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SUMMARY

This thesis reports the results of DEM (Discrete Element Method) simulations of the
mechanical behaviour of granular material subjected to pure shear, direct shear and
simple shear deformation. In all cases, the state of stress has been evaluated in terms of
(a) the volume average of the contact force distribution within the specimen and (b) the
distribution of forces transmitted to the wall boundaries.

In biaxial compression tests, the stress calculations based on boundary information
underestimate the principal stresses leading to a significant overestimation of the shear
strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-
plane of the sample during the test. Although the stress distribution within the specimen is
heterogeneous, the evolution of the stress ratio inside the shear band is similar to that
inferred from the boundary force calculations. It is also demonstrated that the dilatancy in
the shear band significantly exceeds that implied from the boundary displacements. In
simple shear tests, the stresses acting on the wall boundaries do not reflect the internal
state of stress but merely provide information about the average mobilised wall friction. It
is demonstrated that the results are sensitive to the initial stress state defined by Ko =
ow/oy. For all cases, non-coaxiality of the principal stress and strain-rate directions is
examined and the corresponding flow rule is identified.

Periodic cell simulations have been used to examine biaxial compression for a
wide range of initial packing densities. Both constant volume and constant mean stress
tests have been simulated. The characteristic behaviour at both the macroscopic and
microscopic scales is determined by whether or not the system percolates (enduring
connectivity is established in all directions). The transition from non-percolating to
percolating systems is characterised by transitional behaviour of internal variables and
corresponds to an elastic percolation threshold, which correlates well with the
establishment of a mechanical coordination number of ca. 3.0. Strong correlations are
found between macroscopic and internal variables at the critical state.

Finally, an attempt has been made to investigate strain localization. It is shown
that, associated with the formation of a shear band, there are a number of distinct
characteristics: discontinuities in the displacement and fluctuating velocity fields across
the shear band, large particle rotations and expansion within the shear band, buckling of
the strong force transmission pathways as they cross the shear band and sliding contacts
concentrated along the shear zone. The shear band inclination is found to depend on (a)
wall friction and (b) in periodic cell simulations the shear band inclination changes as the
sample dimensions change.

KEY WORDS: Discrete Element Method; Shear strength; Percolation; Critical State;
Strain localization.
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CHAPTER 1: INTRODUCTION

1.1 General background

Granular materials such as soil, powders and grains are very common in nature and in the
processing industries. Recently there has been arapid expansion in research activities of
both scientists and engineers investigating the behaviour of granular media due to their
fascination with the complex behaviour and the technological importance of such
materials. Granular materials consist of individual particles in contact and the surrounding
voids, so that they are generally multiphase media of solid, liquid and gas, and sometimes
appear to behave as fluids or solids. However, the behaviour of granular materials is more
complicated than that of a fluid or a solid due to the fact that the solid phase is composed

of discrete solid particles, so they cannot be simply characterised as either liquid or solid.

The mechanical behaviour of granular materials has been widely investigated using the
principles of continuum mechanics. According to continuum mechanics, the function of
external loads is expressed by the continuous mechanical state variable ‘stress’ and the
relation between loads and stresses is given by equilibrium equations; deformations are
reflected by another continuous mechanical state variable ‘strain’ and the link between
displacements and the strain field is given by compatibility equations. Stress and strain are
related to each other through constitutive equations, which are expected to contain all the
necessary information about the mechanical characteristics of the material. However, at
the microscopic scale, granular materials are neither continuous nor homogenous in
nature. Thus, the generalized continuum mechanics is not sufficient to adequately predict
the mechanical behaviour of granular materials. Any improvements to constitutive
equations based on continuum mechanics require information about the evolution of the
microstructure and the micromechanical behaviour occurring at the particle scale. It is
hence of fundamental interest in both engineering and scientific fields to link macro-level
state variables with micro-variables, such as contact forces, particle displacements and
local geometrical characteristics. Some studies have been conducted to establish the
discrete mechanics of granular materials and to establish the relationship with continuum
mechanics (Satake and Jenkins, 1988). Attempts were also made to understand the
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Chapter I: Introduction

mechanical behaviour of granular materials at the microscopic scale. For instance, Bagi
(1996a) and Satake (1985) investigated the geometrical aspects of grains and associated
voids mathematically to specify the spatial distribution and orientation of grains and their

contact conditions.

Laboratory experiments are traditionally used to directly observe the behaviour of granular
materials. Various experimental techniques have been developed for this purpose. The
Casagrande direct shear box is one of the earliest devices developed to measure the
mechanical properties of granular materials. However, using this device has the
disadvantage that the shear plane is predetermined at the intersection between the two
halves of the box that constitute the apparatus. In order to overcome this limitation,
various types of so-called simple shear apparatuses have been developed, which can
impose a uniform deformation on the sample. There were several versions of the simple
shear apparatus. Among others, the simple shear tester developed by the Swedish
Geotechnical Institute (SGI) in the early 1950s (Kjellman, 1951), Cambridge Simple
Shear Apparatus (Roscoe, 1953; Stroud, 1971) and the apparatus developed by the
Norwegian Geotechnical Institute (NGI) (Bjerrum and Landva, 1966) that can test a
cylindrical sample. However, it has been argued (Budhu, 1984) that the state of stress or
strain in either the Cambridge version or the NGI version of the simple shear apparatus is
far from homogeneous. Many other types of testing devices for determining the shearing
characteristics of granular materials have also been developed and gradually increased in
complexity. These include: the ‘true triaxial cell’ in which the three principal stresses can
be varied independently (Ko and Scott, 1967; Pearce, 1971; Lade, 1978; Lanier and
Zitouni, 1987); the hollow cylinder apparatus (Saada, 1988; Ishihara and Towatha, 1983);
the directional shear cell (DSC) (Arthur et al., 1977); and, more recently, the true biaxial
shear tester (Harder and Schwedes, 1985); the Matsuoka apparatus (Matsuoka et al.,
1986); and the 1y2¢ apparatus (Joer at el., 1992). Experiments conducted with these
various types of apparatus can provide the necessary information for developing
constitutive models. However, the boundary effects and the operator effects are inevitable
in such experiments, which always result in the data obtained from real experiments being
questionable. Also, the reproducibility of real experiments is generally very low. In
addition, the experiments do not give sufficient information about what happens inside the

specimen.
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With the rapid development in computer technology, numerical simulation has become a
powerful tool to study the behaviour of granular materials. Cundall (1971) developed a
computer program to model the progressive failure of systems of discrete rectangular
blocks. From this study the concept of the Discrete Element Method (DEM) originated.
Further developments of the program for simulating the quasi-static shear deformation of
the large assemblies of discs were reported in detail by Cundall (1978), Cundall and
Strack (1979a) and the principles of the method were described by Cundall and Strack
(1979b). The simulations were qualitatively validated by comparisons with laboratory
tests on photo-elastic disc assemblies reported by de Josselin de Jong and Verruijt (1969)
and Oda and Konishi (1974). Cundall (1988) developed a three dimensional version of the
program, named TRUBAL. In this program, a periodic cell was employed as a
parallelepiped with numerical connection between opposite faces and the system was
treated as a continuum. The force-displacement relationship was adapted so that either the
linear spring-dashpot system or Hertz-Mindlin theory could be used. The DEM has also
proved to be very effective for studying various dynamic problems of granular materials
as illustrated by Thomton (2001). Therefore, DEM simulations open up pathways to new
knowledge of particulate media because it is now possible to observe and quantify
phenomena in minute detail at the microscopic level. In contrast, laboratory experiments
resist attempts to glean micro-structural information because of the difficulty in viewing

and/or measuring phenomena that are interior to the specimen.

From numerical simulations with DEM, information about what happens inside
assemblies of particles can be obtained. The motions of all the constituent particles are
continuously tracked and the interactions between particles are modelled directly.
Consequently, the statistical distributions and temporal evolution of all internal variables
can be determined and ensemble averages of the stress-strain behaviour can be obtained.
Cundall’s program was first adapted at Aston University by Blackburn (1983), who only
considered regular arrays of discs. Barnes (1985) extended the Aston version of the

program to simulate the quasi-static shear deformation of random assemblies of different
sized discs. Thornton and Barnes (1986) presented simulation results for both a constant
mean stress test and a constant volume test performed on the sample with same initial
configuration. It was shown that, for these two tests, the evolution of the angle of internal
shearing resistance and the evolution of the induced structural anisotropy were essentially

identical. General three-dimensional numerical simulations of quasi-static shear
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deformations have been performed over the complete range of deviatoric radial loading
paths for both dense and loose polydisperse systems by Thomton and Sun (1993, 1994).
The reported macroscopic behaviour was in good qualitative agreement with results
obtained from real experiments on sand. Further examinations of shear deformation of
three-dimensional disperse systems of elastic spheres subjected to different complex
loading histories have been reported by Thornton and Antony (1998) and Thornton
(2000a). These works demonstrated that DEM simulated experimentation is a versatile and
convenient technique that can be used to examine the sophisticated behaviour of granular

materials under complex loading histories.

The study reported in this thesis deals with numerical simulations of the quasi-static
mechanical behaviour of granular materials under various stress and strain paths, in which
inertia effects are negligible. Some modifications of the Aston version of TRUBAL have
been made in order to model different types of shear test and the corresponding results are

reported.

1.2 Research objectives

Traditionally, theories are validated by experiments or new experimental information
leads to new theoretical developments. However, laboratory tests used to determine the
compressibility and strength of granular materials rely very much on boundary
measurements and cannot give sufficient information regarding the internal deformation
processes. It is not clear how reliable the information, obtained at the boundaries of a
specimen, can represent the ensemble state of stress and strain inside the specimen, which
is supposed to represent the constitutive behaviour of the material at a point in a
continuum, i.e. the data required for constitutive modelling. Numerical simulations can, in
principle, provide the necessary link between what happens at the grain scale and the
continuum interpretation and also assess how well laboratory experiments can reliably
measure the true material behaviour. Therefore, the work presented in this thesis is

focussing on the following two main topics:

1. To examine the advantages and disadvantages of three shear testers commonly
used in the laboratory and to investigate the boundary effect on the behaviour of

granular materials in these testers. The traditional interpretations of the mechanical
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behaviour of granular materials based on these laboratory tests are also examined.

2. To study the quasi-static shear characteristics of granular media at both the macro-
and micro- scales by conducting DEM simulations. To examine in detail the spatial
distribution ;1nd temporal evolution of contact force transmission, interparticle
sliding and structural anisotropy; aiming at obtaining a better understanding of how
the physics observed at the micro-scale is related to the macro-scale mechanics of

granular media.

Within this context, the main objectives of this study are:

(i) To conduct biaxial compression tests with both periodic (BCP) and wall (BCW)
boundaries under both constant volume and constant mean stress conditions. The
boundary effect is examined by comparing the results obtained from these tests.

(ii) To simulate a series of direct shear tests (DST) under different boundary
conditions and to compare the apparent stress-strain data obtained from boundary

information with the corresponding ensemble stress-strain behaviour in the shear
band.

(iii) To develop an algorithm to model the simple shear test (SST) and examine the
performance of such a test and to explore the non-coaxiality of stress and strain
rate direction.

(iv) To conduct periodic cell simulations of biaxial compression for a wide range of
packing densities so that the macroscopic and microscopic behaviour for both
non-percolating collisional systems and compacted percolating systems with
enduring contacts can be examined.

(v) To explore strain localization and the micromechanics of shear band formation.

1.3 Typical tests considered

Three types of shear tests commonly performed in the laboratory are considered to
investigate the micro- and macro- mechanical behaviour of granular materials. The effects
of stress path, boundary condition and principal stress direction on the behaviour of
granular material are examined. Among the tests considered, two of them, which involve
the rotation of principal stress directions during shear, are sketched in Fig. 1.1. The most

common test to measure the shear strength is the direct shear test (Fig. 1.1a). In particle

22



Lhapter I: Introauction

technology this is performed in a Jenike shear cell, which is circular in cross section,
whereas in soil mechanics the Casagrande shear box (with square cross-section) is
generally used. The simple shear test (Fig. 1.1b) seems to be, in theory, a simple test for

measuring the shear modulus and the shear strength directly.

N
X |
| |
T | |
1 I
| |
T |
1 |
| |
| I_
i I
(a) direct shear test (b) simple shear test
Fig. 1.1 Shear tests with principal stress rotation
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(a) with wall boundaries (b) with periodic boundaries

Fig. 1.2 Biaxial compression test

The biaxial compression test is a plane strain test that provides principal stresses on the
face of the sample. It is strain-controlled. Nearly all tests that are simple monotonic or
involve 90° changes in principal stress directions are performed in this test. Two different
boundaries are chosen for this type of tests. One is with real wall boundaries (Fig.1.2a)
and the other is with periodic boundaries (Fig. 1.2b).

All the tests are simulated in two-dimensional space. Although this two-dimensional
analogue material cannot reproduce all the features of the three-dimensional behaviour of

real materials, the great simplicity with this analogue is, in particular, the ability to
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visualize the behaviour in detail. The reported simulation results are believed to be

qualitatively representative of the plane strain behaviour of real granular media.

1.4 Order of the thesis

The main text described in this thesis can be classified into two general catalogues. The
methodology and computational techniques are described in Chapter 2 and Appendix A.
The details of numerically simulated experiments and results are presented in Chapters 3-

7. The presentation of the thesis is organized as follows:

In Chapter 2, basic principles of the mechanics and the microscopic characterization of

granular materials are discussed.

Two series of biaxial compression tests on an assembly of 5000 polydisperse spheres with
periodic boundaries and wall boundaries are reported in Chapter 3. Preliminary testing and
initial considerations are explained, including the choice of particle size distribution,
assembly generation, choice of physical and control parameters, preparation method and
also several servo-control techniques used. Comparisons between the results obtained
from these two sets of tests are provided and the effect of wall friction on the behaviour of

the specimen is discussed.

Two shear tests involving principal stress rotation during shearing are presented in
Chapters 4 and 5. In Chapter 4, the effects of the aspect ratio of the shear box and
boundary friction are first examined by a set of constant volume tests. The influence of
different stress levels on the mechanical behaviour of the sample is then investigated by

carrying out constant normal stress tests. The behaviour of the material within the central

shear zone is examined in detail.

In Chapter 5, the results of simple shear tests are presented. In addition to the examination

of the effect of boundary friction and different stress levels, the simple shear tests are

carried out on three samples with different initial stress ratio K,. Based on the

calculations of the stress tensor, the non-coaxiality of principal stress and strain rate

directions are identified and the effects of K, on the behaviour of the material are

discussed. The deformation patterns in the simple shear test are examined from the area
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variation of local void cells and particles rotations. Comparisons between the results of the

simple and pure shear test results based on volume-averaged data are also made.

The macroscopic and microscopic behaviour of both non-percolating collisional systems
and compact percolating systems with enduring contacts is examined in Chapter 6. The
details of the spatial distribution and temporal evolution of contact force transmission are
presented and better understanding on the correlation of the physics observed at the micro-
scale with the macro-scale mechanics of granular media are hence achieved. The
localisation phenomenon and shear band formation are discussed in Chapter 7. The
particle kinematics, such as displacement field and velocity field together with the
distribution of sliding contacts and particle rotations are analysed. The measured shear

band inclination angles and shear band thickness are reported.

In Chapter 8, a summary of the main conclusions and achievements of this study are

given. Recommendations for future study are also suggested.

In addition, there are four appendices attached:

In Appendix A, the principles of the Discrete Element Method are described. In this
appendix, not only the force-displacement law used at inter-particles contacts is
prescribed, but also numerical stability and the suppression of natural assembly
oscillations by viscous damping are discussed. Moreover, this appendix also gives the
details of the logic framework within the computer program TRUBAL that allows

efficient control of the numerical apparatus.

In Appendix B, new input commands that are required to run the numerical tests with wall
boundaries implemented into the TRUBAL code during the course of this study and some

examples of input command files are provided.

In Appendix C, video clips illustrating the grain scale behaviour of granular material are

discussed and the locations of these videos on the website are provided.
Finally, in Appendix D, the difference between two implementation schemes for the

simple shear test is discussed. In addition, the effects of each implementation on both the

micro- and macroscopic behaviour of granular materials are presented.
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-

CHAPTER 2: MECHANICS AND MICRO-MECHANICS OF
GRANULAR MATERIALS

2.1 Introduction

A bulk solid may be defined as an assembly of discrete solid particles dispersed in a
volume. Bulk solids may comprise of only a solid phase or a two-phase disperse system of
solid and fluid, solid and gas or even a three-phase system made up of solid-fluid-gas. The
bulk behaviour is governed primarily by interparticle forces, friction, and collisions, In
general, such materials are so complex that understanding their overall behaviour requires
the knowledge of several scientific areas, such as traditional fluid mechanics, plasticity
theory, soil mechanics, rheology and kinetic gas theory. In this study only one phase
systems made up of cohesionless granular media is considered. These types of material are
often handled in many processing industries, geotechnical and other technical applications.
Knowing the mechanical behaviour of these media is essential for understanding and
solving a wide range of technological and scientific problems concerning granular
materials and therefore, it is necessary to develop relevant constitutive theories for such

materials in order to analyse their mechanical behaviour.

The mechanical behaviour of granular materials is often studied at two scales: the macro
scale and the micro scale. The macro scale study corresponds to the discretization of
boundary value problems to be solved using“a global constitutive equation. The micro
scale study corresponds to a smaller level at which a microstructure exists and which
essentially governs the global behaviour. Generally, there are two approaches to
formulating the mechanical behaviour of granular materials: a macro approach which is
generally based on continuum mechanics (Goodman and Cowin, 1971, 1972; Savage,
1979, Massoudi and Mehrabadi, 2001) and a micromechanical approach, in which
granular materials are considered as a complete discrete structure and are generally
modelled as an assembly of particles interacting at contacts (Cundall et al. 1982; Bathurst
and Rothenburg, 1988; Rothenburg and Bathurst, 1989). However, a complete, well
accepted theory for granular materials has not yet been proposed. Since granular materials

consist of grains in contact and surrounding voids, the micromechanical behaviour is
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therefore inherently discontinuous and heterogeneous. The macroscopic (overall or
averaged) behaviour of granular materials is determined not only by the spatial
arrangement of the discrete grains, but also by the type of interaction operating between
them. In order to understand the mechanical behaviour of granular materials from a
microscopic point of view, the spatial distribution and orientation of grains and their
contact conditions should be specified. Many pioneering works are devoted to this topic,
dealing mathematically with the geometrical aspects of grains and associated voids
(Satake, 1978, 1993a; Bagi, 19964, b). The macroscopic properties of these materials are
obviously related to the basic structure and properties of their constituents and their
interactions. It is therefore a goal in the study of the mechanics of granular materials to

correlate their macro- (overall) behaviour in terms of micro- (local) quantities.

In this chapter, previous work on the mechanics of granular materials is reviewed. This
commences with an introduction to the frictional behaviour of granular materials;
followed by a review of statistical and numerical micromechanical approaches to the
mechanics of granular materials. Finally some microscopic characteristics of granular

materials are described.

2.2 Frictional behaviour of granular materials

Granular materials are an assembly of discrete particles, in which interparticle forces are
transmitted through the system via the points of contact. If no friction is present at the
contacts, the material cannot sustain any shear forces and behaves like a pseudo-fluid.
Interparticle friction therefore plays a significant role in the macro-deformation and
strength behaviour of granular materials. In the next section, the continuum approach for

bulk solids with respect to the definition of state of stress will be presented.

2.2.1 The state of stress in a solid

Assume that the stresses acting on a continuum element abed are as shown in Fig. 2.1a.
The stresses on a plane inclined at an angle € to the direction of the plane on which g

acts can be calculated by:

0, =0,cos’ 6+0,sin’ O+7,, 5in20 (2.1)
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] .
7, = E( o, -0, )sin26+1, cos26 (2.2)

Here, it is appropriate to consider the conventions of stress representation usually adopted
in soil mechanics. Referring to Fig. 2.1a, we have
a. Shear stress 7, acts tangentially along the face normal to the direction y and in the
direction x.

b. Compressive normal stresses are positive and tensile normal stresses are negative.

c. Counter-clockwise shear stresses are positive and clockwise shear stresses are

negative.
T
X Oe
lo'y Oy
T
a__ = d t
NAS
‘ 9\ e /00 l o 4] - P
\\.“ Txy 1 L] c
l — O'x
y — 8=L/2(0;+0,) —=
(a) (b)

Fig. 2.1 Stresses and Mobhr circle: (a) stresses on element abed ; (b) Mohr stress circle

If (2.1) and (2.2) are squared and added, we obtain:
(c,-s)+1i=r? (2.3)

where

1
s=-5(a,+cr,.)

2 2
[y -a] +e3=(252)

It is clear that (2.3) is the equation of a circle with radius 7, and with the centre at the point

(s, 0).
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A graphical means of representing the foregoing stress relationships was developed by
Mohr, after whom the graphical method is now named. The Mohr circle can represent

completely the two-dimensional stresses acting within the element abed and the major and
minor principal stresses ,,0, respectively (Fig. 2.1b). This is a very useful graphical
description of stress for, in the case that the principal stresses are known, the stresses on

any other plane can be calculated. The stresses o,, 7, acting on a plane at an angle 8
clockwise to the plane on which o, acts, as shown in Fig. 2.1a, can be found by travelling
clockwise around the circle from stress point o, 7,, a distance subtending an angle 268 at
the centre of the circle. The major principal stress &, acts on a plane inclined at an angle
ato the plane on which &, acts, which can also be determined from the geometry of the
Mohr circle of stress (Fig. 2.1b),

tan2a = — (2.4)
-0

x

2.2.2 Shear strength of granular materials

The shear strength of granular materials can be adopted from soil mechanics, which has
been developed for a long time. In soils, failure occurs as a result of mobilising the
maximum shear stress that the soil can sustain, therefore an understanding of shear
strength is fundamental to the behaviour of a soil mass. Shear strength is a material
property, which enables soil to maintain equilibrium on an inclined surface, such as a
natural hillside, the sloping sides of an embankment or earth dam. This strength materially
influences the bearing capacity of a foundation soil and the stability of a retaining wall.
The shear strength of soil will determine the maximum or ultimate (failure) load that can
be applied on a foundation resting on soil or the probability of the occurrence of failure of
a soil mass forming a slope. In the field of geotechnical engineering, all stability problems

require a knowledge of the shear strength parameters of the soil.
Typical stress-strain curves are shown in Fig 2.2. There are several points marked on the

curve in Fig. 2.2 that need to be defined, which are widely used in soil and geotechnical

engineering:
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a) Peak shear strength 7,

This is the maximum shear stress, which the soil can sustain. It may be dangerous to
rely on this value for some brittle soils due to the rapid loss of strength that occurs

when the soil is strained beyond this point.

b) Ultimate strength 7,

For loose sands and soft clays, work hardening may continue to increase the shear
stress even at very large strains so a maximum stress is not achieved. A maximum

strain limit must then be imposed at about 10 to 20% strain, see point U in Fig. 2.2.

c) Critical state strength 7,
After a considerable amount of shear strain a soil will reach a constant volume state and
it will continue to deform without further change in volume or stress ratio. It is also

referred to as the constant volume strength.

d) Residual strength 7,
After a considerable amount of strain on a single slip zone or surface (point R in Fig.
2.2) the material on each side of this surface will rearrange to produce a more parallel

orientation and this will produce the lowest possible or residual strength,

P dense sample with peak stress

0”

CO”

Fig. 2.2 Two typical stress-strain curves

2.2.3 Failure criterion of granular materials

The failure surface, which would develop during the shear test, will be at an angle to the

principal stress planes. The failure plane is the particular plane where some critical
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combination of normal and shear stress is first reached. The Mohr-Coulomb theory states

that this critical combination is given by the following expression,
T=c+0tang, (2.5)

The parameter c is called cohesion and the parameter ¢, is often called the internal

friction angle. In this thesis ¢, is particularly referred to as Coulomb friction angle since
it is based on Coulomb’s friction law. For cohesionless soils, ¢ is equal to zero, and (2.5)

becomes,

T=0otang, (2.6)

A sample, whose strength relies solely on interparticle friction, would be expected to obey
the failure criterion given in the above equation, which is referred to as a Mohr-Coulomb

failure criterion. In fact, the Coulomb friction angle ¢, is not a physical constant, but is

strongly dependent on the void ratio, fabric, stress states and other details. This suggests

that a granular assembly should be more than simply a frictional material.

Equation (2.6) can be rewritten in terms of the major and minor principal stresses, o, and
J,, by assuming that the general shear plane accords with the maximum obliquity plane
on which the stress ratio, 7/o, is a maximum. Thus, the angle of shearing resistance on

the plane of maximum stress obliquity is given by:
. !
sing,, =— 2.7)
s
where ¢ is the radius of the Mohr circle (Fig. 2.1b) and equals half of the deviator stress,

| = ——= .
3 (2.8)

and s is the mean stress and is also the distance between the origin and the centre of Mohr

circle (Fig. 2.1b).

o, to,
2

(2.9)

Ss=

Thus, (2.7) can be rewritten as
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g,—0,

=75, (2.10)

sing, =

In this thesis, @,, is also referred to Mobhr friction angle in comparison with the Coulomb

friction angle ¢, .

2.2.4 Dilatancy of granular materials

A unique property of granular materials is dilatancy. The concept of dilatancy is generally
taken to be the increase of voidage that occurs in a tightly packed granular assembly when
it is subjected to a shear deformation. The angle of dilation y is defined as the ratio of

volumetric strain increment to deviator strain increment:

sinyz:-‘;g?' @.11)

where, in two dimensions,
de, =deg, +de,

and d¢, and de, are the major and minor principal strain increments, respectively.

It is generally considered that a dense granular soil dilates during shear. On the other hand,
a loose soil sample contracts. It is also well known that a dense soil exhibits a higher shear
resistance than a loose one. Casagrande (1940) noted the importance of the associated
dilatancy in dealing, in general, with the friction angle of granular soils. This parameter is
often considered as a function of the stress ratio (Taylor 1948; Rowe 1962; Wood 1990).
The experimental and numerical studies strongly suggest that dilatancy is a significant
factor in the deformation of shear bands (Roscoe, 1970; Arthur et al., 1977; Vardoulakis,

1980).

2.3 Fundamental mechanics of granular materials

Granular materials can be viewed at three levels: assembly level, microelement level and

interparticle level. A granular assembly contains a sufficient number of particles to
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provide representative behaviour of the bulk material. These particles can form a small

particle group, termed a microelement. A microelement is an elementary unit at the

microscopic level. Each particle in the assembly is in contact with several neighbouring

particles. A contact between a pair of particles is regarded as the basic level of granular

materials. A schematic representation of these three levels of granular material is shown in

Fig. 2.3.

:mcroelement level

Fig. 2.3 A particle assembly system

In micromechanics, the constitutive behaviour is defined according to these three levels.

I. From a microscopic point of view, interparticle forces are very complicated and

(3]

depend on material properties. They can also include van der Waals forces, liquid
bridge forces or electrostatic forces. When two particles are in contact, the contact
force 1s related to the relative movement between the two particles. At this
interparticle level, the continuum concept has not yet been introduced. Details about

how to calculate various interparticle forces are well documented by Johnson (1985).

. At the microelement level, the constitutive law gives the stress and strain relations

for the microelement. The continuum concepts of stress and strain are now
introduced. People seek to derive the stress-strain relationship for a microelement
based on the contact behaviour. To accomplish this objective, it is necessary to
establish: (a) the relationship between stress and contact forces; and (b) the

relationship between particle movement and strain.

At the assembly level, the constitutive law relates the overall stress and overall

strain. The behaviour of the representative unit is obtained by averaging the
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behaviour of microelements utilizing the principle of volume averaging. Therefore,
the macro-behaviour of an assembly can eventually be derived from the micro-

behaviour of a contact.

In the mechanics of granular materials, some continuum mechanical concepts such as
stress and strain tensor are necessary to formulate some problems in a consistent manner,
since the degrees of freedom of contact forces and movements at the grain level become
tremendously large. In principle, if the microscopic mechanical properties of the single
contacts making up a particle assembly are known, it should be possible to calculate the
macroscopic properties of the assembly. The following is a brief review of the approaches

adopted to convert the microscopic information to macroscopic properties of the assembly.

2.3.1 Micromechanical stress and strain tensors (Kruyt and Rothenburg, 1996)

Using constitutive relations that are developed from the continuum-mechanical viewpoint
does not recognize the discrete nature of granular materials. As an alternative, the
interpretation of the continuum-mechanical stress tensor for granular assemblies is not
new. Hill (1967) showed that, for heterogeneous materials, the overall stress and strain
could be expressed as volume averages of their corresponding quantities at the local level.
Thus, the overall stress and strain are regarded as volume averages of the local stresses
and local strains at the microelement level. The strain and stress, for a microelement, are
defined in connection with the relative movement of the particles and the resulting contact
forces, respectively. The stress-strain relationship is then derived based on contact
behaviour. Several definitions of the micromechanical stress tensor have been suggested
and these different approaches lead to the same results. The first definition suggested by
Drescher and de Josselin dc‘Jong (1972) is rather close to the continuum-mechanical
approach. A micro-structural definition based on the principle of virtual work was given
by Christoffersen et al. (1981), in which the volume average stress of an assembly of
grains with arbitrary shape is expressed in terms of the individual contact forces inside the
assembly. A similar definition was suggested by Rothenburg and Selvadurai (1981), based
on different theoretical considerations. Kanatani (1981) also proposed a definition for the
stress tensor with the help of the virtual work principle. His results were in agreement with
previous ones. Since the virtual work principle expresses the equilibrium condition of the

system, it is no wonder that these three definitions are equivalent to each other. During a
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small strain increment, the kinematics of two particles in contact includes the translation
and rotation movement. The details of how to calculate the contact force and deformation

of the contact between them are described in Appendix A.

2.3.1.1 Micromechanical stress tensor

The derivation of the expression for the average stress tensor proceeds in two steps. In the

first step the average stress tensor is related to quantities involving forces exerted on the
particles by the boundary that encloses the assembly of particles. The second step equates
these quantities involving external forces to quantities involving internal forces. The result

is the micromechanical expression for the average stress tensor.

1) Average stress tensor in terms involving external forces

The expression for the average stress tensor is derived under conditions of stress
equilibrium and in the absence of body forces. The (continuum) equilibrium conditions are
do;

i _ (2.12)
ox,

The two-dimensional average stress tensor in area S with boundary B (see Fig. 2.4) is
defined by

_ 1
&y =3 [o;ds (2.13)

A LA J AL
Boundary B

Fig. 2.4 Polygons and branch vectors

From (2.12) and Gauss’ theorem it follows
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— 1 d
Ty = Lu,a‘-,xj S (2.14)

where n; is the vector normal to the boundary; the vector tangential to the boundary is
denoted by #;. Considering the loads to be point loads on the boundary B, it follows:

_ 1
&, == f’x) (2.15)
Sﬂeg

where f” is the boundary force exerted on boundary particle A. This is the expression

for the average stress tensor in terms involving external forces.

2) Average stress tensor in terms involving internal forces

The equilibrium conditions for particle p in the absence of a body force read

D=0 (2.16)
q

where the summation is over the particle g that is in contact with particle p and f,” is the

force exerted by particle g on particle p.

Multiplication of (2.16) by the position vector x7 of the centre of mass of particle p and

addition of all equations gives
IO fal (2.17)
P 9

This double sum contains one term for each boundary contact # with particle p f,ﬂxj’ ,

which can be rewritten as f/ (xf =17 ), where [/ is the so-called contact vector

connecting the centre of mass of particle p to the boundary contact point 4.

Each internal contact between particles p and ¢ contributes a term ( _ﬂ”“xj’ + ;77 ).
Since f;" =-f", terms corresponding to internal contacts can be written as
—fP(x]=x]) or = f7, where I} is the so-called branch vector connecting the
centres of the particles p and g. Combinations f;”I[* can be rewritten as I, since

£ ==£" and I/? ==, As aresult it follows that
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2] =3 fE0 2.18)
BeB ce§
Hence it follows from (2.15),
.
o —ggf: j 2.19)

This is the expression for the average stress tensor in terms involving internal forces, i.e.,

the micromechanical expression for the average stress tensor.

2.3.1.2 Micromechanical strain tensor

Analogous to the expression for the average stress tensor, an expression for the average
displacement gradient can be derived. The strain tensor is obtained by taking the

symmetric part of the displacement gradient tensor.

The derivation of the expression for the average displacement gradient tensor also
proceeds in two steps. In the first step the average displacement gradient tensor is related
to quantities involving relative displacements of the boundary particles. The second step
equates these quantities to internal relative displacements., The result is the
micromechanical expression for the average displacement gradient tensor, and hence for

the average strain tensor.

1) Average displacement gradient tensor in terms involving external relative

displacements

The average displacement gradient tensor is defined by

dros

6, = 2.20
7§ Sox, S

where u; is the displacement vector. Using Gauss' theorem it follows that

= Lo 55

gﬁ"E.Lu"ui s (2.21)

A relation based on (2.21) has been proposed by Strack and Cundall (1978). Constitutive

relations at the contact will involve relative displacements between particles. Therefore it
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is desirable to transform (2.21) to a form containing derivatives of the displacements. This

is done using the following identity:

[utds= Lu, —ds -—L——-xgds (2.22)

Combining (2.21) and (2.22) gives
du
; = "E € [, Lx (2.23)

where ¢; is the two-dimensional permutation tensor. The discrete formulation of (2.23) in

terms of relative displacements at the boundary is

1 "
i =-§-ej,ZAif xf (2.24)
aecB

2]

This expression for the average displacement gradient tensor is analogous to Eqn. (2.15)
for the average stress tensor. It gives the average displacement gradient in terms involving

external relative displacements.

2) Average displacement gradient tensor in terms involving internal relative

displacements

The derivation of the siress tensor employed the equilibrium conditions for the particles.
The equivalents for the displacement gradient tensor are the compatibility conditions for
polygons. These polygons arise as a way of dividing the plane network of particle centres
of mass and contacts into polygons, as depicted in Fig. 2.4. Various properties associated

with such a subdivision of the assembly into polygons were studied by Satake (1992).

Since the polygons form closed loops, the compatibility condition for polygon r is

S A =0 (2.25)

where the summation is over the sides of polygon r and 4/ is the relative displacement

between particles comprising side s of polygon r. Multiplication of (2.25) by the position

vector V;" of the centre of gravity of polygon r and addition of all equations gives

2.4V =0 (2.26)
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This double sum contains one term for each external side & of polygon r, Alf*V], which
can be rewritten as A/"(x} —g]" ), where g} is the vector connecting the centre of

gravity of polygon r to boundary point .

Each internal side contributes a term (A7V] + 4V} ). Since A4l =-Al", the term
corresponding to internal contacts can be rewritten as —A7(V/ -V/]) or -4l g},
where g} is the vector connecting the centres of gravity of polygons r and s.
Combinations A4l;*g}’ can be written as 4l7 g, since 4l =-4l)", and g} =-g} . The

resulting expression for (2.26) becomes

Y Arx =) Afg; (2.27)

aeB cES

Hence it follows from (2.24)

9, =13 acne 2.28
i = -5)_:, AlfhS (2.28)

where the so-called polygon vector h; is defined by

Equation (2.28) is the expression for the average displacement gradient tensor in terms
involving the internal relative displacement gradient tensor is analogous to the
micromechanical expression for the average stress tensor (2.19). Equation (2.28) was first

reported by Rothenburg (1980).

The expression for the average strain tensor then becomes

3 %;é(&mg + A% 230)

2.3.2 Stress partitions (Thornton and Barnes, 1986)

The average stress tensor for the volume V? occupied by a single particle may be written

as
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1 1

If we consider the tractions ¢, to consist solely of discrete forces F; acting at point

contacts defined by the coordinates x; then the integral in (2.31) may be replaced by a

summation over the n contacts for the particle p. Thus
PR B F
of =37 2Fp (2.32)

since the tractions acting on the surface of a particle are discrete forces acting at the points

of contact with adjacent spheres.

For a large assembly of particles occupying a volume V the average stress tensor for the

assembly may be obtained from

5, =1 [5,av =L ve5? 233
@y "VIGJ -VZ:: Ojj (2.33)
where the assembly consists of m number of particles.

Therefore, combining (2.32) and (2.33) the macroscopic stress tensor can be defined as:

R 2.&
Ty==) ) Fx;==Y Fx, (2.34)
V ! I V 1

where there are C contacts.

The observed stress tensor can be decomposed into several ‘partitions’, each of which is

associated with a different aspect of behaviour. The total force F; at a contact can be
divided into its normal force component (N J,) and tangential force component (TJ). The

basic definition of the stress tensor can be rewritten as
s, C 2 C

Ty == Nx += 3 T;x, (2.35)
VS V4

Restricting attention to disc assemblies
N,;=Nn;, T;=Tt,, x, = Rn, (2.36)

where n; define the contact normal, # is the unit vector orthogonal to n, and R is the
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particle radius. Substituting (2.36) into (2.35) the ensemble average stress tensor is

calculated from

c c
(o =%ZRNn,.n J +§-ZRTn,.t ; »Where nt, =0 (2.37)
1 1

Rn,defines the radius vector to the contact, Nn, and Tt are the normal and tangential
contact forces. Equation (2.35) may be rewritten, using (-) to represent statistical average,

as

<RNn,.n _,-) N (RTn,.r !)
(RN) ~ (RN)

=0 +0; (2.38)

g

=o‘u

where 0'; and o‘j are the normal and tangential contact force contributions to the stress

tensor and
0 =22 (RN) (2.39)

The tangential forces contribute only to the deviatoric components of the stress tensor and

the isotropic part derives solely from normal forces at contacts. This is because n,;t;, =0 in

(2.38), i.e. the vectors R and T are orthogonal.

2.4 Microscopic characteristics of granular materials

The overall macroscopic behaviour of granular materials requires a micromechanical
formulation of stress and deformation measurements. It should be noted that the stress-
force relationship explained above links the discrete mechanics of granular materials and
the continuum mechanics. The correlation seems sufficient, but generalized continuum
mechanics may not be sufficient to adequately express the overall mechanical properties
of granular materials. Therefore, more quantities, such as a fabric tensor and some other
quantities, may be needed to be taken into consideration in the formulation of the
mechanics of granular materials. Both the number of contacts and their orientations are
essential for defining the physical model and should be monitored to measure their
evolution during deformation. This can be done by determining some characteristic

parameters described in the following sections.
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2.4.1 Coordination number

An important statistical measurement of the physical model is the average coordination
number. This number is an alternative parameter to the contact density. The assembly
average coordination number is the average number of contacts per particle. The average

coordination number is defined as:

2C
7 = 2.40
a N ( )

where C is the number of contacts and N is the number of particles. However, numerical
simulations have revealed that, at any time during shear, there are some particles with no
contacts and some particles with only one contact. None of these particles contributes to
the stable state of stress. Hence, a mechanical coordination number is defined:

m= ’ Z
(N-=N,=-N,)

m

22 (241)

where N;and N, are the number of particles with one or no contacts respectively (see Fig.
2.5).

Fig. 2.5 Coordination number

The coordination number is widely used in the evaluation of structural properties related
to the connectivity between particles, such as the force transmission and tensile strength
(Cundall and Strack, 1979a). Results from numerous investigations showed that the
assembly average coordination number is strongly correlated to common measurements of
particle packing such as the assembly density or void ratio (Oda, 1977).

2.4.2 Isotropy

A particle assembly behaves isotropically with respect to a certain property if the values of
that property are identical in all directions. When a property has different values in
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different directions, the material is anisotropic with respect to that property. For instance,
the bulk material can behave isotropically with respect to the strain tensor. In the case that
a bulk material is isotropically loaded, it will isotropically deform if the stresses are
increased isotropically. Feda (1982) made a distinction between inherent and induced
anisotropy. A bulk material can be inherently anisotropic because of the fact that the
particles are elliptical in shape. Anisotropy can be induced by different proportions of
deformation being applied to an isotropic sample. The sample then has deformation
induced anisotropy as defined by Feda (1982). Various types of anisotropy, whether

inherent or induced, include deformation, strength, structural and fabric anisotropy.

2.4.3 Fabric tensor

To quantify the fabric of a granular mass, various measures have been used. One of such
measures is the void ratio, which is closely related to the coordination number. However,
experiments show that the void ratio is not sufficient to completely describe the
microstructure of a granular assembly, since two samples of the same granular material of
the same void ratio may have very different mechanical responses (Oda 1972, Oda et al.
1980). Thus, other measures of fabric have been introduced and used in the constitutive
characterization of granular materials. A fabric tensor was introduced by Satake (1978) as
a measurement of changes in the fabric of granular materials. This parameter emerges
naturally as a measure of stress in an assembly of particles characterized by an induced

anisotropy in contact normal orientations only.

The structural anisotropy is defined by the distribution of contact normal vectors. If the

distribution is random and can be approximated by a uniform distribution, the structure is
in effect isotropic. Anisotropy is indicated by a non-uniform distribution. Satake (1982)

suggested that, for disc or sphere assemblies, the structural anisotropy defined by the

distribution of the contact normals #; could be characterised by a fabric tensor @, where

] 2C
@, = (n‘n j> = -é-&-zl:n‘n J (2.42)

For a complete characterisation of the microstructure, a second order tensor, also termed a
fabric tensor, was proposed by Oda et al. (1982),
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F,=F,9, (2.43)

and R is the mean particle radius. This definition of fabric incorporates both the packing
density and the structural anisotropy and appears to be a satisfactory method to

characterize the microstructure of granular materials.

2.4.4 Contact normal orientations

The load-induced anisotropy in contact normal orientations is not confined to the
maximum and minimum load-directions but affects all directions. A convenient means of
illustrating a possible bias in the contact normal orientation distribution is by plotting a
histogram of the proportion of contact normals falling within a series of adjacent
orientation classes that partition the full orientation space. The unit circle is partitioned
into a finite number of group orientations to accommodate the finite number of contacts in
the assembly. A polar histogram is used to show the distributions of contact orientations.
In order to construct this diagram each contact is interrogated to find out which of the
eighteen 10° bands between 0° and 180° (contact normal direction) its inclination belongs
to. If a contact falls into band i, the total contact number for this band is increased by one.
After all contacts have been scanned, the total contact number of each band is divided by
C, the total number of contacts of whole assembly, to obtain the radial coordinate of each

band as follows:

r = 85y (2.48)

where nc; is the total number of contacts mapping into band i, The part of the histogram
between 180° and 360° is skew-symmetrical to that between 0° and 180°.

Using the same method, the distribution of contact normals weighted to the magnitude of
the contact normal force can be obtained by normalizing the total normal force
accumulated for each band by the total normal force of the whole assembly. Hence, the

radial coordinates p, for bands between 0° and 180° is given as:

44



Chapter 2: Mechanics and Micro-mechanics of Granular Materials

> F:

P; =-i;ﬂ (2.49)

where F! is the contact normal force of a contact mapping into band i. This plot can also

be interpreted as the distribution of contact normal forces.

Figure 2.6 illustrates three typical shapes of the contact normal orientation distribution. If
the distribution is isotropic its shape is close to a circle. With increasing anisotropy, the
shape mutates to a peanut shape. Isotropic distributions are usually encountered in
assemblies under isotropic load conditions. Anisotropic distributions characterize either a
state of initially anisotropic assemblies, for instance due to some depositional history
(inherent anisotropy), or initially isotropic materials that become anisotropic in order to

accommodate an applied anisotropic load (induced anisotropy).

S\ 2

(a) Isotropic distribution  (b) Weak anisotropy  (c) Strong anisotropy

Fig. 2.6 Typical shapes of the contact normal orientation distribution

2.5 Summary

In this chapter, some basic concepts for cohesionless granular materials are described. The
general approaches used to describe the mechanical behaviour of granular materials are
then reviewed. Finally, several other parameters related to the microscopic characteristics
of granular materials are introduced. In general, there are two main methods to predict the
mechanical behaviour of granular material: the continuum approach and the microscopic
approach. Many experiments and numerical analyses have been carried out to verify these
approaches. However, there are still many aspects of the behaviour of such materials that
have not been fully understood, such as strain localization. Although real experiments can

reveal the phenomenon to a certain extent, the accuracy and reproducibility of the
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experiments rely heavily on the equipment design and other conditions. Fortunately, with
the development of numerical methods, such as DEM, and the high speed computer, it is
now possible to investigate the mechanical behaviour of granular materials inside the
specimen in great detail so as to better understand it. It has been demonstrated that the
simulations using DEM can provide detailed new information about the mechanical
behaviour of granular materials (Cundall and Strack, 1979a; Thornton and Barnes, 1986;
Thornton and Sun, 1993; Thomton, 2000a). Therefore, the macro- and micro- mechanical

behaviour of granular material will be investigated by using DEM in this study.
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CHAPTER 3: BIAXTIAL COMPRESSION TESTS

3.1 Introduction

Traditionally, theoretical models of material behaviour are validated by physical
experiments. However, for granular materials, laboratory studies are inherently difficult
due to the inability to prepare exact replicas of the physical system and the fact that
attempts to measure what goes on inside the system invariably intrude upon the material
response. Although some non-intrusive measuring techniques have been developed,
quantitative information about the forces acting at the contacts between constituent
particles cannot be determined and, consequently, interpretation of the state of stress relies
primarily on boundary measurements. It is not clear if information obtained at the
boundaries of a specimen can reliably represent the ensemble state of stress and strain
inside the specimen; which is normally supposed to represent the constitutive behaviour of
the material at a point in a continuum and, thereby, provide the data required for

continuum modelling.

This study of quasi-static behaviour of granular materials starts with an investigation of
the biaxial Eompression test by conducting DEM simulations using the Aston TRUBAL
code. The objective is to examine the shear behaviour of particulate systems and to show
evidence that the numerical simulations can provide reliable data that are normally
obtained from physical experiments. The simulation results reported in this chapter were

first reported in Zhang and Thornton (2001).

In order to examine the effect of boundary conditions on the mechanical behaviour, two
sets of tests on a polydisperse system of spheres have been conducted: one is biaxial
compression using periodic boundaries (named BCP); the other test is biaxial compression
with kinematically controlled wall boundaries (named BCW). For each set of tests,
simulations under both constant volume and constant mean stress conditions have been
carried out. For the BCP tests, the stress state is determined as a volume average of the
distribution of interparticle contact forces over all the contacts inside the assembly. For the

BCW tests, two approaches are employed to calculate the stress state: one is the same as
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that used in BCP tests; the other is from the wall forces at the boundaries, which is similar

to that used in laboratory experiments.

In this chapter, numerical simulation techniques and the methods used to prepare the
specimen for different boundaries are described. The observed macroscopic and
microscopic behaviour are provided. Finally, results obtained using different values of

wall friction are presented.

3.2 Brief literature review

The principle of a true biaxial test was first proposed by Hambly (1969). In the test, the
sample is constrained in the lateral and axial directions by four interlocking platens and
remains as a rectangular prism during compression so that the strain throughout the
sample is homogeneous. Since there are no shear stresses on the boundary surfaces the
stresses on the boundaries are principal stresses. Hence, both principal stresses can be
measured directly in the biaxial test, and the Mobhr stress circles can be determined for

each state of stress.

Biaxial compression tests have been performed on assemblies of oval cross-sectional rods,
to evaluate the effects of interparticle friction, particle shape, and initial fabric on the
overall strength of granular materials (Oda et al, 1983; Konishi et al, 1983). The variation
in the spatial arrangement of the particles (fabric) and particle rolling and sliding are
monitored by taking photoelastic pictures at various stages during the course of
deformation. It was found that particle rolling appears to be a major microscopic
deformation mechanism, especially when interparticle friction is large, which is in
contradiction to the common assumption that particle sliding is the major microscopic
deformation mode. Based on the experimental observations, the major principal axis of
fabric tends to rotate toward the major principal axis of stress during the course of
deformation. Biaxial experiments were performed with rod assemblies also by Misra and
Jiang (1997), who studied the micro-mechanical deformation behaviour of granular
materials. These experiments were focused upon the micromechanical behaviour under
mixed boundary conditions, with stress-controlled lateral boundaries and displacement-
controlled axial boundaries. Particle motions, such as displacements and rotations, were

measured during the test. Deformation patterns in a number of rod assemblies with
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random packing structures were also analysed.

A true biaxial shear tester was developed by Harder and Schwedes (1985), in which
stresses or strains in the x- and y- directions can be applied independently of each other to
investigate the influence of the stress history on the yield limit. Results from shear tests
with limestone showed a significant influence of the different ways of consolidation on the
yield limit, i.e. the flow properties of a bulk solid would depend on the stress history. The
flow function, however, which is essential for silo design, proved to be independent of
stress history. A flexible wall biaxial tester was designed to produce a determined state of
stress or strain by Kraan (1996) and used to measure powder flow properties. The flexible
membranes allowed the tester to be operated in both a stress and a strain controlled mode.
It was shown that the flow function measured with this tester was higher than the flow

function as measured with the Jenike shear tester.

Han and Vardoulakis (1991) presented some experimental results focussing on the pre-
failure and post-failure behaviour of water-saturated fine-grained sand in the biaxial
compression test. The experiments were performed in a plane strain apparatus, which
allows a detailed study of bifurcation and post-bifurcation phenomena to be carried out.
The failure modes of each test were illustrated with x-ray radiographs. Failure in the form
of shear band formation was found to take place only when the specimen was dense

enough to behave in a dilatant fashion.,

In contrast to conventional experimental approaches, numerical investigations allow the
observation of the changes of structure in an idealized material for any loading and
unloading paths. Numerical simulation also provides detailed information on
micromechanical statistics, particle motions and interparticle forces. Cundall and Strack
(1979a) proposed a computational algorithm for assemblies of circular particles, originally
named as the distinct element method (DEM). In this model, the interaction of the
particles is considered as a transient problem with a state of equilibrium developed

whenever internal forces balance and later extended to 3D by Cundall (1988).
The results of numerical simulations of planar assemblies of elliptical particles subjected

to biaxial compression were presented by Rothenburg and Bathurst (1992). The influence

of particle eccentricity on peak friction angle and peak dilation rate was explored.
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Qualitative features of these systems were similar to real sand behaviour and the
mechanical behaviour of elliptical assemblies is not significantly different from that of
assemblies of discs. The results were also used to verify the accuracy of the proposed
stress-force-fabric relationship based on the assemblies of discs and of spherical particles
(Rothenburg and Bathurst 1989). The influence of particle shape on the strength and
deformation behaviours of two-dimensional assemblies of ellipse-shaped particles were
investigated using DEM by Ting et al. (1995). Assemblies with varying individual particle
aspect ratios were formed with a preferred bedding plane, then isotropically compressed to
different confining stresses before subjected to biaxial compression. For systems
composed of flatter particles, particle rotations were greatly inhibited, while observed
strength increased dramatically. This strongly suggested that using disc and sphere-based
DEM codes to analyse micromechanical aspects of soil behaviour would result in

overestimating individual particle rotations.

Williams and Rege (1997a) examined the formation of microstructures within a granular
material undergoing biaxial compression. They simulated ensembles of particles with
different geometrical shapes and size. It was shown that the motion of the particles
deviated significantly from that predicted by continuum theory. Lanier and Jean (2000)
presented numerical simulations of quasi-static biaxial compression of a 2D disc
assembly, based on “contact dynamics”. The comparison with a real experiment showed
that many features such as maximum shear strength, plastic flow with dilatancy, evolution

of contact orientations can all be well described by numerical simulations.

All the above numerical studies were performed using either wall boundaries or periodic
boundaries. As far as it is known, no comparison has been made for the same test carried
out with these two different boundary conditions. This will be addressed in the following

sections.

3.3 Sample preparation
3.3.1 Periodic boundaries

Initially, a system with 5000 particles is generated randomly in a periodic cell as a

‘granular gas' with all particle centres located in the same plane. During the simulation the
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motion of all the particles is restricted to this plane. Thus the test is essentially a two

dimensional problem. The packing density of the sample is decided by the solid fraction
(sf) or porosity (n),

N
>V,
== 3.1)
EDN7
n=1_sf=-—;f (3.2)

where V; is the volume of particle i (i =1,N ), N and V are the total particle number and
total volume of the sample, respectively. When calculating the volume, the dimension in

the third direction is taken to be the average particle diameter.

When initially generated the system has a solid fraction ca. 0.375 and there are no
interparticle contacts. In order to obtain compact, random and isotropic samples, the initial
system is isotropically compressed to obtain ten different values of solid fraction in the
range between 0.563 and 0.648. To achieve this, a numerical servo control is used so that
the applied strain rate is continuously adjusted according to the difference between the
desired solid fraction (sfs) and the current solid fraction (sf;). At each time step, the strain

rates are set to,
€,=E6,=058(5f4=5f.)s € =€, =0 (3.3)

The parameter g is the gain of the servo mechanism. A gain parameter g of 0.03 was used.
This value was set after a detailed trial and error process. After isotropic compression, all
the samples are initially square in shape and surrounded by two pairs of periodic
boundaries. By using this technique, particles near the boundaries of the volume interact
with images of particles found near the opposite boundary. Particles that exit through one
boundary re-enter the domain through the opposite one. Therefore, the number of particles
remains constant and boundary effects are eliminated. In this way, “perfect” experiments

are performed free from boundary effects.

3.3.2 Wall boundaries

The actual particle packing arrangement is expected to have a significant influence on the

shear behaviour of granular material and so the sample preparation process should be
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modelled carefully. There are several procedures for numerically generating an initial state
of a granular assembly when using wall boundaries in the simulation. One method is to
drop the particles, like raindrops, into a container. The particles can be dropped either one

by one or all together. The heterogeneity and statistics of the resulting packing depend on

the technique chosen.
"
s V)
——
C -
(a) sample generation (b) isotropic compression

(c) force connection diagram

Fig. 3.1 Sample preparation by driving walls

The second method used to prepare a sample is to generate the particles randomly as a
‘granular gas’ in the space with very low solid fraction ca. 0.385 (Fig. 3.1a). Then the
particles are driven together to obtain a dense system by moving the four boundary walls
inwards at equal speeds until the desired solid fraction is obtained (Fig. 3.1b). The

52



Chapter 3: Biaxial compression tests

shortcoming of this method is that the walls interact with the particles near the boundaries
first and the disturbance progressively propagates to the inner particles through particle-
particle interactions. This leads to the density near the boundaries being denser than the
central area as can be seen from Fig. 3.1b. Consequently, by the end of isotropic
compression large forces always concentrate near the boundaries and the sample generated

by this method is far from homogeneous (Fig. 3.1c).

Alternatively, the particles can be generated in such a way that they float freely in space
and then provide a mechanism for bringing them into close proximity. One mechanism is
to switch on gravity. Another is to switch on a central force field which attracts the
particles to a common point. Again, the packing structure throughout the sample can vary
depending on the technique chosen. All the samples in the simulations with wall

boundaries were generated by the following method.

(a) generation (b) deposition (c) isotropic compression

Fig. 3.2 Three stages of sample preparation

At the first stage of sample preparation, the particles are generated randomly floating in a
container with the top wall omitted. There are no contacts between particles at this stage
and the solid fraction is about 0.385 (Fig. 3.2a). Then gravity is introduced to create a bed
of particles above the bottom wall (Fig. 3.2b), which is called the deposition stage. On
completion of the sample deposition the solid fraction is 0.584. The top wall is then
positioned above all the particles and moved downwards a bit to bed the sample. In the
last stage, the four boundary walls are moved inwards at the same speed to isotropically
compress the sample until a desired high packing density is obtained, say 0.620 (Fig.

3.2¢), whereupon the velocities of the four walls are set to zero and the sample is allowed
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to relax. Eventually the system reaches equilibrium with all particles velocities being
essentially zero. The sample is then saved and used as the initial configuration for the

shear tests.

3.3.3 Simulation parameters

In the simulations, the collection of particles consists of seven different sizes varying from
30pum to 90um with an average diameter Dsp of 60pum. The mechanical properties of all
the particles are given in Table 3.1 and the particle size distribution is shown in Fig. 3.3.
These parameters, unless indicated otherwise, will be used for all the shear tests in the

following chapters.

Table 3.1 Mechanical properties used in the simulation

DEM parameters and material properties Selected value
Number of particles 5000
Diameter of particles (zm) 30, 40, 50, 60, 70, 80, 90
Friction coefficient between particles, 4, 0.5
Friction coefficient between particles and walls, z,, 0.1,0.5
Cohesion ¢ 0.0
Young's modulus, E (GPa) 8.34
Poisson's ratio, v 0.35
2000

particle number
g g

g

20 30 40 50 60 70 80 00 100
diameter (um)

Fig. 3.3 Particle size distribution
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3.4 Constant volume tests

3.4.1 Test set-up of BCP

Biaxial compression simulations with periodic boundaries have been performed using a
representative volume element subjected to a uniform strain field. By considering the
particle assembly in the working space as a continuum element of a unit cell, a strain-rate

tensor £ is superimposed on the assembly so that the incremental displacement of each

constituent sphere Ax; is given as,
Ax) = éx, At (3.4)

where x; are the coordinates of the sphere centre and A4 is the small time step used to

advance the evolution of the system. Superimposing the incremental displacements due to

the prescribed strain rate field on the updated incremental displacement due to the out-of-

balance force leads to the total incremental displacement of each sphere as,
Ax, = Ax] + Ax) @3.5)

where Ax[ represents the updated incremental displacements of each sphere due to the

out-of-balance force, see Appendix A.

During the biaxial compression stage, strains are computed directly from the length along
the sides of the periodic cell. From these measurements, strains in the lateral and axial

directions are computed from

£ = = (3.6)

i l:’
where [', 1] are current and previous dimensions of the specimen in the i (i=1, 2)

direction respectively. Volumetric strains and deviator strains are calculated from the two

dimensionally invariant strain measurements as follows
E,=& +E, 3.7

7=£;"-£2 (3.8)

In the constant volume BCP test, each sample is strain controlled. The sample is

compressed horizontally and expanded vertically at an equal but opposite constant strain
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rate to maintain the volume (area) constant. The DEM, however, explicitly integrates
Newton’s second law for every particle. Hence, an idealized sample in a quasi-static
experiment must be loaded at such a low rate that inertial effects can be negligible. The
strain rates should be small enough to avoid collisions in the simulation. In the simulations
reported here, they are set as &, =—Ix10"s", &, =+Ix10"s™" and &, =€, =0 to
ensure deformation at constant volume. The simulations for all samples is continued until
g, =-0.15, &,, =0.15, i.e. 15% axial strain. The results for the sample of solid fraction
0.620 are reported in this chapter. Results of BCP simulations on other samples with
different initial solid fractions are reported in Chapter 6. The particle pattern at the
beginning of shearing is shown in Fig. 3.4a and the pattern after 30% deviator strain is
shown in Fig. 3.4b. In Fig. 3.4, all 5000 particles are colour banded. It’s can be seen that
the particle pattern by the end of test is totally different from that at the initial state in that
there is a distinct shear band inclined at about 35° to the vertical direction. Further

discussion of shear band formation will be presented in Chapter 7.

(a) (b)

Fig. 3.4 Snapshots of BCP test at: (a) Prior to shearing; (b) 30% deviator strain

3.4.2 Test set-up of BCW

Once a sample with a solid fraction of 0.620 had been prepared, as described in section
3.3.2, the system was then ready to undergo biaxial compression by moving the four
boundary walls at a specified strain rate. The strain rates were set to be the same as in the

BCP constant volume test. The wall friction was set to 0.1. For the BCW constant volume
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test, the left and right-hand walls were moved towards each other, while the top and

bottom walls were moved apart.

In order to achieve constant volume conditions, kinematically controlled wall boundaries

were employed. The velocity of each wall was updated at every time step by:

where v, are the velocities of the walls, &; is the desired strain rate tensor and [, are the

current dimensions of the sample (Fig. 3.5). The velocity of the walls can be derived from,
il|En Ok (3.10)
v, 0 &, 11

P,

|

—-ll e

Fig. 3.5 Definition of stress in wall boundaries simulation

As mentioned in section 3.1, for the tests using wall boundaries, the stress states are
calculated in two different ways:

(i) from the forces at the boundary wall:

)

0, = @.11)

where P, are the forces acting on the walls and the principal stresses can be derived as,

PlL,_ Pl __P

_BL_ _ G.11a)
O 174 f,fz(dp) LD,
P,
. . 3.11b
92 =1D, it

where d, is the diameter of each particle.
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(ii) as a volume average of the contact forces over all the contacts in the assembly (as in

periodic cell calculations):
2 C
g =;;Z Fix, (3.12)
I

and the summations are over all the contacts in the volume V.

3.4.3 A comparison between BCP and BCW tests

Figure 3.6 shows the stress-strain curves obtained for the BCP and BCW tests. It can be
seen that, when the system is deformed by kinematically controlled wall boundaries, the
calculations based on boundary information (p-w) give slightly smaller values of both the
major and minor principal stresses when compared to the volume-averaged calculations
(p-p). It is also noted that the difference is greater when the walls move outwards, as in the
case of the minor principal stress. As a result, the boundary measurements overestimate
the deviator stress and underestimate the mean stress, as shown in Figs. 3.7 and 3.8,
respectively. It can be seen from Fig. 3.7 that the deviator stress increases rapidly at a
decreasing rate until 10% shear strain after which some strain softening occurs. The mean
stress increases gradually throughout the test as shown in Fig. 3.8. Interestingly, as can

clearly be seen in Fig. 3.9, the boundary measurements indicate an initial decrease in mean

sr o, (MPa)

LEER R RN P-w
PP
+ BCP
o 1 1 ]
-0.15 -0.10 0.05 -0.00 0.05 0.10 0.15
& &

Fig. 3.6 Stress-strain relationships
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Fig. 3.7 Evolution of deviator stress

P LERRRR] p“

e BCP

5 1 1 J

0.0 0.1 0.2 0.3
deviator strain

Fig. 3.8 Evolution of mean stress

stress, which is not observed when volume-averaged measurements are used. This is also

apparent in the stress path evolution shown in Fig. 3.10.

In order to obtain the same solid fraction at the start of the shear stage, it was necessary to
increase the isotropic stress in the wall-bounded system to a higher stress level than that of
the periodic cell. It can be seen from Fig. 3.8 that the initial mean stress of the sample in

the BCW test is about 6MPa higher than that in the BCP test. Consequently, only

59



Chapter 3: Biaxial compression tests

qualitative comparisons are possible when considering the individual stress components in
the two test simulations. The change in mean stress during biaxial compression is defined
as the mean stress (s) minus the initial mean stress (sp) and, as can be seen in Fig. 3.9
when the volume-averaged data is considered, the change in mean stress during shearing
is almost identical, until the deviator strain is 15%, whereupon the deviator stress during

post-peak deformation of the wall-bounded system starts to increase (see Fig. 3.7).

o
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Fig. 3.9 Changes in mean stress during constant volume deformation
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Fig. 3.10 Stress paths
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The mobilised shear strength defined in terms of the angle of internal shearing resistance
@ is shown in Fig. 3.11. The maximum value of ¢, obtained from the boundary
calculations is 30° compared to a value of 26° obtained from the volume-averaged stress
calculations. However, remarkable agreement is obtained between the two test results

when the evolution of sing, is examined in terms of volume-averaged calculations. It is

also noted that, in the wall boundary controlled test, the stress fluctuations exhibited by

the volume-averaged data is reflected in the boundary calculations.

E
7]
(RN TN] pﬂ
04 L o BCP
0.0 1 L J
0.0 0.1 0.2 0.3

deviator strain

Fig. 3.11 Evolution of sing,,

The evolutions of internal variables during the two simulations are shown in Figs. 3.12 -
3.14. Figure 3.12 shows the evolution of the mechanical coordination number, Z,, It is
clear that Z,, is similar in both tests. Figure 3.13 shows the evolution of deviator fabric. It
can be seen that although the degree of induced structural anisotropy is slightly higher in
the periodic cell test, the trends in the evolution of structural anisotropy in the two tests are
very similar. However, the values of deviator fabric developed are rather low compared to
the theoretical prediction that the maximum possible value is 0.5 in 2D. This is due to the
increase in mean stress, which suppresses the induced structural anisotropy (Thornton and
Zhang, 1999). In addition, it is not necessary for the system to develop a strong structural
anisotropy because the deviator stress depends only on the sub-network of larger than
average contact forces, which selects the most favourably oriented pathways within the

overall anisotropic structure (Thomnton, 2000b).
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The evolution of the percentage of sliding contacts is also similar in both tests, as shown
in Fig. 3.14, although there are more sliding contacts recorded in the simulation using wall
boundaries. The reduction in the percentage of sliding contacts at high deviator strains is

due to the high mean stress developed as a consequence of maintaining the sample volume

constant.

deviator strain

Fig. 3.12 Evolution of mechanical coordination number

1 [l J

0.1 0.2 0.3
deviator strain

Fig. 3.13 Evolution of induced structure anisotropy
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3.5 Constant mean stress tests
3.5.1 Test set-up

In the constant mean stress test, the strain rates are initially specified as those used in
constant volume test to the sample. However, in order to keep the mean stress constant,

the strain rate tensor is continually adjusted using a numerical servo control,

&5 =&, +sign(g(c,~0.)8,), £;=£,,=0 (3.13)

where o, is the desired mean stress to be achieved and o, is the current actual mean

stress of the assembly. In the BCW test, the velocity of each wall is modified according to

the current adjusted strain rate by using (3.9). The wall friction is again set to 0.1,

3.5.2 A comparison of BCP and BCW tests

Except that the magnitudes and the trends of the curves are different from those of the
constant volume tests, the same observations can be made for this set of results, shown in
Figs. 3.15-17, when making the comparison between BCP and BCW tests. Since this is
constant mean stress test, the magnitudes of both the principal stresses (Fig. 3.15) and the

deviator stress (Fig. 3.16) are much lower than in the constant volume tests. However, the

63



Chapter 3: Biaxial compression tests

evolution of sing,, is similar to the results for the constant volume tests. These results

further demonstrate that periodic boundaries can provide qualitative results of
macroscopic behaviour of the sample, while the measurements from the wall boundaries

are far from the true material behaviour,

The microscopic behaviour of the specimen in the constant mean stress tests are compared
in Figs. 3.18 - 3.20. Once again the results from the BCP test are comparable to the results
from BCW tests based on the volume averaged calculation. More results of BCP constant

mean stress tests will be discussed in Chapter 6.
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Fig. 3.15 Stress-strain relationships
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Fig. 3.20 Evolution of percentage of sliding contacts

3.5.3 The effect of wall friction on the results of BCW tests

In order to investigate the effects of different boundary conditions, a series of tests were

performed in which the friction between walls and particles g, was set as 0.0, 0.1 and

0.5. It is noted that the arrangement of individual particles prior to biaxial compression is
not exactly the same in the BCP and BCW tests, compare Fig. 3.4a with Fig. 3.21a. It is
interesting to see that the particle pattern at 30% shear strain in the BCW tests is different
from that in the BCP test and the deformation pattern of the BCW test depends on the
wall friction specified. When the wall friction is zero there is only one shear band that is
inclined at about 46° to the vertical direction (Fig. 3.21b). Two approximately conjugate

intersecting shear bands form when the wall friction is set to a high value of x4, =0.5 as

shown Fig. 3.21c. Further discussion of shear bands is provided in Chapter 7.

It has been shown that the measurements from wall boundaries underestimate the principal
stresses and result in a significant overestimation of the angle of internal shearing
resistance. Therefore, in the following section the state of stress is calculated by volume
averaging over all the contacts inside the sample. Based on these results the following

observations can be made.
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(a) (b) (c)
Fig. 3.21 Snapshot of BCW test at (a) Prior to shearing;

(b) 30% deviator strain (g, = 0.0 ); (¢) 30% deviator strain (¢, =0.5)

3.5.3.1 The macroscopic behaviour

The macroscopic measures for the BCW constant mean stress test are given in Figs. 3.22 -
3.24. Figure 3.22 shows the deviator stress plotted against deviator strain and Fig. 3.23
presents the volumetric strain versus deviator strain for the test using different wall
friction. It can be seen that the deviator stress for the three tests reaches a peak at about the
same strain, and then decreases as the deviator strain increases. Eventually the deviator
stress remains nearly constant around 8MPa at large strain in all three cases. It is found
that before the deviator strain reaches 10%, the results for the simulations with the two
lower wall friction values are quite close. In addition, the peak deviator stresses for these
two tests are higher than that obtained with a high wall friction (Fig. 3.22). This 1s also
true for the evolution of sin¢, as shown in Fig. 3.24. The maximum value of the angle of
internal shearing resistance ¢, for the test with highest wall friction is about 2 degrees
lower than that in the other two tests. In all cases, the volumetric strain increases with
increasing deviator strain, i.e. dilates during shearing (Fig. 3.23). The sample with the
highest wall friction exhibits the least amount of expansion by the end of the test. From
comparisons of the BCP and BCW constant mean stress test presented in the last section,
it was found that the shear strength obtained from the two tests were essentially the same.
However, the sample used for comparison had a wall friction of 0.1. This means that the

shear test that was carried out on the highest wall friction sample underestimated the shear

AS-:YON. UNIVERSITY
6 LIBRARY & INFORMATION SERVICES




Chapter 3: Biaxial compression tests

«
g
[7.]
L]
L5
(=]
@
[
°
g
3
he=] Ly ll* =0.0
! — Y, =0.1
a o W, =05
%.0 0.1 0.2 0.3
deviator strain
Fig. 3.22 Evolution of deviator stress
0.03r
0.02
(g
0.01
0.00 L L J
0.0 0.1 0.2 0.3
deviator strain
Fig. 3.23 Evolution of volumetric strain
0.5

sinQ,

0.0 . . )

0.0 0.1 0.2 03
deviator strain

Fig. 3.24 Evolution of sing,,

68



Chapter 3: Biaxial compression tests

strength of the material. This suggests that in a real experiment smooth boundaries rather
than rough ones should be chosen for the biaxial compression test to overcome the

boundary effect on the measurement of shear strength.

3.5.3.2 The microscopic behaviour

The effects of wall friction on the microscopic behaviour are shown in Figs. 3.25 - 3.28.
Figure 3.25 shows the evolution of the mechanical coordination number with deviator
strain. It can be seen that the evolution of the mechanical coordination number in all three
tests is identical until 8% deviator strain. With further shearing there is a slight divergence
among the three test results and by then the highest wall friction sample gives the greatest
coordination number. The variation of the deviator fabric with deviator strain is shown in
Fig. 3.26. It can be seen that, at very low strains (say <4%) the deviator fabric is the same
for all three tests. However, at high deviator strain, the sample with the highest wall
friction generally exhibits the lowest degree of induced structural anisotropy. The
evolutions of the principal fabrics of the two samples are presented in Fig. 3.27. It is clear
that, when the strain is less than 6%, the results obtained from two tests are identical. At
high strain (26%), the major principal fabric of the sample with higher wall friction
becomes less than that for the sample with zero wall friction. On the contrary, the minor

principal fabric of the high wall friction sample becomes greater than the other.

4.4 "

sennase l.l.w =00
4.3 —_— U, =01
o Hy =0.5

4.2

4.0

mechanical coordination number

3.9

deviator strain

Fig. 3.25 Evolution of coordination number
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It can be seen from the Figs. 3.25-3.27 that before the peak strength (see Fig. 3.24) the two
samples show the essentially the same results and the divergence only occur during the

post-peak stage, which implies that the effect of wall friction becomes significant after

peak strength. As

two cases are different, hence the amount of strain localization inside the sample are not

the same. Since the strain localization always starts at about the peak strength stage and

deviator strain

Fig. 3.27 Evolution of principal fabrics

illustrated in Figs. 3.21b and c the appearance of shear bands in these
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will cause non-uniform deformation inside the sample, the significance of this effect on
the overall calculation of the mechanical coordination number and the deviator fabric is
not clear. Although there is a notable difference between the deviator fabric of the two
samples, the difference is actually very small in value. Further examination of the

correlation between the strain localization and these microscopic behaviours are

worthwhile carrying out.

Figure 3.28 shows the percentage of sliding contacts plotted against deviator strain. It is
clear that the sample with zero wall friction has more contacts sliding. This is attributed to
the fact that particles which are in contact with the walls are all sliding and cause other

particles which are in contact with them to be more mobile. Consequently, more contact

slidings are induced.
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3.6 Summary

Biaxial compression tests of 2D systems of elastic spheres have been simulated using both
a periodic cell and wall boundaries. In all the tests simulated, the systems are deformed
either at constant volume or under constant mean stress conditions. Aspects of both the
macroscopic and microscopic responses have been presented. It has been shown that wall

measurements underestimate the principal stresses leading to a significant overestimation
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of sing, , although qualitative comparisons showed good agreement. Nevertheless, the

results obtained from volume-averaged data are in good agreement for both types of

simulations.

The problem in physical experiments is the assumption that boundary measurements can
provide reliable estimates of the state of stress in the specimen. However, the forces
transmitted to the walls are not typical of the contact forces between the constituent
particles. The forces transmitted to a wall depend on the contact curvature and, therefore,
are increased if the wall is planar but decreased if the wall is rough due to asperities. The
magnitude of the wall forces also depend on the elastic properties of the wall. The
comparison between tests with different wall frictions demonstrates that the sample
generates a higher deviator stress and angle of internal shearing resistance when the wall
friction is set to a lower value. There are also fewer contacts with a wall than the contacts
between particles in any cross-section within the particle assembly. Therefore, there is no
reason why any boundary measurements should necessarily reflect the true material

behaviour of the specimen.

Failure and post-failure analyses are very important in soil mechanics and geotechnical
engineering. Failure of material is often characterized by the formation and propagation of
localized shear zones. It is interesting to find that shear bands form in both BCP and
BCW tests though the deformation patterns are different when the boundary conditions
are changed. This makes it very difficult to examine localization phenomenon in detail in
biaxial compression test simulations. The direct shear test is another conventional
experiment, which intentionally generates a shear band in the central plane of the sample.
Hence, it is instructive to perform direct shear simulations in order to examine behaviour
of granular materials within shear bands and this will be discussed in the next chapter.
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CHAPTER 4: DIRECT SHEAR TESTS

4.1 Introduction

In the direct shear test, the top half of the specimen is translated relative to the bottom half
of the specimen in order to create a shear band/plane across the mid-height of the

specimen. This test is widely used to measure the flow properties (in particle technology) -
or the shear strength (in geotechnical engineering) of granular materials. In particle
technology the test is performed in a Jenike shear cell, which is circular in cross section,
whereas the Casagrande shear box (square cross-section) is used in geotechnical
engineering. In both cases, the applied vertical and horizontal forces are measured and the
ratio of horizontal to vertical load is assumed to provide an estimation of the average ratio
of shear to normal stress acting in the shear band, and thereby provide a direct measure of
the internal friction angle. It is, however, unclear how reliable this traditional

interpretation is since the exact state of stress within the shear band is unknown.

The above problem can easily be examined by using DEM simulations, in which not only
the boundary information can be obtained, but also detailed information inside the sample.
The numerical model of the apparatus and the procedure of the simulations are reported in
this chapter. The main goals are to investigate the advantages and disadvantages of this
tester; to explore how the applied loads are distributed within the sample; to investigate
the shear behaviour of granular materials and the effect of boundary conditions in this test.

Some of the simulation results reported in this chapter were first reported by Zhang and

Thomnton (2002).

Two types of direct shear tests have been conducted: one is a constant volume test (CV
test) and the other is a constant normal stress test (CN test). In the CV tests, three samples
with different aspect ratio are employed and two different boundary frictions are
considered. The corresponding results are presented to show how the average stress ratio
acting in the shear band compares with the force data at the boundaries. The effects of the
aspect ratio of the shear box and the boundary friction are also investigated. In the CN

tests the above three samples are subjected to different constant normal stresses in order to
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©Xamine the effect of stress level. Based on the calculations of the stress tensor inside the
Shear band, the corresponding Mohr’s circles are obtained and the principal stress
directions are identified. According to the state of stress and strain in the shear band, the
interpretation of direct shear test data is discussed in the context of traditional

€Xperimental measurements.

4.2 Brief literature review

Although strength tests on engineering materials such as wood, metal and glass apparently
began in the early seventeenth century, the available literature on soil testing only dates
back to the early eighteenth century. The works of the early engineers were concentrated
on military fortifications or were limited to speculation on the angle of the shear surface
behind a retaining wall. Even Coulomb (1776), tested materials such as mortar rather than
soils. Today there are basically four principle methods employed in soil strength testing: .
direct shear, triaxial compression, torsional, and vane tests. Skempton and Bishop (1950)
Presented the measurement of the shear strength parameters ¢ and ¢ on some principal soil
types by the above methods practiced in Great Britain in detail. Here we only focus on the
shear box test and a brief review of the experimental and numerical investigations of the

direct shear test is presented in this section.

It appears that Collin (1846) was the first to propose a real soil shear test, in which a long
clay specimen was loaded transversely at its centre until it failed, This arrangement was
used to apply double direct shear to the specimen. Leygue (1885) described a single direct
shear test for cohesionless soils in a shear box, which was tilted until the top half slid
across the bottom half and was similar to the modern device except for the loading
technique. The advantage of the test is that it is very easy to set up and the results can be
obtained within a very short period of time. However, experimentalists and researchers are
sceptical of its reliability as a shear strength test. A serious drawback in the direct shear
test is the non-uniformities of stress and strain distribution within the shear apparatus,
which means that the interpretation of direct shear test results is not straightforward and

may be misleading when based on external measurements.

There are many variations in the loading conditions in contemporary direct shear test

devices. Modified loadings have been employed attempting to develop more uniform
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strain conditions within the specimen. An annular direct shear apparatus was proposed for
soil by Lambe (1951). Such a test was used to determine the shear strength of soft rock,
but apparently it was not employed otherwise. A shear box developed by Peltier (1957) in
the Central Laboratory of Bridges and Roads of France has movable sides by which a
controlled force can be applied to the intermediate principal plane. Although the
intermediate principal stress was probably not uniformly distributed over the sides of the
box its average value can be computed. Later on, very large shear boxes have been
designed to permit testing of soils containing gravel-size and large soils that cannot be
tested in the ordinary laboratory apparatus (Sowers, 1961). Such a box, permitted burying
the shear box in an embankment and rolling the broken rock to be tested in the manner as
it would be compacted in the structure. It was claimed that the test results made it possible

to check the design with greater assurance and to plan the construction more fully.

Bishop et al (1971) described a ring shear apparatus and commented on both the design
and principles of operation, and its application to the measurement of the residual strength
of undisturbed and remoulded samples. The results of tests on five soils were presented
and discussed in relation to other published residual strength data from tests on these
materials. The factors controlling the brittleness of soils tested under drained conditions
were also examined. As the test results differed significantly from those obtained in
multiple reversal direct shear box tests, a critical examination was made of all possible

sources of error in both measurement and interpretation.

Matsuoka et al (2001) developed an in-situ direct shear apparatus, which can be used in
both small (60 cm square by 8.5cm high) and large sizes (120cm square by 17cm high) to
perform direct shear tests on several kinds of coarse-grained granular materials at different
construction sites. In contrast with the traditional direct shear test, the lower shear box is
not used in the test. This test was performed simply by pulling horizontally a latticed
shearing frame, embedded in the ground, with a flexible rope or chain under the
application of a constant vertical load on the sample. It was argued that the extreme
simplicity and high accuracy of this newly developed test were demonstrated and
emphasized by performing a number of direct shear tests in-situ. In addition, the
dimensions of the shearing frame did not significantly affect the shear strength when the

frame was greater than four times the maximum grain size of the sample.
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However, as a research tool, it is hard to clearly interpret the results in terms of the shear
mechanism due to the indeterminacy of the stresses, the rotation of the direction of
principal stresses, and the nonuniformity of strains distribution. The most serious
disadvantage is the preselection of the shear surface. If the soil is not perfectly
homogeneous, the plane determined by the position of the specimen in the shear box is not
likely to be the weakest or representative of the mass as a whole. Consequently, it has
been suggested that the test results, therefore, are likely to present an optimistic picture of

the over-all strength (Sowers, 1963).

A series of direct shear tests that illustrate the influence of the orientation of soil
reinforcement on the response of a cohesionless soil were reported by Dyer and Milligan
(1984). Crushed glass was used to represent soil in the tests. This enabled a photo-elastic
technique to be used to display the directions of maximum compressive stress in the
specimen. When the granular assembly was stressed in a plane strain condition an almost
orthogonal network of light stripes were observed. One family of stripes was found more
pronounced than the other. These stripes were produced by the discrete distribution of
load through a granular material by highly loaded columns of particles. The average effect
produced by a highly loaded column of glass particles is a continuous light stripe,
although irregular, that on average coincides with the principal stress trajectories. The
picture of principal stress trajectories from such tests is shown in Fig. 4.18d later in this
Chapter. Opaque markers were incorporated into the transparent particle assembly to
allow simultaneous measurement of displacements and hence could be used to determine

the direction and magnitude of strains.

Shear box tests on both sands and clays were reported by Airey (1987), in which problems
with apparatus and test procedure were examined in detail. An analysis of the shear box
test using finite elements method was also conducted. The results demonstrated that the
design of the shear box could have a significant effect on the observed soil behaviour. It
was suggested that future shear boxes should have shear couplings that permit vertical
movement of the top half of the shear box and the shear load should be applied level with
the split between the two halves of the box. It appeared that problems with the apparatus
were responsible for the disagreement of the interpretation of the results from direct shear

test with other shear tests.
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Direct shear tests on sand were reported by Jewell (1989), in which the influence of the
boundary conditions on the test measurements was presented. A new analysis method for
the direct shear test was introduced on the basis of the relationship between the shearing
resistance and dilatancy. The analysis provides an independent check on the conventional
analyses and on the consistency of the data from direct shear tests. Comparisons between
the tests with the conventional test arrangement (free top platen) and a modified
symmetrical test arrangement (fixed top platen) were examined. The results showed that
the symmetrical direct shear test is an effective method for the measurement of the plane
strain and direct shear angles of friction and the angle of dilation for sand. The
deformation was more uniform in the symmetrical test so that the boundary measurements
better reflect the behaviour of the soil. Finally, a simple modification for the standard
laboratory direct shear apparatus and suggestions for the analysis of standard test data
were recommended. The influence of non-uniform deformation and non-coaxiality
between the principal axes of stress and incremental strain on the interpretation for the

direct shear test results were also discussed.

Shibuya et al (1997) developed a new direct shear box apparatus to examine the
deformation of sand as quasi-simple shear. Boundary effects, such as the wall friction, the
size of the opening between the two halves of the shear box and the constraint imposed by
the loading platen, were each independently examined and their influences on the
measurements of strength and angle of dilatancy were investigated. The results showed
that the conventional measurement of vertical load involves a considerable error in
estimating the average normal stress on the horizontal shear plane, owing to the interface
friction developed at the vertical face of the specimen. It has also been shown that the
loading platen should be prevented from rotating throughout testing, to reduce the
occurrence of progressive failure. It was also recommended that the size of opening
between the two halves of the box should be maintained at a fixed value of approximately
10-20 times the mean particle diameter of the test material. Below this limit, the measured
peak strength increases as the size of the opening between the two halves of the box

decreases.

The shear region that forms in a simple direct shear tester has been investigated with the
Neutron Depolarisation (ND) technique by Janssen (2001). This technique has proven to

be a very powerful tool for the microscopic investigation of a shear region because aspects
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like the shape and width of the region can be visualized as well as the rotations of the
particles and the local bulk density. The ND experiments showed that the rotation of
particles in a shear region is proportional to the applied shear deformation. The ND
technique indicated that the shear region is lens shaped and the width increases with the
applied normal load. The shear region in a direct shear tester was also simulated by using
DEM and the simulation results agreed qualitatively with those from the ND experiments.
However, it remained unclear whether the shear region consists of individual shear zones
with stagnant regions in between or whether the particles in the region all contribute to the

rotation.

Recently, numerical methods have been used to examine details of stress and strain
development within a shear box. Potts er al (1987) employed finite element methods with
a continuum constitutive model for the sand to investigate the direct shear test. The effects
of non-uniformities of stress introduced by the rigid ends of the shear box were examined.
The soil was modelled using an elasto-plastic constitutive law, and the influences of
volume change, initial stress and strain softening were also examined. It was found that
the stress-strain behaviour depended on the volume change characteristics and the initial
stress. A continuum approach, such as the finite element method, requires a material
constitutive model a priori. However the behaviour observed in a continuum approach
may strongly depend upon the model used. In contrast, in the discrete element method, the
required inputs are more fundamental in nature: for example, only the particle-particle

contact stiffness and friction coefficient need to be specified.

The effects of the micro-properties of granular material on its shear strength and shear
stress-strain behaviour have been investigated using DEM simulations of a standard
laboratory direct shear test (Ni et al, 2000). Different particle shapes and sizes were used
and sample was sheared under a number of different vertical loads. The results of the
numerical analysis were then compared with a laboratory test using Leighton Buzzard
sand with a similar relative particle size distribution. It was found that the bulk friction
angle and dilation of a sample increase as the interparticle friction angle increases. It was
also shown that particle rotation plays an important role in the micro-mechanism of
deformation in the shear zone. The DEM simulations of direct shear test were reported by
Zhang and Thornton (2002). The detailed information about the state of stress and strain

within the shear band was obtained from their simulations and the comparisons between
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these results with the results traditionally obtained from boundary measurements were

made.

Normally the direct shear test employs a cylindrical or rectangular specimen, which is
encased in a split box, as shown in Fig. 4.1a. In the test, a normal force, N, acts on the top
box in the vertical direction, while a shear force, T, is applied to the top box in the
horizontal direction so that the top box moves across the bottom box during the test. The
applied forces cause the soil specimen to shear along a thin plane between the top and
bottom box. In addition, the normal loads are usually applied via a rigid plate that is free

to move vertically as the specimen deforms.
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Fig. 4.1 Tllustration of the direct shear test: (a) initial state; (b) after shearing

Before any shear load is applied, the state of principal stresses are as shown in Fig. 4.1a.
The major principal stress is applied to the top and bottom of the specimen before
shearing. Although the distribution of this stress is not uniform, because of the rigidity of
the top and bottom of the boxes, it is assumed to be equal to the normal load divided by
the area. The minor principal stresses act on the sides of the box, and these are probably
not uniformly distributed as well. When the shear load is applied, the major and minor
principal stresses rotate, as shown in Fig. 4.1b. Although vanes, pins, and similar irregular
materials are introduced at the top and bottom surfaces of the box in an attempt to
distribute the shear force uniformly, the actual distribution remains unknown. In a

‘conventional’ analysis the principal stresses cannot be computed. The deformation in the
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direction of the normal or confining load during shear is either uniform outside the shear
zone or tilting inside shear zone (see Fig. 4.1b) and can be observed by experimental or
numerical approaches. However, the distribution of shearing strains within the soil is
extremely nonuniform and highly indeterminate. At the ends of the box the shear strains
are concentrated at the shear surface and are the greatest because of the movement of the
end walls; in the centre of the box they are more uniformly distributed and are the
smallest, as indicated in Fig. 4.1b.

It is assumed that failure is accompanied by the development of a shear band or bands
having a certain thickness. Figure 4.2 illustrates the failure mode of specimens subjected
to a direct shear test. Because the complementary shear stresses cannot fully develop on
the rigid vertical boundaries, stress and strain are not uniformly distributed in the direct
shear specimen. In addition, at large strains, a single shear band attempts to form along the
horizontal plane at the mid-height of the specimen. These features are often considered as
the intrinsic drawbacks, which make the proper interpretation of the direct shear test more

difficult,
|
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'Fig. 4.2 Tllustration of a shear band in the direct shear test

In the analysis of a shear box test, it is conventionally assumed that the stress state is
uniform throughout the sample, and the ratio of the average shear to normal stress
(r,/ o,) is the greatest on the horizontal plane. The plane of maximum stress ratio is
called the plane of maximum stress obliquity. Figure 4.3 shows the Mohr stress circle
corresponding to the failure plane of Fig. 4.2, in which it is assumed that the plane
associated with the major principal strain increment is the same as the plane on which the

major principal stress acts, i.e. coaxiality of stress and strain rate direction.
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Fig. 4.3 Mohr circle of stress for the direct shear test

From the geometry of the Mohr circle, we have

. t O'I'-O'z
sinQ, =—=——= 4.1
P s 0,+0, @

From Fig. 4.3,

. o_
tang, = T _ tsin(90° - y)
o, s—tcos(90°~yp)

4.2)
where ¥ is the angle of dilation and was defined by (2.11).

Combining (4.1) and (4.2), and noting that sin(90°—y )=cosy, cos(90° -y )=siny,

the relationship between ¢_and ¢, can be given by the following equation (Davis, 1968),

ssing, cosy  sing, cosy

tanp, = - —— = - - (4.3a)
s=ssing, siny 1-sing, siny

or

: tang

ing, = £ 4.3b
St [cosy(1+1tang, tany)) (4.30)
At the critical state, the angle of dilation ¥ =0, giving
tang, =sing, . 4.4)
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If y=¢, then tang, =tang,. For values of y between 0 and @, tang,, which

represents the Coulomb definition of shear strength, varies from sing,, to tang,,.

4.3 Simulation details

The direct shear test model used in the simulation is shown in Fig. 4.4. The shear box
consists of two separate halves, a top and a bottom box. The top box ABCD consists of
walls AB, CD, AD and BI. The bottom box EFGH consists of walls EF, GH, FG and CJ. It
is obvious that a reliable result is only obtained when a well-defined boundary condition
exists. However, for the conventional shear box test, this is not the case because the upper
box often tilts and moves in the vertical direction and causes the sample to be subjected to
an equal and opposite couple (Jewell, 1989). This results in a non-uniform distribution of
stress on the central plane and difficulty to interpret the result. To avoid the tilting of the
top box, the top platen AD is firmly connected to the top frame so that the upper box
ABCD moves as a whole during shear in the simulations, In Fig. 4.4, the dashed lines
represent the initial position of the specimen. Both top and bottom boxes can only
translate and are not permitted to rotate. The direct shear tests considered here are
displacement-controlled tests. The top and bottom box move relative to each other by
specifying a constant horizontal velocity in opposite directions to shear the sample across

the central plane.

Initial: ABCD-EFGH N
theared: AB'CD-EFG'H'

Fig. 4.4 Schematic diagram of the direct shear test
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During shearing the walls BI and CJ are used to prevent particle flow out of the boxes
Because the shear deformation only occurs over a very thin layer at mid-height, a so-
called central part where the shear band will deform is defined to investigate the behaviour
of granular material (shaded part in Fig. 4.4). It 1s worth noting that in the simulations the
walls do not interact with other walls, only with adjacent particles. The mechanical

properties of the walls are assumed to be the same as those of the particles.

(b) end of shearihg

Aston University

llustration removed for copyright restrictions

(¢) in experiment (By Mr E. Dawson, Vardoulakis and Sulem 1995)

Fig. 4.5 Deformation pattern of specimen in the direct shear test
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The particle deformation patterns are shown in Fig. 4.5, in which Fig. 4.5a shows the
particle configuration before the test, Fig. 4.5b shows the particle configuration at the end
of shearing together with a real experimental result shown in Fig. 4.5c. The particles
inside the specimen are coloured-banded before the test (Fig. 4.5a). It can be seen from
Fig. 4.5b that, by the end of the test, deformation is localized in a narrow shear zone
located at the mid-height of the specimen. The actual shape of the shear zone is lenticular
and not like the rectangular one as indicated in Fig. 4.4. The width of the shear band in the
centre is wider than that near the edge. Thus, the results to be shown in the following
sections, which are based on the central rectangular region, can only provide approximate
information of the shear band behaviour, Nevertheless, the deformation pattern at the end
of the simulated test is in excellent agreement with the experimental behaviour shown in
Fig. 4.5c.

4.3.1 Theoretical aspects

The results of the simulations are analysed in terms of stresses, rather than forces. There
are two ways to calculate the stress. One is that the stress tensor is calculated from the

distribution of contact forces in the shaded region (shear band) using the equation:
2 c
%=72R5 (4.5)

which is described in Chapter 2.

The other is that the stresses are calculated based on the boundary information. In
laboratory experiments, the vertical normal stress o due to a vertical load N and the shear
stress 7due to the horizontal load T acting on the central horizontal plane are obtained by

dividing the force N and T, by the cross-sectional area A of the sample respectively. Figure
4.6 shows the forces acting on the top part of the specimen.

The following relationships are satisfied from equilibrium:
N=T,-T,+N, (4.6)

T:N}—N;;'PT’ (4'7)
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where T; and N; (i=1,3) are the total shear forces and normal forces on each wall
respectively, and are calculated by the summation of particle-wall contact forces on each
wall.
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Fig. 4.6 Forces acting on the top part of the specimen

The normal stress o and the shear stress 7are defined as

7= 4.8)
N
o, == (4.9)

— zh — ' I
¢ o ( )

Equation (4.10) indicates that the ratio of horizontal to vertical load is assumed to provide
an estimation of the average ratio of shear to normal stress acting in the shear band, and

thereby provide a direct measurement of the Coulomb bulk friction.

4.3.2 Deformation monitoring

The deformation of the specimen is constrained by the rigid walls. A quantitative analysis
method is introduced to measure the incremental displacement fields and the associated
strain fields in the sample, which allows step-by-step mapping of the incremental

displacement fields to be displayed. First, the whole sample is divided into n, xn, grids.
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The particles that are the nearest to the intersections of these grids are chosen as markers,

which are shown as the solid circles in Fig. 4.7.
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Fig. 4.7 Illustration of using markers in simulation

If at instant ¢, the coordination of a marker is (x,,y, ), then the particle moves to a new

position ( x,,y,) at instant ¢,, the increment displacement between this two stages are

calculated as:
Adu, =x,-x, 4.11)
A’uy =YW (4.12)

A series of stages are saved to record the specimen deformation during shearing.
Therefore, the internal displacements and strains within the specimen can be readily
monitored by tracing the movement of the markers inside the specimen. A similar
technique has been used in laboratory studies using x-ray tomography and lead shot
marker particles are applied in simple shear tests (Stroud, 1971) and biaxial compression

tests (Alshibli and Sture, 1999).

4.4 Constant volume (CV) tests

Three boxes of different aspect ratios were used in the present study. One with a height to
length ratio (H:L) equal to 1 is a square box (Sample I). Another with a height to length

ratio equal to 1/2 (Sample II) is the same as the standard Casagrande shear box. An aspect
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ratio of 1/3, as used in the Jenike shear cell, is adopted for sample III, which is the thinnest
one. The dimensions of these shear boxes are given in Table. 4.1. The volume and solid
fraction are set to be identical for all three samples and the same boundary conditions are

applied during the tests.

Table 4.1 Dimensions of three shear boxes

Sample | Aspect ratio H (mm) L (mm)
I 1:1 4.07 (67.8Dsp) 4.07 (67.8Dsp)
11 1:2 2.88 (48.0Dsp) 5.75 (96.0Dsp)
111 1:3 2.35 (39.2Dsp) 7.05 (117.6Dsp)

A series of constant volume tests were performed on the three different shear boxes
described above. In order to achieve the constant volume condition, the top and bottom

platen only move in the horizontal direction and cannot move in the vertical direction.

4.4.1 Effect of aspect ratio

Figure 4.8 presents the simulation results for sample 1. Taking advantage of DEM the
stress tensor can be calculated separately for the whole sample (Wpan), the central part
(Cpar) which gives the state of stress inside the shear band, and the part outside the shear

band (Opan). Fig. 4.8a shows the evolution of tang, =7/o, against the horizontal
displacement. It can be seen that, the maximum value of tang, within the shear band is

about 0.43, which is nearly twice the value obtained for Wpan, which is over 20% higher

than that obtained for Opar. For all three sets of calculations, the fluctuations of tang, are

very similar during the test. This demonstrates that the mobilized Coulomb friction angle
@, inside the shear band is higher than that outside the shear band. In Fig. 4.8b, the
evolution of the stress ratio calculated from the boundary information 7/N according to
(4.5) is shown together with the evolution of fan¢, acting on the horizontal planes in the

central part of the assembly. Although the fluctuations of the two curves tend to coincide,

the maximum value of force ratio 7/N, which is measured at the wall boundaries is about

16% higher than the maximum value of fang, which is calculated in the central shear

zone, a volume averaged value.
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Fig. 4.8 Test results of sample I: (a) tan ¢, ; (b) comparison of T/N and tan g,

The corresponding results for sample I with aspect ratio 1/2 are shown in Fig. 4.9. It can
be seen that, the maximum values of tang, occurs at a horizontal displacement of ca.
0.1mm. The maximum value inside the shear zone is very close to the result obtained from
sample I and it is almost 50% higher than that outside the shear zone (Fig. 4.9a). The
stress ratio outside the shear zone is closer to that inside the central shear zone for sample

II than for sample I. The maximum value of the force ratio of 7/N is ca. 14% higher than
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Fig. 4.9 Test results of sample II: (a) tan ¢, ; (b) comparison of T/N and tan ¢,

that of tan¢, in the shear band as shown in Fig. 4.9b.

Figure 4.10 shows the results for sample IIl. Although the maximum value of tan¢@, of

Cpart is similar to the values obtained for the other two thicker samples, the stress ratio

calculated for Wyqrr and Opan are found to be much closer to that of Cpyy. This implies that
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the thinner the box used, the closer the value between the W, and the Cpayr. The force
ratios obtained from boundary measurements and the stress ratios calculated in the shear
zone are compared in Fig. 4.10b. It can be seen that the peak value of T/N is just 7%

greater than that of tan¢g. When comparing T/N with tan¢, in the shear zone it was

found, for all aspect ratios considered, that the wall measurements are always higher than
the volume averaged values. However, as the aspect ratio is reduced the difference

between the boundary measurements and the shear zone calculations become closer.
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Fig. 4.10 Test results of sample III: (2) tan @, ; (b) comparison of T/N and tan¢,
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Fig. 4.11 Mokhr stress circles inside the shear band and outside the shear band
at peak stress ratio: (a) 1:1; (b) 1:2; (c) 1:3

The Mohr stress circles for each sample at peak stress ratio are drawn in Fig. 4.11 for both
inside (solid semi-circle) and outside (dashed semi-circle) the shear band. The figure
clearly shows that the mobilized angles of internal shear resistance (@,, ) are more or less

the same for all three cases when the calculation is based on the information inside the

shear band in spite of the different aspect ratios. The figure also shows that, as the aspect
ratio is reduced, the state of stress outside the shear band becomes closer to that inside the

shear band.

The evolutions of fan¢, obtained from the shear band and 7/N for all three samples are

compared in Fig. 4.12. By comparing Figs. 4.8-4.11, it was noted that the maximum

values of tan¢, inside shear band for all three cases are essentially identical, which is also

confirmed by Fig. 4.12a. It is found from Fig. 4.12b that the maximum values of T/N are
0.5, 0.49 and 0.47 for three samples respectively and they are all greater than the stress
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ratios obtained from the shear band. It can be seen in Fig. 4.12 that there are occasionally
very large fluctuations in both fan¢@_ and T/N during post-peak deformation. It is not clear

why these occurred but it may be due to the contribution of a relatively small number of

particles, 2D constraints on particle motion and the overall constant volume constraint.
Allowing for the fluctuations, the average values of fan¢, and T/N at large displacements

are similar for all aspect ratios.
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Fig. 4.12 Evolution of tan¢g, and T/N for different aspect ratios
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4.4.2 Dilation in the shear zone

Figure 4.13 shows that, during deformation, the porosity changes inside the shear band for
all three constant volume tests. Although the overall volume of the specimen is kept
constant, dilation occurs inside the shear band, as indicated by the increasing porosity in
the central region. The shear box with aspect ratio 1:1 exhibits the highest dilation inside
the shear band. Figure 4.13 demonstrates that it is not possible to conduct a true constant
volume test in the direct shear apparatus if one wishes to examine the shear behaviour of

material in the shear zone.
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Fig. 4.13 Porosity inside shear band
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Fig. 4.14 Normal force on the top wall
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The evolution of the normal force on the top wall is shown in Fig. 4.14. Since these tests
are carried out under constant volume condition it can be seen that the normal force on the
top boundary increases during shearing. It seems that the higher expansion inside shear
band correlates with the lower normal force on the top boundary. The influence of this
factor will be further investigated in constant normal stress test simulations later in this

chapter.

4.4.3 Effect of wall friction

The influence of the boundary friction at particle-wall contacts was investigated using the
shear box of aspect ratio 1:2. An additional constant volume test was performed with the

friction parameter x,, set to 0.1. Figure 4.15a shows the normal force on each wall during
shearing of this sample with g, =0.1. The normal forces on the walls AB and HG, which

are the walls pushing the sample to move in opposite directions, have very similar
magnitudes, and increase until ca. 0.2mm horizontal displacement. They then remain
approximately constant thereafter. The magnitudes of the normal forces on walls EF and
DC are also similar but decrease to a minimum value at ca. 0.2mm and then remain fairly
constant during continued shearing. The normal forces on the walls that push the sample
are greater than the normal forces on the walls that are pushed. The magnitude of normal
forces on the top and bottom walls are also very similar and increase due to the fact that
the walls cannot move in the vertical direction. The tangential forces on each wall are
shown in Fig. 4.15b. Before reaching 0.2mm horizontal displacement, the tangential
forces on the top walls HG and DC are of similar magnitude but opposite sign to the
bottom walls AB and EF respectively. During this period the ratio of the tangential to
normal force on the top and bottom walls remains close to the value of x, =0.1
indicating that most of the contacts with these two walls are sliding. After 0.2mm
displacement, the tangential forces fluctuate and change sign. At large displacements all

the tangential forces are small.

The corresponding evolutions of normal and tangential forces on each wall are shown in

Fig. 4.16 for 4, set to 0.5. For each wall the magnitude of the normal force is similar to
the values, obtained for x, =0.1. However the maximum value of the tangential force on

the top and bottom walls is three times larger than that for s, =0.1. The peak values of
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tangential force on the top and bottom walls occur at 0.15mm horizontal displacement

when the ratio of tangential to normal force is ca. 0.24, which is significantly less than

M, =0.5. This implies that friction is not fully mobilized along the top and bottom walls.
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Fig. 4.15 Evolution of forces on the walls of sample with x, =0.1
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Fig. 4.16 Evolution of forces on the walls of sample with g, =0.5

The evolutions of tang, for these two tests are presented in Fig. 4.17a. The maximum
values of fan¢, are nearly the same although the wall particle friction is different. Figure

4.17b shows the evolution of the force ratio T/N for these two cases. The maximum values
and the values at the critical state are very similar. This implies that the boundary friction

does not significantly affect the shear behaviour of the specimens.
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Fig. 4.17 Effect of wall friction on: (a) 7/0 ; (b) T/N

4.5 Constant normal stress (CN) tests

In the second series of tests the top and bottom platens are displaced in the horizontal
direction but are also permitted to move in the vertical direction. Initially, tests were

simulated by adjusting the vertical position of the top and bottom walls to keep the vertical
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normal force N3 constant (see Fig. 4.6). However, this did not work because the vertical
tangential forces T; and T, cannot be controlled satisfactorily by moving the top wall.
Ideally, one would wish to maintain constant the normal stress o, acting on the shear
band but this also proved to be not possible. In the tests reported here, the stress tensor for
the complete specimen is calculated using (4.5) and the top and bottom walls are

continuously adjusted to maintain the average vertical normal stress o,, for the complete

specimen at a constant value. To achieve this, at each time step, the vertical velocity of the

top wall is set to,
vi=g(o! -0of) (4.132)

where o} is the desired vertical normal stress to be achieved, o° is the calculated vertical

normal stress for the whole specimen and g is the gain parameter and set to 0.001. If v* is

greater than a specified maximum admissible velocity v, , then
v = sign(v,,.,8(0) -0} )) (4.13b)

In the simulations v,,,, was set to 8.0x10°ms™ . Three direct shear tests were simulated

in which the average vertical normal stress for the complete specimen was maintained
constant at I0MPa, 15MPa and 20MPa, respectively,

4.5.1 Force transmission

Homogeneous stress and deformation are key pre-requisites for experiments in which
boundary measurements are used to deduce the material behaviour. The force
transmissions through the system of particles, before shearing, at peak stress ratio and at
the end of shearing, are illustrated in Fig. 4.18. Each line is drawn between the centres of

two particles in contact with each other. The larger than average contact forces are

indicated by black lines, and grey lines indicate less than average contact forces. The
magnitude of each force is indicated by the thickness of the line, scaled to the current
maximum contact force. It is clear that the force distribution before shearing is isotropic
inside the sample (Fig. 4.18a). It can be seen from Fig. 4.18b that, at peak stress ratio,
there are significantly large contact forces acting on the left-top end wall A’B’ and right-
bottom end wall H’G’. On the top and bottom walls, the large forces concentrate to the
side near the end-walls, which push the sample. At the other side of the top and bottom

98



Chapter 4: Direct shear tests

N SRR

RL (G - ""..‘.\ 3
= A ?}J . ,‘.‘\‘ﬁ\\\_\_,\g\'\\,@;ﬁﬁ,}q;
sy NARDERS Sein)
3 -’\f. " '%:'!i ﬁi“'.ihﬂrn N
Ty :I'J;')ﬂ as‘-“'r‘\" SEb

(d) Dyer and Milligan (1984)

Fig. 4.18 Force transmission patterns
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walls the forces are relatively small. It is clear that the normal stress distribution along the
top and bottom walls is not uniform. Only small forces are transmitted to the other two
vertical end walls E’F’, D’C’. Consequently, the strong force transmission pathways are
inclined as they pass through the shear zone at the mid-height of the specimen. The overall
pattern shown in Fig. 4.18b clearly indicates a very heterogeneous distribution of stress.
Figure 4.18c shows the force transmission diagram at large horizontal displacement. The
force transmission pattern correlates well with photo-elastic observations for crushed glass
reported by Dyer and Milligan (1984), see Fig. 4.18d, in which the light stripes coincide

with principal stress trajectories.

4.5.2 Mobilized strength and apparent dilatancy

The evolution of the ratio of the shear stress to the normal stress (7/o) acting in the shear

band is shown in Fig. 4.19 for the three tests carried out. It can be seen that the mobilised
stress ratios are similar for all three cases with slightly decreasing maximum values of
0.46 (10MPa), 0.45 (15MPa) and 0.44 (20MPa). However, it is also clear that the peak
stress ratio appears earlier when a lower stress level is applied. Although the pre-peak
curves are divergent, which is merely due to the different vertical normal stress values, the
initial shear moduli are in fact identical for all three tests. Nevertheless, when the
horizontal displacement exceeds a certain value (say 0.45mm), all three tests indicate a

value of ca. 0.3 at the critical state regardless of the stress level.

t/G in shear band

w— 20MPa

%90 o 02 03 04 05 08 07 08 09

horizontal displacement (mm)

Fig. 4.19 Mobilised stress ratio 7/o inside shear band
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Figure 4.20 shows the vertical displacement ( 4y ), which is calculated from the change in

the height of the specimen, plotted against the horizontal displacement. It can be seen that,
as expected for dense granular media, volumetric expansion occurs during shear. It is also
clear that, for the test with an applied stress level at 20MPa, the sample undergoes
contractive behaviour at the beginning of the test, followed by dilation. When a lower
stress level is applied (10MPa) expansion of the sample takes place from the very
beginning of the test. Less significant dilation occurs at higher stress levels. In all three
simulations, the small changes in the vertical direction after 0.6mm horizontal

displacement indicate that the specimens are deforming at approximately constant volume.
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Fig. 4.20 Vertical displacement during the tests
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Fig. 4.21 Evolution of 7/N with displacement
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The corresponding evolution of the force ratio (7/N) is shown in Fig. 4.21. The results
shown in the figure are qualitatively very similar to the results shown in Fig. 4.19. At
critical state both figures indicate a stress ratio of ca. 0.3 but the maximum values of 7/N
are 0.53 (10MPa), 0.49 (15MPa) and 0.47 (20MPa) respectively, which are higher than the
maximum values of 7/o as shown in Fig. 4.19. It is not possible to say what
corresponding values of 7/N would be obtained in a laboratory experiment since this

depends very much on the details of the equipment design (Jewell 1989).

4.5.3 Dilation in the shear zone

The evolution of porosity is illustrated in Fig. 4.22, in which both the evolution of the
porosity of the complete specimen, as measured from the vertical displacements of the top
and bottom walls, and the porosity changes that occurred in the central region used to
approximate the shear band are shown. It is clear that the dilation is reduced by the
increasing normal stress level. Furthermore, the specimens are deforming at constant
volume at the critical state. Although significant fluctuations occur in the values of the
calculated porosity in the shear band the rate of dilation and the final voidage in the shear
band exceeds that indicated by the wall movements. This demonstrates that the dilation
angle measured from the boundary displacement is not a reliable indicator of

actual
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Fig. 4.22 Evolution of porosity of overall specimen and inside shear band
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dilatancy inside the shear zone. It may be noted that there is an initial difference between
the calculations based on the central region and the complete specimen. This is due to
boundary effects on the complete specimen calculations. The difference would be

significantly reduced if more (orders of magnitude) particles had been simulated.

4.5.4 Evolution of normal stresses

Figure 4.23 shows the evolution of the vertical and horizontal normal stresses (0,,0,)

acting in the central part of the specimen, which approximates to the shear band, for the
three cases. Although the average vertical normal stress over the complete specimen is
controlled to remain constant, it can be seen that the vertical normal stress in the shear
band gradually increases by about ten percent during the simulations. As the relative
displacement between the upper and lower parts of the specimen increases, the horizontal
normal stress in the shear band increases until the stress ratio 7/o reach its maximum (see
Fig. 4.19). At this stage the horizontal normal stress is greater than the vertical normal
stress, which reflects the fact that the strong force chains shown in Fig. 4.18 are inclined at
an angle less than 45° to the horizontal. After peak stress ratio the horizontal normal stress
decreases and, significantly, becomes approximately equal to the vertical normal stress
when the critical state is attained. The consequence of this condition will be discussed in

the next section.
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Fig. 4.23 Evolution of normal stresses in the shear band
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4.5.5 Stress conditions at the critical state ¢

Since the vertical and horizontal normal stresses in the shear band are equal,
o, =0, =0, defines the centre of the Mohr circle at critical state and the radius is equal
to 7. As illustrated in Fig. 4.24, the stress combination (7,0, ) is given by point P, which
is also the pole of the circle since the plane on which this stress combination acts is
horizontal (Schofield and Wroth, 1968). This demonstrates that the principal stresses at
the critical state are inclined at +45° to the horizontal. At critical state, the shear
deformation in the shear band occurs under constant volume conditions as shown in Fig,
4.22 and, therefore, the directions of the principal strain rates are also inclined at £45° to
the horizontal. Consequently, the directions of principal stress and strain rate are coaxial at

the critical state. It can also be seen from Fig. 4.24 that the Coulomb friction angle ¢, is

less than the angle of shearing resistance ¢, defined by Mohr’s criterion.

stress ratio

1 1 L 1 1 1 A " J

00 01 02 03 04 05 06 07 08 09
horizontal displacement (mm)

Fig. 4.25 Evolution of tang, and sing,,
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From the geometry of the diagram, tan@, = sin@,, and this is also demonstrated by Fig.
4,25, in which the evolution of tan¢, and sin¢,, are compared. The difference between
the Coulomb friction angle (¢, ) measured from experiments and the Mohr friction angle
(@,,) at the critical state based on the simulations are shown in Fig. 4.26. It is clear that

the difference becomes more and more significant as ¢, increases.
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Fig. 4.26 The relationship between ¢, and ¢,

In the direct shear test, the problem is that experimentalists attempt to measure the shear
and normal stresses acting on the failure plane (shear band), which satisfies Coulomb’s
criterion. Unfortunately, the location of the corresponding Mohr circle of stress is not
known since the horizontal normal stress (o, ) in the shear band cannot be measured
directly. Consequently, the magnitude and directions of the principal stresses are
unknown. However, in DEM simulations all components of the stress tensor can be
calculated for any specified volume as mentioned before. It has been shown in Fig. 4.24
that o, is the centre of the Mohr circle. In Fig. 4.27 the small dark semi-circle is drawn
based on calculations from the simulations. However, in the Standard Shear Testing
procedures using the Jenike shear cell (1989) the sample is sheared in two steps. In the
first, the sample is ‘presheared’ under a constant normal stress o until steady flow is
established and 7 = constant. It is normal practice to assume that the measured values of &

and 7define a point on the ‘effective yield locus’, as shown in Fig. 4.27.
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From the cxperimental.data the location of the corresponding Mobhr circle of stress is not
known. It is conventionally assumed that the ‘effective yield locus’ is the same as the
Mohr-Coulomb line traditionally used in soil mechanics thereby implying that, in the
Mohr criterion (4.1) and Coulomb criterion (4.2), ¢, = ¢,, . Consequently, the Mohr circle
is drawn tangent to the effective yield locus, as illustrated by the grey semi-circle shown
in Fig. 4.27, with the ‘major consolidation stress’ o, =o;’ . However, the DEM results
show that the actual Mohr circle is the dark semi-circle in Fig. 4.27 and the ‘major

consolidation stress’ o, =of. From Fig. 4.27 the relationship between the major
principal stresses based on the simulation calculation (o ) and deduced from experiment

measurement (o, ) can be determined as follows.

6 R of oM o

Fig. 4.27 Mohr circles based on different measurements

From the geometry of the dark circle,
o =0,+7 (4.14)

tan@, = Ui (4. | 5)

n

Using (4.14) and (4.15),

C
ﬁ=1+f—=1+ran¢c (4.16)
o-!l o-!l

From the geometry of the grey circle,
o =R+Rsing, = R(1+sing,) 4.17)

and R=o0,+7Ttang, : (4.18)
Combining (4.17) and (4.18),
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oY =(o, +rtang, X1+sing,) (4.19a)

Rewriting (4.19a), yields

M
‘;' = (1+tan? p_ 1 +sing,) (4.19b)

n

and combining (4.16) and (4.19b) we obtained:

o _ (1+tan2¢,:x1+sinqac)

of 1+ tan @, -20)

which indicates that the Mohr interpretation overpredicts the major principal stress and
that, as a consequence, the corresponding flow function underpredicts the unconfined
yield stress for a given value of major principal stress. The ratio of these two principle
stresses according to (4.20) as a function of the Coulomb friction angle is shown in Fig.
4.28. 1t can be seen that the principle stress assumed in the experiment becomes more and

more greater than that calculated from the simulation as ¢, increases. For example, if ¢,

is 40°, o' is about 1.55 times greater than o .
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Fig. 4.28 The variation of 6 /o with different g,

4.5.6 Strain analysis

Fig. 4.29 shows a number of horizontal incremental displacements Au, of the markers set

within the sample before shearing. The displacement increments are taken between the
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successive steps labelled in Fig. 4.25. The contour lines show the locations where the
displacement increments have the same magnitude. For stage O to A the displacement
contours are shown in Fig. 4.29a. Since large horizontal displacement gradients occur at
mid-height and the space between the lines increases gradually towards the top and bottom
edges, no significant strain localization is revealed. Fig. 4.29b indicates that strains start to
localize at the edges of the mid-plane of the specimen, while the stress-strain response is
strain-hardening. A hint of the onset of localization appears at this stage. During the peak
strength stage (B-C), the gradient of displacement increases and more and more strain is
concentrated along the mid-height of the sample (Fig. 4.29¢). Finally, a shear band is
clearly visible at large displacements, as seen in Fig. 4.29d. It also can be seen from 4.29d
that the horizontal displacement increments are localized into a band between the heights
of 0.9mm and 1.6mm. This means that the shear band develops between these two heights.

The width of this band is about W, =0.7mm (see Fig. 4.29d). Since the average particle
diameter Dy, is 60um the ratio Wy /Dy, =11.6. This value is consistent with the
analysis of Muhlhaus and Vardoulakis (1987), who reported W, /Dy, in the range of 11-
12.

L (mm) L (:rmj
(c) B-C (d) D-E

Fig. 4.29 Horizontal displacement contours during successive displacement increments
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4.5.7 Particle rotation

The continuous field of average particle rotation distributions (6) of the whole sample are

presented in Fig. 4.30. The whole sample is divided into many small boxes and (9) is the

average rotation of all the particles in each box. Thus,

(6) =+— (4.21)

where @, is the rotation of particle i and C is total number of particles in each box.

(@0-A (b)A -B

(c)B-C (d)D-E

Fig. 4.30 Particle rotation distribution

It is clear from Fig. 4.30a that the average rotation field forms a smooth platen with only a

few undulations in the early stage of shearing. During stage A to B some dark colour area,
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Fig. 4.31 Particle rotation along the height of specimen
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which stand for large rotation, appear in the sample (Fig. 4.30b). During the peak strength
period, these dark areas concentrate significantly into a central band as shown in Fig.
4.30c and it can be seen that a distinct ridge appears at mid-height of the specimen when
the shear band is fully developed at large strain (see Fig. 4.30d). This demonstrates that
during shearing the particles inside the central shear zone rotate more significantly (about

10°) than the particles outside the band (lower than 1°).

The average particle rotations along the height of the specimen for these three CN tests
during four different stages are shown in Fig. 4.31, in which the average rotation is
defined in (4.21). It is clear that the rotation changes significantly along the height of the
specimen and reaches the highest value at the mid-height of the sample. During stage O-A
the maximum rotation at the mid-height of the specimen is relatively small when
compared to that of the other three stages. It is clear that the rotation becomes more

significant when more shear deformation is induced.

For the simulation with a constant normal stress of 15SMPa, the average rotation in the
central shear zone is plotted against the horizontal displacement in Fig. 4. 32. It is clear
that the evolution of the average rotation with shear strain is essentially linear. This
observation is consistent with the experimental and simulation results obtained by Janssen

(2001) for the same displacement range.
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Fig. 4.32 Evolution of the average rotation in the central shear zone
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4.6 Non-coaxiality

Non-coaxiality between the principal axes of stress and incremental strain is one of the

possibilities for causing inaccurate test results. Detailed measurements on sand in simple
shear have shown that, the theoretical value of ¢, calculated by using ¢, (4.3a) is

slightly larger than the measured values (Stroud, 1971; Tatsuoka et al., 1988). This is due
to the fact that the inclination of principal stress o, is slightly higher than the inclination
of principal incremental strain dg,. This means that during the monotonic rotation of
principal axes, the principal axes of stress often lags behind the principal axes of
incremental strain. Consequently, the measured Coulomb friction angle for the specimen

is in error. By denoting the difference between the direction of principal incremental strain

and that of principal stress as the angle of non-coaxiality i (Fig. 4.33), equation (4.3a) is

modified to

sing,, cos(y +2i) 4.22)

Qe =T sing, sin(y +2i)

which implies the measured Coulomb friction angle is lower than the theoretic value when

the principal axis of stress has not rotated as far as the principal axis of incremental strain
(positive i).
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Fig. 4.33 The Mohr circle

As shown in Fig. 4.33 the angle of non-coaxiality is related to the difference between the
vertical and horizontal normal stresses and the dilation angle. As mentioned in section 4.3,
in the simulation of the direct shear test the results based on the centre part is a kind of
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approximation for the shear band. Since there are only a small number of particles within
this region very large fluctuations appear in the calculation of the dilation angle (not
shown), which makes the analysis of non-coaxiality very difficult in the direct shear
simulations. It is expected that better results can be obtained from the simple shear test
since there are more particles involved in the shear plane. Thus, the angle of non-

coaxiality will be examined further in the next chapter.

4.7 Influence of different shear schemes

Experimental direct shear tests have revealed that the measured properties are significantly
influenced by the test configuration (Assadi, 1975; Shibuya er al, 1997). In simulations the
constant normal stress in the vertical direction can be achieved by either of the following
four schemes (Fig. 4.34): a) only move either top or bottom wall vertically (1wall); b)
move both top and bottom walls vertically (2walls); ¢) only move either top or bottom box
vertically (1box): d) move top and bottom box vertically together (2boxes). In the first two
schemes the top or bottom platen and the end walls move independently. In the last two
shear schemes the end walls are screwed to the top or bottom platen so that they are fixed
together. In this way they will move together as a unit not only in the horizontal direction
but also in the vertical direction. The first two schemes refer to the conventional
arrangement and the last two schemes refer to the improved arrangement according to
Jewell (1989). One will expect that schemes ‘b" and ‘d” will create a more symmetrical
deformation condition in the sample. Bearing this in mind, four more constant normal

stress tests were carried out in order to investigate the influence of the different shear

schemes.
B | i
| L] ]
l Nbottom 1 Niottam t Nistown ' Niotiom
(a) 1 wall (b) 2 walls (¢) 1 box (d) 2 boxes

Fig. 4.34 Different shear schemes
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Figure 4.35 shows the evolution of normal forces for the four different schemes, in which
N represents the normal force on the central shear plane calculated from (4.6) and N;
measured from the top platen (see Fig. 4.6). It is clear that if the constant normal stress
tests are carried out by using 1 wall or 2 walls the normal force N is much higher than the
normal force N;. If the same tests are simulated by using 1 box or 2 boxes the normal
force N is close to the normal force N;. This indicates that effect of the tangential force
caused by the friction on the two end walls is more significant in schemes *a’ or *b’ than
in schemes ‘¢’ or *d’. This is because the effect of friction on the end walls becomes very

small when the end walls are fixed to the top or bottom walls.

The corresponding evolution of tangential force 7 and T; (see Fig. 4.6) are presented in
Fig. 4.36. It can be seen that before 0.2mm horizontal displacement the tangential forces T
according to (4.7) and the tangential forces 7; measured from the boundary for all the
cases are very similar though the tangential force T is about 2.5 times higher than the
tangential force 7;. As shearing continues, they begin to diverge slightly. As Shibuya er al
(1997) pointed out, the conventional measurement of vertical load in their shear box
involved a considerable error in estimating the average normal stress on the horizontal
shear plane. owing to the interface friction developed on the vertical faces of the
specimen. Therefore, if the normal and tangential force on the central shear plane cannot
be measured correctly, the reliability of the shear strength and other properties of the
specimen, which are calculated based on these two forces, obtained by experimentalists is

very much questionable.
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Fig. 4.35 Normal force evolutions
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Fig. 4.36 Tangential force evolutions

Figure 4.37 shows the evolution of porosity inside the shear band. For the four cases
considered the evolutions are very similar. The porosity increases quickly until the
horizontal displacement reaches 0.4mm. Thereafter, they remain nearly constant. Figure
4.38 shows the stress ratio 7/ inside the shear band for all the cases according to (4.5). It
can be seen that the peak shear strength and the complete evolution of the stress ratio are

essentially the same for all the schemes.
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Fig. 4.37 Evolution of porosity inside shear band
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‘ig. 4.38 Evolution of stress ratio inside shear band

Since it is hard to say what force is measured exactly in the laboratory test the force ratio

T/N can be calculated by either of following ways,

tang@. =T/ N , according to (4.10) (4.23a)
tang, =T,/N, . purely based on the boundary forces (4.23b)
tang, =T,/N (4.23¢)
tang, =T|N, (4.23d)

The evolutions of force ratio from the above calculations are presented in Fig. 4.39. It can
be seen from Fig. 4.39a that all the four different shear schemes show essentially the same
results. Nevertheless, they are still 10% higher than the results obtained from the central
shear zone (Fig. 4.38). If the force ratio obtained based on (4.23d) (see Fig. 4.39d) the
results from 1 box and 2 boxes are similar to the results shown in Fig. 39a. However the
peak force ratio of schemes 1 wall and 2 walls are higher than the results calculated using
(4.23a). This is because the normal force N is close to N; in schemes | box and 2 boxes
but N is higher than N; in the other two schemes. The force ratios based on (4.23b) or
(4.23c) are similar (see Fig. 4.39b and ¢) but they are much lower than the ratios shown in
Fig. 4.39a. Also, significant divergence can be observed at critical state. Therefore
accurate measurement of the tangential force is crucial for determining the shear
properties of the specimen correctly and the results also imply that no matter what scheme

is chosen the pre-peak behaviour is essentially the same.

116



Chapter 4: Direct shear tests

o6 0.ar

— | wall

s x  2walls
Fo
oaf | 3 o
a .

Z . z
— £ ’ / o>
oat |’ i} \ s
‘I o
oz
|
!
i
o1p
00 01 02 03 04 05 06 07 08 09 00 ©1 ©2 03 04 05 06 OT 08 09
horizontal displacement (mm) horizontal displacement (mm)
(a) tang, =T/N (b) tang, =T,/N,
aap 06
— il
X 2walis
= 1pox e
O @oxes
oz 04
z =
g = s}
01 A
* ook I e ™
f’&-@o (% ’&:‘:g_,m |
L y; = m“gcﬁh‘%; % o 01
o o [ o, %
oo} PSRN i ] e e
00 01 02 ©03 04 05 06 07 08 08 ®%0 o1 02 o3 o+ 05 o8 o071 o8 e
horizontal displacement (mm) horizontal displacement (mm)
(c) tanp, =T,[N (d) tanp, =T/N

Fig. 4.39 Evolution of force ratio based on different measurements

Based on the above analysis it is clear that by using either the 1 box or 2 boxes scheme the
effect of friction on the vertical face of the specimen can be minimised. It also shows that
the normal force and tangential force on the horizontal shear plane are independent of the
shear schemes. The same results will be obtained if one can measure these forces
correctly. Even if these forces can be measured correctly the force ratio is still slightly

higher than the stress ratio calculated from the central shear zone.

4.8 Summary

Two series of numerical simulations of the direct shear test have been performed. The
intrinsic drawbacks involved in conventional direct shear tests have been identified

through a comprehensive investigation. Taking advantage of the numerical simulation
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technique, the stress tensor and the voidage inside and outside of the shear zone have been
examined. In the first series, three boxes with different aspect ratio were employed to
simulate tests under constant volume conditions. Test results calculated from wall
boundaries and from different stress tensors have been compared. In terms of the shear

strength ran@,, if it is calculated from the stress tensor inside the shear band, the pre-peak

behaviours are not significantly influenced by the difference in aspect ratio of the shear
box. However, the post-peak behaviours are affected by this kind of boundary condition.
The stress ratio reduces after the peak very sharply and early for the thickest sample. The
thinnest sample tends to maintain the peak strength until a large horizontal displacement is
reached. The stress ratio inside the shear band is higher than the stress ratio outside of
shear band. When a thinner box is used this difference becomes smaller. It is found that
dilation occurs inside shear band though the total volume of the sample is kept constant.
Therefore, concerning examination of the shear behaviour on the central shear plane it is

not possible to perform a true constant volume test in the direct shear test.

In the second test series the sample with aspect ratio 1:2 was subjected to different
constant normal stresses in order to examine stress and strain distributions and the effect
of stress level in the direct shear test. By using the markers pre-selected in the specimen
the incremental horizontal displacement contours were plotted. It was illustrated that the
shear strain is highly non-uniform. The shear strain appears to concentrate in the mid-
plane of the sample as shear deformation develops. Correspondingly, significant particle
rotations localize into the shear band. It was also shown that the evolution of the average
rotation with shear strain is essentially linear. Although the stress distribution within the
specimen is heterogeneous, as indicated by the force transmission pattern, it has been
shown that the evolution of the stress ratio inside the shear band is similar to that inferred
from the boundary force calculations except that the peak value based on the boundary
information is a slightly higher than that obtained from the shear band.

The results suggest that different normal stress levels do not significantly affect the
maximum value of ¢,. It was found that the porosity measured from the shear band is
much greater than that obtained from boundary observations. This means that the dilation

angle determined from movement of the top boundary of the sample cannot reflect the real

dilatancy inside the shear band.
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The simulations have demonstrated that under critical state conditions the vertical and

horizontal normal stresses in the shear band are equal and that the directions of principal

stress and strain rate are coaxial. The important conclusions arising from this discovery

are:

(i) It is the Coulomb friction angle ¢, that is measured in the experimental direct shear
test.

(ii) The Coulomb friction angle ¢, is less than the angle of shearing resistance ¢,

defined by Mohr’s criterion.
(iii) The conventional interpretation of the location of the Mohr stress circle at the

critical state results in an over prediction of the major principal stress.

Finally, the examinations of four different shear schemes show that the influence of the
friction on the vertical face of the specimen can be eliminated if the loading platen is fixed
to the end walls. However, the numerical simulations reveal that calculations based on
information from the shear band show essentially the same results regardless of the
different shear schemes. Therefore, if one can accurately measure the stresses acting on

the central shear plane, the choice of scheme is irrelevant.
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CHAPTER 5: SIMPLE SHEAR TESTS

5.1 Introduction

For the simulations presented in the last two chapters, shear tests were carried out with
walls that translated. In order to simulate simple shear, the same sample as prepared for
the biaxial compression test with wall boundaries is used. However, the two vertical walls
are rotated at a constant angular velocity about a certain point along the side-walls.
Simultaneously the top and bottom walls are translated using a compatible horizontal
velocity in opposite directions. This is also the principle of the simple shear test employed

in the laboratory. The aims of the analysis are: (1) to explore the effect of the wall friction
and the initial ratio of horizontal to vertical stress, K, on the results obtained; (2) to
compare the difference between the results obtained from plane strain biaxial

compression, direct and simple shear tests; (3) to investigate the correlation of the angle of

non-coaxiality with (i) the difference between the two orthogonal normal stresses and (ii)

the rate of dilation.

In this chapter three series of simple shear tests have been conducted. First, constant
volume (CV) tests with various boundary friction are considered in order to show the
comparison between the average internal state of stress and the measurement at the
boundaries. Secondly, constant normal stress (CN) tests, in which the sample is subjected
to different constant normal stresses, are simulated to examine the effect of stress level.

Finally the simple shear tests are carried out on three samples with different initial stress

ratio K, . Based on the calculations of the stress tensor, the principal stress directions are
identified and the effect of K, on the behaviour of the material are examined.

Investigations have also been carried out on the local void cell deformation and particle

rotation during the simple shear test.

5.2 Brief literature review

The objective of laboratory testing is to study the behaviour of a given soil under
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conditions similar to those encountered in the field and to obtain material parameters,
which describe the behaviour in a set of constitutive equations. In a laboratory test the
specimen is intended and generally assumed to represent a single point in a soil medium.
The validity of this assumption relies on the uniformity of stress and strain distributions
within the soil samples. Moreover, the uniformity depends on the configuration of the
specimen and the control and measurement of stress and strain on its surface. The states of
stress and strain in the aforementioned direct shear devices are not uniform, and the cross

section of the soil sample between the top and bottom box changes continuously.

Various attempts were made to modify the direct shear device in order to impose a
uniform condition of simple shear to the soil specimens. One of the earliest attempts was
made by Kjellman (1951) who developed the Swedish Geologic Institute (SGI) Box in the
1950’s. The SGI box encases the specimen laterally in a heavy rubber tube. The tube is
prevented from expanding under pressure by closely spaced, but separated, aluminium
rings. Shear is applied to the top of the box, and the shear strain is assumed to be
distributed uniformly between the top and bottom of the box. Due to the compression of
the rubber tube between the soil and the rings, there is some lateral deformation of the
soil, so that the lateral stresses will be even more indeterminate than in the ordinary direct
shear test. Another solution to the same problem was developed at Cambridge by Roscoe
(1953), who employed rigid but hinged plates for the ends of the shear box. These plates
tilt during shear so as to maintain a constant specimen length parallel to the direction of
shear. Thus a uniform shear strain is imposed on the specimen while lateral deformation is
prevented. Hence such a box provides improvements on the SGI apparatus, but still has
many drawbacks such as non-uniformity of boundary stresses, uncertainty about the stress
tensor because no information was available about the horizontal normal stress. In 1966
the Norwegian Geotechnical Institute (NGI) refined the SGI device by replacing the rings
with thin wires embedded in the rubber membrane (Bjerrum and Landva, 1966) and a
large amount of research and testing was carried out on the NGI device that showed a

more uniform straining of the specimen was obtained in the NGI type device than in the

SGI one.
The Cambridge and NGI devices are the two main types of simple shear devices, which

have been used to study the quasi-static behaviour of soils. Studies have shown that

neither the vertical normal stresses nor the shearing stresses are uniformly distributed in
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the simple shear test (Cole, 1967; Stroud, 1971; Budhu, 1979). Thus it is inevitably
subject to criticisms because of the non-uniformity of stresses and strains, which may
facilitate the occurrence of progressive failure along the potential shear plane (Airey et al,
1985). A critical review of the various theoretical analyses for the Cambridge and NGI
apparatuses was presented by Saada and Townsend (1981). They dismissed these simple
shear devices by using the results of photoelastic studies carried out on flanged circular
and rectangular photo-elastic models and remarked that these apparatuses “cannot claim to
yield either reliable stress-strain relations or absolute failure values.” They concluded that
“simple shear tests are of no value for research purposes.” Results of drained simple shear
tests in the Cambridge and NGI type simple shear apparatuses were compared by Budhu
(1984), who showed that the rigid boundaries of the Cambridge type apparatus impose a
definite simple shear configuration to the sample. The flexible boundary of the NGI type
apparatus provides less restraint, which allows out-of-plane movements to occur. He
concluded that the Cambridge apparatus can be expected to give an accurate estimation of
the behaviour of sand in monotonic loading if stress measurements are taken at the centre

of the sample.

A further development of the Cambridge simple shear apparatus, which was initiated by
Roscoe, was described by Bassett (1967). It permitted the measurement of the magnitude
and direction of the principal stresses within the sample at all stages of a test. Based on the
test data, the hypothesis of Wroth and Bassett (1965) for predicting the behaviour of
materials in the early models of the simple shear apparatus (in which only the stresses on
horizontal planes were measured) was subjected to critical examination. Discrepancies
were found between prediction and the observations and then the hypothesis was modified
to incorporate several new parameters, which were applicable to all plane-strain problems.
The new revised hypotheses were in excellent agreement with experimental observations.
However, the shortcoming of the apparatus, such as the unmeasured side and end wall
friction forces, the sensitivity and rigidity of the side load cells and the non-uniformities of

stress distribution inside the specimen, were still not overcome by the new design.

The Cambridge simple shear apparatus built by Bassett (1967) and modified by Cole
(1967) showed significant non-uniformities developed within the samples, which gave rise
to large underestimates of both stress and strain quantities measured at the boundaries.

The causes of this non-uniform behaviour were investigated and the major fault was found
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to lie in the weak contact between sand grains at the top of the sample and the upper
boundary of the sample container. In order to overcome this Stroud (1971) designed
special new load cells to be incorporated in the simple shear apparatus. Based on the new
apparatus a comprehensive study on the simple shear apparatus itself and its influence on
the soil properties was carried out and the behaviour of Leighton Buzzard sand at low
stress levels was presented and discussed in detail. In a critical assessment of the
development of boundary stresses around samples tested in the new apparatus, and by
using X-ray methods, the local strains within these samples were also examined. It was
demonstrated that conditions were vastly improved and that the behaviour was remarkably

uniform up to the point of failure.

Dyvik et al. (1987) described a laboratory-testing device developed from the NGI
apparatus, which enables simple shear tests to be performed under undrained conditions
with pore pressure measurement. The results were compared with the conventional
constant volume simple shear test. Good agreement between these two techniques was
obtained for all practical purposes. The assumption that the change in applied vertical
stress is equal to the pore pressure, which would have developed in an undrained test, was

validated by the experimental evidence.

Airey et al. (1985) presented the findings of research work at Cambridge using the simple
shear apparatus on both soil and clay. The detailed study identified non-uniformity of
boundary stresses and the development of internal inhomogeneities as the principal
shortcomings in the simple shear test. It was found that uniformity of boundary stresses
and internal deformations were very much better in the tests on clays than those on sands.
The results suggested that, in routine tests, the presence of non-uniformities would be

undetectable and care should be taken in the interpretation of the experimental results.

Dounias and Potts (1993) compared the results for a direct shear box test and simple shear
test on a soil, which is assumed to be elastoplastic, with and without dilation using the
finite element method. In direct shear, large stress and strain nonuniformities were
observed, which reached a maximum as peak conditions were approached. In simple
shear, deviatoric strains were fairly uniform during the initial loading stages, but as peak
conditions were approached they became highly nonuniform. The conditions in the shear

box were found to be similar to those of simple shear, except for behaviour beyond peak
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strength.

In the simple shear test the increase in shear stress on the horizontal plane will cause a
rotation of the principle stresses and a change of their magnitudes. Owing to the fact that
the stress conditions are unknown, the interpretation of the test results is limited to a
consideration of the shear stress and normal stress on the horizontal plane. Simple shear
devices have been introduced as an improvement over direct shear devices. The results of
simple shear tests are interpreted as a model test illustrating the conditions in a narrow
shear zone separating two rigid bodies which move relative to each other, which is
equivalent to the central shear zone in the direct shear test. Are the simple shear tests
better than the direct shear tests and could they produce more reliable results than direct
shear tests? If it is accepted that thé simple shear test produces data of reasonable quality
the question arises as to how the data can be related to the results obtained from other
laboratory tests. This is of interest because the design procedures for many field problems
are based on the results from triaxial tests, but the soil response often bears more
resemblance to simple shear. Unfortunately it is difficult because in the laboratory simple
shear test the principal stresses cannot be determined; only the normal and shear stresses
on the horizontal boundaries are measured and it is not possible to construct a Mohr circle
of stress. To construct a Mohr’s circle of stress, the lateral stress o7, must be estimated
using certain assumptions. For sands this has been achieved (Budhu, 1979) by assuming
coincidence of the principal axes of stress and strain increment. However, it was shown by
Borin (1973) that no such coincidence exists for normally consolidated Kaolin. In DEM
simulations all the components of the stress tensor and all the forces on the boundaries can
be measured directly. In this Chapter, an investigation of granular material behaviour in
the simple shear test is reported. The stress and strain distributions, shear strength and

dilatancy are examined.

5.3 Two typical stress-strain conditions in the shear test
5.3.1 Pure shear deformation

The term “pure shear”, when used for a state of stress in a solid, is often described by an
element abcb subjected only to shear stresses on the four side faces (Fig. 5.1a). The state

of stress can be presented by,
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0 -7 0
-7 0 0
0 0 0

Another state of pure shear in which two principal stresses are in perpendicular directions
and equal in magnitude and opposite in sign without any shear stresses is shown in Fig.

5.1b. Thus the above matrix becomes:

o, 0 0
0 -0, 0
0 0 0
y l"v
T
a B d a d
1" x — _o
T I
b c b ¢
' |
(a) state 1 (b) state 2

Fig. 5.1 Stress in pure shear on the element abcd

In terms of a state of strain at a point for the element abcd under pure shear condition, the
corresponding shear strains are shown in Fig. 5.2. Considering the element in pure shear

condition shown in Fig. 5.1a, with &, =0, £, =0, and a shear strain ¥ 20 corresponds

to a change in the angle between two lines that are originally perpendicular to each other.
Therefore, the element changes its shape from a rectangle (dashed line) to a parallelogram
(continues line) as shown in Fig. 5.2a. Next, consider the strains that occur in Fig. 5.1b,
which consists of a uniform extension in the tensile stress direction, and a uniform
contraction in the compressive stress direction by the same amount so that the volume
remains unchanged. These dimensional changes are shown in Fig. 5.2b, in which the
dashed lines shdw the original element. As in the biaxial compression test described in
Chapter 3 there is no rotation in principal stress or strain rate directions thus the principal

directions of stress and strain rate are coaxial throughout the test.
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€x

(a) state 1 (b) state 2

Fig. 5.2 Strain in pure shear on the element abcd

5.3.2 Simple shear deformation

The term “simple shear” refers strictly to a state of strain rather than to a state of stress.
It is such a state of plane strain that £, =0. It is also an inextensional mode of shear so
that £, =0. In this case all planes parallel to the xz-plane move in the direction of the x-
axis, and the displacements are proportional to their distance from the xz-plane. All
horizontal planes do not change in length. Therefore the x-direction coincides with a line
of zero extension. Any change in volume is due to length changes in the y-direction,

vertical strain £, and the corresponding angle of dilation y is shown in the Fig. 5.3.

Simple shear can be regarded as a pure shear plus a rotation. Though simple shear applies
a uniform strain to the element from its boundary there is no guarantee of internal

homogeneity and the uniformity of the state of stress.

.
\
|
[
I‘-c
|
|
|
S

Fig. 5.3 Simple shear strain condition
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5.4. DEM model of the simple shear test

For DEM simulations of the simple shear test, the sample used in the biaxial compression
test with wall boundaries (see Chapter 3) is selected in order to make direct comparisons.
The simulation model is illustrated in Fig. 5.4, in which the dashed lines show the initial
position of the specimen. The stresses can be calculated from the stress tensor by
averaging all the contact forces inside the sample in the same manner as used in the

previous simulations. In the simulation the normal forces (N, Ny, N, and N;) and the

shear forces (T, Ty, T, and T,) on the boundaries can be calculated (Fig. 5.4).

initial: ABCD
sheared: A'B'C'D'
! A
— By
Gg;l
Tnl
Ta l
On

"l

Fig. 5.4 Scheme of DEM model in simple shear test

By dividing these forces by the areas on which they act, the average normal stresses o,

Og» Or, Op and shear stress 7,, 7, 7y, 75 can be obtained from the wall forces as

follows,
NL NR
o, = y O = (5'1)
t IAaDso leso
N, N,
O, =——, 0= (3.2)
T IADDSG ? IADDSO
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7, = r (5.3)
l.sDsp bigDs
T ‘o
Ty =L, gy =—P— (5.4)
'r,u;Dw !‘\HD*H

where /,, and /,,, are the current lengths of the wall AB and wall AD, respectively.

The initial configuration of the specimen at equilibrium is shown in Fig. 5.5a. Two
different schemes can be used to perform the simple shear test. The vertical walls can be
rotated either about the mid-point of the vertical walls (AB, CD, sce Fig. 5.4, scheme 1) or
the intersections of vertical wall and bottom wall (point B and C, see Fig. 5.4, scheme 2).
The comparisons of the macroscopic and microscopic results obtained from these two
schemes are provided in Appendix D and it is shown that the results obtained from scheme
| and scheme 2 are essentially the same. In the simulations reported in this chapter, the
two vertical walls AB and DC rotate at a constant angular velocity about the midpoints of
the walls. The top and bottom walls are translated using a compatible horizontal velocity
in opposite directions. The solid thick lines A’B'C’D’ (Fig. 5.4) show the position at the
end of shearing. Figure 5.5b shows the corresponding particle configuration at the end of
shearing from a simple shear test simulation. The figure shows that uniform simple shear

deformation is reasonably achieved throughout the specimen.

(a) before shearing (b) after shearing

Fig. 5.5 Particle configurations

Shear strain is defined as,
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y=tang=" (5.5)

where @is the angle of inclination of the rotating walls (Fig. 5.4).

The shear strength can be determined, according to Coulomb, by

T Ty
tang, =—=— 5.6
ang, = =" (5.6)

where o and 7 are average vertical normal stress and average shear stress obtained from
the ensemble stress tensor. If the calculation is based on the boundary information the

shear strength can also be expressed as,

I, 17
0, = =T 5.7
fang. N; o; >-7)

5.5 Constant volume (CV) tests

In the constant volume test the height of the sample has to be maintained constant in order
to achieve the constant volume condition. Therefore, when the two vertical walls (AB and
CD) rotate about their mid-points, the top and bottom boundaries (BC and AB) are
displaced horizontally by din opposite directions and are constrained not to move in the
vertical direction. In this test series, three samples are investigated with the wall friction

4, setto 0.1, 0.5 and 0.8, respectively.

5.5.1 Forces on the walls

The normal forces (Ny, N, N, and N,.) and tangential forces (T;, Ty, T, and Ty, see
Fig. 5.4) acting on each wall for all three samples are shown in Fig. 5.6. The normal force
and tangential force of each pair of opposite walls have essentially the same magnitude
and opposite sign for all three samples considered. Although the tangential forces for
sample I are lower than the results obtained from the other two samples, the evolution of

the normal forces are quite similar for all three samples.
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5.5.2 Stresses

The normal stress and shear stress measured from the boundaries (0,0, ,7, and 7, ) and
the stress components calculated from the stress tensor (volume averaged,o,,,0,,,7,,
and 7,,) for all three samples are shown in Figs. 5.7-5.9, respectively. It can be seen from
Fig. 5.7a that the volume averaged normal stress ¢, is greater than o, before 15% shear
strain, afterwards o, becomes greater than &,,. The normal stress o,, is significantly

greater than o, throughout shearing. In addition, the volume average shear stresses 7,

30T
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(b) shear stress

Fig. 5.7 Evolution of stresses for g, =0.1
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and 7,, are identical throughout test, which means that the stress tensor is symmetrical.

After 10% strain these values are ca. 3 times greater than the shear stresses 7, and 7,

which are calculated from boundary measurements (Fig. 5.7b).
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Fig. 5.8 Evolution of stresses for g, =0.5

For the samples with higher wall friction (say 0.5), the evolution of the normal stress
measured from both wall and volume average information (see Figs. 5.8-9) are similar to
those for the sample with the lowest wall friction. However, 7, and 7, fluctuate above

5.0MPa for the two samples with higher wall frictions, while for the lowest wall friction
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sample they fluctuate around 1.5MPa. Although the shear stresses obtained from the
boundaries are lower than 7,, and 7,, they become closer to the volume averaged values

when a higher wall friction value is chosen.
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Fig. 5.9 Evolution of stresses for g, =0.8

5.5.3 Stress ratios

The evolutions of stress ratios sing, and tan¢,_, together with the force ratio 7/N

defined by (2.10), (5.6) and (5.7) respectively, are presented in Fig. 5.10. For all three
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samples sing, exhibits the highest value. The maximum value of sing, is about 0.37
when x, =0.1, but it reaches a value of ca. 0.44 for samples with higher boundary

friction. This implies that boundary friction can significantly affect the measurement of

the shear strength of the specimen. When x4, =0./ (Fig. 5.10a) the ratio of 7/N is

essentially equal to the specified wall friction. For g, =0.5 and g, =0.8 the peak values

of the ratio T/N are about 0.38 and 0.40 respectively. It is interesting to note that for the
high wall friction values the three ratios fluctuate around the same value at large strains
(Figs. 5.9b and 5.9¢). This implies that the critical state shear strength calculated from
volume averaging and boundary information are essentially identical, although the peak
values of shear strength obtained from boundary information (7/N) are lower than the

volume averaged values (sin¢, ., tang, ). Figure 5.10 indicates that the wall stress

measurements do not reflect the true internal state of stress but merely provide information
about the average mobilised wall friction coefficient. However, the simulations show that
the critical state shear strength can be determined from wall measurements provided that

the wall friction is sufficiently high.

051
O ”*=g'§
a o u =U.
- 2 =3 ¢ =08

tan@,

0.0 0.1 0.2 0.3

Y

Fig. 5.11 Effect of wall friction on evolution of tan¢.

The evolutions of tan¢, for the three samples are shown in Fig. 5.11. The peak values of
tan ¢ for the two samples with higher wall friction values are very similar and they are
22% higher than that obtained when u, =0.1. After 20% shear strain, tan ¢, for all three

samples fluctuates about 0.32. It has been shown from Figs. 5.10 — 5.11 that a low peak
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value of shear strength is obtained for the sample with a low wall friction. If # _ is higher

than 0.5, the peak shear strength is independent of 4 . However, essentially the same

critical state shear strength is obtained regardless of the wall friction.

5.6 Constant normal stress (CN) tests

The sample with wall friction g, =0.5 was chosen to perform three constant normal

stress tests, in which the tests are repeated with different applied constant normal stresses
on the top boundary of 10MPa, 15MP and 20MPa respectively. In order to achieve this,
the top wall is allowed to move vertically but still has to remain horizontal. Hence the
height of the sample changes continuously during the test. The servo control used to adjust
the velocity of the top boundary is the same as that used in constant normal stress direct

shear tests, which were described in section 4.5.

The vertical displacement of the top wall is shown in Fig. 5.12. The samples contract
slightly at the beginning of shearing and, as the sample is sheared further, it starts to
expand. For a lower normal stress level the sample contracts less and starts to expand at a
smaller shear strain. It is also noted that the sample expands more when a lower normal
stress is specified. In all three cases the rate of expansion increases to a maximum value
and then decreases until the volume remains constant at large strains, as observed in

laboratory tests.

0.16

0.14f

Ay (mm)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Fig. 5.12 Evolution of vertical displacement
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The variation of the ratio of shear to normal stress (tan¢@. =7/0) with shear strain is

shown in Fig. 5.13. The maximum stress ratio decreases when the normal stress level
increases but all three cases indicate a value around 0.3 at the end of shear. The same
trends are obtained for the corresponding tangential to normal force ratio (7/N) on the
boundary of the samples as shown in Fig. 5.14, except that the maximum values of the
force ratios are lower than that of the stress ratios. Therefore the boundary measurements

underestimate the shear strength of the sample.

tan@,

'0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

y

Fig. 5.13 Evolution of ran¢g,,
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Fig. 5.14 Evolution of force ratio
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5.7 Distribution of stress and strain

5.7.1 Distribution of stress

The simple shear apparatus has been particularly criticized because it cannot impose
uniform stresses on the specimen. Figure 5.15 examines the force transmission during a
simple shear test for a constant top normal stress of 15MPa. Before shearing ( y =0% ) the
whole sample is stressed uniformly as shown in Fig. 5.15a. As shearing continues the
larger than average forces are inclined in order to align with the direction of the major
principal stress. Consequently, it is clear from Fig. 5.15b that the normal forces at the
contacts with the wall at the left hand side of the top wall are much greater than those at
wall contacts at the right hand side; and that it is not clear what the average values of the

wall stresses mean exactly in terms of the state of stress in the assembly since the stresses

are not distributed uniformly on each boundary or inside the specimen.
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Fig. 5.15 Force transmission diagram

In order to further examine the stress distribution inside the sample and its effect on the
mobilized shear strength, the sample was divided into three parts (A, B and C) as shown in

Fig. 5.16. The stress tensors for each part are calculated separately based on the contact

forces within each region.

The evolutions of mean stress for three specified parts of the sample together with the

measurement for the whole sample are shown in Fig. 5.17. It is clear that the mean stress
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measured from the separate parts fluctuate around the measurement for the whole sample
and the maximum difference between the whole sample measurement to three local
measurements are normally within 1MPa. The corresponding results of shear strength
evolutions are compared in Fig. 5.18. It can be seen that, before peak shear strength,
except the result for part A that is slightly higher than the others, the measurements from
parts B and C are essentially the same as the measurement for the whole sample. After
peak, the different measurements start to diverge from each other. At the critical state, the
result for part B, which is the middle part of the sample, gives the highest strength at about

0.39 and the others fluctuate around 0.31.

/ /
/ /

Fig. 5.16 Sub-regions used for stress calculations
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Fig. 5.17 The measurement of mean stress at different locations of the specimen
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Fig. 5.18 The measurement of ran ¢, at different locations of the specimen

The aspect ratio of the specimen used in the laboratory is normally less than 1:1.
Therefore a simple shear simulation was also carried out on another sample with aspect
ratio 1:3. The evolutions of mean stress measured from the different sections of the sample
are shown in Fig. 5.19. Before 2% shear strain the different measurements are very close.
After 5% shear strain the mean stresses in parts A and B start to jump sharply. The
maximum difference between the whole sample measurement to the three local
measurements exceeds 2MPa. Therefore the stress distributions become more non-

uniform in such a specimen.
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Fig. 5.19 The measurement of mean stress at different locations of the specimen
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The relationships between shear strength with shear strain for the same sample are shown
in Fig. 5.20. It is clear that the measurement from part A gives the largest peak shear
strength at 0.44 and the other measurements give values below 0.4. It also can be seen that
the difference between each part are greater when compared to the same set of results
shown in Fig. 5.18. The results presented in Figs. 5.17- 5.20 illustrate that if the aspect
ratio of the specimen becomes less the stress distribution inside the sample would be more
non-uniform. Therefore, it suggests that small aspect ratio specimens should be avoided in

the simple shear tests.
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Fig. 5.20 The measurement of zan ¢_ at different locations of the specimen

5.7.2 Distribution of strain

In order to examine the strain distribution in the simple shear test the horizontal
displacement increment was measured for every 2.2% increment of shear strain. Figure
5.21 shows the distributions of the horizontal displacement increments during the test.
Before 6.6% shear strain the strain 1s distributed uniformly over the whole sample (pre-
peak stage) and is in agreement with the results reported by Budhu (1984) by using
radiographic technique. As the sample is sheared further, non-uniformities appear at the
top and bottom boundaries and gradually develop into the centre. This is consistent with
the numerical analysis of Shen et al (1978), who carried out a parametric study and
showed that major non-uniformities occur in the specimen near the boundaries. Uniform

strain inside the specimen can only be associated with a uniform stress state. Hence,
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according to the analysis presented in the last section, the non-uniform stress distribution
on the top and bottom wall will be the major cause of such strain localization initiated

from the boundaries.

(a) — OEe————— O == —

Fig. 5.21 Contour lines of horizontal displacement increments during simulation:
(a) 0% - 2.2%; (b) 2.2% - 4.4%; (c) 4.4% - 6.6%; (d) 6.6% - 8.8%:;
(e) 8.8% - 11%; (f) 11% - 13.2%; (g) 13.2% - 15.4%; (h) 15.4% - 17.6%:
(i) 17.6% - 19.8%;(j) 19.8% - 22%; (k) 22% - 24.2%; (1) 24.2% - 26.4%
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Although stress and strain non-uniformities are observed inside the sample during the
simple shear test, they are not as significant as in the direct shear test, in which the central
shear zone is very distinct and extends from one end to the other end of the sample as
described in Chapter 4. Therefore the stress and strain distributions in the simple shear test

are far more uniform than in the direct shear test.

It has been shown in Fig. 5.5 that deformation causes changes in the particle
configuration. At the local scale, rearrangement of the particle locations cannot occur
without changes in volume. Therefore, the local expansion and contraction will happen
simultaneously with the sample deformation and the balance between expansion and
contraction will be reflected in the overall volume change. In the following, the

deformation at the local scale is examined by using the graph-theoretical approach.

The graph-theoretical approach has been used to examine the mechanics of granular
materials (Satake, 1993b; Bagi, 1996b; Kuhn, 1999). By using such an approach, a
granular assembly can be described by a particle graph as shown in Fig.22a. In a particle
graph there exist large numbers of loops that correspond to local void cells that are each
surrounded by the branch vectors of contacting particles. These cells are used in the

simulation to examine the local deformation within individual voids.

(a) void cell (b) void cell deformation
Fig. 5.22 Particle graph

Let us consider that at instant ¢, the area of void cell C; is A] (dashed area in Fig. 5.22b).

After an increment of shear strain, the branch vectors forming this void cell have moved to
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new positions at instant ¢, (continuous line in Fig. 5.22b). The current area of the void cell

C,is Af , then the difference of the area between this two stages is calculated as:

A4, = A? - A! (5.8)

If 44, >0, it means the void cell C; expands and the difference is noted as 4A;. In
contrast, if 44; <0, the void cell C; contracts and the change is referred to 4A?. Hence,

based on this calculation the dilation of local regions can be examined. The summation

over all the individual area differences will give the total area of expansion or contraction

during this period,
N,

a4, = A4 (5.9)
i=l
N,

M, = M4 (5.10)
i=1

where N, and N, are the number of the expanding and contracting void cells, respectively.

The differences in area for local void cells were measured for every 2.2% increment of

shear strain and are shown on the left hand side of Fig. 5.23. The black shaded areas

represent void cells, which expand with 44; over 1/120 times the average single particle

area. The other expanding void cells are indicated by the grey shaded areas. For the
contracting void cells the areas are not shaded and only the branch vectors are shown. In

addition, the values of 44, and 4A, during every period are calculated and listed under

each diagram. The evolutions of particle rotation during the simple shear test are shown on
the right hand side of Fig. 5.21, in which only rotations larger than two degrees are shown.
The negative rotations (clockwise rotation) are shown by circles and the solid discs
represent the positive rotations (counter-clockwise rotation). The investigation is carried
out on the previous constant normal stress test of 15MPa on the top boundary, which was

reported in Section 5.6.

It can be seen that during the initial stage up to 2.2% shear strain the contracting void cells
are more than the expanding ones (Fig. 5.23a), and the total contracting area is larger than

the total expanding area. Recalling Fig. 5.12, the whole sample contracts during this stage.
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Fig 5.23 Void cell deformation and particle rotation (constant normal stress of 15MPa)
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In addition, the large particle rotations occurred randomly within the sample and most of
them are negative rotations, which is in the same direction as the body rotation of the
sample. It can be seen from Fig. 5.23 that the number of dark and grey cells increases with
strain. The total area of expansion becomes larger than the total contracting area
corresponding to expansion of the whole sample. Interestingly, the number of discs in the
rotation diagram also increases and large particle rotations occur almost at the same
locations as where the large void cell dilations occur. It is clear from Fig. 5.23 that the
contracting void cells almost correspond to the area where particle rotations are less than
the average rotation. This means that when the void cell dilates it facilitates the particle
rotation; on the contrary if the void cell contracts it restricts the particle rotation. In
addition, the particles within the big expanding void cells have more freedom to rotation

in the opposite direction to the body rotation.

5.8 The effect of initial stress ratio K,

It has been suggested that the stress-strain response of an elastoplastic material under ideal
simple shear is significantly influenced by the initial ratio of horizontal to vertical stress,
K, and by the degree of dilation, y; assumed for the plastic region (Hansen, 1961; Potts et
al,. 1987). In order to examine the dependence of the results of simple shear tests on these
two parameters and the non-coaxial phenomenon of the directions of principal stress and
strain rate, three samples were prepared to perform simple shear simulations under both

constant volume and constant normal stress conditions. The difference in these three

samples is the initial stress ratio K, =0,/0,, which was equal to 0.5, 1.0 and 2.0

respectively.

5.8.1 Stress-strain relationship

Figure 5.24 presents the evolution of the horizontal (o, ) and vertical (o, ) normal stresses

for both CV and CN tests. The initial states of stress for all cases are clearly shown in this

figure. The initial vertical normal stresses for samples with K, =1.0, K, =2.0 are
12MPa and 10MPa respectively and for the sample with K, =0.5 it is 20MPa. They are

kept perfectly constant in CN tests. It also illustrates that the two normal stresses o, and
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o, always converge to a same value at the critical state no matter what the initial

condition is and which type of test is performed.
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Fig. 5.24 Development of normal stresses (¢: ©,,°: 0})

The variations of mean stress with shear strain for all three samples during constant
volume tests are shown in Fig. 5.25. The corresponding variations of tan¢, are shown in

Fig. 5.26. It can be seen that the mean stresses increase during shearing for all cases. The
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samples with K, # 1.0 have the same mean stress both at the beginning and end of test,

with a slight divergence around 20% shear strain (Fig. 5.25). It is clear that the sample
with lower value of K, gives the lower peak stress ratio (Fig. 5.26). Although the
evolution of mean stress for the two samples with K, # 1.0 is essentially the same, the
evolution of tang, is totally different. For the sample with K, =0.5 the maximum

mobilised stress ratio (about 0.37) is not achieved until 9% shear strain and subsequently

mean stress (MPa)

0.0 0.1 0.2 03

Y

Y

Fig. 5.26 Evolution of tang,_ in CV tests

149



Chapter 5: Simple shear tests

there is a gradual reduction until the critical state is reached. The peak stress ratios for the
other two samples are 0.43 and 0.48 respectively. After reaching the peak at about 5%
strain, these samples show a pronounced reduction in mobilised shear strength. The stress-
strain relationships of these two cases are similar to the behaviour for the dense sample
shown in Fig. 2.2. Nevertheless, there is close agreement for all three cases after 12%

shear strain. The results indicate that the parameter K, plays a very important role in the

shear behaviour of the granular materials prior to the critical state.

Figure 5.27 shows the changes in the vertical sample dimension during shear in the
constant normal stress tests. It is clear that the sample with the least Ky value shows the
greatest contraction at the beginning of the test and least expansion by the end of test,

when compared to the other two cases. The evolutions of tan¢, for all cases are shown in
Fig. 5.28. 1t is interesting to note that the results of samples with K, <1.0 are

quantitatively similar to the results observed in the constant volume test. However, the
peak stress ratio for the sample with the highest Ky decreases 9% in the constant normal
stress test. It is conventional to expect that low sample dilation corresponds to low peak

stress ratio. This is true for the sample with X, =0.5 in the simulation. However, for the
two samples with K, 2 1.0, the peak values of stress ratio are almost identical but the

sample with the higher K, exhibits significantly greater expansion.
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Fig. 5.27 Evolution of 4y in CN tests
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0sr1

Y

Fig. 5.28 Evolution of tan¢, in CN tests

The correlation between the average particle rotation and the sample body rotation (6/2),

see Fig.5.4, for all three samples is shown in Fig. 5.29, in which the dashed line denotes

the condition where the average particle rotation is equal to /2. It can be seen that, for
the sample with initial k, =0.5, the average particle rotation is slightly larger than 6/2.

For the other two samples the average particle rotations are less than /2.

average particle rotation (°)

Fig. 5.29 Relationship between average particle rotation and body rotation
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3.8.2 Deformation patterns

In the traditional experiment, the uncertainty about the stress tensor arises because no
information is available about the horizontal normal stress o, or o,. It can be assumed
that at failure the horizontal plane on which the stress combination (o,,7) acts could be

any of the following three cases (Airey et al., 1985):
(a) It could be a plane of maximum stress obliquity so the Mohr friction angle (Fig. 5.30a)
is, “

tang, =£— ) | (5.11)

L4

(b) Alternatively, it also could be a plane of maximum shear stress (Fig. 5.30b) so that

i
sin @"m =
g,

v

(5.12)

(c) A further possibility was proposed by de Josselin de Jong (1972, 1988) using a book-
stack analogy. Externally observed simple shear deformation of a pile of books can be
produced by the sliding of each book on a horizontal plane (Fig. 5.31a), but the same
external effect is found when each book in a row of the same books is allowed to slide on
a vertical plane and then the whole row is rotated (Fig. 5.31b). The sliding mode shown in
Fig. 5.31a corresponds to the state of stress illustrated in Fig. 5.30a. The mode of sliding
shown in Fig. 5.31b corresponds to the state of stress illustrated in Fig. 5.30c and the

Mohr friction angle is obtained from

sing, cos@, _ T (5.13)
I1+sin’p, O,

(a) (®) (c)
Fig. 5.30 Possible Mohr circles for simple shear state of stress
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Fig. 5.31 Book-stack analogy of simple shear deformation proposed by de Josselin de

Jong (1972)

De Josselin de Jong suggested that the vertical failure planes plus rotation mode would

usually be the easiest one for the soil to choose. This conclusion is to some extent

governed by the initial stress state (K, condition) of the sample at the start of the simple

shear deformation.

In order to examine the simple shear deformation pattern proposed by de Josselin de Jong
the sample with K, =0.5 is colour-banded in both the horizontal and vertical directions
before shearing. The particle configurations at the end of the simulation are illustrated in
Fig. 5.32, from which it not very clear whether the deformation follows the pattern shown
in Fig. 5.31a or Fig. 5.31b. It is also noted that the particle configuration at the end of
shearing for this sample is very similar to the result shown in Fig. 5.5.

The evolution of horizontal displacement increments during the test is presented in Fig.
5.33. The contour lines of horizontal displacement increment shown in this figure are
similar to those shown in Fig. 5.21, which is from the simulation on a sample with

K, = 1.0. It is clear that no significant strain localization in the vertical direction can be

observed. Therefore the initial stress condition does not appear to affect the deformation

pattern in simple shear test, as implied by de Josselin de Jong.
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(a) horizontal colour banded (b) vertical colour banded

Fig. 5.32 Particle configuration for the sample of K, =0.5

From the previous analysis in Chapter 4 it was found that particle rotations are high within
shear bands and low everywhere else. The evolution of particle rotation during the above

test carried out on the sample with K, =0.5 is shown in Fig. 5.34. In this figure only the

rotations greater than 1° are shown. It can be seen that most of the particle rotations are
negative at the initial stage. Particles with positive rotations become more prevalent when
the sample is sheared further. It becomes clear that the negative rotations are concentrated
into horizontal bands and the positive particle rotations appear in vertical bands. There is
no single strong strain localization that can be observed inside the specimen from both the
contours of horizontal displacement increments and the evolution of particle rotations.
Hence, based on the above results it is suggested that during simple shear deformation the
sample does not have a preferred deformation pattern. For the samples with different

initial values of K, the deformation patterns are essentially the same. In addition, the

uniformity of strain distribution is much better in the simple shear test than in the direct

shear test.
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@) = —— O]

© ——

Fig. 5.33 Horizontal displacement increments during the test for K, =0.5:

(a) 0% - 2.2%; (b) 2.2% - 4.4%; (c) 4.4% - 6.6%; (d) 6.6% - 8.8%; (¢) 8.8% - 11%;
() 11% - 13.2%; (g) 13.2% - 15.4%; (h) 15.4% - 17.6%; (i) 17.6% - 19.8%;
()] 19.8% - 22%; (k) 22% - 24.2%:; (1) 24.2% - 26.4%
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Chapter 5: Simple shear tests

S.8.3 Non-coaxiality

The orientations of the major principal stress ¢, and major principal strain rate £, to the
horizontal direction during the test are presented in Fig. 5.35 for all the samples. For

K, =10, the direction of principal stress essentially matches the direction of strain
increment (Fig. 5.35a). Initially, the ¢, direction is horizontal (0° to the horizontal) for
K, =2.0 and is vertical for the sample with K, =0.5 (90° to the horizontal). The major

principle stress direction rotates at a decreasing rate for both cases: rotating clockwise if
K, =2.0 (Fig. 5.35b) and counter-clockwise if X, =0.5 (Fig. 5.35c). Eventually, for all

cases, the principal stress directions are inclined at 45° to the horizontal at the critical

state, as shown in Fig. 5.35.

As shown in Fig. 5.35, at the critical state, the major principal stress is always inclined at
45° to the horizontal plane, which is the same as the results obtained from the simulations
of the direct shear test. Therefore, the Mohr circle interpretation presented in Fig. 5.30b

correctly defines the stress state for the specimen at the critical state.

Figure 5.36 shows the evolution of the angle of non-coaxiality i (the difference between
the direction of principal strain rate and principal stress) for each test. For the sample with

K, =1.0 the non-coaxiality is not significant as the angle i fluctuates around 0°

throughout the tests. However, for the other two samples, non-coaxiality is very
significant before 10% shear strain. Eventually, the principal stress direction matches the
principal strain rate direction at the critical state for all the cases.

The evolutions of the dilation angle are shown in Fig. 5.37. It is clear that before 10%
shear strain the sample with the highest initial X, has the highest dilation angle. At the

critical state, in all cases, the dilation angle fluctuates around zero. It is clear from Figs.
5.36-37 that not only the angle of non-coaxiality but also the rate of dilation are affected
by the initial difference between the two orthogonal normal stresses. In the laboratory,
during the sample preparation stage, the sample is consolidated before it is used to
perform a shear test. Therefore, the initial stress state of the sample is more likely to be

K, <1.0. Since the non-coaxiality is significant at strain less than 10%, as shown in
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Fig. 5.35 Major principal stress and strain rate orientations

158



Chapter 5: Simple shear tests

Fig. 5.36, the traditional soil mechanics interpretation based on the assumption of

coaxiality between the principal stress and principal strain rate direction cannot reliably

determine the maximum stress ratio.
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Chapter 5: Simple shear tests

As described in Chapter 4, by assuming that the direction of the major principal stress o,
Coincides with the direction of major principal strain increment &,, the relationship
between ¢, and ¢, is given by (4.3). However, the principal axis of stress is not

necessarily coincident with the principal axis of incremental strain, as reflected by Figs.
5.35-36. Taking account of this fact, equation (4.3) is modified to (4.22). The angle of
non-coaxiality i is defined as the difference between the direction of principal strain rate

and principal stress. If let & = y + 2i, Equation (4.22) can hence be rewritten as,

sing,, cos@
1-sing, sin@

tang, = (5.14)

The Mohr’s circles for the samples with different initial K, and different dilation angles

are drawn in Fig. 5.38. In each diagram the Mohr strain rate circle is superimposed on the
Mohr stress circle according to the different angle of non-coaxiality and dilation angle, in

which the strain rate axes are indicated by dashed lines. For the case K, > 1.0 (see Fig.
5.38a and b), the theoretical value of ¢, (for a given ¢, and ) obtained from (4.3a),
which assumes coaxiality, is smaller than that obtained from (5.14). When K, < 1.0 (see
Fig. 5.38c and d), the value of ¢, obtained using (4.3a) becomes greater than that
obtained using (5.14). If K, =1.0 (see Fig. 5.38e and f) tan¢g, =sing, since §=0.In
this case the value of ¢, calculated from the (4.3a) can be either greater or less than
sin ¢,, depending on the sign of dilation angle. However, Fig. 5.38e and 5.38f demonstrate
that tan@, = sing,, unexpective of the sign of Y since the necessary requirement is that
2i=-y and hence @ is always zero. Based on the above analyses, it is clear that the
value of ¢, based on the flow rule (5.14) is very much dependent on the value of K|, the
dilation angle and the angle of non-coaxiality. Since &=y +2i cannot be measured
experimentally the theoretical value of ¢, can either underestimate or overestimate the

‘measured’ value of the Coulomb friction angle depending on the value of X|,.
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Chapter 5: Simple shear tests

5.9 Comparisons of material behaviour during simple and pure shear deformation

The material behaviour during the simple shear test (SST) with K, = 1.0 and the biaxial

compression test with wall boundaries (BCW), as defined by the volume-averaged
calculations, are compared in this section. The comparison is made for the constant
volume tests only. The evolutions of deviator stress and mean stress for both tests are
shown in Figs. 5.39-40. The figures show that the evolution of deviator stress and mean

stress of BCW and SST are similar. Figure 5.41 shows the evolution of sing,, . It can be

seen that the mobilised angle of internal shearing resistance is independent of the type of

test.
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Fig. 5.41 Comparison of the evolution of sing,

The evolutions of internal variables during the simulations of both types of test are shown
in Figs. 5.42-44. Figure 5.42 shows the evolution of the mechanical coordination number,
Z,.. It can be seen that similar results are obtained for both tests. Figure 5.43 shows the
evolution of structural anisotropy in the two tests and very similar results are again
obtained. The evolutions of the percentage of sliding contacts are also similar in both
tests, as shown in Fig. 5.44. The reduction in the percentage of sliding contacts is due to

the increase in mean stress developed during the tests.
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Fig. 5.42 Comparison of the evolution of Z,,
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5.10 Summary

The investigations of simple shear tests have been carried out using DEM simulations.
The tests with different wall frictions demonstrate that experimental measurements of wall
stresses do not reflect the internal state of stress but merely provide information about the
average mobilized wall friction. The detailed examination of stress distribution reveals
that the stress distribution inside the sample and on the boundaries are nonuniform from

the beginning of the test, the average stress obtained from the boundary information
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cannot represent the real state of stress for the whole assembly. It is found that the strain
distributions are uniform before peak strength, thereafter hints of nonuniformities appear
near the top and bottom boundaries. Nevertheless, they are less significant than in the
direct shear test. Therefore, the simple shear test can impose more uniform distribution of
stress and strain to the specimen than direct shear tests. However, in simple shear tests
performed in the laboratory the horizontal normal stress cannot be measured directly,
which is the same problem as encountered in the direct shear test. Consequently, the Mohr
stress circle cannot be drawn correctly and this makes the interpretation of the results from

simple shear test experiments also unreliable.

It has been shown that the ratio of the two orthogonal normal stresses at the initial state
has a strong influence on both the non-coaxiality between the direction of major principal

stress and strain rate and the rate of dilation. At peak strength, the samples with X, # 1.0

show significant non-coaxiality between the directions of principal stress and strain rate

but the non-coaxiality is not significant for the sample with X, = 1.0. In the laboratory
the simple shear tests are most likely to carried on a sample with initial K, < 1.0, so the

assumption of coaxiality of the direction of principal stress and strain rate is not valid

when determining the peak strength in such a test. The results indicate that the initial X,

state, the dilation and the angle of non-coaxiality all significantly affect the value of ¢, .

The overall behaviour of a particle assembly is believed to be strongly related to the local
deformation of the specimen. Through the examination of the expansion/contraction of the
local void cells it was found that large expansion of the void cell encourages particle
rotation. When the void cell contracts it restricts the particle rotation. The simulation
results also suggest that the sample does not have a preferred deformation pattern during
simple shear deformation and the pattern is not governed by the initial stress state (X,
condition) as su ggested by de Josselin de Jong.

Excellent agreement was obtained between the results of the simple and pure shear test
simulations based on the volume-averaged data. In terms of macro- and microscopic
behaviour, both tests exhibit similar responses of the specimen. This demonstrates that
DEM simulations can provide reliable test results, unlike laboratory experiments, in which

different tests generally show significant differences in the material behaviour.
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CHAPTER 6: PERIODIC CELL SIMULATIONS

6.1 Introduction

Granular materials are composed of discrete particles that interact only through the
contacts between particles. Recent research has shown that the overall mechanical
properties of granular materials are significantly dependent on the micro-scale geometric
arrangement and the contact stiffnesses between interacting particles. It is desirable to
describe the macro-scale constitutive law for granular materials using suitable continuum
variables, and to derive the macro-scale continuum variables explicitly from the micro-
scale discrete variables. Therefore, it is fundamental to understand the MAacroscopic

mechanical behaviour of granular materials from a microscopic point of view.

This chapter reports the results of numerical simulations that have been carried out to
investigate the quasi-static shear characteristics of granular media at both the macro- and
micro- scales. The objective is to examine in detail the spatial distribution and temporal
evolution of contact force transmission, inter-particle sliding and structural anisotropy in
order to better understand the correlation of the physics observed at the micro-scale with
the macro-scale mechanics of granular media. Some simulation results presented in this

chapter were first reported in Thornton and Zhang (1999).

Simulations of isotropic compression followed by biaxial compression are carried out
using a periodic cell. Samples with a wide range of packing density are sheared under
constant volume and constant mean stress conditions. The sample preparation method is
described in Section 3.3.1. Aspects of both the macroscopic and microscopic responses are

presented and visualisations of force transmission patterns are provided.

6.2 Brief literature review

The stress-strain behaviour of granular media depends upon both the stress level and stress

path due to the fact that the ensemble macroscopic behaviour is closely related to the
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distribution of the constituent particles of different size and shape, the distribution of other
internal variables and the interaction between contiguous particles. Traditionally, a
macroscopic approach is used to model a granular medium as a continuum whose
mechanical behaviour is described in terms of a stress tensor, a strain-rate tensor and some
internal variables. However, two important discoveries have revived interest in the
microscopic aspects of granular materials: (a) the contact network is generically
anisotropic, which means that the contact normals are not randomly directed in space; (b)
in contrast to the highly uniform density of a well packed assembly, the distribution of
contact forces is highly heterogeneous. These observations suggest that the mechanical
state of the granular system may be governed by several internal variables associated with

the fabric and the modes of the force transmission inside the system.

Thornton and Barnes (1986) reported that the macroscopic state of stress is a function of
the distribution of contact forces and Thornton (1993) showed that the ensemble moduli
are related to the distribution of contact stiffness. For any ensemble of discrete particles
subjected to external loading, the transmission of force from one boundary to another can
only occur via the inter-particle contacts. Therefore, it is expected that the distribution of
contacts will determine the force distribution inside the assembly. Direct observations of
stress distribution via photo-elastic studies of two-dimensional arrays of discs have been
reported by Dantu (1957), Drescher and de Josselin de Jong (1972) and Oda and Konishi
(1974). Using dynamic photo-elastic studies of regular arrays of elliptical discs, the
dynamic stress wave propagation in disc assemblies have been investigated by Zhu et al.
(1996). It has been observed from all static photo-elastic studies of disc assemblies that the
Joad is largely transmitted by relatively rigid, heavily stressed chains of particles forming a
relatively sparse network of larger than average contact forces. The other contacts
separating the strong force chains are only lightly loaded. Liu et al. (1995) have
demonstrated the existence of strong force chains in three-dimensional packings of

spheres and they also proposed a simple model that can reproduce many aspects of the

experiments and simulations.

Traditional theoretical and experimental investigations of the mechanical behaviour of
granular materials are restricted by the limited quantitative information about what
actually happens internally. Laboratory experiments on real materials rely on estimates of

the Macroscopic stress and strain states from boundary measurements, which themselves
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depend on assumptions made about the material behaviour. Information on the internal
mechanisms is rare, since any attempts at direct observation and measurement intrude
upon the material response. In addition, comparisons between sets of test data are
uncertain due to the inability to prepare exact replicas of the physical system. Traditional
attempts to mathematically model the mechanical behaviour of granular media are
normally based on intuitive speculation as to how the observed experimental behaviour
might be modelled by modifying existing continuum mechanics theories. However, the
resulting theories invariably include new parameters, the precise physical meaning of
which is relatively obscure. This leads to difficulties in selecting appropriate experiments

to rigorously justify a theory.

As an alternative approach to investigate the mechanical behaviour of granular materials,
computer simulations have become more and more attractive in the last ten years. This
technique can determine not only the overall behaviour of the granular assembly but also
the evolution of internal variables associated with the micromechanical processes
occurring at the particle scale. In addition to the direct observations of force transmission
in two-dimensional arrays of photo-elastic discs, numerical simulations of quasi-static
shear deformation of particle systems with visualisation of the force transmission patterns
have been reported by many researchers. Computer simulations of general three-
dimensional quasi-static shear deformations have been performed over the complete range
of deviatoric radial loading paths from axisymmetric compression to axisymmetric
extension, for both dense and loose polydisperse systems by Thornton and Sun (1994).
The reported macroscopic behaviour was in good qualitative agreement with results
obtained from real experiments on sand and also demonstrated that computer simulated
cxpcrimentation is a versatile and convenient technique that may be used to examine
complex 3D loading histories, which are necessary to check the detailed formulation of
continuum models. Further examinations of shear deformation of three-dimensional
disperse systems of elastic spheres subjected to different complex loading histories have
been reported by Thornton and Antony (1998) and Thornton (2000a). The results of
numerical simulations of planar assemblies of elliptical particles were presented by
Rothenburg and Bathurst (1992). Qualitative features of these systems that are similar to
real sand behaviour were identified and the influence of particle eccentricity on peak
friction angle and peak dilation rate was explored in a systematic manner. The results also

showed that the stress-force-fabric relationship verified for planar assemblies of discs
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(Rothenburg and Bathurst, 1989) was also valid for assemblies of elliptical particles.

Research on granular media has also attracted the attention of many physicists. Radjai et
al. (1996) examined force networks in numerical simulations of two-dimensional systems
of rigid discs. The simulation technique is known as the Contact Dynamics Method, which
was described by Moreau (1994). From the obtained probability distributions, it was found
that although the above-average normal contact forces exhibited an exponential decay, the
smaller than average normal contact forces had a power-law distribution. Radjai et al.
(1997) performed Contact Dynamics simulations of quasi statically driven assemblies of
rigid particles and suggested that the contact network at every stage of deformation is
composed of two sub-networks: a ‘strong’ sub-network of contacts carrying forces larger
than the mean force, and a ‘weak’ sub-network of contacts carrying forces lower than the
mean force. In addition the strong sub-network supports all the deviatoric load, whereas
the weak sub-network contributes only to the mean pressure. The stress propagation
characteristics of granular materials when they are subjected to increasing pressures were
investigated by Nguyen and Coppersmith (2000). They characterized the statistical
properties of forces by using the force histogram and a two-point spatial correlation
function of the forces. The comparisons of results of a two-dimensional scalar lattice
model with those of a molecular dynamics simulation of slightly polydisperse discs
showed that when the pressure is increased the changes in the force histogram obtained
from the molecular dynamics simulations are very similar to those obtained from the
lattice model. In contrast, the spatial correlations evolve qualitatively differently in the

Jattice model and in the molecular dynamics simulations.

It has been shown from previous numerical simulations that there is a multiplicity of
pathways along which force transmission may be achieved in order to establish a stable
stress state. In order to achieve a stable state of stress the system does not use all the

potential pathways but naturally optimises the selection to match the loading direction. In

te
to be self-organising. This self-organised optimisation of the force transmission is

rms of statistical physics, this is a percolation problem and the system can be considered

reflected by a critical value of the mechanical coordination number, which corresponds to

a perc
granular media and its correlation to the mechanical coordination number is further

examined by performing numerical simulations of biaxial compression on ten different

olation threshold (Thornton, 1997). In this chapter the percolation phenomena of
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polydisperse systems. There are two test series that have been carried out. The simulation

results of constant volume tests will be presented first followed by the results obtained
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from constant mean stress tests.

6.3 Constant volume (CV) tests

The relationship between the isotropic stress and solid fraction obtained at the end of the
isotropic compression stage is shown in Fig. 6.1. The stress level varied from 12.8kPa for
the loosest sample to 30.6MPa for the densest sample when samples were prepared in the

manner described in Chapter 3. The corresponding mechanical coordination number, Ly

plotted against solid fraction is shown in Fig. 6.2. It is noted that the value of Z, increases

rapidly as the solid fraction is increased from 0.584 to 0.598.
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Figure 6.3 shows the distributions of contact normal orientations of the samples prior to
shearing. It can be seen that at low solid fractions (0.564 - 0.585) the samples are slightly
anisotropic, but at high solid fractions (0.599 — 0.635) the samples are reasonably

isotropic.

Fig. 6.3 Contact normal orientations before shearing

6.3.1 Macroscopic behaviour

Figure 6.4 shows the variation of the deviator stress (0, —0;) with deviator strain
(& -€;) during biaxial compression under constant volume conditions for various
systems with different initial solid fractions. It can be seen that, for the systems with low
initial solid fractions of 0.564 and 0.571, no significant shear stress is developed. For the
systems with intermediate initial solid fractions (0.578, 0.585 and 0.592), a significant
deviator stress is only developed after a certain amount of deviator strain is reached (Fig.
6.4a). For those systems with high initial solid fractions (larger than 0.599), the deviator
stress increases from the start of shear until an approximately constant value is maintained
after about 10% deviator strain (5% axial strain), as can been from Fig. 6.4b. The
magnitude of the deviator stress developed is, however, also dependent on the magnitude
of the isotropic stress. For all but the two loosest systems, deformation at constant volume
was accompanied by an increasing isotropic stress, as can be seen from Fig. 6.5 which

shows the evolution of mean stress (0;+02)/2 against deviator strain for all ten systems
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Fig. 6.4 Evolution of deviator stress

considered. For the two loosest samples of solid fraction 0.564 and 0.571 the mean stress

decreased from 4.22kPa and 4.39kPa to just 0.057kPa and 0.053kPa, respectively.

Fiéure 6.6 shows the variation of sing, with deviator strain for all the systems

considered. It is clear that, for solid fractions greater than 0.578, the magnitude of sing,
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creasing deviator strain at low strains and then decreases with further

increase of deviator strain until, finally, a constant value is reached. The value of sing,

for the system with a solid fraction of 0.578 increases initially, but with significant

fluctuations, until

a maximum value is reached just before 10% shear strain, then remains
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essentially constant thereafter. Systems with solid fraction less than 0.578 exhibit

significant fluctuation in the value of sing, throughout the simulation (Fig. 6.6a).
Nevertheless, the results shown in Fig. 6.6 demonstrate that the mobilized value of sing,,

at large strains is independent of the initial packing density.
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6.3.2 Microscopic behaviour

Generally, three microscopic features play key roles in the mechanics of granular media:
the mutual exclusion of particles, which can be reflected by the mechanical coordination
number; the dissipative nature of interactions due to plastic deformation during collisions
or sliding friction; and dynamically-induced randomness which is related to the fabric.

The observed microscopic behaviours are shown in the following figures.
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The evolution of the mechanical coordination number, Z,,, is shown in Fig. 6.7. For the
three densest systems, as shown in Fig. 6.7b, the mechanical coordination number
decreases until a critical value is attained and remains essentially constant thereafter. For
solid fractions of 0.599 and 0.605, Z,, initially decreases but then increases a little until a
constant value is maintained at large strain. The mechanical coordination number remains
very low during the deformation of the two loosest systems. However, for the other three
systems shown in Fig. 6.7a, the mechanical coordination number increases from the start
of shear until a constant value is reached at large strains. The relationship between the
final value of the mechanical coordination number and solid fraction is shown on Fig. 6.1.
Comparing Figs. 6.4a and 6.7a, it is interesting to note that the deviator stress begins to
increase only when the mechanical coordination number reaches a value of ca. 3.0. A
closer look at the evolution of deviator stress together with mechanical coordination
number for a solid fraction of 0.585 during the period when the deviator stress starts to
develop is shown in Fig. 6.8. It is clear that the deviator stress (black line) starts to
increase from a low level at 7.8% deviator strain and at this stage the mechanical
coordination number (grey line) is ca. 3.0. This implies that a certain degree of
connectivity is necessary before a stable arrangement of particles can be created
sufficiently for the system to develop a shear modulus. Therefore, we may infer that

7 = 3.0 is indicative of an elastic percolation threshold.
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Fig. 6.9 Evolution of sliding contact

Figure 6.9 shows the evolution of the ratio of sliding contacts during biaxial compression
for all ten systems. It can be seen that, for dense systems, the ratio of sliding contacts
changes dramatically at the beginning of shear, but remains essentially constant after
about 10% deviator strain with ca. 1% of contacts sliding, independent of the initial solid

fraction (Fig. 6.9b). However, for the two loosest systems, the percentage of sliding
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contacts quickly increases to between 4% and 6% and remains, essentially constant but
with strong fluctuations. Interestingly, for intermediate solid fractions of 0.578, 0.585, and
0.592, the percentage of sliding contacts is comparable with the loosest system in the early
stages of shear. When the mechanical coordination number increases to a value greater
than 3.0 (see Fig. 6.7a) the percentage of sliding contacts falls until, at large strains, it is

similar to that observed for the dense systems.
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The evolution of the deviator fabric (@, —¢@,) is shown in Fig. 6.10. For solid fractions of

0.599 and 0.6035, the deviator fabric rapidly increases to attain a maximum value prior to
10% deviator strain and then reduces until an essentially constant value is maintained at
large strains. No peak in the evolution of the deviator fabric is observed for solid fractions
greafer than 0.605. Comparing Fig. 6.10a with Fig. 6.7a, it can be seen that a similar
evolﬁtion of the deviator fabric occurs once the mechanical coordination number is greater
than 3.0. The two loosest systems exhibit high values of deviator fabric, but with
signiﬁcmt fluctuations, and there is no reduction in deviator fabric at large strains.
Howcvcr, for these systems, which fail to develop a significant shear stress, Fig 6.4a, and

have a low number of contacts, the relevance of the deviator fabric is unclear.

An éxamination of Fig. 6.10 might suggest that the deviator fabric at large strain decreases
as the solid fraction increases. However, it was demonstrated by Thornton and Sun (1993)
that, in constant mean stress tests, the deviator fabric at large strains is independent of the
initialzsolid fraction. Therefore, what Fig. 6.10 illustrates is that, the degree of induced
structural anisotropy is suppressed by increasing the mean stress since the mean
stress increases with increase in solid fraction in constant volume tests (Fig. 6.1). The
distﬁbutions of contact normal orientations for all samples at the end of shearing are
pfcsénted in Fig. 6.11. It is clear that the contact normals have a preferred oricntatioq

along the horizontal direction, which is also the direction of compression. In addition, the

loose systems show stronger anisotropy than the dense systems.

0.585

Fig. 6.11 Contact normal orientations at the end of shearing
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6.3.3 Force transmission

In order to understand how the macroscopic behaviour relates to the behaviour at the grain
scale during shearing, visualisations of force transmission are presented in this section.
The connection and force diagram of the sample with a solid fraction of 0.635 is shown in
Fig. 6.12. Figure 6.12a shows the force transmission pattern before shearing. At this stage
both the structure and the applied stress field are isotropic. After the system has been
subjected to 30% deviator strain, there is a distinct preferred orientation of the large
contact forces, as can be seen in Fig. 6.12b. It is clear that the large forces are oriented in
the direction of the major compressive principal stress. The contact force orientations of
the loosest system with a solid fraction of 0.563 are shown in Fig. 6.13. It can be seen
from Fig. 6.13a that the system does not percolate in either direction, indicating collisional
behaviour. In contrast to Fig. 6.12, Fig. 6.13 shows that the loosest system never
establishes continuous force transmission pathways between the boundaries of the
periodic cell, although some degree of connectivity in certain regimes of the sample can
be seen in Fig. 6.13b, which is indicative of clustering. Figure 6.14 shows the force
transmission for a sample with a solid fraction of 0.585. At the beginning of shearing, the
system is very similar to the loosest one (Fig. 6.13a) in that there is no connectivity across
the system. At the end of shearing, Fig. 6.14c, strong force transmission pathways are
evident, similar to those shown in Fig. 6.12b. Figure 6.14b shows the connection diagram
at 7.8% deviator strain when the mechanical coordination number is ca. 3.0 (Fig. 6.6a) just
prior to the development of a significant shear modulus (Fig. 6.4a). Figure 6.14b,

therefore, illustrates the force transmission pattern near the elastic percolation threshold

when enduring connectivity is being established.

Video clips of the evolution of the connectivity and contact force transmission throughout

the biaxial compression tests for the system with solid fractions of 0.585 and 0.635 are

provided at http://www.iem.bham.ac.uk/computation/granular/microevo.htm and also
described in Appendix C. It is clearly seen from these videos that the ability for a system

to develop a significant shear modulus is determined by whether enduring connectivity

(percolation) is established, which is reflected in a critical value of the mechanical

coordination number.
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(a) before shearing

Fig. 6.12 Force transmission diagram for sample with solid fraction 0.635
181



i8I

+9<°( uonary prjos i dydwes 10J wWesdeip UOISSIWSURT 2210 €19 “S1

guLeays jo pua (q) Suueays 210J2q (1)

-~ . —
/ = IR N —~
- - = J ¥ - - I
> ¥ I / % - @ i -L 3 A
{ / F - N\ \ - i
- e -
..In_V - -..r —\. -~ = l\
- ~ N
\\ rd & ’ o = ~ = .. ~
- - . =, B ’ i
-~ -y = - J.... \/ - ~ 5
/ \ \ -
™ \ H - /\ I RN . ' -\
= .r._‘ \ -~ 7’ = /\ﬂ - . - -
) I = 4 J. = \ , £s
o T g s vK R .
Ny = 8 = A : -
£, A b - A/ 0 T 2 o
\\ \f} ~ —_— v.f - -& o
- ] s ~ - 5 - — -~ N ~
NS . © k- \ "\ oo e
oy ~ \ -
- I = 14 e — 1
e TN X L ’ '
N -~ i /A\ - = ] 1 7 A
L F 4 S ~ l. ’.l k_ - -_ X
—_ b [~ \.' > M JQQ (4 T
- » N\ - . ! .,
- \ ’ ? =
S R : -
) !
" \ -____ |.L___.v Fa - ____ - 5 - ;
- — ~ ™~ - ’ 1
» ~ = L/ ~ -
= - N - -~ - \ ’ \ -
B Yy A JV [ 2 = T 'R ’ - SN
- - L -y 1
\\.A 7 z \/‘(___\.....‘_ = j ./h ’ ' -u\ % '- "
3 7
o~ 7 > I e
— - n / : ’ ’ :
. b3 —’f\ Lé \ ”
I~ = - L
| r X
- - . ./
= ) o =
- ~ AN~ \

SuonDINUAS 1|22 Npoay 19 1axdvy)



Chapter 6: Periodic cell simulations

P, ‘ i~
(b) at 7.8% deviator strain

= el |

(c) end of shearing

(a) before shearing

Fig. 6.14 Force transmission diagram for sample with solid fraction 0.585
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Following the recent research work on granular materials by physicists (Radjai et al.,
1996), the simulation data in terms of strong and weak networks are re-examined. The

ratio of the number of contacts in the strong sub-network (Cy) to the number of total

contacts (C) is defined as,

C
P == (6.1)
e

The evolution of Ps is shown in Fig. 6.15. It can be seen that, for dense systems, the ratio
P, decreases continuously until 10% shear strain, thereafter it remains essentially constant
ca. 0.365 independent of the initial solid fraction (Fig. 6.15b). It can be seen from Fig.
6.15a that for the two loosest systems, the ratio decreases at the beginning of shearing and
fluctuates about 0.15 and 0.25 at the end of shearing, respectively. For the intermediate
solid fraction of 0.578, 0.585, and 0.592 the ratios also decrease initially then increase.
Eventually, when each mechanical coordination number increases to a value greater than
3.0 at 14.5%, 7.8% and 0.8% deviator strain, Fig. 6.7a, the ratios P, remain constant at a
value of 0.365, similar to that observed for the dense systems. Radjai et al. (1996) found in
their simulations that there were 60% of contacts carried forces less than the average

force. Hence, in their simulation Py was 40%, which is close to the results shown in Fig,

6.15.

In addition, the fabric tensor is calculated for the weak and strong networks separately. For
the sample with solid fraction 0.635 the evolutions of the corresponding deviator fabrics
are shown in Fig. 6.16 together with the overall deviator fabric. It can be seen that the
contacts within the strong sub-network exhibit a much stronger anisotropy than the overall

anisotropy of the sample. It is also noted that the deviator fabric of the weak sub-network

is negative.

The corresponding polar diagrams of the contact normal orientations of the two sub-
networks are shown in Fig. 6.17. Figure 6.17a shows the polar diagrams before shearing,
It is clear that at this stage the contacts in both sub-networks are isotropic. However, at the
end of shearing both distributions are strongly anisotropic as shown in Fig. 6.17b. It is also
noted that the majority of contact normals in the strong sub-network tend to align with the
principal direction of compression, whereas in the weak sub-network, there is a majority

of contact normals that tend to be aligned with the principal direction of extension,
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Fig. 6.17 Polar diagrams of the contact normal orientations in the two sub-networks
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Fig. 6.18 The evolution of deviator stress

The stress tensor is decomposed into the contribution due to the contacts in the strong sub-
network and weak sub-network, respectively. Figure 6.18 illustrates the evolution of the
deviator stress together with the corresponding contributions. It is clear that the
contribution of the weak sub-network to the deviator stress is very small and always less
than 5%, although there are ca. 63.5% of the contacts within this sub-network (Fig. 6.15b).
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In Fig. 6.19, the evolution of the deviator fabric in the strong sub-network (@, =g, )* is
plotted against sing,. It can be seen that the variation of (¢, —¢, )’ with sing, is
c.sscl;lltially linear up to the peak value. It also shows that the results plot above the line
(¢, —@,) =sing,, which means that the value of (¢, ~¢@,)° becomes higher than
sing,, after certain strain. This can be further confirmed by Fig. 6.20, in which the
evolutions of both sing, and (@, — @, )’ with the deviator strain are shown. It is clear that
after 5% deviator strain, the evolution of sin¢,, becomes lower than that of (¢, — ¢, )* by

10%.

(&1-0,)°

sinQ,

Fig. 6.19 The evolution of deviator fabric in the strong sub-network vs. sing,,

(¢'-|‘¢'2)s and sin(pm

&6

Fig. 6.20 The evolution of deviator fabric in the strong sub-nctwork and sin g,

187



Chapter 6: Periodic cell simulations

The force transmission diagram for this sample at the end of shearing is re-plotted in Fig.
6.21, in which the force transmission in the two sub-networks is plotted separately. In
addition, sliding contacts are superimposed on the weak sub-network as solid circles. It
can be seen that the contacts within weak sub-network tend to align with the vertical
direction and the contacts in strong sub-network tend to align with the horizontal direction.
Therefore, this figure explains the orientations of the contact normals in the two sub-
networks, which was shown in the Fig. 6.17b. In Fig. 6.9b,it was showed that nearly 1% of
contacts are sliding in the whole system. Specifically, there are a total of 84 sliding
contacts at this stage and only 12 of them transmit a force larger than the average contact
force, which means that 86% of the sliding contacts are in the weak sub-network. This
indicates that nearly all the strong contacts are non-sliding and almost all the frictional

dissipation occurs within the weak sub-network.
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Fig. 6.21 Force transmission diagram

6.4 Constant mean stress (CM) tests

The change in solid fraction during biaxial compression tests in which the mean stress is

held constant is shown in Fig. 6.22. It can be seen that the solid fractions at the end of
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shearing are lower than those before shearing except for the two loosest samples. Figure
6.23 shows the corresponding changes in mechanical coordination number. It is noted that

the values of Z, at the end of shearing are all above 3.2 when the mean stress remains

constant.
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6.4.1 Macroscopic behaviour

Figure 6.24 shows the evolution of the deviator stress against deviator strain. It can be
seen that, for the four loosest systems, shear stresses are very small and all below 20kPa.

For the system with an initial solid fraction of 0.592, a significant deviator stress is
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developed, which is three times higher than the other four looser samples (Fig. 6.24a). For
those systems with a high initial solid fraction (larger than 0.599), the deviator stresses
increase from the beginning of shear and slightly decrease after peak until an

approximately constant value is maintained at large strains (Fig. 6.24b).
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Fig. 6.24 Evolution of deviator stress

The evolution of volume strain €, during biaxial compression under constant mean stress

conditions for all ten systems is shown in Fig. 6.25. It can be seen that the five loosest

systems contract initially then expand and at large strain deform at approximately constant
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{rolume. At the end of shearing, the volumes of the loosest samples are less than its
original volume. Since these five curves are almost parallel after a certain amount of
strain, the dilation angles of the five systems are essentially the same. However, the
sample with the lowest initial density has the lowest maximum degree of dilation. The five
dense systems do not show significant contraction at the beginning of shearing and they
dilate almost throughout the test (Fig. 6.25b). In contrast to the loose systems shown in
Fig. 6.25a for which expansion increases with increasing initial solid fraction, the degree

of expansion of the five dense systems decreases with increasing initial solid fraction.
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Fig. 6.25 Evolution of volumetric strain
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Figure 6.26 shows the variation of sing, with deviator strain for all the systems. It is

clear that a similar shear strength is developed for all but the loosest of the ten systems.
Allowing for the fluctuations, it is also noted that the mobilised shear strength during the
strain softening regime (e.g. after 10% deviator strain) is essentially the same for all initial

packing densities. Fig. 6.26 also indicates that, at large strain, the ‘critical state’ value of

@,, is essentially the same for all ten system.
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The maximum values of t=(0, -0, ),, /2 for all ten samples in both constant volume
and constant mean stress tests are plotted against the corresponding mean stress
s=(0,+0,)/2 inFig. 6.27. It is clear that they all lie on the same line even though there

are ten different densities and the samples were deformed under different conditions. By
using linear regression, the relation between these two parameters can be written as
t =0.43* s, which is also superimposed in Fig. 6.27 by the dashed line. Hence, the

maximum shear strength defined by sing, =043 (¢, =25.5°) is the same for all

specimens.
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6.4.2 Microscopic behaviour

The evolution of the mechanical coordination number is shown in Fig. 6.28. For the four
Joosest systems, Zn increases sharply to the value ca. 3.2 and then remains essentially
constant at this value. The behaviour of the dense systems is similar to the results obtained

from constant volume tests (Fig. 6.7b) in terms of the overall trends, although the final

values are different.

Figure 6.29 shows the evolution of deviator fabric for all systems. Again, the overall
trends exhibited by the five densest systems are similar to those obscrved for constant

volume tests (Compare Fig. 6.10b and Fig. 6.29b). However, unlike constant volume tests,
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mechanic coordination number

it can be seen that the evolution of deviator fabric does not show strong fluctuations
during constant mean stress tests on the loose samples (Fig. 6.29a). This is duc to the fact
that, when the mean stress of each sample is maintained constant, the five loosest systems
contract initially and a mechanical coordination number above 3.0 is quickly cstablished,
thereby ensuring enduring connectivity across the specimen. Although at the end of
shearing the five loosest systems have essentially the same degree of structural anisotropy,

the five dense systems show a decreasing degree of structural anisotropy with increasing

Chapter 6: Periodic cell simulations
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initial packing density. The mean stresses of the loose systems are very close and all under

1.0MPa throughout shearing. However, the mean stresses of the dense systems vary from

6MPa for the sample with a solid fraction of 0.599 to 30.6MPa for the densest sample

(Fig. 6.1). This suggests that increasing stress level suppresses the degree of structural

anisotropy developed.
o20r
0.18
0.16
0.14
~ 0.12
e_
I_ 0.10
& L
0.08 [:
0.06 — 0.564
L - 0.571
oo = - oer8
0.02 | o 0.585
; a 0.592
0.00 [ 1 1 1 1 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
5
(@)
0.18 [‘
o,
0.16 | Radd L
] o oo o
B #,
v L
T
012 * ,’9 M P '
*v )
-e‘--’l 010 « ¥
| v ot Prapen ettt Jn e
S 008, ' - T e e
0.08 Y
* 0.509
O.M ' O-ws
— 0.620
0.02 eensees (B35
——— 0_“9
o-m 1 1 ' ' 1 1 1 I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 033 0.40 0.45
-6
(b)

Fig. 6.29 Evolution of deviator fabric

The evolution of the ratio of sliding contacts is shown in Fig. 6.30. It is clear that two

different behaviours can be identified depending on the initial density of the sample. For

195



Chapter 6: Periodic cell simulations

the samples with low solid fractions (Fig. 6.30a) the percentage of sliding contacts
fluctuate around 3% throughout the test. In addition, for these samples (solid fraction <
0.592), the amplitude of the fluctuations increases with decreasing initial packing density.
For the samples with higher initial densities (Fig. 6.30b), the percentage of sliding contacts
increases sharply at the beginning of the test, thereafter it reduces to a value ca. 1-2% after

10% shear strain.
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6.5 Fully developed flow (the so-called ‘critical’ state)

There is a special interest in the behaviour of granular media at large strain when fully
developed flow has been established. This is true both in soil mechanics and particle
technology. As demonstrated by results presented in this Chapter, at the ‘critical state’
when fully developed flow has been established then, for a given mean stress p, (i) the
shear strength remains constant, (ii) all systems continue to deform at constant volume and
(iii) the void ratio is independent of the initial packing density. This confirms with the
established concepts of traditional soil mechanics (Schofield and Wroth, 1968). In this
section, the data obtained from both constant volume tests and constant mean stress tests

are re-examined to focus on the conditions during fully developed flow.

In the context of soil mechanics, it is more traditional to define the packing density in
terms of the void ratio e (volume of voids/volume of solids) rather than the solid fraction
(volume of solids/ total volume). The data from various tests over a wide stress range are
compared and shown in e—p space in Fig. 6.31. The isotropic compression line is
denoted as ‘ICL’, which presents the relationship for all ten samples at the initial state
after isotropic compression. The critical state line is defined as ‘CSL’, which shows the
relationship at fully developed flow. It can be seen that the shape of the critical state line is

very similar to the results reported by experimentalists.

It‘ is clear that, except for the two loosest samples, the void ratio of the sample increases in
the constant mean stress tests (see path a). Also, except for the two loosest samples, the
ﬁiean stress increases in the constant volume tests (see path b). It can be seen that, the
CSLs of constant volume and constant mean stress tests coalesce onto a common curve.
Hence, it suggests that whether the test is performed under constant volume or constant
mean stress does not have any influence on the location of the CSL. It is noted that the
curvature of the CSLs changes abruptly at a stress level ca. IMPa and some authors have
simplified this by means of a bilinear critical state line (Been et al., 1991). In addition, the
slope of the CSL for constant volume tests changes at stress levels lower than 1kPa as
well. Tatsuoka et al. (1986) carried out a large number of tests at stress levels of SkPa and
showed that the CSL became flatter at low stress levels. In this study, the stress levels are
all greater than 10kPa initially and at the critical state only the two loosest samples
developed stress levels lower than 1kPa in constant volume tests. However, it should be

noted that there is no gravity field in the simulations.
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In Fig. 6.31, the vertical reference line (dashed) divides the CSL into two regimes. To the
left there are two samples with mean stress lower than 10kPa and with void ratio higher
than 0.745 (corresponding to a solid fraction of 0.573). According to the behaviour of the
two samples at the critical state, this part of CSL corresponds to the non-percolating
regime. The regime to the right of the vertical reference line corresponds to the percolating
regime in which, at the critical state, all the samples within this regime behave similarly.

The intersection of the two reference lines hence indicates the percolation threshold.

In most research into the critical state, only limited information can be provided in the
context of the macroscopic scale. However, by using DEM simulations more information
can be provided about the microscopic scale. The relationship between mechanical
coordination number and the mean stress is shown in Fig. 6.32. Figure 6.33 shows the
relationship between the mechanical coordination number and void ratio. It is clear that at
the critical state, for both types of test, similar critical state behaviour can be observed
except for the two loosest samples. For the constant volume tests, the two loosest samples
cannot develop a mechanical coordination number higher than 3.0 and consequently, at the
critical state, the stress levels are much lower and void ratios are much higher, compared
to the tests on other samples. This implies that at the critical state, for samples at relatively
Jow stress levels, the material behaviour depends on whether the sample percolates or not.

As indicated by the reference line in Fig. 6.32 and 6.33 that the mechanical coordination
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number at the percolation threshold is ca. 3.2. Recalling Fig. 6.28a in which the evolution
of mechanical coordination number of constant mean stress tests are shown for the five
low solid fraction samples, it can be seen that the mechanical coordination number rapidly

increased to a certain value above 3.2 after which all the curves showed the same trend.
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Fig. 6.32 Mechanical coordination number vs. mean stress
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Fig. 6.33 Mechanical coordination number vs. void ratio

It is recognized that the shear response is fabric-dependent. Hence, some aspects of
material behaviour related to the structural anisotropy at the critical state are presented in
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Fig. 6.34 Comparison of deviator fabric at the critical state from CV and CM tests
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Fig. 6.34, in which the relationship between deviator fabric against mean stress,
mechanical coordination number and void ratio are shown, respectively. The best-fit lines
are superimposed on each figure. It is clear that, except for the two loosest samples in the
constant volume tests, all the results from the other tests exhibit strong correlations
between the various parameters at the critical state. It can be seen from Fig. 6.34 that at the
critical state a decreasing deviator fabric is accompanied by a increasing mean stress and

mechanical coordination number, and a decreasing void ratio.

6.6 Summary

Biaxial compression of 2D systems of elastic spheres in a periodic cell have been
simulated using the Discrete Element Method. The systems were deformed under both
- cbnstant volume and constant mean stress conditions. The simulation results of constant
volume tests have revealed that the characteristic behaviour at both the macroscopic and
microscopic scales is distinguished by whether or not the system percolates, i.e. enduring
connectivity is established in all directions. Dense systems, which percolate from the start
of shear, generally exhibit the typical stress-strain response of soil mechanics. Very loose
systems never percolate during shear and are unable to develop significant shear stresses.
Systems with intermediate packing fractions are initially non-percolating but develop a
shear modulus once enduring connectivity (percolation) is established, and thereafter the
behaviour is similar to that of dense systems. The transition from non-percolating to
percolating systems correlates well with the establishment of a mechanical coordination
number of ca. 3.0. This transition is reflected in the change in the evolution of internal

variables, such as the induced structural anisotropy and the ratio of sliding contacts,

For the dense systems, the mechanical behaviour in constant mean stress tests is similar to
those of constant volume tests. However, for the loose systems, the macro- and micro-
behaviour depends on the test conditions. In the constant mean stress tests, all the loose
systems mobilised significant shear strength at small strain, and the evolution of the
mechanical coordination number and structural anisotropy are also similar. This is
attributed to the fact that, in the constant mean stress tests, the mechanical coordination
number increased rapidly to a value higher than 3.0 for all the loose systems. This
indicated that the samples changed from non-percolating to percolating systems almost

immediately after shear deformation was applied.
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The investigation of force transmission illustrates that there are two distinct separate
networks within the system: a strong network composed of contacts carrying forces larger
than 'the average force, and a weak network of contacts carrying forces less than the
average force. It has been shown that the major principal direction of contact normal
orientations in the strong sub-network coincides with the principal compression direction,
whereas the major principal direction of the contact normal orientations in the weak sub-
network is in the principal extension direction. In addition, most sliding contacts occur in
the weak sub-network. Consequently, the dissipation due to sliding takes place primarily

inside this weak network.

The examination of the critical state shows that a unique critical state line can be obtained
fér't'he material regardless of the type of test. The critical state behaviour can be divided
into three groups according to the stress level experienced. For stress levels less than 1kPa
and the system is non-percolating the slope of the CSL is steep. For stress levels between
lkP;l and 1MPa the CSL is almost horizontal. If the stress levels are greater than 1MPa,
the slope of the CSL steepens again. It has been shown that if a system can achieve
percolation at large strain then the critical state point would fall on this unique critical
state line for the material. The CSL can be divided into two regimes at the percolation
threshold when the mechanical coordination number is ca. 3.2. The systems with a
mechanical coordination number higher than 3.2 at the critical state fall into the
percolating regime. Otherwise it will be in the non-percolating regime. Since all the
samples used in this investigation had an initial mean stress that was higher than 10kPa, in
order to examine the critical state behaviour at very low stress levels more samples need to

be generated within this regime. However, one may argue this is not of practical

importance.
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CHAPTERT7: ANALYSIS OF SHEAR BAND FORMATION

7.1 Introduction

The failure of granular material is often accompanied by the occurrence of shear bands,
i.c.; the localization of deformation into thin zones. Localization phenomenon and
subsequent shear band formation in granular materials can be observed when they are
subjected to various loading conditions such as biaxial compression tests and direct shear
tests. It is recognised that when a shear band is generated inside a specimen, heterogeneity
is so dominant that quantities, such as stress and strain, lose their physical meaning if
averaged over the specimen. Hence, quantitative prediction and accurate description of
shear band formation is necessary to predict the failure of granular materials. Shear bands
are generally characterised by the orientation angle, surface shape, and thickness. It has
been shown in previous chapters that shear bands occurred in three types of shear test
simulations: biaxial compression tests with periodic and wall boundaries and direct shear

tests. In each type of test the bands had different appearance and inclination angle.

In this chapter, biaxial compression tests with periodic boundaries are re-examined to
investigate the micromechanical deformation behaviour of shear band formation. Firstly,
particle kinematics, i.e. displacements, velocity and rotations, are determined during the
tests. Then the particle kinematics together with the distribution of sliding contacts are
analysed to study deformation patterns and micro-deformation mechanisms. Finally, the
measured shear band inclination angles are presented and compared with the classical

Mohr-Coulomb and Roscoe solutions. The measurements of shear band thickness are also

prcsented.

7.2 Brief literature review

It is well known that the formation of shear bands leads to the development of slip
surfaces. The onset of slip surfaces in soil is strongly related to the stability of
geostructures. Once shear bands are formed, they are persistent and finally lead to
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progressive failure. This type of phenomenon has been studied as a bifurcation problem
for many years. The localization theory developed by Hadamard (1949) for elastic bodies
was extended to inelastic materials by Thomas (1961), Hill (1962), Rudnicki and Rice
(1975) and Rice (1977). A bifurcation problem is referred to as a material subjected to
static uniform deformation with a shear band mode. Although the velocity is continuous,
the deformation and the velocity gradient are discontinuous across the shear band. The
usual approach to this problem involves the consideration of a particular constitutive
equation that describes material behaviour and the examination of such discontinuity

planes, which are in turn identified with shear band boundaries and orientations.

Only in recent year has it been established via theory and accurate experiments that failure
in frictional materials is often characterized by bifurcation and spontaneous localisation of
deformations into rupture zones. These zones typically have a certain thickness and
inclination angle. Although shear bands have been observed frequently within the scale of
geotechnical structures and in laboratory tested soil specimens, it was only recently that
systematic studies were undertaken to analyse and describe the occurrence and patterns of
shear bands. The localization phenomenon in granular material is usually investigated by
laboratory and numerical experiments. Morgenstern and Tchalenko (1967) studied the
behaviour of thin sections of Carbowax impregnated clay in a direct shear device. They
defined two types of discontinuities (strain and displacement), and showed that the
kinematic restraint imposed by the testing configuration has a marked influence on the
shear bands. Scarpelli and Wood (1982) used radiography to study the orientation of shear
bands in direct shear tests of sand. They suggested that the degree of constraint
experienced by the sand would influence the particular bifurcation that it adopts at a
particular location. Where the sand sees freedom, it may adopt the Arthur solution. Where
posed constraint is greater, as in the direct shear device, the shear band will tend

the im
towards the Roscoe solution, and follow directions of zero extension.

Stereophotogrammetry was used to investigate the progression of strain localization in
plane strain compression tests on loose saturated sand under globally undrained and
drained conditions (Harris et al., 1995; Finno et al., 1997). It was found that shear banding
occurred in both undrained and drained experiments. Generally, a number of parallel,
temporary bands gave away to a single persistent shear band. A clear pattern of the onsct
of the formation of persistent shear bands, mobilization of the maximum effective friction
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and complete formation of the band were observed in all tests. It was found that the

persistent shear bands evolved with varying width and orientation.

A study of strain localization in triaxial tests on sand was investigated by Desrues et al.
(1996) by using computer tomography. The complex geometrical structures of the
localization patterns were described and the evolution of the local void ratio in the
localization zone(s) was determined. It was shown that strain localization patterns depend
on test conditions. The comparison of the local void ratio in the shear zones with the
global void ratio measurements demonstrated that a limit void ratio is reached in the shear

zones that is significantly different from the final void ratio defined from the global

measurements.

Digital image analysis was used to study localized deformation in granular materials by
Alshibli and Sture (1999, 2000). A series of biaxial experiments were conducted on three
sands: fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular,
and angular grain shapes, respectively. Different confining pressure conditions were
applied to investigate the effects of specimen density, confining pressure, and sand grain
size and shape on the shear band formation. It was found that the normalized shear band
thickness decreases as grain-size increases and as specimen density decreases. The

measured dilatancy angles increased as the grain angularity and size increased and shear

band thickness was dependent on the dilatancy angle.

From a series of novel experiments using X-radiography and direct microstructural
observation, shear strain localisation was studied in drained and undrained cohesionless
granular materials by Nemat-Nasser and Okada (2001). In drained tests, shear localisation
produced by monotonic deformation could be directly observed. In undrained tests, the
local deformation during liquefaction, induced by cyclic shearing, was examined. It was
directly observed that shear localisation does occur in liquefied specimens. They also
found that at the centre of a fully developed shear band, the shear strains can exceed 500%

although the overall nominal sample strain is about 10%.
Much of the previous research efforts were focused on describing shear bands by

measuring or predicting the orientation angle and comparing it with the classical Mohr-

Coulomb and Roscoe (1970) solutions. Due to the difficulty of experimentally measuring
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the shear band thickness few studies have extended shear band description to include
thickness measurements in addition to the orientation angle. Recently theoretical studies,
which incorporated bifurcation theory, have been used to predict and describe the
occurrence and pattern of shear bands. Vardoulakis and his co-workers have analysed the
shear band bifurcation problem theoretically under plane strain conditions (Vardoulakis
1980, Vardoulakis and Graf 1985, Muhlhaus and Vardoulakis 1987). The predictions of
shear band orientation and the evolution of its thickness were given. The theoretical
solution obtained for the shear band inclination was a geometrical mean of the classical
Mohr-Coulomb and Roscoe solutions and was in good agreement with the experimental
data. It was found that the thickness of a shear band is a small multiple of the mean grain

size. In addition, the width of shear bands was not affected by any geometrical dimensions

of the specimen other than its grain sizes.

A theoretical analysis for the onset of shear banding which allowed for elastic unloading
in a biaxial test was given by Vermeer (1990). It was shown that the orientation of shear
bands varies within a wide range of admissible directions between the limits of the
Coulomb and Roscoe solutions. Post bifurcation, for situations well beyond incipient shear
banding, was also analysed in order to determine the type of shear band that is most likely
to occur. For fine sands, which will tend to fail corresponding to the weakest failure mode,
Coulomb type shear banding was found to be the preferred failure mechanism.

Nevertheless, less inclined Roscoe type shear bands are likely to occur for coarse sands.

Apart from theoretical and experimental studies, shear band initiation and propagation
have been numerically investigated by a number of researchers. Kuhn (1999) studied
micro-structure deformation in granular materials using DEM simulations, in which
experiments on a large two-dimensional assembly of discs was subjected to quasi-static
biaxial loading. It was found that the deformation was very nonuniform at the microscale
of individual voids. The predominant deformation structures were thin oblique microbands
of void cells within which slip deformation was most intense. The thickness of these
microbands was in the range between one and four particle diameters. Unlike shear bands,
the microbands were neither static nor persistent and their orientation angle increased as

deformation proceeded. In addition, dilation was slightly larger within the microbands

than in the surrounding material.
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Shear band formation was numerically investigated with the finite element method using a
polar hypoplastic constitutive model by Tejchman and Bauer (1996). The biaxial tests
were performed for two different meshes and two different mean grain diameters.
Initiation of shear bands was triggered by a small inhomogeneity of the initial material
properties. The calculated thickness of the shear zones was almost independent of the
spatial discretisation if the size of the finite elements was not greater than five
characteristic lengths. The numerical results showed that the polar effect manifested by the

appearance of grain rotations is significant in the shear zone.

The structure of persistent shear bands in granular materials was investigated by
numerically simulating an idealized assembly of 2D particles by Bardet and Proubet
(1991, 1992). In the simulations, flexible stress-controlled boundaries were used instead of
periodic boundaries to avoid constraining the motion of particles within the shear bands.
The width of a shear band was found to decrease from 18 to 15 times the average particle
radius with axial strain. The numerical simulations showed that the rotation of particles,
the gradient of their rotation, and rotations of their neighbourhoods are concentrated inside

the shear bands. The importance of rotation inside shear bands justifies the micropolar

description of granular materials.

A modified distinct element method (MDEM), in which rolling resistance can be applied,
was developed to study the microstructure of shear bands in granular materials (Iwashita
and Oda, 1998; Oda and Iwashita, 2000). They found that the formation of column-like
structures grow parallel to the major principal stress direction during strain hardening. The
column-like structures kink as they pass through the shear band during strain softening.
After failure, the column-like structures are reconstructed during strain softening by means
of rolling so that a high gradient of particle rotation is generated in a relatively narrow
shear zone. It was also demonstrated that shear bands can form irrespective of the value of
rolling resistance applied and increased rolling resistance resulted in narrower shear bands,
Large voids appear inside the shear band and the resulting local void ratio can exceed the

corresponding maximum value determined from the overall system response.
williams and Rege (1997a and b) described the formation of microstructures within a

granular material subjected to biaxial compression using DEM. From the numerical

simulations the formation of coherent vortex-like structures was observed in the
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fluctuating velocity field and these structures were named circulation cells because the
particles instantaneously translate and rotate as a rigid body about a common centre. These
circulation cells migrate and coalesce to form larger structures during the test. Eventually

a global shear band forms at the boundary of two or more of the circulation cells.

- 7.3 Shear band inclination angle

A shear band is always described as a thin layer of intensively sheared material with a
certain width (d,) and a certain inclination (6) as shown in Fig. 7.1. There are two

classical solutions for shear band inclination in frictional granular materials subjected to

plane strain, namely the Mohr-Coulomb (static) and Roscoe (1970) (kinematic) solutions.
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Fig. 7.1 Specimen with a shear band

(a) Mohr-Coulomb theory

According to the Mohr-Coulomb critérion, the inclination angle of the shear band is given
by:

b = {45%%} o

where 8, is the angle measured from the direction of the minor principal stress. This

equation is a purely static statement defining a plane of maximum stress obliquity (i.c., the

ratio of shear stress to normal stress is a maximum possible value, see Fig. 7.2a). Only onc
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- static constitutive parameter, the angle of shear resistance ¢,, , is contained in (7.1) and no

deformation variables or parameters are involved.

T) dy2
Oc _ 8s
0 G, C de, de; &__a
\4
(a) stress (b) strain increments

Fig. 7.2 Mohr circles

(b) Roscoe theory
Roscoe (1970) argued that the inclination of the shear band should coincide with

directions along which the rate of extension is equal to zero. Therefore, from Fig. 7.2b, the

lines of zero extension should be inclined at an angle,

8, = ;t(45°+-2"i) (1.2)
where 8, is the angle between the shear band and the direction of the minor principal

 strain increment. The angle of dilatation y is defined by

de, dg, +de, (7.3)

dy  deg, —deg,

Csiny=—

 where de, is incremental volumetric strain, dy is the corresponding incremental shear
strain and &, and &, are the major and minor principal strains, respectively. In the case of
associated plasticity theories, the direction of the maximum stress obliquity plane and the
sero extension direction coincide (i.e., ¢,, =¥ ), and thus the Mohr-Coulomb and Roscoc

pianes coincide. However, most researchers recognized that this is not the casc for
granular materials. Based on experimental observations, Arthur et al. (1977) obtained

another result which is a combination of the two previous ones and supported by

vardoulakis (1980):
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6, = 1[45" +;,I-(¢,., + W)] = ié(ﬂc +6y) (1.4)

In the literature, experimentally measured shear band inclination angle values are widely
scattered with values ranging from 55 to 70 degrees to the minor principal stress direction.
Vardoulakis et al. (1978) found that the measured values of the shear band inclination
angle @ are extremely sensitive to boundary conditions, and loose specimens are more
sensitive than dense ones. For a loose, fine-grained, water-saturated sand tested under both
undrained and drained conditions, Finno et al. (1996) found that the measured shear band

orientation angle lies between the Coulomb and Arthur solutions and the inclination angle

changed during strain softening.

7.4 Results and observations

It was found in Chapter 3 that the shear band deformation patterns were different when the
biaxial compression tests were performed with periodic boundaries or wall boundaries. In
order to avoid the sensitivity to the boundary conditions, the localization phenomena of
granular material will be investigated for tests carried out with periodic boundaries in this
chapter. In this study, the shear band inclination angle @ is measured with respect to the
direction of the minor principal stress and is measured at the onset of the shear band since

it changes as the compression proceeds, due to the change in the height of specimen, as

will be shown in the following analysis.

7.4.1 Influence of packing density

In granular materials irreversible deformations take place even under very small stresses.
The particles move relative to each other during deformation. The placement of different
Jayers of coloured particles allows such deformation to be clearly obscrved in the
simulations. In Fig. 7.3, the particle configurations at the end of shearing are shown for
several samples with different solid fraction in the constant volume tests. It is clear that the
deformation patterns are different. The pattern of the particle configuration for the loosest
sample (sf = 0.564, Fig. 7.3a) looks distinct from the others. The coloured layers appear to

be convex from the bottom to the top of the sample. However, no noticeable shear band
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can be observed. For the sample with solid fraction 0.571, the bottom layers are essentially
parallel while the top several layers become concave (Fig. 7.3b).

(a) sf=0.564

. ".j“:o 1Ly ?;:{ .
f?‘% ﬁ;f-gg y
." d:

(d) sf=0.599 (e) sf=0.606 (f) sf=0.635
Fig 7.3 Particle configuration at the end of tests with different solid fraction samples

The patterns of the samples with intermediate densities (sf = 0.585, 0.599, Fig. 7.3c, d) are
similar and the layers are almost parallel. If the sample becomes denser a hint of a shear
band starts to appear during shearing as shown in Fig. 7.3¢. It can be seen that a very clear
shear band formed in the sample with the highest initial solid fraction of 0.635 (Fig. 7.3f).
It is therefore concluded that a dominant and persistent shear band can only be generated
if the sample is dense enough. Although the loosest sample appears to have an irregular
pattern at the end of shearing this is clearly not a shear band. It is only becausc the sample

is so loose that it behaves like a fluid, as described in the previous chapter. Since the
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sample with initial solid fraction 0.635 shows clear evidence of shear band formation, the

following analyses are carried out on the results of this sample.

7.4.2 Shear band initiation, orientation and thickness

Figure 7.4 presents the stress-strain response of the sample during the constant volume
and constant mean stress tests. The corresponding evolution of vertical displacement
increment contours within the sample for the constant volume test is shown in Figs. 7.5.
The displacement increments are taken between two steps that are marked in Fig. 7.4. The

dimension of the diagram is drawn according to the current sample aspect ratio.
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Fig. 7.4 Stress-strain curves in two biaxial compression tests

In Figs. 7.5a and b no localized deformation can be identified and the displacement field
appears reasonably uniform within the specimen during these stages. Figure 7.5¢ indicates
that the strain starts to localize into several conjugate shear bands inclined at ca. 45°, while
the stress-strain response is strain hardening. However, these strain localisation bands are

sransient since they disappear and reappear as shearing continues. It is clearly shown in

Fig. 7.5d that deformations localize into one distinct narrow shear band, which is inclined
at ca. 45° after the peak shear strength. Although a persistent shear band is formed, it can
be seen from Fig. 7.5¢ that it is discontinuous during the increasing shear strength parts of
the fluctuations (see Fig. 7.4). The inclination angle becomes slightly less than 45° as the

test proceeds (see Fig. 7.5f). One must bear in mind that the simulations are carried out
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"using a periodic cell. Therefore, the short shear band at the left bottom comer is actually

an extension of the shear band running from upper left to lower right.

Fig. 7.5 Vertical displacement increment contours in CV test:
(a) 0-1; (b) 1-2; (c) 2-3; (d) 3-4; (e) 4-5; (f) 5-6
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Fig. 7.6 Vertical displacement increment contours in CM test:
(a) 0-1; (b) 1-2; (c) 2-3; (d) 34: (e) 4-5; (f) 5-6

The evolution of vertical displacement increment contours for the constant mean stress test

is shown in Fig. 7.6. Similar behaviour is observed when compared to that of the constant
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volume test as shown in Fig. 7.5. The evolution of sin¢, (in grey) and dilation angle
(in black) for the constant mean stress test are presented in Fig. 7.7. It can be seen that y
increase from 0° to +10° from the beginning of test until the peak strength, then it
fluctuates about +5° except for several spikes. According to Roscoe theory, when y = +5°
6, =7/4+y/2=47.5°. Since the dilation angle is so small, the shear band orientation is
very similar to that in the constant volume test. However, it is very hard to identify this
small difference between these two tests from observation of the displacement increment
contours. Han and Drescher (1993) showed that the shear band orientation depended on
the confining pressure in biaxial compression tests on dry coarse sands. The experimental
results also showed that the shear band orientation was far away from the Coulomb’s

prediction and at higher confining pressures the results was closer to Roscoe’s prediction.

045 120

sin(pm

dilation angle y (°)

L A ' .M
.0-10.0 0.1 0.2 0.3 0.4

Fig. 7.7 Evolution of sin¢, and y in CM test

Figures 7.5 and 7.6 suggest that there are several local shear bands that spontancously
appear within the specimen during the final stage of strain-hardening. However, additional
energy is required for the full development. The results suggest that the onset of
localization occurs during strain hardening but it is only when strain-softening occurs that

a persistent shear band is actually established.

The particle configuration at 26.4% and 41.8% deviator strain for both constant volume
and constant mean stress tests are shown in Fig. 7.8. It is clear that deformation paterns in

these two tests are essentially identical. As shown in Chapter 6, in constant volume tests,
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in order to keep the volume constant the mean stress increases throughout shearing, while
in constant mean stress tests the mean stress always remains constant. The results shown
in Fig. 7.8 indicate that the mean stress does not have a strong effect on the shear band
inclination. Interestingly, in both tests, the angle between the shear band and the minor
principle stress direction becomes smaller from 26.4% to 41.8% deviator strain
(comparing Figs. 7.8a-b and c-d) and the angles are all less than 45°, This implies that
during the shearing process the inclination of the shear band changes due to the changes of
the dimensions of the periodic cell. If the shear band orientation is measured at large strain

and based on the particle configuration shown in Fig. 7.8 it is not consistent with any of

the three classic predictions.

Sl

G

(c) 26.4% (CM) (d) 41.8% (CM)
Fig. 7.8 Deformation pattern at large strain
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An additional constant volume test was carried out on a rectangular sample with initial
aspect ratio of 1.5. This sample has the same mechanical properties and density as the
previous square one. The particle configurations of the specimen at three different shear
stages are shown in Fig. 7.9. Contrary to the test on the square sample, this sample was
compressed in the vertical direction and expanded in the horizontal direction,
Consequently, in this test the minor principal stress aligns in the horizontal direction. A
shear band can be clearly observed in Fig. 7.9b at 17.6% shear strain. The inclination
angle to the minor principal stress direction (horizontal) at this stage is clearly greater than
45°. At 33% shear strain, the sample had deformed to nearly a square shape and the
orientation of the shear band is about 45° as shown in Fig. 7.9c. This clearly illustrates that

the orientation of the shear band changes with the change in the dimensions of the periodic

cell.

".,fw,s.w S —
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(a) 0% shear strain (b) 17.6% shear strain (¢) 33% shear strain
Fig. 7.9 Particle configuration for a sample with initial aspect ratio of 1.5

The corresponding evolution of vertical displacement increment contours is shown in Fig.
7.10. In the figure the results for the stages during which the shear band initiated (Fig.
7.10a-b), become established (Fig.7.10c-d) and at the final stages of the test (Fig. 7.10¢-d)
are shown. As the specimen changes from a rectangular shape to a square shape gradually
the inclination of the shear band also become less inclined to the horizontal dircction.
Therefore, different values of shear band inclination angle can be obtained as the specimen
dimensions change at different stages of the test. In other words, it depends on the initial
sample dimensions and when the measurement is taken. This may be, in part, why the

orientation of shear bands reported in the literature have various values,
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Fig. 7.10 Vertical displacement increment contour for a sample with
initial aspect ratio of 1.5: (a) 4.4%-6.6%; (b) 6.6%-8.8%:;
(c) 8.8%-11%; (d) 11%-13.2%; (¢) 28.6%-30.8%; (f) 30.8%-33%
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According to the observations from the above two tests with two different sample
dimensions it is found that, after the shear band first initiates, its inclination continuously
changes with the change in the sample dimensions during the test. In addition, whatever
the initial aspect ratio of the sample is, the inclination angle of shear band will decrease
during a biaxial compression test. For example, when the square sample with aspect ratio
of 1 deforms to a rectangular one of aspect ratio 1.5 the inclination angle decreases from
45° to a value less than 45°. When the rectangular sample with aspect ratio of 1.5 deforms
to a square one the inclination angle decreases from a value greater than 45° to 45°. Since
all the classic solutions do not take the change in sample dimension into account, they
cannot predict this kind of variation in the shear band orientation. Therefore, any

agreement with any of these classic predictions is just a coincidence.

The thickness of the shear band can be determined from the width of the intensive band

shown in Fig. 7.5. The results show that it is about 10-12 times Dj, and this is consistent

with the previous results from the direct shear tests. It is worth noting that the orientation
~ and thickness of the shear band are measured at the onset of localization. At this carly
stage the dimensions of the sample is close to the initial state. After large strain, due to the

change in the dimension of the sample the orientation of the shear band also changes.

7.4.3 Particle displacement field

The particle locations at any two loading steps can be used to calculate the displacement
increments. The measured incremental displacement fields for load steps 2-3 and 5-6 of
the constant volume test are given in Fig. 7.11. The amplitudes of the vectors are scaled to
the current maximum values as indicated below the diagram. As expected, no clear shear
pand is observed during the load step 2-3. At this stage, the incremental displacement
fields for x, y and resultant components are essentially ‘uniform’ except for a few hints of
localization taking place randomly inside the sample. For step 5-6, the incremental
displacement fields for the x and y directions clearly show strong deviations from the
linear displacement field with large incremental displacements distributed along an

inclined band, which corresponds to the finally developed shear band.
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Fig. 7.12 Velocity fluctuations and sliding locations
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7.4.4 Velocity field and sliding contacts

The fluctuating velocity field and sliding contact locations in the constant volume test are
superimposed for several stages of deformation in Fig. 7.12 to explore how these two
parameters relate to each other and how they evolve with the shear band deformation. In

the fluctuating velocity field the vectors are scaled to the current maximum value, in
which the fluctuating velocity is defined as,

Vi =vi—(v) (7.5)
where v, (i = 1, 2) is the particle velocity and (v,.) denotes the mean velocity. In periodic

cell simulations the mean velocity is given by the strain rates specified.

The sliding contacts are represented by short thick lines, which connect the centres of two
contacting particles. Figure 7.12a shows the situation before shearing. It can be seen that
the velocity vectors form many local circular cells, which are distributed randomly within
the sample. The sliding contacts are also distributed randomly. As shearing continues the
velocity vectors rearrange and the large velocities align in opposite directions along a
distinct shear zone (Fig. 7.12b), which is very similar to the pattern for the incremental
Idisplacement field shown in Fig. 7.11b. In addition, it is clear that most of the sliding
contacts take place within the narrow shear zone. The velocity field and sliding contact
distribution at the end of shear are presented in Fig. 7.12c¢. It can be seen that most of the

- sliding contacts still take place within the shear band. This illustrates that sliding plays an

important role in shear band formation.

7.4.5 Particle rotation field

It has been shown that particle rotation plays a dominant role in shear band formation
(Bardet and Proubert, 1991, 1992; Oda and Kazama, 1998). The measured particle rotation
fields for load increments 2-3 and 5-6 marked in Fig. 7.4 are given in Fig. 7.13, in which
open circles denote clockwise (negative) rotation, while solid circles denote anticlockwise
(positive) rotation. In Fig. 7.13a and b only rotations larger than 10% of the current
maximum particle rotation are shown. It can be seen that in load step 2-3, large rotations
occur in a number of inclined narrow bands (Fig. 7.13a). Most of the particles exhibiting
large anticlockwise rotations align in one band. On the other hand most of the particle
exhibiting large clockwise rotations align in the direction perpendicular to that of the
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©e. (a) loading step 2-3

% (b) loading step 5-6

(c) overall rotation ficld

Fig. 7.13 Particle rotation field
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clockwise rotations. During load step 5-6 (see Fig. 13b), it is clear that significant
particle rotations are concentrated into one inclined band, at the stage when the shear
strain is highly localized (Fig. 7.6f), and most of them are positive rotations. In addition,
the overall particle rotation field for this load step is plotted in Fig, 7.13c. It can be seen
that positive rotations are almost concentrate in one distinct shear zone, Qutside this zone
most particles rotate clockwise (negative). It is observed from the rotation fields that,
particles within the shear zones rotate in the same direction. Particles outside the shear
zone also rotate in the same direction but opposite to the rotation direction of particles
within the shear zone. Therefore, there are two types of rotations patterns appear during
shear band formation: 1) two particles in contact rotate in opposite direction that occurs at
shear band boundaries; 2) rotations dominantly occurs within the shear bands where

particles in contact rotate almost in the same direction.

Figure 7.14 shows the average particle rotation across a specified narrow band (one
coloured layer width) at the mid-height of the sample for the two load steps 2-3 and 5-6.
During load step 2-3 the overall average rotation is —0.002°. The average particle rotation
across the central band varies around 0°. For step 5-6, the overall average rotation
increases to —0.185° and a sudden jump in the average rotation is observed across the
shear band. The rotation reaches a maximum value of 9° in the middle of the shear band.
The average rotations outside the shear band are negligible and in the opposite direction to

the rotation within shear band. Therefore, this figure confirms the observation from the

particle rotation field as shown in Fig. 7.13c.

121
=== [oad step 2-3, overall average rotation -0.002"°

40 | = load step 5-6, overall average rotation -0,185°
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£

X (mm)

Fig. 7.14 Variation of average particle rotations across the mid-height of the sample
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7.4.6 Influence of inter-particle friction

Another constant volume test was carried out in which the inter-particle friction was
specified to be 0.2. The final particle configuration of this test is shown in Fig. 7.15.
Comparing with Fig. 7.3f, which shows the test with inter-particle friction 0.5, it is clear
that the deformation patterns of the two tests are totally different and no shear band can be
observed from the test with low inter-particle friction. This implies that the inter-particle

friction plays an important role in the formation of shear bands.

Fig. 7.15 Final particle configuration of sample with inter-particle friction of 0.2

7.4.7 Local void cell evolution

How the local void cells deform during the constant mean stress test are presented in Fig,
7.16, in which areas that expand, during two successive load steps, over one sixticth of the
average single particle area are highlighted by dark shaded blocks. The pattems shown in
this figure are similar to the patterns of the particle rotation field in Fig. 7.13. During the
load step 2-3 the highly expanding void cells occur in several inclined narrow bands (Fi g

7.16a). During this stage, the total expanding area (4A,) is about twice the total
contracting area (4A,) and the number of expanding cells (V) is also greater than the

number of contracting void cells (N,). However, the number of highly expanding void
cells (N.;) is only one quater of N, and these void cells contribute to more than half of the
total expansion area. The high expanding areas are concentrated into one oblique shear

band at the post peak stage (Fig. 7.16b). Although N, becomes less than N, 44, is still
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higher than 4A,. It is noted that N, is about 5.4 times N,; at this stage but 44, is similar
to 4A_. This demonstrates that the void ratio inside the shear band expands much more
than the remaining area and is also different from the global measurement based on the

changes in the sample dimensions.

&

XY 4
Al

w
L8
X o

L

NP, N
T Sy A L At
— AN Rl
= Al ".“Q“‘.r A
WA RN e
¥ LA L A

N, =2466 , A4, =0.05074mm’ N, =2868, 4A, =0.10114mm’?

N, =3324, 4A, =0.10211mm’ N, =2448, AA, =0.1255]mm*?

N,, =605, 4A,, =0.06792mm? N, =530, 4A,, =0.10341mm?
(a) load step 2-3 (b) load step 5-6

Fig. 7.16 Local void cell deformation

7.4.8 Influence of boundaries

It was shown in Chapter 3 that in the biaxial compression tests with the wall boundaries
the final particle configurations were different for different wall friction tests (sce Fig.
3.21). The corresponding evolution of vertical displacement increment contours for the
two constant volume tests are shown in Figs. 7.17-7.18, respectively. It can be seen from
Fig. 7.17a that the strain distribution is essentially uniform during the first load step.
Heterogeneity appears during load step 1-2 (Fig. 7.17b). The incipient localization that is
indicated by two intensive inclined intersecting bands occurs during load step 2-3
(Fig.7.17c). Afterwards, a persistent shear band is gradually established during the
subsequent increments (Fig. 7.17d-f). The inclination angle of the shear band is about 58°

in this test with zero wall friction. Since this is a constant volume test the overall dilation
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angle is zero. The inclination angle of the shear band obviously does not agree with the

Roscoe’s solution. However, according to Coulomb’s prediction 8, =45°+¢, /2, and
@,, is about 24° during these load steps so 8, = 57°. Therefore, the measurement of the

shear band orientation in this test is consistent with Coulomb’s prediction and it is

different to the results obtained from periodic cell tests.

@ = NS )

i

Length

Fig. 7.17 Vertical displacement increment contours for BCW test with 4, =0.0:
(2) 0-1; (b)1-2; (¢) 2-3; (d) 3-4; (¢) 4-5; (f) 5-6
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Fig. 7.18 Vertical displacement increment contours for BCW test with g, =0.5;
(a) 0-1; (b)1-2; (c) 2-3; (d) 3-4; (e) 4-5; (f) 5-6

The results from the test with the wall friction of 0.5 are presented in Fig. 7.18. It is clear

that during the early stage of shearing localization is initiated from the four comers. Two
diagonal intersecting bands are then formed (Fig. 7.18b). During the rest of the test the
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two bands becomes concentrated in the same direction as they were first initiated. The
inclination angles of the two bands are nearly the same and are less than 45°, Figures 7.17
and 7.18 clearly show that the propagation patterns of shear bands are totally different
when different wall frictions are specified. Comparing the two figures with Figs. 7.5 and
7.6 suggests that in periodic cell simulations strain localisation occurs randomly within the
sample, whereas in the simulations with wall boundaries it originates from the corner of
the specimen. Only one persistent shear band is established for samples with periodic
boundaries; but this depends on the value of wall friction when real boundaries are

considered. In addition the inclination angle of the shear band varies for different

boundary conditions.

7.4.9 Force transmission pattern

In general, the average stress tensor of a granular system is defined as,

1 N
o; =pO;+==
1

o~ 2%
T, mv,vj+-‘}-ZFin (1.6)

where in the first term p is the fluid pressure, &; is Kronecker's delta defined by,

L i i=]
5”"{0, if i#j

This term is not considered in this simulation since the specimen is assumed to be
deformed in a vacuum. The second term is the fluctuating kinetic energy density

contribution to the average stress tensor where m and ¥, (i, j =1, 2) are the mass and the

fluctuating velocity of every single particle and the summations are over the N number of
particles in the volume V of the sample. The third term is the contribution to the total

stress tensor due to the contact forces.

The contact force contribution and the fluctuating kinetic energy density contribution to
the evolution of deviator stress are shown in Fig. 7.19, in which the contribution from
contact forces is shown in black and the contribution from the fluctuating kinetic encrgy
density is shown in grey. It is worth noting that, after peak strength, every sharp drop in
the contact force contribution curve is accompanied by a spike in the fluctuating kinetic

energy density curve. From a video clip of the force transmission patterns and the
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evolution of the deviator stress, it has been demonstrated that every time when a sharp
drop in the contact force contribution and a spike of fluctuating kinetic energy density
occurs the strong force chains exhibit buckling. After buckling, the strong force chains are
rearranged. The details of this video are described in Appendix C and given at

http://www.iem.bham.ac.uk/computation/granular/microevo.htm.

22 i =
- e
E 20| 4
0.5 =
= AT E
: e
) A
g " {oa &
:§ 14 E,s
- 12} lis &
g ¥
o 101 o
S 8 {0.2 '2
E - -
S 6l =
< 101 g
s 4 £
E -]
§ ; 10.0 g
0" N g
e o 0.2 03 =

€,-¢,

Fig. 7.19 Two types of contribution to the stress tensor

The strong force chains at four different shearing stages in the video clip are shown in Fig.
7.20. Only the forces larger than 1.3 times the average contact force (in order to eliminate
those forces that are slightly larger than the average contact force and may change from
the weak to the strong sub-network during the test) are shown in the figure. Before the
peak strength, as shown in Fig. 7.20a, the strong force chains are orientated in the
direction parallel to the major principal stress axis of the sample. Figures 7.20b and ¢
show the strong force chains at 8.8% and 12.2% shear strain when the first and second
occurrences of the sharp drop in the contact force contribution and a spike in the
fluctuating kinetic energy density occur. Similar force chain patterns can be observed
along the shear band direction in both figures. Interestingly, there is a high density of
strong forces in the top part of the sample, which are no longer parallel to the horizontal
direction, but inclined at ca. 40° to the vertical direction. At the end of shearing, as shown
in Fig. 7.20d, this kind of force transmission pattern is still apparent inside the specimen.
Although this pattern of force transmission is intermittent and the rearrangement of the

force chain is instantaneous, it shows strong correlation with the formation a stable shear

hand at the end of the test.
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(c) 12.2% shear strain (d) 28.6% shear strain
Fig. 7.20 Strong force chains at four stages

7.5 Summary

Numerical simulations have been carried out to study the initiation and propagation of
shear bands in granular materials. The analyses are mainly based on the results of biaxial
compression tests with periodic boundaries so that the effect of boundary conditions can

be eliminated. The effect of boundary friction was explored by performing tests with wall
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boundaries. The details of incremental displacement and velocity fields as well as the
concentration of high particle rotations and high dilatancy along the shear band have been
presented. The localisation patterns for the tests with periodic and wall boundaries have

also been compared. Based on the results obtained from the numerical experiments, the

following conclusions can be drawn:

(1) The observed localisation patterns vary from one test to another due to the
different boundary conditions. The results from both constant volume and constant
mean stress tests with periodic boundaries indicate that several incipient shear
bands in two orthogonal directions are initiated simultaneously in the strain-
hardening regime prior to the peak strength, and only one band fully develops
during the strain softening stage. However, such patterns were only observed in the
test with wall boundaries when the wall friction was zero. Two conjugate shear

bands were established in the test with a wall friction of 0.5.

(2) The inclination of the shear band appears to be unpredictable. In the zero wall
friction test the shear band orientation is close to Coulomb’s prediction. On the
other hand, the result obtained with high wall friction test approximates to
Roscoe’s solution. However, in the periodic cell simulations the angle varies from
less than 45° to greater than 45° depending on the initial sample dimensions.
Furthermore, it was observed in periodic cell simulations that the orientation of the

shear band changed as the dimensions of the cell changed.

(3) The thickness of the shear band is found to be about 10-12 times the average
particle diameter in both biaxial compression and direct shear tests and this is

consistent with the results reported by other researchers.

(4) It was found that the development of a shear band only occurs if the spccimen is

above a certain packing density. Otherwise, no strain localisation will appear

during the test.
(5) There are significant discontinuities in the displacement and fluctuation velocity

field across a shear band. The discontinuities are also manifest in the particle

rotation fields, wherein particles within the shear band tend to rotate in one
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direction and particles outside the shear band rotate in the opposite direction. It is
shown that accompanying the large particle rotations the highly expanding local

void cells also occur mainly within the shear band.

(6) Sliding also play a significant role in the shear band deformation. It is found that
the sliding contacts predominantly occur within the shear band locations. As
described in Chapter 6, most of sliding contacts occur in the weak sub-networks.
The contacts within the weak network are not stable and easy to break compared to
those in the strong sub-network. The microstructure within the shear band changes
during the rearrangement of the particles with broken contacts, which leads to
further localisation of shear strain into the narrow zone. In addition, if the inter-

particle friction is too low no shear band will be generated.

(7) During shearing, the strong force chains within the shear band become more and
more inclined to the major principal stress direction and are unstable due to the
loss of contacts inside the shear band. This leads to the collapse of the strong force
chains. The force chains also change discontinuously across the shear band. The
stress fluctuations correspond with intermittent buckling of the strong force chains
that triggers an instantaneous localisation in the fluctuating velocity field followed

by the rearrangement of the strong force transmission paths.
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK

A systematic study of the quasi-static deformation of granular materials subjected to three
different shear mechanisms has been carried out based on DEM simulations. The
advantages and disadvantages of the three types of laboratory tests were discussed. The
conclusions that can be drawn from this study are summarised in this chapter, followed by

recommendations and suggestions for future studies.

8.1 Pure shear deformation of granular materials

The pure shear deformation of granular systems has been examined by carrying out biaxial
compression tests using both periodic and wall boundaries. The results indicate that 2D
DEM simulations can qualitatively reproduce the mechanical behaviour of real granular
materials. It has also been demonstrated that numerical simulations can also provide a
useful tool for examining the reliability of physical experiments. It has been shown that
essentially identical results are obtained from simulations with two different types of
boundaries when the calculations are based on the volume-averaged data. However,
calculations based on wall measurements give a higher value of shear strength due to

underestimating the principal stresses in the two orthogonal directions.

It has also been revealed that the characteristic behaviour at both the macroscopic and
microscopic scales is distinguished by whether or not the system percolates, i.c. enduring
connectivity is established in all directions. The transition from non-percolating to
percolating systems correlates well with the establishment of a mechanical coordination
number of ca. 3.0-3.2.

A unique critical state line was obtained independent of whether the simulation was
performed at constant volume or constant mean stress. According to the stress level
experienced the critical state behaviour can be divided into three groups: the slope of the
CSL is steep if stress levels are less than 1kPa; the CSL is almost horizontal if stress levels
are between 1kPa and 1MPa and the slope of the CSL steepens again if the stress levels
exceed 1MPa. The percolation threshold divides the CSL into two regimes at a mechanical
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coordination number ca. 3.2. The systems that fall into the percolating regime have a
mechanical coordination number higher than 3.2 at the critical state. If the system cannot

pass the percolation threshold, it will stay in the non-percolating regime.

8.2 Direct shear deformation of granular materials

Simulations of the direct shear test provide useful insights into the material behaviour. It
has been shown that the shear strain becomes highly concentrated in the mid-plane of the
sample during the test. Large particle rotations also concentrate into the central shear band
during shearing and the evolution of the average particle rotation with shear strain is
essentially linear. The stress distribution is non-uniform in the sample. Although the stress
distribution within the specimen is heterogeneous, it has been shown that the evolution of
the stress ratio inside the shear band is similar to that inferred from the boundary force
calculations except that the peak value based on the boundary information is a bit higher

than that obtained from within the shear band.

It has also been revealed that the porosity developed inside the shear band is much greater
than that obtained from boundary observations. This means that true constant volume
direct shear tests cannot be performed and, in constant normal stress tests, the dilation
determined from the movement of the top boundary of the sample underestimates the real

dilatancy inside the shear band.

The simulations have demonstrated that at the critical state the vertical and horizontal
normal stresses in the shear band are equal and that the directions of principal stress and

strain rate are coaxial. It has been shown that it is the Coulomb friction angle ¢, that is

measured in the direct shear test. The conventional interpretation of the location of the

Mohr stress circle at the critical state results in an over prediction of the major principal

stress.

8.3 Simple shear deformation of granular materials

The simple shear test was designed to mimic the real shear band mode of deformation.
The investigations of such a test with different wall friction values have demonstrated that
experimental measurements of wall stresses do not reflect the internal state of stress but

merely provide information about the average mobilized wall friction. The detailed
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examination of stress distribution reveals that the stress distribution inside the sample and
on the boundaries are nonuniform from the beginning of the test; so the average stress

obtained from the boundary information cannot represent the real state of stress inside the

specimen.

The strain distributions are uniform initially and after peak strength hints of non-
uniformities appear near the top and bottom boundaries during simple shear deformation.
Nevertheless, non-uniformities are less significant than in the direct shear test. Therefore,

the simple shear test can impose more uniform distribution of stress and strain to the

specimen than direct shear tests.

It has been shown that both the non-coaxiality between the directions of the major
principal stress and strain rate and the rate of dilation depend on the ratio of the horizontal
to vertical normal stresses at the initial state. Non-coaxiality is not significant for samples
with K, =1.0. However, if K,#1.0 the sample shows significant non-coaxiality
between the directions of principal stress and strain rate. In such a case, the assumption of
coaxiality of the direction of principal stress and strain rate is not valid. It has been

demonstrated that the theoretical value of ¢, based on the flow rule (5.14) will be affected

by the value of K, the dilation angle and the angle of non-coaxiality.

Based on the examination of the deformation of the local void cells it has been found that

a large expansion of a void cell encourages particle rotation. When the void cell contracts

it restricts the particle rotation.

In terms of the macro- and micro-mechanical behaviour, excellent agreement was

obtained, for the sample with K, = 1.0, between the results of the simple and pure shear

test simulations based on the volume-averaged data.

8.4 Localisation of granular materials

It has been shown that a shear band(s) only develops if the specimen has a certain packing
‘density and inter-particle friction. The boundary conditions have a very significant effect
on the shear band formation in terms of: the localisation patterns and the shear band

inclination. If periodic boundaries are used, several incipient shear bands in two
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orthogonal directions are initiated simultaneously in the strain-hardening regime close to
the peak strength but only one band fully develops during strain softening. The same final
shear band pattern also occurs in the test with zero wall friction. With high wall friction,
however, two conjugate shear bands were eventually established by the end of shearing. In
the wall boundary tests the localisation starts from the corners of wall boundaries, while in
a periodic cell, the localisation initiates inside the specimen. The orientations of the shear
bands are also different in simulations with different boundary conditions. In some cases it
approximates to the Roscoe solution; in others it approaches the Coulomb prediction.
Furthermore, in all the tests simulated the inclination angle decreased during shearing due
to the change in specimen dimensions. Since the periodic cell simulations cannot provide

precise information in terms of inclination angle of a shear band more work is required to

focus on this issue.

In both biaxial compression and direct shear tests the measured thickness of the shear

band was about 10-12 times the average particle diameter and this agrees with the results

reported by other researchers.

Significant discontinuities were found in both the displacement and fluctuating velocity
fields across a shear band. It has been shown that large particle rotations occur in a shear
band. In addition, particles within the shear band tend to rotate in one direction and
particles outside the shear band rotate in the opposite direction. Irrespective of the overall
deformation of the specimen the volume within the shear band is dilated, which is
highlighted by the large expansion of local void cells. It has been found that sliding
contacts mainly occur within the shear band location. These are five distinct and important

characteristics of shear band formation, which have been discovered during this study.

During shearing the strong force chains in the vicinity of the shear band become
increasingly inclined to the major principal stress direction and unstable due to the loss of
contacts inside the shear band, which leads to the collapse of the strong force chains. It has
been shown that the stress fluctuations correspond to intermittent buckling of the strong
force chains that triggers an instantaneous localisation in the fluctuating velocity field
followed by an order of magnitude jump in the fluctuating kinetic energy density as the
strong force transmission paths are re-established. This leads to the establishment of a

persistent shear band(s) at the end of the test.
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Chapter 8: Conclusions and future work

8.5 Limitation and recommendations for future work

Shear deformation of cohesionless particle assemblies have been comprehensively
examined in this study. It has been shown that DEM can provide a useful tool to study the
behaviour of such materials. It was never meant to model real samples with our
simulations. Even a very small sample in the real world would be filled with millions of
grains, so the present numerical method and current computer facilities will always be
insufficient to model this. Furthermore, all the simulations carried out in this study have
been restricted to two-dimensions. Due to the highly kinematic constraints imposed in 2D,
it is not clear whether or not the degree of particle rotation observed is exaggerated. In
addition, several problems have appeared during this study. For example, the dilation
angle curves are not smooth due to the few numbers of particles used. Therefore, three-
dimensional simulation with a significant larger number of particles are required and this

should be given a high priority in future work.

In order to fully understand the shear deformation of granular materials several topics are
worthy of consideration for future work. In this study, it has been assumed that the
particles are cohesionless and elastic. Further investigation of shear deformation with
cohesive and plastic particles would be useful since such materials are also very common
in the real world. The local computer code has facilities to model liquid bridges between
particles and this could be adapted to simulate the mechanical behaviour of partially
saturated soils. It has been shown that DEM simulations provide a useful tool for
understanding and confirming the deformation mechanism inside the shear band.
However, the understanding of the localisation phenomena of granular materials is still far

from complete and future 3D simulations are necessary if further progress is to be made.

Although wall boundaries have been used in this study to simulate biaxial compression,
direct shear and simple shear tests, the specification for the walls was restricted to defining
the internal forces on the walls and the interface conditions. Consequently, it was not
possible to identify what loads/forces would actually be measured by experimentalists. In
order to do this it will become necessary to completely model the containing walls and
other parts of the experimental equipment using FEM and CAD techniques that will be
combined with the DEM used to model the granular material behaviour.
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APPENDIX A: THE DISCRETE ELEMENT METHOD AND THE
PROGRAM - TRUBAL

A.1 Introduction

The Discrete Element Method (DEM) was originally developed by Cundall (1971, 1974)
for the analysis of movements within rock block systems. It is a time-dependent finite
difference technique, which may be used to simulate the progressive movements of
particles within an assembly. Later Cundall and Strack (1979a, 1979b) incorporated the
methods into the computer program ‘BALL’, which is capable of simulating the behaviour
of an irregular assembly of discs under given boundary conditions. Cundall’s 3D version
TRUBAL was introduced to Aston University in 1989. Since then, extensive

modifications and enhancements have been made to the original TRUBAL code.

The application of the DEM to assemblies of particles requires cyclic calculations. For
every calculation cycle, the translational and rotational accelerations of the particles are
updated according to Newton’s second law of motion by dividing the sum of the contact
forces for each particle by its mass. Numerical integration of these accelerations is then
performed over a small timestep to give new velocities and displacements for each
particle. The velocities of each particle are used to find the relative approach between
contacting particles, which is in turn used to calculate the contact force increments
(normal and tangential), providing a check is made to ensure that contact still exists. The
contact forces are resolved to obtain the out-of-balance forces on each particle, from
which new accelerations of each particles are then calculated at the next time-step. The

above operations are repeated for each time step so that the motion of the whole particle

assembly can be determined.

In the original two-dimensional code BALL, linear springs and dashpots were used to
model the interactions between contiguous particles. In order to simulate quasi-static
deformation, it was necessary to incorporate global damping terms into the equations of
motion to dissipate sufficient energy. In the Aston version of the three-dimensional code

TRUBAL, the interaction between contiguous particles are modelled by algorithms based
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on theoretical contact mechanics. Details of algorithms and equations used in DEM are
presented in the following sections for three dimensional sphere assemblies. The choice of

the control parameters required to ensure quasi-equilibrium during deformation is also

discussed.

A.2 Newton’s second law of motion

A time-dependent finite difference scheme is applied to the cyclic calculation of the
incremental contact forces and progressive movements of the particles. For each
calculation cycle, the translational and rotational accelerations of each of the constituent

particles are given by Newton’s second law of motion. According to which, the motion of

a particle over a time step A are governed by the following equations,

Av;
Translation  F, = B,v; = mE’ (A.1)
. Aw,
Rotation M,-po=1 = (A2)

where i= 1, 2, 3 indicates the three components in x, y, and z directions, F, is the out-
of-balance force component of the particle, M, is the out-of-balance moment on the
particle due to the tangential contact forces; v; is the translational velocity component, ),
is the rotational velocity component; m is mass of the particle, / is the rotational inertia

of the particle and f, is the global damping coefficient (if used).

A.3 Force-displacement laws at contacts without adhesion

A.3.1 Normal contact force

For two contacting particles of radii R; (i = 1, 2), a contact between them exists if their
boundaries overlap, i.e. when the relative approach of the centriod of the two particles in

contact satisfy the following condition,

a<R,+R,-D (A3)

where D=+/(x, =%, +(y; = ,) +(z,-2,)" is the distance between the centres of the
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two particles, and x;, y; z; (i = 1, 2) are the coordinates of the centres.

According to Hertz theory, the normal pressure distribution acting over a small circular

contact area with radius @ and the normal contact force N is expressed as,

_4E s (A4)
3R

where E” and R are defined as,

- = + A.5

E' E E, (A.5)
1 1 1

— =t A.6

R" R R, (A.6)

E; and v; (i = 1, 2) denote the Young’s modulii and Poisson’s ratios of the particles,
respectively. Since a:a’/ R*, which may be substituted into (A.4), the normal contact

force due to the relative approach «is given by

4E* (R'a" ):;z

N = 3 (A7)
from which the normal contact stiffness is defined as

aN efne /2
k, =5—=2E (R'a) (A.8)

Within a time step, if the increment of the relative approach between the two spheres is

Aa, it follows that the corresponding incremental normal force at the contact can be

given as,

AN = 2E 'aAa (A'g)

A.3.2 Tangential contact force

The tangential force at the contact of two spheres is modelled by the theory of Mindlin and
Deresiewicz (1953), which predicts that if two contacting surfaces are subjected to an
increasing tangential displacement &, then relative slip is initiated at the perimeter and

progresses inward over an annular area of the contact surface. The incremental tangential
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force AT due to the incremental tangential displacement 46 depends not only on the
loading history but also on the variation of the normal force. The incremental tangential
force can be obtained from the following equation (for more details see Thornton and
Randall, 1988).

AT =8G'a8,46 +(-1)" uan(1-6,) (A.10)
where
6, =1 (A.11)

if ]AT[ < pAN . Otherwise,

( | T+uN
TN ifk=0
6, = (A.12)
(-1 (T =T, )+2uaN  ifk=12
-~ 5ol

where k = 0, 1, 2 denotes the paths of loading, unloading and reloading respectively, 45
is the increment of the relative tangential displacement of the two contact spheres at the

contact, £ is the friction coefficient, 7, represents the historical tangential force from

which unloading or reloading commenced and G’ is defined as,

I 2"‘"} 2_V2
P i 4 (A.13)
G G, G,

where G; (i = 1, 2) is the shear modulus of each particle. In (A.12), T, needs to be updated
as T, =T, -(- 1)“ HUAN to allow for the effect of the variation of the normal force at cach

time step.

A.4 Motion update

The contact point is midway between the intersecting points Cx, and Cp of the two
contacting particles, as shown in Fig. Al. Unit vectors n and ¢ are orthogonal, n being in
the normal direction to the contact plane and in the direction of the line joining the centres.

The direction cosines »; are defined as,
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n — X5 = Xai (A.14)

! D

x,; and xj are the centre coordinates of the two spheres. In 2D, n; may be written as

!

n, =cos® and n, =sin@ where 8 is the inclination of the contact normal vector to the

horizontal axis of the global reference frame.

204

Fig. A1 Kinematics of two contacting spheres

Since n and ¢ are orthogonal,

nt, =0 (A.15)

it

The interaction force between each pair of contacting particles is computed in an
incremental way in TRUBAL. The relative movement at the contact has three
components: the relative normal approach along the centre line of the two particles, the
relative tangential displacement between the two contacted surfaces and the relative
rotation of the two particles. Since the area of the contact is very small, the twisting
resistant at the contact due to the relative rotation about the line joining the centroids of

the two particles is ignored and hence only the normal and tangential contact forces arc

considered.

For a pair of particles in contact, if the linear and rotational velocities are noted as v;', w*
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B B . . . "
and v/, @, respectively, the relative normal displacement increment at the contact in a

time step can be given as,
Aa =] ~v]InAl (A.16)

where i = 1, 2, 3 indicates the three components.

In a time-step, the component of the relative tangential displacement increment at the

contact between the two panicl'es is,

where R4 and Rj are the radii of the two sphere and all the subscripts i, i+/, i+2 should be

rotated from 1 to 3.

The computation of the incremental force due to the normal relative displacement
increment is straight forward by substituting Ae into appropriate (A.9). The updated

normal force at the contact is given as,
new __ pyold :
NZ* =Ng" +daN (A.18)

where NI represents the updated normal contact force, N¢“ is the previous normal

contact force and AN is the normal force increment.

A normal damping force is calculate as,

N, =2f.mk, da] & (A.19)

where ﬂc(< I) is the coefficient of contact damping, k, is the normal stiffness. Then, the

total normal force contribution to the out-of-balance force of each sphere is calculated as

Nrww = new +ND (A.20)

C

The computation of the tangential force increment due to the tangential displacement
increment differs according to the interaction law used. If Mindlin's no-slip solution is
used, the tangential force-displacement relationship is linear elastic. As a result, the
resultant tangential force increment can be calculated from its components by substituting

Ad; into (A.10). However, adding the tangential force increment to the previous
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tangential force is much complicated due to the fact that the contact plane may have
rotated. Consequently, the direction of the previous tangential force and displacement

should be adjusted.

In three dimensions, the resultant tangential displacement can have any orientation in the
contact plane. In order to identify the loading path of the resultant tangential force, the
direction of the resultant tangential displacement has to be identified. In the current
version of TRUBAL, the direction of the resultant tangential displacement at the first time
step of each contact is regarded as positive. For any subsequent time step, suppose the
previous resultant tangential displacement is J and its orientation, after corrected by
accounting for the rotation of the contact plane, is defined by the components & (i = 1, 3).
It follows that the updated tangential displacement components due to the incremental

displacement should be given as,

& =6, +49; (A.21)

The sign and magnitude of the updated resultant tangential displacement are given by the

following equation,

5™ = sign( 8 )sign( 848, W 8!8 (A.22)

For more details of how to determine the rotation of the contact plane, how to correct the
previous tangential force and displacement and how to determine the sign of the updated
resultant tangential displacement, see Lian et al (1998). From the updated resultant

tangential displacement, the magnitude of the resultant tangential displacement increment

is obtained as,
A5=5"m—§ (A.23)

which is used to obtain the resultant tangential force increment AT by using (A.10-12),

Then the resultant tangential force is updated as,

T(?m = Tg“ + AT (A.24)

The updated resultant tangential force is then compared with the sliding criterion. If the

sliding criterion is exceeded then the tangential force is reset to the limiting value. The
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direction of the resultant tangential force is assumed to be in the same direction of the

tangential displacement and its components are given as,

new new 5;181"
T =T e : (A.25)

l Srev

The tangential damping force at a contact is given by,

T = 2, Jmk, A5 [ & : (A.26)
where k, is the tangential stiffness and the total tangential force contribution to the out-of-
balance force of each sphere is calculated as,

T =T +Tp (A.27)

From the updated total normal and tangential contact forces, the contribution to the out-of-

balance force of each sphere is obtained as,

Sphere A F*==N""n,—T (A.28)
Mp =R, T ~n Ta’) (A.29)
Sphere B Ff =N""n,+T/" (A.30)
ME =Ry (T3 =1, 1) (A31)

The new resultant forces and moments acting on each sphere at time ¢ arc used to
determined the new accelerations ¥, and &, according to Newton’s second law of motion

With global damping, Newton’s second law of motion for each sphere is given as,

v;nm + V;JM v;:m _ v;:fd'
Fi+mg = fy———=m— (A.32)
w’nm + w,_u!d aJ:mv — w:)fd
M.l - ﬂg 2 =1 At (A-BB)
From which the updated velocity components v; and @, are obtained,
,.ew_m/m"ﬁs/zvafd_'b F, +mg,
T i T s (A.34)

Y T A+ B2 m/At+f, |2
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oo I B2 s M,

YT a+ B2 “ I/At+ B, )2 (A35)

The new values for the velocities are used to update the positions and rotations of the
spheres by further numerical integration. The relative displacement increments for each

sphere are given as following,
Translation  Ax; =v; 4t (A.36)

Rotation A(D, = wjm (A.37)

where Ax; and A®, are the translational and rotational displacement increments,

The position and orientation of a particle are updated as:

x;u'w =x?ld +A¥‘ (A.38)
o' =P + A, (A.39)

The new results of displacement are used to calculate the contact force in the next
calculation cycle. These equations are applied to each particle in turn. After the motion
update is completed, the force sum F, and the moment sum M, of each particle are reset to

zero at the end of each cycle.

A.5 Program TRUBAL

The basic structure of TRUBAL is similar to the original program developed by Cundall.
However, in order to perform different simulations, modifications have been made and
extensions have been provided from time to time since the program was introduced to
Aston in 1989. As a time-dependant finite difference schemed numerical analysis
program, the main part of TRUBAL is the cyclic simulation module, within which the
evolution of contact forces and particle movements is calculated as described in the
previous section. The other parts include an assembly generation module which is used to
generate particles and to define particles; an external control module which is used to
perform a wide range of simulation experiments and an output module which provides a

large selection of graphic and print out options to interpret the simulation results.
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A.5.1 Data structure

In the original TRUBAL code all data are stored in a single array A(I), The array A(J) is
partitioned into several sub-arrays containing information about the particles, boxes and
the link lists of address for particles and contacts. The data structures of this array are

shown in Fig. A2a.

The variables M;, M, M; and M; are set to fixed values at the start of a new problem, after

the user has declared how many particles and boxes are required. M35 indicates the

memory limit, which is set in the program. The addresses of M, M; and M, indicate the
upper limits of the array of ball data, wall data and box data, respectively. Variables M,,,

M,, and M, can be dynamically located as the user creates more particles and walls or as

the requirements for contacts change during the test. The storage scheme for the link lists

and contact arrays is shown in Fig. A2b.

A.5.2 Searching scheme

In DEM, particles are allowed complete freedom to interact with each other. An efficient
scheme is needed to identify possible candidates for contact with a given particle. It is
computationally prohibitive to check all possible pairs of particles. The method devised in
TRUBAL confines the search to pairs that are in contact or close enough to be in contact

at a later time during the simulation.

The rectangular cell containing the assembly of particles is divided into smaller boxes.
The boxes are initially square having dimension DEL. DEL should be larger than the
diameter of the largest sphere. However, in order to search for contacts cfficiently, this
value should normally be less than twice the largest sphere diameter. The first step in the
contact detection scheme is to form link lists for each box by mapping all constituent
particles into the appropriate boxes. An “envelope space” with dimension of 2(R+TOL)
is assigned to each particle and mapped into the box or boxes it occupies (Fig. A3), where
R is the radius of the particle and TOL is the tolerance of a specified gap distance, which is

a very small value. The second step is the contact searching. Two particles arc considercd
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Fig. A2 Data structure of TRUBAL: (a) partition of array A(/);

(b) scheme of contacts and links
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Fig. A3 Searching scheme

to be neighbours and checked for contact if they are both mapped into at least one
common box (Fig. A3). In periodic cell simulations the dimensions of each box will
change according to the specified strain rate. In other types of simulation the dimensions

of the box will remain unchanged.

A.5.3 Control scheme

In order to make it possible to simulate a wide range of problems rclated to assemblies of
particles, TRUBAL provides a number of control schemes to apply different types of
external conditions. There are also a selection of commands, which are designed to specify

the initial conditions, material properties or interaction laws for the simulations.

A.5.3.1 Stain control mode

When using periodic boundaries the evolution of the system may be achicved by

specifying either a stress control mode or strain control mode. In order to control the

deformation of the system, a uniform strain-rate tensor &, is specified according to which

all the spheres in the cell move, as though their centres are points in a continuum, to

satisfy the equation,

Ax; =£;x At (A.40)
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where x; (i = I, 2, 3) are the coordinates of the sphere centre and 4 is the small time step

used to advance the evolution of the system. Additional incremental displacements occur

as a result of the interactions between contiguous spheres.

Superimposing the incremental displacements due to the strain rate field on the updated
incremental displacement due to the out-of-balance force leads to the total incremental

displacement of each particle as,
Axi =AxiF+Axf (A.4l)

where Ax (i = 1, 2, 3) represents the updated incremental displacements of each sphere

due to the out-of-balance force as described in Section A.4,

The strain control mode only works for assemblies with periodic boundaries. For an
assembly with periodic boundaries, any particles that intersect one face of the unit cell
have images that intersect the opposite face of the cell. Hence, the particles intersecting
the periodic boundaries of the unit cell are self-balancing. For an assembly without
periodic boundaries, particles lying on the periphery of the assembly are not self-balanced
and are free to move outwards. In this case, an alternative boundary control technique is

required such as wall boundaries, see previous chapters conceming the wall boundarics

and Appendix B.

A.5.3.2 Servo-control mode

The strain control mode permits any desired strain path to be applicd. TRUBAL also
provides a servo-controlled option. The function of a servo-control mode is to permit any
desired stress path to be followed. With the servo-control mode, the applied strain ficld is
continuously adjusted according to the difference between the desired stress state and the

measured stress state. At each time step, the strain rates are sct to,

& =glog -op) (A.42a)
or,
&5 =&, +g8(0; -07) (A.42b)
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depending on which servo-control mode is selected. The parameter g is the GAIN of the

d

servo mechanism, O

; is the desired stress state to be achieved and ag' is the measured

average stress state of the assembly.

In the application of the servo-control, a limit is set for the maximum strain rate allowed
for the simulation. This is necessary when high velocities are developed should the
measured stress differ greatly from the desired stress. The limit of the maximum allowed

strain rate is given by the servo-control command together with the GAIN parameter.

A.5.4 Control parameters for quasi-equilibrium

A.5.4.1 Damping

In order to model a quasi-static process using a dynamic method such as DEM, it is
necessary to provide some means to absorb the excess kinetic energy within the system. A
viscous damping can be added into the equations of motion to achieve convergence to a
steady state equilibium of the system. Damping in granular materials is a real
phenomenon. It is the global response of the combined effect of all mechanisms of energy
dissipation present in the system. These mechanisms are complex and difficult to model,
especially for discontinuous systems. Therefore, instead of representing the phenomenon
in its complexity, simplified methods are used to account for the global damping response.
Artificial damping is used for this purpose. The program TRUBAL provides two types of
viscous damping and damping is specified in terms of the Rayleigh damping parameters.

Rayleigh damping involves stiffness-proportional (contact) damping S, and mass-

proportional (global) damping /, .

Contact damping considers the energy losses during the force transmission through the
solid particles. This type of damping is modelled by a dashpot. The damping force is
calculated to be proportional to the normal and tangential force increments. Having
calculated the contact forces between spheres, damping forces are calculated and added to
the contact forces to give the total contributions to the out-of-balance forces of each
sphere. The contact damping is important for a simulated assembly to reach quasi-
equilibrium. Without it, the contact force between particles will continue to oscillate

indefinitely. The contact damping parameter f, is given by,
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B. = % (A43)

where frac is the fraction of critical damping at the modal frequency @.

The global damping is a type of mass proportional damping. It operates in the form of
classical Rayleigh damping and is handled in the subroutine, which calculates the motion
of each sphere. The mass proportional damping can be envisaged as dashpots that connect
all constituent particles to the reference axes of the simulated system. For each sphere, the
resistance force of global damping that is exerted on the sphere is opposite to its velocity
vector (both translational and rotational) of the sphere. The effect of global damping is
like immersing the constituent particles in a viscous fluid. It is useful to dissipate the
kinetic energy during the final stage of preparation of a system in order to avoid excessive

computer time. However, before the system is subjected to the desired computer simulated

experiment, the global damping must be switched off. The global damping parameter S,

is obtained as,

B, =2x* frac*w (A44)

A.5.4.2 Numerical stability

Numerical instability is a potential problem in the explicit time-finite-difference procedure
used in TRUBAL. The source of instability is the integration time-step. If it is greater than
a critical time-step, the scheme is unstable and the results of the simulation are unreliable.
In the current version of TRUBAL, the time step is based on the consideration of the
Rayleigh wave speed of force transmission around the surface of elastic bodics. Upon
application of a force on an elastic body, the Rayleigh waves arc propagated along the

surface with a velocity of,

Vg =0, |— (A45)

where pis the density of the particle and eis the root of the following equation,

244 _ 2 1-2v ,
(2-a’ ) =16(1-a {I 2(I—v)a} (A.46)
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from which an approximate solution may be obtained as,
a=0.1631v +0.876605 (A.47)

where vis Poisson’s ratio.

For an assembly of many spherical particles, the highest frequency of Rayleigh wave

propagation is determined by the smallest sphere, which gives the critical time step as,

. 7R .
At - min — min ﬁ

A48
S a \G (A48)

The above equation assumes that the property type of all constituent particles is the same.
However, if there are different material types for the constituent particles, the critical time
step for the highest Raleigh wave frequency should be the lowest among those determined
by different material types. The actual time step used in TRUBAL is a multiple of the
Rayleigh critical time step by a value of FRAC which is normally less than 0.5 depending

on the problem considered,

Ar, = A, * FRAC (A.49)

A.5.4.3 Density scaling

As described above, the time step used in the simulations is based on the minimum
particle size and Raleigh wave speed. Consequently, for particles of diameter ca. 10mm
the time step would be ca. 1ps. In order to simulate quasi-static deformation by using a
strain rate of not more than 10e-5 s™', it would require 10'° time steps to apply 10% strain.
Therefore, to complete the simulations within a reasonable time scale, the notional particle
density is scaled up by a factor of 10'2 in order to use a time step ca. 1 s. As a
consequence, the forces and displacements, and hence the stresses, strains and energy are
not affected; the velocities and accelerations are reduced by orders of magnitude but these

are not of concern when considering quasi-static behaviour.
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APPENDIX B: MODIFICATIONS TO TRUBAL FOR SHEAR TESTS
WITH WALL BOUNDARIES

Three types of shear tests involving walls can be simulated by the program TRUBAL
now: biaxial compression tests (BCW), direct shear tests (DST) and simple shear tests
(SST). Since the simulation is restricted to 2D mode, the code should be modified further
to carry out 3D simulations. The input commands that should be specified to run these
numerical tests, together with the code implemented into TRUBAL and some examples of

input command files are listed in this appendix.

B.1 New parameters

Some important parameters added in TRUBAL to perform three different tests with wall

boundaries are listed as follows,

WALTYP: To identify the type of shear test. This parameter is normally set to -1.
WMAX(3): To save current specimen dimensions in three directions (x, y, 2).
W_OLD(3): To save specimen dimensions in three directions at the last time step.
OUTFLG : This flag is set as TRUE only when the particle is outside of a specified

interior region.

In order to obtain results suitable for analysis, an output file named wfor.txt will be
generated when the command ‘print wall’ is specified. The different parameters used in

this file are listed as follows:

FNi, FTi:  The total normal force and tangential force on the wall. (i=1, N).

wll,wi2:  The current dimensions of the sample.

gama : To save the shear strain in each time step.

msigl,msig2 : The principal stresses in a specified interior region.

msigll, msigl2, msig2l, msig22 : The components of the stress tensor in a specificd
interior region.

wsigl,wsig2 : The principal stresses for the whole sample.
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wsigl1l, wsigl2, wsig21, wsig22 : The components of the stress tensor for the whole
sample.
volm : To save the volume of a specified interior region.
mfabl,mfab2 :The principal fabrics in a specified interior region.
mfab11, mfab12, mfab2l, mfab22 : The components of the fabric tensor in a specified
interior region.

deltay :The displacement increment in the vertical direction (DST and SST only).

B.2 New commands

WTY n
This selects the type of shear test. WTY 0 selects a BCW test, WTY 1 a SST test,

and WTY 2 a DST test.

DWALL (AWALL) n [ROT x, y, &}
Rotation of a wall is implemented in the program TRUBAL. This command can
create or alter a finite plane wall n to rotate about a fixed point P (x,, y,) with an
angular velocity @ (see Fig. B.1). The fixed point P can be chosen either inside the
wall (Fig. B.1a) or outside the wall (Fig. B.1b). The distances between P and the

wall endpoints A and B are I; and [, respectively.

Yi Yi
B(I;,)ﬁ) B(xllyl)
(0]
P(x0,50 > \1 wal D) /
A s Pt oy
X X
(2) ®)

Fig. B.1 Definitions of a rotating wall

In each time step the coordinates of the wall end points A and B are calculated as,
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x!” =1, cos0 +x, (B.1)
y" =1l sinf+y, (B.2)

where @is the current angle of the wall to the horizontal direction.

Note: Although the WINDOW command is an old command in TRUBAL, one should
specify this area before carrying out the direct shear tests or simple shear test in order to

limit the central part or shear band.

B.3 Changes in wall array contents

Each wall array allocated between M; and M>4 contains the following:

W(1)-W(4): Parameters d, a, b, ¢ which define a plane in the form of
d =ax+by+cz; or R, xp, yo, 2o to define a spherical wall in the

formof R? = (x-—x,;,)2 -+~(y—-y,,)2 +(z—z,,)2

W(5): Normal or radial force set by servo control for the wall

W(6): Maximum normal or radial velocity of the wall set by servo

W(7)-W(9): Components of wall velocity V;, V,, V,

WwW(10): Radial velocity for a spherical wall and a rotating plane wall,
empty for other plane walls

W(l1): measured normal or radial force on the wall

w(12): Code indicating wall type, 1 for plane wall , 2 for spherical wall

W(13): To identify extent of plane wall (1 for finite, O for infinitc)

W(14): GAIN or servo control mechanism

W(15) - W(17): Components of wall displacement increment in x, y, z dircctions

W(18): Wall displacement increment for spherical wall, empty for planc
wall

W(19) - W(21): Components of wall force in x, y, z directions

W(22) - W(23): Wall displacement increment in x, y directions for the second
corner (B) of a rotating wall

W(24): To identify the type of plane wall: 1 for inclined wall; otherwise, 0

W(25): Wall material type

W(26) - W(31): Lower and upper limits of plane wall in x, y, z directions

W(32) - W(43): Coordinates of wall corner points (x;, y;, ) i = 1, 4

W(44) - W(45): Coordinates of the fixed point (xo, yo) in rotation wall

W(46) - W(47): Length of the fixed point to two corner points of a rotating wall
(U112
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W(48): Initial cycle number

W(49): Initial inclination of a rotating wall

W(50) - W(S1): Total displacement in x, y directions for the top wall in shear
tests

B.3 Main modifications in TRUBAL for shearing tests with walls

The additional facilities incorporated in the program TRUBAL are mainly in subroutines
HFORD, WALMOT and WALL. The actual modified parts are given below.

C ________________________
SUBROUTINE WALL({IAW,ISW)

c T rr T T

C ---- DEFINE A WALL OR ALTER WALL PARAMETERS IN GRANULE ---=-

S0P S0 BEE SR RaR ARR

170 if (RVAR(NPAR+3).eqg.0.0) then
A(IAW+9)=0.0
A(IAW+6)=0.0
A(IAW+7)=0.0
A(IAW+8)=0.0
NPAR=NPAR+3
goto 50
endif
A(IAW+43)=RVAR(NPAR+1)
A(IAW+44)=RVAR(NPAR+2)
A (IAW+9)=RVAR(NPAR+3) *degrad
A{IAW+47)=£float (NTOT)
A{IAW+48)=0.0
A(IAW+49)=0.0
A{IAW+50)=0.0
if(ia(iaw+23).eq.0) then

ia(iaw+23) = -1
if(A(IAW+2) .eq.0.0.and.A(IAW+1l) .ne.0.0) A(IAW+48)=PI/2.0
else

slope=-a(iaw+l)

ang=datan(slope)

A(IAW+48)=ang
endif
A(IAW+21)=A(IAW+14)
A(IAW+22)=A(IAW+15)
wll=-sqrt((A(TAW+31) -A(IAW+43) ) **2+ (A(TAW+32) -A(IAW+44) ) **2)
wl2=sqgrt ((A(IAW+37)-A(IAW+43)) **2+(A(IAW+38) -A(IAW+44))**2)
A(IAW+45)=wll
A({IAW+46)=wl2
if(waltyp.eq.l) then

NwWw = (IAW-M2)/NVARW + 1

NW2 = MOD(NW+1,4)

if(NW2.eq.0) NW2=Nw2+4

TAW2=M2+NVARW* (NW2=-1)

A(IAW2+9)=A(IAW+9)

A(IAW2+47)=A(IAW+47)

A(IAW2+48)=0.0

if(A(IAW2+2).eq.0.0.and.A(IAW2+1).ne.0.0) then

wl3=A(IAW2+31) ~-RVAR(NPAR+1)
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A(IAW2+46)=wl3
else
wl3=A(IAW2+32) -RVAR (NPAR+2)
A(IAW2+45)=wl3
endif
endif
NPAR=NPAR+3
GOTO 50

A0 SO0 SRS S0 S0 Bas

C Calculate wall position according to grid motion

®ES SES SIS B ST SE

goto (1,2) iwcode
1 if(twod.and.b(10).ne.0.0) then
angtl=b(49)
angt2=b(10) *TDEL* (float (NTOT)-b(48) ) +angtl
if (abs(iwnc) .eq.1l) then
hi=b(46)
h2=b(47)
x1=b(44)
yv1=b(45)
b(15)=hl*(gcos(angt2))+x1-b(32)
b(16)=hl* (gsin(angt2))+yl=-b(33)
b(22)=h2* (gcos (angt2))+x1-b(38)
b(23)=h2*(gsin(angt2))+yl-b(39)
else
angtl=angt2-b(10) *TDEL
if(b(46).ne.0.0) then
dx=-b(46)*(dtan(angt2)-dtan(angtl))
dv=dx/TDEL
b(15)=b(15)+dx
b(7)=dv
if (FSERVO.ne.0.0) b(1l6)=b(16)+b(8) *TDEL
else if(b{47).ne.0.0) then
dy=b{47)* (dtan(angt2)-dtan(angtl))
dv=dy/TDEL
b(16)=b(16)+dy
b(8)=dv
endif
endif
if(angtl.eq.0.0.0r.iwnc.eq.-1) then
if (iwnc.eq.-1) iwne=1
goto 40
endif
goto 25
endif

BT S0 BE0 B8P B0B e

¢ 3-D FORCE/DISPLACEMENT LAW
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See S08 00 008 000 BN

do 2 i =1,idm

ddel = del(i)
Id = I+3
dpbl(i) = bl(i)
dpbl(i3) = bl(i3)

IF (WFLAG) THEN
BETAST=BETAW
IF(IWC.EQ.1l) THEN

B90 000 S0 SRS F80 BRN

c end points of inclined wall (2D) --> (xwl,ywl), (xw2,yw2)
dpxwl = b2(32) + b2(15)
dpywl = b2(33) + b2(16)
if(twod.and.b2(10).ne.0.0) then

dpxw2 = b2(38) + b2(22)

dpyw2 = b2(39) + b2(23)
else

dpxw2 = b2(38) + b2(15)

dpyw2 = b2(39) + b2(16)
endif

c limits of wall extent

SET S0 0N FRV B8 B0

c to calculate linear velocity for incline rotating wall
if(twod.and.b2(10).ne.0.0) then
dpxint = dpb2(1) - a(iab2+43)
dpyint = dpb2(2) - a(iab2+44)
b2 (7)=-dpyint*b2(10)
b2 (8)=dpxint*b2 (10)
endif

P4E SRS BB BOR SRV wRR

ELSE
dpb2 (i)=b2 (i)
dpb2 (i3)=b2 (i3)
ENDIF
8 dpz(i) = dpB2(I) + dpB2(I3) - dpBl(I) - dpBl(I3)

WBES V00 GRF BEP SET SRR

RETURN
END

B.4 Examples of command files used for a simple shear test

Stage 1: Sample preparation and consolidation

START 0.007 0.007 0.00035 400 5100 4 log
2D box with 5000 particles

2-D

frac .3

dia 0.000030
dia 0.000040
dia 0.000050
dia 0.000060
dia 0.,000070
dia 0.000080
dia 0.000090

NSO bh W R
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ymd 8.34e9 1
ymd 8.34e9 2

prat 0.35 1
prat 0.35 2

dens 9.17e3 1
dens 9.17e3 2

fric .05 1
fric .01 2

gra 0.0 -9.81 0.0

dwall fp 0.001405 0.000400 0.000175 0.001405 0.006600 0.000175 m 2
dwall fp 0.001000 0.001405 0.000175 0.006000 0.001405 0.000175 m 2
dwall fp 0.005595 0.000400 0.000175 0.005595 0.006600 0.000175 m 2

agg cub 1 0.0014051 0.0055949 0.001545 0.004535 0.0 0.00035
rgen 157 11

rgen 151 6 1 1
rgen 605 5 1 1
rgen 958 4 1 1
rgen 605 3 1 1
rgen 151 2 1 1

rgen 15 111
plo cir wal
cyc 20000

e -

cyc 20000

agg cub 1 0.0014051 0.0055949 0.004005 0.006995 0.0 0.00035
rgen 15 7 1 1

rgen 151 6 1 1
rgen 605 5 1 1
rgen 958 4 1 1
rgen 605 3 1 1
rgen 151 2 1 1
rgen 15111
cyc 20000

cyc 20000

sav sst.0

stop

Stage 2: Introducing the top wall

restart sst.0

2D box with 5000 particles

gra 0.0 0.0 0.0

dwall fp 0.001 0.00583 (0.000175 0.006 0.00583 0.000175 v 0 =0.02 O m 2

cyc 20000

cyc 20000

sav sst.l
stop
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Stage 3: Compress sample to desired density

restart sst.l

2D box with 5000 particles

frac 1

dens 917el4 1

dens 917el4 2

damp .05 .51 01

damp .07 .51 00

awall 1 v 0.0000001 0.0 0.0

awall 2 v 0.0 0.0000001 0.0

awall 3 v -0.0000001 0.0 0.0
awall 4 v 0.0 -0.0000001 0.0
cyc 10000

print info stress

cyc 10000

print info stress

sav sim.88

stop

Stage 4: Shearing

restart SIM.BS8

2D box with 5000 particles

fric 0.5 1

fric 0.5 2

*define shear test type
wty 1

*define the fix point on

the rotation wall

awall 1 R 1.4661413E-03 0.0035 0.00115
awall 3 R 5.5338587E-03 0.0035 0.00115

*set servo control to the top wall

awall 4 SE 0.001 2.0e7 2.

*1l

cyc 4000

print info deform stress
*10

cyc 4000

print info deform stress
save sim.40k

;i. :

cyc 4000

print info deform stress
*10

cyc 4000

print info deform stress
save sim.560k

stop

8e-"7

part chi con epart wall

part chi con epart wall

part chi con epart wall

part chi con epart wall
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APPENDIX C: SIMULATION VIDEOS

Four videos have been made during the examination of the biaxial compression test with

periodic boundaries. These clips are available at http://www.iem.bham.ac.uk/computation/

granular/microevo.htm. Some brief explanations of the videos are provided in this

appendix.

C. 1 Video clip 1: v831.gif

http://www.iem.bham.ac.uk/computation/granular/movies/
MicrostructEvolution/v831.gif or see the enclosed CD-ROM

This video shows the force connectivity diagram of an intermediate system with solid
fraction 0.584 during the period from the beginning of biaxial compression until enduring

connectivity has been established. In this video, the contact forces greater and less than the
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average force are shown by red and grey lines, respectively. The system considered here is
initially non-percolating. As shearing proceeds, the individual particles begin to cluster.
Finally, a percolating system is developed around 9.5% deviator strain. More details

concerning this video are provided in Chapter 6.

C.2 Video clip 2: v832.gif
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Deviator strain

http://www.iem.bham.ac.uk/computation/granular/movies/
MicrostructEvolution/v832.gif or see the enclosed CD-ROM

This video shows the evolution of strong force chains (left hand side) and the
simultaneous evolution of both the mechanical coordination number (shown in green) and
the deviator stress (shown in red), which are presented on the right hand side of the video,
for the system with solid fraction 0.585. Biaxial compression during the transition from
6% to 9.5% deviator strain is illustrated. At 6% deviator strain, the system is still non-
percolating, but at 9.5% deviator strain, enduring connectivity (percolation) is established.
It can be seen from this video that the transition from a non-percolating to a percolating

system correlates well with the establishment of a mechanical coordination number of ca.

3.0.
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C.3 Video clip 3: fked90.gif
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http://www.iem.bham.ac.uk/computation/granular/movies/
MicrostructEvolution/fked90.gif or see the enclosed CD-ROM

The evolution of the strong force chains for the dense system of solid fraction 0.635 is
shown in this video, in which only the strong forces larger than 1.3 times the average force
are shown on the left. The evolution of deviator stress is presented on the right hand side
of this video. The contributions to the deviator stress include two parts: the contact force
portion is shown in blue and fluctuating kinetic energy density portion is shown in red. It
can be seen that there are several spikes in the fluctuating kinetic energy density curve. In
addition, these spikes are always accompanied by drops in the contact force contribution
curve. When playing the video at high speed it is clear that the stress fluctuations lead to
intermittent buckling of the strong force chains, which triggers an instantaneous
localisation in the fluctuating velocity field followed by rearrangement of the strong force

transmission paths.
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C.4 Video clip 4: vel90.gif

http://www.iem.bham.ac.uk/computation/granular/movies/

MicrostructEvolution/vel901.gif or see the enclosed CD-ROM

This video shows the fluctuating velocity field for the system with a solhid fraction of
0.635. The aim of making this video was to investigate localisation phenomena in granulas
materials. According to Hill (1962), a shear band is considered as a thin material layer that
is bounded by two material discontinuity surfaces of the velocity gradient. From this video
the appearance of strain localisation starts around the peak shear strength. More analyses

concerning the strain localization are provided in Chapter 7.
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APPENDIX D: A COMPARISON BETWEEN TWO SHEAR
SCHEMES FOR THE SIMPLE SHEAR TEST

D.1 Introduction

There are two shear schemes that can be chosen to simulate the simple shear test, The
models of these two schemes are illustrated in Fig. D.1. For the same specimen we can
rotate about either the mid-points of the side walls (O, O’) or the base points (B, C) to
perform the simple shear test. For convenience, the scheme in which the vertical walls
rotate about their mid-points O and O’ is referred to scheme 1 (Fig. D.1a); and scheme 2 is
when the vertical walls rotate about the intersection of the side and bottom walls at nodes
B and C (Fig. D.1b). In scheme 1, when the two vertical walls rotate, the top and bottom
walls are translated using a compatible horizontal velocity in opposite directions. In
scheme 2, the bottom wall BC is fixed. Only the top wall AD is displaced horizontally as
the two vertical walls rotated. In both schemes the top wall can move in the vertical
direction in the constant normal stress test. The sample II described in Chapter 5, which is
with wall friction of 0.5, is chosen to perform the simple shear test using these two
different shearing schemes in order to examine whether the shearing scheme will affect
the behaviour of the specimen. Detailed analyses of the results with scheme 1 were
presented in Chapter 5. In this Appendix, the microscopic and macroscopic results

obtained from these two different shearing schemes are compared.
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(a) scheme 1 (rotate about O, O°) (b) scheme 2 (rotate about B, C)

Fig. D.1 Two shear schemes for the simple shear test
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D.2 Force transmission pattern and the velocity field

The force transmission and velocity field diagrams obtained from both schemes at the
peak stage are compared in Figs. D.2-3, respectively. It can be seen that large forces align
diagonally, indicating the major principal stress direction for both shear schemes (Fig.

D.2). The force transmission patterns are essentially the same for both shear schemes.

ATERN AL et 1) TR X Lo
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() (b)
Fig. D.3 Comparison of velocity field: (a) scheme 1; (b) scheme 2
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In the sample sheared using scheme 1, the velocities of the particles near the top and
bottom walls are clearly in two opposite horizontal directions. Consequently, there are
several circulation cells in the central part of the sample (Fig. D.3a). When scheme 2 is
chosen the magnitude of the velocity gradients reduce from top to bottom of the sample.
However, no circulation cells are observed (Fig. D.3b). By comparing these two schemes
it is clear that the non-uniformity of velocities always appears near the hinges where the

wall rotation is applied in simple shear tests.

D.3 Macroscopic behaviour

The measured normal and tangential forces acting on each wall for scheme 2 are presented
in Fig. D.4. The notations used in the following figures are the same as those in Chapter 5
(Fig. 5.4). It can be seen that the magnitude and the evolution of these forces measured

using scheme 2 are similar to those obtained from scheme 1, as shown in Fig. 5.,6b.
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Fig. D.4 Wall forces in scheme 2

The corresponding normal and shear stresses measured from the boundarics and the stress
tensor for scheme 2 are shown in Fig. D.5. Again, similar results as thosc obtained from
scheme 1, as shown in Fig. 5.8, can be found. The stress ratios obtained from the stress

tensor (fan¢,) and from boundary measurements (7/N) for both schemes arc presented in
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Fig. D.6. It is clear that the results are essentially identical. Therefore, from the point of

view of macroscopic behaviour of the specimen, the results are independent of the shear

scheme chosen.
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Fig. D.5 Stress-strain curves for scheme 2
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05

=—— scheme 1
0 scheme?2

(b)
Fig. D.6 Comparison of evolution of stress ratio: (a) tan¢; (b) T/N

D.4 Microscopic behaviour

The microscopic behaviour, including the evolution of the mechanical coordination
number, the structural anisotropy, and the ratio of sliding contacts are compared in Fig.
D.7 for both schemes. It can be seen that the microscopic aspects obtained from these two
schemes are also essentially identical. Therefore, the same microscopic behaviour of the

specimen can be obtained regardless of which shear scheme is used.
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mechanical coordination number
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Fig. D.7 Microscopic behaviour
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D.5 Summary

In this appendix, two different shear schemes for the simple shear test have been
examined. It has been shown that similar results can be obtained with both schemes. The
only difference between these two schemes is reflected by the velocity field. When
scheme 1 is employed the non-uniformity is found at the mid-height of the specimen. On
the other hand, the non-uniformity appears at the bottom boundary with scheme 2. This
difference does not affect the macro- and microscopic behaviour of the specimen. It is

therefore suggested that either shear scheme can be chosen to perform simple shear tests,
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