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SUMMARY

The finite element method is now well established among engineers
as being an extremely useful tool in the analysis of problems with complic—-
ated boundary conditions. One aim of this thesis has been to produce a
set of computer algorithms capable of efficiently analysing complex three
dimensional structures.

This set of algorithms has been designed to permit much versitility.
Provisions such as the use of only those parts of the system which are
relevant to a'given analysié and the facility to extend the system by the
addition of new elements are incorporated. Tive element types have been
programmed, these arc, prismatic members, rectangular plates, triangular
plates and curved plates.

The 'in and out of plane' stiffmness matrices for a curved plate
element are derived using the finite element technigque. The performance
of this tyve of element is compared with two other theoretical solutions
as well as with a set of independent experimental observations. Additional
experimental work was then carried out by the author to further evaluate
the acceptability df this element.

Finally the analysis of two large civil engineering structures,
the shell of an electrical precipitator and a concrete bridge, are
presented to investigate the performance of the algorithms. Compar-—
isons are made between the computer time, core store requirements and
the accuracy of the analysis, for the proposed system and those of

-another programe.
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CHAPTER 1

INTRODUCTION

(1.,1) The finite element method

Conventional engineering structures can be considered to consist of
individual structural elements interconnected at a discrete number of nodes.
If the force-displacement relationships for the individual elements are
known then itvis possible to derive the properties and study the behaviour
of the complete structure., In an elastic continuum, however, there are an
infinite number of interconnecting points, consequently an alternative ap-
proach has to be adopted.

The concept of tinite elements, suggested by Turner et al.(1), may be
used to discretize such a problem in the following manner:

(1) The continuum is separated by imaginary lines or surfaces into a

number of 'finite elements';

(ii) The elements are assumed to be intercomnected at a discrete num-

ber of nodal points situated on their boundaries. The displacements

of these nodal points will be the unknown parameters;
: (iii) A function is chosen to define uniquely the state of displace-
ment within each 'finite element' in terms of its nodal displacements;

(iv) The displacement function now defines uniquely the state of

strain within an element in terms of the nodal displacements. These

strains, together with any initial strains and the elastic properties
of the material will define th=o state of stress throughout the element,
and hence, also on its boundaries;

(v) A system of forces concentrated at the nodes and equilibriating

the boundary stresses and any distributed loads is determined, resulting

in a stiffness relationship.

This approach introduces two significant approximations, Firstly,

since it is difficult to ensure that the chosen displacement function

-1 -




will satisfy the requirement of displacement contimuity between adjacent
elements, the compatibility conditions on such lines may be violated,
Secondly, by concentrating the eguivalent forces at the nodes overall equi~
1librium conditions are satisfied, however, local violations of equilibrium
conditions within eack element will usually arise,

The mathematical derivation of the characteristics of a 'finite ele-
ment,' will now be presented.

A typical finite element, e, is defined by nodes 1, 2, 3, .cs N, and
straight line boundaries, Let the displacements at any point within the

element be defined by:

where {i} is the displacement vector, N con£ains general functions of the
position and {Q}e represents a listing of nodal displacements for a parti-
cular elemant,

With displacements known at all points within the element the strains
at any point may be determined. These will always result in a relation-

ship which may be written in matrix notation as:

fe] = Bl8l° e (1.2)

The material within the element boundaries may be subjected to initial
strains denoted by {goz. The stresses will be caused by the difference
between the actual and initial strains, Assuming general elastic behaviour,

the relationship beiween stresses and strains will be linear and of the form

fo3 = p(le} - leol) eer (1.3)

where D is the clasticity matrix containing the appropriate material prop-

erties,
Tf the nodal forces,which are statically equivalent to the boundary

stresses and distributed loads on the element,are defined as:

-2 -




e
{E} - {Pl Pz Pa o0 PL Prs Pn} ooe (1 cll-)

Each of the forces {pL} must contain the same number of components as the
corresponding nodal displacements {6L§ and be ordered in the appropriate
corresponding directions,

The distributed loads {B} are defined as those acting on a unit volume
of material within the element with directions corresponding to those of
the displacements {2} at that point,

It is now essential that the nodal forces are made statically equiva-
lent to the actual boundary stresses and distributed loads. The simplest
procedure is to impose a virtual nodal displacement and to equate the ex-
ternal and internal work done by the various forces and stresses during
that displacement, Let such a virtual displacement be {8%1¢ at the ncles,
This results by equations (1.1) and (1.2), in the displacements and strains

within the element equal to
f£*] = mip*]® ana {g*} = BI&¥I° eee (1.5)

respectively.
The work done by the forces is equal to the sum of the products of the
individual force components and corresponding displacements, this can be ex-

pressed in matrix form as:
'~‘< eT e (1 6)
({_@_’I} ) . {E} : seo0 .

Similarly, the intermal work per unit volume done by the stresses and
distributed forces is

1

fex] (o] - {2} fp} e (1.7)

or

(12197 (3" {a} - N ip}) . (1.8)




Equating the external work with the total internal work obtained by
integrating over the volume of the element the following expression is

obtailned:

wey eyt T T
(e e = )’ ([2ig e - [l atva) ) (1.9)
As this relationship is valid for any value of the virtual displace-

ment, the equality of the multipliers must exist., On substitution of erqua-

tions (1.2) and (1.3) we have, therefore,

B - ([22 paten) ia1® - [Fp feod alvon) - [ 18} atvon) (110

This relationship is one typical of characteristics of any structural

element, Jn general form it is usually expressed as:
£} = x {81 + B}, + Blg,
The stiffness matrix becomes

k- [_@T__Jz a(vol) oo (1.11)
Nodal forces due to distributed loads are

pi® = - /_TET {p} a(vol) vee (1.12)
and those due to initial strains are

pre = - /ET_Q _gEo} d(vol) eee (1.13)

—’€q

i,



(1.2) The matrix displacement method

Two types of analysis stem from the Tinite element idealisation, The
matrix force and the matrix displacement method, The force method considers
the forces in the structure as unknowns wherecas the displacement method
solves for displacements, The force method was formerly more attractive to
the engineer as less work was involved inits solution, but, special redun-
dant forces have to be selected before the analysis and conscquently the pro-
cess 1s not as fully automated as the displacement method, The matrix dis-
placement method which is the more applicable of the two to the finite
element method will now be described in detail.

Consider, for example, a member element, A set of forces can be found
at either node which equilibrate the stress throughout the beam and are re--

lated to tne nodal displacements by the eguation,
P o= k2 cee {1411)

where P, the element forces acting at the nodes, is a column vector,

For an assembly of n elements this will take the form

_P_ = {Ei, 22, _]23 seoece _];D_n}

7 is the nodal displacement vector corresponding to the force vector.

Thus:

Z = {Z1, Bes Do eees 2}

The k matrix is defined as the element stiffness matrix, The presence of
a unique stiffness matrix is shown by the presence of slope deflection
equations, The matrix will be square and symmetrical due to the theorems
of Maxwell and Betti.

These individual stiffnesses are assembled in the following manner.
For convenience the displacement matrix of the total structure is def'ined

relative to some arbitrary reference axes, X, ¥, 2 and given by the column
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vector:-

_')E = {_}_{1’ _}_(2 cooe _}EJ xXxxl §n§
for a structure containing n joints, where Xj is a submatrix of the form:-
X

= = {XJ’ Yjr 25 ijy 6\“'; GBJ.}

The six elements of Xj correspond to the possible degrees of freedom, both
translational and rotational, at joint j. It is now possible to relats the

element displacements to the joint displacements by the equation:-
_Z. = _‘A-._)S oo (1015)

The A matrix is known as the displacement transformation matrix. Its cle-
ments are constants referring to the cosine of the angle between the various
element and reference axes, A load vector, equivalent to the Jjoint displace-

ment vector, is defined as:-

E_’ = {_L’:L) 22: 233 csce EJ ecec L }

where, at joint j for instance, the submatrix L; is a vector of forces and

moments taking the form:-—

L5 = (X5, Yy, Zj, Mgy, Myj, Mz}

The.principle of virtual work states that, for a structure in equili-
brium, the applied virtual work is equal to the internal virtual work,

hence: -

X1 =2FP cer (1.16)
From equations (1.15) gnd (1.16) it is clear that,

L o= A P : eee (1.17)

But from equations (1.14) and (1.15),

~I6—
i




P = kAX eee (1.18)
hence, from equations (1,17) and (1.18)
L= Ak A X cee (119)

Equation (1.19) relates the applied forces of the structure to its displace~

ments and can be rewritten as:-

T =K X

L) (1020)
Hence K is the overall stiffness matrix of the structure and,
T
XK =4k A

This method was derived using the concept of virtual work and it is
evident that the basic equations of elasticity are not violated. Strain-
displacement,‘stress—strain, and equilibrium equations within each eleaent
are repressnted by equation @.14). Although this egquation also includss
continuity of displacement (and hence strain) for this element, overall
compatibility is achieved by the 'uniqueness' of the displacement vector X.
Equation (1.17) is, in fact, the overall equilibrium equation for the strucf
turé at each Jjoint.

The K matriz is the overall stiffness matrix of a structure as a free
body, hence L, the load matrix, constitutes a system of forces, both im-
posed and reactive, in equilibrium acting on all the joints of the strﬁcturee
Tven if all these forces were known, which would not be true of the reactive
forces in the general case, six of the equations (in a three dimensional
structure), in equation (1,20) would be linearly dependent, This is over-
come by specifying the displacements at the reactions to be zero, Hence the
corresponding rows and- columns in the X and L matrices disappear and the
overall stiffness matrix becomes nonsingular, thus allowing inversion.

T is now possible, if the stiffnesses of the individual elements and

-7 -




the geometry of the structure are known, to solve the equation:-
_:}_( = _Ig—i L oo (1 022)

and proceed to find the forces taroughout the structure using equation

(1.18).

(1.3) Topics covered by this thesis

The work undertaken by the author may be divided into two parts,
firstly that of programming and system development and secondly, the deri-
vation and verification of the in and out of plane element stiffness ma-
trices of an annular segment, Bach of these topics is now briefly
discussed,

One specific application of computers to structural problems is the
analysis of really large three dimensional structures, A considerable
amount of sophisticated programming is required to handle the large ms-
trices involved, Consequently there has been a tendancy to develop a large
number of programs each appropriate to a single problem, rather than one
general program capable of handling a variety of problems, One such gene-
(2)

ral program originally written by Jennings and Majid to analyse space

frames made use of sparse matrix techniques(B). This program was extended
by Williamson(h) tc include rectangular plate elements and then furtner ex-
tended by Craig(S) to include triangular elements, Inevitably this piece-
meal approach to programming leads to inefficiencies, furthermore recent
analyses using this extended program had not provided satisfactory results.
Tt was therefore decided that part of the work would include the
writing and development of a general program with the capability of analy-
sing complex three dimensional structures. Such structures could consist
of a variety of elements which would include prismatic members, rectangular,

triangular and curved plates., The resulting program should not only be ver-

satile, but also easy to use and update., To achieve this it was necessary

-8 -




to consider the following objectives:

(a) The system should be 'open ended' allowing extensions to the sys-
tem library by the addition of new structural elements;

(b) Such extensions should be carried out by the addition of new sub-
routines which would not involve any fundamental changes to the system, The
program structure would necessitate the writer of a new element's subroutines
only to be familiar with a general element subroutine specification,

(c) The system should be efficient in the use of computer time as well
as the available core and backing storesy

(a) The system should be flexible, compiling only the subroutines rele-
vant to a given analysis;

(e) 1In the interests of practicality the required data should not be
cumbersome or confusing.

The element stiffness matrices of prismatic members and rectangular and
triangular plateé are well documented(2’6’5). One type of element whiz
would be useful and which cannot easily be simulated by other element types
is a curved or annular element, An example of the use of such an elemeat is
the analysis of elevated roadways which require curved structures at complex
interchanges., The increased flexibility of the longer ocuter edge of such
an element gives rise to stress and deflection characteristics which are
very different from those obtained with right bridge decks. Despite the
p0pu1ari%y of this type of structure comparatively little research work

appears to have been done in tals field, the most notable exception being

(7)

that by Coull and Das .

In their paper Coull and Das present an 'exact' solution for the anal-
ysis of disotropic curved bridge decks subjected to concentrated loads, The
deflected form is expressed as a Fourier series in the spanwise direction,
the coefficients beiné functions of the radial direction only. The loads
are expressed as a corresponding series, thereby allowing the incorporation

of the concentrated loads as a discontinuity in the shear force along the

-9 -




load line, Tests are conducted on two models in order that a comparison
can be made between theoretical and experimental values of deflection and
moment, This comparison indicates that although the solution has been ex-
pressed in the form of an infinite Fourier series, convergence is rapid and
three terms afe adequate to give accurate results, This form of solution
has an advantage over purely numerical solutions, using a grid analogy or
finite element techniques, in that the computational difficulties do not
miliply as the number of terms is increased to achieve better accuracy.

It does not, however, have the flexibility of the numerical solutions, The
requirement that the curved bridge deck is radially supvorted without pro-
vision for such items as edge stiffening means that the type of structure
analysed by Coull and Das would be used only infrequently. Their paper,
therefore, presents work which may be used as a yardstick to test the accu-
racy of such numerical approaches as the grillage or finite element methods.,
In such schemes the continuous slab is replaced by a series of elements
connected at a discrete number of nodes,

It was therefore decided that the author should derive element stiff-
ness matrices for an annular segment by employing the finite element
approach, Furthermore the element should be included into the program sys—'
tem and be compared with experimental results obtained both by the author

(7)

and by Coull and Das .

(1.4) Storage and solution of the equations forming the stiffness matrix

of a structure

The methods of storage and solution of the overall stiffness matrix
adopted by the author are both due to Jennings and Tuff(B). Comprehensive
details will,however,>e given in this chapter as frequent reference to
both techniques is made throughout this thesis,

The non-zero terms of the stiffness matrix of a large structure are

shown in figure 1.1. Clearly a method of storage which takes into account

- 10 -
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such properties as the sparseness and symnetry of the non zero terms is
essential, The scheme adopted is one which stores for each row all the
terms from the first non zero element uvp to the leading diagonal. The
reasons for selecting this method are given in Chapter 2, At this stage
it is relevant only to give a description of the technique.

This method of storage is admissable because when a direct. elimi-
nation technique is used to solve the equations then zero elements before
the first non-zero element on a row will always remain zero, This is pro-
vided that there is no row or column interchange, A storage scheme there-
fore need cnly retain elements between the first non-zero and the diagonal
element of each row, Figure 1.2 shows an enlarged part of the stiffness
matrix given in figure 1.1, Here it can be seen that this technique will
usually involve the storage of some zero elements; this is acceptable as
the efficiency of the solution is dependunt upon the layout as well as the
amount of store used,

Each of the rows is stored consecutively in a unidimensional array,
an address sequence is used to locate the position of the diagonal elements

within the array. An example of this is now given:

[ 1.5 i
0.2 1.2 SYMMETRIC

1.1 0.0 2,2
0.0 0.0 5.1 10.6
0.0 0.0 0.0 0.0 2.6

| 0.0 0.0 -1.,2 0.0 0.0 6.1]

This matrix would be stored in the computer as:

(a) The main sequence

1.5 0.2 1.2 1.4 0.0 2.2 5.4 10,6 2.6 -1.2 0.0 0,0 6.1
(b) The diagonal address sequence (pAS)

1 3 6 8 9 13

- 12 -
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Here it can be seen that the third element in the address sequence
stores 6 and the sixth element of the main sequence stores the diagonal
element of the third row, namely 2,2. Generally if the diagonzl address
sequence is stored in array DAS, then element (i,j) is stored in the main
sequence at location DAS(i) - 1 + j.

The application of this technique to matrices such as the one shown
in figure 1.1 results in significant savings of store, The shcer size of
these matrices, however, still precludes their complete storage in core at
one time, It is therefore essential tha’ the matrix is split up and use is
made of bhacking store facilities. This can be achieved by putting an inte-
gral number of consecutive rows into a unit such that any two units may be
contained within the available core stors at the same time, The diagonal
address sequence is used to obtain the msximum number of rows that car fit
into. each unit., Simply the largest DAS(i) which is less than half the
available core store will define the number of rows which may be put into
the first unit.

A very wide range of numerical methods exist for the solution of linear
simultaneous equations, both direct and indirect methods are available, 1In
general the direct methods are preferred for structural analysis since the
programming of these is simpler and they are more easily adapted for the si-
multaneous analysis of a number of loading systems. The two principal direct
methods are Gaussian elimination and the Choleski triangular factorisation,
When these schemes are to be used with backing store facilities then the
form of elimination best suited is the Choleski triangular factorisation,
This ié because it requires no other storage facilities than that available

(8)

for the left hand side coefficients, Jennings and Tuff present details

of how the Cholesky method may be used in conjunction with the units of the

. ) e s A
stiffuess matrix mentioned previously. Details of this scheme are now pre-

sented,

The set of simultaneous equations in matrix form are:
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"coefficient

K X = L | eee (1.23)

Any positive definite matrix has a unique deconmposition of the form

K = ¢ g

[Rep!
*
L]

L]
~~
—

[
[\l

N

N’

1 J 3 . ~ . . . . . -
where & is the lower triangle matrix with positive diagonal elements.

Substitution of equation (1.24) into equation (1.23) yilelds
E ET_X.: = l} L) (1025>
if 6 Y = L eee (1.26)

Then Y may be obtained from equation (1.26) after which the back substitu-

tion process can be carried out on the equation
ET _}g = X esoce (1527)

The elements of the G matrix may be formed from the X matrix in the
following manmner

(1) for on diagonal elements (i=j)

' {=j~1 : :
gl'.i = \/ <K‘LL - i gz'te> LR (1028)

£=1

(2) for lower triangle off diagonal elements (5<1)

£=3-1

o= <K-LJ- - Z 8.0 * gjg>/gjj eee (1.29)

{=1

e8]
|

Tt can be seen from equations (1.28) and (1.29) that to form any

g. . only rows i1 and J of the main sequence need to be in the
0N

core store. The unit which contains row 1 is known as the active unit and

that which contains row j as the passive unit, When the active and passive
4 s ~

units indicated in figufe 1.3 are in the core store then the reduction
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process will progress in the manner indicated in the figure, It may also
be seen from the figure that the determination of the coefficients 8
witihin an active unit, regquire the previous determination of the coeffi-
cients of G within the passive unit, as well as the area of the active
unit preceding the area of coefficients to be determined, The procedure
may be expressed in a general mamner as follows. If unit g is the active
unit, all previous units having been reduced, then to perform the reduc-—
tions for a dense matrix it would be necessary to call in passive units in
turn from 1 to g-1, The final operation is one in which the active and
passive unit can be considered to coincide,

When the storage scheme discussed previously is adopted it is not
necessary to call in all the preceding passive units if the area of reiluc-
tion lies entirely to the left of the stored unit, The method of deterrml-
nation of ithe first passive unit required by an active unit is to inspecet
the column corresponding to the first stored element in each of the rows
comprising the active unit. The selection of the least of these, this
corresponds to cq in figure 1., ylelds the first passive unit to be used,
This is illustrated in figure 1.4 where all the elements in active segment

g which may be reduced using passive segment p are indicated.

(1.5) Historical review of the finite element method

Since its formulation less than two decades ago the finite element
method, in conjunction with the matrix displacement method, has emerged
as a powerful tool available to the engineer for the analysis of complex
structures.

Livesley(9’1o) was one of the first to adapt the matrix displacement
method for the computational analysis of bare frameworks. At about the
same time, 195&, Argyris(11> comprehensively formulated the matrix {orce
and displacement method, He showed that each method stemmed from either

the concepts of virtual work or complementary virtual work, He also
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derived a stiffness matrix for a rectangular plate element for 'in plane'
action, This was done by assuming linear distribution of displacements in
the plate and imposing unit displacements at each corner. The unit dis-

placement theorem states that:

where FL is the appropriate force corresponding to the displacement, Thus
by adding the stiffnesses for each imposed deflection it was possible to
build up an eight by eight stiffness mateix for the plate. This methed is
analogous to that of using a displacement function,

Two years later Turner et a1(1> laid the foundations of the finite
element technique by deriviag stiffness matrices for various spar, rilt and
cover plate elements. An'in plane' stifrness matrix was derived for a tri-
angular element by assuming a constant strain pattern over the element,
They showed that this assumption led to a linear distribution of displace~
ment in the element. To equilibriate the nodal forces to the stresses, the
basic patterns that could be expected were considered and the forces were
obtainea by direct equilibrium.

Clough(12> extended the idea of assumed stress and corresponding node
displacement patterns to derive stiffness matrices for both rectangular and
triangular elements,

The finite element method was next extended to cover out of plane or
bending action. Previously, for in plane stiffnesses, two translational

(13)

degrees of freedom had been considered for each node, Melosh derived

Joiat
a stiffness matrix for the bending of a rectangular plateAhaving one trans-
lational and two rotational degrees of freedom, The translational displace-

ment w, perpendicular to the plane of the plate, was taken to vary as a

cubic polynomial over the length. For the P dircction
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w o= Ag p® + Ay p® + AL p + A,

The constants Ay -~ Az can be evaluated by making this Tunction equal to the
nodal deflections and rotations at each corner, The strain energy for the
plate can be calculated by differentiating the polynomial and integrating
the resulting terms over the appropriate area,

By this time definite methods of derivation of the stiffness matrix were
being formulated and these were reviewed by G—allagher“)+> to be:-

(15);

(i) Inversion of a flexibility matrix

(1),

(ii) Direct formulation ;

(iii) From virtual work or the unit displacement theorem<11>.

Althoagh the inter-relation of some derivations was noticed and, in
fact, gave the same results for stiffnesses.of particular elements, the
actual impliications of the basic assumptions were not appreciated,

The ﬁajority of elements formed by one or other of these methods were
known to converge to a satisfactory result as their subdivision was refined,
but the extent of the accuracy that could be expected was not yet‘defined.
Melosh<16> was the first to tackle this problem., Errors could be classi-
fied as tnose involved in the structural idealization, the computation, or
the finite element itself., In the investigation of the finite element‘
errors he showed that solutions obtained using extremum variational theorems
of elasticity could be bounded between upper and lower limits. Using a
displacement function he showed the approximation to be minimizing the po-
tential energy of the system and hence forming a lower bound, THe concluded
that, as long as the structural idealization was not redefined on subdivi-
sion, monotonic convergence would existl although not necessarily to the
correct solution., He stated that fhé displacement function must satisfy the
following requirements if such convergence was to be achleved,

(i) Strains must be continuous over the element

(ii) Inter-element displacement continuity must exist
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(iii) Punctions must be expressible in such a form that the linear
elasticity condition is satisfied
(iv) They should exhibit monotonic convergence
(v) Rigid body movements should not cause straining.,

(17)

Irons relaxes Melosh's requirements for convergence and accuracy

by proposing that, for elements in bending,

(1) They must be able to exhibit all rigid body movements

(ii) They must have a continuous displacement within and across inter-

faces in deflection and slope

(iii) They must be able to represent constant stress,
The last proposal, an additional one to those proposed by Melosh, can be
substantiated by the fact that an infinite subdivision implies constant
stresses in the limit,

(15,18)

Fraeijs de Veubeke proved upper and lower limits to exist for

equilibrium and displacement models but, while agreeing with Melosh's re-
guirements, thought that different‘;lement patterns hight cause convergence
to an erroneous answer, He also pointed out the difficulty in forming a
stiffness matrix from an equilibrium model (i.e, by inverting a flexibility
matrix) which will include all possible rigid body deforinations,

(19)

Zienkiewicz formulated a stiffness matrix for out of plane bending
in a rectangular element, He assumed the vertical displacement w to vary

throughoﬁt the element as the polynomial:

w o= Ap + Ay p+ Az gt A, p? + Ay pg + Ag g® + A, % + Ag D® g
+ Ag pg® + Aso a® + Ayy D% q + Agp pg®
The twelve constants A -, which correspond to the rigid body movements can
be evaluated in a similar manner to that employed by Melosh, Along the
edge where p or g is a constant the deflection will vary as a cubic. The
slopes will vary as a quadratic, It can be seen that both the matrices of
Melosh(13) and Zienkiewicz will conform for vertical displacements but not

slope along their interfaces. In spite of this, both matrices provide good
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results,

The finite element method developed along these lines until the mid
sixties when the concept of isoparametric eclements was introduced by Irons<2@
In his paper Irons puts forward the idea that instead of using many simble
elements it would be better to use a few complicated ones, Such an element
would not have an explicit stiffness matrix, instead the stiffness matrix
of each of a set of elements would be obtained by numerical integration of
a general displacement function. Irons states that the pioneer work was
done by Taig and is presented in an unpublished report(21). Taig's quadri-
lateral elements were the first powerful series of elements whose higher
members have curved edges about which certain convergence theorems may be
derived,

Irons presented a comprehensive paper(zz) in 1966 where he argued the
case for numerical integration applied tc finite element techniques. In
that paper he suggests that engineers are restricting themselves to trivial
problems by using analytical integration, Consequently, he suggests, inite
element techniques will only begin to reveal their full potential when re-
search workers are freed from the time consuming effort of deducing new
matrices afresh for each new problem, His exposition takes the form of a
series of examples comprising plane elements with curved edges, solid ele-
ments with curved edges and faces, and linear elements with orthogonal dis-
placement functions, These are described with applications to plane stress,
torsion and solid elasticity.

The isoparametric concept developed rapidly and in 1968 Irons and

(23)

Zienkiewicz presented a paper on this topic.  Their group con=
centrated on improvement of element characteristics and automation of input,
The characteristics of isoparametric elements are inherently superior to
those of simple finite elements. This is because, as has been frequently

demonstrated, for a given total mumber of degrees of freedom in a structure

the accuracy is increased for larger elements which have a greater number of
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degrees of freedom, Large simple elements, however, will not always fdilow the
boundaries of the structure, a problem which may be overcoime by the use of
suitable isoparametric clements.

Irons and Zienkiewicz summarise the necessary steps for the formilation
of an isoparametric element in the following way. The most important being
the definition of a 'parent' element with an appropriate displacement
function, This function describes the variations of the unknowns withain
the element in terms of the appropriate nodal values., Once such a function
has been determined the calculation of the element stiffness matrix follows
standard rules, There are two conditions which the displacement function

has to satisfy, namely:

(
(i

i) Compatibility of the unknowns across inter-element boundaries;
i) The constant strain criterion requiring the displacement function
to be such that constant states of strain can be exacily reproduced,
Once sich a 'parent' element has been defined then the stiffness matrix
of its curvilinear derivative may be determined, Iach derivative ori-
ginates from a different type of parent element, If the displacement
functions are based on the parent element definition then not only will the
compatibility of displacements be satisfied on element interfaces but an
original fit of these surfaces will be ensured., Similarly if constant
strain conditions were obeyed by the original parent functions this will be
preserved in the distorted elements,

The integration of the element properties is carried out numerically
using a number of Gauss points in each co-ordinate direction, Integration
is simplilied as at the boundaries constant values of the curvilinear co-
ordinates occur., Irons and Zienkiewicz found that three to five Gauss point
divisions were adequate in most cases,

The finite clement method has therefore split into two main areas, iso-
parametric, and explicit derivation of the stifrness matrix, Although there

is overlap in as much as isoparametric elements can do, at the price of
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computer time, all the element types that explicit derivation is capable of,
there are many applications in civil engineering for which one or the otﬁer
is better suited., It is probable, however, that in the future isoparametric
elements will receive more attention as their potential has yet to be

fully exploited,

(1.6) Scope of work

An outline of the topics covered in this thesis has already been given
in section 1.3 of the current chapter, ‘the way in which this work was
carried out is now discussed.

A large part of the thesis is devoted to details of the computer system,
the objectives of which have been stated in section 1.3. The attainment of
these objectives necessitated the development of the system from ifs earliest
stages, A prerequisite of designing such a system is the selection of the
most suitable techniques for the formation, storage and inversion of the
overall stiffness matrix, These initial considerations, some of which have
been discussea in section 1,4 are further dealt with in Chapter Two.

The ccmposition of the overall stifrness matrix of a structure is in-
vestigated in some detail in Chapter Three. In this chapter the positioning
of the sets of terms contributed by a finite element to the stiffness matrix
is discussed., The storage of these terms using the technique selected as
the most suitable is also detailed, The program has to be capable of ana-
lysing 1érge structures, consequently the whole stiffness matrix would often
be too big to be constructed at once. The way in which the contributions of
sets of terms of some finite elements appear in different constructional
units of the stiffness matrix is also discussed in Chapter Three, Once the
stiffness matrix is constructed the next step is the solution of these equa-
tions. This mus@ be done in a piecemeal mammer, the way in which the matrix
is subdivided for tais is also detailed in Chapter Three.

Chapter Four describes how each of the finite elements immediately

.23 -



available to the author has been progranmed for the system, Such elements
comprise rectangular plates, triangular plates and prismatic members.

There is some programming which is independent of the element type, the sub-
routines comprising this set are known as auxiliary subroutines and are also
detailed in Chapter Four,

The theory for the author's own element, a plate circularly curved in
plan, follows in Chapter Five. Here both in and out of plane action is con-
sidered and an explicit element stiffness matrix is derived for each case,
The necessary displacement transformation matrices are also derived at this
stage, This type of explicit derivation was used in preferencevto an iso-
parametric approach, It is the author's opinion that where feasible an
ordinary finite element should be used in preference to an isoparametric
one, This is because there is significantly less computation required to
evaluate the stiffness matrix of a simple element, There is no clear divi-
ding line, however, at which one can say that a 'once and for all' expiicit
integration should be carried out., In the author's retrospective opinion
the curved plate is probably the most complicated element which should be
attempted by this explicit method, The fact that the other elements
aﬁoﬁted for the system also relied on this explicit approach is not signifi-~
cant, The system is capable of analysing structures which have been sub-
divided into both isoparametric and explicit elements,

Once the theoretical work had been completed it could then be programmed
to form an element package for the system, The method in which this was
done is presented in Chapter Six.

The programming of the curved plate theoretical work was a complicated
step, It was therefore important to ensure that the program was working
free of all error before any investigations into the usefulness of the ele-
ment could be conducted, This is done in Chapter Seven where, once the
program has been rigorously checked, an investigation is made into the effect

of mesh refinement. In addition a comparison is made between previous



experimental work and a theoretical series solution for this type of element,

A description of the author's experimental work follows in Chapter
Eight. Here the author's tests are described in detail, A comparison is
made between the experimental results and the theoretical results obtained
by using the theory and programming developed in earlier chapters,

Chapter Nine contains descriptions of the application of the system to
analyse two large structures, an electrical precipitator shell and a skew
road bridge formed by two concrete box sections, In each case the results
obtained have been compared with analyses carried out by other methods,
Comparisors are also made between the amount of computer time and store re-

guired by these other methods and that used by the author's system.

- 25 -




CHAPTER 2

INITIAL CONSIDERATIONS

(2.1) Introduction

Recently the matrix displacement method has become a powerful
tool for the practising engineer. The basis of this method is the
formation and inversion of the overall stiffness matrix of a complete
structure. ©Such a matrix has several intrinsic properties, it is square,
symmetricel and sparse, often with the non~zero elements grouped
around the leading diagonal. These properties influence the method
of construction as well as the method of storage.

The size of the stiffness matrix prohibits its construction -
in one stege, consequently a piecemeal approach has to be adopted.
This necessitates the subdivision of the overall stiffness matrix
into discrete parts and the subsequent construction of these
parts. In order that the stiffness contvributions may be correctly
positioned within the matrix it is necessary to form a skeletal
representation of the matrix. ©Such a representation is based
upon the unsupressed degrees of freedom of the joints comprising

the structure and the ihterconneotivity of these joints.

(2.2) Storage of the stiffness matrix

(3)

A sparse storage scheme is especially applicable when

the non—zero elements are randomly distributed. In the case of a
matrix which is to be constructed directly, and with the properties
listed previously, a more suitable method of storage would be a

(24)

band matrix technique .

Since it is difficult to maintain a constant band width
except in the case of regular structures, such as multi-storey

frames, the use of a fixed band width method results in a large
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number of zero elements being wastefully stored. An improvement
on the fixed band width approach is to use a variable band width
scheme. In this method, storage for each row commences with the
first non-zero element and continues up to, and includes, the
leading diagonal element. Easy access to any element is facilitated
by storing the address location of the leading diagonal element.
Details of this scheme are given in reference (8) and summarized
in Chapter 1. It is, therefore, sufficient to mention that
each row of the lower triangle is stored sequentially within a
unidimentional array. The efficiency of the scheme can be further
improved by grouping the non-zero elements around the leading
diagonale. Such a grouping is achieved by employing a technique
similar to tridiagonalisation, where noces in any group (i) are

connected to each other, or to those in groups (i - 1) or (i + 1).

(2.3) Methods of forming the overall stiffness matrix

The overall stiffness matrix of a structure can be constructed
by several methods. Advocates of the isoparametric, numerical
integration, techniques construct the stiffness matrix directly by
considering each structural element in turn. This method is
extremely flexible since the actual stiffrness matrix of an element
is never expressed explicitly. A disadvantage, however, is that
in order to construct the stiffness matrix the process of numerical
integration has to he repeated for each element, naturally this
increases the computation time.

Conversely, it is both possible, and efficient, to express
the contribution of a structural element to the stiffness matrix
explicitly, and then construct this matrix either by considering
each joint, or each structural element. The nodal approach has the

advantage that an entire row of the stiffness matrix, or several

rows corresponding to a given joint, may be constructed in
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isolation. Once this has been done the results may be sent to a
backing store, thus releasing the locations in the core store for
the contributions of the next joint. One drawback of this method is
that the data associated with each jointhas to be preserved for
inspection until the last joint has been dealt with. In the proposed
system the overall stiffness matrix for each structural element is
constructed directly into the overall stiffness matrix for the whole
structure. This offers greater flexibility when new structural
elements are introduced. Furthermore the contributions to the
stiffness matrix by an element, as well as the force and stress
matrices of that element, may be evaluzted sequentially since

much the same information is required in each case.

£2.4) The composition of the stiffness matrix

As mentioned previously, the stiffness matrix is formed by
evaluating in turn the contributions dve to each finite eiement
forming the structure. The number and position of each element?s
contribution is dependent on the number of joints which connect it
to the structure, and the arbitrary numbers assigned to those joints.
Figure 2.1 illustrates this by showing the sets of terms contributed
to the stiffness matrix by a plate, commected by four jointsh, j,
p, 1. Each joint will contribute as many rows and columns as it has
unsupressed degrees of freedom. The intersection of such rows and
columns gives the location of the contributions which are shown
shaded in figure 2.1b, and will be referred to as sub-blocks. It
is noticed that the four noded rectangle of figure 2.1%a, contribﬁtes
sixteen sub-blocks to the stiffness matrix shown in figure 2.1b.
Clearly the number of sub-blocks contributed by an element with n joints
will be n2. The number of terms comprising a given sub=block is

dependant upon the unsupressed degrees of freedom of the two joints
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forming that sub-block. Consequently if these joints each have six
unsupressed degrees of freedom the maximum number of terms will be
thirty six. For instance if joint o) (see figure 2.1) has five degrees
of freedom, and h has three, then the sub-blocks hp and ph will each
comprise fifteen terms. Sub-blocks occufring on the leading diagonal
will be square as each is associated with a single joint. Finally,
since a joint widA often commect more than one element to the structure,

the eventual value of any sub-block will be the summation of several

contributions.

(2.5) The joint data

Certiain items of information are inderendant of the types of finite
elements comprising the structure. Every joint, for instance, requires
seven facts to be stored. These are, the reference number of the joiat,
the three joint co—ordinates, a code number indicating.which of the six
posgible degrees of freedom of the joint have not been supressed,
the LJ value, (this is the Jjoint with the lowest reference number
which is directly connected to the joint in question), and the total
number- of degrees of freedom for that joint. All except the last of
these items are input data.

The six degrees of freedom X, Y, Z, ex’ Oy’ ez are represented
by a six figure integer. Each digit is either a one, for an existing
degree of freedom, or a zero for a supressed degree of freedom. Thus
a joint in a space frame will be represented by the integer 111111.

If this joint were to be restrained in the Y direction, for example,
then the integer representation becomes 101111. In this manner any
type of boundary condition may be specified. This rep?esentation is
referred to as 'the degrees of freedom of a joint in expanded form'.
Frequently it is necessary to add the degrees of freedom for several
joints. In order to expedite this operation the unsupressed degrees
of freedom of each joint are summated and stored. For instance 101111
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1s stored as 5. This representation of the degrees of freedom is known {
as 'the summated value'.

For reasons given in the following text not all joints will have
the same amount of information stored. For instance, when considering
joint group (i), the joints lying in group (i — 1) but connected to
joints in group (i), will have only their degrees of freedom stored.
Consequently the arrays storing the degrees of freedom will be out of
step with those storing the rest of the joint data and it will be necessary
to calculate this discrepancy. The items of data relating to joints
in group (1 + 1) but not required at this stage are also stored in
these arrays and will be needed when constructing the stiffness
matrix of group (i + 1), It is thus necessary to move such data
items from the end to the begimming of their arrays. After which
the rest of the joint information relating to the group is input.

Since this follows sequentially only discarded data is overwritten.

This is illustrated in figure 2.2 where it is shown that after
consgidering joint group (i), all the data for joints in group
(i + 1) which are connected to group (i) as well aé the degrees of
freedom of joints in group (i) connected to group (i + 1) are moved

to the beginning of the relevant arrays.

(2.6) The subdivision of the stiffness matrix

One of the most limiting factors in computing is the amount
of core storage available. The stiffness matrix of a small structure,
even when stored in one of the economical manners described earlier,
is of gignificant size. Clearly, if the complete stiffness matrix can—
not be kept in the core during its formation then it must be formed
in a piecemeal mammer. This necessitates the division of the

structure into joint groups. MAn example of this is shown in
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figure 2.3, for a plane frame comprising fifteen Joints which are
split up into three joint groups. In this structure the joints

in a given group (i) are only comnected by structural elements to
joints in the previous group (i - 1), and joints in the next group

(i +1). The stiffness matrix (figure 2.4) will then be tridiagonal.
This tridiagonalisation scheme has two main advantages. Firstly the
resulting grouping around the leading diagonal reduces the number

of zero elements requiring storage. This is particularly the case

when the variable band width scheme is adopted for the storage of the

stiffness matrix. Secondly,only that information specifically required
for constructing the stiffness matrix of a given joint group need be
held in the core store.

The information required for this purpose when considering
any joint group (i), may thus be explicitly expressed by three sets
of data. These are the joint data for all joints in group (i), the
joint data for those joints in group (i + 1) which are connected %o
joints in group (i), and the degrees of freedom of joints in group
(i = 1) connected to joints in group (1). Figure 2.5 shows the area
ABﬁDC in which the stiffness matrix for group (i) will lie. Contrih-
utions within the rectangle ABDC are formed by elements crogsing from
group (i = 1) to group (i)s Contributions to the triangle BED are
formed by all the sub-blocks of elements lying wholly within group
(i) and some of the sub-blocks of the elements which cross from group

(i) 4o (i + 1). These contributions are detailed in the figure.

(2.7) The generation of the Diagonal Address Sequence

One of the most important operations at this stage is the inter-
pretation of the joint information to form a skeletal representation

of the stiffness matrix. This is done by forming the Diagonal Address
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Sequence, (DAS) array, for each joint group prior to the construction
of the stiffness matrix of that group.

For each joint j, the LJ value, corresponding to the lowest
column number, indicates the position of the first sub-block con-
tributing to the rows of +that Joint, and thus defines the commencement
of storage for those rows., If the degrees of freedom are summated
sequentially from LJ up to j — 1 then this summabtion is known as the
"interval® for the rows corresponding to joint j. This is illustrated
in figure 2.6, where joint 3 is the lowzst joint connected to joint
6 in a structure. The interval for joint 6 will be the sum of the
degrees of freedom of joints 3y 4 and 5. The storage required for
the first of this set of rows is the inserval plus one,; which is 12
for the Jjoint illustrated in the figure; for the second row the storage
ig the interval plus two. The step up increases by one for each row
until all the unsupressed degrees of freedom of the joint in question
have been accounted for. This cperation is carried out sequentially
for each joint comprising the group.

The storage requirement for each row is retained in the DAS array.
In'figure 2.7, the elements of the stiffness matrix of a joint group
which require storage are shown shaded. Whilst the DAS array for the
whole structure is eventually constructed and stored in the core,
the stiffness matrix for each group is constructed individually,
and then stored on a backing unit. This releases the core locaticns
for the stiffness matrix of the next joint group. It is thus
necessary to know the position of the DAS element relating to the lasgt
row of the previous joint group. This allows the DAS elements for a
group to be related to the first DAS element in that group, thus
perﬁitting the stiffness matrix for each group to be constructed as

an independant gquantity.
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This information will be used to facilitate the positioning of +the
stiffness contributions of individual structural elements within the

overall stiffrness matrix of a structure.
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CHAPTER 3

THE OVERALL STIFFWESS MATRIX

(3a1> Introduction

It was stated earlier that the construction of the stiffness
matrix was to be carried out by considering individual elements
rather than discrete rows of the matrix. This is implemented by
dealing with each of the element types in turn.

In oxder that the stiffness contribution of each element of a

s
Sz,

given type contributing to the joint group in gquestion may be
evaluated, il is essential that the foliowing points are considered:

(1) Which of the element's sub-blocks contribute to the gr oup
stiffness matrix?

(2) What are the properties and what is the orientation of the
element?

(3) What is the position of each of the contributing sub~blocks
within the stiffness matrix of the group?

Once these facts have been determined, then each of the contri-
buting sub-blocks may be evaluated directly into the storage array.
At that stage the force and stress matrices of the element may also
be computed.

After all the element types have been considered in this manner
the stiffness matrix for the group is complete. The remaining operation,
at that stage, is the subdivisgion of the group matrix into blocks suit~

able to the requirements of the inversion process.

(3.2) Tridiagonal co-ordination

From the study of the tridiagonal process it is clear that when

congidering joint group (1) a structural element will conform to one of
the three modes listed overleafls
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(a) Mode 1. The element is commected to the structure b joints
which lie in both groups (i - 1) and (i).

(b) Mode 2. The element is comnected to the structure by joints
which lie wholly in group (i),

(c) Mode 3. The element is comnected to the structure by joints
which lie in both groups (i) and (i + 1).

Elements conforming to either Mode 1 or Mode 3 contribute to the
stiffrness matrices of more than one group. Consequently it is essen-
tial to be able to predict which of an element's sub-blocks occur with-
in a given group. Clearly all the sub-blocks defined by rows correg-
ponding to joints in group (i) will lie in that groun. It is thus
necessary to know which joints connect an element to a given joint group.

Tridiagonalisation imposes the restriction that lower numbered
joints lie in lower numbered groups. Figure 3.1 illustrates this witn
the joint numbering shown. Here it is noticed that Jjoints 59 to 64 are
in group (i) while joints with lower or higher nunbers lie in group
(i = 1) or (i + 1) respectively. In the case of members this infor-—
mation is enough to allow the construction of the stiffness matrix
contributions. This is attributable to the fact that a member is only
connected to two joints, and when it crosses a group boundary the lower
pumbered joint must always lie in the lower nunbered group. A tri-
angular plate has three joints, and when such a plate crosses a group
boundary either one or two of the joints will lie in the lower nunbered
group. One way of defining the orientation is to input a parameter in
addition to the plate properties indicating which of the two cases exist.
This permits triangular plates crossing the same boundary to have dif-
ferent sub-block contributions. In the case where this generality is
not required; then one parameter defining the state of all triangular

‘plates could be used.
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When a rectangular plate crosses a group boundary, it may be assumed
that it is split by the boundary so that two joints lie in one group
and two in the other. Figure 3.2 illustrates this point: comsider the
plate shown in figure 3.2a joints h and j lie in group (i), joints
p and 1 in group (1 + 1), The sub-block contribution to the lower tri-
angle of the stiffness matrix for both groups (1) and (i + 1) due to
this rectangular plate is shown in figure 3.2b. .There are two triangular
sub-blockis and one rectangular sub-block contributing to the lower
numbered joint group, this may be known as Area 1. Five rectangular and
two triangular sub-blocks contribute to the higher numbered group; this
may be known as Area 2. These Areas are¢ shown in figure 3.2c¢. It is
therefore necessary to define Areas 1 and 2 Tor each element type so
that the =sub-block contributions may be known.

The position of such sub-blocks within the stiffness matrix is also
required, and this is dependent upon the earbitrary numbers aszigned to
the element's joints. The local axes Py Q, R of each element are defined
by its corner or end numbers. For the rectangular plate in figure 3.2a
corners 1 to 2 define the positive P axis, and corners 1 to 3 the pos-
itive Q axis. The direction of the R axis is now implied. It is in
terms of these corner numbers that the general sub-blocks are expressed.
If the corner numbers can be related to the jointnumbers then the sub-
block position§ will be defined. This may conveniently be done by
having the lowest corner number connected to the lowest joint,; a process
which is continuved so that the highest corner number 1s connected to
the highest numbered joint.

Figure 3,1 shows two plates A and B which both conform to Mode 1

£

when considering group (i). During the construction of the stiffness
malrix for group (1) both of these plates contribute their Area 2 sub-—

blocks to this matrix.. Plates C and D in the same figure belong to
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Mode 2 when considering group (i)? and contribute their Area 1 and
Area 2 sub-blocks to the stiffness matrix of that group. In the case
of Plates B and I both of these conform to Mode 3, and thus contri-
bute their Area 1 sub-blocks to the stiffness matrix. The action
necessgary in a co-ordination subroutine for each of the three Modes

ig given in Tigure 3.3.

(303) The organisation of dsta

Tn the case of some simpler elements, such as prismatic members
or rectanpular plates, the construotion of the overall stiffness matrix
may be carried out explicitly. This is because it is possible to evel-
uate directly the element's stiffness contributions. In more complic—
ated caser, an example of which is the out of plane element stiffness
matrix of a curved plate, it is necessary to use general variables for
the overa:l stiffness contributions. The actual computation of thess
terms has to be carried out as a separate operation; The calculated
values are then assigned to the gemeral variables mentioned above.

To avoid duplication of the calculation, which would be necessary for
elements falling into Mode 1 and Mode 3, the values are stored on a
disc backing unit.

Tnformation relating to the element under construction is always
"kept at the beginning of relevent arrays, such locationg are called
the 'aclive areas' of the arrays.

The way in which the data for a given group ig used iz dependent
upon the mode to which the element conformg for the group under con—
sideration. The action takeﬁ for each of the three modes is now dis-
cussed in conjunction with figures 3.3 and 34

When the stiffness matrix for the first group is under consid-
eration, no elements will conform to Mode 1. Thereafter elements in

thig classification will have already comtributed their Area 1 sub-

— /_]4 —




DO
ANY BLE

AES CROSS
«wm»uvagq)

1o fo croup (1) YRS ;
e . THESE CONFORM T0 MODE 1
b
CONSTRUCT THEIR AREA 2
- CONTRIBUTIONS TO THE STTIFF-~
: | NESS MATRIX OF GROUP (i)
4
DO
ANY
BELEMENTS
TE WIOTLY WITH 3
] ‘\’T . {) 43 o — . -
1o [ GROUP (1) o8 T1BESE CONFORM TCO MODE 2
v
[ CONSTRUCT THRIR AREA
AREA 2 COJTRIBUTIONS
\ STIFFHESS MATRIX OF G
. (1) ‘
f
"ANY BLE-
S CROSS
TROM GROUP (i)
NO /10 GROUP (i+1)? YES
B > THESE CONFORM T0 MODE 3
!
CONSTRUCT THEIR AREA 1 CON-
TRIBUTIONS TO THE STIFFNESS
: MATRIX OF GROUP (i)
A4

<ND

]‘LO‘V DTAGRAM SHOWING THE METHOD OF SELECTING THI MO DE 0 WHICH ELEMENTS CON-

NECTED 10 GROUP (L> (O'\W‘Oxui BACH ELEMENT TYPE IS CONSIDERED IN TIIIS MANNER

FIGURE 3.3
- 45 ~



USE THE
STORED
VALUES

BEGIN
MODE

BIGTN
WODE 3

i

READ VA-
LULS AND
DUORE
WHEN USED

LOCATE RE-
QUIRED VALUES
TROM DISC AID
TNSERT INTO
ACTIVE LOCATTONS

END
MODE 1

4

FORM DIRECTION
(COSINES, AND
IF REQUIRED

THE LOWER TRIH
ANGLE OF TIIE
BLEMENT STIFF
NESS MATRIX,
INTO THE AC-
TIVE LOCATTONS

WRITE TO DISC
STORE THE VA~
LUES TN THE
ACTIVE LOCA-
TIONS IF ELE-
MENT PREVIOUS-
1Y CONSIDERE
CONFORMS TO
YODE 3

&

ACTTON THITTATED RAGARDING COMPUTATION OF PARAMETERS AND INPUT OF PROPERTIES

FOR EACH OF THE THREE MODES

FIGURE 3.4

~ 46 -



blocks to the previous group, thus only their Area 2 sub-blocks con-
tribute to the group being considered. Since their Area 1 contrib-
vtion has already been evaluated all relevant properties will have
been input and computed. These must now be located in the storage
area and coﬁied into the active areas of the relevant arrays. Such
an operation is referred to in the flow diagrams shown in figures

3.3 and 3.4,

Both Area 1 and Area 2 sub-blocks of an element conforming to
Mode 2 will contribute to the stiffness matrix of the group under
construction. As all the sub-blocks will be evaluated there is no
need to retain the element's properties, which are read and computed
directly into the active array areas. Once all of a given element's
contributions have been made, the properties of the next element
may be stored in the active areas, thus overwriting the previous
information.

Elemeuts comprising Mode 3 only contribute their Area 1 sub-—
blocks. These elements form Mode 1 for the next group. Most of the
details required for Area 2 are also needed for the construction of
Area 1. Consequently once Area 1 has been constructed these prop-

erties are transferred from the active areas inreadiness for the next

groups.

LBOA) Sub-block positioning

It was explained previously that the sub-blocks contributed by
an element could be divided into two distinct areas, these have been
called Area 1 and Area 2, figure 3.2 shows both of these. Tor reas-
ons mentioned above it is necessary to be able to construct each area
independently. The jointnumbering technique adopted ensures that the
sub-blocks comprising each of these Areas are known. These sub~blocks

may be considered in any order. Figure 3.5 shows the three sub-hlocks
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corresponding to the rows defined by joint p in figure 3.2. A flow
diagram ghown in figure 3.6 illustrates the operations necessary
prior to the construction of each of these sub-blocks. Iff joint p
has zero degrees of freedom then none of the sub-blocks exist.

If p and h have non-zero degrees of freedom then the rectangular
sub-block ph shown in figure 3.5 needs to be constructed. Similarly,
if joints J and p have non-zero degrees of freedom, then rectang-
ular sub-block pj will contribute terms. Finally, if joint p has

at least one non-supressed degree of freedom then triangular sub-
block pp also shown in figure 3.5, will require construction.

Once the existence of a given sub-block has been established, then
before it can be constructed into the stiffness matrix, details con-
cerning its position must be computed. Rectangular end triangular
sub--blocks reguire slightly different sets of Information, consequ~
ently each of the types will be considered individually.

A triangular sub-block is the lower triangle of a rectangular S
block which has its leading diagonal coincidental with the leading diag-
onal of the stiffness matrix. Figure 3.7 illustrates such a sub-block.
T4 is relevant to note that for a sub-block to lie on the leading diag-
onal both its columns and rows are formed by the same joint, in the
case of the example in figure 3.7 this is joint p. To construcfAsuch
s sub-block it is necessary to have access to three facts, namely:
the degrees of freedom of the joint forming the sub—block in both sum-
mated and expanded form; and the number of rows of the stiffness matrix
of the group which precede the first row of the sub-block. This latter
value is marked X in figure 3.7 and is obtained by adding the degrees
of freedom of all the previous joints in that group.

At this stage it is also useful to evaluate the total degrees of
freedom Tor the whole structure up to the joint forming the sub-block,

Since all the joints form a triangular sub-block every joint will be
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considered, hence the displacements for each joint may be located in
the displacement vector. This enables the multiplication of the
stress and force matrices of an element and the relevant part of the
displacement vector to be carried out.

A rectangular sub-block is formed by the intersection of rows
and columnms attributable to different joints. When considering group
(i) the joint forming the set of columns may lie in either group (1)
or (i # 1), while the joint forming the set of rows always lies in
group (i), TFigure 3.8 illustrates the position of a rectangular sub-
block formed by joint p and h. The construction of such a sub-block
requires the computation of gix quantities. The first four of these
are the degrees of freedom of both joints forming the sub-block in
summated and expanded form. The Tifth is the number of rows in the
stiffness matrix for the joint group prior to the first row of the
sub=block. Thig is obtained in a similar manner to that adopted in the
case of a triangular sub-block and is shown in figure 3.8 by the value
X. In this manner the position of the Tirst row of the sub-block with—
in the stiffness matrix is located. Finally the sixth parameter fixes
the position of the first column of the sub-block. This is expressed
as the number of columns requiring storage on the row, prior to the
first contribution of the sub-~block in question.

Storage of a set of rows corresponding to a given jolnt begins
at the first non-zero contribution which is given by the joint's LJ
value. For joint p this is shown by m in figure 3.8. The first con-
tribution of the sub-block ph starts Y locations away from LJ, where
Y ig the sum of the degrees of freedom of joints m to h - 1. Once X
and Y have been computed tﬁe position of a rectangular sub-block

within a group stiffmness matrix is known.
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(3,5) Direct construction of sub-blocks

evaluated, (see figures 3.7 and 3.8) it is then possible to construct
the sub-block directly into the storage array for the stiffness
matrix of that group. In order that this may be carried out, it is
necessaryy; prior to the programming stage, to have available the
stiffness contribution A'kA of each term comprising the sub-block.
This multiplication expresses the total sub-block contribution due to
any-element of the given type. To reduce programming effort, the sub-
blocks of a given element are not pressnted separately. Instead, a
single sub-block which can be transformed to each one of the indiv-
idval sub-blocks of that element is prapared and used in the prog-
Tram. Consequently once the identity of a sub-block is defined by
means of a code value its variables are assigned, and its comstruction
may proceed.

In figure 3.9 the construction method for a sub~block is out-—
lined. The steps taken when constructing a rectangular sub-block
being different from those taken when forming a triangular sub-block.
It is also essential to know which one of the sub-blocks of the given
type is to be constructed. Figure 3.2b shows that a rectangulafl
plate contributes a total of gix rectangular and four triangular sub-
blocks to the lower triangle of the stiffness matrix. Once such dist-—
inctions have been made, the assignments mentioned previously may be
carried out.

Tn order that the oconstruction may procecd lhe locations of the
storage positions for the sub-block terms, as well as the ability to
select the non-supressed terms, need to be available. It has been

. - . N . ~ . Io} . ) . s
explained with reference to figures 3.7 and 3.9 how the values X and
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Y were obtained. It will now be shown with reference to figure 3.10,
3,117 and 3.12 how these quantities are used in conjunction with the
stiffness matrix storage array for a given group. Figure 3.10 gives
a schematic representation of the DAS array for a siructure. The
array stores the locations of the leading diagonal terms of the stif-
fness matrix. When gTOup‘(i) is being considered, only that part of
the DAS array for joints lying in groups prior to group (i + 1) will
have been constructed. An address location of any leading diagonal
element, given in the DAS array, will be relative to the entire
structure. Since storage of the stiffness matrix in the core is for
one grour at a time, the value of the DAS elements used must be adj-
usted. 1f the last DAS element for group (1 — 1) is the Fth (see fig—
ure 3.10) then all values relating to group (i) should be reduced by
the quantity stored in DAS (F). This is illustrated for the case of

A S
LI e

a triangular sub-block in figure 3.11. The first term of this
angular sub-block occurs on row (X + 1) of the stiffness matrix of
group (i)Y and the location in the DAS array which will reference thisg
leading diagonal term is given by (P + X + 1). The address location
fér the same element within an array storing only the stiffness matrix
of group (i) will be given by DAS (F + X + 1) —~ DAS (F). The addresses
of ‘he remaining terms forming the triangular sub-block are compﬁted

in a similar manner, and shown in figure 3.12.

When considering a rectangular sub-block, as shown in figure 3.13,
the address location of the leading diagonal elemenl occurring on the
row prior to that holding the first row of the sub~block is given by
DAS (X + F) — DAS (F), this is once again for the array holding only
the stiffness matrix of group (i). The first term contributed by
the sub-block is stored (Y + 1) locations after the leading diagenal

element, consequently its address is DAS (F+X) +Y+ 1~ DAS (7).
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The addresses of the other terms are similarly computed and are shown
in figure 3.14.

The remaining operations are the selection and direct evaluation
of the terms comprising the sub-block under construction. Such terms
correspond to unsupressed degrees of freedom. The degrees of free—
dom in expanded form, for the joint, or joints forming the sub-block
are used to select such termsg., Tigure 3.15 illustrates the tech-
nique developed for numbering each of the degrees of freedom. A
joint recquires six code values if no mcvements are restrained. When

a degree of freedom is supressed then its code value is deleted, con-—

sequently the number of significant code values is given by the sum-—
mated degrees of freedom of the joint. Such code representations arc

illustrated in figure 3.16 where eight different types of joint con-

dition, together with their associated code values, are shown. Thesc

codes are used to generate reference co-ordinates and hence permit
the location of specific terms within the sub-blocks. Figure 3.17
shows all the reference co-ordinates for a rectangular sub-block,
and figure 3.18 shows the similar arrangement for a triangular sub-

blocke.

The method of selecting the reference co-ordinates of the unsup~
ressed termg is now explained in conjunction with the example iilus~
trated in figures 3.7 and 3.8, If the four unsupressed degrees of
freedom of joint p and the three of joint h are as shown in figure 3.19,
then the code arrays are those illustrated in the same figure. The
rectangular sub-block ph is shown in figure 3.20 and the triangular
sub-block pp in figure 3.21, both these show the reference co—ord-—
inates of the unsupressed terms. The method of generating these ref-
erence co-ordinates, when constructing the sub-block row by row, is

to hold the code value for a given row and consider the code value of

— 5"('_..
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each colunmm in conJjunction with this row value. For instance

in figure 3.20 the first row value is 1, the three colwm values
are 3, 4, and 5, thus co-ordinates (1, 3), (1, 4) and (1, 5) are
generated. A triangular sub-block is a special case of this method.
It is constructed in'the same way except that when the column code
exceeds the row code, then the row under consideration will have
been completely formed. TFigure 3.21 illustrates such reference
co—ordinates.

The remaining step is to relste each of the thirty-six expresg—
sions comprising the general sub-block to its reference co-ordinate.
This may be done by labelling each expression in accordance with its
co—ordinate. When a co-ordinate is generated, during the constr-—
uction of a sub-block, the program control transfers to the required
expression which is evaluated. Once this evaluation is completed,
program control is returned and the next co~ordinate is calcul-
ated. This process continues until all the non-supressed terms have
been formed. ©Since each sub-block is constructed individually this
process never requires more than two six element arrays to generate

the reference co-ordinates.

(306) The computation of the force and stress matrices of an element

To permit the computation of the forces and stresses in a finite
element it is mecessary to form the kA and DBA matrix for that ele-
ment. Since such elements are congidered individually when calcul-
ating the overall stiffness matrix, it is convenient to form these
matrices at the same time. Elements which cross a group boundary
fall into both Modes 1 and 3, and it is only when they are being con-
sidered in the Mode 1 stage that enough information exists to constr—
uct their Fforce and stress matrices. A techmigue similar to that

employed in the formation of the stiffness matrix is used. Before
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the programming stage the stress and force matrices are formed in
general terms. When n joints connect the element to the structure a
total of n blocks exist. Every block has a [ixed number of rows,

and a maximum of six columns each of which correspond to an wnsup-—
regssed degree of freedom. MAn additional more abstract block is exp-
regssed, to which the original n blocks are related. This block ig then
used for the evaluetion of each of the n Dblocks in a similar manner to
that employed by the general sub-block during the construction of an
element's contributions to the stiffness matrix.

Once the blocks for one element arz completed they are trans-
ferred to a disc file, thus releasing the core locations. Later,
during the evaluation of element forces and stresses these kA and DBL
blocks are returned to core, for each element in turn, and multiplied
by the relevant displacements thus yielding the forces and stresses

within thet element.

(3=7) Subdivision of the stiffness matrix prior to solution

It was stated in the introduction that the solution techniqgue adop—
ted employs a method which operates on one unit of the stiffness matrix
at a time. Fach unit contains an integral number of rows and com-
prises not more than a specified number of terms. In the case of
the Atlés computer, which was used by the author; the unit was limited
to 512 terms, thus permitting the use offrgpidttransfers between the
disc and core stores. It is necessary, therefore; to subdivide the
stiffness matrix of each group into these units prior to its trans—
fer to the backing store. The stiffness matrix for a group is un—
likely to form an exact number of units. TFor this reason, some terms
of the stiffness matrix of one group may have to be considered with
gsome of those in the succeeding group. Figure 3.22 shows by means of

a simplified flow diagram the manner in which this is achieved. The
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nunber of terms in successive rows are swmmated until the total exc—
eeds 512. If this occurs when the nth row is included in the counting
process, then that row is left to form part of the next wnit, and (n - 1)
rows are transferred to the backing store, The index numbser of the
last row just transferred is preserved, together wilh the index number
of the first passive unit with which the currentuwnit is associated.
These latter index values are reguired by the solution routine.

Wher the stiffness matrix of the last group has been congidered in
this way then the overall stiffness ma*rix of the entire structure has

been computed and is ready for inversion.
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CHAPTER 4

BLEMENT PACKAGES

L. 1 Intiroduction
(4.1)

To ensure that the program is flexible, requiring little change when-
ever a new element is introduced, it was decided that each finite element
would have its own independent set of subroutines. Such a set of sub-
routines being known as that element's subroufine package. In addition to
these packages the system would also comrpiise a set of auxiliary sub-
routines. The  auxiliary subroutines are responsible for such operations
as: the manipulation of the joint data to form the DAS array; the splitting
up of group stiffness matrices into units ready for inversion; the assiml-
lation of the load data; the inversion of the stiffness matrix and finally
the cutputting of the deflections,

Input to an element package takes two forms: the DAS array generated
in the auxiliary package, and element details read from the data within the
relevant eleaent package., Outpul from element packages is in the form of
additions to the overall stiffness matrix and element forces and stresses.

The sequence of operations, illustrated in figure 4,1 shows how pack-
ages for three elements A, B and C intercomnnect with the auxiliary sub-

routines to form the program,

(4.,2) Auxiliary subroutines

The modes of operation of the five main subroutines comprising the
auxiliary package will now be detalled.

(4.2.,1) Subroutine Joint Group. This is respcnsible for the assimi-
lation of the joint information and the formation of the resulting DAS
array., 7The manner in which such operations are carried out has already

been described (see chapter 2)5 Tigure 4.2 shows by means of a simplified
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m

flow disgram the sequence in which the operations are performed, There is
one further step carried out by this subroutine; this is the preparation

of an array which, when used in conjunction with the joint displacements,
permits the satisfactory printing of those displacements, Suppressed de-
grees of freedom are ignored when displacements are calculated, consequently
the displacerents of all unsuppressed movements appear as a continuous

string of values, The array to be generated stores a unique code value for

each suppressed degree of freedom. Code values for all degrees of freedom
are shown in figure 4.3 and those corresponding to relevant suppressed

movements are selected to form the array. If joint 1 in figure 4.3 had all

its movements suppressed and joint 2 had its X and % translations suppressed
&L 2

fane

then the stored code numbers relating to these two joints would be thoss
shown in figure 4.4, This technique will not usually involve the storage
of a lerge number of code values,

(49202) Subroutine Standardise, When the stiffness matrix for one

s split up into units which ire

e

group has been completely constructed, it
compatible with those required for inversion, The method adopted has been
described in chapter 2. A simplified flow diagram illustrating the tech-
nique is given in figure 4.5,

(ko2.3) Subroutine Read Load Vector, This assimilates the load vector
for each load case, several of which may be considered in thé same analysis,
Any combihation of the unsuppressed degrees of freedom mey be loaded, The
position of a load within the relevant storage array is given by the sum~
mation of the degrees of freedom up to, and including, the degree of freedom
at which the load is applied. The macroscopic flow diagram for this sub-
routine given in figure 4.6 indicates that initially all degrees of freedom
are assumed to have zero load applied. As a load is read its value re-

places the relevant zero in the array.

(2..2.) Subroutine Discomdiv, This solves the equation
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using the Choleski methoed (25). The subroutine writien by Jennings and
Tuff<8’26>is detailed in chapter 1.
(4.2.5) Subroutine Print Deflection Vector. Once the deflection vect-
ors have been computed by Discomdiv only the printing of these vectors re-
mains. 50 that the displacements may be casily interpreted it is desirable

to print zero displacements where possible movements have been suppressed.

This is done by considering the deflection vectors in conjunction with the

e
w

code array generated in Joint Group. The mawner in which this is done

illustrated by a simple flow diagram in figure 4.7.

(h.3) General description of element packages

The co-ordinating subroutine of an element package 1s entered by the
program during the construction of the stiffness matrix of each joint group.
Such a subroutine has three main sequences of calls, illustrated in igure
4.8, each corresponding to a different Mode (see Chapfer %). In figure 4.5
the dotted lines indicate reversible paths, the arrow denoting the oubtward
path, the return always being macde along the same pathe

For each joint group the elements of a given type, which contribute terms
to the stiffness matrix of that joint group, are handled in an order depen-
dent upon the Mode to which they conform, Area 1 and Area 2 sub-blocks (see
chapter 3) may occur independently in different modes, consequently it is

ssential to construct these Areas individually. Access to one of the Area

o8}

subroutines results in tests being made on the degrees of freedom of the
joints forming the sub-blocks in guestion, Figure 4.8 shows that after
such tests have been completed control is transferred to either of two sub-
routines, depending whether the sub-block is rectangular or triangular, It
is at this stage that the parameters required to pesition the sub-blocks

within the stiffness matrix storage array are compubed, Once this has been
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carried out direct construction of the terms may take place. This occurs in
a 'write' subroutine where the non-suppressed contributions are evaluated
within their storage positions, When all the sub-blocks for the element
forming the Area have been constructed then, depending upon the Mode, the
sub-blocks forming the other Area may be constructed.

Figure 4.8 shows additional action is taken during some Modes. For
exemple the stress and force matrices are constructed during the Mode 1
and 2 stage. All the clements of a given type contributing to the stiffness
matrix of the joint group are treated in the manner defined by their Mode
and 1llustreted in figure 4.8,

Other element types occurring within the joint group have their stiff-
ness contrihbutions evaluated by their own 'element packauge' in this marner,

In the following text the individual element packages for rectangular

plates, triszngular plates and prismatic members are detailed,

(L.4) Rectengular plete package

(4.4,1) General Considerations, Consider a rectangular plate, such
as the one illustrated in figure 4.9. Under the influence of in plane
forces each of the corners experience three displacements. Namely two trans-
lations in the P and Q directions, and one rotation about the R axis, These

3
Iqnove
displacements are shown in figure 4,%9%a. It is usual to euspress the in
plane rotation of a corner, thus ¢r in the figure is always zero. Conse-
quently it is net included in the formulation of the in plane stiffness
matrix for such a plate., The translations p and g at each corner, also
1llustrated in the figure, are therefore the only in plane displacements
& > J

considered.,

There are three further displacements at each corner, these are
illustrated in figure 4.9b, and are caused by the action of out of plane
Torces on the plate. Such displacements ave known as the out of plane dis-

placements and comprise two rotations and one translation,
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These translations and rotations at each corner of a plate are paral-~
lel to the local axes of the plate, Similarly the element stiffness
matrices relate forces and moments acting in these directions to local dis-
placements, As elements comprising a structure will not necessarily be
similarly orientated, it is essential to express the local displacements
in terms of global displacerents. The out of plane displacement transfor-
mation matrix Ay, showm in figure L.10, converts these out of plane local

displacements to glocal displacements. Similarly the matrix AI shown in

figure 411, performs the same operation for the in plane displscements,
Both of these matrices only show the non-zero terms.

The element stiffness matrices for e rectangular plate, used in this.
work are those given by Zienkiewicz(19), congequently they will not be
explicitly detailed in this text. Reference; however, is made to lerms
within these matrices,

(4 oh?2) Rectangular plate forces. The evaluation of the k A X
multiplication for one plate yields the forces a’t the four corners of thst
plate, consesquently the k A matrix for each plate has to be computed, When
this multiplicetion is performed for the plate sh@wnvin figure 4..12a then
the layout of the resulting in plane matrix is that shown in figure 4..12D,
and the ocut of plane matrix is as shown in figure 4.12c. In both cases
four blocks are generated each one corresponding to a corner of the plate
and having six columns. The number of rows is dependent upon the potential
forces, thus the in plane blocks, figure 4.12b, comprise eight rows, and
the cut of plane, figure L.,12c, twelve rows.

It is possible to relate each of the in plare blocks to a single
general block, which is shown in figure L.1%a. This block comprises di-
rection cosines and general variables A to P. The allocation of in plane
stiffness terms to these variables is dependent upon the block under con-
struction, A table relating the variables, the blocks, and the in plane

stiffness terms is shown in figure 4.13b. The same approach may be applied
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to the out of plane blocks. The general block is shown in figure 4.4, and
the table relating the variables, the blocks, and the out of plane stiffness
“terms is given in figure 4.15. Consequently any one of the blocks may be
generated from consideration of the relevant general block and the associ-
ated table.
(4.4.5) Rectangular plate stresses. In order that the stresses within

a finite element may be computed,the D B A X multiplication must be performed
for each element. Clearly the DBA matrix for each rectangular plate has

to be constructed. TFigure 4.16b gives the in plane stress matrix and figure
) 16¢c the out of plane stress matrix., Both of these yield stresses at the
centre of gravity of a rectangular plate, When each of the matrices is mul-

tiplied by the relevant A matrix the resulting matrix is of the layout ilius~

_trated in figure 4.15d. As with the kA matrix, four distinct blocks exist
for both the in and out of plane cases, each one corresponding to one corner
of the plate shown in figure 4.16a.

Dne general block may be used to represent all of the in plane DBA bldcks
and is illustfated in figure 4.,17a. When this block is used in conjunction

with the table shown in figure 4..,17b each of the four in plane DBA blocks

can be formed. An identical method is adopted in the case of the out of
plane DBA blocks, the general block being shown in figure L4.18a, and the

table relating it to the individual out of plane DBA blocks is in figure

) .18b.

The assumed stress distribution across the depth of a rectangular plate
due to the action of out of plane forces is shown in figure 4.19a, and due
to in plane forces in figure 4,19, The resultant of these two dlagrams 1s
jllustrated in figure 4,19c. TFrom the figures it can be appreciated that
the stress variation across the depth of the section is assumed to be linear,
this condition is imposed by the basic assumptions (6) .

(4.4.4) Direct Evaluation of the A' k A contribution. It was stated
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Block Block
Code | 1 2 3 4 Code | 1 ? 3 4
A 1,1 01,4 | 1,7 | 1,10 S {7,  T,4 107,71 7,70
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K 4,21 4,51 4,8 | 4,11 | ae 10,2 (10,5 (10,8 {10, 11
L 4,31 4,61 4,9 | 4,12 AD [10,310,6 [10,9 [10,12
M 5,115,41(5,715,10 AR N1,1011,4111,7 111,10
N 5,215,558 5,11 AR 11,2011,511,8 (11,11
o |5,3056!59]512 A 11,3 011,6 11,9 (11,12
P 6,116,4|6,716,10 AH 12,1012,4(12,7]12,10
Q |6,216,5]6,8]6,11 AT [12,2012,5]12,8 12,11
R |'6,316,616,9|6,12 AT |12,3112,6(12,9]12,12

KEY TO TERMS WITHIN THE GENERAL OUT OF PLANE BLOCK.ELEMENTS REFER

TO TERMS WITHIN THE OUT OF PLAWE STIFFNESS MATRIX

PIGURE 4.15
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IN PLANE STFESS MATRIX FOR A RECTANGULAR PLATE, RESULTING STRESS

COMPUTED AT THE CENTRE OF GRAVITY OF THE PLATE

alb (1 -p”) {ﬁ‘

OF PLANE STRESS MATRIX FOR A RECTANGULAR PLATE, RESULTING STRESSES ARE .

COMPUTED AT THE CENTREVOF’GRAVITY OF THE PIATE

- FIGURE )4.160
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GENERAL OUT -OF PLANE DBA BLOCK FOR A RECTANGULAR PLATE,

PINAL STRESSES ARE COMPUTED AT THE CENTRE OF GRAVITY OF THE PLATE

KEY TO TERMS WITHIN THE GENERAL OUT OF PLANE BLOCK
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FICURE 4.19a

ASSUMED STRESS DISTRIBUDION DUE TO T PLANE FORCES
~ FIGURE 4.19b :
. e s i

\??-*1‘

L@__ffmfa

S DISTRIBUTION

RESULTANT STRE

URE 4 .1 9¢




earlier that the JOini with the 1oweat

.

to the structure was 90 Sibioned at covner

two, the third 1owest at corner threé, and thn hzghest at corner foar VWhen

e case, as it.ds LOT the plate shown in figure

matrix com-

performed for one plate then the resultine overall stiffne/

prises the setiof sub—blocksgméntioned above., Such a sétggxists ffor hoth

4K

in and out of plane cases, Boua of these sets are symmetrical about their
leading diagonal, so it is therefore only necessary to consider\theféix‘r_
tangular, and four triangular sub—blocks which form the 1ower triangle of

the matrix,

One general sub~blockfm’, be formed for the out»of’f;@ne set, see

n plane set, see figure 4 .22. The unassigned
2. = 1)

figure 4.21, and one for the

variables ian each ofthese sub-blocks are giveh.the relevant in or out of

plane element stiffness tefms depending upon the

tion, Thess stiffness terms are detailed in the table glven in figure L 23,

In the case of triengular sub-blocks only the on diagonal}and lower triangle

terms of the relevant general sub-block should be evaluated. Tn this manner

rated.

(4..5) Trisngular plate p,w

lement is shown

(4..5.1)  General Consiﬂemations. A triangular,plgi

in Pigure L.,24.. The plate _in the PO plane definéd?iyr ts local axes P,

Q,R which conform to the ri ‘hand screw rule, The origin of these axes is
at corner one, the P axis runs from corner one to corner two, the 9 axis is

orthogonal to the side between corners one and two and runs in the direction

of corner three., Fach corner may experience both local in plane displace-

Q

ments uw-and v as well as local out of plane displagements,aé5 a. and w,. Such

Q0
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GENERAL RECTANGULAR AND TRTANGULAR SUB-BLOCK FOR THE IN PLAE

OVERALL STIFFNESS CONTRTBUTION OF A RECTANGULAR PLATE

_ FIGURE 4,22
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Triangular SuB;Bloclcg Rectangumb—Blocks
. i \\"ph \13;3\"\'"\'\\.111 1.3\\
XA [1,7 4,4 7,7 10,10 4 10 T 1@,1’,;‘?’,’/',
XB |21 5;4 8,7 51 8978 11,1/””
XC 13,1 6,4 9,7 6,1 9,1 9.4 12/,“1'}:
D 1,2 4,5 78 4h2 T2 1,5
?g 1,3 46 T, 5 10 15 %2 1,6 (03 10,
; XF 2,2 5,5 8,8’{11}11 oo e
2 IXE8,265 98 12011 [ 62 9.0 o5 100 1o .
r: Sl o S e  1 1\ - 11,6*991_'ﬁtj,:\9::fw?if’f’s
S |1 3,3 6,6 9,9,/,;/1_2,1;2 6:,3.‘,5,;3_ 9,6 12,3 12,6 12,9
% ZA 1150 3,# 55 %gf‘ 3,1 5.1 53 7,1iiii,3 745
8128 (2,1 4,3 65 87 | 41 6,1 6,3 8;/,3/;:;’1{:@;13 8.5
% 76 [1,2 3,4 5,67,8 3.0 52 7927,4 7,6
g D 2,2 4,4 6,68,% o 8,

TABLE RELATING THE CODES FOR THE GENLRAL IV AND OUT OP PLANE SUB-BLOCKS .
OUT OF PLAFE CODE REFER TO ELEMEN”S OF THE OUT or PLANE SWIP”N o8 MATRIX

IN PLANE CODE REFER 70 LLEMENTS OP THE OUT o PLANP STTETNESS MATRIX L

~ FIGURE 4.23







displacements are illustrated in figures + 2h and 1,25,

The in-plane stififness matriX'fonMa\% 'aﬁgh'”f plate is

1) , the out of plane element sfiffheé$ ﬁatrix\ugédfis(that defi&édﬂbyf

(5)

Craig . It is unnecessary, therefore, to detail each of these although

reference will:sbe made to tﬁe ;termsq

It was-.explained, in relaf lon to rechangular plates the trans-

formation of the local diﬁp;a ments to global displaceméﬁts v means of

a displacement translofmetlonfmater A, was essential, The out of plane

and in plans displacement Lransxormation matrices, Ao ana.li for a tri~

angular plate, are shown in f,gureu 4.20 and U, 27 respect:veWy
(4.5.2) Trlangular Plate Stre;ses, The D B A X multnpllcatjon fow
esch element yields the stresses at a po;nt Wlthln that eloment In.or@e?,

that this multiplication may:bg carried out it is necessary}to form the DBA

trices for

matrix for each element. Tﬁgiéﬁt of plare and in plane;DiB'
stresses at the centre of giéyity of a triangulaw

(5)

by Craig

are referenced. later, Multlpllcatjon of either of the matrLc s by the rele-
vant A matrix yields a DBA mater which compr¢sms three bloc;cue Tach bJock
corresponds to'a joint at one corner of the plateﬁ\ Figure 4.28d 1Jlustrateo\
the format of these blocks, each of which:will Eomprise three rows and a“f

maximum-of six: colums,

ock shown in figure 4.2% will, when used

The ‘general in plane
in conjunction with the ta shown in figure 4.2%>generéte’all three in

plane D B A blocks, The general out of plane block is shown in figure 4.50a

and the ‘associated table i

(4.5.3) DLroot EvaTuétlon of the A‘kA Contribution, '/Aﬁjoinf nunbering
technique has been 1mposed suoh ihat tn ioweL numbered joints are oonnectedﬂf\

to.the lower\numbered corners, thls s 50 fow tne trianeular plate showm in

figure 4.%1a, A conseguenc ’?'this is that the orientation of the nine
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KEY TO THE TERMS COMPRISING _THE OUT OF PLANE STRESS zviATRIX,EOR A

TRIANGULAR PLATE
FIGURE 4 ,28D
1k

2




/ JOINT h . JOINT

. Jomnp

|
r

BLOCK 4 BLOCK 2

FORMAT




GENERAL T

GRAVITY OF

CENTRE OF

THE PLATE

- FIGURE 4.29s

BLOCK
NUMBER

A B C D E I

‘1\74\ \\\115\ 176 -

2N

s
~

N

N
e
Ly

0.4 2.5 o6

3;3 24 3,5 306

KEY TO TERMS WITHIN THE GENERAL IN PLANE DBA BLOCK
ARRAY CODES RETER TO EIEMENTS OF THE IN PLANE ELEMENT STIFFNESS MATRTX

~ FIGURE 4.29b

FIGURE: 4.29




STRESSES. AT THE CENTRE OF GRAVITY OF THE PLATE

~ FIGURE 4.30a

BLOCK
NUMBER | A B

2,6 3,4 3.5
2,9 3,7 3.8

MATRTIX

~ FICURE 4.30b

FIGURE 4.30
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.-

sub-blocks forming Lhe conbribution of such a tiiangular plate to tbe over-
-~

O

N

all stiffness metrix is that shown in Tigure L.31b. There are two such
sels of sub-blocks,.one for the in plane and onc for the out of planc case.
Since each set is symaetrical about ils leading diagonal then 1t is ondy
necessary Lo consider the threc triangular wnd the three rectangular sub-
blocks comprising the lower triangle of figure L4.31D.

The general out of plane sub-block is illustrated in figure 4..52 and
when used in conjunction with the table given in figure 4.5 ylelds the
required out of plane sub-blocks, Similarly the in plane sub-blocks may be
formed by consideraticn of the general sub-block shown in [lgure L.,3% snd

the table in {igure 4.3k,

(}.6) Prismatic mcuber package

(4.6.1) Gencral considerations, Tigure 4,35 shows a prismatic meaber
with its lozal asxes P, Q, R. The origin of these axes is at the arbitrarily
defined end & of a member, the P axis runs Trom end A to end B, and the §
axls, which is orthogonal to the F axis, lies in the PQ planc. This plane
is defined by the joints at the members erds along with a third, in plane,

Soint, TIf the right haad screw rule is used then the direction of the R
O

Rach end of the member may experience three rotations and three trans-
lations; these are illustrated in figurc L.36. Toe result of these
movements is a vector, comprising eight displacerents, which is shown in
figure 4.37. This figurc gives the terms comprising the element stiffness
matrix of a member (2) . Bach of these terms has becn assigned a code value
to be used in subsequent tables, these code values are given in figure 4,38,
The inclusion of the product moment of inertia in the matrix permits the
analysis of structures containing members having no axis of symmelry.

Member displacements have been relative to the local axes, and the dis-

placement transformation mairix, Af, is requirced to reconcile such
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D = XM + XM | J = XD.Tp + XE.Ly
B o= XFN, + KONy K = XD, + X5
W= F T’ YT . N - — T - AN .
P o= X, + XL L = XD.I, + XB 5

GENFERAL RECTANGULAR AND TRIANGULAR SUB-BLOCK }OR TiHE OUI OF PLANE

OVERALL STPITFNESS CONTRIBUTION OF A TRIANGULAR PLATE

TIGURE 1,32

- 103 -




>4
<
[N
; (o)
Y
<
<
@

LA L« C LB
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L .B L..D L.
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0. A M,.C My T
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CENERAL RECTANGULAR AND TRIANGULAR SUB-BLOCK FOR THE I PLANE OVEBRALL
STIFFNESS CONTRIBUTION OF A TRIAWGULAR PLATE

FIGURE 4.33
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TRIAECULAR SUR-BLOCKS | RECTANGULAR SUB-BILOCKS
hh JJ pp Jh ph pJ
XA | 1,1 4y 4t Ty 451 Tyl Ty4
XB | - - -~ 4,2 Ty2 745
XC | -~ - - 443 Ty3 1,6
% XD | 2,1 5,4 8,7 | 5,1 8,1 8,4
é B | 3,1 6,4 9,7 6,1 9, 9,4
o xe 2,2 5,5 8,83 | 5,2 8,2 8,5
'5 XG | 2,3 5,6 8,9 | 5,3 8,3 8,6
Slxul3,2 65 9,8 |62 9,2 9,5
XI | 3,3 6,6 9,9 6,3 9,3 9,6
o | TR Ty 3,3 55 351 5y 593
Sl (e 34 56 32 52 54
g YC | 2,1 4,3 6,5 4,1 6,1 6,3
; YD | 2,2 4yl 6,6 | 4,2 €,2 6y

TABLE RELATING THE CODES IN FIGURES 4.32 AND 4.33 T0 TERMS IN THE
'RELEVANT ELEMENT STIFFNESS MATRIX

IN PLANE CODES REFER TO TERMS IN THE IN PLANE STIFINESS MATRIX
OUT OF PLANE CODES REFER TO TERMS IN THE OUT OF PLANE STIFIWESS
MATRIX

FIGURE 4.34
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XA
0 . SYIITRIC
0 XC XD
0 XE P XG
0 il XT XJ XK
0 XL 2 X X0 XP
0 XQ R XS X XU XV
0 X XY X% | XAA | XAB | XAC | XAD

KEY 70 TERMS WITHIN THE STIFFNASS MATRIX Of ONE MisMBER

FIGURE 4..38
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displacements to a set of global axes. In order that the various irregu-
larities, which are common in civil engincering structures, might be coped
(2)

with, Jennings and Majid have modified the A . matrix to give the one
1L

shown in figure 4,39, In this matrix p and p,, are the lengths of the

ca ]
rigid portions, such as gusset plates or haunches at either cnd of' the
menber, The offsets, of the centroid of the member from the joint to which
it is connected, are givea by 9., {;, €, and R ., Such rigid portions and
offsets are 1llustrated in figure 4..40,

(1..6.2) Member forces, The eight resultant forces and moments acting
on each member are shown in figure .1, In order that they may be evalu-
ated it is necessary to carry out the kAX multiplication f'or each member,
consequently each member's XA matrix has to be computed. The format of a
typical kA matrix is shown in figure 4.h&. It comprises two blocks, eich
one corresponding to an cend of the member, with eight roﬁs and up to six
columns. I this multiplication is carried oul in general terms for one
member, then the result may be used to construct directly the matrix fow
specific members. The six columns corresponding to the three joint trans-
lations at each eand of the member can be formed from‘figure hitb.  The
general expression for each of the eight rows of one such column is given
in figure 4.43a, All of the columns may Be formed when this figure is uscd
in conjunction with figure 4.43b. The three columns corresponding to
rotations at end A of the member may be formed from the tables given in
figure L., The gencral expression for one of these colunns is given in
figure L.Ja, which when used with figure 4.hL4b permits the computation of
each of the columns, The three columns corresponding to rotations at end B
of the member may be formed from the tables given in figure 4.45, If
figures L. siba and 4. L45b are used together then the three required columns
will be gencrated,

(1.6.3) Dircet Evaluation of the A'kA Contribution. When end A of a

- 109 -
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FIGURE 4. 44
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member is comected to a lower numbered joint than cnd B, as 1s the casc
in figure 4.hba, then the orientation of the four sub-blocks is ihat shown
in figure 4.46b, These sub-blocks are the contribution made by a member
to the overall stiffness malrix of a structurc. Such a set of sub-blocks
is symmetrical sboul its leading diagonal, consequently the sub-blocks
which form the lower triangle of the seb, namely the two on-dlagonal tri-
angular sub-blocks aand one rectangular sub-block, need only be considered,
Only three sub-blocks need constriction consequently it is unnccessary 5o
adopt the approach used for plate elements. Bach of the sub-blocks has
been detailed explicitly. The expressions forming the terms of sub-blosk
hh are given in figure 4,7, The imeger cn the left of each expression
gives the term's location within the sub-block, Similarly the terms of
sub-block jh are given in figure 4.8 and those forming sub-block JjJ in

figure 4.9, For a complete interpretation these Pigures should be real

in conjunction with figures 4,78 and 4.39.
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PRIAIGULAR SU3-BLOCK hh
FIGURE 4ol7

V“d““v

-

- 115 ~



—————

14
12
53

14

1o

3
xy

23

24

36

41

42

43

44

ne L PeLPOXASLC (LO#XG] LREXL) LR (LOARLLnsXD)
Bl PEUPRXACLOe (HQPXBAHUR¥ YL Y e LR (Koo yL e ey )
““LP“NP“XA"UC*(NO“XB*NR“XL)BLRﬁ(HQ*XL4Nanb)

2| Pl QREXACLCE (LPRARNDLREXC 1P xS , Ly O) L Re (LPRAa
i +LRaXMalPaX0<LEQASYP-L0%X0) PeXiE L POACKLE 0B X0 LR (LPRAS

”lPrHQHﬁXA*Pb*(MPRA%YR*VP“VC“VP“YH*' L goe X QLR O ’
: . CRA P aX .:“)0,63\[_..14(.)(4)‘(3)' Ro (KPRAs-
YL4HREY M MPEX O« P QA Y P~ MO e XU ‘ - o

.SLPﬁNQRﬂXA*fLCf((NPRA%XBJ—NR{&){C ")"->‘H4NPQALXL f‘O"XQ)'*LN"‘(NPRAL*/

XLAHREYH=NPRXOCNFOA#XP-NQ%XUD

L a-UpPELPHXA~ME# (LO¥XBHLR*XL Yo MRE (LOTYLALReXP)
aeMPeHPEXA-MG# (MO XB+HMREXL ) MR (0¥ XL ,chVp)
n e MERIPEXA~HE & (NOFXR+NREXL ) s MRE (HQE YL «NReXP)

SHP L[ QR 2 XA+ G e (LPRAEXBHLREXC-LPXI ¥ LPRAs XL LO*XQ) #HR % (LPRA#
X #LR&XM-LP#X0+ FQA¥XP-LQ=XU)+

‘Hp*HQP*XA*HC*(MPRA“XB+MR*XC‘“P¢/n*MPGAkYL 10X Q) #HRs (HPRA®
LA HR= 1P XD+ HFQ A% XP - 1O = XU

: "”’*“QR“XA+HF&(NPRAﬁXB*NR*YC NP & X NP QAR XL ~ ﬁOﬁYﬂ)vMR“(NPRA&
XL"‘NR“’XI‘;*NP*XOﬂ—NFQ;‘&)\P NQEXU?

2o NpELPEXA~NG (LO*XB+LREXL) aHR¥ (LO*YL+LR#XP)
T zanPaHPRXA=NC# (MOEXBMREKL) =NR® (MO=XL<NR¥XP)
=~NP*NP*XA-NC*(NO*XB+NR*XL)oNR*(NQ%xL+NR¢x¢)

CaNPHLQREXACNG x (LPRARXB+LE#XC-LP2XH* LPQAGY[ “UnexQ)¢NRe (LPRA%
XL+ LR=XH- ALPEXQSLFQAEXP-LO®XUY

wNP*HOH*XA+NCﬁ(VPRA“XB+VR $XC-MPeXH*MPQARXL=-MO*XQ)¢NRa(HPRA%

XLAHReX=MP e X0+ HPQA*XP - MQ# XU

'“NP“NQR“YA+tCﬁ(IPRA%X°+hP¢XC NPaXHANPOAR XL NO“XU Ra (NPRAw
XL #NREXH=NPeX0+NFQA*XP-NO=XU

S -LRO¥LPEXA-LPRE* (LE#XBHLR=XL) - Re(LO% Y“*LPﬂVﬂ)"LP*(LO“kF*LQu
XO)-LPO7*(LO“XL*LR*YP)+LO*(LU“7H+L¥LXAB)

a-LRO*MPEYXA-L PP (MO YB+VR“XL)“LP{(HQ Xz HREXN) = LP“(VQ“XP‘VQQ
XOY-LpaDw (MOEXL+VR* cxp) AL Qe (KOEXH+MReXAB)

5 LRPﬁhPaXA LpRBe (RO syBrNReEXL) ~ L Re (NQ#XECNRE XN)"LP“(NO“XH=PRﬁ
XO)"LP“DQ(NQfo+ha»XP)*LQ“(hQ“XH*NP%XAB)

"tRObanuxA+Lpn Ba (LPRA®XHFLREXC-Lpr YK+ DOAS L LQ¥X0) s LRE(LPRA®
XESLRENFLPPXI+LFQARXN- LO~XS>“LPf(LPRA*7H LaeX e LPEXKALPOASKO-L AW
XT)+LPfUr(LPrA“XL+lP“nH Lp#X0¢LPOASXP-LQuAU) ~Los A LPRACY T LKLY ~LPo

XAA+LPOA#XABaLOXAC)

esoo CONTINUID

FIGURE 4,48

- 116 -



r———,__-_ P

a
vl

46

51

52

53

54

56

61
62
63

64

66

ELRO“MOR“XA"'LPDR*(HPRA“XH‘°HR*‘XC“'MP‘*XH‘?‘HSQ/\{)):{‘ *HO“XO)Q-LRM MpRA®
XE'*H”UXF"M‘/{}XJ*HF Of\“‘/‘:N"MQ”XS\} 'c'LP t (:”}pRA{axH.:,.MfEQ;Xf_,Mp45)’\Ku{".l‘po/\ﬁxaurﬁlga

XT)+LPOBe (MPRASYL«HR&XH-1MPa X0 MPOARXP-HMQa XU ) - LEo ¢ HPRASKHE[Ra XY - P
CXAARMPOARXAB-MQREXAL) |

;LRQ”NQR‘XA*LPRB“(NPRA“XH¢HR“XC“NP“XH+NﬁQA¢XL~NQ“XO)+LRG(NP3Am
XE+NR®XF NP o XJ#NPQASYN-HOBYKS) ¢ LPs (HPRASYHANRY X1 < NP« XKCUPOAXO- NI

ATI+LPABS (KPRA®XL+HR%XH-NP#XU*NPOATYP=NQ# XU} = LO% (NPRAXXHENREXY - NP

XAA+NPQA#XAB=NQ=XAC)

C3=MROELPaXA~FPRB (LQeXB*LREXL) " HR# (LQ#XE+LRaXN) THP# (LA®KH* LA

XO)-MPAB (LOEXL+L ReXP)+Mas (LA®XH+LR=XAB):

H-MRO*MP Y XA=VPRBS (MO¥XB+HR¥XL) = MR= (MQ#XE+MR#XN) ~HP* (MQEXH*HAK:
X0) =MpQBe (MQ#XL+MR%XP) +HQ* (MA#XW+HReXAB)

2 MROENP Y XA-KPRBx (NOxXB*NR¥XL) ~MRe (NO*XE*NREXN) “HP® (NO¥XHeNR®

X0)-MPAB# (NQEXL +AR#XP) +10% (NA¥*XW+NR=XAB)

‘QHéQ*LDR“XA+NPRB*(LPRA“XU*LR*chLF*XH*LbQA*XL~LOGXO)+HR“(LPRA“

EXE*LR“XF'LP*XJ*LPQA*XN"LQ*XSQ*MP*(LPRA“XH+LQ&XI4LP&XK+LPQAhx0~Lg§
XTY+MpOB#* (LPRA#XI| +| R“XM'LP'}XQ¢LPQA*XP'LQ*XU)"?"i(.)#(l_PR/\*XHv’LRGXY—Lpn

XAA+LPQA#XAB-LO#XAC)

7
IMRQ“HOR“XA*NPRB*(MPRA“'XH*‘MR*XC-MF*)(H*-Mﬁ(}A:;}(L—MGﬁXO)*.-MRG(HPQA-a
KE#HR®XF ~HP ¥ X JAMFQA®KN-HO#XS) #MP# (MPRA*YH+MREX [ -MP # XK+HPOA¥ X0 MI®
XT)+MP03#(MPRA*XL+HR¢XM—MP*XO+HPOA*XP«MQ*XU)~MO&(MPRA#XH+HR#XY-MpV
XAA+MPOA#XAB-MQ#XAC)

.sMRD*NOR*XA+anB*(NPRA*XB+NR*XC-NpﬁxH+N50A&XL—NQ4XQ)¢MRE(NPRAn
XE*NR%X”--NP*‘XJ+NFQA*XN~NOQXS\)*MP*(NPRA%XHJaNRax;..NpaxK+NpQAaxO-NgE

'XT)+MPOB«(NPNA¢XL+MR¢XH~NPaxO+NPaA*xP—NQ¢xU)—Hoﬁ(NPRA*XH+NRaxY~NP4

XAA«NPQA#XAB~NQ#XAC)

iéNRo*LP*XA-hPRB*(uo«xB*LR*XL?“NR%<L0*XE+LéaxN>fNP»(LQ%XH*LRu

3X0)~NPOBé(LO*XL+LR%XP)+NO*(LQ“XW+LR¢XA8)

’””&RO*MP“XA'hPRB‘(MO*XB*MR”XL)"NR“(MO*XE*MQGXN)”NP*(MQ“XH+MR5

.X0)~NPOB¢(HOGXL*VRaXP)+NQ«(MQéxw¢MR»xAB)

=~NRD*NP*XA-APRB«(NO“XB*NR*XL)’NR*(MO*XE*NQ*XN)fNP*<NO“XH+&?b

XOY~NPOBE (NOEXL+AReXP)+NQ# (NQEXH+NReXAB)

SNRQ*LGR“XA+APRB¢(LPRA*XB*LR”XC—LP*XH*L&QA%XL~LQ“XQ)+NR4(LpaAg
XE«LRuxr-LP4XJ*LFQA¢XN~LQ*XS)*NP*QLPRA*xH¢Ln*Xt~LpuXK+LPOA*XO-L3a
XT)fNPOB»(LPRA¢XL+LR*XH«LP*X0+LPOA”xPaLo%xu)nNoﬁ(LPRAaxw+LRaxv_Lpa

XAA+LPOA®XAB-LA#»XAC)

=Né¢&MGR*XA+hPRBG(MPRA*XB*MRﬁXC-MP%xH+M60AnXL—MOGX@)¢NR¢(HpRA“
XE*MR*XF"HPGXJ*MFOA“XN”MO“XSJ*NP“(“PRA*XH+MR“X1"MPéXK+MP0A*XO'HQ»
XT)+NPOB“(HPRA"XL+HR¢XM~HP*XQ+MP0**XP—MQ*XU)~NQ*(MPRk“XH*MR*XY~WPn

XAA*MPOA“XAB"MQ“XAC)

=NRQ%NGR0XA+APR8“(NPRA“XQ*NR“XCWNP“XH*N50A6XL~NQ“XO)+NRa(NpQA»
XF*NR%XF"NP*XJ*NPQA“XN“NO*XSJ*NP*(NPRA“XH*N?”XIﬂNPéXK*NPOA*XD‘N]Q
Xf)*NPOBb(NPRA“XL«HRGXM-NP“XO*NPOA“XP~NO“XU)-NG“<NPRA“XH¢NR&XY~VPG
XAA“NPOAeXABRNQ®XAC) :

RECTANGULAR SUB-BLOCK Jh

FIGURE /.o48

- 117 =



'FLP#LPGXﬁ*L”“(L““X“*L“{Xt)*LRv(nuth4Lnnxv>
JHPQLP“Xh+“““(LQ“XP+LthL>+mnu(Lo«xL+anxV)
AHP NP EX A0 % (106 XDa R XL ) 4 HRO (HOa X< HReXP)
ANPELPEYACROS (LOWXLREXL ) *RRE (LOEXLLREXP)
CENPEMPEX AR RQe (PQuYX B MRX], )+ NR= CQaX| +HReXP)
AP ERPEXAFND S CHQXBCHRE XL CHR® CHOe X4 HREYP)

zLRQnLPuXA+LFRHn(LQ«XU+LR“XL)+LQ£(LQuXF«Lqun);LP“(LU”XH#LR%
¥O)+LPOBE (LOPXL+LRs XP) ~L0# (LUS XU LReXAD)

:LRO%HP«XA+LFRHu(HO+X9+HH%XL)+LR*(HQGXE+HRﬂXN)ﬁLpﬂ(HoﬂwaHh“'
X0 +LPOBe (HO# XL+ REXP) ~L0% (MEE X BRe X AD)

r:l,RODHP#X/\.LLF’RD%’-(NO-‘-‘ ‘/fn»z-f\'R%XL )”--Q""“’~'O*XE+?‘JR'~'XI'-J)*-LP“ ( [\IQ{’XH““RV

NOYELPOBE (NDEXL+hReXP) =1L Qs (EEXH+NReX4B) _

:LRO“LRG“XA*LPPQ*(EPRR”XU+LR*XE+LP”X“+LPDB”XL"LQ*XW)+LR%(LPQQQ
XE*LR*XG*LP*XJ+LFOUuXH“LO§X2)+LP§(prg“XH+LQ*XJ+LP*XK+LPCB%x0—LQ¢
YAR) =L PQ5# (LFREB=XY L+ LR#EXNCLPEX0+LPOBeXp= Qe XAB) ~Q# (LPRB#XF L REXLR
LP%!-XAA"‘LPQH’-’«XAR._LQHXAD) .

:HRQ:LPﬁXA+HFRR*(LO&XB+LR&XL)+HRﬁ(LO%xE+LRﬁkN)¢MP”(LQ%X}*LR%-
XOY+HP OB (LR¥X_+LRaXPY=HQ* (LE*XH+LRe %2 B)

:HQQ*HP*XA+MFRH*(HO*XU+NR%XL)*“R*(HQ#X§+HRng}+MP*(HQ&XH¢MRW

XOYHUPRBE (MO X| b ReXP) =~ HOQx (KA« X+ KR XAB)

=”RQ‘”P*XA+MPRR*(NQ*XB*NR“XL)+“Q*(N0*XF+HR«XM)+HP%(N@&XH*NR%

KOS +NPOBE (RQEXL+hREXP) =10 s (NGEXHANR e X4B)

SIRQELROEXA+FPRBS (LPRB*XBLR* XL+ LpryHsLp0BeXL-LO*XW) MR (L pREF

'XE+LH&XGuLPQXJ+LFQp*XN~LO*XZ)+MP%(LPRB;XH+LQ*XJ+LP*XK+LPQB%XO_L3;

KAA) +3PARE (LFRBaX| +LREXN+LP#X0+LPOBEP- G#XAR) ~H0O#® (LPRBEXWSLR*XZ

LPeXAA+LPAB2X AN~ Q% XAD)

55

61

62

ZJH‘?O&HRQ* XA4PPPQ*(HPRB"XH*MR*X&JHP‘?' XH.@HPQE}{'XL"MOr"X\'.’)*'HP‘&- (Mp3Be
XE*HR“XG+HP*XJ+HFQ”*XN"MQ*XZQ+HP*(HPRQ‘X”*”Q“XJ+HP*XK+HPQ3¢XG_HQé
XAA) SHPORE CUPREB 2 ¥ |+ MREXN+HP = X0+ HPEBeXP-HOeX 40 ) =i w (HPRB =X KRN Lx
MPsXAA+IPQB*XAB-FQeXAD)

=uno«LP»XA+NFRPG(Lo»xB+LRuXL)4NR%(LO*XE+LRQXN>in«(Lc*XH+LR»
X0 )+NPABe (LO¥XL+LR#XP)~NO# (LEUFXHcLR&XAD)

ANRQSHPE X A% NFRE (MOEXB+MREXL)*NR® (HQ¥XE«MRxXH T+ NP* (HQXHHRe

X0)+NPQD® (HOEXL K ReXP)-HA® (MY XW TR XAB)

5HRO*NP*XA+NFRD¢(NOaxa+NRﬁxL)+NRQ(NO*XE+NR¢XN)+NP§(HQ§XH4NRQ
X0)+NPADK (KOS XL +AREXP) ~HO® (NIIXHeRReXAB)

:NRQ“LROaXA*“PRR“(LPRB“XB*LR“XE+LP*XH+LDOBGXL"LO“XH)+NPé(LPRBn
EALReX G Lo XJFLPAN®YN=LOEXZ) #HP e (LpRBEYH L) gL Pt LPODEX07L 9%

MRS NP OnA CLFRDSY L LRPXHeLP e X0 LPOURXP-LO#XAG ) -NQu (LPRESATHLREX L&

LPOXAASLPOS*XAB-LQ»XAD)

L LROeHROFXACNPRAE (HPRRAXBHHREXEHpEgHeManTaXL 108 Rii) o N e LMD A3
XE+HR§XG+HP“XJ¢MFOHQXNFMOQXZ)ﬁNP%(“pnguXH*HQ“XJ+HPﬁXK*HPCQbXO—H§u
XAA)+NDUHﬂ(HnRﬂﬁxL+HR«XH+MP0XO+HPQBaXp—HQgXAQ CngE CHPROEX I« MRIX Lo
MpPe X AA+HMPQBsXAB-FQuXAD)

;NRO“”RD“XA*kpRB“(“P“B“X“*NR”xC*NP°XH*HGOQwXL~KD"XH)¢NR&(NbRnu
XF*””*XG*NP“XJ*HFOR“XN-NULXZO4NP*(NPRR*XH+N3eXJ¢HOoXK ST SRR
'AA)*HPOH%(HVRB?XL*NR“XN*NP“KO*NPQngp~NQ@XRﬁ)NNQ“(Np“$+KN¢NRaXZ@
NP“XAA*HPQE“XAU~AQHXAU)

PRI AFGULAR SUB-BLOCK 33

FTGURE. 1) 9

acr!
HEN

- 118 ~



FORUATTION QF ol

¢

(5 .1) Introduction

In order that the programme might be as flexible as possible it is
essential that many element types should be includcd. The consideration
of structures involving some degree of curvature suggests a further cle-

-

ment not previously considered, namely an ammular segment. Approxi-

'
mations to the annular shape have been employ=d ° where a curve was
split into a series of straight lines, this permitting the use of tri-
angulsr or rectangular plates to simulate the true shape. Such approxi-
mations are unsatisfactory for all but th: fiusest mesh,

To ensble the incorporation of an anuular plate element to the pro-
gramme library it is necessary to formulate the in and out of plane
stiffness ratrices of the element, These matrices are developed in the
following text, as are the matrices required during the computation of
stresses within such an annular element, Finally the displacement trans-
ts to global displace-

formation matrices which relate local displacemen

ments are formed.

(5.,2) The out of plane displacement function

Consider the curved plate shown in figure 5.1, with the origin of
the local axes ¥, y, z abt corner 1 of the element., Let the x axis run
along the curved edge of the plate from corner 1 to corner 2, and the y
axis run radially from corner 1 to corner 3. Consider also a further set
of axes ?5 ?,'Z with the same origin as the x, y, 2z axes, and in which y
and 7z coincide with Y and 7 while tne X axis s tangential to the c¢lement,
These axes arc also sheown in figure 51

Do ey of the plate has three out of plane displacements,
Bach corner of the j
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these are: a translation in the z di otation about the x

. These displacements are

s (6y)

axis (0x), and a rotation about the y axi
illustrated for cormer 1 of the plate shown in figure 5.1. The slopes of w

and the rotations are identical at the origin (except in sign), and may

be expressed at this position in terms of the globalréxeg as:

at any general position within

the %, y, z axis system are now required, Such relationships are now de-

rived, recourse being made to figure 5.2, Consider point A, shown in this

figure, the co-ordinates of which are (X, Y) or (x, y) depending ﬁpon \\?“

which of the two co-ordinate systqmsfis uée@; ~Applying Pythagoras' theo-

is obtained:

rem to triargle ABC the followihgiexifesamg

Now since




Thus

="'tan

Sl

Hence

Similarly the partial differentiation of

=l

gives:

wrn 9% _RX
oY

9w
X
and ©
9w
oY
Substituting

90
ox

Similariy




The x axis 1s tangential when x = substit s condition into

equations (5.10) and (5.11) gives

w _ =] e , .
ai - R“}[J *ox / ' se0 (3"12)
ow Iw

1
i}
—
1

o
i

AN

N

oY dy £ 5

These are the curvatures in the tWO princlpal dlfeotlons

Consequently the utate of defoerblon of the plate can be ent1rely~

described by the w displacement of tbe 35) /teo? To ensurc that the plate

remains contlnuous, condltlons of oont1nu1ty and equ¢1lerum should be

imposed at.each Jjoint. ~The selection of a displacement function whidh

will ensure complete continuity between the interfaces of various ele-

ments is a complex operation., The selection, however; of:a‘displacement

s the 'constant strain' criterion tﬁen convérgence

One 'such suitable function containing twelve parameters corresponding

to' the twelve nodal displacemeﬁts,is:—

_ e e LB 2
W b= Fag a X + asy + a&x + 5xy‘f:géy 1% a,Xx" + a X"y +

(5.14)

plé%éiand was

Xy ta ¥ ba, Xy +oanxy

This is the same function as

First stated by Zienkiewicz

that along the element boundafiéSfth 51i§ﬁ1aéémén% mfvariésﬂaé a cubic

function. “To define this un;quely only /nQuaﬁts are. requlrea Ir
the two end values of slopes and‘dlspldoements are used, then a conti-

auity of w is also imposéd\along the boundary. The Paraboja howevor,_




defining the gradient of w norméi;ﬁo;ahy*éf hérbbﬁn@ériESfié not uniquely

specifiled, and therefore a discontinuity‘OI normal slope will occur,

The constants a,”toa,, in equation (V 14) may be eva]ua ced by

solving the twelve simultaneous equatiohs relating the values of' w,

-gw and | R | . dw , at the joints.,
oy R ox

(5.14) and carrying out the partial differentiations menfidnediébove

gives

Wj = a, +ayX;+ay; +;§¢XJ +a nyJ +oa sz +oax O
. o p
8Py + a xyi® + aion —F 811%; Syy+ alzxjy
(5015‘)
/ .
~0W z — e
( 3; = 0x; .= ag, 28 X5y
=2
- 3312XJyJ
(5.16)
g9 R | '
ox Rnyj
(5.17)

If these expressions are formed for corners one, two, three and four

of the curved plate then the resulting equaﬁ'rns may be written in matrix

form as:

(5..1\8),/*

{6} = G {al

This relationship is shown iﬂ“ ‘ ”:ﬂefé the x/and Yy co-

ordinates appear as X and Y ths 1s S0 because for a given plate the
co-ordinates of ‘its corners are éonsiaﬁt, In the foliOW1ng text X and y

will be used as variables denoting any general p051t10a ‘within- the plate,

It is convenient at this stage tbfexpr szthefzé}fveéﬁor/as the subject

of the eguation, thus\eqpatign\ﬁ5¢18) becpméé

zgz G o \ (519
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Figureb .4 shows this relationship;?’

(5.3) The out of plane stress and strain e dricos

The usual 'thin plate' assumptions of linear variation of stress and
strain throughout the thickness of the plate will be adopted. Since this

assumption has been made the/stresses and'Strains’in,the element may be

defined in terms of the stress resultant 1nternal moments MX MY Mi§‘$

2w, Pw. 9Ew ‘ 4
and the curvatures —s; ~—3; — /;’VThe dlrcctlon of actlon of cach of

0%k oY 0%oY

the moments is illustrated.in fjgure D 5. Actual stresses aéé related

to these moments by the modulus of the%section; 7genenal;gxpressions for

the curvature will now be derived. As curvature is the differential of

the slope, equations (5 ,10) and (5 .11) will be used:

since Qg = m; andm = m(x,y)
X ,
Pw . . : y e
then —== is obtained from the chain - - e

9x - £ BN
& o om dm  o0x om Ady : :
o R e el - R ES TR 0)
X o 9x 0X dy ~ 0X e

Substltutlng equatlons ( 55) and (5 6) 1nto equatlon (5 20) and also sub-

stituting the oondltlon\x,:\og Whlch is necessary for the axes to be tane\

gential, the result is:

¢% _ [R] am

S e e e

Finally if equation (551O)Kis partially diffefentieted,with respect to x

and the result substituted into equation;fr

2 / 2
2w R 97 K%
=2 ”\.R»y &x

21) we have

Ao




1,301 ,4

2,5 2,k

3.5 3,0

REY T0 TERMS

1,5

1,8 1,9 1,10 1,11

092,40 2,11

2.5 2,6

35 3,6 3,7 3,8 3,9 3,00 3,11

COMPRISING THE OUT OF PLANE B MATRIX




Once again substituting in the limitihg Oiequation'(5°22)

becomes

97w R 92w R
= = 5y - 55) 5 U
ox y X R-y dy R

which §implifies +to

%0 %w  RP
—— . 2 © ;
ox o= ARy

Treating equation (5,11) in a similar manner +o obtain the expression for

the other curvature

ﬁg ='n; and n=n(xy)
oY
i . : . e
then.ﬂ:g is obtained from the chain rule by
oY - s
2 5 : - e g .
6——‘:2“‘ > Q:..r} = ?—I} o 'Q:}E o+ QE '/a"':__y_ [T " T T e o (5.24—)
oY Y 0X v 0y T e T A Y

Substituting equations (5.4) and (5.7) into equation (5.2L4) and also the

x =0 condition £hen’reéﬁ1t is

5’1291*‘f ;;:




If the limiting condition for fhé“akésfto tangential, when x = 0, is

substituted then equation (5.26) Deiones

o P C 7 . iy
T o (5zo7)

8%w

Finally to.generate 5?:5?;

clearly the partial diffgreiﬁigtion off

equation (5.10) with respect tq‘fgggregggtiqnﬂ(S‘11)/withéféspQQ§ to X

will give the required result, Selecting the formerrof theSg}optionS,
which may be expressed mathematically as

8"7'(;3

S ceo (5.28)
9% .0Y . \ ;

/Q> QO
=i

and since m = m(X,y)'then once again the chain rule has to be used to

give

_, I 0x. Ol SO0F o

ox oY dy oY

> o)

am
oY

Substituting equations (5.4) and (5,7) with the condition of x = 0 into

equation (5.29) gives

o | o
iu .22 cor (5.30)
0%, oY I P

Hence if equation (5,10) is nowigaftiéllyrd“"

x and substituted into equation (5.30) the resulting eg




equation (5b31) the result is

%0 P R : . .
3?2.@? axaay R-—-y ox (R_,y)2 \ s oe (5032>

If the polynomial for w given in eguation (5.14) is now partially

differentiated in accordance with the formats given in equations (5323>;

e written in matrix

Ii
=
| o

e (5.33)

These matrices arngiven in full in figure 5,7 and réiéte the ourvatures 
to the twelve constants,

If equations (5.19) and (5,}5) are combined then the twelve unknows
constants in {Ej are removed aﬁdwéﬁ egpreséion fel&fing,the curvatures
to the out of plane displagementé at:gachfédrgefiis/forme&; this may be

written as

Iyt = 1 .c"*, {8}

and is normally written in the form

i

fx] = B . (8} | b ey

The format of the B matrix is given/ih/figﬁrefﬁéanﬁnjhé individual terms

corresponding to the codes in that figure may be formed from figures 5.8,

5.9 and 5,10,
Finally the linear relationship/bétﬁeen,Sfress and ;%iain;vwhich'is

R g
derived in standard texts( 9) is of the form ;

A
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il 1 0
0 0 F(4-).

(5.35)

(5.4.) The out of plane element stiffness matrix

(6)

,/feéult in the

Application of the prineiﬁiééjpﬁvvirtualﬁworg

Since the plate is of constant thickness the integration is carried out
over its area only.

FigureS5.ishows a small element of area &A within a curved plate

where it 1s noticed that:

OA

I

(7 (RD)? - . ((RY) - sy>25;g.g S G e

ard 5o - . (5.38)

Wlx’

Substituting equatioﬁ (5.38) into eguation (5.37) and simplifying we

obtain

' Y by i s e S : o
6A = (1 - '}'i - 'E}%) SXHSJ: AR : . 7 ;. 5 : PR (5559)

Tn the Limit as 6x and Sy tend to Zefo equationf(5{39) becomes:
ar = (1 —%) dx.dy ’ / e cee  (5.40)

If equation (5.40) is now substituted into equation (5.36) the result is

v ox ,
k = / / (f,_@,_@) A5 ~-§)'./dx.dy 7 cee (5.47)

6] 0]




WITHIN A CURVZD PLATE . =

FIGURE 5.11




Because oft the complexity of éﬁéi§;ﬁ5£%i%}%5  OXDllO;+ derivation
of the element stiffness matrix is not a fééSiblé/pfofosition“ It is,
however, unnecessary to produce an ekplicit matrix, onee’ﬁﬁejé;gebraic
and matrix manipulations required to generate the stiffness matrix are
determined, fhese may be programméd5énd a computer will execute the

various stages as required,

It is possible to write eala*lon (5 h1) for ‘one term of Lhe k

matrix, say Em L @s RS e
X :
- T Y N Ws - : {
Em,n = /k (B GQ.E)m’n (1 - ﬁ) dx . dy wee (5.42)
0 O Hih b s e

Also, because of the snmpllclty of equatlon ( 35) it is possible to. ex=

pand the expression (B D B) to glve
7 s
@ 2B, - )
N \
+ B m.BB‘,‘n(/ 2/“)} (543
Clearly to form k it 1s mnecessary to substitute the relevant terms of

2

the B matrix info the\expfeséioﬁ(\pérform the multiplicétiéns, then iﬁfé—

grate the re;ultlng terms over the 1lm1ts 1nd10ated in equatlon (5 42)

Since each term of the B matrlx ountalns several anCtiOﬂS of the wvari-

ables x and y the result of the multiplication is to generate further

functions.

To make this process Sultable for oomputer solutlon 1t i1s necessary

to carry out the following operatlons . Fﬂrstly eouatlon (9 49) comprises

the summation of three distinct terms, it leCOUVCﬂlent to consider each
of these termo 1ndnv:dually,v If each of the terms is callcd a ’prime

area' then uh three pere areas’ formed from equat¢on ().45) are




Prime area 1 = B B . ;fff,, 5
( + “Bg,n)~ oo ()ﬁbﬁ)‘

Prime area 2 = Bz,m(“gi,n + Bz,n) . A (5.45)
Prime area 3 = Ba,m . Ba,n(igﬁ ) cee (5e46)

Consider at this stage any one of these '‘prime areas', say, 'prime area 1'.
. E: > 3 =

For each row of the k matrix the B1

.m term, appearing in/ggugtion (5.440)

is constant, and a table may be drawn up compriéingrtwelvé cblumns, one
for each row of the stiffness matrix, and o TOoWs .. Where o is the maxi-
mum number of unique Ffunctions of x and y appéafing in any row. Such a
table has previcusly been drawn up to give the first row of the B mafrix
and is shown in figure 5.8 Similarly for each of the twelve columns of

the k matrix the (B

. A n) term; éfpéaring>in/éguation (5.50), is
> 3 - -

constant, Once again a table may be drawn up in which n varies from one

o the twelve

to twelve, This table is shown in figureb12 j@.adﬁation‘

columns the table has vy rows, where y is the maximum number of unique

functions in x and y occurring in any column, Thus to form the 'prime
area 1' contribution to the term km 0 of the stiffness matrix, each term
2 .

in the mth column of the table in figurijBhas to ‘be multiplied’by every

element in the nth column of the table in figure 5,12, The result is a dif-

ferent set of terms comprising new functions in x and y, and integration

of these terms must now be carried out.

Since the positions and forms of 'all of the functions occurring in

both the tables is ‘known, asjis ﬁhe?ordér of multipﬁ@qatiqn, it-ds pos-

sible to predict the position and dharacter of the resultihg functions.

Such functions are integrated generally, and the “expression for each is

stored in a further table, in such a manner that its position may be re-

lated to the relevant term gehéfated in the manner described previously.
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SELECT ROW - CONSTANTS CORRESPONDING TO

SELECT COLUMY CONSTANTS CORRESP ONDING TO

SELECT PIRST PRIME AREA

SELECT FIRST ELEMENT IN ROW m = i
A
MULTTPLY ‘THTS ELEMENT  BY ALL:THE ELEMENTS
OF “COLUMI n' = 3 FOR THE PRIME AREA,
TS CRENERATES WEW FUNCTIONS TN x. v
| THIS GENERATES EW FUNCTLONS T x, 7, i
SELECT EXPRESSION FOR THE INTEGRATION OF- e
’ AR ELEMENT
THESE WEW FURC”IOR ; EVALUSTE THE TERMS, ;
SUMMATE THE TERMS
SELECT A
MEXT T )
CRIME :
B BAVE ALL THE ELEMENTS OF ROW m BEEN 0
SELECTED?
¢ NO HAVE ‘ALL PRIkJ Iﬂxﬁs BEEN CYCLED?
‘Wﬂm—?ﬁ & "E ey % 7':/ ;-77: =
YRS /

SUMMATE THE CONTRIBUTION DUE T0 EACH OF THE

PRIME AREAS, THIS GIVES THE RJJ“UTRI‘D TER?

FLOY DIAGRAM SHOWING THE METHOD OF CONSTRUGTILON OF TERIf Ki ;

FIGURE 5.4

=143 -




It is thus possible to evaluate the relevant integral as its term is
formed.,
When this process is repeated for each of the prime areas then the

sumnation of the three results gives the value of element k . . This
: ‘ kN -,

process may be expressed mathematically as -

J=3 l=a ~ h=y Y X
- \ . Ty E= 3 “
Enn T e M " / / £0esy)dx.dy
J=1 14 e oo |
where
J = prime area number
M = +table of row constants for prime area J
N = <table of colum constants for prime area J
o = number of different functions of x,y 'in table M
v = inumber of different functions of x,y in table N

A flow diagram given in figure 5.Lkillustrates the computational
approach adopted,
The M and N:tables f or each of the prime areas are given in- figures

5.8, 5.9, 5.10, 5.12,.5,13.

(5.5) The in plane displacement function

A curved plate with the same corner numbering and axes described
during the presentation of the out of plane displaceisnt,function is
shown in figure5.15. Each cornér of -such an eléieﬁ£ has tﬁo in plane
displacements, ﬁ parallel to thé‘xzaxis; éﬁd v parallél to the y axis,
The occurrence of-eight displacemgnts,/two at.each cofner, permits the
use of a four termed polynomial to represent the variation of displace~

ment of each .component,

Since continuity is desirable between adjacent elements it is neces-

- 1y -
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TN PLANE DISPLACEMENTS
. FIGURE 5.15 e




sary for each component to vary in:a/iinééfiﬁéﬁnef 5i5ng’the sides of
the element. If this is so then the coinoideﬁce of! displacéments at\the
joints will automatically ensure coincidence at all intermediate points.
Consequently the polynomial becomes limited to terms exhibiting such
linear variations; such displacement functions are:

U= oAy by X Ay tbauxy 5 i een (5.047)

s

v = a5 + a’s‘X + 37057 + aaoxiy ; : 7 ) ®.2© <5&li‘8>

These are the same functions as those normally used for a rectangular
plate and were first stated by Zienkiewioz(6) . If the co-ordinates. of
the four corners of the pléte are substituted into each of the expres-
sions the eight resulting simultaneous equations relate the displacements

to the constants a, to a,, These equations may be written in matrix form

as

(5] = Cla) St (59)

The matrices forming this relationship are given in full in figure5.16

As with the equivalent out of plane éxpfession it is convenient at
this stage to express the {g} vector as the subject, thus eguation (5.49)

-

becomes

] = Q"%?) :,' / L BaD)

Figure 517 gives this relationship in full which is identical to that

achieved when considering a rectangular plate.

(5.6) The in plane stress and strain matrices

When considering the plane stress condition the  in plane strains

are defined in terms of the displacements by the well known relationship

- 146 -




fll :J = 1 ﬁai—
u 1 X -
u3 1 Y 5
u, 1 X Y XY 8,
V1 1 8‘5
VZ s : X’ = E = = aG
VS - . - . 7Y [ a'? -
V] L : 1 X Y XY 2]
8] = ¢ {a}
NON-ZERO TERMS ONLY S her stiade et
FIGURE 5.16
coa _ L
a1 = 1 X ui
a, -1 1 u_
X £
a gl by B u,
Y Y :
a 1 =) 7o 1 e E u
* XXX XY ] *
a5 il v,
a ' 1 E v
G e -3-(— X 2 |
a -1 1 v
7 Y Y 3
a 1 -1 -1 1 v
8 - — fon — e 4
L e i X7 Ty

fa] = 07*{5]

NON-ZERO . TERMS: ONLY -

FIGURE 5,17




€_ ~811/6‘-}.{ ’ 13/?

X
8“‘"" = aV/a-Y. e o e (5051)
Y
Y_ _ 0w/ 5 + 0v/ 9

Xy

General expressions will now be derived for these strains; recourse

being made to figure b2, It is cliear that from equation (5047)

u = u(x,y)
.0 .
Consequently to obtain f% aad 2% the chein rule must be invoked; hence
oY X
du du @x\; 8u\\ d e @
— 50 T do——e ";_X_; i coe (5052)
oY ox ~adY -9y aY =

and

au Ju ax au
A S il Gl
aX

ox  0X dy

e A

Similarly equation (5.48) makes it clear that
Vo= V(X>Y)

Soto obtain QX, and \ggnfthewchain rule must once again be used, hence
X

oY a
_a:‘:’. & _er i -?:25 . _?_lr . .Q:X‘: i O Bl - o (5 °5L¥>
oY 9% ay oy aY;’ . - : =
and .
..a.z = .Q“-v . _Q:}E + -«ax ° —Q‘E g . d / e e C (5 e55)
ax dx 9X oy 9X.

Now substituting equations (5.7) and (5.4) into equation (5.54) and im-

posing the condition that x = 0 which is essential for the axes to be

tangential\thejfollowing\expr8551on is obtadined

.




Similarly if equations (5.6) and (5.3) are substituted into equation

(5.53) and with x put equal to zero then

gu R du : :
— - © = &, = e - 3 - = e (5"5)/)
% Rey|  ox 5 A g

Finally if equations (5.55) and (5.52) are summated and the results of

equation (505), (5.4), (5@6)~and (5.7) are subsfi#uted,then the result,

once the condition x = 0 is imposed,is

eee (5.58)

+-—-
X oY R-y | ox 3y

v Ju R } dv - .du
gy S S A ApnaA- v
XY

Partial differentiation of equations (5.47) and (5.48) (whioh are the
in plane displacement functions), in accordance with the formats given
in equations (5.56), (5.57) gnd;(ﬁ.B&)ersults in three equations which may

be written in matrix form as

el - L la) L e

“——— e
N

These matrices are given in full in figure5,18 and relate the three
strains to the eight constants, ,
If equations (5.50) and (5.59) are cqmbihed then the eight unknown

constants in {a}] are removed and an expression relating the strains to

the in plane displacements at eabh corner may be written

2= B (8] e , /' cer (5.60)

The B matrix which is formed by the matrix multiplication L C™% is given
in full in figureb.19.

For the case of plane stress, three components of stress,

= 1 11—9* =







corresponding to t

are

le strains already d ered;

>l

ST

T—um
Xy

Finally the

Uz

tropic material, derived in standdrd text (9 3@15 glven by
{o} = D {e}
where
D o= Bl - ey
1T=p /
0 0
(5.7) The in plane element stiffness matrix
During\theOdisduSsioanoncerning,the ggufiof/plane stiffness matrix

the element
Because the
B matrix it
citly. The
of a curved

illustrated

If the

mensions remain fixed, then the shape of the

stiffness k for a curved plate was given in equation_(5,56).
in plane B matrix?ié{leggfcémgieérﬁhén the “out of plane

is possible to express the IeSult offéquaﬁion (5.36) expli-

terms of the resultlng k matrlxir/ : iniplaﬁe  stiffness

plate are gjven 1n‘f1gu195 Z the key to these terms is

in flgul%aBGZO,

radius: of a éurved plate is increased whilst its other di-

fiatéitends to a rectangle,

Consequently for 1afge valués Qf,radius in velation to these other plate

such stresses
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KEY 0 THE TERMS FORMING THE IN PLANF mI.ET’LNT STIFF\TESS MATRIX
OF A CURVED PLATE

‘ FI’@URE' 5.20

_— et ) r i s ; ;
BRI
(21) = 2R (Y-R)? 10%8(5?) * Beod DRy B2 Ay

Xye

22) = -R)? log / R y +R3 R /~,+/:  (o
(22) X?(\“ R)E1 Bl R _E_y‘g(_% ~%)

(31) = R? (Y-R) log_ (ﬁ% f},-:g(én f:‘w) - E ; 2:)’

XY=
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(53)

(54)

(64)

(65)

(66)

H

i

1
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R-Y Vi ¥R
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tiffness matrices of

dimensions both the 4n and ouf‘of D
the curved plate ought to resemble the equivalent reotangular,plate"SfiﬁﬂQ\

dess matrix. This phenomenon is investigated in chapter 7 .

(5,8) The out of plane displ@éement/t}aﬁsform@ﬁibﬁimainix

The out of plane element displacements afé/reléﬁivéVtQ a set of

local axes, It is desirable, however, to express such displacements in

terms of a set of global axes, ~Thi§¥felaf EnSﬁip1isiuéﬁaliyféxpressed

mathematicalily as:

7 = AX e e (5620

A curved plate with local axes p, g, r is shown in figﬁre 5.22 A further,

intermediate, set of axes a, B, v are also shown in the figure, and the

displacements will firstly befféié£éd“£o;tﬁéééif?SuchféfféiationShip is

given by

The matrices comprising this equatioﬁ‘afe given in figufe 5.2%, If the
intermediate a, B, y axes are related to the global X, Y, Z axes then the

required relationship may be formed, Consider then figure5.2, which shdwsl

the intermediate axes, taking a general ofientatidn within the global

space; then for jeint 1; - f 't§

When this is expressed in matrix form for the four corners-of the plate

the relationship is shown in figure 525and is given by

.9.“. = .V-'.:jg - ” . i : ek : ¢.s.0 (5 061{‘>
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Thus the combination of equations res a relationghip

in the form of equation (5.62), The A matrlx,,knowh.as the out_of]Planel

displacement transformation matrxx is iorned by the u.v multlpllcaLLon.

The full matrix form of the eguation i§/giVenﬂin figure 5,26 with the key

to the term in figure .5.27.

This matrix can-be Compared to the rectangular plate Qut of plane

displacement traﬂSCormatlon mat- lf D and a (see flguxe 529 are paral—

X

lel, and g and B are parallel then 31nce the plateiéid along the axes

are the local rectangular platéﬁaxes the A matrlx for the curved plate

will become the A matrix for the rectangular plate Clearly this will be
so when theta eguals zero, and if this condltlon is substituted 1nto tnu
matrix shown in figure 5£5then the reotang@lah plate disPlaoement\traﬂsééjl

formation matrix is obtained,

(5.9) The .in plane diaplacéménf,jréﬁsﬂorﬁétida;métrix/

This matrix is formed inzalslmllar maﬁnérrtbathataé@plOYGd in the
out of plane . case. A curved plafe with‘léCal'aiéé and - in plane  dis-

placements is .shown in figure 5.28. Onéeragain,two transformations are

made, the first in the form of equatidnr(5,65) the matrices of whl,h are

illustrated in full in figureb.29, The second/transformationufrom\thew
intermediate o, B, y axes to the global X, ¥, 7 axes which are showniin;\

figure 530 1is of the form alrea@y expfessea/ihléquatjon (5,64), figure5.31

gives the full matrices formlng thls expr6551on Iﬁfé,élmilar manner to
that discussed previously equatlons (5 63) and (5 64) afe oonbjned to give
an expression conforming to equatlon (5 02) ‘/mhe matrlccs comprlslﬂg
this equation are given in £ig ureKSJQ Whléh Should be read in conguﬁctlon
with figure 5.27. . :

Once again parallels may be draw£ béé&éénithé curved and réctangular"

plate displa@ement;tradsfotmétignwmatrices. If the condition.of theta
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CURVED PLATE PROGRAMMING

(6.1) Introduction

curved plate theory, Which*is7éﬁ:nssentiaL,pferequ1’ téitb*%he programming

of a curved plate package, had not been d.veloped As - result of that
derlvatlon in chapter 5 it is now POS&lblO to carry i the PTOﬁrdﬂmlﬂ’\\w

steps necessary in the formatlon of such & ourvea plate paoka The nn

tents of this chapter are concerned W~thf

Lhefdopuweltatlon of that packagebu

(6.2) General Consideratioﬁs 

An example of the typc

pla e undel‘cons'deratlon is illus-

g By

trated in figure 6.1. Its four corners are a851gned the pumbers one to

four such that corners one and %ﬁoﬂbcbu fter'edged’and,corners

three and four on the inmer edge, Lhe ]ocaW co—OWdlnate axes P tdnﬁcntlal

Q, radlal and R, Wlth or1g1n at corner oneare also shown in the flgure,

When 51ch a plate s subgeoted to Joad;ng out of its plane then tne' &V

four corners ecould experience out of plane dlsplaoemenis, such dlspldcements

Tn order that such dls lace ents mwj be caloalﬂ+ed lt fs necessary to

have. -

matrices'for‘such an element9 The manner 1n/Wh10n thlS is oarrlei out has



THE IN PLANE DISPLACEMENTS RELATIVE TO THE LOCAL AXHS FOR CORNER

ONE OF THE CURVED PLATE




4- s a - £ 9 7 +the A7 « - - - g L ] g

to a set of global axes the displacement transformation matrices need to
. —— . P .

be available. These matrices for both the in and out of plane cases have

e o N
been derived in chapter 5 and need not be repeated here,

(6.3) Curved plate stresses

The stresses within such a plate are calculated by evaluating the

DBAX multiplication. Consequently the DB matrix for each plate has to be
formed. The in and out of plane B matrices were formed in chapter 5 and
will not be expressed explicitly here, The format of these matrices is
given in figures 6.3 and 6.4, the code numbers shown in place of the terms
are used in later figures. The DBA multiplication for one plate yields

four blocks illustrated in figure 6.5. Each of these blocks corresponds

to a corner of the plate and comprises a maximum of six columas each corres-
ponding to an unsuppressed degree of freedom, ZEach row relates 1o a
resulting stress.

Each of the four out of plane DBA blocks are now related to a single
general block, as are the four in plane DBA blocks. The manner in which
this is done 1s identical to that adopted for other elements and has been
described in chapter L., Figure 6.6 gives the general out of plane DBA
block and figure 6.7 relates all the different codes for each of the blocks
to this general block, In a similar way figure 6.8 gives the general in

P

plane DBA block and figure 6.9 the table relating the different codes to

the four individual in plane blocks.

The programming of this stage is written so that the stresses may be

either at the geometrical centre or the centre of gravity of the plate.

(604) Direct evaluation of the A'kA contribution

The joint numbering constraints adopted for rectangular plates would
be too restrictive if applied to curved plates. In order that a group

boundary may split a plate either radially or circumferentially two
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numbering options have to betp‘p s a curved plate

as well as two sets o
o one of

e nfsﬁbﬁblooks contributed

related. Figure 6.11 is the general out sub-block, which when

used in conjunotioﬁ Wiﬁh\figures 6. > and .13 produces all the require

sub-blocks. Similarly figu

in plane sub-blocks,




SUB-BLOCK OLIENTATION WHEN




£ 1Ly XALy Ly JAM, | Ty XA, L, .CA L, .CB L, .CC
YopM, XAL, My oA My My XA I, M, .CA M, .CB My .CC
7 g XA T, Ny XA M, W, A Ny N, .CA N, .CB N, .CC
L, +C& L, .CT Ly «CK
OX IJi © CD I"’Il e CD ]'\Tl ° CD + + +
L T L © J )i‘c‘-
Ly oCH - Liy CL
G 1 7
| M, .C M, .CT M, .OX
Oy | Ly CE M,y o CE N, .CE + + +
My . CH My .CJ My o OL
N, .CG N, .CT N, .CK
0, | Ly.CF M, JOF N, .CF + + |+
' 9 7 ’
Ny .CH Ny .CT N, .CI
GEFERAT, RECTANGULAR AFD TRIANGULAR SUB-BLOCK FOR THE OUT OF PLANE OVERALL
STTFFIESS COSTRIEUTION OF & CURVED PLATE.
TOR A TRTANGULAR SUB-2LOCK CONSIDER ONLY THE LOJER TRIANGE TERMS OF THE
GAVERAL SUB-BLOCK,
FOR THTSRPRETATION THIS FIGURE SHOULD EE READ I CONJUNCTION WITH FIGURES

6,12 AND 6,13,

FIGURE 6 .11
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TRIANGULAR SUB_BLOCKS

hh j’j_

1,1 Lk
XB | - -
Xc |- -
X 2,1 0 5k
XE 3,1 6,4
XF | 2,2 5,4
X 2,5 5,6
¥H | 3,2 6,5
I |3,5 6,6
LA Lg Ly
MA Mg My
N, | Na W
LB Lg Ly
My | Mg o Mg
S P
Lo | - -
My |- ~
L -
Ly | - -
My |- -
Ny | - ~

CODE VALUES REFER TO TERMS WITHTN THE OUT OF PLANE ELEMENT STIFFNESS MATRIX

F PLANE DTSPLACEMENT TRANSFORMATION VATRIX
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CH

CA

CB
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7

X
L % O Oy O3
LA,GA MA;GA NAOGA
+ ' + + 0 0 0
B MB GB N.B,.GB
xC 1 .G ' .G
LA,CC BA GC NANGC
+ + + 0 0 0
LB,GD MB.GD NBDGD
Y {_\ ‘r I'T\ \ M
LA.GL NAoUb PAoCE
+ + + 0 0 0
LBBQD MB.GF NB.GF
0 0 0 -0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

GENERAL RECTANGULAR AND TRIANGULAR

STIFFNESS CONTRIBUTION OF A CURVED PLATE

SUB-BLOCK ¥

OR THiE IN PLANE OVERALL

'OR A TRIANGULAR SUB-BLOCK CONSIDER ONLY THE LOWER TRIANGLE TERMS OF

THE GENERAL SUB-BLOCK

FOR INTERPRETATION THIS FIGURE SHOULD BE READ IN CONJUNCTION WITH

FIGURES 6.15 6.16

FIGURE 6.14
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|

GA' = LC "le\k + LD “DR > GB = LC .PC + LD ,PD H
GC = M ¢ JPA + M.D LBy GD o= M c bC o+ MD .PD ;
GE = Np.PA + N..PB ; GF = Ny .PC & NJ.PD ;

KEY TO VAIUES IN RPICURE SN

FIGURE 6,15

g TRIANGULAR SUB-BILOCKS RECTANGULAR SUB-BLOCKS
O
“ | hh JJ pp 11 Jh ph DJ ip 1h 15 1p
PA 1,1 2,2 555 Lol 2,1 3,1 3,2 2,3 ly 1 Ly 2 L,3
PB | 5,1 6,2 7,3 8,4 | 6,1 7,1 2 6,35 8,4 8,2 8,3
PC | 1,5 2,6 3,7 4,8 | 2,5 3,5 3,6 2,7 4,5 4,6 4,7
PD 5,5 6,6 7,7 8,8 6,5 7,5 7,6 6,7 8,5 8,6 8,7
Lj‘\ Lz L4A Lz Lé_ Lz Lz L’L Lz LZ IJQ_ Lz
:M_A_ :Mg IVI;A_, }42 :Mé: N[Z Mz M{{_ Mz I\/Iz Mé__ Mz
NA N, N, Ng N, Ny Ny N, N, N, N, N,
LB Lg L, Lg Ls Lg Lg Ib Lg Lg Ls Lg
MB Mg Mg Mg My My Mg M5 Mg Mg M5 Mg
Ny | Ny N, Ng Ng N, Nj N, Ny Ng N, Ng
NC N, Ny Ng Ng N, Ny Ng N, N4 Ng N,
MD Mg 5 Mg My My Mg Mg Mg My My My
ND Ny Ng N4 Ny Ng N, Ng Ng N, N. N
CODE VATLUES REFER TO TERMS WITHIN THE IN PLANE ELEMENT STIFFNESS MATRIX k,

AND TERMS WITHIN THE IN PLANE DISPLACEMENT TRANSFORMATION MATRIX

KEY TO TERMS FORMING EACH OF THE IN PLANE SUB-BLOCKS

FIGURE 6.16
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COMPUTER TESTS ON THE CURVED PLATE RBLEMENT

(7.1)  Introduction

It is essential that the programming of the in and out of plane
curved plate stiffness matrices is rigorously checked. In addition to
inspecting the logic of the program it is also desirable to investigate
the numerical values of individual terms. One way in which this is cone
is to compare the stiffness matrix of a curved plate to that of a gec-
metrically equivalent rectangular plate.

The approximate nature of the displacement function precludes an
exact analysis. Usually the more elemeats into which the structure -« 2 Ve
ided the more accurate is the analysis. The subdivision of a plate
into several meshes permits the plotting of the relationship between
the number of mesh elements and the deflection at a point. It will Te
shown that this graph follows the accepted trend.

Finally the comparison between a set of independant results, a
theoretical series solution and a finite element analysis was carried

out.

L?.Z) Testing the out of plane element stiffness matrix

The programming of the theory developed in Chapter 5, to form the
out of plane element stiffness matrix, is a complex operation. It is
consequently a difficult task to ensure thalt such a program is operating
free of all errors, Initially,if one considers the on diagonal terms of
the matrix, then the two ternms corresponding to the itranslations
of the two nodes on the outer arc should be identical, as should those
corresponding to the two nodes on the immer arc. In a similar mamnmer
compariscns may be made between the terms relating to the two rotations

0y andg,, , (see figure 5.1 Chapter 5).
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Once these conditions have been shown to be true then the actual
value of such terms may be investigated. Tf one considers a curved
plate with its radius very much larger than its other dimensions, then
such a plate will be similar, both geometrically and behaviourally, to
a rectangular plate. Consequently the stiffness matrices of each should
be comparable. An investigation was made into the behaviour of the on—
diagonal terms as the radius of curvature was reduced, as far as possible
the other plate dimensions were maintained. Whilst the radial length
and the cord length can be retained constant, the length of the plate
along the arc will increase as the radius decreases, consequently the
curved plate will become less like the rectangular plate.

The ratio of the radius (R) to the radial plate dimension (Y)
gives a non dimensional quantity, which, when plotted against each of “he
six sets of two unique values of on-diagonal term, for varying radius
values, yields the graphs given in figures 7.1, 7.2 and 7.3. Bach
graph comprises three lines; the unbroken line representing the value
of the on;diagonal term for the geometrically equivalent rectangular
plate; the broken line represents the two on-diagonal elements corres-—
ponding to the nodes on the outside arc of the plate; the chain dotted
line is that for the tﬁo nodesg on the inside arc. It can be seen from
these figures that for R/Y ratios in the order of fority the curved
plate very closely simulates the rectangular plate. As the radius is red-
uced the characteristics of the two plates diverge. For R/Y = 1 the
on—-diagonal term becomes infinity, it can be seen in all three figures
that near this region the curves become asymptotic to the ordinate axis.
The nodes on the inside arc of the plate will behave in a different
manner to those on the outside arc. This is due to the fact that when
the radius is very large both curved faces tend to straight lines,
whereas when the radius decreases the inside face becomes relatively

more curved than the outside face and consequently will exhibit different
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S

behaviours haracter: a+: 4 : : ‘ .
vioural characteristics, whicn will become more marked as the R/Y ratio

Similar investigation has confirmed that the off diagonal  terms
also converg

reduces,

e to the corresponding terms for g rectangular plate,

(7.3) Testing the in plane element stiffness matrix

The theory associated with the formation of this matrix is more
straightforward than that for the out of plane case. It was feasible
to express each term of this matrix explicitly which had the effect
of gimplifying the programming and testing.

Comparison of the terms, comprising the hatched areas in figure 7.4,
for both & curved plate and a rectangular plate in plane stiffness

(31)

matrix shows that in this area these two matrices have identical
algebraic expressions. Such terms are independant of all plate dim-
ensions, except thickness, they vary only with that dimension and the
material properties. Examination of both matrices shows that where two

or more terms have identical expressions in the rectangular plate mateix,
then these terms also have identical expressions in the curved plate matrix.

The eveluation of stiffness terms for a curved plate and an equivalent rect—

angular plate gave results which became identical as the R/Y ratio increased.

(7.4) Investigation into the effect of mesh refinement on the com—

puted deflections

Once it had been determined that the stiffness matrix of a single
curved ﬁlate element was being computed satisfactorily, then the next
objective was to investigate the effect of analysing a structure com-
prising a mésh of the elements.

The displacement functions adopted during the formation of the in
and out of plane stiffness matrices were not exact. If these functf
ions had been exact, then, providing the support and load positions co-
incided . with node positioms, it would have been possible to accurately
analyse any size curved plate using only one element. As this is not

the case it is necessary to employ a mesh of elements to simulate a
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/LE.ADING DIAGONAL

MATRIX SYMMETRTICAL ABOUT THE
LEADING DIAGOIAL

FOUR ROWS

EIGHT ROWS
—iva
B

SCHEMATIC REPRESENTATION OF THE EIGHT BY EIGHT IN PLANE ELEMENT STIFFNESS

MATRTX OF A CURVED PLATE
THE HATCHED BLOCK IS OCCUPIED BY TERNMS WHICH ARE IDENTICAL TO THOSE

IN THE EUTVALENT RECTANGULAR PLATE MATRIX

FIGURE 7.4




curved plate structure. The number of mesh elements required to give

a good representation of the true function is an indication of the

accuracy of the assumed function., The characteristics of 1his conver-

5 J - -1 -
gence are dependant upon the shape of the mesh elements, thus as mesh

refinement progresses the ratio of the side lengths of each element

should be maintained constant.

- . . . . . . .
A piate, whose properties and dimensions are shown in figure 7.5,

wag analysed using five different meshes. The plate was assumed to be

TS

rigidly supported at its four corners and lcaded on the extremes of its
radial contre line. These positions were chosen so that the load and
gupport conditions would be suitable for all meshes. The radial centre

line ig an axis of symmetry, it is therefore only necessary to analysze

one half of the plate providing the applied loading is also symmetrical.
The five meshes adopted are shown in figures 7.6, 7.7, T8, 7.9 and
7.10 with the elements marked on the left gide of the céntre line.
In each case the number of radial divisions is equal to the number
of circumfrential divisioms.

The vertical deflection of the radial centre line of the plate for
each of the meshes has been plotted in figure 7.11. This diagram
shows that the coarser meshes give lower deflections than the more
refined meshes. Thege results are presented in a different form
in figure 7.12 where the deflection of the node on the outside edge
of the centre line is plotted against the number of elements comprising
the mesh. From this diagram it can be seen that when the mesh is init-
ially refined there is a significant change in the computed deflection.
During continued refinement this change became less pronounced in

gpite of the Tact that with each refinement the number of elements is

The graph shown in figure 7.12 appears to be con-

app ximately doubleds,

N

Ashed whether this is the

olution, -

ruetdeflections as g
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This sort of graph may be used to determine ‘the degree of

accuracy being achieved for a given mesh, or to aid the selection of ;

a mesh suitable for an analysis.

One final point on mesh refinement is that the amount of computer

time and storage is a function of the number of elements forming a

1 A n R . ) i
mesh. Therefore as the refinement is carried out a point may be reached
at which the increase in accuracy is not enough to justify the increase

in computation.

(7.5) Comparison between theoretical results and previous experimental

work

The testing of the element so far has been pfedominantly of a
qualitative nature. A useful exercise woculd therefore be to carry out
a computational analysis on a problem which has been analysed exper—
imentally.

(1)

Coull and Das have presented a paper giving an exact solutiorn

for the analysis of isotropic curved bridge decks in the form of an
.infinite Fourier series. They compare this solution with test results
obtained from two curved plate tests. One contribution to the dis-
(32)

cussion of this paper was presented by Jenkins and Siddall who

adopted a finite element technique to analyse the same problem. The

(33)

curved element used in their analysis is one detailed by Siddall .

The formulation of this element makes use of a displacement function

obtained by substituting, for x and y in terms of polar co—ordinates,
in the general out of plane rectangular plate displacement function.

This results in the following expression:

; 2 5in®0 + A, r® sind cosd
w = Ay, + Ay T 8ind + Ag T cosd + A, r® sin®0 + Ag r® sin

. . )
3 5in%0 - 8 = 0 + Ag 7° 5in®0 cos®0
+ Ag r? co0s?0 + A, r® sin0 + Ag r® 5in®0 cos 5

< A 5inS¢€ s0 - o % 5ind cos®6
+ Ay, r® cos®0 + Ayy TT osIN 0 cosO + Ajg s

where 20 is the angle subtended by the element. - .

: . . m . | . L . . 5 (e o
The function is, however, non—conforming in translation, this is because
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on any 6 constant line the di

A splacement curve is a quartic. Complete

conformity of translation requires that this curve ig cubic as is the

case for the author's element detailed in Chapter 5.
The papert?) 1 '
paper y Coull and Das concerned with the tests and the

theoretical series solution has been reviewed in the introduction to this

thesls. A comprehensive description of the teslts will not be given here,

guffice it to say that two curved plates of different dimensions, one A

made of asbestos cement and the other perspex were tested in Moire's app--
aratus. Both radial edges were supported along their length in such a
marmer that the only permitted movement was a rotation about those
edges. Three load cases were considered each comprising a single point
load applied perpendicular to the plane of the plate. The three
loading positions were at the outer edge, mid-radius and at the inner
edge of the plate's radial centre line.

Comparison is made; between the author's finite element solution,
Siddallfs finite element solution and Uoull and Daé' series solution,
in the table given in figure 7.13. 1In this table the predicted def-
lection at the outer edge of the radial centre line is indicated for
eaéh theoretical solution. In order that the finite element solutions
might be comparable the‘author adopted the mesh used by Siddall,
namely six circumfrential divisions and four radial divisions resulting
in a twenty four element mesh. The values shown in the table but not
calculated by the author have been measured off the graphs presented
by Sidda11(33>. It may be seen from the table that in the case of the
asbestos cement model, which had an inner radius of thirteen inches and —
an outer radius of twenty six inches, that Siddallfs results compare very

favourably with Coull and Dasf. The author's results are consistently

e ~ 4 -n 1 o
below these two set of values. The perspex model, inner radius seven

inches outer radius thirteen inches, was the other plate analysed. In

this case the author's results and those of Coull and Das are in close

agreement especially when the load is applied at either edge of the

0 10 BN
VLY




—
Bray Jenkins & Coull & Load
Siddall Das Position
Asbestos Cement 1.56 1.80 1.80 a
Model 0.26 0.36 0.36 b
0.26 0.36 0.35 c o
Perspex 74.0 87.0 74.0 a ;;
Model 3760 45.0 48.0 b i
16.0 19.0 16.0 C

Deflections are given in inches x 107°

a. Load at the outer edge of the radial centre line

b. Load at the mid-radius of the radial centre line

c. Load at the inner edge of the radial centre line

PREDICTED DEFLECTION AT THE OUTER EDGE OF THE RADIAL CENTRE LINE

FIGURE T.13
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radial centre line. Siddall's solution indicates that the deflections
would be larger than those predicted. by both of the other methods.

One explanation for some discrepancy in these results is the manner
in which the edges of the plates were restrained. In the author's
analysis, simulation of the true experimental support conditions
would have meant supression of non-global degrees of freedom. It was
therefore decided to permit rotations about two orthoganal axes at
each joint on the support line. This would, however, have the effect
of permitting a rotation to occur about an axis at right angles to the
support line. Coull and Das were able to simulate their experimental
conditiong, £iddall, however, does not state the support restraints lLe
imposed.

The results obtained from the author's twenty four element mesh
are presented graphically in figures 7.14 and 7.15. In these illus-
trations the authort's results are plotted as are Coull and Das'! exper-
imental and theoretical lines for both the asbestos cement and the
perspex model. The author carried out a further analysis with a seventy
two element mesh, six radial and twelve circumfrential divisions, the

results are presented in figures 7.16 and 7.17.

There would appear to be no significant difference between the

results given by the two mesh patterns. The finer of the two meshes

being marginally less close to the experimental results.

Generally the results agrse more closely in the case of the perspex -
model, especially when the load is applied at either end of the radial
cenlreline. When the load is at mid—-radius the deflection is predicted

to be less than the experimentally measured amount, the deflected shape

is, however, similar. This similarity in deflected form is also the

asbestos cement model where all the load cases under estimate

g S . % en enrtfa

case for the

the recorded deflecltione
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CHAPTER 8

EXPERTIMENTAL CURVED PLATE TESTS

(8,1) Introduction

It was decided that four tests should be carried out to compare the—
cretical results with those obtained experimentally. The aim of these tests
was to measure deflections and strains at positions within each test plate

o that this comparison could be made.

(8,2) Material of the plates

The material selection was governed by two criteria. Firstly as
two edges of each plate were to be circularly curved.a matérial which
could be accurately shaped was essential. Secondly it was decided that
the loading would take the form of dead weights, this restricted the
maximum load, consequently the plate should not be overstiff.

Three materials were considered, steel, perspex and aluminium.

. Steel was dismissed on both counts. It would have been difficult to cut

to the desired shape and its high Young's Modulus value meant that a
very thin section was required. The most attractive material from a
stiffness point of view was perspex, cutting it to shape would have been
a straightforward operation. It has, however, two cdisadvantages which
finally ruled out its use. It is a poor heat dissipator and it has a

tendency to creep. The heat dissipation problem causes complications when

using electrical resistance strain gauges, these could have been overcome

by using a separate dummy gauge for each active gauge. The third mat-

erial considered and finally selected was aluminium. With a Young's

Modulus value approximately one third that of steel it was deemed to De

well suited to the application of dead weights, furthermore cutting it

accurately to shape was feasible.




(8,3) Control tests

These tests were carried out to determine the Young's Modulus and
Poisson's ratio value of the material.

A strip 1 m. long and 25 mm. wide was cut from the same aluminiun
sheet as the plates. Two electrical resistance gauges were fixed to
each face of the s%rip at its centre line. The orientation of these
gauges, identical on each face, is shown in figure 8.1. A bending test
was then carried out on the strip in the following manner. The strip
was supported on knife edges and subjected to point loads at one third
and two thirds span positions, see figure 8.2. BEqual load increments
were applied, after each increment the four strain gauge readings were
recorded. This process was continued during the whole of both the load—
ing and unioading cycle. A graph of the average loangitudinal strain
plotted against the applied load is given in figure 8.3. The Young's
Modulug value was calculated in the manner shown in that figure. A
graph of the average longitudinal strain plotted against the average
lateral strain is shown in figure 8.4, the slope of this graph gives the

value of Poisson's ratio.

(8.4) Preliminary considerations

Tt was decided that two plates of different radii but having the

same thickness would be tested. The dimensions of these plates are shown

in figure 8,5,
A theoretical finite element analysis restricts the application of

loads to nodal points. In order that flexibility of analytical mesh

may be maintained a single point load system was adopted. An illustrat-
. C e . . .
ion of the method used to apply such a load is given in figure 8,6, Here .

it is seen that the weights rest on a load support plate. This plate

. _ . - dsa r d of a circular rod which
is rigidly fixed a short distance from one en

is maintained vertical by a collar. The ccllar is rigidly positioned

. 1 Aas -3 ~ ~ . _1 o avnl i
by a stabilising arm and is a gliding it on the rod. The load applied
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T R

to the support plate is transmitted to the curved plate under test

through the domed end of the rod.

Experimental deflections were required for. later comparison with
theoretical deflections and were measured by dial géﬁées with a sens-—
itivity of 0.01 mm. per division.

’ Strains were measured by rosettes of three electrical resistance

gauges, the relative orientation of these gauges is shown in figure 8.7,

The positions of the rosettes on cach of the test plates are given in

figures 8,10 and 8.11., In each case one gauge of a rosette is tangent—

ial whilst another is radial to the test plate. This overall orientation

was chosen so that it was compatible with the direction of computed theor—
etical stresses. Two of the rosettes were placed symmetrically about the
plate's centre line thus acting‘as a check on each other.

Two support conditions were adopted, pimmed and fixed. The pinned
condition was simulated by supporting the plate on four ball bearings,
two on each side as shown in figure 8.8. These ball bearings were count-
ersunk into square steel rods which were rigidly fixed to the testing rig.
The fixed supports shown in figure 8.9 were implemented by rigidly bolt-
ing two square steel rods together and gsandwiching the plate between

them. Once again the rods were rigidly fixed to the testing rig.

(8.5) Testing the plates

The positions of the support and load points the deflection gauges

T | ~t e acl P +
and the strain rosettes should be related to the theoretical mesh adopted

for the analysis. It has been shown in Chapter 7 figure 7.12 that the use

of a seventy two element mesh, for this type of structure, will yield res—

ults which will nobt be significantly altered by further mesh refinement. »

The support condition and loading mode is symmetrical about the radial

analytically, it is only necessary

centre line of each plate therefore,

to congider half of each plate. Figures 8.10 and 8.11 show the meshes,
ngider hall ol ea i

. O : ed h plate.
the node numbering and the rosebte positions adopted for each pla A
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total of four tests wer ; .
¢ conducted. Tests one and two were on the

large radius plate. The support and load positions for test one are

shown in figure 8.12 and for test two in figure 8.13. The support
conditions and load position for tests three and four, on the smaller
radius plate, are shown in figures 8.14 and 8.15.

Tt was decided that the maximum permitted deflection should be ap-
proximately equal to the thickness of the plate under test. This 1is

desirable because thin plate theory has been the basis of the assumptions

made in the theoretical derivation of the curved plate stiffness matrix.

The theoretical mesh was marked on each plate and the plate was

positioned on the test rig. Care was taken to ensure that the supports
were accurately positioned and in the case of rigid suppor{s that a

true fixed condition existed. Initial readings on the deflection and

strain gauges were recorded. The loading rod was then positioned on the

required node and held in a vertical position by the collar which in

turn was located on one end of the stabilising rod (see figure 8.6).

To facilitate free movement of the rod through the collar both were

oiled and throughout the loading and wmloading cycle a constant check was
made to ensure that no load was being carried Dby the collar. With the

loading rod positioned the deflection and strain gauge readings were

again recorded. It was envisaged that between six and ten equal load

inerements would be satisfactory. The value of the increment being

obtained from a calculation concerning the maximum permissible def-

lection discussed earlier. After each 1oad had been applied and a check

made on the loading collar the system was allowed a short time to react

to the load, after which the deflection and strain gauge readings were ' ,
, alte

. « Pape ino all increments of both the
recorded., Thig process was repeated during a =

loading and unloading cycle.

: > wcte i 2 1 1 manner.
A] ) ST+ B au € (i 1Cent ica C
rour t() L)-t ¥ were Con\i C an
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¢z TEST THREE

© DIATL GAUGE POSITIONS
POINT LOAD APPLIED AT D7
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FIGURE 8,14
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£§f6> Comparis

son betwee oer .
n_experimental and theoretical results

The meshes shown in figures 8.10 and 8.11 were those used for the

analysis of the %tests. The plates were loaded in an out of plane manner

so for the purposes of the S e
purp e analysis the in plane movements were supressed.

A comparison between independent experimental deflections and theor-—

etical deflections predicted by the author has already been made in Chap-
ter 7. There it was shown (see figures 7.13 to 7.17) that in both the case

o4 Ny Ey s 4 : 4
of the perspex and the asbestos cement plate the poorest agreement was exper—

ienced when the load was positioned at the middle of the radial centre line.
In order that this discrepancy might be further investigated the load

was applied to the author's test plates at the middle of their radial
centre lines. One of the deflection gauges was positibned directly

beneath the load on the underside of the plate and it is the deflection

at this point which will be investigated for all four tests.

Graphs of the deflections under the load for tests one, two, three
and four are given in figures 8.16, 8.17,8.18 and 8.19. In these
graphs the measured deflections during the loading and unloading cycles
as well as the theoretical deflections have been plotted., Tests two
and four produce the best agreement between the expzrimental and the
theoretical deflections, both of these tests have pinned supports. In

test two both of the values are identical (see figure 8,17), figure

5 G

etical deflections

8.19 shows that in the case of test four the theor

are ninety eight percent of the experimental. The tests involving fixed

b - 3 T
supports namely one and three exhibit a greater discrepency between

experimental and theoretical deflections. In the case of test one the

. ; . C ; - of 11 perimental whereas in
theoretical value isninety one per cent of the exp

test two this percentage increases toninety six. One contributing fac—

tor to the lack of agreement between these latter results is the fact that 5{ 17

a1though continuous along each side of the plate,

the fixed support,

could only be theoretically simulated by a fixity at each node along the
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line of support. In the case of the pinned supports these only existed

at nodes and consequently could be accurately simulated. Furthermore, in
. . ,

praotige a truely fixed support is harder to create than a pinned support

The comparisons made in Chapter 7 were solely between deflections,

one reason for this experimental work was to investigate the accuracy of

the computed stresses within a curved plate element. The theoretical

analysis yields three stresses at the geometric centre of each mesh
element, one of these stresses is radial and another is tangential to the
plate. One way of representing the state of the theoretical radial and
tangential stresses in the plate under a given load is to interpolate
between the theoretical values obtained for each mesh element and form a
graph of stress contours. The symmetry of the plate, sﬁp?orts and load,
means that such contours will be identical on each side of the radial
centre line. Consequently the contours have been plotted for the radial
stresses on one half cf the plate and the tangential stresses on the
other. These contour graphs for tests one, two, three and four are shown
in figures 8.20, 8.21, 8.92 and 8.23. Superimposed in the stress fields are
the values of the stresses which have been calculated from the experimen-
tal strains. Such experimental strainshave been obtained by calculating

the begt straight line through the strain readings recorded during the

L . , . » ]
. . . . ) ‘ o
test, then using this line, in association with the loading for which t

theoretical stresses have been calculated to give the experimental value.

The graphs show In a qualitative way that the experimental stresses
el S >l B

and the theoretical contours appear to be in good agreement. These Tlg-
q,uant:hfm,

i i1 1d sseasment of the accur—
ures do not, however, easily permit a grandaldve as B

ni en v be obtained from the graphs shown
acy achieved. ®Such an assessment may

] 1 S +e three and two, representative of each
in figures 8.24 and 8.25, here tests T 5 ,

of the two plates and support conditions have been selected for further

> i " ir en ial Cel’ltI‘ .-[ e

. Fioure 8.24 concerning test three shows the tan—
have been congidered. FigW
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ROSETTE

FIGURE 8,23
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gential and radial stresses along this line and figure 8.25 illustrates

the same for test two. In each case the stress calculated from the ex—

perimental strain is also plotted. Tt can be seen that the experimental
stress shows good agreement with the theoretical stresses

The stress at a section is a function of the bending moment at that
section because the plate is of constant thickness, therefore, the shape
of the theoretical stress lines should follow the bending moment distrib-
ution across the circumfrential centre line of the vlate. The graphs
therefore follow predictable trends. The close proximity of the exp-
erimental points to these theoretical lines precludes a numerical ass—
essment of the accuracy, suffice is to say that in the fegion of each
gtrain rosette the measured and calculated stresses show good agreement.
It would have been advantageous to have several more strain rosettes
along the circumfrential centre line so that a plot of the experimental

stresses along this line could have been made.

In conclusion it is perhaps fair to comment that considering the

relatively unsophisticated nature of the tests reagsonable agreement 1is
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CHAPTEI_{_Q

THE ANALYSIS OF LARGE STRUCTURES

(9 o] ) Introduction

The shell of an elsctrical precipitator and a skew concrete road
bridge were selected for analysis so that an assessment of the capability
and efficiency of the program could be carried out, A previous attempt
had been made to analyse these structures by Craig(5), the results ob-

tained were not, however, satisfactory, It was thought that the

complexity of the structures had been a contributing factor to this lack

of success, The use of these examples also facilitated a comparison of
computer %ime and store requirements and so permitted a quantitativeevalu-
ation of the extent of any savings.

(9.2) The electrical precipitator shell

Electrical precipitation is an efficient and versatile method of' dust
©cllection which is now commonly used to reduce the emission of guanti-
ties of fine fumes generated by various industrial processes. The
precipitator's shell or casing is usually constructed in steel or concrete,

Although it has the external appearance (see figure 9.1) of a normal

It

 building structure it is essentially a low.pressure chemical \(essel.

is for this reason that design restrictions not applicable to normal struc-

tures have to be considered so that the shell can function efficiently.

Most important of these are: the negative intermal pressure and the

internal electrical clearances between the shell and the high voltage dis-

charge systen,

(9.3) Analysis of the shell

An accurate analysis is desirable so that the structure can be produced

as economically as possible. The finite element method is particularly
ethods cannot accurately estimate

. . - . ional m
suited to do6 this because conventio
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the stiffeening effects of the steel sheeting

The axes of symmetry of the shell as well as the symmetry of the

loading permitted the analysis of only one quarter of the structure The

inite elem ideals . .
£1 ement idealisation of this quarter section into prismatic members

and rectangular plates is shown in figures 9.1 and 9,2, Subdivision in

the manner indicated resulted in 1029 unsugressed degrees of freedom, thus

necessitating the solution of that number of equations, The mesh adopted

is almost identical to that used by Craig(5); this is to facilitate the

comparisons mentioned earlier. The subdivision of the hopper needed to be
fairly fine whereas the wall only required a coarse mesh, Aconsequence of
this is that the larger plates on the wall spanned across several joints
on the hopper, this can be seen in figure 9.1.

To prevent overflow of store Craig was restricted to about eighteen
joints per group, This made the formation of groups in the region of the
hopper difficult, One of the failings of this carlier analysis was cver-
all lack of vertical balance., Craig states that it‘—appeared as though the
loads applied to the hopper were being ignored., In an attempt to over-
come this he divided the four columns supporting the hopper into several
members so that each joint group oi; the hopper contained part of a column,

This did not, however, provide a satisfactory solution. The restriction

on the maximum number of joints in a group was not so severe 1in the case

of the author's program, As a result of the problems Cralg experienced, 1t

was decided to put all the hopper joints into one group. This group con-

“tained 94 joints The remaining 103 joints formed another group and these

two groups replaced the Pourteen required by Craig.

The number of locations required to store the overall stiffness matrix

of the biggest joint group has a direct bearing on the amount of core

store required. The hopper joint group required 43K locations and the

other joint group 26X locations,., Here it can be seen that although the

hopper joint group had less joints 1t required substantially more core
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store than the other group, This is g0 because the interconnectivity of

of Jjoints is the important factor, The storage requirements could

have been significantly reduced had the structure been split into more

joint groups. Even with these large joint groups the total execution store
required was 83K locations. This compares favourably with Craig's 88K
locations requirement for the same problem with less joints per group and
less operations performed, (Previously plate stresses had to be computed
during a separate run), The amount of central processing unit (cpu) time

- ) = 2. 1. . .
required by Cralg was Jjust under thirty minutes whereas the present anal-

ysis required 5,5 minutes, This represents a saving in the order of 80%,

(9.4) Results of the shell analysis

Cralg states that there were two principal discrepancies in the re-
sults he obtained, Firstly the axial forces in the columns did not balance
the applied vertical loading and secondly the plate stresses were discon-
tinuous, erratic and often exceeded the permissible, Neither of these dis-
crepancies occurred in the current analysis.

The deflected form of the shell, when subjected to the dead and super-
imposed loads, is substantially the same as that found by Craig and is
shown in figure 9.3. Here it can be seen that the negative internal

pressures are causing the main body of the casing to deform inwards. The

most significant inward deflections occurring av the mouth and in the main

wall. The hopper, in which the precipitated material is held, awalting
) - b

disposal, is being deflected outwards, its side mwall experiencing larger
b4

deflections than its front wall.
These areas of relatively large displacement will now be considered
in more detail., Figure 9.k i1lustrates the deformation along the centre-
1ine of half of the shell looking in the direction of arrow C in figure
9.1. Here the deflections of the mouth and the upper edge of the shell
are shown. Although these movements are significant when compared to the
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deflections of most of the rest of the spe1] tne dimensicns given in th

figure show that they are in fact very small. The 4hicknes es of th
[ ] S e

plates in the region under consideration vary between 0.6 and 0 9 mm

Consequently these maximum deflections represent movements of up to 1

o5
times the plate thicknesses,

The other location of significant deflection is along the centre of

half of the shell, The displacements along this line, given by plane XX

in figure 9.1, are shown in figure 9.5, In figure 9.5 the movements

caused by the negative internal pressure are shown for the body of the
shell, those caused by the residue of precipitated material are shown in
the hopper area, Once again the numerical values indicated in the fiszure
illustrate the magnitude of the deflections, The plates in the wall area
are 0,9 mm thick and those in the hopper area are 0.6 mm thick. In each
case the maximum deflection is of the same order as the plate thickness,
Mention was made of the member forces and plate stresses., One check
on the overall egquilibrium of the structure is the fact that the axial
forces in the four columns should balance the applied vertical loading,
In the present analysis this was found to be the case. Examination of

“the plate stresses indicated that the discontinuous and erratic behaviour

experienced by Cralg was not present,
The results, therefore,
xhibiting favourable characteristics in res-

analysing the shell whilst e

pect of computer time and storage requirements.

(9.5) Analysis of the road bridge

The bridge was composed of four concrete box beams which supported

both carriageways. The structure was symetrical about its longitudinal

was only necessary to analyse one side, A

centreline and conseguently it
en in figure 9.6 where

p iageway is giv
typical cross section througn one carriageway

cated, Further details of the

. . 3 1so indi
Bome representative dimensions are a
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bridge are given in figure 9,7 where it can be seen that the two sets of
columns which support each carriageway are not symmetrically placed,
e

Furthermore the two cross sections illustrate that the deoth of the bridge

progressively reduces on each side of the columns

The support conditions

imposed were such that the ends of the deck were on rollers and the col-

umns were pinned at their bases,

The object of the analysis was to determine the deflections and

. , .
stresses 1n the structure due to an imposed load, No comparison to an

absolute answer could be made, The resalts, however, were compared with
the resulis of two other computational analysis programs, one called Strudl

which idealises tne structure to a space frame and the other by Craig

which incorporates plate elements as well as member elements,
In the present analysis the bridge was simulated by rectangular plates,

triangular plates and prismatic members in exactly the same way as Craig.,

The subdivision for part of the bridge is shown in figure 9.8. The total
numbers of ezch of the elements involved were 512 rectangular plates, 58

triangular plates and 86 prismatic members. Rectangular plates were used

to represent the box beams which were taken to be one plate in depth. The

sides of these beams were, on elevation, trapezoidal but were approximated

to a rectangular shape. This approximation is done in the present program

by averaging the lengths of opposite sides of each plate. Member elements

were us.ed to represent the two sides of the bridge where only little stress

343 h
was involved. The appropriate offsets of a member from the position of the

and these compensated for

joint to which it was attached were calculated

the thickness of the element.

The box beams were to be of solid construction at either end and under

" ig vhich
the supports. This was SO that they could carry the high stresses whilC

Such areas were represented by an

were expected at these positions.
e of triangular elements., The

Nad yse being mad
assembly of plates, extensive Y

angles through the thickness of a

. 1
plates were positioned vertlcallly and a
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nd are shown in fi re 9 8 he
box a gu Uy assembly of the plates in this manmm
y er

catered for the torsional and in plane action of the block., The thic!
. icknes~

ses of the plates were arranged so that the total volume of concrete was

£illed. The column supports were each made up of three rectangular plates

The subdivision used,although apparently rather coarse, especially
around the box beams, resulted in 2599 degrees of freedom, Any further
refinement of the mesh would have greatly increased this value.

The Jjoints in the structure were divided into 9 groups. Craié found
it necessary to use 43 joint groups; this was because the number of joints
per group had to be kept low so that there would be no overflow of the
- core store,

(9.6) Results of the bridge analysis

Direct comparisons may be made between the carrent analysis and that
carried out by Craig. Both of these analyses idealised the problem into
the same mesh comprising identical finite elements. The Strudl space frame

program, however, also used %o analyse the structure, represented the two

box beams as tapering members, The centre portion of the decking and the

four supports were also considered to be members, Finally cross members

joining the box beams were used to simulate the torsional stiffness of the

assembly.

The loads acting on the bridge were applied to box B at the longitu-

dinal positions indicated in figure 9.9. The vertical deflections of

when subjected to this loading, is given

each box along its centre line,

in figure 9.9. Here it can be seen that in the case of each of the box

{cantly more deflection than that

beams the Strudl results sndicate signif

utions. For instance the maximum

suggested by the finite element sol

ntre span of box B for each analysis are as
e

vertical deflections of the ¢ ~
Craig 12.4 o, Bray 10,6 mm. These figures in-
mm, .

1s only 53k

follows: Strudl 20.0
of that given by Strudl

dicate that Bray's maximum deflection

e is a 1530 differenc

e between the two finite element solutions.

and that ther
- 232 =
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Inspection of the deflection of the side spans, once again f box B
’ gain for box B,

shows that the maximum deflection in each case was: Strudl 5.0 Crai
: 0 mm, Craig

2y mm, Bray 1.0 mm, In this case Bray's raximum deflection was 20% of

Q 1 - 2.0
Strudl's and there was a 587 difference between the two finite element -+

solutions,

A spzce frame idealisation, as used by Strudl, would be expected to
tend to underestimate the overall stiffness of the structure. The deflec-
tions from such an énalysis will therefore be larger than those predicted
by a more realistic idealisation such as the finite element technique.
Some of the numerical differences between the results obtained by Craig

and by the present analysis could be atiributable to the use of different

types of matrix techniques, Cralg used a sparse matrix storage method and '

~carried out matrix multiplication to construct X from A' k A, The pre-
sent method constructed X directly and made use of the symmetric nature

of the overall stiffness matrix,

Grapbs of the top and bottom longitudinal stresses in both boxes for
each of the analyses are given in figures 9.10 and 9.11. The maximum

stresses in both the top and bottom fibres of box B, the loaded box, have

been abstracted and are given in figure 9.12. The maximum difference bet-

ween the two finite element methods is 52% and the minimum 18 The As was

the case for the deflections the results produced by Strudl indicate that

the structure is less stiff than PI‘ediCted by both of the finite element

solutions., The maximum difference betweel Bray's analysis and that of

i i i the space
Strudl is 53%, the minimum is 33, Direct comparisons between P

En
. . P s sne because of the
frame and the finite element idealisation are misleading

s the analyses
different assumptions made in each case€. The trends in all th Y

are, however, similar.

ini ment solu-
T + interesting divergence between the two finite ele
e most inte s
:n the region of the
tions is the difference in the predicted stresses 1B g
ais e ‘ 1
t apparent above the columns,although
S I

supports, These differences are mO
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TOP FIBRE STRESSES BOTTOM FIBRE STRESSES

MID SPAN | END SPAN | MID SPAN | END SPAN

BRAY 2,6 W/mn® | 1.4 N/mn® | 2,5 N/me® | 1.9 N/mm®
CRAIG 2.8 2,2 3.8 4,0
STRUDL| 3.9 2.6 5.9 3

MAXIMUM VALUES OF THE LONGITUDINAL TOP AND BOTTOM FIBRE STRESSES AT THE

MID AND END SPANS FOR BOX B

TFIGURE 9.12
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i e reglons at ti . ‘ .
in th g he bridge ends, there is 5 reversal effect not .
), €CT not preleuSly

COnCI ete b . .

stresses, where there is a necessary change in the finite element mesh

! mesh,
The existence of these regions above the columns leads to the inference
‘ 1

that the smooth graphs presented by Strudl and braig's analysis, for the

stress in these regions, are less feasible than those by the current ana-

lysis. This argument also applies to the solid regions at each end of

the bridge. Consequently, a smooth rate éf change of stress from each

end towards a support would not be expected, In the case of the present

analysis 1t is apparent from the graphs given in figures 9.10 and 9,11 that

the stresses are being affected by the existence of the rigid portions.
Possible sources of error in the calculation of the stresses by a

finite element technique are the inelastic properties exhibited by concrete

as well as the application of a method derived on the bases of a thin plate

theory. Some of the plates had thicknssses almost equal to their side

lengths, this was particularly so in the solid regions. Similar errcrs are

also inherent in the space frame idealisation which was the other method

used,

- One problem which Craig had experienced during the analysis of the

precipitator shell and also during the analysis of the bridge was a viola~

. . . b3
tion of the overall equilibrium equations. In an earlier section of this

urrent analysis overcame that difficulty in

chapter it was shown that the ¢

‘ i i oint out
respect of the electrical precipifator shell, It is fair torp ,

ly to data
however, that mistakes in Craig's work may have been due pureLy

i d vertical
errors, An investigation was nade into both the horizontal an

9,13 shows the forces calculated to be

equilibrium of the bridge. Figure

nds of the bridge were carried on rollers
e e

acting at the supports. As th !
o. furthermore S1NCE
the horizontal reactions at these points should be zero,

sontal force should also be 2€T0.

' ' : t hori
no horizontal load is applied the ne
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The figure indicates that the present analysis was 37 kN out of ba]
0 altlance

whereas Craig's out of balance force was 577 XN which represent 2
nts o of

the applied vertical load, 1In the case of the vertical reactions th
e

E
|
|

current analysis showed a 6.% out of balance force Craig's vertical ,
o a L

reactions were not available for comparison, Extensive investigation

indicates that the out of balance forces in the case of the present analy-
sis can only be the result of the numerical solution technique adopted,
Finally a comparison was made between the current analysis and Craig's
analysis in respect of computer time ani core store requirements. Tke size
of the problem prohibited Craig carrying out all of the required calcula-
tions in one run, In fact three runs were required - the first calcuvlated
the deflections, the second the forces in the members and plates and the
third the stresses in the plates., Craig detailed(5) many modifications
necessary to economise the storage and time requirements of the three
programs so that the problem could be run on the Atlas computer. Even

with these mcdifications the values indicated in figure 9.1L show the

core storage requirement was at the 1imit of the Atlas machines capability

of 115K. A total central processing unit (cpu) time of 8% minutes was re-

quired to run the three jobs. The cpu time for the current analysis was

12 minutes to complete all three major stages of the calculation and this

previous analysis, A direct compari-

represented a saving of 83 over the

. i i ! cause of the
son between core storage requirements 1S not possible be

3o used 43
pilecemeal approach Craig was forced to adopt. Furthermore Cralg
| i loyed, In
joint groups whereas in the current analysis only 9 were empioy
5, over Craig's maximum requirements

spite of this a core store saving of 5

1enifi smproved by the
is indicated., This figure could have been 51gn1f1oantly imp

: analysise
use of more joint groups 1 the current y

electrical preclpl

pear to be satisfactorye.

tator shell and the skew con-

The analysis of the .

iti s onif i in
addition there are 51gn1flcant‘sav

_ 2,0 -




MINUTES OF WORDS OF
- CPU TIME ATTAS CORE STORE

{ CRAIG | BRAY | CRAIG | BRAY
CALCULATION OF JOINT DEFLECTIONS 70 ] 102K
CALCULATION OF ELEMENT STRESSES 9 12 | 113K 73K
CALCULATION OF ELEMENT FORCES L 59K

783

{PU TIME AND CORE STORAGE REQUIREMENTS OF THE PROGRAMS USED TO ANALYSSE THE

ROAD BRIDGE

FIGURE 9.14
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time for the current system when it is compared with g similar program,




CHAPTER 10

GENERAL CONCLUSIONS

This thesis has been concerned with the attainment of two object—
ivesy namely: The writing and development of a set of computer algor—
ithms capable of analysing complex three dimensional structures; and the
theoretical derivation of the in and out of plane stiffness matrices
for a curved plate element with an investigation into the characterist—
ics of such an element.

When considering the programming section there are two goals
which should have been achieved. Firstly does the program have the
capability envisaged? Secondly have the objectives relating to the
Flexibility and versitility of the program; listed in Chapter 1, been
-attained? The capability of the program has been well tested by the
analysis of several different structures. Such structures ranged from
The relatively small curved bridge decks up to an electrical precipi t-
ator shell andabridge both of which are detailed in Chapter 9, In tha%
wchapter, comparison was made between the results of(the analysis of these
large structures as well as computer time and storage requirements for
both the proposed program and another comparable system. This showed
that the system proposed in this thesis gave favourable results. The
computer storage and time requirements of this system indicated that
significant savings were being achieved,

With regard to the flexibility and versitility of the program,
comment will now be made on the aims set out in Chapter 1. The reg—
“uirement that the system should be open ended allowing extensions to
be made simply, without detailed knowledge of the overall system, has
been fully met. Such extensions may be made in any way as long as the
result is in the form of additions to the overall stiffness matrix of

the structure. This permits the use of isoparametric as well as conven—
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tional finite elements. The only interaction between any element package and

the rest of the program is the addition of terms to the overall stiffness
matrix. When writing a new element package only two facts require to be

comprehended. These are the method of storage adopted for the stiffness

matrix, which is given in Chapter 1, and the ability to locate the infor—
mation relating to the joints in the structure, the manner in which this

may be done is explained in Chapter 2.

The efficiency of the system in respect of computer storage and time
has been found to be very high and comment has been made about this in
Chapter 9. The use of subroutines to build up a program means that the
system is very flexible. All the subrouvtines may be stored in compiled
form on a magnetic tape and the co—ordinating subroutine fér a given
analysis will only use those which are relevant to that analysis.

Data preparation probably accounts for the largest part of the cost
of ény finite elementAanalysis. Any savings here are liable to have
Just as profound an impact on the eccnomy and range of solutions
‘practicable as corresponding developments in an increased efficiency,
The amount of data required varies depending upon the element. For
conventional finite elements it is difficult to make a significant

~amount of data implicit. This is especially true of a-general program
although a program specifically written to analyse regular structures,
such as multi-storey frames, may take advantage of a regular joint
pattern and the use of an identical member section throughout. In

the case of isoparametric elements it is a straightforward operaticn

to have the data relating to such facts as the co—ordinates of the side
-nodes calculated within the program. The data for the proposed system
has been reduced to a minimum. In spite of this the amount of prepar— '
ation and checking required when analysing a structure such as the

bridge, detailed in Chapter 9, is still significant.
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Generally the program is working satisfactorily and the aims have
been achieved, consequently there is much scope for the addition of new
finite elements to the system.

The analysis of the large structures did bring up some points
worthy of comment. The Cholesky triangular factorisation technique, used
for the solution of the equations forming the stiffness matrix, worked
satisfactorily for the smaller structures analysed with up to around
T00 degrees of freedom. During the analysis of the electrical precip-
itator shell (1029 degrees of freedom) the technique failed to solve the
equations. This sort of failure usually indicates a data error which
has caused the incorrect construction of ths stiffness matrix. An

(32)

alternative direct solution technique y @ form of Gaussian elimin-
ation, suitable for use with a set of ecuations stored by a variable
band width technique was employed. The results of the analysis of the
elect?ical precipitator shelljusing this other solution techniqueyare
those presented in Chapter 9 and appear to be satisfactory. This seeus
#$0 indicate that the Cholesky method is less suitable for the solution

of a large number of equations relating to the sort of structure under

consideration. The same anomaly occurred during the analysis of the bridge

{2599 degrees of freedom).

Since the efficiency of the Cholesky method is far‘superior, in
respect of both computer store and time, to other techniques it is more
attractive for use within the system than these alternative techniques.

& useful exercise would therefore be to acertain the practicability of
Cholesky's method when applied to large numbers of equations relating
to structural problems.

The size of the inversion units associated with the solution tech-
nigques was retained at a maximum of 512 terms. This meant that use could
be made of the 'rapid! block transfer facilities available on the Atlas

machine. Another advantage was that since only two inversion units were
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required to carry out the solution of any number of equations then only
1024 variables would be required in the core store. As a result of the
analysis of these large structures it is suggested that the size of these
units is increased. The effect of this would be to reduce the number of
units (the bridge required 353). The consequential reduction in the
number of block transfers would significantly reduce the execution time
required by the program. One way of effecting this modification would
be to increase the size of an inversion unit up to one half the maximum
number of locations required to store ihe largest stiffness matrix of
any joint group. The array in which the stiffness matrix was constructed
could then be used during the solution process thus obviating the neces—
8ity for an increase in the core store requirements.

One apparent limitation may seem to bé the restriction imposed cn
~the numbering of nodes. This technique has been employed to fix the
orientation of a set of sub-blocks. In practice this is not a problem,
it is, however, a simple enough matter to allow two joint numbering
techniques as adopted in the case of the curved plate package, or in
fact a random joint numbering method. Random numbéring techniques are
desirable for some elements such as block elements when used to rep—
resent a three dimensional continimm.

# case for the development of a finite element capable of simulating
curved structures such as elevated roadways has been made in the intro-
duction. There it was explained that the increased flexibility of the
Yonger outer edge gave rise to stress and deflection characteristics

which were quite different from those obtained using elements with

wBtraight boundaries. An explicit derivation of both the in and out of plane

stiffness matrices for such a curved plate element was carried out and
is detailed in Chapter 5 of this thesis. It is recommended that any
future work, such as the development of a curved element with thickness

variation, should be carried out using a numerical integration technique.
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This would be especially advantageous at the implementation stage where
a good deal of complex programming could be avoided.

Preliminary testing of the element demonstrated that it exhibited
predictable characteristics. One of these being the fact that as the radius
was increased to a large value relative to the other plate dimensions
the stiffness matrix became identical to that of a geometrically equivalent
rectangular plate. Analysis of a curved plate structure with a variety
of meshes indicated that the deflection of the joint was seen to converge
to a constant value. The existance of a constant strain criterion leads
to the assumption that convergance is to the true deflection of the
structure.

Three comparisons were made, against an independant experimental test,

a theoretical series solution and a finite element solution. Jenkins

(32)

and 3iddall had used a finite element, non—-conforming in translation,

(
\7). The

1o analyse the experimental results given by Coull and Das
Tresults Jeikins and Siddall obtained shcowed good agreement with the exper—
imental and theoretical results presented by Coull and Das, although in
one case they predicted deflections greater than those recorded, a
situation not usual for a finite element solution. The plates tested by
Coull and Das were supported along the entire length of each of their
radial gdges. This represented a support condition which was not coin-
cidental with the author's global axes, consequently an exact simulatica
was not possible. Jenkins and Siddall do not state the restraints they
imposed on their mathematical model. In the author's analysis two orth—
ogonal rotations out of the plane of the plate were permitted. This
leads to the analysis of‘a slightly different structure than the one
considered by Jenkins, Siddall, Coull and Das. Omne way of overcoming this
difficulty is to have prismatic member elements along the support lines,
Such members could be made to be resistant to rotation about circum—

frential axis but to offer little resistance to rotation about radial

axés. The best solution, however, would be to incorporate facilities for
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the supression of non-global degrees of freedom. In spite of this
drawback the author's results showed good agreement with both the theor—
etical solutions as well as Coull and Das' experimental results.

As a final examination of the element experimental tests were
carried out by the author on two curved plates of different radii. Com—
parisons were made between theoretical and experimental deflections and
stresses. One series of tests had fixed ends whilst in the other the plates
were simply supported at their four corners, both of these conditions can be
simulated by the programme. The experimental and theoretical results in-
dicated that a good agreement was being achieved.

One aspect in which this work could be extended is the formulation
of the element stiffness matrices for a curved segment. This would permit
the use of a combination of the two curved elements to simulate structures
~-comprising circular plates, such as tank bases. Extensions to the program
system shculd take the form of additional element packages such as con—
forming triangular plates, shell elements as well as isoparametric solid
~elements. These additions would greatly increase the scope of soluticns
ahich could be carried out by the system. Further development could also
4ake the form of extensions so that the system could deal with non-linear |
problems. In such problems, however, the reliability of the €holesky
-method becomes increasingly questionable. This is because of the
progressive loss of stiffness by the structure consequently alternative
-methods of equation solving would have to be investigated and included

in the system.
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