t)? . (Le4p)2+(1-9+2¢)2
6l logn/(c+p)”+(—l-q+2t)“> 9 l°°n<5c+p;=+i—l+q+2tiz)

. (c- )2 (1 +2t)2 c-p)2+(1- 21‘.)2
# iﬁz;l[l°gn(kc-§)=:(_IEq+zt)* # 1°gn(§ e TR }

c-p)2+(-1+g+2t)?

_ a1 _2:2__ + tar Mt MRy . T TP T
-1+g+2 A\=1l-g+ 2 -1+g+2

"1£P.__. 7 015 T TS Y . IS OO 6 - T
1+q +2 1-g+2 l+g+ 2 1-g+ 2
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s (=1+q) (c+p) : e )
Ly et O Gy
- (o=p) 2 (c=p) |
(c-p)*+(-1-q+2)? (c=p)*+(1+q+2)*? J
% (=1-q) (c+p) : e (P+P) :
b |(c+p)®+(-1+q+2)? T(own)®+(1=qe2)?
(C-) C— _I ;
+ (C_p)sf()-lﬁﬁz)s + o) (=72 J} (2.3

A solution can also be obtained for equation (2.22.2)
the shear stress, but the product Sin(cr) Sin(pr) cannot be
treated in the same way because of the integral

[ e > (os hxgE =0
x

[+}

By following similar steps, as before, equation

(2.22.2) becomes

- g( a1) o (1+g+2t)r

. (gi;) o~ (1+a+2) +.% (Q+l)e-61+q+2t)r i (gﬁ%l o (~lear2)e

B ~(1-g+2t)r
8(q+1),

. (-9—)-;1 e“(l"q"g)rJ [—CDS(C"'P)I"*‘COS(C"P)I':‘ +

[(9;;) o-(-1-a+2t)r _ (g=1) _-(1+g+2t)r
1lér 16r

+ l*i o~ (-1+q+2t)r _ (-E%?- e—(.l—q+2t)r}[Sin(cr)Sin(pr)J] dr (2.32)
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In this case the products fall into only two classes with

values as shown (Gradshteyn and Rhyhik{4©),

(a) j° & Gos fx ax = i

o

—-gX . - ax X .. +(f+n)? |
(b) fe SlﬂfXSlnhxx_ll_loDn[g+f_h ]
o

The integration proceeds to yield

_4p §g=1! 1-g+2%)%+(c+p)? (1+g+2t)2+(c+p)?
v [9@.—[ {1Dgn_ (-1-(-1q+2t)“+(£p)“>_ Log,| (l+qq+2t)’+(c-g;“ :|

(g+l) -1+g+2t)2+(c+p)? 1-g+2t)2+(c+p)?
gl Logy, -14g+2%)*+(c-p )- 1°gn< 1-9+2%)%*+(c-p )

s (~1=g+2t (1+q+2t)
e E—(q—l) i (-1—-q+(21t) +(cp)® T (l+q+2%§’+(c+p)’-
Iy (=1-g+2t) oy (1+g+2%)
(=1-g+2t)*+(c-p)* (1+g+2t)*+(c-p)*
(=1+g+2t) (1-g+2t)
® %{qd) {_ (-l-i-q+2?:)"+(c+p)a + _(l-q+2t)++(c+p)a s
A (=1+g+2t) " (1-g+2t)
(-1+q+2t)* +(c-p)* (1-q+2t)* c-p)*
(a=1) |_ ___(-1-g+2) (1+9+2)
& b [ (—1—q+27’+(c+p)=- : (1+g+2)%+(c+p)® i

) (-1-q+2) ‘ = (l+§+2)
(T-+2)"+(c-p)"  ~ (T+a+2)*+(c+p)”
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(g+1) [ r (-l+q¢2) . 5 (l-ﬁ+2) 3
¥ [ (-1+q+2)*(c+p)” (1-9+2)% + (c+p)?

A Cr T > (1-g+2) - J
(-1+q+2)"+(cp)* (1-9+2)%+ (c-p)* }

It has already been noticed that at points away
from the loaded area numerical analysis would give an accurate
solution. It is thsrefore possible to check values obtained
from equations (2.30), (2.31) and (2.33) against those obtained
from the numerical integration of equations (2.22).

To do this, the Author wrote a program incorporating
an I.C,L, scientific subroutine!4®) called FLINTGSS. This
routine carries out numerical integration at a point using Gauss
4 and 6 point rules with a self adjusting step length. The
routine shortens the step length until both rules agree to
a specified accuracy (here 0,00005). Table (2.1) shows how

the answers compared,

POSITION o a T
X J Xy

D q 4.8, NIa8.] X8.7| N.Ti8e dh.8. N.I.S.

0.25 0.75| =0.7779 | =0.7752| -0.3492| -0.3455 |-0.1830 | -0.1867
0.25 0.25| =0.5741 | -0.5667|-0.1069 | -0,1074 |[-0.0609 | -0.0622

TABLE §2.l! AS - Author's Solution

NIS - Numerical Int.Solutic

2.2.2) Periodic Loading of a Thick Plate.

Having obtained a solution to the problem in Figure (2.1)
it is possible to use the principle of superimposition to obtain

a solution for the case in Figure (2.3). This figure shows an
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inf'inite number of loaded strips at a period of €. Thus the
planes y = % &/2 now are both planes of horizontal symmetry
and by the same reasoning as before they can be considered as
smodh rigid boundaries. The region a,b,c,d in Figure (2.3)
then represents an elastic material bounded on three sides by
smooth rigid boundaries, and loaded by a region of applied
pressure on the free surface.

To obtain the values of the three stress components
at the point i in Figure (2.3) it is necessary to sum the
contributions from a number of loaded strips each having a
different y-coordinate. These coordinates will be (X,Y),
(X,I-Y), (X,L+Y), (X,2L-Y), (X,2L+Y) etc, or in general terms
(X,nL+Y) where n = 0,1,2 etc. In practice it was found only
necegsary to add in three strips on either side of the central
one, for beyond this the contributions became insignificant.,

(St.Venants Principle).

2.3) Finite Element Analysis.

The chosen test problem is illustrated in Figure (2.4).
In the finite element idealisation the smooth rigid boundaries
will be represented by joints on rollers. The programs described
in Appendix (3) did not include a facility to allow for the
application of general surface pressurss so these were converted
into equivalent nodal forces, using the distribution coefficients
quoted by Zienkiewicz’ ®8) in his text and illustrated in
Figure (2.5).

The Finite Element meshes used to analyse the problem
in Figure (2.4) were all designed as a regular grid of joints

so that all the elements were rectangular. This was done %o
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facilitate the process of refinement of the mesh without changing
the idealisation. Each of the six two dimensional elements was
used to analyse the problem with three meshes. Each of these
meshes was a definite sub-division of its predecessor. The
eighteen Finite Element meshes are shomin Figures (2.6a)-(2.6f).
In the analysis using Isoparametric elements, the number of Gauss
points was varied to find the least number which each element

required.

Results.

The normal stress components o and c&, on the
plane X = 0.0 of Figure (2.4), resulting from Finite Element
analysis o0f each of the meshes in Figures (2.6a)-(2.6f),
are plotted against depth in Figures (2.7a)-(2.7f). Also
plotted in these figures is the result of the explicit solution
obtained in the manner described in Section (2.2.2). The shear
stress in the plane X = 0.0 is theoretically zero, due to
symmetry, and all the finite element solutions yielded
T. < 10*°, The minimum number of Gauss points that could
be used in the numerical integration of the stif'fness matrix
for the isoparametric elements without any signifiicant loss
of accuracy in the calculation of the stress components is

given in Table (2.2) below.

Quadrilateral Number of Minimum Number
Element name nodes of Gauss Points.
Linear L 2
Quadratic Serendipity 8 2
Cubic Serendipity 12 3
Quadratic Lagrangian 9 =
ubic Lagrangian 16 L

TABLE (2.2)
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Discussion of Results.

It canbe seen from the results in Figures (2.7a)-
(2.7f) that all the Finite Element analysis results were
reasonable. The triangle and lirear quadrilateral elements
clearly converged towards the explicit solution as the meshes
were refined. The higher order elements, while showing some
convergence, did not exhibit this clear trend because the
results were quite accurate for dll the meshes. The Isoparametric
quadrilaterals all overestimated the value of the supplied
surface pressure, and the stresses generally close to the
applied load. For .the higher order elements, the refined
idealisation of the load associated with mesh refinement had
a greater effect than the actual number of elements. The
results from the Isoparametric elements showed that the stress
was overestimated for a region of one element depth beneath the
applied load. Thus, as the mesh is refined, the elements become
smaller, the equivalent nodal forces also become smaller and so
the area of overestimation of stress becomes less.

To compare the cost of running each of the analyses
in Figures (2.7), the stress component A at X = 0,0, ¥ = 200.0
is plotted against computer store, mill time ani number of input
records, in Figures (2.8a)-(2.8e¢). The value of q& at the mid-
depth point should be free of any distortion due to the loading
idealisation, and only dependent on the element properties.
Assuming tle explicit solution is exact, the lines of stress
level corresponding to + 1%, 5% and 10% error are shown in
Figures (2.8). The results obtained from the stress at this
point, using the meshes in Figures (2.6), are plotted in the
Figures (2.8), against the corresponding number of core units,

mill units or input records.
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It can be seen from Figure (2.8a) that all the
results lie within 10% of the explicit solution, all the iso-
parametric elements lie within 5% and a lot of these within
1%. The weakness of the constant strain triangular element
is clearly seen in all three figures., This element gave very
poor results as compared to the isoparametric elements using
the same number of core and mill units, and is most expensive
in data preparation.

The highest order element, the cubic Lagrangian
quadrilateral gives consistently the best results but is clearly
very expensive in computer mill time, because it requires
four Gauss points for the integration. The éubic serendipity
element can also be seen to be very efficient from the cost
point of view, but both these elements suffer from over-
estimating the stress near to the applied load. This effect
is more serious for the cubic elements where to be efficient
in cost, only a relatively few large elements are used. The
quadratic Lagrangian element is again fairly expensive in mill
time and it can be seen from the figures that the results are
erratic when only a few elements are used. The serendipity
quadratic element, for which only two Gauss points are required,
seems efficient, relative to the other elements, on all grounds.
The linear quadratic element gives relatively poor results
compared to the higher order elemsnts, for the same order of

cost, but is clearly much better than the triangle,

Hexahedral Element Testing.

Having established the reliability of the

quadrilateral elements against an explicit solution it should
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be adequate to check the hexahedral element results against
theirs under two dimensional conditions.

Consider the test problem shown in Figure (2.9).
This is a linearly elastic isotropic homogeneous block of
material surrounded on all sides and the base by smooth rigid
boundaries. The material is loaded by a uniformly distributed
surface load on the centre line., Because of symmetry only half
the block need be analysed. The smooth rigid boundaries and the
symmetry of loading prevent deformation in the Z direction so
the problem can be considered as a two dimensional plane strain
one ,

The problem in Figure (2.9) was analysed by the
hexahedral elements described in Appendix (2) using almost
identical mesh designs. The quadrilateral elements corresponding
to these hexahedral elements were used to analyse the plane
strain problem in Section B-B of Figure (2.9) using corresponding

mesh arrangements.

Results.
The results for the two normal stress components

o, and q&, obtained in the way described, are shown in

Figure (2.0). The various results obtained from the meshes

using the hexahedral elements compared exactly with those cbtained

from the corresponding quadrilateral elements. The erratic

behaviour of the Lagrangian quadratic element is again illustrated

by the results. As a further check the orientation of the global
axis was changed twice, the problem reanalysed, and the results

compared.

It was not thought necessary to carry out a rigorous
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comparison of costs for the hexahedral elements because the

properties discovered in the quadrilateral elements should also

apply here.

Discussion of Results.

In Section (2.3.2) it was pointed out that the
quadratic serendipity elements appeared to be the most
efficient providing that two Gauss points were used and it
seems that the same can be said for the hexahedral element.
The choice of two or three Gauss points is even more important
for hexahedral elements because the operations in forming the
overall stiffness matrix have to be repeated n® times as
opposed to n® times for two dimensional elements. This means
that the relative time taken to form the overall stiffness
matrix is 9:4 using two or three Gauss points for the quadri-
laterals, but, the ratio is 27:8 for hexahedral elements, which
is a considerable difference.

The same effect canbe seen on the core required
as the higher order hexahedral elements have 20 or 27 nodes

which leads to a bandwidth of some considerable size.

Conclusions.

The two and three dimensional elements described
in Appendix (2) that were programmed in Appendix (3) all give
reliable results.

The quadratic serendipity elements seem to be
the most efficient provided only two Gauss points are used in
the numerical integration of the element stiffness matrix. It

is reasonable to use two Gauss points except on the coarsest
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of mesh divisions where the stresses could be overestimated

by up to 10%.



GHAPTIER 3

ANALYSIS OF THE PLANE STRAIN COMPRESSION TEST.
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Solution of Non-Linear Problems,

In this chapter, non-linearity is taken to mean
that the basic stress-strain law is non-linear rather than
geometric effects. A number of investigations have been
carried out into the use of Finite Element Method for the
andlysis of structures and materials exhibiting a non-linear
load deformation response. These investigations have in
general idealised the material as either non-linear elastic
or as work hardening plastic which both have been treated in a
similar manner. The work has always been based on the
assumption that a non-linear problem can be reduced to a linear
one, over some increment of load, and at certain points in the
mass.

In general the procedure consists of represent-
ing each element as a homogeneous, linear isotropic material
defined by two pseudo-elastic constants. It is assumed that
these pseudo-elastic parameters are constant within the boundaries
of the element. The solution of a load deformation problem for
a given set of boundary conditions can be achieved by Finite
Element analysis using pseudo-elastic parameters if each of the
elements satisfies the true relation between the state of stress
and the state of strain in the soil. Using this procedure
two methods have emerged called the modified and constant
stiffness methods.

In the modified stiffness method, as the name
suggests, the terms of the elasticity matrix in:

{o} =D {e} (3.1)
are varied, and each variation creates a new stiffness for the
element. The method is used in an incremental or an iterative
process. In the incremental process the change in loading is

analysed in a series of steps as shown in Figure (3.la). At the
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beginning of each new increment an appropriate tangent modulus
(do/de) is selected for each element on the basis of the stress
or strain in that element after the application of the last
increment of the load. This method has been used by Clough
and Woodwardﬁi7), Dunlop and Duncan‘®?) and Craigcao). By
the iterative p;ocedure shown in Figuré (3.1b) the s;me load
is analysed repeatedly until the values of stress and strain
within each element satisfy the appropriate non-linear relation.
Thus, after the application of a load the analysis is carried
out using some initial values of the pseudo-elastic constants,
if after this iteration the stresses and strains are not within
some tolerance of the non-linear relation, then the process is
repeated using new values of the constants calculated from the
secant modulus (ofsﬂ at the end of the last iteration. Thus a
process similar to the Newtou-Raephson method is used to converge
to the solution. This type of process was used by Girijavallabhan
and Reese!®®) and Duncan et al.(38),

The constant stiffneés methods, on the other hand
do not alter the terms in the elasticity matrix, The element is
assumed to be always linearly elastic, and the stress or strain
by which the element exceeds the linear case, due to non-linearity,
is converted into fictitious nodal forces. Thus if the
constitutive law can be written in the form:-

{o} = fie}) (3.2)
then the basic equation;

{o} = D({&} - {eo}) + {00} (3.3)
where feo} and {op} are initial strain and stress vectors, can
be made to coincide with equation (3.2) by adjusting the initial
strain or stress vectors as shown in Figure (3.2a). The corres-

ponding equivalent nodal forces are calculated from;
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{Fie

‘Q

= [ET D f{eo} d(vol) (3.4)

v trlg, = [ B oo} () (3.5)

and added to the load vector. Thus, an iterative process is
followed until convergence is achieved, as shown in Figure (3.2b).
The initial stress method has become more popular because the
constitutive law can usually be expressed like equation (3.2).
However, if it is only possible to determine strains in terms

of stress, then the initial strain method would be used. This

method has been used by Ualliapan(as), Naylor and Zienkiewicz’®?

and KaycSi).

y The incremental method of non-linear analysis is
the easiest to program, but it requires extra store to hold
the accumulating values of the stress and strain components,
Because this method uses the tangent modulus, calculated after
the last increment of load, to represent the pseudo-elastic
cons tants over the next increment, it is clear that the accuracy
of the solution will depend upon the size of the load increment.
The accuracy of the method could be improved if some iterative
process were used during each load increment. Initial stresses
and strains can be readily accounted for but it is not possible
to simulate post peak or peak conditions when the tangent modulus
becomes negative or zero.

The other variable stiffness method of the iterative
type can represent peak and post peak conditions but it is ex—
tremely complicated to account for non-zero initial stress or
strain conditions., The method has the advantages that a specified
accuracy to the stress-strain relation can be followed and minimum

store is required because the total load is applied each time.
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It is advantageous to use the secant modulus if the stress-
strain law is approximated by some function, It is often true
to say, that while the function is close to the real curve the
slopes can be quite different, If a great number of points are
required on the load deformation curve then this method is ex-
tremely expensive.

In the constant stiffness methods, if the
elasticity matrix is kept constant the overall stiffness matrix
can be kept in its inverted form and obviously will not need
reassembling. Valliapant®®) found significant savings over the
variable stiffness methods in a non-linear analysis using
triangular elements. Equation (3.5) can be integrated analytically
for triangular elements but requires numerical integration for
the higher order elements. When the elasticity matrix is held
constant the number of iterations required to converge to the true
solution diverges. For this reason, Zienkiewicz¢ 28] suggested
altering the D matrix after each increment to accelerate the
process. Thus, it seems that there can be 1little computational
advantage in this method over the variable stiffness method
when higher order elements are used. The great advantage of the
method is that constitutive laws which are not formulated in terms
of all the cartesian components of stress and strain can be
used. This means that Rowe's Stress-Dilatency theory or the
Cambridge Critical State model, which are formulated in terms

of principal and octahedral stress components could be used.

The Interpretation of Laboratory Tests.

A great deal of research has been involved in im-

proving the methods of testing currently in use in Soil Mechanics.

One of the most significant developments has been the introduction
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of the so called 'free end' loading plattens for the triaxial
test. These free ends have meant that the ends of the sample,
hitherto held by friction, could expand over the plattens allow-
ing uniform radizl strains throughout the sample and ensuring
that the major principal stress was vertical. Laboratory investi-
gations(74)’(53)’(3)’(7)’(27) have shown that the end restraints
have caused dead zoﬁes édjacént to the loading plattens causing
internal pore pressure gradients and non-uniform volume changes.
It was also shown that the relative size of the sample could be
reduced if' free ends were used and that a sample of height:
diameter ratio of 2:1 with fixed ends gave the same strength as
a free ends sample with a ratio of 1:1, but peak was reached at
lower strain levels in the former case.

While the research into the need to improve the
triaxial test has been mainly experimental several analytical
investigations have been carried out. Ballal®) analysed the
triaxial compressions test assuming elastic tﬁeory allowing for
any degree of roughness and length to diameter ratio. Haythorawaite(4?®)
carried out a similar analysis but assumed the material in the
sample to be ideally plastic. The Finite Element method has been
used to analyse the triaxial test by Perloff and Pembol®®) ang
Kraf't and Krishnamwthy(sg) using non-linear methods and triangular
elements,

Perloff and Pembo®®) said very little about their
Finite Element idealisation but Kraft and Krishnamwthy®®S®)
suppressed the horizontal degrees of freedom of the jointé at
the top and bottom of the sample and applied a surface loading,
which is not a true representation of the loading condition.

However, both these Authors showed how useful the Finite Element

method can be in interpreting test conditions. Now that the
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technology of triaxial testing is being extended to plane
strain conditions it was decided to w e the Finite Element
method to analyse the plane strain compression test using "better"
elements and a more realistic idealisation, and to compare fixed
and free ends analytically.

There is one important problem that arises when
the Finite Element method is used to analyse conditions involving
smooth interfaces. Consider the plané strain sample in Figure (3.3a)
and the rather crude Finite Element idealisation below it in
Figure (3.3b). When fixed end conditions are idealised the
joints number 1 to 5 would be given no degree of freedom and
joints 18 to 22 would be prevented from moving out sideways by
the stiffness of the beam elements to which they are connected.
For the other condition when free ends are assumed, joints 1 to 5
would be given a sikeways degree of freedom, equivalent to a roller,
but joints 18 to 22 must still be connected to, and hence restrained
by the beam elements., Indeed, this same problem would arise in
the finite element idealisation of smooth foundations and retaining

walls or when conditions are neither perfectly rough nor smooti.

Representation of Non-Restrained Interfaces.

There seemed to be a direct analogy between the
problem here and that faced by investigators trying to achieve
free ends experimentally. Free ends were achieved experimentally
by inserting a thin latex membrane between the sample and the
polished loading platten. Because the membrane has relative{amall
stiffness compared to the sample, it provides little restraint
and expends with the sample over the platten. The Author proposed

to improve the finite element idealisation using the same kind of

approach by inserting a thin sandwich element between the elements
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representing the sample and those representing the loading
platten, as shown in Figure (3.4). For fixed end conditions
the two elements numbered 5 and 6 in the figure would be given
the same properties as the other sample elements. Free end
conditions can be approximated to by reducing the stiffness of
the sandwich elements relative to the other elements represent-
ing the sample. Any condition of roughness or restraint could
then be imposed on the joints numbered 17-21 by varying the
stiffness of the sandwich elements between the two previous

limits.

Test Problem.

The plane strain compression test is not common,
particularly tests in which the value of the intermediate
principal stress has been measured. Among tests reported are
a series by Green‘4?) on samples of Ham River sand. Of these
tests the one named ISC/3 was selected and its dimensiors are
shown in Figure (3.5).

In this test the cuboidal sample was isotropically
consolidated under an ambient pressure of 30 psi, then the cell
pressure (os) was kept constant, the vertical stress (oy) was
increased while deformation in the other direction (oz) was
prevented by rigid plattens., The intermediate principal stress
was measured. The results of the test ISC/3 as reported by

Green'**) are shown in Figure (3.6).

Analytical Model.

The simple isotropic model is described by two
pseudo-elastic constants. This model has been used by numerous

investigators who have all obtained good results for little
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effort in establishing the constitutive relation. This
relation cannot be used to predict deformation in conditions
when the load is decreasing, but this is not a serious draw-
back because Engineers are almost always interested in settle-
ments that occur with the application of a load. The pseudo-
elastic theary does not allow volume change to occur under
shear, a condition which is inherent with sand. However,

the volumetric strains are usually relatively small compared
to the shear strains which should minimise any effects due to
thig error.

The majority of investigators using the isotropic
model have used the two pseudo-elastic constants E, the Young's
modulus and v, the Poisson's ratio to describe the material
properties. Under the conditions that exist in the plane strain
compression test the deformation is likely to be mainly due to
the shearing action of the deviatoric stress which makes it seem
more logical to choose G, the shear modulus as one of the constants.
Indeed, the stress can be divided into two components, a hydro-
static stress accounting for volume change and a deviatoric stress
accounting for the change in shape. This is in line with the work

done at Manchester(73)

which suggests that the deformation of
particulate materials'can be divided into the elastic deformation
of the sand grains due to mean normal stress and the irrecoverable
deformation due to a change in geometry produced by interparticle
shear forces resulting from deviatoric stress. The octahedral
components of shear and normal stress and strain are often used
to represent these two components. The octahedral shear stress

and strain under plane strain conditions (€, = 0) are calculated

from:
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oot = 3 VU0 0)24(0=0, ) 4(0,-0,)%46 7, *] (3.6)

o §
%—J{ex‘-bey'“ ~€c € +5Y

Yoct = r} (3.7)

and they are linked by the relation;

Toct ~ € Yoot

Figure (3.7a) shows a graph of T, ot Plotted
against y_ . calculated from the test result in Figure (3.6).

The natural choice for the other pseudo-elastic
constant would be the bulk modulus. However, the relationship
between the octahedral normal stress and strain, from which the
bulk modulus would be calculated, is also non-linear, It is
very difficult and expensive computationally to iterate along
two non-linear curves. This is why many investigators have used
constant values of bulk modulus or Poisson's ratio to complete
the isotropic relation.

From the equations of elasticity under plane

strain conditons, Poisson's ratio can be calculated from;

e (3.8)

Figure (3.7b) shows a graph of the above ratio plotted against
octahendral shear strain. It can be seen from Figure (3.7b)

that the value of Poisson's ratio is roughly constant or more
accurately a linear function of octahedral shear strain. Similar
results to these have been obtained by Comforth{®), It therefore
seemed reasonable to choose Poisson's ratio as the-second constant
and to make it a function of shear strain level. A linear re-
gression analysis was carried out on the points in Figure (3.7b)

to obtain a least sguares fit which gave the relation;

V = 0.296 + 0.56 ¥ ki (3.9)
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The adoption of the constants G and v to describe

the material properties meant that the elasticity matrix became

S e T 26y o3

1-2v 1-2p
206G
ooy ZG(%—;! 0 (3-10)
=2y
0 0 G

It would have been possible to represent the non-
linear relation between c o and Yoot @5 2 function but to obtain
better accuracy it was decided to use the actual points on the
curve in Figure (3.7a) as the relation, in a similar way to
Craig(ao). Intermediate pointg can be easiiy interpolated.

This proéedure is possible because the sample is prepared to be
homogeneous and it is not large enough to be affected by body
forces, thus the properties of each element obey the same two

functions.

3.6) Finite Element Analysis.

3.6.1) Representation.

The Finite Element mesh used to represent the plane
strain compression test described in Figure (3.5) is shown in
Figure (3.8). The mesh consisted of 48 eight noded isoparametric
quadrilaterals, 6 sandwich elements and 12 beam elements. The
member elements are shown separately from the sandwich elements
for clarity in Figure (3.8), in reality they share common joints.
The quadrilateral elements were all assumed to obey the two functions
shown in Figures (3.72) and (3.7b), and all the other elements
were assumed to be linear,

As described in Section (3.3), the joints at the
base were free to move in the x-direction for the free ends

analysis, when the sandwich elements were also given a low

stiffness. Several analyses were carried out to find which
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values of the elastic constants gave the sandwich elements a
stiffness low enough to prevent any barrelling effect in the
deformed shape of the loaded sample. For the analyses assuming
fixed ends the joints at the base were rigidly fixed and the
sandwich elements were given the same properties as the beam
element. The sandwich elements were only 0.2 ems. thick and
this had an insignificant effect on the overall vertical dis-

placements.

3.6 02) The Program.

The subroutines describing the eight noded quadri-
lateral were Jjoined with those of the member elemznt and the
standard library routines as described in Appendix (3) to foram
the basis of the program. To complete the program it was
necessary to write a master segment and one other subroutine
called CONTROL to control the non-linear interative procedure.
The general procedure followed by this program is shown in
flowchart (3.1). It.can be seen from the flowchart that the
operations labelled 5, 6 and 7 are the familiar operation
carried out in a linear finite element analysis and all the

other operations are concerned with the iterative procedure.

3.6.3) The Iterative Procedure.

The iterative procedure is designed to make the
stresses and strains within each element representing the sample
follow the curve in Figure (3.9) which represents the non-
linear behaviour of sand. A load is applied, and then the Newton-
Raephson method of solution and resolution followed, until the
stresses and strains in each element fall on or near the curve.

When all the elements have achieved this fit the correct
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solution will have been found for this load.

To obtain a first approximation, initial values
are assigned to the two pseudo-elastic parameters G, the
shear modulus and v, Poisson's ratio, The initial value
for the latter is taken as the ordinate corresponding the
zero octahedral shear strain level in figure (3.7b), while
the value of G is arbitrary provided it is relatively high.

A finite element anzlysis was then carried
out which resulted in cartesian stress and strain components
at each joint in Figure (3.8). From these values, the octahedral
shear stress and strain components were calculated at the centre
of each quadrilateral element and then used to compute the new
values of G and v for each element. TFor any element having

octahedral shear components T and Yivic the next value of

oct

the shear modulus could be calculated from the curve in

Figure (3.9). The value T ot 18 the value of octahedral shear

stress corresponding exactly to Yoot OB the curve and was

interpolated from;

Toct = Tj {(yj_ybct)(Tj_rj—i)/(yj_yj—z)} (3.11)

where ¥ and yh—i are points describing the curve between
whose values y has been found to lie, and 7., and T,
oct 3 J=1
are their corresponding stress ordinates from the curve.
The new value for G is the secant modulus of
the curve at the strain level Yoct which is calculated from;
Tt
g = ‘oot (322)
Yoct

The new value for Poisson's ratio was calculated

directly from the linear relation;

v=a+b Voot (3.13)
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as in Figure (3.7b).

On the first run the problem would then be
reanalysed using the improved approximation repeating the
above process., On all subsequent runs the closeness of the
stress-strain state in each element to the required behaviour

would be measured using the quantity;

Vi s (3.14)

A= ((T‘ oct

oct ~ Toct
It would have taken a great number of operations to make

the quantity A become zero in every element. To overcome

this it was assumed that the element had converged to the

curve if the measure A was inside a specified tolerance,

usually 0.05. When all the elements fell within the tolerance
then the process was finished for this value of applied load and
a complete solution had been found. Otherwise, the problem
would be reanalysed and the process repeated until they were.
Once a complete solution had been found the load was in-

creased and the process repeated to find the next solution.

The load was increased until the last increment had been pro-
cessed wken a complete non-linear load-deformation response
would have been found.

The process described above is shown in more

detail in flowchart (3.2).

3.7) Results.
It was found that when the sandwich elements
were given approximately the same Poisson's ratio as that
given to the elements representing the sample, and, a
constant value of shear modulus of approximately */1000 of

~linear
the initial values assigned to the nonfelements, then no
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significant barrelling resulted in the sample shape.

Figure (3.10) shows the comparison between
the three load-deformation curves, from the fixed and free-
end analyses and the experimental result. Both theoretical
analyses failed under the application of a load of 0.54KN
in the sense that no solution could be found., Figure (3.1la)
shows the distribution of the stress component 0} across
the width of the sample, immediately adjacent to the loading
platten (Y = 8.41) and at the mid-height of the sample
(Y = 4.20) for both analyses at an applied load of 0.48 KN.
The distribution of the vertical stress inthe free ends analysis
was completely homogeneous, and, no distortion under the applied
load was encountered as the homogeneous stress level corres-
ponded exactly to the value computed from load over area,
and hence there is only one line in Figure (3.1la) for the
free ends case. Figure (3.11b) shows the distribution of
stress in the bottom half of the restrained sample expressed
as a percentage of the homugeneous stress level in the other
free ends case. In the fixed ends analysis the direction
of the major principal stress varied from 25° to the vertical
on the edge of the top platten to zero at the centre and the
principal stress was approximately vertical between y = 2,1
and Y = 6.3 and no further rotation occurred with increase
in applied load.

The distribution of horizontal displacement,
together with the deformed shape of the sample for both
of the analyses are compared in Figure (3.12). The distri-
bution of horizontal displacement is also shown in
Figure (3.13) as a function of increasing applied load. It

was found that the vertical strain was constant throw ghout
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the sample in both cases.

Discussion of Results.

Bishop and Green{®) showed that under triaxial
test conditions a sample witﬁ an L/D ratio of 2:1 (Length
to diameter) with restrained ends gave the same strength
(repeak) as that of a free ends sample with L/D = 1:1 but
at a lower strain level, and this effect can be seen in
Figure (3.10) where the axial deformation from the fixed
ends analysis is significantly less than that in the free
ends case, The length to width ratio in this case is just
over 3%:2 and hence under plane strain conditions the samples
could be expected to reach approximately the same peak. It
can also be seen from Figure (3.10) that tlere is a reasonable
agreement between the theoretical and experimental results.
The theoretical free ends curve is in exact agreement with
the experimental result up till a load of 0.24 kN but there-
after both theoretical results overestimate the axial de-
formations. This could be due to interpretation of the ex-
perimental results which were read off a graph and then re-
calculated backwards. Excellent agreement was found between
all three peak values of load.

The non-uniform distribution of vertical stress
due to the restrained ends is shown clearly in Figures (3.11).
The stress concentrations under the corner of the platten
which have been found are in agreement with the findings of
other theoretical investigators. It can also be seen from
these fligures that the middle of the fixed end sample has a

relatively homogeneous distribution of stress which supports

the presumption of the experimental investigators that in the
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taller samples the end effects are reduced.

It is extremely interesting to note that the stresses
throughout the free ends sample were completely homogeneous.
Quite severe overestimations had been found under the load in
Chapter (2) but these had all been damped out by the beam
and sandwich elements., It was noted in Chapter (2) that
the overestimation occurred for a one element depth and this
is amply supported here.

The dead end zones measured experimentally by
Kirkpatrick and Belsahaw'®3) are shown up in the contours
in Figure (3.12) from which it can also be seen that the
middle half of the restrained sample undergoes relatively
uniform horizontal strain, but at generally smaller levels
than those in the free ends case as can be seen from
Figure (3.13). The exception to this is at the sample mid-
height where the horizontal displacements of the restrained
sample exceeds those of the free ends case. The mode of dis-
placement at y = 7.88, Figure (3.13) corresponds well in shape
to that measured under triaxial conditions by Kirkpatrick
and Belshawt52)

It cén be seen from all the graphs of the free
ends case that the sandwich elements successfully eliminated

the effects of end restraint on the sample elements.

3.9) Conclusions.

Sandwich elements givenrclatively small stiffness

can be used to represent smooth interfaces when inserted
between the bulk of the elements and the loaded boundary.

Best results are achieved when the sandwich elements are



65.

349) contd.
given the same Poisson's ratio as the other elements but
a reduced elastic modulus.

When the load is applied through a smooth rigid
boundary, such as the loading platten in the free ends
example, nore of the severe over-estimations of stress,
encountered in Chapter (2), occur,

The complicated boundary and loading conditions
that occur in the plane strain compression test can be
handled with ease by the Finite Element method. The
simple isotropic analytical model assumed to govern the
behaviour of the sand elements led to a good agreement with
the experimental results.

The restraint imposed by fixed end loading
plattens in the plane strain compression test leads to
non-homogeneous distribution of stress and strain and
reduces the vertical displacements, It is quite impossible
to make a quantitative comparison with other investigators
because they have all been interested in axi-symmetric
conditions but as expected there are a great number of

similarities in the results.
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Introduction,

An important cause of non-linearity is that
due to material cracking. A mass of fissured material or
material of relatively low tensile strength is incapable
of sustaining a tensile stress which leads to the development
of cracks, which in general reduces the stiffness of the
mass. If subject to compressive stress, these same materials
will transmit forces and exhibit approximately linear load-
deformation behaviour. This type of effect is important
in rock mechanics, and structural concrete because the
occurrence of cracks considerably changes the distribution
of stress from that assumed by linear elastic theory, and,

of course reduces the load bearing capacity.

The Use of Finite Elements in Crack Propogation.

Blakel °) used triangular finite elements to
analyse the problem E)f a circular underground opening and
compared results with a classical solution of the Kirsch
problem, Blake went on to analyse the same problem with a
fault above the opening, similar in principle to a crack.
The fault was simulated by a number of elements having only
small stiffness,

Watsont ®2) used a similar approach to analyse
material with no tensile strength. The problem was first
analysed as an isotropicmaterial, and, then where elements
developed tensile principal stress, they were assumed to be
anisotropic with a very small elastic modulus normal to the
tensile stress, The problem was then reanalysed and so the
crack or weak zone developed.

Zienkiewicz, Valliapmand King!®4) pointed out the
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weakness in these methods and proposed a method called

the 'stress-transfer' method. The problem is again analysed
as an elastic one, but in this case the tensile stresses
were eliminated by replacing them with temporary restraining
forces, which are removed by equal but opposite nodal forces.
The structure is then reanalysed and the process repeated.
Further improvement in the solution was obtained by also
reducing the modulus in the direction of the tensile stress.

Trikha and Edwards(®5) used the stress-transfer
method in conjunction with a non-linear material model to
predict the crack pattern and mode of failure in concrete
box girders. Analytical and experimental results were
compared and found to be wihin normal engineering accuracy.

Other investigators including Watwood! 22 applied
the finite element method in conjunction with fractuée mechanics.,
Watwood examined the state of stress around a sharp crack and
calculated stress intensity factors. Recently, Aé-Hashimil?)
used triangular elements in conjuncuvion with fracture mechanics,
and a method similar to that used by the Author to examine
the behaviour of brittle stabilised soil.

Most of the previously discussed methods of pre-
dicting crack propogation have represented the crack as a zone
of weakness. In a real mass of material however, the excess
tensile stresses are relieved by a physical separation, the
effects of which have been studied by those investigators
using fracture mechanics. There has been little work done
into incorporating the kind of physical separation, that
occurs when a crack appears, into an automatic finite element
analysis. Crack propogation can be studied(?) by allowing

physical separations to occur in the element mesh.
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The advantages of such a method are that cracks
are allowed to start at any point and to change direction o»
branch off. It also caters for the possibility of cracks being
arrested and others initiated. Over and above any other method,
this approach means that crack widths can be calculated and the
physical representation is clearly carried out in a more
realistic manner,

The disadvantages of such a method are likely to
be mainly on grounds of cost. The physical introduction of
a crack will mean joint separation, which in turn means that the
mesh will be redefired and, therefore some data changes will be
necessary. Oracks will only be able to occur along element
boundaries, so to some extent, the crack pattern will have been
decided by the mesh design.

All the previous investigators used the simple
triangular element which, asshown in Chapter (2), seriously
underestimates the stress, so some improvement can be made by

using higher order elements.

The DE z .

Consider a point 'i' in the finite element mesh
shown in Figure (4.1). For a crack to appear at this point,
the principad stress must be tensile and exceed the tensile
strength of the material. Cracks occur in a direction normal
to the principad tensile stress, but it is clear from the
figure that cracks can only occur along the element boundaries,
which means that it is the stress normal to the element boundary
which in this case will cause cracks, If it should happen
that the principal tensile stress direction is not in reasonable

agreement with the direction of the normal stresses then the



Figure 4.1 A finite element mesh
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finite element mesh would have to be redesigmed to avoid

errors. Indeed, the best practice is to first analyse a

very coarse mesh to get an idea of what the crack pattern

and principad tensile stress directioh would be, and then

to design the refined mesh using these first results as a

guide.

Assuming this exercise has been carried out,
if an increment of load d.L'j is then applied to the mesh
this will produce increments of stress dgij, dcij and.
ﬁrg%ii at point i. The increment of stress normal to the

element boundary can be calculated from;

i ) 3 i i 3
do, 5 =§[d°ij - dqu}-é[do;j - dQ}jJ Cos(26™)

. A i
+ dri s Sin(26) (4.1)
i L
where, 6 = taﬁ'i[xi} (4.2)
LR

The increment of normal s tress at point 'i' is plotted

against the applied load increment that caused it in

Figure (4.2a). To calculate the total load which would cause
a crack to appear at point 'i' it was necessary to take into
account the previous stress history, as shown in Figure (4.2b).
Aj“i is the total load that caused a crack, somewhere in the
mesh, after the last increment of load. A? is the total load
that would cause the normal stress at point i to reach the
tensile strength of the material, and hence causz a crack

to occur, during the application of the jth load increment.

Its value can be interpolated from;
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i - z
. = A i e e o .
Ay o= A, + tan ¢y [ % nJ_i] (4.3)
where, tan ¢§ £ dLj 3 (4.4)
L
dchj
oij 3 is the accumulated normal stress up to

the last increment, and oy is the tensile strength.

Equations (4.3) and (4.4) are applied to all
joints in the mesh and hence a whole series of values of
A% are obtained. It is the joint with the smallest positive
value of A% at which the next crack should appear, because
this joint requires the smallest increment of load to crack,
This chosen least value then becomes Aj. Hence, the total

normal stress, due to the action of hj, can be calculated for

each joint,using;
i i A=l X,
Pay T Tagea * [_g_r.]"_i] (4.5)

A radial crack could then be introduced into the
mesh, at the joint which had had the smallest value of A%, by
allowing the element boundaries to separate.

This effect was achieved by having two joints at
each point that a crack might be expected to occur one of which
is a dummy joint with no degress of freedom and not defined
in the element topology. Effectively this dummy joint takes
no part in the analysis until a crack appears at its position.
In the small part of a mesh shown in Figure (4.3a) the dummy
Joints are the numbers in a small box. The element numbers are
encircled. It can be seen from this figure that cracks have

not been allowed to develop everywhere, because in some cases
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this would entail dividing an element. If active joint 33

was the point at which the crack was next due to appear,

then the mesh would be modified to that shown in Figure (4.3b).
Joint 34 is no longer a dummy and would be activated by giving
it two degrees of freedom. The data describing elements 21 and
29 would also be amended to include the new active joint. That
is to say that joint 33 would be replaced by Jjoint 54 at the
two corner nodes. The next increment of load would then be
applied to the new mesh and the whole process repeated.

It can be seen from the meshes in Figures (4.3)
that dummy joints were only provided at places that cracks
could appear without dividing elements. If cracks consistently
wanted to appear across element boundaries this would require
redesigning the finite element mesh. The method could be
extended allowing for tangential, as well as radial cracking,
the meshes would have to be designsd with one dummy Jjoint at
each element mid-side node position and three dummy joints at
each corner node. Thus allowing for two way separation. It
is only the equation (4.2) that requires any alteration for

the method to apply to cracking in either direction.

Crack Propogation Program,.

The isoparametric quadratic quadrilateral finite
element was again used. The program for analysing the path
of crack development used the sub-routines that described
this element (see Appendix (3)) and one other subroutine.
The sub-routine named CRACKPROP carried out thé procedure

described in the previous section.

It was noted in the previous section that cracks
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cannot occur everywhere in the mesh, so, a variable INi was

introduced for each joint. This variable could be specified

as 1 or 0. A zero allowed a radial crack, and a 1 did not.

Crack suppression was achieved by not allowing any Jjoint

with IN = 1 to be selected as the one having the minimum

value of A%, that is the next crack position. It can be

seen from equations (4.3) and (4.5) that the accumulated normal

stress after the last increment must be known for each analysis.

The accumulated stress, the array IN and the data describing

the geometry and loading of the mesh, was stored on disc data

files,

The general crack analysis system to trace the path
of a crack is shown in flowchart (4.1) where two complete runs
of the program are illustrated. It can be seen from this flow-
chart that three files constitute the input for the program.

The file AFDAT2, assigned to card reader 1, contained Aj—i

(i.e. minimum (total load) after last run) and the accumulated
normal stress for each joint after the last increment. AFDATI,
assigned to card reader O, held the data describing the finite
element mesh as it was after the last increment, AFDAT3 con-
tained the array IN and was assigned to card reader 2.

In the jth increment, the program calculates from
thesethree input files the next joint to crack and writes
the load that caused this crack, together with the new accumulated
stress, to the next generation of the disc file AFDAT2,
The program prints the result of the analysis and the crack
calculations on the line printer for visual interpretation

The user then interprets these results and modifies

the mesh to allow the crack to develop at the correct point

by separation of the slement boundaries. This changes the data
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describing the topology of the mesh and hence a new version
of AFDAT1 is created. The new finite element data is created
by the user editting the old data file to activate the
appropriate dummy joint. A new version of AFDAT3 was
usually created so that the last joint to crack could not
possibly crack again.

The stress components from the finite element
analysis were used as the main input to the routine
CRACKPROP, which carried out the cracking analysis calculations
described in the previous section. The procedure followed
by this routine is shown in flowchart (4.2). It is possible
for cracks to occur at more than one joint., It is very
important that no points at which cracks wanted to appear
should be overlooked. If any points were overlooked, and sub-
sequently cracks not inserted into the mesh, then the stress
distribution after the next increment would not be correct,
and if' the overlooked point did not now want to crack, the
whole pattern of crack development would have been distorted.
To allow for this, a check was made after the accumulated
normal stresses had been calculated to see if any of the
stresses were within 0.1% of the tensile strength. This
meant that if a crack wanted to appear in the middle of an
element, it would not be overlooked either, and the mesh could
be redesigned, if thought necessary,

When interpreting the results from an analysis
it was necessary to check that no cracks had been closed.
Displacement compatability is, of course, no longer held when
element boundaries are separated by a crack. It was possible

for Jjoints, previously under tension and cracked, to become
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compressive as other cracks develop. If this were not noticed
a negative crack width could occur, when an element moved over
its neighbour. To facilitate data preparation and checking,
on what should be a well used program, another small program

was written to check, and if necessary amend the data input.

Analysis Problem,

It was decided to test the proposed method against
an experimental result in order that the accuracy could be
gauged. An experimental study of the bhehaviour of stabilised
soil had been carried out by Ae-Hashimi‘®) and seemed ideal for the
analysis, The soil-cement mix consisted of blue ball clay,
packington sand and blended cement., The test specimens were
rectangular prisms with a preformed cylindrical opening across
the centre, and were prepared in an initial homogeneous, unstressed
and uncracked state and then subjected to a uniaxial compressive
uniformly distributed load up to failure.

The specimen details follow. The 300 x 100 x 100 mm
prisms contained a 25 mm¢ flaw across the centre and they were
made from a mix of sand:clay, 90:10 with 10% cement. The elastic
parameters were measured at v = 0.065 and E = 33,4 x 10* kN/m?,
The tensile strength was taken as 46 kN/m® and a total failure
load of 5600 kN had been measured experimentally for the particular

test sample.

Finite Element Analysis.

Three analyses were carried out, for ease of identifi-
cation they were referred to as runs A, B and C. In all these

analyses, radial cracks only were allowed to occur. By use of the

IN array, described previously, cracks were not allowed to occur
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which would cause elemen® division. In runs B and C the IN array
was also used to ensure that specific modes of crack formation
were followed, by only allowing cracks to develop along specific
radial lines.

The finite element mesh used for these three
analyses is illustrated in Figure (4.4). The mesh consisted of
30 quadratic quadrilateral elements giving 147 joints of which
34 were dummies., The uniformly distributed load was applied
as fictitious nodal forces in the manner described in
Figure (2.5). It can be seen that the mesh was designed not
to inhibit the formation of radial cracks. Because of symmetry
only a quarter of the test specimen was analysed. A constant
load of increment of 500 kN was used, and this figure is purely

arbitrary as can be seen from Figure (4.2a).

Results,

4.7.1) Run A.

The sequence and positions of the crack formations
resulting from this analysis are shown in Figure (4.5). It
can be seen from this figure that cracks appeared in a zone at
the top of the circular flaw and that cracks arrested and
restarted several times. Figure (4.6) compares the load versus
vertical deflection curves resulting from Run A and experiment.
Figures (4.7) and (4.8) show the crack widths against increasing
load for the vertical crack (at joint 147) and the crack along
the first inclined radial line (i.e. the difference between joints
14 and 145). Run A was halted after the 12" inpvemsnt jof load
because application of the next increment caused about 10

joints to want to crack, it can also be seen that from

Figures (4.7) and (4.8) that the spscimen had become unstable.
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4.7.2) Run B.

In this run, cracks were only allowed to occur
along the vertical axis of symmetry of the specimen (i.e.
starting from joint 147). The sequence of crack formation is

illustrated in Figuwre (4.9). The crack width obtained in this

manner is compared with that obtained from Run A in Figure (4.7).

The run was halted when the experimental failure load had been

exceeded by about 20% without apparently reaching failure.

4.7.3) Run C.

4.8)

For this run, cracks were only allowed to occur
along the inclined radial line next to the axis of symmetry,
(i.e. starting at 144, 145). The sequence of crack formation
is shown in Figure (4.9). The crack width obtained in this
run is compared with that obtained in Run A in Figure (4.8).
Like Run B this runwas halted without apparently reaching

failure.

Discussion of Results.

The results obtained in Run A agreed well with the
experimental results. The load-deflection curves were in good
agreement although the experimental plot was more non-linear.
This is probably the result of using a linear analysis, and an
average value for the elastic constants, when the real response
is only very approximately linear. The instability of the
specimen around failure is well illustrated in Figure (4.7). The
failure load is close to the experimental value, The reversal
of displacement canbe taken as a sign of failure, Ma.,jidcs) and
the mode of failure agreed with the experimental observations

of Ae-Hashimi4) that the cracks appeared in a general zone

rather than in a specific plane. It is worth noting that failure



t
TR AR IR R A RN N RN NN RN AR ALY

l
l
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4.9 Sequence of crack formation, runs B & C



7.

4.8) contd.
is not apparent in Figure (4.6) in either the experimental
or theoretical curves. The brittle behaviour of the material
allowed it to have a large stiffness right up to the point of
failure. In the experiment, failure was then sudden and
catastrophic which could not be predicted theoretically but
was indicated by the number of joi.ts that wanted to crack on
the application of the l3th load increment in Run A,

Runs B and C were carried out to see if the
occurrence of either of the two ma jor cracks, that occurred
in Run A, could cause failure alone. This was not the case
and indeed it can be seen from Figures (4.5) and (4.7) that
instability did not start until increments 7 and 8 when the

two inclined radial cracks were opened into tke circular flaw.

4.9) Conclusions.

The method and program give good results for the
analysis of this particular case. It cannot be concluded from
this that the method is wholly justified but it is clearly worth
more attention and further examples. Some improvements can be
made, the most obvious of which is to include tangential cracking.
Further improvement might follow from making the elastic parameters
stress level dependent.

The program was not very expensive, each run costing
about £1.00, but quite lengthy since user intervention was re-
quired between each run to change the data. This kind of operation
could be best carried out on an 'on line' terminal rather than
using batch processing. It would speed up the process if the
data modification could be automated, but this would seem to be

a very complicated project.
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Introduction.

In this Chapter a series of model tests are
described. These model tests were designed so that the stress
conditions in the underlying foundation material were three
dimensional, but also represented a realistic situation. The
purpose of the tests was to provide a controlled set of ex-
perimental load-deformation curves with which theoretical
analyses by the finite element method could be compared. These
tests were necessitated by the fact that the Author could find
no suitable experimental results reported, contrary to the
situations which arose in Chapters (3) and (4).

The type of model test carried out was that of
a smell prototype structure. For the results to be useful it
was important that the model should conform with the assumptions
inherent in the proposed method of analysis., From the tests
and their comparison with theory, it should be possible to
assess the accuracy of the method of analysis and also to confirm
the relevance of the stress/strain theory, established from
some testing apparatus, in predicting the performance of the
model.

Numerous investigators have carried out model
tests under two dimensional conditions of plane strain or axial
symmetry. In almost all these tests the aim has been to obtain
a better understanding of the behaviour of the foundation
material. The aim of the tests described in this chapter and
the analysis in Chapter (7), apart from those already stated,
was to investigate the iteraction, that not only occurs in the
foundation material, but also between the various structural
members as differential settlement and sway occur.

The philosophy has been that while the behaviour
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of soil is an interesting and challenging subject, when con-
cerned with foundations, it is important only in so far as the
behaviour of the soil affects the structure founded upon it.
Following this philosophy only the displacements at various
points in the structure under test were measured. No attempt
was made to measure contact stress or the stress components in
the test bed.

The model tests were designed so that body force
effects could not be ignored. The prototype structures were
made of steel and about *;5 real size. A granular material was
adopted for the foundation material because of its ease to place

and lack of problems arising from pore pressure or time effects.

5.2) Test Series.

The model tests were all carried out on framed
steel structures founded onto a bed of sand. The prototype
structures were made up of steel beams and columns, the columns
all rested on steel square pad footings. The three framed structures
used in the test are illustrated in photographs (5.1a), (5.1b)
and (5.lc), and detailed in Figure (5.1). Sand paper was glued
to the underside of the pad footing to try and prevent lateral
movement of the sand immediately under the footing. This problem
was discussed in Chapter (3).

Four tests were carried out on each frame. For each
frame the applied load acted at four different positions of
eccentricity. The four loading points are shown in Figure (5.1).
It was practically impossible to apply a load directly over the
column,so in this case the load was applied as close to the

column as was possible,
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PLATE (5.1c) THE LARGER MODEL SPACE FRAME
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5.3) Materials Used in the Model.

5.3.1) The Sand.

It was estimated that at minimum porosity the
proposed test bed would require about five tons of sand to
fill it., In order to enable comparisons to be carried out
it was decided to use a Leighton Buzzard sand which has been
popular with many other investigators. The sand, classified
as grade 21, arrived washed, graded and dried in 100 fifty
kilogram bags. These bags proved a convenient size for
handling and s toring the sand.

A standard sieve analysis was carried out on the
gand and the particle size distribution obtained is shown in
Figure (5.2). The analysis gave Dio = 0.34, Dego = 0.48 and
the uniformity coefficient y = 1.40. It can be seen from these
results that the sand was medium size and fairly uniform,
largely falling between the 25 and 36 sieve sizes,

The specific gravity of the sand grains was measured
in accordance with the procedure laid down in BS 1377. The
valwe obtained was v 2.66. This value was rather higher
than expected but the test was repeated six times and consistent
values were obtained., There was a fine black mineral mixed
in with the quartz and it was presumed that this had led +o
a slightly higher specific gravity than that recorded by other
investigators,

The maximum porosity of the sand was measured
experimentally using the so called tilting method of
Kolbuszewskil2°%) | This gave a consistent value of
nmax of 43.9%. The minimum porosity of the sand was determined
experimentally using a vibrating table. The mechanical vibrating

table (usually used for concrete cubes) had a fixed amplitude



PARTICLE SIZE DISTRI BUTION

British Standard Sieve Sizes

300 Z?o ilso 00 92 basz 3 25 8 4 10 8
| S N | 1 ! 1

| |
100 ,r._.
90— ]/
80
70 A
o
2, i
a1.60
O
g ; -
o | 50—
o
O
E I
o |40
: !
Q.
30——
20— }
10 //
O ,‘/
006 O-2 O-6 2 particle
SiZe mms
fine medium coarse
sand

Figure 52



5.3.1)

5-3.2)

5.4)

8l.

contd.

and variable frequency. The table was not calibrated in

any way so it was not possible to record the frequency

giving winimum porosity. The result obtained was n . = 33 o 7%.
All these results were similar to those obtained

by other investigatorstsa)

using a similar size Leighton
Buzzard Sand. The mechanical properties of the sand are

discussed later in Chapter (6).

The Steel.

The same square black mild steel bar was used to
make all the columns and beams for the three model structures.
Its properties were measured in accordance with BS 18. An
average value of Young's Modulus of 2,11 x 10°® kg/cm® was
obtaired.

The pad footings were all made from the same
strip of 6" x 1" section mild steel plate. Specimens were
again prepared and tested in accordance with BS 18, An
average value of Young's Modulus of 1.74 x 10° was obtained,
The lateral strain was measured during the tensile test to
enable the calculation of Poisson's Ratio, and an average

value of 0.28 was thus obtained.

Sand Desposition Apparatus.

When carrying out laboratory scale expsriments

involving granular materials it is essential to have a method
for preparing the test beds of sand at known uniform porosities
at will, over and over again, This has involved the use of

one of two major methods.

The first method is where the sand is deposited
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and then its porosity adjusted using some mechanical method
such as tamping or vibration. This method has not remained
popular because the beds are left with locked in stresses due
to compaction and it has been shown by Feda'®3) that it is
very diffiecult to control the variation of porésity throughout
a sand mass.

The second, and currently most popular method,
is where the porosity is controlled during deposition by varying
the intensity and velocity of a rain of falling particles, This
method has followed from the pioneer work of Kolbuszewskif°9)
who achieved variation of porosity by varying independently tﬁe
height of fall of the grains and the rate of deposition.

Kolbuszewski and Jones'®4) used these principles
to design an apparatus capable of preparing homogeneous samples
over a wide range of porosities. The intensity of the rain of
sand grains was controlled by means of a 'variable aperture
hopper'. The hopper was a rectangular box and had in its base
a plate perforated with a regular pattern of holes. There were
two other plates with the same pattern of holes above and below
the base plate, By displacing these two plates relative to the
base plate the effective aperture and hence the flow of sand out
of the hopper could be varied. The sand then fell into a receiver
which had the same plan dimensions as the hopper. The rain of sand
was dispersed by a mesh underneath the hopper, but this seemed
to have little effect. Kolbuszewski and Jones'®%) found that
the height of fall had practically little effect on the resulting
porosity. Gisbourne!®®) used a similar apparatus and obtained
good results. The main problems occurring with this kind of

apparatus centres around the turbulence caused by the displaced
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air. Gisbourne provided a suction at the base of the re-
ceiver to remove the air, but some turbulence was still
encountered.

A different approach, but using the same
principles, was adopted by Walker and Whittakert®°), In
this method the bed was formed in a series of thinnlayers
by a rain of sand falling from a hopper which passed back-
wards and forwards across the receiver. An electric driven
cylindrical roller was positioned below the open base of the
hopper. The intensity of the sand rain was varied by altering
the speed of rotation of the roller. Whittaker and Walkert®©)
meet some trouble with air turbulence in their relatively smail
cylindrical receiver,

More recently Butterfield and Andrawes'2®) gdescribed
another apparatus similar in principle to Walker and Whittaker.
This apparatus again used the moving sand curtain technique
by discharging from an 'air activated spreader'. The sand was
discharged from the hopper, through a horizontal slot, under
air pressure. The intensity of the sand raincould be ad justed
by altering the air pressure. Butterfield and Andrawes pointed
out tha t the main defect associated with the moving sand spreader
was that the sand was deposited in distinct layers which were

detectable on X-ray photographs.

5.4.1) Design Considerations.

The size of the model test bed (8' x 4' in plan)
precluded the use of a hopper the same size as the receiver

and, anyway disturbance due to air currents seems less when
using a travelling hopper because the displaced air can move

away in front of the sand curtain. The methods deseribed in
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the last section which used a travelling hopper seem re-
latively complicated and gave only slightly better results
than the simpler variable apgerture apparatus. The Author
therefore decided to adopt a variable apperture hopper in
conjunction with a moving trolley.

A bed of sand about 3 to 4 feet deep was re-
quired., It was therefore necessary to have the hopper high
enough to ensure that the decrease in the height of fall of
the sand grains would have little effect on the porosity.
This meant putting the hopper as high as possible. Because
of the size of the container there should be little problem
with displaced air except at the extreme edges. However,
the disturbance at the edge should have little effect on
the model tests which would take place in the centre of the
container,

When the test bed was full it would contain
4-5 tons of sand. The hopper could not have this kind of
capacity, so a method of filling the hopper after each

pour had to be devised.

Description of Apparatus.

The travelling hopper is shuwa in plate (5.2a).
The hopper consisted of a steel frame chassis and wooden
body panels to give a capacity of 0.28 m®. In the base of
the hopper there were two plates, shown in some detail in
plate (5.2b). Both these plates were drilled with a regular
pattern of holes “;ie" in diameter at 1" centre. It was
found practically impossible to use 3" diameter holes because

of the leakage that occurred. The inner plate was welded to

the hopper chassis and the outer plate was allowed to move
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in a groove. In the zero position the holes in the inner
plate coincided with the solid spaces in the outer plate,

as shown as position O in Figure (5.3). The outer plate
could be displaced by rotating the cam, shown on the left
of the plate (5.2b), thus the holes in the outer plate

could gradually be brought into full coincidence with

those in the inner plate. A second cam was provided on

the other side of the base of the hopper to return the outer
plate to the zero position,

The adjusting cam was calibrated for three
positions between the zero position and full coincidences
of the holes. These positions corresponded to nominal
displacements of the outer plate of ﬁ", %" and %", as shown
in Figure (5.3), where the shaded areas represent the
apgerture. The position could be created by bringing
the first, second or third hole drilled in the cam into
coincidence with its corresponding hole on the retaining
plate above it and then secured by a tapered steel pin,

The hopper could be attached to a trolley, shown
in plate (5.2c), which ran along the top flange of the cross
beam on top of the test rig, Figure (5.4). The hopper was
connected to the trolley by means of four locating points,
one at each corner of the hopper and trclley. These points
which can be seen in the plates consisted of steel plates
welded to the chassis and drilled with a 1" diameter hole.
The plates in the trollex/hopper were lined up and then
secured by bolts.

The trolley, which can be seen in plate (5.2¢),

consisted of four wheels, two axle and a steel frame.
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The wheels were supported, and guided by the top flange
of the cross beam.

The trolley and its attached hopper could be
moved over the length of the test bed by the manner shown
in Figure (5.4). A hemp rope was attached to the centre
of the axle. and passed through and over two pulleys on the
main support column and down to a worm geared winder,

It was found necessary to use a fairly rigid hemp rope to
avoid Jjerking. Less rigid materials stretched until the
tension was high enough to move the hopper against the
friction, at which time, the tension was relaxed as the

hopper Jjerked forward, and then the process would be repeated
This led to a considerable duning effect on the surface of the
sand, The winder was a standard fitting to the test ring and
was normally used to adjust the height of the cross beam.

Its low gearing made it ideal for its new job because turning
the crank handle at moderate effort ( ~ 1.5 revs/sec) gave

a reasonable speed (™~ 30 cm/sec) to the trolley. The trolley
would have been more evenly propelled by a motor but as a
suitable one was not available for these tests, hand winding
was used. Experience showed that it was guite easy to maintain
an even speed.

The hopper was designed so that it could be filled
at ground level and then lifted up to the trolley. To do this
four struts made from steel channel section were welded to
the hopper chassis, two on either side sand canbe seen in plate
(5.2a). These were provided so that the forks of the fork 1ift
truck would fit underneath them and hence 1if't the hopper up

to the trolley on the cross beam.
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Measurement of Porosity.

The porosity of the sand was obtained by placing
calibrated measuring cylinders, known as density tins, at
different points in the receiver and weighing the sand de-
posited in each. The measuring cylinders were nominally
2" in diameter and 13" high made from brass tubing. Density
tins usually have a gauze base to allow air to be displaced,
but the bases soon sag due to the small stiffness of the
gauze which introduces errors. The Author had density tins
made with bases of brass plate perforated by a number of-%n
diameter holes and then the gauze was stuck to the inside
face. Each of the twenty cylinders could be identified by

a number stamped on it.

Calibration.

To calibrate the variable apperture hopper the
porosity was measured for each of the apperture settings in
Figure (5.3). It was also necessary to investigate what
effect the decrease in height of fall, and, the decrease in
head of sand in the hopper had on the porosity variation.

Ten density tins were placed close together in
the bed at the mid-depth point of the receiver. The hopper,
with the apgerture set at position 1, Figure (5.3), was then
passed over the tins. The full tins were screeded level,
weighed and the porosity colculated. This test was repeated
for the other three apge rture positions.

Next, ten density tins were placed along the
length of the bed at the mid-depths. A pass of the hopper
was made to fill the tins and the porosities along the bed

were calculated. No more than random variation was found.

This meant the decrease of head of sand could be presumed
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to have little or no effect.

Lastly, the density tins were placed together
at the bottom of the bed and filled from the hopper, and
the porosities then calculated. These tins were then re-
placed at the height of the proposed surface level of the
bed and refilled. The difference between the average porosities
calculated at this height and the bottom of the bed was again
not higher than the random variation. The height of fall was
reduced from 1.75 m. to 0.8 m. but this had very little effect
on the porosity.

As a final check two full size pours were carried
out in the test bed with the apperture set at position 4.
Four density tins were placed in the bed after each pass of
the hopper. When the bed was full the surface was screeded
level and the dimensions measured. The bed was then emptied
and the sand weighed as it was removed. The density tins were
carefully retrieved, The bulk porosity,calculated from the
volume of the bed and the total weight of sand removed,
differed by only %% from the average porosity given by the

density tins., This result was confirmed by both trial pours.

5.4.5) Variation of Porosity.

The porosity obtained from pouring with the
apperture set at each of the positions in Figure (5.3) is
plotted in Figure (5.5a). The varying intensity of the
sand rain at positions 1 and 4 is shown clearly in plates
(5.3a) and (5.3b)., The variation of porosity at a given

apperture setting was never more than + 2% and the bulk

porosities obtained in the two trial pours were the same,
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It can be seen from the Figure (5.5a) that using these four
fairly arbitrary settings a good range of porosities was
achieved.
Figure (5.5b) shows the relative porosity of
sani plotted against, what Kolbuszewski and Jones®4) called,
the apperture coefficient. The relative porosity n, is

calculated from:

n

n_ = max ~ ° (5.1)
no.

max min
where n . and n . were measured in Section (5.3.1). The
apperture cosfficient y is the ratio yd[y(4) where Y3 is
the actual maximum width of the apperqture and y(4) is the
apgerture size at full coincidence. These dimensions were
measured with a vernier gauge. The resulting shape of the
curve in Figure (5.5b) is very similar to those obtained by
the investigators mentioned in Sesction (5.4). It can also be

seen that the curve has the correct form as it becomes

asymptotic to the ordinates of 0% and 100% relative porosity.

5.5) The Test Bed.

The test bed, which can be seen in plate (5.3b)
and Figure (5.4), consisted of a perspex box inside a steel
frame. The steel frame was itself restrained in several places
by bands of steel angle section which went round the perimeter,
The top of the tank was restrained across the width by three
reinforcing bars. These bars were circular and only 3" in
diameter and hence did not interfere with the sand rain, The

box was made from %“ perspex plate so that a visual check could

be made on the result of the pours. The bed was designed large
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enough so that the effect of the sides should be negligible.

The test bed was originally designed using standard
engineering procedures but the maximum deflections were re-
latively large (~ 3mm), during the trial tests. The original
1%z x 1% x x steel angle section in the frame and bands was
replaced by 3 x 15 x £ angle section and this reduced the
maximum deflection to less than % mm. The bed rested on a large
piece of 1" thick plyboard which rested on the base beam of the
rig. The bed overhung the sides of the base beam and the edges

were supported on solid wooden blocks.

Loading System.

Initiaelly it had been decided to use an hydraulic
Jack as the method of applying the load to the model structure.
The base of the jack was bolted to a plate fixed to the under-
side of the cross beam. The load was applied, and thus measured,
through a steel proving ring. It was not possible to use the
self compensating hydraulic system installed in the laboratory
because the vibration from the machinery visibly affected the
sand, and so0 a hand pump was used. However, the system proved
unstable., The pressure in the hand pump would decrease slightly
with time, due presumably to a small leak, This decrease was
found to be present in all the pumps tried. This effect was
coupled with the fact that small settlements of the structure,
which were largely irrecoverable, caused the load to decrease.
The hydraulic pump had to be continually readjusted to maintain
a coms tant reading on the proving ring., Each readjustment
caused a further small settlement. It was therefore decided to
change to a dead load system where none of these problems could

a.I'iSe .
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The loading system that was made and used is shown
in Figure (5.6) and plate (5.4). It cousisted of four parts;
the restraining strut, the lever arm, the loading arm and the
hanger. The restraining strut could be fixed to the two
flanges of the cross beam as shown in Figure (5.6). The strut
had to be moveable, because the load would be applied at
different points above the model, and removable, because
otherwise it would obstruct the hopper., The knife edge at the
bottom end of the strut located into the slot in the lever
am at K, in plate (5.4). In making the levef are it was
essential that the three loading points at K, H and L should
all be on the centre line of the beam, as shown in the figure.
To keep any errors due to friction to a minimum, the holes were
all made 50% oversize and countersunk to a sharp edge so that
the area of contact was a minimum,

The load was applied to the model structure by
means of the loading arm. Connecting pins joined the loading
arm to the lever arm and frame, by means of two 'u' brackets.
These were connected through a universal joint to minimise any
effects due to their not being aligned perfectly.

The load was applied to the lever arm by placing
weights on the pan of the hanger which was connected at higydin
plate (5.4).

The magnification of the lever arm was X3.9.

Experimental Procedure.

Preparation.
Sand was placed in the bottom of the test bed and

banked round the edges. Experience showed that if this was

not done, the edges would be lower than the centre of the
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bed af'ter the bed had been filled.

Four density tins were placed on the surface of
the sand and their numbers and positions noted. The hopper,
now at ground level and resting on a fork 1ift truck, was
filled with sand from the bags, plate (5.5a). The fork lift
truck, carrying the full hopper, was driven forward under
the trolley and the hopper raised up and connected to the
trolley; plate (5.5b). The truck was then removed. The
hopper was moved to the starting position, marksd on the
cross beam, and the apperture set using the adjusting cam.
By winding the crank of the worm gear the hopper was drawn
gently across the length of the bed. When it reached the
other end, the apferture was closed. For all the tests carried
out by the Author the ap§erture was set at position 4,
Figure (5.3). In this case the hopper was empty when it
reached the end of the bed, and could be merely pulled back
to the other end, after releasingthe rope from the winding
gear. When using other apperture settings the hopper would
not be empty and so the apgerture would have to be reset and
wound b ack down the bed to deposit the next layer. In pulling
the hopper across the bed it was found essential to keep a
reasonable speed otherwise the motion was jerky leaving an
undulating surface. When the hopper was empty it was lifted
down from the trolley using the fork 1lift truck. This cycle
of operations took about 15 mins. after practice, and the
cycle had to be repeated until the bed was full.

When the sand bed was slightly deeper than re-
quired the surface was screeded level. This was achieved by

gently scraping off the top few millimetres of sand using

a board, the width of the bed, that fitted onto the top
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channel of the frame of the bed. The model structure could
then be placed centrally on the bed of sand. The largest
space frame, plate (5.lc),weighed over 50 kg  so lifting
them on to the bed was aided by a rope over the cross beam
to carry the weight, the frames could then be positioned
with ease,

Once the model structure was in place, the frame
to hold the dial gauges was built round it. This frame was
bolted to the three top restraining bars and to the frame
of the best bed. The dial gauge frame for the plane frame
model structure, plate (5.1&), included two pairs of rollers
which were placed against the columns of the model to prevent
out of plane movement,

The loading device was then assembled and hung
on the model at the desired loading point. Care was taken
to ensure that the restraining strut was vertical so that th=
lever arm did not twist. It was also necessary to ensure
that the strut was positioned so that the loading arm hung
vertically.

The plane frame fully prepared for a test is shown
in plate (5.5c). The plans frame itself is identified by the
letters 'NMPO' in the plate and the loading device by the
letters 'KJL!'. .

For this test there were only nire dial gauges,
lettered 'A to I' in the plate. The dial gauges were all
positioned to measure either settlement or sway. In the
space frame models it was necessary to measure the deflections

at twenty points. The preparation took about five hours per

test.
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Testing.

The initial readings of the dial gauges were noted
and the positions of the dial gauges relative to the initial
position of the model were marked on the model structure. The
first weight was then placed on the hanger. The size of this
weight was chosen so that the largest deflection of any of the
pad footings was less than 1 mm. Settlements took place very
quickly and it was necessary to place the weights gently on
the hanger to avoid dynamic loading. The weight was left on
the pan until no increase in dial gauge reading was taking
place, which usually took about 15 minutes. When the dial
gauge readings had been taken the next increment of load was
placed on the hanger and the procedure repeated until one of
the pad footings had settled 25-30 mm. Plate (5.5d) shows the
differential settlement at the couclusion of a test on the plane
frame model structure. The dark bands which can be seen in
plate (5.5d) illustrate quite clearly the layering effect
discussed by Butterfield and Andrawes‘2?) | These dark bands
were formed by the smaller dust particlaé which settled after

the main stream. The test took about a day to complete.

Dismantling.
The dial gauge frame, loading device and model

structure were removed from the bed. The sand was then
emptied from the test bed through the two plug holes provided
in the base of the bed. When the plug holes were opened the
sand ran out into a plastic bag held underneath

as shown in plate (5.5e). The density tins were retrieved

as soon as they appeared and were weighed. About £ of the
sand could be emptied without any interference, but the last

1 had to be shovelled away from the centre of the bed into the
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corners where the plug holes were situated. The dismantling

operation took about half a day.



CHAPTER 6.

THE MEASUREMENT AND DERIVATLON OF A CONSTITUTLVE

RELATION FOR THE SAND.
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Introduction.

In this Chapter the experimental apparatus and
technique used to measure the mechanical properties of the
sand filling the test bed are described in some detail. A
simple constitutive relation is then derived, and developed
into a comprehensive relation covering a range of confining

pressures, from measured laboratory results.

The Experimental Determination of the Mechanical
Properties of the Sand.

The parameters required for the non-linear analysis
of a continuum should be measured under the particular stress
or strain conditions expected to exist in the continuum itsel?,
In the case of a general three dimensional continuum these
conditions are mostly unknown, and even if they were known,
itwould be extremely difficult to design an experimental
apparatus capable of imposing arbitrary stress and strain
paths.

Laboratory axi-symmetric compression tests are the
most common test in engineering practice, while tests under
plans strain conditions are possible. In the model tests
the confining stresses were small and from this point of view
the shear box seemed ideal. However, the uncertain boundary
conditions in this test make it unattractive, while the con-
ditions in the test bed are likely to be nearer axi-symmetric
than planestrain,

It was therefore decided to use the axi-symmetric
compression test, commonly and inappropriately known as the
triaxial test, to measure the sand properties. This apparatus

has been the object of much improvement and by adopting these

modern methods, the boundary conditions are accurately known.
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6.2.1) Apparatus Requirements.

The triaxial apparatus had to be capable of achiev-
ing two main functions;
(a) to apply a known uniform stress at low values, and
(b) to be able to measure volume changes occurring in

dry sand.

The function (a) above was necessary because the scale of
the model tests meant that the confining pressures were
low. To achieve uniform stress conditions at both ends of
the sample it is necessary to create so called 'free end!
conditions, when applied shear stresses are eliminated,
ensuring that the major principal stress is vertical. At
low stress levels it is important that the applied load is
measured accurately. The effect of friction between the
loading piston and sealing bush (in the top of the cell)
could introduce large errors, which can only effectively be
eliminated by measuring the load inside the cell. The
apparatus will also have to be capable of applying and maintazin-
ing a low ambient pressure throughout the test.

Function (b) follows from the fact that the model
tests were performed on dry sand and hence it is necessary
to measure the mechanical properties under similar conditions.
This meant that the apparatus had to be capable of measuring

volume changes of air.

6.2.2) Description of Apparatus.

The general layout of the apparatus is shown in
Figure (6.1). It consists of three main parts, a self
compensating mercury manometer, the triaxial cell itself

and a volume change measuring device.

The self compensating mercury manometer is
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described in Bishop and Henkelcg}, it is capable of maintain-
ing low cell pressure throughout_a test. It was very important,
at these low pressures, to use a device like this, instead of
say a control cylinder or fixed mannometer, because as the
loading piston is pushed into the cell, and, the sample
undergoes volume change, water must be able to leave the cell
without changing the pressure, otherwise, large increases in
cell pressure would occur. The hand winch was used to preset
the head difference, H, of the two arms of the manometer,
and the control cylinder A was used to adjust the initial levels
of mercury.

At low cell pressures it is possible that friction
in the tubing will have a signit'icant effect on the cell
pressure. To check for this effect, a mercury manometer
was attached directly to the cell and the cell pressure
varied. The dimension H, Figure (6.1), and the head difference
in the manometer were compared, and no difference could be
measured,

A conventional cell for testing 4" diameter
specimens was modified to accommodate a load measurems=nt
transducer. This transducer had been designed for 11"
diameter samples so a bush had to be machined to fit inside
the collar already in the cap of the cell to accommodate
the smaller diameter loading piston. The load transducer,
manuf'actured by Wykeham Farance Ltd., type cone faced
WF/17001, had a capacity of 1000 1b f. The transducer was
energised by a constant supply of 10v dec. and set in a
standard bridge, the output being measured ona digital
display voltmeter, The transducer gave an output of 20 mvy

for a 1000 1b load. The digital voltmetef was reliable to 0.02 mv
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which meant a sensitivity of 0.5 KN/ma in the measurement
of vertical stress and this proved adequate.

The conventional 4" diameter nd plattens were re-
placed by enlarged aluminium alloy plattens, 118 mm, in
diameter, shown in Figure (6.2) and plate (6.la) whose
surfaces were ground flat and polished. Porous discs
125 mm. in diameter were used at both ends of the sample to
permit drainage to take place. To eliminate end friction,
and hence allow the sample to expand uniformly over the plattens,
two thin discs of latex rubber were placed between the sand
sample and the plattens. The interfaces between platten and
latex, and latex and latex were coated with a thin smear of
inert silicon grease. The bottom latex disc was slit radially
around the circumference to remove any restraint that might be
imposed by the latex disc at large strains.

The tip of the load piston of the load transducer
located into a collar on the top of the loading platten, shown
in Figure (6.2), so that no tilting could occur. The vertical
deflection of the top cap was measured by a stainless steel
dial gauge inside the cell. The gauge could be read to
0.02 mm., and had a full range extension of 13 mm.

Volume changes were measured in tle device on the
right hand side of Figure (6.1), it was taken from a design
by Bishop and Henkel¢®) and proved extremely effective. Any
change of volume of the sample causes a small change in
pressure which is registered on the sensitive oil manometer
The control cylinder B is then used to adjust the level in
the mercury manometer so that the levels in the o0il manometer
are equalised. Thus, atmospheric pressure was maintained in

the sample and any volume change was proportional to the change
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in level of the mercury and could be read off the scale,
Because of the extreme compressibility of air it was clearly
important that atmospheric pressure was maintained in the
sample. The volume change device was calibrated using a
sensitive paraffin gauge and a factor of 0.193 cc/cm

change in height was obtained.

Sample Preparation.

The sample size was chosen as approximately 100 mm.
high and 100 mm, in diameter. To form the specimen a two
piece split former was made and is shown in Figure (6.2).

The former had to be designed to fit the bottom platten,
produce a sample of the correct dimensions and allow the
loading platten to be placed centrally without effort. The
former was made in two pieces so that it could be removed
once the enlarged top platten was in place, A gap was cut
into the lip of the former to allow the air trapped under the
top platten, as it was placed, to escape.

In an effort to faithfully reproduce the sand pro-
duced by the hopper, the samples were prepared in the test

bed where they were filled from the hopper sand rain.

Experigental Procedure.

To remove any blockages or dirt the cell base and
drainage leads were cleaned using compressed air. The surface
of the bottom platten was lightly coated with silicone grease
and a latex disc applied. This disc was then smoothed using
a straight edge, itself greased, another latex disc applied

and smoothed, see plate (6.la)l The excess grease from the

smoothing ope ration was wiped around the side of the platten,
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as experience showed this grease improved the seal between
the platten and the sample membrane. The sample membrane
was then placed on the bottom platten, adjusted to an upright
position and secured by four rubber o-rings.

Silicone grease was also smeared on the outside
of the membrane where it was stretched over the bottom
platten, to ensure the membrane was not pinched and hence
punctured when the sample former was placed round it. The
two halves of the former were joined on the bottom platten,
the top drainage lead passed through the circlip and the cirelip
placed round the former and tightened. The rubber membrane
was gently stretched up and folded over the top lip of the
former and held taut by 3 o-rings, see plate (6.0b). This
operation had to be carried out with great care to avoid
wrinkling the membrane.

The complete base was then carried down to the
test bed and placed under the hopper. All the taps and
various holes were covered to prevent sand entering, the
hopper was opened to the required apperture and the former
filled. The top few millimetres of sand could then be
carefully spooned out to leave a level surface. Latex discs
were placed on the top platten in the manner described
earlier for the bottom platten, Extreme care was taken to
ensure that the inner surface of the membrane which would be
in contact with the side of the top platten was free of all
particles. It was essential to have the two contact surfaces
scrupulously clean to avoid the occurrence of leaks, The
platten was then placed on top of the sand and gently pressed

into contact with it, displaced air was let out through

the gap in the former lip. It was found necessary to make
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the sample somewhat tall, otherwise, if the top cap rested
on the inner 1lip of the formsr it was impossible to remove
the former without upsetting the top cap and spoiling the
sample. The o-rings holding the membrane tight were rolled
down and the membrane itself pulled up, while the top platten
was held down, the o-rings were then rolled up on to the top
platten to secure the membrane and seal the sample,

The complete base, now with a sample, was carried
back to the testing laboratory and placed on the machine
base. Excess sand was gently removed with compressed air.
Particular care was taken to clean all taps and threads.
The various leads were connected to the base and all taps
closed. Tap k was then opened and control cylinder B used
to induce a small suction (approximately 1.5 cms of Mercury)
which could be measured on the volume change manometer, and
was applied to the sample by opening taps, g, h and i. It
was found necessary to adjust the control cylinder once or
twice until the suction was maintained. The sample was left
under suction for about ten minutes to check for leaks, If
the suction were maintained throughout this period thsn the
circlip was loosened, removed and the two halves of the former
carefully separated and removed, see plate (6.25}

The dimensions of the sample could then be measured.
The overall height was measured using a vernier gauge and
the diameter was measured several times using a micrometer,
see plate (6.2B) Some difficulty was encountered using the
micrometer because it was not easy to ensure that the diameter
was actually being measured, and while doing so, it was easy

to punch the sharp tips of the micrometer into the sample.

To overcome this, some large brass feet (30 mm. in diameter)
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were made to fit onto the micrometer jaws, These can be
seen in plate (6.2Ea The dial gauge stand was next screwed
into the base, the dial gauge placed on it and fully com-
pressed against the top platten. The dial gauge and volume
change readings were noted and the sample was ready for
testing.

The cell, complete with load transducer, was put
on the base and secured. Taps a,b,c and 4 were opened and
the cell filled with de-aired water. When water flowed out
of tap d (cell full) tap a was closed and then taped. It
was essential to close tap a before d otherwise the sample
would have been subjected to a cell pressure equal to the
natural head of the water system, in this case about
20 KN/m® . The suction was then reduced to zero by readjusting
control cylinder B and tap f was opened to bring the oil
manometer into operation.

The next step was to check and adjust the levels
in the mercury pots of the self compensating manometer to
ensure they did not empty during a test. The cell pressure
was then set to the desired valus by adjusting the head
difference H, and tap e opened. The sample was then allowed
to consolidate under ambient pressure as shown in plate (6.3).
Volume change and axial deformations were measured during
consolidation,

When no further movement was detected, the loading
piston was brought into contact with the top platten by ad-
justing the loading frame. The constant rate of strain motor
was then started at a rate equal to about 2.5% compression

per hour. Readings from the load transducer on the digital

voltmeter, the dial gauge and volume change scale were read at
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convenient intervals of strain. The test was stopped after
the load transducer readings had dropped off or not in-
creased for a long time, The load could then be removed,
the cell water discharged to waste and the cell dismantled.

The sand from the sample was carefully removed for weighing,

6.2.5) Corrections to Experimental Results.

The rubber membrane that encloses the sample in
the cell contributes a small amount of strengths that becomes
significant when testing specimensat low pressures. The
stiffness of the membrane was measured by the method suggested
by Bishop and Henkel!®), A circumferential strip of the membrane
was hung between two giass rods which had been coated with
French chalk to eliminate friction. The membrane was loaded by
placing weights in a pan hung on the lower glass rod, and the
extension measured with a vernier gauge. The compression
modulus is assumed to be equal to the extension modulus in

the correction factor and is calculated from,

M = load per cm (6.1)

strain,
The Author obtained an average value of 0.36 kg/cm. This was
the value for membranss after they had been soaked in water.
Fresh membrane had an average modulus 30% lower, The stiffuness
of the membrane meant that the vertical stress had to be in-

creased by an amount Com where;

= %.(]'-—GL). ’ (6.2)

%m Do
where Do is the original diameter of the sample, ¢; is the
ma jor principal strain which is assumed to be vertical and

M was defined in equation (6.1).
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The weight of the top platten and load transducer
were taken into account when calculating the vertical stress
by a correction factor A s

(W + W)

a

(6.3)

where WTP is the weight of the top platten WLT is the weight
of the load transducer, and, a, the area of the sample.

The tip of the loading piston fitted neatly into
the collar on top of the loading platten, so the cell pressure
could not act over the whole top surface area. The full
value of cell pressure was not used to calculate the vertical

stress. The amount used was;

o' = ( 2 32) o, (6,4)
a

where ap is the arsa of the loading piston and o, is the

cell pressure.

The self compensating mercury manometer is
connected to the base of the cell, therefore the cell pressure
at the mid-height of the sample will be less than this. This
correction becomes significant at very low pressure and
is taken as;

Tec T = % Hs (6,5)
where H, is the height from the base to the mid-height
of the sample,

No correction was made for the self weight of the
sample and equation (6.4) was not modified in the manner
described above, as the two different effects approximately

cancel each other out.
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6.2.6) Calculations.

The quantities recorded during the laboratory test
were the axial deformation T, the scale readings of volume
change 8§ and the digital voltmeter reading L, which recorded
the axial load. The major principal plane is assumed to be

horizontal.

€2 = log (1 + T/Ho) (6.6)
where €1 is the major principal strain and Hg is the original

height of the sample.

e, = Log (1 + 5.5 /Vo) (6.7)

where € is the volumetric strain, and Sc is the calibration
factor for volume change and Vo is the original volume.

The minor principal strain can be calculated from;
€3 = (Gv = (:'1)/2 (6.8)

The ma jor principal stress can be calculated

from;

it :
s - g1+ ioy! o, Mo (6.9)

where Lc is the calibration factor for the load transducer
and a, the cross sectional area of the sample, is calculated

from;

a = (Vo - 8.5,)/(Ho - T) (6.10)
The minor principal stress is calculated from;
o=y Hs o (6.11)

where Yo is the density of mercury and H is the head
difference.
A program was written to process the experimental

data.
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6.2.7) Results.
Five tests were carried out at different values
of cell pressure to cover the expected range of initial
stress conditions. The results are presented in Figure (6.3)
as plots of major principal stress and, volumetric strain
against the major principal strain. Some details about the

tests are given in the table below.

TABLE (6.1)
Cell Stress Ratio Porosity

Test Pressure at after

No. KN/m? Failure Consolidation |
3 523 5.0 40.5

2 9.99 L.l 39.9

3 1474 Jeb L0.2

L 9Tl Db 40.5

5 25 - 68 5 - 5 59 - 9

Mohr's circle of stress is plotted in Figure (6.4)
and this gave Coulombs ¢' = 29° and an apparent cohesion

C' = 3 KN/n®.

6.2.8) Discussion of Results.

The value of the principal stress ratio at failure
at the higher cell pressures agrees with values quoted by
other investigators testing at moderate pressures. The value
of the angle of shearing resistance, also agrees with quoted
values, and this seems little affected by the value of cell
pressure. It can be seen from Table (6.1) that as the cell
pressure decreases the value of R increases markedly. This can
be explained by the apparent cohesion intercept giving an
increased shear strength, The other departure from expected
behaviour is shown in the volumetric strain., The samples all

expanded almost from the start of shearing, whereas at moderate
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pressures a looss sand would be expected to compress. Indeed,
the volume change characteristics of loose sand at low pressure
seem similar to those of a dense sand at moderate pressure.
It can also be seen in Figure (6.3) that, as could be expected,
increase in cell pressure decreases the volume change.

Ponce and Bell!7°) who tested over a wide range
of porosities and pressures obtained very similar results
to those reported here. It was pointed out that the increase
in strength at confining pressures below 5 psi was mainly due
to the increased effect of the component of total strength
associated with expansive volume change. The increase in
dilatancy rate requires that more energy be spent during
shear which causes a corresponding increase in the principal
stress ratio at failure.

The result of the Mohr-Coulomb plot in Figure (6.4)
was obtained by drawing the best straight tangent line through
the circles, and this is why there is an apparent cohesion
intercept. It is not plausible for a dry clean sand to have
a cohemsion, and so the Coulomb envelope is more likely in
reality to pass through the origin. This agrees with the
observations of other investigators and means in fact that
the Coulomb envelope is curved near the origin, meaning that
Coulomb's ¢ is much higher than stated, although the two quoted
parameters provide a convenient way of expressing strength.

It is apparent from Figure (6.3) and the table in
the previous Section, that Test 3 does not fit in with the
pattern of the other tests. The Author would like to have

repeated Test 3 and performed one more test at a lower

pressure. Unfortunately the pressure on eguipment in the
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testing laboratory made this impossible. On reflection, it
would have been better to have developed a method for pre-
paring the samples in the testing laboratory, rather than
removing the cell base. It can be seen from the table that
the porosity varied and was slightly less than that measured

in the test bed.

A Constitutive Relation.

Given the problem of analysing the model tests a
constitutive relation is needed to govern the behaviour of the
sand, There has been little research into the behaviour of samd
under general three dimensional conditions and the choice of
relations lies between the s tress dilatency laws or. the
assumptions of non-linear plasticity or elasticity.

The most scientifically appealing approach would
be to use the stress dilatency laws in conjunction with a
Herzian elastic model!7®) to predict the complete behaviour of
slip and elastic strains under general conditions. The adaption
of the model and the testing programme required to describe the
model over a range of general conditions, is a project on its own.

The non-linear elasticity model has proved the
most popular and was successfully used in Chapter (3) to analyse
the plane strain compression test. In that analysis an actual
experime ntal stress-strain curve was used to calculate the
shear modulus and an almost constant value of Poisson's ratio
was used. For the model tests described in Chapter (5) body
forces will be important, so a relation is needed which can be
described by differing initial stress levels., It must also

be borre in mind that the relation should be able to be used in

less ideal conditions than those that existed in the test bed,
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such as, soils other than sand and non-homogeneous conditions.
Girijivallabhan and Reese‘®®) pointed out that the
stress in a perfectly elastic material can be divided into two
components, a hydrostatic stress accounting for volume change.
and a deviatoric stress accounting for change in shape. The
octahedral normal and shecar stresses and strains are the best
measure of these components. A soil composed of particles,
however, experiences volume change during shear deformation.
Both of these are dependent on normal and shear stress and could

be found from a relation of the form;

€ fi(UOGt’ TDCt) (6.12)

oct
Yoct = fa(obct’ Toct) (6.13)

for a sand at a given porosity. This approach was then used to
obtain a unique relation, over a small range of confining
pressure, for Toct/obct against Yoot* The elastic modulus was
obtained from this curve and a constant value of Poisson's ratio
was assumed. A similar approachwas used by Craigl®®) and both
he and Girijivallahhancss) obtained good results. However, in the
model tests here the scalé is larger and a wider range of initial
stress levels is expected.

Similar relations have been proposed by other in-
vestigators including Nelson and Baron{1°8) yho proposed & re-
lation of the form;

2
Kt= I{-O + Kﬁ. eOCt + KQ Goct (6'14’)

G

1}

Go + y2 O 4 + V1 Ja' (6.15)
where Jz is the second invariant of the stress deviatow,
similar to octahedral shear stress. To establish the constants
required in the peolynomial a relatively large number of tests

are required. However, this relation is one of the very few
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hypo-elastic relations which tries to take into account the
fact that most soils dilate under shear.
The most popular and successful relationship has

(56357)

been that proposed by Kondner and Zelasko s When a

hyperbola is used to represent the stress—strai£ curve. This
approach has been studied by numerous investigators including
Domaschuk and Wade‘?2®) and used in conjunction with the finite
element method by Kraft(59) Duncan{?%) Clough(®®) and

(80) in con-

Kulhawyiioa). It was also used by Smith and Kay
junction with the stress dilatancy model. Apart from the simplicity
of the curve, the great attraction is that few tests are needed
to establish the parameters, and, that these parameters are of
physical significance, namely the initial slope and the ultimate
strength., These parameters can be related to initial stress
conditions and porosity, enabling a complete description of be-
haviour to be formulated.

Kondner'®5) showed that the hyperbola could also
be applied to cohesive soils. Amendments to this relation have
been proposed by Hansen!43) for use with cohesive soils, when
the initial part of the curve is non-linear and strain soften-
ing occurs after peak.

In a recent paper by Desaicai)

it was pointed out
that despite its simplicity a hyperbolz or one polynomial might
not give a satisfactory representation over the entire stress
range., It was shown , that the use of a spline function, which
is made up of a number of polynomials, gave a better fit. For
future improvements this type of relation looks rewarding but

there is a considerable amount of testing and processing involved

in obtaining the polynomials to cover a wide range.
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Proposed Relation.

The soil response to an imposed stress system
is best characterised by the use of a bulk and shsar modulus
each of which is associated with a separate physical component

of behaviour. In terms of octahedral stress;

Toct = Yoct (6'16)
and St = K €4, (6.17)

Under triaxial test conditions the octahedral stress and

strain components can be obtained from;

Toct = '\'E/j (0'1—0'3) (6.18)
Voon & 2/2/3 (es~es) (6.19)
o, = (ou+ 203)/3 (6.20)
€oct ~ e?/B (6.21)

Equations (6.18) and (6.19) were used to calculate the

experimental results and a plot of these is shown in

Figure (6.5). It is clear from this figure that the

resulting octahedral shear stress-strain response is highly

non-linear and dependent on the initial stress level.
Kondner ani Zelasko!5€25? proposed a hyper-

bolic response of the form

€
O (6.22)

which is shown in Figure (6.68). Differentiating equation
(6.22) yields;

SRR b

de ~ Ta+ be)® (6.23)
do 1 - T
and therefore at ¢ = 0, e ok and hence, a is the reciprocal

of the initial tangent modulus. Equation (6.22) can be

rearranged into the form;
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g = L (6024)
a
- +b
€
Therefore Epim ’ 0‘:*% and hence, b is the reciprocal

of the ultimate value of stress reached.
The hyperbola in equation (6.22) can also

be rearranged into the form;

L
= e Bk be (6.25)
which is the equation of a straight line,

¥y = ¢ + mx (6.26)

and this is shown in Figure (6.6k). The parameter a is the

intercept on the §_axi3 and b is the slope. As equation
(6.22) can be transfarmed to a straight line statistical
methods can be used to select the parameters a and b to
give a 'best! fit over the entire range of experimental
data.

It was pointed out by Kondner and Zclasko
that theoretically the hyperbola will only reach the ultimate

stress at infinity,so the relation must be rewritten as;

o = £ = (6.27)
¥ fc.
i f

=+

where K is a factor, usually about 0.95, necessary to push
the curve up to the asymptote at finite strain, If b is
calculated from a transformed plot, as in Figure (6.6b),
then this effect is already included. Kondner and Zelasko

went on to propose that the parameters could be linked to

initial conditions by linear equations of the form;
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|

3 fi(doct’ n) (6.28)

and

2 f
]

fa(o-oct’ n) (6-29)

where n is the initial porosity.
Domaschuk and Wade‘2®) rewrote equation
(6.22) in the form

E Yoct (6.30)

T
oct = ab
Yoct

and this is the form required here. This equation can

also be transformed to a straight line in the form

(6.31)

T =a+byoct

Using equation (6.31) a Gaussian least squares fit to the

experimental data can be obtained from the equation;

y-y= &4 (xx (6.32)

15

or, y =5y x4 (? - g;& §> (6.33)

bl

(6.34)

Hence g = § - g;}

and b= g;} (6-35)
n

where g = iilxi L s S (6.36)
n-1
. 2
and R (6.57)
e

where x and y are the mean values of the n experimental
points x; and y;. Equation (6.31) is a regression analysis

of y on x and should only be used to estimate y from x. As
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a check on the closeness of the fit, the correlation co-

efficient can be calculated from;

pUpeI; ° . 8
F= 8z 8y (6.38)
n —
2
where Sy* = rji Ty T (6.39)
n-1

when, r = 1 this is perfect positive correlation, that is

to say all points lie on a straight line of positive slope.
A program was written to carry out the analysis

described above and applied to the experimental data in

Figure (6.5), when the following parameters were obtained.

Test a b
No. cma/kg cm?/kg r
1 0.04041 10.000 0.9976
2 0.02223 6.173 0.9991
3 0.01818 5.814 0.9995
4 0.00952 4,167 0.9997
5 0.00585 3.546 0.9996

TABLE (6.2)

From the above tabls it can be seen that very
good. correlation was obtained. The parameters in the table
were used to predict the shape of stress-strain curve and
compared with the experimental result in Figure (6.5).

This figure shows that reasonable agreement was obtained, the
maximum difference being about 7.5%. The experimental result
is tending to curve more gently than the hyperbola, and this
is probably the result of assuming the first part of the
curve to be linear,

The parameters 1/a and ?/b are plotted against

the initial octahedral stress in Figures (6.7a) and (6.7b)
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respectively. Both curves are drawn through the origin
because without an initial octahedral stress the sand
sample cannot exist. The linear relations proposed by
Kondner and Zelasko!®®257) in equations (6.28) and (6.29)
obviously do not hold at low stress levels. It is worth
noting that Figure (6.7b) is a failure criteria for this
sand, which is very similar to the generalised Mohr-
Coulomb hypothesis proposed by Drucker and Prager(a4).

The other pseudo-elastic modulus, K, the
bulk modulus, was measured under conditions of hydrostatic
stress, that is during the consolidation stage. For each
of the five tests the volumetric strain resulting from con-
solidation is plotted against the consolidation pressure
(equal to the initial octahedral normal stress) in
Figure (6.8). Domaschuk and Wade‘3®) proposed an exponential
relation but it can be seen from the figure that the re-
lationship is reasonably linear over this range of pressure.
A single value of bulk modulus was calculated using
equatiens (6.17) and (6.21). The value obtained from
Figure (6.8) is about 20 x 10® KN/m®.

It is clear that this gives a much higher value
of bulk modulus than shear modulus, from Table (6.2) that
the initial value of shear modulus for test 1 is about
0.5 x 10® KN/ha. Assuming isotropy the value of Poisson's
ratio can be calculated from;

V = (3K-G)/(G+6K) (6.40)
and using the above values in this equation, a value of
v of about 0.42 is obtained, ft can be seen from equation

(6.40) that as the value of G, the shear modulus, decreases,

Poisson's ratio becomes equal to 0.5. Values of Poisson's
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ratio near 0.5 gives rise to difficulties in the finite
element method, because the bulk modulus becomes infinite,
and for this reason it was decided to use a constant value

el = 0045-



GCHAPTER 7

THEQRETICAL ANALYSIS OF COMPLETE THREE DIMENSIONAL

STRUCTURES.
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Introduction.

This chapter describes the procedure followed
to analyse space frames together with their underlying
foundation soils., Some detail is given of the main analysis

program and of the mathematical model.

General Procedure.

The complete procedure that was followed in
an analysis is shown in flowchart (7.1). It consisted of
a number of steps, which wherever possible were automated.

As in any other problem the first step was to
decide exactly what the problem was. This was followed
by laboratory testing of the various materials both in the
structure and the foundation. In the case of the latter
this involved triaxial testing of the soil at the right
porosity and confining pressure. These triaxial test results
were then used to form an outline constitutive relationship,
In this case, the two parameters a and b necessary to describe
the Kondner hyperbola were derived from a statistical least
squares fit from the transformed hyperbola of the experi-
mental results. These two parameters were related to conditions
of initial stress forming a comprehensive stress-strain
relationship as described in Section (6.3).

The next step was to create the finite element
data. In the large amount of data required for a three
dimensional mesh there were bound to be errors and these
were checked for using a program which collated the geometrical
and topological data.

The corrected finite element data was used in a
body force analysis program which computed the initial

octahedral normal stresses at the centre of each hexahedral
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element. The results of this analysis were used to calculate
the values of the parameters a and b for each element from the
curves iilustrated in Figure (6.7). This body force analysis
served another important purpose by establishing the accuracy
of the mesh. This was possible because the vertical stress
could be hand calculated at certain points and compared to the
computed values.
The output from the body force analysis together
with the finite element data file formed the complete input
to the non-linear analysis program which was then run. The
results of the non-linsar finite element analysis program were
checked by scrutinising the accuracy of known stresses and loads.
If the results were satisfactory then the analysis
was complete, if not a decision would have to be made concerning
what changes were necessary. If the tolerance of fit to the
stress-strain relation were not good it could be simply a
matter of changing the number and size of the applied load
increments., Other possibilities could be refining or amending
the finite element mesh, changing the stress-strain relation,

or, in the extreme reformulating the problem.

7.2.1) Non-Linear Incremental Program.

This program in the main consisted of the follow-
ing finite elements that are described in Appendix (2).
(i) Space member element, Section (42.2.1)
(i1) Rectangular plate bending element, (Section (A2.2.2)
(1ii) 8 noded, linear hexahedral isoparametric element,
(Section (A2.2.3)

The linear hexahedral element was chosen instead of the



7.201)

120.

contd.
more desirable 20 noded gquadratic element because of the
problem involved in storing the stiffness matrix. From
the results of Chapter (2) it is clear that for the same
number of joints the quadratic element gives a more accurate
result compared to that of the linear element., However,
the connectivity in a 20 noded elemsnt is far greater than
that in a linear element which gives rise to a much larger
bandwidth for the same number of nodes. Another disadvantage
of the 20 noded element is that distributed loads can only
be applied around the edges of faces. This fault is not as
serious with the linear element because the mesh is finer,
This also leads onto the fact that the rectangular plate
bending element, could not be matched to the twenty noded
element without allowing a discontinuity in the mesh. The
quadratic Lagrangian element would avoid these problems
but the degree of connectivity with 27 nodes is even higher
leading to a still larger bandwidth. From the results of the
comparison of the various two dimensional elements in
Chapter (2), it can be expected that, for a medium fine
mesh, the stresses should be underestimated by not more
than 5%. This is for the case of a mesh consisting of
linear elements, When this accuracy is considered beside
the various assumptions inherent in the constitutive relation-
ship, it should prove adequate.

The model structure itself could be represented
using the two structural elements in items (i) and (ii)
above. The member elements idealising the frame and the plate
bending element the pad footings.

The program was created by Jjoining together the

various subroutines of each of the elements in items (i),(ii)
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and (iii) and the various ancillary operations required

by the finite element method. The subroutines were, with
one exception, unchanged. The exception was that the
elasticity matrix in the subroutine forming the stiffness
terms of the isoparametric element had to be changed. This
was because the shear modulus G and Poisson's ratio v had
been chosen to represent the hypo-elastic behaviour in

Chapter (6). The elastic matrix D became;

D - T%E_) [(1-v) v v 0 0 0
?i v (1=v) v 0 0 0
v v (1-v) 0 0 0
0 0 0 152” 0 0
0 0 0 0 5523 0
0 0 0 0 0 3533

The program required a new mastey segment to
handle the various input/output facilities, assign initial
values and initiate the incremental analysis. A further sub-
routine, called CONTROL, carrisd out the extra operations
necessitated in following a non-linear incremental analysis.
Further details of this routine are given later,

Initially the subroutine CONTROL had been written
to control an iterative procedure identical to that used
successfully in Chapter (3), where the relative merits of
the incremental and iterative processes was discussed. Initial
runs using the itferative process proved extremdy lengthy with
convergence taking place very slowly. This was particularly
the case at the low stress levels, A tolerance level of 5%

had been chosen and although almost all the elements were
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near this accuracy after one iteration, a further 20 iterations
were required to force all the elements within the 5% band,
Examination of the various iterations revealed that this was
due to the fact that the slope of the stress/strain curve was
changing very gently, particularly near the origin where it
was almost constant., It was therefore decided to adopt an
incremental method as a reasonable alternative for operating
on the relatively soft stress/strain curves used. The pro-
cedure followed by an incremental analysis was illustrated

in Figure (3.1la). A value of the tangent modulus is calculated
at the current strain level to represent the hypo-elastic
modulus over the next increment of load. This means that

the modulus is always too large, and the amount of error this
leads to will depend upon the size of the load increment and
the degree of curvature of the stress-strain curve. A check
was kept upon the closeness of the calculated stresses to the
stress/strain curve.

The procedure followed by the non-linear incremental
analysis program is shown in flowchart (7.2). The corrected
finite element data was read into the program and stored, as
was the data containing the two curve parameters for each
element. From the element topology the various control arrays,
concerning positioning within the stiffness matrix and the
division of the stiffness matrix for the solution procedure,
were computed. These arrays were computed before the incremental
applied loads were read in., The incremental load vector was
thus formed at the same time as the data was read., At this
stage the initial value of the shear modulus was also set

from the inversion of the first curve parameters as;
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Gi = % .
Here Gi is the initial value of the shear modulus and
A; the first curve parameter of element i.

The next step was to calculate the stiffness
terms of the rectangular plate elements and to add them
into the overall stiffness matrix. The same operations
were then performed for the space member element. Becauss
the structural elements remain in the elastic range their
stiffness terms remain constant. These terms could be con-
structed once, written onto disc storage and then used
repeatedly.

The first step in an increment was to initiate
the stiffness matrix., The stiffness terms of the
hexahedral elements were then computed using the current
values of the pseudo-elastic parameters, and added into the
stiffness matrix., The details of forming the stiffness matrix
and solving the simultaneous equations are given in
Appendix (3). The incremental displacements §{X} were
obtained from:

§{x} = K* 8L} , (7.1)
where K is the overall stiffness matrix and §{L} the applied
incremental load vector.

The incremental strains and stresses could then
be calculated by the usual finite element procedures

Sie}

s{oi

1}

Bs{x} (7.2)
D &€} (7.3)

1

The subroutine CONTROL calculated the total com—
ponents of displacement, strain and stress by keeping a

running total., From these the octahedral shear components were
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computed and used to calculate the new values of the shear
modulus for each element. The final operation in this
routine was to print the summed results. The last operation
was to calculate and print the stresses and moments in the
rectangular plate elements and the forces in the space
member element,

If all the required increments had been com-
puted then the analysis would finish, otherwise, the program

would return for the next increment.

Subroutine Control.

This subroutine was written especially for the
incremental analysis program and calculated the elastic
parameters for each new increment. The input to the routine
consisted of the incremental displacements, strains and stresses
calculated earlier in the program and which were first summe d

to obtain the values of the total components,

lei = "X}i—i + S{X}i ’ (?oll-)
fely = fel, + slel, (7.5)
and {oii = {cii_i + aioii v (7.6)

where EX}i and {X]i-z are total components of displacement
respectively after and before the ith increment of load and
S{X}i is the incremental displacement due to the i " load
increment. fe} and {0} are components of strain and stress.
From these Cartesian components of strain and

stress the octahedral shear strain and stress components

were calculated at the centre of each element. These are:
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Yoot = %[ (ex-ey)2 + (e‘,’r—fz)9 + (ez—ex)2
%
2 2y |
S (7.7)
Toot = %{(o‘x - o‘y)"“ + (OEY - c;'z)2 + (c‘z - crx)3
‘/2
2 2 2
+ G(TJQY B Ty ¥ W0y )] (7.8)

The accuracy with which the analysis was
following the theoretical stress-strain curve could be
assessed by camparing the value e calculated above with
that value lying on the curve for the same value of AT

The theoretical value can be calculated from the hyperbolic

relation:
1
T = Yoct (7.9)
GRE T+ by
oct

where a and b are the two curve parameters. The accuracy

can be calculated from

A= Yoot T Took (7.10)

The value of the shear modulus G for the next
inerement of load was calculated from;

¢ = & 5 (7.11)

(a+by .)?

This equation is obtained by differentiating the hyperbolic
relation with respect to Yorr which gives the tangent modulus,
The above procedures were carried out for all the block

elements.,
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Finite Element Analysis of the Smaller Space Frame Model.

Details of the stress-strain relationship data have
already been fully described in Chapter (6) and the previous
sections. The model tests were all loaded at the mid-depth
of the structure, and this symmetry was used to simplify
the finite element data,

The finite element mesh used to represent the sand
is shown in Figure (7.1). The mesh was symmetric about the
centre line., For simplicity therefore only half of the actual
mesh is shown., It can be seen from the figure that the mesh
was refined close to the pad footings, where the greatest
stresses could be expected. The representation of the model
structure is illustrated in Figure (7.2). The complete mesh
consisted of 205 nodes, 114 hexahedral elements, 8 rectangular
plate bending elements, 9 space member elements, with a total
of 527 degrees of freedom. All the outer boundaries, except the
upper surface which was free, were assumed to be smoth and rigid.,
In the tests, sand paper had been glued to the underside of the
pad footings. It was therefore assumed that the sand and footing
remained in contact and no sandwich elements were required.

The four load cases corresponding to the four
experimental positions of the applied load were analysed.

The four cases were, X = 0, 0.33, 0.67 and 0.91. Each load
case was achieved by changing the geometry of the loaded joint
shown in Figure (7.2). The value of the applied load increment
varied from 12 to 18.5 kg according to the load case. The
number of increments was kept constant at 15. Tests revealed
that increasing the number of increments beyond this figure
had little or no effect on the results.

A1l the non-linear finite element analyses were

performed on the ICL 1906A computer at the Atlas Computer



- 120 cm
I 1
7 ~——— >
X3
C—r’
=
(6]
o
0 D_'"
] . X
|
B A
Plan View
T 20
2
45
=
(9]
o
o
YA Y
i
X X
Section A-A Section B—B

Figure 7l

The Finite Element Mesh



Section C~C

/

Section D-D

Figure 7.1 continued




Space Member
"Applied Load Elements

Joini\

o
Rectangular ,/ /l\
g <

Plate Elements

Hexahedral

Elements

Figure 7.2 The Model Structure

(Dimensions and further details in figure 5.1)



1275

7.3) contd,
Laboratory. Kach analysis took 30 minutes of execution time,

at a total cost of about £18.
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8.1) Introduction.

In this Chapter the experimental results of three

frames are presented and discussed, These are:

i) The plane frame described in Chapter (5), which will be
referred to here as frame No.l.

ii) The larger space frame described in Chapter (5), which
will be referred to here as frame No.2.

iii) The smaller space frame of the same chapter, which is

referred to as frame No.3,

This is followed by a comparison of the theoretical
and experimental results obtained for frame No.2. This frame
was selected for the purpose of the comparison maeinly because
the results demonstrate the interaction between the foundations
of the frame,

Each frame was loaded with four different types of
loading. Each time the eccentricity of the loading was altered.
A comparison between theoretical results obtained for frame 3
and those of a similar frame fixed to a rigid foundation are
also presented. This reveals the manner in which the interaction
between the foundation and the structure alters the distribution
of the bending moments throughout the frame when differential
settlement of the foundations occur. It also highlights the
effect of non-linear behaviour of the materials of the foundation
upon the redistribution of the bending moments in the members of
the frame,

The results will demonstrate that when structures are
resting on a flexible non-linear soil, two different kinds of
bending moment redistribution take place., These are
i) That due to the relative settlement of the foundations, and

ii) That due to the non-linear behaviour of the actual soil,



8.1)

8.2)

129,

contd.

ii)

contd.

which aggrevates the bending moment redistribution.

Results of the Model Tests.

To save time, it was considered that the compari-

son of the experimental results should be limited to that

of selected displacements of the foundations and the side

sway of the frames. Once this has been ascertained, the

bending moments throughout the frame can be calculated by an

ordinary matrix method of structural analysis. The points

where displacements were measured were:

1) Vertical displacement at:

2)

3)

a) each of the pad footings, A4,G,K and D shown in
plate (5.1b),
b) at the column heads B,C,H and J shown in the same
plate,
c) the displacement of the beam under the applied load, and
d) at points E and F at either end of the beam to which
the load is applied.
Horizontal displacements in the direction of the sway at:
a) the column heads B,C,H and J,
b) at the mid-height of each column.
The horizontal out of plane displacements of the frame, as
stated in Chapter (5), were prevented by rollers. To check
the efficiency of this, measurements were also taken at

the column heads B and J.

As it is impossible to measure the vertical displace-

ment of the footing at its centre, a dial gauge was placed along

the centre line of each footing, 25 mm away from the columnsg,
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as shown in plate (5.5¢). In the same plate, it can be seen
that the dial gauges for measuring the sway of the column
heads are slightly below the top. These gauges were initially
placed 30 mm below the beam level to ensure that they remain
in contact with the columns as these settle during the loading
pProcess.

In order to obtain the correct vertical deflections

of the footings at their centre, g Yinear interpolation
of the gauge readings was performed in the manner shown in
Figure (8.1). In this figure §, and 8, are the gauge readings

A
while §,, and SD' are the deflections at the centre of the

A
footings. The results obtained in this manner were then averaged
for the two columns on either side of the frame.

It was noticed that the sway deflections at the
column heads were nearly equal. Hence the four gauge readings
were averaged. The vertical displacements of the footings
together with the horizontal sway at the top of the columns are
considered to be the most significant when designing structures
of the type presented here. These are therefore singled out
in this chapter for detailed consideration. Figure (8.2) shows
the notations adopted for presenting these results. In this
figure x is the distance of the load from the centre line of the
structure. The eccentricity ,e, of each load is calculated
from

e = /L, (8.1)
where 2L is the total span of each frame.

The differential settlement of the frame was cal-

culated, using Figure (8.2), as Spp from:

opp =8, - & (8.2)
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where SL and BR are the vertical displacements at the centre
of the left and right footings respectively. Finally, SSW

is the sway of the structure.

8.3) Analysis of the Experimental Results.

8.3.1) The Plane Frame No.l,

Figures (8.3a) and (8.3b) show the graphs of
the vertical deflections BL and §R of frame No.l against
the applied load, for various eccentricities. Figure (8..4)
gives the differential settlements SDF of the structure
obtained from equation (8.2), and the graphs of figure (8.3).
Finally Figure (8.5) gives the sway displacement 8oy Of the
frame, These graphs indicate that the deflections under

consideration are of a non-linear nature, each graph becoming

flatter as the applied load increases. As expected, increasing

the eccentricity of the load increases the settlement SL
and reduces §R’ thus aggrevating both the sway of the frame
and differential settlement of the footings.

At the initial stage of loading, high stresses
develop in the soil immediately under the footing, to the
extent that the flat portion of the stress-strain diagram is
reached. The stiffness of the soil here is therefore reduced
considerably. Away from the footing however, the mass of the
soil is subject to lower stresses and therefore exhibitsnon-
linear behaviour. This indeed is the reason for the non-
linearity of the graphs at the ifitial stages of the loading
process. Later on, as the load is increased, the highly
stressed zone spreads through the soil mass away from the

footing. More and more soil therefore reaches the flat

portion of the stress-strain relationship which forces the
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settlement graphs to flatten out towards the horizontal.

The above observation was substantiated during
the unloading process. When this was completed, no recovery
in the settlement of the footings was observed, indicating
the development of a failure zone in the soil. As explained
above, the failure zone is gradual, spreading downwards from
the footings. A rigid-plastic type of collapse, as proposed
by Meyerhoff¢2°5) | 4id not occur during the process of loading
of this or the o%har frames tested.

It can be seen from Figure (8.4) that there is a
small imperfection in the loading system. This is the reason
for recording negative deflections under the symmetrical
load case. The order of this error is not only small but
nearly the same for all three frames tested., In a later graph
of the differential settlements of this and the other frames,
this imperfection is rectified by a small shift of the origin

of the graph.

The Space Frame No.2.

The deflections SL and §R’ the differential

settlemnt SD and the sway §_, for this larger frame are

1 SW
plotted against the applied loads in Figures (8.6), (8.7)
and (8.8) respectively. These graphs are similar to those
obtained for the plane frame am warrant no further comment.
Obviously, the load required to produce the same magnitude

of displacements here is almost twice that required for the

plane frame. The difference between the behaviour of the

different frames will be discussed in detail later.
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The Space Frame No.3.

Load displacement graphs for this smaller space
frame are given in Figures (8.9), (8.10) and (8.11). A
detailed comparison of the results obtained for the three

frames are given in the next section.

Comparison of the Frames,

In Figure (8.12) the settlements § and & of the
footings are plotted, for the frames, against the eccentricity
of the loading e. This is carried out for the case when each
space frame is subject to a load of 200 kg, while the plane
frame is subject to 100 kg. The small defect in the loading
system is here corrected for by an origin shift of the graphs.
This resulted in moving the curve for aR of a given frame
slightly to the left while the curve for SL moved to the right.
The two graphs thus intersected on the 8§ axis at points A and B.

This figure reveals the nature of the interaction
between the footings, the effect of the stiffnesses of the
various structures on their individual behaviour and the manner
in which the bending moments are redistributed in the frame,
due to the differential settlements of the foundations on
the one hand and the non-linear behaviour of the soil on the
other. To begin with, when the applied load is symmetric,
with e = 0, the settlement of the footings for the plane frame
and larger space frame are almost equal - see point A on the
8 axis of the graph. This indicates that the larger space
frame behaves as two separate plane frames, On the other hand,
point B on the graph gives the settlement of the footings for
the smaller space frame 3. This shows that under symmetrical

loading the settlement of this frame is 18.7% more than those

of the other two frames., This can only be due to the inter—
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action between the foundations of frame 3. The footings of
this frame are so close together that the settlement of one
of its footings is influenced by the loads acting on the
adjacent footing.

In regions C and D of the graphs, it is noticed
that the curves for the space frames coincide while the
plane f rame behaves differently. This is due to the fact
that the stiffness of the space frames are nearly equal to
each other, but both differ from that of the plane frame, Far
more significant than this is the fact that graphs in the regions
C and D reveal the interaction between the columns of the
structures. Considering region D, for instance, the settlement
aL at the left hand footing of a frame is retarded by the
stiffness of the right hand portion of the structure. Since
the space frames are stiffer than the plane frames, this re-
tarding effect is more pronounced, This is why the settlement
EL of the plane frame,for a given eccentricity, is larger than
those of the space frames. On the other hand the reverse of
this behaviour is evident in region C. Because the right hand
side is holding up the left hand side, the settlement of this
footing is aggrevated. This is naturally more so for the space
frames. Obviously the interaction between the various parts
of the structure does not play a part in the case of symmetrical
loading,

At point E in the figure, the eccentricity of the
load is unity. The applied load is thus acting vertically
over the lef't hand column, Normally,therefore a settlement of
the right hand footing is not expected, unless, of course,

redistribution of bending moments takes place. The figure

shows how, in fact, the right hand footing of all three frames
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have suffered settlement. This is dus to the enforced rotations
in the joints in the right hand columns.

Figure (8:13) shows the graphs of the nett differ—
ential settlements SDF of the footings against the eccentricity
of the load. Figure (8.14) shows the sway displacements of
the frames against the eccentricity of the loads. Both these
diagrams are for the case when the applied load is 200 kg
for the space frame and 100 kg for the plans frame. In both
these figures it is noticed that both SDF and SSW for the
plane frame are larger than the corresponding values for the
space frames. The difference is due to the fact that the plane
frame No.l is more flexible than the gpace frames,

The graphs also show a more significant fact than
the mere relative stiffness of the frames, In the two space
frames, it was pointed out that the smaller suffers from the
interactions between the foundations. However, Figures (8.13)
and (8.14) give the results for the two space frames, These
show identical behaviour, which indicates that the interaction
of the foundations of this frame is compensated for by the
greater stiffening effect of the members. The nett result is
that the interaction between the foundations is not as significant
as it may appear. This fact is further substantiated by the
identical behaviour of the space frames in regions C and D
of Figure (8.12). It appears therefore that many analysts
and experimentalists have over-emphasised the relative importance
of the interaction of the foundations, at the expense of the
interaction between the various connected parts of the super-
structure.

Figures (8.12), (8.13) and (8.14) further indicate
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conclusively that to exclude the structure and treat each
foundation as an unconnected body is indeed an over—
simplification of the problem. Later in this chapter it will
also be demonstrated thatto exclude the foundation effects
and concentrate on the behaviour of the superstructure alons

is also an oversimplification.

Comparison of Theoretical and Experimental Results.

It was stated earlier that the smaller space frame
No.3, exhibited some interaction between the foundations,
This frame was therefore selected for thecoretical non-linear
analysis, using prismatic members to represent the structure
and solid hexahedral isoparametric elements to represent the
seil. In Figure (8.15) the theoretical graphs of the differential
settlement of the footings are compared with those obtained
experimentally. Figure (8.16) makes the same comparison for
the sway of the structure. Figure (8.15) shows that as the
eccentricity of the load increases, the agreement between the
experimental and theoretical results improves. The effect of the
adoption of a hyperbolic stress—strain response, as shown in
Figure (6.5), is also noticed in Figures (8.15) and (8.16).
Initially the theoretical analysis, for a given eccentricity,
underestimates the sway and differential settlement. On the
other hand at higher loads, the theoretical analysis over—
estimates both aDF and SSW' A clearer presentation of the
results is given in Figures (8.17) and (8.18), where the be~
haviour of the frame for various eccentricities under a vertical
load of 200 kg has been singled out for inspection, The
experimental resultsare those presented in Figures (8.13) and

(8.14) which contained a correction for the experimental errors.
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While reasonable agreement exists between the two sets of
results, the theoretical results, at the load level selected,
consistently overestim te the values of SDF and aSW' This
reflects that the theoretical results were on the safe side.

In the theoretical analysis, the tangent modulus
method was adopted for following the hyperbolic stress-strain
relationship., It is known that the errors in the tangent
modulus approach accumulate and are dependent on the size of
the load increment. To ensure an accurate analysis therefore,
the loading increment was made as small as practicable for
computer time., Altogether fifteen load increments were used
and it was discovered that no significant gain is achieved by
using smaller increments. To check the accuracy of the tangent
approach, after each loading increment, the stresses computed
in each element were compared to those given by the hyperbola,
Figure (8.19) shows the percentage difference calculated in this
manner for the most highly stressed elements, These are elements
numbered 20, 32 and 45 which are immediately below the left hand
footing, as shown in Figure (7.1). Element 20 is the most highly
stressed and also the smallest. Figure (8.19) shows that the
percentage error in this element is about 10% after ten loading
increments, rising to 18% at the end of the analysis. The errors
in elements 32 and 45 are noticed to be less than 10% throughout,
Elsewhere the errors were insignificant and it was concluded that
the theoretical approach was reasonable for the type of problem

under consideration.

8.5) Redistribution of Bending Moments.

In this section the results obtained by the computer,
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for the bending moments, for different values of eceentricity
are presented for the smaller space frame No.3. The purpose
here is to show the manner in which the bending moments are re-
distributed throughout the frame due to the non-linear behaviour
of the soil and the subsequent differential settlement of the
footings. The results obtained are compared with an identical
frame, but supported on a rigid foundation, known hereinafter
as frame No.).

Figure (8.20) shows the geometry and loading of both
frames 3 and 4. The joints are lettered in the same manner as that
shown in plate (5.1b). The figure also shows a set of Cartesian
X-Y-Z axes. Because of symmetry in the Y-% plane through EF, only
half of each structure was analysed.,

For both frames Figure (8.21) shows the bending moments
about the X axis. Figure (8.22) gives the bending moments about
the Z axis. Finally Figure (8.23) gives the bending moments in
beams BH, CJ and EF asbout the X axis,

Considering Figure (8.21) first, figures a and a' are
the bending moments for frames 3 and 4 respectively, for the
symmetrical load case. These figures show how the magnitude of
the bending moments in frame 3 is considerably different from that
of frame 4. There is no differential settlements and the loading
is symmetrical. The footings of frame 4 are rigidly fixed to their
foundations. This produces considerable moments at the column ends
A and D. Consequently a non-uniform stress distribution develops
under each footing in the plane ABCD as shown in Figure (8.24a).
On the other hand, frame 3 is supported on a flexibls bed of sand.
Any non-uniform stress distribution that may develop across a
footing of this frame, causes these to tilt in the manner shown

by N'P' and Q'R' in Figure (8.24b). This leads to a rotation of
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the column ends A and D which relieves the excess bending moments
at these points. The values of the moments developed at A and D,
in frame 3, are given in Figure (8.2la). Naturally this change
in the rotation of the column ends gives rise to a redistribution
of the moments throughout the members ABCD in the frame.

An inspection of Figures (8.21) a,b,c and d shows
that as eccentricity of the load increases, leading to an
increase in the differential settlement of the footings, the
bending moments throughout frame 3 alters considerably. Most
signifiicant in these figurés is the manner in which the bending
moments at point D are changing. It is noticed that ths bending
moment here changes from a small positive value of +3 kg cm,
for the symmetrical case to -~141 kg cm for the case when e = 0,91,
The s tiffness of the column CD plays its part to retard the
differential settlement of the frame. This forces the column
to rotate about point D which gives rise to high negative bending
moments there, In effect, therefore, column CD and indeed the
entire right hand portion of the structure is contributing to
reduce the development of high differential settlements - a
fact that was substantiated experimentally and referred to earlier.

A comparison of the bending moments in frames 3 and 4
for a given eccentric loading indicates that the redistribution
of bending moments alters due to the position of the load, but
most significantly due to the development of differential
settlements in frame 3,

It is noticed in Figure (8.22) that there is little
difference in the bending moments about the Z axis, between frames
5 and 4, This is fully expected since these moments are not

directly influenced by differential settlements to any great extent.
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The effect of eccentric loading on the bending
moments in beams BH, CJ and EF about the X axis are shown in
Figure (8.23). No significant difference was recorded in the
values of these moments between frames 3 and 4.

It is therefore concluded that differential settle-
ment mainly affects the beniing moments in the frames ABCD

and GHJK about the X axis.

8.6) Stresses in the Soil.

Figures (8.25) and (8.26) show the distribution
of the vertical stress q&, obtained by the analysis, below
the left and right hand pad for various eccentricities when a
vertical load of approximately 200 kg is acting on the frame.
An attempt was made to check the vertical equilibrium of the
forces to which each pad was subjected. For pad A, for instance,
the vertical stresses at points a,b,c,d,e,f,g,h and A were
averaged and multiplied by the area of the pad to give the
average vertical reaction. The values of these reactions are
also shown in the figures. The manner in which these forces
were calculated eliminated the effect of bending stresses.
Comparing these reactions with the vertical load in each column,
which are also given in the figure, it is noticed for the left
hand pad that the m ximum difference is 9.2% for the symmetric
load case, falling to 2.4% for the most highly loaded pad.
For the right hand pads the difference is 9.,2% fore = 0.0,
13.1% for e = 0.33, 12.8% for e = 0.67 and 35.0% for e = 0.91,
The worst case is the last where it is noticed that tensile
stresses have developed under the right hand pad, This was

not allowed for in the computer finite element analysis and

suggests that future development of the work should provide
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facilities to allow for theseparation of the footing and the
soil. It should be pointed out that the stress level under

the right hand pad is so low that averaging does not necessarily
lead to realistic values. Furthermore, as can be seen in the
figures, the distribution of stresses under a pad is non-linear
and hence the above averaging process is approximate.

Figures (8.27) and (8.28) give the stress contours
af'ter q& and o, throughout the depth of the soil foundation in
the plane YX through the centre of the left hand pad. It is
evident that in most cases a distinct column of high stresses
is developed under the footing. This was also observed by
Majid and Craigcsg) for the case of a two dimensional model.

It should be pointed out that the present model deals
with a three dimensional frame supported by a deep bed of non-
linear sand, in which the stiffness of the structure and the
soil are both taken into consideration. The pad footings unlike
the model of Majid and Craig are therefore subjected to both axial
forces and bending moments. For these reasons, it is expected
that the results obtained here could not have been achieved by
the above workers., Indeed Figures (8.27) and (8.28) show how
eccentric loading results in a complete redistribution of both
o, and q& throughout the foundation. In particular the existence
of beading moments has given rise to the development of high
stresses under the footing in an unsymmetrical manner. On the
other hand the results also suggest that the analysis should
be altered to cope with tensile zones that develop in the sand.
Noticed in the figure are small zones of zero 8tress which
are developed away from the pad., Finally figures (8.29) and
(8.30) show the distribution of o, in the plane Y-Z through the

centre of the left and right hand pads. On the other hand
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figures (8.31) and (8.32) show o, in this plane. These figures

lead to the same conclusions as those stated earlier.
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This thesis has investigated the use of the Finite
Element technique in various problems in Civil Engineering. In
all these problems the main considerations have been to obtain
both a realistic structural idealisation and a realistic repre-
sentation of the material behaviour.

To satisfy the first criterion, a major part of the work
has involved producing a number of computer algorithms. These
algorithms have been formed into various programs to carry out
Finite Element stress analysis using the new families of two and
three dimensional Isoparametric elements. It was essential that
the techniques for forming the various stiffness matrices, should
be both efficient and general. The former,because the Isoparametric
elements require numerical integration, and the latter so that
other elements could be added without major reprogramming.

From comparing the results obtained using the various
two dimensional elements, several conclusions were drawn, Firstly,
all the elements developed, were proved to be in good agreement
with the analytical solution, showing that their development had
been accurate. Secondly, the linear triangle gave much the worst
results and they were also the most expensive to obtain. The
eight noded Isoparametric quadrilateral was showu to give the best
value for effort in terms of computer time, storage and data pre-
paration.

It was noticed that the stresses near to the applied
load were over or under estimated. The effect counted most
against the cubic elements because of their larger size. The most
significant effect of mesh refinement was that a better repre-
sentation of the applied uniform pressure was achieved. From this
point of view it would be worthwhile adding a special loading element

to the element library. This element would have a large number of

nodes on one face to which the pressure would be applied.
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It was further noticed from these analyses that a large
number of zeros were stored in the overall stiffness matrix. This
was particularly apparent in the three dimensional elements, be-
cause of the large numbers of element nodes involved. This
unnecessary storage could be saved by writing the element stiffness
terms straight to the blocks required by the solution routine.
Other possibilities are to revert to the traditional sparse matrix
techniques, or, the frontal solution techniques.

The analysis of the plane strain compression test proved
that the finite element method could be very useful in interpreting
laboratory test results. It was concluded that, in agreement with
experimental observations, the applied shear stresses caused by
the friction on the surface of the loading platten led to zones of
low stress under the centre of the platten., It was also demonstrated
that it was possible to represent smooth surfaces, realistically
and simply, by using sandwich elements of relatively low stiffness,
It was noticed from the results that the vertical stress at every
node under the platten was in exact agreement with the average
applied pressure. In most Civil Engineering situations the load is
applied through some body, so the errors involved in the Finite
Element method, when using surface pressures, may not be as import-
ant as they first appeared.

The Finite Element technique was also used in Chapter (L)
to follow the path of crack propagation., The method allowed separation
to ocecur along element boundaries, and was shown to be in excellent
agreement with an experiment result. 1In these analyses cracks were
only allowed to develop in one direction. In reality cracks may
go in any direction, thus the method could be improved by allowing
separation along any element boundary. Automating the mesh changes

necessitated by activating dummy nodes would considerably speed
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up the procedure,

The major part of this thesis has been devoted to the
model tests and their theoretical analysis. These proved to give
very promising results, but cl=zarly there was room for improve-
ment and further research on both theoretical and experimental
sides.

The sand deposition apparatus described in Chapter (5)
was shown to be capable of forming large uniform beds of sand over
almost the complete range of porosity. The model testing apparatus
and technique proved reliable but a good deal could be gained from
automating the test procedures. The twenty or so dial gauges could
be replaced by displacement transducers, which could be automatically
logged. This would avoid the need for the experimentor to clamber
around the bed to read the dial gauges, with obvious danger to both
himself and the test. The sand pouring technique could be improwed
by replacing the hand propulsion of the hopper by an electric motor,
allowing exactly uniform speeds to be followed.

Extensions to the model testing should include the measure~
ment of other quantities apart from displacements. Strain gauges
on the model structure would allow bending moments to be calculated
and stress transducers in the bases of the pads could measure contact
stresses., Both the strain gauges and the stress transducers could be
logged automatically, and would be a further valuable check on any
proposed analysis method. All the model tests reported here were
loaded symmetrically, founded on a uniform bed of sand and possessed
members of the same section. Most structures are unsymmetrically
loaded and most soils gain strength with depth. Both these conditions
could be achieved, the first by applying the load on one of the side
beams and the second by varying the apperture setting as the bed
filled. It was shown that the stiffness of the structure played a very

important part in determining the differential settlements. This
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could be further confirmed by testing other frames of the same
overall dimensions, but with different sections for the members.

It was seen from the theoretical analyses that the assumed
hyperbolic relation for the sand behaviour, led to a reasonable
agreement between the theoretical and experimental results. This
hyperbola was chosen because of its simplifity and relation to
physical parameters. However, recent work has shown that a single
curve cannot adequately represent the stress-strain curve, and this
was readily seen in the theoretical results. The use of spline
functions would lead to a better representation of the stress-strain
response.

However, a constant value of Poisson's ratio was assumed
for the second hypo-elastic constant. In reality, sand could have
a ratio greater than 0.5, because of dilatency under shear. Further,
the stress-strain parameters were measured under conditions of axial
symmetry, with a constant cell pressure and monotonically increasing
vertical loads In the model, axi-symmetric conditions were only
approximated to under the centre of the pads. The magnitude of the
horizontal stresses in the test bed were dependent on the vertical
stress. The actual stress path followed by the soil elements
appears, from the results, to be nearer to a constant ratio of
vertical to horizontal stress, rather than a constant horizontal
stress.

It is from a truer representation of the material behaviour
that the greatest benefit will be gained. This depends upon further
research into the three points outlined above. However, whatever
method is decided on, if it is to be used in practice then long
laboratory programmes and complicated testing equipment must be
avoided.

Improvements in the theoretical analysis can be derived
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from three parts., First, the material model which has just been
discussed, second, a higher order element and lastly a better
method of following the non-linear stress-strain curve. The
second point involves a change in the method of storing the overall
stiffness matrix., It was shown from the results that the errors
involved in the tangent modulus method accumulate. The problems
that arose with convergence of the iterative secant modulus

method were a function of the properties of sand at low pressure.
At higher pressures, such as those in Chapter (3), no such problems
would be encountered. The immediate problem of speeding convergence
for model test analyses could be helped by some process such as
overrelaxation. The non-linear procedure should also include a
facility to allow the footings and sand to separate should tensile
contact stresses arise. This could easily be achieved using dummy
Jjoints in a very similar manner to the crack propagation metiod.

It has been shown by both the theoretical and experimental
results for the model space frame that the stiffness of a structure
has an extremely important effect on differential and sway displace-
ments. This effect is caused by a redistribution of bending moments
in the superstructure and is so significant that it compensates
for other effects such as interaction. Design approaches consider-
ing the superstructure alone, or the footings alone, severely
oversimplify the problem, It is only by including both parts

in the analysis that a realistic representation is achieved.
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This report iz based on the SI system of units. The rara Systeme International
a'Unites and the international abbreviation 31 are used for the systematically
organized system of units introduced by the General Conference of Weights and
Measures in 1960 and later endorsed by the International Organization for Stan-
dardization. The SI system is econstructed around six bzse units which are:
Quantity Unit Symbol
length metre m
mass kilogramme kg
time ; second s
electric current ampere
thermodynamic temperature kelvin K
luminous intensity candela cd

All derived units are stated in terms of these six base units snd for some of the
derived units special names and symbols exist. The system provides a naturally
coherent unit of force called the newton. This is defined as the force which,
when applied to a body having a nass of one kilogramme, gives it an acceleration of
one metre per second per second and is thus independent of gravitational acceler-
ation. The more common SI derivatives and their egquivalents in British values
are listed below.

Quantity: Unit: Symbol: Equivalent:

length metre m 39.3701 in

grea square meire i 1 550 in

volume cubic metre o 61 023.7 ind

voaame litre 1 0.22 UK gall

velocity motre fsecond m/s 3.280 84 ft/sec
acceleration metre /second [second n/s® 3.230 84 ft/sec?
mass kilogramre kg, 2.204 62 1b

density kilogramms /metred - kg /m> 0.062 428 1/t
force newton R 0.224 809 168

torque newton metre Km 0.737 562 1bf ft
pressure newton/square metre H/n? 0.000 145 038 1uf/in?
dynamic viscosity newton second/metre? N s/m 0.020 885 1br s/ft?
kinematic viscosity metre squared/second m fg 10.763 9 12 /zec
stress nevton/square metre N/m 0.000 145 Ojé 1bf /in?
energy Jjoule J 0. 757 562 £t 1bf
energy Jjoule J 0.277 778 ¥n

heat Joule J 0.000 47 813 Btu
power watt W 0.001 341 hp
frequancy nertz Hz 1/second

Multiples and submultiples of the units are formed by adding prefixes. A prefix
added to any unit is subjeet_ to any power apglied to the unit. For example
1 mmd means 1 (mm)d = 102 o’ and not 1072 md. The standard prefixes are

T tera 101 *da deca 10 n nano 10‘9
¢ giga 109 *q deei 10-1 p pico 10712
M mega 1 %c centi 1072 £ femto 10‘13
kK kilo 103 mn milli 1073 & atto 1071
*h hecto 102 micro 10'6

#(These are not preferred choice)

For further information readers chould refer to:

'i‘_HE UZE OF 21 UNITS. British Otandards Tnotitution publication PO 5686 1969
CHANGING TO THE METRIC DYOTEM. HNational Physical laboratory. HMEQ 1969.
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A2, Two Dimensional Elements

In order to analyse general two dimensional structures and the under-
lying foundation material it is necessary to include a member element in
the library., It also means that no assumptions have to be made about the
stress distribution beneath footings of wvarious rigidity., It is also de-
_sirable to include the triangle since traditionally this has been the most
popular element, 3Both these elements are well known so they are only dealt
with briefly,

Any modern Finite Element analysis must make use of the new powerful
families of Isoparametric curvilinear gquadrilatersls, It is these elements
which are being considered in detail in this thesis,

A2,,1 Member Element

Figure@Z,.1) shows a member situated in the plane XY and defined in
this global system, For convenience of formulaticn the member is also de-
fined in loecal axes pq such that the p-axis is in the direction end 1 To
end 2 and the g-axis is perpendicular to it, as shown in the figure.

The stiffness matrix of an element is shown below. This is the one

quoted by Majid (62) in his text,

H]J = A _H-ui
V. B F V.
<t i
M. -G =T a o),
i X
(A2.1)
H: =A -B C A s
d dJ
v -B B T B F V.
d dJ
M -C -7 £ c P el 0.
| J] | {L d]

where A = al? + bI? B all M + DL M
b q PP q 4q



Figure A.2.1.

Plane

member

clement
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C = 4L F = al® + bl® T = au
q q
and _ EA B = 12EL 3. a -6BT
R = =
_ AEI i !
e = =% $ = 5 e

where E is the modulus of elasticity

I the moment of inertia

A the cross sectional area

L the length of the member,
and Lp, Lq, Mp and Mq are direction cosines, Each end of the member is
allowed three 'in plane' degrees of freedom, two translational and one

rotation,

A 2.4.2 Iriangular Element

This element was the first Finite Element and it is still popular to-
day. It is very easy to formulate and has been proved ideal for mesh
grading and refinement, The triangular shape is probably the most conve-
nient one being a polygon with the least number of sides,

FigureGAQ.Z) shows a triangular element situated in the plane pg of its
local axis., The p axis runs from node 1 to node 2 and the q axis is perpen-
dicular to it in the direction of node 3, ZEach node of this element is
allowed two translational degrees of freedom, As the element has only three
nodes the displacement function is the simplest complete polynomial, The

stiffness matrix of the triangular element can be represented by equation

(A2.2),
K = Ky
Kz1 Kz (A2.2)
Ks1 Kaz Kas

The on-diagonal terms K44, Kzo and Kgs are defined by:



(0. 0)"

Figure A.2.2.

Triangular

element.
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el || ([ el ]
Kit = | L ﬁkze + 2Lqukm£
e SYMMETRIC
q mn
A (A2,3)
k  + (ML M + 2M Mk
Lllgiegy + (T po * AN
+ ML)k, +MLKk +M3k
pq mé q g mm q mn
where kzs, kmn and kﬁz are defined in equation@k2.5) and m = 2i; =184,
The off-diagonal terms Kg,, Kgy and Kip are defined by:
R = 1P ki 4+ LT (x LMk , + MLk |
=k ( p mé pPgqg mp ppm pq ol
+ k0% T % +MLk +MLXk
ol q op q p mp q g op
(A2.1)
LMk +MLKk Mk  +MuMM(k
ppmé pqm pmé pq mp
+MLk  +MLk +k ,) +m® k
i qp ol q q op ot q op i
where j >k and 0 =2j, m=0-1, p =2k and £ = p-1., The terms kmz ete
are defined below and Lp’ In. 5 MP and Mq are again direction cosines,
- o -
== 1 4 iai
Podg
e T
(p,-p,)%a
-q_(p_-p_)a_| (p,-p,)%
o g o R B SYMMETRTC
_qs(ps_Pz)aa q33a3
_qzaai qa(Paﬁpe)aa qgaai
+ + +
-4%(p,-p, )0, | P43, p° 0,
2 2 2
9 5% _qs(Pa_pz)ai 9 g% 9 3%
b + -
2 o 2
qs(Ps-Pa)aa 9 5% Pads%s | T 5%
z
pz(Pa_pa)as ~A5P%5 “PgPpl5 | Ppdg%; | P g%
~45P5% Pa(pa"Pz)ai 93P, % “qgPp%, | O Pgaai_
(A2.5)
where p,, p, and q, were defined in the figure and a,, a, and a, are de-
fined below as the D matrix in {o} = Diel as
D = a, a, 0
a, a, 0 (ﬂ2.6)
0 0 a
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A2.13 Higher Order Elements

The two previous elements are both constant strain elements, in that
the strain, and hence the stress, is independent of position, Where large
variations of stress occur in a continua many elements would be required to
obtain an adequate solution, An increase in the number of nodes of an ele-
ment adds extra terms into the polynomial and hence improves the accuracy
of the solution. In the case of complex boundary shapes, often curved,
methods other than Finite Element analysis are very difficult to apply. It
is therefore necessary to have elements able to distort into arbitrary shapes.

A2.1.3.1 Rectangular Elements

Traditionally shape functions for rectangles possessing any number of
nodes are formulated by writing a polynomial to define the unknown displace-
ments, For example, for & rectangle having n nodes this polynomial is

defined as:
sesssssse (Ag.?)

. 2
U = a, +aX+ay+axy+ax®+ay’

Substituting the known co-ordinates at each node into equation(f2.7) a set

of equations is obtained:

f6l. = Clal (A2.8)
where {8} = fu, u, ... un}
fel = la, 8, cecon}

and C contains coefficients depending upon the position of the nodes., To
obtain the unknown constants this set of simultaneous equations are solved:
{a} = c*{3} (A2.9)

Back substituting these constants the interpolation formula is obtained

(A2.10)

u = Niui + NBLIB + ceee Nn un

One property of the shape function is revealed by equation(A2.10) that is

*F u = us then Ni = 41 and all other functions must be zero,
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For rectangles having only four nodes considerable effort is involved
in arriving at equation(ﬁZ.TO) and the effort grows rapidly with increase
in the number of nodes, The method does have the advantage that the right
terms are visibly selected from a polynomial, The polynomials should be
complete up to a certain degree,

Considerable savings can be made by obtaining equation(A2.10) directly.
Displacement fields can be constructed satisfying the various criteria, in
certain polynomials, These give rise to two basic families called Lagran-
gian and Serendipity by Zienkiewicz {9?) in his text,

A2.1.31.1 Local Co-ordinates

Before going on to describe the families it is worth considering the
role of the local co-ordinate system, In the triangle the origin of the
system was chosen at corner one and its directions defined from there, For
rectangles it seems more logical to have the origin at the centre, orien-
tated parallel to the sides as shown in figure(A2.3a). Thus, the bottom
lef't hand corner is defined as (-h,—a). It is more convenient if these co-
ordinates are normalised such that p z'% and q = % so the local co-ordinates
p and g vary between the limits -1 and +1 as illustrated in figure(A2,3b).

A2.4131.2 Lagrangian Family

A complete family of rectangular elements can be derived from the cross
multiplication of one dimensional Lagrangian interpolation formulae of
varying degrees, By having (n+1) nodes in the p direction and (m+1) nodes
in the q direction, a total of (n+1)(m+1) nodes, the displacements can have
up to an nth degree of variation in the p direction and an mth degree in
the g direction,

In general the lagrangian polynomial at a point i can be expressed as:

= (p-p,)(P-Py) eeee (P-P5_,)(P-P;,;) eees (p-p))

i A (Pi-P1 )(Pi_Pz) ssse (Pi‘Pi_1 ) (Pidpi+1 ) ssse (Pi“Pn

) (A2.11)

and hence the interpolation function for a two dimensional element is
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Figure A23a. Local co-ordinates
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Figure A. 2.3b

Normalised local co-ordinates
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L FIOORACY (A2.12)

where i1 and j define the node in a regular grid such as that in figure
(A2 .4b). The first three members of this family are shown in figure(A2.4).
As an illustration of this family, consider the quadratic element shown

in figure(A2.4b) and form the shape function at node 6 (i.e. i = 3, j = 2).
(p-p,)(p-p,)

n

Ls (e~ B,/ 7 D,) (A2.15.1)
(a-q,)(g-q,)

(e = —F (A2.13.2)
(a,-q,)(q,-q,)

2 (p-p,)(p-p,) (a-q,)(a-q,) »
o (p,-p,) (P -p,)(a,-9,)(a,-a,) 14)
and substituting in the values of the co-ordinates P,s P, ete,

Ne = (p + °- pa® - p°q?) (A2.15)

It is clear that the shape factors for the lagrangian elements can
be generated automatically,

A2.,1.31,3 Serendipity Family

This other family of rectangles is where the nodes are concentrated
on the boundaries of the element as much as is possible, The cartesian
polynomials are complete with the addition of a few extra terms., The shape
functions were derived intuitively using the property discovered in
equation(ﬂ2.10) with the convergence criteria, The first three elements
of this family are shown in figure(A2.5).

The shape functions quoted by Zienkiewicz (®8) in his text are:-

(1) Linear Element (Fig.A2.5a)

At

N, = 71 901 +q) (n2.16)
where P, = PP;
qu o qqi

This is identical to the first member of the Lagrangian Family.
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Figure A2.5.a. Linear element (4 nodes)
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Figure A2.5. b. Quadratic element (8 nodes)
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Figure A2.5.c.  Cubic element (12 nodes)

Serendipity  family of rectangular elements.
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(2) Quadratic Element (Fig.A2.5b)

1

Corner nodes N, = Z(1 + po)(1 + qo)(Po ®lg = 1) (A2.1?.1)

Mid-Side nodes p, = 0 N, = %(1 - p?)(1 + q) (A2.17.2)
1

g, =0 N, &=t +pJ(1 ~af) (A2.17.3)

(3) Cubic Element (Fig.A2.5¢)

1
Corner nodes N, = 35(1 + po)(1 + qo)(—10 + 9)(p® + q®)) (A2.18.1)
: - 1
Mid-Side nodes p; = +1, a =+ Ny =25(1 + p)(1 - a%,)(1 + 9g_) 0.18.2)

Pi = tg: qi = +1 Ni = %§<1 + qo)(1 = Pa)(1 it 9PO) (5201803)

A2.1.3.2 Isoparametric Quadrilaterals

Quadrilateral elements cannot be formulated satisfactorily from
cartesian polynomials, like those in the previous sections. They require
the introduction of a curvilinear co-ordinate system having the same range,
-1 to +1, as the normalised local cartesian system for the rectangles.
Hence, precisely the same shape functions used for the rectangles can now
be applied to these elements, It is for this reason that the rectangles
are known as parent elements,

The 'Isoparametric' concept is to use the same interpolation function
to transform the co-ordinates as that which defines the unknown displace-
ments, This considerably facilitates the formulation of the curved elements,
The isoparametric quadrilaterals born from the two families of parent rec-
tangles are shown in figures(A2.6) and (A2.7). The element titles in figures
Cﬁ2.4) andQRZ.B), linear, quadratic, etc. describe the shape into which the
element sides can be distributed.

A2.1.3.% Stiffness Formulation

This is shown most conveniently by means of an example, Consider the
four noded quadrilateral in figureﬂk2.8) which is shown together with its

parent element. The node numbers are shown circled and are particular to



Figure A2.6. a. Linear quadrilateral

Figure A2.6. b.  Quadratic quadrilateral

Figure A2 6.c. Cubic quadrilateral

Lagrangian  family of Isoparametric  quadrilaterals



Figure A. 2.7a. Linear quadrilateral
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Figure A 2.8 Linear element
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the element, The letters on the other hand are the Jjoints to which the
nodes are connected, Each node is allowed two translational degrees of
freedom, defined here as u in the X direction and v in the Y direction,
where X and T are the global cartesian axes, Table(A2.1) below shows the

local arnd global co-ordinates of nodes 1-4.

NODE LOCAL AXES GLOBAL AXES
P g r ¥

1 1.0 1.0 ) el

2 1,0 -1,0 p T 1

3 = I 0 (0 Xs I

I 1.8 4.0 Xe Yo
Table (A2.1)

The displacement interpolation functions will have the form:
R ok Novu, +Nou, + Noug (A2.19.1)

Y= Nv, + v +~Hv, + Ny, (52.19.2)

where the shape functions are defined in equation(A2.16). After substi-

tuting in the values of p and g
1
Ny = 7(1-p-atpa)
1
Np = 7(1+p-g-pa)
) (A2.20)
Ny = 7(1-p+a-pa)
1
Ne = p(1+p+a+pq)
By invoking the isoparametric principle the transformed co-ordinates must

obey the same interpolation function as the displacements, thus:

(A2.21)
Y

I

N.Y, + No¥g + Ng¥s + N Y.

The first derivatives of equation6A2.19) become 3
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au éN4 u dlNs u aNs u dNg u
LT 1 ottt 2 —_— 8 i 4
Jap ap 4 ap % ap P ap CA2‘22)
o du dv av
and similarly for the other terms 29’ 35 and.ga and these can be expressed

in matrix form as:

] = [o8: 0 Ny O N "0 ANy ' 0 ]fm]
ap ap ap ap ap -
1
v 0 2Ry 0 g N Ny | ug
ap ap ap ap ap
v, | (A2.23)
du Ny 0 N 0 s 0  9Ng 0 ||ug
a9 99 9q aq 99 v
3
av 0 9N, 0 9N 0 9N 0 ANy | |u,
99 1 7q 9q 2q 99 ]|y
L" 4 |
where differentiation of equations(k2.20) gives
N, 1 oN, 1
=t = L —1 = =g+
5o (-1+a) 7q 5 (-1+p)
e = e 9Bs- iy S
(A2.2)
ONg 1 aNg 1
i N e U8 = (S
= 5(-1-a) = 7 (1-p)
Ny, _ 1 9N i

However, the derivatives %% etc are of little interest since strains are

required with respect to the global axes, Since p and g are functions

of x and y the derivatives in equation0&2.25) can be written as:

ou _ Ju 9x, du oy
op . éx ® 9p a dy * ap (A2'25)
Similar operations for the other derivatives %%, %% and.%g yield other

expressions which can be expressed in matrix form as:-

u] = [ex o oy 0][ay
ap ap ap ax
ov o ax 0 oy||av
dap ap ap||ox (AZ 26)
ou x 0 gy O |lau
dq aq dq oy
av 0o ox o0 oyl||aw
199 L aq dq] [9y]




where the above square matrix is known as the Jacobian matrix [J].
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The ele-

ments of this matrix are the first derivatives of equ&tion(h2.21) which are

formulated in a similar way to equation(42.22), such that:

x

aN, x
ap -

ap

2

9Ng x
+aP

3y 9x
and so on for T

5 2hgX; . Oe T,
ap

ap

(A2.27)

and %ﬁ. The derivatives on the right hand side of

equation (2,26) are required, so the Jaccbian needs inverting, yielding:

}bﬂ "
0x 1

(

4

mlm
=N ]

sk
1
Sk
mlt:u
=8 o

av
ax

au
oy

av
|9y ]

oy 0 oE
aq ap
0 3y 0

dq

2x 0  2x
aq ap
0 -9x 0

B aq

0 | [2u]
ap

_.a _a_"{
ap||9p
0 ||2u
dq
9x||9v
dpJ (9]

(A2.28)

The right hand side of equation(AZ.QS) contains the terms of equationéq2.25),

substituting equation(A2.23) into equation(AZ.ZB) one obtains:

[2u] = 4 2y oN, 2y 2Nz
ax C{ dq dp dq dp
-2y N -2y oW
ov dp dq dp dq
ax
9y 9N,
2u oi\e - 990 - ¢
oy -0y 9N,
dp dq
2 |-ex N, ~ox 2N
L9V dq dp 0 dq adp
+9x 0N, +9x 9N,
ap dq ap dq
~9x 9N,
dq adp
O Witvaw gy - O
| dp 99
_ oxoy _ 2y ox
where C = 0 04~ 9v oq

From the Cauchy definition

" 9y 98,
dq dp
2y s
dp d9q

9y M
dg dp
-9y 9
dp dq
~9x Mg
o 9499p
+0x INg
ap 99

Ig &

Q
o)
sz 3z

2 Ols
dq dp
-3y N,
dp dq
9y 9Ns
dq 9p 0
__a.nv. ﬁa
dp adq
~0x N4
0 dq dp
+0u N,
ap dq
~9x Ng
dq ap
+9x g
dp dq

9y e
adq dp
=9y N4 |u
ap 99

-2x N,
dq dp

+9x N,
dp aq |

(A2.29)

(A2.30)

of strain using the usual small strain
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approximation:
du _ oV . P . Oy
S0 T oz & T oy ny T 9y T o (A2'51)

Collecting together the terms of equation(A2.31)

ley |=4] 2y oN, 9y Mg 9y 9Ns 9y Mg 1
C| adq dp dg dp dq dp dgq dp
0 0 0 0
& ~0y 9Ny 9% Ma <Y Ha 9y N4 ¥
¥l o1 o0 99 dp dq dp a9q dp adq
" -9x 9N, -9x ONg -9x N -9x N,
Reng 0 99 dp 99 dp 0 dq 9p 0 9q dp |V
+9x Oy +0x N ~9x 9N +0x Ny
ap dq dp adq dp dq ap dq
-0x Ny Jy 9N,--9x ONg 3y oNg -9x g 9y oNs -0x 9N, Oy oN,
99 dp dq dp dq dp dq dp dq dp 99 dp dq dp  dg ap
+9x N, -0y N, +9x INg-0y Ng +ox Mg -9y INg +Ix N, -Gy N,
| 2p 2q dp dq 9p dq dp 9a dp 94 9p 94 9p 94 Op 49 |[v

(A2.32)
where equation(A2,32) can be rewritten as:
i}l = Bid} (A2.33)

From elastic theory stresses and strains are related by a D matrix, for a

homogeneocus material this will in general have the form:

o] = [ED E2 o [s]
o, E(2) E(3) 0 ||e, (P2.34)
"xy, 0 o EW)][Mxy]

where, for example, an isotropically elastic material undergoing plane

strain deformation would have:

1) - E3) = Ty
E(R)h =
(1+v)(1-2v)

E(3) = '2'(%3 ‘

WhereE is Young's modulus of elasticity and v is poisson's ratio., In
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shorthand form equationﬂAQ.jk) is rewritten as:
fo} = D {e} (A2.35)

From chapter 1 it is known that by considering the principle of virtual

work, the element stiffness matrix is:
area

K = H B’ D B dx ay (A2.36)

It would be very difficult to determine the limits for the integration
above, but it is known (ﬁa) that: dx dy = det[J] dp dg where det[J] is
the determinant of the Jacobian matrix in equation(A2.26). Changing to

the local co-ordinate system means that the limits are now straightforward.

+1 +#1
K - [ [ B' D B det[J] dp dq (A2.37)
. [exay _ oy ax)
where det[J] = [ap 3q D qJ (A2.38)
defining B, in B = % B, as in equationcA2.31) then

#4.

K - j f 18, DB, apag (A2.39)

where K is the stiffness matrix of one linear isoparametric quadrilateral
element, in this example, As each node is allowed two degrees of freedom
the X matrix will be of order 8 x 8. The stiffness matrix is square and
symmetrical so only the lower triangle terms are considered, The element
stiffness matrix can be divided into parts, called sub-blocks, as shown in
figure0i2.9). There are two types of sub-blocks. Triangular sub=blocks
(K44, Koo ete,) which fall on the diagonal, and, rectangular sub-blocks
(Kzq, Kaz ete,) which fall below the diagonal,

The only difference between sub-blocks is the node number (or numbers)
that define it; it was therefore possible to formulate two general rectan-

gular and triangular sub-blocks to represent all the cthers. By using the



node | node 2 node 3 node 4

— jont i joint j jomnt k joint. diEs)
node |
jont i kil \
d BV Ced sl
o kat b
joint | :
pde S8 |- K3t K32 —
joint k 33
node 4 k k k s
A f4 —— Kaa—— kg3 -
joint ¢ Kgq

Figure A 2.9 Representation of element stiffness matrix

Figure A. 2.10 Representation of B* matrix
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B, matrix represented in figure(A2.10) and carrying out the triple multi-
plication ET* D By,where D was def'ined in equation(A2.34), these general
sub-blocks were formed, The results are shown in figures(A2.11a) and(A2.11b).

It must be remembered that the equationﬂk2.39) has not been integrated
yet, so these sub-blocks contain values of the integrand. The reasons for
dividing the element stiffness matrix into parts will be made apparent in
Appendix (3).

A2..3.4 Numerical Integration

In the last section the integrand in the equation:

+1  +1

£ - [ 6(p;a) dp dq (A2.40)

where G(piq) is itself very complex, It would be very difficult if not
impossible to define G(piq) explicitly, and then integrate it algebraicly.
For these reasons, numerical integration has become a special feature of
Isoparametric Quadrilaterals and has helped speed the formulation and pro-
gramming of many elements,

The numerical integration technique used is Gaussian Quadrature, which
is known to be some twice as efficient as an equivalent Sgmpson type rule,
The method is exact when n sampling points are used to integrate a function

of degree (2n-1). +1
n

summation Z Hj f(aj)

where Hj is a weight coefficient, f(aj) is the value of the function at

Gauss quadrature replaces the definite integral j‘ f(x) dx by the

- and n is the number of gauss points used, Thus

the specified point a;

equation(42.40) is replaced by the double summation:

n

K = Zn Z 6(aj, ay) Hy Hj (A2.41)



end J

B(1) B,i”
Bl Bu®
end j + B(4)s By mo o= 2xj
B(2)e By B, B(3), B,.2 X = m
+ B(4), B, B, + B(4), B *#
Figure(A2.11a)
General Triangular Sub-Block End j (ijl
end k
E(1) x By x By E(2) x Bgy x By
+ B(4) x Bg By + B(4) x By x Bay % i EXk
end T i
B(2), B ¢ % B, E(3) x By x By LR
+ B(4) x g Sl E(4) x Byy x By,
Figure(A2.11b)

General Rectangular Sub-Block K jk
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A2.¥.3.5 Stiffness Formulation of other Isoparametric Quadrilaterals

In sectionﬂhz.h.B) the element stiffness matrix of a linear quadrila-
teral was derived. The same procedure can be used for any Isoparametric
element. In general, for higher order elements the various matrices (in
equations(&2.32) for instance) will have more columns, The B matrix will
be of order 3 x 2n if the element has n nodes, The pattern of all the
derived equations will be unchanged., Thus, the general sub-blocks derived
and shown in figures(k2.11a) and (A2.11b) are applicable to all Isoparametric
quadrilaterals, The essential difference between the various elements will
be in the different shape functions (equationA2,20) and their first deri-

vatives (equationfA2,2)),
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A2.,2 Three Dimensional Elements

To analyse general three dimensional structures and the foundation
material it was necessary to include the space member and rectangular
plate bending elements in the library of elements, These two elements are
well known and are only mentioned briefly,

The three dimensional equivalent of the gquadrilateral elements des-
cribed in the previous section are called Hexahedral elements, It is
these Isoparametric Hexahedrals which are mainly considered in this sec-
tion,

A2.2.,1 OSpace Member Element

The space member routines were obtained from the Prismatic Member
Package of Bray (11 ), Figure(A2,12a) shows this element in which the
local axis P, Q and R are orientated according to the right hand screw
rule, Each end of the member is allowed six degrees of freedom as illus-
trated in figure (A2,12b). The eight resultant member forces are shown in
figure(A2.13b).

To cope with the various irregularities that occur in structures at
the joints, the member description included facilities to allow the rep-
resentation of gusset plates and haunches as rigid portions, and, allow
the centroid of the member section to be off'set from the joint, These
rigid portions and offsets are detailed in figure(A2.13a).

A2.,2,2 Rectangular Plate Element

This plate bending element was also taken from a package by Bray (11),
Each node of the element was allowed five degrees of freedom, Figure@2.14@
shows the three in plane degrees of freedom and figure(A2,14b) the three
out of plane ones, The in plane rotation ¢R is always suppressed,

x2,2,5 Higher Order Elements

The reasons for adopting the Isoparametric Quadrilateral equally
apply to the three dimensional elements, The equivalent families of Hexa-

hedral elements are described in this sectlion.



Figure A.212 @ Member reference qxes

Vau

N

Figure. A 2.12 b Member deflections at each end



Figure A 2.13a Rigid portions and offsets of a members

ends from the specified Jjoints

End

Figure A 2.13b Member

forces on each member .



Figure. A 2.14b Out of plane displacements
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The derivation of the element stiffness matrix of an Isoparametric
Quadrilateral was discussed in some detail in section@&2.1.3.3). As the
formulation of the Hexahedral Element is basically similar, it is only
dealt with briefly., Details are included in so far as they are necessary
to define the terms in the general sub-blocks that are derived.

A2,2.,%5.,1 Rectangular Prismoidal Elements

Each node of these elements is allowed three translational degrees
of freedom, u, v and w parallel to the axes of the global cartesian system
X, Y and Z, The role of the local co-ordinate was explained in section

(A2.1.3.1.1). The addition of another dimension creates another axis r with

usual range from -1 to +1, The direction of r is arbitrary except that the
local axes and the global axes must obey the same sign convension,

These elements were again divided into two families by Zienkiewicz
(2% ). The first element, with linear displacement along the edges, is
common to both families,

A2.,2,35,1.,1 Lagrangian Family

The first two members of this family are shown in figure(12.15).

Their shape functions can be formed from:-

N, = Li(p) T(a) L) ce (A2042)

where n is the number of nodes on any side, L?(p) is a lagrangian inter-

L
polation formula, defined in equation(A2.11), of degree n, The letters i,
j and k define the node ¢ in a regular three dimensional grid,

A2,2,3.,1.,2 Serendipity Family

The first two members of this family are illustrated in figure (A2.16).
Like the two dimensional family, the nodes are concentrated around the
boundary, so that variation of displacement is achieved with a minimum num-
ber of nodes, The shape functions quoted by Zienkiewicz (9% ) for these
elements are:-

(1) Linear Element (Figure A2.16a)



Figure .A 2.15.a@ Linear element (8 nodes)

Figure A 2.15.b  Quadratic element (27 nodeé)

Rectangular prisms - lagrange family



Figure A 2.16a Linear clement (8 nodes)

Figure A 2.16.b  Quadratic element (20 nodes)

Rectangular prisms — serendipity family
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.1
N-L = "'8"(1 + po) (1 + qo)("f + ro) ese <A20‘1+3)
where P, = PPy» 9, = 49; and Do BORDy

(2) Quadratic Element (Figure A2,16b)

Corner nodes: N; = 18-(1 +p )1 +a )1 +2) ses (A2 NN 1)

Mid-side nodes:
1

P, =0,q;, =%1, r, =%1; N = }+(1—p2)(‘f+q0)(‘!+ro) oo (A2.44.2)
1 2

Py =15y = 0, vy =215 Ny = (14 ) (1-0%) (1r)) .o (A2.44.3)

Py = 1, qp = #1, v, = 05 Ny = £(14p. ) (1+a ) (1-r?) .. (42.4.h)

L L

A2,2,3,2 Isoparametric Hexahedrals

These elements were formulated in terms of the curvilinear co-
ordinate system p, q, r. The Isoparametric concept is again invoked to
facilitate the formulation of the element. The Isoparametric elements
that are generated from the two parent families of rectangular prisms are
illustrated in figures(A2,17) and(A2.18).

A2.2.3.,5 Stiffness Formulation

Consider the linear hexahedral element in figure (A2,18a) and its
parent element in figure (A2.16a). The shape functions for this element
were defined in equation(A2.,43). The three components of displacemen

anywhere within the element can be interpolated from:-

W= N1u1 + Nz.uz + N3'u3 sssse Naua
v o Nivi o szz i Nava eeee Ngvs LR (A202|'5)
W= Niwi + NQWB o Nawa seew Nawa

From the Isoparametric concept the coordinates are transformed by:-

X = N,_Xi + N2X2 + NsXS asee NBXS

NyYy + No¥p + N3¥s ... Nglg svn 3\ [2Hb)

<
I

2 = T NaPe + Wolla  eone Mol



element

Figure A217 b Quadratic

lagrange family

ic hexahedral elements —



Figure .A 2.18. a. Linear element

Figure. A 2.18b. Quadratic element

Isoparametric hexahedral elements — serendipity family
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Differentiation of equation(A2.,45) with respect to p, g and r yields a

set of equations which can be expressed in matrix form as:-

rﬁ.‘?.‘_ £t ﬂ @2 iN...B ] ru 1
ap 6pi 0 0 ap 0 0 sesone el 0 0 1
d N Vi
L 1 Ng Ny
aq Jq 0 0 e 0 O L B =t O O
% 9 e aq w,
- g s g u
ar ar 0 0 ar 0 0 esseccce Fo 0 0 2

V2

v KLPY Mo 9Ng
op 0 ap 0 0 7D QL enmubdedtt B0 5 0 o
X S Ny aNg !
dq ° %q A O cessesenchill lbgy 0 1° |(A2.47)
X o, AL g :
ar " dr 0 0 ar 0 sesssane 0 I 0 ;
D 0 O —1 0 0 “2 ER R N N 0 O _B
ap ap dap ap uB
_a..! g,:,b_{i gﬂg .QIEB v
3q 0 0 aq 0 0 aq ssssssas 0 0 aq 8

WBJ

& oty 2N oNg|

..arJ i 0 0 ar 0 0 ar sesssssew O O ar

where the derivatives %%1 etec are obtained from the differentiation of

equation (A2,43) containing the substituted values of the local co-

ordinates for p; ete. The derivatives %% etec. on the left hand side

du

o ete, using the

of equations (A2,47) are related to the derivatives
chain rule of differentiation, which can be expressed in matrix form

asi-—



0

X 2z
dgp 9p
or oz
dq adq
9Y 9z
ar ar
0 0
0 0
0 0
0 0
0 0
0 0

Inversion of the

[ 2u]

aX

X
.

A

B

equations (A2,

D

0

0

0 D
0 0 0
0 0 0
ayY a7
B
o et
dq dq
P2 T
dr ar
ax
0 0 7D
X
0 0 EE
dx
0 0 e
48) gives:-

Y
ap

oY
aq

Y
ar
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(A2.,48)

(A2.49)
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Where C = 9XA + 9YE + 9ZH = det [ J], cow LAZJ50)
oP ap ap 2

det [J] is the determinant of the Jacobian matrix in equation (A2.#8),

and A = 9¥ 0% - 9% Y, B = 92 JY - 3 92,
dq dr dq ér dp dr dp adr
dp dadr dp oOdr dq oar dq odr
dp dr op Jr dp dq dp dq oas (A2,51)
H = 0X 0¥ - 7 X, K = 2Y oX - 2% 0¥,
dg ar dq dr dp ar dp Odr

and L = 39X 9Y - Y 0X.
dp aq dp 9q

From the Cauchy definition of strain using the usual small strain

approximation the six components are defined as:-

Ei = E ’ E:y — E ] EZ =3 ﬂg se e (A2052)
ax ay 2z
YXy = du+3dv, yxz = Ju+ aw, WE = ov+ ow
ay @z gz ax dz Ay

By placing the right hand side of equation (A2,49) with equation
(A2.L5) ard then collecting the terms on thé left hand side to form the
required components of strain in equations (A2,52) the B matrix in
fel = B {8} is obtained as; (see fig. (42.53) over page).

Where *+he terms in the matrix can be formed from:-

Bl,j = A JNn + B ¢Nm + D 9Nm,
ap dq ar
B2,k = E 9Nm + F oNm + G oNm, cos  (A2L54)
ap dq or
B3,1 = H oNmi+ K 9Nm + L OlNm,
ap daq ar
and B4,j = B2,k, Bk = Bl,Jj,
Bb.d 1= Bl B5,1 = Bl,J,
B6 ke = B3,1, B6,1 = B2k,

Where m is the node number and 1 = 2m, k = 1-1, j = 1-2, The stresses

are related to the strain by the elasticity matrix inj;
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[€x

£z

XY

Yxz

e ke

ol

Bl,1

Bi,1

B5,1

B2,2

B6,2

B3,3

B5,5

B6,3

B1,.

B2,5

BL4,5

B3,5

Equatiers. 42,53)

B2,23

Bly,23

B3y2k
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Where D = [E(1) E(2) E(3) o0 0 0
B(2) E(4) E(5) o o o0
E(3) ®(5) E(6) o0 Uhy a6 | ,
0 0 0 E(7) 0 0 sont (A2 .55)

0 0 0 0 E(8) o0
0 0 s 0 E(9)

For a isotropic, homogeneous material for example;

E(1) = B(4) = E(6) = E (Q-v) ,
(1+v) (1-2v)

E(2) = E(3) = E(5) = Ev 3 sais (A2 56)
(1+v) (1-2v)
and E(7) = E(8) = E(9) = 5 fw >

By considering the principle of wirtual work the element stiffness

matrix is calculated from:

vol +
X = f B° D B 4 (vol) s AP 57)

The integration in equation (A2,57) is most easily carried out with

raspect to the 10@31 axies whose limits are known, thus
+1 p+1 1 L :
k= f f [ B°D B det [J] dp dq dr eee (A2.58)
-1 J-1 J-1
The B, matrix is defined in equation (6.13) as B = 1 B,, thus
(¢
+1 pp+1l p+1 " '
B8 [ f f 13, DBy dpdqdr. ess (A2,59)
-1 J-1 J-1 ¢

The triple multiplication in the equation above yields a matrix of
order 24 x 24 for the linear (8 nodal) element., This matrix which represents
n
the integrgd of the element stiffness matrix can as usual be divided into

sub-blocks, The two general sub-blocks derived from this product are shown

in figure (A2,19).



NODE ‘a'’

1) 8 + B3(L,
Pl e o
B(2,3) B(1,k) E(2) B2(2,3) B(4)
+ B(4,3) B(4,k) E(7) + Bg%g,j) E(7)

+ B2(6,3) E(9)
B(3,1) B(1,k) E(3) B(3,i) B(2,3) E(5) | B%(3,i) E(6)

+ B2(5,i) E(8)
+ B(5,i} B(5,k) E(8) + B(6,3i) B(6,3) B(9)| + B(6,1)® E(9)
Where i = 3a = Al k=1-2

GENERAL TRIANGULAR -SUB-BLCCK Kaa
FIGURE (A2,19a)

NODE 'b!
B(1,k) B(1,n) B(1) | B(1,k) B(2,m) E2 B(1,k) B(3,1) E(3)
+ B(k4,k) B(a,mg EE?) + B(4,k) B(4,m) E(7)! + B(5,k) B(5,1) E(8)
+ B(5,k) B(5,n) E(8)

B(2,3) B(1,n) E(2) |B(2,3j) B(2,m) E(4) | B(2,3) B3,1) E(5)
e R e R
+ B(6,j) B(6,m) E(9)

B(3,i) B(1,n) E(3) |B(3,i) B(2,m) E(5) | B(3,i) B(3,1) E(6)
+ B(5,1) B(5,n) BE(8) + B(6,i) B(6,m) E(9) | + BE5,13 BEE,lg EEB%
+ B(6,1) B(6,1) E(9

Where 3 =38 Jsi-31 k=1-2aml =3 m=i~ =l o= 2

GENERAL RECTANGULAR SUB-BLOCK Kab
FIGURE (A2,19b)

qACN

1 By
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A2.,2,3,4 Numerical Integration

Gaussion quadrature was used to carry out the triple integration in

equation (A2,59). The equation was replaced by the triple summation;

. - -
k = Z‘ Z G(ai, aj, ak) Hi Hj Hk sen (X2360)

Where G(ai, aj, ak) is the value of the integrand at the various sampling
points ai, aj, and ak, Hi etc. is the weight coefficients and n is the
number of gauss sampling points,

A,2,2.3.5 Stiffness Formulation of other Isoparametric Hexahedrals

Like the general sub-blocks derived for the quadrilateral elements
(figure A.2.11) the sub-blocks in figure (A2,19) apply to any hexahedral
element, The only difference is formulating the stiffness items for other
elements is in the choice of the shape functions aml the number of columns
in the various matrices,

A2 .3 Gonvergence Criteria

To ensure convergence to the correct solution by finer sub-division
of the mesh, the assumed displacement function must satisfy the convergence
criteria which were discussed in Chapter (1). The three min criteria are:-

(1) Displacements must be continuous over element boundaries.

(2) Rigid body movements should be possible without straining.

(3) A state of constant strain should be reproducible,

The arguments used by Ergatoudeis (86) to show that the Isoparametric
elements conformed to these convergence criteria are outlired here for
completeness,

To satisfy criterior (1) the di splacements must be uniquely defined
over the face of the element, by the displacements of the nodes on that
face only., The shape functions for nodes not on the face are zero, the re-

fore the variation of displacements on that face is identical for both

elements,
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Criteria (2) and (3) are closely related and both are associated

with a displacement function of the form ;

U=2a+ bx + ¢y + dz (a2.61)
Thig is because the first derivatives of the above equation contain
only the arbitrary constants a, b, ¢ and d. The displacements anywhere
within an Isoparametric element can be interpolated from ;

U=NTU +NJU, + N3U3 # sasass (42.62)
Substituting equation (A42.61) into equation (A2.62) for each node of
the element gives ;

U= NT(a + bx_ + cy1+dz1) + Nz(a + bX+ Cy,t dzz) 3. ewe L(A2:63)

1

il 5] b(N1x1+ N212+ < =REN c(N1y1+ N2y?+ Sh)

or, U= a(N1+ N,

+ (N 2.+ Npzyt oo ) (A2.64)
From the definition of x, y anE z in equation (A2.46) , and the property
of the shape functions that ,5%!%;1 that was discussed in section
(A2.1.3.1) , it can be seen that equation (42.64) is an identity with
equation (A2.61) as the elemeﬁt size decreases to zero and x{%xéax .
Further , as the shape functions are functions only of p,q and r , the
local axes, and since any change in the origin of the global axes does
not alter the position of any point (p,q,r) relative to the nodes no

straining can be incurred .
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A 3.1 Introduction

In problems concerning the analysis of continua it is difficult to
determine initial strain conditions, while it is common practice to ignore
body forces as their effect is usually sma2ll compared to an applied load,
The analysis of slope and embankments, where body forces are iﬁportant,
was dealt with as a special cass, Conditions such as non-homogeneity and
orthotropy are common and were allowed for, The input data had to be pre-
‘pared by hand and punched on to cards, Careful thought was given to this
and the effort was kept to a2 minimum,

' It is advisable to check the performance of the various zle-
ments against an explicit solution, To ensure that the results are
indiesative of the elament efficiency, a series of programs were written,
one for each of the zlsments outlined in A;p@ndix(2). The routines in
these programs formed the basis of all the future progranms,

A 3,2 Solution of the Equations and Storage of the Overszll Stiffness latri:

The method of storage and solution of the eguations adepted by the
author was that due to Jemmings and Tuff{5°>. This method stored the
equations using a variable band width technigue using Choleski triangular
factorisation method for their solution,

During the reduction of a set of sparse equations by any variant of
Gaussian elimination, the zeros before the first non-zero term remain zero
if there is no row or column interchange, A variable band storage schene
makes use of this property by storing for each row only those coefficients
betmeen the first non-zero term and the leading diagonal, The rows are

. . . . . 1 -y
stored consecutively in a uni-dimeasional array (W), while another

(14}

wni-dimensional array (DAS) is used to store the locations of th

diagonal terms within the array . For example, the matrix:



Sy o WM™

would be stored as:-

Loecation 1

w .5 W52

2

3
Ts2

-1l

1.2
0 2,2
0 Bl
0 0
0 ~f o2

5 6

and the address sequence becomes:

row no, + 1

DAS

Q 2,2 ¥5,1

10.6

8

10.6 2,6

L7ks

2.6

0 6 o1
8 44 12 13
12 .60 6.1

Some zero terms however will be stored, the number of these depends

upon the least joint number, which in turn depends upon the efficiency

of the overall joint numbering scheme.

Jennings and Tuff further improved their method by using backing

store facilities, This is achieved by the division of the storage array

into a number of segments, each segment containing an integral number of

I'OwS,

The segment size can be chosen to match the core store available,

When the address sequence is known it is relatively easy to obtain the

maximm nuiber of rows that ecan fit into each segment.

Choleski factorisation of the equations L = K X yields a matrix of

the form

& &

i

K

(2 3.1)

where G is the lower triangle matrix with positive diagonal terms,

Substituting equation(43.1) into L = K X gives:
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¢eix} = {u} (4 3.2)
or &Y = {1} (2 3.3)
where ¥ = ET{_X] .

The variables in Y are the modified right hand side coefficients
after elimination, The back substitution process to complete the solution

is the determination of {X} from:
T (
eix} = x {(43.4)

The matrix G overwrites K in the store by use of the recursive relations

i-1
1/2
o _ 2 .

Y [ Kii g ik} for diagonal terms, and
Te=1
j=1

gij = [k.j - 831 gjk] = gjj for off-diagonal terms,
k=1

These relations show that to form any coefficient gij only rows i and j

of the stiffness matrix are required to be stored., The segment containing
row j is known as the passive segment and that containing row i the active
segment,

Adoption of the wariable band width storage scheme makes it unneces-
sary to call all the passive units up to the area to be reduced if this
area lies entirely to the left of the stored elements, To determine the
first passive unit required by an active unit it is necessary to inspect
the column numbers of the first element in each row of the active segment,
If the least of these is eg it is possible to determine in which segment
the corresponding row occurs, and this will be the first passive segment to
be called, Figure(A3.1) shows the area in which elements gij will be deter-
mined for a given active segment q and passive segment p,

As the matrix {L} is kept in the core during the reduction of X, the

reduction of {L} to form [Y] is carried out simultaneously with the



<
/// Terms already reduced

Terms being reduced

Terms unreduced

passive
segment
P

active
segment

q

Figure A3. 1.
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determination of G. When reduction is completed the.segments of G are
called in the reverse order to perform the back substitution to obtain {X},
which overwrites {L}.

Jennings and Tuff also showed that random access disc facilities were
the most efficient method of handling the segments provided that their
size corresponds to a multiple of a bucket size. The maximum bucket size
is 512 variables (1024 words) on I,C,L, 1900 series facilities and this was
therefore chosen as a convenient segment size,

3.5 Formation of the Overall Stiffness llatrix, Tw6 Dimensional Elements

It was seen imAppendix (2) that the stiffness matrix of one linear
gquadrilateral is of order 8 x 8, each row or column represents one of the
two possible degrees of freedom at each node, The finite element mesh
shown in figure(aB.Ea) has only one element (number 3) which is allowed two
degrees of freedom at each node, The other elements are connected to joints
with some degree of freedom suppressed,

The lower triangle of the stiffness matrix for this mesh is shown in
Pigure(A3,2b), where the shaded area represents stiffness coefficients.

The 1limits of the band are shown by double lines and only those terms bet-
ween it and the diagonal will be stored. The band width depends upon the
lowest numbered joint attached to any particular joint, Thus, the overall
joint numbering system must keep the degree of connectivity to a minimum
otherwise a great number of zeros may be unnecessarily stored, The DAS
array is calculated by inspecting the least joint numbers, and the result
for this mesh is shown below the figure(A3.2Dh).

The problem in forming the overall stiffness matrix was to
select the right terms from the general sub-blocks of the element stiffness
matrix and then insert them into the correct position in the overall stiff-
ness array; to do this the author followed a method proposed by Bray (H)
for structural elements,

The degrees of freedom were input in the familiar structural notation,

in which the digit 1 indicates an allowed degree of freedom
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and the digit 0 indicates a suppressed one, In two dimensions, three
degrees of freedom are possible as shown in figuréé 3.3&). Figure@.3.3b)
shows how the joints in figurdA 3,2a) would be represented in structural
notation, FigurdA 3.3c) shows another way of representing the degrees of
freedom in what was called indicator form., These values are stored in the
IR array in a left justified fashion, This is called indicator form be-
cause the digit 1 actually indicates the existence of a degree of freedom
in the X-direction, the digit 2 indicates a degree in the Y direction and
% indicates g rotation.

Consider the general rectangular sub-block, which was derived in sec-
tion(A2133), illustrated in figurelA 3.4a). This sub-block represents the
combined contribution of nodes i and j of an element e, If either of these
nodes are commected at joints with some degree of freedom suppressed then
the sub-block will not be the same shape., Rach row or column exists for
one particular degree of freedom, If either of the joints has no degrees
of freedom then the sub-block will not exist, Consider the sub-block [3,1]
of element 2 in the mesh shown in figure(A 3.2a). These nodes are connected
at joints 5 and 2 respectively. The position of this sub-block in the
overall stiffness matrix is shown by the heavily shaded area in figure@,j.ﬂﬂ.
This sub-block is not the only contribution to this area because the sub-
block [412] of element 1 will also add into the sﬁace. The sub-block
allowed by the degrees of freedom of joints 5 and 2 is shown in figure

(£ 3.4b)., The subscripts for the terms are those allowed by the combination
of the two rows of the indicator array (figure(ai.jc)) for joints 5 and 2,
Joint 5, the larger joint number, determines the number of rows, while
joint 2 determines the number of columns, The two dimensional array known
as the code array (IAA) is shown in figuré(ﬁj.#c).

It was also necessary to introduce another array (DF), containing,
for each joint, the summated degrees of freedom up to and including that

joint. The result for this example is shown below . figurdA 3.2b). The
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degree of freedom of any joint a #% 1 is DF(a)-DF(a-1). The code array
contains labels for the terms in a general sub-block, three degrees of free-
dom being allowed, The combinations of the IR array terms of the two joints
defining the sub-block gives the desired terms, TFor the example of sub-
block(3,1]in figure(#3.4b) this would be labels 1 and 2,

Only one problem remained and that was to put these terms into the
right place in the stiffness array. Only the lower triangle of the stiff-
ness matrix is stored and thus only those sub-blocks that fall below the
diagonal are required, Any sub—block[i,j],where nodes i and J are con-
nected to joints A and B respectively, will be constructed and written away
only when joint number A is greater than that of B,

The position of the sub-block in the overall stiffness matrix is de-
fined by its row number and its distance from the diagonal, The first row
of the sub-block[m,n](attached to A and B, A> B) will be DF(A-1)+1 and the
distance, from the diagonal to the first term, is DF(A-1)-DF(B-1)+1. In
general, for the ith degree of freedom at joint A and the jth degree of

freedom at joint B, the location in the W array is given by:-
L = DAS{DF(A-1)+i+1} - {DF(A-1)-DF(B-1)}+i-j (a3.5)

The procedure shown in the flawchart(A3.1) shows how the terms for
rectangular aub-block[m,n]were selected and written away into the stiffness
array. Nodes m and n are comnected to joints A and B, where A is greater
than B, It can be readily seen that the process can be applied to any two
dimensional element, The method was also independent of the order of the
quadrilateral, The only difference between the treatment of the linear
quadrilateral and say the cubic lagrangian element is that the latter has
many more sub-blocks,

Triangular sub-blocks were treated as a special case of the rectangular

sub-block, Here only one joint decides the shape and position, An element

having n nodes will contribute a maximum of n triangular sub-blocks and
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0.5% (n-1)n rectangular sub-blocks, The required rectangular sub-blocks, those
below the diagonal, are selected by inspecting every possible permuation
of node numbers, ignoring diagonal terms and those permutations where the
joint number attached to the first node is less than that at the second,

Aol Numerical Integration

It was shown in section(A2.1.3.4) that the complexity of the stiffness
matrix of an Isoparametric quadrilateral element required the use of nume-

rical integration., This was achieved by the double summation:

n n
K = Z Z G(aj,ai)HjHi (A 3.6)

=1 i

where a is tne position of the gauss point and H its associated weight co-
efficient, Thus, if an n point Gauss rule is used, the operations discussed

in the previous section have to be repeated n®

times, The B matrix will
have to be calculated for each value of p and g associated with the rule,
formed into sub-blocks, multiplied by the weight coefficient, and written
into the stiffness array, The final coefficients are thus summed up in the
stiffness array,

This operation required the use of a table of values fbr a and H, from
which the various values of p and g together with their weights were se-
lected, These values were stored, in a BLOCK DATA segment, as two two-
dimensional arrays., The values for up to a six point rule were only included
as these were judged to be adequate, These values were taken from Kopal @5%)
and are illustrated in figure(43.,5). The equation(A36) was modified to
become:

n n

T Z Z G{AB(n-4,1) ,AB(n-1,3)} H(n-1,4)H(n-1,3) (£3.7)

The complete process of forming the overall stiffness matrix, including

numerical integration is shown in flowchart(gjv.2).
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A 34+ Calculation of Stresses, IwO Dimensional Elements

In general, engineers are interested in the stress distribution through-

out a media, The stresses should therefore be calculated at as many points
as it is convenient, Tt seemed logical therefore to treat the stresses in
a similar manner to the displacements calculated at each point, InAppend-—

ix (2) it was shown that strains are calculated from the displacements
e} = B {8} (43.8)
and the stresses are then calculated from
fo} = D {e} (4 3.9)

For any element the strain can be calculated at a mode by forming the B
matrix, using the local co-ordinates of that node, and then multiplying

it by the displacement vector associated with the element., Four nodes are
connected to joint 5 in figure (43.2a) so the calculation of strain at one
of these nodes would seem adequate, However, the convergence criteria for
the Finite Element method, with the-displacement model,-ensures displacement
continuity throughout the mesh., Approximate slope continuity is achieved
by careful mesh design. The strain at joint 5 (figurer 3.2a) is best ex-
pressed as the average of the strain at each of the appropriate nodes of

the elements surrounding it., When the average strain was known at each joint
the average stress could be calculated using equatiaﬁ;_3.9). Soils usually
gain strength with depth thus to make the procedure general it is
advantageous to calculate the average stress at each node in a similar
way to that used for the strains.

The routine to calculate strains and stresses uses an array (CD) to
hold the loeal co-ordinates of each node, The final average stresses and
strains were stored in another array (SQ) which has seven rows and a column
for each joint, BSix of the rows hold strains and stresses while the
seventh row holds a counter,

For each element the routine caleulated the stress and strain at
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each node, These values were added into the array SQ at the joint the node
is attached to, Each time SQ is entered at a Jjoint the count at that joint
is increased by one, When all the elements are finished the average strains
and stresses are calculated by dividing the sums, now stored in the SQ array,
by the counts. The procedure is shown in the flow charif s 3.3).

A3.5 0Other Two DimehsionaltBlements

The procedures described in the two previous sections are applicable
to any elements, The method of formation of the overall stiffness matrix
only requires the construction of the two general sub-blocks, In the case
of triangular and member elements, numerical integration is not required
and the process is only carried out once,

The strains in a triangular element were relative to the loeal co-
ordinate system, which was not very convenient, This element is a constant
strain element not requiring strain calculation at each of its three nodes,
For these reasons the strain was calculated at the centre of the element and

then transformed to the global axes using the transformation:

e il = [1° o LL][e
X P q Pa| P
£ M2 M2 MM ||e i %0
¥y p 2 pall°q (4 3.10)
Y 2M L 2M L ML |y
Xy, PP q4q qap|L pg
+
ML
L P q

where L , L , M and Mq are direction cosines of the element,

The stresses are then calculated using the transformed strains and
the results added into the SQ array for each of the three joints attached
to the triangle, Average strains and stresses are again calculated when
all the elements have been processed,

A3.6 Plane Strain Linear Flastic Analysis Programs

Initially six programs were written, One for the triangular element
and one for each of the Isoparametric elements dealt with in Appendix(2)

A1l these programs were very similar, Indeed, one program could have been



FLOWCHART (/3.3)

——

ETASTIC MATRIX

DEFINED BY = =— = == — — —

EQUATTION (42,34)

e
———

SELECTED FROM
DISPLACEMENT
VECTOR {X}

LOCAL
CO-ORDINATES

DEFINED IN
EQUATION 3 2.32)

PRL1 k) = &
8Q(2,k) = ey

SQ 3,}(% - ny

5Q }+:k i

SQ S,kg = o,
SQ(6,k) = 7,
S2(7,%) = COUNTER

O TR, SR . 1

(—

ELEMENT i

SHEET 1

5r

JOINT k

CONNECTED AT

NODE j

Y

6‘

SELECT
p;j and g;

— e e see S e

|

FORM Bj

8Y

9

kf}fﬁﬂdj

Y

10

EDD e} AND
{o}; INTO SQk
AND INCRE
COUNT A58

NODES




FLOWCHART ( 43.3)

JOINT
NUMBER

C = NUMBER OF
NODES ATTACHED
T0 JOINT k

TABLES OF
AVERAGE STRATN
AND STRESS

SHEET 2

NO

4

PRINT
RESULTS

2

END




182,

written containing all the element sub-routines. However, this would have
been very innefficient for the series of analyses carried out in Chapter(2),
where meshes were composed of only one type of element. The ease with which
files are handled under the I.C.L. GeorgelV operating system meant that
new programs, and even new suites of programs, could be assembled from the
various available sub-routines without much difficulty. These programs all
carried out linear elestic analysis of an isotropic homogeneous continuum
subject to surface loading. The procedure followed by each of the programs
is shown in flowchart (A3.4).

Several of the routines, like those involved in reading the load vec-
tor and solving the equations, are exactly the same for all elements.
These were stored as library routines. Hence, a program like the one in
flowchart (A3.4) would be formed by a Master segment, the two routines
ISOQUADn and ISGnSAS, for the formation of the overall stiffness matrix and
calcutation of stresses, plus the standard routines in the library.

Once a routine has been called and used it may not be needed again.
To make the most efficient use of the core store these routines were kept
on disc and called as required. This technique is usually called overlaying
and was performed under the I.C.L. system by selecting areas of core, the
routines are put into these areas as they are called, overwriting the rou-

tines called previously. The overlay scheme is shown in figure(A3.6).
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A3.7_Formation of Overall Stiffness Matrix, Hexahedral Elements

All the points discussed in the previous sections can in general be

extended to three dimensional elements. The method adopted for storing
and solving the equations applies to all elements. The differences arise,
in that a joint is in general allowed six degrees of freedom as shown in
figure(A3.7a).

The method of forming the overall stiffness matrix, as it applies to
three dimensional elements, is again most conveniantly illustrated by
means of an example. Consider the four linear Hexahedral Elements represénting
a material enclosed in a smooth sided box shown in figure(A3.7b). The degrees
of freedom in structural notation and in the indicator form are shown in
figures(A3.8a) and (A3.8b) respictively, for the joints numbered 1 to 12.

The general rectangular sub-block derived for the Isoparametric
Hexahedral element in Appendix(2), figure(A2.19b) is represented in
figure(3.9a). The code array (IAC) for three dimensional elements is shown
in figure(A3.9b).. This array contains labels identifying the terms in the
general sub-blocks. Consider the formation of the sub-block (5,3), of
element 2 (figure(A3.7b)), the nodes of which are connected to joints 8 and
5 respectively., Figure(A3.9c) shows the sub-block (5,3) formed from the
combination of the degrees of freedom in figure(A3.8b). In the program this
would mean selecting the terms labelled, 1 , 4, 8 , and 5 as shown beside
the sub-block, would be selected and calculated. The process of forming the
sub-block (I,J) of an element is shown in flowchart(A3.5). Triangular sub-
blocks were again treated as a special case, since they are dependant upon
one joint only.

The complete process followed in forming the overall stiffness matrix

of a mesh of Hexahedral Elements, including numerical integration, is shown

in flowchart(A3.6).

The method discussed in section(A3.4) is applicable to these elements.

The only modification necessary is that since there are six components of
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stress and strain, the SQ array must have thirteen columns.

Initially three programs were written, one for each of the elements
described in section (A42.2). These programs were all intended to analyse
linear elastic homogeneous isotropic materials subject to surface loading,
thus enabling accurate checks to be made. However, all the routines were
written bearing in mind the fact that their future use would be in less
ideal conditions. The procedure followed by the program is shown in

flowchart(A3.7).
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