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(1)

SYNOPSTIS,.

The work presented in this thesis is to produce
general computer programmes for the automatic optimum design
of realistic, rigidly jointed multi-storey frames. The work
carried out can be divided into three main parts. In the first
part, a non-linear programming algorithm is proposed for the
minimum weight design of structures in which joint displacements
are included as design variables and the design problem is formu-
lated by the matrix displacement method. An approximating pro-
gramming method is employed to obtain its solution, This method is
general and can be ejually applied to rigidly jointed and pin
Jointed structures subject to deflexion and stress constraints,

The move limits may be arranged, so that the number of iterations
required to obfain the final design can be kept to a minimum,

In the second part, the theorems of structural variation
are extended and shown to be applicable to rigidly jointed structures.
These enable the prediction of the behaviour of a pin jointed
structure, from the results of analysing another, more general,
or parent rigidly jointed structure. It is shown that these
theorems can be applied to select a more suitable shape of a
structure in terms of minimum weight while satisfying stress and
deflexion requirements. ‘

In the third part, the theorems of structural variation
are employed to evaluate the signifiicance of each member in the
behaviour of a rigidly jointed structure and the problem of minimum
weight design is extended to include shape. A method is proposed for
the design of rigidly jointed structures of optimum shape with stress
and deflexion limitations. Finally, this method is applied to a

number of frames some of which have architectural constraints.
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NOTATIONS.

83 direction cosines of a bar (Chapter 1)

a,b,c,d,e,f stiffness parameter

e; bound on displacement variable x,

£ matrix of member forces due to unit axial loads

c;fci constants (Chapter 3)

fij force in m?mher j due to unit loads at the ends‘
of member i

£(x) objective function (Chapter 1)

fii matrix of axial forces for members due to first
end unit loading for the variation of second
moment of area of member i

gk(x) type I inequality constraints

hj(x) equality constraints

k member stiffness matrix

&p’&c length of tensile anl compressive member (Chapter 1)

&p,mp direction cosines

m&,mu move limits

£.. matrix of first end moments for members due to
ii first end unit loading for the variation of
second moment of area of member i

mg . matrix of second end moments for members due to

ii first end loading for the variation of second
moment of area of member i

Py axial force in member i

PV, pv2 constants (Chapter 3)

ra. variation factor for area variable of member i
i

rﬁ. variation factor for second moment of area
s variable of member i

r the penalty parameter

Sii matrix of shear force for members due to first

end loading for the variation of second moment
of member i

Sz(x) type II inequality constraints

uj new design parameter unrestricted in sign (Chapter 1)



(1v)

8 original volume before removing member i

v volume of feasible structure on removal of member i

s vector of variables

X3 i-th variable (Chapter 1), deflexion at node i
(Chapter 2)

X5 vector of variables at i-th design point

Zia vector of variables at (i+l) the design point

xi',xi" new positive variables for xi

xi‘ element of new deflexion vector

y distance of extreme fibre from neutral axis of member

zj° initial design parameter of element j

A cross-sectional area

Ai area of the adopted section for group i

A displacement transformmation matrix, area variables
(Chapter 2)

Am* new area for member m

A119B14,F14 coefficients of area variables in the overall

stiffness coefficient matrix

A124B13F12,C,T,0,f coefficients of second moment of area variables
in overall stiffness coefficient matrix

Azi,Aq3 coefficients of area variables in overall stress
coefficient matrix

B load transformation matrix, matrix of coefficients
of variables in the axial stresses (Chapter 2)

Eh) ES submatrices of overall stress coefficient matrix

B341,B32,d,e,f coefficients of second moment of area variables
in overall stress coefficient matrix

_Eb,ﬁr submatrices of B

c unit load m trix

c(a) matrix of coefficients of area variables in bending
stresses

E Young's modulus of elasticity

F overall flexibility matrix, axial force natrix for

members due to external loads (Chapter 5)

Fy component of the external force at joint i



(v)

Ebb’zbr’zrb’zrr submatrices of F
FI axial force in member j after the variation of
J second moment of area at the first end of member i
G(4,X) stiffness constraints
H horizontal force
Ii second moment of area of member i
Ii' new second moment of area of member i
Imf new second moment of area of member m
K overall stiffness matfix
K* new overall stiffness matrix
K(A) stiffness coefficient matrix
;K'BR’I-SRS’-K-SR’ESS submatrices of K
L load matrix
Li length of member i
L span of two storey frame (Chapter 5)
Mo matrix of first end moments for members due to
external loads
Es matrix of second end moments for members due
to external loads
M, bending moment in member i
Mo moment at the first end of member i
i .
My moment at the first end of member j after variation
fij of the second moment of area at the first end of
member i
MI moment at the first end of member i after variation
fii of the second moment of area at the first end of
member i
MI moment ef the second end of member j after variation
sij of the second moment of area at the first end of
member i
P,Q local member axis
P vector of member forces
RHS matrix of the right hand side of constraints in
linearised problem
53 ' force in a bar (Chapter 1)
SAX’SAY resultant of shear force at the first end of member

on the reference axis



(vi)

SBX’SBY resultant of shear force a? the second end of
member on the reference axis

SI. shear force in member j after variation of second

ij moment of area at the first end of member i

S matrix of shear force for members due to external
loads

U vector of member displacement

v structural volume (Chapter 1), vertical force
(Chapter 3)

v vector of design variables

w objective function

X Joint displacement vector

X* new joint displacement vector

Eb displacements corresponding 2%

Er displacements corresponding ;&

o proportional increase in area of member i

a proportional increase of member areas

ﬂi proportional increase of member second moment of area

Yi new displacement variable

8A change in area

8L change in second moment of area

Svi change in volume due to removal of member i

531 deflexion at joint j due to axial unit loading

€ ' maximum permissible strain (Chapter 1)

Y density of material for group i

’51* proportional increase of member areas and.
second moment of areas

Vsl 8,a,p constants (Chepter 5)

vj proportional increase of member areas and second

moment of areas

Ni37MR,N3,Mas7s,Ne constants (Chapter 5)

93 deflexion at joint j after changing area of
member i '
5 force in member i

75 3 | force in member j while member i is changing



I>

B & P

Cue

(vii)
material density
combined stress in member i
permissible tensile and compression stress (Chapter 1)
new stress in member 4
bending stress
matrix of displacements due to unit loads

displacement of node i due to unit loads at
the ends of member J

displacement of node i due to alterations in
member j '

new displacement at node J due to removal of

member 1
vector of permissible displacements
allowable deflexion at joint J

deflexion at joint j due to external lozds

the change in design parameter zj
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CHAPTER 1

HISTORICAL REVIEW AND SCOPE OF THE PRESENT WORK .




1.1) INTRODUCTION.

Structural design can be considered as a decision making
process in which a certain objective has to be achieved and at the
same time some design regquirements have to be satisfied. In general
the first decision concerns the shape of the structure. The section
propertics of members are then determined to make the structure sustain
the acting external loads safely.

This used to be accomplished using an iterative method in
order to obtain a reasonable and feasible design. After World War II
the development of a new branch of mathematics known as operational
research made it possible to obtain the optimum design as opposed to a
feasible design, In particular, availability.of a section of this
science called mathematical programming and computers has constituted
a base for the rapid growth of the interest in the optimum structural
design. In most of these works, the minimum material cost was taken as
an objective, This was partly because the weight of structures can
easily be expressed in terms of the design variables.

Formerly, much effort was spent on determining the optimum
sectional properties of the members so that the weight of the structure
could be reduced. Depending on the failure conditions chosen, both
elastic and plastic theory were employed in the formulation of the
design problem. Each formulation, obviously, had its own design re-
quirements, However, it was later found possible to obtain much greater
weight reduction with changes in the geometry than with changes only
in member sectional properties. Hence, optimising the shape of a
structure which is of major importance has attracted great interest in
recent years.

It is now apparent that the choice of the optimisation pro-
cedure for solution of the design problem is equally as important as
the selection of the method for its formulation, Hence, in this chapter,

firstly the algorithms of mathematical programming which are utilised
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in the solution of the design problems are reviewed, Later, the pub-
lished work on structural optimisation is reviewed considering the

optimisation methods which have been used to solve the design problem.

1.2) HISTORICAL REVIEW OF OPTIMISATION METHODS.

In the last two decades, a large number of optimisation
methods have been developed and they have been applied in every field
of engineering. Practical applications have shown that the efficiency
of these methods depends on the type of problem to be solved. Those
which have a reasonable amount of experimental evidence, reliability
and guarantee of convergence are obviously preferred and applied in
structural design. The review of these optimisation techniques which
are widely utilised in structural design will be given considering

individual topics.

1.2.1) LINEAR PROGRAMMING,

A general linear programming problem may be stated as

follows:=-
Maximise W = f(xi) i =1, eceyn
Subject to
hj(xi) = d, 3 =1, eeesp
gk(xi) € by K = D+lyeee,D+T
S&(xi) > e, £ = p+r+l,ee.,p+r+t
x; 2 0

where W is the objective function, hj(xi) are equality constants and
p is their total nuaber, gk(xi) are known as type I inequality con-
straints and r is their total number. S&(xi) are known as type II
inequality constraints and t is their total number. n is the total
number of variables.

The first publication on linear programming was by

Kantorovich(®) in 1939, However, . ' —~ : after World War IIj the
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simplex method by D&ntzig(‘? became available and provided great
application of linear progrémming in every field. In the simplex

method type I constraints may be transformed into equalities by adding

slack variables xn+1 cee xn+r such as
p+r
Z gk(xi) +X T b V=1yeee,l
k=p41

Type II inequalities can be converted into equalities by subtracting

surplus variables x .
p n+r+a? **° 2 X nipst?

p+r+t

S&(xi) - = e& H = 1’...’t

xIH-I"[-,U
&=p+r+s

The reason for these is to obtain a basic feasible solution in order to

start simplex iteration, The detailed explanation of the method can

be found in“fs). There is no obvious basic feasible solution in the

case of equality constraints. This is overcome by introducing artificial

variables, In the final simplex table these artificial variables

should not appear as they violate the equality requirements and it is

necessary to reduce them to zero during the simplex procedure. This

can be done by the device suggested by Charnes(®) and known as

'Charnes M" method. In minimising a problem a lafge positive price M

is assigned to each of the artificial variables in order to force them

to become non-basic. Once this happens they cannot become positive

again because of the price M and the nature of the simplex method. It

is convenient to write the terms involving M on a separate line. Con-

sidering this line as an objective function, normal simplex iterative

procedure is carried out until all artificial variables are removed.

There are three different stages at the end of the procedure:~-

1) All artificial variables become non-basic and the optimality

criterion is satisfied. This case indicates that the optimal solution

has been obtained,
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2) One‘or more artificial variables are basic variables with values
of zero and the optimality criterion is satisfied. This condition
also indicates that the optimal solution has been obtained.
3) One or more artificial variables cannot be madé non-basic e.ge.
they have positive values. In this case there is no feasible solution
to the original problem,

Another way of treating artificial variables has been de-
veloped by Dantzig and Orden? et al. at the RAND Corporation in
1954. The procedure consists of two phases. In phase I a new objective
function is defined by assigning a price of +1 to the artificial variables
and a price of zero to other variables. The simplex calculations are
then carried out to remove artificial variables., After achieving this,
in phase II the actual objective function is minimised without having
artificial variables or having some of them at zero level, Phase I is
terminated if one of three situations is reached:-
1) The value of the new objective function is zero and all the
artificial variables are non-basic. In this case the basic feasible
solution has been obtained.
2) The value of the new objective function is zero and one or more
artificial variables are basic with a value of zero. This means that
a degenerate basic feasible solution has been obtained.
3) The value of the new objective function is less than zero and one
or more artificial variables are basic. This shows that there is no
feasible solution to the original problem.

If conditions 1 or 2 are reached at the end of phase I,phase II
proceeds as a normal simplex iteration.

The revised simplex method was also developed by Dantzig,
Orchard-Hays et al.(®)., This method uses the same basic principle as
the simplex method., It proceeds from one basic feasible solution to

another in such a manner that at each iteration only one basic variable
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changes. As a result only the essential quantities are computed which
saves quite a large amount of computer storage. If the original problem
contains a high proportion of zeros, which in the case for many practical
problems, the revised simplex method requires fewer arithmetic operations.
This reduces the computing time and the rounding-off errors. For
problems that require artificial variables to be added, a two phase
technique is employed by the revised simplex method.

It was in 1947 John Von Neuman showed that every linear

programming problem can be formulated in its dual form. Any given

primal problem

Maximise W =C° X
Sub ject to
A X< B
X =20
has a dual of
Minimise Y = B’ U
Subject to
Auzg
Uuzo0

In the primal A is a m x n matrix where m is the number of constraints
and n is the number of variables, C and X are n dimensional vectors
while B is an m dimensional vectar. In the dual A? is an n x m matrix
which is the transpose of A and U is an m dimensional solution vector.
In 1954 C.E.Lemke's‘®) dual simplex method became avail-
able. This starts with an initial basic non-feasible solution and aims
to obtain a feasible basic solution, The selection of basic and non-
basic variables is the only difference between the dual and the standard
simplex method. The dual simplex method may be preferred in problems
which have more constraints than variables and may be an alternative
to the use of artificial variables.

When using the simplex method, it is assumed the variables



in programming problems can have continuous values between specific
limits. In practice, however, variables can only have discrete values.
This difficulty can be overcome by Integer programming such as that

due to Gomory{20),

1.2.2) NON-LINEAR PROGRAMMING.

In the real world there are few problems which are entirely
linear. Most structural design problems are indeed non-linear.
Particularly, if elastic theory is used for the formulation, the design
problem turns out to be non-linear. There is no general method for
solving non-linear programming problems. None of them is superior under
all conditions. The mathematical properties of linear programming problems
have been studied in depth and efficient computer programs have been
developedl 728+951%) | mhis makes the idea of approximating non-linear
programming problems by a sequence of linear programming problems
attractive. After a finite number of iterations such a procedure
converges to an optimum solution. The simplex method is used far solving
the linear programming problem during each iteration. An altermative
method is to replace the constrained non-linear programming problem in an
unconstrained form, and to solve this by one of the unconstrained algorithmg.
This also converges to an optimum solution after a number of iterations.
There are also methods which approach the problem directly. Thesa start
from a feasible point and find a direction to move along to improve the
objective function without violating the constraints, After moving a
short distance this direction is redetermined and the procedure is
repeated until the ob jective function cannot be improved. A review

of non-linear programming methods is given by Zountedijk{23),

1.2.2.1) SEQUENCE OF LINEAR PROGRAMS (SLP).

There are two methods of linearisation. The first makes

use of a Taylor series and takes the first order terms to approximate
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a non-linear function into a linear form. The second replaces each
non-linear function by a series- of linear segments.
In 1960 Kelley'%®) used the first method of linearisation
to devise an algorithm known as the cutting plane method. Any non-

linear programming problem of the form:-

Min, W = £(x,) 1 = As50s5n
Subject to
hj(xi) =0 ] & Lyeaa?
gk(xi) €0 k = r+l,eee,m
x; 2 0

can be linearised at any arbitrary point X0 to become

Min W = f(xio) + vr(xio)(xifxio

Subject to

I
o

hj(xio) % th(xio)(xi-xio) -

s
o

Bi(%30) + Vg (= ) (xymx; )

where

ve(x; ) = [6%1,0 -g—ia’o PP, % ] .
is known as the gradient vector. fhe method proceeds as follows:-
1) The objective function and the constraints are lineari.sed at
any point X0 and the resulting linear programming problem is solved.
2) The results are substituted in the non-linear constraints and the
most violated one is found,
3) This constraint is linearic sed at the optimum solution %, and
then added to the linear programming problem to obtain a new optimum
solution,
4) Steps 2 and 3 are repeated by adding one extra linearised constraint
at a time until all the non-linear constraints are satisfied within the
acceptable accuracy.

In 1961 P.Wolfe®4) suggested that by utilizing duality,

convergence of this process may be accelerated..
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Some undesirable points of the cutting plane method prevent its
application to every non-linear programming problems. This is parti-
cularly so with nénPCanex practical problems, When the set of con-
straints is convex the procedure converges to a global optimum. If
this is not so, the convergence cannot be guaranteed and the soluticn
is not globally optimum, Another difficulty which arises with the
non-convex problem is that of oscillations., The final difficulty is
that if the optimum solution of the original non-linear problem is not
a vertex of the feasible region, numerical accuracy becomes unacceptable
because of round-off errors. However for structural design problem,
the optimum point is often at a point of intersection of the constraint
boundaries.

Griffin and Stewart'®®) also used the Taylor series to linearise
the non-linear problem, Their.approach which is known as either the
Move limit method or Approximating programming does not suffer the
difficulties which arise in the cutting plane method. Complete re-
linearisation is applied at each iteration and move limits are imposed
on the variables which do not allow them to move very far, This method
proceeds as follows:

1) The objective function and the constraints are linearised at any
arbitrary point Xi0 and by applying move limits additional constraints
are imposed.

Min W = £(x; ) + V&(x; )(x;~x, )

Subject to

hy(x;o) + th(xio)(xi_xio) =0
gk(xio) * vgk(xio)(xiﬁxio) &0
(1gm6).xio <x; € (l+mﬁ)xio
where o, and m, are move limits which are positive constants,
2) The result Xip is taken as the' optimum solution and relinearisation
is utilized., The process is repeated until convergence is obtained.
In Approximating programming constraints do not have to

be convex, There is no restriction on the initial design point which can
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be feasible or infeasible. The number of constraints which are
linearised at each iteration does not increase., In the cutting plane
method this is not so. Approximating programming method can easily
be adopted for use by computer to facilitate calculations. In some
problems the solution may oscillate., This is overcome by terminating
the procedure when move limits have the value of predetermined limits.
If functions are highly non-linear, linearisation may not be efficient
and convergence cannot be guaranteed. However, Approximating pro-
gramming is one of the powerful techniques ard allows a large number
of variables. Because of this advantage it has found wide application
in structural design. The algorithm produced by H.0.Hartley and
R.R.Hocking‘ie) also utilised the Taylor expansion.

The second method of linearisation is to approximate a
function by a series of linear segments. This is known as piecewise
linearisation and a wide explanation of the method is given by
Hadley‘*?), One of the conditions in the use of the method is that
the objective function and constraints must be separable. The degree
of approximation can be improved by increasing the number of segments
to be considered. However, this will also increase the number of
variables involved in the problem. This is the main disadvantage of

the method which limits the size of the problem to be solved.

1.2.2.2) SEQUENCE OF UNCONSTRAINED MINIMISATION TECHNIQUES [SUMT].

Sequence of unconstrained minimisation techniques have been
wiﬁely applied to solve structural design problems in many recent
research works(€8:68s69)  Tho reason for this is that the algorithms
to minimise unconstrained problems are more powerful and better
established than the methods for constrained optimisation. Further,
formulation of the design problems by these methods is straightforward

which simplifies the computer programming.

The basic idea of these methods is to transform the
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constrained non-linear problem into an unconstrained one by multiplying
the constraints by a factor and adding them together to the ob jective

function. Consider a constrained non-linear programming problem of the

form:=-
Min W = f(xi) i=1,eeeyn
Subject to
gj(xi) £ 0 J=1lyeee,m

which can be converted to an unconstrained problem of the form:-

Poyry) = £(x;) + dlealx,)s 8a(x;)seeergy(xy)om,]

where r is known as the responde factor and ¢ is some function of
constraints which creates a penalty for violating them. For this
reason this technique is also known as the penalty function method.
n is the number of variables while m is the total number of constraints.
P(x,r,) is the new unconstrained function which may be minimised by
one of the unconstrained minimisation techniques.

The procedure starts with an arbitrary point Xp and then
the function P(x,r,) with a predetermined value of ry = ri is minimised.
This is continued until the point Xo converges to the optimum Xpe

Courant!%®) wag first to use a type of penalty function
method. However, the method introduced by Carroll¢#®? in 1961
has formed a basis for much of the recent work. He called this
approach the created responde aurface method. Theoretical foundation
was established and developed by Fiacco and McCormick(3®) in 1964
which made it possible to handle multivariable systems. ‘The term
"sequential unconstrained techniﬁue" is used by them for their aproach.

There are two types of penalty functions. The first is

known as the exterior penalty function method in which the new

function P(xi,rk) has the form:-



P(xi,rk) = f(zi) + T EE: ¢[gj(xi)]
. e

which is constructed by multiplying the penalty function by a

respond factor Ty

portionally. The method proceeds by selecting a value for r.

so that when r is increased ¢ changes pro-

P is then minimised., The minimum point is then substituted in all
the constraints. If they are satisfied to an acceptable accuracy,
the procedure is terminatedj if not, then r is increased and

P(x,

;1>T)) is minimised again. This is carried out until the con-

straints are satisfied to an acceptable accuracy. The algorithm can
operate from infeasible initial design points as well as feasible
initial design points.

The second method is known as the interior penalty
function method“and is commonly used in structural design. In this

method, the new unconstrained function P(xi,rk) has the form:-

m

Prym) = 2(x) v 5 ) 1/gy(sy)]

J=1

where the penalty term creates a barrier between the feasible and
infeasible region, This is why they are also known as barrier-
functions{®**), The algorithm starts minimising the function
P(x,rk) for a given feasible point with a determined value of ry.
The convergence criteria is then checked. If it is not satisfied,
then r, is reduced by a factor a, I = ary where @ < 1 and the new
function P(x,rk) is minimised with this new value of r, .. The pro-
cedure is repeated until the convergence criteria is satisfied. Some
disadvantages of the method have been given by Ramakrish and Campbel1(22),

In the case where the design problem contains equality

constraints, the interior penalty function suggested by Fiacco and

McCormick{®3) has found considerable application. It has the form:



p

P(xi,rk) = f(xi) + Ty EE: E}%EET + r;?' E{: [h-&(xi)]2
J=1

=1
where h&(xi) is the equality constraint and p is their total number.
This method requires a quasifeasible initial design point to start
"with, After a finite number of iterations it converges to the optimum
solution. However, practical applications have shown that diffi-
culties may arise in obtaining the optimum solution when available
unconstrained minimisation techniques are used, A detailed account
of penalty function method is given by L.R.Fox(34),

- The selection of an efficient method for unconstrained
minimisation is extremely important. There is a wide choice of
methods of search., A review of these methods is given by Spangcas)
and also by J.Kowalik{38), The procedures available far unconstrained
functions can be divided.into sequential and nonsequential methods.
Nonsequential methods make use of random numbers. Grid search and random
search are two of the methods which belong to this group. Sequential
techniques converge to the optimum point after a number of successive
iterations. They define a new point from the current one using the

following equation:-

x =X. + . S.
i

141 i i

where Xs is the starting value for the ith step, Si is ith direction
vector, a; ith step length and X e is the design vector corresponding
to the minimum of the unconstrained function to be minimised along the
current direction Si‘ The sequential methods consist of two groups.
The first group is known as the gradient method. They move along the
negative direction of gradient vector at possible rate. As a result
they require computation of first or higher order derivatives of the
function, in addition to the values of the optimised function itself.
Convergence is generally quick in these techniques. In the case where

the computation of first or higher order derivatives becomes practically
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impossible or laborious, the second group of sequential methods can

be used for unconstrained minimisation. This group is known as the

direct search method. Because they do not require the evaluation of
derivatives, they are preferred in complex or large problems,

Among the gradient methods the variable metric algorithm
is a sophisticated technique. This was devised by Davidon(37)
in 1959. It makes use of conjugate gradients. This method which was
later modified and developed by Fletcher and Powell(2®) is quite
powerful and widely employed in conjunction with penalﬁy function
methods.

Alternatively, some of the direct search methods were pro-
posed by Rosenbrockﬁag), Powe11(20) and others. For problems of small
dimensions all these methods have been found to work well, However,
when they applied to problems of large dimensonality difficulties may
arise. The method of Powell has been found to be superior to most of
the direct search techniques currently available{3®), The investi-
gation which was carried out by Asaadi{®%) has shown that the Variable
Metric method of(38) jg slightly more advéntageous than the direct
search method of Poﬁell.

Both gradient and direct search methods need one dimensional
search techniques for which Fibonacci and Golden-Section search can

be employed which are found to be quite efficient(3®),

1.2.2,3) BASIC NON-LINEAR PROGRAMMING APPROACHES [NIP].

These methods are in the class of direct search algorithms.
They staft at some feasible point and then find a direction to be moved
along which the objective function can be improved while all the
constraints are satisfied. This kind of direction is called useable-

feasible direction, This travel is expressed in the form:-



where Si is the direction to be moved amd, a is the s tep size. The
travel from x5 to X 1 is achieved in two stages. In the first stage

the direction vector S5; is computed. Since this vector has to be

feasible and useable, it will satisfy the relationships:-

s%.98(x) < 0

S g5(x) <0

where ¥f(x) and gg (x) are the gradient of the objective function

and active constraint respectively. There are many methods which

make use of the above idea. Those which were successfully applied

in structural optimisation problems are mentioned in this chapter.
Rosen's{33) gradijent projection method obtains the new

feasible direction by using the Kuhn-Tucker¢®®) conditions. It starts

from a feasible point and moves in the direction of -9f(x), until a

constraint is encountered. Further movement cannot be made to improve

the objective function without violating the constraints., The new

direction is obtained by projecting -¥f(x) on to the constraint hyper-

plana. The move aiong that direction will improve the objective function

and remains within the feasible region. This direction is given by

8; =P.¥E(x;)/|R.VE(x,) |

where P is a projection matrix and given by

*

..E=...];"NNT 2k

=K k)
in which N is the gradient vector of all active k constraints. Using
this direction 8;, the step size g, 1is determined and the procedure
continues until the projection P is zero.

The method is efficient if all the constraints are linear
and becomes less efficient for non-linear constraints. Computational

difficulties arise in inverting (lﬂ_ﬁ _1\_Tk) and the development of a

computer program for this purpose is not straightforward.
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The idea of the best feasible direction was first

suggested by Zountendijk§34) who s tarts from a feasible point. A
step is taken until reaching a boundary of a constraint. The
increase o in the objective function is then maximized while none
of the active constraints are violated. This is done over a smalll
interval by linearising the ob jective function and constraints. The
disadvantages of the method are given by Zountendijktiz).

Another feasible direction method is the genéralized
reduced gradient algorithm which was proposed by J.Abadie and
J .Carpentier{®3) in 1969. The method which is an extension of
Wolfe's(36) algorithm can accommodate both non-linear objective function
and constraints. It has been claimed in their paper‘as) that this
method can handle large non-linear programming problems-in less

computer time than other known methods.

1.3) HISTORICAL REVIEW OF STRUCTURAL OPTIMISATION,

A structural engineer aims at designing a structure which
sustains the extermal loads safely while satisfying the imposed design
requirements, This is carried out by first deciding the configuration
(topology and geometry) of the structure and then determining member
sizes for this fixed geometry. In the past, some work has been directed
towards the optimisation of member sizes for fixed geometry where the
objective was taken as the minimum material weight.

However, later, it was understood that the configuration
of the structure could be a design parameter.and that it is possible
to reducea the cost of material by optimising its configuration as
well as the member properties. The review of structural optimisation
will be given according to this framework, A comprehensive review of
recent developments is also given by Sheu and Prager'®?), L.Schmit(2®),

K.I.Majid¢®®) and others.



16.

1.3.1) OPTIMISATION OF FIXED SHAPW STRUCTURES.

The design problem of structures having fixed shape can be
formulated by employing either the plastic theory or the elastic theory.
The use of either forms the feature of the design problem. Structural
design by plastic theory leads to a linear programming problem. This is
due to the fact that simple plastic theory assumes a rigidly jointed
structure statically determinate at Qollapse. The equations of static
equilibrium are then used to evaluate the sectional properties. TFor
this reason, deflection requirements are not included in the design
problem. Because the elastic theory does not make such assumptions, the
design problem by this theory turns out to be non-linear., Hence, the
review of fixed shape optimisation will be carried out considering these

topics.

1.3.1.1) STRUCTURAL DESIGN BY RIGID PLASTIC THEORY.

Plastic theory was developed and widely published in the
early fifties by the Cambridge team of Baker,Heyman and Horne(4?). It
considers the state of failure and derives the sections required to
sustain the working loads. Heyman{#%) has described a method of
inequalities to derive the minimum weight solution, but the method is
cumbersome and becomes almost unworkable for complicated structures.
Foulkes(43) has shown that plastic minimum weight design can be reduced
to a linear programming problem, but his approach is suitable only for
hand calculations. Livesley'4®) was the first to produce a computer
program to design frames. He used a modified form of steepest descent
to solve the design problem. Because the plastic theory neglects
the deflexions and applies equilibrium equations to the undeformed
state of the structure, the deflexion constraints do not appear in the
design problem,

M.F.Rubinstein and J.Karagozian“‘) have used the weak beam-

strong column model for tall frames so that the frame becomes a
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mechanism when hinges form at the points of maximum moments in the
beams, The deflexion constraint was formulated in terms of energy
stored in the beams. In this way they have presented a design
approach for the preliminary design of tall frames.

Toakley¢45) has formulated the design problem in a similar
manner to Livesley aﬁd obtained its solution for a discrete set of
sections. Three different techniques were employed. These are the
search technique, Gomory's algorithm and the random-step method. It
was found that convergence difficulty may arise in the use of Gomory's
mixed integer algorithm. He(4®) a1s0 described an efficient way of
using the dual simplex algorithﬁ in the minimum weight design of
rigidly jointed structures by the rigid-plastic theory. In his later
work{47) the optimum elastic-plastic design of rigidly join%ed structures
was introduced, in which the initial deformed shape was assumed. The
actual deformations and the axial forces in the members were determined
by employing the elastic~plastic analysis program which was developed
by Jenning and Majidﬁ‘“l. .Using the new deformed shape the constraints
were reformulated. This procedure continued until two successive
designs were identical. However, it was stated that this approach
does not guarantee that collapse due to instability does not occur
before the required load factor is reached.

JM.Davies{4®) described an approximate minimum weight
design method which is épplicable to steel frames., It is known that
in plastic design the conditions of equilibrium, mechanism and yield
are required to be satisfied. However, an approximat;on can be carried
out in the design problem by considering only the conditions of
equilibrium and yield. The resulting problem is solved by residual
bending moment distribution. It was claimed that this method required
less computer time and storage as opposed to linear programming. The

excess minimum weight over the true optimum was considered to be less

than 2%.
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1.3.1.2) STRUCTURAL DESIGN BY ELASTIC THEORY.

The design criteria which is commonly used in elastic
structural design is that stresses in the members and deflexions
at the joints of a structure should not exceed certain permissible
values, These limitations may be imposed by appropriate specifi-~
cations such as B.S.449. Hence, it becomes necessary to express the
deflexions and stresses in the structure in terms of design variables.
This can be carried out by employing either of two matrix methods of
structural analysis.

In the case of the matrix displacement method the design
problem becomes one of finding the sectional properties of the members
so that three constraints are satisfied. These are the stiffness
equalities, the deflexion and the stress inequalities, When the de-
flexions are expressed in terms of sectional properties by inverting
the overall stiffness matrix of the structure, the first two con-
straints turn out to be the same.

An alternative formulation uses the matrix force method
to find the same member properties while satisfying the compatibility
constraints which are equalities, as well as the deflexion and the
stress inequalities.

Whichever method is employed to formulate the design
problem results in a non-linear programming problem. Different
techniques were employed by various authors to obtain its solution.
The review will be given according to this framework.

i) SOLUTION BY [SLP].

The first application of the linearisation technique to
the structural design problem was doen by FiMoses{®®), A three bar
truss and a one storey frame each subjected to two distinct load
conditions were solved by the cutting plans method and significant
savings in the weight of the structure were achieved with only one

iteration of linearisation.
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Reinschmidt K.F. et al.'®*) formulated the design
problem by the matrix displacement methﬁd. Both stress and deflexion
constraints were considered. The move limit method was adopted for
solution of the problem, Various convergence aids have been employed
such as move limits, constraint accumulation and second order
corrections., Each of these have been applied in a number of ways.
Adoptive movelimits were utilised to prevent fluctuation. The method
of constraint accumulation was found successful when the problem was
strictly convex. It was stated that the best compromise of all would
always remain dependent on the type of problem. In their later work‘sa)
detailed explanation and the comparison between iterative design,
which imposes no restriction on displacements and assumes that the
best structure is a fully stressed one, and structural optimisation
was given, They have also shown that the use of reciprocal areas as
a design variable reduces linearisation errors because the stresses
in the members are linearly related to their reciprocal area.

K.M.Romstad and C.K.Wang(5®) also formulated the design
problem in a similar manner to the previous work!®%), In order to
obtain the objective function in a linear form, thelweight of each
discrete element in the system was expressed as a function of a single
design parameter. Finite changes were made in all design parameters
during the iterations to achieve the minimum weight solution. These
changes could be positive or negative depending upon the.relationship
between the initial assumptions and this minimum weight solution.
Due to the fact that linear programming does not allow negative
solution vectors, it was necessary to maks the following transformation
to overcome this difficulty,

o
uj s "L + ﬁzj/zj

(]
where zj is the initial design parameter for element j, J!!sz'j is the

change in this design parameter and uj is the new design parameter.



Stress constraints were expressed in terms of the
forces in the members, In rigidly jointed structures in addition to
the areas of the members their section modulus was also considered
as a design parameter. Stress limiting criterion at any seqtion was

taken as
F_/(F__) + M A ) < 1
new/ new all IIGV/ new all
in which F_ _ is the axial force in the new section, Moow is the

)

bendi t in th i
nding moment in the new section, (F, and (M, ) are the

all all
allowable axial force and bending moment in the new section re-

w

spectively. A computer program was described and various design
examples were solved. It was found that on deflection limited
trusses application of move limits was mandatory while they were only
desirable in stress limited trusses.

G.G.Popel54) used the feasible direction method dus to
Zountendi jk to linsarise-the minimum weight design problem. The pro-
cedure only operated from feasible initial design points. Simple
examples were described,one of which contained upper limits on the
displacements.

G.G.Popel®5) has also reviewed the application of [SLP]
to optimum structural design ami described the use of the move limit
method in the design of stressed-skin structures. The member crﬁsa
sectional areas and skin thickness were considered as design variables.
Finite element idealisation was used to represent structural con-
figuration. Displacements were kept purely elastic and stresses were
restricted against yielding which was calculated by the Von Mises
criterion for the state of plane stress. The buckling of an un~
reinforced strip or skin between two spars of low torsional rigidity
was also considered. A discussion of design problems which could be

formulated in linear formwas also given,

In his later work{®®) the above method was applied to
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problems where two dimensional stress fields were involved. A fully
stressed design and SLP were used to obtain the minimum weight of

a plate containing a hole acted on by a uniform end load. It was
shown that the minimum weight obtained by SLP was lighter than the

one obtained by fully stressed design iterations. The influence of
active displacement and stress constraints on convergence of the move
limit method was also investigated. Such applications have proved‘the
effectiveness of the method.

D.Johnson and D.M.Brotton®7) have formulated the design
problem far redundant trusses utilizing the matrix force method. Three
different types of variables were used, These were stress-area,
stress-reciprocal area and force-area. A detailed explanation and
comparison of these were given and superiority of force-area formulation
was shown in a wide range of examples., Fixed value move limits have
been employed and an 0,5% change of objective function in two successive
cycles was considered accurate enough for convergence. Considerably
larger trusses were designed without difficulty. It was noticed that
most of the computer time was used by the linear programming portion of
the program., Because of the small number of variables involved in the
force method of analysis, the design method described was accepted as
effective and economic. However Johnson and Brotton did consider
deflection constraints,

K.Reinschmidt{®®) proposed two methods for discrete
structural optimisation. In the first, plastic theory was used which
yielded a linear problem., In the second, their previous formulation(5%)
was utilised. Both integer linear problems were solved by implicit
enumeration, The use of integer programming increased their computer
time considerably. A good initial design point was obtained by
rounding up a continuous linear programming solution. This local
optimisation procedure was employed to search for the global optimum

by generating random starting points.
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G.Davies and H.S.Wang(59) made adjustment to the
Cornell et al.(si) procedure using the principle of fully stressed
design so that the method may converge to the optimum in a shorter
time and in a very steady manner. Their program consisted of two
steps at each iteration. At the initial design point the optimum
solution was found by using the move limit method. The stresses and
deflexions were obtained for the new design variables and checked.
New design variables were then adjusted by interpolation and this
point was employed to generate the next design cycle.

As an alternative Toakley{®°) employed the peicewise
linearisation technique to solve the minimum weight design problem
of statically determinate pin-jointed frames subject to deflexion
and stress limitations, The design problem was formulated by the
unit load method. The reciproczal areas were considered as design
variables. As a result deflexion constraints were in linear form
and the objective function was strictly convex. Hence the optimum
solution obtained by this procedure was the global one.

Majid and Anderson(®%) formulated the design problem of
statically indeterminate elastic structures by using the matrix
force method. Both deflexion and stress constraints were considered.
The piecewise linearisation technique was employed for the solution
of the design problem. Due to the fact that the members in pin-
Jjointed structures were subject to axial forces, the design
variables considered were only the areas of the members and the
forces in the redundant members. In sway.frames, axial deformations
were neglected. It was found that this procedure was only applicable
to small bare frames. The reason for this was that piecewise
linearisation required considerable computer storage and time to
obtain an optimum solution.

ii) SOLUTION BY [sumr].

L.A.Schmit and R.L.Fox‘®?) introduced the integrated
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approach which combined the analysis and design process in order

to achieve analysis for acceptable designs which reduce the weighte.
By employing heaviside penalty function the design problem was trans-
formed into one of unconstrained minimisation. Steepest descent type
procedure was utilized to obtain its solution.

In their later work!®®) the method was applied to general
three-dimensional trusses. Member_buckling, join{: displacement and
member stress limitations were included. Some improvements were in-
troduced to the design procedure. It was also shown that the inte-
grated approach could be used in conjunction with matrix structural
analysis.

D.Kavlie et al.'®4) employed the penalty function method
due to Fiacco and McCormick to transform the minimum weight design
problem of structures into a sequence of an unconstrained problem.,
The variable metric method was used to obtain its local optimum. One
of the disadvantages of the method was that during the unconstrained
minimisation it was necessary to find the partial derivatives of the
function with respect to all the free variables. This had to be
carried out amalytically. In the case of complex constraints this
was time consuming and could -easily have introduced errors. The

rethod was applied to the optimisation of a corrugated transverse

bulkhead of an oil tanker,

J.Moet®3) has discussed a way of reducing the amount of
required redesign and. computer timo. The approximate tehaviour
molel was employed to express member end farces in terms of member
sizes in statically indetermined structures. This was carried out by
utilizing the fact that variation of members sizes creates relatively
slow changes in member forces. An application of the method to
ship structure design was also explained,

D.Kavlie_.andJ.Moe( 68) have described the application

of SUMT to the design of elastic grillages loaded laterally ard in
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plane. Both deflexion and stress constraints were considered. A
comparison of the variable metric method and Powell's direct search
method was given, It was found that SUMT could be used for non-
convex sets of design variables. It was also shown that the initial
design point and initial response factor had decisive influence onl
the results. It was verified that a fully stressed design may not
necessarily correspond to the minimum weight design.

K.M.Gisvold and J.Moel®7?) have shown that buckling
problems could be formulated by the énergy method as an unconstrained
non-linear programming problem. A direct search method was employed
for its solution. The design procedure described was applied to the
buckling problem of a stiffened plate subject to loads in its plane
as well as lateral loads.

D.XKavlie-J.Moe'®®) used SUMT for automated design and
optimisation of statically indeterminate structures. It was demon-
strated that infeasible initial design points could be employed with
the extended penalty function technique. In the unidirectional
searches a special type of polynomial spproximation was applied
Which saved considerable computer time. It was shown that the way
of constructing the member stiffness matrix was efficient particularly
when the finite element method was used for the analysis. The choice
of initial respond factor in case of several local optima was also
investigated. | |

K.M.Cisvold and J.Moel®®) have modified SUMT by adding
discretiazation penalty function in order to handle mixed integer
problems, It was stated that although there was a little research
which had been done in the area of mixed integer non-linear programming
their algorithm has been applied relatively successfully to a number
of different design problems. One of its disadvantageswas that

optimalities could not be guaranteed.

R.M.Pickett et al.t7°) have investigated the design of
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large structural systems where a reduced number of design variables
were used., The actual design problem was replaced by using a small
nurber of trial designs with a sufficiently small problem where the
direct solution could be found with existing programming procedure.
There was'no need for these trial designs to be acceptable but they
should be linearly independent. SUMI was used to generate the
optimisation procedure which was solved by the deflected gradient
method. The application of the method to a number of examples has
shown that large reductions in computer effort were obtained.

B.M.E. De Silva and G.N.C.Grant{?%) have made a com-
parison of penalty function formulations in the multi-bar truss
optimisation. The heaviside and SUMT penalty function transformations
were employed to convert the constrained problem into an unconstrained
minimisation problem. These were solved using the methods of
Rosenbrock{2®), Powel1(29) ani Nelder-Mead7®), The SUMT trans-
formation was found superior to heaviside steﬁ function method.

Awong the non-gradient minimisation techniques utilized Powell's
algorithm was found to be superior to others. As a result it was

concluded that the SUMT/POWELL combined algorithm provided the best

solutions,

iii) SOLUTION BY NIP,

Although in most of the recent work either SLP or SUMT
was used to solve the minimum weight design problem of structures,
there is a considerable amount of work which used one of the basic
non-linear programming algorithms that treat constraints in their
non-linear form.

L.A.Schmit and T.P.Kicher7®) applied the concept of
structufal design to the three bar truss to select the best material
and configuration, The steepest descent algorithy was employed to
obtain the optimum design. Later L.A.Schmit and W.M.Morrow® 74) added

buckling constraints to this problem.
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L.A.Schmit and R.H.Mallet! ”®) considered material densities
as design variables as well as member areasland inclination of the bars
in three bar truss. In this way design parameter heirarchy was in-
troduced. The design problem was solved by a method of alternate
steps. As a result an automatic procedure was produced to select
the material of the members and the geometric configuration to achieve
a minimum weight design.

R.Razani{ 78) investigated the relationship bereen fully
stressed design and minimum weight design. The Kuhn-Tuckert32)
condition was used to verify the optimality of the fully stressed
design. It was shown that fully stressed design was not always the
one which had minimum weight.

T.P.Kicher{ 77 also examined the relationship between
minimum weight design and the fully stressed design which was called
simultaneous failure mode design. The problem was formulated using
a simple elastic structural system and solution was obtained by
Lagrange multiplier techhique.

A.Gellatly and R.H.Gallegar® ?®) used the feasible
direction method to solve the minimum wsight design of trusses subject
to stress and deflexion constraints. Matrix displacement analysis was
employed to obtain the behaviour variables which were element stresses
and nodal deflexions,

D.M.Brown and A.H.Ang( 79) found that the gradient project
method of Rosen could be adopted to solve the design problem of
rigidly jointed structures. Design variables were taken as the
second moment of areas of the various member groups which were re-
lated to weight and radius of gyration approximation. A computer
program was described and a number of design examples were demon-
strated. In the case of the non-convex design problem, the method:
leads to a local optimum,

F.Moses ani S.0nodal®°) used the matrix displacement
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method to formulate the minimum weight design of elastic grillages
made of straight orthogonal beams normally loaded. Beam section
properties were related by an empirical relationship which reduced
the design variables to the areas of each beam element., Only stress
constraints were considered. Three algorithms were employed. These
were the stress-ratio, the cutting plane and the useable-feasible
gradient directions. A detailed comparison of these methods showed
that the cutting plane method required fewer structural analysis
cycles for convergence than others. In order to reduce the analysis
cycle in the use of the useable-feasible method a technique was
utilized which first found a fully-stressed design by the stress-
ratio and then began moving in the useable-feasible vector direction.
It was stated that the stress-ratio method could be useful to find a
good initial design point if constraints were non-convex.

K.I.Majid and D.W.C.Elliott‘®*) proposed a general non-
linear programming procedure to obtain the optimum design of a
structure subject to deflexion limitations. The dynamic search method
was employed which was an extension of the useable-feasible gradient
direction method. This optimisation approach was utilized to produce
design charts for fixed base pitched roof frames which could be used
for design purposes. A method was also given which used an avail~
able discrete set of sections in the safe load tables.

G.N.Vanderplaats and F.Moses(®2) described a general
algorithm for structural design. Zountedijk;s method of feasible
direction was used in conjunction with the matrix force method.
Modifications to the feasible direction method were introduced to
improve the numerical stability of the problem and to deal with
infeasible designs. It was only necessary to evaluate the analytic
gradients of the constraints, which were active at a given stage,
and the objective function in the design process. It was stated that

the generality of approach prevented it from being the most efficient
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for the design of all structures, The procedure was applied to the
elastic design of indeterminate trusses under multiple loading
conditions where, in. addition to stress and deflexion constraints,
Euler buckling constraints were considered.

P.A.Seaburg and C.G.Salmon{®3) investigated the minimum
weight deeign of light gauge steel members. The design variables
were taken as the thickness and the remaining cross-sectional
dimensions of sections. The direct search and Rosen's gradient
search methods were employed. The gradient search method was re-
commended because it took half as much time as the direct search.

M.Pappas and C.L.A.Rao‘®%) transformed the constrained
design problem into a single unconstrained one by the penalty function
method where penalty multipliers were used as functions of the design
variables, The direct search method was employed to find its solution.
The direct search method was improved and extended for use as an
optimality check at points of direct search failure. I% was
mentioned that this pptimum structural design approach required
the solution of only one unconstrained problem and did not need
an initial selection of the penalty multiplier which allowed
infeasible points to be chosen as an initial design. It was con-
cluded that the application of this algorithm to integrally
stiffened cylindrical shells has verified its good convergence
properties and computational ‘efficiency. |

Other optimisation methods have also been. employed in
the structural design. \A.C.Palmer£a5) applied dynamic programming
to the optimal plastic design of continuous beams and rigidly
jointed frames. On the other hand A.B.Templeman¢®6287) formulated
the structural design problem in such a manner that geémetric
programming could be used to obtain the minimum cost rapidly and
simply. However, it should be pointed out that these techniques

have a limited practical application,
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1.3.2) SHAPE OPTIMISATION,

The first wbrk on shape optimisation was published as
early as 1904 by Michel1¢®8) ) who used Maxwell's theory which states
that for all the frames under a given system of applied forces, the

member forces and lengths were related in the following relationship:~-

2 f‘p&p -2 fctc =0
where fP is the tension in any tie bar of length &p and :E'c is the
thrust in any strut of length ¢ and C is constant which is a
function of the applied forces and coordinates of their points of
application independent of the form of the frame.

If o and o, are the permissible stresses in tension

and compression respectively, then the above equation becocmes

0¥ Vi = o& vc = C

it follows that

o 1
v=v+v. =v_[(1 + c)l+ = .C
t ¢ c (i Gi) c%

o, 1
v, L+ t)+ = .C
t ( ?c) O"_t

where vt is the volume of all the tension members and v, is the

volume of all the compression members. v is the total volume.
It is concluded from this equation that the lightest structure is
the one that has the least volume of compﬁession members or the
least volumelof tension members.

Michell applied the principle of virtual work and
stated that the volume of a frame is a minimum when the space
occupied by it could-be sub ject to an appropriate small deformation
such that the axial strains along any member of the frame were
equal to + e where e was a small humber and the sign was compatible

with the member force. Furthermore, no other element in the space

had a strain numerically greater than e. By using minimum strain
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energy approach it was shown that there was a unique geometry for

the absolute minimum weight design under a given single load con-
dition,. L.C.Schmitcag) extended this theory to allow for alternative
load cases. D.N;G.Ghis%as51°m applied Michell's theory to develop
optimum g tructures for more-than one load case. In all these works
there was no control on deflexions. From the illustrated examples
given by various authors, it can be concluded that this approach
which employs variational theory of mathematics is extremely limited
in practical use.

As an alternative method, P.Pedersont®®) presented
an approach for optimum geometry design of statically determinate
trusses subject to stress and Euler buckling constraints in which
joint coordinates were treated as independent design variables. Later
the same idea was applied to statically indeterminate trusses!®®)
with displacement and stability constraints and also to space trusses(®3),
The matrix displacement method was used to farmulate the problem where
length and direction cosines of members were expressed in terms of
member end joint coordinates, The move limit method was employed to
obtain the solution which proved to be very effective and flexible.

It was concluded that with multiple loading systems, the optimal
structure was statically indeterminate and not fully stressed.

Trusses up to 40 joints have been optimised without difficulty.
Although it was possible to extend the procedure to obtain the optimum
geometry design of rigidly Jjointed frames, it was stated that the
expressions of gradient derivation would be complicated.

G.N.Vanderplaats and F.Moses'®®) also described
a procedure for the design of elastic trusses fof optimum geomstry
subject to stress and buckling constraints. The matrix force method
was found suitable for formulating the problem., The objective

function was expressed as
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n
W”Z Py A3 &3

i=g

where n was the total number of members which was constant during
the process, Py Ai’ 61 are respectively the material density,
the cross-sectional area and the length of member i. The length of

the members were expressed in terms of member end coordinates as:i-

L
2

& = i (xm-xa)al

r=1 J
i

in which m and ¢ subscripts are the ends of member i. The approach
started with initial specified geometry and joints were moved until
optimum geometry for the given structure was found. This was
carried out first by obtaining the minimum weight design for initial
geometry, then the objective function was minimised in the direction
of steepest descent of coordinate design space. Member area design
was updated to maintain optimality. The process was repeated until
the weight could no longer be reduced. The number of design
variables considered at any given stage was reduced by considering
two separate but dependent design spaces. Area and coordinate linking
was used to preserve symmetry and member grouping.

K.C.Ful®4) proposed the iterative search technique for
optimising the configuration of trusses in which only the coordinates
of unloaded joints were taken as design variables. The procedure
started by choosing an initial truss geometry of a given topology.
The coordinates of one of the'unloaded joints were then selected as
variables which were optimised while the other joint coordinates were
kept constant. This was applied sequentially to the other unloaded
Joints and process was continued until no improvement could be
achieved on the objective function. It was noticed that the examples

solved showed good agreement with the Michell structure,
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These works found the optimum geometry of a structure
while its topology was kept unaltered. S.L.Lipson and.KmM.Agrawallcgs)
optimised topology as well as geometry of indeterminate trusses
subject to multiple load conditions. Independent variables were
taken as joint coordinates and sectional areas which were selected
from a discrete member spectrum. In the examples solved only the
stress constraints were considered. During the design process those
members which had zero areas and those joints whiéh had zero co-
ordinates were deleted and the relevant stress constraints were
omitted automatically. The examples illustrated showed that a non-
convex feasible space only increased the number of iterations but
presented no difficulty. D.W.Alspaugh and K.Kunoo!®®) also showed
that considerable weight reduction can be achieved by allowing free-
dom in the number and the location of the joints in truss structures.

Another method of shape-optimisation was first intro-
duced by Dorn et al.(®?)ywhich made use of the concept of ground
structures. The design space contained a set of admissible joints
and all considered structures for a given problem will only select
Joints from this set. The ground structure was obtained by linking
each admissible joint to others in the design space and the Minimum

weight design of this ground structure was formulated in the following

form:-
n
- Min. W = £ e.|s
SN
J=1
Sub ject to

z aij Sj = Fi i = 1,2,l..’m
J=a

where n is the number of admissible bars, m is the number of
admissible joints, Sj are forces in these bars which were taken
as design variables, p,c denotes the weight per unit volume, and the

yield stress of the given material,aij is the direction cosines of the
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bar and Fi is the component of the external force at the joint. This
linear programming problem was solved for Sj and bars with zero
forces were removed. Removal of these members and unloaded joints
made it possible to obtain a structure which had a new topology as
well as a new geometry. However, it may be necessary to keep some
of the zero force bars by assigning an arbitrary small cross-section
to satisfy the rigidity requirements., Included in the examples were
planar trusses under one loading condition, which were optimised and
found to be statically determined and therefore fully stressed.
Fleron{®8) has also presented a similar method.

M.W.Dobbs and L.P.Felton®®) extended this approach
to deal with multiple loading conditions., This made the desiga problem
non-linear and the steepest descent alternate algorithm was utilized
for its solution. They also made the approach iterative so that the
process might be repeated until no further topological changes were
possible. The method was proved successful and promising. However, it
covered only stress constraints and gave no justification for the
deletion of the members,

W.S.Lapay and G.G.Goble{2°°) compared the non-
linear and linear formulation of the above approach and found that
non-linearity made it possible to consider buckling constraints and
was superior to the linear formulation.

K.I.Majid and D.W.Elliot (2°%) gstated the theorems
of structural variation which made it possible to predict exactly how
the forces and deflexions throughout the strcture change when some or
many of its members are either varied or totally removed. Later this
was used{°®) in conjunction with topological design of pin jointed
structures. The matrix displacement method was used to formulate the
design problem where stress and deflexion requirements were considered.
A Ground structure was initially developed and then the members were

removed until no further topological changes were possible. The manner
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by which the members were deleted was forecasted by using a benefit
vector. The theorems of structural variation were employed to prepare
this vector depending on whether stre;s or deflexion constraints were
dominant, Members were arranged in such a way that the first member
in the benefit vector may be removed with the largest reduction in the
volume of the structure. The removal of members at each iteration
yielded a new type of non-linear programming whose constraints and .
objective function were continuously changing. Self weight of members
were also included as design variables and it was found that this
changed the shape of the final design and speeded up the search for the
optimum shape.

K.F.Reinschmidt and A.D.Russel¢2°2®) have formulated
a design problem based on the equilibrium conditioné and the stress
constraints by temporarily neglecting the conditions of elastic
compatibility. The examples considered show that the method made it
possible to eliminate the surplus members and lead to better indeter-
minate truss configurations fhan did a stress ratio type algorithm.

On the other hand dynamic programming was applied to

the shape 0ptiﬁisation of structures with reference to pinjointed

structures by R.F.Goff{1°4)and also by Palmer(1°),

1.4) CONCLUSIONS FROM PUBLISHED LITERATURE.

The w ork reviewed here shows that without any
5implifying assumption the minimum weight design of structures turns
out to be a non-linear programming problem. However, there are quite
a large number of algorithms for solution of such problems; the move
limit method and the penalty function method were widely applied and
found effective in structurel design. These methods do not restrict
the designer to predict a feasible initial design point which provides
flexibility to the procedures in which they were employed. Fu?thermora,

their computer application is straightforward and does not generally
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introduce severe difficulty.

Although, it has been stated that the procedures
developed can be extended to rigidly Jjointed frames, generally they
were applied in the examples to pin jointed structures. In such
structures the formulation of the design problem is simple due to
the fact thét members of the pin jointed structure are only subject
to axial forces. Generally in these formulations the m trix force
method was preferred and widely applied. However the matrix dis-
placement method was also used in some of the structural design
problems,

The way they were employed in the formulation of

‘ design problems required either the solution of simultansous
linear equations or sometimes the inversion of a matrix. The
former was necessary with the use of the matrix force method to
obtain the redundants ffom compatibility equations.' The latter when
used was necessary in the matrix displacement method to express the
~ deflexions in terms of design ﬁariahles which were generally considered
as sectional properties of the members.

Some design procedures were also developed which were
capable of handling complex structures., However these were only
tested on special examples, It seems that most of the work on
structural optimisation has been directed to pin jointed structures.

After having a considerable number of algorithms for
the optimisation of fixed geometry, most of the recent work has been
directed to the optimisation of structural configuration. This work
canbe divided into three groups. The first group uses Michell's
theory which applies the calculus of variations to the design of
structures for minimum volume., These algorithms have no control on
deflexions and are extremely limited in practical use. The second
group considers the joint coordinates as independent variables i.e.

the joints of the initial geometry of the structure are allowed
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freedon, .By optimising the weight of the structure, the joints
having zero coordinates and the members having zero sectional pro-
perties are deleted during the procedure. This is continued until
it becomes impossible to make further reduction in the weight of the
structure. It is apparent that the number of design variables in-
volved in this technique increases considerably which means an increase
in computer time and core storage. The third group of works defines a
ground structure which is determined by linking each admissible joint
to others. Unloaded members and joints are then removed which are
obtained as a result of the optimisation procedure. In this way at
the end of each topological cycle a different structure with a new
topology is extracted., This technique is found quite promising for
practical applications. In particular when this technique is combined
with the theorems of structural variation, it makes it possible to
forecast the manner in which the numberous members should be removed.
Hoﬁever, it is not yet possible to conclude which one of the last twp

techniques is superior.

1.5) THE SCOPE OF THE PRESENT W(RK.

The structural optimisation procedure which is des-
cribed in Chapter 2, formulates the design problem by the matrix
displacement method and considers the displacements of joints in a
structure as design variables. In this way it becomes possible to
avoid either matrix inversion or the solution of simultaneous equations
which were the case in some of the previous works as discussed in the
last section., For the solution of the design problem approximating
programming is employed which was widely applied in previous works and
found to be effective. This automatic optimum design procedure is
described with reference fo general rigidly Jjointed structures where
stiffness, stress and deflexion constraints are considered. The

arrangement of the move limits are also given in Chapter 2. [SUMT]
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is employed to solve the design problem,

The procedure is computerized and explanation of the
computer programming is given in Chapter 3 in detail.

Chapter 4 contains the examples solved by this pro-
cedure, The effect of the axial force, the arrangement of move limits,
the nature of the initial design point and its effect to the design
process are investigated. The results obtained are illustrated.

The theorems of structural variation are extended and
proved in Chapter 5 to cover rigidly Jjointed structures. Inter-
relation of all structures is confirmed. It is shown that it is
possible to predict the behaviour of a pin jointed structure from the
results of the analysis of another rigidly jointed structure. These
theorems are also employed to study the variation in member forces and
Joint deflexions of a séructure when one or more of its members are
varied or totally removed, The use of these theorems in the analysis
and design of structures is explained,and illustrated examples are
given to show their versatility.

In Chapter 6, the problem of minimum weight design
is extended to include the sﬂape of the structure. The theorems of
structural variations are employed to prove that it is possible to
evaluate the significance of each member in the behaviour of a
structure., This makes it possible to calculate, in advance, the
economy achieved by altering its topology. A design procedure is
also described which makes use of the structural optimisation of
Chapter 2, A number of design examples are solved and the results

are illustrated.



CHAPTER 2

FCRMULATION OF THE DESIGN PROBLEM BY THE MATRIX

DISPLACEMENT METHOD.
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2.1) INTRODUCTION.

There are basically two main matrix methods of
structural analysis that are well established and can be employed %o
formulate the optimum design problem. These are the matrix force
method and the matrix displacement method.

The matrix force method involves the concept of re-
dundancies; consequently, it is not equally efficient for statically
determinate and indeterminate structures. However, it involves the
solution of a smaller number of equations, one per unknown redundant,
than the displacement method. As a result it is widely used as a
powerful tool in the design of structures where deflexions are part
of the design criteria,

The matrix displacement method, however, expresses the
internal member force in terms of the joint displacements. The se
unknown displacements are obtained by solving a set of joint equilibrium
equations.

The design procedure is automised with the purpose of
using the computer to set up the design problem and to carry out its
solution. It is shown that the application of move limits is necessary
to achieve convergence. These are arranged in such a way that the
number of iterations required to obtain the optimum solution can be

kept to a minimum,

2.2) THE MATRIX DISPLACEMENT METHOD.

The matrix displacement method which is employed in
the formulation of the design problem, is probably the most efficient
general me thod of structural analysis available. It does not involve
the concept of redundancies and can easily be automised. It also
requires a minimum amount of input data. This method will now be
summarised,

’

In a member of rigidly Jjointed plane frame shown in
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Figure 2.1, the member forces P,n = {PAB S, ¥an MBAI are related

to member distortions U,, = {uABvABeABeBA} by the equation

P =

2.
ZaB 1

X5 Uan

where the matrix BQB is the stiffness matrix for the member and has

the form
EAB = a 0 0 0
0 b d d 2.2
0 d & £
0 d f e
where
a=EAML, b=12EI/1®, d= -6EI/I?
23

e = l;EI/L, f = 0.be
in which A is the area, I is the second moment of area, E is the
modulus of elasticity and L is the length of member AB. When the
equation 2,1 is written down for all the other members of the plane
frame and compounded together, the member stiffness matrix of the

frame is obtained which consists of submatrices similar to 2.2,

P = kU 2.

The member distortions are related to the joint dis-

placements by the equation

U =AX 2.5
where the A matrix is known as the displacement transformation matrix.
Its elements are constants referring to the cosines of the angles
between the members and reference axes. Now, the member forces can be
expressed in terms of joint displacements as:

P = k.AX 2.6
Using the principle of virtual work, we obtain

- L= éT.-E_’_ 2.7

which is

=
1]
1=
I
[ ]
>

2.8
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where L is the external load matrix and 5Tﬂ5,£ =K is known as the
overall stiffness matrix of the structure. Thus
L= E.Z 2.9

2.3) THE AUTOMATIC CONSTRUCTION OF CONSTRAINTS.

There are a number of assumptions which the minimum
weight design approach makes. The first one is that there is a
continuous set of sections availabls from which to select. This
arises from the nature of the mathematical programming and does not
cause serious errors. In the case where a discrete set of sections is
to be used, Integer or Dynamic programming can be employed. However,
these methods complicate the design procedure and in some cases
optimality cannot be guaranteed.

A second assumption is made by relating the area, the
section modulus and the second moment of area of the section to each
other. These are tha variables in the design of rigid frames. It
is desirable to use one of these variables to derive the objective
function and the constraints. Although these sectional properties do
not have any direct and linear relationship with each other, it is
possible to obtain reasonable relationships for them, Templemangas)

has done this and concluded that for Universal beams

"

A=0.78 2° z = 1.4524%/2
or % 2,10
1
0.559 I* I = 3.204°

A

where A is the area, z is the section modulus and I is the second
moment of area of a section.

The objective function which is the weight of the
structure, can be expressed in terms of the areas of the members. If
the members are grouped together for practical reasons, then the

objective function becomes

NG

W= j{: Ys 21 Ai 2.11

i=a



where NG is the total number of groups, &; is the total length of all
the members in group i and A; is the area of the adopted section for
group i. y; is the density of the material for group i. In this case
the objective function is in a linear form.

In the case where the second moment of area of a
section is used as the design variable, then the objective function

becomes non-linear and has the form of

NG

J=1

EE

where Ii is the second moment of area of the adopted section for group
i. However, it becomes necessary to express the area and the section
modulus in terms of the second moment of area of that section. The

expression 2,10 can be used for these conversions.

2.3.1) THE STIFFNESS CONSTRAINTS.

In the design of a structure by the matrix displacement
method, the structure must be sufficiently stiff to carry the ex-
ternally applied loads while the stress and deflexion requirements are
observed. It is, therefore, ﬁecessary to include the stiffness

constraints in the design problem which are in the fom
EX=1L
The overall stiffness matrix k is constructed by carry-

ing out the triple multiplication of A?gﬂ. The contribution of a

single member linking the joints R and 5, to this matrix is
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at joint R at joint S .
A B - A =B =C
at joint R B F T B -F T
-C -7 e . C T f
A -B c - A B c
at joiat S B -F : B F T
- -7 £ c T
i.e.

K = |r  Zms 2.12

where

2
A = at + bm
1Y P

(a=b) &,m,
C = -dm
p
T = 4 4é&
ap 2
F = am_ + be_:
p p

in which &p’ m, are the direction cosines of the member,

It can.be seen that the above expressions contain the
area and the second moment of areas of sections which are the variables
of the programming problem, Hence, it becomes necessary to separate

the elements of expression 2,13, In this way, the submatrices -KBR’

"K'RS’ KSR’ Ess will have the form:

[Ass.A 5 Asz.I  © BiseA o By I o =C.I]
"ISRR = B.‘l..‘l.OA : Bia tI : F:Ld.oA : Fﬂ_a -I : ""T.I
L 0 : ""Ct I : 0 : -'T. I : B.II_
[«Ay3.A ¢ =Asg.I o =BissA I =Bial I 2 ~C.I]
Kpg = ~Bi1.A E ~Big.I E ~F11.A E ~Fia.l E ~T.I 2.1
. o0 2 c. I 2 0 > T, I. f.Ij



——Aii.A : -Ajz2. I o -Bs1.A , ~Bigz.I { C.IL.
KSR = -Bj_;_.A . ~Bia .l s =F44 A -Fe2.I o T.I.
L 0 : _CO I : 0 : _T. I : fcI
2,14 contd
[ Ais.A D Ap.I D Bigoh D Bia I D ClI 1
_]S'_SS = B;_:_.A : B;_a I & F:,;-A : FJ.: oL : T.I
¢ - c, 1 0 s T, I : e.I
where
E ,2 E E
A = T &p > Bix = N zpmp > Faa = T FP
are the coefficients of the area variables A and
3
LS p L3 p P L p
6E _ LE _ 2B
T - I'g' &P s © L » f= L

are the coefficients of the second moment of area I. The relation-
ship 2,10 can now be used to express the second moments of area of
the sections in terms of the areas., In this way, the first and third
columns of the submatrices 2.14 contain the coefficients of the first
order terms of areas, the second, fourth and fifth columns contain
the coefficients of the second order terms of areas.

In the analysis of structures, there are three rows
and columns corresponding to each joint of a structure in the over-
all stiffness matrix, This matrix can be constructed firstly by
finding the members connected to each joint and then adding their
contributions together at the location corresponding to that joint.
This is carried out for every joint in the s tructure. In the design
of structures this cannot be done due to the fact that the areas of
the members are the design variables. As a result it becomes necessary
to keep the contribution of each member separate. At each joint
these contribution matrices are subsequently located to the overall
stiffness coefficient matrix. As an example, in Figure 2.2 a layout

of the overall stiffness coefficients matrix is given for a portal
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frame. Each joint of the f rame is numbered from 1 upwards. At each
joint the overall stiffness coefficients matrix has three rows and
give columns for each member connecting to this joint. It is obvious
that generally, this matrix has 3*N number of rows where N is the

N

total number of joints in the structure and 5+ ( ZM,) number of
i=4

columns where Mi is the total number of members connected to joint i.
If members are grouped for practical reasons, then Mi will be defined
as the total number of different member groups at joint i.

In case there are hinges in the structure the order
of the overall stiffness coefficients matrix will be increased. There
will be an additional row and column corresponding to each of the
hinges. It is common to locate these rows and columns after the row
corresponding to the last joint. For this reason, the hinge
number is given as 3&«N+1 so that the row beloq@hg to that hinge is
specified by the hinge number. Since the overall stiffness co-
efficient matrix is not symmetric, the column number othhat hinge is

different from its row number and is obtained from 5-( & Mi) + 1.
i=a

As a result, if there are p hinges in the f rame, the order of the

N
overall stiffness coefficient matrix will be[}5N +P)B( 3 M)+ Pi}
: i=a

2.3.2) THE STRE3S CONSTRAINTS.

The design of a feasible structure requires the satis-
faction of stress constraints, such that stresses in the members
should not exceed spacified limits., In rigid frames, the critical
stress at the outer fibres of a member is obtained by combining the

axial and the bending stress.

M

. = Pl + i 2.15
l A— — —
M z
i i

where oy is the combined stress, Pi is the axial force, M, is the

i
bending moment at the end of the member i, Ai and z, are the area

and the section modulus of member i. The combined stress at any
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point of the section must satisfy the following inequality

-0, & o < o 2.15(a)
where o, is the permissible compressive stress and o is the per-
missible tensile stress. In the inequality 2.15(a), tension is taken

as positive and compression as negative. Substituting oy from 2.15

into 2.15(a), it follows that:

P M
@ ST 7T %G
: P M
That is Y . o= < o‘t
P M
2 =25 * U9

By multiplying both sides of the second inequality by -1, it follows:

P N
A ¥ Z s 0%
P M
A s ¢+ % 2.16
M
A * z s 0&
P M
T A g & 9%

Therefore, it is necessary to consider four independent stress con-

straints for a section with two axis of symmetry to cover all the

possible stresses which can occur at the ovuter fibres of a member.
The axial force and the bending moment of the member

are obtained from the equation

P o=

For a member linking joints R and S, the product matrix kA has the

form
at joint R at joint S -
o - . : s @ £
aeP amp 0 . a P agp 0
l{-A = bm "b‘fﬁ d- s @ : a = _bm b& d
== P P . de P
dm —d& e o .o - @ il
D P : s de d&P "
—d& s = : -« o —
| 4% P : T




Once again a,b,c,d,e,f contain the design variables such as the

areas and the second moment of area, It is only possible to com~

pute their coefficients in the member force matrix

kA =[B Bl

where
At the first end of
the member -
ER = -Az1.A ~Az3.A 0 jand ES =
Bai-I "BazoI —d--I
~Dag.I Daz.I e,I
=Dgji.I Daa,.I f.I
in which
E
Agq = I &P y B3z =

are the coefficients of the area A

By, = 12E By, =
La b

_ 6B 2 _

Da 14 = "gL mp D2 =

are the coefficients of the second moment of area I.

of submatrices QR and ES contains the first order term of area and is

At the second end of
the member

Az, .A
=Bzi.l
Das.l
Dgiel

L

Azaz.A
Baa.l
~Daz.l
=Da3z.I

The first row

used to calculate the axial stress. Consequently, the axial stress

will be independent of the section areas and only dependent on the

function of joint displacements, The bending moments at the first and

the second ends of the member are calculated by using the third and

fourth rows of ER and B,. The elements of these rows are the co-

efficients of the second moment of areas., Further, in calculating the

bending stresses these elements are divided by the section modulus.

0
~dX

I

el

It is, once again, necessary to employ the relationship 2.10 to express

the second moment of areas and the section modulus in terms of the

areas. In this way, the elements of these rows become the coefficients

of variables in the bending stresses and they contain the 0,5 order

of areas. The overall matrix which contains the coefficients of the
variables in the stress constraints can be constructed automatically.

This is shown in Figure 2.3. For a structure consisting of m members
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and n joints, this matrix has the order [4sM, 3«N].

2.3.3) THE DEFLEXION CONSTRAINTS.

It is necessary for a safe structure to have deflexions
which are not more than some given specified values. Since the joint
displacements are introduced as the design variables, the deflexion

requirements are reduced to upper bound constraints.

X s A 2,17
where A is a set of allowable deflexions, It can be seen that the
displacements of joints can be either positive or negative, while
the mathematical programming operates only with non-negative variables.
There are two ways in which the problem‘can be converted to this form.
The first way is to write each joint displacement as the difference

of two non-negative variables, such as:

i | n
where x; is the horizontal displacement of joint i and X,s X, are the

1 n
new non-negative variables. Depending on the magnitude of X5 and Xs»

x; can have any sign. It is shown by HadleyS) that in the solution

of the problem, only one of these new variables can appear. That is

. n 1 1 n 1 n
either xi = 0 and xi = xi or xi = 0 and xi = - xi or xi = X _.0 and

x; = 0. This device was utilized in the design examples but found

unsuccessful because it doubled the number of displacement variables.,

1 n
The device can also give rise to the appearance of both x5 and x,

i
c;%(Hadley). Indeed in one trial this actually happened? Another way
of overcoming the non-negativity restriction which does not involve

introducing an extra variable, is to substitute

X; = y; - ey 2,18
where Y is a new non-negative variable and e, is constant. If Yy

is not in the solution x; becomes equal to -85 which is the selected

most negative value X; can possibly take. If at joint i the displacement

*Notice that the deflexion variables xi' and xi“ do not appear
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is limited to Ai then the deflexion constraint for x5 becomes

X =y -
y, & B+ o 2.19

a
In the case where the most negative and positive values

x, can take, are equal, then 2.19 becomes:

X3 =Y - Ai < Ai

Yy € 2A.i 2,20
In some structures, the deflexion at a joint is known

to be always negative, that is

Yi € e . 2.21

Each joint of a plane frame introduces three variables
to the design problem, These are the horizontal displacement, the
vertical displacement and the rotation of that joint. So the bounds
on these variables can be placed into three categories. Those for
the horizontal and vertical displacemeni variables can be obtained
from specifications. For example, B.S.449 considers a structure
safe when midspan deflexion of its beams does not exceed £/360,
where £ is the length of a beam, The horizontal deflexion of its
columns is restricted by the same code to not more than h/325 where
h is the height of a column. In case there is no restriction on one
category of displacements, then the bound is taken sufficiently large
to include all the possible values that a particular displacement can
take., For example it is not usual to put an upper bound on rotations.
In this case the value of e = 0.08 radians is convenient, because
linear structural theories are only applicable for small deflexidns

with || < 0.08 radians.
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2.4) THE APPROXIMATING PROGRAMMING .

As shown in the previous sections, the formulation of
the design problem by the matrix displacement method reduces to a
non-linear programming problem, The approximating programming which
is described in Chapter 1, is found quite effective for structural
design problems by many of the previous research workers ( £21,58,55,57,81)
This method employs the first two terms of Taylor's series to -
linearise the non-linear function. It is known that by this series

o
a function of several variables f(xi) can be expanded at the point

x; so that the value of f(x;) is obtained

n
f(x;'_) = f(x;) + Z "’f(";) (xt - x;) R 1 F

= 1
isa axi
or in matrix form
£(x*) = £(x°) + 1(z°) (z*-z°) 2.22

where Vf(x°) is the row vector [éﬁo éﬁo o0 éﬁo in which n
dxs OXg axh

is the number of variables. By applying this to the non-linear
problem consisting of n variables, m constraints which is in the
form;

Min W = W(x)

Sub ject to
hk(x) = 0 k = Yyeee €
gj(x) €0 J =4¢+l,...m

can:.be transferred to the linear programming problem of the form
Min W = W(x°) + W(z°) [x*-x°]
Sub ject to
b (x°) + W (x°)[x*-x°] = 0
g;(x°) + Vg (x°)[x™-x°] < 0
where the value of every function is known at x° and x* is the unknown

variable. Once this linear programming problem is solved, the process
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can be repeated with x' replacing x° to obtain a new solution x(3)

until the value of the objective function remains unaltered in

two successive iterations.

2.4.1) THE DERIVATIVES OF CONSTRAINTS.

Since the approximating programming requires the
gradient vectors of the constraints, it is necessary to compute
the derivatives of these with respect to the design variableé. ;
There are two ways of computing the derivatives of a
function, when a computer is used to carry out the calculations.
The first one utilises finite differencing. The basic idea of this

is very simple. It approximates the derivative of the function G(x)

-

~ (x5 - 6(x)

95
oxy %y

where
k :
Z. 2 (xi Xg .-o,xk"' Axk gereey xn)

and Ax, is some small change in x The errors which are intro-

k.
duced in this way are large and the value of Axk requires adjust-
ment, As a result it may be used where the explicit differentiation

is not available or very complex., The second way is the exact com-

putation of derivatives, This may be carried out in the following

manner
m
y:x
Y
— m.,Xx 2.23

It is known that in the design problem the relationship between the

area, the section modulus and the second moment of area is in the

form of

p.Ar

. = S.At

b g

n

where p,r,s,t are constants and their values may change depending

on the type of beam used in the structure. Since the constraints
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have only area variables which are high ordered, it is possible
to compute the exact derivatives for them.

The design variables vector has the form:

2.2

3V

Vo= {?1 V3 eee V tida *v* vm%an }

m
where the first m variables represent the areas of the groups, the
rest is the displacements of joints and n is the number of joints
in the structure,

In matrix form:

Y ={A X}

where the submatrix A = fA; ... Am} contains the areas and
X =X F1 614 oo X, ¥y 0, } contains the displacements of
Joints.

The stiffness constraints are functions of the areas
of the members and the displacements of joints. They have the
form;

G(A,x) =K(A)X~-L=0
where G(A,X) represents the stiffness constraints, K(A) refers

to the overall stiffness coefficient matrix and L is the external

load matrix. The gradient vector of this is

we =l & & ﬂ}

dvy dVg a’Fm+an
which is
el & X 6L a6 26
= aAi ﬁAg oo BAm axi oeo0 aan

It can be seen that the overall stiffness coefficient
matrix is a funetion of areas only. The derivatives of the stiff-

ness constraints with respect to areas will be

& K(A) X
aAi dA 5 =

and the derivatives of the stiffness constraints with respect to dis-

placement variables will be

aG
b = K(A
s =K
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The stress constraints consist of the combination of
the axial and bending stresses. It is known that in rigidly Jjointed
plane frames the axial stresses are only functions of the joint
displacements. On the other hand, the Bending stresses are functions
of area variables as well as joint displacements,

oax) = [B+c(A]X-g < O
where g(A,X) represents the stress constraints, o, is the permissible
stress, matrix B contains the coefficient of variables in the axial
stresses and matrix C contains the coefficients of variables of
bending stresses. The matrices B and C are obtained by collecting
the elements of the rows in the product matrix kA which correspond

to the axial forces and bending moments respectively. The gradient

vector of stress constraints is

_ [a 0 29 2
VO'(A,X) - [aAi LN aAm axi *8 0 asn ]

where the derivatives of o A,X) with respect to areas are

o _ Hlh) o

3Ai B aAi —

and with respect to displacement variables are

filog

x5

=B + ().

2.4.2) THE LINEARISATION AND MOVE LIMITS.

The linearisation of the non-linear constraints was:
carried out in the manner described in Section 2.4. As an example,
the process was applied to thedgtifanss constraints of the pitched
roof frame shown in Figure 2.4. ‘The columns are 3m high and the span
is 6m. The angle of pitch is 30°. It was required to design the
frame so that the stresses were limited to 0.10804 kN/mm® in the
columns: and 0,2034 kN/mm® in the rafters. The horizontal deflexion
at the eaves were limited to 4.225 mm and the vertical deflexion

at C to 8.23 mm, The columns were required to be manufactured out
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of the same section while the inclined members were to have the
same section: but might be different from the columns,

This frame was designed by the method described in
this chapter and optimum areas for the columns and rafters were
found to be 1 x 10* mm® and 0.5 x 10* mm® respectively.

The first stiffness constraint of this pitched roof
frame takes the form:
hi(x) = 0.029%1°xa + 4ly.35%xaxXa + 0.0045%3%xa + 25.607xaxq

- 0.00788%3% x4+ 4.416x1%x5 = 1.622%3°xs - 25.607xaXe
+ 0.00788x3%x6 = 0.0563x2® + 1.0564x3 + 0.00823x3° = 0
where x,,Xa are the areas of the columns and the rafters respectively,
X3 ,X4 X5 are the non-negative new variables for the displacements
of joint 1 and Xg is the non-negative variable for the vertical
displacement of joint 2, The gradient vector is
Vhy(x) = [(0.058::;_1:3 + 8.832x4xs - 0.01126x,)
(44.35%3+0.009%2X 5+25.607%4 ~0.01576xaxq ~3+2hh%aXs
-25.607x¢ + 0.01576x3%g + 1.0564 + 0.01646x3)
(0.029x43+44.35%2 + 0.0045x3%)(25.607x3 - 0.00788x2")
(4e416x1® = 1.622x3%) (-25.607xa + 0.00788x,2) ]

Choosing the initial “design point as
X° = {110. 60. 0.1158 0.0368 0.01064 0.216}

the linearised constraint will have the form of

hy(x) = B(x°) + W(x°) [x = x°] = 0

which is

«1.4025 + [-1.31 0.75 3028.1 1508.05 .4759%4.k -1508.05] [x1 =~ 110
xq - 60
X3 = 0.1158
xg - 0.0368
Xs - 0.01064
Xs - 0.216

Simplyfying this becomes:

l}g(x) = 1.31x4~0.75%3+3028..1%3~1508.05% =4 7595 « 4xX 5 +1508.05% g~489.11 = O
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In this manner.the non~linear programming problem is

transferred to a linear programming one., It is obvious that this
linearisation will introduce errors in the solution of the problem.
These may be controlled by imposing some bounds on the design

variables which are known as move limits. These can be arranged
arbitrarily, but usually they can be based on a certain percentage

of the present values of the design variables. In the design pro-

cedure presented in this chapter they are arranged in the following

way: .
(o) (2) (o) .
(1-m) x;, € x, < (l+m) x, )i leeasn
J . J . J . o
where n is the total number of the design variables, x5 is the
(1) i

present value of the design variable, Xy ‘is the value which will
be found at the end of the next iteration. m is the preselected
percentage., Experience obtained from the examples considered shows
that 90% move limits can be chosen and then reduced by 10% at each
iteration. This method provides large move limits during the first
iterations and small move limits during the last iterations which
satisfies the requirements of':

i) If the initial design point is chosen far from the true optimum,
then it is necessary to employ large move limits in order to reduce
the number of iterations to reach the optimum point.

ii) Tight move limits are required to obtain the convergence in case
the optimum is not fully stressed. In case the convergence is not
obtained when the value of m becomes 0.10, then the iterations are
continued with these particular values of the move limits, It is
3150 found that it is only necessary to put move limits on the area
variables. As explained in Section 2.3.3, the substitution which
is carried out for the displacement variables to satisfy the non-
negativity restriction introduces enough bounds to control the
linearisation errors. This saves 3n number of constraints, where

n is the number of joints in the structure, which have to be added

to the design Problem.
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After arranging the move limits the linear problem
can be solved by the simplex method. The presence of equality
constraints makes it necessary to add artificial variables to each
of them, These have to be eliminated during the simplex iterations.
There are two versions of the simplex method which deal with
artificial variables. These are Charnes M method and two-phase
method which are described in Chapter 1. Both canbe employed in
the design procedure. It has been shown previously that the two
phase method is better than Charnes M method particularly when a
computer is used to carry out the calculations. If the artificial
variables can not be eliminated during the simplex iterations and
they appear in the final solution, then the linear problem has no
feasible solution. This does not necessarily mean that a feasible
solution is not available for the programming problem. There are
a number of reasons for obtaining the nonfeasible solution. One
reason is that if the value of the move limits are selected too small,
then the design problem will be bounded too tightly. It then becomes
impossible to find a feasible solution for the design problem within
these bounds imposed on the area variables, The relaxation of these
move limits therefore improves the possibility of obtaining a
feasible solution. Another reason for obtaining a non-feasible
solution is that the starting point may be chosen fer from the
optimum point. Then the linearisation errors become very large and
a feasible solution cannot be found. This can also be overcome by
trying a different initial design point. Finally, due to the
accumulation of the linearisation errors involved at each iteration,
the displacement variables violate the stiffness constraints ex-
cessively. This may happen after a number of iterations. In this
case, it becomes necessary to solve the stiffness equations with
the present values of areas and to adjust the displacements. These

new values are then used to carry out the next iteration.
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2.5) THE DESIGN PROCEDURE.

The design procedure which will be described in this
section consists of three stages. The first stage is to set up
the design problem., The second stage is to linearise the non-
linear problem at some chosen initial design point and put the move
limits on the area variables. The third stage is to solve this
linear programming problem by the simplex method. Using the results
thus obtained in the last step, the second and third steps are
repeated until the required convergence is obtained. The flow
diagram of the procedure is given in Figure 2.5, The data which
the procedure requires is small and requires the selection of an
initial design point. In most optimum structural design algorithms,
a feasible initial design point is necessary to start with. It is
not always easy to predict such a point. As shown in the flow
diagram, the procedure can operate from both a feasible and infeasible
initial design point which gives flexibility to the design procedure.
The only restriction which this procedure needs for the initial design
point is that it has to satisfy the stiffness equalities. This can
easily be carried out by solving the stiffness equalitieﬁ with the
selected values of area variables to find the displacement variables.
Then these values of areas and displacement variables are used as an
initial design point. As explained in the last section the solution
of the stiffness equalities may be required for adjustment of the
.displacement variables, Hence, it becomes necessary to cﬁfry out
the construction of the overall stiffness matrix of the structure.
This does not introduce any difficulty. Since the overall stiffness
coefficients matrix contains the contributions of each member connected
to each joint, the only necessary computation is to multiply these
by the selected values of the areas and add them together at each
Jjoint to obtain the elements of the ovérall stiffness matrix at

each joint, The linearisation process is carried out as explained
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in the previous sections.

The convergence limit utilised is that the change of
the objective function on two successiv; cycles will be less than
€ of its current value, where € is a selected small constant.
Thus 3 [W(xi+i) - W(xi)] /W(xi) s €
where W(x;) is the present value of the objective function,
W(x1*%) is the value cbtained in the next iteration, It is found

reasonable to take the value of € as 0.1%.

2.6) SOLUTION OF THE DESIGN PROBLEM BY [SUMT].

In most of the recent research work, the non-linsar
structural design problems are either solved by approximating pro-
gramming or by the penalty function method. In the last section
approximating programming is employed for solution of the design
problem and found to be effective. The penalty function method
can also be used to solve the design problem. The basic idea of
this method, described in Chapter 1, is to con%er% the constrained
problem, with its objective function, equality and inequality con-
straints, into a problem in which some new function is minimised
without regard for constraints. The solution of the original
constrained minimisation problem is then obtained through a sequence
of unconstrained minimisations. There are different types of penalty
functions. The one, which is developed by Fiacco and McCormick(33)
has found great application for solving structural design problems

and it has the form:

m L/
P(x,,r) = W(x) + ¢ Z Eﬁﬁ)’ + 2 Z h;(xk)
i=1 J=a

k = 1,2, eeell
where P(x,r) is the unconstrained function to be minimised, W(x,)
is the objective function, gi(x) are the inequality constraints,

m is the number of inequality constraints, hj(x) is the equality



63-

constraints and £ is the number of the equality constraints, n is
the number of variables and r is the penalty parameter. The flow
diagram of the method is given in Figure 2.6 which is also used by
Asaadi(®®),

Generally the unconstrained minimisation methods proceed

by choosing a starting point X and calculating
g T ™YY 55
where x; . is the new point, a; is the step length and 5, is the
direction vector to move along., There is a considerable amount of
algorithms which minimise a multivariable function. These can be
divided into two groups. The first group uses the gradient vector .
which requires computation of first or higher order derivatives
of the function. The second group is called the direct seardh
technique. They do not require the evaluation of function deri-
vatives. The gradient methods are found(?8) quick and effective.
Among these the variable metric method developed by Fletcher—
Powell(?®) is suggested to be superior to.others(a"). This
technique requires a one dimensional minimisation to find the o*
which minimises P(ximisi,r). The cubic interpolation is the one
which is utilised for this purpose by Fletcher-Powell in their
variable Metric Method.

This procedure, shown in Figure 2.6, was employed to
solve the proposed non-linear design problem. Difficulty arose
in the cubic interpolation technique which failed to find the a*.
The reason for this was thought to be the differences among the
numerical values of the design variables. That is, while the areas
have values such as 10?, the deflexions are 10"®. Although the
variables were scaled in order to make them ofﬁ similar order and
constré.ints were normalised’ ws).,, the difficulty of convergence

was not overcome.
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It is therefore concluded that further research is
required before the penalty function method can be applied to the
optimum design of structures where the displacements of joints are
taken as design variables as well as sectional properties of the
members, Research is particularly needed to find out a suitable

method for scaling the variables.



CHAPTER 3

COMPUTER PROGRAMMING .
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3.1) INTRODUCTION.

A computer program for the optimum design of rigidly
jointed plané frames which makes use of the design procedure des-
cribed in tke previous chapter, was written in Fortran and run on
the ICL 1905 computer at the University of Aston. The program
consisté of a master segment calling a number of subroutines, the
functions of which are illustrated by the flow diagram shown in
Figure 3.1.

The input data is divided into two parts. The first
part is the data concerning the structural properties., The second
is the data which is relevant to mathematical programming i.e.
the initial design point which consists of the SE1GER GRS Of
groups in the structures. The format of the data for a simple
frame is shown in Figure 3.2. The first input card contains the
total number of joints, the total number of members, the total
number of hinges, if there are any, the total number of supports and
the number of groups in the structure. In addition to joints, supports
are also numbered by considering the first support number as N+l
where N is the last joint'!'number. The first support number re-
presented by KSF is required as a datum in order to identify the
members which are supported. NB is the maximum number of members
connecting to a joint in the structure. h

The felationship between the section modulus 2z, the
second moment of area I, and the area of the section A is also
entered.

I = fe.A?Y

z = fel.AP™
where fe, fcl, pv, pv2 are constants. This is followed by the
specification of the members which is the joint number of first

and second ends, the hinge number of first and second ends and

the group numbers of the members., The material properties of the
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member are specified by stating its modulus of elasticity E and
permissible stresses in compression and tension. which are read
by the arrays PSTRC, PSTRT respectively.

The joint data contains the coordinates of* each joint
in the structure and the bounds imposed on the displacements of
joints. The external loads acting on each joint in turn, in x,y

and @ direction are also given in the form of a row vector. This
load vector is of order 3NOJ where NOJ is the total number of joints
in the structure. This is followed by the preselected area variables
corresponding to each of the groups in the structure. |

After entering the data, the program étarts by com-
puting the following at each joint:-

i) The total number of members connecting to this joint,
ii) The member number of these members,

iii) The group number of these members,
Joint number of first and second ends of each member are also checked
at each joint against the joint number to determine whether that
particular joint is the first end-of the member. If so, then the
member number is multiplied by -1, It can be seen that some of the
members connected to a joint may belong to the same group. As a
result their contributions to the overall stiffness coefficient
matrix can be added together at the rows anmd columns corresponding
to that particular joint. Hence, it becomes necessary to find the
total number of different groups at each joint. This is carried out
by checking the group numbers of members connected to that joint and
storing the different ones in the array NG(J). The Jth elenent of
this array gives the number of different groups at joint J. As shown
in Chapter 2, the contribution of each group is stored separately
at each joint in the overall stiffness coefficient matrix. The total

number of "different groups of each joint" for the structure is

obtained by adding the elements of the array NG together for all
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the joints and storing in the array NI. The Jth element of this
array giées the total number of "different groups of each joint"
up to the joint J. Then the program proceeds to compute the size
of the overall stiffness coefficient matrix and other arrays which
are necessary for each subroutine, When convergence criteria are
satisfied, the displacements of Jjoints and stresses in the members
are checked and printed out with the optimum values of areas for

the selected groups. Then the program is terminated.

3.2) CONSTRUCTION OF THE STIFFNESS CONSTRAINTS.

Subroutine STIFFMAT consists of three nested loops as
shown in Figure 3.3, The outer loop takes each joint of the
structure in turn. In the second loop the total number of different
member groups at this joint are cycled. In the final 1oop_each of
the members connscted to that joint are taken and checked és to
whether the¢ group number of the member coincides with the group
number of the second loop. If so, the contribution of it to the
submatrices ghR, Egrg» ESR and ESS is computed, _Then the program
proceeds to determine whether the joint taken in the first loop is
the first end of the member. If so, the array NI explained in the
previous section is used to determine the addresses of the sub-
matrix,ERR, and this matrix is inserted in the corresponding rows
and columns of the overall stiffness coefficient matrix. The
addresses of the submatrix‘ﬁis are found by using the array NIG.
This array contains the number of different group numbers at each
joint. This is used to compute the number of groups before the
member group at the joint corresponding to the second end of the
member., This number is employed to find the addresses of the sub-
matrix ERS and this matrix is inserted in the corresponding rows and

columng of the overall stiffness coefficient matrix. In the case

when the second end of the member is supported, the member will have
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no contribution from that end. If the joint taken in the first loop
is the second end of the member, then the same procedure is applied

to compute the addresses of the submatrices K and K

S8 SR*
In the case when there is a hinge at the end of the
‘ member, the additional contributions are placed in the overall stiff-
ness coefficient matrix., This is shown in Figure 3.4. As explained
in Chapter 2, these contributions are stored in the overall stiff-
ness coefficient matrix after the contributions of the members
connected to the last joint in the structure. The row number of the
first hinge contribution is identical to the hinge number, and the
column number is given by

HC = 5.NI(NOJ) + 1
where NI(NOJ) gives the summation of the "different number of groups
at each joint" for all the joints, HC is the column number of the
first hinge contribution and NOJ is tﬁe number of joints in the

structure.

3.3) CONSTRUCTION OF THE STRESS CONSTRAINTS.

Subroutine stressconst constructs the overall stress co-
efficient matrix. The flow diagram of it is given in Figure 3.5.
Each joint is taken in turn and members connscted to that joint are
checked to find out whether the joint is at the first end. If so,
their first end contributions to submatrix ER is determined, the
addresses of the elements of this matrix are computed and inserted
in the o}erall stress coefficient matrix., If the joint is the
second end of the member, then the addresses of submatrix ES are
found and inserted in the A matrix. The hinge ccntributions come
from each hinge at either end of the member are placed after the
last column corresponding to the last joint in ths overall stress
coefficient matrix. Hence, the column number of the first hinge

contribution is the same as the hinge number which is given as
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3.NOJ + 1'

3.4) THE SOLUTION OF THE STIFFNESS CONSTRAINTS.

As shown in Chapter 2, the solution of stiffness
equations may be necessary to adjust the displacement variables.

It may also be necessary to carry out the solution of_the stiffness
equations to check the displacements of the joints.and the stresses
in the members when convergence is obtained. Subroutine ANALYSIS

is written for this purpose. When it is called in the master
program before convergence is obtained, it only solves the stiffness
equations for displacements. The stresses in the members are not
computed, since they are not needed during the iterations, When it
is called after convergence is obtained and a check is required

for displacements and stresses, it solves for the stresses in the
members as well as the displacements of joints.

As a result, subroutine ANLAYSIS constructs the over-
all Béiffness matrix by using the overall stiffness coefficient
matrix which is set up by subroutine stiffmatt. It is known that
this matrix contains the contributions of each group connected to
each joint and it is also known which column of this matrix contains
the coefficient of the first order and the second order terms of
the area variable, The only necessary computation to obtain the
overall stiffness matrix of the structure is to multiply these
elements of the overall stiffness coefficient matrix by the pre-
selected area variables. This is carried out for all the Jjoints
and the elements are placed in the columns and rows of the overall
stiffness matrix corresponding to these joints. The hinge con-
tributions are also computed aand placed in the corresponding rows
and columns of the overall stiffness matrix. A flow diagram is
given in Figure 3.6.

The methods for the solution of sets of linear
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equations can be divided into two categories. These are direct and
indirect methods. In direct methods, the results are obtained by
carrying out a single set of operations on the equations. In the in-
direct methods the solution is obtained by a series of successive
approximations. In these methods, the rate of convergence may be
slow or the results may not converge at all. For these reasons
the direct methods are preferred in the solution of sets of linear
equations. Choleski's triangular decomposition method is one of the
direct methods which is particularly suitable for the solution of
structural equations., It factorizes any square symmetric matrix K

in the form

K = A

where A is the lower triangular matrix. As explained in{2°?), no
term of X is used more than once. Therefore ths procedure requires
no additional storage, the locations in K can be overwritten by the
elements of A as each one is obtained. A flow diagram is also given
in{207) | This Choleski decomposition is employed in subroutine
Analysis,

In Figure 3.7 a flow diagram is given for the computat~

ion of the stresses in the members. Each member is taken in turn.

- s
S g Sl ArLe - AR v 3 - S

. The axial and bending stresses coefficients, which are computed by
subroutine stressconst are multiplied by the area adopted for the
group of that member and the displacements which are known by the
solution of stiffness equations. These axial and bending stresses

due to each end displacement are added together to obtain the

combined stresses for the members.

3.5) COMPUTATIONS OF GRADIENT VECTORS.

The derivatives of constraints with respect to design

variables are computed by subroutine DERIV and stored in matrix IK.
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The order of this matrix is [NR+8.NOM, NOG+3.NOJ] where NR is the
number of stiffness constraints, NOM is the total number of members,
NOG is the total number of groups and NOJ is the total number of
joints in the structure. The first NOG columns Sf"gg contain the
derivatives of the constraints with respect to a?ea‘variables. The
rest, contain the derivatives of the constraints with respect to
displacement variables. Subroutine DERIV consists of three parts.

In the first two parts the derivatives of stiffness
equalities with respect to areas and displacement variables are
computed. The flow diagram is given in Figure 3.8, The stiffness
coefficient matrix is transferred to this subroutine, It cycles the
group numbers and at each joint determines whether there is an
element corresponding to this group in the overall stiffness matrix,
If there is, then the derivatives of stiffness equalities with respect
to areas are computed at this joint. As shown in Chapter 2, the
contribution matrices have five columns for each member. It is also
known that first and third columns contain the areas and the re-
mainder contain the second moment of areas. So the derivatives of
the elements at each column are computed by adding together first
order terms and then second order terms. By carrying this out for
all the joints, the derivative of the stiffness constraint is
computed with respect to the area available adopted for that group.

It is shown in Chapter 2 that the derivativéa of stiffness constraints
with respect to displacement variables are equal to the element of

the overall stiffness matrix corresponding to that particular dis-
placement., Therefore the necessary computation is to find the
elements in the overall stiffness coefficient matrix corresponding

to that displacement and multiply them by the current values of areas.
By carrying this out for each joint, the derivatives are computed and

inserted in the derivative matrix DK.
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In the final part, the derivatives of the stress con-
straints are computed with respect to displacement and area variables.
A flow diagram is given in Figure 3.9. As shown in Chapter 2 each
member contributes two submatrices corresponding to each end of the
members to the overall stress coefficient matrix, Hence, the de-
rivatives of the s tress constraints of each member with respect to
displacement variables are computed in two parts., The derivatives
with respect to the displacement variables belonging to the joint which
is the first end of the member are computed using the matrix By and
the derivatives with respect to the displacement variables belonging
to the joint which is the second end of the member are computed by
using the matrix Bs. At the same time the derivatives with respect

to areas are also computed for each end and these are added together

and inserted at the corresponding places in matrix IK.

3.6) THE LINEARISATION OF THE CONSTRAINTS.

The linearisation of the constraints is carried out by
subroutine CUTPLA, It can be seen from the flow diagram given in
Figure 3,10 that, firstly, the values of stiffness constraints are
computed at the current design points. Then using the gradient vectors
constructed by subroutine DERIV, the right hand side of the constraints
in the linearised problem are computed. It is shown in Chapter 2
that the stiffness equality constraint

hi(x) = 0
can be linearised in the form
h, (x0) + Wh, (%0)(x-%0) = 0 3.1
where the xo is the current design point and x is the design point
to be found at the end of the next iteration and so at the current
design point Xo, the values of h(x,) and Vh(xo) are known. Egquation

3.1 can be simplified to
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Vhi(go).g = ?hi(zp);o - hi(Eo)

where the matrix Vhi(EO) in the left hand side contains the co-
efficients of the design variables in the linear programming
problem and the right hand side of ith stiffness constraint be-
comes

RHS; = Vh (xo)eXo = h(%o)
which can be positive or negative. It is found advantageous to have
the right hand side of the constraint positive. Hence if RHSi is
found to be negative both sides of the stiffness equality is
multiplied by =1 to ensure that each.RHSi is positive,

The value of stress constraints at the current design
point can be computed in two parts and added together. This is
because of the fact that if an end of the member is supported, then
the stress constraint will have no term corresponding to the
supported end. Using these values of stress constraints and gradient
vectors, the right hand side canbe computed, If the sign turns out to
be negative, then it is necessary to multiply both sides of the
constraint by -1. This changes the constraint from type I to
type II where type I represents € sort of inequalities and type II
represents > sort of inequalities. It is also necessary to store
the row number of this constraint because it will need an artificial
variable to be added.

In this way the linear programming problem is set up
and the coefficients of variables are stored in the matrix IK. The
size of it is increased to [KB,NV] where

KB = NR + 8.NOM+3.NOJ +2.NOx

NV = NOG+3.NOJ

in which NR is the number of stiffness constraints, NOM is the total
number of members, NOJ is the total number of members, NOJ is the
total number of joints and NOG is the total number of groups in the

structure. Hence, it can be seen that the first NR rows of the
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matrix DK contain the coefficients of variables in the linearised
stiffness constraints, the rows from NR+l to NR+8NOM contain the
coefficients of variables in the linearised stress constraints. The
coefficient of variables in the deflexion constraints are placed in
the rows from NR+8.NOM to NR+8.NOM+3.NOJ. The rest contains the
constraints due to move limits. The same order is followed in the

matrix RHS,.

3.7) SUBROUTIMNE SIMPILEX.,

Two different simplex subroutines are employed to solve
the linear. programming problem. Firstly, a program is written
which uses the Charnes M method as described in®), This is used
within the design procedure, applied to a number of relatively
small examples and found successful. But, when it is utilized in
the design of relatively large frames, it is noticed that diffi-
culties arise in finding feasible solutions. It is thought that this
happens due to the round-off errors during the simplex iterations. The
round-off errors become important when some of the numbers are very
large and some are quite small in the right hand side matrix. It
can easily be seen that this is the case in most design problems.

The right hand side of the linearized stiffness constraints are of
the order of 10*, the right hand side of deflexion constraints for
rotations are of the order of 10°?. In such problems after a number
~of iterations a small round-off ;rror in a critical element can cause
an error in selecting the maximum element of the objective function
row which results in an incorrect selsction of the variable entering
the solution. In the simplex method what is known as check colugn
is conétructed by adding the elements of the columns of the table,
row for row. As shown in{*°8) ) if the same simplex operation is
applied to this column as is ﬁsed in other columns, the elements of
the cheek column will equal the row sums at each iteration, This

is found to be a very powerful check on the calculations. When some
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elements of the right hand side matrix are very large and some are
small, the entries to the check column will be dominated by the
elements of the right hand side matrix, After a number of iterations,
the check column becomes almost useless, as small round-off errors
in the columns containing the large numbers make it impossible to
detect large errors in the columns containing the small numbers,
Although it is possible to control these round-off
errors by scaling the problem, it is found practical to use the
simplex subroutine written by ICL{*%*) in the design of relatively
large frames. This routine uses the two-phase revised simplex
algorithm with multiple column selection. As will be shown in the

next chapter, this routine is found to be effective and successful

from the results of the examples solved.
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87.

4.1) HAND EXAMPIES,

The optimum design method described in Chapter 2 was
applied to a number of examples and the numerical results were
illustrated.

Firstly, two pitched roof frames were designed by hand
to investigate the effect of the axial force and the initial design
point, In the first pitched roof frame, which has also been solved
graphically by K.I.Méjid{‘), the effect of axial force was neglectéd
with the purpose of simplifying the design problem, The second
moment of areas of columns and rafters were taken as design variables.
This gave rise to a non-linear objective function., However, it was
shosn that the approximation of this non-linear objective function
in linsar form, in this case, did not intrelweany error to the answer.
The design problem was also formulated in terms of the areas of the
columns and rafters. Two cases were compared and it was found that
in the case whére the effect of axial force is neglected, the use
of the second moment of. areas as design variables leads to a less non-
linear design problem., As a result the linearisation errors involved
were small and the application of move limits were not necessary. In
the second pitched roof frame, the design problem was considered in
the general form and the areas of the columns and the rafters were
taken as design variables. Different initial design points were used

and their effect on the optimum answer was investigated.

L4.1.1) THE EFFECT OF AXIAL FORCE.

The design of the symmetrical pitched roof-frame, shown
in Figure 4.1, subject to a vertical load of 2KN acting at the apex
C was considered. The columns were of the same section with second
moment of area Iy while rafters have second moment of area I3. The
modulus of elasticity was 207 kN/mm®. The vertical deflexion of the

apex was restricted to 4.8 mm while the horizontal deflexions at B
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and D were restricted to 2.78 mm. The allowable combined stress
for the members was 0.15 kN/mma.

Due to the symmetry it was only necessary to consider
one half of the frame, Neglecting the axial sti_f:f'ness EA/L of the

members, the joint displacement vector was given by

X = {xs 62 yal
From the geomstry of the frame it was possible to express the
horizontal deflexion of B in ‘terms of y3, shown in Figure 4.1,
as:

Xy = Ya tang
where ¢ is the angle of pitch. Hence the joint displacement
vector was reduced to X = {64 ya}. It was known that the
vertical deflexion at the apex was always downwards. Hence, the

deflexion constraint for it was to be

,Ya ‘ O-
In order to satisfy the non-negativity restriction for displace-

ment variables, the expressions

ya - )'l‘.B
91 = Yj'_ - 0.01

Ja

were substituted in the stiffness and stress constraints. Hence

the design problem had the form
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It was found that the stress constraints at C were dominant.., Hence in
the design problem only this constraint was considered and the problem

was linearised at the point

T, In yi va} = { 4.0x20* 6.0x10%° 0.0065 =0.4} 4.2

At the end of the first iteration the result wasz found to be:

{I» Ia y1 ya}={ 5.373x10* 5.4667x10° 0.008 0.0} 4.3
The weight function W being 1.08 x 10* mm®. The minimum weight found
by graphical design was 1.05 x 10* mm®, The frame considered was
analysed with I = 5,373 x 10* mm?®, I3 = 5.466 x 10* mn* and the
values of y's were found to be y, = 0.008, yz = 0.0 which agree very
well with that shown in equation 4.3. It was shown that after one
iteration reasonable convergence was obtained without application
of move limits.

The same design problem was also linearised at
the infeasible initial design point which was far from the optimum,
When the change in the value of the objective function in two
successive iterations was 1%, the procedure was terminated. The

results obtained without application of move limits are shown in the
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following table

91.

{CTERATION NO |I x10%mn® |Tox10%mm® |y, (rad) |ys (mm) |Wx10* mm®
TNITIAL
DESIGN POINT| 2.25 3.00 0.004 -5.1 0.525
1 3.273 L.748 0.0061 0.0 0.8021
2 4.35 6.368 0.0077 0.0 1.072
3 5.201 5.619 0.0074 0.0 1.082
TABIE 4.1

It can be seen that the minimum weight of the structure found in

Table 4.l agrees very well with the result shown in 4.3.

It is

clear that it is not always possible to predict the severe stress

constraint. For this reason the design problem 4.1 was again solved

by using the same initial design point but with all the stress

constraints present.

{ITERATION NO I,x10%mm® | Tx10%mm® |y, (rad) (mm) {Wx10% mm®
[INITIAL '
DESIGN POINT 2,25 3.00 0.004 =5.1 0.525
1 5.1766 5.946 1 0.0062 0.0 1.,1123
2 7.0309 L.2,8, | 0.0085 0k 1.1279
TABIE 4.2

It can be seen that the final result obtained in

Table 4.2 was different from that shown in Table 4.l. This is due

to the fact that the presence of all the stress constraints generates

more vertices in the feasible region which may increase the

possibility of having a local optimum,

It is known that, in this

case, approximating programming tends to converge to one of these

local optima.

In the case, where the areas of the columns and

rafters are taken as design variables instead of the second moment

of areas in the design of the pitched roof frame considered, the

design problem L.l becomes:
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where A; and Az are the areas of the columns and rafters respectively. It

can be seen by comparing the design problems 4.l and 4.4 that, the use of
areas as design variables increases the non-linearity of the stiffness
constraints and reduces the non—linearify of the stress constraints. The

initial design point was selected as:

{As Ay y1 ya} = [1.0 x 10* 1.0 x 10° 0,007 0.0}
The result obtained in the first iteration was

{As Aa y1 yal = [0.6422x10° 1.9922x10° 0.0 0.0}
when this was used to generate the next iteration no feasible solution was
obtained. This is due to the fact that the increase of the non-linearity
of the stiffness constraints generates large linearisation errors and
the displacement variables obtained by the simplex method violates the
stiffness constraints excessively. Hence, it became necessary to adjust
the displacement variables. This was carried out by solving the stiffness
constraints with Ay = 0.6422 x 10® mn®, A; = 1.9922 x 10° mm® and the

ad justed values of y's were found. The new design point became



93.

fAs Az y1 yal=1 0.6422x10° 1.9922x10* 0.0016 ... 0.9}
which was employed for the second iteration. The feasible solution
was found to be

fAs Az y1 ya}={1.2648 x10* 0.0 0.0078 0.0}

Although a different initial design point was employed,
convergence was not obtained. It was found that the application of
move limits was necessary to obtain convergence. Later, this matter
was investigated in more detail in an example in which the effect of
axial force was not neglected. As a result it may be concluded that
in design problems where the effects of axial forces can be ignored,
the use of the second moment of areas as design variables reduces the
non-linearity of the stiffness contraints and therefore yields better
results. However, in general it is not possible to ignore the axial
stiffness of the members. This is taken into account in the next

example,

4.1.2) THE EFFECT OF THE INITIAL DESIGN POINT.

The design of the symmetrical pitched roof frame shown
in Figure 4.2 was considered. The columns are of the same section
with area A; ana the rafters have area A;. The modulus of elasticity
is 207.0 kN/mm?. Because the axial forces in the members are sig-
nificant, it is required to limit the combired bending and direct
compressive stresses to 0,10804 kN/mm® in member AB and to
0.2034 kN/mn® in member BC. The outward horizontal deflection at
the eaves is to be limited to 4.225 mm and the downward deflection at
C to 8.23 mm,

Again, due to s&mmetzy, only half of the structure is
considered, This is shown in Figure 4.2(b) where the joints and
the members are numbered. Because the axial forces in the members

are significant, the vertical deflexion y; at joint 1 cannot be

Suppressed. The joint deflexion vector is
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X = %1 y1 6y yal}
The corresponding load vector is

L = 0o 0o 0 =100}
It is known that x4 and ya are always negative, Hence the deflexion
constraints for these are

Xs £ 0
} b5
Ya £ 0

Substituting xg = ys = 4.225 and ya = ya = 8.23 to satisfy the non-
negativity restrictions, the expressions 4.5 become

yi < 4.225

ya € 8423
The vertical deflexion ys at joint 1 is also negative and a reasonable
bound on this can he calculeted by assigning the smallest universal
section availeble to the column. This has an area of 3230 mm®. The

axial load in the column is 100 kN, thus from:

P = EAy:/L
_ 100x3000
i = 507x3230

¥ = 0.448 mm =~ 0.5 mm

Thé substitution y3 =y - 0.5 gives the vertical deflexion constraint
at joint 1 as

ya < 0.5
Finally the rotation 64 at joint 1 may be positive or negative.
Assuming that -0.01 € 6 < 0.01, the substitution 6= ya - 0.01 gives
the constraint for this joint rotation as

va & 0,02

The design problem is formulated as explained in

Chapter 2 and the necessary substitutions for the displacements as
shown above are carried out in the constraints. Due to the fact that

the number of variables and constraints was too great to carry out the

calculations by hand, a computer was used for solution of each linearised
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problem, ICL's¢*%)  simplex routine was employed for this purpose.
Firstly, an infeasible initial design point was used, the move limits
were not utilized and the results obtained at each iteration are shown

in Table 4.3.

g NOTION Aix10%mm® | Azx10%*mm® |ys(mm) |ya(mm) [ya(rad) ya(mm) | Wx10°mm®

INITIAL :

DESIGN POINT| 0.50 0.25 |-12.778/0.2102 |0.01433 (=23.069 | 0.23750
1 0.8673 0.3500 L.225]0.423 |0,0122 7.119 | 0.38271
2 L1721 1.3559 3.192|0.360 |0.0071 8.23 0.82622
3 1.8334 2,0425 4.225|0.455 |0.013 6.955 | 1.26495
b 2.2665 3.1596 4.225{0.275 |0.0074 8.189 | 1.78583

TABIE 4.3

It was noticed that the value of the objective function in-
creased continuously and convergence was not obtained, The adjustment
of displacement variables was carried out at each iteration to reduce

the linearisation errors. The results are shown in Table 4...

IITERATION
NO Agx10%mn® | Ax10%mn® |y, (mm) |ya(mm)|  yo(rad) | y,(mm)| Wx10°mm®
INITIAL
DESIGN POINT 0.50 0.25 -12,778 |0.2102| 0.0143 |-23.069| 0.23750
2 1.7356 0.4427 0.945 |0.417 0.0114 1.41 | 0.67564
3 3,486 0.4978 4.225 |0.50 0.0103%6 7.03 | 1.22005
TABLE 4.k

It can be seen that the results are improved but convergence
is still not obtained. It is obvious that the adjustment of displacement
variables is not enough to control the linearisation errors. It is,
therefore, necessary to apply some bounds on the design variables so

that their change during the iterations can be restricted. Firstly, the

move limits are chosen as an upper bounds., That is:
(1) - (0)
Ij G (1-0 + m) x j j = 1’..-11 )-]-.6

where n is the number of design variables, x%°)15 the current value
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. (1)
of the design variable and xj is the value of the design variable to

be obtained in the next iteration. m is the selected percentage
known as a move limit, In the expression 4.6 the minus sign is used
for - feasible design points and the plus sign is used for infedsible
design points. There are two methods to apply move limits. The first
is to put these upper bounds on both area and displacement variables.
This method 1:'u'aas not found successful, because in the design problem the
displacement variables were already bounded enough by the substitution
carried out to satisfy the non-negativity restriction. Further re-
Striction prevented obtaining a feasible solution. The second method
is to put these upper bounds on the area variables only. This was
applied to the example considered where the adjustment of displacement
variables was also carried out at each iteration and results are shown

in Table 4.5,

ITERATION
NO A, x10%mm*® Aaxlo"‘mma yo(mm) | yo(mm) | va (rad)| y,(mm)| Wx10°mm®
INITIAL '
DESIGN POQINT 0.50 0.2500 |=12,778 | 0.2102 | 0.,01433 ~2 .063| 0.,23750
2 1,008 | 0.4900 | 1.78 | 0.366 | 0.01033 | 3.230| 0.48375

TABLE 4.5

Move limits of 100% were employed in the first iteration, different move
limits of 20% and 14.0% were applied to areas As and A3 respectively in
the second iteration. The pitched roof frame considered was analysed
using the areas obtained at the second iteration and it was found that
the deflexions of the joints and stresses in the members were at their
allowable bounds,

A feasible initial design point was also employed and it
was found that the adjustment of displacement variables has to be

carried out when it is necessary. This is shown in Table L.6.
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ITERATION .
NO Ayx10%mm® |A3x10*mn?| y,(mm) | ya(mm) | yg(rad) | yg(mm) |Wx10°mm
INITIAL
DESIGN POINT 3,00 2,00 4,019 0.452 0.01 7.615 |[1.6500
1 1.50 0.75 3.663 0.428 0.01006 | 6.872 |0.71250
2 1.05 0.525 2.038 0.382 0.01049 | 3.719 |0.49875
3 0.9975 0.4987 | 0.215 0.356 0.0109 0.375 |0.47381
TABIE 4.6

In the first iteration different move limits of 50% and 62.5% were used
on A; and Az, then equal move limits employed in the next two iterations
which were 30% and 5% respectively. In this example, the optimum result
was found without carrying out the adjustment of displacement variables
at each iteration., It was noticed that this was not always the case.

When the feasible point

A2 A3 y2 ya ys 2 ys} = {1.50x10% 0.75x10° 2,419 0.402 0.0104% 4.488}
was taken as an initial design point and 30% move limits were employed on
areas, in the first iteration the new design point was found to be
A1 % yi ya ys va ys} ={1.05x10* 0.525x10* 1.282 0.37% 0.01074 2.328}
Although a number of different move limits were employed and the above
design point was used in the next iteration a feasible solution has not
been found., Then the adjustment of displacement variables were applied
and 4% move limits werc utilized on both area variables, the result was
found to be

A A& y1 ya ys ya] = [1.008x10* 0.504x10* 0.678 0,356 0.0109 1,095}
which is an optimum. The results obtained from the application of a number
of different feasible initial design points indicates that the solution
of stiffness equalities to adjust the displacement variables is carried
out’ only when it becomes necessary. As a result it may be concluded
that feasible and infeasible initial design points may be employed, but
the use of the latter may require a greater number of adjustments of

displacement variables which is carried out during the iterations to

obtain the optimum answer.
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4.2) TRIANGULAR FRAME.

The computer program described in the previous chapter was
used to design the simple triangular frame of Figure 4.3(a). As ex-
plained in that chapter, for the design of this and the next example
the first simplex routine was employed in the design procedure which
utilises the Charnes M method. The frame is fixed at A and C and
rigidly jointed at B, and the dimensions are shown in the figure. A
force of 1000 kN acts at right angle to the line joining A and C
which is resolved into its components as shown in Figure 4.3(b). The
vertical deflexion of point B was limited to 1.436 mm and the horizontal
deflexion was restricted to 2,793 mm, The combined stresses in members
AB and BC were limited to 0.176 kN/mm® and 0.116 kN/mm® respectively.
The elasticity modulus was 207 kN/mm®.

There are a total of 24 constraints and 5 design variables
in the design problem. Since it is only necessary to apply move limits
on areas, there are consequently 2 constraints, The rest consist of 3
stiffness, 16 stress and 3 deflexion constraints.

As seen from the examples solved by hand, the move limits
can be chosen quite arbitrarily. In previous research work, a number
of different ways were employed. For example, fixed value move limits
were found satisfactory by Johnson and Brotton®”? to cbtain convergence
in the examples which they considered. These were arranged by selecting
50% for the first 3 cycles, 25% for the next cycles and 10% for the
final cycles. On the other hand Reinschmidt amd others({®2) have found
adaptive move limits practical to obtain convergence., It étill remains
impossible to give a general rule for their application. This is due
to the fact that the selection of move limits depends on the behaviour
of the programming problem. If a problem behaves poorly, then tighter
move limits are necessary, while if convergence is direct and orderly,

the move limits may decelerate convergence. Hence adoptive move

limits may give better convergence. However, both methods of move
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limit application were used in the design examples considered. -
In the present example, an initial value was selected for the
move limits and this was changed at each iteration. In the
following example fixed value move limits were employed. In these
two examples, the adjustment of displacement variables was avoided,
instead different move limits were tried, to overcome ocbtainining
non-feasible solution. The examples solved by hand have shown that,
in the case where a feasible desién point is used to start the
iteration, tighter move limits may prohibit the linsar program from
finding a feasible solution. In such cases these limits are relaxed.
Hence the program was written in such a way that when no feasible
solution was obtained in the use of a feasible initial design point,
the simplex routine was repeated a number of times by increasing the
value of the move limit each time by 10%. If a feasible solution
was unobtainable, then the adjustment of displacement variables was

carried out and the new design point was used to continue the iteration

with the adjusted values of the move limits.

ITERATION
NO A;x10%mm® | A5x10%mm? | y; (mm) | yp (mm) ya(rad).| Wx10%mm®
INITIAL
1 0.75 1.25 |1.717 |0.756 0.0104 | 0.67500
2 0.45 0.75 |(0.877 |0.248 0.0107 0.40500
3 0.3887 0.8105/0.047 |0.0 0.0111 0.39862
4 0.4015 0.7980/0.009 (0.0 0.0111 0.40001
TABLE %.7

Table 4.7 shows the results obtained during the iterations

Move limits of 50% were used to start with,which was then increased

to 60% at the second iteration.

It was then found that a feasible

solution was not available with the move limits having a value of

70% and so the simplex method was applied 4 times, each one having

increased move limit constraints.

In the fourth application, with

the move limits at 100%, a feasible solution was obtained as shown in
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The minimum weight of the structure was found

to be W = 0.,400012 x 10® mm® with areas A; = 0.4015 x 10* mm® and

Az = 0.798 x 10* mm®.
and the deflexion and stresses were found to be at their allow-

able bounds,

4.,3) THE PORTAL FRAME.

This verified the optimality of the result.

The structure was analysed with these areas

The design of the fixed base rectangular portal frame

shown in Figure 4.4 which is subject to a horizontal load 1 kN

acting at B is now considered.

The modulus of elasticity is

207 kN/mm2 and it is required to maks the columns out of the

same section while the beam may have a different section.

The

maximum horizontal sway at B is restricted to 4 mm ani the bending

stress in the members should not exceed 0.1l5 kNYhma.

In the example considered a feasible initial design

point and fixed value move limits were employed.

three iterations 75% move limits were used.

For ths first

It was then found that

& feasible solution cannot be obtained with this particular value

of move limits.

They have to be relaxed. The simplex method was

repeated twice by increasing the value of move limits to 85% at each

iteration and the feasible solution was obtained with the move limits

having values of 95%.

The results are shown in Tablc 4.8.

ITERATION
NO A;x10°mm? | 4. x10%mm?| v, (mm) | vo (nm) ya(rad) |y, (mm) | ys(mm)| ya(rad)Wx10°mm?
INITIAL
DESIGN POINT| 5.00 3.00 4.497 [0.503 | 0.0095 |4.489 |0.497 | 0.0095 | 13.000
1 3.75 2,10 |4.76 [0.504 [0.0092 [4.750 |0.496 |0.0093| 9.600
2 2,812 1.47  |5.324 |0.505 | 0.0086 |5.309 |0.495 | 0.0086| 7.090
3 2.109 1.029 |6.412 [0.506 | 0.0074 [6.392 |0.494 | 0.0074| 5.249
b 2.0039 | 0.9261 |7.493 [0.507 |0.0061 [7.467 |0.493 | 0.0061| 4.930
2 2.0041 | 0.9261 | 7.40k4 [0.506 | 0.0060 [7.378 |0.494 |0.0061| 4.930

TABLE 4.8
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As ssen from Table 4.8 convergence was obtained in the fifth iter-
ation and the minimum weighf of the frame was found to be
4,93 x 10° mmn®, The columns have the optimum area of 2,0 x 10°mm?
and the beam has the optimim area of 0.926 x 10° mm®. The same
frame was designed by K.I.Majid‘* ) where the axial stiffness of
the members were neglected and the.minimum weight of the frame was
obtained as 4.463 x 10° mm®. In that case, the optimum areas for
columns and beam were found to be A; = 1.85 x 10° mm®,
Ay = 0.94 x 10% mmarespectively. It can be seen that when the
axial stiffness of the members are not neglected the member forces
in the columns will increase while the axial force in the beam
will remain approximately the same, Hence, the area required for
the columns will increase and the area required for the beam wiil
remain very similar. The results shown in Table 4.8 verify this.
At this point it is worth while saying that for re-
latively small frames in the case where the initial design point
is chosen as a feasible point, then it may be possible to obtain
the optimum solution without carrying out the adjustment of the
displacement variables, but by just repeating the simplex tables
with different values of move limits. These move limits are only
applied as upper bound constraints, Later, when relatively large
frames were designed, this way of move limit arrangement was found
impractical. Due to the reasons explained in Chapter 3, it became
necessary to employ the simplex routine writfen by ICL and re-
petition of the simplex routine with different move limits was

found to be time consuming especially for large design problems
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which require more than 100 simplex iterations to obtain the optimum

solution., It was also Tfound. that when the linear progranaing
problem has no feasible solution due to tight move limits, it may

be possible to obtain a feasible solution by adjus ting the dis-~

placement variables and carrying out the linearisation using this
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new design point and repeating the simplex routine with tight
move limits. It is obvious that the solution of stiffness
equations will take less computing time than carrying out the
simplex routine. Hence in the following relatively large
examples, analysis routine was employed when adjustment of dis-
placements became necessary. Firstly move limits were applied as
upper bound constraints, It was found that convergence was not
obtained and fluctuation occurred. As a result it became
necessary to employ lower bounds to prevent the fluctuation and

move limits were arranged in the manner described in Chapter 2.

l.4) TWO STOREY FRAME I.

The two storey frame shown in Figure 4.5 has a
total of 4 joints and 6 members., The members of the structure are
grouped into 3 area groups. The first storey columns belong to
group 1, second storey columns belong to group 3 and the beams
belong to group 2. This frame was designed to satisfy the deflexion
and stress limitations under the horizontal loading shown in
Figure 4.5. The horizontal sway of the frame was limited to 5 mm,
the stresses in members 1 and 3 were limited to 0.0227 kN/mm®,
the stresses in members 2 and 5 were limited to 0.0267 kN/mm® and
the stresses in members 4 and 6 were limited to 0.01 kN/mm®, The
bounds on the vertical deflexion of joints were taken as 0.5 mm
and those for the rotations were taken as 0.01 radians.

The design problem of the frame considered consists
of 15 variables and 75 constraints 12 of which are stiffness
constraints, 48 of which are stress constraints, 12 of which are
deflexion constraints and the last 3 are due to move limits which
are only upper bounds on area variables., Convergence rate was taken
as 0.2% and the results for the areas obtained at each iteration

are shown in Table 4.9.
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ITERATION

NO A;x10* mm® | Ax10* mm® [Asx10%mn® | Wx10° mm®
INITIAL :

DESIGN POINT 5.000 2.5000 3.7500 9.50000

1 3,7161 1.8374 2.7647 7.02206

2 39917 1.9796 2.9829 7.55936

3 3.9962 | 1.9992 2,9895 758784

L 4.,0056 2,0000 2,9892 7.60397

TABLE 4.9

The value of the weight function corresponding to this design
was found to be 7.,60397 x 10® mm® and was achieved after 4
iterations of the optimisation procedure, where the ICL's simplex

routine was used to solve each linearised problem.

4,5) TWO STOREY FRAME II.

The frame of Figwre 4.6 was originally designed for
minimum weight by Toakley¢45) using the rigid-plastic theory where
a discrete set of sections was considered to be available. The
frame has 8 members grouped together, with some members mads out
of the same section, so that there are 4 groups. The member, and
group numbering is indicated in the figure., The frame is subject
to equal loads of L44.48 kN acting at joints 1,2,4 and 5 shown in
the figure., The limitations for the deflexion of joints were taken
from B.S.449 which are that the midspan deflexion of a beam should
not exceed the value of L/360 where L is the length of the beam and
horizontal deflexion of a column should not be more than h/325 where
h is the height of the column. Hence, the sway of the frame at joints
1?2,3 was limited to 18,757 mm, at joints 4,5,6 limited to 37.5138 mm
and the vertical deflexion of joints were limited to 16.93 mm. The
combined stresses in the members were limited to 0.15 kN/mm®,
Elasticity modulus of the material was 207 kN/mm®,

Altogether, there are 18 stiffness constraints, 6.4
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stress constraints and 18 deflexion constraints in the design
problem, In addition to these, firstly upper bound move
limits were imposed on the area variables.

The initial design point was chosen to be an in=-
feasible point and equal values were taken for the group areas.
As shown in Figure 4.7, the value of the minimum weight function
fluctuated and convergence was not obtained after 22 iterations.
Different initial design points were utilized and adoptive move
limits were employed, ﬁut the convergence difficulty was not over-
come, Comparing the sizes of the previous problem and this one,
it can be seen that the problem considered here has more con-
straints and more displacement variables. Wheﬁ the size of the
design problem increases, the errors involved in linearisation
become large and the upper bound move limits are not enough to
control the changes on the design variables during the optimisation
process. Hence it becomes necessary to impose lower bounds on the
area variables. This was done by adding 4 more lower bound con-
straints to the design problem which were of type II which require
artificial variables, As shown in Figure 4.8, by means of lower
and upper bound move limits convergence was obtained after 1l
iterations. Two more iterations were carried out and no change was
seen in the value of the minimum weight function which verifies
the convergence., The convergence rate was taken as 0.1% and the
values of areas obtained at each iteration are shown in Table 4.10.
The final volume was obtained as 3.49634 x 10° mm®, It is obvious
that this result will be dif'ferent to the one obtained by Toakley,
due to the fact that a continuous set of sections was assumed avail-
able for selection in the design procedure used in this thesis,
whereas a discrete set bf sections was assﬁmed to be available-in
the algorithm employed by Toakley. Hence, if a discrete set of sections

are to be used, then it becomes necessary to round-off the derived

. e b
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ITERATIO AREAS x 10° mm® WEIGHT
8 8
No ” i A i x 10° mm

INITIAL

DESIGN 3.000 3,000 3.000 3.000 1.09728
1 L.621 4.650 L.752 4o 354 1.69170
2 6.483 7341 5.606 5.148 2.23516
3 7.806 12.687 6.048 5.19% 2,77916
4 9.871 8.387 7.185 8.829 3,12904
5 9.646 13.419 7.59 3.532 3.13524
6 10.91%4 8.619 9.937 5.298 3439047
7 9.363 12.067 5.962 7.417 3.05621
8 9.196 15.687 Ts751 5.192 3433894
9 11.035 12,549 7792 6.230 3444023
10 9.932 13.804 84394 6.853 . 3449360
11 10,925 12.857 7+555 7.538 349634

TABLE 4,10 TWO STOREY FRAME II DESIGN.,
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sections shown in Table 4.9 to available sections by using the
universal beam and column tables given in B.S.4:1972. This was
carried out and the final volume was obtained to be 2701.8 kg as
compared to 1678.3 kg obtained by Toakley. It is known that to
round-off the derived sections to available ones does not ne-
cessarily yield an optimum structure. On the other hand, the
design by rigid-plastic theory does not impose any limitation on
the deflexions due to the fact that it assumes that the structure
does not deflect until collapse. This is one of the weaknesses of
the rigid plastic-theory. When the frame considered was analysed
with the final are as shown in Table 4.9, it was found that the
deflexions were at their limits while the members were not fully-
stressed. This showed the deflexion constraints are dominant in the
design problem and it is apparent that the optimum result obtained

without considering them will yield an unsafe solution.

4.6) TWO STOREY, TWO BAY FRAME.

The structure shown in Figure 4.9 is a practical
frame commonly used in structural engineering. This structure was
also originally designed by Toakley'4) using the rigid-plastic
theory where a discrete set of section:; was considered to be
available. The dimensions and the loading of the frame are shown
in the figure. The horizontal deflexions of the joints at the
first storey were not to exceed 9.378 mm, and the horizontal de-
flexions of the joints at the second siorey were not to exceed
18.756 mm. Vertical deflexions of the joints were limited to
16.93 mm, These limitations were imposed as previcusly with
reference to B.S.449,

Young's modulus for the material was 207 kN/mm® and
the combined axial and bending stresses were limited to 0.15 kN/mm® ,

The frame has 10 joints and 1) members which were collected together
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R . AREAS x 10° mn® WEIGHT
x 10%mm®
Ay Ay A3 A

INITIAL
1 8.926 7.688 6 .69 6.890 3.,20576
2 11.831 10.832 7.694 8.262 4.11318
3 13.428 13,215 7.850 8.725 14.62081
4 13.698 13.978 T+833 8.775 4. 74284
5 13.717 14.032 7.833 8.776 L7513

FINAL

DESIGN |13.717 14.033 7.833 8.775 4.75138

TABLE 4.11 TWO STOREY TWO BAY FRAME DESIGN.




1l4.

into 4 area groups as shown in the figure. The design problem was
therefore one of 34 variables 4 of which were areas, the rest

were displacement variables and there were altogether 176 constraints.
It was found that to obtain the optimum solution of each linearised
problem an average of 140 simplex iterations were required and con-
vergence was obtained after 6 iterations of the optimisation
procedure, The areas for the groups obtained during the iterations
are tabulated in Table 4,11. The minimum value of the weight
function corresponding to this design was found to be 4.75138 x 10°® mm®.
The analysis of the frame at the optimum point has shown that the
stress constraints dominate the design problem, ani that the com-
bined stresses in members 2,5,9 and 12 were at their limits while

the deflexions of the joints had values less than the bounds imposed.

4.7) FOUR STOREY FRAME.

The final example was the design of the frame shown in
Figure 4.10 which was also originally considered by Toakley&‘s). The
structure has 12 joints and 16 members grouped together, with some
members made out of the same section, so that there are 8 groups.
The member, and group numbering is indicated in the figure.
Dimensions of the frame and the loads acting at the joints are also
shown in the figure., The limitations on deflexions and stresses
were taken from B.S.449. Hence, the horizontal deflexions of joints
1,2,3 should not exceed 14.068 mm, the horizontal deflexions of
Joints 4,5,6 should not be more than 28.135 mm, the horizontal de-
flexions of joints 7,8,9 should be less than 42.203 mm and the
horizontal deflexions of joints 10,11,12 were restricted to 56.27 mm.
The vertical deflexions of the joints were limited to 25.4 mm. The
combined axial and bending stresses were restricted to 0.165 kN/mm®,

Elastic modulus of the material was taken as 207 kmﬂmm’-

Altogether there were 44 variables (8 of which were
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TERH AREAS x 10° mm® WELGHT
AT Q] i
_ x 10

NO Ai Aa Aa 34 A5 AB -A-T AB mms
INIT}

IAL

DES-

IGN | 10.000 [10.000 |10.000 | 10.000 |[10.000 | 10.000 [10.000 | 10.000 | 7.3152
1 |14.965 [14.620 |13.511 | 15.068 |12.085 | 13.706 | 7.624 | 6.677 | 8.9847
2 119.363 [20.880 |15.776 | 20.952 |11.892 | 17.873 | 7.6275| 8.867 [11.2684
3 |22.347 (23.014 |16.033 | 24.035 |17.221 | 15.0733[12.478 | 7.816 |12.6572
L | 23,468 |21.646 |16.921 | 24.500 [11.133 | 22.669 | 4.991 |11.295 [12.4985
5 |20.137 {32.469 |17.939 | 18.933 [ 16.789 | 11.423 | 7.487 | 5.647 [11.9628
6 |22.720 [19.482 |17.999 | 25.937 | 10.159 | 15.992 | 10.036 7.906 [11.8902
7 | 24.266 25,326 |(17.196 | 18.68L |13.207 | 20.789 | 9.996 | 10.273 |12.7780
8 | 23.497 |21.559 |18.027 | 22.421 |15.849 | 23.902 | 11.395 8.222 |13.3023
9 | 24.535 |23.715 |16.224 | 24,663 |14.264 | 21.512 | 13.194 9.045 [13.4558
10 | 23.472 |21.629 |17.847 | 24.153 |15.690 | 22.675 |11.875 9.949 |13.4685
11 | 22.835 [23.793 |16.484 | 26.568 | 14.121 | 20,408 [ 11.928 | 10.94k [13.4493

FINAI]

DES-

[GN | 23.460 |21.675 |18.132 | 23.912 |15.534 | 22.448 [ 10.736 | 11.219 [13.4523

TABLE 4.12: FOUR STOREY FRAME DESIGN.
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area gﬁoups, the rest were displacement variables) and 216 con-

straints which required a core of 60K in the ICL 1905E computer.

It was found that 12 iterations were required to reach the optimum

solution. In the solution of each linarised problem, an average

of 160 simplex iterations were needed which required considerable

computer time. An initial design point was chosen to be infeasible.

In the last three design examples the initial design point was

selected in such a way that areas had values equal to each other.

This introduced no difficulty in obtaining convergence which

was found to be practical and provided flexibility to the design

procedure, The frame was analysed with the optimum areas and it

was found that the horizontal deflections of Jjoints at the fourth

storey were at their limits and members 2 and 4 were fully-stressed.
Using a tolerance on the objective function of 0.02%

the final areas obtained are tabulated in Table 4,12, The final

volume obtained was 13.45232 x 10°® mm®.

4.8) CONCLUSIONS,

The procedure for optimum elastic design of structures
described in Chapter 2 was applied to the design or rigid frames
where the criterion defining the opt?mum design was minimum weight
and the results obtained are shown in this chapter., The application
of the method is general. It approaches the design problem in a
fundamental manner. It does not have the nature of iterative
analysis. However, due to the linearisation ertor involved in the
approximating programming, analysis is carried out when and if it
becomes necessary. The examples solved have shown that the number
of iterations required to obtain the optimum design is relatively
small,

Although, in this thesis, rigidly jointed plane

structures were considered, the method may be extended to deal

FRT R ¥
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with rigidly jointed space frames., Since the displacements of
joints were taken as design variables, it may be possible to
use the finite element method to formulate the design problem,
which will eventually make it possible to deal with the optimum
design of more complex structures.

The investigation has shown that when the design
problem is formulated by the matrix displacement method in the
proposed way, both the stiffness and stress constraints satisfy
the properties of convex functions. Furthermore, because both the
objective function and deflexion constraints are always linear,
they are also convex, It is known that, in minimisation problems,
if the objective function and the set of constraints are convex,
then a local optima is also global¢®), Hence, it can be concluded
that the solutions of the non-linear'design problems posed in this
chapter are global. This can also be verified by commencing
with the solution of a particular problem from several widely
different initial design points. However, it is obvious that

this requires a considerable amount of computer time,



CHAPTER 5

STRUCTURAL VARIATION FOR RIGIDLY JOINTED

STRUCTURES
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5.1) INTRODUCTION.

There are a number of cases where it becomes necessary
to know the manner in which the member forces and the joint de-
flections throughout a structure change when one or more of its
members are varied or removed. This becomes particularly im-
portant in the d esign of structures with variable topology.

Here "topology" is defined as the number and the distribution of
Joints and the manner in which they are linked together. It has
been shown in previous research works'®2s22,402) that economy in the
material cost of the structure can be achieved ﬁy altering its
topology. In this way, it may be possible to select that topology
which makes the material cost minimal, while both stress and de-
flection requirements are satisfied. |

It is apparent that when the topology of a structure
changes, it becomes necessary to analyse each of these structures
by using either the matrix force or the matrix displacement method.
When there are several changes to be made to a structure, these
methods involve the repeated construction and solution of a large
number of simultaneous equations. It is clear that this is rather
cumbersome and time consuming. These repeated analyses can be
avoided by deriving an explicit relationship which can be utilised
for the above purposes. K.I.Majid and D.E1liot{1°1) have established
what are known as the theorems of structural variations, which make
it possible to predict the behaviour of one structure from that of
another, '

The work of Maxwell, Mohr and Muller-Breslau clearly
indicates that there is a heirarchy of structures in which the
analysis of complex structures can be obtained from the analysis
of more elementary structures. The reverse process which gives

rise to the theorems of structural variations, predicts the exact

behaviour of elementary structures from more general structures. Once
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the analysis of complex structures has been carried out, the proposed
theorems can be applied to analyse a multitude of derived structures,—
without further application of either of the basic methods of
analysis. Further, these theorems make it possible to predict the
behaviour of a structure from the results of another which has the
same shape but with different material and cross-sectional pro-

perties. Before entering into the details of these theorems, it is

convenient to state their abilities,

5.2) THE THEORENS OF STRUCTURAL VARIATIONS.

i) The first theorem predicts the farces throughout a resulting new
structure when the cross-sectional properties of one or more members
of the parent structure are varied independently or totally removed.
ii) The second theorem predicts the deflexions throughout a resulting
new structure when the cross-sectional properties of one or more
members of the parent structure are varied independently or totally
removed.,

iii) The third theorem predicts the forces and deflexions throughout
& structure when the cross-sectional properties of all the members

are varied proportionally.

5.2.1) ASSUMPTIONS.

There are two assumptions which are made in conjunction
with the structural variation. The first is that the stress-strain
relationship of the material of the structure is linear elastic and
obeys Hooke's law., The second is that the load deflexion relationship
is also linear and that the principle of superposition is valid.
However, recent work by Majid and Celik has shown that none of these
assumptions are necessary.

The above theorems have been established with reference

to linear plastic pin jointed structures where it is sufficient to
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consider the areas of the members to be basic variables, due to the
fact that members and joints are only subjected to direct loads. It
is known that in rigidly Jjointed structures the members and the joints
are considered not only to sustain the direct forces but also moments.
Hence it becomes necessary to include the second moment of areas
of the memters as further basic variables, In this chapter, these
theorems are extended to cover rigidly jointed plane structures
where the basic variebles are the second moment of areas and the
areas of the members. Howeve{ it is also possible to extend the
theorems so that they can be used for rigidly jointed space

structures.

5.2.2) THE UNIT LOAD MATRIX.

As stated above due to the fact that members and joints
of pin jointed structures are only subjected to direct loads, it is
possible to predict the influence of the variation in the area of
any member on the rest of a structure by first applying a pair of
equal and opposite unit loads which act axially at the ends of that
member, Then the results of the analysis of the structure can be used
to study the effect of that member on the rest of the structure. Since
there are two basic variables in rigidly jointed structures, which are
the second moment of areas and the areas of the members, it becomes
necessary to study the influence of the variation in each variable
of any member separately.

A member whose first and second ends are connected to
a structure at joints A and B respectively is shown in Figure 5.1(a)
which is subjected at its ends to bending moments MAB and MBA’ shear
forces SAB and axial force PAB' It is known that the moments and
shear forces are transferred by the bending stiffness of the member
while the axial force is transferred by its axial stiffness. Since

the moments of each end are not independent of each other, it becomes

necessary to consider them separately as shown in Figure 5.1(b),(c).
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Hence, the influence of the variation in the second moment of area
of a member will be studied in two steps. The first step requires
an analysis of the structure under a unit moment and unit forces
actingat the ends of the member. These will be in the opposite
direction of the moments and forces shown in Figure 5.1(b). This
analysis enables the study of the influence of the variation in the
second moment of area at the first end of a member. The second step
requires an analysis of the structure under the unit moment and
forces acting at the ends of the member, in the opposite direction
to those shown in Figure 5.1(c). This enables us to investigate
the influence of the variation of the second moment of area on the
second end of that member and also on the rest of the structure.
Hence to study the independent effect of the second moment of areas
of every member requires an analysis of the structure under two load
cases as shown in Figure 5.2(a)(b). For convenience, these forces
are resolved so that their components may act parallel to the overall
reference axes X,Y of the structure.

A member whose first and second ends are connected to a
structure at joints A and B respectively as shown in Figure 5.3(a)
is now considered. The components of the external forces 5, and Sy

can be expressed in terms of the direction cosines of the member as:

- - -

Sl = [ 0 0] 5,

Spy ¢, 0 of {85 5e1
Myp 0O 0 1 |M,

SEX 0 mP 0

Sev 0 -f 0

Mp, 0O ©0 0|

For the loading of the second step as shown in Figure 5.3(b)
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SAX = mp 0 0 ¥

SAY &p 0 0 SB 5.2
MAB 0 0 0 MB

SEX 0 mp 0

SBY 0 —&p ¢}

MBA 0 0 1

where sx and SY are the components of S in X and Y directions re-
spectively and 6P and mp are the direction cosines of the p axis
of the member.

For S, = 1/L, Sp = 1/L, My =1 and My = 1 the first

step unit load matrix 5.1 reduces to

1 1 1 1
= == =& 1 = - :
[SAXSAYMABSBXSBYMBA} [ T %% 3% TS OJ 5.3
and the second s tep unit load matrix 5.2 reduces to
- 1. 1 1 1 !
[Saxsa ABSBXSBYMBA}" [ T T O A T 1} Sek

An analysis of the structure under these two load cases enables us
to study the effect of the second moment of areas of the member

on the rest of the structure, If the effects of the area of that
member are required to be studied, then it is necassarytioi) to
carry out further analysis of the structure under a pair of equal
and opposite unit loads acting axially at the ends of a member as
shown in Figure 5.3(c). The components of the external forces

PA =1 and PB ==l can be expressed in terms of the direction cosines

of the members as:

[SAXSAYMABSBXSBYMBA} = [ T T O] 5e2
Consequently, to study the influence of the variation in the second
moment of area and the area of the member requires an analysis of
the structure under three load caseswhich are given by the matrices

5.3, 5.4 and 5,5, These components of the unit external loads at the

ends of the other members are similar and once these are collected
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together, they can be expressed as a matrix C which is known as the
unit load matrix.
A part of matrix C, for -a member u which is connected to
Joint r at its first end, joint s at its second end and a member f

which is similarly connected to t and p, is of the from

C = - o3
— 1 1 .
-=m - = nm -£ s 0 0 0
I'u Py I"u Py pu .
A 1 2 .
= £ = £ -m . 0 0 0
Lu Pu Lu pn Pu 2
1 0 0 : 0 0 0
. 1 1
0 0 0 S ==nm -=n -
¢ Lepp  LppPp P
: 1 1
0 0 0 e -4 = £ -m
¢ LepPp Lepe P
0 0 0 e A 0 0
1 1 :
=m =nm 1/ : 0 0 0
Lu Py Lu Py pu =
1 ¥ b
-=¢ -=£ m . 0 0 0
Lu pu I'u Pu pu o
0 1 0 . 0 0 0
. 1 1
. - o = M &
0 0 0 : Lf Pe Lf Pe Pe
. a i 1
0 0 0 s ==m -=¢ m
+ LpPp Lepp Pg
0 0 0 . 0 1 0
for member u ; for member p

While analysing the structure under the actual external loads L, it is
now possible at the same time to evaluate the joint displacement X
and the member forces f due to the unit load matrix.Combining L with C,
and also X with x the overall stiffness equation become

x 2] =x*[L ¢l

and the member forces

(P p] =xalx x]

at r

at s

at ¢
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5.2.3) VARIATION OF FORCES WITH THOSE OF MEMBER AREAS AND
SECOND MOMENT OF AREAS.

The first theorem of structural variation predicts the
member forces throughout a structure when the second moment of area
and area of one member are varied or when they are totally removed,
thus resulting in a completely new structure which has a new topology.
It is known{2°%) that it is necessary to change the area and the
second moment of area of a varying member independetly and not
simultaneously. Further, as explained in the previous section, the
variation of the second moment of area of a member is carried out
in two steps. In the first step, the new member forces in the other
members of the structure are computed when the second moment of
area varies at the first end of that member. In the second step, these
forces are used to compute the final forces in the members of the
struc ture when the second moment of area varies at the second end of
that member. During these steps the area of the member is kept-
unaltered. .

Firstly an expression will be derived for the new forces
in any member, when the second moment of area of a given member is
being varied.

Consider a member i of a structure shown in Figure 5.4(a).
The second moment of area of the member i is being varied from Ii to
Ii by an amount SIi. When SIi is positive the second moment of area
increases and defining § as 8I./I., it follows that § is also
positive. On the other hand, if the second moment of area decreases,
8L, is negative and so is f. In the case where the second moment of

area of member i decreases, then the remaining second moment of area is

I- = I- - aI.

i i . i
ﬂ = _aIi/Ii 5-6
and hence ' & (l+ﬁ)Ii

The structure shown in Figure 5.4(a) is subjected to a
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general set of external loads
E = iLi La eso Ld}
where d is the total number of degrees of freedom. There are N

members in the structure and the resulting member forces in these

are:
P=[F 5 ¥ M]
where *
F = [Fo Fa  eeo Fii}
S = {82 Sa ees 8yl
Mo = {Mfi Mo oo MfN}
lJ.=.\ - {Msi Msa e MSN}

in which F is the axial force matrix for the members, § is the
shear force matrix,,ﬂf is the moments at their first ends and Ms
is the moments at their second ends.

Considering member i, which is connected to joints
A and B, let us take the second moment of area of the first end in
two parts Ii and 8I. as shown in Figure 5.4(b). It should be
pointed out that the member has to be divided into two parts per-
pendicular to x-x axis of its cross-section. An expression will be
derived to find the new member forces in the other members of the
structure due to this change in the second moment of area of member
i while its area remains unaltered. Since the moments are trans-
ferred by the bending stiffness of the member, the corresponding
moments at the first end of the member due to this change would be

" )
Mf and Mf .« This is possible provided that:

i i
' n
M, = M + M
fi fi fi
M ! i
. M M
fi y = fi s fi y = UB
T ST
Ii Ii SIi

where oy is the bending stress in member i as well as in each part

of that member. It follows from equation 5.6 and 5.7 that
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Mo = P ijL 5.8

=
1

1+8)M
e, = (e

The part II at the first end of the member with the
second moment of area 8I., the moment M;i and the shea? Si can
be removed without altering the member forces elsewhere in the
struw ture, by applying their equal and opposite forces acting at
joint A, This is shown in Figure 5.4(c). In the case where the
second moment of area of the member is totally removed at the first
end, this means that a hinge is inserted at the first end of the
member which does not transfer shear and moment, i.e. it can be
called shearless hinge,

The original structure is analysed under the load case

shown in Figure 5.4(d) which is a unit moment at joint A and

opposite loads of 1/L acting at joints A and B. The resulting

sii]

member forces due to these are given as

D, = [f- s.; Db, m

Ig
e
P‘
|
]
[ Al
mE
H
B
B
ta
=
»
o
[ ]
L]
B
w
| —

where m,  is the first end moment of member 2 due to unit loads
iz

acting at the ends of member i. Since, the second moment of area

1 1
of member i is taken in two parts Ii and SIi, the moments m, and
ii

M. are given as
ii
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iy 5.9
Pes

(14 fii

'—b
!

B
1

ii
Similarly the second moment of area of part II at joint A can be
removed by compensating the moment and shear at that joint. Hence

"
the total external moment acting at joint A becomes 1—-n1f as shown

ii
in Figure 5.4(e).

The magnitude of the unit loads can always be increased

by a factor rﬁ and the resulting member forces become

= M
"8, T [rﬁi f1, Tp, T - fbi fiN:
rﬁi 84 7T :rﬁi si:. rﬁi 850 see rﬁi siN: 5.10
By Pey T :rﬁl mfig "B mfiz ** T mfim}
rﬁi gsii. = [I'ﬂi msi,_ rﬁi maia ses T 8 msiN}

Then the removal of the second moment of area of part II will there-

"
fore require compensation of rp L and the net externally applied
1 %

moment at A becomes r, .~ . It follows that under the actual

By By m
L (s fii

external loads L, if BI:.L is removed without compensation

" L
r - r_m - M =0 5-11
By Bty %y
" 1
Substituting the values of m and M_, from the equations 5.8 and

34 Ty

5.9, it follows that

r = =B Mf-
By = i 5.12
(148 mp )

ii

where rﬂ, is known as the variation factor for member i.
i

The final moment in member i which has the remaining

|
moment of areas Ii is the sum of the moment due to the actual
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1
external loads Mf and the change in this moment which was shown

i
1
to be r o and is therefore given by
By tis
1 1 5 13
M = + T o .
Ie, ey T TRy gy

Using equations 5.8, 5.9, 5.12 and 5.13, it follows that

(1+p) M £,

P - 5.4
i (l+ﬂjmf£L

The forces in any other member j are also found by the superposition
of the member forces due to external loads ani the member forces
given by matrices of 5.10. Hence the final member forces in member
j due to the variation of the second moment of area of member i at

the first end is given by

EIj = _E.J + rﬁi iji
S1, %8t T, o 5.15
Ye, = Bp T, By
H{Sj - =3 * rﬁi Esji

P =
=1, Py o+ rﬁi 2; 5.16
or Py =P, =71, p
Ij d ﬁi =J

The first theorem of structural variation is given by
equation 5.15 for rigidly jointed plane structures, which states
that when the second moment of area at the first end of a member
i in a structwe is changed by an amount aIi, the change in the
member forces in another member j is given by the product of the

variation factor for member i and the force in member j produced
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by unit loads acting on the structure at the ends of i.

In the case where the second moment of area of member
i is changed by an amount SIi, the computation of the new member
forces is carried out in two steps as mentioned previously. In
the first step the second moment of area of member i is changed
by an amount aIi and by means of equations 5.l% and 5.15 the new
member forces in the other members and in the second end of the
member i are computed. Then the first theorem of structursal
variation is applied to the second end of the member i.e. the
second moment of area is also changed by an amount SIi at the
second end of member i.

In the case where the second moment of area of
member i is completely removed, thenbﬂi = =1 and equation 5,12

gives the removal factor r, as

Fs

r = f. 5.17

It is clear that the total removal of ths second moment of area
will remove the bending stiffness of the member., Hence the momber
will only be able to transfer the axial farces by its area, i.e.
the removal of the second moment of area of a member is equivalent
to inserting two real hinges at each of its ends. It is interesting
to see that if this is carried out for all the members of the structure
a rigidly jointed structure will change into a pin jointed structure.
Hence as will be shown by examples, by means of the first theorem
of structural variation it becomes possible to find out the forces
in the members of a pin jointed structure from the results of the
analysis of a rigidly jointed structure.

It has been shown®®? that in pin jointed structures,
it is possible to forecast the forces throughout when one or more

of its members are varied or totally removed. If p; and pj are the
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forces in the members i and j of a pin jointed structure under thse

external loads and Ty and us are thésa forces when the area of

member i is altered, then
mo= (1+a ) py /(1+a 3 11) 5.18
73 = Pyt rai fji 5.19
" where
r“i = a;p;/(1~a, f,,) 5.20

in which ai

to its original area Ai and when a member is totally removed

& aAi/Ai is the ratio of the change in the area 8A;
@; =-1. £, and fji are the forces in membersi and j when unit
loads are applied at the ends of member i. Hence the total removal
of a member in the rigidly jointed structure requires three unit
loading cases. This is shown in Figure 5.5(a) for. the removal of
member 3, It is known that the removal of é member involves firstly
the removal of its second moment of area and secondly the removal
of its area. Both will be removed in turn. Tho order in which these
two basic variables are removed or varied is not important,

As shown in Figure 5.5(b) the process for the
variation or removal of the second moment of arsa and area of the
member of rigidly jointed structures consists of 6 stages. No
solution of equatiodn is involved in each stage. The only-ﬁecassary
computation is to use the theorems of structural variation and thus
substitute the corresponding values of the member forces in the
equations 5,12 and 5.16 respectively which is. simple,

For instance, in the structure shown in Figure BaD,
member 3 is being removed. In the first stage, the second moment
of area of member 3 is removed at the first end of the member while
the structure is subject to the external loading. In the second and

third stages the same removal is carried out while the structure

is subject to the second end unit loading and axial unit loading as
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shown in Figure 5.5(a). In these three stages the second moment
of area at the first end of member 3 is removed. Hence that end
of member 3 cannot sustain momen}{ and shear force., That is to say
a "shearless hinge™ is inserted at the first end of member 3 while
the structure is subject to the external and unit loadings re-
spectively. In the fourth stage, the member forces obtained ih
the second stage are used to remove the second moment of area at
the second end of member 3 as shown in Figure 5.5(b). At this stagse,
the second moment of area of member 3 is totally removed and the
member can only sustain axial force i.e. two real hinges are inserted
at the ends of member 3, In the fifth stage the second moment of
area of member 3 is totally removed andi member forces are obtained
while the structure is subject to unit axial loading. The member
forces obtained at this stage are used to remove the area of member
3 of the structure which is subject to the external loads. The
member forces obtained at this stage are exactly equal to the member
forces in single storey portal frame shown in Figure 5.5(b) which is
subject to the same external loads.

In the case where more than one member of a rigidly
Jointed frame are to be removed, then it becomes necessary to analyse
the parent structure due to external loads and in addition a further
3 x NMR load cases, where NMR is the number of members to be removed.
It is obvious that this will apply if section properties of members
are varied but not removed. Then each member is removed or varied
in turn usirg its corresponding 3 unit loadings and new member forces
are computed while the structure is subject to the external loads

and the other unit loads.
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5.2.4) VARIATION OF DEFLEXIONS WITH INDIVIDUAL AREAS AND SECOND
MOMENI' COF AREAS.

The second theorem of structural variation predicts
the deflexions throughout a structure when the second moment -of area
and area of one member is varied independently or totally removed,
which results in a gtructure with a new topology.

ThHe matrix force method can be stated for statically

indeterminate structures as follows.

l!'bLb * Br]':"r 5.21

P s

and
_7_;b = beL + Fb Lr Hal2
0 =F.L +F L

=rb*b = =rr-r
where P is the vector of member forces, L is the applied load vector

or matrix that corresponds to the nodal displacements X. The force
transformation matrix is B while F is the overall flexibility matrix.
Suffix b refers to theb asic statially determinate structure while
suffix r refers to the redundant. The manner in which the matrix
force method was formulated indicates that hyperstatib structures
form an extension to statically determminate structures.

In the statically indeterminate rigidly jointed
frame having a total of t redundants which are taken as ihternal .
moment at the ends of the members, the flexibility equation of

5.22 and 5.23 for m loading points becomes
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where for convenience, k = m+l and n = m+t,
Let us consider one member, say member t, whose end moment
was taken as redundant, and take the case when its second moment of area

at that end is varied. The moments MI in any other redundant moment will
%

be given by equation 5.15 which becomes

M =M. + , .
ak

I3 Py Tig

Hence equation 5.24 can be written as
E = i : - . F | Li
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5.25

In these equations MI is variable because the second moment of area of

t
the member end corresponding to that moment is being varied. Hence both

ﬁt and rb are variables. Since the joint deflexions are denoted by them,
t

they are also variables. To differentiate them from the initial deflexions

X, they are represented by ¢. On the other hand, although each redundant
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moment is changing, the moments Mi for i = 1,2, ..et are constant
and predetermined before varying the second moment of area at the
first end of the member:t,
Each element of the entire matrix F in equation 5.25
is of the form

F=y + E.
Iy
L]
where y and y are constants while the new second moment of area It

1

is dependent on I_ and has
: Py ®

the form eIt where @ is also a constant. Hence, a displacement ¢3

is a variable. As mentioned above r

evaluated from equation 5.24 has the form

1 & ]

d.= y+ & + o1, + (a+ /I 5.26

J I t t It
t

The quantities y,u,6,z and B are all constants obtained by multiply-

ing a row of F by the coiumn on the right hand side of equation 5.25

is obtained from the last

I
t
equation of 5,25 and substituted in 5.26 and similar terms collected

and then collecting the terms. When M

together, the following equation is obtained

] 13 13 t t3
7?1+?721t“‘7?alt+7241t+7?sIt§f’j+??eIt¢'j=0 5.27

where ni,7ma o.es 7g are arbitrary constants. This equation 5.27 is
obtained for the portal frame in Appendix A and the values of N
for i =1,2,,..6 are given., When the second moment of area at the
end of member t corresponding to MIt is removed, equation 5.27
remains true for all ¢j. Hence for I; = 0, equation 5.27 gives

me = 0, thus
(] 12 13 t 12
Na It + 7ns It + n4'1t + 15 It¢j + Ns IJc ¢j =0

1
Dividing through by It we obtain

] '
M2 + 73 I + ma It .+ 1s ¢j + ne Iy ¢ﬁ =0 5.28
It canbe seen from equation 5.28 that the variation of any displace-
ment ¢j with changes in the second moment of area at any end of any

member where the moment is taken as redundant, is hyperbolic and
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therefore convex.

However, the hyperbolic relationship between the change
of the second moment of area and variation of any displacement ¢j
can also be derived as follows:

If xﬁi is any of the displacementsof joint j due to the
first end unit loading required for the variation of the second
moment of area at the first end of the member i, the increase of
these unit loads by a factor of rﬁ- increases the value of the

1

displacement xj of joint J to r x.i. The new displacement of

Ps

Joint j is obtained by using the principle of superposition

A 2 - o2
J d A A3 <
where xj is the initial displacement due to actual loading and

rﬁ is the variation factor given by equation 5.12. Substituting
i

this value of rﬁ in equation 5.29, it follows that:
i

by =x5-P e, X33/ (L4, “‘fii)
which is hyperbolic for the variables ¢j and ﬁi.

The second theorem of structural variation is given by
equation 5,29, This states that when the second moment of area at
any end of member i is changed by an amount SIi, the new deflexion
at any joint j is obtained by adding the deflexion of that joint
due to actual loading and the product of the variation factor for
member i and the deflexion at j produced by unit loading for that
end of the member., As described in the previous section the total
change of the second moment of area of that member is carried out
in two steps. Further, if the area of member i is also charged,
then the variation in the deflexion at any joint j is given inf2°%)

as

6. = A, + 1 S.. 5.30

where Aj is the deflexion at a joint J due to external loads, @,
J
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is this deflexion after changing member i, adi is the deflexion
at j produced by axial unit loading at the ends of member i after

its second moment of area has been changed and ra is the variation
i

factor given by equation 5.20.

As explained in the previous section the variation of the
second moment of area as well as the area of the member involves 6
stages. Hence at each stage the variation factors which are used
in the computation of new member forces are also employed to
evaluate the new deflexions of joints. The same procedure which is
used for member forces shown in Figure 5.5(b) is also foli;wed for
the deflexions,

Hence by the first two theorems of structural variation
it becomes possible to predict the forces in the members and the
deflexions throughout rigidly jointed plane frames when the second
moment of areas and tha areas of one or more members are varied or
totally removed. .

Since statically determinate structures are a special
case of statically-indeterminate structures, the same procedure
can be employed to derive an exbression for the variation of member
forces and deflexions with respect to the second moment of areas

and area of any member, It is evident that when a member is totally

removed care should be taken to avoid the development of a mechanism,

5.2.5) VARIATION OF DEFLEXIONS WITH PROPORTIONAL CHANGES IN AREAS
AND SECOND MOMENT COF AREAS.

The third theorem of structural variation predicts the
deflexions throughout a structure when the second moment of areas
and areas of all the members of the structure are varied pro-
portionally, The stiffness equation has the form

L =KX 5.31
where L is the external load vector, X is the corresponding dis-

placement vector and X is the overall stiffness matrix. In rigidly
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Jointed structures an element Kij of the stiffness matrix K consists

of accumulative stiffnesses of the form (pA+vI) contributed by N

members.,
K5 = Z (ughy + vy1,) 2.32

where Hy and v, are the constants which depernd on the length, Young's

£
modulus and direction cosines of the member,

In the case where the area and the second moment of area
of all the members are varied proportionally, a = SA/A and B = 8I/1
are kept constant and equal to each other for al mezbers.s The new

* *
area A and the second moment of area Im for member m is given by

+*

Am = (l+a)Am
® 5.33
L. = (1+a)Im
*
and the new element K_ij of the stiffness matrix becomes
N N
£ o I 8 ) (u,4,4v,1,) 5.34
i3 " Z\ (ehgtvyl,y) = (1+a Peietteiy :
£L=1 4=1

In this manner ths overall stiffness matrix becomes

K* = (1+a)K
The new deflexions may be obtained by solving L = K*X* which is

-1
X* = K* -L

X* = li Ei'k

R

It can be seen that K *.L = X, and it follows that
3
—x-‘ = l +az- 5.35

Equation 5.35 gives the mathematicl expression far the third theorem
which states that when the second moment of areas and areas of the
members of a structure are varied proportionally, the new deflexion

is obtained by dividing the original deflexion by l+a. It can be

seen from equation 5.35 that the change in the deflexion is hyperbolic.

*’3€£Lr1e3:£. pu{%&,



143,

It should be pointed out that proportional changes in the sectional
properties of all members of the structure doss not change the

member forces in these members. This follows from the fact that

k* = (l+a)k
where k* is the new stiffness of the member while X, is the stiffness
before the section properties are varied. The member forces are
given by equation 2.6 which is

o EAY = oema kS * = kA X
Pe kM= gh kALl =KX

The stresses in these members will change to

M

* J 5.36

b}léﬁ

&
a
¢ d#t|da

where P&and M6 are the axial force and moment in member £ re-

%
spectively. The stress has changed from cb to ) dve to the pro-

portional changes in the sectional properties. Using the expression

Hed)
*« 1 /P n
% = Tea (Kﬁ * I—"'V)
y) ¢
which is
* 1
T & Toa *% 537

The equations 5.35 and 5.37 give the new deflexions of all the
joints and the stresses in all the members of a structure whon
sectional properties of all members change proportionally. That

is to say, if the areas and the second moment of areas of all the
members are reduced by half, all the deflexions and stresses are
doubled in value., By these formulae, it becomes possible to control
the feasibility of ths design variables without further analysis in
the optimisation procedures which can only operate from feasible

points,

*In this section formulae have been derived as if a (areas)and
B (second moment of areas) are the same. This has been done

for simplicity., Similar expressions for a # B can however be

obtained,
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5.3) COMPUTER PROGRAMMING.

By means of these theorems it becomes possible to obtain
the analytical resulté of a derivative structure from the analyses of a
large parent structure. To do this, the latter is first analysed for
given external loads and the necessary unit loadings, the results
being stored on file. These results may then be used to analyse one of
the derived structures, For this purpose, the computer program;zﬁiitten
in Eortran IV and run at the ICL 1905E computer at the University of
Aston, .

As explained in the previous section, variation or
removal of each member requires 3 unit load cases., Hence a parent
structure is analysed for NLC load cases where NLC = 3 x NMR + 1 in
which NMR is the number of members to be removed. The member forces
and deflexions due to these load cases are stored in the arrays AF,SF,
FEM, SEM and XDD where AF is th_;e axial forces array, SF is tle shear
forces array, FEM is the first end moments array, SEM is the array
which contains the moments at the second ends of the members and XDD
is the array which contains the deflexions of ‘the joints. Figure 5.6
shows one of these arrays being that for the member forces where there
are L members to be removed. As can be seen from the figure each member
forces array contains NLC blocks each of which has NOM elements where
NOM iz the total number of members in the structure. The first block of
these arrays contains the member forces due to the external loads, the
rest contain the member forces due to the unit loading of the members
to be removed. By using the second, third and fourth blocks the first
member is removed and the resulting member forces are stored in the
first block of the member farces array. It is apparent that the unit
loadings for other members to be removed have to be changed., This is
carried out by considering each of the unit loadings belonging to the
other members to be removed with the unit lecadings of the member which

is being removed as shoan in the figure.
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A flow diagram of the computer program is given in
Figure 5.,7. In the flow diagram only the axial force array is
shown with the purpose of simplifying the diagram. This also
applies to the shear forces, first end moments, second end moments
and deflexion arrays. Subroutine MEMREM is called which works as
described in Section 5,2.,3. There are 4 types of array which are
used in the subroutine, The size of each array is equal to NOM.
The subscripts represent the loading. TFor example, the array AFl
contains the axial forces in the members due to the external loads,
AF2 contains ;ha axial forces in the members due to the first end
unit loading, AF3 contains the axial forces in the members due to
the second end unit loading and finally AF4 contains the axial forces
in the members due to the axial unit loading. Using these arrays any
member of the structure can be varied or removed. Hence as shown in
the flow diagram, the member forces and deflexions due to the necessary
loadings are inserted in ths(corresponding arrays, which are used by
that subroutine and then by calling it the member is removed and the
computed member forces and deflexions are placed back into the first
blocks of the corresponding arrays. Then each member force dus to the
unit loadings of the other members to be removed are inserted in the
arrays AFl, SFl, FEM1 and SEM1 and the other arrays remain the same.
The subroutine is again called and the member is removed. In this
way all the member forces due to the unit loadings of other members
to be removed are adjusted. It is apparent that variation of the

member will follow the same procedurse.

5.4) EXAMPLES ON THE USE OF THE THEOREMS.

The computer program described in the previous section
which uses the first two theorems of structural variation, was utilised
to show the application of these theorems. A number of rigidly jointed

frames are considered, derivatives of these frames are shown and the
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results are tabulated, This shows that all the structures are inter—
related and it is possible to obtain the analysis of one frame from

the analysis of another,

5.4.1) EXAMPIE 1.

The two storey rigidly jointed frame of Figure 5.8(a)
is subject to horizontal loads of 100 kN and 50 kN acting at joints
1l and 3 respectively and also two moments of 10 kNm and 5 kNm acting
at joints 2 and 4 respectively. Dimensions and member numbering are
shown in Figure 5.8(a). The frame consists of two groups. Members
1 and 3 are in group 1 with areas of 4 x 10* mm® and second moment
of areas of 0.75 x 10%°mm*, members 2 and 5 are in group 2 with areas
of 2 x 10* mm® and second moment of areas of 0.3 x 10® mm* and members

4 and 6 are in group 3 with areas of 3 x 10* mm® and second moment of

areas of 0.6 x 10° mm? The modulus of elasticity of the material

is 207 kN/mm?.

This }rame was analysed by the matrix displacement
method while subjecting it to the external loads together with the
unit loadings as shown in Figure 5.8(b). The stiffness equations are
constructed and solved only once, even though 3 loading cases are
considered. The first two theorems of structural variations are then
used to predict the member forces and deflexions of the derivative
portal frame when member 2 of the two storey frame is removed. The
deflexions and the member forces cbtained for the portal frame shown
in Figure 5.8(c) which is the derivative of the two storey frame, are
given in the tables 5.1 and 5.2. The portal frame shown in Figure 5.8(c)
was also analysed separately and the deflexions and the member forces
obtained are shown in the Tables 5.3 and 5.4 respectively.

It can be seen by comparing Tables 5.1, 5.2 and 5.3,

Sek, that the deflexions and member forces obtained by structural

variation is exact. The third theorem of structural variation can be
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JOINT NO HORIZONTAL DEF.(mm) |VERTICAL DEF, (mm) ROTATTON (rad)
1 109.209 0.02090 -0.03635
2 79.988 -0.02091 ~0.03246
3 203.465 0.04903 -0.00945
L 203.412 ~0.04903 -0.01984
TABLE 5.1 DEFLEXIONS OF THE PCRTAL FRAME OBTAINED
BY STRUCTURAL VARIATION,
FIROT END MOM- | SECOND END MOM-
MEMBER NO| AXTAL FCORCE (kN] SHEAR FQRCE(KN)YENTS kN mm ENTS kN mm
1 43.56793 ~-106.1898 71239.026 353520.737
2 ~-43.56793 - 43.8101 -38399.32L 213639.562
3 43056794 - 6.1900 95999.268 -71239.026
4 -43.80989 43456797 ~95999.268 ~121840.438
5 ~143.5679% - 43.80898 126840.438 48399.32)

TABLE 5.2 MEMBER FORCES OF THE PC(RTAL FRAME QBTAINED BY
STRUCTURAL VART ATION

JOINT NO  |HORIZONTAL DEF.(mm) | VERTICAL DEFL.(mm) ROTATION (rad.
1 109.208 0.02104 -0.03636
2 79.9876 -0.02104 -0.03246
3 203.4655 0.04911 -0.009434
L 203.4126 -0.04911 ~-0.019837

TABLE 5.3 DEFLEXIONS OF THE PORTAL FRAME (BTAINED BY THE
MATRIX DISPLACEMENT METHOD.

MEMBER NO

AXTAL FRCE (kN)SHEAR FORCE (kN)| ERRST ENP MW= [ RRGQND RND ¥ Oli-
1 43.5679 -106.1900 71239.1653 353520.903
2 =43.5679 -43.8099 -38399.461 213639.389
3 43,5679 - 6.1900 95999.234 ~71239.165
L -43.8099 43,5679 ~95999.234 ~121840.467
5 =43.5679 -43.8099 1268,0.467 48399.461

TABLE 5.4 MEMBER F(RCES OF THE PCRTAL FRAVE OBTAINED
BY THE MATRIX DISPLACEMENT METHQD.
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used to change the areas and the second moment of areas of the members
that will eventually lead to a structure which is totally different
from the original structure, in shape and in cross sectional pro-
perties of the members. As described in the previous section, the
strcture shown in Figure 5.8(d) was also obtained at the fourth stage
of the process of removal of member 2 which corresponds to the removal
of the second moment of area of member 2, The same example was also
solved by structural variation by firstly removing the area and
secondly the second moment of area of member 2 whence exactly the same
results as shown in Tables 5.1 and 5.4 were obtained. Hence, it may
be concluded that in rigidly jointed structures the order in which

the cross-sectional properties are removed or varied does not affect
the results., However, it is apparent that the case where the area is
removed first does not give the structure shown in 5.8(d) as an inter-

mediate step.

5.4.2) EXAMPLE 2.

The structure of Figure 5.9(2) consists of a two storey
frame and a portal frame connected by one member, The dimensions and
member numbering are shown in the figure. The members 1 and 3 are
in group 1 with areas of 2 x 10* mm® and second moment of areas
of 4 x 10® mm*, members 2, 5 and 9 are in group 2 with areas of
1 x 10* mm® and second moment of areas of 2 x 10° mm*, members 4 and
6 are in group 3 with areas of 1.5 x 10* mm® and second moment of
areas of 3 x 10° mm*, member 7 is in group 4 with an area of

1.8 x 10* mn® and second moment of area of 3.4 x 10° mm® and members

8 and 10 are in group 5 with areas of 3 x 10* mm® and the second

moment of areas of 6 x 10° mm®. The structure is subject to a horizontal
loading of 100, 50 and 200 kN acting joints 1, 3 and 6 respectively.

The elastic modulus of the material is 207 kN/mm®.
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JOINT NO

HORIZONTAL DEFL.(mm)

VERTICAL DEFL,(mm)

(AW © ) I Sl € I\

5.048
5.000
12,041
11.9449
- 3.573
= 3.7159

0.07511
-0.07516

0.1168
~-0.1168
-0.0316

0.0321

ROTATION (rad)

-0.0019%
-0.001977
~0.001454
-0.001448
0.001194
0.001253

TABLE 5,5 DEFLEXIONS OF THE FRAMES

MEMBER NJAXTAL FORCE KN | SHEAR F(RCE kN |LiRgt,hD MOU- |REGQND, END MON-

1 103.7746 753379 57789.990 168223.865

2 -24.,6896 60.6490 ~121499,960 =121094.941

3 -103.7340 ~74..6584 57308.667 166666.568

L 43,1255 ~50.027 86372.621 63710.062

5 ~49.9724 43.1255 368, 382 -86129.533

6 -43.1255 -49.972% 86129.529 63787.841

8 -66.3133 98.5891 -98563.893 ~197205.320

9 -98.5933 ~-66.2725 985634794 100254.014
10 66.2725 101.4066 -100254.003 -203966.015

TABLE 5.6

MEMBER FORCES (OF THE FRAMES.
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This structure was also analysed by the matrix displace-
ment method considering the four load cases, first of which is the
external loading and the following three of which are the unit load-
ings. Then using the theorems of structural variations member 7
was removed, which yielded two different structures as shown in
Figure 5.9(c). These were a two storey frame and a portal frame.

The deflexions and member forces obtained by the formulibe of
structural variations for these two frames are given together in
Tables 5.5 and 5.6. The numbering of the joints and members are
shown in Figure 5.,9(c). These two frames were also analysed
separately and identical deflexions and member forces were computed.
It was noticed that separate analysis of these two frames took 131
seconds of computer time while the results obtained by structural
variation took 13 seconds. This verifies that in structures where
some of the members are varied or totally removed, computation of the
new deflexions and member forces by structural variations saves com-
puter time. Hence, in such problems the use of structu;al-vafiation

is preferable.

5.4.3) EXAMPLE 3.

The rigidly jointed structure shown in Figure 5.10(a)
is subject to a horizontal load of 200 kN acting at joint 1.
Dimensions and member numbering are shown in the figure. The
elastic modulus of the material is 207 kN/mm®. The members are
divided into two groups, members 1 and 4 are of the same section
and in group 1 with areas of 1 x 10* mm® and second moment of areas
of 1 x 10® mn* and members 2,3 and 5 are of the same section belongingl
to group 2 with areas of 0.5 x 10* mm® and second moment of areas of
0.6 x 10° mm*,

The frame was analysed to obtain the member forces

and deflexions under the external force and the further 6 load cases
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JOINT NO |HORIZONTAL DEFL.(mm)|VERTICAL DEFL.(mm) ROTATION (rad.)
1 26.956 0.0446 ~0.00832
2 23.455 6.713 0.00413
3 19.81 -0.0446 ~0.00837
TABLE 5.7 DEFLEXIONS OF THE PITCHED ROOF FRAME
MEMBER NJ AXTAL FORCE kN |SHEAR FORCE kN | ipy SiD NOMENTE SREQND EID MOY
1 30.743 ~133.2166 257217 402 142432.327
2 -45.9532 57.4256 -142432,326 -50179.296
3 -73.5125 -2.3072 =42440,681 50179.296
- =30.7432 -66.7834 157909.555 421,,0.682
TABLE 5.8 MEMBER FCORCES IN THE PITCHED ROOF FRAME
JOINT NO|HORIZONTAL DEFL.(mm)| VERTICAL DEFL.(mm) ROTATION (rad.)
1 22.792 0.0467 -0.007885
2 20,017 -0.0467 -0.007625

TABLE 5.9 DEFLEXIONS OF THE PCRTAL FRAME

MEMBER NJ AXIAL F(RCE kN

SHEAR FGRCE kN

Flrol END MOM~
ENT kN mm

SECOND END MOM-+
HN mm

1
2

3

3242236
-99.3129

-32.2236

-100.778
32,0492
- 99.222

205624..86
~-96708,.82
201420.927

96708.82
-95586.55
95586.55

TABLE 5,10 MEMBER FCRCES IN THE PCRTAL FRAME.
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shown in Figure 5.10(b). It then becomes possible, by employing

the theorems of structural variations to predict the behaviour of

at least 7 structures which are shown in Figure 5.10(c,d,e,f,...1).
The 7 structures themselves may have an infinite combination of
sectional properties. The removal of the second moment of area of
member 5 yields the structure shown in Figure 5.10(c). Further, if
the area of this member is also removed, the behaviour of the pitched
roof frame is obtained. The results are given in Tables 5.7 and 5.8.
The structure of Figure 5.10(e) is obtained by reducing the second
moment of area of member 2 to zero in the pitched roof frame of
Figure 5.10(d). In the case where member 2 is removed completely

in the structure of Figure 5.10(a) the portal frame of Figure 5.10(f)
is obtained. The results are shown in Tables 5.9 and 5.10 respectively.
Further, removal of member 5 yields the cantilever shown in

Figure 5.10(i).

5e4.4) EXAMPLE 4.

The structure whose dimensions and member numbering- are
shown in Figure 5.11(a) is subject to a vertical load of 200 kN acting
at joint 2., This structure consists of 3 groups., Members 1 and 4
in group 1 with areas of 1.6 x 10* mm® and second moment of areas of
3 x 10° mn*, members 2 and 3 are in group 2 with areas of 0.8 x 10* mn®

and second moment of areas of 1.5 x 10° mm* and inclined members 5

and 6 are in group 3 with areas of 0.5 x 10* mm® and the second
moment of areas of 0.5 x 10® mm®, The elastic modulus of the material
is 207 kN/mm®,

As seen from the figure the vertical displacement of
Joint 2 will be small due to the fact that joint 2 is supported by
the inclined members., Removal of these members leads to the portal

frame shown in Figure 5.11(c) where the vertical displacement of

joint 2 is relatively large. The structure of Figure 5.11(a) was
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analysed by the matrix displacement method under the external loads

and the load cases shown in Figure 5.11(b). It can be seen from
Figure 5.11(a) that the inclined members are connected to the supports.
In such cases it becomes necessary to consider an additional joint

in the member which is very near to the support in order to apply the
first or second end unit 1oédings. In this way the generality of the
theorems is preserved. Insertion of these additional joints generates
a new small member with one end supported. The length of these small
members can be taken as.0.0lL ~ 0.001L where L is the length of the
main member which is connected to a support. Now, it becomes possible
by the first two theorems of structural variation to remove the in-
clined members 5 and 6 and obtain the vertical deflexion of joint 2

of the portal frame shown in Figure 5.11(c). This was carried out and
it was found that the vertical displacement of joint 2 was 0.,5718 mm
before the removal of the inclined members and it increased to 5.967 mm
after their removal. In the case where this value of vertical dis-
placement is not allowed and permissible displacement of the joint 2
is given as 1 mm, it becomes necessary to apply the third theorem

of structural variation, Equation 5.35 can be used for this purpose:

¢

Xa =75 %

it follows that *
_ Xg=Xg
& = *
Xg

substituting x; =1 mmn and x3 = 5,967 mm, @ is obtained to be 4.967.
Hence, if the vertical deflexion of joint 2 in the structure shown
in Figure 5.11(a) should not exceed 1 mm after removing the inclined
members 5 and 6, it is neceséary to increase proportionally the areas
and the second moment of areas of the members to 5.967 times their
initial value. It is obvious that this will increase the weight

of the frame considerably. This example shows that the theorems of
the structural variation can be used to examine the influence of each

member in the structure on the weight of the structure which is the
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case in the topological design of structures.

In all the examples considered here member removal has
been carried out. As explained in the previous sections in the case
where a member is varied, a or B has a value which is different from
-1 and the process remains the same, However, in the folloﬁing

example member variations are considered as well as member removals.

5.5) APPLICATION IN STRUCTURAL DESIGN,

In structural engineering, the most important feature
of a structure is considered to be its shape. Hitherto this has been
decided upon by a designer where experience has been the main factor.
The theorems of structural variations may be employed to achieve
this aim. They may be used in conjunction with the topological design
of structures where a ground structure is developed by inning the
nodes to each other which are arranged to cover the feasible space.
Then, insignificant members and joints are removed to obtain the actual
shape of the structure, On the other hand, even without considering
this method, it may be possible to find the optimum shape of a structure
only by means of these theorems. This is shown in the following
example,

The structure of Figure 5.12(a) is a practical frame
commonly used in structural engineering as a higlway bridge. . This
bridge is subject to the vehicle loads shown in Figure 5.12(b) which
is specified by B.S.153 as HB abnormal loading. Dimensions and member
numbering are given in Figure 5.12(c). The Young's modulus of the
material is 207 kN/mm® The bridge consists of 7 groups. The beam
is in group 1, while the 6 columns belong to different groups. De-
rivatives of this bridge are shown in Figure 5.13(a,b,c,d,e,h) each
of which has a different shape but may be used for the same purpose.

5 universal sections shown in Table 5.1l are considered to be avail-

able which can be adopted for each of the groups in these bridges.



161,

-
N
h

Lm Ly Lo

>z<
18m

(a) A HIGEWAY BRIDGE AND DIMENSIONS

CENIRE OF ERIDGE

e
112,5kN 112.5

'lt—yi(--—y
l 1.525;1.J95

Q.

",‘I..

Lm

:112.5 112,5

e

l.@m &in

(b) HB ABNCRMAL LOADING FROM B.S.153

1-8[11 x

lr-..

L

N
dbe
¥

S 20

Iw

sle
Lo | 4a

Cahd

< o T < I-.. >
ba 5leo5') 8n 6.10n 1.88 5.675m
(c) MEMBER NUNBERING AND EXTERNAL LOADING

FIGURE 5,12: A HIGHWAY BRIDGE.

Lm

6m



SONQIVAT7 TNV IVABII AYA/AHROITH b TroS menoiIxa

162,

SoniavoeT Linr ( m.u

AN

®

2 iy

W ABSYQ
Rz

N NI N,
AN A K

/N

®

. b R

k\\ ﬂnvthVﬂ

3Er0

LSO
scko

®

b= e AR

>l P

A A Y N
/N /KN

s
2

oﬁ\ﬂwﬂ

®

23aNI

Lo

AN A TA AN

Py

gcLo

._\ 29y 06— 22Vvo .Tﬂc
T

N, N N N NS/ \




163,
In the case where minimum material is chosen to be the objective
while the limitations on deflexions are imposed by B.S.449, and
the combined stresses in the members should not exceed
0.165 kN/mm®, the question of selecting the optimum design out of
these 7 bridges becomes important and cannot be carried out by ex-
perience. It is apparent that there are 5 sections which can be
adopted for the beam and each of the columns. Analysis of all the
bridges considering all possible combinations of these 5 sections would
require a tremendous amount of computing time. Instead, to achieve
this objective the theorems of structural variation may be employed.
In order to do this, the bridge of Figure 5.12(a) was analysed once
with the beam and the columns having the lovest available sections
of Table 5.11. The load matrix consisted of the external loads and
the unit loads shown in Figure 5.12(d). The theorems of structural
variation were then used for the beam on each of the sections of
Table 5.11. TFor convenience of programming the column sections were
kept intact., The member forces and deflexions obtained for the bridge
with 5 different beam sections were stored on file in the computer.
The program described in the previous section was then utilised to
obtain the member forces and deflexions in the derivative bridges of
Figure 5.13. Further, each column of these bridges wgs varied con-
sidering 5 available sections in turn while keeping the sections of
other columns the same, For example, the first bridge of Figure 5.13
can be obtained by removing columns 3 and 13 of the parent bridge.
Ther each column remaining can have 5 different sections. It can be
seen that there are 625 member variations involving the columns of
this particular bridge. For each of these variations, the deflexions
and the stresses were checked against their imposed limits, In this
way it became possible to find out the feasible set of sections which

gave the bridge minimum weight. The same procedure was applied to

all the other bridges., The results obtained are illustrated in
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SECTI ON AREA (cn®) %cgﬁnm?m ECEE{)HODUEUE WEIGH? (kg)
305x127 L7 6142.0 470.3 37
L57x152 24.9 28731.0 1404.0 T4
533x210 156.6 68719.0 2794.0 122
762x267 220.2 89341.0 537440 173
914x305 322.5 6504..0 9490.0 253

TABLE 5,11 UNIVERSAL BEAMS.
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Table 5.12. For comparison, each of the 7 bridges were also designed
by the method described in Chapter 2 where a continuous set of
sections was considered to be available. The optimum areas for each
group of members in the bridges are shown in Table 5.13, In this
case the weight of the frames were obtained by multiplying the lengths
and the section areas of the members and adding them together for all
the members in the bridge. For comparison the weights shown in
Table 5.12 were also computed in this way. The optimum results of
Table 5.13 were rounded off considering the discrete set of sections
of Table 5.11. It was found that the bridge type which had minimum
weight had changed. The optimum shapes obtained in three ways are
shown in Table 5.14. It can be seen from the table that for this
particular example the optimum shape obtained by the optimisation
procedure, which considers a continuous set of sections, then round-
ing off to available sections comes out to be the same with the
optimum shape obtained by means of structural variations. However
it can also be seen that the optimum shape obtained by structural
yariations is lighter than the optimum shape obtained by rounding of £
to available sections. This is due to the fact that to round off to
available sections does not necessarily yield the optimum discrete
sets, This can be verified by comparing the optimum discrete sections
for the bridges B and C shown in Table 5.14. Finally, it should be
pointed out that it is the beam which dominates the minimum weight
design of these bridges because of their long spans,

The facility for member removal can be used to advan-
tage in carrying out an actual costing of a structure. This is con-
sidered now for the case of the bridge example. The present day

prices in the steel bridge construction are approximately as follows:
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BRIDGE TYPES

ZROUP NO

SECTIONS

WEIGHT x10%mm®

~N o HFwN e

762x267
305x127
305x127
- 205x127
305x127
305x127
305x127

11.18442

VW

762x267
505x127
305x127
305x127
305x127

ViHFwmn e

762x267
305x127
305x127
305x127
305x127

10.50081

WM

914x305
305x127
305x127
305x127
305x127

V79741

W

762%x267
762x267
762x267

12.42417

914x305
914x305
914x305

17.4150

7

W wpH

NONE OF THE
AVAILABLE

SECTIONS IS
FEASTBLE

TABLE 5.12 MINIMUM WEIGHTS OF THE BRIDGES OBTAINED BY
STRUCTURAL VARTATION CONSIDERING DISCRETE

SET OF SECTIONS SHOWN IN TABLE 5.11.
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BRIDGE TYPES

GROUP NO

OPTIMUM AREAS
x 10° mm®

WEIGHTx10%mm®

o fFwn

215.640
5.240
2.724

384203
60.609
3.437

9.89197

Ui weno H

213.268
5.924
42.896
89.024
11.309

10.03284

(wa) (4)> (s)
7

VWM

216.95
7916
41.695
62.396
10.462

9.97304

(1)

SNSRI GOk

v wmn e

312.369
37.610
61.567
63,504
354164

1o 3947k

(1)

mﬁ:(a) _ (afkww

wmnH

212.956
228.481
213.8k4

12,13378

(1)

mlia) _ (ale

305.999
3044939
282,054

16.37395

(2)

\:*;?J ”££f57

wWwmpoH Jwo -

409.699
400,274
349.133

22,61145

TABIE 5.13 MINIMUM WEIGHTS OF THE BRIDGES OBTAINED BY
OPTIMIZATION PROCEDURE (OF CHAPTER 2 WHICH
CONSIDERS CONTINUOUS SET OF SECTION AVAIL~

ABLE TO CHOOSE FROM.
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COST OF MATERIAL £180 PER TON

-8

COST OF TRANSPORTATION : £ 20 PER TON

COST OF ERECTION £ 50 PER TON

COST OF WELDING + CUTTING .
+ PAINTING AT SHOP £150 FER TON

These figures are employed to generate arbitrary
formulag for each and every concomitant of steel bridge construct-
ion, It can be assumed that the cost of transportation of a
universal beam is a function of its width and depth. There is also
a relationship between this cost and the length of a beam., Because
of the discrete nature of transportation facilities,such a
relationship is also discrete, This is due to the fact that the
length of lorries available varies discretely. Therefore, the
cost of transportation immediately increases, if the length of the
beam exceeds a certain limit, even though its weight may be small.
The same argument applies to the cost of erection. When the length
of the beam exceeds a certain limit, a crane with a larger capacity
may be required even though that crane cannot be used to full
capacity because of weight reasons. In welding too it is considered
that when the height of a beam is more than a certain limit, then
the cost of its welding and cutting increases in a discrete manner.
The cost of welding and cutting is taken as a function of the thick-
ness, the width and the depth of a beanm.

Since, the nature of these cost formulad is a subject
of a separaté research, the present work limits itself only to two
different sets of arbitrary formulaé, These are given in Tables 5.15
and 5,16. In the first set of formuld® the first order terms of

variables were considered while the second set of formulfe contained

169.

variables of higher order, These formulaé are the employed to express

the total cost of the structure, Thus:



FIRST SET OF FORMULII

¢< 8n | CT = 2.306a.£(B+D)
TRANSPCRTATION

£> 8un | CT = 4.6131.£(B+D)

¢ < 8n | CE = 4.8756.£(2B+D)
ERECTION

2> 8m | CE = 7,1978.£(2B+D)

D < 0.6 | CW = 532.506.t2(4B+2D)
WELDING + CUTITING i

D> 0.6 | CW = 336.718,t%(4B+2D)

TABIE 5.15

SECOND SET CF FORMULIT
L€ 6m |CT = 1.1124.6.0°.E%
TRANSPCRTATION ,
¢> 6m |CT = 2.2248.¢.0° .1
£< 7o |CE = 3.5739.£.(2D%-B°)
ERECTION i
2> Tm |CE = 7.1478.£.(20%-B%)
o o
D € 0.5m | CW = 5652.8.4%,B%.D 2
WELDING + CUTTING ¥ =4
D> 0.5n | CW = 3914.09.t%*.B°.D 2
TABLE 5.16
WHERE

¢ 1is the LENGTH OF BEAM IN METRES
B IS THE WIDTH OF BEAM IN METRES
D IS THE DEPTH OF BEAM IN METRES
t+ IS THE THICKNESS OF BEAM IN METRES.

170.
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NOM ’

™C = Z (CM+CT+CE+CW)

i=1

where

TC 4is the total cost of structure

CM is the cost of material of a member

CT is the cost of transportation of a member

CE is the cost of erection of a member

CW is the cost of welding and cutting of a member

NOM is the total number of members in.the.structure.

This expression is used as an objective function in

the bridge examle considered. When a member is removed or its
section is changed, the cost.of the bridge is adjusted while satisfy-
ing the stress and deflexion requirements. The costs obtained, by
using these two sets of formulii, for each bridge are given in
Table 5.17. The various shapgs are also shown in Table 5.18 with
the different objectives chosen. . This table clearly shows that the
optimum shape obtained for minimum weight is not necessarily optimum
from the cost point of view. When the cost is taken as an objective,
the cost formula becomes important due to the fact that they influence
the optimum shape. It is possible, however, to make use of the theorems
of structural variation to extend the design problem to that of cost

optimisation. This indeed can be taken as a topic for future research.

5.6) CONCLUSIONS.

It has been shown that the theorems of structural var-
iations, which are proved in this chapter can be used to predict the
behaviour of a variety of derived rigidly jointed and pin jointed
structures from the analysis of a general rigidly jointed structure,
Hence, by means of these theorems it was confirmed that struétures

are closely related to each other. The significance of these theorems



MIN.COST BY |MIN.COST BY
BRIDGE TYPE 1ST_SET OF  |2ND_SET OF
TOR . F i

w \ | / £357h 34 £3927.23
N / \( £3391.38 £3591.08
M }L £3487.84 £3730.93
N. | / £4256.25 £4683.91
"Z X, £3332.70 £3651.28
,L £4092,32 £4569.63

-

TABIE 5.17 MINIMUM COSTS OF BRIDGES

OBJECTIVES CHOSEN

OPTIMUM SHAPES

MINIMUM WEIGHT
CONSIDERING CONTINUOUS
SET OF SECTIONS

MINIMUM WEIGHT
CONSIDERING DISCRETE
SET OF SECTIONS

MINIMUM COST

CONSIDERING FIRST SET
OF FORMULIL

MINIMUM COST

CONSIDERING SECOND SET
OF FORMULII

—~7
g
4

Y4

K| |4|¥

TABLE 5.18 OPTIMUM SHAPES FOR THE OBJECTIVES

CHOSEN,
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becomes apparent in the case where it is necessary to carry out a
fresh analysis each time there is an alteration in the sectional
properties of any member or in the shape of a structure.

It has been demonstrated that it is possible by means
of these theorems to insert real hinges at the ends of any member
in a rigidly Jjointed structure. This corresponds to removal of
the second moment of area of that member. Further, it is possible
to insert a hinge at any point of any member in the structure. This
can be achieved by considering the point where a hinge is to be in-
serted as a small member, Then the second moment of area of that
small member is removed. As a result it may be concluded that these
theorems can be applied to elastic-plastic analysis of structures,
which makes it possible to compute the moments throughout a structure
when a plastic hinge occurs at any point without carrying out the
solution of stiffness equations after adding a column and row corres-
ponding to that hinge.

From the definition of the stiffness of a member it is
evident that these theorems are equally true when the moduli of
elasticity E of members vary. Hence, it becomes possible to compute
the member forces and deflexions of a structure from the analysis of
another structure made out of a different material,

- Finally, it has been shown that these theorems can be
used to find the order of significance of the member in a structure
when minimum material or minimum cost is taken as an objective. It
is this matter which is of prime importancein the design of structures
in which the geometry and the topology are fundamental design
parameters. This will be discussed in more detail in the next

chapter,



CHAPTER 6
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6.1) INTRODUCTION.

Some of the recent structural optimisation work
has been devoted to obtaining the optimum design configuration. This
has been partly due to the progress made in algorithms for optimum
design of structures having fixed geometry., As concluded in Section
1.4 of Chapter 1, there are two methods which were followed and found
practical in topological design of structures. The first is to select
the initial geometry by considering the coordinates of the joints
_in a structure as design variables. During the topological design
cycles, those members having zero sectional properties, and joints
having zero coordinates are then deleted. The joints which are
retained are moved until an optimum geometry is found. The second
is to form a ground structure and commence the design from this
structure, This is carried out by first arranging a network of nodes
to cover the design space as suggested by Dorn et a.l.(“') . From
these, a ground structure is produced by joining every node to every
other node. The optimum shape of the structure is then obtained by
removing those members and joints from the ground structure which do
not have a significant function. This approach has proved to be powerful
especially since the theorems of structural variations have been pro-
posed by Majid and E1liott{%°%), By means of these new structural
principles it became possible to forecast the manner in which the
numerous members of a ground structure or the subsequent derivative
structures should be removed. Later, they described an approach!2©93)
for the topological design of pin jointed structures. The method aims
at selecting the shape of the lightest structure, while imposing
permissible deflexions and stresses as design criteria.

The method proposed in this thesis also starts
with a ground structure and utilizes the design algorithm of
Chapter 2 to obtain the optimum sectional properties of the members

in this fixed shape structure, It then makes use of the theorems of
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structural variation given in detail in Chapter 5 of this thesis to
decide upon a policy of removing members and/or joints, thus changing
the shape of the structure. This topological design procedure aims
at selecting the shape of the lightest rigidly jointed structure,

while satisfying stiffness, stress and deflexion constraints.

6.2) THE DESIGN POLICY.

As shown in Chapter 5, it is possible to forecast
the forces and deflexions throughout a rigidly jointed structure
by the theorems of structural variaton, when one or more of its
members are varied or totally removed. This fact can be employed
to calculate, in advance, the material saving to be avhieved by
altering the topology of a structure, This is carried out by first
predicting the weight of the new feasible structure with each member
removed in turn. It is obvious that the member which reduces the
weight most significantly has to be removed first. In this way,
members are arranged in a benefit vector. Hence, the order of members:
in the benefit vector gives the corresponding order of the savings in
weight of the structure when they are removed., This vector is
constructed by considering both stress and deflexion constraints.

The cases where each is dominant are given in the following sections,

6.2,1) THE DOMINATING STRESS CONSTRAINTS.

A simple ground structure shown in Figure 6,1(a)
is subject to a horizontal force L; and a vertical load Lz. Under
this loading, the displacement in a general joint A is X) and the
forces in member j are P = {pj Sj Myp MBA.}' Ifamember is removed
from this structure, as shown in Figure 6.1(b), the member forces
in member j change to become Py = fp. S, M M } and the

I dr I ABjI BAJI
stress in j is given by
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P. M.
g. = _l]l + _Jl.y 6.1
J A. I.
dJ J
where P31 is the axial force, MjI is the largest of either end
moment o is the combined stress in member j and Aj’ Ij are

the area and second moment of area of member j respectively. The
allowable combined direct and bending stress in this member is
O‘j* and for fully stressed conditions its area and second moment

of area may be changed by SAj and SIj respectively. Defining

L 6.
Aj I.

the new area and second moment of area become:

Anj = (l+vj)Aj
643
I, = (:ij)I.i
J
and
oyt = 2L + 5Ty 6ule
A, L
J J
Equations 6.1, 6.3 and 6.4 give
1
* o e .
03 l+v‘i ch
It follows that
J o
J

Equation 6.5 represents the fully stressed condition in member j.

When 63 = 0 then p, = =1 and SAj = - Aj and §I, = - I, indicating

J J J

that this member can be removed altogether. For 03 € 03*, vj is

negative and so §A

J

the member can be reduced by the same proportion,

,an and the area and second moment of area of

When all the N members are altered, the total

change &v; in the volume of the structure due to the removal of wmember 3 is

Note: It is recognised that if the value of ¥ is different for each member, then
further changes in the bending moment and force distributions will occur. To
overcome this problem the value of ¥V is taken to be constant for all members in

the frame and equal to the maximum numerical values.



178.

£. A .
J i vJ

N
6vy = Z &j SAj-"-‘

N
J: =

j=2

»

Using equation 6.5, it follows that

N
_ 0.
avi_z [eJAj I:Ej'-l-,} 6.5

Jj= .,
J

o

where 6j is the length of member j. The removal of i reduces the
volume by &i A, and the net saving becomes &iAi - Bvi. Hence, the
new volume vs of the structure is given by

Vi =V o+ OV, = GiA . 647
where v is the original volume before removing member i and is

given by
N

v = Z LA, + £ A, 6.8
o) 373 i'i

J=1
J#i

Substituting equations 6.6 and 6.8 in equation 6.7, the new volume

is obtained as

N
o
. = . 6.
vy Z &jAJ E-'?"' 9
j=1 J

In the c ase where several members in the structure are grouped to-
gether, so that they can have the same sectional properties, equation

6.9 becomes

N
vy = Z sl %‘, 6.10

J=
Jd

[INFS

where Oic is the most critical combined stress associated with area

group k, Ak is the adopted area for group k and £, is the length of

J
member j which belongs to group k.,

When any member is removed in the structure, the member
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forces are computed as described in Section 5.2.3 of Chapter 5.

In this process, it is possible that rﬁ may become infinite in
which case both member forces and v become infinite also. This
indicates that the removal of that member converts the structure or
part of it into a mechanism. In such cases, care should be taken,
so that such members may not be removed. This can be achieved by
placing them at the end of the benefit vector.

Equation 6.9 makes it possible to forecast, in advance,
the weight of the new structure when any member of the original
structure is removed. Carrying this out for each member of the
original structure, the possible savings in its weight due to re-
moval of each member can be obtained. As a result, it becomes
possible to forecast the order in which members should be removed.
This is accomplished by scanning the members so that they may be .

placed in the benefit vector in the order of their decreasing

benefit.

6.2.2) THE DOMINATING DEFLECTION CONSTRAINTS,

As shown in Section 5.2.4 of Chapter 5, when any member
is removed from the structure the deflexions are obtained through-
out together with the member forces using the same variation factors.
Now, when member i is removed from the structure of Figure 6.1(a),
the deflexion Xs at joint J becomes ¢j' It is apparent that this
deflexion should not exceed the allowable deflexion A; at joint J.
Hence, member i can only be removed provided that all the members
are proportionally increased by a constant factor of y to prevent
QJ from exceeding AB' The third theorem of structural variation
states

by = T::I;’;I ¥ 6.11
it follows that
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where the suffixes J and i indicate that the all round factor y
is calculated for the condition in which member i is being re-
moved and the deflexion at J is becoming critical. A similar
expression can be obtained for each deflexion constraint. The
largest V14 is denoted by yi*. This gives the value by which all
the areas and second moment of areas of the resulting structure
should be increased so that member i can be removed without
violating any of the deflexion constraints. ThHis process is
carried out for each member and the value of each y* is determined.
Now, it becomes possible to forecast the volume of
the resulting structure. In the case where member m is removed,
the predicted volume Vo of the new structure is given by
N
vy = Z{: &iﬂi(l+yh*) - ehgm(1+yht) 6.13
i=1
This is obtained by adding the original volume 3 £A and the increase
in this volume 3 y€A and substracting the volume saved by removing
member m, The equation 6.13 can be used to forecast the new volume

of the structure due to the removal of each member,

6.2.3) THE PREPARATION OF THE BENEFIT VECTOR.

The two methods described in the previous two sections
are combined using the "Mini-Max" principle for the preparation of
a single overall benefit vector. This is carried out firstly, by
computing the new volumes of the resulting structure utilizing
equations 6.9 and 6.13 when its members are removed in turn. Secondly,
the larger value of two volumes corresponding to removal of each
member is chosen to ensure that weight is not saved by violating
the feasibility, An inspection of these volumes enables the members

in the benefit vector to be arranged in order. This is carried out

in such a way that the first member in the list may be removed with
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the largest reduction in the volume of the structure. In this way
all the members are graded in the benefit vector which only gives
the order in which members may be removed from the structure so
that it results in a feasible and lighter atructure; However, in
the case where the removal of each member does not result in a
lighter structure, the one which generates the least increase in
the volume of the structure takes the first row in the benefit
vector. This does not introduce any error into the design pro-
cedure due to the fact that the benefit bector only forecasts the
manner in which the members should be removed. The process of
member removal is terminated as soon as this entails increases in
the optimum overall weight of the structure. The preparation of
the benefit vector is explained in detail by K.I.Majid‘??; where

an example is also given.

6.3) DESIGN PROCEDURE.

As shown in Figure 6,2, the design procedure is initiated
by developing the ground structure. There are two ways of doing this.,
The first is to arrange a network of nodes, then join every node to
every other node. The second is to combine a number of candidate
structures where engineering experience can be utilized to advantage.
Unless the grouping of.members is an architectural necessity, each
member is given a different group member. In this way, the existence
of each member is also decided by the optimisation procedure, de-
pending on its significant from the minimum weight point of view.

As shown in Figure 6.2, the procedure for the
topological design of rigidly jointed structures employs two
approaches which are described in this thesis, The first is the
structural optimisation procedure of Chapter2 which is used to obtain
the optimum sectional properties for the structures with fixed shape,

The second is the theorems of structural variations described in
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Chapter 5 which are utilized to construct the benefit vector.

After developing the ground structure, initial values
are chosen for the sectional areas of the members., Since the
structural optimisation procedure of Chapter 2 can operate from
feasible or infeasible initial design points, the sectional pro-
perties of members can be set at their lower bounds which are given
in safe load tables. Using this initial design point, the weight
of the ground structure is minimised and the optimum areas f'or the
sections of the members are obtained. It is possible that some
of these areas may turn out to be wery stnall andsuchmembers

are deleted. Consequently, the corresponding
design variables and stress constraints are altered., It may also
be possible to remove some Jjoints as a result of the removal of
thesei members which are connected to them. Consequently the
corresponding deflexion constraints are also reduced. It is apparent
that after carrying out these removals, the optimum point is no
longer feasible for the resulting structure which has a new topology.
However, this point can be employed as an initial design point for
the next topological cycle. This procedure is repeated until all the
design variables have values different from zero, It can be seen
that this stage does not correspond to the final design., It may be
possible that the removal of some members in this structure generates
a reduction in its pverall weight. Hence, when this stage is reached,
the members in the structure are arranged in the required order in
the benefit vector. The less advantageous members are then removed,
provided that this does not entail an increase in the weight of the
structure. This process is continued until it becomes impossible to
decrease the overall weight of the structure. In the final design
severd derived structures become available. Amongst these there may
be a structure which is not the lightest but which is more economical

from the overall construction point of view. Obviously, this latter
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structure will interest engineers the most.

6.4) DESIGN EXAMPLES WITHOUT CONSIDERING ARCHITECTURAL CONSTRAINTS.

The proposeddesign procedure was applied to a number of
examples to demonstrate its generality and efficiency. In all these
examples the stiffness, stress and the deflexion constraints were
considered. However, the configuraticn of a structure is not only
affected by thése constraints but also by functional and architectural
constraints, This is due.to the fact that they affect significantly
the existence or the removal of members or joints, consequently the
appearance of a structure. Architectural constraints are of secondary
importance in the design of pin-jointed structures., This is due to
the fact that such structures usually appear as a truss skeleton in
bridges or roof structures where the main objective is to carry the
external loads safely. In contrary to pin jointed structures these
constraints are particularly important in the topological design of
rigidly jointed structures. One of the reasons for this is that
rigidly jointed structures are not:.only built to sustain the external
loads safely but also to satisfy the service requirements adequately.
In some casés these two purposes can contradict each other. For
example, in a twﬁ storey frame the existence of the beam which
separates the two stories is required from architectural point of
view while this might not be necessary to carry the external loads
safely.

Hence, the design examples considered were divided into
two groups, In the first group architectwral constraints were not
considered and optimum shapes were obtained by only considering the
stiffness, stress anddeflexion constraints. As a result, the shape
of the final designs were unusual from the architectural point of
view. In the second group in addition to stiffness, stress and

deflexion constraints, architectural requirements were also considered.
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6.4.1) EXAMPLE 1.

The ground structure shown in Figure 6.3(a) was developed
by linking the joints of a two storey framé to each other. This
structure consisted of 12 members, These were not grouped together
so that the existence of each one could also be decided by the
optimisation procedure. The modulus of elasticity of the
material‘was 207 kN/mm®, The structure was subjected to two
horizontal loads of 100 kN and 200 kN acting at the second and
first storey respectively. The design requirements included de-
flexion and stress constraints, The limitations on deflexions
were imposed by B.S.449 which restricted the sway of the frame to
12,3 mm at the first floor and 24.6 mm at the second floor. The
vertical deflexions were limited to 13.8 mm. The combined axial
and bending stresses in the members were restricted to 0.165 kNth”.

The design was initiated from the ground structure shown
in Figure 6.3(a). The weight of this structure was minimised and the
optimum sectional areas are given in Table 6.1(a). As can be seen in
the table, members 2,4,6,9,11 have areas which are very near to zero.
It can be seen that the values of the areas are of the same order as
the convergence rate which was taken as 0.001. Since, such areas can
be assumed to be zero, these members need not be included in the
ground structure, Indeed, this is the approach adopted by Dobbs and
Felton (®®), The structure cbtained after removing such members is
shown in Figure 6.3(b). The optimum sectional areas are also given
in Table 6.1(b). As seen from the table none of the members has an
area close to zero. Hence, it becomes necessary to forecast the
member to be removed which will generate reduction in the weight of
the structure. To achieve this, the benefit vector shown in Table
6.1(c) was constructed. As can be seen from.this benefit vector removal

of a member 5 is the most beneficial., This was carried out and the

structure shown in Figure 6.3(c) was obtained. The optimum member



100 kN

s 200 kN

le
l'\

S5m &

a) GROUND STRUCTURE

100 kN

200 kN

b) THE STRUCTURE OBTAINED AFTER

ONE TOPOLOGICAL ITERATION

FIGIRE 6.3

MEM~ WEIGHT
BER AREAS x 10%mm®
NO.. mm?

1 248,12

2 0.003

3 2243.03

L 0.0076

5 833.37

6 0.0062

7 277.12

8 1669.98

9 0.0018
10 283.50
11 0.0078
12 816.85 0.35985

a) OPTIMUM MEMBER AREAS FOR
THE GROUND STRUCTURE

MEM~ WEIGHT
BER n;“if"‘s x 10%mm®

1 840,40

2 1993.17

3 6L, 61

4 599.90

5 539.05

6 1662,.62

7 593.94  |0.35402

b) OPTIMUM MEMBER AREAS FOR
THE STRUCTURE SHOWN IN
FIG. 6.3(b)

186.

Jinid

(R

ORDER

51 4 7

¢) BENEFIT VECTCR

TABLE 6.1.



100 kN
200 kN
¢) FINAL DESIGN
5100 kN
2
: 3
—— 200 kN
N
TIRYW

d) DERIVED STRUCTURE

FIGURE 6.3 DESIGN EXAMPLE 1

187.

MEM-
AREAS WEIGHT

ETER mm? %108 mm®

X 116.4.80

2 1823.30

3 515.89

L 800.00

5 165.72

6 809,60 0.34934

d) OPTIMUM MEMBER AREAS FCR
THE STRUCTURE SHOWN IN

FIGIRE 6.3(c).

MEM~
BER AREAS WELGHT
NO. mm? %108 mm?

: ¥ 2479.07

2 1025.79

3 1220.15

4 1676.11 0.36260

e) OPTIMUM MEMBER AREAS
FOR THE STRUCTURE SHOWN

IN FIGURE 6.3(d).

TABLE 6,1 OPTIMUM MEMBER
AREAS F(R THE STRUCTURES
SHOWN IN FIGILRE 6.3.



188,
areas for this structure are given in Table 6.1(d). It can be seen
that by removing member 5, reduction was achieved in the weight of
the structure, while satisfying the design limitations.

Al though, this member removal procedure was also
applied to the structure of Figure 6.3(c), no improvement was
obtained in the weight of the structure. It was noticed that the
stress constraints were dominant in the design problem and the final
design was fully stressed. The minimum volume of this structure
obtained was 0.34934 x 10® mm®., As a further stage, the structure
shown in Figure 6.3(d) was obtained by removing member 4 from the
structure of Figure 6.3(b) where member 4 was the second member in
the benefit vector belonging to this structure, It can be séen that
although this structure is heavier than the final design shown in
Figure 6.3(c), it is more economical from the overall construction
point of view. This shows that the lightest structure is not
necessarily the cheapest one. Furthermore, it can easily be con-
cluded that the final shape of the structure depends on the oojective
chosen. In the case where economy is taken as an obJjective, the
benefit vector can be prepared in such a way that the first member in

it gives the greatest reduction in the cost of the structure.

6.4.2) EXAMPLE 2.

As a further example, the ground structure of Figure
6.4(a) was selected to obtain the optimum structure that sustains
the external loads which are also shown in the figure. This rigidly
Jointed ground structure consists of 7 joints each of which is
connected to every other joint by a member so that there is a total
of 17 members, The vertical load is 400 kN acting at joint D and the
horizontal load is 200 kN acting at joint F., The deflexions due to
these loads were restricted by B.S.449 which imposed 12.3 mm on the

horizontal deflexion of joints B and F and 18.46 mm on joints C,D
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‘and E, The vertical deflexions throughout were limited to 22,22 mm.
The modulus of elasticity of the material was 207 kN/mm®. The
combined axial and bending s tresses in the members were restricted
to 0,165 kN/mm*.

The design was initiated from the ground structure of
Figure 6.4(a). The final design was obtained after two topological
iterations and is shown in Figure G.A(c).- This structure consists
of 4 members and has the minimum volume of 0.34336 x 10° mm®. The
stress constraints were dominant and the final design was fully
stressed. It can be seen that the design procedure is quite effective
and it requires few: * iterations to reach the final design. The same
example was also designed applying external moments at the same Jjoints
as the direct loads. It was noticed that the final shape of the
structure did not change. However, the weight of the structure in-
creased,

It can be seen that the final shape obtained is not
usual, Furthermore, perhaps it is not accepted from the architectural
point of view. However, as far as the minimum weight is concerned,
this is the best shape which can be obtained from the ground structure
to carry the external loads shown in Figure 6.4(a). It can be seen
that the vertical load is carried by two inclined members which are in
compression and the horizontal load is carried by the other 2 members
which are in tension, It is known that the final shape depends upon

the original shape of the ground structure!°3),

6.4.3) EXANPLE 3.

The ground structure shown in Figure 6.5(a) was developed
in order to obtain a structure that has the optimum shape under the
external loads which are also shown in the figure., The horizontal
loads are 300 kN and 200 kN acting at joints A and B respectively

while the vertical loads is 400 kN acting at joint B. The horizontal
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deflexions due to these loads were limited to 15.33 mm at joints A
and D and 27,69 mm at joints B and C., The vertical deflexions at
Joints A and D were limited to 11.11 mm and at joints B and C to
16.66 mm, The modulus of elasticity of the material was 207 kN/mm?,
The combined axiel and bending stresses in the members were re-

stricted to 0.165 kN/mm?

The ground structure which consisted of 16 members was
designed by the proposed procedure which reduced the total number of
members to 6 in the final design, This final design is shown in
Figure 6.5(c). It had a ninimum volume of 0.54641 x 10° mm®.
Although the design procedure was continued, none of the structures
derived from this particular structure were lighter. It was noticed
that the structure of Figure 6.5(c) was also fully stressed. Once

again, the final design obtained is unusual from the architectural

point of view.

6okoy) EXAMPLE 4.,
The ground structure of Figure 6.6(a) was developed

by linking each joint of the 3 bay one storey frame to every other
Joint. This ground structure was employed to obtain the optimum
structure for the external loads shown in Figure 6.6(a). The
dimensions of the frame are also given in the figure. The modulus
of elasticity of the material was 207 kN/mm®. The combined stresses
in the members were limited to 0.165 kN/mm®, The sway of the frame was
limited to 18.46 mm while vertical deflexions throughout the structure
were limited to 22,22 mm.

The design was initiated from the ground structure of
Figure 6.6(a) which consisted of 19 members. After 3 iterations
the final design was obtained. As seen from the Figure 6.6(d) it
consisted of only 3 members. During the iterations those members

which had area values more than the selected convergence ratio were
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not removed. It was noticed that those members had areas such as
0.4 mm® while the member with largest areas was around 2500 mm®,
Hence, the design process was repeated by starting from the same
ground structure but this time members with relatively small areas
were also removed. The structures obtained at each iteration are
shown in Figure 6.7(b),(c). It can be seen that removal of members
which have relatively small areas, reduces the number of iterations
involved in the topological design procedure whereas the final design
remains unchanged. Although the final design is unusual, it is pre-
dictable. It is known that the best structure to carry a vertical
load is a column and this obtained for the vertical load of 200 kN.
As a result, the final design which is shown in the Figure 6.6(d)
consists of two parts. The first part is the column which carries
the vertical load. The second part is a cantilever which carries the
vertical load of 300 kN acting at joint C and the horizontal load of
400 kN acting at joint D. It can be seen that the members of this
structure are subjected to no moments. The member CD is in tension
and the member CH is in compression. Hence, it is obvious that this
structure has the best shape for that particular loading.

It can easily be seen by inspecting the final designs
obtained that they have the global shape under the load considered
as far as the weight is concerned. It was only in the example con-
sidered here that the final designwas statically determinate. This
was due to the fact that no moment was developed in the members of
this final structure under the external loading consid ered. Since,
the members are subject to direct forces only, it may be seen that a
pin jointed structure could belused to carry the external loads.
However, it can also be seen that such a pin jointed structure needs
a member DH to make the structure stable. However, such a structure

will be heavier than the rigidly jointed structure of Figure 6.6(d).

As mentioned previously, architectural constraints were
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not included in all the design examples considered. As a result the
final designs obtained were unusual from the architectural point of

view. In the next section this aspect is given priority.

6.5) DESIGN EXAMPLES CONSIDERING ARCHITECTURAL CONSTRAINTS,

It has been shown in the previous section that exclusion
of architectural constraints in the topological design of rigidly
jointed structures led to the final designs which had unusual shapes,.
However, it has also been shown that when the weight of a structure
was taken as an objective and the design criteria only consisted of
the stiffness, stress and the deflexion limitations, these final
designs had the best shape that can be cbtained from the selected
ground structure., In the examples considered in this section in
addition to these constraints architectural requirements are also
included in the design criteria. The inclusion of such requirements
can be carried out in two ways. The first is to impose severe
limitations on the deflexions of those joints which are not wanted
to be removed and group the members which are to be retained with the
vital members of the ground structure. The second way is to arrange
the ground structure in such a way that it does not include those
members which contravene the functional and architectural constraints,
This is carried out by first developing the ground structure in the
usual way and then removing those members whose existence violates the
architectural constraints., It is apparent that in both ways members
which have to be retaied due to the architectural constraints are not
considered in the preparation of the benefit vector.

In the case where no inclined member is allowed in the
ground structure due to the severity of architectural constraints,
then the ground structure is reduced to only beams and columns. It
has been shown that the proposed design method can be employed in the

design of such structures. It is possible to eliminate some of the
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columns so that a better design may be obtained.

6.5.1) DESIGN OF ONE BAY FRAME.

The structure of Figure 6.8(a) was utilized as a ground
structure for the design of a one bay frame which is subject to the
external loads shown in Figure 6.8(a). This reduced ground structure
was obtained from the general ground structure which was developed in
the manner described in the last section. This was carried out by first
linking each joint fo every other joint, then removing those members
which were not allowed because of the functional requirements. It was
assumed that inclined members were not allowed in the part of the
structure up to a height of 5 metres. The final ground structure consists
of 11 members. The dimensions of the frame are given in Figure 6.8(a).
The modulus of elasticity of the material was 207 kN/mm®. The combined
stresses in members were limited to 0.165 kN/mm®, The sway of the frame
was restricted to 50.0 mm while the vertical displacements thfoughout
the structure were limited to 20.0 mm,

The design was initiated from the ground strﬁcture of
Figure 6.8(a) and optimum areas for each groupc. are also given in the
figure. It can be seen that the areas required for the members in
groups 3 and 4 were reduced to zero. As a result removal of those
members resulted in the tied pitched roof frame shown in Figure 6.8(b).
The minimum volume of this frame was obtained to be 0,236094 x 10° mm®,
The designwas then continuéd by removing the member in group 2 and
the pitched roof frame shown in the Figure 6.8(c) was obtained. It
was found that this frame had the minimum volume of 0.273016 x 10° mm®
which was heavier than the frame of Figure 6.8(b).

In the case where practical reasons do not allow the
members of group 5 in the ground structure of Figure 6.8(a), then
the frame shown in Figure 6.8(a) can be selected as a ground structure

to carry the external loads considered. There are two structures which
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can be derived from this ground structure without violating the
architectural constraints. These are shown in Figures 6.9(b) and
6.9(c) respectively. It was found that both had tle volumes more
than the ground structure. Hence, the ground structure itself is
the final design. It can be seen by comparing the volumes of the
frames shown in Figures 6.8(b) and 6.9(a) that tocarry the external
loads considered, the pitched roof frame shown in Figure 6.8(b) is a

better design than the frame shown in Figure 6.9(a).

6.5.2) DESIGN OF A TWO STOREY FRAME,

The ground structure of Figure 6.10(a) was developed
for the design of a two storey frame. It is assumed that inclined
members are not allowed in the first storey due to architectural
reasons. Furthermore, due to the functional reasons columns and
beams are not to be removed. Hence, the ground structure consists
of 8 members, 2 of which are inclined members obtained by linking
the joints of the second storey. This ground structure was employed
to obtain the optimum structure for the external loads shown in
Figure 6.10(a). The dimensions of the frame are also given in the
figure. The combined stresses in the members were limited to
0.165 kN/mn®. The sway of the frame was restricted to 25.0 mm
at the first storey and to 100.0 mm at the second storey. The
modulus of elasticity of the material was 207 kN/mm®,

The design was initiated from the ground structure of
Figure 6.10(a). Due to the severity of architectural constraints,
there are only two structures which can be extracted from. this
ground structure. These are shown in Figures 6,10(b) and 6.10(c).
Both frames were optimised and minimum volumes were obtained to be
1.743685 x 10° mm® and 1.870216 x 10° mm® respectively. It can be
seen that these two frames are heavier than the ground structure.

As a result, the ground structure has the optimum shape. This shows
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that in the case where the architectural constraints dominates the
design problem, it may be possible that no improvement can be
achieved in the shape of the ground structures. However, if these
constraints are partly relaxed, a better design may be obtained.
This was shown by removing the beams in the ground structure shown
in Figure 6.10(a). This led to the structure of Figure 6.10(d).
This minimum volume of this structure was obtained to be

1.673297 x 10° mn® which was less than the volume of the ground

structure.

6.5.3) DESIGN OF A ONE STOREY 3 BAY FRAME.

The ground structure shown in Figure 6.11(a) was utilized
to obtain the optimum one storey 3 bay frame for the external loads
shown in Figure 6.11(a). This ground structure was developed by
assuming that inclined members were not allowed in the second bay
due to the architectural reasons. The dimensions of the frame are
also given in the figure. The modulus of elasticity of the material
was 207 kN/mn®, The combined stresses in the members were limited to
0.165 kN/mm®. The sway of the frame was restricted to 100.0 mm
while vertical deflexions throughout the structure were limited to
20.0 mm,

The design was initiated from the ground structure of
Figure 6.11(a). The minimum volume of this frame was obtained to
be 0.102977 x 10° mm®. It was found that removal of the members
belonging to the groups 4 and 6 was the most beneficial. This was
carried out and at the end of the first topological iteration the
structure shown in Figure 6.11(b) was obtained. This structure has
the minimum volume of 0.102864 x 10° mm® which is slightly lighter
than the ground structure. There are only two structures which can

be derived from this structure without violating the architectural

constraints. These are shown in Figures 6.11(c) and 6.11(d). Both
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frames were optimised and minimum volumes were obtained to be
0.181054 x 10° mm® and 0.842165 x 10° mm® respectively. It can be
seen that these two frames are heavier than the structure of

Figure 6.11(b). Hence, this structure is the final design. The
examples considered so far verify that the final shape of the
structure depends on the ground structure chosen as well as the
severity of the architectural constraints, It has also been shown
that in the case of severe architectural requirements, it may be
possible that no improvement can be achieved in the shape of the
ground strﬁcture. Hence, it becomes obvious that architectural con-
straints play very important part in the toplogical design of rigidly
Jjointed structuresdue to the fact that they affect the shape of the

ground structure.

6.5.4) DESIGN OF ONE STOREY MULTIBAY FRAME,

It may be possible that due to the service requirements
inclined members are not allowed in the ground structure. In such
cases the proposed design procedure can also be employed to obtain a
befter design. In order to uemonstrate this, the structure of
Figure 6.12(a) was selected as a ground structure. Since, it is
possible to increase the number of columns to cover the design
space, then the proposed design procedure can be used to eliminate
those columns which are not necessary to carry the external loads, .
in order to obtain the optimum column distribution.

The ground structure shown in Figure 6.12(a) has 6 joints
and 11 members 6 of which are columns. A ground structure with this
number of joints would require 66 members if every joint were to be
connected to every other joint. The use of such a ground structure
therefore reduces the size of the initial problem. This ground

structure was employed to obtain the optimum structure for the wind
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loading which is distributed to each column as shown in Figure 6.12(a).
The dimensions of the frame are also given in the figure., The sway
of the frame was limited to 100.,0 mm while vertical deflexions
throughout the structure were limited to 20.0 mm. The coxbined
stresses in the members were restricted to 0.165 kN/mm®, The
modulus of elasticity of the material was 207 kN/mm®.
The design was initiated from the grourd structure shown
in Figure 6.12(2) and the minimum volume of this structure was
obtained to be 7.20586 x 10°® mm®. The benefit vector was then
prepared and it was found that removal of columns belonng to group 3
was the most beneficial. This was carried out and at the end of first
topological iteration the structure shown in Figure 6,12(b) was
obtained. This structure has the minimum volume of 6.69219 x 10° mm®
which is lighter than the ground structure. Further improvement in
the shape can only be obtained without violating the architectural
constraint by removing the columns beloning to group 2. This was
carried out and the ground structure was reduced to the portal frame
shown in Figure 6.12(c). This frame has the minimum volume of
6.19494 x 10% mm®, It is apparent that no further improvement can
be achieved in the shape. Hence, this portal frame is the final
design and has the global shape under the horizontal loading considered.
It can be seen that in the design example considered when
a column was removed, the horizontal forces acting on it were not
moved to the columns adjacent., This was in order to keep the external
loading pattern unchanged during the design process., However, the
proposed design procedure was reapplied to the same example but this
time when a column was removed, the wind loading was redistributed
to the remaining columns. This process is shown in Figures 6.13(a),
(b) and (c). It was found that in this particular example this
redistribution of forces had no effect on the final design obtained

but the optimum member areas were changed slightly.
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As a result it may be concluded that the proposed design
procedure can be employed in the design of structures where the

shape is variable to obtain the optimum column distribution.

6.5.5) DESIGN OF TWO STOREY MULTIBAY FRAME.

As a further example, the two storey multibay frame of
Figure 6.14(a) is considered as a ground structure, to demon-
strate the application of the design procedure in finaing the
optimum column distribution. External loading is taken as wind
loading-which is distributed to each column as shown in
Figure 6.14(a). The dimensions of the frame are also given in
the figure. The combined stresses in members were restricted to
0.165 kN/mm®. The modulus of elasticity of the material was
207 kN/mu®. The sway of the frame was limited to 100.0 mm at the:
second storey and to 50.0 mm at the first storey while vertical
deflexions throughout the structure were limited to 20.0 mm,

The design was initiated from the ground. structure shown
in Figure 6.14(a) and minimim volume for this-stfu;ture was obtained

to be 1.711015 x 10° mm®. The benefit vector was then prepared and

it was found that removal of columns belonging to group 3 was the

most beneficial., It should be pointed out that in such design
problems, if the benefit vector gives one of the columns in the
first storey to be removed, then the coiumns in the upper storeys
which are supported by this particular column, have to be removed
as well, The removal of columns beloning to group 3 leads the
structure shown in Figure 6;lh(b) which has the minimum volume of
1.709489 x 10° mm®, It can be seen that this frame is slightly
ligher than the ground structﬁre. However, although the decrease
in weight is small, the saving in the cost of the frame is con-

siderable., This is due to the fact that this frame contains fewer

members, The two storey one bay frame shown in Figure 6.14(c) was
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obtained by removing the columns belonong to group 2 of the frame
shown in Figure 6.14(b). This frame has the minimum volume of
1.783604 x 10° mm®, This shows that no further improvement can
be obtained in the shape of the frame., Consequently, the frame
of Figure 6.14(b) is the final design.

The proposed design procedure was reapplied to the same
axaméle but this time when a column was removed, the wind loaaing
was redistributed to the remaining columns, The process is shown
in Figures 6.14(a), (b) and (c) and it can be seen that the final
design has changed. Hence it may be concluded that in such design
problems redistributions of forces to the remaining members could
improve the final design.

It may therefore be concluded that the proposed design
procedure can be utilized in the design of structures which consists
of beams and columns to eliminate those columns which are redundant

from the weight point of view, in order to obtain a better design.

6.6) CONCLUSIONS.

It has been shown that the topology of rigidly jointed
Structures can efficiently be treated as a design parameter and
as a result of topologicel changes considerable weight reduction
can often be achieved. The design examples considered have shown
.that the number of topological iterations required to obtain the
final design is small. This proves the effectiveness of the way
in which the design problem is formulated as described in Chap ter 2.
Further the final designs obtained were global. Although, the design
procedure was continued after reaching the final design, no relative
minima were identified., It was found that when the stress con-

straints dominate the design problem, the final design is fully

stressed.

Although in the examples considered in Section 6.4, the
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members are not grouped together, it is possible to do so. However,
it should be pointed out that the manner in which they are grouped
together affects the shape of the final design. Furthermore, the
final shape of a structure depends upon the shape of the initial
ground structure.

It was found that the shape of a rigidly jointed structure
at its final stage could be considerably different from that of
an initial ground structure. It was also found that these shapes
may be difficult to select intuitively and also unusual from the
architectural point of view, However, it was later shown that the
proposed design procedure can also be employed in the topological
design of rigidly Jjointed structures where the design criteria
includes these architectural constraints as well as stress and
deflexion constraints, It was found that depending on the severity
of architectural constraints it may not be possible to obtain a
better design than the ground structure. However, it was shown that
in such cases when architecturd constraints are partly relaxed, a
better design can be obtained. The design procedure was also success-
fully employed in the design of structures to find the optimum coluamn
distribution.

It has been shown that the structure with the least weight
is not always the cheapest to construct., Indeed, in one of -the
examples considered, a structure obtained was slightly heavier than
the final design but it contained less members. It can be seen that
this structure is better than the final design from the constructional
stand point, However, this is the case when minimum cost is taken
as an objective instead of minimum weight., In such cases the benefit
vector can be prepared in such a way that the first member in it
gifes the greatest reduction in the cost of the structure.

Although the design procedure described in this chapter
was only applied to rigidly Jjointed plane frames, it is general and

may be extended to space structures.
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It has been shown in this thesis that the formulation
of the design problem by the matrix displacement method, con-
sidering the displacements of joints in a structure as design
variables is effective, This formulation makes it possible
to produce a general computer program for automatic optimum
design of realistic, rigidly jointed multi-storey frames,
Furthermore, in rigidly Jjointed structures, expressing the
second moment of area and the section modulus in terms of the

sectional area by approximate relationship; this formulation

213.

generates a convex design problem, Therefore, the optimum solution

obtained is global.

Instead of using approximate relationship between the
sectional properties, they may be treated as independent design
variables. This approach, decreases the order of nonlinearity
of the design problem, but it trebles the number of variszbles
for the sections adopted for groups. As a result the computer
time and storage required are increased.

The approximating programming was proved to be very
effective for obtaining the solution of design problem, For
the solution of each linearised problem, two phase-revised
simplex method was employed and found to be very powerful.
However, the dual simplex method can be employed to obtain the
solution, This does not involve the concept of artificial
variables. As a result, obtaining no feasible solution is
avoided. However, in the use of dual simplex method, each
equality constraint has to be replaced with two inequality con-
straints. On the other hand, the number of constraints can be
reduced by carrying out the redundancy rules and removing
redundant constraiﬁts from the problem,

In the design procedure described in Chapter 2,

buckling constraints were not considered. It is known that
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short structural members in compression fail by crushing or
yielding of the material. On the other hand, slender structural
members in compression yield by buckling before the crushing
stress has been reached. Hence, the design procedure described
in Chapter 2 may be extended to include the buckling criteria.

The finite element method may be used to formulate the
design problem where the displacements of nodes of elements can
be considered as design variables. In this way it is possible
to design complex structures such as plates and shells., Eventually
this design procedure may be extended to cover complete structures
consisting of frames and slabs, where the optimum slab thickness
can be obtained, as well as, the optimum sectional properties of
frames,

The theorems of structural variation have been proved
capable for calculating in advance the effect of variation or
removal of members upon the behaviour of rigidly jointed structures.
It is, therefore possible to calculate the volume of a derived
structure by studying its parent structure, These theorems may also
be used to vary the properties of structural members for the purpose
of' design economy.

By using these theorems, it is passible to obtain the
behaviour of a rigidly jointed structure, when a hinge is inserted
at any point along its members. This fact may be applied to elastic-
plastic analysis of structures, in which it is necessary to analyse
the structure for each time a plastic hinge develops in the
structure. By the thecrems of structural ﬁariétions, one analysis
is enough to carry out an entire elastic-plastic analysis of a
structure. Hence, it is possible to avoid a considerable amount
of computation.

These theorems may be extended to cover space structures,

Plates and shells., Using this approach, it may be possible to
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study behaviour of the complete structure consisting of frames

and slabs, when some or all of its members or slabs are removed,
The work presented on minimum weight design, with

shape as a design var;able for rigidly Jjointed structures is

encouraging. The extension of the theorems of structural

variation to include rigidly jointed space frames and complete

structure does not involve any fundamental difficulties, It is,

therefore possible to produce an automatic design procedure, based

on these theorems, to design rigidly Jjointed space structures and

complete structures with fixed or variable shape for minimum

weight.
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FIGURE A.l: A PORTAL FRAME

The hyperbolic relationship between the variation of
any displacement and the second moment of area is derived by con-
sidering the portal frame of Figure A.1(a). As shown in Figure
A.1(b) the internal moments Mg, Mg and My are taken as the re-
dundants., The overall flexibility equations of a structure are

given as follows:

A "

t 1
A Ik

where Xb is the deflexion vector under the external loads Lb and X,
is the deflexion vector under the redundant forces Lr' f is member
flexibility matrix for the structure. Bb and Br are the force trans-
formation matrices in the basic statically determinate structure due

to the external and redundant forces respectively. The overall

flexibility equations of A.l for the portal frame is of the form:
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In the case where the second moment of area I; of member 2 is

L
varied to Iz at the point F, the moment Mp becomes MF and the
I

other redundant moments is given by equation 5 as shown in

Chapter 5

and consequently the deflexions of the portal frame considered
will also vary. The next deflexions are denoted ¢ to differ-—

entiate them from the initial deflexions X. The equation A.2

becomes
(e ] 10 . 1T v T
Pl =% :
¥p : H
o Fob ¢ For AdS
» * & L ] e & 0O L ] -] L’I‘
0 [ ] s & @ :. » L ] L ] L ] . I
¥ 2 For Mg * Py L,
0 .: M. +r m
[ i 3 Tl D "By fd_

The varied displacement o is obtained by multiplying the first row

of F by the column on the right hand side of equation A.3.
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This equation is simplified to

Eyp = ¢ +T63, + purﬁF + de rﬁF + (a + %2,) MFI (A.L)

where the constants ¢,6,p,d,a,b are given as
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Furthermore, the third equation, in equation A.3 is of the form:

L L2 n? 4h 1L L
( )V+ H*( +121;. GIs)MTI

-9 1
+ ( i 1212. * 1217, Mc+rﬁFm =T MD+rﬁFm 5
which is simplified to

_ n Ty ,
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Il

where the constants m,n,s,t,a and g are given as
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The equation A.5 gives MF in the form:
I
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Substituting MF into equation A.4,it follows that:
I
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which is simplified to
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where the constants A,B,C,D,G and F are given as

A = gp - an
B = a6-p¢p - an-bm
C = ad+fp + at-bs

D = ap = as
G = p6-"bn
F = fd = bt,

13
Multiplying both sides of equation A.7 by Iz , it follows that

228,

A6

Ao?



229.

13 ] 13 ' 1 12 '
Ea I, ¢F+ ER I ¢% = AI, + BI; + C.rﬁ Jg + Dr, I, +G+F.r A.8
F ﬁF ﬂF

rﬁF is given in Chapter 5 by equation 5,12 which is of the form

1
v Iz where v is a constant., Substituting this in A.8 and collect-

ing the similar terms, it is found that
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where 74,72 «es 7g are constants and given as
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