Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

COMBINATION OF ALTIMETRY DATA
FROM DIFFERENT SATELLITE MISSIONS

HENNO JOLAND BOOMKAMP

Doctor of Philosophy

ASTON UNIVERSITY

September 1998

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from the
thesis and no information derived from it may be published without proper acknowledgement

Aston University

COMBINATION OF ALTIMETRY DATA
FROM DIFFERENT SATELLITE MISSIONS

Henno Joland Boomkamp
Doctor of Philosophy
1998

Substantial altimetry datasets collected by different satellites have only become
available during the past five years, but the near future will bring a variety of new
altimetry missions, both parallel and consecutive in time. The characteristics of each
produced dataset vary with the different orbital heights and inclinations of the
spacecraft, as well as with the technical properties of the radar intrument. An integral
analysis of datasets with different properties offers advantages both in terms of data
quantity and data quality. This thesis is concemed with the development of the means
for such integral analysis, in particular for dynamic solutions in which precise orbits
for the satellites are computed simultaneously.

The first half of the thesis discusses the theory and numerical implementation of
dynamic multi-satellite altimetry analysis. The most important aspect of this analysis is
the application of dual satellite altimetry crossover points as a bi-directional tracking
data type in simultaneous orbit solutions. The central problem is that the spatial and
temporal distributions of the crossovers are in conflict with the time-organised nature
of traditional solution methods. Their application to the adjustment of the orbits of
both satellites involved in a dual crossover therefore requires several fundamental
changes of the classical least-squares prediction / correction methods.

The second part of the thesis applies the developed numerical techniques to the
problems of precise orbit computation and gravity field adjustment, using the altimetry
datasets of ERS-1 and TOPEX/Poseidon. Although the two datasets can be considered
less compatible than those of planned future satellite missions, the obtained results
adequately illustrate the merits of a simultaneous solution technique.

In particular, the geographically correlated orbit- error is partially observable from a
dataset consisting of crossover differences between two sufficiently different altimetry
datasets, while being unobservable from the analysis of altimetry data of both satellites
individually. This error signal, which has a substantial gravity-induced component, can
be employed advantageously in simultaneous solutions for the two satellites in which
also the harmonic coefficients of the gravity field model are estimated.

Keywords : ERS-1, TOPEX/Poseidon, precise orbit determination, gravity field

Acknowledgements

Many individuals have contributed directly or indirectly to the project that has resulted in
this thesis.

The gravity field work that is described in Chapter 8 has been continued by Dr. Phil
Moore and Dr. Stuart Camochan during the period in which I had already exchanged
Birmingham for the warmer surroundings of Madrid. My gratitude goes to these two
colleagues, for offering me the opportunity to include some interesting results that
illustrate the application of dual crossover data for gravity field refinement,

In addition I would like to thank all other staff and students at Astons’ Space Geodesy
Group, for continuous discussions and remarks - many of which were useful. Apart from
the two already mentioned, these people are Simon Ehlers, Chris Murphy, Rob Cullen,
Matthew Reynolds, Russ Walmsley who works on PRARE research with Faust, and
various others, who have been of help via advice and criticism or just by being tolerant
about a sometimes disproportionate burden on computer resources.

Furthermore, I would like to thank

®m The Scientific Committee of the European Commission
for financial support under the Human Capital and Mobility Programme,
and in relation to this :

Prof, ir. K.F. Wakker (DUT/DEOS) and Dr. J.M. Dow (ESA/ESQOC)
for supporting the funding application to the European Commission

® Dr. J.A. Marshall (NASA/GSFC)
for providing software and calibrated post-launch parameters for the TOPEX box-

wing model, as well as an improved SLR centre of mass correction algorithm for
this satellite

u Ir, R. Scharroo and colleagues from DUT/DEOS
Dr. B.D. Tapley and his team from UT/CSR
for publising high quality ERS-1 orbits that have been used as external reference

m Dr. L. Daniel (IGN Paris),
for kindly restoring and providing DORIS data for early TOPEX/Poseidon cycles
which were not available on-line

Their contributions have all been crucial in one way or another.

List of Contents

Summary

Acknowledgements

Table of Contents

List of Tables and Figures

List of Acronyms

Chapter 1 : Introduction

1.1
1.2
13
1.4

Simultaneous solutions
Formulation of study targets
Structure of this thesis
Faust

Chapter 2 : Parameter estimation

2.1
22
2.3
2.4
2.5
2.6
2.7

Review of essential theory

Weights and constraints

Matrix partitioning

Choleski decomposition of the packed matrix
Partial derivatives

Implications for simultaneous solutions
Multi-run processes

Chapter 3 : Orbit integration

3.1
32
3.3
34
3.5
3.6
37

Chapter 4 :
4.1
4.2
4.3
44

Review of essential theory

The Gauss-Jackson integrator
Initialisation of the integrator
Changing the step size

Structure of the solution process
Parallel integration of satellite orbits
Orbit files and Ephemeris files

The force model
Gravity

Earth and ocean tides
Third-body attractions
Atmospheric drag

Page

10

11
12
15
16
18

20
20
23
25
30
32
34
39

42
42
45
49
53
57

63

65
70
74
75

4.5
4.6
4.7
4.8
4.8

Radiation pressure

Thrust forces

Empirical cyclic accelerations
Empirical along-track accelerations
Time tags

Chapter 5 : The calculated observation

31

52
53

54
3.5

5.6

3.7
5.8

General aspects of satellite tracking
5.1.1 Station coordinates

5.1.2 Station velocities

5.1.3 Station tides

5.1.4 Local eccentricities

5.1.5 Range bias

5.1.6 Timing bias

5.1.7 Tropospheric correction
5.1.8 Ionospheric correction

5.1.9 Instrument centre-of-mass offset
5.1.10 Transit time compensation
5.1.11 Geometrical partials
Satellite laser range observations
DORIS range rate

5.3.1 Measurement geometry
5.3.2 Parameters solved for

5.3.3 Construction of partial derivatives
PRARE range and range-rate

Radar altimetry

5.5.1 The ocean surface

5.5.2 Atmospheric corrections
5.5.3 Biases

Crossover height differences

5.6.1 Crossover error components

5.6.2 Numerical processing of crossovers in Faust

Wagner

Numerical aspects of observation processing

Chapter 6 : Multi-arc orbit determination

6.1
6.2
6.3
6.4

Crossover data density
Orbit quality assessment

Improvement of the ERS-1 orbits in multi-arc solutions

Conclusions

Chapter 7 : Multi-satellife orbit determination

el

Strategy for setting weights and constraints

79
80
82
84
84

85
85
87
87
87
88
88
88
89
89
90
90
91
91
92
93
94
96
97
98
99
101
101
102
102
103
106
109

113
113
118
130
135

136
136

oy Je.
43
7.4
15

Chapter 8 :
8.1

8.2

8.3

Chapter 9 :
9.1
9.2

9.3
9.4

7.1.1 Data quality
7.1.2 Data quantity

Results of simultaneous orbit solutions for ERS-1 and TOPEX/Poseidon

Discussion of the results

Example of simultaneous solutions for the ERS tandem mission

Summary and conclusions

Simultaneous solutions for space geodesy

General remarks on model calibration
8.1.1 System dependency

8.1.2 Gravity field tayloring

Gravity field solutions with Faust

8.2.1 The first solution

8.2.2 The second solution : MSGM-1
Conclusions

Synopsis

Recapitulation of results

general considerations

9.2.1 Compatibility between datasets
9.2.2 Absolute orbit precision

9.2.3 Computer resources

Future developments

Suggested enhancements

List of References

Appendix A : Time and Space

A.l

A2
A3
A4

Geodynamics

A.1.1 Translations of the origin
A.1.2 Earth rotation

A.1.3 Structure of the planet
Spatial reference systems

Time

Computation of rotation matrices

Appendix B : Structure of Faust

B.1

Functional structure

B.1.1 Main program

B.1.2 User input

B.1.3 Process preparation
B.1.4 Event handling sequence
B.1.5 Solution block

137
140
141
151
154
157

159
159
159
160
161
162
167
169

170
170
171
171
172
173
174
175

178

184
184
184
185
185
186
187
190

192
192
193
193
193
193
194

B.2

B.3
B4

B.1.6 Process completion
Programming conventions

B.2.1 File structures

B.2.2 Data structures

B.2.3 Logical structure

B.24 Consistent documentation of variables
B.2.5 CPU tracer

Alphabetical index of subroutines
Functional index of subroutines
B.4.1 Parameter estimation
B.4.2 Orbit integratiom

B.4.3 The force model

B.4.4 The calculated observation
B.4.5 Natural language interface
B.4.6 reference frames

B.4.7 General algebra

Appendix C : The language interface

(0 |
C2
C3
C4
CS5

Design philosophy

Overall description of the language interface
Definition of the user language

The processing flags

Input buffers and pointer structures

Appendix D : A user guide to Faust

D.1
D.2
D3
D.4
D.5
D.6

Creating observation files with Wagner

Orbit computation from scratch : ERS

Orbit computation from scratch : TOPEX/Poseidon
Trouble shooting

Combining single-arc solutions into a multi-arc run
Constructing multi-run solutions

Appendix E : A programmers' guide to Faust

E.l
E2
E3
E4
E.5
E.6
E.8

Adding a new subroutine to Faust ;
Adding a new input statement to the language database
Implementation of a new parameter type

Implementation of a new tracking data type
Implementation of a new satellite

Implementation of a new event in the event handler loop
Tuning array sizes to specific Tasks

194
195
195
196
196
196
196
197
203
203
203
204
204
204
205
205

206
206
207
209
214
217

221
221
222
225
224
227
230

233
233
234
238
240
242
243

Tables and Figures

Table 2.1
Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table E.1

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Sequence of matrix inversion steps

Quadrature weights for the Gauss-Jackson algorithm
Weights for the double integrator in the initialisation
Weights for the velocity in the initialisation
Properties of Legendre polynomials and functions
Identification of orbit quality tests

Models used in orbit determination

Orbit determination results for ERS-1

Orbit determination resutls for TOPEX/Poseidon
Orbit accuracy assessment

Quantification of a priori standard deviations for the datasets

Orbit determination results ERS-1, simultaneous solution

Orbit determination results TOPEX/Poseidon, simultaneous solution

Statistics for the simultaneous solution with shared drag parameters

Survey of tracking data in the first gravity field solutions
Parameters involved in the gravity field solution

Survey of tracking data in the second gravity field solution
Orbit determination results for GFZ

Typical array sizes for various executables of Faust

Survey of present and future satellite radar altimetry datasets
Typical quantities of crossovers in different solution types
Inversion of the packed normal matrix in Faust

Pointer structure for parameter management

Pointer structure in case of shared parameters

Normal matrices for single processes

Recombination of matrices in a multi-run solution
Reduction of integration step size by interpolation

Repeated doubling of integration step size

Processing sequence of Faust

Parallel integration of all relevant arcs

Page
29
49
52
53
67

118
120
125
127
128
140
143
145
157
163
165
167
168
246

12
14
32
37
38
40
40
55
56
58

Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 54
Figure 5.5
Figure 5.6
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4a
Figure 7.4b
Figure 7.5a
Figure 7.5b
Figure 7.6a
Figure 7.6b
Figure 7.7a
Figure 7.7b
Figure 7.8
Figure 8.1
Figure B.1
Figure C.1
Figure D.1

9

The pointer array treated as a set arrays 61
Sharing drag parameters at boundaries between consecutive arcs 77
Overlapping parameter subvectors for the ERS tandem mission 78
Sinusoidal thruster pulse 82
Satellite tracking configuration 86
Example computation for required memory sizes 104
The elements of the crossover buffer system 105
Wagner flow chart 108
'Read data file' subsequence 108
Observation processing sequence 109
Typical amounts of crossovers during 12-hr intervals 114
Amounts of crossovers in different solution types 115
Trends between crossover data density and interval between crossings 117
Tracking data residuals for all solutions 122
Characteristics of the land-based tracking data types 123
Comparisons ERS-1 orbits from multi-arc process with other solutions 124
Comparisons between three solutions for ERS-1 repeat cycle C-15 131
Relation between orbit differences and proximity to arc boundaries 132
The butterfly effect 132
Comparisons with external solutions in case of drag continuation 134
Post solution RMS and amounts of observations for SLR stations 139

Geographically anti-correlated orbit error ERS-1, single satellite solutions 146
Geographically anti-correlated orbit error TOPEX, single satellite solutions 146
Geographically anti-correlated orbit error ERS-1, classical DXO solution 147
Geographically correlated orbit error ERS-1, classical DXO solution 147
Geographically anti-correlated orbit error ERS-1, simultaneous solution 148
Geographically correlated orbit error ERS-1, simultaneous solution 148
Geographically anti-correlated orbit error TOPEX, simultaneous solution 149

Geographically correlated orbit error TOPEX, simultaneous solution 149
Impact of simultaneous solutions on geographically anti-correlated error 150
Impact of simultaneous solutions on geographically correlated error 150
Analysis of drag scale parameters at 6-hr intervals for ERS-1 and ERS-2 156
Geoid height differences between the first gravity solution and JGM-3 166
High level structure of Faust 192
Schematic view of the language interface 208
Adoption of the internal clock error via parallel arcs 229

10

List of Acronyms

CSR
DEOS
DORIS
DUT
DXO
ECF
ERS
ESA
ESOC
FORTRAN
GDR
GFO
GMST
GMT
GPS
GSFC
IERS
IAU
IGN
ITRF
J2000
JGM
LRA
MID
MSGM
MSIS
NASA
NOAA
OSU
PRARE

RAS
RGO
RMS
SATAN
SLR
SPOD
SRP
SX0
TEC
TOD
TOPEX

UTC
VLBI

Centre for Space Research (UT)

Delft Institute for Earth-Oriented Science
Doppler Orbitography and Range Interferometry System
Delft University of Technology

Dual satellite crossover

Earth-Centered Fixed reference frame
European Remote sensing Satellite

European Space Agency

European Space Operations Centre (Darmstadt)
Formula translation

Geodetic Data Record

Geosat Follow-On mission

Greenwich Mean Solar Time

Generic Mapping Tool

Global Positioning System

Goddard Space Flight Centre

International Earth Rotation Service
International Astronomical Union

Institut Geographique National

International Terrestrial Reference Frame
Inertial reference frame of equator and equinox at 01/01/2000
Joint Gravity Model

Laser Retroreflector Assembly

Modified Julian Date

Multi-Satellite Gravity Model

Mass Spectrometer and Incoherent Scatter
National Aeronautics and Space Administration
National Oceanographic and Atmospheric Agency
Ohio State University

Precise Range and Range-rate Equipment
Radar Altimetry

Random Access Memory

Royal Astronomical Society

Royal Greenwich Observatory

Root Mean Square

Satellite Analysis

Satellite Laser Range data

Skynet Orbit Determination Program

Solar Radiation Pressure

Single satellite crossover

Total Electron Content

True Of Date

Topographic Experiment

University of Texas

Universal Time Coordinated

Very Long Baseline Interferometry

11

Introduction Chapter 1

On the third of June 1769 the absolute size of the solar system was first determined, when
the transit of Venus over the solar disk was timed both by captain Cook at Tahiti and by the
Royal Observatory in Greenwich. The instrument used in this observation extended well
beyond Cook's telescope, and included the entire constellation of Earth, Venus and Sun as a
measurement device of opportunity, with a precision that was essentially determined by that
with which the baseline between Tahiti and Greenwich was known. As a modem day
equivalent, a space-borme radar instrument is only a minor element within the overall
altimeter observation : the orbit of the satellite, used as a geometrical basis for the radar
range, can be seen as an integral part of the adopted measurement device and must therefore

be known with great precision.

The past decade has shown rapid progress in the field of precise orbit determination for radar
altimetry missions. This has resulted in a situation where mission requirements have been
comfortably met and exceeded, as shown by Dow et al. (1993) for ERS-1 and by Tapley et
al. (1994) for TOPEX/Poseidon. In particular the improvement in the radial orbit accuracy of
the ERS missions to a level compatible to that of TOPEX/Poseidon enables applications of
radar altimetry that were hardly foreseen during the planning phases of the respective
missions. As one such application, this thesis will describe how altimetry data from different
satellite missions can be combined in dynamic solutions for the orbits of all involved
satellites, conceiving a 'measurement device' formed by the constellation of two or more

altimetry satellites in orbit around the Earth.

An outline of the short history of satellite radar altimetry is given in Figure 1.1. The first
mission that provided the scientific community with a substantial radar altimetry dataset was
ERS-1, and only since the launch of TOPEX/Poseidon in 1992 have altimeters been flown on
different satellite platforms at the same time. Continuity of multi-mission altimetry data was
provided by the launch of ERS-2 in 1995, which later succeeded ERS-1 as the primary
platform after a nine month ERS tandem mission. As the Figure shows, the near future will
provide an abundance of parallel or overlapping altimeter datasets, by means of the Geosat

follow-on mission, the Jason satellites, the Envisat-1 mission and later ESA Polar Platforms.

12

In addition, laser altimeters will be flown on the Space Shuttle and on a dedicated GLASS
mission. The arrival of such large quantities of altimetry data presents the scientific
community both with the possibility and with the necessity to develope techniques for an
integral analysis of datasets from different satellites, in order to explore the added value from

unified datasets as opposed to the analysis of each mission separately.

Skylab |
Geos3 [T7]
" “I. Seasat
1000 . D
o~ Geosat || ’]
§ + ERS-]
e ’ 1
:% TOPEX/Posciddn | |
g 197 ERs3 [i
£ GFO |
= L
2 Envisat-1 S 1L
2 10 . 2| 1
JASON-1 [o A0
B Polar Platform { Envigat-2 _l =wil L
' JIASOND
1 ! : L |
1970 1980 1990 2000 Year 2010
Figure 1.1 Survey of present and future satellite radar altimetry datasets. Starting with

ERS-1 and TOPEX/Poseidon, parallel altimetry missions will be available until well into the next
century, while compatibility between missions in terms of instrument precision and orbital
accuracy is steadily increasing.

1.1 Simultaneous solutions

If the orbital parameters of two or more satellites are computed within a single mathematical
process, the solution need not be any different from the outcome of single-satellite processes.
Only if the orbital parameters of one satellite are mathematically correlated with those of
another throughout the solution procedure, the parameter adjustment scheme can optimise the
overall solution and create the integrated measurement device described above. In non-
dynamical unified solutions, or in dynamic solutions without correlations between the various
orbits, the only advantage in combining altimetry data from different satellite missions is an
increase in data quantity, and - depending on the orbital characteristics of the involved
satellites - a denser global data coverage. In such uncorrelated cases the process will be

referred to in this thesis as a parallel solution.

13

If correlations between the various orbits are introduced, each satellite senses the presence of
the other satellite arcs in the solution process. The orbit solution of each satellite will then
not only be adjusted with respect to the terrestrial reference frame in which its own Earth-
based tracking data is defined, but also - through correlations with orbits of other satellites -
with respect to the tracking data of the other satellites. In that case the solutions will be
called simultaneous. The crucial difference between parallel solutions and simultaneous
solutions is the availability of a form of satellite-to-satellite tracking data that enters
additional information into the system to correlate different satellite arcs. In the case of
current altimetry missions this satellite-to-satellite tracking (or rather : arc-to-arc tracking) is
provided by dense global networks of dual satellite crossover points. Future missions may

exploit additional tracking methods, and in particular simultaneous tracking by the GPS

network is likely to offer interesting contributions.

Crossover height differences are available above every point on the globe where the
groundtrack of a satellite intersects with its earlier groundtrack (single satellite crossovers) or
with the groundtrack of another satellite (dual satellite crossovers), as long as altimetry data
is available for both crossings. In general this only excludes the points over land or ice.
Geographically correlated errors in the altimetry observation model are identical for both
crossings in the crossover, and are conveniently eliminated if the difference between the two
heights is computed (e.g. Moore and Ehlers, 1993). This difference is therefore equal to the
actual orbital height difference between the crossings, corrupted by the differences between
all error components in the modelled observation that are not fully geographically correlated.
Much of this geographically uncorrelated modelling error is directly related to the temporal
variability of tides, ocean currents, interactions between the ocean surface and the atmosphere
or the atmospheric conditions themselves. This causes the reliability of crossover height
differences to decrease with increasing temporal separation between the two crossings. As a
result, crossover datasets for orbit determination tend to be generated with an upper limit to

the time interval between crossings of five days or less, in order to keep the described

temporal variability within acceptable limits.

In simultaneous orbit solutions for two or more altimetry satellites it is essential that both
epochs involved in a dual crossover form part of an orbit arc that is actually computed within
that solution, so that the crossover error can be truly minimised by adjusting the orbital
parameters of both arcs. In combination with the described restriction to the time between

crossings, this condition imposes crucial demands upon the structure of the solution process.

14

The time interval for which the orbit of a satellite can be solved as one continuous arc is
restricted by the stability of the numerical integration process that is used within the
computation scheme, as will be discussed in later Chapters. For a given arc length, the dual
crossover data density in a simultaneous solution would be significantly reduced in
comparison to solutions in which one of the two crossings is allowed to be outside the
interval of the orbit arc. An example of this effect, related to crossovers between the ERS-1
orbit and the orbit of TOPEX/Poseidon is shown in Figure 1.2. For arc lengths of five days
and a maximum upper limit to the crossover interval of five days, the condition that both
crossings must be within the limited solution interval reduces the crossover data density for
simultaneous solutions to less than half that of a case with unlimited arc lengths. As such a
reduction in data density would compromise simultaneous solutions based on dual crossovers
in an unacceptable way, it inevitably imposes the requirement that true simultaneous
solutions must also be dynamic multi-arc solutions, for all satellites between which

crossovers are included in the process.

: TOPEX/Poseidon
s . 10-dayarc el gl
-
o
o
ERS-1
 5-dayarc

sxo

500 within arc

5-day time limit
to crossover interval

Figure 1.2 Typical quantities of single satellite crossovers for ERS-1 and dual crossovers
with TOPEX/Poseidon, comparing a S-day solution for ERS-1 with a full simultaneous multi-
arc solution. The amount of single crossovers is doubled if those with the previous and next
arc are included, while the amount of dual satellite crossovers in a simultaneous solution is
no longer limited by arc lengths.

15

1.2 Formulation of study targets

Until recently the dual satellite crossovers between ERS-1 and TOPEX were only used
- either in dynamic or non-dynamic solutions - for the improvement of the less accurate
ERS-1 orbit, while keeping the TOPEX orbit fixed (e.g. Camnochan et al., 1993; Le Traon et
al., 1993). As discussed above, this solution approach is neither simultaneous nor parallel,
and implies that arc length restrictions do not affect the data density : the invariant TOPEX
crossing can be allowed to occur outside the time interval covered by an ERS arc. However,
the recent improvements in the orbit precision of ERS-1 make it unrealistic to subscribe the
main residual error component in the dual crossover dataset to the radial orbit error of ERS-1
only, and future parallel altimetry missions will become even more compatible in terms of
orbital precision and altimeter data quality. Consequently, the aforementioned unilateral
application of dual crossovers will have to be gradually abandoned in favour of true
simultaneous analysis of the orbits of altimeter satellites. This transition towards simultaneous
dynamic altimetry analysis forms one of the main hurdles on the way to truly unified

altimetry analysis, and constitutes the central subject of this study.

Most software systems used for orbit determination and altimetry processing were developed
for analysis of a single satellite arc at a time or for other datatypes than altimetry. These
systems can not cope with the specific demands of simultaneous solutions that either involve
single satellite crossovers between consecutive orbit arcs, or dual satellite crossovers used to
adjust both orbits simultaneously. A substantial part of the project covered by this thesis
therefore consisted of the development of a new orbit determination programme - called
Faust - for the dynamic analysis of crossovers between different arcs. Faust processes
crossovers between orbit arcs of different satellites and between consecutive arcs for all
relevant satellites, in order to guarantee the highest possible crossover data density at given
practical limits (imposed by the lengths of individual arcs, or by the tolerated maximum time
span between crossings). With Faust advantages and problems of simultaneous multi-satellite
altimetry analysis have been analysed by applying the new solution technique to precise orbit
determination and to gravity field adjustment. The latter was chosen as a classical application
of satellite altimetry that could be expected to gain from simultaneous solutions for altimetry
missions with different orbital characteristics. At present, this is only possible for analysis of
the ERS and TOPEX/Poseidon missions.

16

1.3 Structure of this thesis

Because Faust is expected to be used by many others in the future, it was felt necessary to
provide adequate documentation with the new programme. Such documentation serves the
double purpose of introducing new users to the subject of precise orbit determination by
providing sufficient theoretical background, and of explaining the essential structures of the
software to enable future extensions or modifications. Initially, the documentation to Faust
was started independent of this thesis, as the two documents serve different purposes. It soon
became clear that this effort would result in continuous referencing from one to the other, as
well as in substantial overlap. More disturbingly, it also resulted in undesired fragmentation
and interruption of the natural line of thought. Because this was neither very efficient nor
practical it was decided to fully integrate the documentation to Faust with the thesis. The
advantage of this integral approach has been a clear systematic structure of the two-in-one
thesis and documentation, although at several points this may have resulted in unusual

extensions to each of the separate entities.

At first, the thesis contains several theory Sections to explain the mathematics behind the
adopted solution processes. As some of these Sections are merely recapitulations of existing
mathematical principles, they are primarily part of the documentation to Faust and would
normally be left out of a thesis, or be referenced. Now that they are added to the main text,
however, they form a useful introduction to the argument of the thesis. Second, the overall
size of this thesis has become larger than commonly advised. This is also caused by the
inclusion of various appendices that contain essential software engineering details of Faust, a
discussion of which would fall outside the framework of the thesis itself. These Appendices
can now directly refer to relevant Sections of the main thesis, which may help future users to
gain quick access to parts of the code of their interest. Furthermore, the entire thesis has been
organised in two main parts that are most concisely described as 'theory’ and ‘practice’,
although the separation between the two is not absolute but rather shows a gradual
progression from ‘mainly computational theory' to 'mainly applied research'. The first part
covers the theoretical basis of simultaneous solutions, as well as some essential details of
their numerical implementation for as far as innovative or crucial to the solution principle.
The second part describes several applications of the simultaneous solution technique to the
analysis of multi-mission altimetry, and discusses results in the area of precise orbit

determination and geophysical applications of simultaneous solution techniques.

17

In particular, the next four Chapters each discuss one of the fundamental aspects of dynamic
satellite tracking data analysis in Faust, in a systematic top-down approach. An overview of
the embedded parameter estimation techniques, forming the top-level solution principle, is
given in Chapter 2. The simulation of observation data forms a central aspect of the orbit
determination method, and involves the numerical integration of various differential
equations. Chapter 3 documents the incorporated numerical integration process in sufficient
detail to explain the adopted enhancements for multi-satellite processing. Increasing the level
of detail further, Chapter 4 documents the implemented force models that together form the
basis for the numerical integration of the equations of motion of the satellites. In particular,
the implementation in Faust of force model parameters and geophysical model parameters
that are studied in later Chapters is documented. Finally, Chapter 5 describes aspets of
tracking data modelling in Faust, as required for the parameter estimation scheme. This is
obviously done with special emphasis on the numerical processing of crossover data and

altimetry in simultaneous solutions.

From Chapter 6, the aspect of software documentation is no longer apparent in the thesis,
unless the practical applications are interpreted as examples. Chapters 6 and 7 analyse the
effects of simultaneous solutions on radial orbit precision, first for single satellite dynamic
multi-arc solutions and then for various combinations of truly simultaneous multi-satellite /
multi-arc solutions. Characteristics of precise orbits for ERS-1 and TOPEX/Poseidon,
obtained from simultaneous solutions, will be compared with single-arc solutions as well as
with external orbit solutions. Also, the practical implications of balancing data from one
satellite in a simultaneous proces with respect to the other will be studied. Chapter 8
describes how the principle of simultaneous altimetry analysis has been applied to gravity
field tailoring via a discussion of the followed solution method, the included data, and some
results and practical problems that were encountered during the process. A final Chapter
summarises the output of the entire project, also listing some recommendations for future

work that could not be covered by the present study.

Among existing parameter estimation programmes some classical examples can be found of
large scientific software packages that have become practically unmanagable, due to
modifications by many different people who may not always count software maintainability
among their top priorities. Three factors that contribute to such a situation are a lack of
software structure, a lack of systematic documentation, and a poor or unsystematic user

interface. As mentioned above, the danger of a lack of documentation is encountered by

18

systematically covering the theory and its implementation in the first part of this thesis. Some
additional theory, related to reference frames and time definitions used throughout this thesis,
is included in Appendix A. Concerning a possible lack of structure, it has been an advantage
that Faust was written from scratch, with a clear perception of what the final package should
look like. At the time of this report the structure of the software is therefore no source of
concern, as the code has been constructed in managable subroutines that are all developed in
a similar coherent style. Some remarks regarding the structure of Faust are included in
Appendix B. In particular, this Appendix includes two lists of subroutines, one sorted in
alphabetical order to assist analysis of the code by highlighting the task of a particular
subroutine, and one organised in functionally coherent groups in order to explain which

routines relate to particular aspects of the solution process.

The third problem, related to the way in which the programme is used in practice and in
which future enhancements may be implemented, has been recognised from the very start of
the project. Substantial effort has therefore been invested in the design of a flexible high-
level language interface to Faust. A basic understanding of its working will be essential for
future programmers as well as for users, but the treatment of this natural language interface
would somewhat interrupt the logical line of the thesis if it were to be included as a separate

Chapter. This is therefore done in Appendix C.

Finally, Appendices D and E offer direct assistance to users and programmers of Faust
respectively, in the form of 'cookbook' discussions of various situations that may occur in

practice.

1.4 Faust

The existing orbit determination software at Aston University was known as the SATAN-A
package, referring to Satellite Analysis, with an -A extension to indicate amendments of the
original set added at Aston. After initial development at the Royal Greenwich Observatory
(Sinclair and Appleby, 1986) this programme had been extended and modified by many
different people, which had gradually turned the code into an arrangement of FORTRAN
statements that stood up to its diabolic name.

19

Although the code of the new programme has been written from scratch, it has several
obvious roots in the SATAN-A suite, in particular concerning the mathematics behind most
acceleration models. The name of doctor Heinrich Faust, the ruthless scientist in Goethe's
play, imposed itself therefore as a natural choice for the name of a programme that derives
its force from Satan. Matching its namesake in ambition, the programme stretches the limits
of an area of computational science that already operates at the boundaries of computer
capacities. For normal orbit determination tasks Faust will settle for any of the SUN Sparc 4
workstations available to Aston's Space Geodesy Group, each with a modest 24 Mb of RAM.
However, to reach his full unprecedented multi-satellite and multi-arc power, Faust prefers to
embrace the several hundreds of Megabytes of a SUN Sparc 10 server that also happens to
be called Satan. Only then will Faust defy gravity, laughing at the billions of partial

derivatives that aimlessly try to prevent him from obtaining the knowledge he strives for.

Rumour goes that Goethe - wary of the upcoming analytical science of the early nineteenth
century - based the character in his play on one of his illustrious contemporaries, sometimes
called the Prince of Mathematicians. In order to make sure that people would not overlook
the innuendo, he merely had to shift the first and last letter of his name one place in the
alphabet to arrive at Faust, a doctor described by Johann Speiss in 1587 as having sold his
soul to Satan in exchange for eternal youth. By irony of fate, practically all mathematical
techniques that are used in modern satellite geodesy, from least squares parameter estimation
to numerical integration, happen to be based upon fundamental work by the same
mathematician that Goethe chose to disparage. The name of the programme may therefore
also be interpreted as an hommage to Karl Friedrich Gauss who made it all possible - barely
two decades after Cook's expedition to Tahiti, but almost two centuries before computer

technology finally managed to support his visions.

20

Parameter estimation Chapter 2

The documentation of the solution techniques in Faust will start with an overall look at the
computational methods for extracting geophysical information from satellite tracking data.
Relations between geophysical models and the orbital motion of a satellite are in general
non-linear, and although it is possible to compute the orbit of a satellite on the basis of such
models, the inverse problem of computing model parameters from measured satellite
positions can only be solved by indirect data reduction methods. This Chapter describes the
least squares parameter estimation process in Faust, starting with a brief summary of the
theory and then moving to a more practical discussion of its numerical aspects, in particular
in relation to simultaneous multi-arc solutions. Subjects that will be treated include the
adopted internal organisation of parameters, partitioning and compression of the normal
matrix as used to reduce demands with respect to working memory and CPU time, as well as

the general structure of the differential equations involved in the construction of the solution.

2.1 Review of essential theory

A tracking observation can be simulated numerically on the basis of mathematical models.
These include models for the forces that act upon the satellite and determine its position as a
function of time, as well as models for the geometry of the measurement. The simulated
equivalent of the observation matches its physically observed counterpart to an extent that
depends on modelling detail, measurement accuracy, and, which is most relevant in this

context, on the accuracy of the a priori values for various parameters within the models. The
following notations are used in this thesis :

0, An observed measurement value at a time {;
P The vector formed by all parameters of interest
C, =C(P) The calculated equivalent of O;, being a function of P

R; (0,-,3) =0, - C (E) The measurement residual at ¢,

(2.1)
Observations and mathematical models only have a finite precision, and the problem of

21

finding the most realistic parameter values is handled statistically by making the amount of
observations substantially larger than the number of parameters. The vector P is then
overdetermined and can not be solved uniquely. A second problem in optimising the
parameter vector is formed by the non-linear character of the functions R;(O;, P), which
prevents the derivation of explicit analytical expressions P = P(Q) for the parameters in
terms of the observations. Despite of this, each measurement residual R; contains some
information about the accuracy of the model parameters. The task of the parameter estimation
process is to transform this information into corrections to the a priori parameter values, in
such a way that the adjusted parameters will lead to smaller residuals if the simulated

measurements are recomputed. This correction process is then iterated to convergence.

In order to compute adequate corrections, the influence of arbitrary parameter changes AP
upon the residuals can be formulated. The first order effect of parameter corrections upon a

calculated measurement is found from the linearised series expansion

(AP,
L 3c, c.\ |APF
€).., = (C), * 86 86 8} 72 2.2)
e » " \3P, P, 3P,).
APy,

in which index » is used to denote step # of the iterative correction process described
above. With (2.2) the residuals for iteration 7 +1 can now be expressed directly in terms of

the corrections AP from the previous iteration # :

le - Q - Cn+1 = Q - (Cn e AABJ’I) & Rn _A.ABH (23)

Matrix A in (2.3) contains the partial derivatives of all calculated measurements with

respect to each parameter, having a column for each parameter and a row (2.2) for each

observation :
(6C, dC; 6_6'1- \
oP, 0P, oP,
oC, aGC, aC,
A=|3%P P, ™ P, 24)
oC, dC, aC,,
B, B, R

Assuming that all measurements are independent and equally reliable, the preferred solution

22

for the parameter correction vector AB;: will be the one for which the norm of
vector le is minimised, which is equivalent to minimising the sum of the squares of its
elements. This sum of squares is given by the scalar product of vector (2.3) with itself:
Vg R:q R. = (Bn -4 AEn)T (E'n -4 AB:;) %)
=RTR - RTAAP - APTATR + APTATA AP
In order to minimise S,,; the partial derivatives of the matrix products in (2.5) with respect

to ABH are determined, using the readily verifiable product rule notation

Applying this relation to the four parts of sum S in (2.5) provides

SRR _
0AP
(R TAAP) = a(RTA)AP+ a(APT) (RTA)T « O+wIATR = ATR
JAP JdAP JdAP
G(APTATR) » ((ATR (AR} AP IATR+0=ATR
0AP
A(APTA TAAP) _ (6ﬁPT] T ; T4 AP
SAP 2 3AP A1AAP 2AA4

2.7

The minimisation condition for S,,; follows by imposing that its derivative must be zero :
aS
dAP

Because S is quadratic in AP, and because (2.2) shows that the residuals become infinitely

=0 - ATR - ATR + 2ATAAP = 0 (2.8)

large for parameter corrections that approach positive or negative infinity, it is apparent that
(2.8) indicates a minimum rather than a maximum. Rearranging terms leads to an expression

- the normal equation - for a vector AP that will ensure the smallest possible residuals in the
next process iteration :

(ATA)AP = ATR (29)

The parameter corrections are of course found explicitly by multiplying both sides of (2.9)
with the inverted normal matrix (4 TA4)™

23

2.2 Weights and constraints

In the above two important assumptions have been made. At first, the adopted concept of
minimising §,,, assumes that all observations are independent and equally reliable, so that
the smallest sum of squares of all residuals indeed corresponds to the best set of parameter
corrections. Furthermore, the truncation of the series in (2.2) assumes that the observability
of the parameter corrections from linearised relations is guaranteed. In practice these
assumptions are not always realistic, for which reason additional a priori information is taken
into account related to the quality of the observations and to the quality of the initial
parameter estimates respectively. A priori information about the reliability of the observations
is entered into the process by multiplying each of the observations with a weight factor that

will give that observation an increased or decreased influence on the result of the estimation

process. This changes (2.3) into

WRM an - wAAP (2.10)

in which w is a diagonal weight matrix. If (2.10) is substituted into (2.5) and the

differentiations are repeated, the weighted normal equation becomes

(ATWA)AP = ATWR (2.11)
Here, matrix W = w Tw so that a single element is W; = wjz. An element j,k of the

I

weighted normal matrix is therefore given by the weighted sum of partial products j and kK :
Y (aC, aC,
(A TWA)J.,‘ = g [ﬁ}wﬁ [EP_,:] (2.12)
Because of the direct application to satellite tracking data processing, the description of the
least-squares solution in the previous Section used the approach of minimising measurement
residuals within an iterative parameter correction process. More generally, Eykhoff (1974)
derived the normal equation as a maximum likelihood solution in regression analysis. It is
then assumed that the post-solution residuals are distributed as white noise :
R -AAP = ¢ (2.13)
in which € is a noise vector that has elements with zero mean value and variance o?. For

the elements of the weight matrix W we can of course always adopt the value

w, = L (2.14)

o;

where o; is an a priori standard deviation for the measurement. This changes the weighted

residuals w;R; into dimensionless numbers, which is useful if different types of

measurements are to be combined within a single parameter estimation process : it

24

generalises the physical problem into a purely mathematical one. Following this statistical
approach, the inverted normal matrix is found to be the covariance matrix (e.g. Ljung et al.,
1983) for the parameter solutions. The diagonal elements of the inverted normal matrix V'
contain the parameter variances, while the non-diagonal elements form the parameter

covariances, used to compute correlations p between the parameters according to

LS

V. (2.15)
P " o

J ok

The interpretation of post-solution residuals as noise with a Gaussian distribution also
supports the principle of data editing : any observation that produces a residual larger than a
certain multiple of the standard deviation o for that datatype can be rejected as an unreliable
measurement (i.e. we only use a central band of the Gaussian distribution). The need for this
practice can be appreciated by inspection of the basic normal equation (2.9), which shows
that one large residual for a wide point may have more influence on the solution than many
small ones related to accurate measurements. Practical implications of data editing in Faust

will be discussed in more detail in Chapter 5.

A priori information related to the quality of the initial parameter values is entered into the
system by using the parameter corrections as additional observations, with corresponding

partials and weights :

Ro Ao Wo
Ro= [RP)’ 4 - (APJ' W [WP) it
in which index O refers to the residuals for the observations, and index P to the added
residuals for the parameters. The vector Rp for process iteration n is defined as the

difference between the actual parameter values and the a priori parameter values (the latter

indicated by superscript 0) :

P!_O_Pln
0 pn

Rp = B :Pl (2.17)
Py, - Py,

If the parameters are independent, the matrix with the partials for the parameters is an

identity matrix :

25

) 1, (j =k
.?_.}.?L = 8, = U) - Ap = I (2.18)
0P, " |0, (j#k)
The matrices (2.16) can be substituded into (2.11), with 4 p replaced by an identity matrix :
(AoTWodAo + Wp)AP = A,TW,R, + WeR, (2.19)

From a point of view of statistics, this corresponds to a conditional (i.e. Bayesian) problem :
we compute the parameter corrections given a certain likelihood for the initial values.
Expression (2.19) also shows in a practical way how the constraints WP are added to the
standard normal matrix, namely by modifying each of the diagonal elements of the normal
matrix as well as the elements of the right-hand side of the equation. For large geophysical
applications, like the computation of a gravity field solution, it is common practice to keep
the post-solution covariance matrix and use it to constrain later solutions. In that case, the
inverted covariance matrix (i.e. the original normal matrix) is added entirely to the

corresponding part of the new normal matrix, so that the later process includes the earlier one

while adding new information to it.

2.3 Matrix partitioning

To ensure a reliable outcome of the statistical parameter adjustment process, the number of
observations will substantially outnumber the amount of estimated parameters, implying that
the number of rows of the matrix 4 from (2.4) is significantly larger than the number of
columns. In practice the size of the observation matrix A will often be too large to allow
storing and processing of the matrix as a whole. A first reduction in processing demands can
be derived from equations (2.2) and (2.12) which show that the normal matrix is in fact a

sum of matrices, one for each observation :

Nots
ATA = Y ATA,
i (2.20)
P L ac;
. 3P, oP, = P,

From (2.20) it follows that it is not necessary to store all partials for each observation if
contributions of individual observations are added to the normal matrix directly. Even in that
case, the dimension of the normal matrix equals the amount of estimated parameters, which

can be in the order of several thousands for multi-arc solutions or for the computation of

26

detailed geophysical models. To reduce the demands with respect to working memory and
CPU-time for storing and inverting such a large matrix, effective use is made of the fact that
many parameters are known to be totally independent from other parameters, causing large

parts of the normal matrix to contain zeroes.

As can be seen easily from (2.20), two parameters are independent - i.e. the corresponding
element (A4 T4), remains zero - if for each observation C;(P) at least one of the partial
derivatives with respect to these parameters is zero. Such parameters cause part of the normal
matrix to be a block-diagonal matrix, in which case the corresponding section of the
covariance matrix will also be diagonal : all correlations (2.15) are zero. This can for
instance be the case with range bias parameters from two different tracking stations. Faust

distinguishes between three Categories of parameter correlations :

Category 1 Parameters that may be correlated with any other parameter within

the solution. A corresponding normal matrix is a full matrix.

Category 2 Parameters that appear in correlated pairs, while no correlations
exist between parameters from different pairs. These parameters
cause a normal matrix to be a diagonal matrix with additional upper

D, E]
T
E D,

and lower diagonals :

with diagonal sub-matrices D, D, and E (= ET).

Category 3 Parameters that are totally uncorrelated with each other, causing a

normal matrix to be a diagonal matrix.

If these three categories of parameters occur simultaneously, the normal matrix can be

organised into the following structure of submatrices :

(A B C F)
BT D, E 0
ct ET D, 0
\F & 0 0 Dy

The diagonal submatrix D, corresponds to parameters of category 3, while the diagonal

(2.21)

27

submatrices D;, D, and E are related to parameters of category 2. The submatrix A
relates to all parameters of category 1, and because these parameters may still be correlated
with any of the parameters of category 2 or 3, additional non-zero matrices B, C and F
occur. It is assumed that the parameters of category 2 and 3 are not correlated with each
other : if correlations between these categories would appear, they effectively become
parameters of category 1. It will be obvious how the righthand side of the normal equation
(2.11) can be partitioned in four subvectors (referred to as p, g, r and § respectively)

corresponding in sizes with those of the submatrices of the partitioned normal matrix (2.21).

All diagonal submatrices can now be stored in one-dimensional arrays rather than in
rectangular matrices, while the submatrices that only contain zeroes are not stored at all. The
full matrix' A is symmetrical due to the way in which the normal matrix is constructed
from equation (2.20). Faust therefore stores only one triangular half of the matrix in a much

smaller one-dimensional array, using a packed format with a mapping function A i = % like

j=1 2 3 4
=1 (a4 a4 a g |
2 a; a T
X ’ a: - A(f,j):a[J 2f +i] 2.22)
\ N)

The introduced partitioning and packing reduce the required storage space for the normal
matrix in most cases to only a small fraction of the size required for the full normal matrix.
In other words : within the physical limits of the available memory a much larger amount of
parameters can be solved for simultaneously than would be the case if no partitioning would
be applied. This is particularly relevant for multi-satellite or multi-arc solutions, that will

obviously contain more parameters than a single arc process.

Apart from the savings in storage space, the partitioned matrix will also require substantially
less CPU-time for its inversion than would be needed for inverting an unpartitioned matrix of
the same dimensions. Equation (2.11) is essentially a linear vector equation of the form

My =y (2.23)

With the above partitioning this changes into a set of simultaneous equations :

! note that this is the partition A from (2.21), not the observation matrix from (2.3) onwards

28

Ay, +By, +Cx +Fx -p
BTy +Djx, +Ex =g
4 (2.29)
Cly, +Ex, +Dy - &
FTx +Djx, =g

The vectors X, ..X, can be found from a staged elimination process. Starting with the last

of the four equations in (2.24) and moving upwards, we write

x, =Ds'[¢ - FTy] (2.25)

%, = D[t - CTy, - Ex)) (2.26)
x, =D [a - BTy - Ex)] 2.27)
r =4 '1[;2 - Bx, - Cx, - Fa:4] (2.28)

Combining (2.26) with (2.27) results in a relation between X and > S

x, = (D, - ED,'E)" (g - ED;'t) - (BT - ED;'CT) x| 229

In a similar way (2.25), (2.27) and (2.28) combine into

5, =A™ |p- By, -CD,'(r - CTy, - Ex)) - FD;'(s - FTg)| =

(4 - cD;'CT - FD,'F7) ¢, = (p - CD;'c - FDy's) - (B - CD,E) 1,

(2.30)
Finally, equation (2.29) can be substituted into (2.30) to obtain an expression for X alone :

[4 - cp,;*c” - FD;'FT + (B - CD;'E) (D, - ED,"E)™ (BT - ED;'C7)|

= (p - CD,'t - FDy's) - (B - CD,'E) (D, - ED,"E)" (q - ED, 1)

(2.31)
From this, X can be solved and substituted in (2.29) to solve X, after which > and X, are
solved from (2.26) and (2.25) respectively. Although this process looks more complicated
than solving the simple linear relation (2.23), many of the occurring terms are diagonal
matrices that are inverted by simply inverting their individual elements (note that these

should therefore all be non-zero). The largest full matrix to be inverted has the size of the

29

partitioning A, i.e. the part related to fully correlated parameters. As will be discussed in
Chapters 4 and 5, the dimensions of the diagonal matrices D are often large in comparison
to that of the partitioning A, which means that the inversion of the partitioned matrix is
significantly less demanding in terms of processing time than that of a full normal matrix of

the same dimensions.

step calculated expression data used from array store
in
A[B|C|D|D|D\E|Flpja|r|s|
1|23
Ml | A -CD,*CT-FD,’/FT |o| |o| |[ojo] |O A
M2 | B - CD,'E olo| [o] |o B
M3 | D, - ED,'E olo| |o D,
M4 | p - CD,'r - FD;'s ol |olo|l |[o]jo| |o|jo| p
M5 | g - ED;'r of |0 0|0 q
M6 | M, + M,M;* M, R[R| |R A
M7 | M, - M,M; M, R| [R)
x | MM, R R %
x, | My'(Ms - M, x)) R[|R R X,
x, | Dy'(r - CTx, - Ex,) of |o| |0 ol | x
% | Dy*ls - F7g) ol |o o]

Table 2.1 Succession of computation steps during the inversion of the partitioned normal
matrix. A marking 'O’ indicates that the original contents of the corresponding matrix is used,
while an 'R’ indicates that an intermediate result is used, having replaced the original contents
of the corresponding matrix in one of the previous computation steps.

The savings in storage space are of course meaningless if additional memory would be
required for performing the inversion process itself. Table (2.1) shows the carefully deviced
sequence of computations in Faust, and the arrays in which the intermediate results are stored
without any need for additional storage space in RAM memory or temporary disk files. As
indicated by markings 'O' and 'R', the original contents of any matrix or vector is only
overwritten if it is no longer needed for the computation of the solution vectors X, .. X, ,

which follows from the fact that no 'R' appears higher than an 'O' within the same column of
the table.

30

2.4 Choleski decomposition of the packed matrix

If the packed format (2.22) for the partitioning A of the normal matrix is to be maintained
during the inversion process, some special measures must be taken. A standard Gauss
elimination process as described e.g. by Salvadori & Baron (1961) converts a matrix equation

into a triangular system by multiplying each row i with a factor
a.

m, = <L (2.32)
a;

and then subtracting row i from the lower row j. By repeating this for each lower row (i.e.
> i) the column below diagonal element a; will only contain zeroes, and by repeating this
straightforward procedure for each column i, an upper-triangle matrix arises :

\

all alz e aln l‘ll ulz e l‘ln
a 0 By
Bup Bpy o Gy 0 .. 0 u,

The right-hand side of the matrix equation (2.19) has to follow the same row operations, for
which reason all multipliers m; must be kept if a solution for a particular set of equations
is to be determined. In general, the multipliers are conveniently stored in the lower triangle
matrix, but in the packed format (2.22) of Faust there simply is no memory available for a
lower triangle matrix. However, a special case - the Choleski decomposition - appears if a

triangular root-matrix R can be found such that the normal matrix can be written as

A =RTR (2.34)
which can be worked out as
'
By Gy s Gy, gy 0 . 0} (ryy rp oo 1y
G Uy) TR G 0 rp w1y 235)
: i : ~ 0 P
a,, s B Iin w) A0« OF,

Assuming that the triangular matrix R exists, the rules of matrix multiplication provide

2 —
au == rll - ru = all (2-36)
and subsequently

Gy =mMhy = n;=

j (2.37)

=

a,

31
Continuing with the second row of (2.35), we find

Ay =Tl Y Ity = Tn =\ 0n ~ Inly (2.38)

in which I, can now be substituted directly, having been computed from (2.37). More

generally, the diagonal element of row i is found from the expression

i-1

r;=.|la -):‘{ r,-f- (2.39)
j

after which the non-diagonal elements of row i are found from

Foo= k=t (2.40)

From (2.39) it follows that in order for a root-matrix R to exist, all diagonal
elements a; must be greater than the sum of squares of the r; (hence each diagonal
element a; must at least be positive). James et al. (1977) showed that a sufficient condition
for the existence of R is that the original matrix is positive definite, meaning
that xTAx >0 for any non-zero vector X. This condition is indeed always satisfied here,

because of the way in which the normal matrix is constructed from (2.20) :

£7(4,74)x = (747 (Ax) = Ax)TAx) = (Lp) = T v >0 Q4D
Because in the Choleski decomposition the lower triangle is by definition equal to the
transposed of the upper triangle matrix, it is unnecessary to store any multipliers and the
packed matrix structure from (2.22) can be maintained throughout the decomposition process,
if the latter is coded carefully. Once that the triangulation (2.35) is determined by applying
(2.39) and (2.40) for each row, the inverted normal matrix is computed from
M=RTR = M1 =RYRT)? (2.42)
while the inversion P of matrix R can be determined directly from back-substitution :

Pu Pz ~ Pia| (T T2 =~ Pia 1.0 .0
0r, . r 01 ~ :
Py Py - Py, 2 2| _ (2.43)
Puy Pz v Pua)\ O . 0 T, 0 .01
which leads to relations like
Pum =1 = Pu = = (2.44)

Iy

Pup * Pply =0

32

In general, the equations for computing the inverse of R have the form

i >j

i=j

i <j

- p12 - _pllrlz (2'45)
g7
-~ p;=0 (2.46)
1
b e 2.47
Di; = (2.47)
j-1

- ’;P.‘k" ki
-) R 2.48
pj rﬁ (2.48)

As with the triangulation, the entire inversion can be performed within the packed matrix

since each element of the uninverted matrix R is only needed before it is replaced by the

element of P with identical indices. As illustrated in Figure 2.1, the matrix inversion in Faust

has been coded with emphasis on processing efficiency, by avoiding unnecessary floating

point operations (for instance for locating elements of A within the one-dimensional array).

* COMPUTE ROOT-MATRIX R

nM=0
n2=0

dol=1m
nlant+i

Sum = A(n1)
dojm1,i=1
Sum = Sum = A(n2+j)**2
end do
A{n1) = DSQRAT(Sum)

n3=nt

do|=I+1m
Sum = A(n3+)
dok =11

Sum = Sum - A(n3+k) * A(n2+k)
end do
A(n3+) = SumvA(n1)
nd=nd+|
end do

n2 =ni
end do

* INVERTRINTO P

nli=0
n2=0

doim1m
n=ni+l

A(n1) = 1.DVA(n1)

nd=0
dojmij-1
Sum = 0.00
nd =n3 +]
dokw]l-1
Sum = Sum - A(n4) * A(n2+k)
ndmnd +k
end do
Aln2+]) = Sum*A{n1)
nNd=nd+)
end do

n2 =ni
end do

* COMPUTE PxP
=0

dol=1m
ni=nod
doj=im

Sum = 0.00
n2 =ni
dok=|m
nd =n2+i
nd mn2+j
n2 =n2+k
Sum = Sum + A{n3) * A(nd)
end do
A(n1+) = Sum

nl=nl+]
end do
n0=n0+Ii
end do

Figure 2.1 Extract from Faust : inversion of the packed triangular matrix of dimension m.

2.5 Partial derivatives

In satellite tracking, the observations O; will in general provide information about either the

position or the velocity of the satellite at the time t; of the measurement. To obtain a

calculated equivalent C; it will then be necessary to compute the orbital position or velocity

33

of the satellite at #;, which is done by numerical integration of the equations of motion :

d%x
T 46D @)

The numerical integration process used in Faust will be explained in Chapter 3. Initial values
for the position and velocity, as required for this integration, are usually among the estimated
parameters P because the entire integrated orbit arc will change - and with it the calculated
observations - if the initial value of the integrated function changes. All other estimated
parameters can be separated into two groups. The first group is formed by parameters within
the acceleration model a,, like coefficients in a gravity field model, scale factors for an
atmospheric drag force, etcetera. Many of these parameters will form the central object of
study in space geodesy, and their implementation will be discussed in Chapter 4. The second
group is formed by various parameters that appear in the geometrical modelling of the
calculated observation, like range bias corrections, tracking station coordinates, etcetera.
Some of these parameters will be discussed in Chapter 5. In order to construct the
observation equations (2.2) the partial derivatives of the calculated observation with respect
to each relevant parameter are required. To express possible explicit relations between the
calculated observation and a certain parameter, as well as possible implicit dependencies via
the orbital position, the partial with respect to a parameter f; can be written as

G _ (i(_?i) . [ac,. ax , 9G gy , 9C oz
0P, op; . ox 0P, dy 9P oz 9P il
In most cases only one of the two terms on the righthand side will be non-zero. The explicit

(2.50)

term will be non-zero for parameters that appear directly in the model of the calculated
observation, i.e. those of the second group described above. An analytical expression for this
type of partial can usually be determined in a straightforward way from measurement
geometry. The other term expresses the dependencies of the calculated observation upon the
parameters that appear within the force model and hence influence the orbital position. In this
implicit term the partials of the calculated observation with respect to x, y and z can also
be obtained from the measurement geometry, but the partials that express the change in the
orbital position as a result of a change in the force model parameters can not be determined
analytically, as discussed in Section 2.1. Instead these variational partials are also obtained

from numerical integration. Partial differentiation of (2.49) with respect to fj results in

9 d*x 9
= a (2.51)
oP, di* 3P, ™

Because the position and the force model are continuous in the independent variable f, and

the partial differentiation with respect to PJF is independent of the differentiation with respect

34

to time, the order of the two differentiations may be swapped which leads to
2(d
ad [l PEN P 252

This is a second order differential equation in the required variational partials, the righthand

side of which can again be written in explicit and implicit terms, similar to (2.50) :

da, [aax] +[¢33t:.'ch ax , 9a, gy , 94, 5z
epl

oP, | 9P, ox 8P, 9y 9P, 9z oF;),

(2.53)

of course with corresponding terms for 4, and a,. The explicit partial can be determined
analytically from the mathematical relations within the force model. The partial derivatives of
the acceleration components with respect to the satellite’s position are also obtained in a
relatively easy way, as will be discussed in Chapter 4. The remaining partial derivatives of
the position with respect to the parameters are the variational partials themselves, and are
now available from the numerical integration process. There may be exceptional cases in
which parameters depend upon other parameters. In that case additional chain rule

constructions will have to be added to (2.53), like
aax(P‘-,P}-(P,-)) _ da . da, an

X

3P, 3P, OP, 3P,

i 1

(2.54)

One example of such parameters, related to ocean tides, will be discussed in Chapter 4.

It should be noted that neither in (2.50) nor in (2.53) possible dependencies upon the
satellite's velocity have been included. Observations that might depend upon the satellite's
velocity in (2.50) - in particular doppler measurements - are in general converted into quasi-
range observations that only relate to the satellite's position, as will be explained in Chapter
5. The acceleration in (2.53) is only weakly dependent on the velocity, because the main
force upon the satellite is the Earth's central body gravity which depends upon position only,
as will be discussed in Chapter 4. Omitting the velocity terms is therefore acceptable,
especially because the partials do not have to be more accurate than to first order as a result

of the linearisations that have already been introduced in (2.2).

2.6 Implications for simultaneous solutions

The need to integrate the variational equations - of which there may be many thousands -

imposes several crucial demands upon the organisation of the code, especially in a multi-

35

satellite / multi-arc parameter estimation process :

(1)

(2)

(3)

(4)

(5)

Observations can depend on (positions of) more than one satellite, changing (2.50) into

oC; (aq] i (ac,. dx; 3G dy; . aC 9z
expl

—_— = +
P, |oP, 21: ox; 0F; 9y, 0P, 9z, 9F;),

This is the case for any form of satellite-to-satellite tracking if both involved orbits are

(2.55)

solved for, as well as for the altimetry crossovers that will play an important part in
this thesis. The resulting interaction of variational partials from different arcs
underlines the need to integrate orbits and partials for all satellites involved in the

simultaneous solutions from Chapter 1.

An observation may be related to variational partials at two or more different epochs,
for instance in the case of an altimetry crossover. This interferes fundamentally with
the natural chronological processing order of tracking data, and implies in fact that
time would no longer be the obvious choice for the independent variable : the analysed
function value (the calculated observation) now depends on two points in the

independent variable (time).

The variational partials at different epochs in (2) can either be related to a single arc
at different epochs, or to different arcs at different epochs, introducing a further

complication.

Some of the parameters will be shared by more than one satellite arc (for instance
parameters that describe geophysical quantities, like coefficients in a gravity field
model), while other parameters are related to a single satellite only (for instance
instrument bias parameters), or to a single arc only (for instance the initial position). It
is not practical to store several copies of shared parameters for different arcs, but it is
always necessary to integrate different sets of variational partials for different arcs

because these only depend upon a single satellite position at a time.

The amount of satellites, as well as the amounts and types of parameters and
variational partials may be different for each parameter estimation task, while the total
amount of parameters and partials will often be too large to allow substantially

oversized normal matrix arrays for given limits in RAM memory. Especially in the

36

case of multi-arc solutions this will require most of the parameter management tasks

described above to be implemented by means of dynamic memory allocation.

The fact that it was not feasible to adapt existing software to support all of these features in a
managable and efficient way formed one of the main incentives for the development of
Faust, as a true multi-satellite / multi-arc parameter estimation programme. To cope with the
various demands above and still allow the overall least-squares process to have the
elementary form described in previous Sections, Faust uses internal dynamic memory
allocation in the form of a pointer structure that allows free navigation through the memory
blocks with parameters, partials and normal matrix partitions. In principle, all parameters are
stored within a single one-dimensional array that represents the vector P from (2.1).
Parameters of different types are stored in consecutive subvectors within this parameter array.
Per arc, and per parameter type, the amount of parameters and starting location within P of
the relevant subvector are stored in an additional mapping array Mp(?" Nparvpe’Nam)' The
first number of these pairs M P(Z,i ,J) provides the starting location of a particular
subvector, the second provides the size. If different arcs j, and j, share a certain subset of
the parameters, they will simply use the same starting position for that parameter type,
implying that exactly the same memory locations are addressed by two or more arcs in the

solution. This principle is illustrated in the Figures 2.2 and 2.3.

Because the index of a parameter in P corresponds to a specific row and column in the
normal matrix, the same mapping array is used to navigate through the (partitioned) normal
matrix. The array M, - determining the structure of the parameter vector and normal matrix
- is generated at the start of the programme, according to the amounts of parameters that are
specified in the user input. Everywhere within the code individual parameters are accessed
via this pointer structure. At the level of the least-squares process however, the parameter
array can still be treated as the single vector P. An additional advantage of the use of a
mapping array is that the partitioning in parameters of category 1, 2 and 3 (as discussed in
Section 2.3) can easily be implemented, because parameter subvectors of any type and related
to any satellite arc may be stored at arbitrary locations within the total parameter vector, and

are therefore organised per category.

37

| &
[¢}] -—
o (0}
e =
o N Ea
@ | :
4]
T |

Vector P with

v 4 -
Location L Amount

Figure 2.2 The pointer array M, provides the starting locations and the sizes of subvectors
with parameters of a certain type and related to a certain arc.

For the variational partials a similar mapping array M (2,N N,) is used. As

partype* arc)
mentioned before, even when a parameter is shared by several satellites, the corresponding
variational partials are dependent on a single satellite orbit only, and the partial derivatives
from different satellite arcs are combined according to the chain rule (2.55). This means that
the mapping array for the variational partials is not identical to the one for the parameter
vector, although it has the same dimensions and practical application. The variational partials

themselves are stored in an array of the form E(3, N with 3 components x, y and z

max)

for each of the N partials. The second array index is derived via the mapping array M .
The explicit partials from (2.55) are stored in a one-dimensional array, at an offset that is

provided by a similar mapping array for non-variational partials.

The use of these pointer arrays immediately solves the problems mentioned under (1), (4)
and (5) above. The treatment of calculated observations that depend on vectors and
variational partials at two or more different epochs inevitably requires temporary storage of
the relevant partials. The details of how such vectors are stored and retrieved efficiently in

Faust will be discussed in Chapter 5.

38

@
® &
o)
2 =
- ©
2 ©
[} Q
= £
= =
o ol

| -

g
pd @
— o
\V 7

Location —4\ /L Amount

Figure 2.3 Two or more arcs in the solution can share a subvector by pointing to the same
location within the parameter vector P

In many practical cases it is desirable to restrict the estimation process to a subset of the
parameter vector only, while maintaining other parameters at a fixed value. For this reason an
array with processing flags is defined in parallel to the parameter array (following the same
indices, computed from the pointer array MP), to indicate if the parameter is 'estimated’,
‘considered’ or 'fixed. An estimated parameter will be solved for in the iterative correction
process discussed in the previous Sections. A fixed parameter, however, will not be involved
in the estimation process but will be kept at its initial value throughout the correction
procedure. In between these two cases a parameter may be 'considered’, which implies that its
variational partials will be computed, but no corrections to the initial value are applied during
the iterative solution process. This creates the possibility to output the normal matrices from
different processes to file and ensure that all normal matrices will still relate to identical a
priori parameter values. In a later process the generated normal matrices can then be
combined, resulting in a significant increase in the amount of data used for the determination

of the considered parameters, as will be explained in the next Section.

39

2.7 Multi-run processes

Faust has default multi-arc capability, as well as multi-satellite capability because different
arcs in the solution may relate to different satellites within a single parameter estimation
process. Even so, there are cases in which it is useful to combine the normal matrices from
several individual runs and rearrange the corresponding parameters and matrices into a larger
solution process. This will be referred to as a multi-run solution, because it combines the
observation data and parameters from more than one run of Faust. Examples of such
processes could be the determination of a station coordinate solution (typically based on
many months of tracking observations) or the computation of a gravity field solution, which

would take prohibitively long computation times if performed as a single process.

Multi-run capability has been implemented in Faust in a straightforward manner. If requested
in the user input, the programme will not invert the normal matrix in the usual way but
rather output the parameter structure and the normal matrix to files on disk. In a later
process, the input can request to do the reversed process, i.e. to read and combine several
previously computed normal matrices from disk rather than compute them, and then perform
the normal matrix inversion and parameter corrections for the multi-run process. Certain
parameters will be shared by all individual runs (e.g. computed station coordinates, gravity
field coefficients etc.) and will be described as global parameters. Other parameters will only
be related to an individual arc within a single run of Faust, and will be called local
parameters. In the multi-run solution, all previously generated normal matrices and
submatrices that relate to global parameters are added together, while the total matrix in the

multi-run solution will contain the submatrices for local parameters in unmodified form.

As an example, we can consider a case where two separate processes are combined into a
multi-run solution. Each process in this straightforward example contains just two subvectors
with local parameters and two with global parameters. The global parameters are the same
for the two processes, and the dimensions of the corresponding sections of the normal matrix
and the righthand side of the normal equation are identical. Figures 2.4 a and b below show
the normal matrices and the righthand sides of (2.9) for these two individual single-run
processes. The submatrices on the diagonal of the normal matrix are symmetrical, and only
one triangle is available in the packed matrix structure (2.22). The other (rectangular)

submatrices correspond in dimensions to the sizes of the two subvectors within P to which

40

]

N

|
2 Ii Process 1 - H ocess 2
CIE E WE W g8
e ER B HI N
Figure 2.4 a Normal matrix and right- Figure 24 b Normal matrix and right-

hand side for a single run process. Shaded hand side for a second single run process.
submatrices relate to global parameters.

=

==]1[=]

Multi-run process

= (=)
= EE_F
]

EE L=

e
A

0N LN

g d

Figure 2.5 Normal matrix structure for a multi-run process, combining the earlier processes.

L

the particular block is related. If the two single run processes are combined in a later multi-
run job, the resulting normal matrix structure will be as illustrated in Figure 2.5. To enable
easy access to all submatrices in the multi-run process, Faust will store each submatrix
produced by a single-run process in a separate file, with filenames that follow a systematic

convention related to the parameter types and some processing ID numbers. Although this

41

approach produces a large amount of files - the basic example above already contains twenty
submatrices -, it allows very straightforward reconstruction of multi-run normal matrices for
numerous different combinations of global and local parameter blocks, without any need to
regenerate the normal matrices from individual single run processes. Obviously, the triangular
matrices on the diagonal of the normal matrix are stored in a format that is different from
that of the rectangular submatrices. Because the right-hand side subvectors will always be
needed in combination with the corresponding triangular matrix on the diagonal, these

subvectors are stored together with that triangular matrix in a single file.

In Chapters 4 and 5 it will be explained that in general the parameters of category 2 and 3
(Section 2.3) can be kept at fixed values within a multi-run solution, and for this reason the
multi-run capability is only supported by Faust for the partition A from (2.21). Because this
eliminates the large partitions B, C and F, the dimension of the partition A can be much

larger than would be possible in a single run solution.

42

Orbit integration Chapter 3

For two reasons, it was decided to base the numerical integration process in Faust on the
same Gauss-Jackson algorithm that was used in the SATAN-A package. As will be explained
in this Chapter, this algorithm aims specifically at the efficient integration of equations of
motion, in which both the velocity and the position are required. Furthermore, there were
practical advantages in modifying an available method to the demands of simultaneous
solutions rather than employing a new algorithm. The mathematics behind the numerical
integrator are virtually unchanged with respect to the process that was implemented in
SATAN, but the numerical structures of the integrator and the initialisation process have
been completely redesigned to support the multi-arc capability of Faust and the parameter
structures of Chapter 2. In addition, the integration process has been enhanced with the
possibility to reduce or increase the step size during integration. To compensate for a lack of
proper documentation for the integrator, and to explain the above enhancements implemented
in Faust, the numerical integration process will be explained in this third Chapter in some
detail. In addition, the parallel integration of different satellite orbits will be discussed, as
required in the simultaneous solutions described in the previous Chapter. Finally, the overall

structure of the solution process in Faust will be described.

3.1 Review of essential theory

All numerical integration methods use quadrature formulae that express the integral of a

function f as a weighted sum of 7 available values of that function :

[F@xydx = E Yin f (%) 3.1)

i=1
The only differences between the various algorithms are the amount of nodes 7, the
distribution of the nodes x; over the axis of the independent variable, and therefore the
weights ¥ for which the equation is valid. Independent of function f, a quadrature forms an
expression for the integral of the polynomial F of degree <n that fits through the sample
values, such that F(x;) = f(x;) in all nodes. This approximating polynomial follows from

the well known Lagrange interpolation formula :

43

) = - _ (x-%;) o XX) (%) . (6X,) ot P.x)
O =) ey)) -) 2 P 2

The notation [_J'n(xi) is used here for the polynomial p, (x;) from which the zero for x = x,
is omitted. The difference function g(x) = f(x) - F(x) is obviously zero in the nodes, but

may have non-zero values in any other point. The integral of the function f is then
b

o b
P, ()
X = - dx dx + ' :
[fed = [1FE) - g6)] ?;{f()f i e [sd @3

This notation shows immediately that a quadrature (3.1) will cause an integration error equal
to the integral of the difference function g(x), if the weights are computed according to

b

X
f Pn(_) dx
a (x_xi)pu(xi)
In case that the function f(x) is a polynomial of degree <n-1, the n sample points will

Yin = 3.4)

suffice to retrieve the function exactly from the interpolation, hence F will be equal to f in
all points, the difference function g(x) is zero for all x and the quadrature turns into an

exact expression' for the integral. For this reason the integrator is said to be of order n-1.

In most cases the weights y are computed in a more straightforward way than via (3.4), by
using expressions in finite differences (differences between the function values in the nodes,
differences between these differences, etc. up to a certain order 7). The following notations

are used in this type of analysis (e.g. Levy & Lessman, 1961) :

- Derivative Df, =f} (3.5)
- Backward difference ~ Vf, = f, - f, 4 (3.6)

®order difference ~ V*f, = V*If, - v*If | (3.7
- Forward difference Af, =hha - & (3.8)
- Expected value ? Ef,=fu=A+48)f =1 -V)7f = e"Ph (3.9)

! It should be noted that the finite precision of a computer will always introduce accumulative round-
off errors in (3.1), even if the quadrature itself is exact.

2 The exponential notation is introduced on the basis of a Taylor series expansion for f;,, :

12 2
fra = 1+hf!+ hz%-!— +w = 1+hDf + (hgf) e = N

44
1 <X
- Central difference 8f, = fiur = fo.r = E*f, - E *f, = 2sinh (%D] [(3.10)
2 2

- Central average pf, = '%(fk—% + fkhzl') (3.11)

From (3.9) we can obtain what is known as the Newton-Gregory interpolation formula :
< (k
f =Ekfo =of L A)kfo = E ()ﬁmfo
m=1 \IM

(3.12)
1 1
- fy + Kby + Tk, + k(1) (k-2) A%, -

If f is a polynomial of degree n-1, all differences of order = n are zero which means that
(3.12) becomes a finite series for any k and in fact represents the Lagrangian F in A that is
equal to f in all points. By integrating each of the terms in this polynomial we again obtain
a quadrature expression of the form (3.1), although this time in terms of finite differences :

b

b n b
{fkdk = 2_4"1 A’"f{,[(:l)dk + f(fk - p,)dk (3.13)

The definitions (3.6) to (3.8) subsequently enable the development of (3.13) in terms of the

function values in the nodes directly, rather than in differences between them. The

expressions for powers of the difference operators follow straightforward binomial relations :
szk = (fe = fe) = G ~fi2) =Fi = 264 * Sz (.14)
stk = [k = fi-t) = it = i) - [(er -~ fi2) - (iz = fia)]

=fi = 3fea * 3z ~ fis

or, in general : VAL =N (-1)* [n) j (3.15)
k=0 k

Quadratures obtained from (3.13) express a function in terms of forward differences, which is
not very practical : at any particular step kK, only backward differences are available.
Fortunately, many other formulae can be derived from (3.13) by noting that A" = V™", and
that shifting the variable k can be compensated by muliplications with polynomials in the
difference operators. To this purpose, the integral over a step A is first written as

k+1

;11" f&)dx ='}l' DD f(x)dx = %[D_lfh “D_lfo] - .!;fk = SD-lfka-%

Ot— =
o‘-——,a—

(3.16)
The final term on the right hand side forms a generalisation to equidistant nodes, implying

45

h = 1. The impractical operator D ™! can now be removed by using (3.10) :

5, = ZSinh(%)fk ~ Df, = 2sinh™ (%)fk -
(3.17)
s -1
8D'1fk+l = 3[2sinh'l(—-)] fi1
2 2 2
This expression - originally due to Gauss - can subsequently be developed into a series

expansion in terms of central differences and averages, as done by Todd (1962) :

h
%ff(x)dx = (1 . %252 + —71—21584 -),u,f% (3.18)
0

This formulae forms the basis for a wide range of numerical integrators, with names like

Gauss-Gregory, Gauss-Corelli, or indeed the Gauss-Jackson integrator used by Faust.

For the purpose of orbit determination, we need to solve the sets of second order differential
equations (2.49) and (2.51), each scalar component of which has the general form

¥ = f0n) (3.19)
From (3.19) we want to determine the value of y (¢) and/or the value of y (£). These values
can be computed from a set of earlier values for y' if a suitable quadrature formula is used as
a predictor. Lambert (1973) showed that errors caused by using Lagrangian interpolators as
extrapolators just outside their enclosed interval are of the same order as the interpolation
errors within the interval. In many cases the predictor will be followed by a corrector to
improve integration accuracy : once that values for y (f) and Y (f) are known from
prediction, the function y'(y,y,?) can be evaluated in the end point of the interval, which
means that this end point can then be used as a node in a new quadrature expression to

obtain more accurate values for the predicted integrals y (£) and y (7).

3.2 The Gauss-Jackson integrator

The exercise of computing the various weights for the Gauss-Jackson integrator will not be
repeated here, but the way in which these coefficients are obtained is summarised in order to
allow future users to understand the numerical process, and modify the integrator if
necessary. The integration scheme was first described by Jackson (1924) notably for
applications in celestial mechanics. It was developed especially for the integration of

equations of motion like (2.49), and includes separate quadratures for the first integral

46

(velocity) and for the second (position). For the single integration the Gauss series (3.18) up
to order 8 is merely shifted into an expression in backward differences and then rewritten in
terms of previous function values to arrive at a quadrature of the form (3.1). For the double
integration the Gauss formula is applied to itself, i.e. analytical expressions derived from the
first quadrature are used as the function values in the nodes of a second evaluation of the
quadrature, differenced, and rearranged into a new series expansion in terms of differences.

The resulting series expansion in central differences is given by Buckingham (1957) as :

S p2rs? 4 Lgo - 1 g2 31 4
Yea =h7[07 + 1507 = 58" + 0480

29 s, 3T g yp
3628800 22809600

This expression is now manipulated into a quadrature formula. From (3.10) we obtain

3%f =EME-1)"F . =~EE-1PELYL,

(3.20)

=E"HE-1D>f=(1-V)"™1-V-1D¥f 321

= (1 - V)y"iony,
With this general relation, polynomials can be developed in terms of backward differences of

[for any power & 2m Jgnoring the differences of order > 8, we find

Sof;“l=(1+V+V2+V3+V4+VS+V5+V7+V5+,")fk (3.22)

8oy = (V2 +2V3 +3V4 + 4V3 + 596 4+ 6V7 + 7V8 +) f, (3.23)

8%y = (V*+3V% +6VE +10V7 + 15V8 + .) f, (3.24)
8%, = (V6 +4V7 + 10V3 + ..) f, . (325)
8ha = (VP + .) S, (3.26)

If these expressions are substituted into the series (3.20), the result is a quadrature formula in

terms of backward differences, rather than central differences :

ivo + ivl + _B.Vz + .}...8....V3 + —431"5 v
12 12 240 240 60480
, 4125 5 O3T6TL o, 29124 o | 9751299 g

60480 3628800 3628800 159667200 * - i

The term V 2 is the second sum of the function values, found by accumulating values Y, to

yk+1 = h2 [V-2 +
3.27)

form the first sum, and then accumulating this first sum to form the second sum.

47

The series expansion (3.20) is also used for an eventual corrector step, but the polynomials
(3.22) to (3.26) are then written in terms of the new value f,,, (as computed on the basis of
the predicted values for y,), rather than in terms of f,. As mentioned before, shifting the

time variable forward is equivalent to increasing the order of each backward difference term :

87 fyy = E™(E - 1) f,, = E™(E -)"E° f,,
=E"(E - 1)2" fkd =(1-V)*(1-V- 1)2"")‘:,“l (3.28)
= (1 - V)™ vznfkq

Due to the multiplication with V?2*, all exponentials in the polynomials (3.22) to (3.26) are

increased by 2 to obtain the equivalent expansions in f, ,,. Substituting those polynomials in

(3.20) and recombining terms results in the corrector formula

; 1 1 1 221
=h V2 + h* [=W -~ —=V¥? - —9 - 22yt
Ykt fe [12 240 240 60480

190 s 9829 8547 4 330157 _g
- V° - -— V' - —0—YV
60480 3628800V 3628800 159667200 . i

The corrector is only used for the position, not for the variational partials. As mentioned in

(3.29)

Section 2.5, the latter are not needed to greater precision than in the form of a first order
approximation, due to the linearisations (2.2) that take place within the least-squares process.
The only reason for using a predictor of order 8 in this case is to prevent the integration

process from diverging too rapidly.

A predictor for the velocity ¥, ,, can be obtained from manipulations of the Gauss formula
(3.18) directly, in a way similar to that described above. If the expression for central
differences is converted into one for backward differences, we obtain

41 5 3 251 95
=RV & =0 4 Gt 2. 20 4 =22 Y
Yia =8V + SV + 5V + SV + 5V * 5

19087 s = 5257 s . 1070017 ., 2082753 s
foae WP g S gb, g SRER S G
60480 ' 17280 3628800 7257600 s 1

As already mentioned in Chapter 2, the acceleration y' is only weakly dependent on the

(3.30)

velocity y. The predictor of order 8 for the velocity is therefore assumed to be sufficently
accurate by itself and not followed by a corrector step.

An estimate for the integration error can be obtained by analysis of the general expressions

(3.3) and (3.12). From the Lagrangian quadrature we know that the integration error is equal

48

to the integral of the difference function g(x), i.e. the part of the integrated function f that
can not be accounted for by rm-point interpolation. In case of a finite difference method,
ignoring differences of order L implies that the series (3.12) is truncated as from that
term. The integration error in (3.13) is equal to the integral of the ignored part of the series.
Because the differences V” tend to decrease with increasing order #, a first order estimate
for the truncation error in the Gauss-Jackson integrator of order 8 can be obtained by
computing the contributions to the quadrature from differences of order 9. The coefficients
for V° in each of the polynomials for & 2 are directly available for the corrector (3.29), by
using the conclusion from (3.28) that these coefficients are identical to those for V7 in the
polynomials for the predictor, that is : 1, 6, 10 and 4 in the polynomials for 8% to &%
respectively. Substituting these contributions in the expression (3.20) and recombining terms,

we obtain the first omitted term of the series (3.29), i.e. the error estimate :

. o 202524
kel 159667200

For the error estimate in the predictor, the polynomials (3.22) and further must be extended

B2V, (331)

to the term with V?, providing coefficents 1, 8, 21, 19 and 5 respectively. Analogous to

(3.31) we find for the truncation error in the predictor (3.27) :

- 4671
k78848

Because the correction only (slightly) modifies the value of fk+1 , While all other terms in the

h:V°f. 4 (3.32)

polynomial for V° remain the same, the ratio between the error estimates for the predictor

and corrector respectively is more or less a constant, as computed from (3.31) and (3.32).

The final stage in the derivation of a quadrature of the form (3.1) is now to express the
relations (3.27) and (3.29) to (3.31) in terms of previous values of the function f, rather than
in backward differences, using the binomial relations (3.15). The weights for these
quadratures are listed in Table 3.1 below for the predictor and corrector of the double
integrator, for the predictor of the single integrator, and for the error estimate (3.31). The

error estimate for the predictor is not used by Faust, and therefore not tabulated.

In order to compute the state vectors and variational partials at the times of the observations,
the 10 most recent vectors are kept in memory buffers, and the values at arbitrary times are
obtained from a Lagrange interpolation as soon as the relevant time is positioned between the

two central values of the ten buffers.

49

+1
A=B+ C.j-z;s D; fi.;
Single integrator Error estimate Double integrator
PREDICTOR CORRECTOR PREDICTOR | CORRECTOR
Vi €11 Vet Vi
B hVif, 0 h2V2f, h2V72f,
c h 292524 2 h? B2
159667200 159667200 159667200 159667200
fen 0 1 0 9751299
fi 506432234 -9 103798439 16036748
fa | -1803461924 36 -385853488 -34806724
fup | 4047057036 -84 867424848 48315732
fus | -5955502036 126 -1274515624 -45851950
P fea 5888502400 -126 1258146350 29482676
Jis -3896485164 84 -831418464 12309348
fiss 1661115764 -36 354064088 3017324
fi -413645276 9 -88091848 -330157
fis 45820566 -1 9751299 0

Table 3.1 The quadrature weights for the Gauss-Jackson integrator of order 8

3.3 Initialisation of the integrator

The Gauss-Jackson integrator uses a variety of previously calculated quantities in order to

compute a single integration step. In particular, to compute the position, velocity and

variational partials for step k +1, values are required for

(1) The accelerations f, ¢ to f, for each satellite in the solution

(2) The positions y, 4 to y, and velocities y, ¢ to y, for each satellite

50

(3) The first and second sums V', . and VEf . for each satellite

(4) The variational equations (2.52) for all relevant parameters (of which there might
be thousands), these for the 9 previous steps kK -8 to k

(5) All variational partials for steps k-9 to k

(6) The second sums for all variational equations (hence also the first sums, which

are needed to compute the second sums)

These values are stored in circular buffers in which it is not the data that is rotated in each
step, but only a pointer variable that provides the starting index within the buffer. Like with
all multi-step integrators, however, the first steps of the integration process do not have
sufficient previous values at their disposal to apply the quadratures directly and must
therefore be obtained by different means. In the orbit determination process the six elements
of the initial state vector will generally be among the estimated parameters, so we can
assume that values for y, and y, are given (hence f; can be evaluated). This Section will

summarise how accurate values for the 9 successive steps are derived.

In analogy to (3.22) and further, each term 8% of (3.20) can be expressed in terms of
forward differences. Combining (3.9) and (3.21) provides :

8y = (1= V)™ VS, = (1 + A)"H(1 + A - 1),
(3.33)
- (1 = A)n-l A2nfk
It will be clear that in this way we can derive the equivalents of the predictors and correctors
from Section 3.2 in terms of forward differences; e.g. the double intregrator becomes
Lo 1 a2, 31 pa_ 31 ,s
12 240 60480 60480
I AS - 1282 AT 45911 AB &]fk+1
3628800 3628800 159667200

Approximated values for the first and second sums in step 2 of the integration are obtained

ykd = hz&_szd * h2
(3.34)

from the available values for step 1, by truncating the series after the very first terms :

- 1 % y 1
ho= k(8- 36) = AL =3e
(3.35)
ofp2p , 1 - 2 N _ 1
nw=h (A f Efl] A”f, Pl Efl

With these sums, we can subsequently compute first order approximations for all values y,,

51

Yir [ioo A7 f, and A7 [, for the steps 2to 9 by applying the following scheme 8 times :

A% fiq = A7f + &S
J”k ~ hA™ fk

¥ = BN L (3.36)
fi =f(‘k0’ks)’k)
A_lfm = A_lfk *+ fi

Unfortunately the above first order values for y, and y, are far less accurate than those of
the 8-order Gauss-Jackson integrator itself, and as the errors induced by this low accuracy
would inevitably propagate through the entire integration process, the resulting orbits and
partials would suffer similar low precision. Improved accuracy can be obtained by applying
quadrature formulae of the form (3.1) for each of the points 2 to 9 (using the points 1 to 9
as nodes) now that initial estimates for all fk are available. To start with, the values for the
first and second sums in step 2 are improved by using the quadrature expressions for step 1

in a reversed form, namely by computing the sums from

9 9
" . B
Y, = h2A2f,, +h2_zlj W, f, = A%f =h—‘2 - X Wik
(3.37)
9 yl 9
Y- hﬁ_lfm * hzl: Vieli = A_lfz = A E; Viil:

Starting from these new sums for step 2 the scheme (3.36) is repeated, with the only
difference that the position and velocity are now obtained from quadratures of order 8 rather
than just of order 1. This more accurate computation scheme will result in better values for
all y,, ¥,, and f, for steps 2 ... 9, and by iterating this improvement process until sufficient
convergence is reached we end up with values that apparantly satisfy the various 8-order

quadratures in the scheme, and hence are compatible with the main integrator.

The 8 required quadratures for the double integrator (position and variational equations) are
all obatained from (3.20) by expressing the terms 82" [, in terms of forward differences
A" f, , this for every step from 2 to 9. The series expansions in A” f; are then converted to
standard quadratures of the form (3.1) by developing polynomials like (3.22) to (3.26) but
now in terms of forward differences, and substituting these polynomials into the series for

central differences. Such manipulations have been illustrated in the previous Section where

52

the Gauss-Jackson integrator was described, and will not be repeated here for each of the 8

quadratures; the occurring weights are listed in Table 3.2 below.

i | 1 2 3 4 5 6 7 3 9 H
u',‘-. 1 9751299 16036748 - 34806724 48315732 -45851950 29482676 -12309348 3017324 - 330157
I’I/:-’z = 330157 12722712 4151096 = 7073536 6715950 - 4252168 1749488 - 423696 45911
PV:-'3 45911 = 743356 14375508 294572 - 1288750 931164 « 395644 86692 - 10497
pl./l-,4 = 10497 140384 - 1121248 15257256 » 1028050 33872 49416 - 17752 2219
I’V;; 5 2219 - 30468 220268 - 1307644 15536850 = 1307644 220268 - 30468 2219
le',G 2219 = 17752 49418 3aar2 - 1028050 15257256 - 1121248 140384 « 10497
m' 7 « 10497 966092 - 395644 931164 - 1288750 294572 14375508 - 743356 45911
m’ 8 45911 = 423696 1749488 » 4252168 6715950 = 7073536 4151096 12722712 = 330157
m'g - 330157 3017324 - 12309348 29482678 -45851950 48315732 -34806724 16036748 9751299

V,1 45620566 | - 94047140 | 159021548 | -tostesds | 182110720 | 1sttioss | 4zsszezo | -tes7soss | tasoner |

Table 3.2 Numerators of the quadrature weights in the double integrators for the position
and the variational partials in (3.37). All denominators are 159667200.

With respect to the variational partials it should be noted that these partials express how the
integrated position changes if the parameters change (see Section 2.5). At the start of the
integration, when the 'integrated position' is identical to the initial state vector, this position is
independent of all other a priori parameter values, so at the start of the integration all
variational partials are by definition zero (apart from those for the initial values of x, y and
Zz, which are 1). Because of this, the buffer values and first and second sums for the
variational partials are completely detached from anything that took place before the starting

epoch, which will be identified as a potential problem in the next Section.

As mentioned before, we do not really need the high precision of order 8 for the integration
of the velocity, and in the iterative improvement stage described above the applied
quadratures for the single integrator are only of order 4. For the velocity quadrature of step 1
in (3.37) however - i.e. the one used for the improvement of the first sum in step 2, therefore
being relevant to the double integrator - a full 8-order quadrature is applied, to avoid loss of
precision at the very beginning of the integration process. The coefficients Vl.,1 for that
quadrature are listed in the last row of Table 3.2. For the other velocity quadratures - i.e.

those that are used in the iterative improvement scheme - series expansions of order 4 in

53

forward differences are derived from the basic integration formula (3.18), and subsequently
converted into standard quadratures (3.1) in the usual way. The weights for these quadratures
are listed in Table 3.3. Note that the bands of zeroes appear in the table because these series
are of order 4, and are only tabulated in the same format as Table 3.2 to show that the nodes

i in these 8 series are not the same for each quadrature.

i 1 2 3 4 5 6 7 8 9 "
Via 27 830 -192 66 -1 0 0 0 0
Vis -1 82 720 -82 11 0 0 0 0
Vi 0 -11 82 720 -82 11 0 0 0
V‘.'s 0 0 11 82 720 -82 11 0 0
Vis 0 0 0 -11 82 720 -82 11 0
Vi 0 0 0 0 -11 82 720 -82 11
Vg 0 0 0 0 11 -66 192 610 27
Vio 0 0 0 0 -27 146 -336 462 475

Table 3.3 Numerators of the quadrature weights in the integrators for the velocity in (3.37).
All denominators are 1440,

3.4 Changing the step size

The quadratures from Sections 3.2 and 3.3 are only valid as long as the integration step size
h is constant, because of the expression (3.16) where the continuous variable x from the
Lagrangian methods is replaced by the equidistant counter variable k. Although this leads to
straighforward quadrature expressions in integer numbers - and efficient multi-step integrators
that only require one function evaluation per step - a problem arises if for any reason it is
desirable to increase or decrease the step size. One such reason is the occurrence of orbital
manoeuvres, which take place regularly during most satellite missions in order to maintain
the orbit within the limits prescribed by mission requirements, or to change the orbital
characteristics altogether. In general, a manoeuvre involves one or more short bursts of the
satellite's thrusters, with substantial impact on the velocity vector. In nominal operation
(generally for low-Earth satellites in near-circular orbits) Faust uses a step size of 30 seconds,
which has proved to be an adequate choice in terms of integration accuracy, force model

resolutions and processing speed. A thruster pulse, however, may only last several seconds,

54

which makes it impossible to include it realistically in the acceleration model fk for this
nominal step size. For such cases it is useful to temporarily reduce the step size to second or
sub-second level, then integrate through the interval with strong fluctuations in the function

f}» and afterwards return to the nominal step size.

The main problem related to a change in step size is the fact that the integration buffers (as
listed at the start of the previous Section) are based on the given constant step size, which
implies that none of the Gauss-Jackson quadratures can be continued directly if the step size
is reduced. At first sight, we might be tempted to simply repeat the starting routine from
Section 3.3 to initialise the integration interval with a new step size. Unfortunately, this
would imply that all variational equations are interrupted and no longer relate to any
parameter values from before the change in step size, which interferes fundamentally with the

parameter estimation process of Chapter 2. A different approach is therefore required.

As explained in Section 3.2, the state vector and partials are obtained for any arbitrary time
t by a 10-point Lagrange interpolation, which is applied when the integration process has
reached the first time step beyond ¢, , + 4h. In that way, the time t,,, for which we want to
interpolate is positioned between the two central nodes of the 10 buffer values, i.e. at the
place where the Lagrange interpolator is most reliable as shown by Todd (1962). For
reducing the integration step size, the same interpolation technique can be used. If the start of
the interval with reduced step size is indicated by f_, and the old and new (smaller) step size
are denoted by A, and h, respectively, the required integration buffers can be obtained in

the following way :

(1) We impose the condition that the integration interval with new step size h2
always starts at integer boundaries of the old step size h,, in particular at the
value ¢, =1, ¢ in terms of h; (if #, corresponds to the actual time reached by
the integration process). The 10 new integration buffer values are now obtained
by storing the values for ¢ = £ (they already exist, as the buffer values for
t,_s) and interpolating 9 additional values for £ =¢ + h2 - b=l 9h2. To
make sure that all these 9 values are within the two inner nodes of the
interpolation (so that we can do all interpolations without the need for additional
integration steps between the interpolations) we add a second condition, namely

that /1, is at least 10 times smaller than /. This is illustrated in Figure 3.1.

55

i, t,+h, te+5h,

t,+10h,

Figure 3,1 Reduction of the step size by interpolation of new integration buffers

(2) The first and second sums can not be obtained from interpolation, as there are
no ringbuffers for these values. However, using the quadrature for the predictors
in the Gauss-Jackson integrator, we can compute the first and second sums for

t,+9h, by inverting the quadrature for the next step in a way similar to (3.37) :

0
yk+1

Vh=—== = 5 vl (3.38)
l"‘8
..2 yk*l
Vi = E Vifeu (339)
i=-8

To this purpose, we interpolate additional values for the position, velocity and
variational partials at the time ¢ = ¢ +10A,, to serve as the values y,,, and
Yk, above. For the first sum of the variational equations, no expression for the
single integrator is applied (although the quadrature for the velocity could of
course be used), mainly because in the Gauss-Jackson integrator we do not use
one either. Instead, the second sum for step £ +8h, is also computed from
(3.39), after which it is subtracted from the value of the second sum for £,+9h,.
The obtained difference is the first sum V! f;'@ hy*

The Gauss-Jackson integration process can now be continued with the small step size, the
first step to be computed being the one for time ¢ = ¢ +10A,. By definition of the first and
second sums in (3.38) and (3.39), the result of the predictor in that first step will be exactly

identical to the values that were obtained earlier by interpolation between the buffers for the

56

larger step size, which implies that at that point it is no longer possible to distinguish
between the values obtained from interpolation (without reduction of order) and values that

would have been obtained by integration with the smaller step size.

The reversed process of increasing the step size must take place in a different manner, as we
can not interpolate 10 new buffer values for hl between nodes in the smaller step size.
However, no interpolation is required at all if a method is chosen that doubles the step size
in stages. Now, the time from which we wish to integrate with a new step size is denoted as

L and the new (larger) step size is indicated as hs‘ The process is as follows :

(1) The integration with the small step size is paused as soon as the time ¢, + 9k,
is reached. Now all buffer values are stored for time f,, and for each second step

h,, corresponding to the values for ¢,+2h,, ¢ +4h,, t,+6h, and t,+8h,.

(2) The integration process is continued for 10 more steps h,, up to the time
t,+19h,, after which (1) is repeated for these 10 new steps. The sets of buffer
values that have been stored by then contain precisely the required 10 integration

buffers for the new doubled step size ;= 2h,. This is illustrated in Figure 3.2.

t, t,+2h, t,+10h, t+20h
N O N SO O O O T S A

vV oV v v

| ! | 1 | l | | l

t, t+h, t,+5h, t,+10h,

Figure 3.2 Doubling of the step size by storing each second buffer value for 20 steps h,

(3) The integration is continued for one more step hz. resulting in values for
position, velocity and partials at time ¢ = ¢,+20h, = ¢, +10h,. With these
additional values all first and second sums are computed for t, + 9h3 in exactly

the same way as before, i.e. from (3.38) and (3.39).

57

For practical reasons, we will now impose two more demands upon process of changing the
step size. At first, we require that the step size h, is a factor 2™ smaller than A, , so that the
step hl is restored exactly if the described step doubling process is repeated m -1 times.
Furthermore, we choose the time £, to be an integer amount of steps hl later than £, so that
after restoring the original step size A, the step boundaries are again in phase with the
original step sequence A,. The latter condition is useful because of certain advantages of

having the same step boundaries for parallel orbits, as will be discussed later in this Chapter.

3.5 Structure of the solution process

The predominantly chronological order in which tracking observations are collected, and the
sequential character of a numerical integration process in which time is the independent
variable, impose a primary structure upon any orbit determination programme that will be
time-organised. The existing SATAN-A software package consisted of two main programmes
with distinct tasks, namely an orbit integrator to produce the satellite positions and variational
partials for the epochs of the observations, and a second programme that would construct and
invert the normal matrix. In order to converge a parameter solution, the two programmes
would be run alternately. The time span of the orbit arc in the solution is processed twice
(namely first by the integrator, then by the processing of the observations), and this approach
will be referred to as a double-loop structure. Because of the two separate processing loops
all state vectors and partials produced in the first loop must be temporarily stored, only to be

discarded again after completion of the second loop.

Two disadvantages of the single-arc / double-loop process in SATAN are the substantial
demands with respect to temporary data storage and the relatively low level of automation,
problems that increase proportionally to the amount of data and the amount of satellite arcs
in the solution. For large parameter estimation tasks (e.g. for a full simultaneous gravity field
solution, producing many thousands of variational partials for each observation) the data
storage requirements make a double-loop structure practically impossible. The problem of a
low level of automation will mainly result in more work for the user of the software, which

will of course also become more pronounced in case of multi-arc / multi-satellite solutions.

If the two loops are combined into a single one, each observation is processed as soon as its

state vector and variational partials have been determined by numerical integration, which

58

means that they do not have to be stored at all. As mentioned above, for large parameter
tasks this single-loop structure will be the only possibility, and already for that reason this
approach was selected as the basic structure for Faust. To avoid repetitive runs towards
convergence, the entire single-loop structure of Faust is embedded in an automatic iteration
process, controlled by various convergence criteria specified by the user. In order to allow
simultaneous multi-arc solutions with sufficient crossover data density - in particular, to
allow partial structures like (2.55) between consecutive arcs or arcs for different satellites -
the single-loop structure is not restricted to one orbit arc at a time. For calculated
observations that include data from two or more epochs, the contributions of the first epoch
will be temporarily stored until all required state vectors and partials are available, and as
soon as the related equations have been added to the normal matrix the occupied disk space
is released again to minimise the need for temporary data storage. The manipulation of these

buffered state vectors and partials will be discussed in greater detail in Chapter 5.

The above description shows that,

while the central process moves

forward in time, many different tasks

may have to be performed, like

processing an observation, storing or
retrieving a set of variational partials,
storing or retrieving a normal matrix

from disk, starting or finishing an

Y
[integrate arcs | | Read from fiie |

process, etcetera. On this basis, the -

orbit arc within the multi-arc

time-organised loop in Faust has

been set up as an explicit 'event

handler' that processes any of a

variety of tasks as soon as they

occur, ie. in strict chronological

order. The overall concept is

illustrated in Figure 3.3.

The inner loop in the Figure
represents the time-organised event
handling step, and will be executed
once for each of many thousands of

‘events' that may occur within a Figure 33 Processing sequence of Faust

certain solution process.

59

The outer loop represents the iteration process towards convergence of the parameter
solution, and will only be executed a limited number of times (or perhaps just once) during a
particular run. Most of the occurring events will require the availability of one or more
satellite state vectors and sets of variational partials. In the single loop structure, these will in
principle be determined in strict chronological order while proceeding from the start to the

end of the entire solution period, for several satellite orbits in parallel and / or in succession.

The event handler structure itself resembles the working of a computer programme,
proceeding from one command statement (event) to the next, according to the intentions of
the programme. In analogy, the user interface that is discussed in Appendix C contains the
programming language to specify, at a high level, the sequences of events that should be
handled for a particular application. The design of the code as an explicit event handler
offers substantial freedom for future extensions without the need to modify the central
structure. Faust should therefore be considered as a software platform that can be extended
with arbitrary modules, rather than as a single purpose programme. Most of the main
modules like input handling, the parameter structures, the orbit integrator and all normal
matrix management, can be used in different combinations and for different purposes by

setting up a new input file that results in a different sequence of events.

As an example, the recombination of earlier computed normal matrices into a multi-run
solution is also handled by Faust. In that case, the total parameter estimation task will still be
specified in the usual way, but with a few extra input commands to indicate that the
programme should not compute a normal matrix internally but rather read previously
generated normal matrix files. Most parts of the code, like input handling, the inversion of
the matrix, the handling of weights and constraints, producing output statistics, etcetera, will

be used in exactly the same way as would be done for a normal parameter estimation run.

The double-loop structure of SATAN allows one option that would not normally be included
in the basic single-loop programme, namely the fine tuning of a parameter estimation task by
simply generating different normal matrices that all use the same set of a priori parameter
values, but different weights, constraints or data editing rules. In the adopted single-loop
structure this would require integration of the same orbit ephemerides and variational partials
for each different run, which is not very efficient. For this reason, an option is included in
Faust to still generate an ephemerides file (unless, of course, such a file would become

prohibitively large) and use this file as input ephemerides for several additional runs, each of

60

which will then be very fast because the time-consuming numerical integration process is
eliminated. This effectively implies that Faust can operate either in a single-loop mode or in
a double-loop mode. The optional use of ephemerides files is also indicated in Figure 3.3, as
an alternative to the numerical integrator for obtaining the state vectors and partials at the

times of the events.

3.6 Parallel integration of satellite orbits

The strictly chronological processing sequence in Faust implies that in simultaneous orbit
determination runs the orbits and variational equations for two or more satellites may have to
be integrated at the same time. If the integrator is used - i.e. if the ephemerides are not
available from file, or during any process iteration
other than the first - the program will integrate from
one event to the next. If several orbits are integrated

in parallel, the integration time £, will always be

held the same for all these parallel orbits, even if

only one of the orbits is affected by the event. This

principle of integrating the arcs in parallel rather than

sequential is illustrated in Figure 3.4.

The approach of keeping parallel arcs at exactly the
same internal time, combined with the mapping

arrays described in Section 2.6, has several distinct

advantages. The Gauss-Jackson integrator is

implemented in the form of a single subroutine
(marked G-J in Figure 3.4) that will take one

integration step for just one of the included satellite

arcs. Together with the arrays for parameters and

partials, the mapping arrays from Section 2.6 that

belong to that particular arc are passed to this routine
as input variables. Within the integration routine the

mapping arrays are treated as a two-dimensional Figure 3.4 Parallel integration of all

array, eliminating the last index of array M, (note relevant arcs, with index N running
from 1 to the total amount of arcs in

that in FORTRAN arrays are stored linearly in i setition.

61

memory in such a way that the first index increases fastest, the last index increases slowest).
This corresponds to passing a single 'sheet' of the array M, to the integration routine, as
illustrated in Figure 3.5. The routine itself, and any lower level routine, will therefore not be
aware of the presence of more than one satellite arc at a given time. In order to integrate
orbits and variational equations that are parallel in time, we can now call the integration
subroutine several times at each time step - once for each orbit - while passing the same
vector with parameters (of which there is only one) but different sheets of the mapping array.
The integration routine - or any lower level routine - is organised (0 access parameters via
the particular sheet of M, that has been passed as input. As a consequence, each satellite arc
within the total solution process uses its own ringbuffers for the accelerations, velocities and
position. The ringbuffers related to the other parameters and the variational partials, however,
are defined only once in the entire programme, since the mapping array will take care of

navigating through these arrays.

4

Parameter type

Pointers for arc n

- -
-
-y
-
-

Subroutine

V |
Location i A Amount

Figure 3.5 The pointer array M, treated as a set of arrays, one for each arc in the solution.

Because all parallel orbits take the same time step within a single process step, physical
quantities that are only dependent on time do not have to be computed more than once, as

long as the integration steps of different arcs are in phase. Such quantities include for

62

instance the evaluation of the position of the Sun, Moon and planets and the nutation series
for the Earth's attitude in inertial space (as required to compute the employed reference
frames, or Earth and ocean tides), which are described in more detail in Appendix A. Due to
such centralised computations the single-loop process for a simultaneous solution becomes
more efficient than a combination of separate processes for each individual satellite orbit
would be. Of course, this increased efficiency only affects relatively small processes (up to
several hundreds of parameters). Large parameter estimation processes will always be
dominated by the need to construct the normal matrix according to (2.20), involving many

millions of floating point operations for each observation O, .

The initialisation of the integration process for each arc is implemented as one of the ‘events'
indicated in Figure 3.3. Like the main integrator it is implemented in the form of a one-arc
only subroutine, that receives the appropriate sheets of the pointer arrays for parameters and
partials as input. Ending an arc is yet another event that mainly involves various

housekeeping measures, like the closing of a possible orbit output file.

This modular implementation of arc-related events makes it very easy to include parallel
and / or successive arcs within a single estimation process. A transition to a new arc is
characterised by a sequence of an 'end arc'-event, followed by a 'start arc'-event for the same
satellite, at the same epoch. To the processing of observations that depend on two epochs in
successive arcs, it does not make any difference if between these two epochs the satellite has
switched from one arc to another or not : the processing of observations is just another
independent event in the processing chain. In this way any combination of arcs - with or
without gaps between arcs - can be combined into the solution process of Chapter 2, with a

maximum that is only determined by easily modified array sizes within the code.

As an example, orbits for the ERS satellites can conveniently be converged in batches of
seven 5-day arcs within a single run, covering a full 35-day repeat cycle of the multi-
disciplinary mission phase. Parallel orbits for the ERS tandem mission can be converged
within a single process for a full 35-day repeat cycle, creating interesting new possibilities
like sharing atmospheric drag parameters or solving for differential accelerations between the
two satellites. Orbits for multi-satellite constellations like GPS could easily be solved
simultaneously, as could orbits for any combination of satellites that employ satellite-to-
satellite tracking. It is also possible to solve satellite orbits that are far apart in time, for

instance GEOSAT arcs in combination with ERS and TOPEX/Poseidon. The dense networks

63

of crossovers between all these arcs might then help to improve the orbital quality of the
GEOSAT arcs, despite of the relatively large noise level in the crossover datasets caused by
the considerable sea surface variability between crossings. Within the framework of this
study it is in particular the analysis of altimeter crossovers that is of interest, both between
parallel orbits for ERS and TOPEX/Poseidon and between successive arcs for each of the

satellites, constructing the integral 'measurement device' referred to in Chapter 1,

3.7 Orbit files and ephemeris files

Throughout this thesis, a name convention will be used that distinguishes between 'orbit files'
and 'ephemeris files'. In Faust, an orbit file is an output file of the program that will be
produced for each arc in the solution for which this is requested in the user input. These files
contain data records with a time tag and the six elements of the orbit state vector at that
time, being the 3 elements of the Cartesian position and the 3 corresponding elements of the
velocity vector. Output orbits will in general be defined in the terrestrial reference frame (see
Appendix A for details about reference systems in Faust) which is the most convenient frame
for applications of orbit data. The typical interval between successive state vectors in the
orbit files will be 30 seconds, which corresponds to the nominal integration step size adopted
for the low Earth orbits of the ERS satellites and TOPEX/Poseidon. In case of a temporarily
reduced step size, the orbit output records will still be produced at the same constant time

intervals that are related to the nominal step size

Ephemeris files are only of internal interest to the program, and are related to a particular
solution process. These files contain the orbit state vectors and the variational partials
(defined in the J2000 reference frame in which the integration will be performed) but only
for the epochs of the events, for the current process. Ephemeris files are used in order to
avoid repetitive integrations for the same combination of a priori parameter values, as
discussed in Section 3.5. An ephemeris data record is therefore not related to a single arc
within the solution processs but may contain state vectors and variational partials that relate
to more than one arc, if the event in question does. The freedom to change the setup of the
process for successive runs but still use the same ephemerides is limited, in the sense that it
is always possible to skip certain events (for instance, we might eliminate data from one or
more stations), but that it is obviously not possible to add any new events without having

used the numerical integrator to obtain the corresponding state vectors and partials.

The force model Chapter 4

In the previous Chapters the equations of motion of the satellite have been mentioned as the
basis of the computation of the orbital position and the variational partials, and therefore of
the calculated measurements. This Chapter will describe the acceleration models in Faust that
together form the function f, in the numerical integration process. As mentioned in Chapter
1, Faust has derived most of its force models from SATAN-A, although all code has been
rewritten from scratch. The coding of the accelerations in the SATAN package had become
particularly blurred, as most force models were evaluated within a single subroutine. Apart
from the need to rewrite the code in a more systematic way and to incorporate the new
structures of parameters and partials in Faust, an overhaul of the force models was also

required to upgrade all parts to double precision arithmetic.

In first order approximation the orbit of a satellite around the Earth is an elliptical Kepler
orbit dominated by the central body gravity force of the Earth. Early methods for orbit
determination exploited the analytical separation between a main force and several small
perturbing forces, but with the arrival of fast computers most analytical or semi-analytical
methods have been superseded by purely numerical ones. The numerical integration of the
acceleration components in X, y and z as implemented in Faust and discussed in Chapter 2
is known as Cowell's method, and is at present the most common approach in satellite orbit
determination. It has the advantages of simplicity and general applicability, at the expense of
losing analytical insight in the orbit perturbations and not exploiting the knowledge that the

motion of the satellite is essentially a perturbed Kepler orbit.

The force models in Faust can be categorised in the three groups of conservative force
models, surface force models and empirical force models; relativistic effects of any form are
not inclu&cd. Each model will be discussed with special attention to the partial derivatives
required in (2.53). Further emphasis will be on model elements that have been adapted to
special applications in multi-arc or multi-satellite solutions, for instance for the possibility to

share drag force parameters between arcs.

65

Physical reality can only be represented by mathematical models after the definition of
adequate spatial and temporal reference frames. The systems that are used in the force
models are an Earth Centered Fixed frame (ECF), the True Frame of Date (TOD) and a
semi-inertial frame (J2000), with UTC as the assumed time standard. The details of these
frames, most of which follow internationally standardised concepts, are not discussed in this

Chapter. The way in which they are determined in Faust is summarised in Appendix A.

4.1 Gravity

As mentioned above, the dominating acceleration component is the central body gravity of
the Earth, but the asymmetrical mass distribution within the planet also causes some of the
largest perturbations of the orbit of Earth satellites. The gravitational acceleration that any
point mass experiences towards another mass is given by the well-known Newtonian formula

_Gm

a @.1)
M T4

with G, m and r being the universal gravity constant, the mass of the attracting body, and
the vector between the two masses respectively. The relatively close distance between a
satellite and the Earth implies that the inhomogeneous planet can not be considered as a
point mass. The total gravitational acceleration would be obtained by integrating the
accelerations (4.1) caused by all mass-elements dm of the planet, which is hardly usable as
a numerical model. More pragmatically, the gravitational acceleration is computed as the

gradient of a scalar potential function U :

iy = -4
Ir|?
< =~ g =~ =R 4.2)
dm
U= .-fof "r"2
xyz

Gravity is the definitive example of a conservative force, and the geopotential U is therefore
conveniently described by the general solution of the Laplace equation V2U =0. A practical
representation of the geopotential is by means of a surface around the Earth that satisfies the
condition that U is constant. This surface reflects the global variability of the gravity force
by means of its topography, as well as the conservative character of gravity because it is
closed and continuous. Because static liquids do not support internal tangential stresses, the

constant part of the topography of the Earth's ocean surfaces is approximated by a similar

66

surface - the geoid - at which the effect of the normal acceleration due to the gravity
potential U, in combination with the potential due to the Earth's rotation

o 102052 4 y2)
u, = 2@ (x* +y*), is constant.

Taff (1985) described comprehensively how the potential equation is solved by separation of

variables in the spherical coordinates radius, longitude and latitude, i.e. by assuming a
function of the form

U =R(r) A(A) D(¢) 4.3)
The matching general solution is then given by the spherical expansion series
& l a I
U= —ﬂ{l I (—‘] (Cine0s (md) + S, sin(md)) P["(sin ¢)
r 1=2 m=0\7T

4.4)
The factors C;, and S,,, together determine the amplitude and phase of a component of

degree | and order m. The associated Legendre functions P ,m , employed as the orthogonal
functions in the expansion series (4.4), are used extensively in the numerical processing of
gravity and tides. Some of their properties are used in the remainder of this Chapter and are
therefore briefly recalled in Table 4.1. In this thesis, the geopotential model coefficients are

always related to the normalised Legendre functions, even if for convenience they are simply
written as P;”.

As is apparent from (4.4), the components of the gravity field for m =0 are independent of
the longitude, and are known as zonal harmonics as they divide the globe in latitudinal
zones. In an alternative representation, the zonal contributions are sometimes separated from
the double summation and included in their own series in / only, to omit the meaningless
factors with coefficients S;, by starting the second summation at m =1. In first order
approximation, the Earth forms a rotationally symmetrical ellipsoid with semi-major axis a,
equal to the mean equatorial radius of the Earth. From this it becomes clear that the
contribution that is linear in sin@ (i.e. the zonal C,,) must be substantially larger than the
other contributions, in order to represent the flattening of the ellipsoid. The components with
0 <m <1 are called tesseral harmonics, while for / =m the part ®(¢) aliases into the
part A(A) : the latitude-dependent term can no longer be distinguished from the longitude-
dependent part. Such components can therefore be considered independent of latitude, and

are known as sectorial harmonics as they divide the globe in longitudinal sectors.

67

Legendre polynomial P(x) = !—1!’ d_’ (1 - xz): 4.5)
of degree [! 21 dx!

Associated functions Wi _ ot ouive a4 (4.6)
of order m P () = (1-x%) dmef(x)

Recurrence relations P[? (x) =1

(e.g. Engels, 1980) P (@) =x

m 2[+1
Ppy(x) = Tomal

m I m
CxPU) - = PLE | @D

I-m+1

PP - == (m-DxPT @)+ (meDET @) | €0
-X

Normalisation I_’;"(x) = L P;"(x) 4.9
hﬂm
B 1
N, el (4.10)

(4.11)

Im

i J (1+m)!
2(1-m)! (21+1)

Table 4.1 Properties of Legendre polynomials and functions.

The gravitational acceleration in a point (x, y, z) in the ECF frame follows from (4.2) as the

gradient of the potential. In principle, the elements of this vector would be computed from
6U_8U8r+6U6¢+6U6}.
ox or dx 0¢ O0x JA Ox

with similar equations for y and z. The involved partial derivatives of spherical coordinates

4.12)

with respect to cartesian coordinates follow from straightforward trigonometry, while the
partial derivatives of the geopotential with respect to the spherical coordinates can be
computed by differentiating the corresponding components of (4.3) within (4.4). For
numerical evaluation of the gravity field, however, an algorithm is commonly used that is

more efficient than the standard approach of computing all partials in (4.12) explicitly. This

68

faster algorithm by Miiller (1975) creates a shortcut through the chain rule formulations by
exploiting the fact that derivatives of sines and cosines are again cosines and sines, while
derivatives of Legendre functions can be rearranged in other Legendre functions of lower
degree. The analytical expressions for these partial derivatives can then be manipulated into
new series expansions of lower degree or order, resulting in recurrence relations between
terms in the acceleration components directly, This leads to a useful decrease in the amount
of numerical operations for the evaluation of the geopotential. From definition (4.6) for the

Legendre functions it follows that

a” 0. _ > (™) (et
i P = P 4,13
Ging)” , (sing) = cos™ ¢ P, (sin ¢) 4.13)

The notation P;(m), used here for the m™ derivative of the Legendre polynomial

P"(sing) = cos™ ¢

P, (= B), should not be confused with the associated Legendre functions P,” of order m.
Using (4.12) and the property (4.13), direct expressions for the acceleration components are

derived in the form

¥=-Ax + B
.):,' = ._.Ay — C (4.14)
Z2=-Az +D
with
GM 0 fa ! . o [a ! 1
Ad===|1-57 _e]P:(u) + EE[J]P"T (Cim @ + SimPrm)
r =2 \7 I=2m=1\T
GM < : fa‘\‘ m
B = ==Y Y || P (Clntty * SinBoa)
rc Is2m=1\7)
4,15
G w | fa \! ()
C = TEZ —2 mPf(m)(C:mBm—I * Slmam-l)
rc 1=2m=1\7)
GM = (a,Y 1 = L faY (m+1)
£} | = E"}[_’] PR=F N [_*] P (Com @ * SimPr)
r =2 \T Colzmea\ T

In the above the zonal contributions have been separated from the other harmonics, to show
the similarities between the terms A, B, C and D more clearly. The factors @ and 8 are

given by

69

a, = cos™(@)cos(md) =a, _,.a; - B, _,.B;

B, =cos™(@)sin(md) =B, _,.a +a _ .B
As shown by the final terms on the right-hand side in (4.16), these numbers are also

(4.16)

computed from efficient recurrence relations without the need to evaluate large amounts of
trigonometrical functions, especially since the basic transformation relations between

spherical and cartesian coordinates conveniently provide

@, =cos¢ cosA =

4 4.17)
B, = cos¢ sinA = b4
r

The argument of the Legendre polynomials is sin¢ = E, so the Miiller algorithm does not

~ | *®

r
require any sine or cosine function to be evaluated within the computation of VU (r, ¢, A).

The parameters within the gravity field model that can be solved for by Faust are the main
gravity parameter o = GM (although it will usually be kept fixed at its well-established a
priori value) and the coefficients C;, = and S, up to a desired degree and order. The partial
derivatives for the central attraction parameter ;. with respect to x, y and z follow directly

from noting that all terms in (4.15) are proportional to this parameter :

- - v - 4.18
a. =nd 2 = 4.18)

This implies that after evaluation of the acceleration components the required explicit partials
are computed by simply dividing each acceleration component by p (a principle that is
obviously valid for any parameter that forms a scaling factor to an acceleration vector). The
partials for the coefficients C 1m and S 1m are also obtained in a straightforward way, because
within the series expansions of (4.15) only one term at a time will depend on a particular

coefficient. For Clm we find

! 1
04 _ GM(4.) penn, 0B _ GM(4) o,
0C,,, r* \r) e 0Cy,, r* \r) Lo o
ac _ oM (a) aD _ GM(a,) -
- “lm Pj(m) ﬁm_l - Sl Pf(md) @,

The expressions for S Im are identical, except that all a's are replaced by B's and vice versa.

70

For direct height measurements between the satellite and the ocean surface - ie. radar
altimetry - additional partials are computed that correspond to the explicit term in (2.50).
These exploit the direct relation between the geoid undulation (the height of the geoid above
the reference ellipsoid) and the local value of the gravity potential. These explicit altimetry
partials will be described in Chapter 5.

4.2 Earth and ocean tides

In analogy to (4.2), the disturbing potential at the satellite's position L. due to a point mass
M, at geocentric position 4 is given by
1 Es i rd

U, =-GM - (4.20)
‘ A RNTAR

which can be readily verified by writing out VU, as the satellite's acceleration due to M.
By writing the scalar product as Lk, 200y cosy, with { being the geocentric angle
between the satellite and the disturbing body, Musen (1975) developed the series expansion

GM, &
Y,

Ud -
I‘d 1=2

l
-ri] P, (cos) (421)
Ta

The geocentric angle is usually expressed in the more practical terms of the ECF
longitude and latitude of the satellite (A and ¢) and the TOD ascension and declination of
the disturbing body (a« and &), while the Legendre polynomials are again developed in

series expansions in associated Legendre functions P,”, as was done in the geopotential :

I
GM, = ! r
U =—=2Y ¥ ¢, |=| P (sin8) P/ (sind) cosmH (4.22)
I’d =2 m=0 J"d

Here, the hour angle H = (A +0,) -« is the difference in longitude between the satellite's
meridian and that of the tide-generating body; the Greenwich angle BG connects the ECF
frame with the TOD frame (see Appendix A). For satellites around the Earth the ratio
between the geocentric distances r, to the satellite and r, to the disturbing body is about
0.015 for the Moon and 0.000045 for the Sun. This means that the contributions to (4.22)
rapidly decrease with increasing degree / . In most cases the series are therefore truncated for

[>3, leaving just seven terms in the series (4.22).

71

The gradient of U, provides the direct perturbation of the satellite's motion due to the
disturbing mass (i.e. the Sun or the Moon), while the redistribution of the mass of the Earth
under the influence of the disturbing body results in time-dependent variations of the
geopotential. This redistribution is expressed by the dimensionless Love number k :

U, =U~+ (1+k)U, (4.23)
in which the static geopotential is given by U, the direct disturbing potential (4.22) by U,
and the increment of the geopotential, as induced by the disturbing body, by the factor kU ;.
The influence of the tidal redistribution of the Earth's mass upon the orbit of a satellite is
now most practically modelled as a set of time-dependent corrections AC, _(f), AS,,(¢) to
the static geopotential of Section 4.1. The total tide at any time is the result of a combination
of separate tidal constituents, each determined by a specific frequency and amplitude. Every
partial tide gives rise to a range of corrections AC, (), AS,, (f) up to a relevant degree
and order that may vary for different constituents. The total correction to an individual

geopotential coefficient is then found by accumulating the contributions of the tidal

constituents for a given degree and order.

Doodson (1921) expressed specific tidal frequencies 95 as a linear combination of

astronomical angles D i that are closely related to the fundamental arguments of the Earth's
nutation series (Appendix A) :

0.(r) = é n;D;(r) (4.24)
in which :
D =7=0;+w-s Time angle in lunar days since descending node of the Moon.
D,=s=F+N Mean ecliptical longitude of the Moon
D,=h=5-D Mean ecliptical longitude of the Sun
D,=p=s-L Longitude of the mean perigee of the Moon
D, =N'"=-N Longitude of the mean ascending node of the Moon
Di=p, =s -D -L' Longitude of the mean perigee of the Sun

The six (small) integers n; are usually given in the form of the Doodson argument
D, =n[5+n,/5+ny/.15+n,/5+ns/S+n, (4.25)
allowing a range from -5 to +5 for the digits n, to ng, which is sufficient for all relevant

tidal frequencies. The principal semi-diurnal solar tide for example (Darwin notation S,) has

72

Doodson argument D =273.555, meaning that n, =2, n,=2, n;=-2, n,=ng=ng=0.

As an alternative to (4.22), the tidal potential may now be expressed in tidal frequencies :

U, =) Hcos({, +6,)) (4.26)

The factor H expresses the amplitude of the tidal constituent, while the phase angle {, is
either O or —l;-. in other words it turns the cosine into a sine for certain constituents. Starting
from this, Eanes et al. (1983) modelled the changes in the geopotential coefficients due to
solid Earth tides as

AC,, =AY kHcos0, (I-m even)
5
=A_Y k Hsin6, (1-m odd)
s
4.27)
AS,, =AY kH(-sinf) (I-m even)
=A, Y k H cosb, (I-m odd)
s
with the amplitude factor A defined as
A =) (4.28)

" o A (25,)
in which Som is the Kronecker delta. The Love numbers k_ in (4.27) are in principle also
dependent upon the tidal frequency (e.g. Matthews et al., 1995); hence the subscript. In
practice, part of the tidal effect is not included in the form of corrections to the geopotential
coefficients via (4.27) but rather taken into account in the form (4.23) directly, using the
main terms in the expansion for the tidal potential (4.22) with a nominal Love number k g

The acceleration due to this frequency independent part is (e.g. Dow, 1988)

GM,a] r r,

VU, =k, ,———-|(3-15cos*y) = + 6cos § —= (4.29)
0 3.4 r r
2ryr, s d

The Love numbers in (4.27) are therefore smaller factors & , that represent the frequency-
dependent part only. As a result of this approach many of the remaining contributions
become so small that they can be neglected altogether, thereby reducing the amount of
numerical operations in the evaluation of the tides. Following MERIT standards, Faust only
includes six remaining diurnal and two semi-diurnal solid Earth tides in the summations of
(4.27). For the frequency independent Love number k_, . the standard value of 0.30 is

t
adopted.

73

The modelling of the ocean tides is more complicated than that of solid Earth tides, mainly
because the interactions between the liquid oceans and the land masses induce complicated
patterns of tidal phase lags that depend on the tidal frequencies in a way that can not just be
incorporated in the form of small variations in Love numbers. The expressions for the

corrections to the geopotential in Faust follow the model by Cartwright and Taylor (1971) :

AC,, =B, Y [c,c08 0, +5,,sin 0] (4.30)

AS,, =B, Y [Sinc080, - c,,sin 0] (4.31)
5

Lower case coefficients ¢ and s are used here for the ocean tides, to avoid confusion with
the geopotential coefficients. The amplitude factor B, in (4.30) and (4.31) is given by
4wGp, 1+k
B, = “ . (4.32)
g 21+1

in which p_ is the density of seawater and g, is the nominal gravity acceleration at the

geoid equipotential surface. An ocean tide model then consists of ranges of coefficients ¢, _
and S, for various tidal constituents, each defined by their Doodson argument (4.25) and
Love number k.

The tidal parameters that can be solved for by Faust are the coefficients ¢, and s, for the
ocean tides, for as far as resulting from a specified range of constituents. The partial
derivatives for these parameters are obtained from an expression in the gravity partials :
o _ _ax 9C,, . % 85
aclm ac!m aclm aSIm acfm

in which the partial with respect to the geopotential coefficients on the right hand side are

(4.33)

described in Section 4.1, while the other partials follow from (4.30) and (4.31) directly. For

Cin WE find for instance

9AC,, aAS,, ,

—— =B, cos 0, = -B,, sin 6, (4.34)
dcy, acy,

Because of the dependency between the gravity coefficients and the tidal parameters of the

same degree and order, the variational partials for the tides follow a construction like (2.54)

in terms of the implicit partials for the geopotential coefficients. This leads to slightly

adjusted relations within the Gauss-Jackson integrator as well as in the initialisation routine,

Precise details of these differences are documented by comments in the code at the relevant

74

locations. Within Faust, the tidal partials form the only ones that relate to mutually dependent
parameters, and obviously the tides can only be solved for if at the same time the gravity
field parameters are included as estimated or considered parameters up to the required degree

and order, as the gravity partials in (4.33) would be zero otherwise.

4.3 Third-body attractions

Apart from the Sun and the Moon, several planets cause non-negligible perturbations of the
satellite orbit and must therefore be included in the acceleration model. Because of the large
distances to the planets they can be modelled as point masses, producing Newtonian
attractions of the form (4.1). As discussed in Appendix A the J2000 frame in which the
equations of motion of the satellite are described is only a semi-inertial geocentric frame, and
the effect of gravitational attractions of the other masses in the Solar system upon the
satellite is therefore given by the difference between the planetary attractions of the satellite

and of the Earth respectively, as expressed by the gradient of the potential (4.20) :
aU, X; =X, X,]

- -GM - (439)
ox, N, -1 e, 12

with similar expressions for y and z. The only six bodies in the solar system for which the

acceleration (4.35) is non-negligible to Earth satellites (as determined by Melbourne et al.
(1983) from the ratio of their mass with respect to the third power of their distance) are - in
order of importance - the Moon, the Sun, Venus, Jupiter, Mars and Mercury. The required
luni-solar and planetary ephemerides for the time of interest are obtained from interpolation
in astronomical tables. For numerical efficiency this is done only once at each time step of
the numerical integrator, namely at the same moment that the rotation matrix from the J2000
frame to the TOD frame is determined (see Appendix A). For the Moon and the Sun, the
frequency independent luni-solar tide (4.29) is also added at that point.

The mass M, of the planets is not entered into the equation (4.35) directly, but rather
expressed as a ratio to the mass of the Earth according to

M M
GM, =GM,. M“ = Md (4.36)

This creates the possibility to observe the main gravity parameter p of the Earth from the
third-body acceleration, by dividing its three Cartesian components by .

f i)

44 Atmospheric drag

The first surface force that will be described is the decellerating effect of the upper layers of
the atmosphere, which is mainly of importance to LEO satellites. The atmospheric drag is
modelled as the dynamic pressure on the surface of the satellite, projected in a direction

opposite to its velocity with respect to the atmosphere :

a,=-Cp.ipV; Sy (4.37)

Each of the components of (4.37) will be shortly described, with some references to a more

elaborate treatment in literature.

For the atmospheric density p various models have been introduced over the years, but none
of them can claim to be very precise. Ultimately, the poor quality of density models results
from a lack of detailed knowledge of the behavior and composition of the upper layers of the
atmosphere. In Faust, three alternative thermospheric models have been implemented, being
the CIRA model by Rees et al. (1990), the DTM model by Barlier et al. (1979) and finally
the MSIS model by Hedin (1983 & 1987) which will be used in most of the applications in
later Chapters. All these models use current and time-averaged values of the solar flux at
10.7 cm wavelengths, the 3-hourly geomagnetic index Kp’ and the latitude and height of the
satellite to compute number densities for separate gases in the upper atmosphere. Because the
subroutines for the three models in Faust have all been made available by their respective
authors, their own descriptions are recommended for the precise details of each model.
Schidlovsky (1976) and Herrero (1985) demonstrated that even sophisticated thermospheric
models may regularly produce values that are an order of magnitude incorrect. Improvement
of density models must therefore still be considered as an important subject of study in

precise orbit determination for Earth satellites.

The velocity relative to the atmosphere ¥/, is computed in a straightforward way from the
vectorial sum of the satellite's orbital velocity in the ECF frame and the velocity vector of an
atmosphere that is assumed to rotate with the planet. The unit vector ¥ in the direction of

V, follows immediately from the same trigonometry.

The reference surface S is satellite dependent, and will only be time independent for
spherical satellites like LAGEOS, Starlette, GFZ, etcetera. For other satellites, especially for

those that follow intricate attitude control algorithms (e.g. for solar panel pointing), the

76

computation of this surface is not straightforward. For ERS-1 and ERS-2, Faust uses the
GUESS-model tables that are described in a comprehensive way by Ehlers (1993). These
tables provide pre-computed values for an effective visible surface area A cos §; in which
0, is the particle flux incident angle, itself determined by two angles in space, and A4 g is the
nominal surface of any of 29 plates in a macro-model for the ERS geometry. The actual
surface value will be interpolated as a function of the two directional angles, taking into
account the time-dependent attitude of the ERS solar panel. In comparison with elaborate
ray-tracing methods the GUESS-models are efficient in terms of required CPU-time - the
geometrical projections and angle-dependent interactions of the particle flow with the surface
have been computed only once, when the tables were created - at the expense of more

substantial RAM requirements for storing the relatively large table.

For TOPEX/Poseidon, Faust uses the NASA box-wing model by Marshall ez al. (1995). Each
of the plates in the box-wing model is projected towards the direction of the velocity relative
to the atmosphere, and contributions of all plates that are visible in the direction of projection
are accumulated. The related subroutines implemented in Faust are virtually unmodified
copies of routines used in GEODYN, as made available by NASA/GSFC,

The drag scale factor C p in (4.37) is used to absorb the imperfections in any of the other
model factors, and is among the parameters that can be solved for by Faust. An important
feature of the GUESS models for ERS and the Box-Wing model for TOPEX is that they
reduce the inaccuracy in the modelling of the surface S to a level that is much lower than
that in the density p, while the velocity relative to the atmosphere is known with sufficient
accuracy throughout the integration process. This implies that the scale factors C p - having
a nominal value of 1 - mainly absorb the errors in the employed density model. To account
for short-term fluctuations in density and to suppress accumulation of errors in the numerical
integration process, the total length of an integrated satellite arc is usually divided in shorter
intervals with a separate parameter C,, defined for the times of the boundaries between
intervals. The actual value at a certain time is found by linear interpolation between the

values for the start and the end of the interval. With t,sSt<t o0 WE find

CD (tn) = Cn 4 - I~
- Cp(t) = 22—0C, + 2. C ., (4.38)
CD (tn-rl) = Cm-l :'“1 _tn tn*l _tn

Obviously this requires one more parameter than there are intervals, so that each interval has

a parameter at the start and at the end. The evaluation of the drag force then produces

77

explicit partials for the two C,-parameters just before and just after the time of interest :

' aa&ag _ b = ¢ a
d CDn 1'ml a rn unscaled
e, =Co®.a, ., = | o - (4.39)
“dmg _ n
~ 0Cp ., ta~t simcalad

with @ S being the unscaled part in the drag acceleration (4.37).

Because of Faust's inherent multi-arc / multi-satellite approach to orbit determination, two
important options have been included in the programme. At first, the above modelling of
drag scale factors implies that the very first and last parameters in an arc only receive
information from one adjacent interval, while all others receive data from two intervals. This
means that the first and last scale factor of the arc are less well-determined than the others.
To prevent a resulting deterioration of orbital precision in these intervals, the corresponding
drag parameters often receive stronger constraints than the central parameters, or the first and

last interval in the arc are given a longer duration than the others.

CASE A CASEB
ArcN+1 ArcN+1
))
: .
ld I_g_ 2 10 !_; 2
ArcN - K ArcN 7 S
S 3
a 8
14][9 7 = B[O L1 3
2 7 Rl 7
. o | .
<{_ ﬂfﬂ?f; ~. | “# 4 —Shared G,
1
Arc N+1 starts with a new G, parameter First C parameter of arc N+1is

the same as the last CD of arc N

Figure 4.1 Consecutive arcs can be made to share the drag parameter at the arc transition,
by shifting the subvector with Cy-parameters for the second arc and make it overlap with that
of the first. All that needs to be done is modify the element of the array M, (see Section 2.6)
that provides the offset of the second subvector within the parameter array.

78

A
&1
s
@9\0 : ____7
w A A1 T
; l 7 &
| 5
> :
Qo 7 a ' 7 L1
s@‘ / SR b
S - o
> L g
T B
S __ - B

N

Shared G,
Arc N Arc N+1
1 s LS S %
Arc M Arc M+1 "
. e — ERS-2

Figure 4.2 During the ERS tandem mission, arcs for the two satellites that overlap in time can be
made to share the C,, parameters during the overlap period, by manipulating the pointer array M,

However, if several consecutive orbit arcs for one satellite are computed within a single least-
squares process, the time tag of the last drag scale parameter of one arc coincides with that
of the first parameter of the next arc. In that case, it makes sense to use the same parameter
for both cases, rather than solve for two separate values. This improves the observability of
the corresponding parameters and improves continuity between consecutive arcs. In addition,

it may help to decouple the first drag scale factor in the arc from the elements of the initial

79

state vector, with which it is often highly correlated. Because of the pointer structures
discussed in Section 2.6, the option to share drag parameters between consecutive arcs can be

easily implemented by slightly modifying the mapping arrays, as illustrated in Figure 4.1.

A second interesting option is related to simultaneous solutions for the ERS-1 and ERS-2
tandem mission, during which the two satellites are separated by 60 degrees in orbit or about
18 minutes in time. The Earth's rotation during the interval between crossings of the satellites
over a given latitude will be less than 5 degrees. This means that the two satellites are
essentially passing through identical atmospheric conditions, especially because the drag scale
factors always relate to an interval of several hours. As a consequence, it is realistic to let the
two satellites share their drag scale parameters, if we recall from the above that the main task
of these parameters is to absorb the atmospheric density errors (note that systematic errors in
the surface S will also be almost identical for the two satellites, as both satellites are using
the same GUESS model tables and follow identical attitude control algorithms). This is
implemented by letting the subvectors with drag parameters for the two satellites overlap
completely (see Figure 4.2), possibly with a shift to allow arcs for the two satellites to start

at different epochs. The effects of combined drag parameters in the ERS tandem mission will
be investigated in Chapter 8.

4.5 Radiation pressure

Faust accounts for the usual three forms of radiation pressure (see e.g. Haley, 1973), as
caused by direct solar radiation, solar radiation reflected by the Earth (albedo), and infra-red
radiation produced by the Earth's black-body temperature. Although albedo radiation is
physically related to direct solar radiation, it is much more similar to infra-red radiation from
a geometrical point of view. For this reason, the direct solar radiation is modelled separately
while the Earth albedo and infra-red radiation are grouped together into a single force model.
As both these force models are neither new nor highly relevant to the remainder of this

thesis, they will only be described here for sake of completeness.

The modelling of direct solar radiation pressure is fairly similar to the modelling of
atmospheric drag, with the obvious difference that the particle flow is related to the satellite's

position and attitude towards the sun rather than towards the Earth's atmosphere, and that it

80

disappears when the satellite enters the Earth's shadow. The basic formula is given by

Q,p = "CrUFSe (4.40)

and all terms will again be briefly explained.

The scale factor Cj, is used in a similar way as the C,, parameters for drag, and can be
solved for by Faust. Unlike with drag scale factors, it is unusual to solve for more than one
parameter C r because the uncertainties in the components of (4.40) are much smaller than
those in the components of the drag model. In fact, for the sun-synchronous ERS satellites
the factor C will often be fixed at its neutral value of 1, while solving for cross-track
empirical accelerations that will be described later in this Chapter. Because there is only one
scale factor, the arc is not divided in different intervals in the way that is done for
atmospheric drag. The partial derivatives therefore follow directly from (4.40) as the unscaled

acceleration.

The factor § is a shadow-function that is 1 if the satellite passes over the day-side of the
Earth and O in the full Earth shadow, while varying according to a sinusoidal smoothing
function during the penumbra transition. F' is the solar flux per unit area at the position of
the satellite, derived from tabulated values. The projected surface S of the satellite is again
computed from GUESS tables for the ERS satellites and from the NASA Box-Wing model
for TOPEX/Poseidon.

Earth albedo and infra-red radiation are effectively modelled in the same way as was done in
the SATAN package and described by Ehlers (1993). The only difference is the value of the
projected satellite surface used for these forms of radiation pressure. In SATAN, the same
value S was used as the one in (4.40) for the direct solar radiation, which is obviously
unrealistic, because the incident direction is always different. Faust therefore uses a constant
value for this surface, specified in the user input. Although this may not be much more
accurate than the values used by SATAN, its errors are now only due to tolerated

simplification rather than to blatant mismodelling, which is at least a moral improvement.

4.6 Thrust forces

New in Faust is the possibility to integrate over manoeuvres, as described in Chapter 2.

81

Manoeuvre information is available from ESA and NASA mission management for the ERS
satellites and for TOPEX/Poseidon respectively, tabulated in the form of effective velocity
changes in along track, radial and cross-track directions, and manoeuvre start and end epochs.
Although the tabulated velocity changes will usually be calibrated post-manoeuvre values,
they will to a certain extent be system dependent and are therefore multiplied in Faust by
scale factors with a nominal value of 1.0, which can be solved for in order to fine-tune the
manoeuvre, and absorb unmodelled effects like radiation pressure due to post-pulse nozzle
cooling. Initially, the accelerations were included in the form of straightforward block
functions within an interval of reduced integration step size that extended sufficiently before
and after the actual manoeuvre. This approach proved to result in fairly large scale factors,
apparently indicating substantial modelling errors. It was concluded that this was mainly due
to numerical problems caused by the discontiuities of the block function - with derivatives
that will be impulse functions - which interfere with finite-difference numerical integrators

like the Gauss-Jackson algorithm in a fundamental way.

To avoid this problem, the thrust force accelerations were replaced by a sinusoidal function
with the same surface area as the original block pulse, and centered in time around the centre

of the block pulse (see Figure 4.3). The formula for the thruster acceleration in any of
direction is therefore

t -1
ar = cTAT 1 - cos|2m ° (4.41)
-l

in which 4. is the a priori amplitude of the original block pulse in that direction, and ¢
the scale factor that can be solved for in analogy to various scale factors described earlier in
this Chapter. The partial derivatives for the thrust forces are again equal to the unscaled

acceleration, because @ is directly proportional to the parameter.

Because the cosine is continuous and can be differentiated to any desirable order, its behavior
is better suited for numerical integration as long as the step size is sufficiently small to
follow the sinusoidal shape. The model according to (4.41) has appeared to work well for
relatively short pulses - with durations up to ten seconds or so - but for large manoeuvres the
difference between the sinusoidal curve and the original block pulse tends to cause notable
problems, at least by requiring unrealistic scale factors. For this reason Faust will at present
still have some difficulty to integrate accurately over large manoeuvres, like those used to

change the repeat period of ERS-1. This is not a severe problem (it could in fact be solved

82

easily by using a more sophisticated model, like a block pulse with sinusoidal transitions at
the start and the end), because most orbits will simply be restarted just after a large
manoeuvre. Furthermore, altimetry data obtained around manoeuvres - if any - will in general

be rejected because of its unreliable orbital reference.

o
=
=
k3
= .y . I
§ 2 AT . § Sinusoidal pulse
/ 5 Block pul
A 7 pulse
T Y :
t, t, time

Figure 4.3 Sinusoidal thruster pulse

In Faust, the tolerated maximum integration step size s, during the manoeuvre interval (see
Section 3.4) is computed in such a way that at least eleven steps will fall within the duration
of the pulse - so that finite differences up to order 10 are non-zero - after which the real step
size h, is found by repetitive divisions of the nominal step size by two, until it is smaller

than the tolerated maximum.

4.7 Empirical cyclic accelerations

Despite of the effort invested in accurate models for the conservative and non-conservative
accelerations of the satellite, no model can perfectly take into account the complexity of
physical reality. Each model suffers either from a lack of detailed knowledge (as for
atmospheric density models, or for precise values of many geopotential coefficients of high
degree and order) or from simplifications that are inevitable if a model is to be evaluated

within a reasonable time (as by simplifying the geometry of the satellite to a box-wing

83

model, or by truncating the geopotential at a finite degree). However, the remaining nett
acceleration error can be encountered by analysing its signature either in the time-domain or
in the frequency domain. Many authors have computed error budgets for the precise orbit
determination of altimetry missions or studied the spectral power of the error signal derived
from the variability of the measurement residuals (2.1), for instance Scharroo et al. (1993a)
for ERS-1 or Tapley et al. (1994) for TOPEX/Poseidon. In terms of spectral power, peaks
occur for frequencies that form an integer multiple of the orbital revolution, with by far the
largest component for a once per revolution frequency. Such peaks can be explained from the
combined effects of gravity field mismodelling, of the satellite's attitude during it's orbital
revolution, and of various other model components with a direct relation to the satellite's

position relative to the Earth.

To reduce this error peak it has become common practice to explicitly model a periodic
acceleration of the satellite with a frequency that corresponds to one cycle per orbital
revolution. In principle such an acceleration could be applied in along-track, cross-track and
radial direction, but because the effect on the orbital elements due to a radial acceleration can
not be separated from that due to an along-track acceleration - as follows directly from the
Lagrange planetary equations - only along-track and cross-track accelerations are modelled.
This is done in the form of a sinusoidal acceleration of the satellite in these directions, each
determined by two parameters (amplitude and phase, or coefficients for a sine and a cosine

with zero phase) that are solved for. The straightforward formula used in Faust is

e, = (cysinu + c,cos u)e,AT - (c3smu - c4oosu)QCT (4.42)
in which u is the orbital anomaly of the satellite with respect to the equator, and gA - and
€ . are the unit vectors in the along-track and cross-track directions respectively. The

parameters C,, C,, C5 and C, are estimated, from a priori values of zero.

As with drag, the integrated arc will sometimes be divided in intervals with independent sets
of such parameters in order to account for the variability of the once-per-revolution error
over the duration of the arc. Unlike the drag scale factors, the once-per-revolution empirical
parameters are not found by interpolation between two values but are assumed constant over
their interval of validity. The related variational partials are therefore only produced for the
set of four parameters that relate to the time of interest. Although these parameters, if solved

for, must always be defined in groups of four, it is of course possible to fix one pair and
only solve for the other two.

84

4.8 Empirical along-track accelerations

Faust also contains the possibility to solve for empirical along-track accelerations, as an
alternative to the drag scale factor parameters discussed above which will then usually be
fixed at their nominal value of 1. Empirical along track acceleration parameters are again
defined at boundaries of several intervals within the total arc length, and the acceleration is
modelled via interpolation as

6, -t t -t

a = - . + a. le (4.43)
=AT 2 0 o 1|=4ar
f1 IO tl r(]

in which @, (f,) and @, (¢;) are the empirical parameters at the start and the end of the
current interval, while €.y is the unit vector in the along track direction. The partial

derivatives for (2.53) are easily found in analogy to (4.39).

It should be noted that any form of empirical acceleration can only be solved for realistically
if sufficient measurement data is available to justify their application. If insufficient
observations are available for the modelled amount of parameters, they will tend to absorb a
substantial part of the measurement signal, resulting in misleadingly small observation

residuals even though the quality of the overall parameter solution will be very poor.

4.9 Time tags

As discussed in various previous Sections, many of the force model parameters are only valid
during a specific time interval within the overall solution period, the latter spanning from the
earliest starting epoch of all arcs in the solution until the latest end epoch. For this purpose,
an array with time tags is defined in parallel to the parameter array P from Chapter 2,
accessed via the same pointer structure M, as the parameters themselves. Although some
parameter types - like gravity field coefficients - may not be linked to any particular epoch,
the generalised structure of time tags will enable easy implementation of future time-
dependent parameter types without the need to define individual time tags for each parameter
type separately. Most of the housekeeping code of Faust (input modules, the structure of the

numerical integrator and force models) is automatically capable of handling time tags for any

parameter type.

85

The calculated observation Chapter S

This fifth Chapter completes the discussion of the solution process in Faust by describing the
way in which the tracking data is modelled and entered into the parameter estimation scheme
in the form of the measurement residuals Ri in (2.1) and the geometrical partials Z—? in
(2.50). After a summary of some general aspects of tracking data, the various datatypes
supported by Faust will be briefly reviewed. Furthermore, the handling of partial derivatives
of the form (2.53) will be discussed, related to observations that depend on state vectors and
variational partials at different epochs or from different satellites. This concerns not only the
two supported types of range-rate measurements, but in particular the crossover differences
that have been identified in Chapter 1 as the backbone of the simultaneous solution process

for altimetry missions.

As follows from the chosen time-organised processing structure in Section 2.8, Faust requires
all observations to be presented to the program in strict chronological order. In order to sort
and merge files of different data types, a separate data preprocessing programme - Wagner -
has been written that also includes some elementary possibilities for filtering or sampling.
This programme will be shortly described in order to explain the generic data format used by
Faust. A final Section discusses the details of data editing in Faust, and how the influence of

different satellites, stations or datatypes on the solution process is controlled in order to

balance a multi-satellite solution.

5.1 General aspects of tracking data modelling

All relevant forms of satellite tracking are based on propagation models for radiowaves or
optical signals that travel between reference points on the satellite and on the Earth's surface.
Measurement modelling therefore always involves the accurate modelling of the spatial
position of the instrument on the satellite, of the position of a ground station or other
terrestrial measurement target - e.g. the ocean surface for altimetry - and of the behavior of
the signal along the travel path through the Earth's atmosphere. In order to avoid unnecessary

repetition later in this Chapter, this Section will summarise some aspects of tracking data that

Origin of the ECF frame
Coordinates of a local marker point
Tectonic plate motion

Station uplift due to Earth tides
Local eccentricity vector
Instrument bias

Tropospheric effects
lIonospheric effects

Instrument centre-of-mass offset
J2000 velocity of the satellite
J2000 velocity of the station
Two-way range return path

86

Figure 5.1

Satellite tracking configuration

87

are common to practically all data types. To this purpose the mathematical model for the
tracking signal will be followed from the origin of the reference frame to the centre of mass
of the satellite, for which the orbit is determined in the way described in Chapters 2 and 3.

The general configuration of the tracking signal is illustrated in Figure 5.1.

5.1.1 Station coordinates

The origin of all reference frames described in Appendix A coincides with the centre of mass
of the Earth. Sets of ECF coordinates for tracking stations - implicitly defining the frame
itself - are available from sources like the IERS or various other space geodesy groups
throughout the world. The coordinates themselves are in general also obtained from
parameter estimation processes, because they are easily observable. For example, the

coordinate in the x direction is observed from

C:' (x’y’z) = " "-'_m_' Csra " = \/(x -xsla)z * (y -ysra)z L (Z -zsta)z

aC‘- ~ e (‘x _xsm)
= o
axsra expl 2\/(4'(-xm)z + ()’ ‘}’m)z * (Z _zsra)z e
_ X-x,
n rsar = Esfa "

This shows that the three explicit partials for the three station coordinate parameters are
given by the elements of a unit vector in the direction from the satellite to the station.

Because these coordinates are independent from the satellite orbit, the positional partials are

zero and with it the entire implicit term.

5.1,2 Station velocities

Tectonic plate motion causes the ECF coordinates to gradually change over the years. A
correction for plate motion is computed from linear station velocities that are tabulated with
the station coordinate data, applied over the period between the reference epoch of the

coordinate set and the time of interest. Station velocities may be computed from trends

between station coordinate solutions that are sufficiently far apart in time.

5.1.3 Station tides

A further correction to station coordinates is formed by the uplift of the station due to solid

Earth tides. Faust uses the standardised model described by Melbourne et al. (1985).

88

S.1.4 Local eccentricities

Many station coordinates do not provide the actual ECF position of the tracking instrument's
reference point, but rather relate to a local marker point in the vicinity of the instrument at
the ground station. For this reason, a local eccentricity vector may have to be added to the
tabulated coordinates. These station eccentricities are also provided by sources like IGN, with
the periods for which they are valid. However, eccentricity data is notoriously unreliable in

the sense that physical movements of the tracking instrument may only be reported with long

delays. for instance through annual reports.

5.1.5 Range bias

Tracking systems involve electronic instruments that tend to produce a non-zero systematic
delay of the measurement signal, appearing as a more or less constant range bias. For many
tracking data types it is common practice to solve for a range bias parameter. A range bias
may either be associated with a groundstation instrument - in which case there may be one
per station, or possibly even one per pass over a station - or to a satellite instrument, in
which case there will be just one. The explicit partial in (2.50) for a range bias parameter PJ.

can be obtained in a very straightforward way as

ac;

aP,
Jexp]

but even without this formal computation it will be obvious that corrections to range bias

C = “[+Mbias“ = "*P; - =1 (5.2)

parameters correspond to the mean value of all residuals, which is effectively what is

expressed by (5.2).

5.1.6 Timing bias
The UTC time tag for the observation data record will be generated by a clock at the ground
station or at the satellite that may be suffering from a systematic timing bias. To compensate,

it is possible to solve for a time tag bias parameter in any type of observation by considering

dC;
C,(t+Ar) = C,(2) + dr' At
5.3
9C, dC, 9
oAt dr

The partial derivative for a time tag bias parameter P,- = At is apparantly given by the time

derivative of the observations themselves, i.e. for range observations the partial is given by
the range rate.

89

5.1.7 Tropospheric correction

For the modelling of the travel path through the atmosphere we distinguish between
tropospheric effects - related to the atmosphere up to a height of 60 km or so - and
ionospheric effects at heights where free electrons are present in such high densities that they
influence radiowaves. The troposphere causes variations in the index of refraction along the

travel path, and a compensating range correction can be expressed as

AR, = der - f(n - 1).10%ar (5.4)

in which n is the index of refraction - typically with a value close to one, like 1.00035 - and
N a more practical variable that is usually denoted as the ‘refractivity’. A well-known
expression for the tropospheric refractivity of signals at radio frequencies is the one given by
Smith and Weintraub (1953) :

N=N,+N, =762 + 373100 % (5.5)
T 2
in which the tropospheric correction is separated in a dry component N, and a wet

component N ,»» the latter being dependent on the water vapor content € of the atmosphere;
p and T are the atmospheric pressure and temperature as measured by the ground station.
Black and Eisner (1984) showed that the dry tropospheric correction - which makes up 85 to
90 percent of the total correction - can be accurately computed from these surface conditions,
but that the substantial variability of the water vapor content along the travel path makes it
difficult to model the wet term from surface data only. The tropospheric corrections applied

to data types used by Faust are in fact all slightly different, and will therefore be treated in

more detail in later Sections.

5.1.8 Ionospheric correction

The ionosphere does not affect frequencies in the optical bands, but causes phase and group
delays - and is therefore dispersive - for radiowaves. As dispersion is by definition a
frequency dependent effect, it can be adequately computed from the observably different
behavior of signals at different carrier waves as shown by Imel (1994). Many tracking
systems therefore employ dual-frequency instruments to derive an accurate ionospheric

correction. Systems that do not have this option - notably the altimeter instruments of the

ERS satellites - use a ionospheric correction that is computed from

TEC
f2

AR, =403 (5.6)

90

in which TEC is the total electron content in 72 ~* along the line of sight and f the signal
frequency in Hz. Bent et al. (1973) showed that the diurnal variations in the total electron
content typically span three orders of magnitude, which makes it difficult to accurately model
the TEC. The ionospheric correction for single-frequency instruments is therefore less
reliable than that for dual-frequency instruments, which could result in systematic errors in
the dual crossover dataset between ERS-1 and TOPEX/Poseidon.

5.1.9 Instrument centre-of-mass offset

The equations of motion for the satellite are defined for the centre of mass of the spacecraft.
The observed reference point on the satellite is in general a point within an instrument, which
will not coincide with the centre of mass of the satellite. This means that for tracking
instruments that produce range observations we will have to take into account a centre-of-
mass offset, being the projected distance along the line of sight between the instrument
reference point and the centre of mass of the satellite. This also implies that it is necessary to
take into account the exact attitude of the spacecraft at the time of the measurement, because

a rotation of a non-spherical spacecraft will change the centre-of-mass offset.

5.1.10 Transit time compensation

Because both the satellite and the ground station - attached to a rotating Earth - move with a
considerable velocity relative to the J2000 reference frame, it is necessary to account for the
displacement of the reference points during the travel time of the signal. As an example, we
will look at the configuration of a two-way range measurement from station to satellite and

back to the station, as in Figure 5.1; the analogy to other configurations will be obvious.

Let the UTC time of pulse firing be given in the measurement data record. The position and
velocity of the satellite at this time are obtained from numerical integration, as described in
previous Chapters. If ¢, is the pulse fire time, ¢, is the time of reflection at the satellite, and
c is the speed of light, the exact travel time Atl (with initial estimate 0) and corresponding

range cAt, follow from a straightforward iterative scheme :

t, =t + Ar

x (1) =x (&) + v . (%)-At

“sat

) -5, (W)
c
Note that in each iteration step various range corrections may have to be applied, as

(5.7)
At,

91

described in other subsections. A similar iterative scheme is used to find the travel time A,
for the return path, but now it is the station position that is varied rather than the satellite

position. The calculated one-way range | r || is computed as half the sum of the two paths.

5.1.11 Geometrical partials

Finally, the vector of geometrical partials for any range observation - as required to construct
the implicit term of (2.50) - is found to be equal to the unit vector in the range direction, in

analogy to (5.1). For instance, for the x direction we find :

C:' (x!y;z)

" Esaf_ rﬂa “ = J(x '—xsfa)z % (y _ys.fa)2 + (z _zs.l‘a)2
[aC"]_ 2(.!7 _xsta)
8
ex ZJ(X —xsra)z + (y_ysm)z + (Z _zsta)z (5)

X = Xy
" r.'.‘al‘ N rsra "

In case that an observation is processed in the ECF frame, it will be necessary to rotate these

geometrical partials into the J2000 frame in which the variational equations are defined.

5.2 Satellite laser range observations

The laser observation is a two-way range measurement between a laser / telescope system on
the ground and a passive retroreflector on the spacecraft. Applied corrections include those
for Earth tides and local eccentricities, a centre-of-mass offset for the retro-reflector as well
as a short range correction for the travel path within the reflector. The most commonly used

tropospheric correction for optical signals is the one given by Marini and Murray (1973) :

AR, = J() A+ B 59
SinE + — A+B
sinE + 0.01

in which 4 and B are empirical functions of atmospheric pressure, temperature and relative
humidity as measured by the ground station, f is a function of the wavelength A, F is a
function of the station's latitude ¢b and height above the ellipsoid H, and E is the elevation
of the spacecraft as seen by the station. The wavelength and atmospheric quantities required

to evaluate (5.9) are provided in the input data record. According to Schwarz (1990), the

92

Marini-Murray correction has a precision that is better than 1 cm for zenith measurements,
although at lower elevations the accuracy decreases due to the sharply increasing travel path

through the atmosphere. For this reason, a cut-off elevation may be applied below which no
tracking data is accepted.

Although it is common practice to solve for a range bias and possibly a timing bias for less
accurate stations, Faust supports neither of these bias parameters for laser observations : both
parameters are notorious for absorbing orbit errors rather than data errors, resulting in

misleadingly small observation residuals without actually having a good orbit solution.

The laser retro-reflector array on TOPEX/Poseidon forms a ring around the base of the
altimeter antenna, and its projection on a plane perpendicular to the line of sight will be a
section of an ellipse. Not each part of this ellipse is equally distant from the observer, and an
intricate centre-of-mass correction procedure is therefore included that takes into account the
visible projection of the retroreflector array and the technical characteristics of the type of
laser used by the station of interest, to determine the expected distribution and intensity of
reflected photons. The algorithm used by Faust for this correction was made available by

NASA/GSFC (J.A. Marshall; personal communication) and has been implemented without
significant modifications.

SLR tracking is potentially very accurate, but several disadvantages imply that with laser
tracking alone the orbit solutions of ERS and TOPEX/Poseidon would not reach the highest
possible precision. In the first place, the global coverage of the SLR ground stations is poor,
especially for the ERS satellites that have much smaller visibility masks than the higher
TOPEX/Poseidon orbit. Most laser stations are on the North American continent and in
Europe, while in the rest of the world - in particular on the entire southern hemisphere - only
a very small amount of SLR tracking stations are available. Furthermore, the land-based
character of SLR stations implies that the sections of the orbit that are most relevant to radar

altimetry analysis, i.e. those over the oceans, are hardly covered at all.

5.3 DORIS range rate

The DORIS system was developed by CNES especially for the precise tracking of satellites

93

like the SPOT family and TOPEX/Poseidon (see Nouél et al., 1988). In comparison with
SLR tracking, the global data coverage is substantially better and covers the TOPEX orbit
almost completely, providing a crucial contribution to achieving its precise orbit targets. The
DORIS system consists of a dense network of ground beacons and an on-board receiver.
Each beacon transmits radio signals at two frequencies - allowing correction for ionospheric
effects - that are accurately derived from an ultra-stable oscillator (USO). The signal is
divided into regular measurement intervals by interruptions at intervals of about 10 seconds
to transmit a data package that contains atmospheric data (temperature, pressure and

humidity) at the ground beacon, required for a tropospheric correction.

5.3.1 Measurement geometry

Due to the component of the satellite's velocity along the line towards the beacon, the radio
frequency received by the satellite will be Doppler-shifted with respect to its nominal value.
The peaks in the interference signal between the received frequency and a known reference
frequency are counted during a certain time interval, to provide what is known as the beat-
count. In the DORIS system the reference frequency is chosen in such a way that for any

possible range rate it will be larger than the received frequency, so that the beat-count is

defined unambiguously.

If the transmitted and received frequency are given by f, and f, the satellite's range rate by
V,, and the speed of light by ¢, the Doppler shift can be written (e.g. Ehlers, 1993) as

1 = ot

ﬁ=—-—9—-f,=(1-&]f, (5.10)

c

The beat count over a measurement interval At follows from

fo+At 1, +At Vr
N = [(fg=£)de = [\fy=fie 21, |a
ty fy
f'o‘ﬁ‘
= - + ._‘ (5'11)
(fig= 1) A1 - {vrdr

= (fuy-f)AL + g[p(:{,mz) - p(%)]

in which p (f) is the momentary range between the beacon and the satellite. The observation

94

values given in a DORIS data record are £, At, and an observed quasi range rate value that

is constructed according to

N
c
o35 - e

As follows from expression (5.11), this construction now allows the calculated range rate to

be conveniently modelled as
o PrA) - p @)
' At

This is the easily computed finite difference between range values at the start and the end of

(5.13)

the Doppler-count interval, divided by the given duration A¢ of the interval. The two ranges

p(t) are computed in an iterative scheme as described in Section 5.1.10.

S5.3.2 Parameters solved for
A nominal tropospheric correction term A p 4op® based upon the atmospheric conditions
broadcasted by the station, is given in each DORIS data record. This correction has already
been included in the input data value O,. In order to compensate for inaccuracies in the wet
component, an additional correction is modelled as a term that is proportional to this nominal
correction :

C.=0C)m * Kprpmp . (5.14)
The parameter Kmp is solved for within the orbit determination process, applying one

parameter for each DORIS pass over a station. From (5.14) it follows directly that

[aC,
0Ky) .,

This value is again the nominal tropospheric correction as given in the data record. Like with

= APy (5.15)

laser observations, the reliability of the entire tropospheric correction term reduces if the
travel path through the atmosphere increases, i.e. if the elevation of the satellite decreases.

For this reason a cut-off elevation is specified in the input to Faust with a typical value of 20

degrees above the local horizon.

Another correction is included for errors in the reference frequencies f, and f ., to
compensate for the fact that in practice the USO, though highly stable, will still show some
frequency drift. From (5.11) and (5.12) it is evident that we can not distinguish between a

drift in the on-board frequency fm:f and a drift in the beacon frequency f,, because only their

95

difference is observed. It is therefore assumed that the reference frequency is perfect and that
any USO drift is only present in the beacon frequency f,. If the nominal and true (i.e.

drifted) beacon frequency are given by f," and f,d respectively, the corresponding range

rates can be written as

0" = i(']y'ic' "'f,gf +frﬂ]

f‘" At
N
sl
t
" ¢ (N o i PO ey
———(T”; v 1 +ff]=Ld O/ -e=— =
£ f; 7

The frequency drift is therefore equal to

n d n d
0‘0' - O“ﬂ = r d-ff O‘H = g ff df}
fi fi
The value given in the data record is inevitably the drifted value Ol-d, because O;" is only a

fictive, theoretical value. The calculated observation C ; will therefore also have to be

modelled as a drifted one - to allow comparison with O,-d - using the expression (5.17) :

de - C,'n 4 (O,'d _ O,‘n)

(5.17)

S At PN) 'y

' fd ; fd (5.18)
t t

=~ C" + EC;'" ~f
c

Note that here the - fictive - nominal value O,” from (5.11) had to be approximated by the
calculated value C,-", trusting that any error caused by this practice will be absorbed by
solving for the frequency drift parameter B, the definition of which follows from (5.18).

Like with K, p» & Separate value for B is used for each pass over a DORIS beacon. For its
partial derivative we find

o6 5 1 (5.19)
op c
Because the range rate for Earth orbiting satellites can hardly be expected to approach the
speed of light, the first term on the right-hand side in (5.19) can be neglected.

96

The two pass-dependent parameters Kmp and B influence the calculated observation C;
directly and will therefore be correlated with each other, although they can be assumed to be
totally independent from similar pairs for other passes. These pairs therefore form parameters
of Category 2 in Section 2.3. In practice there will be about 1500 DORIS passes within a
single 10-day arc for TOPEX/Poseidon, producing an equal amount of parameter pairs. Given
the fact that there will only be twenty to thirty orbit parameters of Category 1 in such a 10-
day arc, the relevance of the matrix partitioning adopted in Chapter 2 will be appreciated.

5.3.3 Construction of partial derivatives

The followed treatment of quasi range-rate signals - involving a finite range difference - is
much more straightforward than evaluation of the integral in (5.11) directly. However, it
implies that the partial derivatives of the DORIS observations have a format like (2.55),

involving state vectors and partials at two different epochs. From (5.13) it follows that :

3C;, 1 (ap(:0+A:) i ap(:o))

) e (5.20)
dP At dP oP
The partials for each of the two epochs are then computed from
10p _1(opox dp 3y , 0p 0z 5.21)
At 6P At\ox 0P dy oP 0z 0P

Because the numerical integration process will not produce all required variational partials at
once, those for the epoch #, will have to be stored in some way until the entire measurement
can be processed at the epoch #,+A¢ when the integrator has produced the second set of
partials. The arrangement of DORIS stations over the globe is such that it is not possible for
the satellite to be within measurement range of more than 4 ground stations at any time. For
this reason, the amount of vectors with variational partials that may have to be buffered
within the computation process will never exceed 4 and will in fact rarely be more than one
or two at a time. Fortunately, the size of a vector of variational partials is insignificant in
comparison to the size of the normal matrix itself, so Faust can store these few vectors of
partials internally. The geometrical partials - i.e. the unit vector in the direction of the range,

as computed from (5.8) - are divided by the factor At as required by (5.21), and also stored.

With respect to the internal organisation of the code, storing the partials at the start of a
DORIS interval is implemented as a separate 'event' in Figure 3.3. This event involves
producing the required partials, storing them in one of four available slots for such partials,

and submitting an internal request for another event that will take place at the epoch of the

97

end of the Doppler count interval. If that second event time is reached, the actual DORIS
observation is processed and added to the normal matrix, while the slot for the involved

partials is released for future use.

5.4 PRARE range and range-rate

Although the PRARE equipment on ERS-1 failed shortly after launch, its successor ERS-2 is
carrying a similar but functioning instrument, and after some initial problems with the
PRARE ground segment the system is now fully operational for ERS-2. Although this thesis
focuses in particular on simultaneous solutions between ERS-1 and TOPEX/Poseidon, the
PRARE tracking data has also been implemented in Faust, mainly in support of other
research at Aston. As the acronym suggests, PRARE provides both range and range-rate
measurements. The two-way range observations are processed in a way almost identical to
SLR range, while the treatment of the range-rate data is very similar to the DORIS
observations described above. The fundamental computational difference in both cases is that
the direction of the two-way ranges is opposite, i.e. the space segment forms the active
transmitter / receiver while the ground station acts as transponder. In order to avoid
interference between signals from different ground stations, the system uses four different

dual-frequency microwave signals, allowing up to four stations to track simultaneously.

The range data is corrected by a range bias per station, solved for in analogy to (5.2).
Because these range biases should not vary significantly in time, only one such parameter is
solved for per 5-day arc during which each station may provide several PRARE range passes.
In addition, both the range and the range-rate observations include a tropospheric correction
term that is provided on each input data record. As with DORIS, this correction is fine-tuned
by means of a tropospheric correction parameter Kwp per pass, modelled in the form of a

scale factor to the nominal tropospheric correction. The tropospheric correction AR to the

range observation is then

R, =R, + Kmp.AR&Wr (5.22)
from which we immediately obtain the corresponding explicit partial in (2.50) as AR‘.BPW
itself. A single pass over a station usually provides both range observations and range-rate
observations, but the same tropospheric scale factor Kmp is used to tune both data types in

the pass. For the range-rate observation the dimensions of the nominal correction (as obtained

98

from the input data record) are of course different from those of a range observation. Note

that for DORIS the tropospheric correction was already included in the observation value,

and the scale factors (Km) for the additional correction will therefore be close to zero.
P/ DORIS

For PRARE, the correction has not yet been included in the input value, so the scale factors

will be close to unity.

Given the dense global coverage by PRARE stations, the amount of scale factors Kwp will
be in the order of 100 to 150 per 5-day arc. As a result, simultaneous solutions that include a
full 35-day cycle of ERS-2 will contain a very large amount of these parameters, but
fortunately we can assume that the scale factors for different passes are independent of each
other. The parameters K, | 5 for the PRARE data therefore form parameters of Category 3 in
Section 2.3, and because of the adopted normal matrix partitioning the memory requirements
will remain within realistic limits. The treatment of partial constructions of the form (2.55) as
required for PRARE range-rate is implemented in Faust in exactly the same way as was done

for DORIS, and described in the previous subsection.

5.5 Radar altimetry

In general altimetry is not considered as a tracking data type for orbit determination but
specifically reserved for oceanographic and geodetic modelling. This is merely a political
choice, based upon the desire to avoid aliasing of geodetic signals into an orbit solution fitted
to altimetry data. The relevance of altimetry to precise orbit determination will therefore be
restricted to the use in crossovers, which will be discussed in the next section. Altimetry data
differs from most other observation types in the sense that it is an entirely satellite based
system that does not involve ground stations. The terrestrial reference point is formed by the
ocean surface rather than by ground station coordinates, which means that precise geometric
modelling of the ocean surface is required within the evaluation of C ;+ In practice, a
preprocessing step translates the observed measurement O, into a measurement of the height
of the satellite over the reference ellipsoid by correcting the raw observation for the local
height of the marine geoid, for ocean tides, for the dynamic surface topography and for
significant wave height. This preprocessing simplifies the computation of the calculated
observation C;, which can now easily be determined from the integrated satellite position as

the instantaneous geodetic height of the satellite. This Section will describe the relevant parts

99

of the geometrical model for the altimeter observation, in particular the modelling of the
instantaneous ocean surface and that of the travel path through the atmosphere. The model

for the space segment only includes an instrument range bias, and possibly a time tag bias.

5.5.1 The ocean surface

A satellite radar altimeter measurement is taken along the momentary geodetic orbital radius,
i.e. along the line perpendicular to the ellipsoid within the longitudinal plane through the
satellite. In a preprocessing stage, the raw measurement is translated into a value for the
height above the ellipsoid (the geodetic height) rather than for the height over the
instantaneous ocean surface. Apart from a correction for the significant wave height, which is

provided in the GDR data record, the applied ocean surface corrections include :

(1) The height of the geoid relative to the reference ellipsoid (the geoid undulation N).
The geoid is determined by the combined effects of the Earth's gravity field and its
daily rotation (see Section 4.1). At present, spherical expansion models for the geoid
are available up to degree and order 360 (e.g. Rapp et al., 1991; Lemoine et al., 1996).
Apart from the gravity-induced orbit error - observed via the equations (4.19) and the
resulting implicit term in (2.50) - the shape of the geoid is also observable from
altimeter data, implying that for altimetry observations an explicit term can be included
in (2.50). To this purpose, the gravity potential U from (4.4) is interpreted as a
combination of a potential W at the ellipsoid and a disturbing potential T'. The actual
scalar value of W is chosen identical to the value of the potential U, so that W
approximates the real gravity potential as closely as possible. The gravity force due to

the potential W - perpendicular to the ellipsoid - is called the normal gravity, while

the force due to the potential T is called the gravity anomaly :

-VU = G_WV o T, a'amma!y = -VW - VT (5.23)
We can now write the total potential at the geoid not only as U = W + T, but also

in terms of a first order series expansion of the potential W of the ellipsoid :
U=W-+T

= NE
U=W=+ (VW,n).N=W+Ny

= (5.24)
»

The unit vector n, in (5.24) gives the direction perpendicular to the ellipsoid, so that
the projection y = (VW, ﬂ's) forms the component of VW in the direction of N.

Because VW is by definition perpendicular to the ellipsoid, Y is in fact equal to the

(2)

(3)

100

normal gravity in the point of interest. The right-hand side expression for N in (5.24)
is known as the equation of Bruns, and shows that the geoid undulation is determined

by the ratio of the disturbing potential and the normal gravity.

Because NNV is subtracted from the observed value O, in the preprocessing stage, it is
present in the calculated measurement C ; with a positive sign. The explicit partials for
(2.50) are therefore available for each parameter PJ. (being either C,, or S,) by
means of the geoid height partials :

0C; (N +hyu+) oN _ 8 (:r)

oP; 0P, oP, oP;\Y

In practice, the disturbing potential and normal gravity are found by projecting the

(5.25)

gravity vector due to U into directions perpendicular and tangential to the adopted

ellipsoid model.

The variations in the sea surface height due to tides. The total geometrical tidal uplift
accounts for all periodic ocean surface height variations (see Section 4.2) and possibly
the constant polar tide if it is not included in the geoid model. This total uplift includes
the movements caused by the solid Earth tides of the ocean floor, those related to the
liquid ocean tides, as well as effects like inverse barometer depression and ocean
loading. In practice, the model to correct the altimetry measurements for tides may be
less detailed than the model used during the orbit integration process, because only the
larger tidal constituents produce tidal uplifts of a significant level, in relation to other
noise components in the dataset. For the same reason, it not useful to include explicit
terms like (5.25) for the tides, as the geometrical signal of most constituents is not
observable from altimetry measurements. The tides are therefore only observed through

the implicit term of (2.50), i.e. through their effect upon the satellite orbit.

The dynamic sea surface topography. Non-periodic surface elevations that are not part
of the geoid undulation can be subscribed to surface slopes caused by geostrophic
ocean currents or large scale ocean eddies. The maximum height differences associated
with this dynamic sea surface topography are about two metres globally, which
illustrates that the geoid must be known with great precision before it becomes realistic
to explicitly superimpose a dynamic surface topography. It is only since the arrival of

the high precision satellite altimetry of ERS-1 and TOPEX/Poseidon and accurate

101

gravity field models like JGM-3 that reliable global sea surface topography models can
be determined (Romay-Merino et al., 1993). The surface topography model itself is
modelled by a straightforward geometrical expansion model in Legendre functions :

L M
hg, = :E 3 [CipcosmA + Sisinm A Py, (sin) (5.26)

=0 m=0

The partials to solve for a sea surface topography model - as easily computed from
(5.26) and Table 4.1 - are included in Faust. Note that these partials are only included
in the form of an explicit term in (2.50), as changes in the gravity field due to the sea

surface topography are assumed to be negligible.

5.5.2 Atmospheric corrections

The dry tropospheric correction for radar altimetry measurements is generally computed from

straightforward empirical formulae like one given by Cheney et al. (1994) :

Ar = -2.277p.(1 + 0.0026 cos2¢) (5.27)
in which p and ¢ are the local atmospheric pressure (mb) and geocentric latitude

repectively.

Wet tropospheric corrections are either based upon meteorological data or upon actual
measurements of the water vapor content along the line of sight, by means of on-board
microwave radiometer instruments. Only the latter method is capable of following short-term
variations in the tropospheric conditions, and will therefore be more reliable. For
TOPEX/Poseidon and for the ERS satellites, a dry and wet tropospheric correction term are
provided in the input GDR data records. In Faust, no model parameters for either the dry or

wet tropospheric correction can be solved for, so errors in these corrections are present in the

altimetry signal without change.

The ionospheric correction for the TOPEX altimeter is derived from the behavior of its dual-
frequency signal (Imel, 1994) with an accuracy of 5 to 15 millimetres. For the single-
frequency ERS altimeters such information is unavailable. Instead, a correction term based
upon the model described by Bent er al. (1973) is applied. This model is inevitably less

accurate, and will therefore introduce a noise component in the dual satellite crossovers
between ERS and TOPEX.

5.5.3 Biases

102

The altimeter instrument introduces a non-zero electronic travel time delay which is
compensated by solving for an instrument range bias according to (5.2). In addition, a time
tag bias (5.3) has been identified in the ERS GDR time stamp, with a typical value of -1.2
milliseconds. For TOPEX/Poseidon the time tag bias is negligible, although it may be solved
for as a precaution. Note that the time tag bias for altimetry data is in fact computed from
altimetry crossovers, although once that it is available it is also applied to normal altimetry

measurements that may be included in geophysical applications of Faust.

5.6 Crossover height differences

As explained in Chapter 1, crossover differences are obtained by subtracting two altimeter
measurements that are taken above the same point on Earth at different epochs. This Section

will discuss the two subjects of analysis of error components in the crossover datasets, and of

numerical treatment of the crossover data in Faust.

5.6.1 Crossover error components

The total error in the calculated crossover difference contains components of radial orbit
error, atmospheric propagation errors and sea surface variability errors. For near-circular
orbits the effect of radial orbit errors in the crossings of a single satellite crossover may be
approximated in first order (e.g. Jolly, 1995) by

€0 = € (Acole + BsinMl - C) - (Acost + BsinM, + C) (5.28)

1 2 -
If the mean anomaly M of the satellite is set to be zero at the point of highest latitude, the

intersection of an ascending and descending pass implies the symmetry M, = -M,, and the

error term degenerates into

€y = 2BsinM, (5.29)
Even if (5.28) would be extended into a series of higher order sine and cosine terms, the
latitudinal symmetry will still eliminate all cosine terms cos n.M, including the constant bias
C which may be interpreted as a zero-order cosine. At the same time, all sine terms are
observable at twice their normal amplitude, as seen from (5.29). A fully geographically
correlated radial orbit error will appear as an even function of M (i.e. a cosine series), and is
therefore totally absent from the single satellite crossover dataset. However, geographically
anti-correlated orbit errors show up as odd functions of M (i.e. sine series) and are present

in the crossover differences at double intensity. For dual satellite crossovers the coefficients

103

A and B of (5.28) will not be identical for both orbits, which implies that the
geographically correlated radial orbit error does not completely cancel out if the height
difference is computed. This feature forms the crucial contribution of simultaneous solution

techniques to gravity field refinement, as will be discussed in more detail in Chapter 8.

From the above it follows that an indication of the geographically fully anti-correlated orbit
error can be obtained from the single satellite crossovers, by separately averaging the SXO
residuals from ascending passes and descending passes over a certain area (to account for
their differences in the sign of the mean anomaly M) and dividing by two. An indication of
the geographically correlated orbit error is obtained from the even component of the dual

crossover residuals, i.e. it follows by direct averaging of the DXO residuals over a certain

area.

With respect to atmospheric propagation errors, Stum (1994) showed that the wet
tropospheric corrections for ERS and TOPEX are not significantly different in quality,
resulting in a noise component in the dual crossovers with an RMS below one centimetre. It
has already been mentioned that the single-frequency instrument of the ERS satellites will
introduce ionospheric correction errors in the dual crossover dataset. These errors will mainly
show up as noise, especially because the temporal distribution of the crossovers is effectively
independent from the spatial distribution.

5.6.2 Numerical processing of crossovers in Faust

The crossovers enter Faust in chronological order of the first crossing, i.e. of the first epoch
for which vectors for state and variational partials are required. These vectors will have to be
temporarily stored in some way until the integration process reaches the epoch of the second
crossing, at which point the crossover observation can be processed and its contribution
added to the normal matrix. While solving this buffering problem for DORIS and PRARE
range rate data was relatively easy - because of the limited amount of data that had to be
stored - the time interval between the crossings in a crossover point can be up to several
days, rather than the 10 seconds or so for a Doppler count interval. The result is that the
amount of data that may have to buffered at any particular time will exceed realistic RAM

memory requirements for present computer systems (see Figure 5.2), especially in a network

environment.

104

Within the present computer configuration at Aston, the only realistic option is to create the
crossover buffer as a (temporary) file on disk, writing the state and partials for the first
crossing to disk and reading them back at the time of the second crossing. The way in which
this buffer system is organised will be briefly described. As illustrated in Figure 5.3, the
main elements of the buffer system are a direct access file on disk, an array with all epochs
of second crossings for the crossovers that are waiting to be processed, a parallel array with
the numbers of the records in which the corresponding buffer data is stored, and an array

with flags to indicate all records of the file that are currently used.

Amount of variational equations 6000
Amount of elements in triangular normal matrix %2 x 60002 = 18 x 10°

Amount of crossovers within 5-day maximum interval

ERS-1 single satellite crossovers 1500

TOPEX/Poseidon single satellite crossovers 2500

Dual satellite crossovers 4000

TOTAL 8000

Required buffer capacity 4+ 0.5 x 8000 = 4000

Storage space

Size of triangular normal matrix in RAM memory 8 x 18 MB = 144 MB
Variational partials for one parameter 3 x 8 = 24 Bytes

Variational partials for one crossing 6000 x 24 B = 144 kB

Total crossover buffer size for all sets of variational partials | 4000 x 144 kB = 576 MB

Figure 5.2 Example computation for required memory sizes in a simultaneous solution
process for ERS-1 and TOPEX/Poseidon, if partials for gravity field and tides are included.

An initial crossover event will occur when the integrator reaches the epoch of the first
crossing. At that time, the state vector and partials will be written to the buffer file in the
first available record, as indicated by the flags. The epoch of the second crossing as well as
the used record number will be stored in the first available elements of the respective
memory arrays. The crucial design principle is that the first time tag in the array must always
be the earliest of all, i.e. it will indicate the next crossover that has to be processed as an
observation. When Faust arrives at this epoch, the state and partials of the first crossing will
be read back from the buffer record that is indicated by the first element of the array with

record numbers. The state vector and partials for the second epoch are at that moment

105

available from the integration process, so that the entire equation (2.55) can be constructed.

When a record is read back from the buffer file, its record number is released for future use
by toggling the corresponding element of the array with flags. This ensures that the buffer
file will never grow larger than required for storing the maximum amount of records that is
ever buffered simultaneously. At the start of the processing sequence in Faust, the rate at
which buffer records are created will be much larger than the rate at which the second
crossover epochs are reached, so that the buffer file will grow in size. At a certain moment
the rate of processing will catch up with the rate at which new records are written, typically

after integrating over the tolerated maximum time span between crossings.

Arrays in RAM memory Counter variables Array with record flags
— UsED 1) VACANT
| crsoven 7
S SR . v on hold
7 | 0

2| 50275.6345 b 1 v
;g. é Current '
.E 276.3213 9|/2 file size ol
o L)
g 273.9364 E 0 “
2 | 50275.2283 3 o—— v
E 574.3321 5 irect access buffer file v
g —— v
m 275.0173 2 \Z_TP._._-——F’/ v
_—r ¥lli=

Figure 5.3 The elements of the crossover buffer system. Only the first time tag and record
index are relevant to the event handling sequence of Faust.

From that moment on a steady state situation will be maintained, in which it is no longer
necessary to create new records at the end of the buffer file. Without this recycling of
released records the buffer file would eventually grow to a size that contains as many records
as there are crossover observations in the entire solution, which will often exceed realistic

limits for disk usage.

After processing a crossover observation at the epoch of the second crossing, the entire array

106

with time tags is scanned to find the earliest of all elements, and this element is then moved
into the first array position that has become vacant, both for the array with time tags and for
the array with record numbers. Also, when a new record is added to the buffer, a test is
performed to make sure that the corresponding second epoch is not earlier than the time tag
for the first array elements. These two measures will ensure that at any time the first array
elements correspond to the earliest of all waiting crossover observations, and no further

sorting of the buffer data is required.

5.7 Wagner

The choice to design Faust as an event handler that processes observation data in strict
chronological order implies that the observations have to be offered to the main programme
in a time-sorted way. Even if individual tracking datasets are available in chronological order,
which is not always the case, it will be necessary to merge the different tracking datatypes
into a single coherent dataset that can be used as time-sorted input to Faust. The format of
this input observation file must be chosen carefully in order to allow different data types to
be stored within a single file in an unambiguous way, however without requiring excessive
record lengths. To this purpose, a preprocessor programme has been written - named Wagner,
after Faust's assistant - that also allows some other manipulations of the tracking data, like

eliminating observations from one or more stations or satellites, removing duplicate records if

overlapping files are merged, etcetera.

The internal data format used by Faust is very straightforward, and allows future extensions

for new tracking data types without losing downward compatibility. The file is unformatted

and sequential, and each record contains :

- A UTC time tag

- A measurement type identifier number

- n, satellite identification numbers O0=n =n_
- n, station identification numbers O<n,=n_,
- n, measurement components 1= nysn_
- n, real data numbers O0<n,=n__

- n, integer data numbers 0=<n,<mn_

107

The numbers n, to ng determine the total record size, and are stored in a header record.
After opening the observation file, Faust - or any other programme using these files - will
first read the five numbers n; to find out what data is stored in each record. At the location
in the code where data is read from the file, implied loops are used to read 'zero or more’
fields for satellite numbers, station numbers, etcetera. The limit n_ only exists in the
programme, not in the data, and can therefore easily be increased in the future without
rendering older data files useless. The fields with tracking type dependent real or integer
arguments may contain any data that can not be stored in the other fields. As an example, the
second time tag of a crossover observation may be stored as the first real data argument, as
long as Wagner and Faust both know what this argument represents for a crossover

observation. For DORIS, this same record field might contain the duration of the count

interval.

Each data type will require a certain minimum record size that is essentially determined by
series of the numbers 1, to ng, hardcoded for each datatype in Wagner. If different
datatypes are to be combined into a single datafile for Faust, Wagner will compute the
smallest possible numbers #; that can hold all data types, and create the input file to Faust in
that format. If laser data (one satellite and one station per record) is to be combined into a
single file with crossover data (two satellites, no station) each record in the combined data
file will have two satellite fields and one station field. As a result, records for both data types
will have certain fields that contain zeroes, and this general data format is therefore not
optimal in terms of storage (at least not for a file that contains several data types with
different record formats). Permanently stored data, if stored in this format, should therefore
be separated into files per tracking data type. The combined observations file can then be

produced just before running Faust, given the fact that even for very large files Wagner will

require a runtime of seconds rather than minutes.

The way in which wagner operates is illustrated in the Figures 5.4 and 5.5. The temporary
files that are produced for each input file - indicated by the block Save to tmp file in Figure
5.5 - are not stored in the format of the final output file, but rather in the smallest possible
format for that particular datatype. While reading a raw data input file and copying it into the
temporary file, Wagner will perform several data validation tests, if requested in the user
input. At this point - shown as the block filter or edit in Figure 5.5 - Wagner will for

instance reject data records that should be filtered out. In addition a simple test is performed

108

to see if the UTC time tag of the record is not earlier than that of the previous record, so that
sorting of datafiles can be avoided when an input file is already sorted on time. Finally,
Wagner will merge all temporary files into one single output file, making sure that all
records are in chronological order and that no duplicates are written to the output. For
convenience, a report file will be produced that contains statistics of the data contents listed

per data type, per satellite and per station.

Open data file

Get user Input

Set output size

Read a record

Filter or edit

Read data file

ore files

Save to tmp file

O
nd of file 7

Yes

orting No
required
?

Yes

Sorton UTC

Figure 5.4 Wagner

Figure 5.5 'Read data file'

The UTC time tag on which the records will be sorted must always be the earliest epoch
involved in a possible partial construction like (2.55), in order to allow all involved state
vectors and partials to be determined by the integration process in strict chronological order.

For doppler measurements this time tag will therefore relate to the start of the doppler count

109

interval, and for crossovers it will be the time of the earliest crossing.

Wagner uses a natural language interface that is identical to the one that is used by Faust
(see Appendix C), although it will obviously use a different control language database. One
of the reasons for using the same interface - apart from convenience for the user - was to
allow for the possibility that in the future Wagner may be fully integrated with Faust into a
single programme that will then share a single user input module. At present, the time saved
by separating the two still seems to be more efficient, although especially for large multi-arc

runs the very short runtime of Wagner is negligible in comparison to that of Faust.

5.8 Numerical aspects of observation processing

Apart from the computation of residuals and geometrical partials,
which is done differently for each tracking data type, many aspects

of observation processing, like data weighting, editing or adding a

contribution to the normal matrix, are identical for all observations.

Many of these computational aspects are therefore centralised in
Faust. This also makes it very straightforward to implement new

tracking data types in Faust, as most of the processing infrastructure

will already be present in the code. Figure 5.6 shows the handling

Reject ?

sequence of the 'event' that is formed by the occurrence of a single

No
Add to matrix

observation during the chain of events depicted in Figure 2.6. For
observations that depend on different epochs (DORIS, PRARE
doppler and crossovers) this happens at the last epoch for which
state vectors and partials had to be computed, so that at the start of

this event all required elements for (2.55) are available. In a
Figure 5.6 Sequence

preparatory subroutine, a variety of housekeeping variables within ¢y each observation

the code will be set, like the number of the arc to which the
observation is related, the index of satellites and stations that are involved in the observation,
the related standard deviation as defined in the user input, a pass number, etcetera. This

preparation step is identical for all data types.

For each data type supported by Faust, the computation of residuals and geometrical partials

110

is different and therefore performed in separate subroutines. If a new data type is to be
included in the programme, it is in particular this step - indicated as the block Compute C,
in Figure 5.6 - that will have to be implemented. Its output is formed by the measurement

residual and the partials %% for the construction of (2.55).

It is important to have the possibility to control the influence that individual data types have
upon the outcome of the least squares process. In principle this is done by means of the a
priori standard deviations o; discussed in Section 2.2. However, known differences in data
quality or achievable orbital precision will make it desirable to have various other control
variables, to allow weighting of different satellites, stations or data types with respect to each

other. In Faust this is done by different types of standard deviations and scale factors.

A nominal standard deviation for (2.15) is defined in the user input for each tracking data
type. For land-based tracking types, it may be desirable to have different a priori standard
deviations for different stations, because the data quality from some stations may be known
to be systematically better or worse than that from other stations. For that reason, it is
possible to define a standard deviation per station, which - if defined in the input - will
overrule the default standard deviation for that data type. As an example, we could define a
standard deviation of 20 cm for SLR data, but set a larger standard deviations for some new
stations of which the station coordinates are not yet known with great precision. Stations that

are not defined explicitly will then adopt the nominal value of 20 cm.

It can happen that of two satellites in a simultaneous solution process one will always have a
better orbital precision than the other, for instance because of substantial differences in
orbital height. For that reason the standard deviation for a certain observation is multiplied
with a scale factor per satellite, which is a real number with a nominal value of one. This
scale factor will increase or decrease the nominal standard deviation described above, so that
its square will appear in the weighted normal equation (2.12). In the example given above
with a standard deviation of 20 cm for laser data, we could give TOPEX/Poseidon a scale
factor of 0.75 and ERS-1 a scale factor of 1.00. The result would be that the actual standard
deviation for TOPEX laser data would be 15 c¢cm instead of 20 cm.

Finally, we may want to emphasize a single tracking data type within the solution, for

instance if the amount of observations of this type is substantially smaller than that of

111

another data type (e.g. SLR data versus DORIS data). To this purpose, it is possible to define
a scale factor for a tracking data type, which is used to scale the equation (2.20) directly
before adding it to the normal matrix. Note that this scale factor is not squared in the normal

equation. In the next Chapters, scale factors will be used to balance a solution according to

the amount and quality of data for each tracking type.
It is important to clearly distinguish between the four different control parameters :

(1) A standard deviation for each data type, which is the nominal ¢ from (2.15),
(2) A standard deviation per station, which will simply replace the o from (1) if
it is defined for specific stations,
(3) A scale factor per satellite, with which the o from (1) or (2) is multiplied,
and (4) A scale factor per data type, used to increase the influence of a single data type

within the solution by direct scaling of the normal matrix contributions.

Although at first sight this combination of different standard deviations and scale factors may
seem rather inconsistent or confusing, it has in fact evolved in practice as the most efficient

way to have direct control over the influence of individual satellites, stations or data types.

One of the reasons to have these different control parameters is to allow efficient automatic
data editing. The data editing rules used by Faust are fairly straightforward but should always

be used with caution. The three rejection criteria used for data editing are

(1) Automatic rejection of absurd values
(2) Window rejection, using an absolute rejection level that is defined per datatype
(3) Gaussian rejection, using a relative rejection level with respect to the RMS value

of the residuals in the previous iteration, per datatype and per satellite

The first type of rejection is always applied, although the user can set the level of residuals
that should be considered as 'absurd' in the input. This editing rule forms a safety net to
eliminate obviously wrong observations that sometimes slip through the normal point

generation sequence. The process iteration in which the two other rejection criteria will first

be applied - if at all - can be set in the user input.

112

The window rejection is 'crude but effective’ and allows a straightforward elimination of all
observations with a residual above a certain absolute value, specified for each tracking data
type separately. At present, Faust does not include the possibility to set different window

levels for different satellites, as this is not really necessary for simultaneous solutions
between ERS and TOPEX/Poseidon.

The third type of rejection assumes that the residuals have a Gaussian distribution, as
discussed in Section 2.2, and that residuals that are larger than a value fG.aRm. should be
rejeceted. The standard deviation Opys 1 then the RMS of all residuals of a certain datatype
and related to a certain satellite, as found in the previous process iteration. In a first iteration,

the a priori standard deviation o,

- would be used. It is for this reason that scale factors

per datatype are introduced in the above : if we would attempt to emphasize a specific
datatype by defining an unrealistically small standard deviation - in order to obtain a large
weight in (2.14) - the Gaussian rejection can no longer be used, because most observations
would fall outside the fG'ORMS band. Under all circumstances, the a priori value of o

should be realistic for the specific combination of data type, station and satellite in order for

the editing process to work properly.

113

Multi-arc orbit determination Chapter 6

The previous Chapters have treated the full theory behind dynamic multi-arc / multi-satellite
solutions for altimeter missions, and the essential details of their implementation in Faust. In
three subsequent Chapters the theory will now be applied to specific parameter estimations
tasks, in order to analyse the added value of simultaneous multi-arc methods for precise orbit

determination, and for applications of radar altimetry data to space geodesy.

In Chapter 1 it was explained that the necessity for multi-arc solutions is a direct
consequence of the choice to apply dual satellite crossovers for the simultaneous adjustment
of both involved satellite orbits, if loss of data density is to be avoided. However, once that
the multi-arc solution has been adopted as the default approach to precise orbit determination,
even the single satellite orbit case can benefit from additional information that is available in
a multi-arc solution. This Chapter will show how various inaccuracies in a single-arc orbit
determination process are related to the finite length of computed arcs, and how such
problems may be overcome in a multi-arc process by using knowledge related to the
behavior of the satellite's orbit before or after the time interval covered by a single arc. In

addition, some practical problems related to multi-arc solutions will be discussed.

6.1 Crossover data density

For altimetry satellites, the crucial difference between single-arc and multi-arc solutions is the
availability of crossovers between successive arcs. As illustrated in Figures 1.2 and 6.1, the
size of a crossover dataset in a multi-arc solution will be about twice that of a single-arc
solution, for an arc length of five days used for the ERS satellites and a maximum time
interval between crossings also set to five days. Figures 6.2 a to f visualize the spatial data
coverages for ERS-1 during a five day arc, for various upper limits to the interval between
crossings. For the three types of crossovers that are relevant to this study, being single
satellite crossovers for ERS-1 and TOPEX as well as dual crossovers between the two, the

relation between the crossover interval and the data density has been analysed.

9200
n
™ 100 -
@p)]
C o
L 0
600 : : ' : ' '
@) -
500 - T 3 - l . M
D —|| L - H —
>uj4oo I8 U i i
L | i
O 300 | 1§
F o nllg :
200 - | T
475 A4
w |
i 100§ L _; |
0 i é : : 4 L 4 I |
0 10 15 20 25 30 35
600 : * : '
500 M i . i
O | L M
X 400 AU i L 10 |
(D . | H o B r4|
ﬁ 300 | .
N "
O 200 - _ : |
= | 1 1
100 - | L :

10 15 20 25 30 35

Time (days)

Figure 6.1 Typical amounts of crossovers during 12-hour intervals. Shaded bars represent
the crossover density in single arc solutions, while the white bars represent the available
crossovers in multi-arc solutions. All datasets have been generated with a 5-day upper limit
to the interval between crossings.

As shown in Figure 6.3, the data density is more or less proportional to the tolerated time
span between the crossings, which will be true at least until this interval approaches the
groundtrack repeat period. To obtain the same data density as feasible in single arc solutions,
we can reduce the tolerated time span between crossings to about half the interval used in

single arc solutions. Alternatively, we can substantially increase the crossover data density if

+ ¥4
489 SXO

.
.

§+

+ + &+

Single arc solution

115

ttett e

i
drvrr v bttt

f: 1
f: 3
3
P
22
s

22
+%

TINYT L2
CAdl o BT LARS

LerExn

.
¥ ﬂ-?

"y ot

1220 SXO

LA R

+

ARV
Multi-arc solution, S-day limit

¥i%%

- .‘#—.

e

¥4 3

»: ¢

#4 o>

aﬁ#w

wt)

2 I =

e b 2
*» o

W.‘a [+F]

Ex. 5

s 20

oty =

-

ELE

$3%
444
313
b223
4
22
2
s+

§
s

L2

trawy

Y RELY YA RW N R Ry

T HRANBRNR R

o
o, 3
LM %
A~ HW
.‘& (=3
- -
S m
* —
& -
A 3
- <
#+ -
. &
.: .m
* ©
. 7]
o
. 5
-~ -u
t c
*
s
=
+

LY
%
w?
¢
“r
ﬁﬂ
i)
lm o,
: >
*e =]
-5}
o W
4 2
t-ao F

"

- H o o+
e L

“Q‘ﬂ'ﬂﬁﬁﬁ'*ﬂ'*_

R e
- - + W O W W

S ATRN S

: v
BERANBE RN “#t«t#?%&&t*-n«i’,.*?%“ﬁ*l"&I
A L T WA ¥ + % W e bt TSR S AN S Y K) L B S

S TR % o -~ - "

$t
kS
$
o
#:
$#
¥
3+

Figure 6.2 (d) Multi-arc solution, 3-day limit : 659 SXO

++

L A

-

HoH H M MR W W

4+ HH P B+ B H o o W W H W H oW W H W W W W

L S NN 3R S O S W

+ * H W W
+ * LA L B

+ + +
. ¢
#31#?%ﬂtﬁﬁ‘ﬁ«$‘.+“‘v*¢t*t"4‘

. s = . 4 + + o+ o+ o4 L

* + B =

Figure 6.2 (e) Multi-arc solution, 2-day limit : 407 SXO

L B

v D I - . » + 4 A I) PR

Figure 6.2 () Multi-arc solution, 1-day limit : 205 SXO

117

L4
. 0
5
S
3000 - X -
S
f
A @q
/)5
5
2500 A & A ‘ :5.. X
& y
O §
& A -§
&
Q
Nominal DXO ERS-1/ Topex in single 5-day arc 0&'

2000 _a:::Z::@:::B::::::Z:::::ZZZZ:::::ZZ::::::Z:::' - ::'Jt::::::::::::::éi

Number of crossovers within 5-day period

1
|
o
1o
Z1 1
1500 -~ '[: =
b
1o oo™
(I < o
| R\
X 1o \'\“@
1000 =1 " I k_%' g L
0O
‘ﬁT I
|
T
R
Nominal SXOI ERIS-I in single 5-day arc
- — BN oo s o s a0 i -
500 B--e- e f o ! Fo q
| o
| ('
O | I
1 o
_ 1 o
0 - T T c T —t T
0 1 2 3 4 5

Limit to interval between crossings (days)

Figure 6.3 Trends between crossover data density and tolerated time between crossings

the same 5-day interval is used as in the single arc case. In between these two cases, we will
obtain an improvement in both the data quantity and the data quality. In later Sections, two
crossover intervals will be used, namely the generally used value of 5 days, and a smaller
value of 3.5 days that should reduce sea surface variability noise in the dataset, while still

maintaining a data density that is at least as good as that of the single arc solution.

118

6.2 Orbit quality assessment

No independent measure exists to verify the actual radial accuracy of a satellite orbit.
Various complementary techniques can however provide an adequate estimate of the upper
limit of the remaining orbit error. For quality assessment of the TOPEX/Poseidon orbits,
Marshall et al. (1995) use the three criteria of agreement with tracking data, overlap tests
between orbit solutions based on different subsets of the available data, and comparisons with
external orbit solutions. Scharroo & Visser (1997) use similar techniques for ERS-1 and add

a test based upon crossover residuals for crossings that are further apart than the time span

covered by the arc itself.

Test ID Analysis technique ERS-1 TOPEX
Agreement with tracking data :

1 SLR Yes Yes

2 Single satellite crossovers Yes Yes

3 DORIS No Yes

4 SLR at high elevation Yes Yes

5 Power of crossover residuals Yes Yes

Overlap tests with alternative solutions :

6 Comparisons with 1-day short arcs Yes Yes

7 Comparisons with 3-day short arcs Yes Yes

8 Comparisons single arc vs. multi-arc solutions Yes Yes

Comparisons with external orbit solutions :

9 Comparisons with UT/CSR solutions Yes No
10 Comparisons with DUT/DEOS solutions Yes No
11 | Comparison with ephemerides from altimetry GDR No Yes

Long-interval crossover differences :
12 0 < At < 17.5 days Yes No
13 S < At <35 days Yes No

Table 6.1 Identification of different orbit quality tests, and indication of availability for
ERS-1 and TOPEX/Poseidon.

119

Two other quantities that can serve as an indication of the radial orbit accuracy are the SLR
residuals of observations at high elevations (i.e. close to the radial direction) and the RMS of
the crossover residuals divided by \/—2— . The latter criterion assumes perfect orthogonality

between crossovers, corresponding to a residual distribution with a white noise character.

Available tests are listed in Table 6.1, so that later in this Chapter each test can be identified
by the ID numbers that are defined here. Obviously, the quality of any solution depends on
the a priori models used in the orbit determination process, as well as on the chosen set of

model parameters that are solved for. The models used in this Section for all orbits computed

with Faust are summarized in Table 6.2 below.

To study the added value of a multi-arc orbit determination approach, precise orbits have
been computed with Faust for a sizable period of the ERS-1 and TOPEX/Poseidon missions.
For ERS-1, orbits were computed for the entire mission phase C during which the satellite is
in a 35-day repeat orbit. TOPEX/Poseidon maintains the same 9.91-day repeat orbit
throughout its mission. Due to various inaccuracies during the commissioning phase, the
period studied for TOPEX does not start before cycle 10, and continues to cycle 46 in order
to span one year. This period overlaps completely with the solution period for ERS-1, so that

the overlapping period can also be used for analysis of simultaneous dual-satellite solutions
in Chapter 7.

Single-arc orbit solutions for each satellite were computed for the entire period, as well as
multi-arc solutions that cover a full 35-day cycle for ERS-1, or a batch of six consecutive
repeat cycles (i.e. 60 days) for TOPEX/Poseidon. To these sets of orbit solutions, most of the
tests listed in Table 6.1 were applied. The results of all orbit computations and accuracy tests

will be presented below in various Figures and Tables.

120

Geometry
Ellipsoid

Inertial reference frame
Terrestrial reference frame
Tectonic plate motion
Polar motion

Nutation

R, = 6378.1363 km

f = 1/298.257

w = 6.300387446 rad / day

J2000 equinox and mean pole

ITRF 94 (SLR & DORIS)

Linear station velocities from ITRF 94
IERS

Wahr model (see Appendix A)

Conservative forces

Gravity field

Solid Earth tides
Ocean tides

Third body attraction

1 = 0.398600441500 x 10" m?/ s?
JGM-3 70x70 (Tapley et al., 1996)
MERIT (Melbourne et al., 1985)
UT/CSR, 168 terms included

IAU Planetary ephemerides

Surface forces

Atmospheric density model

Drag scale parameters

Solar radiation pressure

Earth albedo / infrared

MSIS83 (Hedin, 1983)

TOPEX : daily --

ERS : 2 parameters per day (SLR only orbits)
or 4 parameters per day if sufficient data

TOPEX : 1 scale factor per arc

ERS : no parameters solved for

KP and F10.7 from IAU
Included for both satellites

Empirical accelerations

Once per revolution cyclic

Along track acceleration

TOPEX : along track & cross track, daily
ERS-1 : along track and cross track, 1 set per arc;
occasionally daily !

Not solved for

Table 6.2 Models used in orbit determination

Daily or two-daily sets of parameters were used in most arcs of the cycles 9 and 10,

where atmospheric density variability was high due to extreme solar activity.

121

Figure 6.4 shows all post-solution tracking data residuals as a function of time, for both
satellites (tests 1, 2 and 3 of Table 6.1). Figure 6.5 shows the results of the performed orbit
comparisons (tests 8, 9 and 10), separated in radial and horizontal components of the total
orbital differences. Note that the program used for these comparisons also computes a 7-
parameters transformation between the two orbit solutions, in order to compensate for
differences between reference frames (in particular for different polar motion data and / or
the different ellipsoid model). The provided RMS of differences is obtained after
transformation. To allow for a more precise analysis than is possible from the Figures alone,
the information that is graphically represented in the Figures is also given numerically in the
form of the Tables 6.3 and 6.4. Finally, Table 6.5 summarizes the RMS values for all
involved tracking data sets and orbit comparisons, as well as some other quality indicators
like the results of the tests 4 and 5.

A few short periods with clear anomalies have been excluded from the results. In particular,
this concerned three periods with repetitive manoeuvres between which insufficient tracking
data was available, as well as a period of two days in ERS-1 cycle 9 for which so few SLR
observations were available that the differences between all available orbit solutions was at
the level of several meters. Because such values do not reflect the typical orbit accuracy of

the satellite, exclusion of such periods provides more relevant information.

122

SLR residuals ERS-1 (cm)

W -WM\MWW M%?

- - -
48720 48790 48860 48930 49000 49070 49140 49210 49280 49350

SXO residuals ERS-1 (cm)

14 L | % | i l N 1 A 1 A [l 4 | A l L
, Multi-arc < 5.0 days |
12 Multi-arc < 3.5 days |-

12 ﬂ\/#\v/v\j MWV%MM/WW/VW«WWW

48720 48790 48860 48930 49000 49070 491 40 4921 0 49280 49350

SLR residuals TOPEX (cm)

10,.I 1 | | P |

Multi-arc -

b—z}
(

rrrrrr

49000 490?0 491 40 4921 0 49280 49350

DORIS residuals TOPEX (cm/s)

o APYEIT NI RIS WA T S st | P B Y S S (LT B

0.07 { R Multi-arc |-
0.06 i W\J’f /\/\ I
|\ _ B e e e i i
0.05 v ! B
0.04 : _ =
0.03 1 2 S L 5 6 -

49000 49070 491 40 4921 0 49280 49350

SXO residuals TOPEX (cm)

80) LT T S T | AR P S]
1 Multi-arc < 5 0 days -
Multi-arc < 3.5 days |

............

49000 490?0 491 40 4921 0 49280 49350

Figure 6.4 Tracking data residuals for all solutions. Continuous lines represent the RMS for
single arc solutions, grey bars give the RMS values for the multi-arc solutions, which are
numbered as in Tables 6.3 and 6.4. For SXO residuals, separate values are shown for data
sets with 5-day and 3.5-day upper limits to the crossover interval. Note that each of the two
SXO bars for a given multi-arc solution relate to the entire multi-arc period.

8000

20000

10000

000
o

‘ \’\mcu\m\

% OvEN
[mis)

Fig
rure 6
.5 y
also i - Char:
indic aracteristi
dat: icated 1stics _
ata. TOP . and st of the
reduc EX/Poseid 10w the si larid-bas
uce the con oseidon las e significar based tracki
putational I.Lr Fita ‘i ‘-lI differenc ng data typ
al loads; YOR es in ypes. T
s; only IS d: glob: he visibili
ly one of ev data. The D:'] coverag \:lb]hl)’ mask
rery four RIS age betw asks
y four avai S d: ween are
availabl ata is ERS 1
e meas S even s O 1aser
asuren sam
ents is pled t
S 1S uh’cd (8]

124

RMS of radial orbit differences ERS-1 (cm)

i L | i |
el 1 | 1 | gl

]
1
i
i

R

811.2.3.4.5 6,7:8,9.10,11,12,13 14,15 1617 18}
12__ ¥ I ¥ | L 1 . P Y | . | ' ! A '! ‘ i

] : DEOS |
8- | B
6- | | WAV F

| LR T DT . e -
511 .2,3,4,5 6,7 8,9:10,11,12,13 14,15 16,17 18}
12._ : i !] r i l I] I ‘] l. II ‘] X]

1. & = oz 2 - E I VD B Single arc |
o] | o T
6_' i | ; E

123 4 5 6.7 .8 9 10 11:12:13:14 .15:16 17 18}
' i ’ i T Y T ' T ' T T
48720 48790 48860 48930 49000 49070 49140 49210 49280 49350

RMS of horizontal orbit differences ERS-1 (cm)

' 4 !

2 i
:—
30-; { i 1 5—

19 2'314!5 6,;7:8:9 10{11:12;13:14,15 16,17 18}
i ; ! i i : ! ! | : . ’ } . ! i | X i
®1 + 0 s g . i i i iDEOS|

60 } e b
117.2:3:4:5 6.7 .8;9:10:11:12;13:14.:15'16,;17 18}
90 - i f &y 7 r & F kxR g
] Coonr o b s o ¢ Singleare |
60—. i ; : £ ¥ ' ‘ . i i ?_
30 | -

1/2:3°'4'5 6 7 8 9 1011 12 13 14 15 16 17'18}
' T : T ! T " T 7 T y T ; T g T '
48720 48790 48860 48930 49000 49070 49140 49210 49280 49350

Figure 6.6 Comparisons of ERS-1 orbits from multi-arc process with other solutions.

125

Solution ID RMS of residuals (cm) Orbit comparisons with multi-are solutions (cm)
Multi | Single Epoch Multi-are solution Single arc solution UT/CSR Delft DEOS Single anc
arc arc MJD
SLR SX0 SX0 SLR SX0 Radial Horiz. Radial Horiz. Radial Horiz.
<5 <35

RMS for complete period > 6.62 9.15 8.98 6.82 9 6.27 56.8 6,05 52.7 46 284
1 1 48729.00 5.65 11.24 9.52 8.52 9.62 4.2 78.8 15.8 337 4.2 10.2
2 48733.00 4,66 9.01 6.2 1m.2 42 128 36 425

3 48739.00 521 11.80 11.8 389 9.6 728 1.2 21.0

4 48745.00 9.88 12.10 8.1 429 6.5 12.9 3.4 28

5 48750.00 7.23 9.86 6.3 62.9 32 328 6.1 57.2

6 48754.00 531 10.77 5.0 48.0 38 284 5.2 120

7 48758.00 6.21 8.21 53 319 71 19.1 46 19.3

2 B | 48760.50 8.02 8.e8 B8.30 5.22 9.07 6.2 289 58 59.2 1.2 25.9
9 48764.00 4.21 8.3 15 62.1 6.0 320 4.8 16.7

10 48768.00 7.29 8.81 71 17.9 6.7 377 3.3 19.4

1" 48772.00 1mnan 8.94 5.4 825 6.3 36.6 6.0 181

12 48776.00 6.12 9.32 59 31.6 5.6 51.7 4.8 33.2

13 48780.00 T.41 8.01 38 44.4 56 49.3 39 249

14 48784.00 5.23 10.02 11.0 518 7.0 52.7 51 234

15 48788.00 8.67 9.1 7.2 12.9 6.7 344 3.2 26.4

16 | 48792.00 7.98 B.67 63 91.6 57 55.8 55 9.8

3 17 | 48795.50 6.90 8.12 8.21 5.10 B.63 57 54.1 55 28.5 47 32.0
18 48799.00 8.70 B.24 59 36.3 62 415 36 219

19 48804.00 427 8.73 55 39.6 6.0 56.6 5.8 17.2

20 48807.00 572 10.20 8.7 58.5 54 45.1 41 349

21 48811.00 6.79 B.25 59 36.7 6.6 53.0 45 254

22 | 48815.00 6.44 B.46 58 332 55 452 53 158

23 48819.00 8.7 9.01 6.5 28.8 6.0 53.2 5.0 389

24 | 48827.00 9.35 8.45 6.5 56.6 64 50.1 57 18.7

4 25 | 48830.50 5.96 B.42 8.30 5.56 9.04 6.8 BO.7 6.8 54.4 40 230
26 48835.00 aom 8.23 6.4 44.1 5.1 236 4.1 309

27 48839.00 7.96 8.42 6.8 60.5 5.0 331 55 30.6

28 48843.00 8.22 10.38 6.9 781 5.9 57.4 a7 36.9

29 | 48848.00 4.08 a.72 58 57.9 6.5 60.5 5.9 294

30 48852.00 4.74 8.40 58 54.3 5.8 40.5 57 40.7

31 48856.00 7.61 8.73 6.2 77 55 234 6.0 25.1

32 | 48860.00 5.08 8.21 5.1 41.6 6.2 256 5.1 39.8

5 33 | 48870.00 605 1063 8.24 472 9.02 73 621 54 273 45 18.0
34 | 48874.00 4.28 8.78 66 404 63 564 45 26.1

35 | 48878.00 7.70 B.63 7.2 55.7 5.1 46.2 35 38.6

36 | 48882.00 6.97 8.49 4.0 56.4 59 39.6 3.4 15.8

37 | 48886.00 B8.77 9.93 57 38.6 6.9 42.9 5.0 40.3

a8 48890.00 3.20 8.86 6.6 78.3 5.6 273 a7 211

39 48894.00 5.40 8.27 55 368 51 422 42 31.0

40 | 48898.00 98.07 10.14 46 41.3 54 48.4 33 409

6 41 48900.50 6.00 8.63 8.23 573 8.32 5.4 75.9 56 254 45 20,0
42 48906.00 8.79 8.69 55 753 56 4.7 34 353

43 48911.00 4.55 9.10 64 729 6.8 421 53 36.7

44 48917.00 7.52 9.28 5.9 78.5 8.3 60.4 4.5 141

45 48921.00 11.49 877 52 75 6.1 43.0 51 33

46 48926.00 515 8.62 41 378 7.0 355 4.3 23.2

47 48931.00 7.88 8.31 56 80.9 52 374 4.5 321

48 48935,00 6.24 10.82 6.3 €6.5 55 26.0 59 34.6
7 49 48935.00 6.13 9.87 9.12 7.95 8.7 55 73.2 6.7 318 48 26.8
50 48943.00 B.10 8.36 53 73.7 56 §5.1 39 239

51 48948.00 4.87 9.00 54 66.2 54 37.8 56 39.7

52 48952.00 4,86 9.85 42 320 5.2 48.9 36 40.2
53 | 48957.00 4,66 9.67 73 747 8.5 3041 58 37.0

54 | 48960.10 5.83 B8.68 6.1 81.1 55 516 a7 21.9
55 | 48965.50 7.74 1010 6.5 51.0 6.0 40.5 5.8 16.3
56 48973.08 WAl 8.02 6.5 454 69 254 4.1 39.7
8 57 | 48978.00 5.56 8.21 B.65 715 9.17 8.0 B2.1 6.8 56.8 32 38.9
58 | 48983.00 4.62 B.63 51 58.8 6.1 25.1 3.7 203

59 | 48986.00 4,72 9.16 6.3 55.7 5.0 45.1 46 36.1
60 48992.00 B8.24 10.63 59 41.8 58 516 5.1 336

61 48997.00 5.84 8.93 46 51.8 59 32.7 43 41.1
62 49001.00 6.37 998 6.4 80.5 6.8 271 42 18.6

126

9 63 | 4900550 || 962 121 1131 | 1200 1168 111 663 67 371 76 195
64 | 49010.50 8.18 9.77 92 848 68 330 7.2 16.7

65 | 4901550 6.32 10.28 66 412 67 492 44 292

66 | 49022.00 5.08 9.39 17 1342 64 590 52 409

67 | 49026.00 11.96 9.64 57 1142 69 780 34 233

68 | 49031.00 8.07 8.78 54 616 60 398 84 399

69 | 49036.00 16.89 9.72 72 763 59 490 43 206

10 70 | 4904050 || 722 978 9.1 7.73 8.38 73 376 67 345 72 204
71 | 49046.00 11.00 8.47 103 435 60 326 1.1 18.0

72 | 49051.00 7.00 873 66 379 53 249 45 265

73 | 490s5.00 9.09 8.95 49 342 55 453 46 392

74 | 49061.00 747 8.7 54 621 70 249 47 327

75 | 49066.00 6.78 9.88 43 398 56 343 38 283

76 | 49072.00 6.91 8.19 52 599 62 402 39 378

11 77 | 4s076.00 || 658 1016 977 6.75 8.98 67 799 54 269 31 368
78 | 49080.00 9.43 8.67 56 589 64 469 47 14.3

79 | 49085.00 433 8.12 70 775 63 564 3s 155

80 | 49089.00 7.36 8.48 60 758 53 449 50 333

81 | 49092.00 5.91 8.85 56 574 63 551 32 165

82 | 49097.00 5.76 8.64 55 341 54 237 | 106 387

83 | 49101.00 6.48 8.83 105 333 67 293 59 365

84 | 49104.00 827 8.15 54 419 67 349 32 403

85 | 49107.00 432 8.62 72 760 56 459 54 238

12 86 | 4911250 || 7.91 872 945 | 6.44 8.95 58 761 51 264 60 333
87 | 49116.00 729 829 56 67.1 62 484 46 223

88 | 49120.00 5.22 8.46 55 785 68 527 58 104

89 | 49124.00 7.34 8.05 60 572 64 245 42 373

90 | 49128.00 451 8.60 63 519 56 269 4.1 214

91 | 49132.00 6.58 8.91 54 542 59 252 48 348

92 | 49136.00 6.05 8.05 68 729 55 383 45 277

93 | 49142.00 479 829 73 644 56 329 56 19.3

13 94 | 4914600 || 733 989 910 | 938 8.49 65 415 58 244 52 357
95 | 49150.00 4.35 8.25 71 453 52 206 31 3.7

96 | 49154.00 6.88 9.01 52 794 54 555 5.1 352

97 | 49158.00 8.10 5.03 56 490 63 357 45 375

98 | 49162.00 4.98 8.38 65 592 53 481 32 384

99 | 49166.00 5.07 8.78 56 717 84 508 37 396

100 | 49169.00 5.56 8.20 65 802 53 388 60 387

101 | 49173.00 5.87 9.08 53 419 66 468 48 158

102 | 49177.00 6.71 8.30 54 529 52 322 41 28.0

14 103 | 4918100 || 578 1042 984 419 8.28 54 504 51 595 42 189
104 | 49185.00 6.49 9.38 73 691 66 485 4.1 318

105 | 49189.00 460 9.97 54 640 66 564 44 37

106 | 49193.00 5.55 8.52 60 374 54 410 40 241

107 | 49197.00 6.91 10.78 65 582 66 269 59 351

108 | 49201.00 402 8.60 7.1 757 65 598 54 355

109 | 49205.00 5.24 8.81 64 424 51 508 31 19.0

110 | 49209.00 5.92 2.10 58 47.0 64 895 41 313

111 | 49213.00 6.52 9.94 67 824 59 389 3.1 372

15 112 | 4921600 || 687 883 871 8.02 8.86 55 386 63 392 4.1 267
113 | 49221.00 6.80 9.39 70 545 84 562 38 214

114 | 49226.00 7.10 8.62 73 435 64 542 49 262

115 | 49230.00 6.83 9.22 57 704 56 394 a1 231

116 | 49233.00 6.82 8.89 51 440 56 488 48 303

117 | 4s236.00 7.65 9.03 70 853 53 306 57 358

118 | 49240.00 6.82 9.25 59 550 62 537 54 313

119 | 49244.00 6.32 9.09 58 454 64 281 58 156

120 | 49248.00 7.69 8.91 72 439 64 303 39 310

16 121 | 4925200 || 670 890 862 6.65 9.03 7.3 648 64 359 56 304
122 | 49256.00 6.90 9.37 72 #413 57 219 52 223

123 | 49260.00 7.83 8.86 63 766 55 533 37 343

124 | 49264.00 6.96 8.72 55 561 63 332 40 369

125 | 49268.00 8.05 9.30 42 33 52 240 5.0 17.8

126 | 49272.00 5.89 9.31 54 435 68 398 42 208

127 | 49276.00 8.04 8.85 52 817 53 278 52 202

128 | 49280.00 6.20 8.90 65 375 54 574 44 342

129 | 49284.00 7.75 8.96 72 534 68 242 5.1 357

127

17 130 | 49288.00 6.28 10.54 9.86 6.83 9.38 5.3 353 5.4 50.8 38 383
131 49291.00 6.82 9.16 58 359 5.6 40.1 45 223
132 49295.00 7.65 9.00 5.7 48.4 5.0 60.2 3.9 17.8
133 | 49299.00 6.82 8.98 54 755 5.1 281 48 25.0
134 | 49303.00 6.32 9.16 54 60.6 55 50.2 5.0 35.1
135 | 49307.00 7.63 8.88 6.1 72.0 586 511 38 26,5
136 | 498311.00 6.65 8.74 7.2 80.2 5.9 51.7 54 225
137 49315.00 6.90 9.22 59 3186 6.7 44.3 55 259
138 | 48319.00 7.83 8.89 6.8 48.8 5.6 353 5.6 256
18 139 | 49323.00 5.75 9.08 8.81 6.96 8.03 6.8 48.5 56 54.0 39 248
140 49327.00 4.05 9.25 72 332 6.3 384 46 233
141 49331.00 5.89 9.09 57 724 53 49.6 39 335
142 49335.00 8.04 8.91 5.6 711 6.2 45.1 5.3 213
143 | 49339.00 3.20 9.03 7.3 403 7.0 299 4.1 295
Table 6.3 Orbit determination results for ERS-1
Solution ID Epoch RMS of residuals (cm, cm/s) Orbit comparisons (cm)
MJD
Multi Single Multi-arc solution Single arc solution GDR Ephemerides Multl vs. Single
arc arg
SLR SX0 DORIS SLR SX0 DORIS Radial Horiz. Radial Horiz,
RMS for complete period > 557 7.18 0.0558 557 7.16 0.0558 4.7 538 28 182
1 10 48977.39 5.31 7.20 0.0546 5.02 7.13 0.0677 5.2 69.4 28 224
1 48987.30 6.00 7.07 0.0556 58 46.3 32 125
12 48997.22 5.52 T.44 0.0548 4.8 518 o 128
13 | 49007.13 4.39 6.83 0.0514 55 496 3.0 24.6
14 | 49017.00 4.89 6.78 0.0528 36 69.7 3.0 216
15 | 49026.97 3.69 7.05 0.0515 38 737 2.8 115
2 16 49036.88 5.84 7.56 0.0538 482 7.46 0.0514 5.0 56.8 27 222
17 49046.80 5.54 B.76 0.0521 4.1 349 27 15.7
18 49056.71 6.50 7.04 0.0529 4.0 46.0 29 25.3
19 | 49066.63 5.61 7.01 0.0554 47 534 28 232
20 | 49076.54 6.65 7.45 0.0524 46 60.6 24 231
21 49086.46 5.92 7.14 0.0517 47 31.0 3.0 225
3 22 | 49096.37 6.08 7.3 0.0572 6.57 6.88 0.0512 50 48.0 27 225
23 | 49106.29 8.33 6.79 0.0551 53 713 25 121
24 49116.21 6.13 6.89 0.0665 4.1 58.7 31 16.0
25 49126.12 5.97 7.05 0.0572 5.6 558 28 121
26 | 49136.04 4.07 7.20 0.0595 4.0 525 3.2 255
27 | 4914595 3.47 7.27 0.0591 a5 55.5 3.0 19.0
4 28 49155.87 5.41 7.16 0.0566 5.47 6.79 0.0593 35 61.6 25 18.7
29 49165.78 5.55 7.32 0.0504 59 54.7 27 22.7
30 | 49169.00 5.35 7.43 0.0532 45 394 a1 18.1
kh] 49175.70 6.10 6.81 0.0567 4.9 a7 27 209
az2 49185.62 529 7.05 0.0589 3.5 33.7 28 205
33 | 4919553 5.30 7.00 0.0563 56 438 26 175
5 34 49215.36 5.42 AL 0.0551 4,58 7.37 0.0540 " 48 67.3 3.2 241
35 | 4922528 49 6.88 0.0552 51 66.8 29 236
36 49235.19 592 7.24 0.0565 56 45.7 28 10.
37 4924511 5.67 7.06 0.0541 4.1 421 29 196
38 49255.02 563 8.79 0.0546 5.4 ng 26 234
39 49264.94 3.73 7.26 0.0546 46 60.9 32 26.1
6 40 | 49274.86 6.14 7,00 0.0569 4.80 7.20 0.0561 37 455 2.7 243
41 49284.77 512 T7.44 0.0564 58 58.7 3.0 126
42 49294.69 8.44 6.84 0.0637 5.1 58.5 25 15.7
43 | 49304.60 6.15 7.13 0.0541 54 57.5 28 207
44 | 49314.52 6.04 6.80 0.0566 5.2 55.2 3.0 13.5
45 | 49324.43 6.44 7.01 0.0593 4.0 65.0 32 20.7
46 | 49334.35 6.57 7.05 0.0557 48 50.8 29 16.1

Table 6.4 Orbit determination results for TOPEX/Poseidon

128

Quality assessment test ERS-1 TOPEX/Poseidon
(units : cm, cm/s) | single | multi | single multi
Tracking data
(1) SLR data residuals 6.82 6.62 557 331
(2) SXO residuals, 5.0 day limit 9.11 9.15 7.16 7.18
SXO residuals, 3.5 day limit B 8.98 - -
(3) DORIS data residuals - - 0.056 0.056
(4) SLR at elevations > 70° 6.16 6.10 4.72 4.73
(5) SXO residuals / /2 6.44 6.47 5.06 5.08
Orbit comparisons (radial component)
(8) Single arc vs. multi-arc 4.62 2.83
(9) Comparison with UT/CSR orbits 6.27 -
(10) Comparisons with DUT/DEOS orbits 6.05 -
(11) Comparisons with GDR ephemerides - 4.70

Table 6.5 Orbit accuracy assessment

The post-solution RMS of tracking data fit for ERS-1 turns out to be very similar to results
obtained by other groups (e.g. Ries et al., 1996; Scharroo & Visser, 1997). The computed
orbits are also comparable to the various external solutions. This close agreement between
independent solutions provides good confidence in each individual solution. In the framework
of the current study, the most interesting comparison is of course that between single-arc and

multi-arc solutions computed by Faust, as given in the last columns of the Tables 6.3 and
6.4.

On the basis of Table 6.5, the typical radial orbit accuracy for ERS-1 can be estimated at 6.1
cm, and for TOPEX/Poseidon at about 4.8 cm. For both satellites, we can conclude that the
multi-arc approach only modifies the orbits within the post-solution noise bands of the single-
arc solutions, while the RMS fit of the data is hardly any different from the single-arc case.
At first sight this might raise questions about the advantages of multi-arc solutions : if we
only modify the existing noise without reducing it, it is impossible to conclude that the

orbital quality has improved. At closer inspection, however, two useful improvements can be

deduced from these results.

129

The a posteriori residuals in a least-squares process will tend to increase if the ratio between
the amount of observations and the amount of parameters solved for increases, unless the
solution period is substantially longer than the decorrelation period for all possible noise
components. This is a consequence of the need to satisfy a larger amount of - independent -
calculated observations, each of which will have its own imperfections. In the Tables we see
that despite the substantial increase in crossover data quantity, the post-solution noise levels
for the multi-arc solutions are not larger than in the single-satellite case. This indicates that
the overall RMS level of 9.15 cm as obtained for ERS-1 forms indeed the remaining noise
level in the dataset, and that both the single-arc and the multi-arc solutions have converged to
the lowest noise level that is feasible for the given input data. However, because the multi-

arc solutions contain many more observations, they provide greater confidence in the quality

of the resulting orbits.

Furthermore, the case of crossover intervals that are limited to 3.5-days shows a decrease in
post-solution RMS of the residuals with respect to the single-arc solutions, despite of the fact
that the size of the crossover dataset is larger. This indicates that there is indeed a reduction
in data noise between the two cases, which then implies that the orbit noise in the solutions
with a 5-day limit to the crossover interval is lower than the level that is suggested by the
post-solution RMS of SXO residuals. However, there may also be an effect of poorer
decorrelation of different observations in the 3.5-day dataset, which would not actually

improve the quality of the solution, but only create the impression of a reduced noise level.

The tables show that for TOPEX/Poseidon the differences between single-arc solutions and
multi-arc solutions for this satellite are negligible. The radial orbit error for
TOPEX/Poseidon, as estimated at 4.8 cm above, is larger than what is found by Cheney et
al. 1994, although it is still smaller than that for ERS-1. The relatively large orbit errors for
TOPEX/Poseidon in comparison to external solutions seem to be caused by the use of less
sophisticated attitude control algorithms in Faust, or by the fact that the implemented
observation models were all calibrated in other software, not in Faust. In any case, the
differences appear to be related to observation modelling rather than dynamic modelling,
because the difference between the single-arc and multi-arc solutions suggests a much lower
orbit noise level than the estimated 4.8 cm. The remainder of this and following Chapters
will mainly concern improvements of the ERS orbits, for the simple reason that the radial

precision of the TOPEX/Poseidon orbits is barely open to further improvement by Faust.

130

6.3 Improvement of the ERS-1 orbit error in multi-arc solutions

The main causes of the larger orbital error for ERS-1 is its lower altitude in comparison to
TOPEX/Poseidon. This lower altitude implies greater sensitivity to (errors in) the higher
degree harmonics of the gravity field model, as well as higher atmospheric densities and a
resulting greater sensitivity to the substantial errors in density modelling (see Section 4.4).
This Section will analyse some characteristics of the orbit error of ERS-1, after which two
subsequent Sections will show examples of methods that exploit the possibilities of multi-arc

solutions to improve upon the results from single-arc techniques.

In order to get a more detailled view of the nature of the orbit error, Figure 6.7 shows
comparisons for a single 35-day repeat period (cycle 15 of phase C) between the Aston
orbits, precise orbits computed by UT/CSR and orbits computed by DUT/DEOS. One of the
features that can be clearly noticed in these comparisons is the effect of arc transitions. The
arc lengths of each solution are indicated by alternating grey/white backgrounds. The Figure
also shows that many of the largest differences between solutions occur around the epochs
where either of the compared orbits shows a transition to a new arc. This observation is
confirmed by Figure 6.8, in which the orbital differences (for all cases of Figure 6.7) are
plotted as a function of their distance to the nearest arc transition in either of the compared
solutions. When arc transitions in one solution can be observed as jumps in the differences
with another solution, this is likely to be caused by error components in the solution with the
arc transition. If the orbit errors that are apparently related to arc-transitions could be
reduced, the overall quality of the solutions may improve to levels that are typical for the
central parts of solution arcs, i.e. for the right end of the scatter plot in Figure 6.8. To this

purpose, we can analyse the nature of orbit errors at arc transitions.

The errors related to arc transitions may be classified into two groups. The first group is
caused by reduced observability of parameters that are solved for by means of linear splines,
i.e. drag scale factors or possibly empirical along-track accelerations, as discussed in Sections
4.4 and 4.8. Related to this problem are errors due to increased correlations between such
parameters at the start of the arc (drag scale factors, empirical accelerations) and the
parameters of the initial position and velocity : an error in along-track position or velocity
could be compensated by opposing errors in the drag parameters at the start of the arc, and

as a result these parameters tend to show higher correlations (i.e. they are less separable).

9)]
o

131

|
25 B
=
s o
®© 01 ' i
g
o
I '
_25 | V -
'50 | I I | | I |
49215 49220 49225 49230 49235 49240 49245 49250
Comparison Aston / DEOS
50 I} | ! | | |
25 l
E _ \
S ne ’.
g 01 " _ | . e
S ol Jd \ =
@
o ‘ . J
25 - ‘ _
-50 T 1 T T 1 l T
49215 49220 49225 49230 49235 49240 49245 49250
Comparison Aston / CSR
50 | | | | J |
€
(A
8 e "
©
@
o
-50 T T T T T T |
49215 49220 49225 49230 49235 49240 49245 49250

Comparison CSR / DEOS

100

75

50

25

100

is

50

25

100

75

50

25

Horizontal (cm) Horizontal (cm)

Horizontal (cm)

Figure 6.7 Comparisons between three precise orbit solutions for ERS-1 repeat cycle C-15.
In each plot the arc boundaries are indicated by grey/white transitions, for each of the two

compared solutions.

100 ' !

~l
(6]
|

w
o
|

Orbit difference (cm)

S
A

#, Sy
o

0.00 0.25 0.50

I I
0.75 1.00 1.25 1.50 1.75

Distance from nearest arc transition (days)

Figure 6.8 Relation between orbit differences and the proximity of arc boundaries. All data
points involved in the generation of Figure 6.7 have been combined into a single scatter plot.

A second class of errors is caused by
parameters that are solved for as
constants over the duration of the arc
(a zero-order term) but that may in
fact show a trend, or other higher-
order behaviour, during the arc. The
least-squares process will of course
tend to converge such parameters to
their average (zero-order) value. This
value will be matched most closely
somewhere in the central part of the

arc, but will lead to errors in this

os

4

(23

04

[bhu -l

Orbit difference (m)

02

o8 i . s " i
(1] 05 1 15 2 25 3 3as 4
Tirma in arc (days)

Figure 6.9 Typical error in an orbit with a first
order perturbation, solved for as a constant.

133

parameter that are largest at the arc boundaries (the so-called 'butterfly'-effect, named after

the shape of the plotted orbit error as a function of time; see Figure 6.9).

Note that the first group of errors will benefit from an increase in arc durations, simply
because this will reduce the overall density of arc transitions in time. Unfortunately, the
second group of errors will benefit from a decrease of the arc durations, because this would
suppress effects of higher order variations in the parameter values during the arc period. The
latter effect can be encountered by dividing the length of the arc in shorter intervals, each
with its own - constant - parameter. Trends in a parameter value are hence modelled by a
succession of step functions, as is for instance done regularly by using daily sets of empirical
accelerations for TOPEX/Poseidon.

As explained in Section 4.4, Faust contains the possibility to use a continuous sequence of
drag scale factors throughout the period covered by a multi-arc solution. This option has been
applied to the same ERS-1 cycle as used in Figure 6.7. The effect of the continuation of drag
parameters is twofold. At first, it eliminates the reduction in observability of the linear
splines by which the drag scale factors are computed. At second, it helps to decorrelate the
drag scale factors at the start of each arc from the elements of the initial state vector, because
they also have to match data from the end of the previous. The resulting orbits are again
compared with the external solutions, the result of which is shown in Figure 6.10. As can be
observed from the differences with figure 6.7, many errors related to arc transitions in the

Aston solutions have been reduced, while peaks related to arc transitions in either of the

external solutions are similar to what they were before.

We can conclude that this relatively simple modification to the solution process - using one
drag scale factor at the epochs of arc transitions rather than two - offers notable benefits to
the orbital precision that can obviously only be obtained in a multi-arc approach. The drag
scale factors are mainly observed from along-track tracking data components, and are
practically unobservable from crossover data. While Section 6.2 only used the capability of
multi-arc solutions to support crossovers between consecutive arcs, the discussed continuation

of drag parameters at the arc transitions also correlates successive arcs for the other data
types (SLR, DORIS, PRARE).

134

50 ‘ : ‘ . —- 100
25 ~ 0 E
= ‘ ' L
= “ : l 50 £
= Ik S
@ =
o @)
25 - - 25 I
-50 1 | 1 I] | | 0
49215 49220 49225 49230 49235 49240 49245 49250
| | | | | | |
8 B
o 6 [l WW\J\}
o
g 185 B
©
-30 T T 1 T T T J
49215 49220 49225 49230 49235 49240 49245 49250
Comparison Aston / DEOS and differences with previous case
50 1 l | L L . L 100
25 - e
E)
) e B
g 0 7l [i [} g
© o
o o
25 - - 26 L
-50 T T T T T T T 0
49215 49220 49225 49230 49235 49240 49245 49250
| 1] [l 1 | |
8
e 04 £
o
.?‘EJ =15 4 8
= l
'30 T T T T | 1 L
49215 49220 49225 49230 49235 49240 49245 49250
Comparison Aston / CSR and difference with previous case
Figure 6.10 Comparisons with external solutions if continuous drag parameters are

used throughout the 35-day repeat cycle. Also plotted are the differences with Figure 6.7, to
indicate that errors at arc transitions in the Aston solution have been reduced.

135

6.4 Conclusions

The multi-arc approach to orbit determination causes a subtantial increase in crossover
quantities, with typically twice as many observations for the ERS orbits. This increased data
quantity allows for improvements of the data quality by reducing the maximum allowed time
interval between crossings, typically from 5 days to 3.5 days. The resulting reduction in post-
solution RMS of the crossover residuals can not be subscribed to changes in orbit height - as
these were not observed - and must therefore be caused by reduced sea surface variability

noise in the dataset.

If the same 5-day limit is used as in a single arc solution, the changes in radial orbit height
are within the post-solution noise band of the individual solutions, although the double
amount of observations must be satisfied. Because the post-solution RMS is not larger than
that of single-arc solutions, the multi-arc solution provides greater confidence in the overall

solution quality.

For ERS-1, many of the largest orbit errors occur around the arc transitions. In a multi-arc
process we can connect consecutive arcs not only by crossovers between these arcs but also
by decoupling the drag parameters at the arc transitions from each individual arc. The result
is a reduction in correlations between the initial state vector and other parameters at the start
of the arc, and a reduction of orbital discontinuities at the arc transitions. Both results

improve the overall quality of the orbit solution.

136

Multi-satellite / multi-arc orbit determination Chapter 7

This Chapter discusses the simultaneous orbit determination process for ERS-1 and
TOPEX/Poseidon. The essence of the simultaneous solution method for altimetry satellites is
formed by the adjustment of the orbits to the tracking data of the other satellites in the

solution, via correlations introduced by means of dual satellite crossovers. This effect will be

demonstrated in this Chapter.

In simultaneous solutions, the size and reliability of the various datasets will not be identical.
Making use of the a priori standard deviations and scalefactors discussed in Chapter 5 the
weights attached to each observation can be tuned for each combination of tracking type,
tracking station and satellite. In comparison to the single satellite solutions of the previous
Chapter, this issue becomes much more relevant now that two or more satellites will be
influenced by each others' tracking data. Some aspects of solution balancing and weighting

strategies will therefore be discussed first, in order to obtain a sensible weighting strategy for

the simultaneous solutions.

Subsequently, simultaneous multi-satellite solutions will be presented and compared with the
single satellite solutions from Chapter 6. The ERS-1 orbits are compared with orbits from
solutions in which crossovers with TOPEX/Poseidon are used without simultaneously solving
for the orbits of TOPEX/Poseidon.

Finally, an example for the ERS tandem mission will be shown. Because this solution does
not yet make use of the ERS-2 PRARE data, it is merely intended as an illustration of some

interesting possibilities of the simultaneous solution approach, in particular related to
modelling of atmospheric drag.

7.1 Strategy for setting weights and constraints

The mathematical aspects of weights have been treated in Chapters 2 and 5, but the way in

which data weights are actually determined in practice was not discussed. It is recalled that

137

by giving weights to observations relative to each other we add a priori information to the
solution process. If this a priori information is inaccurate or incomplete, the solution process
will be steered in an undesired way. It might therefore seem better not to set any weights at
all, if insufficient information is available with respect to the relative quality of different
datasets. However, using a standard weight for each observation (e.g. a weight of 'l") already
implies overweighting of the less accurate data : unweighted solutions do not exist. It is
therefore inevitable to obtain a sensible weighting strategy before starting a simultaneous
solution process. The two functions of weights are (1) to compensate for differences in data

quality and (2) to compensate for differences in data quantity. These two aspects will be

analysed separately.

7.1.1 Data quality

The 'quality' of a data set is usually associated with the RMS of its post-solution residuals.
This is a deceptive measure. The RMS is not only determined by the inherent noise and
errors in the measurements, but also by systematic errors due to mismodelling of either the

satellite dynamics (Chapter 4) or observation models (Chapter 5).

As an important example, the crossover datasets in which the maximum separation between
crossings is 3.5 days tends to produce lower RMS values than the 5-day dataset and may
therefore seem the 'better' dataset; nonetheless, the differences are caused by modelling errors
(in the combined sea surface geometry models) rather than by pure noise. Another example is
mentioned in Section 5.2 in relation to the estimation of range biases for SLR data : by
removing the mean value from the measurement residuals, the RMS will obviously be
reduced; however, it is not likely that the entire mean value is caused by systematic errors
rather than by relevant signal components. This means that the estimation of a bias does not

necessarily improve either the observation model or the data ‘quality’.

The above examples show that it is hazardous to attach an absolute quality figure to any
dataset; fortunately all a priori information that we need for the estimation process is found
in relative weights between different datasets. The strategy that will be followed here is

based on relative ranking of datasets, in terms of factors that contribute to data quality
differences :

- Tracking data type (or : estimated modelling quality for the overall signal)

138

- Modelling quality at the satellite-end of the tracking configuration.
- Modelling quality at the station-end of the tracking configuration.

In terms of technological quality, the adopted order of the data types is : SLR / DORIS /
Altimetry crossovers / Direct altimetry. This order is consistent with the relative RMS levels
of the previous Chapter, apart from the direct altimetry data which has not been used so far.
It is inevitable to assign altimetry data a lower ranking than the crossover data. Note that
PRARE has not been included here. Even though it should probably be inserted in the
ranking between SLR and DORIS, various practical difficulties still existed at the time of this

study and prevented the PRARE data from reaching its full potential. Heuristic weights
applied to the different datasets are :

SLR = 1.25 x DORIS
DORIS = 125 x XO (7.1)
X0 = 250 x Altimetry

These factors are intended as direct multiplication factors to the normal matrices, so the
associated standard deviations should be divided by the square roots of these factors. The
'translation' of a range value into a range rate value is done via the typical overall SLR and

DORIS RMS values from Chapter 6, i.e using a factor 5.7 / 0.056 = 100.

Relative weighting in terms of 'station' quality is only relevant for SLR data. The DORIS
stations can be considered to be of equal quality as they are technically identical and hardly
affected by geographical asymmetry (see also Figure 6.5). For altimetry and/or crossovers
only a single 'station' exists - namely the sea surface geometry model - and no relative
station weights are applied'. For the SLR data, three different levels of station quality are
introduced, i.e. 'good', 'average' and 'poor'. This separation in three quality categories is based
on the results of SLR analysis in Chapter 6, as represented below in Figure 7.1. Although
this classification is again based on the typical RMS of data residuals, it does not use the
RMS values directly in order to avoid perfect aliasing of eventual systematic errors. The

relative weights are quantified by setting a priori standard deviations of 5, 10 and 20 cm

! Note that altimetry data or crossover data is sometimes weighted according to geographic region, on
the basis of the geogrophically correlated or anti-correlated orbit error. However, in this thesis these
signals will be treated as output signals of the orbit computation process, rather than input signals.

139

respectively for the three groups. The stations of group 1 will therefore influence the normal

matrix 20° / 5° = 16 times more than group 3, because of the quadratic relations in (2.11).

25
Group 1 Group 2 Group 3

1953
7939

20 {

7836

RMS
7835
7110
7080
7090
7839
7105
7840
7831
7210
7810
7123
7403
7811
1884
7843

o

1000

2000 -

3000

4000

Nr of points

5000

6000 -

7000

Figure 7.1 Post solution RMS and amount of observations per station. The dataset used for
this analysis is the ERS-1 SLR data from Chapter 6. On the basis of these results, the SLR
ground stations have been divided into three groups, with a priori standard deviations of 0
cm, 12 cm and 24 cm respectively.

The differences that exist in terms of 'satellite' quality are in fact better described as
differences in orbit quality. The low orbits of the ERS satellites are more sensitive to
atmospheric and gravity field perturbations than the higher TOPEX orbit, and their pass rate

over a tracking station will be higher. Both effects decrease the signal to noise ratio for ERS

140

with respect to TOPEX, in particular for land-based tracking data. The relevant 'ranking' in
terms of orbit quality is therefore simply :

TOPEX/Poseidon > ERS-1 and ERS-2
In the simultaneous orbit solutions, the TOPEX data will be given a 20 % lower sigma than
the ERS data. This number is derived from the overall SLR and SXO fit for the two satellites
in Chapter 6, which differ by some 20 %.

The relative weights between the various datasets, as discussed in the above, are summarised
in Table 7.1. To indicate that these values are based on experience rather than on

unambiguous scientific analysis, the values obtained from the combined discussions above

are rounded to the nearest 0.5 cm.

Data type ERS-1 TOPEX/Poseidon
SLR Group 1 6.0 cm 50cm
Group 2 120 cm 10.0 cm
Group 3 240 cm 200 cm
DORIS N.A. 0.065 cm/s
Single and dual crossovers 9.5cm 8.0cm
Altimetry data 24 cm 20 cm

Table 7.1 Quantification of a priori standard deviations for the datasets

7.1.2 Data Quantity

As clearly illustrated in Figure 6.5, there are substantial differences in the sizes of different
datasets. The effect of dataset size is similar to that of relative weighting : if 1000 SLR
observations and 4000 DORIS observations are combined in a solution, the DORIS data will
implicitly have a four times larger impact on the normal equations. If all observations would
be free of systematic error, dataset sizes would not have a relevant impact on the solution :
the two datasets then define the same - perfect - solution. However, the differences in sizes
of the datasets will still tend to interfere with the relative scaling in terms of measurement
type (7.1) that was introduced before. A compensation is therefore introduced via scale
factors that are more or less inversely proportional to the sizes of the datasets :

SLR = SXO = DXO = 4 x DORIS = Altimetry

In other words, the DORIS data is downscaled with a factor 4, to compensate for its

141

dominant dataset size (note that the DORIS data as used in these Chapters is already a
sampled subset from the total amount of available data, only one of every four observations
is used). It is recalled that the altimetry data is not used for orbit determination directly, its

relative weight will only be of importance in Chapter 8.

7.2 Results of simultaneous orbit solutions for ERS-1 and TOPEX/Poseidon

For the one year period of overlap between the ERS-1 and TOPEX/Poseidon arcs of Chapter
6, full simultaneous orbit solutions have been computed that each covered a 35-day repeat
cycle of ERS-1 and (overlapping) four consecutive repeat cycles of TOPEX/Poseidon. The
main subject of interest is the analysis of simultaneous solutions versus the single-satellite
solutions from Chapter 6. To this purpose the orbit computations for the simultaneous
solutions have all been run a second time, during which the TOPEX/Poseidon orbital
parameters were kept fixed at their a priori values (while still using the dual satellite
crossovers between ERS-1 and TOPEX/Poseidon). This second case represents the 'classical

application of dual crossovers between ERS and TOPEX/Poseidon.

The ERS-1 orbit solutions resulting from the two cases can be compared directly, and can
also be compared with the single-satellite solutions from Chapter 6. For TOPEX/Poseidon,
the case in which dual crossovers are applied while keeping the ERS orbits fixed has not
been run, because the effect of simultaneous solutions can be studied more clearly from the
ERS-1 orbits than from the insensitive TOPEX/Poseidon orbits.

To summarize, five one-year sets of orbit solutions are of interest in this Section :

(1) ERS-1 orbits from the single satellite solutions of Chapter 6 (5-day SXO)

(2) ERS-1 orbits from simultaneous solutions with TOPEX/Poseidon

(3) ERS-1 orbits using dual crossovers with TOPEX but keeping the TOPEX orbits fixed
(4) TOPEX/Poseidon orbits from the single satellite solutions of Chapter 6 (5-day SXO)
(5) TOPEX/Poseidon orbits from simultaneous solutions with ERS-1

The simultaneous solutions (2) and (5) were computed with crossover datasets limited to 5

days between crossings (nominal) as well as crossovers limited to 3.5 days between

142

crossings 2. The orbits (3) were only computed using the 5-day SXO and DXO datasets. For
comparisons of different orbit solutions, the (larger) 5-day datasets will always be used.
Some statistics for the 3.5 day datasets will be presented to again illustrate the effect of
reduced sea surface variability, as was done in Chapter 6. Note also that as a result of the
differences in orbital period and inclination, the spatial and temporal density of the dual
satellite crossover dataset for ERS-1 and TOPEX/Poseidon is larger than that of the single

crossover datasets for each satellite individually.

The results of the orbit computations are presented in several Tables and Figures below.
First, Tables 7.2 and 7.3 show all numerical characteristics of the solutions by means of
tracking data residuals and orbit comparisons. The orbits obtained in the simultaneous
solutions have been compared with the same reference orbits that were used in Chapter 6, for
the two satellites. The Tables 7.2 and 7.3 are therefore the equivalents of Tables 6.3 and 6.4,
allowing direct numerical comparisons between the results from the simultaneous solutions
and from the single satellite solutions. These tables also contain the results from the solutions

with a 3.5 day limit between crossings.

To analyse the orbit errors in more detail, the geographically correlated and geographically
anti-correlated orbit errors (see Section 5.6) were computed. The geographically anti-
correlated orbit error is derived from the post-solution SXO residuals and can therefore be
computed for all 5 orbit sets of interest. The geographically correlated orbit error is derived
from the post-solution DXO residuals, and is therefore not available for the single-satellite
solutions of Chapter 6. The intention of the Figures 7.2 to 7.7 is to visualize and compare
geographical patterns in these orbit errors, and some additional processing was needed
between the computation of the errors data itself and the generation of the graphical Figures.
The crossover residuals are only available in grid points that include crossover locations -
concentrated around certain latitude bands, see also Figure 6.2 -, so the data has been
extrapolated in directions along the groundtrack, after which it was gridded / smoothed in
longitudinal directions. The result is a 'global' dataset, with continuous spatial coverage
between the latitude bands covered by the crossover locations as well as coverage of the

diamond-shaped areas between groundtracks. This shows the geographical patterns much

more clearly.

2 Note that this can be accomplished by an input option of Faust to set lower and upper time limits to

the tolerated interval between crossings, avoiding the need to generate separate crossover datasets.

143

Figures 7.2 and 7.3 show the geographically anti-correlated orbit errors for ERS-1 and
TOPEX/Poseidon respectively, for the orbits from the single-satellite solutions from Chapter
6. For ERS-1, only the 1-year overlap period with TOPEX/Poseidon was used in all Figures.
Figures 7.4 a/b and 7.5 a/b show the geographically anti-correlated and correlated orbit errors
for the orbits of the simultaneous solutions (at 5-day crossover datasets), for the two
satellites. For comparison, the Figures 7.6 a/b show the same for ERS-1 for the case (3) in
which the TOPEX/Poseidon orbits were kept fixed. Obviously, the geographically anti-
correlated orbit errors for TOPEX/Poseidon will in that case be identical to those from Figure
7.5, while the geographically correlated orbit error can not be computed in a sensible way :
the DXO data has not been used to adjust these TOPEX orbits, so the post-solution DXO
residuals do not provide the desired information. Also note that the geographically correlated
errors for ERS-1 and TOPEX (Figures 7.4b and 7.5b) are derived from the same DXO
residuals (though the sign will be opposite for one satellite relative to the other). The
differences between the two Figures can therefore provide some information about the quality

of the computation process that has lead to these plots, because the Figures should in

principle be very similar.

To visualize the effect of the simultaneous solution process, the differences between the plots
7.4 and 7.6 are shown in Figure 7.7. Note that the scale of the plots 7.2 to 7.6 is kept the
same, in order to make direct comparisons easier. However, the difference plots in Figure 7.7

use a smaller scale because the overall signal amplitude is smaller.

Solution 1D RMS of residuals (cm) Orbit comparisons with simultaneous soutions (cm)
Epoch
Mutti Singla MJD Simultaneous solution UT/CSR Delft DEOS Single arc
arc arc
SLR SX0 SX0 DXO DXO Radial | Horiz. Radial Horiz Radial Horiz.
<5 <35 <5 <35

RMS for complete perod > 6.58 9.10 8.72 B.22 7.88 6.20 545 5.83 54.3 56 34.6
8 57 | 48978.00 522 9.62 B.22 7.42 7.22 6.2 721 53 48.6 44 266
58 48983.00 8.7 778 58 45.1 5.0 23.7
58 48986.00 5.2 64.7 6.4 55.0 25 353
60 | 48992.00 57 66.8 5.1 415 47 344
61 | 48997.00 53 73.8 6.9 525 53 24.2
62 | 49001.00 54 48.5 6.8 T2 39 339
9 63 | 49005.50 B.43 127 10.26 B.63 8.91 9.8 403 54 57.0 6.8 21.6
64 | 49010.50 8.3 76.8 55 635 34 35.4
65 | 49015.50 B4 63.2 7.7 68.3 51 16.3
66 | 49022.00 10.8 63.8 53 59.8 4.0 28.0
67 | 45026.00 44 31.6 6.5 48.8 18 276
68 | 49031.00 5.6 46.3 6.9 59.6 6.4 30.3
69 | 43036.00 6.3 84.8 53 49.1 42 206
10 70 | 49040.50 8.06 8.00 823 9.28 B.72 64 52.8 55 347 5.6 39.8
71 | 49046.00 99 48.5 6.3 422 125 231
72 | 49051.00 886 449 6.7 349 59 222
73 | 49055.00 83 322 5.4 355 42 34.0
74 | 49061.00 52 66.1 6.8 44.0 48 265
75 | 49066.00 6.8 48.8 8.1 64.2 58 355
76 | 49072.00 48 459 5.0 429 43 B3

144

1 77 | 49076.00 6.33 9.95 9.69 8.02 7.48 34 739 5.0 237 43 304
78 | 49080.00 72 81.9 46 37.5 58 228
79 | 49085.00 4.8 89.5 54 538 32 332
B0 | 49089.00 34 446 55 555 38 239
81 | 459092.00 56 66.4 6.7 29.2 4.7 226
82 | 49097.00 20 68.1 5.3 64.0 85 202
83 | 49101.00 8.1 52.2 5.9 310 76 25.0
84 | 49104.00 3.4 43.2 6.4 36.4 74 34.3
85 | 49107.00 4.6 43.0 6.6 49.9 20 36.4
12 86 | 4911250 7.23 8.32 9.36 7.86 7.25 6.4 571 53 64.1 33 255
87 | 49116.00 46 46.1 6.7 36.4 5.0 298
88 | 49120.00 43 52.5 6.5 475 38 3
89 49124.00 53 59.2 6.3 296 6.9 274
90 | 49128.00 58 53.9 57 34.3 58 13.3
91 | 49132.00 5.8 67.2 5.4 62.9 24 232
92 | 49136.00 45 57.8 6.9 38.2 34 120
93 49142.00 5.2 54.4 54 43.2 4.1 288
13 94 | 49146.00 7.61 9.28 8.76 828 8.02 55 52.5 57 440 44 275
95 | 49150.00 58 45.3 6.4 38.3 a5 10.7
96 | 49154.00 6.4 62.4 8.3 238 5.0 227
a7 49158.00 43 56.0 4.0 278 52 294
98 | 49162.00 6.7 54.2 6.1 31.6 48 126
99 | 49166.00 5.0 63.7 45 49.2 57 26.2
100 | 49169.00 6.1 58.2 5.3 48.8 85 45
101 | 49173.00 58 60.9 59 274 56 22.0
102 | 49177.00 54 61.9 6.5 52.3 55 305
14 103 | 49181.00 5.34 9.61 8.20 8.00 8.31 54 454 53 358 44 278
104 | 49185.00 6.6 521 78 60.7 42 387
105 | 49189.00 6.9 58.0 7.4 443 33 355
106 | 49193.00 6.3 544 5.8 aro 5.0 225
107 | 49197.00 7.7 47.2 8.9 254 39 13
108 | 49201.00 74 62.7 54 321 5.3 20.2
109 | 49205.00 6.2 484 6.8 43.0 5.7 376
110 | 49209.00 6.7 53.0 6.2 58.8 47 241
111 | 49213.00 5.4 554 53 54.4 56 334
15 112 | 49216.00 6.95 8.42 8.23 7.45 7.52 6.3 4386 57 328 53 288
113 | 49221.00 6.5 485 6.4 283 42 23
114 | 49226.00 58 525 7.1 34.0 48 392
115 | 49230.00 44 62.4 6.0 40.8 5.3 284
116 | 48233.00 6.3 45.0 5.0 523 45 243
117 | 49236.00 6.7 40.3 54 53.2 5.7 34.1
118 | 49240.00 54 3.0 4.1 43.2 31 26.0
119 | 49244.00 58 404 6.9 378 38 29
120 | 49248.00 6.5 538 5.7 284 58 185
16 121 | 49252.00 6.86 8.47 8.61 7.42 6.93 6.3 54.8 6.8 449 48 206
122 | 49256.00 58 64.3 5.5 261 42 213
123 | 49260.00 56 62.6 5.5 36.6 5.4 19.8
124 | 49264.00 6.2 48.1 6.3 425 5.5 237
125 | 49268.00 7.8 43.3 5.1 24.0 6.6 25.2
126 | 49272.00 7.5 §5.5 5.0 28.9 3.2 3.3
127 | 49276.00 6.3 65.7 6.4 3.6 4.6 229
128 49280.00 55 47.5 6.2 581 48 14.0
129 | 49284.00 5.1 61.4 58 49.8 54 27.0
17 130 | 49288.00 6.01 9.38 9.09 8.17 812 66 60.3 53 33 47 322
131 | 49291.00 53 429 5.1 215 52 20.4
132 49295.00 6.2 67.4 6.8 36.2 5.1 26.6
133 | 49299.00 6.7 64.5 5.9 420 4.0 332
134 | 49303.00 54 76.6 63 409 52 16.8
135 | 49307.00 53 €6.0 6.7 26.7 as 29.6
136 | 49311.00 6.8 62.2 53 375 6.8 327
137 | 48315.00 54 79.6 56 23.2 32 26.1
138 49319.00 4.3 51.8 6.4 58.7 4.4 21.5
18 139 | 49323.00 6.01 826 7.6% 7.76 723 NO COMPARISONS WERE MADE FOR SOLUTION 18
140 | 49327.00
141 | 49331.00
142 | 49335.00
143 | 49339.00

Table 7.2 Orbit determination results for ERS-1 in simultaneous solution

145

[sewenio | || AMS of residuals (cm, crvs) Orbit comparisons (cm)
ERS TP Epoch Simultaneous solutions with ERS-1 GDR Ephemerides Multi vs. Single
sol cycles MJD
SLR SX0 DORIS DXO <5d DXO<35d Radial Horiz. Radial Horiz.
RMS for complete period > 5.62 7.02 0.0560 8.22 7.86 4.7 476 3.2 222
8 10 48977.39 5.30 7.21 0.0546 7.42 7.22 4.5 48.4 37 149
11 | 48987.30 4.7 32.3 23 20.6
12 48997 22 53 63.6 28 14.2
9 12 as 8 519 6.59 0.0551 9.63 8.91
13 49007.13 5.2 49.6 26 153
14 49017.00 4.2 59.7 3.2 309
15 49026.97 58 52.7 39 135
10 16 49036.88 5.74 7.01 0.0580 9.28 B.72 4.9 428 20 245
17 49046.80 55 419 24 23.2
18 49056.71 5.4 8.0 34 28.2
19 49066.63 46 434 23 16.0
1" 20 49076.54 5.13 6.03 0.0563 8.02 7.48 4.2 37.6 25 232
21 49086.46 41 46.0 25 377
22 49096.37 4.1 406 22 241
23 49106.29 4.0 53.0 3.3 242
12 23 as 11 6.22 7.52 0.0546 7.86 7.25
24 49116.21 3z 533 33 2286
25 49126.12 4.9 38.7 30 23.8
26 49136.04 4.3 48.8 21 17.2
13 27 49145.95 5.13 6.25 0.0549 8.28 8.02 4.1 62.86 39 26.0
28 49155.87 5.2 34.7 26 26.2
29 49165.78 3.9 394 25 17.3
30 48175.70 3.9 52.7 35 135
14 30 as 13 5.61 7.02 0.0552 8.00 8.31
31 | 49185.62 41 49.7 29 19.5
32 49195.53 4.0 338 33 152
33 49215.36 58 43.7 24 16.3
15 33 as 14 5.29 6.92 0.0558 7.45 7.52
34 49225.28 3.7 46.8 25 283
35 | 4923519 42 69.7 a8 23.0
36 49245.11 4.1 43.1 23 239
18 38 as 15 523 1 0.0561 7.42 6.93
a7 49255.02 48 447 28 178
38 49264.94 43 259 31 122
39 49274.86 56 521 3.2 20.7
40 49284.77
17 40 as 18 8.21 7.28 0.0552 87 8.12
41 49294.69 5.1 50.7 3.0 278
42 | 49304.60 51 415 32 277
43 49314.52 5.2 49.5 &t 12.7
18 43 as 17 5.08 73 0.0550 7.76 7.23
44 49324.43 4.2 43.0 23 18.3
45 49334.35 3.9 276 26 231

Table 7.3 Orbit determination results for TOPEX/Poseidon in the simultaneous solutions.

For each ERS-1 repeat cycle of 35 days, the 4 or 5 TOPEX cycles were chosen that fully
enclose the ERS-1 solution.

180° 225° 270° 315° 0° 45 90" 135° 180°

Figure 7.2 Geographically anti-correlated orbit error for ERS-1, from single-satellite
solutions of Chapter 6. RMS 6.35 cm

Figure 7.3 Geographically anti-correlated orbit error for TOPEX/Poseidon, from single-
satellite solutions of Chapter 6. RMS 4.92 cm

180° 225 270° 315’ 0° 45° 90° 135° 180°
90°

45°

-90°
180° 225° 270° 315° 0° 45° 90° 135° 180°

Figure 7.4a Geographically anti-correlated orbit error for ERS-1, from DXO solution
in which the TOPEX/Poseidon orbit is kept fixed. RMS 5.86 cm

Figure 7.4b Geographically correlated orbit error for ERS-1, from DXO solution in
which the TOPEX/Poseidon orbit is kept fixed. RMS 6.13 cm

180° 225° 270° 315° 0 45° 90° 135° 180°

180° 225° 270° 315 (0 45 90° 135° 180°

Figure 7.5a Geographically anti-correlated orbit error for ERS-1, from simultaneous
solution with TOPEX/Poseidon. RMS 5.18 cm

-9 -7 -5 -3 -1 1 3 5 7 9 11

180° 225 270° 315° 0’ 45° 90° 135° 180°
e

180° 225° 270° 315° 0 45° 90° 135° 180°

Figure 7.5b Geographically correlated orbit error for ERS-1, from simultaneous
solution with TOPEX/Poseidon. RMS 5.76 cm

149

180° 225 270° 315° 0° 45° 90° 135° 180°

180° 225° 270° 315’ 0 45° 90° 135° 180°

Figure 7.6a Geographically anti-correlated orbit error for TOPEX/Poseidon, from
simultaneous solution with ERS-1. RMS 4.85 cm

9 7 5 -3 - 1 3 5 7 9 1

180° 225° 270° 315° 0° 45° 90° 135° 180°

180° 225° 270° 315° 0 45° 90° 135° 180°

Figure 7.6b Geographically correlated orbit error for TOPEX/Poseidon, from
simultaneous solution with ERS-1. RMS 5.70 cm

150

180° 225° 270° 315 0 45° 90° 135 180°

-90°

180° 225° 270° 315° 0° 45° 90° 135° 180°

Figure 7.7a Change in geographically anti-correlated orbit error for ERS-1, induced by
simultaneous solution (difference between Figure 7.5a and 7.4a). RMS 2.12 cm

-5 -4 -3 -2 -1 0 1 2 3 4 5

180° 225° 270° 315° 0° 45° 90° 135° 180°

Fjigure 7.7b Change in geographically correlated orbit error for ERS-1, induced by
simultaneous solution (difference between Figure 7.5 b and 7.4 b). RMS 1.32 cm

151

7.3 Discussion of the results

A first point of interest is that the tracking data RMS for the ERS-1 SLR and SXO data as
shown in table 7.1 hardly seems to change with respect to the single satellite solutions of
Chapter 6 (Table 6.3). Of course, no strong changes should occur in these datasets, because
such differences would either indicate a substantial systematic error in the single satellite
solutions or a systematic error in the application of the DXO dataset. The SXO and SLR
residuals of individual arcs only appear to change within the RMS values of Chapter 6,
which indicates that important systematic errors do not occur. Comparison of overall values

of Table 7.2 and Table 6.4 shows that the same can be concluded of TOPEX/Poseidon,

where differences are even smaller.

More interesting than the numeric results from the Tables are the Figures of geographically
correlated and anti-correlated errors, which reveal various other details. The indications
'geographically correlated' and 'anti-correlated' should be interpreted with some care : the
suggested error signals can never be separated fully from a spectral band of neighbouring
error components, while the way in which these errors are derived - using an averaging
technique over geographical bins - tends to merge closely related error frequencies even

more. However, the employed terms are commonly accepted in orbit analysis and it was felt

inevitable to continue their use here.

It is clear that these errors tend to be more substantial for ERS-1 than for TOPEX/Poseidon,
for which two reasons can be found. At first, the lower orbit of ERS-1 implies greater
sensitivity to mismodelling of gravity field terms (i.e. stronger geographically correlated
errors) and drag, producing noisier orbits. At second, the TOPEX orbits are mainly

determined on the basis of land-based tracking data (SLR and DORIS), which has much
better global coverage than the SLR data for ERS-1.

The latter effect is very clear from comparison of Figure 7.2 and Figure 7.4a. The only
difference between these solutions is the inclusion of DXO data with TOPEX, providing
dense global tracking relative to an external reference (i.e. the TOPEX orbits). Both the
geographically correlated and the anti-correlated error can be expected to have strong zonal
components, not only because crossovers tend to be concentrated along bands of constant

latitude but also because of the high orbital inclinations which result in 'sampling’ of the

152

globe in latitudinal directions. With the perigee more or less coinciding with the largest

argument of latitude, the signals cos(n.M) and sin(n.M) will be predominantly zonal.

In Figure 7.4a such zonal patterns can be distinguished, especially over the Pacific Ocean
where crossover influence will be most significant. However, Figure 7.2 is dominated by
various other features that seem to confirm a poor fixation of the orbit with respect to the
Earth Fixed reference frame. The ERS-1 single satellite solution is essentially connected to
the terrestrial frame by means of the rather sparse SLR dataset (see Figure 6.5) while the
SXO data - due to the deliberate elimination of the geographical constant term - hardly
improves the positioning of the orbit relative to the planet. A strong regional feature can for
instance be observed in Figure 7.2 around the Hawaii SLR station (7210), while this feature
is no longer present in Figure 7.4a. Also, the maximum and minimum values noticed at
latitudes around 50 degrees South are much more pronounced in Figure 7.2 than in Figure

7.4a. Looking at Figure 7.3 for TOPEX, a similar though smaller feature can be noticed
around Hawaii, with opposite sign.

As these plots concern the geographically anti-correlated error signal - the component with
opposite sign for ascending and descending passes - neither an error in the station coordinates
for 7210, nor a range bias seem to be likely explanations. Such systematic errors would be
geographically correlated rather than anti-correlated. However, the 7210 SLR data could be
suffering from a timing bias, which would, in combination with Earth rotation, result in
opposite errors for ascending and descending passes (both passes then seem to be shifted in
the same along-track direction, i.e. in opposite geographical directions). Also, Earth rotation
may cause a timing bias to show up with different signs for ERS-1 and TOPEX due to the
fact that the ascending pass for TOPEX occurs from West to East, while the ascending pass
of the retrograde ERS-1 orbit will pass from East to West. Errors in the UTC time tag for the

SLR data will therefore pull an ascending TOPEX pass in the opposite direction of an
ascending ERS-1 pass.

In Figure 7.4a the effect is suppressed thanks to the good fix of the ERS-1 orbit relative to
the TOPEX orbit (the SLR data from Hawaii has smaller impact on the orbit), and via this
orbit to the Earth Fixed frame. The strong maximum and minimum at high Southern latitudes
(Figure 7.2) might be indicating a poor definition of the Earth's rotation pool, although this
has not been investigated further. Again, this would confirm a poor fix between the orbits

from the ERS-1 single satellite solution and the terrestrial reference frame.

153

The ERS-1 geographically correlated error in Figure 7.4b seems to share some global
patterns with the anti-correlated error. This can be explained from strong noise levels in these
areas, in which many error frequencies will be present (hence also the two specific error
signals\isolatcd here). Because a substantial component of the geographically correlated error
for ERS-1 will be gravity-field induced, the Figure 7.4b may indicate certain weaknesses of
the employed JGM-3 model. In particular, doubts about the J, coefficient (C,,) reported by
Lemoine et al. (1996) may be confirmed from the error patterns over the Atlantic Ocean.
This error is associated with the pear-shape of the Earth and may therefore also help to

explain the 'polar-type' errors in the Southern oceans.

The crucial result, for as far as this thesis is concerned, is obtained from a comparison of
Figure 7.5 with Figure 7.4. While the TOPEX/Poseidon orbits were held at fixed values in
the solutions from Figure 7.4 (the classical application of dual crossovers), in Figure 7.5 the
orbit errors after the simultaneous solution are shown. The differences (Figure 7.7a) are small
but significant. The overall RMS of the errors (both correlated and anti-correlated) appears to
be reduced reduced with respect to Figure 7.4. Because the only difference between the two
cases is the fact that the TOPEX/Poseidon orbits are kept fixed for Figure 7.4, this reduction
in RMS confirms that a component of the TOPEX/Poseidon orbit error must be present in

the error signals of Figure 7.4 : the TOPEX/Poseidon orbits are of better overall quality than
the ERS-1 orbits, but are not perfect either.

The other important point of interest is if the simultaneous solution process injects significant
ERS-1 orbit error signals into the TOPEX/Poseidon orbits. This can be investigated to some
extent by means of the Figures 7.3, 7.6a and 7.7b. The global RMS of the error signal in
Figure 7.6a is in fact lower than that of Figure 7.3, although the difference is negligible.
Another point of interest is that the single satellite crossovers for TOPEX/Poseidon (Table
7.2) also show a marginally lower overall RMS than in the single satellite solutions from
Chapter 6. Although it is probably too optimistic to conclude that the TOPEX orbits actually
gain from the simultaneous solution approach, the size of the datasets involved in this

analysis is sufficiently large to conclude that the orbit precision for TOPEX does not suffer
in any relevant way.

An important remark must be attached to the above results. The quality of the
TOPEX/Poseidon orbits used in this thesis is still inferior to the precision claimed by NASA

154

and NOAA (Cheney et al., 1994). The main reason for this difference is suspected to be the
fact that the surface force models (NASA TOPEX Box-Wing model, Marshall 1995) have
been calibrated in another software environment than faust. Only within the environment in
which a model is calibrated will it be possible to subsequently obtain its highest precision.
This is due to the inevetable absorption of systematic errors in the model. Such absorbed
systematic errors will be removed from solutions in the same environment in which the
calibration took place, while they will be introduced in solutions obtained within any other
environment. In addition, this other environment will contain its own systematic errors, which

are not removed by the calibrated model.

The above line of reasoning implies that simultaneous solutions will at present be more
advantageous to an independent solution process - as implemented in faust - than to a
solution process in which all applied models have been tailored to their implementation
environment. The dual crossovers certainly contain useful information for the determination
of the ERS-1 orbits, but the errors resulting from relatively 'noisy’ Aston orbits for
TOPEX/Poseidon (at 4 cm radial RMS, compared to 2 cm RMS for the NASA orbits) will
introduce stronger error signals into the ERS-1 orbits if the TOPEX orbits are not allowed to
move simultaneously. Lower error levels in the TOPEX orbits can not only reduce the
difference between 'classical' DXO applications and simultaneous solutions, but may also
imply the injection of more substantial ERS-1 orbit errors into the TOPEX/Poseidon orbits.
However, further investigation of this matter would only be possible within the calibration
environment of the TOPEX models at NASA/GSFC; unfortunately the GEODYN software

does not allow for simultaneous solutions involving dual satellite crossovers with ERS-1.

7.4 Example of simultaneous solution for the ERS tandem mission

Although the analysis of ERS-2 data does not form part of this study - mainly due to
problems with the PRARE system -, the simulataneous multi-satellite solution offers some
interesting possibilities for the combined analysis of data from the ERS tandem mission. As

an illustrative example it will be demonstrated here how the atmospheric drag parameters of

the two satellites can be combined, as explained in Chapter 4.

The two ERS satellites are separated over 60 degrees in their orbits, leading to a situation in

155

which ERS-1 will pass through more or less the same atmospheric conditions as ERS-2 after
less than 25 minutes. The only differences in experienced gas densities will be due to the
small differences in orbital heights and longitudinal offsets between the two satellites, due to
the rotation of the atmosphere (with the Earth) during the 25 minute separation interval, and
due to the variability of atmospheric gas densities within this period. However, as drag scale
parameters are typically kept constant during many hours (i.e typically 6 or 12 hours for
ERS) the atmospheric variability during the 25 minute interval will be modest in comparison
to the atmospheric variations during the full validity interval of the parameter. This means
that in principle the drag scale factors for the two satellites should show very similar
temporal variations, as they are supposed to absorb the same errors in atmospheric density.
For a period of 35 days, the drag scale parameters of the two satellites have been analysed,
as shown in Figure 7.8. The overall behaviour is indeed similar, but important differences
between the satellites occur which can hardly be explained from actual variations in the
atmospheric density. This suggests that through correlations with other parameters in the
solution process (in particular the orbit state vector and the empirical cyclic accelerations) the

drag scale parameters absorb signal components that should rather be absorbed by other

orbital parameters.

In a simultaneous solution process for the two satellites the parameter values can be shared
between the two satellites, which implies that about twice as many observations are available
for the estimation of the parameter in comparison to the single satellite solutions. To improve
the temporal resolution of the model these validity intervals can then be reduced, e.g. from 6
hours to 4 hours. In the latter example, the data density per parameter is still higher than
what is feasible in a single satellite solution, while at the same time the shorter intervals will

help to account for the true atmospheric variability in a better way.

The results of this example are shown in Table 7.4, where some statistics of the solutions are
summarised. The Table shows that the RMS of the SLR residuals has been improved for
both satellites, while the variance of the drag scale parameters has also been reduced. The
statistics in the Table are related to the sigma values as obtained from the post-solution
normal matrix, as explained in Section 2.2. Although the orbit differences with reference
orbits have hardly been affected, the drag scale parameters appear to have been separated
from the other orbital parameters in a more realistic way, which will reduce orbit noise.

Although this analysis is kept rather rudimentary, it shows how simultaneous solutions can be
used to the benefit of both involved orbits.

156

C p values at 6-hr intervals

ERS-1

LT HHEL : :
49865 49?70 495]375 49?80 49?85 49?90 49?95 49?00

ERS-2

I 1 I 1 - I) !) i
49865 4951370 495?75 49‘?80 498'85 49?90 49?95 49?00

! ! !

Mean

: i LA L
49865 49870 49975 49?80 49885 49E|390 49?95 49?00

Difference

1

't

10-point covar

1
|
i

0)] I 1 i | i
49865 49870 49875 49880 49885 49890 49895 49900

Figure 7.8 Analysis of drag scale parameters at 6-hr intervals for ERS-1 and ERS-2. From
top to bottom, the plots represent (a) and (b) the estimated drag scale factors for ERS-1 and
ERS-2, (c) and (d) the mean and difference between the two parameter series. Plot (€)
provides the cross-correlation function over a 10-point moving frame, showing an average
cross-correlation between the two series above the 0.8 level.

157

ERS-1 ERS-2 Simultaneous
6-hr intervals | 6-hr intervals | 4-hr intervals
Tracking data residuals
SLR 5.82 cm 5.92 cm 543 cm
SXO 9.23 cm 9.02 cm 9.08 cm
DXO - - 9.22 cm
Orbit comparisons
DEOS orbits Radial 7.3 ¢cm - 73 cm
Horizontal 46.7 cm - 42.8 cm
CSR orbits Radial 6.3 cm - 6.0 cm
Horizontal 582 cm - 56.6 cm
Post-solution parameter sigmas
from the covariance matrix
Amount of parameters 141 141 211
RMS over all drag parameters 0.28 0.36 0.17
Minimum 0.12 0.13 0.10
Maximum 0.67 0.81 0.64

Table 7.4 Statistics for the simultaneous solution with shared drag parameters. Note that
the single satellite solutions involve a total of 282 drag parameters, i.e. more than the 211 of
the simultaneous solutions. Despite of this, the simultaneous solution provides better results.

7.5 Summary and conclusions

The simultaneous solutions between ERS-1 and TOPEX/Poseidon appear to perform in line
with expectation. The effect of the simultaneous solution process for one year of ERS-1 and

TOPEX/Poseidon orbits is summarised in the Figures 7.7a and b, which capture the essence
of this thesis.

The single-satellite orbit solutions for ERS-1 seem to suffer from regional biases, induced by
a poor connection between the orbits and the terrestrial reference frame. Because the land-
based tracking data for TOPEX/Poseidon shows much better global coverage, the dual
corssovers between the two satellites contribute substantially to the quality of the 'overall
altimetry instrument' introduced in Chapter 1, even if the TOPEX orbits are not yet allowed
to move. The simultaneous solutions for the both satellite orbits will further improve the
ERS-1 orbits, while the TOPEX/Poseidon orbits can not be observed to degrade in any way.

The simultaneous solution process therefore appears to be useful, although the relatively

158

'poor' quality of the Aston orbit solutions for TOPEX/Poseidon (4 cm radial RMS) may be a

contributing factor to this success.

In an example for the ERS tandem mission, it was demonstrated how in a simultaneous
solution process for the two satellites the drag scale parameters can be considered as satellite
independent parameters. By allowing both satellites to contribute to these common
parameters the data density per parameter improves, which in turn allows for a higher
temporal resolution of the drag model. It is recommended to extend such analysis of the ERS
tandem mission in the future, when reliable PRARE data will be able to contribute to the
solution process. In that case, the ERS-1 orbits can still take advantage of the PRARE

tracking system even though this will be in another way as was anticipated before its launch.

159

Simultaneous solutions for space geodesy Chapter 8

Chapter 7 showed that the use of dual crossovers in simultaneous solutions can indeed
provide a signal that is unavailable from single satellite solutions or from parallel
(uncorrelated) multi-satellite solutions. With this outcome the thesis could in fact be
concluded, as the implementation and validation of simultaneous orbit solution techniques
was the main goal of the study. However, it was felt useful to spend a final Chapter on
applications of the simultaneous solution process to geophysical research, in particular to the
enhancement of the gravity field model. The work in this area had already started during the
final phases of the current study, and has continued ever since. Some more recent results

obtained with Faust will therefore also be summarized in this Chapter.

8.1 General remarks on model calibration

The levels of accuracy that are currently reached in precise orbit determination are such that
even small systematic errors - model limitations in the satellite dynamics, in the measurement
geometry, in the data pre-processing steps, etcetera - start to affect computed orbits. Two
factors associated with this problem make it sensible to go through the substantial effort of

computing a new gravity field solution, and will therefore be briefly discussed first.

8.1.1 System dependency

If we consider two different orbit determination software environments X and Y, model
parameters that are estimated within environment X will almost inevitably absorb some
systematic errors from X. If the model is subsequently implemented in environment Y, the
result will be that Y not only has to cope with its own particular systematic errors - which
have not been aliased into the model - but also with whatever errors from environment X are
present in the model. Consequently, orbits computed within environment Y will not be able
to reach the level of post-solution tracking data fit that can be obtained within environment
X, despite of the fact that exactly the same model is being used. To summarise : dynamic

models used in orbit determination software are becoming more and more system dependent.

160

The above effect has been discussed in Section 7.3 as a likely explanation for the fact that
the TOPEX/Poseidon orbits produced with Faust appear to have a radial precision in the
order of 4 cm, which is less precise than the 2 cm level obtained - at least over the Pacific -
by NOAA (Cheney et al., 1994). The employed models are virtually identical, but both the
. gravity field model and the TOPEX Box-Wing model have been calibrated within the same
NASA software environment that is used at NOAA to compute precise orbits. Faust has to
live with the combination of its own systematic errors and with any systematic errors of the

NASA software that are present in the models, while neither of these two will appear in the
computed NOAA orbits.

The obvious cure is to re-estimate the set of model parameters within Faust. The errors ‘X'
would be corrected, while the internal errors "Y' of Faust would partially disappear in the new
model parameters. Model X will continue to perform optimally within its own X

environment, while the Faust model will perform optimally within the Faust environment.

It is important to keep in mind that any model that is calibrated within a single software
system (and subsequently produces orbits with a better post-solution fit to the tracking data
within that system) will not necessarily constitute an absolute improvement to the a priori
model. The best test for orbital quality is not the post-solution data fit, but the direct
comparison with orbits produced by external - independent - computation environments. The
only useful test for absolute model quality is the application of the model for independent
satellites (i.e. satellites that are not involved in the solution process), and preferably also
within an independent software environment. Only if in such an independent case the

obtained post-solution data fit is also improved, an absolute improvement to the a priori
model can be confirmed.

8.1.2 Gravity field tayloring

As explained in Section 4.1, the harmonic coefficients of the spherical expansion model that
describes the gravity field of the Earth are observable from their perturbing effect on the
satellite orbit. Because these perturbations rapidly decrease with increasing orbital radius and
degree of expansion, a low satellite like ERS will sense the gravity field in much more detail
(higher degree and order of expansion) than a high satellite like TOPEX/Poseidon. In
addition, differences in orbital periods and groundtrack repeat patterns esult in satellite-

dependent bands of resonant frequencies, and bands of frequencies for which the satellite is
hardly sensitive.

161

These two considerations imply that a single satellite mission can hardly expected to produce
a model for 'the' gravity field, but that a particular satellite is likely to prefer a specific
gravity field model. A model with general validity can only be obtained from a combination
of different satellites, each sensitive to its own particular model frequencies. In practice,
generic gravity field models like JGM models are computed from elaborate combination
solutions (Nerem et al., 1994) in which tracking data from many satellites is extended with
surface measurements. Although such a solution is quite accurate for a wide range of
applications, it will always remain a compromise between the gravity signals produced from
different datasets : for a single satellite the generic solution is sub-optimal. Consequently,
each satellite is likely to benefit from a calibration excercise in which its own tracking data is
'overweighted' in such a way that it will steer the solution towards a model that is
particularly in agreement with the observations made to its own orbit. This process is known

as gravity field tayloring.

For non-conservative force models like surface forces and manoeuvre calibrations, the first
aspect (system dependency) will be the most important justification to perform a model re-
calibration, while for generic geophysical models like the JGM3 gravity field the aspect of
tayloring will be the strongest argument. However, if the model is estimated within a single
software environment, it is quite likely that some system dependent errors may be absorbed
in the new gravity field model, while at the same time the taylored model has little value for

geophysical applications other than improved orbit determination for its 'own' satellite.

8.2 Gravity field solutions with Faust

At first sight, the simultaneous solution process seems particularly suited for the computation
of generic gravity field models because it can combine various different tracking data sets,
while correlating different orbits not only via the gravity field model parameters but also
directly by means of dual crossovers. Nonetheless, the main purpose for the gravity field
computation effort at Aston was the improvement of the ERS orbits, i.e. the elimination of

possible alien systematic errors -(while probably absorbing some from Faust) and the
tayloring of the gravity field towards the ERS orbit.

In recent times, various other groups have performed tayloring excercises of the JGM3 model

162

for ERS orbit computation, notably UT/CSR (TEG3 model) and DUT/DEOS (DGM4 model).
In both cases internal improvements to the solution process were apparent, but absolute
applicability of the new solutions could hardly be consolidated. The latter is especially
difficult because at the current levels of orbit precision any form of improvement will only
be at the sub-centimetre level. The ever-present noise bands that surround comparisons
between external orbit solutions (see Chapters 6 and 7) will subsequently make it very

difficult to confirm or deny any improvements in either of the compared orbit solutions.

Neither of the two taylored solutions mentioned above includes the specific signal provided
by the dual-crossovers with TOPEX/Poseidon, and it can therefore be expected that a
simultaneous solution with Faust will be able to reduce the geographically correlated ERS-1
orbit errors to a greater extent than solutions that do not use the DXO information directly. It
is important to realise that dual crossover data can only be applied realistically to gravity
field tayloring if both involved satellite orbits are also solved for, i.e. in a true simultaneous
solution process. As soon as the dual crossover dataset is introduced in the solution process,
both a posteriori orbit errors become a source of noise in the taylored gravity field solution.
If the TOPEX orbits are fixed, its post-solution orbits (which have not changed with respect
to tha a priori orbits) would not be consistent with the computed gravity field, and the
differences between orbits resulting from the initial and new gravity models would most
likely be absorbed in the new model.

8.2.1 The first solution

The main effort in gravity field tayloring is related to the heavy computational load involved
in the estimation of such a large amount of parameters. The DGM4 model was obtained from
a more elegant method based on the single crossover residuals directly (Scharroo & Visser,
1997). However, to involve the dual crossover information, a least-squares estimation of the
full 70 x 70 gravity field was performed with Faust. This Section will describe the work that
resulted in a first Faust gravity field solution (Boomkamp & Moore, 1998), and discuss some

suspected problems with the model. The next Section describes an improved second solution.

In the first solution, tracking data was used from a period of 40 days fully enclosing the
ERS-1 repeat cycle 15 of its mission phase C. This period may seem short for the estimation
of geophysical models from a stochastical process, but the amount of observations is already
substantial (see Table 8.1). In addition, all information used for the computation of the JGM3

model is included by using its covariance matrix to constrain the solution. Using two or more

163

repeat cycles would hardly introduce new ERS-1 information, although it would probably
improve the signal-to-noise ratio. It was considered that such a small potential gain would
hardly justify a doubling of the already considerable computational effort. The estimated
parameters for this first solution are listed in Table 8.2. Apart from all orbital parameters and
gravity field parameters, some expansion coefficients for the S2 and M2 tides were included,
as well as a 20 x 20 dynamic sea surface topography model. The tidal model is not primarily
included to try and improve its own parameters - which would hardly be possible from just
35 days of data - but mainly in an attempt to avoid absorption of long-period tidal signals in
the gravity field model. The sea surface topography model is included because the model
used in the altimetry pre-processing stage related to another period, and changes between that

model and the actual topography at the time of the solution period would show up in the
altimetry observations.

Dataset Number of Residufils

observations | Before solution | After solution
ERS-1 SLR 3031 5.57 cm 4.28 cm
Altimetry 30668 2131 cm 20.53 cm
TOPEX SLR 9052 4.62 cm 448 cm
Altimetry 50863 2321 cm 23.08 cm

DORIS 20649 0.57 cm/s 0.57 cm/s
both Dual Crossovers 12477 10.15 cm) 9.68 cm

Table 8.1 Survey of observations involved in the first gravity field solution. Note that the
single satellite crossovers were not used for this solution process, because their contribution
to a geographically correlated signal like the gravity field was not expected to validate the
considerable effort of generating normal matrices for the large SXO datasets.

The actual solution process consisted of many short-period runs with Faust, each writing its
normal equations to file as discussed in Section 2.7. The triangular sub-matrix related to the
gravity field coefficients (5035 parameters) has a size in excess of 100 MB, the second
biggest matrix being the block matrix that connects the sea surface topography parameters

with the gravity field coefficients (17 MB). After each short-arc run the normal matrices

164

related to global parameters were therefore accumulated into a single matrix, so that only one
of these large files would have to be stored. However, to keep some freedom in setting a
priori weights for different tracking data types, separate solutions were generated for each of
the six data types involved (see Table 8.1). The total required storage space to generate all
multi-run normal matrices was therefore still more than 800 MB. This, in combination with
the rather excessive CPU-time requirements for the generation of all normal matrices, forms

a major practical problem that prohibits repetitive runs.

As can be seen from the data fit results in Table 8.1, the initial solution provided a reduction
of the RMS of the tracking data, as could be expected if such a large number of parameters
is solved for. However, for orbit arcs outside the solution period no similar improvements
were noticed. Alternative matrix inversions, involving only the matrices related to various
subsets of Ehe tracking data, different estimated parameters (in particular, not solving for the

tides and/or sea surface topography model) or involving different a priori data weights, did

not change this situation substantially.

Analysis of the actual changes relative to the JGM3 model reveal some interesting features
(see Figure 8.1). In the first place, the changes in the low degree terms seem to be rather
large, which suggests geometrical biases in the tracking data. This seems to be confirmed by

the North-South bias that is notable from the changes at the poles, although no tracking data
is available at these high latitudes.

A second problem that appeared in all performed inversions was a large correlation between
the gravity field parameters and the tidal coefficients. It was concluded that the 35 day period
is too short to reliably solve for the S2 and M2 tides (note that the main tidal perturbation
for TOPEX has a 60 day period; see for instance Ray & Cartwright, 1994). Solutions that did
not include the tidal parameters still showed a domination of low-degree corrections, in
particular the bias that seems to occur over the Indian Ocean. Because the low degree terms
of the gravity model are better established than the high degree terms, the occurring changes
were considered unrealistic. In the end, it was concluded that the altimetry time-tag biases
that were applied to the a priori data (as estimated from the a priori orbit solutions, but not
estimated during the gravity field runs) should either not have been added, or should have
been allowed to move during the gravity solution. By imposing an unadjustable time-tag bias
upon the altimetry data, a disagreement is introduced between the altimetry data and the

land-based tracking data, which leads to inconsistencies between the variational partials and

165

the geoid height partials for the altimetry observations.

A re-run of the altimetry and crossover solution would effectively imply a re-run of the
entire solution process (the small amount of SLR observations hardly affects the total
required processing time), which was not considered useful. Instead, the gravity field work

with Faust was continued for a different dataset, leading to the solution that will be described

in the next Section.

Parameter ty;: ERS-1 - TOPE}'(= Global Total
9 arcs 4 arcs
Initial orbit state vector 1 per arc 1 per arc - 78
Drag scale factors | 6-hr intervals, daily - 138
shared between
continuous arcs
Solar radiation pressure | Not solved for 1 per arc - 4
Empirical harmonic | daily, along & daily, along & - 296
cross track cross track
Relative crossover bias - - 1 1
Altimeter time tag bias | A priori value - - -
applied but not
solved for
Altimeter range bias | 1 per arc 1 per arc - 13
Gravity field coefficients - - full 70 x 70, | 5035
except for
C21 and S21
Tidal coefficients - - S2 and M2 168
expansions
from CSR3
Sea surface topography - - 20 x 20 440
except for
constant term
Total L L 6168

Table 8.2 Parameters involved in the initial gravity field solution

166

2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 20 25

Figure 8.1 Geoid height differences between the first gravity field solution and JGM-3

167

8.2.2 The second solution : MSGM-1
A second solution was performed on the basis of different tracking datasets (see Table 8.3),
notably without involving the direct altimetry observations themselves, but this time

including the single satellite crossovers for ERS-1.

The advantage of leaving out the direct altimetry data is obviously a reduction in processing
time : the altimetry observations comprise about two thirds of the total tracking dataset used
in the first solution, while they are also the only ones that produce the large matrices related
to the sea-surface topography model. The price to pay for this omission is the loss of the
direct geoid height partials. Because a suspected problem in the first solution was a timing
inconsistency between the geoid height partials and the variational partials for the altimetry
data, exclusion of the altimetry data offers the additional advantage of avoiding this potential
problem. Furthermore, the substantial gain in processing efficiency offers the possibility to
use data for a longer period of time, which helps to avoid the absorption of tidal signal into
the gravity solution. It was subsequently not considered necessary to include the M2 and S2

tidal expansions in the solution, nor was it necessary - or even possible - to solve for a sea

surface topography model.

Dataset Number of Residuals for independent period
observations | JGM3 solution | MSGM solution

ERS-1 SLR 7392 7.61 cm 5.52 cm
SXO 10127 10.18 cm 8.88 cm

TOPEX SLR 29896 4.59 cm 448 cm
DORIS 61124 0.57 cm/s 0.55 cm/s

both | Dual Crossovers 48542 9.32 cm 7.99 cm

Table 8.3 Survey of observations involved in the second gravity field solution (MSGM-1).
The solution process was based on a 55 five day period from MJD 49616 to MJD 49671
(ERS-1 mission phase E) while the listed residuals are related to the period from MJID 50202
to 50238. Even for this period outside the solution arc, clear improvements can be noticed.

The ERS-1 SXO observations are included not so much for observation of the gravity field,

which will not be possible from this data, but mainly to assist in constraining the ERS-1 orbit

168

parameters. For TOPEX this will not be necessary, because sufficient tracking data is
available in the form of SLR and DORIS observations. Note also that in this solution the
data was taken from the first geodetic phase of ERS-1, so that the groundtrack pattern does
not repeat after 35 days. This implies that throughout the 55 day solution period the
crossover data will add new spatial information. The slightly longer period spanned by the 6
enclosing TOPEX cycles (74 - 79) ensures that the dual crossover data density does not
reduce substantially towards the start and end of the solution interval for the ERS-1 data,
which could lead to undesired side effects for the earliest and latest days of ERS-1 orbits.

The result of the new set-up and longer data period is a simpler and more robust solution
method than in the first computation. The gravity model obtained from this approach
provides clear improvements of tracking data fit, also outside the solution interval itself
which effectively confirms that the solution process has been successful (see Table 8.3). The
tayloring aspect, as discussed in Section 8.1.1, appears to have succeeded with the MSGM-1
solution. However, it is useful to investigate if substantial systematic errors from the Faust
solution environment have been absorbed in this model, as described in Section 8.1.1. To
investigate this, a comparison was made between orbits computed for the GFZ satellite, first
with the JGM3 gravity model and subsequently with the MSGM model. Because GFZ has an
orbit that is even lower than that of ERS-1 (ca. 385 km), its sensitivity to high degree gravity
harmonics is greater. Any non-gravitational signal that would have been absorbed in the

MSGM solution should therefore have a notable perturbing effect on the GFZ orbits. Table
8.4 shows that this is not the case.

MJD JGM-3 MSGM-1
Number of RMS Number of RMS
observations observations
50196 - 50201 669 49.64 cm 668 48.87 cm
50233 - 50238 1125 57.43 cm 1126 58.78 cm
50238 - 50243 2309 66.92 cm 2303 66.49 cm |
50243 - 50248 1250 51.89 cm 1250 51.67 cm
50248 - 50253 979 42.09 cm 981 40.24 cm

Table 8.4 Orbit determination results for GFZ. Virtually no changes are noticed between

model performances, which suggests that no substantial systematic errors were absorbed
during the MSGM computation process.

169

8.3 Conclusions

The application of the simultaneous solution process to gravity field tayloring for ERS-1 has
been discussed. Given the large computational load involved with such a process, so far only

two solutions have been computed with Faust, but initial results are promising.

The first solution appeared to perform well for the orbits within the solution period but did
not show significant improvements for other, independent, periods of the ERS-1 mission.
Suspected problems were the length of the solution period, causing poor separability between
tidal signals and gravity signals, and an inconsistency between the dynamic and geometric

altimetry information caused by the included altimetry timetag bias.

A second solution avoided these potential problems by not using the direct altimetry data but
only the crossover information, which also allowed for a longer solution period. This in turn
reduces the risk of absorbing tidal signal in the gravity field model. Good results were
obtained for independent periods of the ERS-1 mission, confirming the positive impact of the
tayloring process that involves the dual crossover signal. Because orbit computations for the
GFZ satellite remained perfectly neutral under the changes to the gravity field, it can be

concluded that no substantial systematic errors were absorbed in this second solution.

Future work in this area may enable further improvements of the MSGM model, notably by
also including ERS-2 PRARE data and dual crossovers between ERS-2 and TOPEX. It is
also recommended to compute a longer period of ERS and TOPEX orbits on the basis of the
model, which would then allow the computation of the post-solution geographically
correlated and anti-correlated orbit errors. Comparison with the results of Chapter 7 can then

provide further evidence for the impact of the DXO data upon gravity field tayloring.

170

Synopsis Chapter 9

This final Chapter briefly summarises the simultaneous solution approach, and some results
obtained with Faust. It will add a few general considerations related to recent developments
in orbit determination and altimetry processing, in particular as encountered during the
project that resulted in this thesis. Some conclusions will be extrapolated towards the future,

and in relation to this some practical enhancements of Faust will be proposed.

9.1 Recapitulation of results

The crucial advantage of the simultaneous solution over classical orbit computation methods
is the introduction of direct correlations between different solution arcs. For altimetry
satellites this is achieved by using dual satellite crossover differences in a process in which
the defining parameters of both involved satellite orbits are estimated at the same time.
Because the typical time span of a single solution arc for low satellites like ERS-1 is short in
comparison to the longest accepted time interval between the crossings, a simultaneous
solution is only sensible in a multi-arc process, in which several consecutive orbit arcs of

each satellite are computed.

Although this multi-arc requirement - among other reasons - imposed the development of the
new orbit computation program Faust, it also brought the advantage of a substantially
increased single satellite crossover density, namely by including crossovers between
successive arcs for the same satellite. Several other advantages of the multi-arc solution
method - even for single satellite solutions - have been demonstrated, like the reduction of
typical orbit errors associated with arc boundaries. Alternatively, the increased crossover
density allows for a reduction in the limit to crossover interval, leading to reductions in data

noise originating from the temporal variability of the ocean surface.

Analysis of orbits spanning a substantial period of time enabled the computation of the so
called geographically correlated and anti-correlated orbit errors, both for ERS-1 and

TOPEX/Poseidon. A direct comparison between results from simultaneous solutions and

171

orbits computed by the traditional application of dual crossover data - in which the TOPEX
orbits are kept fixed - showed that the orbit errors for ERS-1 are indeed reduced by the
simultaneous process, while the quality of the TOPEX orbits was not notably affected. It was
also shown how the simultaneous solution process enables the inclusion of dual crossover
data for the purpose of gravity field tayloring, which introduces the signal that describes the
geographically correlated orbit errors directly into the solution. Results obtained with the
computed gravity field models already show significant reductions in post-solution RMS of

tracking data residuals for the ERS satellites. Work in this area is still continuing.

9.2 General considerations

The direct results obtained within the course of this project - like quantitative improvements
in precise orbit determination - have been discussed in concluding Sections of earlier
Chapters. These results confirmed various advantages of simultaneous orbit computation
techniques for altimetry satellites. However, some other considerations with wider
implications to the field of altimetry research have not yet been discussed. This Section
therefore collects a few general aspects of orbit computation and altimetry processing,

building on additional experience gained during the course of the project.

9.2.1 Compatibility between datasets

In this thesis the simultaneous solution method has only be applied to the ERS-1 and
TOPEX/Poseidon altimetry missions. On several occasions it has been mentioned that these
two satellites are not optimally compatible in terms of orbital characteristics, tracking data
coverage and instrument precision, leading to a situation in which the ERS-1 orbits will
never really match the precision of the TOPEX orbits. The orbital quality of various future
altimetry missions will be more similar, and with ERS-1 and TOPEX the developed
simultaneous techniques will not yet have reached their full potential. An increased

compatibility between satellite orbits has positive and negative impacts, some of which will
be briefly summarised here.

A first positive impact of increased compatibility between satellites will be the reduced risk

of degrading the more precise of the two orbits involved in a dual crossover. In the present

1

172

study this effect was not really noticed, but this may be partially due to the poor quality’ of
the involved TOPEX orbits. A second advantage will be that it becomes easier to set relative
weights between datasets from different satellites without a risk of unwillingly steering the
solution process. Finally, there is the advantage of producing more generic models rather
than taylored models for a specific satellite (i.e. typically the 'weaker' satellite). Although this
latter aspect will be irrelevant to the task of orbit determination itself, it will generally be

seen as the most useful aspect of radar altimetry processing.

Some drawbacks can also be foreseen from the reduction of differences between orbits. The
main reason why the geographically correlated orbit error is conveniently observable from
the dual crossovers between ERS and TOPEX, is the substantial difference between heights,
inclinations and revolution periods of the two satellite orbits. Crossovers between ERS-1 and
ERS-2 for instance are really closer to single satellite crossovers than to dual crossovers : the
characteristics of crossover data depend on the orbit, more than on the spacecraft. In contrast,
dual crossovers between Envisat and the ERS satellites will offer interesting possibilities for
retrospective improvements of ERS products, despite of the virtually identical orbits : the
dual frequency altimeter of Envisat introduces attractive incompatibilities between the

datasets that can be exploited.

The conclusion is that there must be a balance in the quality differences of datasets involved
in a simultaneous solution. Very similar datasets do not need simultaneous solution
techniques, because little additional information will be gained. However, if the involved

datasets are very different, the advantage will be rather one-sided and the risk of corrupting

the "better' dataset may make simultaneous processe unattractive.

9.2.2 Absolute orbit precision

State of the art levels of radial orbit precision for altimetry satellites are such that further
improvements can only become decreasingly credible. The involved satellites typically have
dimensions in order of magnitude of 10 meter. A variety of dynamic effects take place on
board a satellite : fuel consumption, fuel sloshing, asymmetric thermal expansions, flexing of
antenna beams and solar panels, attitude oscillations, and continuous movements of the solar
panels. Together, these effects impose standard deviations upon the momentary position of

the centre of mass and the satellites' moments of inertia that will be at least in the order of

... 'poor' meaning a radial precision of 4 cm - much has changed since the days of Seasat

173

several centimetres. With the possible exception of fuel consumption - which is hardly the
most relevant one - none of these effects is normally modelled during the orbit determination
process. This makes claims of radial orbit precision levels below 5 centimetre seem rather
meaningless - nobody knows that accurately where the momentary centre of mass is located
within the spacecraft. In Chapter 1 it was stated that precise orbit determination for altimetry
satellites is part of the construction of an integral altimeter instrument, of which the orbit is
an inseparable geometric reference element. The quantity of interest is not the orbit of the
satellites' centre of mass, but that of the altimeter antenna phase centre. Without modelling
the dynamic variations in the offset between the altimeter reference point and the calculated
orbit (which relates to the centre of mass - wherever it may be), the position computation for
the altimetry reference point of ERS-1 or TOPEX/Poseidon can not realistically be improved
over the currently achieved level. The state-of-the-art precision levels can therefore almost be

considered as absolute limits.

Such considerations must give rise to critical questions about the value of further gravity
field tayloring efforts for ERS-1 or other altimetry satellites. The line of continuous
improvements in radial orbit precision, which started around 1992 with the arrival of the first
ERS-1 data, is already flattening (see Figure 1.1 : the biggest step was made during the
ERS-1 mission, notably by the introduction of the JGM-2 gravity model in 1993). An
inevitable conclusion must be that if the limit in orbit improvements has been reached,
attention must shift towards the upgrading of generic models rather than to the production of
further taylored models, which can not bring relevant improvements. Note that this
conclusion is in agreement with the trend of increased compatibility between altimetry
datasets discussed above : if the satellites in a simultaneous solution do not provide a useful

‘difference’ signal, the solution method loses its purpose for model tayloring purposes.

9.2.3 Computer resources

The SUN Sparc Ultra workstations used for all work described in this thesis have a capacity
that can comfortably compete with previous generations of mainframes, at desktop sizes.
Still, the computational load involved in an estimation process for the full gravity field
normal matrix is almost prohibitive, requiring many days of CPU time and a multiple of that

in real time. Some computational aspects of altimetry processing will be discussed here.

Since the arrival of the first computers, the trend in computer capacity has been that about

every 2 year the computational capacity has doubled (Bjorstadt et al., 1993).

174

Although this may seem an encouraging speed of development, inspection of Figure 1.1
shows that the invasion of new altimetry data that will take place in the very near future -
not to mention the associated possibilities for computing crossover combinations - will not
offer any form of relief, and may actually overstretch the available computer capacity if we
just extrapolate the mentioned logarithmic trend. In the 6-year period between the scheduled
launches of the GFO mission and of JASON-2, each two years will show more than a

doubling of data, especially if combination solutions with earlier missions are considered.

This means that selections may have to be made as to which data can be processed and
which data will be ignored, or that radically new processing methods must be developed -
soon. In this respect, the fact that orbit precision becomes more and more ‘absolute’ is of
great value : it will allow separation of applications of altimetry data from the orbit
computation itself. This trend has in fact already started with the distribution of precise orbits
via CD-ROM or via the internet. More to the point, it seems to imply that classical orbit
determination and parameter estimation techniques - including the simultaneous solution
technique in Faust - may loose their meaning for geodynamic applications (the application to
orbit computation remains interesting, as shown in Chapters 6 and 7). For orbit determination

itself, the process will of course still be useful.

Already several years ago, parallel processing techniques have been proposed for gravity
field calibrations and other geophysical applications (e.g. Gallivan et al, 1990.). Such
techniques can offer the required processing speed, but do not cope with the associated need
for large scale data storage. During the project that is covered by this thesis, data storage
proved to be at least as big a problem as CPU requirements, and, once again, current

developments in mass storage - though impressive - do not seem to keep pace with expected

future needs in the area of altimetry data processing.

9.3 Future developments

The three considerations above represent some general engineering experience in the field of
precise orbit determination and altimetry data processing, not in the last place as learned
from practice during the current study. Although they imply some criticism towards the

current trends of attempting to reduce tracking data residuals to zero - which will not

175

improve the quality of the computed orbits in any way - they also offer some useful

guidelines as to what may be a useful direction to take in future work.

In the first place, the applications of simultaneous solution techniques based on crossovers
seems to remain mainly of interest to the field of precise orbit computation, rather than to
geophysical applications of altimetry data. The ‘absolute’ precision of current orbits
disconnects the two applications, because no significant correlations remain between orbit
error and geophysical model imperfections. In other words : taylored gravity fields and other
state of the art dynamic models have more or less reached all precision that is required for

orbit computation purposes.

In the second place, the separation of orbit computation from other altimetry applications
may be necessary in order to cope with the enormous input of new, high quality altimetry
data in the near future. The modest residual orbit error signal that will contaminate the
altimetry datasets can very likely be compensated by combination of altimetry data from
different satellite missions (but in non-dynamic solutions. Note that this is not what is

implied in the thesis title).

Furthermore, the worrying gap between computational needs and improvements in computer
hardware may require a reconsideration of planned altimetry missions beyond the next
generation of satellites, i.e. from around the year 2010. Continuation of altimetry data is
certainly required, not only for the direct altimetry products obtained during the mission, but
particularly for analysis of long-term oceanographic changes and climate studies. However, if
data processing power remain the limiting factor, there is no gain in having six parallel

altimetry missions rather than two. Note that in the year 2000 we may already have five.

9.4 Suggested enhancements

At the time of this writing, the PRARE data for ERS-2 has become very useful, and PRARE
work with Faust has just reached a mature status. Combination solutions between the ERS
satellites or with TOPEX/Poseidon will be able to consolidate the gravity field tayloring
process for the ERS missions. Another study that is already in process is the improvement of

atmospheric density models with Faust, because the density model is now arguably the

176

dominant source of orbit error at the heights of the ERS satellites. These ongoing activities

will soon provide Faust with its own, internally calibrated dynamic models. In this final

Section, some other recommendations will therefore be listed with regard to the more short-

term future of Faust.

(1)

(2)

(3)

(4)

The crossovers that have been used throughout the current project were always
obtained from pre-processing software, using a priori orbits that are effectively in
disagreement with the subsequently computed orbit solutions. It is a small step further
to re-compute the crossover locations during each process iteration of the least squares
process, leading to a situation where not only the calculated observation is improved,
but also the a priori crossover observation. The effect may be small, but in particular
for DXO observations between ERS-1 and TOPEX a significant noise signal may be
removed. This, due to existing incompatibilities between ERS-1 along track shifts

- caused by drag modelling errors - and TOPEX along track shifts.

The separation between tides and gravity field seemed to cause problems in the first,
short-period gravity solution described in Chapter 8. In the MSGM-1 solution no tidal
parameters were included, as the longer period was hoped to reduce interference
between tidal and gravitational signals. Still, the explicit separation of the tides from
the gravity field and sea surface topography would be poreferrable. In addition, it can

improve the generic value of the computed gravity field model.

A multi-satellite solution for the two ERS satellites with TOPEX/Poseidon - including
all six crossover combinations - will provide a very good global constraint to the ERS
orbits. Given a substantial period of data (i.e. the full tandem mission) this may allow
for the estimation of a station coordinates solution for SLR and PRARE or for the
analysis of polar motion parameters, even from the low - and noisy - ERS orbits. Both
efforts would help to resolve geometrical inconsistencies between the DORIS station

network, the SLR network and the Earth Rotation Parameters.

The multi-run capability of Faust can easily be used to combine normal matrices
obtained from periods that are separated considerably in time. Gravity field tayloring
for ERS may therefore gain from the generation of normal matrices (in simultaneous
solutions with TOPEX and / or ERS-2) for periods from all different ERS-1 mission

phases that offer different groundtrack repeat periods. Because the different repeat

177

patterns provide different geographical information, the effect may be equal to using a
much longer period of data from the geodetic phases for reaching similar spatial
coverage. Related to this, a comparative analysis of the geographically correlated orbit

errors for all different ERS-1 repeat patterns may be of value.

The above suggestions, or any other future work, will regularly require enhancements of
Faust. A variety of practical details about the Faust software is therefore collected in several
Appendices that follow. In addition, future users and programmers of Faust are invited to
address practical problems - if sufficiently grave - to the author. Eternal youth may

occasionally require a helping hand.

178

List of References

Barlier, F.C.; Berger, C.; Falin, J.L.; Kockarts, G.; Thuillier, G.; 1979
A thermospheric model based on satellite drag data
Journal of Atmospheric and Terrestrial Physics, Vol. 41, pp 527-541

Bent, R.B.; Llewellyn, S.K.; Schmid, P.E.; 1973
Ionospheric Refraction Corrections in Satellite Tracking
Space Research Vol. XII, pp 1186-1194, Berlin, Akademie-Verlag

Bjorstad, P.; Manne, F.; Sorevik, T.; Vajtersic, M.; 1992
Efficient matrix multiplication on SIMD computers
SIAM Journal on Matrix Analysis and Applications,Vol. 13, No. 1, p 386

Black, H.D.; Eisner, A.; 1984
Correcting Satellite Doppler Data for Tropospheric Effects
Journal of Geodetic Research, Vol. 89, No. D2, pp 2616-2626

Boomkamp, H.J.; Moore, P.; 1997
A gravity field solution based on unified ERS-1 and TOPEX/Poseidon altimetry data
Proc. Third ERS Symposium, Florence, March 1997

Boucher, C; Altamimi, Z.; Duhem, L; 1992
ITRF 91 and its associated velocity field
Earth Rotation Service, Technical Note 12, Paris, October 1992

Buckingham, R.A.; 1957
Numerical Methods
London, Pitman

Carmnochan, S; Moore, P.; Ehlerss, S; Lam, C.; Woodworth, P.; 1993

Improvement of the radial positioning of ERS-1 through dual crossover analysis with
TOPEX/Poseidon

Proceedings Second ERS-1 Symposium, Hamburg, October 1993, Vol. 2, pp 753-758

Cartwright, D.E; Taylor, R.J.; 1971
New computations of the tide-generating potential
Geophysical Journal Royal Astron. Society, nr. 23, pp 45 - 74

Cheney, R.; Miller, L.; Agreen, N.; Doyle, N.; Lillibridge, J.; 1994
TOPEX/Poseidon : the 2 ¢cm solution
Journal of Geophysical Research, Vol. 99, No. C12, pp 24,555-24,563

Doodson, A.T.; 1921
The harmonic development of tide generating potential
Proceedings of the Royal Society of London, No. 100, pp 305-329

Dow, J.M; Romay-Merino, M.M,; Piriz, R.; Boomkamp, H.J.; Zandbergen, R.; 1993
High precision orbits for ERS-1 : 3-day and 35-day repeat cycles
Proceedings Second ERS-1 Symposium, Hamburg, October 1993, Vol. 2, pp 1349-1354

179

Dow, J.M; 1988
Ocean Tides and Tectonic Plate Motions from Lageos
Miinchen, Verlag der Bayerischen Akademie der Wissenschaften ISBN 3 7696 9392

Eanes, R.J.; Schutz, B.E.; Tapley, B.D.; 1983
Earth and ocean tide effects on Lageos and Starlette
Proceedings 9th International Symposium on Earth Tides, New York, Aug. 1981; pp 239-249

Ehlers, S.; 1993

Various Techniques and Procedures for Refining ERS-1 Orbits
Ph.D. Thesis, The University of Aston in Birmingham

Engelis, T.; 1983
Analysis of sea surface topography using altimetry data
OSU Report No. 343, Dep. of Geodetic Science and Surveying, Ohio State University

Engels, H. 1980
Numerical Quadrature and Cubature
London, Academic Press ISBN 0-12-238850-X

Eykhoff, P. 1974

System Identification: Parameter and State Estimation
London; John Wiley

Eymard, L.; Le Cornec, A.; Tabary, L.; 1994
The ERS-1 microwave radiometer
International Journal for Remote Sensing, Vol. 15 no. 4, pp 845-857

Gallivan, K.A.; Plemmons, R.J.; Sameh, A.H.; 1990
Parallel algorithms for dense linear algebra computations
SIAM Review, Vol. 32, No. 1, pp54-135

Haley, D.; 1973

Solar radiation pressure calculations in the GEODYN program
EG&G Report 008-73, NASA GSFC

Hedin, A.E.; 1983

A revised thermospheric model based on mass spectrometer and incoherent scatter
data : MSIS-83

Journal of Geophysical Research, Vol. 88, No. A12, pp 10,170-10,188

Hedin, A.E.; 1987
The MSIS-86 Thermospheric Model
Journal of Geophysical Research, Vol. 92, p 4649

Herrero, F.A.; 1985

The lateral surface drag coefficient of cylindrical spacecraft in a rarefied finite
temperature atmosphere

American Institute of Aeronautics and Astronautics, Vol. 23, No. 6, pp 862-868

Herring, T.A.; 1992
Modelling atmospheric delays in the analysis of space geodetic data

Proceedings of Refraction of Transatmospheric Signals in Geodesy, Netherlands Geodetic
Commission Series, Vol. 36, The Hague, Netherlands, pp 157 - 164

180

Imel, D.A.; 1994

Evaluation of the TOPEX/Poseidon dual-frequency ionospheric correction
Journal of Geophysical Research, Vol. 99, No. C12, pp 24,895-24,906

Jackson, J.; 1924

Monographic Notes of the Royal Astronomical Society, Nr. 84, p 602
Royal Astronomical Society, London

James, M.L.; Smith, G.M.; Wolford, J.C.; 1977
Applied Numerical Methods for Digital Computation
Harper & Brown Publishers, New York

Jolly, G.W.; 1995

Empirical orbit refinement and ocean signal recovery techniques
Ph.D. thesis, Aston University,

Kaula, W.M.; 1966
Theory of Satellite Geodesy
Waltham MA, Blaisdell

Lambert, J.D. 1973
Computational Methods in Ordinary Differential equations
New York, Wiley

Lemoine, F.G.; Smith, D.E.; Kunz, L.; Smith, R.; Pavlis, E.C.; Pavlis, N.K.; Klosko, S.M.;
Chinn, D.S.; Torrence, M.H.; Williamson, R.G.; Cox, C.M.; Rachlin, K.E.; Wang, Y.M.;
Kenyon, S.C.; Salman, R.; Trimmer, R.; Rapp, R.H.; Nerem, R.S.; 1996

The Development of the NASA GSFC and NIMA Joint Geopotential Model

Proceeding of the International Symposium on Gravity, Geoid and Marine Geodesy
GRAGEOMAR 1996, Tokyo, Japan, October 1996

Levy, H.; Lessman, F. 1961
Finite Difference Equations
New York, Macmillan

Ljung, L.; Soderstrém, T. 1983
Theory and Practice of Recursive Identification
Cambridge, Mass; MIT Press

Marini, J.W.; Murray, C.W.; 1973

Correction of laser range tracking data for atmospheric refraction at elevations above
10 degrees

Goddard Space Flight Centre, Technical Memorandum X-591-73-351

Marshall, J.A.; Zelensky, N.P.; Klosko, S.M.; Chinn, D.S.; Luthcke, S.B.; Rachlin, K.E.;
Williamson, R.G.

The temporal and spatial characteristics of TOPEX/POSEIDON radial orbit error
Journal of Geophysical Research, Vol. 100 C12, pp 25,331-25,352, December 1995

Marshall, J.A.; 1995

Post-launch surface parameters for the TOPEX/Poseidon Box-Wing model
Personal communication

Matthews, P.M.; Buffett, B.A.; Shapiro, L.L; 1995
Love numbers for a rotating spheroidal Earth : new definitions and numerical values

181
Geophysical Research Letter, No. 22 pp. 579-582

McCarthy, D.D.; 1996
IERS Standards
IERS Technical Note 21, Observatoire de Paris

Merson, R.H.; Odell, A.W.; 1975
Skynet Orbit Determination Program SPOD-2
R.A.E. Technical Report 75093-1975, London

Melbourne, W.; Anderle, R.; Feissel, M.; King, R.; McCarthy, D.; Smith, B.; Tapley, B.;
Vicente, R.; 1983; update 1, 1985
MERIT standards

Circular 167, US Naval Observatory, Washington D.C.

Moore, P.; Boomkamp, H.J.; Carnochan, S.; Walmsley, R.; 1998
Multi-satellite orbital dynamics
1998 COSPAR conference, Japan

Moore, P.; Ehlers, S; 1993

Orbital Refinement of ERS-1 using Dual Crossover Arc technques with TOPEX /
Poseidon

Manuscripta Geodaetica, Vol. 18, pp 249-262

Moore, P.; Rothwell, D.A.; 1990

A study of gravitational and non-gravitational modelling errors in crossover differences
Manuscripta Geodaetica 1990 Vol. 15, pp 187 - 206

Miiller, A.C.; 1975

A fast recursive algorithm for calculating the forces due to the geopotential
Note No. 75-FM-42 (JSC-09731), Johnson Space Center, Houston

Musen, P; 1975
The exterior potential acting on a satellite
Journal of Astronautical Science, Nr. 13, Part 2 pp 161-178

Nerem, R.S.; Lerch, F.J.; Marshall, J.A.; Pavlis, E.C.; Putney, B.H.; Tapley, B.D.; Eanes,
R.J.; Ries, J.C.; Schutz, B.E.; Shum, B.E.; Watkins, C.K; Klosko, S.M.; Chan, I.C..; Luthcke,
S.B.; Patel, G.B.; Pavlis, N.K.; Williamson, R.G.; Rapp, R.H.; Biancale, R.; Nouel, F; 1994
Gravity Model Development for TOPEX/Poseidon : Joint Gravity Models 1 and 2
Journal of Geophysical Research, Vol. 99, pp 24,421 - 24,447

Nouél, F.J.; Bardina, C.; Jayles, C.; Labrune, Y.; Troung, B.; 1988
DORIS : A precise satellite positioning Doppler system
Advances in Astronautical Science Vol. 65, pp 311-320

Papoulis, A. 1965

Probability, Random Variables, and Stochastic Processes
New York, McCraw-Hill

Rapp, R.H.; 1983

The determination of geoid undulations and gravity anomalies from SEASAT altimeter
data

Journal of Geophysical Research, Vol. 88, No. C3 pp 1552 - 1562

182

Rapp, R.H.; Wang, Y.M.; Pavlis, N.K.; 1991

The Ohio State 1991 geopotential and sea surface topography harmonic coefficient
models

Department of Geodetical Science and Surveillance Report 410, The Ohio State University,
Columbus 1991

Ray, R.D.; Cartwright, D.E.; 1994

Satellite altimeter observations of the Mf and Mm ocean tides, with simultaneous orbit
corrections,

Gravimetry and Space Techniques Applied to Geodynamics and Ocean Dynamics,
Geophysical Monograph 82, IUGG Vol. 17, pp 69-78

Rees, D.; Barnett, J.J.; Labitzke, K.; 1990
CIRA 1986 Part I : Thermospheric Models
Advances in Space Research (COSPAR) Vol. 10, Nr 12

Renard, P.; 1990
Final Report on Satellite Skin-Force Modelling

Matra technical report number S374/NT/100/89, ESA contract number 7850/88/HGE-1,
Toulouse

Ries, J.; Bordi, J.; Shum, C.; Tapley, B.; 1996
Assessment of precision orbit accuracy for ERS-1 and ERS-2
AGU Spring Meeting, Baltimore, Maryland, May 1996

Romay-Merino, M.M.; Dow, J.M.; Piriz, R.; Boomkamp, H.J.; 1993

Global ocean tide mapping and dynamic sea surface topography determination using
ERS-1 altimetry

Proceedings Second ERS-1 Symposium, Hamburg, October 1993, Vol. 2, pp 1355-1360

Salvadori, M.G.; Baron, M.L.; 1961
Numerical Methods in Engineering
Prentice Hall

Scharroo, R.; Wakker, K.F.; Mets, G.J.; 1993
The orbit determination accuracy of the ERS-1 mission
Proceedings Second ERS-1 Symposium, Hamburg, October 1993, Vol. 2, pp 735-740

Scharroo, R.; Wakker, K.F.; Ambrosius, B.A.C.; Noomen, R.; Van Gaalen, W.J.; Mets, G.J.;
1993

ERS-1 precise orbit determination

AAS/GSFC international Symposium on Space Flight Dynamics, Greenbelt, Maryland, April
1993, AAS paper 93-270

Scharroo, R.; Visser, P.N.A.M.; 1997
ERS Tandem Mission Orbits : is 5 cm still a challenge ?
Proceedings Third ERS Symposium, Florence, March 1997, ESA SP-414

Schidlovsky, V.P.; 1976

Introduction to the Dynamics of Rarefied Gases
Elsevier, New York

Schwartz, J.A.; 1990

Laser ranging error budget for the TOPEX/Poseidon satellite
Applied Optics, Vol. 29, No. 25

183

Schwiderski, E.W.; 1980
Ocean Tides, Part I : Global ocean tidal equations.
Marine Geodesy, Nr. 3, pp 161-217

Sinclair, A.T.; Appleby, G.M.; 1986
SATAN - Programs for the determination and analysis of satellite orbits from SLR data
SLR Technical note 9, Royal Greenwich Observatory, Herstmonceaux

Smith, E.K.; Weintraub, S.; 1953
The constants in the equation for atmospheric refraction index at radio frequencies
Proceedings of the LR.E., Vol. 41, pp 1635-1637

Stroud, A.H. 1974
Numerical quadrature and solution of ordinary differential equations
New York, Springer ISBN 0-387-90100-0

Stum, J.; 1994

A comparison between TOPEX microwave radiometer, ERS-1 microwave radiometer,
and European Centre for Medium-Range Weather Forecasting derived wet tropospheric
corrections

Journal of Geophysical Research, Vol. 99, No. C12, pp 24,927-24,939

Taff, L.G.; 1947
Celestial Mechanics - A Computational Guide for the Practitioner
New York, John Wiley ISBN 0-471-89316-1

Tapley, B.D.; Ries, J.C.; Davis, G.W.; Eanes, R.J.; Schutz, B.E.; Shum, CXK.; Watkins,
MM.; Marshall, J.A.; Nerem, R.S.; Putney, B.H.; Klosko, S.M.; Luthcke S.B.; Pavlis, D.;
Williamson, R.G.; Zelensky, N.P. 1994

Precision orbit determination for TOPEX/POSEIDON

Journal of Geophysical Research, Vol. 99, No. C12, pp 24,383-24,404

Tapley, B.D.; Watkins, M.M.; Ries, J.C.; Davis, G.W.; Eanes, R.J.; Poole, S.R.; Rim, H.J.;
Schutz, B.E.; Shum, C.K.; Nerem, R.S.; Lerch, F.J.; Marshall, J.A.; Klosko, S.M.; Pavlis,
N.K.; Williamson, R.G.; 1996

The Joint Gravity Model 3

Journal of Geophysical Research, Vol. 101, pp. 28,029 - 28,049

Todd, J 1962
Survey of numerical analysis
New York, McGraw-Hill

Le Traon, P.Y.; Gaspar, P.; Bouyssel, F.; Makhmara, H.; 1993
Reducing ERS-1 orbit error using TOPEX / Poseidon data
Proceedings Second ERS-1 Symposium, Hamburg, October 1993, Vol. 2, pp 759-763

Wahr, J.M.; 1981

The forced nutations of an elliptical, rotating, elastic and oceanless Earth'
Geophysical Journal, Royal Astronomical Society, no. 64, pp 705 - 727

184

Time and space Appendix A

The equations of motion (2.51) require the choice of one or more inertial axis frames in
which the position of the satellites are defined, as well as a system of time coordinates with
respect to which the velocity and acceleration can be described as first and second derivatives
of the position. This Appendix will summarise the main spatial and temporal reference

systems in Faust, as well as the way in which these systems are related to each other.

A.1 Geodynamics

For the analysis of satellite orbits around the Earth the most convenient choice for the origin
of a coordinate frame is the centre of mass of the planet, and to comply with general vector
algebra we obviously adopt rectangular cartesian axis frames. These assumptions already
limit the freedom of choice to a mere selection of two perpendicular directions, together
defining the orientation of a geocentric axis frame in inertial space (by which we mean the
distant stars that do not appear to move on any relevant time scale). In practice various
directions are used, all based on the rotation of the Earth and its orbit around the Sun. The
differences between these systems are related to variations in the Earth's rotational and orbital
motion, so a practical way to describe reference systems is to discuss the dynamical behavior
of the Earth. In this respect, it is useful to distinguish between translational movements,

rotational movements, and effects caused by the Earth's non-homogeneous mass distribution

or departures from rigidity.

A.1.1 Translations of the origin

The translational acceleration of the Earth within the solar system is determined by the
gravity of the Sun, the Moon and the planets. The largest component is obviously the solar
gravitation which continuously bends the velocity vector of the Earth into an orbit around the
Sun, within a plane called the ecliptic plane. However, the other masses in the solar system
also cause changes of both the direction and the size of the Earth's velocity vector, causing
variations of mainly the inclination and nodal angle of the Earth's orbit, but also of its period,

perigee angle and eccentricity. The influences of the masses in the solar system - other than

185

Sun and Moon - are collectively called planetary precession, referring to precession of the
Earth's orbit rather than of its rotation axis. Effects of the gravitational forces of masses

outside the solar system are irrelevant to the orbital motion of satellites around the Earth.

A.1.2 Earth rotation

The rotational acceleration of the Earth is dominated by interactions of the gravitational
attraction of the Sun and the Moon with the non-homogeneous mass distribution of the Earth.
The resulting nett torques influence both the direction and the size of the Earth's angular
momentum vector, and therefore the orientation of the momentary rotation axis of the planet
as well as its rotational rate. The combined effects of these torques upon the rotation vector
of the Earth are called luni-solar precession, this time referring to precession of the rotation
axis. A non-zero constant component of these torques causes the rotation axis of the planet to
describe a conical shape through space with a period of about 26000 years. Superimposed
upon this regular motion are many short-term accelerations of the rotation axis - called
nutation (being the non-uniform part of precession) -, related to the periodic motion of the
Sun and the Moon relative to the Earth. The influence of gravity of other planets upon the

rotational movement of the Earth is negligible.

A.1.3 The structure of the planet

The Earth is not a perfectly rigid body with a homogeneous mass-distribution, which has
consequences both for the shape of the planet and for the rate and orientation of its rotation.
The gravitational forces of Sun and Moon cause complicated time-dependent deformations of
the Earth's crust, oceans and atmospheres, collectively known as tides (see also Section 4.2).
The Earth's nutation and tidal response depend on the internal structure and mass-distribution
of the Earth. Tide-induced variations in mass distribution, as well as some seasonal variations
of atmospheric and oceanic mass distribution affect the moments of inertia of the Earth and
thereby add to the complexity of nutational movements. The thin outer crust of the Earth -
containing less than 0.45 % of the mass of the planet - rests on liquid and viscous lower
layers, and the rotational behavior of the crust does not precisely follow the principal motions
of the massive core described in A.1.2. Furthermore, the main axis of figure of the planet
never coincides perfectly with the momentary angular momentum vector, causing an Eulerian
motion of the axis of figure around the actual rotation axis. Changes in the Earth's mass
distribution and moments of inertia also imply that the momentary location of the axis of
figure varies. Finally, the Earth's crust consists of tectonic plates that move relative to each

other and relative to the core of the planet, which makes it difficult to define absloute spatial

186

reference points on the Earth's surface. The movements of the point defined as the
geographical North Pole, with respect to an adopted reference pole (related to the mean

rotational axis of the planet), are collectively known as polar motion.

While the translational and rotational movements described in the previous sections can be
adequately modelled on the basis of planetary dynamics, polar motion is caused by too many
different interacting effects to allow a practical model of sufficient accuracy. Instead,

empirical data is used in the form of time series derived from astronomical measurement
techniques like VLBI.

A.2 Spatial reference frames

The above effects give rise to three pairs of directions for the definition of geocentric axis
frames. The three corresponding frames are more or less standardized in space geodesy, as

recommended by the International Astronomical Union.

At first, a terrestrial reference frame is used that is attached to (the outside of) the Earth, in
such a way that the Z-axis defines the geographical North Pole, while the XY-plane defines
the geographical equator, with the XZ-plane passing through Greenwich. This frame is
referred to as the Earth-Centered-Fixed frame or ECF frame. Tectonic motions imply that it
is difficult to define a terrestrial reference frame in an unambiguous way. In practice, its
existence is implied by a set of station coordinates that have been solved relative to each
other in a coherent way, from astronomical techniques or from satellite tracking
measurements. Faust currently uses either the station coordinates published by the
Intenational Earth Rotation Service ITRF94 (Boucher et al., 1994) or the sets of station
coordinates by Eanes and Watkins (1993).

The ECF frame experiences all regular and irregular movements of the Earth, i.e. those of the
crust with respect to the core of the planet, superimposed upon the daily rotation of the
planet and the precession and nutation of the rotation axis through inertial space. A satellite
around the Earth will not follow these movements, which means that we would have to
introduce a complicated fictitious acceleration of the satellite if its equations of motion were
to be described in the ECF frame. Better suited for that purpose is a geocentric frame that

does not follow the rotations of the ECF frame, but derives its orientation from two fixed

187

directions in inertial space. For these directions we use the mean rotation axis of the Earth as
the Z-axis, and the mean equinox line (the intersection between the mean equatorial plane
and the mean ecliptic plane) as the X-axis, positive towards the vernal equinox. The mean

directions are those that do not follow the nutational movements of the planet.

Still, planetary precession and luni-solar precession cause these directions to vary in time. We
therefore distinguish between a frame called the true frame of date (the TOD frame), that
uses the momentary mean rotation axis and equinox line, and a second frame that is defined
by the orientation of the TOD frame at a certain fundamental epoch. Sadly, even the latter is
only a semi-inertial frame : although its rotational inertia is perfect, it still follows the
translational accelerations of the Earth within the solar system. This effect is taken into

account in the modelling of the tidal potential and the third-body gravitational attractions.

Some aspects of force models or tracking observations are defined in the ECF frame, while
the mathematical equations of motion are defined in the semi-inertial J2000 frame. It is
therefore necessary to be able to rotate coordinates from one axis frame into another. The
way in which the rotation matrices between the three frames are obtained is closely linked to

Earth rotation and the concept of time, which will therefore be defined first.

A3 Time

Modem space geodesy knowns four independent time systems, called sidereal time, solar
time, ephemeris time and atomic time respectively. In addition, several versions of Universal
Time have been introduced over the years, based upon one or more of the four fundamental
time measures. All systems count time in units of seconds, minutes, hours, days, etc. but the
durations of units from different systems are not identical, nor are they even constant with
respect to each other. A numerical integration process in a programme like Faust inevitably
uses a strictly regular mathematical time unit, but observations in the real world are
inevitably labelled in terms of any of the four physical time systems. In order to connect
physical time to mathematical time, the various time systems will be briefly described here.

A more comprehensive discussion can be found in literature, for instance in the extensive
treatment by Taff (1985).

188

A sidereal day is defined as the period between two successive passes of the vernal equinox
across a given longitude in the ECF frame. Because the equinox line experiences the
combined fluctuations of the equatorial plane and the ecliptic plane, we distinguish between
the apparent equinox line and the mean equinox line, the latter being the average direction of
the first after elimination of the nutations of the Earth's rotation axis. The corresponding
difference between apparent and mean sidereal time is called the equation of equinox,
expressed either as a rotation angle around the TOD Z-axis, or as a time correction. Note that

if Earth rotation is used as a time standard, angles can be assumed equivalent to time.

A solar day is defined as the period between two successive passes of the centre of the Sun's
disk across a given longitude in the ECF frame. Obviously, the Earth's orbit around the Sun
lasts one solar day less than it contains sidereal days, as the annual revolution itself
eliminates one relative rotation of the Sun around the Earth. The solar day exceeds the
sidereal day by the amount of time that is required to rotate the planet over an angle equal to
the Earth's change in orbital anomaly during that day. To compensate the eccentricity of the
Earth's orbit and some of the fluctuations in its rotational rate, the concept of mean solar time
was introduced, corresponding to a fictitious sun that moves across the celestial sphere with a

constant - average - rate, rather than with a rate that varies substantially throughout the year.

The first type of Univeral Time (nowadays referred to as UT0) was defined as the local mean
solar time in the positive XZ-plane of the ECF frame (i.e. Greenwich Mean Solar Time).
Polar motion influences the actual length of the mean solar day, which resulted in the
introduction of UT1, being UTO corrected for polar motion. A final refinement followed by
correcting UT1 for seasonal variations in the rotational rate of the Earth, leading to a time
standard called UT2. Because all these versions of Universal Time follow complicated

conventions and compromises, neither of them has found wide application in practice.

The phase lag between the main lunar tidal bulge and the direction to the Moon causes a nett
torque that gradually decelerates the rotational rate of the planet. To retaliate, the Earth has
not only done exactly the same to the Moon - so that the Moon is now tethered in its orbit,
with its heaviest part permanently turned towards the Earth - but also accelerates the Moon's
orbital motion, pushing it into a higher orbit and thereby forcing the Moon to gradually
decrease its gravitational pull. Although this contest will inevitably end in a draw, with the
Moon in an orbit that is then geosynchronous, it implies that for the foreseeable future the

length of a mean solar day increases and that each form of solar time or Universal Time will

189

slow down. A new uniform time scale was therefore introduced by the astronomical
community, in which the duration of a second was defined to be strictly constant, and chosen
to be equal to the mean solar time second of the year 1900. This constant time scale is called
ephemeris time, because it ensured that predictions for the positions of celestial bodies would

actually match with later observations within the ephemeris time system.

An obvious disadvantage of ephemeris time is that it has been defined by the abstract
concept of the duration of a particular second in the past, which can hardly be used to
calibrate clocks or to perform laboratory measurements. However, an accurately reproducable
unit of time can be found by counting the highly regular oscillations of certain atomic
resonances. To this purpose, the atomic second was introduced as the period in which a
resonating cesium atom performs 9,192,631,770 cycles. This value was determined by
counting cesium oscillations over the period from 1956 to 1965, and dividing the total count
by the number of ephemeris time seconds within that period. The atomic time second is
therefore in excellent agreement with the abstract ephemeris time second, hence with the
GMST second of the year 1900.

Based upon atomic time, a final - hybrid - form of Universal Time was introduced, called
UTC (C for coordinated). In UTC, the duration of each second is defined by the
reproduceable atomic time second, but epochs are still labelled in the more practical terms of
solar time, i.e. in terms of the normal Julian calendar (a Julian century contains 36525 mean
solar days of 86400 seconds each). To make sure that the difference between the strictly
constant atomic scale and the decellerating solar calendar stays within reasonable limits, UTC

is occasionally adjusted via the introduction of leap seconds.

In agreement with general practice in modern space geodesy, Faust uses UTC as its concept
of time. The strictly regular mathematical time count within the programme therefore
corresponds to the atomic time scale, while individual epochs are named in terms of Julian
dates that may occasionally contain a leap second. Julian dates represent a continuous count
of mean solar days, starting at Greenwich noon, the first of January 4713 B.C. on the normal
Julian calendar. Because in modern times the Julian day count has reached very large
numbers - the year 2000 starts at Julian date 2,451,545.0 - the Modified Julian Date was
introduced as the Julian day number minus 2,400,000.5 (i.e. removing the first two digits and
making the day start at midnight rather than at noon). The fundamental epoch for the semi-

inertial frame as recommended by the IAU is J2000.0, i.e. the start of 1 January, 2000 in

190

Greenwich. This is also the fundamental epoch that is used by Faust.

A4 Computation of rotation matrices

Luni-solar precession and planetary precession only depend on the ephemerides of the planets
in the solar system and of the Moon around Earth, which are all known with great accuracy.
For any time of interest, the rotation matrix from the J2000 frame to the true-of-date frame
can therefore be computed by interpolating the required matrix coefficients in tables from
astronomical almanacs. The procedure used by Faust follows the MERIT standards by
Melbourne et al. (1983).

Computing the rotation matrix from the TOD frame to the ECF frame requires modelling of
luni-solar nutation and polar motion. Again, Faust follows the recommendations of the IAU
as documented in the MERIT standards. For the nutation, the series by Wahr (1981) is used.
The modelling of nutation will be briefly discussed here, because it also plays a major role in

the analysis of tides (see Chapter 4).

The ephemerides of the Moon and the Sun - relative to the Earth - are expressed in five
fundamental arguments : the mean ecliptical longitudes of the Moon and the Sun, of their
perigees, and of the mean node of the Moon. These are obtained from short time series in

time T, expressed in Julian centuries since the reference epoch J2000 :

L = 485866.733 + 1717915922.633T + 31310T% + 0.064T"
L' = 1287099.804 + 129596581.224T - 0557T% - 0.0127T3
F = 335778877 + 1739527263.137T - 13.257T% + 0.011 T3 (A.)
D = 1072261307 + 1602961601.3287T - 6.891T* + 0.019T3
N = 450160280 - 6962890.539T + 7.455T2 + 0.008 T*

Linear combinations of sines and cosines of these angles form the arguments in the Wahr
series expansions that take into account the total nutational movement of the planet between
the time of interest and the reference epoch J2000. The time correction resulting from this
series is added to the (atomic) time of interest. From this new time tag, the Greenwich Mean
Sidereal Time is computed by means of yet another time series that provides the momentary

rotation angle of the planet :

191

1

GMST =1, +
D 86400

(24110.54841 + 8640184.812866 T + 0.093104 T2 - 0.0000062 T?)

(A2)

From this, the Greenwich Apparent Sidereal Time (GAST) is obtained by adding the
equation of equinox (determined by interpolation in analogy to the luni-planetary precession
data). This angle GAST is the required total rotation angle around the TOD Z-axis, between
the TOD X-axis and the ECF X-axis. The effect of polar motion is expressed in small
rotation angles a, and «, around the TOD X-axis and Y-axis, found from interpolation for
the time of interest in tables published by the IERS. The total rotation matrix from TOD to
ECF, involving the three rotations over GAST, «, and a, can then be computed from basic

trigonometry.

The rotation matrices from J2000 to TOD, from TOD to ECF, and their product that rotates
from J2000 to ECF directly, only depend on time. They are therefore evaluated only once in
each integration step, even if several arcs are processed in parallel. In addition, these matrices

may have to be computed for the time of an observation or another processing event.

192

Software structure Appendix B

This Appendix describes the structure of the code of Faust. To start with, the overall
functional design of the programme is outlined and the main modules within the code are
briefly introduced. In a second Section some design conventions and programming tools are
listed that aim at keeping the code managable and accessible for future programmers. The
third Section consists of an alphabetical index of all subroutines, in order to assist analysis of
(parts of) the code by briefly explaining the task of each subroutine, and referring to an
appropriate Section of the thesis for further information. A final Section lists groups of
interacting subroutines, which may have to be studied in combination rather than separately

before changing any part of the related code.

B.1 Functional structure

Read user input

) Input e P

i

- Prepare process| !
i

i

.

. I

Faust Processing Event handling !
loop 1!

-

: g i

Solution and !

iteration report | |

\ Output u—-u-nwu--u——i.—-o.-_:

Process report

Figure B.1 High level structure of Faust

193

B.1.1 Main programme

Like practically every data processing programme, Faust can be modelled at its highest level
as a three-part structure formed by a data input module, a data processing module and a data
output module. The central processing module is formed by the event handling loop
discussed in Chapter 2, and may be iterated several times. Parts of the input module and
output module are also repeated at the start and end of each iteration, for instance to reset
relevant memory variables or to output statistics for an individual iteration. The overall
structure therefore contains five parts rather than the three described above : the input and
output module each split into a repeatable and a non-repeatable part, as illustrated in Figure
B.1. Each of the five blocks will be described below in some detail.

B.1.2 User input

This module is formed by the natural language interface that is explained in detail in
Appendix C. The interface itself consists of a series of consecutive subroutines. The first part
of the language interface deals with the process of reading and interpreting the user input
file, according to definitions in an external language database. This part is independent of the
programme in which it is implemented, and other programmes - like Wagner (see
Section 5.5) - can use exactly the same code, although they will employ their own external
language database. The second part of the input module moves the input data from data
buffers in the language interface into programme variables and arrays, and is therefore
dependent on the programme in which the interface is implemented. In addition, this step
installs various models from input files specificed by the user, for instance a station

coordinate file or a macro-model for satellite geometry.

B.1.3 Process preparation

Having read and installed all input, the parameter estimation process is initialised. This step
is repeated at the start of each subsequent iteration. It involves installation of a variety of
control variables, and resetting certain houdekeeping variables and matrices that may have
obtained non-zero values in a previous iteration. In Faust, this step is formed by the single

subroutine ClearArec.f (see later Sections of this Appendix).

B.1.4 Event handling sequence
This step forms the central process in Faust. It consists of three major elements. The first
element is formed by the control routine GetEvent.f, that will determine which event is the

next to be processed by comparing the epochs of scheduled events and selecting the earliest

194

of all. The second element - not always required for each event - is formed by a module that
will generate the state vectors and variational partials for the epoch of the event, either via
the numerical integrator and interpolator (the subroutines GaussJackson.f and GetState.f
respectively), or by reading earlier generated values from file as indicated in Figure 2.6. The
third and final element is formed by a series of event handling blocks, only one of which
will be executed according to the type of event that takes place. After completion of this

third part, the loop is closed and the routine GetEvent will select the next event in the series.

B.1.5 Solution block

When the last event has been processed, the loop is abandonned. The normal matrix will
have been built up gradually during the event handling loop by way of observation-events,
and must now be inverted in order to compute the parameter corrections. The corrections and
new parameters will be written to the output, as will some statistics about the RMS of the
residuals (per station, satellite, data type) and about the iteration process itself. At this point,
it will also be decided if a next iteration is to be performed, according to a variety of

convergence criteria that can be manipulated by the user.

For the multi-run solutions described in Section 2.7, the normal matrix is not constructed by
an event-handling loop but is constructed by reading previously computed normal matrices
from file and recombining them according to the user input. The processing of these earlier
computed normal matrices is done by a subroutine called ReadMatrix.f, which in a multi-
run process simply replaces the entire event-handling loop above. Any 'normal' process (i.e. a
run that uses the event-handling loop to create a normal matrix) may output its normal matrix
and parameter structure to file. This is done by a subroutine called SaveStruc.f, if requested

by the user.

B.1.6 Process completion

If no further iteration is to be performed, some final output will be produced, all open files
are closed and programme execution is terminated. In addition, a CPU-tracer system will
produce statistics about the time spent within each subroutine which has appeared to be

useful during programme development.

195

B.2 Programming conventions

Faust consists of a main programme and a large number of subroutines, set up in a
systematic way. Some of the applied conventions are crucial, in a sense that if new
subroutines would not follow them, their entire functionality is also lost for the existing code.

This Section therefore forms compulsary reading for future programmers of Faust.

B.2.1 File structures

Each subroutine is stored in its own file, with a file name that is identical to the name of the
subroutine (in lower case) and the extension .f to indicate a FORTRAN file. This name
convention is exploited by a programming tool called getstruc.f, that creates a call tree for
the programme or sub-process within the code. If, for instance, we run getstruc on the
Gauss-Jackson subroutine, it will produce a tree diagram showing all routines called by the

integrator and by any of the lower level routines, like the force models.

It is important to keep just one version of the source files - bar periodical backups for safety
reasons - so that any modification of a subroutine will automatically be implemented in the
entire programme. As soon as different sets of the source code are maintained by different
people, it becomes impossible to ensure consistent behaviour of the programme and chaos

will take over.

In contrast, there may be many different executable programme files around, which will
mainly vary in terms of array sizes. Array sizes in Faust tend to be defined by means of
FORTRAN parameter statements, collected in a single block at the start of the main
programme. To allow for various programme set-ups, four or five different versions of this
parameter block are included, only one of which will not be commented out at the time of
the compilation. As an example, the gravity field inversions of Chapter 8 require the A-
partition of the normal matrix to have a size in excess of 100 MB, while not needing the
other normal matrix partitionings. For normal orbit determination runs it would not be
practical to impose such strong loads upon the network, and an executable version of Faust
with much smaller array sizes should be used. In total, the memory requirements of Faust are
determined by some forty different parameters, which should ideally be set to be just large
enough to encompass the intended process. At present, different executables exist for single-
arc orbit determination, for multi-arc orbit determination (with and without supporting matrix

partitionings for DORIS or PRARE data) and for gravity field work.

196

B.2.2 Data structures

As a general rule we can safely conclude that common blocks in FORTRAN form a threat to
programme structure, as they allow uncontrolled intermingling of global variables with local
variables. By convention Faust therefore does not use common blocks, apart from a few well-
justified and carefully managed exceptions. By refusing to use common blocks, all data must
pass between subroutines by means of the routine headers, and data can be easily traced back

to the main programme from within each layer of the code.

B.2.3 Logical structure

In order to keep the code accessible, each subroutine only performs one clearly defined task.
The general rule is : it should always be possible to represent a subroutine as a black box,
with a coherent set of input variables, a concise task (which should be obvious from the
subroutine name), and a coherent set of output variables. If this concept is followed, a
subroutine will typically have a length that does not exceed 150 lines or so, allowing future

programmers to quickly familiarize themselves with its characteristics.

B.2.4 Consistent documentation of variables

Each subroutine has a header that contains the date of implementation, the programmer
responsible for the routine in question, and a list with all input and output variables passed
through the header. For each variable its name, type and dimensions are listed as well as a

short description of its purpose.

B.2.5 CPU tracer

During the test phase of the programme, a CPU counter system was implemented that uses
two external LNAG library routines to determine the CPU time used by each subroutine,
allowing optimisation of the entire process. For this purpose each subroutine has a unique
identification number that corresponds to the index of an array called CPU, and in addition
each subroutine should be listed in a file called subroutines.f . At the start of subroutine
with number N, the current machine clock counter is subtracted from the element CPU(N),
and just before returning to the calling routine the current clock value will be added. The
difference between the two clock counts is thereby added to the element CPU(N). It should
be noted that any time spent between entering and leaving a subroutine will be included,
which includes time spent within lower level routines, or time absorbed by waiting for disk

action or memory paging, which sometimes distorts the actual time used by each sub-process.

197

B.3 Alphabetical index of subroutines

The next pages form a look-up table to identify the task of individual subroutines. It is

intended to assist in the analysis of parts of the programme that may have to be modified or

extended for future applications. Listed are the internal reference number of the routine, its

name, a Section of the thesis where the most relevant theory is discussed, and a description

of the task of the subroutine. In addition, in Section B.4 routines are grouped according to

their functional task within the overall process.

ID Name Ref Description

098 AddDorisHold 5.2.2 Event handler routine, for storing the state vector and partials
for the epoch of the start of a DORIS doppler-count interval

123 AddPrareHold 5.2.3 Event handler routine, for storing the state vector and partials
for the epoch of the start of a PRARE doppler-count interval

084 AddXOhold 5.4 Event handler routine, for storing the state vector and partials
at the epoch of the first crossing in a crossover observation

001 Aerolint 4.4 Routine that interpolates the GUESS area tables for evaluation
of the effective drag surface area for the ERS satellites

002 Albedo 45 Routine that computes albedo radiation pressure for any of 13
reference surfaces in which the visible Earth is divided

003 AlbPir 45 Force model routine that combines total albedo and infra-red
radiation pressure from each segment of the visible Earth

101 AlongTrack 4.8 Force model routine for empirical along-track accelerations

004 Argolat 4.7 Subroutine that computes the argument of latitude, being the
orbital anomaly of the satellite with respect to the equator.

005 ATCcorr - Extinct routine, once used for testing the numerical integrator

006 Cal2MJD A.3 Routine to convert a date from year-month-day-hr-min-sec to
MJD

007 Centre 5.1 Routine to compute the centre-of-mass offset for the SLR and
DORIS instruments

008 Cheb A.4 Routine to evaluate Chebyshev polynomials that are used in

the reconstruction of planetary ephemerides

009

010
011
012

013

014

015

016

017

018

019

020

021

022

023

024

091

025

026

027

028

ChebCoef

Choleski
CIRA72
ClearArc

CopyField
CopyGuess
Correct

DirectSRP
Drag
DragGUESS
DTM94

ECFmatrix

EarthFr_ames

Elements

EllipsHt

ERSatt

Filename

Flux
Force

Frames

FramesGUESS

A4

24
4.5
28

4.2

4.2

4.6

4.5

4.5

4.5

A4

A4

A4

45

2.5

A4

A4

198

Used by Cheb to obtain a set of interpolation coefficients for a
particular epoch

Performs inversion of the A partitioning of the normal matrix
Density model (Cospar International Reference Atmosphere)
Major initialisation routine for each process iteration

Routine that makes a backup copy of the part of the original
gravity field model that will be affected by tidal corrections

Routine that allows a GUESS-table to be shared by different
arcs, in order to save memory

Routine that controls the inversion of the entire partitioned
normal matrix and adds the corrections to the parameters

Force model routine for direct solar radiation pressure

Force model routine for atmospheric drag

Subroutine called by drag to evaluate GUESS surface area
Subroutine for evaluating the DTM density model

Subroutine that computes the rotation matrix from the TOD
frame to the ECF frame (inverse matrix is equal to the

transposed matrix)

Subroutine that evaluates a variety of geometrical quantities in
a centralised way at the start of the force model

Subroutine converting a Cartesian vector to Kepler elements

Subroutine that computes the height above the ellipsoid from a
given Cartesian position vector (either ECF or TOD)

Subroutine that evaluates the attitude control algorithm for the
ERS satellites, required for centre-of-mass computations or
surface forces

Housekeeping subroutine that stores and saves all user
filenames and can subsequently be called from any location
within the code

Subroutine that computes the solar flux and geomagnetic data

Central force model subroutine, called from within the
numerical integrator, that manages all individual force models

Subroutine that computes a variety of reference frames and
attitude angles as a function of time

Additional subroutine for evaluating GUESS-specific reference
frames and rotation angles

029

030

082

031

104

124

095

032

100

122

033

034

035

099

119

036

037

038

085

103

GaussJackson

Geodetic

GetCPU

GetEvent

GetFileDORIS

GetFilePRARE

GetMSdata

GetParams

GetParDORIS

GetParPRARE

GetPointers

GetPoly

GetState

GetStaDORIS

GetStaPRARE

GetStations

GetTideF

GetTimeTags

GetXOhold

Get_DRSut

28

5.2.2

523

Cc

2.6

5.2.2

523

c

A4

3.2

5.1

5.1

5.1

43

49

5.5

199
Main subroutine for numerical integration of the force model

Subroutine that converts a Cartesian vector to longitude,
geodetic latitude and ellipsoid height

Housekeeping routine that keeps track of CPU usage

Major subprocess that determines which event should be
handled next, thereby controlling the entire process flow

Input routine that will read previously computed pass-
dependent parameters for DORIS from file

Input routine that will read previously computed pass-
dependent parameters for PRARE from file

Input routine that installs multi-satellite parameters and global
data that can not be handled by the general input handling

Major input routine that will determine the overall parameter
structure and create the pointer array M, from Chapter 2

Subroutine that will scan the observations file to determine the
required amount of pass-dependent parameters for DORIS

As GetParDORIS, but then for PRARE data

Language interface routine that connects input lines with
recognised input statements from the language database

Subroutine that creates an internal table with interpolation
coefficients for the planetary ephemerides

Subroutine that performs a 10-point Lagrange interpolation in
the ringbuffers to get state and partials at a time of interest

Input routine for reading a separate station coordinate file for
DORIS (only used for ITRF93 and older)

Input routine for reading a separate station coordinate file for
PRARE (only used for ITRF93 and older)

Input routine for reading station coordinates in ITRF format
and correcting them for station velocities

Subroutine that computes scaled Legendre functions for
evaluation of the ocean tides

Major input subroutine that installs MJD time tags for all
parameters

Subroutine that retrieves crossover data that was previously
written to the buffer file by AddXOhold

Input routine for reading DORIS station coordinates in UT/CSR
format

102

039

040

105

041

042

043

109

108

045

046

047

048

049

050

051

052

053

054

055

056

Get_SLRut
Gravity
InputReport
IntrpCoef
lterReport
Lagi2

LowerCase

LRAtopex
Manoeuvre
MapString

MariniMurray

MatMult1

MatMult2

MatMult3

MatMult4

MJD2Cal

MSIS83

Normalize

Nutation

OnceRev

OpenFile

5.2

41

A4

A4

5.2.1

3.4

A4

44

A4

4.7

200

Input routine for reading SLR station coordinates in UT/CSR
format

Force model subroutine that evaluates the gravity field model.
This routine will typically absorb 40% of the total CPU-time

Output routine that is used after the first iteration only, to
produce most of the process output

Subroutine that computes Interpolation coefficients in the
process for reducing the step size

Main output routine that will produce statistics and results after
each iteration

Subroutine that performs a 12-point Lagrange interpolation in
the input planetary ephemerides data

Language interface routine to convert strings to lower case

NASA Subroutine that evaluates the FFT optical plane
correction for the retroreflector array on TOPEX/Poseidon

Major subroutine that will reduce the step size, integrate over
a manoeuvre and change the step size back to nominal

Language interface routine that scans the contents of a long
input string

Tropospheric correction according to Marini and Murray

General algebraic routine to multiply a 3x3 matrix with a vector
of three elements

Same as MatMult1, but using the transposed input matrix

General algebraic subroutine to multiply two 3x3 matrices with
each other to form a third matrix

Same as matMult2, but using the transposed first input matrix

Subroutine that converts an MJD date to year-month-day-hr-
min-sec

Routine that evaluates the MSIS83 density model

General algebraic subroutine that computes a norm and a unit
vector from a vector with three elements

Subroutine that evaluates the Wahr nutation series

Force model routine to evaluate the one cycle per revolution
empirical accelerations

Housekeeping routine to open an input text file with some
standardised error handling

057

058

059

060

093
092

094

061

062

064

088

065

066
067

117

110

116

068

069

070

115

Planet

Pole

PN2000

PrepareObs

PrintCov
PrintRes

ProcessRes

ProgVar

ReadAero

ReadBody

ReadBoxWing

ReadFlux

ReadGeoid
ReadGUESS

ReadJGMmat

ReadLRAindex

ReadMatrix

ReadOQOcean

ReadPole

ReadSRP

ReadSST

A4

A4

A4

5.6

2.2
241

2.2

4.4

4.2

4.4

4.4

4.1

4.4

5.2.1

2.7

4.2

A4

201
Subroutine that evaluates planetary ephemerides

Subroutine that evaluates the polar motion at a specific time
and accounts for eventual leap seconds

Subroutines to create a table with interpolation coefficients for
the nutation and precession matrix

Housekeeping routine that will prepare the processing of a
tracking observation of any kind

Output routine that will print a post-solution covariance matrix
Subroutine that computes and prints residuals per pass

Major observation processing routine to add the contribution
from a single observation to the normal matrix

Major input routine that installs all input variables into
programme variables

Input routine that reads GUESS aerodynamic drag tables

Input routine that reads solid Earth tide coefficients

Input routine that reads the NASA Box-Wing model for
TOPEX/Poseidon

Input routine that reads the solar flux table and computes
moving averages for the geomagnetic index

Input routine that reads the gravity field coefficients
Input routine to read geometry model for the GUESS tables

Input routine that reads the JGM3 normal matrix and installs it
into the triangularised normal matrix of Section 2.3

Input routine that reads the LRA look-up table for the NASA
FFT centre-of-mass correction

Input routine that reads previously computed normal matrices
in a multi-run process

Input routine that reads harmonic coefficients for ocean tides
and converts them into an amplitude and phase coefficient

Input routine that reads the polar motion table

Input routine that reads the GUESS tables for solar radiation
pressure

Input routine that reads harmonic coefficients for the sea
surface topography model

112

071

120

063

113
097
072
118
121
083

i

073

074

114

075

076

077
106

107

096

078

079

ReadStruc

ReadWords

Reorganise

Reproduce

ResAltim
ResDORIS
ResLaser
ResPrange
ResPrate
ResXO

SaveStruc

ScalProd

Scaninput

SSTpartials

SRPint

Startint

StaTides
StepDown
StepUp

ThirdBody

Thruster

TideJGM

TideSch

2.7

4.4

24

53
5.2.2
5.2.1
5.2.3
5.2.3
5.4

2.7

5.3

4.5

3.3

5.1
34
3.4

43

4.6

4.2

4.2

202

Input routine that reads a list of previously computed matrices
and establishes the parameter structure in a multi-run process

Language interface routine that reads the language database

Housekeeping subroutine that rearranges the parameter
structure to allow for shared drag parameters etc.

Output routine that will write the parameter solution in a format
that can be used as new input to Faust

Subroutine that computes residual and partials for altimetry
Subroutine that computes residual and partials for DORIS
Subroutine that computes residual and partials for SLR
Subroutine that computes residual and partials for PRARE rng
Subroutine that computes residual and partials for PRARE dop
Subroutine that computes residual and partials for crossovers

Subroutine that writes the parameter structure and normal
matrix to file, to be used later in a multi-run process

General algebraic routine that computes the scalar product of
two vectors with three elements

Language interface routine that scans the user input for
recognisable input statements

Subroutine that computes the geometrical partials for the sea
surface topography model

Subroutine that interpolates the effective area for solar
radiation pressure in the GUESS tables

Subroutine that initialises the Gauss-Jackson integrator for a
single arc at a time

Subroutine that evaluates the tidal uplift for station coordinates
Subroutine that reduces the integration step size
Subroutine that increases the integration step size

Force model subroutine for third-body attraction and frequency
independent luni-solar tides

Force model subroutine that evaluates the thruster force

Force model subroutine that corrects the harmonic coefficients
of the gravity field model for ocean and Earth tides

Extinct subroutine that evaluates the Schwiderski tides

203

080 TimeString B Housekeeping routine that creates a string in calendar date
format from a MJD time tag

086 TopAtt 44 Subroutine that evaluates the attitude control algorithm for
TOPEX/Poseidon, for centre-of-mass offset, drag and SRP

090 TopexLRR 5.2.1 Subroutine that evaluates the FFT correction for the laser
retroreflector array on TOPEX/Poseidon

087 TopexYaw 4.4 Subroutine that evaluates the yaw-steering algorithm for
TOPEX/Poseidon

081 VecProd - General algebraic routine for computing the vector product of

two vector with three elements

089 VectorOut - Output routine that produces an output state vector at a given
time in the format used in new input to Faust

B.4 Functional index of subroutines

In order to know which routines relate to a specific sub-process, this Section will list
subroutines of Faust in relation to their task. In combination with the previous Section, this
should enable quick navigation through the code. Because many routines are relevant to
different aspects of the programme, they may appear under more than one header. A full
structural breakdown of any part of the code, or of the programme as a whole, can always be

obtained by running the programme getstruc described above.

B.4.1 Parameter estimation

Input routines : GetParams GetTimeTags GetMsData
GetFileDORIS GetFilePRARE

Processing routines : ClearArc ProcessRes ReadMatrix
Correct Choleski

Output routines : SaveStruc Reproduce

B.4.2 Orbit integration

Initialisation : StartInt

Main integrator : GaussJackson Force GetState
Changing step size : StepUp StepDown

B.4.3 The force model

Overall control :

Geometry at time t :

Gravity :
Tides :

Third-body attractions :

Atmospheric drag :

Direct SRP :

Albedo and IR :

Empirical accel. :

Force
Frames
Gravity
TideJGM
ReadOcean
ThirdBody
Drag
CopyGUESS
Flux
CIRAT2
ReadSRP
SRPint
Albedo

OnceRev

B.4.4 The calculated observation

Event handling :
Geometry :

Buffering of partials :

Individual data types :

Editing and weighting :

Output statistics :

PrepareObs
EarthFrames
EllipsHt
ERSAtt
AddXOhold
AddPRAREhold
ResLaser
ResPrange
MariniMurray
TOPEXIrr
PrepareObs
IterReport

B.4.5 Natural language interface

Reading input :

ReadWords
LowerCase

Installation of pointers : GetPointers

GetTimeTags

204

FramesGUESS
ReadGeoid
TideSch
ReadBody
Planet
DragGUESS
ReadAero
ReadFlux
MSIS83
ReadBoxWing
Flux

AlbPir
AlongTrack

ProcessRes
Centre
SSTpartial
Elements
GetXOhold
GetEvent
ResAltim
ResPrate
TOPEXyaw
Centre
ProcessRes

PrintRes

Scanlnput

GetParams

Reorganize

EarthFrames
Tide]JGM
Planet
GetTideF

ReadGUESS
Aerolnt
ReadBoxWing
DTM9%4
DirectSRP
ReadFlux

StaTides

TopAtt

Geodetic

AddDORIShold

ClearArc

ResDORIS

ResXO
LRAtopex

PrintCov

MapString

GetMSdata

Programme variables : ProgVar

B.4.6 Reference frames

Central management : Frames

Pole
Planet
General routines : Geodetic
B.4.7 General algebra
Matrices 3x3 MatMultl
MatMult4
Vector 3 ScalProd

205

FileName

FramesGUESS
ReadPole
GetPoly

Elements

MatMult2

VecProd

EarthFrames
ECFmatrix

EllipsHt

MatMult3

Normalize

206

The language interface Appendix C

The natural language interface for Faust forms a powerful way of communicating with the
programme, and is easy to learn from a user point of view. However, the embedded software
for the interpretation of natural language and the conversion of the user input to programme
variables is fairly abstract. Because a basic understanding of the working of this interface

will be required if additional input variables are to be added to the programme, this

Appendix will describe the language interface in detail.

C.1 Design philosophy

The importance of an adequate user interface becomes clear from inspection of various
existing programmes for orbit determination or other large scientific programs. Too often the
user is forced to construct input files according to a narrowly prescribed format, in which
even small errors, like shifting a number within an input line or overlooking an incorrect flag
setting can result in hours of troubleshooting. One of the main causes for such user-
unfriendly input files can be found in the dynamic use of scientific programs. The users tend
to be also the programmers of the software, and code as well as input variables are modified
on a regular basis - by various people - to support new applications. Another reason can be
found in the notoriously poor I/O-provisions of FORTRAN. If programs become larger or
more diverse the input specified by the user will tend to become more complicated as well,
and as a result will be more prone to confusion and errors. The design requirements for a

systematic user interface to Faust were therefore most directly obtained by summarising some

properties that it should not have :

(1) No rigidly prescribed input formats. Formatted FORTRAN statements date back
to the days of punch cards, and altl';ou\“g'h—the/y may be convenient for

implementation by the programmer, they are in general unnatural for the user.

(2) No loss of downward compatibility, or loss of systematic data order in input

files, in case that additional input variables are needed for new applications.

207

(3) No need to specify all sorts of input parameters that are not relevant to the

actual application for which the programme is run.

(4) Not difficult to learn for new users. This is in particular important for a
programme that is used at a university, by students who may only have limited

time to familiarize themselves with the system.

The central demand arising from the above requirements appears to be that a user interface
should be designed from the point of view of the user, rather than from that of the
programmer. Recalling that Faust was designed specifically as a multi-satellite / multi-arc
orbit determination platform, it is also important to note that the amount of input and the
character of the data will vary from case to case. On these grounds, it was decided to give
Faust a natural language interface that will simply try to interprete any normal text file or

even a combination of text files, allowing users to specify their input almost entirely

according to their own preferences.

C.2 Overall description of the language interface

It is not practical to teach the entire English language to a computer programme, but
fortunately one does not need a large vocabulary to adequately communicate with scientific
software. The part of the language that Faust understands is stored in a language database, a
file that can be modified or extended whenever required. This Section will explain how the
language interface interpretes user input files on the basis of the provided language database,
and how the input data is subsequently transformed into internal variables and data elements

that can be understood by the executable code.

A basic layout of the language interface is shown in Figure C.1 below. The text file on the
left in Figure C.1 contains the relevant input information in a format that is convenient to the
user, listed in an arbitrary order chosen by the user. Internally, Faust will require this
information in the form of variables of one of the four basic datatypes integers, real numbers,
character strings or logical variables. The task of the language module is to interprete the
user input, store the encountered data somewhere in memory, and arrange the structure of the

input data into fixed patterns that are embedded in the executable code. This is done in two

208

stages, indicated in Figure C.1 by blocks marked as 'language filter' and 'data organiser'.

Internal data

DJ structures

] Data [)

organiser

Language
definition

Uéer input

Input data buffers

igeonholes

Figure C.1 Schematic view of the language interface

In the first stage the user input file is scanned line by line, and checked for recognisable
language elements. The latter are defined in the language database, which is a normal text
file that can easily be updated or modified in order to allow for future extensions of the
programme, without changing the code of the language interface itself. Recognised input
language elements, and possible data arguments that accompany this input, are stored in one
(or more) of three available input data buffers. These buffers are adequately sized one-
dimensional arrays of datatype integer, double precision real, and character strings. Incoming
data will be collected in these input buffer arrays in order of appearance in the user input

file, i.e. in the arbitrary order chosen by the user.

After completion of the first step all recognised user input data is present in the three buffers,
although in arbitrary order. Each recognised input element has been marked by internal
identification numbers to tell the programme where within the input buffer arrays the
corresponding data elements have been stored. This language filter step is totally independent
from the programme in which it is implemented : it only scans external text files (the user
input) for properties and data structures that have been defined in another external text file

(the language database), in a way that will be described later in this Appendix.

The second stage of the input interpretation process deals with reorganising all data that has
been accumulated in the input buffers into a structure that will allow the main program to

find individual variables in an unambiguous way. The output of this step is appropriately

209

illustrated in Figure C.1 as a set of pigeonholes, each of which corresponds to a specific
programme variable. The actual meaning of these variables is internal to the main
programme, and therefore unknown to the language module. However, from the calling
programme the data organiser step receives a 'map' to the programme data structure. This
map tells the language module in which pigeonhole(s) the data from a particular input
language element should be stored. Unlike the language definition database, this map is
hardcoded in the program in the form of statement identification numbers that correspond to
elements of the pigeonholes. This hardcoded map forms the only link between the abstract

language elements defined in the external database, and the associated programme variables

that are internal to the code.

The user does not need to know the abstract internal statement identification numbers, but
only the natural language elements that will define certain input. On the other hand, the
programme has no perception of the natural language elements, but processes the data via the
identification numbers. The defined language elements are therefore completely decoupled
from the internal interpretation in the code : the language database file could be replaced by
a Russian or Chinese version without affecting the working of the program and even without
having to recompile the executable. The actual language interpretation step is performed by
the input filter in the first stage described above, when recognised natural language elements

in the user input are replaced by their internal identification numbers.

C.3 Definition of the user language

In analogy to computer languages the user language of Faust is defined by specific keywords
that are recognised by the interpreter, possibly accompanied by arguments in the form of data
numbers or character strings. Contrary to most computer languages, the user language of
Faust does not prescribe any particular syntax for its statements. Furthermore, the
implemented language interface is a learning system that contains knowledge in the form of
the external language database. It can be taught to understand new words simply by
extending or modifying the language database. To maintain maximum flexibility, the entire

concept of language is defined in Faust by the following basic rules :

(1) User input consists of lines of text, formed by series of words and numbers

210

which are separated by spaces or commas.

(2) A line of text is intelligible if it contains a pair of keywords in combination with
at least the amount of data arguments required for that pair. If a line of text is

not intelligible, it is automatically taken for a coment line.

(3) Keywords and data arguments may be placed in arbitrary order within the line,

although multiple data arguments on a particular input line will be used in order
of appearance, from left to right.

Rules (1) and (2) state the concept that any line of text - like this one, for instance - will
pass the input scanner without causing error messages, while only those lines that contain
recognisable input will be interpreted as such. The language interpreter acts as a text filter
that will try to match each line of the user input file with any of the input statements that
have been defined in the language database. The expression 'at least' in rule (2) is used to
state that apart from the words and numbers that form the actual input statement there may
be other words and numbers on that line, without causing errors (i.e. without interfering with
the filter). Rule (3) reduces the restrictions even further, by not imposing a particular order
for the words and numbers within the input line. The only restriction to the order of data on
the input line relates to input statements that involve, for instance, two or more integer
numbers as data arguments. In such cases the two left most integer numbers on the line will
be interpreted as the required input data. If less than two integer numbers are found the

statement is incomplete, and will therefore be ignored as a comment line.

The three types of data arguments that can be offered as input to the program are integer
numbers, real numbers (internally always treated as double precision reals) and character
strings. Logical data can be entered into the program through implication by keywords,
without requiring data arguments. As an example, we could have complementary statements
'USE ALTIMETRY' and 'IGNORE ALTIMETRY", that might be defined to set a variable

somewhere in the code for using altimetery data or not.

The classification of data arguments as integers, real numbers or character strings is not as
strict in Faust as in most computer languages. The general rule is : what makes sense to the
user will make sense to the language interface. This means that weak datatypes may always

replace stronger datatypes, with integers being the weakest and character strings the strongest

211

datatype. If, for instance, a statement requires two real numbers but only one real number
and an integer are found on the input line, it will be assumed that the integer is in fact a real
number. If a character string is expected - for instance a station identifier like "'YARAG' - but

the user has chosen to identify a station by a number - like '7090' - then this number will be

taken for a character string rather than an integer number.

A statement definition in the language database consists of four parts. First, it has a unique
identifier number that is used for internal processing, and is therefore mainly of interest to
programmers. Then, the definition contains two keywords that together form the basic
recognisable statement. In order to indicate how many data arguments should ar least
accompany this statement, three numbers are specified, namely the amount of required
integer numbers, real numbers and character strings. The fourth part of the statement
definition consists of three processing flags that will be introduced in the next Section. The

statement definition therefore follows the template

ID_number Keyword_1 Keyword 2 nl nR nC flag_1 flag_2 flag_3

(C.1)
in which nl, nR and nC are the expected amounts of integer arguments, real arguments and
character strings respectively. To the user of Faust only the two keywords and the required
arguments are of importance; the other elements of the statement definition are internal to the

program and used to assist the correct interpretation of the statement.

The practical application of the defined user language is best illustrated with an example.

EXAMPLE C.1 In the input we want to specify a time interval during which all tracking
data should be ignored. This could be useful in case of an unmodelled
attitude control manoeuvre that temporarily causes errors in the centre-of-

mass correction for calculated observations.

In the language database we might now add a definition like

1234 DATA IGNORE, 020, 000

1]

| (C2)
Unique identifier number Required integers, reals, strings

Pair of keywords Processing flags

This means that if anywhere within a single input line the words 'data’ and 'ignore' are

212

detected, as well as two numbers, the line will be recognised by the language interpreter as
the statement with internal number 234. In the actual input file for Faust the user could now

include - among numerous other possibilities - any of the following text lines :

(@) DATA IGNORE 4.988600D+05 4.988625D+05

(b) 49886 49886.25 Ignore data

(©) IGNORE all DATA from 49886.00 to 49886.25

(d) If there is any tracking data between MJD 49886 and MID 49886.25,

ignore it, because of the unmodelled attitude manoeuvre in that interval.

Example (a) is a literal implementation of the statement definition, namely the two keywords
followed by the two required (real) numbers. This basic format closely resembles normal
computer code. Although it is perfectly valid to use elementary input lines like this, such
practice does not exploit the full capabilities of the language interface. Example (b) shows
that the order of the keywords is irrelevant, that the input scanner is case-insensitive, and also

that an integer may be used even if a real number is expected by the statement.

Example (c) shows that the additional character arguments 'all', ‘from’, and 'to’ will have no
effect at all upon the interpretation of the statement. The addition of such natural language is
in fact strongly recommended in order to make input files understandable for other users, or
to ensure that six months after running a certain process the input file can still be understood.
This principle of adding extra information is illustrated in a rather more imaginative way in
example (d), which shows that the input scanner of Faust can indeed be considered as a
natural language interpreter. The first line of (d) contains the actual input, namely the two
keywords 'data’ and 'ignore', as well as the two expected numbers. The second line is only of
interest to the user, and the language module will discard it as a comment line without

causing errors of any kind.

Some final remarks should be added here with regard to the language interpretation by Faust.

#1 The language scanner routine will always produce a report file - called input.scan - in

the active working directory from which Faust was started. This file contains a copy of

#3

#4

#5

213

the entire user input, while for each line is indicated how it has been interpreted by the
program. The latter is done by means of the unique statement identifier number (if a
recognisable statement was found on that line) or by short self-explanatory comments,
like 'missing data’, ‘comment line', 'no keywords', etcetera. In case of doubt about how
the scanner has interpreted the input, this report file should always be the first subject
of investigation : Faust does not prescribe a particular syntax, which implies that it is

also unfamiliar with the concept of syntax error.

Note that within an input line, words may be separated by (any number of) spaces or
commas. The comma after the second timetag in example (d) above will therefore not
cause problems : it is not considered part of the character sequence 49886.25 that
represents the actual data argument. If only spaces could be used as separators, the
sequence 49886.25, is a character string rather than a real number, because of the
comma at the end. In that case the statement would be discarded (with a 'missing data’
message in the file input.scan), which is in disagreement with the most natural

interpretation of the statement.

It is possible to explicitly mark an input line as a comment line by starting the line
with an asterisk "*. This is useful if a comment line happens to contain a pair of
keywords that may be recognised by the language processor, and then might lead to
unexpected behavior of the program. It is most often used to exclude certain statements
from an input file for later runs, using slightly different settings of certain flags or

numbers. Only lines that do not start with an asterisk are actually scanned by the input

processor routine.

To make life even easier for the user, the language scanner has a 'memory' feature that
allows abbreviation of input statements. If the scanner only detects one existing
keyword within an input line, it will attempt to construct valid input by combining this
keyword with either of the two words of the most recently accepted statement. This
means that if two similar statements follow each other (for instance to define a list of
many different station weights) one of the two keywords may be left out to save some

typing. Examples of this principle can be found in the final Section of this Appendix.

It should be noted that the language interpreter module will comfortably accept any

input that agrees with a statement definition, regardless of the inherent logic in the data

214

arguments, and unaware of the fact that the given data may not be realistic. It would
for instance accept the statement in Example C.1 even if the first number is greater
than the second, or if an impossible MJD value of -3.1415 was given. The language
scanner has no further tasks than to filter the user input for statements that match any
of the definitions in the datatbase, and offer it to the main program in the correct
pigeonholes.. Further in this Appendix it will be explained how input that is accepted

by the language interpretation module is processed internally, and tested for coherence

and validity.

C.4 The processing flags

Before moving to the programmatic aspects of the language filtering process, some remarks

will be made in relation to the data contents of an input file.

For a multi-satellite / multi-arc program, three main categories of input variables can be
distinguished. Some input will be related to a single arc within the solution, like the epochs
for start and end of that arc. Other data will be related to a specific satellite, while more than
one arc for this satellite may be present in the solution process. Finally there will be global
data that affects all arcs and satellites, like an upper limit to the amount of iterations in the
least-squares process. The total amount of different satellites will usually be small, and
therefore only a distinction between two categories is used in Faust, namely between 'global'
and 'local’ data (local meaning that it is related to a single arc only). The category of satellite

dependent data is in most cases treated as global data, as the solution process may involve

many arcs for the same satellite.

An important aspect of this classification, in relation to the organisation of the user input, is
that global input statements may be placed anywhere within the input, but local statements
will somehow have to be attached to a specific arc. To do this, local statements are grouped
in text blocks that relate to a single arc only, so that at any time the language processor
knows to which block the data belongs. Within the language database the first processing
flag of (C.1) is used to indicate if the statement, when found in the input, is attached to the
active local block (if the flag is 0) or if it is a global statement (if the flag is set to 1). In

addition, a special input statement is used, aimed at the language filter routine rather than at

215

the main program. This special statement will tell the language scanner to start a new block
of local statements. Any local statement found from that point will be related to the most

recently started local block (how such special statements are implemented in the language

scanner will be described further below).

Some input statements will be required for every run of Faust, while other input is only
needed for specific applications. Already at the level of the language scanner, the user input
can be checked for the required presence of all compulsary input. If one or more of these
statements are missing there is no point in continuing the current process, and the language
scanner can stop programme execution with one or more error messages. Because the only
action of the language processor is filtering of the user input according to the statement
definitions in the database, it will be necessary to indicate in the database if a statement is
compulsary or optional. This is done by means of the second processing flag in (C.1), which
will normally be 0 (for optional statements) but may be set to 1 to indicate a compulsary

statement. Each statement for which this flag is set to 1 should be present at least once in the
user input.

A further data classification exists between input statements that specify a single data item
(like a value for the speed of light, or the name of the report file for the programme of which
there will be just one within a given process) and input statements that may be repeated
many times within the input (like statements to specify the a priori standard deviations for
different ground stations). The data of the first type will be called scalar data, that of the
second type will be referred to as list data. In analogy, corresponding input statements will be
called scalar statements and list statements respectively. It will be obvious that a list
statement requires in general at least two data arguments, namely the actual data value that
we want to enter into the programme, and in addition an index number or other form of
identification in order to specify which element of the list is intended. Although the
classification in scalar data and list data relates to a different internal treatment of the input,
at the level of language recognition no special action is needed. In the language database are
therefore no flags to specify 'scalar' or 'list, and the way in which this distinction is

implemented in Faust will be explained in following Sections.

The third processing flag in the statement definition (C.1) is used to indicate special
statements that require other than the standard response from the language filter. Several

special statements (i.e. different values for the third processing flag) are implemented in the

216

language scanner. The values that are supported at present will be shortly described here; in

the future, additional values may be implemented. It is suggested to document such changes

in the header of the language database file, where also several other comments have been

included. Note that this flag should only be used to control the language filtering process

from Figure C.1; any other input (aimed at the main programme) should be treated as a

normal input data statement.

flag 3=1

flag 3=2

flag 3=3

flag 3=4

This statement forms the group separator statement described above, used to start
a new block for local statements. At present only one group separator statement
is defined in the language database of Faust, to start the block with input

statements for a particular arc within the solution.

It has been mentioned that more than one input file can be offered to the
program, but it was not explained how this is done. The language scanner will
have to know that the current input file is followed by another, so a special
statement is used to define a filename for continuation of the user input. If a
statement with a processing flag 2 is defined, the language scanner will
interprete the first character string argument in the corresponding input line as
the name of the chained input file. In this second file, the same statement can of
course be used again, so that many different input files may be chained together.

They will be processed as if all files were just one consecutive text file.

Some statements may require input character strings that actually contain spaces
or commas (for instance a process title), i.e. characters that would normally be
used to separate two different elements within the input line. If the third
processing flag is set to 3, the statement will be treated by the language
processor in a special way, namely as if all words and numbers present on the

input line (after the second keyword) form one consecutive character string.

A program like Faust is modified on a regular basis, and not only is it possible
that new statements are added to the program, but occasionally it may also
happen that an existing statement becomes superfluous and will no longer be
supported by the main programme. In following Sections it will become clear
that it is ill-advised to remove existing statement definitions from the language

database, though it is always possible to add new language elements. To indicate

217

that certain statements from the language database are no longer used, the third
processing flag can be set to 4, which will cause the language scanner to treat
this statement as a comment line and ignore it. Old input files that contain this

statement will still be usable, although the statement has lost its meaning.

C.5 Input buffers and pointer structures

This section will move deeper into the numerical structures of the language processor by
explaining how the data is actually read from a valid input statement and then stored
internally. The central concept of the user language is that the input file is not forced into a
particular format and that input statements may be placed in arbitrary order, with the weak
exception of local statements that are always related to the most recently declared local
block. In general, neither the precise amount of data nor the order in which it is specified in
the user input is known in advance. Within the code however, the many variables and arrays
that may be influenced by user input have a fixed internal organisation. The task of the
language interpreter is to transform the free format input data into strictly predetermined data
structures. Because it would be inefficient to scan the user input for each input variable
explicitly, the transfer from data from the user input file into program variables in working
memory is done in the two stages illustrated in Figure C.1. These stages will now be

explained in more detail than was done above.

STAGE 1 : LANGUAGE FILTERING

The first action of the language interface is to read the entire language database into RAM
memory, by means of a subroutine called readwords.f. The language scanner routine
scaninput.f will then read each line of the user input, and try to match this line with any of

the defined input statements. For each recognised line of input, the language scanner

determines the following numbers :

(1) The unique identification number for the statement on that line.

(2) The block number of local statements to which this statement is related. The
block separator statement described in the previous Section does nothing else

than increasing the block number counter variable by one. For global statements,

218

this block identification number has no meaning at all.

(3) Each encountered input data argument is stored in the first available position of
the relevant input data buffer array (i.e. in one of three available arrays, for
integers, real numbers or character strings). The language scanner will attach
three numbers to the statement identification that provide the location of any

encountered data arguments within the three buffer arrays.

(4) Three numbers that provide the amount of integers, real numbers and character
string arguments found on the input line, hence the amount of places occupied in
the input buffers. Together with the indices from (3) all input data arguments
can now be connected with a particular statement, even if more than one integer

number, real number or character string was found in the input.

The combination of (3) and (4) forms a pointer structure similar to the

mapping arrays introduced for the parameters and partials in Section 2.6.
The output produced by the language scanning stage consists therefore of

(a) the three input buffer arrays

(b) eight identification numbers for each line of user input

Note that these buffers are still organised in the order of the user input file. However, the

natural language elements have now been entirely eliminated from the interpretation process.

STAGE 2 : DATA ORGANISATION

The data that is stored in the input buffers will now be organised into a structure that can be
used by the main program. This corresponds to filling the 'pigeonholes' of Figure C.1, after
which the main program will be able to find individual input variables by looking in the
appropriate pigeonhole. Scalar data will be organised in pigeonholes for scalar data, while

list data is put in 'three-dimensional pigeonholes' that allow for entire arrays to be stored.

Hardcoded within Faust are two arrays with statement numbers. One array contains the

219

statement numbers for all scalar statements, the other provides the statement numbers for all
list statements. For each recognised input statement, the programme will search both these
hardcoded arrays until it has found the corresponding statement identification number. A
statement number can only appear in one of the two arrays, so by locating the appropriate
identification number in one of the two internal arrays the programme also determines if the
statement in question is a scalar statement or a list statement. In addition, the index n o of
the hardcoded array at which the statement number is found is established. This index
corresponds to the 'number of the pigeonhole' in which the data should be stored. The two
hardcoded arrays are therefore nothing else than maps of the two pigeonholes, passed to the
language module by the main program. For list data, the 'pigeonhole’ is in fact an array of
arrays. The total length of an input list is limited by the constant size of each of these buffer
arrays, but can be modified by means of a FORTRAN parameter statement in the main
programme (by means of a parameter called MAXLIST).

This second stage is encorporated in a subroutines named 'GetPointers.f. As the name
suggests, the input data is not actually copied from the three input buffer arrays into another
part of memory, but the 'pigeonholes' are filled with the location of the relevant data within
any of the three input buffers. The 'pigeonholes’ form a collection of pointer variables in an

unambiguous order, and the routine GetPointers.f assigns the appropriate locations to these

pointers.

As soon as all user input has been organised into the 'pigeonhole’ structure, the task of the
language interpretation module ends. However, these pigeonholes are still only a collection of
arrays with meaningless internal names, like iBuffer, dBuffer and cBuffer. Within the
programme, it would be most awkward to employ variables like iBuffer(24), dBuffer(162) or
cBuffer(724) instead of more sensible names like ‘nStation’, 'tStart' or 'ProcessTitle'. The
language interpretation routines are therefore followed by a routine called 'progvar.f that
will transfer individual input variables from their position in the abstract input buffers into
programme variables that have more meaningful names. Although this may seem slightly
inefficient from a memory management point of view, it is a small price to pay for the
flexibility that is offered by the natural language interface itself. The overall memory

requirements of the programme will usually be dominated by the size of the normal matrix,

in comparison to which the input buffers are very small.

This discussion of the input buffer structure is inevitably rather abstract. To make it easier to

220

understand the interaction of the various parts of the language interpretation system,
Appendix E includes a step-by-step description of how to add a new input statement to the
program. It can also be useful to inspect the actual code of the routines ReadWords.f,
Scanlnput.f, GetPointers.f and ProgVar.f, for instance by following the path of an individual

input line through the entire langauge interface.

221

A user guide to Faust Appendix D

Throughout the period of development and operational application of Faust, a substantial
amount of practical experience has been accumulated. In order not to lose this experience for
future users of the code, this Appendix will summarize a variety of practical instructions for

new users of Faust. In particular the following applications of the program will be described :

D.1 Creating observations files with Wagner

D.2 Orbit computation from scratch : ERS

D.3 Orbit computation from scratch : TOPEX/Poseidon
D.4 Troubleshooting for anomalous orbits

D.5 Combining single-arc solutions into multi-arc runs

D.6 Constructing multi-run solutions

D.1 Creating observation files with Wagner

Wagner is used to create an observations file that can be used by Faust. To be able to run the

program, we need the following :

(1) The executable file wagner
It is recommended to use a symbolic link to a central executable file, in order to
ensure that upgrades or extensions of the program are adopted automatically.
(2) The language file wagner.statements
Again, it is best to use a link rather than to copy the actual file.
(3) The file wagner.inp
This file contains the user input and will therefore be a physical file in the
directory from where wagner will be run.

(4) Various tracking data files

The input statements that can be used in wagner.inp are documented by means of comments

222

in the language file wagner.statements (which is a normal text file). New users are referred
to this file in order to find out what wagner can and can not do. An example input file is

given below. For normal cases, we define in wagner.inp :

(a) The name for the output observations file, and for the associated report file that
contains a survey of the data in the output.

(b) An input 'block' for each input data file from which observations have to be
included. Usually, each block only consists of the 'data block' statement and a
statements that defines name and datatype of the input file.

(c¢) Start and end epoch of the period for which an observation file is wanted. If

these are not defined, the entire raw data input file will be used.

Once that the input file has been set up for the application of interest, Wagner can be run
from the command prompt. It will print several messages to the screen, and in the unlikely
case of an unrecoverable error it will stop with an error message. If, for any reason, the
normal execution of Wagner is interrupted, it is best to delete all produced temporary files

before a next run. Temporary files created by Wagner are files of the form INTERIM.nnn

or scratch.n, in which n are digits 0 - 9.

D.2 Orbit computation from scratch : ERS

To start a precise orbit determination process with Faust, we need

(1) The executable faust
As with wagner, it is best to use a symbolic link to a central executable rather
than an actual copy of the file.

(2) The language file faust.statements
A link to the centrally maintained language database file.

(3) The input file faust.inp
By convention, this file only contains those input statements that will hardly ever
change, like file names for satellite models, the gravity field, etc. In addition,
faust.inp contains a 'next file' statements, that will connect a job-specific input

file to the input of faust. By having several of these 'mext file' statements, we

223

can switch between different processes by un-commenting a particular input file.
(4) A setof a priori parameters

The only parameters that are really required to start an orbit determination

process are the initial position and velocity of the satellite at the time of epoch.

In general, these are obtained by producing an output state vector at the end of a

previous arc (see faust.statements for the input command that will do this). All

orbit parameters are defined in the input files by means of statements like

‘estimate ...", 'fix ...' etcetera. See the example input file below.

It is assumed that we start a new ERS arc from scratch, i.e. apart from approximate values
for the initial position and velocity at epoch we do not have any further a priori parameter
values. Depending on the available amounts of tracking data, we will want to solve for
several drag scale parameters - typically 4 per day -, empirical once-per-revolution
accelerations - typically one set of four parameters for a five-day arc - and possibly a scale
factor for solar radiation pressure. As no accurate values for these parameters are available,
we can only choose nominal standard values (i.e. all scale factors are nominally 1, all once-

per-revolution accelerations are nominally 0).

The only observations available at this point are the land-based tracking data types SLR and
possibly PRARE for ERS-2 : radar altimetry is not used for the orbit determination process,
and crossover locations can only be computed affer an initial orbit has been converged. In
general only SLR is used for the initial orbit determination, while PRARE (for which we
have to solve a large amount of arc-dependent parameters) can be added once that reasonably

accurate orbital parameters have been found. The remainder of this Section is concerned with

the computation of an SLR-only orbit for ERS-1.

If all SLR data would be accurate and reliable the orbit determination process would be fully
automatic. Unfortunately, practically each orbit arc will contain one or more passes - or
sometimes just an individual observation - that are hopelessly inaccurate. The least squares
process will be indiscriminate to such incorrect measurements, and even a single bad
measurement may prevent convergence to centimetre level, especially for ERS-1 for which
global coverage by SLR tracking is poor. The problem of ERS orbit determination is
therefore usually equivalent to removing the bad SLR observations from the available

dataset., after which the orbit solution will converge very quickly.

224

A reasonably fool-proof method of doing this is described in the following steps. If these

steps do not have the desired success, Section D.4 will contain a list of trouble-shooting tips.

(a) Run a single process iteration with faust, creating an output ephemeris file as
described in Chapter 3. In this first iteration, all SLR data is included and
Bayesian constraints are weak (or are not used at all), in order to allow the
parameters to move freely. Do not apply any rejection mechanism, and set the
level of 'absurd residuals' to a very high value (1.D6 or larger).

(b) Inspect the produced residuals file to detect observations that are obviously
wrong. In general, this is not easy because in this first iteration all residuals will
be large. If bad observations are found, these can be excluded from successive
runs by means of input statements like 'ignore pass ...", 'ignore station", etc.

(c) Inspect the computed parameter corrections and new parameter values. Bad data
will produce unrealistic parameter corrections, like negative drag scale factors or
large empirical accelerations. In combination with (b), it is usually possible to
identify the pass that is responsible for such behavior.

(d) Rerun faust with the same a priori parameters as before but now using the
previously generated ephemeris file as input ephemeris. Set the upper limit to the
amount of iterations to 2 or more, so that after the first - fast - iteration the

process will continue by integrating through a second iteration.

The first iteration will now be very fast, and as soon as the second process iteration starts it
is usually obvious whether the process is working correctly or not. If the residuals in the
second iteration are still high (several metres), it may be necessary to repeat (b) and (¢).
The advantage of using the input ephemeris file is that we can repeat the steps (b) to (d)
several times without the need to re-integrate the orbit, which would take much more time.
Nominally, the iteration process will immediately converge to residuals at centimeter level in
the second iteration. If this is not the case, and no obviously incorrect observations can be

detected, it is recommended to try one or more of the options from Appendix D.5.

Once that the parameter estimation process is working satisfactory, we can run two or three
automatic iterations, applying a window rejection level of about 20 cm. Convergence will be
reached when the parameter corrections become very small or when the RMS of residuals
hardly decreases from one iteration to the next. Faust can detect these convergence criteria

automatically, but in general we will define a fixed number of iterations in the input.

225

D.3 Orbit determination from scratch : TOPEX/Poseidon

For TOPEX/Poseidon, the global coverage by SLR data is much better than for ERS-1, while
its sensitivity to atmospheric drag variability is much less important. This implies that in
most cases the orbit determination process for TOPEX/Poseidon is more straightforward than

for ERS, especially as we can use the additional large amounts of DORIS doppler data.

The quickest way to determine a precise orbit for TOPEX/Poseidon is to compute an SLR-
only orbit (in the way described in Section D.2 for ERS-1) and not include the DORIS data
before the SLR residuals have been reduced to a level below 10 centimetres. This is done to
avoid substantial absorption of orbit errors in the pairs of pass-dependent parameters for the

DORIS data, which would slow down the convergence process.

Once that reasonably accurate orbital parameters are available from SLR only (note that for
TOPEX it is not unusual to have negative drag scale factors, as these parameters tend to
behave as empirical along track accelerations), a next iteration can be run using the
'autoDORIS' option from Faust (see faust.statements for a description of the related input
statements). This feature will scan the input observations file to count the amount of DORIS
passes, then create the pairs of pass-dependent parameters and initialise them with default
zero values. After matrix inversion, a file with DORIS parameters will be produced (there are
too many of these parameters to include them in normal parameter input statements) that can
be used in successive iterations by using the 'fileDORIS' options of Faust. In general, we
only need two iterations to fully converge the pass-dependent parameters for DORIS data and
simultaneously adjust the orbital parameters to fit to the doppler data. In later runs of Faust,
we can then use a 'freeze DORISparam' statement, which tells the program not to solve for

the pass-dependent parameters anymore but keep them fixed at the input values.

D.4 Trouble shooting

With unfortunate regularity, processes appear that do not follow the nominal straightforward
convergence scheme. Symptoms of bad behavior may be : insufficient reduction of residuals
after one or more iterations; unrealistic parameter values; large correlations between

parameters; parameters that do not converge but keep sliding from one iteration to another.

226

The list below forms a collection of tricks that may help to analyse and solve the problem.

(1) Use a minimum dataset

If it is suspected that a particular arc contains one or more bad passes, but it is not clear
which stations are the culprits, it is usually possible to converge the orbit in a certain 'safety
mode'. This method implies that we exclude all observations, apart from data from a handful
of strategically located stations that hardly ever produce bad measurements. This is done by
using statements like 'ignore station 1953' etc, for all stations apart from the trusted ones.
Note that it may be necessary to reduce the amount of parameters solved for, accordingly.
The following classification of SLR stations has risen from substantial practical experience :

- Very reliable SLR subset : 7840, 7090, 7210, 7403

- Notoriously unreliable SLR stations : 7843, 8834, 1953, 7530

In addition, certain stations (e.g. 7080, 7109) regularly produce a perfect pass that ends with
a single incredibly wrong measurement, which may be hard to detect in a first iteration. In
'safety mode' we only use the four very reliable stations, which should at least provide a
useful initial state vector, and daily drag parameters. Once that this has worked we can add
the other SLR data and solve for more parameters (once-per-revolution accelerations, etc.).
Bad passes will now show up almost immediately, after which they can be excluded from

further iteration by means of statements like ‘ignore pass 14', or 'ignore station 7530'.

(2) Change the parametrization

Poor convergence may be a result of poor tracking data coverage, i.e. we try to solve for too
many parameters (in particular too many drag scale factors or empirical accelerations).
Because the empirical accelerations only serve to fine-tune the orbit model, it is often a good
idea to solve just for the initial state vector and a modest amount of drag scale factors (daily
or two-daily). Once that these parameters have converged to an acceptable level, we may add
more parameters, avoiding divergence by means of adequate constraints (i.e. small sigmas).
In extreme cases, we could solve for the initial position only in a first process, add two drag
parameters in a successive process, then gradually increase the amount of drag parameters in

further runs. This approach is fairly time-consuming but is almost guaranteed to work.

(3) Shift the starting epoch
It sometimes happens that the initial position and velocity do not converge very well because
of awkward data distribution, or poor data coverage, at the start of the arc. By using 'data

vector' statements in the same arc, we can choose a later epoch as the starting time of the arc

227

(accepting a gap with respect to the previous arc). Alternatively, we can obtain an earlier

epoch by using the same 'data vector' statement in a solution process for the preceding arc.

(4) Vary the constraints

In the case of a well-defined orbit solution (with plenty of reliable data) we do not need
strong constraints on the parameters, i.e. we define no sigmas at all, or sigmas of at least
twenty percent or so of the parameter value itself. If bad behavior of the solution process is
observed from unrealistic parameter solutions (e.g. a negative drag scale factors for ERS-1),
the pass responsible for this problem can often be identified if the drag parameters around the
suspected problem are severely constrained, by means of small sigmas. This will still allow
most of the remaining orbit arc to converge normally. Once that the bad data has been
identified and eliminated, the strong constraints can be removed to allow for normal
convergence. Note that this method does not work very well if the trouble area is close to the

start of the arc, as the occurring errors will propagate through the integration process.

(5) Use altimetry data

This is a more drastic measure that should only be applied as a last resort. Unexpected
behavior of an SLR-only orbit is usually due to poor data coverage. Even if the orbit does
not converge to RMS levels below one or two metres, we can still use it to compute the
crossover locations. Adding these crossovers may then help to obtain a better orbit fit and to
identify the bad data. In extreme cases, we could even use the altimetry data itself for orbit
determination. Such practice should preferably be followed by a re-run without the altimetry,
once that fairly accurate orbital parameters are available. This re-run - with adequately

constrained parameters - will help to decorrelate the orbital solution from possible

geophysical signals in the altimetry data.

D.5 Combining single-arc solutions into a multi-arc run

In theory, it should not make any difference if a set of orbital parameters for a certain arc is
solved from a single arc solution or from a multi-arc solution. In practice, however, two
problems occur that will result in slight offsets between the two cases. The first problem is
related to finite machine precision and in particular to the internal clock of the numerical

integration process. In principle the internal time can be obtained in two ways, namely by

228

addition and by multiplication :

k

- addition : t, = t,* E h (D.1)
i=1

- multiplication : ¢, = ¢, + k.h (D.2)

The integration step / is typically 30 seconds (3.47 *10*days) while the time #, is needed
in UTC, i.e. as a count of Mean Julian Days that involves numbers of the order 10*. The
large differences in order of magnitude implies that even in 8-byte arythmethic the effect of
accumulative round-off errors in the internal clock t, becomes observable after an integration
time of several days. In this respect, it should be noted that it hardly matters if we use the
additive time (D.1) or the multiplied time (D.2), although the latter construction appeared to
perform slightly better. This error is an error in £, but it will internally appear as an error in

all observation timetags UTC because the clock time ¢, is assumed to be the standard.

The effects of internal clock inaccuracies are normally absorbed by means of a minute along-
track shift of the initial state vector. However, this very small offset (in the order of several
centimetres or less) will depend on the initial epoch #, of the internal clock, which is
changed if we combine several consecutive arcs into a new multi-arc parameter estimation
process. The earliest arc within the multi-arc process will provide the multi-arc clock epoch
fy» and this earliest arc will therefore not notice any difference in its internal clock errors.
Any later arc, however, will experience slightly different internal clock round-off errors than
in its single-arc solution, which appears as a small along-track 'error' in the initial state vector

of the multi-arc run. The integration process will gradually amplify this error in the initial

values, causing the orbit to diverge from its previous good fit to the data.

The obvious solution to this problem is to run a first multi-arc process in which we only
solve for the initial state vectors of the second and any later arc, while keeping all other
parameters fixed. The time-tag bias of the internal clock is then easily absorbed by means of

small along-track adjustments of the initial positions, of all arcs but the first.

The second problem, also related to the internal clock, is that Faust inevitably phases the
integration steps of arcs that are integrated in parallel (see Chapter 3). If we compute a 35-
day multi-arc solution for ERS-1 and then add four parallel TOPEX/Poseidon arcs to the
solution process, the step boundaries of the parallel arcs of ERS and TOPEX will be

229

determined by the same internal clock #,. In a multi-arc process for a single satellite (e.g.
ERS-1) it may happen that there is a small gap between consecutive arcs, for instance if a
manoeuvre occurs at that point. Such a gap will normally result in an interruption of the
internal clock f,, because the event handling sequence of Faust will simply jump to the start
of the next arc and begin a new integration process for that arc. However, as soon as we
introduce a parallel arc (e.g. for TOPEX) the internal clock is not interrupted at the gap
between consecutive arcs because the integration of the parallel orbit will have to continue.
The result is once again a difference in the internal clock round-off errors, appearing as an

along-track offset of the initial position for the second ERS-1 arc, relative to the earlier
solution (see Figure D.1).

ERS-1
End of arc 1 Start of arc 2

fr—T1—T & = D 4—p A

TOPEX/Poseidon

Ir~——T—T 71717 717 T T/

Figure D.1 Adoption of the internal clock error via parallel arcs. The TOPEX arc will have
the same internal clock error as arc 1 of ERS-1, with which it is in phase. This error is
subsequently adopted by arc 2, when it is phased with the step boundaries of the continuing
TOPEX arc. If no parallel TOPEX arc would be included in the solution, the internal clock
error of arc 2 is independent of that of arc 1 and the two will therefore be different.

To tackle these problems, Faust allows for the possibility to define a reference timetag in
the user input, which corresponds to the clock epoch f, in (D.1) and (D.2). We can then
define the same reference timetag for all separate single-arc solutions that will later be used
in a multi-arc run, and their internal clocks will always use the same starting epoch. The

obtained parameters can subsequently be inserted directly in a multi-arc process.

In addition to the clock round-off errors, other - less relevant - differences occur between

single-arc runs and multi-arc processes that are constructed from earlier single arc jobs :

230

(1) The reference epoch for tectonic plate motion will normally be the centre of the
solution period. Because the solution period of a single arc run differs from that
of a multi-arc run, minute differences between station coordinates may occur for

long multi-arc processes or for 'fast' stations.

(2) To efficiently evaluate planetary ephemerides and precession and nutation of the
Earth, time series are used for each of the coefficients of the various rotation
matrices. The coefficients of these internal time series are obtained via
Tchebychev polynomials through tabulated coefficients of other time series.
Because the reference epochs for single arc runs and multi-arc runs differ, very

small differences may occur in the coefficients of these time series.

(3) Tabulated values for the F10.7 solar radiation intensity are evaluated by means
of a moving average over two solar cycles at the start of the program. The
internal table that is the result of this evaluation may differ marginally for
single-arc solutions and later multi-arc solutions, in case of extreem solar activity

just outside the time frame covered in the single arc solution, but inside that of

the multi-arc case.

None of these effects have ever seemed to cause problems, although their presence has been

identified. The resulting differences are usually too small to be observed within the a priori

noise bands of the tracking data sets.

D.6 Constructing multi-run solutions

The gravity field solution discussed in Chapter 8 is an example of a least squares process that
is constructed by recombining normal matrices that have been produced by earlier smaller
processes, as described in Chapter 2. In general, this is necessary if a process either requires
a very large normal matrix and / or involves a very large amount of observations. In both
cases the load on the computer network would seriously interfere with normal daily activities,

for which reason the process will have to be split into more manageble jobs that can be run
overnight or during the weekend.

231

A multi-run process consists of a number of preparatory jobs that each generate parts of the
ultimate normal matrix, and one final job that will read back all previously generated
matrices, invert the overall matrix, and compute the parameter corrections. As mentioned in
Chapter 2, each submatrix will be stored in its separate file, and these (very many) files form
the individual building blocks for any multi-run process that we might want to construct later

on. The names of these - automatically generated - files follow the format
[projectID 1.[ArcID1]-[ParamID1].[ArcID2]-[ParamID2].[Version ID]

The two ArcID numbers identify the two arcs to which this submatrix is related, the two
ParamID numbers specify the two involved parameter types. Global parameters (i.e.

parameters that are shared by all arcs) employ the generic arcID number 9999, which should

therefore be avoided as a user-specified arcID number.

Apart from these normal matrix files, the preparatory jobs will create smaller files that
contain the a priori parameter values that were used in the single runs, as well as various

other internal parameter description variables.

To convert a normal job of Faust into a preparatory job for a multi-run porocess, all that
needs to be added to the input file is the statement 'data ProjectID [MyProject], and an
identifier number for each included arc by means of a statement 'data ArcID
[MyArcNumber]' within the data block for that arc. These numbers can be anything between
0 and 9998, and need not be consecutive as long as they are unique. As soon as a project ID
is defined Faust will automatically produce the normal matrix files on disk, rather than
inverting the normal matrix in the usual way. Because these files are written to the working
directory from which Faust was started, it makes sense to run each separate preparatory job

in its own subdirectory in order to avoid excessive amounts of files in one single directory.

The actual multi-run process to combine and invert the matrices uses exactly the same input
as the preparatory jobs (these files may therefore be chained by means of 'mext file
[MyNextFile]' statements). In addition, the multirun flag needs to be toggled by means of the
statement 'multirun on'. All parameter definition files - not the matrix files - should be

present in the working directory from where the multirun process is started.

Because it would be impractical to copy all matrix files to a single directory for the multi-run

232

job, Faust uses an index file of the normal matrices in the form of a text file that is declared
in the input via the statement 'multirun file [MyFilelist]'. It is the responsibility of the user
to create this list correctly, which is easily done by piping directory listings into text files
(like : Is -1 > MyList) for each of the working directories used, and then combine & edit
these files into a single text file. The reason for using this method is that it offers an extra
way of controlling which of the earlier generated matrices will be included in the multi-run
process : any line of the index file starting with an asterisk will be taken for a comment line
and ignored. Note that ONLY the matrix files that are present in the index file will be

included, regardless of the parameters that are defined in the user input.

If mismatches are detected between the user input, the parameter definition files, and / or the
normal matrix files, a corresponding error message will be written to the report file and the
related parameters will not be included in the solution process. It is however very difficult to
make the multi-run process crash, as it has been written in a very robust way. Few things are

more frustrating than not being able to invert a normal matrix that has been accumulated

during many months of large overnight processes.

233

A programmers' guide to Faust Appendix E

Only after sufficiently long practical experience with the code will a new programmer be
able to know immediately which subroutines, arrays and variables are affected by - for
instance - the implementation of a new tracking data type or parameter type. In order not to
lose existing experience with the program, this Appendix contains a variety of 'How To ..."
receipes that provide step by step instructions to the programming tasks that are most likely

to occur in practice. The discussed subjects are :

E.1 Adding a new subroutine to Faust

E.2 Adding a new input statement to the language database
E.3 Implementation of a new parameter type in Faust

E.4 Implementation of a new tracking data type

E.5 Implementation of a new satellite

E.6 Implementation of a new event in the event handler loop

E.7 Tuning array sizes for specific tasks

It is recommended to read and understand each Section before attempting to actually modify
the code. Please refer to Appendix B for navigating through different parts of the program. In

addition to the instructions of this Appendix, most parts of the code contain a variety of

comment lines to assist in future modifications.

E.1 Adding a new subroutine to Faust

Obviously, this description only covers the programming technicalities for adding a new
subroutine to the existing code. The contents and functionality of a new subroutine are

entirely dependent on the design of the programmer.

STEP 1 Study Appendix B.2 to understand the main programming conventions used.
STEP 2 Create a basic subroutine file in the source code directory of Faust : decide upon

a descriptive subroutine name, then copy an existing subroutine (a short one, like

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

234

thruster.f) to a file under the new name, with the extension .f of course. DO
NOT overwrite existing subroutines. Remove all code from your new file, apart
from the statements that relate to the CPU tracer (at the very beginning and the
very end of the code - see existing subroutine files).

Determine the internal index number of the subroutine. This is done by
inspection of the file subroutines.f. In principle you can select the first available
number, as these numbers have no other purpose than uniquely identifying the
elements of the array CPU, and of certain arrays in program getstruc (see
Appendix B). Add you new subroutine to the file subroutines.f, please maintain
alphabetical order.

Edit both CPU tracer statements in your new subroutine, in order to correspond
to the array index that you have just determined in subroutines.f.

Add your subroutine to the makefile. This is done by adding its name (without
the extension .f) to the existing list of routines in makefile. Again, please
maintain alphabetical order for practical reasons.

Write your subroutine in the new shell file, making sure that any variables that
are passed through the header have corresponding variables in the calling
statement. Insert a calling statement in the existing code where necessary.

Run make in the source code directory and fix possible compilation errors.

E.2 Adding a new input statement to the language database

Although this process may look complicated at first, it is in fact fairly straightforward and,

with some experience, can be done within five minutes. Note that the process is in principle

identical for faust and wagner, although names of individual arrays may differ slightly in the

two programs. The description below relates to faust.

STEP 1

STEP 2

Run program kwindex. If it asks for a statement file, type faust.statements, or
wagner.statements accordingly. The program kwindex will give you the index
number that should be used for your new input statement.

Create a new statement in the language database file, using the new index
number provided by kwindex. Please read Appendix C for understanding the

various elements of a statement definition. Try to maintain existing conventions

STEP 3
STEP 4

235

(in particular for estimate / consider / fix / sigma statements which should
always have four consecutive statement identification numbers - see existing
statements for examples).

Open the main program file faust.f in your text editor of choice.

In faust.f, find the table that documents the structure of the interface data (the
names of the 'pigeonholes’ from Appendix C). This 4-column table is located
somewhere towards the end of the long block of comment lines at the start of

faust.f, it starts with a line that describes 'Mapdat(i,j,k)".

The changes that you have to make to faust.f are different for scalar statements and list

statements. List data is repeatable input data, i.e. coming from input statements that may be

present many times in the input file. Make sure to understand the differences between scalar /

list statement and between local / global statements (see Appendix C). A statement is either

local or global, and at the same time either scalar or a list statement. Note that it IS possible

to ruin the existing interface structure by inappropriate manipulations of the arrays inx and
listinx (if you don't trust yourself to do everything right the first time, be sure to make a
safety copy of faust.f before changing anything).

SCALAR STATEMENTS

STEP 5

[STEP 6]

In step 2 you have defined how many integers, reals or character strings will be
passed to the program by your new input statement. To reserve 'pigeonholes’ for
these new input variables, you have to reserve elements of the appropriate
column(s) of the table, so that future programmers also know which elements of
the buffer arrays correspond to these input variables. If the columns are too
short, follow STEP 6 first. If there is still sufficient room for your new
variable(s), go to STEP 7 directly.

To increase the amount of 'pigeonholes’, increase parameter MaxInx with 5. In
addition, you will have to add 5 'empty' slots to the table in Faust. This is done
by adding 5 extra zeroes to the end of each of the four sub-arrays of array inx.
(the four sub-arrays correspond to data of type integer, double precision,
character string and logical). The array inx is defined in a data statement in

faust.f, and commented as '.. pointers for correct interpretation of input

236

statements ... Please identify and understand the four-part structure before
enlarging each of the four subarrays (by adding five zeroes : ',0 ,0 ,0 ,0 ,0).
Mistakes here will seriously affect the working of the language interface.

STEP 7 Update the elements of array inx that correspond to your new input data, by
replacing the zero values in the array with the identification number of your new
statement (as obtained in STEP 1). Array inx forms a 'map’ to the pigenoholes,
and contains the identification numbers of input statements from the file
faust.statements that fill a particular place of the pigeonhole. If you don't
understand the involved principles, try to trace one of the existing input
statements by using the table for MapDat (the table that you have changed in
step 5). You can now proceed to STEP 8 below.

LIST STATEMENTS

STEP 5 A list statements will normally have one integer argument and one real
argument. The integer is used to identify an element of the list (i.e. a station
number, a simple index number 1 ... N, a number to identify a measurement
type, etc.). The real number contains the actual list data. All list input is stored
into two arrays, ListID and dList respectively. The amount of different lists is
given by the parameter MaxList. The first thing that you have to do is therefore
to increase the number MaxList in the block(s) with parameter statements.
Note that if your new list input relates to a new parameter type you will have to

add four new lists, namely one for estimate, one for consider, one for fix and

one for sigma.
STEP 6 Make sure that future programmers will know that the newly created input lists
relate to your new statement. This is done by documenting your new list

variables in the header of faust.f, just below the table for MapDat(i,j,k) (see
STEP 5 of the SCALAR STATEMENTS above). From inspection of the existing

comment lines it will probably be clear how to document the new list

statement(s).
STEP 7 Add the identification number of your new list-statement(s) to the data array

listinx. This array is located in a data statement, close to the array inx that is
used for SCALAR STATEMENTS (see above).

The following steps are again identical for list input and scalar input :

237

STEP 8 Recompile faust by running make on the standard makefile for faust. In
principle, the language interface should now be able to correctly identify and
accept your new input statement. Test this, by putting your new statement
somewhere in the input and running the program (you can cancel it as soon as it
starts printing to the screen). Now, inspect the file input.scan to check if you
new statement has been marked with the correct statement identification number.

STEP9 Even though the language interface already accepts your new input data, the
program itself does not do anything with your data yet (unless you are adding a
new parameter statement - see Section E.3). However, in subroutine progvar.f
you can extract your new scalar data from the 'pigeonholes’, and new list data
from the arrays ListID and dList. The easiest way of learning how to do this, is

by inspection of the existing code of progvar.f : look for code like
MyVar = iBuffer (MapDat (i, j,k)) (E.1)

in which i = 1 for iBuffer, i = 2 for dBuffer, i = 3 for cBuffer, i = 4 for 1Buffer.
The j indicates the group to which this input variable relates (note that global
data will always use group 1). The k corresponds to the number of the
pigeonhole, i.e. the index of an element of array inx that contains the statement
number for this data element. If all of this sounds obscure, please try to follow
existing index numbers of MapDat and inx and try to match these with a

particular input statement of faust.statements.

The above discussion relates to normal, straightforward input variables and lists, which
includes practically everything from statements like 'gravity file [...].", 'station sigma [...]", and
so on. However, some specific statements can not be dealt with in this standard way, for
which reason additional manipulations of the input buffers take place in subroutine
GetMSdata. An Example of such ‘complicated’ statements is the defintion of a relative
crossover bias, which takes as its arguments a parameter index, two satellite identification
numbers, a value for the bias and optionally a character string like 'topex' or 'poseidon’ to
distinguish between the two altimeters on one satellite. Please study the file getmsdata.f if

such more complicated statements might be required.

238

E.3 Implementation of a new parameter type

In principle, Faust contains a generalised parameter infrastructure that deals with the entire

least-squares process, independent of the specific types of parameters (state vector, drag scale

factor, etc.). Adding a new parameter type to the program is therefore fairly straightforward,

and mainly involves the implementation of a few new input statements (as described in

Section E.2) and modification of a few data arrays in faust.f. After that, the new parameters

can be used throughout the code via the arrays param and mappar (the latter corresponds to
the pointer array M, of Section 2.6).

STEP 1

STEP 2

Add four new input statements to the language database, in the way described in
Section E.2. The four required statements are list statements for estimate,
consider, fix, and sigma, in which the second keyword is the parameter name
(see examples in faust.statements). It is very important that these four new
statements have four consecutive statement ID numbers (in the order
estimate/consider/fix/sigma). Note that the flags for ‘global' or 'local' should be

set correctly, i.e. O for arc-dependent parameters and 1 for other parameters.

Some parameter types will require special measures to pass them to the input, in
particular those parameters of which there are too many to fit into the normal
input lists (e.g. DORIS and PRARE parameters, gravity field / tides / sea surface
topography parameters, etcetera). Even if parameters are not passed to the
program through normal user input, the four parameter statements for
'estimate’, 'consider’, 'fix' and 'sigma' MUST be defined in faust.statements
This is because several generalised parameter processing facilities in Faust

exploit the presence of these statements in the language interface.

It is NOT necessary to add anything to progvar.f : parameters are processed in
subroutine getparams.f which will immediately work with new parameter types

if their statements for 'estimate’ etc. are defined in faust.statements.

In faust.f, the parameter MaxInxP should be increased with one. The new value
of MaxInxP will also become the internal parameter identification number for

the new parameter type (like 'l' means state vector, 2' means GM, '3' means

239

drag, etc.). To make sure that future programmers will also be aware of this, the
comment lines in the header of faust.f contain a list of parameter types : please

add your new parameter type to this documentation, as a reference for others.

STEP 3 Several data statements in faust.f must be extended for the new parameter type :

- Array inxP should be extended. This array contains the statement identification

number for the estimate statement of all parameter types. The other three

statements (consider, fix, sigma) are then also known to the program, as long as
consecutive statement numbers are used.

- Array VarPrt should be extended with .TRUE. if the partials for this parameter
type are variational partials (see Chapter 2), or .FALSE. for 'scalar' partials.

- Array GlobalPar should be extended with .TRUE. for global parameters,
.FALSE. for local parameters. Note that these flags should match the
corresponding flags for 'local' or ‘global' in the file faust.statements

- Array iParCat should be extended with '1', '2' or '3, according to the parameter
category to which the new parameter belongs (see Section 2.3). In principle,
category 2 is only used for the DORIS parameters and category 3 for the
PRARE tropospheric scale factors, all other parameters are of category I.
However, future tracking systems may also exploit the matrix partitionings of

Section 2.3, which will then require iParCat to indicate the correct category.

The way in which parameters are accessed via MapPar and Param can be analysed in the

various force model subroutines (see Appendix B) and by studying Section 2.6, in which the

mapper arrays are explained.

Parameters like the gravity field coefficients etc. which are not entered to the program
through the normal input are usually treated individually. The parameters for gravity field,
tides and sea surface topography are copied from the various model files for these quantities,
while the pass dependent parameters for DORIS and PRARE (see Chapter 5) are stored in

separate files. Please study the code for such individual cases.

240

E.4 Implementation of a new tracking data type

As with parameters, most of the internal processing of observations is generalised for all

tracking types so that the implementation of a new data type is fairly straightforward. In

wagner, we have to include a subroutine to read a data record from the raw tracking data file

while in faust we have to 1rr(1}Jlement a subroutine to compute a calculated observation C,

from (2.1) and the partials —— for x, y and z.
x

STEP 1

Determine the record format ofr the new data type : the amount of satellite
identification numbers (usually 1), station identification numbers (usually 1),
observation components (usually 1), real data arguments and integer data
arguments. The raw data file will probably contain many data fields per record
that are not necessary in faust, and it makes sens to keep the amount of data
arguments in the observations files for faust as small as possible. See Section

5.5 for a description of the record format in faust and wagner.

The following steps concern modifications to wagner.f :

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

Increase the parameter MaxGrpID which is in fact the total amount of different
tracking data types recognised by the program.

Add the five record size descriptors for your new data type, as determined in
STEP 1 above. To do this, you add the five integer numbers to the data
statement for array iRecSize in wagner.f.

Add a file statement to the language database wagner.statements. See Section
E.2 for a description of how to do this; the same array names MapDat and inx
are used in wagner and in faust. See statements like 'file MERIT!' etc. for
examples.

Add the statement identification number of your new file statement to the array
iGrpInx (which is located in one of the data statements).

Add the code to wagner.f for opening your input file. Most raw data files will
be ASCII text, in which case you don't have to add anything to the existing
code. Some files may be unformatted, or contain a header that has to be read
after opening the file. See the existing code for examples; if necessary, add a

statement ' ... else if (j.eq. N) then" to the block that opens the files, in hwich
N is your new data type number.

STEP 7

241

Write a subroutine 'getMyData.f like the existing routines for MERIT,
crossovers, etcetera. This subroutine reads a single data record from the raw
data file. Add a statement "... else if (j.eq.N) then" to the block that calls these
routines; see the existing code for examples. See Section E.1 to find out how to

add a subroutine to the existing program. Recompile wagner.

At this point, wagner should be capable of processing your new tracking data type, also in

combination with any other data type. The remaining steps relate to faust.f.

STEP 8

STEP 9

STEP 10

STEP 11

STEP 12

STEP 13

STEP 14

Modify the array Tstr (located in one of the data statements of faust.f). Make
sure that the element that you modify corresponds to the observation type
number for your new data type (i.e. the 'N' in STEP 6 and 7 above).

Define an integer variable iMyDatatype (like iDORIS, iPRARE, iMerit, etc).
This variable acts as a symbolic constant to identify your new data type, and you
should therefore initialise it in the data statement just below that for Tstr.
Update array nSatMs, just below the data statement of STEP 9. This array
indicates for each observation type how many satellite arcs are involved in the
observation, i.e. usually it will be 1. For crossovers, or possible future satellite-
to-satellite tracking types it may be 2 or more.

Update array ObsUnits in the data statement just below the one from STEP 10.
This array contains unit conversion factors from megametres or megametres per
day to centimetres and centimetres per second. See existing code for examples.
Write a subroutine like resaltim.f, resprange.f etc. that will compute the
residual and partials for your new data type. See Section E.2 for how to add
subroutines to faust. Add its calling statement to the 'if ... else if .. construction
in the event handling loop (part 6A of the main program file faust.f).

Update the output routine IterReport.f to make it work with your new data type.
This subroutine should in fact automatically produce a new output table for your
new data type, but you may have to add some numbers to data statements (like
unit conversions, a name to your tracking type, etc.).

Recompile faust with the makefile.

The above should suffice for 'simple' tracking types similar to SLR, Prare range, altimetry,

etcetera. More elaborate data types, in particular doppler data types that involve two different

UTC time tags may require the implementation of an entirely new event in the event

handling loop. See Section E.7 for a description of how to do this.

242

E.5 Implementation of a new satellite

Although the code of faust was kept as general as possible, certain parts of the code are

inevitably satellite dependent, in particular the geometrical models for the satellite as used to

evaluate surface forces, attitude control algorithms, etcetera. Because a new satellite will

probably require the development of a new macromodel for the satellite geometry and its

related code, it is difficult to discuss a 'standard’ way of teaching faust to support a new

satellite. This Section will summarize the parts of the code that will probably be affected, and

it is advised to study the related sections of faust to see how things are done for ERS and
TOPEX/Poseidon.

STEP 1

STEP 2

STEP 3

STEP 4

The satellite geometry will have to be read in, which happens at the start of the
main program just before the start of the iteration process. The GUESS tables
used for ERS-1 and ERS-2 are 'generalised' in a sense that they can be used for
more than one satellite. The only practical implication of this generalisation is
that if ERS-1 and ERS-2 are involved in a simultaneous solution, faust will only
have to read one table, and all ERS arcs will use the same model data (by means
of 'GUESSalias' statements - see faust.statements).

The force model routines drag.f, directsrp.f and albedo.f will have to be
modified, to compute the effective surface area for atmospheric drag and solar
radiation pressure. This will probably also involve calling a new attitude control
algorithm somewhere within these routines, like ersatt.f and topatt.f.

It may be necessary to extend the routine frames.f which evaluates geometrical
quantities in each integration step, in particular rotation matrices and angles of
incidence for particle fluxes. Again, this may involve a call to the attitude
control subroutine for the new satellite.

It may be necessary to update a number of subroutines that employ satellite
dependent constructions of the form if (sat = satl) then else if (sat = sat2)
then ... To find out which subroutines contain satellite dependent aspects, run
'grep '9105001' *.f (or other satellite ID number) in the source code directory
for faust. This should provide a list of references to 9105001, or the satellite ID

of your choice.

243

E.6 Implementation of a new event in the event handler loop

The time-organised event handling loop of faust is organised as an 'if ... then else if ...

construction, that has a separate entry for each event possible. The selector variable that is

tested is iEvent, which, although being an integer variable, is compared with symbolic

constants for each event that may occur. These symbolic constants are defined somewhere

among the data statements in faust.f and collected in common block Events, which is only

used by the main program faust.f and the priority selector routine getevent.f. The steps to

add a new event are as follows :

STEP 1

STEP 2

STEP 3

STEP 4

Determine a name for your new event, and define an integer variable (preferably
starting with i like iObservation, iAddXOhold, etc.) that will serve as a
symbolic constant to handle your event internally. See existing code for
examples. The value is assigned to the symbolic constant at the very beginning
of the code of faust.f; make sure event numbers are consecutive, i.e. choose the
first unused number.

Increase the size of array StateNeeded and add a flag to this array in its data
statement. The flag StateNeeded indicates if the event requires the numerical
integrator to output the state and partials at the time of the event, i.e. it triggers
the interpolation routine. More importantly, only the 'needed' state and partials
will be written to the ephemeris files. Examples of events that do NOT need the
state and partials are for instance the start and end of an orbit arc (these events
are of course already defined in the code).

The UTC timetags for your events must be handed to faust one way or another.
Observation-related events will usually know their UTC timetag from the
observation data files, while other events (like the iVector event that creates an
state vector for future runs of faust) will be defined in normal user input. If your
new events are user-defined, you may have to add one or more input statements
to the language database, and collect a list of event time tags in a new array in
faust.f. See Section E.2 for details of how to implement new input data in faust.
Modify the all-important subroutine getevent.f to make it test for your new
event. This may not be straightforward. The order in which the subroutine tests
for different events actually affects the behavior of the program, as it

automatically implies a certain system of priorities for events that occur at

244

exactly the same time. In most cases, however, it will only be necessary to add a
variable of time tMyEvent, and make sure that in each call to getevent the
variable will point to the earliest occurrence of MyEvent after the time that is
reached by the event handling loop (and indicated by tEvent). Please inspect the
existing code of getevent.f to see how this works, it is mainly a successive
system of logical tests. If your event is earlier than any other event in the
remaining process, the variables iEvent and tEvent should be set to indicate

your event and the time (UTC) at which it occurs.
STEPS Write an event handling block in the main program faust.f. See the existing code

for examples. After completing your event, the program will simply close the

loop and make another call to getevent.

E.7 Tuning array sizes for specific tasks

Because in FORTRAN the possibilities for dynamic memory allocation are rather limited, the
memory requirements for a particular application have to be controlled by a variety of
parameter statements at the start of the code. The purpose of each of these parameters is
documented with comment lines at the very start of file faust.f. In addition, the program
contains a variety of array size tests throughout its subroutines, and will in most cases stop
with an explicit error message if an array is underdimensioned (e.g. 'Array size MyLimit
exceeded in subroutine MySub'). This Section summarizes some of the most relevant array

settings that may have to be modified according to the application of faust.

The settings of these arrays will severely affect the particular capabilities of the program
(room for DORIS parameters or not, compiled for single arc solutions or for large multi-arc
solutions, etcetera). For this reason, the executable files are usually not simply called faust
but have an extension to indicate their particular application. The past has seen executables
called faustS, faustSD, faustSP for single arc solutions of ERS-1, for TOPEX (with the D
extension to indicate partitionings for DORIS parameters) and for ERS-2 (with a P for
PRARE); faustM, faustMD, faustMP for multi-arc solutions for ERS-1, TOPEX and ERS-2
respectively; faustG for gravity field normal matrix generation; faustGI for gravity field
inversion, and a variety of faustT executables for testing. The name of the executable is

defined in the makefile for faust. The sizes for these various executables are outlined below.

245

The array sizes that are particularly important are :

MaxTypel

MaxType2
MaxType3

MaxArc

MaxExpl

MaxLinPrt

MaxXObuf

MaxPass
MaxUserInp

MaxBCmat

MaxFmat

The size of normal matrix partitioning 4 (Chapter 2), i.e. the maximum
amount of paramaters of Category 1 that can be solved for in a single run.
The maximum amount of (pairs of) parameters of Category 2.

The maximum amount of parameters of Category 3.
The maximum amount of satellite arcs in a single run.

The size of the integration buffers for variational partials.

As each arc will reserve its own room for partials, this number should
roughly be equal to the product of MaxTypel and MaxArc, assuming that
most Category 1 parameters require variational partials.

The size of the memory buffers for non-variational partials. As these are
not involved in the numerical integration process, the total memory

requirements will not be very strongly dependent upon this parameter.

The size of the crossover buffer arrays in memory (see Section 5.6). This
number will mainly depend upon the limit to the crossover interval, as
discussed in Chapter 7.

The size of the tables for some pass-dependent statistics.

The maximum amount of lines of user input.

The size of the actual normal matrix partitionings B and C. This is either
identical to MaxType2, or it is minimised to 1 in which case there must
be a statement 'freeze dorisparam’ in the user input. This allows for a
reduction in memory requirements if the doris parameters are not actually
solved for, but only read from file and kept fixed.

Size of the normal matrix partitioning F'. This may also be minimised to

1 if the PRARE parameters are kept fixed.

For each of the executables mentioned above, typical values for these dimensions are given

in the table below.

246

faust : S SD SP M MD MP G
MaxTypel 100 100 150 750 750 900 6500
MaxType2 1 1500 1 1 10000 1 1
MaxType3 1 1 750 1 1 7500 1
MaxArc 1 1 1 10 10 10 10
MaxExpl 100 100 150 1000 1000 1000 60000
MaxLinPrt 100 3000 1000 1000 10000 10000 60000
MaxXObuf 750 1000 750 5000 6500 5000 7500
MaxPass 200 1750 1500 2000 15000 20000 5000
MaxUserInp 200 200 250 1000 11202. 1000 2000

Table E.1 Typical array sizes for various executables of Faust

