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Summary

Utban regions present some of the most challenging areas for the remote sensing
community. Many different types of land cover have similar spectral responses, making them
difficult to distinguish from one another. Traditional per-pixel classification techniques suffer
particularly badly because they only use these spectral properties to determine a class, and no
other properties of the image, such as context.

This project presents the results of the classification of a deeply urban area of Dudley, West
Midlands, using 4 methods: Supervised Maximum Likelihood, SMAP, ECHO and
Unsupervised Maximum Likelihood. An accuracy assessment method is then developed to
allow a fair representation of each procedure and a direct comparison between them.

Subsequently, a classification procedure is developed that makes use of the context in the
image, though a per-polygon classification. The imagery is broken up into a series of
polygons extracted from the Marr-Hildreth zero-crossing edge detector. These polygons are
then refined using a region-growing algorithm, and then classified according to the mean
class of the fine polygons. The imagery produced by this technique is shown to be of better
quality and of a higher accuracy than that of other conventional methods. Further
refinements are suggested and examined to improve the aesthetic appearance of the imagery.

Finally a2 comparison with the results produced from a previous study of the James Bridge
catchment, in Darleston, West Midlands, is made, showing that the Polygon classified ATM
imagery performs significantly better than the Maximum Likelihood classified videography
used in the initial study, despite the presence of geometric correction etrofs.

Keywords: Remote Sensing, Per-Polygon Classification, Accuracy Assessment,
ATM.
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Chaptet 1 Introduction

1.1 Introduction

Precise land-use information about urban catchments is a primary input into urban
drainage models. The complexity of the model determines the nature of this input - for
less sophisticated models, such as BEMUS (Maksimovic ef al, 1995) the percentage of
impermeable area (PIMP) is required, whereas more sophisticated models, such as
distributed physically—based models require the exact location of land use type, such as

roads. Models of non-point sources of pollution also require this type of information.

Utrban catchments are prone to considerable land use changes over short time-scales. The
general trend is for an increase in the population density of urban areas and the
urbanization of former sub-urban and rural catchments (Maksimovic, 1993). This is a
global tendency, as illustrated in Figure 1.1. As land usage becomes more urban, demand
for an efficient and comprehensive drainage system is increased, since the capacity of the

system may be insufficient to cope with increased runoff.

Percentage of Population in Urban Areas

2 7
80 T
70 1

60 1 More Developed"
50 T Regions 1

% 40 7 L ' Less Developed
30 T 7 - Regions

20 7

10 I
0 : : i : e i

1970 1980 1990 2000
Year

Figure 1.1 Projected figures demonstrating the trend towards urbanisation (Maksimovic 1993)




The development of urban drainage models over recent yeats has allowed the accurate
prediction of runoff for these areas. However, acquiring spatial data for these models is an
expensive and time-consuming process. Remote sensing can provide up to date
information at a fraction of the cost of traditional methods, and ultimately can become an

important tool in the design of urban drainage networks.

There are several commercially available computer packages that calculate surface runoff
for a given rainfall intensity and duration (for instance HYSTREM-EXTRAN, Fuchs and
Sheffer, 1993). While they are dependent on a number of catchment characteristics
including soil type and catchment wetness, of most importance is the accurate
determination of the amount of permeable and impermeable cover within the catchment.
However, while the models offer good reliability, the calculation of the percentage of
impervious surface (PIMP) is either expensive, in the case of photo-interpretation,
inaccurate if pixel based computer classification procedures are used, or both if out of

date maps are used (Finch ez al, 1989).

Because remote sensing data sets are frequently very large, computationally efficient
statistical techniques are required for pixel classification. For the past 20 years the major
image processing techniques used have revolved around statistical pattern recognition and
analysis, extending the usual methods of multivariate analysis to the remote-sensing
problem. However these techniques do not exploit the spatial component of the data.
They ate primarily concerned with the multi-spectral features of the individual pixels,
while neglecting the effect that size, shape and texture of the surrounding objects will have
on the correct identification of these pixels. These propetties are referred to as context,
and are necessary in order to identify objects within the imagety, in the same manner as 2

photo-interpreter might.

The normal statistical approach to pixel classification assumes that data vectors in
neighbouring pixels are independent. This is not so. Furthermore, spatial dependencies
between pixels may be caused by scattering of reflected electro-magnetic radiation from
the surface of the earth resulting in contamination from over-sampling and re-sampling, ot
spatial continuity of the ground classes (Curran, 1985). Data from neighbouring pixels will
not be independent even if they are independent conditional on the ground classes. Unless
training pixels are selected to be sufficiently far apart, these spatial dependencies can result

in biased estimates of the covariance matrix, and hence in an increased classification error
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rate. Additionally, statistical analysis is performed on pixels independently and so may

result in classified images that are patchier than in reality.

Several ad hoc approaches have been used to incorporate context into the procedure of
pixel classification. These include simple augmentation of the data vectors by the data
vectors of surrounding pixels, smoothing algorithms and various contextual classification
methods. Contextual classification exploits the tendency for certain ground cover classes
to occur more frequently in certain contexts than in others. The classification of a given

pixel is influenced by the probable classifications of surrounding pixels.

1.2 Background to the Project

There has been a considerable amount of research cartied out by the Environmental
Systems Research Group at Aston University into the effect of context on the
classification of remotely sensed imagery (Booth, 1989; Oldfield, 1988). Further work has
also been concerned with integrating the data into an urban drainage Geogtraphical

Information System (Elgy ez a/, 1993).

The data examined in this project were acquired during a previous study of an area of
Dudley, West Midlands (Ellis, 1997). The imagery is line-scan data from the Airborne
Thematic Mapper (ATM), and covers a region of deep urbanisation. The imagery is of a
highly complex nature and contains many of the features assoctated with urban regions,

such as many different types of land use with similar spectral patterns.

Recent papers on the subject (Finch e7 a/, 1989; Scott, 1994; Fankhauser, 1998) have
demonstrated that existing techniques are insufficiently sophisticated to classify adequately
urban imagery due to its complex nature. Additionally, these papers are characterised by

the weak assessment of the accuracy of these methods.

1.3 Aims and Objectives

There is clearly a requirement for a classification method that will provide the type of high
accuracy information that today’s urban drainage models require. As these models become
more sophisticated they also require more detailed information about the catchment to
which they are applied. The provision of this data can only currently be supplied through
the use of manual classification procedures. However, these procedures may be

prohibitive due to their cost.
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Consequently the primary purpose of the thesis is to find a way of improving the quality

of automatically classified data supplied to the drainage models

Thus the main aim of the project is to develop a classification procedure that automates as
much of the photo-interpretation process as possible, and consequently improves upon
existing methods for urban image classification. In order to do this contextual information
must be incorporated into the classification procedure. A further aim of this project is to
determine a method of accuracy assessment that allows an unbiased comparison between

classification methods.

Having achieved these objectives, a further goal is to compare the entire procedure with

an existing scheme for urban classification.

1.4 Thesis Structure

Chapter 2 examines the published literature on several subjects, all of which are closely
related to classification procedures. A review of some recent papers that attempt to
classify urban imagery to provide urban drainage inputs is followed by an overview of
several of the classification procedures currently in use. Low level image processing is then
examined, along with context and methods for incorporating this into a classifier.
Techniques for assessing the success of the classification methods are followed by some

applications of classified imagery.

Chapter 3 introduces four classification procedures, and examines how they opetate,

presenting the results with a discussion of their qualitative merits and drawbacks.

Chapter 4 is concerned with developing a method for assessing the accuracy of the
classifications in order that they may be directly compared with one another. The
classified imagery presented in Chapter 3 is comptehensively examined with several

techniques, and a comparison of the accuracy of each is made.

Chapter 5 presents the development of a new polygon classifier, illustrating in a stage by
stage fashion the reasoning behind its development. This is followed by an assessment of
the accuracy of this classifier, using the methods developed in Chapter 4. A comparison

between the new classifier and the existing methods examined in Chapter 3 is then made.

Chapter 6 investigates the areas that remain for improvement of the classifier.




Chapter 7 makes use of the classifier for the determination of the percentage of
impermeable area (PIMP) of an urban catchment in Darleston, West Midlands, and

compares the results achieved with some results from a previous study.
Chapter 8 presents the conclusion.

The literature concerning the subjects mentioned will now be examined and discussed.
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Chapter 2: Review and Evaluation of Existing Classification Schemes

2.1 Introduction

" Existing urban drainage models are of sufficient detail and complexity to model accurately
the effects of storms on a urban drainage basin. Their widespread usc is curtailed mainly by
problems of data acquisition, storage and manipulation......... remote sensing offers an

excellent possibility to obtain land cover data that is up to date and easily ported into a GIS"

Elgyet al, 1993.

The paper by Elgy ef a/ examined the use of a variety of Geographic Information Systems
for creating the input files for two different urban drainage models. As the statement above
indicates, the main weakness in the procedure lies in the acquisition of high quality land
cover data, the fundamental problem being concerned with the trade-off between cost and
accuracy. Photo-interpretation of aerial imagery, although highly accurate, is a time-
consuming and costly process - it can take more than one day to classify a single

photograph.

The Otrdnance Survey (OS) can supply digital maps of high quality for the United
Kingdom, although they may be out of date, costly and have certain copyright and user
license restrictions. Ordnance Survey digital maps are not GIS products. An examination of
Figure 2.1 demonstrates this. The map does not contain polygons, continuous line data, land
cover information or the potential for links to other attribute databases. For instance, the
road polygon remains open at (a). There are also spurious boundaries (b), such as the
barriers indicated. There is no inclusion of land use information (c) - the path at this point
contains paved blocks, whereas the path at point (d) is covered with gravel. Additionally,
there is no attribute data, such as unique identifiers for individual buildings that can be
linked to a database (e). Consequently, the maps provided by the OS are not suitable for
hydrological GIS without considerable post-processing. An added problem is that the data
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Information System (GIS).

Remotely Sensed imagery is an important source of digital data for the assessment of the

quantity of water resources for planning purposes, for the updating of aged maps, and for

Acquisition of Data
¢ Digital Aerial Imagery (ATM)

Classification of Image
¢ Maximum Likelihood Classifier

¢ SMAP

Geo-rectification of Imagery
¢ Image Warping

Geographical Information System (GIS)
* %ombine Multiple Data sets from
Multiple Sources

|

Urban Drainage Model
¢ BEMUS
¢ WALRUS

Figure 2.2 Flow chart of the Modelling Process

information pertaining to land use (Maksimovic ez 4/, 1994). The main area of research, for

this project, is concerned with providing an accurate classification of remotely sensed
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airborne data, producing a high quality input into an urban drainage model, combined
through the use of a Geogtaphical Information System. The procedure for doing this is
outlined in Figure 2.2

This chapter examines the literature covering the methods and tools used to generate and
manipulate the data. The theory of per-pixel classification is briefly explained along with
some of the most popular and recent developments in this area. The term ‘context’ is then
introduced, followed by a look at some of the attempts to incorporate the information it
provides into the classification procedure and discusses the relative success of these
approaches. Methods for assessing the accuracy of the classification process are then

introduced, followed by applications of the classified image.

2.2 Background

2.2.1 Introduction

The paper by Finch ez a/ (1989) illustrates perfectly many of the problems associated with
image classification. Finch used a supervised Maximum Likelihood method to classify the

percentage of impervious surface of Daedalus ATM imagery, with a pixel resolution of 2m.

Five spectral bands were used (3, 5, 7, 9 and 11) for the analysis of nine catchment areas.
Initially eleven training classes were defined, with these being combined to eventually give

three classes: roofs, roads and paths, and petvious area.

A traditional survey using a 1:2500 scale Ordnance Survey map of the area was made for use
as reference data, with additional information being provided by aetrial photographs and,
where necessary, ground surveys. Using this map, ground control points were matched with
the ATM imagery and through the use of cubic convolution interpolation, the image was
geometrically rectified, with a transformation root mean square etror of 3m. To achieve a
geometric rectification accuracy of this level, the flight must have taken place in excellent
conditions. The data acquired for this project could not be rectified to anywhere near this
level of accuracy due to greater platform instability - see section 2.2.6 for a discussion on the
difficulties of geo-rectifying ATM Imagery, and section 3.1.3 for details specific to this

project.
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The mean differences between the tesults of a manual survey and the classification for the
three classes wete found to be 15.5% (roof), -7.4% (toads and paths) and 8.1% (pervious
area) respectively. This was calculated for each individual sub-catchment by calculating the
area of PIMP for the manual image, calculating the area of PIMP for the classified image
and calculating the difference between the two. The difference for each sub-catchment was
then averaged to provide this value. So if, for example, the manual classification was 50%
PIMP, and the Maximum Likelihood classification was 40% PIMP, the difference would be
10%. However, the error, which is not mentioned, would be 20%. Furthermore, the
averaging of this data does not take account of catchment size. Consequently, very small

catchments have a disproportionate effect on the calculation of the mean difference value.

Unfortunately, while these results indicate some measure of success, closer inspection
revealed some disturbingly large errors in some of the catchments. For instance, the error in
the calculation of road and path (in catchment 2) underestimated the manually derived
amount by over 50% (manual = 39.0%, classification=16.6%). Finch e/ 4/ explain that in this
catchment thete is an unusually large number of trees overhanging the road, resulting in a
large misclassification. Other problems encountered include large errors in regions with

many different types of roof materials, cars and areas lacking homogeneity.

The situations that cause misclassification point to many of the shortcomings of per-pixel
classification methods, and indicate that additional information is necessary. Further to this,
however, it is clear that there were serious errots in the methodology used by Finch ef 4/,
The presence of overhanging trees, for instance, could have been avoided if the imagery was
acquired during a more suitable season, a fact that he acknowledges. What is not
acknowledged is that the presentation of the accuracies given is based on several dubious
assumptions. The first of these is that the manual sutvey was definitive and the second 1s
that geo-rectification of the digital imagery was of sufficient accuracy to allow quantitative

compatison between the two.

The third, and most important, assumption, is that the percentage of pixels over the whole
catchment can be used directly for accuracy assessment. As we will see in chapter 4, a far
higher accuracy value will be obtained if the overall figure is quoted rather than using a

measure of the total cotrect pixels combined with some indication of the etrors of omission
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and commission involved. The use of a 'mean difference' value is particulatly misleading -
we are given no real measure of accuracy in the first instance, so we are forced to make
inferences through the difference between values which, while pethaps not meaningless, are

deceptive.

Unfortunately, these results were actually intended to provide the input for the WASSP
drainage model. The results, as presented by Finch, show that the digital classification
overestimated the amount of pervious area by 8.0 %. This figure could, however, have been
achieved through a completely inaccurate classification, since we are never shown if any
individual pixels are actually correctly classified. This being the case, one must treat these
results with great caution. The errors in the methodology mean that it is not possible to

transfer these results or conclusions to another area.

Scott (1994) compares the use of multi-spectral airborne videography and manual methods
of classification. The purpose was to provide the input for a WALLRUS drainage model
(Wallingford Software, 1991.) Since this model needs land use information to distinguish
between roads, roofs and permeable areas, Scott reasoned that multi-spectral data was ovetly
sophisticated. He suggested that vidoegraphy could provide a low cost alternative, especially

useful for small catchments.

The imagery was collected using a true colour camera and an infrared camera, with stll
images grabbed and mosaiced to provide a single image. He found that the multi-band
classification (he does not mention which one) was poor, but that density-slicing techniques

were of an acceptable accuracy.

The presentation of the data, however, is once more misleading, giving a permeable area

measurement masquerading as overall an accuracy figure in a similar fashion to Finch ez a/.

Some of the problems encountered with multi-band classification are discussed, particularly
with regard to the misclassification of certain areas, such as greenhouses, sheds and patios.
He suggests that these areas should be excluded under the conditions given for use of the

drainage model and can be rectified by applying a correction factor over the whole imagery.
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It is perhaps an indication of the inherent lack of success of the technique used that he

suggests a value for this correction factor of 25%.

Fankhauser (1998) used aerial photographs as the main data source, due to the unavailability
of any other source of high-resolution imagery in the region of Switzerland under
examination. The photographs were split into the three primary bands (red, green and blue)
and analysed using a Maximum Likelihood classification. The number of classes were
initially determined by inspection, and subsequently grouped into three classes: impervious,
pervious and shadow. After the classification, a modal filter was employed to eliminate small

clusters of pixels that were mis-classified.

He reported that the automatic classification of the aerial photography, when compared
with a manual classification, overestimated the results by up to 15%, while the combination
of aerial photography with colout-infrared photography produced similar estimations. There
was, however, no measure of accuracy over and above this 'fit for use' reasoning. This, in
effect, provides no proper analysis of the method employed and gives no indication as to
where the misclassification is occurring. Indeed, it gives no indication at all of how many
incorrectly classified pixels thete actually are. In essence, the conclusion to be drawn is that
the manual classification and the automatic classification could be completely unrelated and
still produce 'acceptable' results. The images presented by Fankhauser at the conference and
not reproduced in the paper show much permeable atea mis-classified as permeable and vice

versa. Fortunately, this was to about the same amount for both.

Traditionally, the major statistical image processing techniques used in remote sensing have
revolved around statistical pattern recognition and analysis. However, these methods have
been primarily concerned with the multi-spectral features of individual pixels, and have not
examined what effect the size, shape and locaton of surrounding areas may infer. This
results in the characterisation of spectral classes while neglecting the description and
identification of objects - in other words the techniques used in visual photo-interpretation.
Multi-spectral classification methods such as the Maximum Likelihood classifier will result in
the misclassification of a significant petcentage of pixels due to variations in shade and

emissivity within the same class.
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It has been argued that the misclassification does not matter as long as the percentages for
each class of land cover obtained through automatic classification are close to those of the
manual classification (Blagojevic ¢z @/, 1998). In a catchment containing equal amounts of
permeable and impermeable areas, for instance, these errors will cancel each other out. As a
result 1t can be asserted that the automatically classified map petforms as well as the manual
one. However, if there is a large amount of permeable area and a small amount of

impermeable area, these errors will not cancel each other out.

Therefore it is important that land-use is correctly calculated. In addition, the data used by
Blagojevic ¢ a/ (1998) was closely linked to the urban drainage model. Different models

require more precise land-use information.

Although errors may be large, this method of automatic interpretation is still used due to the
high cost of human interpretation. It can take more than one day to interpret a single
photograph by manual means, making these methods very time consuming. However, some
of the misclassification experienced by pixel-based methods are due to the assumption that

surrounding pixels and objects within an image have no relationship to individual pixels.

When compared to the results achieved by a skilled photo-interpreter, statistical pattern
recognition and image processing procedures yield mnadequate results. This is because image
interpretation 1s more complicated than reading individual pixels from images. It involves
seeing and understanding, which can be aided by identifying the effect that image pattern
elements (i.e. size, shape, texture, situation, homogeneity) have. We group these elements

together and refer to them as the context of the image.

2.2.2 Manual Preparation of Land Use Maps

Typically, a map of a region is subdivided into discrete parcels, each labelled as a single
category, known as a cloropeth map (Campbell, 1983). For many users, land use maps
prepared in this manner appear to be the simplest of all maps. Consequently, land use maps
are conceived to be the most basic to compile and interpret. Yet, simplicity of form and
content conceal complexities that may emerge only as cntical attention is devoted to the
meaning and usefulness of specific maps. Once encountered, these complexities are

interwoven with the geographical patterns of land use, the classification system, and the
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qualities of the aerial images used to make the map. Intricate errors in form and content may
influence the usefulness of the map and are seldom subject to convenient correction,

because they flow from decisions regarding the map purposc, detail scale and use.

The cartographic model used to portray land use patterns identifies each mapped parcel with
a single category. In reality, most mapped parcels are composed of several categories of land
use - the inevitable consequence of cartographic generalisation. This means that detail,

pethaps important detail, is withheld from the map-reader.

Land use information is, of course, of great significance in scientific research. Geographers,
economists and others have long regarded land use patterns as fundamental in their studies
of economic systems. Land use patterns are recognised as influential elements in

hydrological and meteorological processes

However, maps in their paper form quickly become redundant, due to the difficulty
encountered when linking the geographical data with other attribute data. The advent of
GIS has meant that paper maps must be digitised to be of any use. In addition, maps
(particulatly those of urban regions) quickly become outdated and consequently need
constant revision. In particular, maps of urban regions, due to the rapid growth and decline

of industtial buildings can become redundant very quickly indeed.

2.2.3 The Photo-interpretation Procedure

Most aerial imagery presents a map-like representation of the landscape that seems to form a
natural and convenient base for delineating land use. Usually, however, the photo-interpreter
is presented with much more information than can be accurately and legibly presented on a
map. As a result, the interpreter defines 2 working model for relating detail on the image to
specific land cover categories, then attempts to apply this model consistently throughout the
image, using the model to assign areas of the image to categories in the classification system.
This working model can be represented as a kind of filter that separates relevant from
irrelevant detail or, alternatively, as a translator that can assign image detail to its cotrect
informational category, much as a linguist assigns words and concepts in one language to

corresponding words and concepts 1n another.
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These filters/translators are devised and applied informally, almost intuitively, by photo-
interpreters in a manner that is tailored to the scale and tesolution of the imagery, to the
detail in the classification system, and to the publication scale of the final land use map. It is
essential that each interpreter apply the strategy in a disciplined, systematic and consistent
manner throughout the image, so that the final map is uniform in accuracy and

representation of detail.

Interpreters study remotely sensed data and attempt through logical processes to detect,
identify, measure and evaluate the significance of environmental and cultural objects,
patterns, and spatial relationships. Interpreters use elements of image interpretation to
detect, recognise and identify objects and patterns. These elements traditionally include size,
shape, tone texture, pattern, and association - that is those qualities that permit us to

recognise features we see on aeria] images.

2.2.4 Urban Imagery

Urban areas provide the remote sensing community with its most challenging problem due
to the extremely complicated nature of the land-use varation. They constitute some of the
most difficult and time-consuming tasks for photo-interpreters and provide a rich
environment of varied structures and natural terrain features against which to test the
robustness of new approaches. Furthermore, many types of cover have similar spectral

properties, making discrimination by existing multi-spectral methods difficult.

The primary difficulty, when dealing with urban imagery, is that materials such as concrete,
asphalt, roofing materials, plaster, paint etc., are used to produce a diverse array of land uses
which, unfortunately, may produce similar spectral responses. It becomes clear that it is
difficult to discriminate one specific urban class of information from another based solely
on spectral characteristics (Colwell, 1983). The importance of size, shape, texture/pattern
information 1s evident, with these elements of image interpretation being essential to

accurate identification of urban features.

2.2.5 The Airborne Thematic Mapper
The Dzdalus 1268 Airborne Thematic Mapper (ATM) provided the source data for this

study. It is a multi-spectral line-scanner whose 11 channels cover the visible and neat-
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infrared (bands 1-8), short-wave infrared (SWIR - bands 9 and 10) and thermal infrared
(TIR - band 11) and includes channels that closely match the seven spectral channels of the
Landsat Thematic Mapper. Table 2.1 shows the wavelengths of each band. More specific
details relating to the system itself can be found in Wilson (1995).

The data generated by the ATM may require pre-processing to account for atmospheric
effects and other problems that arise from the instability of the platform (Richards, 1980).
An mportant step when analysing geo-spatial data is in the integration of the data into a
Geographical Information System which requires accurate geometric rectification of the
mmagery. Unfortunately, achieving this with ATM imagery is extremely difficult. Whereas
satellite data can be effectively rectified using polynomial equations, aircraft motion causes

disturbances of too great a severity to be compensated for by even high-order polynomials.

Channel Wavelength (um) Applications

Number

1 0.42-045 Bathymetry; soil/vegetation differentiation

2 0.45 - 0.52 Coniferous/deciduous differentiation

3 0.52 - 0.60 Green reflectance by healthy vegetation

4 0.605 - 0.625 Secondary green reflectance band

5 0.63 - 0.69 Plant species differentiation by chlorophyll absorption

6 0.695-0.75 Geo-botanical surveys; water body delineation

7 0.76 - 0.90 Bio-mass sutrveys; water body delineation

8 0.91-1.05 Secondary near infra-red band

9 1.55-1.85 Altered rock mapping; vegetation moisture measurement

10 2.08 - 2.35 Hydro-thermal mapping

11 8.5-13.0 Plant heat stress detection; thermal mapping

12 8.5-13.0 Plant heat stress detection; thermal mapping half the gamn
of band 11

Table 2.1 The Band Wavelengths of the Airborne Thematic Mapper (Wilson, 1995).
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Methods to improve the rectification of existing ATM imagery have been the focus of much
recent research (Gregory, 1996; Ehlers, 1994). These will be covered in the following section

on Geo-rectification.

2.2.6 Geo-rectification
An important step in the integration of multi-spectral imagery into a GIS is the accurate
geometric rectification of the image data. The main sources of geometric error commonly

found in remotely sensed images can be categorised in the following way (Richards, 1986);
1. the rotation of the earth during image acquisition,

2. the curvature of the earth,

3. the wide field of view of some sensors,

4. panoramic effects relating to the imaging geometry,

5. sensor imperfections,

6. the finite scan rate of some sensors, and

7. vatiations in the platform altitude, attitude and velocity.

These errots can be classified into two groups; those which are deterministic in their nature
(numbers 1-6), and those resulting from fluctuations in platform stability giving rise to
varying degrees of distortion throughout the image. Deterministic errors can generally be
successfully compensated for by constructing mathematical models that reflect the nature
and magnitude of the image distortions. However, variations in platform stability cause
potentially the most severe problems in aitborne remotely sensed imagery due to the
unpredictable pattern with which they distort the image geometry. These etrors are most
severe in images obtained from airborne line scanning sensors, since distortions continually
vary from one scan line to the next as the sensor platform is buffeted by atmospheric
currents during image acquisition. Mounting the sensor upon a stabilised platform may
reduce attitude effects, although these stabilisation systems cannot guarantee compensation

of very rapid attitude movements.
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A number of efforts have been made to address the problems of geo-rectification of
airborne line scanner imagery. These can be classified into two groups - parametric and non-
parametric. Non-parametric methods attempt to correct imagery by developing general
expressions to describe the image distortions, irrespective of the nature of error. In the
absence of platform ephemeris data, image rectification is most commonly achieved by
using polynomial warping algorithms. This procedure transforms the raw image data to a
map co-ordinate system by developing mapping polynomials based on a series of ground
control points (GCPs). Although polynomial correction offers a convenient and
computationally efficient method for image correction, aitborne line-scanner magery
contains local regions of distortion due to platform instability, and these errors are generally
too severe to be represented by a first or second order polynomial. This fundamental
drawback has meant that historic data sets of the same region can rarely be accurately co-

registered, limiting the ability to quantitatively assess temporal change.

However, a number of efforts are currently being made to address the problems of geo-
rectification of aitborne line-scanner imagery. Zhang ¢ a4/ (1994) have shown that an
accuracy of 2-3 pixels can be achieved by utilising flight parameters obtained from on-board
motion sensors. The Natural Environment Research Council (NERC) have recently
introduced a remote sensing system using GPS satellite technology to provide platform
ephemetis data (Wilson, 1994). However, a number of teething problems have emerged
since the introduction of this facility and the problems of precise geo-rectification of

airborne imagery remain largely unresolved.

Ehlers (1994) developed a method that relied on Multi-quadratic Interpolation techniques.
Whereas satellite data can be effectively rectified using polynomial equations, the aircraft
motion causes disturbances of too great a severity to be compensated for by even, high-
order polynomials. Although computationally intensive, the Multi-quadratic Interpolation

approach was shown to improve accuracy, quantitatively and qualitatively.

The improvement of this important aspect of ATM imagery is, in fact, the concern of

ongoing research within the Environmental Systems Research Group at Aston University.
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2.2.7 Geographical Information Systems

Geographical Information Systems (GIS) are software programs that provide one or more
spatial data models, usually based on raster or vector structures. Associated with every
spatial feature or entity is a set of descriptive attributes, which collectively describe
geographical phenomena. Special functions allow users to query, analyse and display
complex spatial information (Burrough, 1986). Remote sensing provides a major source of
geographical data which, when interpreted, can be merged with other data layers in a GIS
(such as urban water drainage models) (Maksimovic ez @/, 1994; Fuchs ez a/, 1994; Blagojevic
et al, 1994).

There are a vatiety of computer packages available that combine image processing features
with GIS capabilities, such as ERDAS (Erdas, 1998), IDRISI (Eastman, 1995), ERMapper
(ERMapper, 1998), ARClnfo (Arclnfo, 1998), and GRASS (Shapiro ez a/, 1993). The choice
of which one to use is difficult, since they all perform many of the same features. However,
some are more suited to GIS work, where as others have a large range of image processing

features and sacrifice some GIS capabilities.

At various stages other packages were also used. ERDAS was used to prepare the data for
input into a package called Multispec (Landegrebe, 1980), which performed the ECHO
classification (see section 2.3.4.4). Houghtool (Kilvidinen ez a/, 1996) was used to produce

straight-line segments from various Hough transform algorithms.

The Geographical Resources Analysis Support System (GRASS) is a public domain image
processing and raster based GIS originally developed by researchers in the Environmental
Division of the US Army Construction Engineering Research Laboratories (USACERL) in
Champaign, Illinois (Shapiro e a/, 1993). Unlike many GIS software toolkits, GRASS is
open; it has well-defined accessible data formats; the source code 1s supplied, allowing users

to modify and extend code at will.

GRASS is written in the C language and is accompanied by an extensive list of program
libraties and complete source code. As well as containing GIS facilities, the user system
provides a broad range of functions, currently numbering over 400, to perform various geo-

processing operations. Most analytical functions operate on raster data, and include such
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capabilities as map algebra, statistical reporting, filtering, classification and so on. Special
featutes include tools to build more complex applications using shell scripts - GRASS
contains a comprehensive list of image processing modules, allowing easy development of
any program for geo-processing. Additionally, it has a large user base and extensive support
in the form of Internet mailing list and newsgroups. The open source system makes it an

ideal base for image processing/GIS research.

2.3 Classification

2.3.1 Introduction

Preparation of a land use map from aerial imagery is essentially a process of segmenting the
image into a mosaic of parcels, with each parcel assigned a land use class. The most useful
categories, in practice, are those that match the informational needs of the map user.
Typically categoties such as 'suburban land' are completely unsatisfactory for the user who
requires division of land into functional classes such as 'residential’, 'commercial and

'industral' land.

The image interpreter must prepare a classification system that is simultaneously compatible

with the needs of the map user and consistent with image detail and map scale.

2.3.2 Scale of Imagery and Classification Accuracy

When embatking on scientific research, it is usual for the scale at which observations are
collected to be carefully selected by the investigator. In remote sensing, however, there are
limitations regarding the type of platforms available, and the actual data available to the
researcher. In this project, for instance, the data was collected prior to the project
commencing. However, the complicated nature of urban elements under study, and the level
of detail required of the output from the study are such that there can be little doubt as to
the appropriateness of the scale of the data.

Woodcock and Strahler (1987) propose an approach based on the spatial structure of
images, which they suggest is an indication of the relationship between environments and
spatial resolution. The spatial structure of the images is expected to be primarily related to
the relationship between the size of the objects in the scene and spatial resolution.

Consequently graphs of local variance may be used to measure spatial structure in images.
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Interestingly, they also indicate that at finer spatial resolutions more pixels fall on the
boundaries between classes. This will result in lower classification accuracy. Additionally, the
increased spatial variance of land-cover classes associated with finer spatial resolution will
also influence classification accuracy since within-class variance decreases the spectral
sepatability of classes. Thus we would expect lower accuracy from the classification of high-

resolution urban imagery than we would from low-resolution agricultural imagery.

2.3.3 Classtfication of Ground Cover Classes

The classification of remotely sensed data provides the user with a map detailing the land
cover over a region of interest. Theoretically, a given cover type gives a unique pixel value in
each spectral band, so across a given number of spectral bands a cover type can be identified
by the pattern of pixel values. We term this the ‘spectral response pattern’ for that specific
land cover type. In reality a more complex situation exists, with there being a statistical
variation in the pixel values for that land cover type, which produces a cluster of points, as
opposed to a single point, on a scatter plot (see Figure 2.3). A classification algorithm
separates the feature space into region enclosing these clusters and produces a map that

discriminates between the land cover classes.

We tetm classifiers that operate on this principle (in either supervised or unsupervised
mode) per-pixel classifiers. That is, they discriminate each pixel individually, ignoring the

effect surrounding pixels may have on the choice of class.

2.3.4 Per-Pixel Classifiers

2.3.4.1 Introduction

The term ‘per-pixel” is used to refer to a classification procedure that classifies each pixel
individually, based solely on the multi-spectral properties of each particular pixel. The
following section presents some examples of the more commonly used techniques, as well

as some more recent innovations. A comprehensive review of per-pixel classification can be

found in Colwell (1983) and Lillesand and Kiefer (1994).
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2.3.4.2 Minimum Distance to Means
One of the simplest classification procedures is the Minimum Distance to Means Classifier.

For each category the mean spectral value is calculated for each waveband under

consideration. As the name suggests, a pixel of unknown identity may be classified
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Figure 2.3. The Minimum Distance to Means Classifier (from Lillesand and Keifer, 1994)

by computing the distance between the value of the unknown pixel and the mean of each
category. For instance, in Figure 2.3 the pixel plotted at 1 would be assigned to the Sand (S)
categoty.

The mathematical simplicity of this strategy produces a fast computation time but it has a
major drawback. In Figure 2.3, the pixel plotted at point 2 would be assigned to the Sands
category (S), whereas the greater variability of the Urban category (U) suggests this would be

a more approptiate assignment. As a consequence, this is not a widely used classifier.
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2.3.4.3 Maxcimum Likelihood Method

When classifying an unknown pixel, this method evaluates both the variance and cortelation
of the category spectral response patterns. This is based on the assumption that the
distribution of points in the category training data is Gaussian. This is a rcasonable
assumption for common training class spectral distributions. In a supervised image
classification it makes use of the region means and covariance matrices from the training
areas selected to determine which category each cell in the image has the highest possibility

of belonging to. It 1s then assigned to that category.

Band 3 Equiprobability
Brightness Contours
value

Band 4 Brightness Value

Figure 2.4 Equiprobability contourse of the Maximum Likelihood method
(Lillesand and Keifer, 1994)

In Figure 2.4 we can see that the pixels at points 1 and 2 would be assigned to the Sand
category (S) and Urban category (U) respectively.
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2344 ECHO
The ECHO (extraction and classification of homogeneous object) is a two stage conjunctive

approach to image segmentation. It may be used in supervised or unsupervised mode.

The first stage, cell selection, consists of dividing the data into small groups called cells
(consisting of four or more pixels), using a rectangular grid, then subjecting the pixels of
each cell to a mild test of statistical homogeneity. Cells that fail this test are referred to as
singular and are assumed to overlap a boundary in the data. They are classified on a pixel-by-
pixel basis. In the second step, adjacent non-singular cells are tested for statistical similarity
using a generalised likelihood ratio test. Cells found to be similar are merged or annexed.
The results of extensive testing (Landegrebe, 1980) indicate that the ECHO classification
provided greater classification accuracy at greater computational efficiency than the

Maximum Likelihood classifier.

In essence, this classifier is an example of a 'split and metge' method, where statistically
similar neighbouring pixels are merged if they exhibit similar spectral responses.
Consequently, this classifier is not strictly contextual, although some spatial analysis is
incorporated through this neighbourhood scheme. The relevance of this classifier 1s that it

attempts to extract homogeneous regions from imagery through this scheme.

2.3.5 Bayesian Classtfiers

An extension to the maximum likelihood classifier is the Bayesian classifier. This technique
applies two weighting factors to the probability estimate. First the analyst determines the 4
priori probability for each class. Secondly a weight associated with the cost of
misclassification is applied to each class. Together, these factors act to minimise the cost of

misclassification, resulting in a theoretically optimum classification.

Besag (1986) describes a classification scheme that makes use of the fact that pixels close
together tend to have the same or similar values. In order to do this two information
sources are combined by Bayes’ Theorem. The first of these sources, is that associated with
each pixel there is a multivariate record, which provides data on the individual pixel
brightness value, assuming the records follow a known statistical distribution. The second

source makes the assumption that the local characteristics can be represented
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probabilistically by a non-degenerative Markov random field, which crudely represents the

underlying scene.

The combination of these soutces by Bayes’ Theorem is achieved by choosing (1) the
brightness value that has the overall maximum probability, and (i) that in which each
btightness value at each individual pixel has maximum probability, given the records. In a
Bayesian framework (i) cotresponds to maximum 4 posteriori estimation, and (i) maximises

the posterior marginal probability at each pixel.

However, due to reservations concerning the computational burden and the undesirable
large scale characteristics of the random field, a simple iterative method (Besag, 19806) 1s

shown which, although still based on probabilistic considerations, avoids these problems.
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Figure 2.5 The pyramidal structure of the MSRF. The random field
at each scale is causally dependent on the coarser scale field above it
(Bouman and Shapiro, 1992)

2.3.5.1 SMAP Classifier

The Sequential Maximum A Posteriori estimator (Bouman and Shapiro, 1992; Bouman and
Shapiro, 1994) is a recently developed algorithm for the Bayesian segmentation of images.
The approach of Besag (19806) used a maximum a posteriori (MAP) estimation in conjunction
with Markov random fields. There are, however, several problems, namely that exact MAP
estimates cannot be computed, approximate MAP estimates are still computationally

expensive, and unsupervised parameter estimation of the Markov random field 1s difficult.
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Bouman and Shapiro propose a new method which replaces the MRF model with a new
multi-scale random field (MSRF) and replace the MAP estimator with a sequential MAP
(SMAP) estimator derived from a new estimation critetia. The MSRF is composed of a
series of random fields, progressing from coarse to fine scale, with each finer ficld only
dependent upon the previous coarser field (Figure 2.5). A Markov chain is thus formed by
the series of fields. The result is a rich model with computationally tractable properties. The
new SMAP estimator minimises the expected size of the largest region and is calculated

recursively, hence the name.

The SMAP method may be used in either supervised or unsupervised modes, the details of
which, along with comparisons to the Maximum ILikelihood method and the method
suggested by Besag (1986) may be found in Bouman and Shapiro (1992). A further
comparison with the Maximum Likelihood method and the ECHO method indicates the
success of this method with overall classification accuracies of 93.4, 92.1 and 89.8% for the
SMAP, ECHO and Maximum Likelithood methods respectively (McCauley and Engel,
1995). However, these accuracies relate to aerial imagery of a region of farmland with large
homogeneous tracts and not an urban region. As we have seen, urban imagery presents us

with the most rigorous test of classifier performance.

2.3.6 Neural Network Classifiers

The motivation behind the use of artificial neural networks for remote sensing classification
is based on the realisation that the human brain is very efficient at processing vast quantities
of data from a variety of different sources. This section will not concentrate on the specifics
of these networks, since these details can be found in the standard texts (Kohenen, 1988;
Simpson, 1990; Bishop, 1995). The focus here is on the application of these networks, and
the pros and cons of this approach.

Neural networks, being an artificial intelligence technique, come from the same family as
expett systems and knowledge based approaches to learning. However, neural networks are
only concerned with mathematical analysis of the data, rather than higher level heuristics.
When applied to classification they are concerned with the transformation of data from
feature space to class space. Hence, they really belong to the same class as other automated

pattern recognition techniques (Atkinson and Tatnall, 1997).
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According to Atkinson and Tatnall (1997) the capabilities of neural networks are affected by:

i) The number of nodes — the larger the number of nodes, the better represented the

training data, but the poorer the ability of the ncural network to generalise.

i) The size of training set — the data must be representative of the entire distribution of
values likely to be associated with a particular class. If the extent of the distribution of the
data in feature space is not adequately covered the network may fail to classify new data

accurately. As a result, large quantities of data are often required for tramning.

iti) Training time — the longer a network is trained the more accurately it can classify that
data, but the poorer it can classify previously unseen data. It is possible to over-train a
network so that it is able to memotise the training data but is unable to generalise when

applied to different data.

Ersoy and Hong (1990) applied a hierarchical network to classify airborne multi-spectral
scanner system imagety. Despite the fact that this was low resolution agricultural data (see
section 2.3.2) the best accuracy achieved, after using several different types of neural
network, was 59.6%. This also confirms the findings of Civco (1993) that in certain
citcumstances neural networks were actually less accurate than conventional statistical

approaches for classifying land cover.

There are few papers that discuss the use of neural networks for urban aetial imagery
classification. One of the reasons for this is that the complexity of the data is such that
developing a classifier that can operate on multiple image sets is extremely difficult. It is
likely that for each data-set, considerable retraining of the network would be required.
Consequently there is litde to suggest that this approach, for this study, would yield any

improvement on existing classification procedures.

2.3.7 Fuszy Classification

Fuzzy sets are appropriate where the boundaries between phenomena are not distinct.
Generally there is a trend towards the investigation of fuzzy sets that include vatious degrees
of set membership (Gopal and Woodcock, 1994). In neuro-fuzzy techniques, the power of

neural networks are combined with fuzzy logic to enable fuzzy rules to be incorporated nto
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the classification and enable the intrinsic uncertainty in classification to be represented and
minimalised. A common problem with classification in remote sensing 1is that many
observed pixels represent a mixture of classes. Methods of fuzzy classification for dealing
with sub-pixel mixing, including the use of neural networks, are described in Atkinson ef o/
(1997).

A development of the technique is the fuzzy c-means classification. This can be considered
as a modification of ‘hard’ classification where each pixel is assigned to a class based on
some measure of the distance in feature space from the point representing the class means
(for instance, the Maximum Likelihood method). However, given information on the
distances to various class means the classification can be extended to assign certain pixels

certain amounts to certain classes (Atkinson ez a/, 1997)

2.3.8 Spectral Mixture Modelling

There is a group of classification methods that make use of proportion estimation, or
mixture models (Woodcock and Strahler, 1987). These are appropriate under conditions of
high local variance where the contrast between measurements is maximised. In these
models, the proportion of several elements is estimated for each pixel. Since they are
formulated for high variance conditions they should be suited to urban Imagery
classification. However, the mixture models provide information about the elements in the
lower level of the scene model, and as such are not a substitutes for spectral classifiers at
these resolutions. In urban envitonments they would provide information about the
elements comprising the scene, such as house, lawns, roads, etc., and would not classify the
general land-use or land-cover. As this study is concerned with the correct determination of

the land-use in the imagery, they are not appropriate for this project.

2.3.9 Incorporation of Spatial Information - Contexiual Algorithms

The per-pixel spectral classifiers have found favour because of the wealth of information
that can be obtained from the spectral domain at relatively low computational cost.
However, their limitations become apparent when compared with the techniques used by a
trained photographic observer, patticularly as they fail to utilise other types of information

such as texture and the interrelationships between pixels. There have been some attempts to
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incorporate this type of information into the segmentation procedure, although the correct

classification of these segments based on this information is still poor.

The term contextual can be misleading, as we will discover in section 2.5.1. A more
appropriate term would be neighbourhood algorithms, since in reality these classifiers simply

take into account the effect of directly surrounding pixels on each pixel.

The algorithms developed to represent context attempt to incorporate the following

influences, with varying degrees of success (Oldfield, 1988).

1. Distance - The pixel is likely to be associated with pixels of its own class. Objects, which
are separated by some distance from an object of their own class, are likely to be mis-

classified.

2. Direction - Pixels are likely to be associated with pixels separated by some angular

direction or are less likely to be associated with some pixels at some other angular direction.

These two influences can be applied not only to single pixels but also 7to objects and
therefore be used either before or after classification. A description of contextual algorithms
developed for image classification, which make use of these neighbouring functions, 1s

provided in Appendix 4.

From the descriptions of the various algorithms, it becomes apparent that they only
consider context in broad terms. They do not fully utilise information about the objects
classified, do not attempt to describe regions, and do not take into consideration the shape
of regions. Therefore, when classifying high-resolution urban data, they are of limited use.
For instance, in daytime imagery, the multi-spectral signatures of shadow regions and water
regions are very similar. However, the shape, size, position, and location of the shaded
region is the type of information that may assist us when determining its correct class. These
contextual algorithms are fundamentally unable to represent this expertise and cannot be

truly described as contextual.




2.4 Texture

2.4.1 Introduction

Texture is an important low-level characteristic for the analysis of many types of images. It
can be described qualitatively as having properties of roughness, coarseness, smoothness,
granulation, randomness, lineation or being mottled, irregular or hummocky (Haralick,
1979). In other words, textural features contain information about the spatial distribution of

tonal values.

Texture is the organisation of a surface as a set of repeated elements. It 1s of importance
because distortions of a texture in an image are likely to correspond faithfully to orientation

and depth changes in the original scene.

Several methods have been developed for extracting information about texture. These fall
into two categories: Structural Analysis and Statistical Analysis. Structural Analysis depends
on the prior recognition of the texture, that is, analysis of it as consisting as a set of elements
that are basically the same. The idea behind Statistical Analysis 1s to measure the amount of

textute, giving us a value that tells us how rough or smooth the analysed region is.

2.4.2 Structural analysis

This concerns the use of blocks of textural primitives (texels) to cover a region of an image.
Much work has been concentrated in this area, mainly mvolving the matching and analysis
of Brodatz textures (Brodatz, 1966), a large catalogue of natural texture samples ranging
from straw to bricks. Image texels originate from the perspective projection of (usually 3-D)
texture surfaces onto the image plane, and their appearance consequently depends on mainly

geometric and photo-metric effects that distort the properties of the original 3-D texels.

Much of the work in this area has been concentrated on the discrimination and subsequent
extraction of texels from simple artificial and natural scenes (Strand and Taxt, 1994; Taxt ez
al, 1989; Hild and Shirai, 1993). However, while good segmentation can be achieved in
simple scene analysis, the ambiguous location of region borders and the absence of standard
textures throughout make this type of analysis unsuited to urban aerial imagery. It is

mentioned only for completeness.
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2.4.3 Statistical Analysis

This approach regards texture as a sample from a probability distribution on the image space
and 1s defined by a stochastic model or characterised by a set of statistical features. The most
common features are based on the tonal properties and the pattern properties. These are
measured from first and second order statistics and have been used for discrimination

between textures.

The first order statistics, such as the grey level, are the simplest statistical example serving as
a means of classifying a set of textures. The pixel being considered 1s directly replaced by
some measute of the pixels around it. Measures include mean, variance, and skew (Oldfield,

1988).

The second order statistics, such as the grey level co-occurrence matrix and the grey level
difference histogram ate also powerful texture measures. Higher order statistics, such as the
grey level run length, auto-regression model and the auto-correlation function that can be
measured. Brief descriptions are given in Appendix 3, with a more detailed description of

each being given in Oldfield (1988) and Haralick (1979).

2.5 Context

2.5.1 Introduction

The term context was introduced into pattern recognition to describe the explicit
incorporation of dependencies between elements, for example, to reduce ambiguities in
classifications ot fill gaps in segmentations. The elements may be individual pixels, groups of

pixels (in the form of a segment), or properties of the segment.

Our understanding of space can be affected by context. When we normally discuss spatial
problems, we commonly refer to the arrangement of objects or their configuration.
However, the situation or state of events that are perceived are as important as the mere
physical structure. Information pertaining to the objects, such as the function, situation and
environment of the objects, will have a profound effect when we attempt to classify them.
These components taken together provide the context associated with a given region of

interest.
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In effect, these components (along with the more obvious ones such as size and shape) are
what an image interpreter makes use of when interpreting an image. Knowledge with regard
to the regional environment is referred to as background knowledge, but for our purposes
would still be described as contextual. The subtlety of spatial context becomes apparent, and
we can see that it is therefore difficult to automate. For instance, an expert system approach
(see section 2.6) suffers from the difficulty in developing an operator set (or knowledge-

based rules) general enough to be used for multiple data sets or scenes (CSS, 1989).

Another problem arises, due to the many different interpretations of the term context. As
stated by Krinn (1992): " The most successful approach to the definidon of operator sets
would be based on shared conceptual definitions of space and analysis of objects in space."

In other words, it is important for these definitions to be standardised.

2.5.2 Methods for Representing Context

Previously the attempts to represent context have been split into two categoties, namely
contextual algorithms, and expert systems. It is important to distinguish between the two
approaches at this point. The contextual algorithms, as we have already seen, refer to an
image consisting of pixels, and attempt to solve the problem of misclassification by using
mathematical solutions. The expert system approach has a much larger scope, attempting to
describe objects by modelling human expertise in the form of heuristics, or "rules - of -
thumb" (Tailor e/ 4/, 1986; Argialas and Harlow, 1990). It allows us to combine a range of
strategies for this purpose and choose the most appropriate one based on a pre-ordained

decision strategy.

2.6 Expert Systems

2.6.1 Introduction

Artificial intelligence and knowledge-based expert systems have been used to represent
expertise and are particularly suited to tasks that are hard to break down into an algorithm.
The progress of research in the area of artificial intelligence has been aided by the
development of techniques that allow the modelling of information at higher levels of

abstraction (Nagao and Matsuyama, 1980).
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These utilise whatever domain-specific knowledge is available about the class of scenes they
are to "understand". This takes many forms, including desctiptive definitions of entities,
concepts and objects, and their relationship to each other and criteria for making decisions.
The shift is now from procedural knowledge representation to declarative. A procedural
representation of a fact is a set of mnstructions that, when carried out, artive at a result
consistent with the fact, while a declarative representation of a fact is an assertion that the

fact 1s true.

Expert systems represent knowledge as a set of rules - rules being in the form of IF-THEN
statements. Each rule has a condition part, which consists of one or more antecedent
clauses, and an action part, the consequent, which may create or modify working memory
elements. The order in which these rules are activated is dependent of the control

mechanism of the system.

Rules are appropriate for image representation because a major part of the domain - specific
knowledge results from empirical associations (heuristics) developed through years of
experience in a particular area, which may be expressed as heuristic rules. However,
representing knowledge as an unordered and unstructured set of rules has certain
disadvantages. For example, one cannot easily express the structure of the domain in terms
of taxonomic, or part - whole, relations that hold between objects and between classes of
objects (CSS, 1989). Further details on the available architecture of general expert systems
can be found in Giarratano and Riley (1994). Further information regarding the
development of expert systems for image processing is given by Levine (1985), Tailor e a/
(1986) and Argialas and Harlow (1990).

2.6.2 Expert Systems use in Remote Sensing
A thorough review of some of the attempts to ncorporate contextual information into an

expert system follows.

Nagao and Matsuyama (1980) developed one of the first expert vision systems incorporating
rule-based techniques into the analysis of complex aerial scenes. This performed structural
analysis of aerial photographs in a 'segmentation by recognition' manner. Objects and

regions were recognised by spectral and spatial features such as size, shape, location, colour
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and texture. Whenever possible, the spatial characteristics of regions were used rather than
spectral properties so that the system was capable of giving stable results despite changes in
photographic conditions. Knowledge about location constraints and spatial arrangements
was used so that context sensitive objects, such as cars on roads and regularly arranged

houses, could be recognised.

A further aerial scene analysis system called SIGMA (Matsuyama, 1987; Matsuyama and
Hwang, 1990) demonstrated mechanisms for the focus of attention, conflict resolution and
the correction of early segmentation etrors. SIGMA emphasised spatial reasoning and top-
down goal-directed image segmentation, while an earlier system (Nagao and Matsuyama,
1980) incorporated sophisticated image analysis procedures to recognise objects based on
their various spectral and spatial properties. Although the system of Nagao and Matsuyama
could analyse faitly complex scenes, its capabilities were limited; the types of recognisable
objects were limited and various recognition errors occurred due to noise and the
imperfection of the segmentation algorithms. The SIGMA system analysed black and white
aetial photographs of suburban housing developments and located cultural structures such

as houses, roads and driveways.

A similar method using explicit knowledge about the geometry of objects and their spatial
relationships in the form of rules was developed by Eklundh (1983). This structured
approach iterates to a solution, being similar in nature to a relaxation approach. The main
goal, the improvement in classification, was achieved, with an increase of correctly classified

regions by a factor of ten (although only a small number of categories were used).

Nicolin and Gabler (1987) developed a knowledge-based system for the analysis of aerial
imagery of suburban scenes. Their aim was to develop and implement a complete system,
starting from the digitised picture and producing a complete, unambiguous and reliable
labelling of essential image segments. They incorporated semantics against a genetic model
of the scene leading to explicit labelling of the image structures. The semantic network was
structured using hierarchical relationships, allowing the structure of complex objects to be

given from less complex objects.
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In Nicolin and Gablers’ system, processing is carried out by a seties of modules. Low-level
modules determine bright, dark and border areas. Medium-level modules incorporate
segmentation algorithms and high-level modules perform object identification. In this
system the invocation of any processing method is done by means of a bi-directional control
mechanism, which 1s a mixture of bottom-up (data-driven) and top-down (model-driven)
control. The data driven component is activated to generate the first results of the image
(e.g. to establish interpretations of image segments). As soon as a sufficient number of
image fragments have been identified to form a hypothesis, the top-down component of the

control model is invoked.

Nazif and Levine (1984) developed a rule-based system for the low-level segmentation of
imagery into uniform regions and connected lines. They differentiate between the low-level
segmentation and a high level interpretation by the knowledge available to each. General-

purpose models were used which contain knowledge about the imagery and rules for

grouping.

A focusing method was employed to concentrate on significant parts of the mmage. An
interesting feature of this technique is that regions and lines are represented by the same
data structure. In a further paper, Levine and Nazif (1984) present an optimal set of image
segmentation rules. This is a direct extension to image classification and interpretation

adding further knowledge modules capturing domain-dependent information.

Kontoes ¢z al (1991) used an expert system and supervised relaxation techniques to improve
land use mapping in a post-classification refinement process. In order to overcome some of
the difficulties encountered in classifying SPOT satellite imagery, statistically separable
classes were matched forcibly, with respect to their radiometry, to natural classes perceived
and mapped by the photo-interpreter. This is of interest because SPOT imagery suffers
from many similar problems to aetial imagery, such as the adequacy of the training sample
and the performance of the clustering algorithm. The aim of this was to achieve in a
machine assisted photo-interpretation method all the characteristics of a "human remote
sensing system". This applied logical reasoning, took account of contextual relationships,
assessed similarities and disparities among the various objects, perceived and occasionally

estimated bio-geophysical parameters using either absolute or subjective measurements.
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However, the method is not yet in operational use and still has many components missing,
such as the addition of spectral signatures. The imagery is also of poor quality, with roads,
for instance, being removed in the spectral generalisation process. It is also worth noting

that it uses only pixel context, rather than segment context.

Matsuyama (1989) describes several expert systems for image processing which he
distinguishes from image understanding systems by precisely defining each. These operate at
a higher level than image understanding systems, in that they decide which image
understanding methods to apply based on user requirements. The main features of an expert

system for image processing are summed up thus:

1. Objective. Effective image analysis processes are developed by combining basic image
processing functions from program libraries. The expert system should make full use of

available image processing techniques.

2. Knowledge Sources. The knowledge used should concern the choice of image processing

techniques as well as the image domain knowledge.

3. Goal Specification. A typical goal might be 'find rectangles'. Since thete are many possible
methods to extract rectangles from an image, knowledge is required about primitive
operators in order to select promising ones, and know-how about image processing

techniques is needed so as to combine them effectively.

McKeown ez a/ (1985) presents a rule-based system, SPAM, that uses map and domain
specific knowledge to interpret airport scenes. The domain specific knowledge is based on
spatial constraints concerning airport design and observations made about the aerial
imagery. This domain specific knowledge cannot, however, be applied to urban imagery due
to the lack of codified spatial organisation. An attempt to remedy this situation was the
subject of further research by McKeown e 4/ (1989). The procedure of knowledge
acquisition is automated by analysing the spatial constraints and scene primitives of aerial
imagery in general. The tool developed, RULEGEN, compiles spatial and structural
knowledge from several sources, stores these as collections of rule schemata, and generates

production rules that are executed by the SPAM system.
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More recent work by McKeown ez a/ (1994) has focused on improving the interpretation
accuracy and computational performance of the SPAM system. In addition to this, the
design of effective algorithms to extract man-made features has been investigated by
incorporating general knowledge of typical scene geometry and specific knowledge about
the specific scene of interest. The incorporation of photogrammetric techniques mto a

building extraction system is described.

2.6.3 Expert System Implementation

Based on the literature regarding expert systems, one may be drawn to two conclusions:

1) the problem of context, due to its imprecise nature, can be solved through the use of

heuristics;
2) the most suitable method for capturing heuristic information is an expert system.

However, while section 2.6.2 has indicated that this approach may be used successfully for
other types of imagery, such as aerial photography, (Nagao and Matsuyama, 1980;
Matsuyama and Hwang, 1990; Nicolin and Gabler, 1987; McKeown e 4/, 1985; McKeown ef
al, 1994) mn this section it will be demonstrated that the approach does not lend itself well to
digital ATM imagery. In order to evaluate this promising approach a simple expert system

was implemented.

There are many systems and languages available that allow the user to easily build expert
systems (Gilmore and Roth, 1988). For this initial evaluation, the popular CI.IPS tool was
used (Giarantino and Riley, 1994). CLIPS is a development and delivery expert system tool
which provides a complete environment for the construction of rule-based systems. It was
chosen due to its widespread use and support, as well as its similarity to the C language, with
which the author 1s famihiar.

The rules in Figure 2.6 were generated by Matsuyama and Hwang (1990) for the
classification of urban aerial photographs. As they are of a general nature, it would seem

appropriate to apply them to the urban ATM imagery used for this project.
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These rules were implemented and applied to the Dudley dataset (see section 3.1.1).
However, the results were extremely poor — the following discussion will outline the reasons

for this.

We can see that the rules (Figure 2.6) are extremely a4 hoc in nature, as we would expect, but
also are heavily dependent on the resolution of the imagery. However, rule 3 doesn’t work
for this imagery due to the lack of discernible texture on the roofs of buildings — a typical
house in the ATM imagery is covered by 10-12 pixels (at the resolution used).

1. Road = (elongated region) and not (vegetation region)

and not (water region)

2. River = (elongated region) and (water region)

3. House = (high contrast texture area) and not (large

homogeneous region) and not (large vegetation area)

4. Building = not (vegetation region) and not (water
region) and (shadow-making region) and size > threshold),
where the threshold is empirically determined.

Figure 2.6 The rules used for the expert system (Matsuyama and Hwang, 1990)

Another characteristic of ATM imagery is that it is extremely difficult to geo-rectify (section
2.2.6). This leads to difficulties in making use of the shape characteristics of various
structures within the image, such as roads. For instance, warping of the scanlines in the
imagery removes the straight edges normally associated with man-made objects. This makes
the development of further rules, which might make use of the contextual features of man-

made objects, very difficult.

In fact the most sertous shortcoming of the expert system approach is in the development
of a suitable rule set. If the rules are to be applied to previously unclassified imagery, then a
significant number of complex rules need to be developed in order to characterise the

properties of certain classes. For instance, a rule to determine which regions are water
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regions must take into account the low reflectivity of water in certain bands, the thresholds
of which must be empirically determined. So in reality, an impracticably large number of a4
hoc rules are required just to determine the land-cover, before any attempt to determine land-

use 1s made.

2.7 Feature Extraction

2.7.1 Introduction

Having described some of the approaches used to combine the contextual information, it
becomes apparent that low-level methods must be used to extract the bulk of this
information. Low level analysis refers to the absence of # priorz knowledge about scene
content (Levine and Nazif, 1984), and 1s concerned with extracting data from the pixel

values in the imagery.

2.7.2. Edge Detection
One of the most valuable sources of information for many Remote Sensing applications 1s

that which is contained in the edges surrounding objects or features of interest.

Unlike the real world, images do not actually have edges. Images have abrupt changes in
intensity, but since the aim 1s to locate edges in the real world via an image, these changes
are commonly referred to as 'edges'. All edges are locally directional. Therefore the goal in

edge detection is to find out what occurs perpendicular to the edge.
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Figure 2.7 Commonly found edge profiles

Thete is a variety of different types of edge, with intensity profiles ranging from that of a
sharp step (a), through a gradual step (b) and on to a 'roof (c) or 'trough' (d) shaped profile
(Figure 2.7). Edges can also be found to be any combination of these.
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There is no single image filter that will detect all of the previously mentioned image edges
and all their intermediates. This is because edges may have many different profile shapes and
spatial scales. There follows a brief review of some of the simpler edge detection methods
and a thorough review of some of the more sophisticated methods more pertinent to this

study

2.7.3 Stmple Edge Operators.

Edge detection at its simplest level involves the use of filters in the form of kernels to
emphasise the edge information within the image. The Roberts Cross operator (Robetts,
1965) performs a simple, computationally efficient two-dimensional spatial gradient
measurement on an image. The Sobel operator (Sobel, 1970; Danielsson and Seger, 1990)
petforms in a similar manner, although a larger kernel is used. This results in a slower
performance but reduces the noise associated with the Roberts Cross. The Prewitt gradient
edge detector (Prewitt, 1970) is again based on the same principle but uses a slightly
different kernel. A full description of the these methods can be found in many standard

texts, such as Jenson (1986).

2.7.4 Canny Edge Detector
There are several common criteria relevant to edge detector performance, three being

described by Canny, 1986. These are:

i) Low-error rate. Good detection is that with a minimum number of false positives and
false negatives. It is important that edges that occur in the image should not be missed and

that there are no spurious responses.

if) Good Localisation. The points marked by the detector should be as close as possible to

the correct edge position.
11) Unique response to a each edge.

Based on the above criteria Canny developed an optimal filter. This was shown to be a very
close approximation to the first derivative of a Gaussian distribution function. Non-

maximum suppression in a direction perpendicular to the edge was applied, to retain
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maxima in the image gradient. Finally weak edges were removed using thresholding. Edge
contours ate processed as complete units, with two thresholds defined. If a contour being
tracked has gradient magnitude above the higher threshold then it is still passed as an edge at
those parts where the strength falls below this threshold, as long as it does not go below the

lower value. This reduces streaking in the output edges.

2.7.5 Laplacian of Gaussian (LoG)

Edge enhancement without regard to the edge direction may be obtained by applying 2
Laplacian convolution mask to the imagery (Marr, 1982). The Laplacian is a two-
dimensional isotropic measure of the second derivative of an image. The edges are found by
the highlighting of regions of rapid intensity change. The Laplacian L(x,y) of an image

with pixel intensity values I(x,Y) is given by:
Y Equation 2.1

The image is represented by a set of discrete pixels so a discrete convolution kernel is used
to approximate the second derivatives in the definition of the Laplacian. By using kernels to
approximate a second detivative measurement, we also introduce a great sensitivity to noise.
This is countered by Gaussian smoothing of the image prior to the application of the

Laplacian filter, to reduce the high frequency noise component.

Additionally, because the convolution operation is of an associative nature, the Gaussian
smoothing filter can be convolved along with the Laplacian filter initially, with this hybrid

filter being convolved with the image to achieve the required result. The two-dimensional

LoG function centred on zero and with Gaussian standard deviation & has the form:

1 x>+’ ————x2+fz
LoG(x,y)=——F|l-—————|e °*°
o

2 0_2 Equation 2.2
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It should be noted that as the Gaussian standard deviation is made increasingly narrow, the

LoG kernel becomes the same as the simple Laplacian kernels.

By itself, the effect of the filter is to highlight edges in an image. The fact that the output of
the filter passes through zero at edges can be used to detect those edges. The use of this

technique is discussed in the following section on zero-crossing edge detection.

2.7.6 Zero Crossings
Marr and Hildreth (1980) proposed the use of zero crossings of the Laplacian of a Gaussian
(LoG). They developed several criteria that they thought were desirable properties for a

feature extractor.

These criteria are:

1. Localisation in space - the location of the edge must be correct.

2. Localisation in frequency - the width of the edge must be spatially precise.

3. Independence of orientation - there 1s no preference for an edge in a particular direction

It should be noted that crteria 1 and 2 are mutually inconsistent, so there must be a

fundamental trade-off when trying to satisfy them both.

The genetic approach in edge detection is to apply a first derivative operator, look for
extrema, and compare these with a threshold value. Another approach is to look for zero-

crossings in the second dernvative (Figure 2.8).

The only non-directional (ie. rotationally independent) linear derivative operator is the

Laplacian.

Having satisfied criteria 3, the localisation in space and frequency must be addressed. The
Gaussian filter is the optimal filter for a particular trade-off between the localisation in space
and frequency. When applied to an image, the Gaussian filter will spread out all the values in

the image by the shape of the filter. Of note is that the variance is reciprocal between the
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original Gaussian and the Fourier transform of the Gaussian. Therefore the wider the

Gaussian gets in space, the thinner its transform gets in frequency.
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Figure 2.8 Zero crossings are found in the second
derivative
Although points where the Laplacian changes sign occur at edges, they also occur at places
not normally associated with edges. This is due to the use of non-directional derivatives
which result in the measurement of edge responses parallel to each edge, reducing the signal
to noise ratio. Connectivity at junctions is good, although cormers have rounded edges. The
main use of this type of detector is for feature detection, since its desirable property is that
the zero crossings always lie on closed contours. The output from the zero crossing detector
is usually a binary image with single pixel thickness lines showing the positions of the

crossing points.

The GRASS4.1 module 73¢ is an implementation of this edge detector (Shapiro ez 2/, 1993).
The x-y pixel extent of the Gaussian filter can be adjusted by the user, with edges
tepresenting more gradual changes in pixel values associated with a greater width, and vice
versa. The output from the procedure is a thinned (i.e. single pixel width) contour map of

the image.

The full procedure is outlined in the following steps:
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The Fourner transform of the image is taken.

The Fourier transform of the Laplacian of a two-dimensional Gaussian function is used to

filter the transformed image.
The result 1s run through an inverse Fourier transform.

The resulting image is traversed in search of places where the image changes from positive

to negative (ot negative to positive).

Each pixel in the image where the value crosses zero (with a value greater than a set

threshold value) is marked as an edge and, optionally, an orientation is assigned to it.

2.7.7 SUSAN approach

A recent approach to low level image processing, in particular edge and cotner detection and
structure preserving noise reduction, based on the SUSAN principle, is described by Smith
and Brady (1995). Non-linear filtering is used to define which parts of the image are closely
related to each individual pixel, and each pixel has associated with it a local image region
which 1s of similar brightness to that pixel. The local atea or Uni-value Segment
Assimilating Nucleus (USAN) contains much information about the structure of the image.
From the size, centroid and second moments of the USAN two-dimensional features and
edges can be detected. The acronym SUSAN arises from the determination of the smallest

USAN.

In contrast to the other methods, no image dervatives are used and no noise reduction is
needed. This approach therefore represents a significant departure from previously

developed feature extraction and noise reduction methods.

2.7.8 Edge Thresholding

A drawback with using edges is that not only do edge detectors extract meaningful and
useful edges, but also many other spurious ones which anse from noise and minor changes
in intensity values. If all such edges are kept, then the resulting clutter is hard for subsequent
processing stages to analyse, while the large number of edge points can seriously degrade

computational performance. The alternative is to select a subset of edges for further
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analysis, and distegard the remainder. A threshold in the gradient magnitude of the pixels
generally achieves this.

Sutprisingly little attention has been paid to the problem of automating the thresholding of
edges. Most standard image intensity algorithms cannot be applied since they assume bi-
modal (or multi modal) intensity histograms while gradient magnitude histograms are more
likely to be uni-modal. Moreover, other inapproptiate assumptions are often made such as
modelling the two populations by Gaussian distributions, and not expecting the sizes of the
populations to be too dissimilar. Unfortunately in practice edge thresholding is often done
in an ad-hoc manner, frequently requiring user tuning of parameters. To enable the building
of robust machine vision systems it would be preferable to automate the edge thresholding
process so that the systems can adapt to different scenes and imaging conditions without

manual intervention.

There are trade-offs in choosing operators to pursue the best overall performance. The
Laplacian of Gaussian, according to Yuille and Poggio (1986), should be used because it
promises the best zero crossing behaviour in scale space, which presumably will be helpful
in later scale space manipulations. However, an isotropic operator like the LoG picks up
more noise in the direcions where no signal components are present than a directional
operator that suppresses the outputs in those directions. As a result, the choice of the LoG
is not optimal in terms of signal-to-noise ratio (SNR) and edge localisation accuracy (ELA).
The Canny edge detector has better SNR and EILLA performances than the LoG. However,
the local extrema of the Canny detector’s outputs may have unconstrained behaviours in the

scale space

In addition, the image produced by most edge detectors is largely lacking in connectivity.
This means that subsequent processing must be applied if useful information 1s to be
extracted from the edges. This generally involves some form of shape detector, such as a
Hough Transform, which can locate and extract shapes such as circles, ellipses and
rectangles, as well as straight lines. Clearly there is a distinct advantage to be gained through
the use of an edge detector that produces continuous edges, such as the Zero-Crossing edge

detector.
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2.8 Straight Line Extraction

2.8.1 Introduction

When attempting to model human vision on a computer, it can be useful to extract straight
lines from the image in order to build up information about specific objects contained
within the image. This can potentially be applied to remotely sensed imagery, in particular
urban imagery, where we might expect to find lines and distinct corners associated with man
made objects, for instance buildings, roads and canals. The most common methods for

doing this involve the use of the Hough Transform or one of its many variants.

2.8.2 Hough Transform

The Hough Transform was developed by Paul Hough 1n 1962 and patented by IBM (Ballard
and Brown, 1982; Levine, 1985; Boyle and Thomas, 1988). It became, in the last decade, a
standard tool in the domain of artificial vision for the recognition of straight lines, circles
and ellipses. The Hough Transform is particularly robust to missing and contaminated data.
It can also be extended to non-linear characteristic relations and made resistant to noise by

use of anti-aliasing techniques.

The Hough Transform is a technique that can be used to isolate features of a particular
shape within an image. The main advantage of this method is that it is very robust to noise
and 1s not affected when part of the shape is occluded. In other words, the evidence for the
existence of a shape does not require the pixels to be closely associated in the 1mage. An
example of this would be a road occluded by many bridges, which would still produce
enough evidence for the presence of a straight line in the Hough Transform. A basic

explanation of the transform follows.

A general line can be expressed as y = ax + b, and also in terms of its parameters, b = -ax +
y. So, in Cartesian space, any line can be represented by a single point (a,b) in parameter
space. Instead of solving the many line equations for all the points in an image we translate
them to parameter space using the Hough Transform, thus reducing the number of

calculations.
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The Hough Transform compares the lines between each pair of points, with a point is
placed in the parameter space representing the line. If the same position in parameter space

is produced more than once it represents three pixels in line with each other.

As an aid to the interpretation of the points, the parameter space 1s split into a grid, where
each cell represents lines that ate almost collinear. As the transform progresses, each
accumulator cell counts a tally of points, a high tally representing a line with a lot of pixels

along it. This can then be applied to the vectorisation of the image.

The main weakness of the Hough Transform is that noise, or pixels associated with other
features in the image, can also contribute to the detection of a certain feature. In the case of
lines, a set of pixels that seem to make a well-defined line can end up voting for a skewed

line, due to interference from other structures elsewhere in the image.

Implementations of the Hough Transform suffer from two problems related to the use of

global edge information in the image to find local edges.
1) Edge elements on collinear but unconnected line segments vote for the same line.

2) The transformation of an image with many noisy edge points or many irregular blobs may
contain spurious lines linking distant edge elements. This is because the threshold on peak

detection in the Hough space must be set low in order to obtain these lines.

2.8.3 The Muff Transform

Another approach is the Muff Transform (Wallace, 1985). The image 1s assumed to be
bounded by a rectangle parallel to the x and y axes and extending from the origin to the
furthest point (xmax, ymax). This bounding box provides the basis for the parametetisation.
The two points where the line intersects the perimeter of the bounding box parameterise a
line passing through the image. These points are given by their distance along the petimeter
of the bounding box, with the distance measures counter-clockwise along the box, starting
at the origin. The line has two parameters, S1, and S2, representing the two points where the
line intersects the box. To presetve uniqueness of the representation, it is assumed that

S1<S2. The range of possible values, therefore, 1s
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0 <51< 82 < (xmax, ymax)

The approach used by the Muff transform is to divide the image into a number of smaller
rectangles and to compute the transform for each. One immediate advantage of the Muff

Transform is graphical, in that it maps back into points on the images bounding rectangle.

Chapter 6 will show the weaknesses with both types of transform when applied to urban

1mages.

2.9 Accuracy Assessment

2.9.1 Introduction

The accuracy of traditional remote sensing techniques, such as photo-intetpretation, has
generally been accepted as high, without any confirmation. With the advent of more
sophisticated digital classification methods, however, there has become a need to assess the
accuracy and reliability of these methods, due to their complexity. Since it is often assumed
that photo-interpretation provides us with a 'cotrect' classification, this often provides the
reference to which the assessment of digital classification is compared. This assumption is
rarely valid, however, and can lead to a poor assessment of the digital classification

(Congalton, 1991).

The accuracy of information generated from remotely sensed data has been of interest for
many years, but recent widespread evaluation of the results of digital image classification has
probably been responsible for the major growth in accuracy assessment. In a way, the focus
upon accuracy of digital classifications is unfair, because traditionally the usefulness of
manual interpretations has often been accepted in the absence of substantive evidence of

accuracy.

There have been few systematic investigations of the relative accuracies of manual and
machine interpretations, accuracies of different individuals, accuracies of the same
interpreter at different times, accuracies associated with separate pre-processing and

classification algorithms, or accuracies associated with different images of the same area.
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Most accuracy assessment methods compare the remote sensing derived map with some
form of ground truth. Varous relations between the two sets of data can be derived

providing the user with an idea of the success of the classified map.

2.9.2 Accrracy Assessment Methods

The oldest and most frequently used method of evaluation is a qualitative assessment. The
only method available is a simple visual comparison between two maps to determine
whether similar features ate present. This is, by its nature, inexact, but nevertheless very

important. Chapter 3 will examine this further.

Another method of evaluation is simply to compare the two maps in respect to the areas
that match when the two maps are superimposed. The result of such a comparison 1s to
report the spatial proportions of the two patterns that match. These values report the extent
of the agreement between the two maps in total area in each category, but do not take into
account compensating etrots in misclassification that can cause this kind of accuracy
measure to be inaccurate itself. This method is sometimes referred to as 'mon-site-specific
accuracy’ because it does not consider agreement between the two maps at specific

locations, but only overall agreement.

Booth (1989) and Congalton (1991) present comprehensive reviews of literature concerned
with assessing the accuracy of classified remotely sensed imagery. Some of the techniques

more relevant to our study are presented and discussed below.

Hay (1979) identified five problems that arise when testing the accuracy of qualitative

characteristics determined from remotely sensed data.
1. What proportion of all the sample predictions proved to be correct?
2. What propottion of the sample predictions of single categories proved to be correct?

3. What propottion of land truly (in the ground truth sense) in a category is correctly
predicted?
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4. Is the net effect of questions 2 and 3 for predictions to overestimate or underestimate a

given category?
5. Are the errors randomly distributed?

Point 5 may arise in a multi-category case where some categories are acknowledged to be
very similar; in such a case, mis-classification between similar categories may be high,

although overall accuracy is quite high.

A very large manual survey of the imagery will answer all the problems above, but the
purpose of the classification algorithm being tested is to avoid classifying the entire image
manually. To this end Hay demonstrates that any class sample of less than 50 pixels will be
an unsatisfactory guide to the true error rate, and recommends that a sample size of 50-100

pixels is used. This assumes that all categories are of equal interest.

Jenson (1986) identifies two procedures for measuring overall and site specific accuracy. In
order to determine the overall accuracy it is necessary to ascertain whether the map meets or
exceeds some predetermined classification criteria. For earth resource management the
overall accuracy of land use maps should be 85%, with approximately equal accuracy for
most categories (Jenson, 1986; Campbell, 1983). The agreement between the two maps in
total area in each category is demved. The measurements do not usually evaluate

compensating errors that occur m the various categories.

Site-specific etror analysis compares the accuracy of the remote sensing derived map pixel
by pixel with the assumed true land use map. If test locations in the study are identified and
labelled prior to classification and are excluded from the training stage they can be used to
evaluate the accuracy of the classification map. To do this additional ground truth is
required for these test site areas. It is important to determine how many pixels are necessary
in each test site class along with the method of identifying the location of the test sites.
Many statistical tests require that locations be randomly selected pror to classification so

that the analyst does not bias their selection 1n any way.

Two methods for determining the individual category accuracies can be determined from

the error matrix (Story and Congalton, 1986). They are:
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1) The number of correctly classified samples in a category divided by the number of

category samples in the reference data.

2) The number of correctly classified samples in a category divided by the total number of

samples classified as that category.

The first method measures the 'etror of omission' and has been refetred to as the producet's
accuracy, because the producer of the classified image 1s interested in how well a specific
area on the Earth can be mapped. The second method measures the 'error of commission’,
and has been referred to as the user's accuracy, because a map user is interested in the
reliability of the map, or how well the map represents what is really on the ground. It 1s

obvious that these measures of accuracy can vary massively.

Although these measures may seem simple, it is critical that they both be considered when
assessing the accuracy of a classified image. It is often the case that only one measure is

reported. This value can be extremely misleading, as has been seen in section 2.2.

There is a requirement for a single value (or coefficient) that adequately represents the
accuracy of thematic classification. As well as requiring a single figure to measure the overall
accuracy of the map, it is desirable to calculate the accuracies of the individual categories
within the map. One way of doing this i1s to address the problem as a measure of agreement
between classification and verification. This can be measured using the Kappa coefficient of

agreement (Rosenfield and Fitzpatrick-Lins, 1986).

The estimate of Kappa (K) is the proportion of agreement after chance agreement is

removed from consideration:

K=(p,~-p)/(1-p.) Equation 2.3
where
p,= proportion of units which agree,

p.= proportion of units for expected chance agreement.
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When the obtained agreement is chance agreement, K=0. Positive values of Kappa occur
from greater than chance agreement; negative values of Kappa are from less than chance

agreement. The upper limit of Kappa (+1.00) occurs only when there is perfect agrecment.

Kappa coefficient values give a significantly lower value for classification accuracy than the
total percentage correct classification. It uses information in the classification error matrix
resulting from errors by commission and of omission. For these reasons, Rosenfield and
Fitzpatrick-Lins (1986) recommend that the coefficient of Kappa be adopted by the remote
sensing community as a measure of accuracy for thematic classification as a whole, and for

the individual categories.

Ma and Redmond (1995) developed the Tau coefficient, which measures the improvement
of a classification over a random assignment of pixels to groups. The difference between
Tau and Kappa is that Tau is based on « priorz probabilities of group membership, whereas
Kappa is based on a posteriori probabilities. As a result they claim that Tau, as well as being

easier to calculate, better adjusts the percentage agreement than Kappa.

Another method is a 'fit for use' method, whereby the classification is tested by passing the
land cover data through a urban drainage model and comparing the results with those from
hand classified data, using the same model (Blagovic e 2/, 1998). Though this appears the
most realistic test what we are in fact doing is testing the model/land cover data together as

an inseparable pair.

2.9.3 Conclusion

Thete are a great many considerations to be made when attempting to provide an accuracy
figure for a digital classification. It 1s commonly stated, for instance, that land use maps must
be 85% accurate to be of any use to the earth resource community (Campbell 1983; Jenson,
1986). However, what this figure means and how 1t relates to those derived from accuracy
assessment techniques is rarely discussed. This is of critical importance to remote sensing,
since the quantitative analysis of our techniques is what provides confidence to the end
users of our technology. As Congalton (1991) potnts out, the days of casual assessment of

the "it looks good" nature are no longer acceptable. A classification is not complete until it
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has been assessed, and it is this assessment which validates the information that temote

sensing has provided.

As a consequence, it is suggested that as much time and effort is concentrated on this often
neglected area as on the classification itself. An assessment of the accuracy should be as
comprehensive as possible, allowing true comparison with other classifications as well as

restoring confidence in the method itself.

2.10 Urban Drainage Modelling

2.10.1 Introduction

The atm of this project 1s to provide a high accuracy land-use classification for input into an
urban drainage model. As a result, it is useful to assess what type of data mput 1s required by
the various drainage models available, in particular the land-use information. Therefore the
purpose of this section is to provide an overview, rather than a rigorous critique, of these

models from this perspective.

2.10.2 Urban Drainage

There is a general tendency wotldwide for the increase in the percentage of the population
living in utban areas. This causes not only an increase in the density of the population but
also the utbanisation of former sub - utban and rural areas. Demand for a comprehensive
drainage system in such areas is evident and the system becomes more and mote complex as

the urbanised area increases.

Rehabilitation of the sewer netwotk may consequently be required. There are two
fundamental reasons why this may be the case. The first of these is that the sewer may be
structurally inadequate, due to ageing, and have poor drainage qualities as a result of poor
design of the existing system. The second reason is that the system may have an inadequate

capacity. This may be because:
1. In the design phase the water quantity was underestimated (bad modelling).

2. Newly urbanised areas, not accounted for during the design phase, have been connected

to the existing system without its reconstruction.
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3. Land use within the existing catchment has changed because an increase in urbanisation

has caused an increase in the percentage of impermeable areas, resulting in increased runoff.

4. Environmental requirements, public health concerns and other statutory reasons.

2.10.3 Urban Drainage Models

There are several popular urban drainage models in use today. Different models are
preferred in different countties, although they all broadly follow the same principles. They
range from MOUSE (Mark, ez a/, 1997; DHI, 1995) and BEMUS (Maksimovic ez 2/, 1995) to
WALLRUS (Wallingford Software, 1991) and SWMM (Jewell and Adrian, 1978).

A explanation of the principles behind the design of these models and a brief description of

each follows.

The BEMUS model is a physically based deterministic model that consists of several
modules. Each module deals with one of the phases of flow processes i.e. surface detention,
infiltration, surface runoff, flow along gutters and flow in the underground network. All
surfaces belonging to a sub-catchment are divided into sub-surfaces such as roofs, other
impervious surfaces (streets, pavements, parking lots etc.) and pervious surfaces (parks,
gardens etc.). Contributions to runoff is the whole rainfall from roofs, and effective rainfall

from other impervious surfaces (Maksimovic, 1993).

The most widely used package in the UK is the Wallingford Storm Sewer Package
(WASSP), which was developed by HR Wallingford. The original WASSP (as used by Finch
et al, 1989) consisted of interrelated computer programs to assist engineers in the hydraulic
design of storm sewer networks in the UK. It included software to assess the performance
of an existing or designed system. This has evolved into the WALLRUS package
(Wallingford Software, 1991) which is applicable to a wide range of climatic types, and
includes new facilities such as spatially varied rainfall, free surface backwater effects, and

sediment depths.

The US Storm Water Management Module (SWMM) is a comprehensive model for
continuous and single-event simulation of runoff quantity and quality. It applies to all

hydrologic, hydraulic and water quality aspects of urban drainage, including storm sewers,
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open channels, combined and sanitary sewers. It covers dynamic storms, snowmelt,
pollutant build-up, wash off and transport, dynamic routing and surcharging in sewer

networks and a variety of other systems.

MOUSE is a software package for the simulation of surface runoff, flows, water quality and
sediment transport in utban catchments and sewer systems. It can be applied to any type of
pipe network with alternating free surface and pressurised flows. It contains computational
models for sutface runoff in urban catchments and hydrodynamic analysis of flows in pipe
networks. A variety of add-on modules are available, including MOUSE GIS, for network
data modelling and results display within the ArcView environment.

In almost all of the models the percentage of paved and roof areas in each sub-catchment
must be determined. If the development is uniform, the paved and roof area in a selection
of the sub-catchments can be measured, with the same percentages of development applied
throughout the catchment. The calculation of runoff and flows is particularly sensitive to the

impervious area, making this a time consuming procedure requiring high accuracy.

Paved areas and pitched roofs must be treated separately. Pitched roofs give a much faster
response to the sewer system, creating more likelihood of flooding. The difference this
makes to the results is small, but may be significant if more than 30% of the impervious area
is pitched roof connected directly to the sewer system (Wallingford Software, 1991). Flat
roofs are treated as paved areas. Roof area which is not drained directly into the sewerage
system but which drains across permeable areas should not be included, as part of the roof

area but should be included in the permeable area.

The WALLRUS package (Wallingford Software, 1991) has an option that allows the user to
specify the characteristics of permeable regions in detail. For example, the user can specify
that the permeable area be categorised as high, medium or low-density housing, or open
area. This demonstrates the move towards mote sophisticated drainage models and

emphasises the need for higher detail land-use classification of urban imagery.
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2.11 Conclusion

This chapter has examined, in depth, the principles and techniques behind existing
classification methods, and a critique of these when applied to the field of urban drainage
has also been undertaken. Consequently it has outlined the motivating factors for the
development of a new classification routine. Further to this, several common methods for
assessing the accuracy of these existing classification techniques have been discussed. The
application of these accuracy assessment techniques will allow a more detailed critique of the

shortcomings of these classifiers.

The literature has shown that, for highly complex data, context is an important factor n
determining the cotrect land use. It has also been shown that urban imagery is indeed highly
complex. However, it is clear that there have been few attempts to make use of context in
classification, due to the difficulties encountered when attempting to represent it. Where
contextual features have been incorporated into the classification process it has been done
so through the use of expert systems applied to scanned aerial photography. This is of
considerably higher resolution than ATM imagery and does not suffer from the same geo-
rectification problems. These problems mean that effective rules ate difficult to generate —
for instance, shape — based rules cannot be reliably defined (due to rectification errors), and
texture-based rules ate not applicable (due to image resolution). Consequently we have seen
that expett systems are inappropriate for incorporating context when classifying imagery of

the type used in this project.

This project will attempt to rectify the failings of traditional classification techniques,
through the development of a new classifier particulatly focused on the urban drainage
application. Contextual features in the imagery will be used to enhance both the qualitative
and quantitative aspects of the classification, with a discussion of both improvements being

presented along with imagery and numerical data.

The remainder of this thesis will concentrate on describing the research behind the
development of the classifier, along with a detailed analysis of its performance when

compared to existing ones
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Chapter 3: Data Management and the Classification of Urban Imagery.

3.1 Introduction

In this chapter the imagery used in this project is introduced and analysed, leading to an
examination of some of the classification methods available. The purpose of this is to assess
where the various classification schemes succeed, and where they fail. This will illustrate
areas where improvements are necessary that can then be developed and incorporated into
the new classification scheme proposed in Chapter 5. A comparison between these existing
schemes and the technique developed in this project can then be made, from both

qualitative and quantitative viewpoints.

3.1.1 The Study Area: Dudley, West Midlands.

The imagery selected for this project covers a region of the West Midlands near Dudley, a
deeply industrial urban area. This was selected because a variety of land use classes are
represented and the complex nature of the imagery was considered representative of urban
imagery. The image contains heavily industrial zones as well as large residential ones. The

imagery is typical of the type used for urban drainage modelling.

Urban areas are extremely difficult data sets to deal with. They are dynamic, in the sense that
the land usage can change rapidly in a short time-scale. Buildings such as warehouses can be
constructed in a short time, and become derelict and disused equally as quickly. This results
in maps fast becoming outdated. Furthermore, these buildings tend to be large and densely
packed, producing shaded regions between them that are difficult to classify spectrally (they
have a similar spectral response to water), and contextually (uniform elongated regions

similar to segments of canals and rivers).

As mentioned in Chapter 2, many similar materials are used to produce an array of diverse
land uses, which have similar spectral responses. This causes a multitude of problems to
classification methods that rely on per-pixel analysis alone, as demonstrated later in this

chapter.
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3.1.2 Daytime ATM Data

The Department of Civil Engineering at Aston University has several suitable data sets,

archived and in current use, that cover urban ateas. The data used in this study was acquired

through the National Environmental Research Council (NERC) as part of the Airborne

Remote Sensing Programme of 1992 (Ellis, 1997; Wilson, 1995). A flight containing several

passes took place on 25/6/92, starting at 9.30 in the morning, from which the imagery used

in this project was taken. The image was selected because it was clear that it was

representative of many urban areas while containing a broad range of land usage. The region

covered by this image is shown in Figure 3.1. The accompanying colour stereo photography

was of approximately 1:5000 scale, with each photograph having ground coverage of

approximately 1.5 km by 1.5 km.
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Figure 3.1 The area covered by the aerial imagery.

73



Prior to any manipulation of the data the imagery was displayed and examined so that any
problems could be highlighted and resolved. The detail regarding the image bands can be
found in Table 2.1. Band 1 was found to be of very poor visual quality, due to excessive
noise attributable to Rayleigh scattering (Lillesand and Kiefer, 1994). This is 2 common
problem in the 0.42um - 0.45um range (Finch ¢z @/, 1989). The remaining visible bands (2, 3,
4, and 5) were of high quality, as were the three near infra-red bands (6, 7, and 8). Band 9
had a similar spectral response to the near infra-red bands (see Figure 3.3), but contained a
substantial amount of noise. Bands 10 and 11 were once more of high quality, with band 12
being identical to band 11, but with half the gain. It was therefore decided that bands 1, 9

and 12 were unusable and were therefore discarded.

3.1.3 Dawn Thermal ATM Imagery

Dawn thermal imagery was acquired over the same region on 8" April 1994. The intention
was to use this imagery in conjunction with the daytime ATM imagery, since recent research
(Elgy et al, 1995) has indicated that it is particularly good for discriminating between road
and roof - this is demonstrated by Figure 3.2. The addition of this imagery to the daytime
imagery should provide a particularly rich dataset for classification. However, difficultes
encountered i the co-registration of the imagery meant that it could not be used with the

daytime imagery.

Some work with this imagery alone, however, has proved successful (Elgy ez 2/ 1995). The
nature of dawn thermal imagery is such that successful discrimination between regions of
road and roof can be made. Research into methods to resolve the co-registration of the

imagery is currently part of an ongoing project at Aston University (Elgy ez 4/, 1998).
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Figure 3.2 Dawn Thermal Imagery.

3.1.4 Pre-processing

The raw imagery used in this project was found to suffer from an inconsistent intensity
vatiation across the flight path. The image brightness either increased towards one side, or
exhibited an increase or decrease down the centre of the image. This variation in pixel value

across the image in know as the ‘scan angle effect’, and 1s related to the wide scan angle of

the ATM (Barnsley and Barr, 1993).

The imagery was consequently radiometrically corrected to compensate for this disparity.
For details of the correction specific to the imagery used in this project the reader 1s referred
to Ellis (1997). Further documentation of the scan angle effect can be found in Danson
(1986) and Barnsley and Barr (1993).

75



Section 2.2.6 detailed the problems associated with the geo-rectification of line-scan imagery.
As a consequence it was decided that classified maps of the raw imagery would be examined,
since at this stage it is the performance of the classifier and not the geo-rectification
procedure that we wish to assess. However, for reference to other data-sets, geo-rectification
is essential. Therefore in Chapter 7, when such a comparison is made, a corrected classified
image is presented. For that image, the geo-rectification took place after the classification
using a first-order polynomial fit, using nearest neighbour resampling (categorical data).
While higher order polynomials are generally required for line-scan imagery to account for
the various distortions, the lack of a large enough number of reference points meant that the
first order polynomial performed better. Ongoing work to remedy the geo-rectification
problem is detailed in Elgy ez 2/, 1998.

3.2 Band Selection

3.2.1 Introduction

While we have already been forced to discard bands 1, 9 and 12, it 1s useful to examine the
histograms of each band and compare them to one another. This gives us a qualitative ‘feel’
for the imagery and gives an indication of the pixel distribution of the data (see Figures 3.3 —
3.5). It is important to note that using more bands for a classification does not necessarily
yield better results (Swain and Davis, 1978). The information content of an important band
can be contaminated by the insignificant data in another band, this problem being

particularly acute when latge numbers of similarly distributed bands are used.

3.3 Training Area Determination

3.3.1 Introduction

The supervised pet-pixel classification provided by the SMAP estimator and the Maximum
Likelihood method rely on the accurate determination of the spectral response pattern for
each land cover categoty of interest. The generation of the training data is crucial to the
success of the classification process, although the selection of representative training areas is
very much an ad hoc procedure. The selection relies heavily on a thorough knowledge of the

geographical region of interest.
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Figure 3.3 Pixel Distribution Histograms for Bands 2, 3,4 and §
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In addition, the spectral characteristics of the features under analysis must be examined and
evaluated. The statistical data generated by this method is domain specific. There are several
ways of establishing the spectral response patterns of the training areas. Direct field
measurements are a good source, although the correlation between these and the image data
can be difficult due to effects of illumination, atmospheric interference, platform stability,
etc. Generally, 1t is preferable to establish the category response patterns using the image
data itself. The training patterns will precisely correspond only to the individual image data-
set from which it has been generated, however, compounding the lack of portability of the

training data, Thus for each subsequent classification the training data must be recompiled.

The training process begins with the selection of training areas that are representative
examples of each information category to be mterpreted. These areas are normally selected
by consulting the reference data sources, such as topographic maps, aerial photographs and
ground observation. The corresponding features in the image are identified and assigned to a

class.

It is important to analyse several training sites throughout the scene when selecting areas for
inclusion in the training set. Dispersion of the sites increases the chance that the tramning data
will be representative of all the variations i cover type throughout the scene. The digital

values of the pixels in each selected feature define the spectral response patterns of the
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various land use categories in either a parametric, or non-parametric manner. In other words,
they are either based on simple descriptive parameters of the normal distribution, such as
mean and vatiance, or attempt to retain the non-normality found in training data.
Consequently, the determination of the training areas is a time-consuming affair, since cach
one must be analysed thoroughly and digitised manually. The training areas selected for the

per-pixel classifications performed in this project are shown in Figure 3.6.

The separability of the spectral response patterns for each class must also be evaluated,
whilst at the same time checking that the data are normally distributed if the classifter used
depends on the assumption of normality (i.e. Maximum Likelihood method). In Figure 3.7

the distribution of a region of road selected from the training data is shown.

If a categoty appears to be of a bi-modal distribution, it indicates that the training site 1s
composed of two subclasses with slightly different spectral characteristics. The classification
accuracy can be improved if the subclasses are each treated as a separate category, or a

suitable multi-modal classifier is used.

The use of a co-spectral plot can conveniently be used to assess the spectral separation
between categories. This shows the mean radiometric response of each category and the
spread of the distribution. This type of plot shows the potential overlap between category
response patterns, and gives an indication of which combination of bands might be best
suited for discrimination. Figures 3.8 — 3.10 show these plots for the training classes selected
for each band used. These indicate that the major urban classes ovetlap each other
significantly, particulatly the “factory roof,  car park’, and ‘industrial forecourt’ classes. The
large standard deviation of these classes, and their relative spectral heterogeneity, means that
the potential for an accurate automatic classification is likely to be limited. In order to
improve the classification accuracy, certain spectrally similar classes should therefore be

merged (see section 3.4).

With this many classes identified in this type of imagery, per-pixel classification techniques
are likely to be inadequate for mapping urban land-use. An alternative to merging the classes
is to incorporate contextual information, or to enhance the data with some measure of

texture.
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A further question arises about the cotrect selection of training classes. It will become clear,
when considering the difference between supervised and unsupervised classification
techniques, that classes that are visually identifiable may not be statistically identifiable. While
techniques to measure the statistical distribution of land-cover are appropriate in certain
situations, such as for distinguishing crops in agricultural imagery, they are of little assistance
when the land-use class of importance is, for instance, an utban road. The land-use (road)
will not fall into any distinct spectral category as it consists of many different types of land-
cover, yet it remains a very distinct feature in the imagery. Hence for analysing land-use,

statistical measures for evaluating the training data will have limitadons.

3.3.2 Substantiation of Training data and Category Separation

All pairs of classes can be calculated and presented in matrix form to provide a measure of
statistical separation between the category signatures. Divergence was one of the first
measures of category pair-wise statistical separability used in feature selection, being a
covariance-weighted distance between category-pair means. The spectral combination with
the highest average pair-wise divergence is generally used in the interpretation of multiple

classes (Swain and Davis, 1978).

The two-class separability measures that are best applied, depending on whether class
statistics are known or unknown, are the prncipal components and the Bhattacharyya
distance measure respectively (Colwell, 1983). The general rule is the larger the divergence,
the larger the statistical distance between training signatures and the higher the probability of
correct classification of classes. In general, the estimates of the mean vectors and covariance
matrices employed in statistical classifiers and divergence measures improve as the number

of pixels in the traiming classes increases.

The more pixels that can be used in the training process, the more accurate the results. With
a statistical classifier, at least n+1 pixel observations need to be collected for each training
pattern, where n 1s the number of spectral bands. In practice a minimum of 10n to 100n are
used. Swain and Davis (1978) identified criteria for the compatibility between the number of
training samples and the measurement complexity (the number of radiometric and spectral

levels) as finding an optimal (maximum) number.
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One can see, however, that the selection of training areas is not a trivial task and, although it
is by no means as time-consuming as manual classification, it occupies most of the time
taken in the supervised classification procedure. The use of unsupervised classification
methods does not require the identification of training areas, but instead requires what is in
effect a post-classification determination of what the classes actually represent. This, once
more, is not a trivial task, since many areas that the interpreter may consider to belong to a

single class in fact belong to several. As a consequence, this raises questions about the

normality of the data itself.
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Figure 3.7 Pixel distribution histogram for bands 2, 3, 4, 5, 6, 7, 8, 10, and 11

for a training region of the ‘road’ class
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There have been concerns over the validity of the statistical approach. Crane, Malila and
Richardson (1972) evaluated the suitability of the normal density assumption in a series of
tests. They found that many data sets (e.g. of training classes) were non-normal. They
concluded that a decision rule based on the assumption of multivariate normal distributions
of scanner signals performed sufficiently well, in comparison with a more accurate but more

complicated rule, to warrant its continued use in recognition processing.

3.3.3 Training Stage confusion matrix

A confusion matrix, when applied to the training data, gives us a guide to the quality of the
subsequent classification. It also provides a measure of the spectral stability of the data. This
information allows us to study errors of omission and commission (inclusion). If there is no
misclassification, then the non-diagonal elements of the matrix will be zero. It is important
to note that this stage only informs us of how well the classifier can classify the training data.
Since these should be homogeneous examples of each cover type, they we should expect
them to be interpreted more accurately than less pure examples found elsewhere in the

scene.

The matrix should not be confused with a measure of how accurate the classification is. The

developments of several methods for assessing the accuracy are developed in Chapter 4.

The confusion matrix for the training stage for the Maximum Likelihood classifier is shown
in Table 3.1. From this Table it becomes apparent that the Light and Dense Vegetation
classes are slightly confused. This indicates a possible source of error, which may be

eliminated if the two classes are combined. This is discussed in the following section.
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3.4 Existing Classification Schemes applied to the Dudley data-set

Table 3.2 shows the classes identified for the classification of the imagery. While they do not
include every type of land cover in the imagery, as this would be impractical due to the sheer
number of classes present, they are broad enough to account for almost all of the pixels in the

imagery and fine enough to discriminate between different classes.

At this stage it is important to differentiate between land-cover and land-use. Tand-cover
describes the matetial which extends over the region, such as concrete ot asphalt. T.and-use,
however, refers to the use which the land is put, for instance a road or roof. As this project 1s
concerned with determining the amount of surface runoff that can occur (for urban drainage
applications), the categories of concern will be such things as sloped roofs, irrespective of their

material of construction.

The initial classification is divided into 11 categories. These represent the most distinctive
features in the imagery. Subsequent reclassifications are easily achieved by grouping these
together into macro classes. The purpose of this is to provide suitable data for input into urban
drainage models. It is likely that this will lead to an improvement in the classification accuracy,
as statistically similar classes (such as Light Vegetation and Dense Vegetation) are merged. This

avoids the misclassification of one as the other and vice versa.

From the 11 classes, we can group several similar categories together to give four macro
classes: Road, Water, Roof and Permeable atea. Road and roof are included, rather than being
grouped together as impermeable area because the amount of paved and roofed area in the
catchment is an important input into some urban drainage models. The reclassification s
achieved by combining these classes with, for instance, all the area previously classified as

“Industrial Forecourt” being renamed “Road”.

This reclassification is shown in Table 3.3.
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Class Land-Use Description
1 Water
2 Dense Vegetation
3 Bare Soil
4 Wet vegetation (i.e. Sewage Beds/ Canal path)
5 Light Vegetation
6 Factory Roof
7 Road
8 Residential Roof
9 Ratlway
10 Car Park
11 Industrial Forecourt
Table 3.2 Description of 11 Classes.
Reclassified Land-Use Previous Class Previous Land-Use
1- Road 7 Road
10 Car Park
11 Industrial Forecourt
2 - Water 1 Water
3 - Roof 6 Factory Roof
8 Residential Roof
4 - Permeable Area 3 Bare Soil
4 Wet Vegetation
2 Dense Vegetation
5 Light Vegetation
9 Gravel

Table 3.3 Redefinition of the 11 classes into 4 classes.

Four classification methods were selected for examination: Supetvised Maximum ILikelihood,
SMAP, ECHO and Unsupervised Maximum Likelihood. Details on these classification

methods can be found in Chapter 2.

The reason these four methods wete selected was because it was felt that each of them was an
example of the most widely used approaches used to tackle the classification problem. The
Maximum Likelihood method (Lillesand and Keifer, 1994) is the most commonly used one,
and as a result was tested in supervised and unsupervised modes. The SMAP Estimator
(Bouman and Shapiro, 1992; Bouman and Shapiro, 1994) is a recent development and
represents the 'state of the art', whereas the ECHO classification (Landegrebe, 1980) represents

one of the more traditional region-growing methods.
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These four methods, and the different approaches used, also give a platform from which the
development of a new classification procedure can be started. Chapter 4 will assess the

quantitative aspects of these classifiers from an accuracy assessment perspective.

The results are presented in three sections. The first part presents the classifications using 11
classes. The second patt presents 4 class classifications, and the final section presents the
PIMP image. The look-up tables applied to the imagery were selected so as to be a similar
colour to the class they represent. As such, they give a good 'feel' for the quality of the

classification, with certain classes being instantly identifiable.

3.5 Results

As discussed in Chapter 2, a visual inspection of the imagery can reveal a great deal of
information about a classified map, from a qualitative point of view. Many features of the
classification, such as how well it distinguishes road and roof, and the homogeneity of these
regions, can be quickly ascertained in this manner. Consequently, the discussion of these results
in this chapter will focus on this type of assessment. A detailed quantitative assessment is

presented in Chapter 4.

3.5.1 Supervised Maxcimum Likelihood Classification

The Classification of the imagery was carried out using bands 2, 3, 4, 5, 6, 7, 8, 10 and 11, as
detailed in the previous section. The training regions from the map shown in Figure 3.6 were
used. The result of this classification for 11 classes is shown in Figure 3.11 and the result for 4

classes 1s shown in Figure 3.12.

3.5.2 Sequential Maximum a postetioni Estimator

This was a supervised classification. The same training map and ATM bands that were used for
the Maximum Likelthood Method were used as the mput for this classification. The result of
this classification for 11 classes 1s shown in Figure 3.13 and the result for 4 classes is shown in

Figure 3.14.

3.5.3. ECHO Classification
This was a supervised classification. The same training map and ATM bands that wete used for

the Maximum Likelihood Method were used as the input for this classification. The result of
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this classification for 11 classes is shown in Figure 3.15 and the result for 4 classes is shown in

Figure 3.16.
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3.5.4 Unsupervised Maximum 1 ikelihood Classification

Unlike the three previous methods, this was an unsupervised classification. The aim here was
to achieve a similar (and hence comparable) classification to the other methods. By examining
statistical parameters, a number of clusters are identified. These are then classified after the
map 1s produced, by using ground truth or, as in this instance, aetial photography. The Grass

4.1 function “L.cluster’ was used to perform this classification.

The unsupervised classification is based on a clustering algorithm that reads through the
imagery data and builds clusters based on the spectral reflectance of the pixels. The spectral
distributions of these clusters are influenced by six parameters. These parameters include the
number of clusters to be disctiminated, the percent convergence, and the row and column
sampling intervals. The default values were used for all the parameters — for specific details of

these the reader is referred to the Grass 4.1 users manual (Shapiro e a/, 1993.)

The cluster means and covariance matrices from the signature files generated by this process
are then used to determine which category each cell in the image has the highest probability of
belonging to.

As with the previous classifications, the aim was to extract 11 classes. With unsupervised pet-
pixel methods, however, the resulting map will generally have a fewer number of distinct
classes than initially requested, since some ate clearly members of the same class. For nstance,
the pixels that make up the road class may be spread across several groups that must be
combined if a class representing road is to be produced. As a consequence, 20 groups wete
selected for the initial classification. These wete subsequently combined to give 10 distinct
classes. 10 rather than 11 classes were used because the class identified as 'railway' in the
training areas was found to be spread across several of the other groups. Whereas the road

regions were distinct in several groups, the railway was distinct in none.

It becomes apparent, therefore, that unsupervised classification is a hit and miss affair. The
operator must decide which class certain indistinct groups of pixels belong to. This is certainly
an area where errors in the classification are introduced, and involves a certain degree of good
fortune. The result of this classification for 10 classes is shown in Figure 3.17 and the result for
4 classes is shown in Figure 3.18.
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3.6 Discussion of classified imagery
As mentioned previously, the accuracy of the classifications will be assessed in a variety of
ways, in the following chapter. The putpose of this section is to point out the qualitative

aspects of the images produced.

A point must be made regarding the amount of speckle observed in the imagery. This is a
characteristic typically associated with per-pixel classification routines, where a pixel may be
incorrectly classified for one of several reasons. One reason is that it may simply be mis-
classified. Another, more likely reason, is that the pixel is ‘mixed’ — that is it may contain a
certain percentage of one class and a certain percentage of another. As a result it may not fit
into any of the classes defined, but some other ‘mixed’ class. This is not necessarily a problem

for most applications - section 2.3.8 discusses this further.

However, the elimination of speckle is important for the classified imagery in this project, since
urban drainage models require information about regional coverage within the imagery. The
important inputs are the percentages of road, roof and impervious area — mixed pixels must
therefore be assigned to the most appropriate class. This will lead to homogeneity in the image,
as the most appropriate class for stray pixels should be determined by the context surrounding
those pixels. Therefore an important qualitative measure of the suitability of the classified data

for urban drainage model input is the amount of speckle within the 1mage.

It is clear that the classified images vary considerable in their interpretation of the data - both
qualitatively and quantitatively. Yet it is also apparent that each of the classifiers has produced a
distinct map from which most of the features of this imagery can be recognised. This

discussion will begin with the 11-class imagery and conclude with the 4-class imagery.

Of the classifiers, the poorest, from a qualitative viewpoint is the ECHO classifier. The road
network appears non-existent as a result of confusion with several other classes, most notably
residential roof. The railway line (running from top-left to bottom-tight in the imagery) in the
tmage has been entirely mis-classified, as has the distinctive sewage plant area (to the centre-left
of the imagery). These classes are small, though, and as a consequence may not greatly affect
the overall accuracy. The map produced is not speckled in appearance since this classifier was

developed to extract homogeneous regions, which it appeats to do.
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"The SMAP classifier produces a map of better quality. The railway line is almost fully extracted,
and there is evidence of a road network in the image. However, there is still confusion between
road and several other classes. The image has a more speckled appearance than the ECHO

method, although the quality is generally high.

The supervised Maximum Likelihood Classifier successfully extracts almost all of the road
network, railway and distinct sections of residential housing. However it is much more

speckled in appearance than the SMAP and the ECHO classifiers.

The Unsupervised Maximum Likelihood Classifier is, like the supervised one, speckly in nature.
The roads and roofs in the imagery can be clearly distinguished throughout the imagery
although, for reasons already mentioned, the railway is also classed as road. A result of the
procedure used is also that the edges of the road regions ate classified as Industrial Forecoutt.
This is because certain clusters in the 20-class image contain two classes, yet they must still be

assigned to a single class upon reclassification to 10 classes.

Reducing the number of classes (from 11 to 4 for supervised classifications, 10 to 4 for
unsupervised one) highlights the misclassification of houses and road in the imagety while, to

some degree, masking the speckly nature of some of the classified images.

The supervised Maximum Likelihood classifier distinguishes between roads and roofs very
well, although there is some confusion between road and permeable area on the motorway
segment in the lower right side of the imagery. The image is, as would be expected, less speckly
than with 11 classes, suggesting that much of the previous mis-classification be due to classes

of similar properties being confused.

The SMAP classifier mis-classifies large regions of road and roof, particularly the factoty roof
areas. The road is well represented, but appears to be suffering from a large error of

commission.

The ECHO classifier performs the poorest classification, with large areas of road mis-classified
as permeable along with many small areas of roof. There is also some confusion between
permeable areas and water, particularly alongside some roofed areas. This is indicative of the

presence of shadow regions.
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The shadow regions are much more noticeable on the unsupervised classification. This 1s a
result, once more, of two classes being combined into onc. Otherwise, howevet, the road and
roof classes are clearly distinguishable from one another. The speckling of the 10-class 1mage

has also been reduced.

3.7 Conclusion
The classified imagety is of varying quality. Clearly the Maximum I.ikelihood method is of the
poorest quality in terms of homogeneity, due to its speckly nature. This is even more so with

the unsupervised classification.

The homogeneity of the Maximum Likelihood image is inferior to that of the SMAP and
ECHO classifications. This is because the SMAP and ECHO classifications have an element of
contextual information incorporated, albeit a small one. This is effectively of the form of a
neighbourhood-smoothing algorithm, which is implemented differently in the two classifiers.
In the SMAP classifier it is achieved through the use of scaling, whereas in the ECHO classifier
it is achieved through its inherent region-growing algorithm.

The homogeneity of the images aside, the Maximum Likelihood classifications, both supervised
and unsupetvised, appear to be those of the highest quality. The supervised method does not
suffer from the errors at the edges of roads and houses in the same manner as the unsupervised
one. These are particularly difficult areas for a classification method. Consequently the
classification method most suited to this type of imagery, from those presented, is the

supervised Maximum Likelihood.

There is 2 need, however, to measure the accuracy of these classifications objectively, in such a
way that the qualitative impresston gained from this chapter can be allied with a quantitative

measure.
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Chapter 4: Testing Methods and Evaluation

4.1 Introduction

Perhaps the most important stage of analysis is concerned with finding out how successful
the classification has been. The evaluation of the accuracy of the classification stage 1s a
difficult procedure, and one in which the avoidance of bias is difficult. A detailed review of
methods developed to assess the accuracy of classified imagery, not only in terms of direct

measurement but also in terms of the end user suitability, can be found in Booth (1989).

While the main concern here is in quantifying the absolute accuracy of a classified image, a
further aim is to show that a single value can be misleading. It is important to know what the
value represents. For instance, a commonly quoted statement is "for an automatically
classified land use map to be acceptable, its accuracy must exceed 85%" (Jenson, 1986;
Campbell, 1983; Colwell, 1983). Does this value represent a straight comparison between the
amount of area determined by the classifier compared with that obtained by a manual
classification? Or is it 2 more robust test that shows where misclassification is occurring and
provides the user with a qualitative view as well as a quantitative one? When deciding upon a

method, consideration should be made as to what information the test is actually providing.

It would be useful to know what has happened to those pixels that have been mis-classified,
for instance whether they have been assigned to a statistically similar class or not. Since the
nature of urban imagery is such that many classes have a similar spectral response this may
not actually detract from the performance of the classifier, but it will provide the user with

pettinent information about the absolute quality of the classification procedure.

As a consequence, the most important information is provided by the error of commission
and omission for each class. This gives information about whether the classifier is
petforming well in one class because it is 2 good classifier, or whether this is due to the
classifier having an abnormally large number of pixels assigned to that class. It is clear that
the greater the number of pixels assigned to one class, the greater the chance of a higher
number of pixels being cotrectly identified. Equally, if the number of pixels in the class 1s

underestimated we may expect a lower number of correctly assigned pixels than otherwise.
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This additional information is just as important as the overall accuracy in assessing the

performance of the classifier.

In this section, we will examine the methods for generating a sample for assessment, and the
two most popular techniques for measuring the accuracy, applied to the imagery presented
mn Chapter 3. While there are many more methods for assessing the accuracy of data (Booth,
1989; Congalton, 1991; Gopal and Woodcock, 1994; Ma and Redmond, 1995) this study is
only concerned with determining a suitable measure that allows an objective comparison
between image classification techniques. Consequently, rather than perform a rigorous
analysis of all the available methods, a decision, based on the literature, was made to assess
only the most widely used techniques — namely the absolute accuracy (with its confidence
level) and the Kappa statistic. Similatly, for the same reason, a further decision was made to
use only the most common sampling methods, these being the single random pixel and the

region correlation methods.

This examination is followed by a discussion of their metits and shortcomings. The
classification schemes presented in Chapter 3 will be assessed comprehensively, detailing

which is the most successful at providing a classified map of an urban region.

4.2 Sampling Methods.

4.2.1 Region Correlation

"The first approach involves the comparison of a selection of regions from the classification
procedute with those from a manual aerial photograph interpretation. The presentation of
this data in a confusion matrix allows a detailed examination of the accuracy of the

computer-guided classification.

There are several sources of bias that can affect our determination of accuracy using this

method. These can be either optimistic or conservative.
a) Sources of optimistic bias.

1) Selection of reference data that is related to the training data - this can be reduced if we

select areas that are different from, and considerably more extensive than, the training areas.
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i) The restriction of the testing of pixel samples to those that are relatively easy to classify,

for instance those in the centre of objects.

b) Sources of conservative bias (assuming many classes and relatively high classification

accuracy).
1) Any class-assignment etror in the reference data

i) Any class differences due to temporal changes between the reference data and the

classified image
1) Positional errors that are inherent in both the reference data and the classified image

iv) Differences in the pixel size of the classified image and the minimum unit of reference

polygons derived from aeral photography

Care must be taken to reduce the effect these errors have on the assessment. It is, however,
impossible to completely eliminate them, although the presence of one source will, to some
degree, counter the effect of another. Furthermore, in comparing the automatic classification

with a manual one, we are assuming that the manual one is 100% correct.

Where we are unable to determine the correct land-use of a pixel, we should assign the pixel
to an ‘unclassified’ class. The purpose of the manual classification is to determine a reference
against which to compare the automatically classified results. We have to make the
assumption that the reference is 100% cotrect for the comparison to work. Therefore, we
must remove difficult pixels from the manual image — this is one of the shortcomings of this

procedure, as mentioned above.

4.2.2 Single Random Pixcel

The second method is a single pixel (point) approach to error assessment, as demonstrated
in Jenson (1986). A set of randomly distributed points is generated and ovetlaid on the
classified imagery. This subset is then classified manually, using field measurements, photo-
interpretation and direct examination of the digital imagery. The accuracy measure is then

provided by the percentage of correctly matching pixels between the classified imagery and
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the manually classified random pixels. Note that small areas consequently have a small

number of pixels in both the classified image and ground truth.

The number of pixels generated will affect the accuracy measure. It is important to have
enough pixels to provide a representative sample, but it should be noted that it is a time
consuming and tedious procedure. For the accuracy measurements presented here the
manually classified pixels (direct from the ATM imagery) amount to 500, 1000 and 1500
pixels. This represents, from an image of 1360400 pixels (712 x 1900), approximately
0.0035%, 0.07% and 0.11% of the coverage. Obviously, to classify as much as even 1% of
the pixels (13,604 pixels) is unrealistic.

The purpose of varying the number of test pixels is to observe any changes in the accuracy
measure that may result from the increase in sample sizes. This should provide an idea of
both the effectiveness of this method and an idea as to what the optimum number of pixels
required is. A rough guide as to whether or not we have enough pixels is to see what
percentage of the manually classified image is of one class (say, water), and what percentage
of an automatically classified image is the same class. The results indicate that with 500
manually classified pixels the distribution is such that approximately 2% of the image is
classified as water. This is a figure that matched by the result from the automatic
classifications of the imagery. While the automatic classification itself may be incorrect it

provides a guide as to how representative the sample size is.

4.3 Measuring the Accuracy

4.3.1 Confrdence Levels

The allocation of a confidence level to a classification product is considered essential in
many applications of remote sensing. Each class can have associated with it a minimum
threshold above which the pixels may confidently be expected to be members of that class.
The assignment of a specific minimum threshold to each class is a decision that must be

made by the analyst, although a commonly used measure is 95%.

The success of a classification can be influenced by a varety of factors — sensor, software,

and human. In addition, the real world land-use may be difficult to determine. The
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assignment of a confidence level to a classification must recognise that it represents such a

combination of influences.

The accuracy of the classified map depends on the ability to extrapolate successfully from
the training areas to the whole mapped area. Unless there is some statistical measure of the
efficiency of the extrapolation process, the producer of the imagery cannot provide a level of
confidence in the classification. Once a confidence level is so quantified, then a user of the
classification data can relate it, via the probability of correct classification, to actuality over

the entire classified area.

When checking the efficiency of a classification, we are concerned with the summation of
the probabilities for all stipulated pixels between # and a lower level (?). That 1s, we wish to
know the probability that at least pixels are correctly classified, when a random sample of

pixels is selected.

This probability is called the confidence level (CL) for that classification, and is usually
expressed as a percentage. Thus, if the CL is the integrated probability expressed as a
petcentage, we can say that we are CL% confident that the pixels are classified correctly at

least 7 times out of 7.

4.3.2 Calculation of the Confidence I evel
Thomas et 4/ (1987) describe a method for determining the confidence level of an accuracy
value. A simplified explanation is given here - a more in depth discussion can be found in

the paper by Thomas ¢f a/ (1987).

As the sample size n becomes larger, the discrete Binomial Distribution approaches the
continuous Normal Distribution, as the limiting case for n tends towards mfinity. Provided
large sample sizes are used (i.e. over 50), we can use the Normal Distribution to simplify
things. This is useful, as when the total area under the curve is normalised to 1.0, the
probability we want is the integrated area between the limits n and i. The Equation 4.1

shows the unit-area Normal Distribution.
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. 2
— G _2m) ) Equation 4.1
2s

1
probabilitydensity = S exp(

Under such a curve the integrated area from 1.65 standard deviations below the mean to
infinity is 0.95. Therefore for a 95% confidence level, the lower bound to the number of
pixels that must be correctly classified in the check sample 1s equal to the mean minus 1.65

standard deviations. So the lower acceptable limit to give a 95% confidence level is:

(m—1.635e,)—1.65(s+ 1.65¢,) Equation 4.2

where:
m = the estimated mean of the standard distribution,
s = the estimated standard deviation of the mean,

em ~ the standard error of the estimate of the mean and,
e = the standard error of the estimate of the standard deviation.
s

4.3.3 Coben’s Kappa statistic

In this study the use of correct petcentage as an indication of map accuracy was rejected,
because under certain circumstances even a random classifier can produce ostensibly
reasonable values. Cohen (1960) suggested an index that reports the agreement between two
images in relation to results expected from a random assignment of pixels to categoties.
Cohen’s Kappa is a statistic that vatdes from +1 (perfect agreement) to —1 (complete
disagreement). A value of zero indicates that the results are not distinguishable from those
obtained by random classification. Further measures of this kind are reported in Rosenfield
and Fitzpatrick-Lins (1986).
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4.4 Results

4.4.7 Region Correlation

The first stage of this assessment method is to classify manually a region of the imagery. The
selection of a region must take care to avoid the pitfalls discussed in section 4.2.1. The areas
selected are shown in Figure 4.1, with the training regions highlighted. The manually
classified image is shown in Figure 4.2. This region was chosen because it avoided these
pitfalls and also represented most of the classes identified in the imagery; as such it provides

us with an accuracy value for the majority of classes in the image.

The initial assessment was made using all 11 classes (Figure 4.2). However, the region
selected contained only 9 of these classes (class 4, wet vegetation, and class 9, railway, were
not present in this region). Selecting a single region of the image meant that it was difficult to
find an area of the image containing all the classes. The reason that a single area was
preferred over a selection of regions (such as with training areas) was that the bias of
selecting only easily identiftable regions was eliminated. An area of the image was simply

selected in an area that was not covered by the training areas, and manually classified.

The tables and graphs detailing the assessment can be found in Appendix 2. Only a brief
description of the trends and features in this assessment are presented here, since the classes
selected must subsequently be reduced for input into drainage models. However, the
indication is that drainage models are becoming more sophisticated and will eventually
require input of this level of detail. Furthermore, it allows us to see what effect the reduction
of the classes has on a classification, and whether the errors are caused by confusion

between spectrally similar classes or not.

4.4.1.1 11-Class Imagery.
The overall accuracies of the classifiers are low, although this is directly attributable to the
confusion between similar classes. This being the case, the accuracies should improve when

similar classes are merged and re-assessed.

Of the classifiers, the one that performs best is the Supetvised Maximum Likelihood method
(Table A2-1). While differentiating between areas of factory roof, residential roof and car

park causes problems, the accuracy in the individual classes is high. In fact the Kappa values,
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for the most part, indicate that there are low errors of commission and omission for most of
the classes (Figure A2-1). The difference between the accuracies suggested by the confidence
level and the Kappa value support this.

The SMAP estimator (Table A2-2, Figure A2-2), however, performs markedly less well. The
main reason, once more, is the level of confusion between the car park and industrial

forecourt classes. Thete is also confusion between other classes, notably road and roof.

The ECHO Classifier (Table A2-3, Figure A2-3) performs very pootly (the worst of all the
classifiers) in all the classes except water. There is considerable confusion in all of the

remaining classes, producing low measures of accuracy in each.

The Unsupervised Maximum Likelihood Classifier (Table A2-4, Figure A2-4), in contrast,
performs very well in most of the classes. There ate a large amount of commission errors in

several of the classes, however.

4.4.1.2 4-Class Imagery

The confusion matrices (or coincidence tables) (Table 4.1 - 4.4) were produced from the
GRASS program r.coin (Shapiro ez al, 1993) and show the amount of pixels correctly
identified. They are a reclassification of the original 11 classes selected.

From these tables we are able to produce the errors of commission and omission for each
class for each classifier. Unlike the single random pixel method not every pixel is assigned to
a class. This is because of the difficulty in classifying ATM imagery manually, and as we can

see in Figure 4.2 leads to us effectively having an ‘unclassified’ class.

In order to assist in the description of the results for the region correlation sampling method,

the tables have their most salient features lettered.
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4.4.1.3 Supervised Maximum L ikelihood Classification

The results for this section can be found in Figure 4.4 and Table 4.1. It is clear that there is a
large amount of roof pixels classified as road, as indicated in (A). This causes the accuracy of
the roof class to be low, and the confusion is clearly the cause of a very low Kappa Value
(B). The result of this, however, is to increase the accuracy of the road class, albeit with a
large amount of pixels wrongly included in the class (C). The accuracies of the other classes
remains very high, and is achieved with a small amount of confusion. It should be noted
here that the water class, as indicated by the low commission and omission, is casily
identifiable. This is the case for all the classifiers, and is a subject we will return to in section

4.4.2.

4.4.1.4 SMAP Estimator

The results for this section can be found in Figure 4.5 and Table 4.2. We can immediately
see the confusion between the road and roof classes experienced with the previous classifier
is increased in this classification, with almost 5 times more roof pixels classified as road than
as roof (A). The result is an extremely low Kappa value of 7.98%(B). We should remember
at this stage that a Kappa value of zero indicates that the pixels could have been correctly
classified merely by chance. It is not surprising, then, that we achieve the highest accuracy
value for the road class - although it is not coincidental that this is associated with almost a
100% overestimation of the amount of pixels truly in that class. This classifier also produces,
if marginally, the lowest accuracies for the remaining classes, contributing to the lowest

overall accuracies of all the classifiers.

4.4.1.5 ECHO classifier

The results for this section can be found in Figure 4.6 and Table 4.3. This classifier does not
suffer from nearly as much confusion between the road and roof classes as the previous
classifiers, and consequently achieves more balanced overall accuracy values (A). While the
accuracy for the road class is lower than in the previous classifications, it is achieved with a
low commission, and is consequently more representative of the actual accuracy. The cause
of the low Kappa value is the amount of omission for this class (B). This will be discussed
further in this chapter. The values for the water and permeable classes are once more very

high, although the permeable class has the highest commission of any of the classifiers ©).
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4.4.1.6 Unsupervised Maximum 1 ikelihood Classifier

The results for this section can be found in Figure 4.7 and Table 4.4. This Classifier achieves
the highest performance of all of the classifiers presented. Low values of omission, except in
the roof class (A), contribute to this. As with the other classifiers, the confusion of the road
class with the roof class (and vice versa) has the largest effect on the overall classification
accuracy. With this classifier, however, the effect is less pronounced. The accuracies of the

other classes, however, are exceptional, particularly in the permeable class (B).

4.4.2 Random single pixel

Classifying a map of disparate random pixels is by no means a trivial exercise. Locating each
pixel and subsequently identifying it correctly, with the assistance of aertal photographs, is a
time-consuming affair. Furthermore, the repetitive nature of the task means that errors will
inevitably occur. However, if a truly unbiased assessment of accuracy is to take place, in the
absence of a manually classified image covering the area of interest (from which correctly

classified pixels can easily be extracted), this must be done.

Consequently, it is unrealistic to classify manually a vast amount of pixels. Conversely, Hay
(1979) and Thomas ez a/ (1987) state that 1t is desirable for each class to contain more than 50
pixels. So the question we must ask is: " How many random pixels do we require to fulfil this
criteria?” Considering the classification of the imagery into 4 classes we can see, by
inspection of the imagery, that class 2 (water) is likely to be a limiting region in this sense,

since it has the smallest spatial coverage.

In order to answer the question posed above, we need to classify a number of pixels that is
neither prohibitively excessive nor too few to give reasonable class sample sizes. The Grass
program r.random allows us to generate a pixel set randomly distributed across the entire
image. A stratified approach was taken, by manually identifying and classifying 500 and 1000
random pixels, giving us a comparison of the effect that 500, 1000 and 1500 pixels will have

on the assessment of the accuracy of the classification procedures carried out in Chapter 3.

The results of the manual classification of the random pixels are given in Table 4.5, and the

distributions are shown in Figures 4.8, 4.9 and 4.10.
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Class 1 Class 2 Class 3 Class 4 Total

Road Water Roof Permeable Pixels
180 (36.0%) 13 - (2.6%) 173 (34.6%) 134 (26.8%) 500
299 (29.9%) 15 (1.5%) 354 (35.4%) 332 (33.2%) 1000
479 (31.43%) | 28 (1.87%) 527 (35.1%) 466 (31.1%) 1500

Table 4.5 The number of 'correct' pixels contained in each class for the manual classification of 500,

1000 and 1500 random pixels

We can see that for 500 classified pixels the number of pixels classified as water is 13. One
would intuitively expect there to be approximately twice that amount for 1000 random
pixels. Table 4.5, however, indicates that this is not the case. So while, from the figure given
for 1500 pixels (28) we might expect to find at least 50 pixels out of 3000 classified as water,
this may not be necessarily so. From the supetvised Maximum Likelihood classification, the
results indicate that water covers 2% of the image. This indicates that to get 50 single
random pixels classified as water, 2500 pixels should be classified. In any event, it becomes
obvious that to represent adequately such a small class, the overall amount of pixels that

must be manually classified becomes unmanageable.

This raises questions about the significance of such a small class. It is pethaps fortunate that,
when dealing with urban drainage, the amount of area classified as water is of no great
significance. Ultimately the value that we require is the percentage of impermeable area,
which we ate able to extract. However, for other applications (for instance rural hydrology)

the spatial extent of the pixels classified as water is an important value.

In the next section we will examine what confidence we can place in the accuracy of an
undet-represented sample size. Clearly, since the method for determining the accuracy at
95% assumes a large sample size (over 50), we expect poor results for this class. It is perhaps

important to point out, however, that water, of all the types of land cover, is the most simple
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to distinguish due to its particular spectral properties. As a result, we should not be overly

concerned about the points raised above.

4.4.2.1 Effect of Sample Size on Distribution

Using the grass program r.random, an initial 500 pixels, randomly distributed across the
entire image, were manually classified. The same procedure, again across the entire image,
was repeated for 1000 different pixels. Combining these two maps provided us with a map

of 1500 random pixels spread throughout the image.

We can observe that there is an effect. Rising from 500 to 1000 pixels we see a 5% decrease
in the amount classified as road, and a 6% increase in the amount classified as permeable.
Clearly the larger the sample the better represented the image is. To this end we would
ultimately like to classify a greater number of random pixels. However, since this is
unrealistic, it may prove the case that some combination of the random pixel method and
the region correlation method may be made, causing a reduction in the bias of the first
method while improving the overall representation of the second method. Cleatly the results

from either method, if taken out of context, are flawed.

While the mitial manual classification classified each pixel into one of 11 classes, it became
apparent that some classes were underrepresented. With 500 pixels divided into 11 classes,
one could expect, with equal distribution, less than 50 pixels for each class. Since the
distribution was far from equal, several classes were not represented at all. As a consequence,
the 11 classes were combined into 4, as with the region correlation method. Even so, the

water class was still poorly represented.
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4.4.2.2 Supervised Maximum Likelihood Classification

This results for this section can be found in Figure 4.11 and Table 4.6. The class accuracies
for this classifier are all over 50%; of particular note is that this classifier suffers less from
confusion between the road and roof classes than the SMAP, ECHO and Unsupervised
Maximum Likelihood classifier. The accuracies for these two classes are similar (A). There is
some confusion, but an equal amount of roof has been classified as road and vice versa (B).
The measures for water raise some interesting points (C). The Kappa value is higher than the
accuracy value due to the low sample size of the water class. This is as we expected, and
proves to be true for all the classifiers. This is because the assumptions and simplifications
used to calculate the accuracies with associated confidence levels requite a sample size of
over 50. Clearly this criteria has not been fulfilled by even a 1500 pixel random sample, but
we can see that the accuracy does increase, in relation to the Kappa statistic, as the sample
size increases. What is clear is that water is an easily distinguishable category, a fact pointed

to by the high value of the Kappa statistic.

4.4.2.3 SMAP Estimator

The results for this section can be found in Figure 4.12 and Table 4.7. The large amount of
roof pixels classified as road has a large effect on the accuracy of this classifier. They result in
high errors of commission for the road class, high errors of omission for the roof class and
consequently a low accuracy and Kappa value for the roof class (A). It is interesting that the
inclusion of road pixels into the roof class is, while significant, not as high as with the other
classifiers. Other features of interest are that the permeable class which, while having a high

accuracy, has a very low error of commission (B).
Cy,

4.4.2.4 ECHO Classification

The results for this section can be found in Figure 4.13 and Table 4.8. Examination of the
Kappa and accuracy value show that this classifier produces high values for the Permeable
Class (A), in fact the highest of any of the classifications. Of greatest interest here is the high
value of commission for this class. This would appear to be associated with the high values
of omission for the remaining classes. The confusion matrix shows that a large amount of

pixels from the road and roof classes (B) have been included in the permeable class, while
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large amounts of road has been classified as roof and vice versa (C). The result of this is that
the accuracies of the road and roof Classes are low, and the Kappa values are the lowest of
all the classifications. This results in a poor overall accuracy and a very low overall value for

Kappa.

4.4.2.5 Unsupervised Maximum 1 ikelihood Classifier

The results for this section can be found in Figure 4.14 and Table 4.9. This classifier proves,
with this method of accuracy assessment, to be the most accurate (A). This figure is a result
of high individual class accuracy in three of the categores. The error of commission for the
water class is, however, particularly striking (B). This is a consequence of the classification
procedure, where 20 classes were extracted automatically and, by inspection, assigned to
larger class. It is fortunate that the class that has an excessive error of commission 1s the
smallest, and thus has the least effect on the remaining classes. Once more, with this
classifier, we see that a large number of roof pixels have wrongly been labelled as road (C).
As a result the Kappa value for this class is low and the omission high.
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4.5 Discussion and analysis of results

To some extent the Kappa values and confidence values for both the region correlation
methods and the single random pixel method agree. The measures given for the classifiers
are of the same order, and match for three of the classifiers within 5%. The remaining
classifier, the ECHO classifier, performs considerably better (16%) when analysed with the
region cotrelation method than the random pixel method. This section will examine the
results as presented and discuss the reasons for the various features and trends observed in
this chapter. In addition, comparisons between the single random pixel method and the
tegion correlation method will be made, as well as a comparison between the Kappa value

and the assignation of a confidence level to an accuracy.

There are several trends that can be observed through varying the number of classes
represented in both the region correlation and random pixel methods. The reduction in the
number of classes causes a big increase in the overall accuracy value. This is not surprising,
since the major source of error is in the confusion of similar spectral classes. By merging
these together, this confusion is greatly reduced, resulting in an improvement in the
accuracy. Most noticeably, this can be observed through the ECHO classifter, where the
reduction in classes (in the region correlation example) causes an increase from 27.38% to
66.03% with the Kappa value, an increase of 38.65%, and from 33.62% to 76.68% with the
confidence level value, an increase of 43.06%. The SMAP classifier also shows
approximately a 20% increase for both measures. While both the Maximum likelihood
classifiers also show an increase, the increase is much less. This is to be expected, given that
the Maximum Likelihood classifiers start at a higher level of accuracy prior to merging the

classes.

This indicates that the Maximum Likelihood schemes are far better at distinguishing between
similar classes than the ECHO and SMAP classifiers. The region growing algorithm that 1s
part of the ECHO classification is designed to produce large homogeneous areas. It is
therefore likely that the boundaries of similar classes are not sufficiently different for the
algorithm to cause a split, and it merges the classes together instead. As a result, the classifier

will perform better when there is a large difference between classes than a subtle one.
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The SMAP classifier is also designed to produce large homogeneous regions. This 1s
achieved by re-sampling the image from coatse resolution to fine. This means that when
spectrally similar classes are of a small spatial extent, they are likely to be classed as belonging
to the same class. In agricultural satellite imagery, where the purpose 1s to extract large
homogeneous regions such as fields, this is apparently successful (McCauley and Fngel,
1995). However, when there are many spatially small classes, such as in urban imagery, this

approach is less successful and hence a less appropriate classification method.

The Maximum Likelihood classifiers, then, through their absence of any neighbourhood
smoothing, are better equipped to deal with this. There is still an improvement to be gained
from reducing the number of classes, however. The better performance achieved with the
unsupetvised method over the supervised is also misleading. The initial number of clusters
(20) identified by the unsupervised method were combined to give 10 classes, the selection
being made by the operator as seen in Chapter 3. The reason for this was that some classes
(particularly the railway class) did not appear as a single cluster, but were made up of many
different clusters. In effect this meant that the railway class had to be discarded. As a result,
although this was a small class, if the imagery in Chapter 3 is examined, the railway line is
classed as road. In effect, if the random pixels or region selected had included any membets
of this class (it did not), the unsupetvised method would have performed less well.
Consequently, for this to be reflected in the single region pixel method, a greater number of

pixels must be classified.

Having established the reasons for fewer classes resulting in greater accuracy, the effect of
sample size on the accuracy should be examined. The agreement between the two mecthods
suggests that a sample size of 1500 pixels can provide similar results to that of nearly 20,000
pixels, as used in the region correlation method. The smaller samples tested, however,
indicate that this is the very smallest amount that can be used. The results appear valid, but

an increase in the sample size clearly affects the accuracy assessment.

Where the single random pixel method excels, however, 1s in the absence of bias. This
impartiality may mean that 2 much smaller sample is required. While attempts were made to
reduce the bias of the region correlation method, through selecting an entire area and

classifying the pixels in it of known land use, the distribution may not have been
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representative of the entire image itself. For instance, a much higher proportion of factory
roof and car park was contained in the area than in the rest of the image. This results in
better representations of some classes than others, with this bias being reflected in the

accuracy of those classes.

If Figure 4.15 is examined, it becomes apparent that the region correlation method produced
a sample that was particularly favourable towards the ECHO classifier. The other classifiers
petform very similarly with either sampling method, which suggests that the single random
pixel method is the most appropriate method for assessing accuracy. The absence of bias
means that, if the sample size is sufficient, it provides a truly objective account of the

performance of each classifier, making direct comparison between the classifiers possible.

The Kappa value and accuracy at 95% confidence also appear to support this. In Figure
4.16, both measures follow an almost identical trend for the Single Random Pixel method.
For the Region Correlation method, however, both measures follow a similar trend except
with the SMAP classifier. The high Kappa value and low accuracy at 95% confidence level
indicate, once more, that for this classifier the errors of omission and commission were
relatively low, while the standard deviation in the sample was also small. This backs up the

assertion of the previous paragraph.

Accepting the Single Random Pixel method as the most suitable sampling method, there
appears to be no real difference between the Kappa value and the confidence level when it
comes to ditect comparison between classification methods. Both measurement techniques
indicate the same trend almost exactly on an unbiased sample. It is only in poorly
represented samples, such as the individual accuracy of water, that there is a great difference
between the two measurement techniques. The Kappa value is not greatly affected by a small

sample size whereas the calculation of the confidence level is.

As a result it is difficult to choose between the two accuracy assessment methods. They both
have their merits, namely that the Kappa value is very responsive to large errors in omission
and commission, whereas the confidence level is very sensitive to small sample sizes. The
information that both techniques can provide in an adequately sampled class is very similar,

however, and hence there is little to choose between the two. However, the fact that both
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are sensitive to different scenarios means that quoting both provides a more complete
picture. If there is a small sample size, this will be reflected in the confidence level of the
accuracy, providing essential information when using the single random pixel method.
Additionally, the Kappa value is easier to calculate than the confidence level, making

mustakes less likely.

The provision of two values may, however, be impossible to achieve in a real world usage, as
it may be misleading and difficult to interpret. Consequently, assuming the sample size is
adequate, the single random pixel method with accuracy measured by the Kappa statistic is

recommended for urban dramnage applications.
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4.5.1 Sources of Classification Error

Classification error in machine analysis of remotely sensed data results from complex
interactions between the spatial structure of the landscape, sensor resolution, pre-processing
algorithms, and classification procedures. Perhaps the simplest causes of error are related to
the incorrect assignment of informational categories to spectral categories. Road, for

example, can easily be assigned to terraced housing.

However, the soutrces of most errors in automatic classifications are probably more complex.
Mixed pixels which occur as resolution elements of a remote sensing system fall on the
boundaries between separate land use parcels. These pixels may well have digital values
unlike either of the two categories, and may easily be wrongly classified even by the most
accurate and robust classification procedures. Such errors are often visible in digital
classification products as chains of incorrectly classified pixels that parallel the borders of

rather large, homogeneous, parcels.

It is in this manner that the complex character of the landscape contributes to the potential
for error through the complex patterns that form the scene that is imaged. A very simple
landscape composed of large, uniform, distinct categories is likely to be easier to classify
accurately than one with small, heterogeneous, indistinct parcels arranged in a complex
pattern. In other words, imagery of agricultural regions is considerably easier to classify

successfully than is the case with urban imagery such as that presented in this project.

Classification errors are assignments of pixels belonging to one category, to another
category. There are few systematic studies of the geographical characteristics of these errors,
but experience and logic suggest that errors are likely to possess at least some of the

characteristics listed:

1. errors are not distributed over the image at random, but, to a degree, display systematic,

ordered occurrence in space;

2. etrors are not distributed at random among the various classes on the mmage, but may be

preferentially associated with certain classes;
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3. etroneously assigned pixels are often not spatially isolated, but occur grouped in ateas of

varied size and shape;

4. etrors are not distributed randomly among the various parcels on the image, but may
occur in parcels with certain sizes, shapes, locations, and arrangement in respect to other

parcels;

5. errors may have specific spatial relationships within the parcels to which they pertain; for

example, they may tend to occur at the edges or in interiors of parcels.

Todd (1980) experienced three categories of classification etror, in the mapping of a wildlife
project. He summarised the quality assurance checks and error analyses, which preferably

accompany each computer interpretation summary map as:

1) geometric and radiometric problems in the image accounted for about 5 - 15 percent of

the errors;

2) excessive category detail (Le. attempts to extract classes whose spectral characteristics

approached the noise level of the data) accounted for another 30-40 percent;

3) analyst decisions in identifying spatial clusters, which required considering a complex
mnteraction between vegetative and terrain characteristics, accounted for the rest of the

€Irors.

It should be noted that in some cases there might be sources of error other than the
classification system. The matching of sites on the imagery with exact locations in the field is
subject to error. The data used in this project, due the problems described in Chapter 2, is
not geo-rectified, however, and is not affected by this problem. Of greater significance is the
determination of the exact pixel class from the ATM imagery, where the only source of
ground truth comes from aerial photographs. The accuracy of this method is not 100 % due
to the presence of mixed pixels and the occasional pixels whose correct class cannot be
identified. These etrors have not been included in the assessment of accuracy, however,

because they are very small.
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4.6 Conclusion
This chapter has examined several methods for assessing the accuracy of a automatically
classified image. The use of random and non-random reference data has been compared,

along with, in the case of the former, vatying sample size.

This section has demonstrated that the use of enough single random pixels as a basis for the
accuracy assessment can lead to an unbiased measurement. This must surely be the aim if

any faith is to be put in the procedure.

However, a single measure of accuracy is both misleading and unsuitable. Without
suggesting that the accuracy figure should be as complicated as the imagery itself, the
provision of several key values, such as omission, commission and an overall accuracy value
would seem the very least that one should accept when making use of automatically

classified imagery.

As a result it is suggested that the use of the single random pixel method be implemented
when gathering a sample upon which to perform an accuracy assessment. Since the only
problem with this method is that certain categories may be underrepresented, it would
appear prudent to measure the confidence level at 95% for each sample. Additionally the
Kappa value should be measured, since it provides information about the errors of
commission and omission of the data. When both measures are used the suitability of the
sample size can be determined by comparing the two values. If the confidence level is lower
that the Kappa value, the sample size should be increased. This results in an adequate sample

that can then be assessed in an unbiased manner.

This analysis of the data provides information about the classification accuracy that is
thorough and demonstrably unbiased. Measurement of data in this fashion will place true
confidence in the accuracy of a classification due to its unbiased nature and unambiguous

measurement.
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Chapter 5. Data Processing : Contextual classification using homogeneous
polygons

5.1 Introduction

In this chapter the principles behind the development of the polygon classificr are
presented and discussed. The classifier is a multi-spectral contextual classifier; that is, it
utilises the statistical properties of the dataset and augments this data with the

introduction of context, based on visual characteristics inherent in the imagery.

The development of the classifier is described as a series of stages. I'igure 5.1 gives a
simplified outline of the procedure. A Marr Hildreth zero-crossing edge detector (Marr
and Hildreth, 1980) is applied to a single image of the data-set. This image should
contain as much information about the data as possible in order to produce an edge map
rich in detail. This edge map is then used to produce a series of coarse polygons, each of

which can be extracted individually from the image.

These polygons are tested for homogeneity through the application of a region growing
algorithm. This algorithm splits regions that are not homogeneous into finer polygons
until they become homogeneous. These homogeneous areas are then classified on a per-
polygon basis, assigning them the class which is predominant in each polygon. The
assignment of a class to each pixel in the original imagery is made through use of either
supervised or unsupervised Maximum Likelihood statistics. As a result of this procedure

a classified map containing a series of homogeneous regions is produced.

The following chapter explains this procedure in greater detail, and examines the
reasoning behind the approach to each stage.
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Raw Digital Data
¢ Multi-spectral Imagery

x

Feature Detection
¢ Zero-Crossing Edge Detector

1

Polygon Extraction
¢ Coarse Polygon Extraction

1 i

Homogeneous Area Determination
¢ Region Growing Algorithm

~

1

Homogeneous Area
Classification

¢ Supervised ML Statistics

J

|

Classified Image
¢ Improved Accuracy

¢ Improved drainage model input

Figure 5.1. The Flowchart describes a simplified overview of
the Classification technique developed.

5.2 Edge Detection
5.2.1 Introduction
The first step in the classification process 1s to detect lines representing the boundaries

between individual homogenous polygons. The Marr-Hildreth edge detector (Marr and
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Hildreth, 1980), is based on the zero-crossings of a Iaplacian convolution mask (Chapter
2). To recapitulate: the Laplacian is a two dimensional measure of the second derivative
of an image. This introduces an increased sensitivity to noise, which is countered by
incorporating Gaussian smoothing into the edge dctector. By applying non-maximal
suppression to the zero-crossings of the image, we ate left with an isocline map of the
edges found within the image. This means that the image produced has cdges that always
lie on closed polygons in a binary image. Further detail can be found in Chapter 2.

While other edge detectors (Canny, 1986; Smith and Brady, 1995) are capable of
providing considerably more accurate edge location, they arc of little use when spatial
information about objects (for instance, roads and houses) is required. The reason is that
the critetion for the development of these edge detectors is concerned with the
mathematical properties of the imagery, namely the exact location of the image
brightness gradients that constitute edges. As we have seen in Chapter 2, the Canny edge
detector was designed to be an optimal edge detector in terms of quality and

computational efficiency.

The Marr-Hildreth edge detector, however, was developed using visual perception theory
that maintains that the edge isoclines contain the most important structural properties of
the imagery. According to this theory, the purpose of early visual processing is to
construct a primitive but rich desctiption of the image. This is to be used to determine
the reflectance and illumination of the visible surfaces, and their orientation and distance
relative to the viewer. This first primitive description is known as the raw primal sketch.
These zero-crossing segments are found to be extremely rich in information (Marr and

Hildreth, 1980).

An edge detected image produced by the Canny edge detector is presented in Figure 5.2.
Upon first inspection, the image appeats to be rich in detail. However, closer mnspection
reveals that many edges are unconnected at both ends. Furthermore, inspection of the
road network and railway line show that they are not continuous throughout the image.
This means that the each polygon, that we would like to contain an entire class, is broken
down into several smaller polygons and must be treated separately. In effect, the features

in the image have not been located.

If the image is to be used to produce a map of enclosed polygons, the lines that are not

connected at both ends must be discarded. As a result, much of the detail in the image is
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lost and a very coarse polygon map is left. This map contains little of the structure visible

in the original image and is therefore unsuitable for polygon extraction.

Figure 5.2 The Canny Edge Detector applied to a section of the Dudley Imagery (Band 11)

5.2.2 Zero — crossings

This section presents a series of zero-crossings taken from the same image, Band 11
(Figure 5.3). A minor point is that there are a few areas of burnout in the image. This
does not cause a loss of data as Band 12 can be used instead, although with lower
resolution. The purpose is purely to illustrate which scaling of the feature detector is best
suited to our classification. The selection of Band 11 is arbitrary at this stage - we will

examine the use of different bands/combinations of bands in section 5.2.3. At this stage

147




we are merely concerned with finding a suitable feature detector for this type of imagery

at this scaling per se.

Figure 5.3. A section of the Dudley Imagery (Band 11).

It 1s possible to alter several parameters of the Marr-Hildreth edge detector, so that it can
detect features of varying scale. One of these parameters is the width of the Gaussian
component, making it more or less sensitive to the edge gradient. An examination of

these adjustments follows.

We see that the edge detection at coarse scales (Gaussian = 15) is unsuited to imagery of
this complexity. We lose most of the detail in the imagery and are given only a slight
indication of the relationship between crudely delineated objects (Figure 5.4).
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Figure 5.4. Zero-Crossings of image 5.3, Gaussian = 15.

Making the edge detector finer (Gaussian = 9) results in more of the image structure
being present, although we still lack fine detail of the kind necessaty for accurate feature
detection (Figure 5.5).

At the finest level (Gaussian = 5, Figure 5.6), we are presented with a rich image, in
which the structure of the image in clearly visible. We are able to identify various features

of the imagery. The canal and railway tracks are, for instance, well represented.

This is in keeping with Marr and Hildreth’s findings. The reason that the coarse scale
(Gausstan = 15, Figure 5.4) zero-crossings present little useful information is that the

image is highly detailed and structurally complicated in nature.

A further problem can also be observed if the zero-crossing edge images in this section
(Figures 5.4 — 5.6) are closely examined. The effect of forcing the image to contain
closed intensity contours is such that edges on the border of the image ate either ignored
or forced to fit in such a way that one very large contour is made to exist. This provides

continuity throughout the image, but at a cost of discarding useful edge information at
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the border of the image. In order to overcome this loss, we can artificially crop the image
after the edge detection and thus remove these spurious edges. It should be remembered
that the images covering a catchment will all overlap, so thete is no loss of data as a result

of this procedure.

Figure 5.5 Zero-Crossings of Image 5.3, Gaussian =9

5.2.3. Band selection

Having determined which scales and parameters are best suited to imagery of this type,
we need to make sure that the most salient imagery is utilised. Initially, the approach
favoured involved taking the zero-crossing of each band and combining them. Those
edges that were supported by the greatest number of bands would then be chosen as the
most representative features. However, it was found that each image band indicated vast
quantities of different features, and very few related features. This was clearly not

surprising, as the wavelength ranges of each band are carefully selected for this reason.
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Figure 5.6. Zero-Crossings of Image 5.3, Gaussian = 5.

What was surprising, however, was the lack of correlation between the edge images. This
was because of the inexact nature of the feature detector. The likelthood of the same
feature extracted from a different band giving an edge at the same point is low, since we
must remember that the Marr-Hildreth edge detector provides us with contours of image

variation, and not exact edges.

‘The method detailed above, while being a perfectly reasonable approach, does not utilise
the main property of the Marr-Hildreth edge detector. Being a feature detector, based on
visual perception theory, its purpose is to extract the features that humans see in a singk

image, not a collection of images.
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Another method is to combine the data pror to the edge detection through the use of
principal component analysis. This is a standard remote sensing technique (Lillesand and
Keifer, 1994) for reducing the dimensionality of the data by creating a single image that
contains most of the variance in the original multi-band dataset. Unfortunately, it can
also create an image with excessive noise, which in effect confuses the edge detection

process. While strong edges are emphasised, weak ones are too, resulting in too many

Figure 5.7. The first principal component and its zero-crossings (Guassian=5).

irrelevant edges to make the image useful. An example of this is shown in Figure 5.7.
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The image contains many small polygons which do not reflect the structure of the
tmagery. An examination of the road network for instance, shows that instead of being
one large polygon continuous throughout the imagery, there are many small regions.
This means that the initial 'crude’ feature extraction contains little contextual information

about the road network.

The higher order principal components suffer from the converse problem, namely that
they contain very little useful information for the edge detection process to perform

adequately, producing worse results than the coarse edge extraction scen in Iigure 5.4.

Other combinations of bands were tried, with a focus on making use of the imagery in
which road, roof and permeable area are best discriminated. These are the required

outputs from the classifier for urban drainage models.

The combinations used included individual bands such as Band 11 (thermal — see Figure
5.3) and Band 7 (near infrared), as well as all the other bands. Bands 11 and 7 performed
better than the other bands, so the imagery was combined in order to take advantage of
this. However, this did not yicld any improvement in the extraction of structural features
in the imagery, since the data once more contained too much variance and hence

produced too many edges (similar to the first principal component).

Other standard mecthods for combining information from multiple bands include the
true colour imagery (red (Band 5), green (Band 3) and blue (Band 2)) and the
Normalised Difference Vegetation Index (NDVI), which allows us to combine the red
(Band 5) and near-infrared bands (Band 7) (Lillesand and Kicfer, 1994). The true colour
imagery was, as expected, poor. However, we might have expected some useful results
from the NDVI imagery, since the purpose of this band combination is to highlight
vegetation within the imagery. However, the results were once more unsatisfactory, with
mnsufficient edges being extracted. Section 5.2.4 will examine a further method of

combining bands.

5.2.4 False Colour Composite Image
False colour near infrared imagery is widely used in a varety of applications which
include classification of urban areas (Curran, 1985), monitoting of soil moisture,

mapping of soil and environmental disaster assessment.
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Figure 5.9 The resampling of the false colour composite imagery from 24 bits to 16 bits

The false colour composite image used is created by combining the three channels, each
of which are 8 bit imagery. The image created can then be reduced from 24 bits to 16 bit
imagery by re-sampling, by taking 6 bits for the near infra-red, 5 bits for the red and 5
bits for the green. This makes the image considerably mote easy to handle, since the size
of the image is reduced, along with its complexity, which means any subsequent
processing takes much less time to complete. An additional benefit of this is that much
of the low variance content of the scene is removed — Figure 5.9 illustrates this.
Essentially the discriminatory resolution of the bands is reduced, leaving only the

information that we are concerned with.

As a consequence, the most significant part of the image is the near infrared component,
which is also the most discriminating band for roads and houses, followed by the red and
then the green. Only if the near infra-red and the red have identical values is the green
used for discrimination. Consequently, by using the type of imagery favoured by photo-
interpreters we expect to produce an edge map rich in the features that they themselves

look for, such as a continuous road network.
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The imagery is most applicable to studies in which the determination of the extent of
vegetation within the image is an important factor, such as with urban environments. In
itself it is not a feature detector, but an artificial way of enhancing the features in an
image so as to make them easier to locate. Further more, it makes some use of the multi-
spectral nature of the dataset, incorporating three bands. We would therefore expect the
edge detector to extract the structural features favoured by photo-interpreters. Our
results bear this out, with an edge image that emphasises the structural features in the
image with which we are concerned (Figure 5.10). Of all the combination methods

attempted, this proved to be the most suitable for this purpose.

Figure 5.10. Zero-Crossings of the False Colour Composite Image (Gaussian
=35)

5.2.5 Conclusion
We have shown that the Marr-Hildreth edge detector, when applied to remotely sensed
imagery, can produce an isocline map of the complex features in the imagery, particularly

when the parameters are selected for the determination of fine scale elements. We have
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polygon has been used as a mask overlaid on with the composite image. This polygon
has good continuity throughout the image and appears to represent the road network in
the image. However, it can be seen that the polygon bounds not only road segments but
segments of residential housing (A) and some areas of larger buildings (B). It becomes
clear that, although we have located the features in the image with a reasonable degree of
accuracy, we must find a way to improve this accuracy if we are to produce a classified

map of any use.

5.3.3 Incorporation of a Seed growing algorithm

If we examine the crude polygons, we can see that they are not all entirely homogeneous
in nature. However, we have an excellent platform from which to progress, since these
crude polygons are representative of the structure of the imagery and, as small individual
entities, of a much less complicated spectral makeup than the entire imagery which,

when reconstructed, they represent.

Since the polygons are not entirely homogeneous, it is necessary to divide them into
homogeneous regions. This will then provide several polygons that can be individually
classified as single classes. When reconstructed, this should provide us with an image
map in which the edges of the buildings and roads in the image are well defined and

accurate in location.

This can be achieved if a region-growing algorithm is implemented. The algorithm used
in this classifier is of a relatively simple nature; more sophisticated algorithms can be

found in Jenson (1980).

The algorithm progresses sequentially across the polygon, joining neighbouring pixels
together if their brightness values are within a pre-determined threshold. Clearly, too
high a threshold will result in many small polygons, whereas too low a threshold will
result in very few. It is important at this stage to strike a balance between the two. It is

possible to use one or several bands for this purpose.

Initially, a variety of band combinations (the same as those used in section 5.2.3) were
used, but this was found to give far too many polygons. It became clear that
homogeneous regions may be contained in a single image alone, but do not tend to
correlate well over multiple images. Consequently, single images were used for the region

growing algorithm. Of these, Band 11 produced the most useful results, especially when
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5.3.4 Conclusion

It has been demonstrated that the Marr-Hildreth edge detection routine can be used to
produce a coarse polygon map of an entire image. This map can, after subsequent
refinement of the edge detection procedure, through the introduction of a region
growing algorithm, be used as a basis for the extraction of homogeneous regions. The

homogeneous nature of these polygons makes it possible to assign each to a single class.
The problem of correctly classifying each of these polygons must next be solved.

5.4 Classification of extracted polygons

5.4.1 Introduction

The classification procedure has so far incorporated spatial information provided from
two soutces - the zero-crossing edge detector has provided an initial map containing a
vast amount of structural detail about the imagery, and the region growing algorithm has
supplemented this information with neighbourhood information, refining the map into a
map containing homogeneous polygons. In order to classify these polygons the multi-

spectral mformation must next be utlised.

Of the many statistical classification schemes available, the earlier results from Chapters 3
and 4 show that the Maximum Likelihood will produce a map that is as accurate as we
are able to get from a per-pixel technique; that is, without incorporating any contextual
information into the classifier. This makes it ideal as a way of represcnting the multi-

spectral information in the imagery on a purely pet-pixel basis.

The other classification schemes (ECHO and SMAP) are unsuitable for providing
statistical data precisely because they make use of some of the techniques described in
this chapter. The SMAP classifier has a scaling approach that, in the manner of a
neighbourhood classifier, produces large homogeneous regions, although these are suited
to imagery with many rectangular regions (such as agricultural satellite imagery). The
ECHO classifier is effectively a region growing method, and once more makes use of
neighbouring pixels to produce homogeneous regions. As a consequence, the statistics
produced by these methods are not of a purely per-pixel nature. Further to this, however,
they are not classifiers that perform particularly well on urban imagery, as can be seen

from the results in Chapter 3.
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5.4.2 Maxaimum Likelthood

The statistics produced by the Maximum Likelihood algorithm have already provided the
spectral characteristics of the multi-spectral image set. We are now in a position to make
use of this per-pixel information on a per-polygon basis; that is, we can classify each
polygon as a unique class. Since the polygons are now homogeneous in nature, the
Maximum Likelthood scheme should be able to classify cach pixel in each polygon as
belonging to the same class. However, this will not in fact be the case, since the
Maximum Likelihood classifier contains no contextual information and is prone to
producing 'speckly’ classification maps. A resolution to this problem is discussed in the

following section.

The Maximum Likelihood classifier can be used in a supervised or unsupervised fashion.
This provides two sources of spectral statistics. The classifier developed in this chapter
can make use of either. The results of both classification schemes are presented in

section 5.5, and the relative merits of both are discussed in section 5.6.

5.4.3 Determining the modal value of the polygon

In order to overcome the problems of the Maximum Likelihood classifier, it is possible
to examine all the pixels in each polygon and to assign the most frequently occurring
class to that polygon. The homogeneity of the polygons ensures that one class will be
predominant in each pixel. We can therefore assign the overall class of the polygon to

that single predominant class.

5.5 Implementation of the Classifier

The classifier was implemented in the C language, and the code is included in Appendix
1. The code makes use of the Grass libraries (Shapiro ez a/, 1993) for displaying the image
and selecting the geographical region of the raw imagery. As a result, it is capable of
classifying imagery that has been geo-rectified as well as that which has not, within the
Grass framework. In addition, several Grass modules are used to create the required
mputs into the classifier. These inputs are a map delineating the polygonal regions in the
imagery, a map containing the Maximum Likelihood statistics of the imagery (either
supervised or unsupervised), and a raw image (Band11) for the disctimination of

homogeneous regions in the image.

The procedure is outlined below and in Figure 5.14.
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1. A False colour composite image is created using the Grass Module zcomposite. The

zero-crossings of this image are then calculated through the use of the Grass module z.z¢.

2. A Maximum Likelihood classification is performed using the Grass Module zmaxizk.
This can be performed in either supervised or unsupetvised mode. If it is to be
performed in supervised mode, a training map must also be created prior to the

determination of the statistics.

3. The zero-crossing image is then converted into a polygon map, using a script routine
which numbers the polygons in ascending order to make subsequent extraction and
analysis of these regions simpler. Prior to this, the edge of the image is cropped so that
the intensity contours at the edge of the image are not distorted by the zero-crossing

edge detector.

4. Along with a thermal image, these two maps are used as the input for the classifier.
The classifier extracts each polygon in the image in a sequential order. A test of
homogeneity is then applied to the image through the use of a region growing algorithm
applied to the thermal image. If the polygon is found not to be homogeneous in nature,

1t 1s broken up into smaller polygons that are homogeneous.

5. The homogeneous polygons are then assigned to the modal class (from the Maximum

Likelthood map) determined from the pixels contained within the polygon.

6. The boundary image (the zero-crossing edge map) is then classified in the same
manner, effectively being treated as one large coarse ‘polygon’ and then refined through
the test of homogeneity. The result is then combined with the polygon image. This
results in the entire image being classified. This makes the assumption that edge points
can be classified as a single class. As we have seen from the discussion of Spectral
Mixture modelling (section 2.3.8) there are different method for classifying (and
assessing) these boundary points. This will be expanded on in Chapter 6.
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Figure 5.14 The flowchart of the Polygon Classification Process
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Consequently a classified map is produced. The production of this map currently takes
approximately three days from start to finish, running on a SUN Sparc 3. This is not
particularly fast, although it should be noted that the Maximum Likelihood classification
has only become a computationally viable procedure in recent years due to the
improvement in computer processing. However, the code for the polygon classifier was
originally written using a Grass script file, from which it was converted into C. As a
result, the code was written for ease of implementation rather than efficiency.
Optimisation of the code should result in a considerable increase in performance. The

reasons for this are detailed in Appendix 1.

5.6 Results
Four images are presented in this section. The supervised and unsupervised images are
presented, inttially with 11 classes (Figures 5.15/5.16), and finally 4 classes (Figures

5.17/5.18). The image key indicates what each colour in the look-up table represents.
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5.7. Analysis of results

5.7.1 Introduction

In Chapter 4 an accuracy assessment scheme was developed that produced an objective
measure of accuracy. This allows a comparison of various classification methods to be
made. This section presents an analysis of the accuracy of the classifications and

discusses the accuracy figure obtained.

5.7.2 Accuracy Assessment
The tables and charts detailing the accuracy of the Polygon classification of 11 classes (in

both supervised and unsupervised more) can be found in Appendix 2.

Using the region cotrelation method, the supervised classification performs particulatly
well, in fact producing the highest accuracy of all the classifiers. There is high accuracy
attained for most of the classes, except the bare soil class and the car patk class. These
are, as with many of the classes analysed, confused with spectrally similar classes. The
unsupervised classification suffers mostly from bad confusion between road and factory
roof while also confusing large amounts of residential roof with factory roof.
Consequently this classification performs less well. For the 4 class imagery, the region
cortelation shows the supervised polygon classifier has an accuracy of 65.23% (Kappa,
Table 5.1) and the unsupervised polygon classifier has an accuracy of 70.99% (Kappa,
Table 5.2).

The reduction of the number of classes to four, as with the other classifiers, improves the
accuracy, showing (for the single random pixel method) the supervised polygon classifier
having a Kappa value of 63% and the unsupervised having a Kappa of 62% (Table 5.3).
The region cotrelation method indicates that the classification is generally of a high
quality, in fact indicating that the unsupervised Polygon classifier (Table 5.3) is the most
accurate. An examination of the confusion matrices reveals there is less confusion
between roof and road for the unsupetvised method than with any of the other methods
(Table 5.3). The results from both sampling methods are shown visually in Figures 5.20
and 5.21.

A comparison of the accuracies of the 6 classifications as determined by the region

correlation method indicates, however, that the difference between the Kappa values and
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confidence levels at 95% is not consistent (Figure 5.22). The different pattern in each,
especially considering the sample size, indicates the presence of a bias in the sample. This

reinforces the view that the better assessment method is the single random pixel onc.

The single random pixel method shows the same difference between the two
measurement methods, indicating that the sample 1s free from bias, and that the sample
is well balanced. As an indication, if the road and roof pixels calculated from the manual
classification are added together, they come to 15864 (7640 + 8224). The same sum for
the supervised classifier comes to 15693 (11355+4338). The confusion indicated by the
matrix suggests, however, that the classification crror is a result of mis-classification

between the road and roof classes.

5.7.3 Qualitative Assessment

The images produced by the Polygon classifier exhibit a considerable improvement in
appearance over any of the other classifiers examined in this project. There is a clear
degree of homogeneity present in the imagery, resulting in an image with few speckled

areas. The detailed images shown in Figure 5.19 confirm this.

An close examination of the entire imagery (Figures 5.15 - 5.18) shows that the detection
of certain features improves dramatically when compared to the per-pixel classifiers. The
railway line in the supetvised image is entirely assigned to one class. In the unsupervised
image, the motorway section in the lower part of the image is also assigned to a single
class, whereas the other classifiers assigned it to several different classes (Figures 3.11 —
3.18). There are other examples of this throughout the imagery which, from a qualitative

viewpoint, indicate a large improvement in the classification procedure.

[t is important that single objects, such as a section of road, are assigned entirely to one
class. The number of pixels that are reassigned through the addition of context may not
necessatily be large. As a result, this may not be reflected greatly in the accuracy
assessment method, particularly one using a small sample size. While it is clear that the
region correlation method is biased, it does reflect the improvement in accuracy achieved

through the incorporation of context.
ug 1p
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5.8 Conclusion

The development of a classifier containing contextual information, derived from several
sources, and multi-spectral statistics provided by the Maximum Likelihood classifier has
been explained in a step-by-step fashion. In the process many of the problems that have
had to be overcome have been highlighted. An assessment of the quality of the classifier,
making use of the techniques assessed in Chapter 4, has allowed us to compare, in an
objective manner, our classifier favourably with other classifiers widely available to the

remote sensing community.

The classifier produced has been shown to be better than per-pixel methods in both
accuracy and appearance. It’s development has been based on a different approach from
the per-pixel methods through the incorporation of contextual information in a per-

polygon approach.

The extraction of these polygons is based on visual perception methods, and as such
produces polygons representing features of the imagery. These features, while not being
exact in location, are connected intensity contours, and reproduce as closely as possible

the features a photo-interpreter is looking for.

The decision that each pixel in 2 homogeneous area should be assigned to the same class
has been shown to be effective. This decision is reasonable, since it is clear that the pixels
within a polygon are delineated in such a way that if it covers a region of road, for

instance, the pixels must all be of the same class, namely road.

There are still, however, qualities missing from the classifier that could improve its
qualitative feel. In reality, maps of urban regions produced by manual means contain
many straight lines. Man made objects, such as roads and houses, are generally straight.
Large buildings, for instance, are in general, rectangular. The classifier presented does not
account for this, and as such does not come close to that provided by a photo-

interpreter. An attempt to incorporate this is discussed in the next chapter.
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Chapter 6: Further improvements

6.1 Introduction

The classifier produced has demonstrated some techniques that can be used to improve
both the accuracy and the quality of the final classification map. However, a map classificd
manually (such as an Ordnance Sutvey Map) is of distinctly different appearance. Man
made objects such as roads and houses (in urban developments) generally have straight

edges. If the classified imagery is examined, it can be seen this 1s not the case.

This is partially due to the absence of geometric rectification of the imagery. The buildings
and roads in the imagery do not have straight sides due to the instability of the aeroplane
during the acquisition of the ATM data. There are, however, other causes. Roads, for
instance, are occluded at various points of the imagery by overhanging trees. The classifier
currently has no method for coping with this. Shadows from large buildings also cause
some confusion to the classifier, once again distorting the man-made features in the

imagery. This chapter will examine some methods for improving the appearance of the

imagery.

6.2 Straight Line Extraction
The basic theory of the Hough transform and the Muff transform are examined 1n

Chapter 2 - see section 2.8.

6.2.1 The Hough Transform

Hough transforms (Ballard and Brown, 1982; Levine, 1985) arc particularly useful for
extracting straight lines in images. They are used in a varicty of computer vision
applications to parametetise several geometric shapes such as straight lines, circles,
ellipses, and rectangles. They are generally used in conjunction with an edge detector, such
as the Canny edge detector (Canny, 1986), to provide a description of the features in the
imagery. The lack of continuity in the edge detector does not affect the results of the
Hough Transform.

The Hough transform is a robust parameter estimator of multi-dimensional features in
images. It provides robustness against discontinuous or missing features. This would seem
ideal when attempting to deal with partially occluded features, such as roads with

overhanging trees.
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A noteworthy characteristic of the Hough Transform is that it does not require the
connection of the co-linear points. Segmented lines will generate a peak in the parameter
space and the lacking segments simply do not contribute to the transform. On the other
side, artefact peaks might be gencrated in the presence of noise and high density of

features by coincidental intersections in the parameter space.

It would appear that the incorporation of this line detector into the classifier would
improve the appearance of the imagery. If it were applied prior to the polygon extraction,
the coatse polygon map produced by the edge detection procedure should resemble a
manually produced map much more closely, with man made objects given straight edges.
Subsequent extraction of homogeneous areas, in theory, would produce a map of high
accuracy and of a highly pleasing appearance. In essence, such an approach is very similar
to that of manual cartography. The cartographer locates objects, identifies them and then

assigns straight lines to the borders as appropriate.

6.2.2. Results of the Hough transform

The first approach was to take an area of the imagery and apply a Hough Transform to it.
In this case a region of Dudley was selected that was high in man made urban content,
such as canals, roads, houses and factories. All of these features contain distinct straight
edges. The results of the application of the transform on this region are presented in
Figure 6.1. This figure indicates, however, that the high density of features has resulted in
a great many false lines being detected. The tuning of several of the parameters in the
Hough Transform (such as minimum line length / maximum distance between lines) does
little to improve this. Inspection of the imagery does indicate that many correct lines have
also been extracted too (in particular the large factories). The lines around them are also

skewed due to the effect of noise in the surrounding areas.

This approach cleatly has a great many drawbacks. The image produced is unacceptable
since there are a vast number of incorrectly identified lines, rendering this technique as

unusable.
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Figure 6.1 The lines produced from a Hough Transform of a region of Dudley (Band11)
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considerable number of spurious lines, as well as some genuine ones. As a result, the
image is of little use. Any snapping of the lines to produce polygons would result in many
polygons of little use in the classification procedure, and would certainly not improve the

appearance of the image.

6.2.5 Analysis of results

Part of the problem is that thc imagery suffers from distortion due to the motion
characteristics of the plane. However, it is doubtful whether the line extraction procedure
would be of any benefit if the imagery was accurately rectified and consequently had a
plethora of straight lines for examination. The reason, as we have demonstrated in the

previous sections, it that urban imagery is of a particularly complicated nature.

6.2.6 Conclusion

The Hough and Muff transforms arc both better suited to simple scene analysis, whete the
imagery is of a much less complicated nature. The imagery used for this project is of a
deeply urban region with many overhanging trees and areas of wastcland, which resemble
noise, and increase its complexity still further. This is unfortunatcly represcntative of the
problems faced when dealing with this type of imagery. In addition, the difficulty in geo-
rectifying the line-scan imagery (Chapter 3) reduces the amount of straight lines present in

it, since many roads and large buildings are warped in appearance.

The appearance of the imagery may, howevert, be improved by accurate geo-rectification.
This will result in buildings and roads, where they are not occluded, having straight cdges.
In addition, it will improve the accuracy of the imagery when analysed in conjunction with

cotrect ground truth data.

6.3 Dawn Thermal ATM

The extension of the data to include a further band of imagery from the dawn thermal
flights would vastly enhance the daytime image set (Figure 3.2). This band of imagery
contains a wealth of information about the permeable atea in the imagery. In addition, this
information is easy to extract, since roads are cold, and hence dark, and roofs ate either

cold too, or show up as very hot objects, in the case of factories operating overnight.

The problem with this imagery is that while it has a considerable amount of information
about land use, it cannot currently be rectified to an accuracy of greater 10m (Gregory,

2000). Consequently the subject of geo-rectification is a pertinent one, as without it the
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two temporally different image sets cannot be co-registered. The problem of co-

registration, therefore, is a non-trivial task, as seen in section 2.2.6.

The result of this is that it is difficult to measure the success of the classification
procedures in real applications, since the accuracy is always lowered as a result of geo-
rectification errors. This is an area that has a real need to be addressed, since there are
countless ATM data sets available, all of which suffer from this problem. Furthermore, the
co-registration of imagery, such as might be required for overlapping ot multi-temporal

imagery, is impossible with any acceptable accuracy.

An example of the type of etror caused by instability of the aeroplane when acquiring the
data is shown in Figure 6.3. The factory roof highlights the error, which is reproduced

across the affected scan lines and causes warping in the objects that arc present.

Figure 6.3. Platform instability results in warping of the line-scan imagery.

Several methods have been presented in chapter 2, which claim to improve the situation.
A farther method has been developed by Gregory (2000) and has been applied to the

same imagery as that used in this project. The method is a two-stage procedure:
1. TIdentify the platform attitude errors in line-scanner imagery.
2. Correct the imagery by compensating for the platform errors.

Because aerial photographs are instantaneous 'snapshots' of the surface under observation,
it is assumed that geometric errors are deterministic in nature. As a result, they can be

compensated for by constructing approptiate mathematical models. Once aerial
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photographs have been corrected, they in effect become accurate digital maps to which

additional data sets can be referenced. This is a standard photogrammetric procedure

Platform attitude errors can now be identified by directly comparing ground control
points in the line-scanned ATM imagery with those in the corresponding aerial
photography. Ground control points can be identified for the ends of every scan line in
the image and this procedure can be automated using corrclation techniques. Having
identified the image disparities, the raw image data can be re-sampled to the corrected

grid, producing ATM imagery that is co-registered with the corrected acrial photography.

The advantage of this method is that, providing there is aerial photography accompanying
the digital imagery, existing data-sets can be registered. This method is the basis of
ongoing research at Aston University. Recent reports (Blgy ef a/, 1998; Gregory 2000)

suggest that this method may meet with considerable success.

6.4 Conclusion

There are still several areas in need of improvement. The appearance of the imagery needs
improving, which may be achieved by geo-rectification of the data. This is a problem that
is relevant to the other classification methods examined also, since it is an inherent
problem with ATM imagery. The most promising improvement is in the incorporation of
the dawn thermal imagery into the data-set, which is unfortunately linked to the geo-
rectification problem. The location of the straight edges may, however, still be difficult to

achieve due to the complicated nature of urban imagery.

This chapter has highlighted some of the problems that still remain in the classified
imagery. It has reviewed several methods, each with varying degrees of success, that may
improve both the accuracy and the aesthetics of the imagery. The methods discussed
provide areas for further research, some of which is ongoing at Aston University as part of

a separate project (Elgy ¢/ a/, 1998; Gregory, 2000).
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Chapter 7: Applications of the Polygon Classifier

7.1 Introduction

Classified imagery has a vatiety of geographical applications. The purpose of this research
is to develop a classifier for urban imagery so that an accurate Percentage of Impermeable
Area (PIMP) measute can be extracted and subsequently inputted into an urban drainage
model. The majority of models in use require several inputs, of which the PIMP is onec.
Table 7.1 shows the PIMP measures extracted from imagery classified using the

supervised and unsupervised Polygon Classtifier.

7.2 Calculation of PIMP
The reclassification of the imagery from 4 classes into 2 classes (permeable and
impermeable) provides an image from which the PIMP can be extracted. The calculation

of the PIMP is made by counting the number of pixels classed as impermeable within the

area.
Classifier Polygon Classifier Polygon Classifier
(Supervised) (Figure 7.2) (Unsupervised)(Figure 7.1)
Percentage of Impermeable 66.64% 57.82%
Area (PIMP)

Table 7.1 The PIMP for the Polygon Classification

The supetvised polygon classifier produces a PIMP value 10% higher than that produced
by the unsupetvised classifier. This can make a big difference to the urban drainage
capacity that the model will calculate as being required. The reasons for the difference are
clear from the images presented in Figure 7.1 and 7.2. The railway running diagonally
across the image is classified correctly as permeable by the supervised polygon classifier,
and impermeable by the unsupervised one. This is because the railway was not included as
a class in the unsupervised maximum likelithood classifier that was used to provide the

statistics.

This error, however, is countered by the larger amount of roof area indicated by the
supervised classifier. There are large areas of residential and factory roof that have been
extracted by the supetrvised method. Consequently this method produces a higher value
for the PIMP.
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7.3 Input into Urban Drainage GIS

7.3.1 Introduction

The James Bridge urban catchment in Darlaston, Walsall, West Midlands, was the subject
of drainage area studics in the early 80's, as part of plans to reconstruct the Black Country
sewer network. As well as traditional overflow structures and retention tanks, novel
systems, hydrodynamic separators, were planned for urban arcas in the West Midlands
(Blagojevic ef af, 1998).

The land use within the catchment used as a test case has changed considerably in recent
years. Initially the catchment was a heavily industrialised region, with a small percentage of
dense housing. Subsequently, many factories were closed during the recession and had
their roofs removed, increasing the amount of wasteland in the catchment. In addition,
new low-density housing appeared. The consequence of these temporal land-use changes
was that the impermeable area decreased, thereby reducing the runoff. Thus hydrological
studies and calculations from the eatly 1980's have resulted in the over-design of the
hydrodynamic sepatators built in the mid-80's.

7.3.2 James Bridge Catchment Classification

The data used m the study by Blagojevic (Blagojevic ef a/ 1998; Blagojevic e/ a/ 1994) was
acquired using low cost airborne videography, due to its accurate geo-registration and case
of use. The videography was classified with 11 classes, through both a Maximum
Likelihood classification and on-screen digitisation of the videography. A manual
classification of the catchment area was performed and digitised, for use as a source
against which to compare the classification accuracy (Figure 7.3). 'The results of the

classification produced by the videography and digitisation are shown in T'able 7.2.

A measure of whether the classified videography was adequate was petrformed. This was
determined by calculating the percentage of roof, permeable, and impermeable area, and
directly comparing the values. If these values were close to those achieved by the manual
classification it was deemed acceptable. Clearly this is not an assessment of the accuracy,
but an assessment of whether the data was 'fit for use'. This cannot provide any measure
of the success of the classifier, as we have seen in Chapter 4, since there is no measure of
the correlation between the manually classified image and the two other classifications
(Maximum Likelihood and Digitised Videography). A complete assessment of the

accuracy is therefore a requirement if any comparison with other methods is to be made.
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The availability of a manually classified map of the entire region means that the
assessment of the accuracy of the image is considerably easier than would otherwise be the
case. It should be noted that this is not normally the case. The measurement can be made
using a confusion matrix, without the need for a sampling strategy such as the single
random pixel method suggested in chapter 4. As a result it is possible to determine an
absolute measure of accuracy for this imagery, given the assumption that the accuracy of

the manual classification is 100%.

Class Digitised Digitised Max%mum
Map(%coverage) Videography Likelihood.
(Yocoverage) (Yocoverage)
Roofs 16.14 15.50 34.62
Impermeable 26.09 24.80 13.83
Permeable 34.47 36.40 28.24
Total 76.7 76.7 76.69

Table 7.2: Classification results for the James Bridge Catchment (Blagojevic ef al, 1998).
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7.3.3 Polygon Classification (Supervised)

Aston University has an extensive archive of ATM imagery, particularly over the West
Midlands region. Of this imagery, a dataset was located that covered approximately 1/3 of
the Darleston Catchment examined by Blagojevic e/ «/ (1998). The area for which imagery
was available 1s highlighted in Figure 7.3. While the coverage of the region was not as
extensive as iitially thought, it allows an examination of the techniques used by Blagojevic
and those developed in this project. Furthermore, the higher resolution of the ATM

imagery leads to improvements in the classification in that region of the imagery.

The raw ATM imagery was co-registered prior to the classification procedure using a
second order polynomial fit. This proved to be the best geo-rectification method available,
i terms of RMS error, despite the normal assertion that higher order polynomial fits are
better suited to aerial imagery. The reason for this was duc to the absence of recognisable
features in certain sections of the imagery, which caused under-representation in those
areas and consequential distortion of the imagery. The causes of the line-scan errors and

the accurate geo-rectification of these have been discussed in Chapters 2 and 6.

For the putrposes of assessing how the developed classification technique performs in a
'real' situation, however, it is essential that the imagery is geo-rectified. Clearly the greater
the inaccuracy of the rectification, the less well the classifier will be scen to perform if
assessed in comparison to geo-referenced manual imagery. However, the geo-rectification
was of sufficient accuracy when taking into account the difference in the two image

resolutions.

7.3.4 Results

The results of the polygonal Maximum Likelihood classification are shown in Figure 7.4.
Figure 7.5 shows the results of the maximum likehhood classification of the original
videography (Blagojevic ez a/, 1998) for the same region. Table 7.2 shows a comparison
between the three methods.

The Polygon classification was performed in supervised mode, as the overall performance,
in terms of accuracy and quality, was deemed to be the most effective. The bands used for
the classification were the same as those used in Chapter 3. The classifier was applied to

the raw imagery and subsequently geo-rectified as outlined above.
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7.3.5 Analysis of Results

The comparison of the classifiers shown in Table 7.3 indicates that the Polygon
classification of the ATM imagery produces a classification of similar quality to the manual
classification, which vastly out-perform the Maximum likelihood classification of the
videography. If the PIMP value calculated by the polygonal classifier 1s used as an mput
mnto an urban drainage model, it would produce good results - the value obtained is only 5

percent lower than that obtained by the manual classification.

Class Manual Polygon Classifier | Maximum
(ATM data) Likelihood
(Videography)
Light Vegetation 2.68% 3.87% 5.81%
Dense Vegetation 34.51% 36.49% 26.26%
Factory Roof 21.28% 25.94% 37.25%
Road 35.80% 29.20% 12.73%
Residential Roof 5.73% 4.50% 17.95%
PIMP 62.81% 59.64% 67.93%

Table 7.3 The percentage cover of the sub-area is shown for each method .

However, it would be incorrect to suggest that the accuracy of this classifier was 95
percent. As we have seen in Chapter 4, this value could be attainable without any of the
pixels classified by the polygonal classifier matching any of those produced by the manual
method. There is clearly a danger associated with accepting the results as presented in
Table 7.3, since there is no guarantee that the same 'accuracy' can be repeated with
different imagery. A more rigorous assessment of the accuracy must be sought if any

claims regarding the quality of the classification are to be made.

An assessment of the accuracy can be undertaken by examining both the Kappa Values

and the confidence level at 95%. The presence of the manually classified map also means
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that there is a large sample size unaffected by bias since it covers the entire region.
This also allows us to examine further which of the two measures is the most

appropriate to use.

The confusion matrices for the different classifications are shown in Tables 7.4 and
7.5, and those for the PIMP calculation are shown in tables 7.6 and 7.7. Figure 7.6
illustrates the original classification and Figure 7.7 the PIMP calculation. It is cvident
that the Polygon classification greatly outperforms the Maximum Likelihood classifier
for both these classifications. The overall accuracy for cach class is certainly low,
however. This merely confirms that the 'fit for usc¢' method for determining the

accuracy is extremely misleading if used as a measure of classification accuracy.

There is considerable confusion between all the classes for both of the classified
images. This can be explained, in part, for the Polygon Classifier through ctrors in geo-
rectification - a misalignment of just one pixel can affect the accuracy significantly.
Given this, it appears that the reason for the improved classification is due to the
quality of the ATM data over the Videography, and an improvement in the

classification procedure.

The poor performance of the Maximum Likelihood classifict cannot be solely
attributed to geo-rectification errors. Videography has a great advantage over line-scan
imagery in this respect, since the achievement of accurate geo-rectification is not
compromised by platform instability. The image acquired is a 'snapshot’, much the
same as an aerial photograph. Consequently, standard photogrammetric techniques

can be used to rectify the image.

197




«(s3ssE[D) §) JWAWYIIB) AFPLIg SWeEL Y} JO UOHIIS B JO UONEBIYISSE]D POOYIIHIT WNUIXEIA oY} 10J XLIJBA] UOISNjuo) §°L dqeL

%96°1¢ %ET'C %1901 %6L°LL | %C9TT | Lbi6Y 1£4:1 G629| S0E8l 90621 1582 |ejol
jooy
%19'9¢ %99VvC | %S6v.C %2819 | %8L'8¢| 818C 9.0l 29¢ gg. |68 ¥e jeluapisay
%0l vl %60'C %00} ¢ %G¥'G8 | %G5S ¥l | V6SL) LEVE 096¢| %999 LGYS 86V peoy
%66 ¢ %EL'C- | %SCT6EEL %2279 | %8L'GE| 85¥0) 880¢ LSCL| TvlE 816¢ 15°14 jooy Aiojoe4
uoinejabap
%cC LC %<Cl 9" %GE ¥S %GZ'8. | %GL1C| 6569} BSL¢ YO8l | Lc¥L 889¢ ZcglL  |9suag
uonejabop |
%48'C %Vl | %.67¢ClC %L296 | %6L€ | 8lLE) VL [4%4 L2L 8S¢ 0s Wb
jooy J00y uonejabep [uonejabap
1D %66 e Aorinooy| eddey| uoisSIWIWIOD| UOISSIWO| 3934109 |ejollenuapisay |peoy|Aiojoed |asuaq wybnn sse|D
.Amvmmm_U mv jmuydle) vwv_..m suwe 3yl jo uondas e Jjo uonedyisse}n :Ow%—On— Y] J10J XLIJBJAl aoisnjuo) ¢°L dqe L
%SL'vT %618 %1G°C8 %¥9vL | %09°LE | LPbl6Y 6022 Licvl | 02.C} 688.1 (4414 jejol
jooy
%82 € %<Z9'0- %6¥ ¥. %0196 | %06°¢ 818¢ 0Ll 90} S06 169 0 jenuapisay
%2 0¢ %08'C %808 %6069 | %608 | C6Y9Ll 69 LEVS 69¢S €eLS 143 peoy
%06 '8¢ %G9'8L %€6'18 %0€09 | %0.6E | 8S¥0l oty Z8v¢ [4°144 980¢ 20¢ jooy Aiojoed
uonejabap |
%60°LS %¢Cl ¥C %SG.'€S %928y | %¥.LLG | 6569l £e6 956¢ yx4%4 v..8 691,  |9suag
uolejobap
%810 %<C.L'€- %6815 %LP'66 | %ESO ocel L oce 19¢ 666G L Wb
10 jooy jo00y uonejaboap [uonejabap
9,66 Je Aoeanooy| eddey| uolISSIWWOD| UOISSIWO| 3034100 jejo1|lenuapisaypeoy |Aiojoed |s8suaqQ Wb sse|D

198




“(dINId) 12YISSe[D POOYIdYIT WINUIIXE]A J0] XLIJBJA] UOISNJU0D) L', J[qEL

%S LE %0¥ 0~ %6¢€" LY %86°L9 | %l¥'¥S | LVi6Y 8€€¢E £9.61 jejol
%LL'LE %y 0- %9€ 0¥ %8L'L9 | %CC'CE | 0480€ oT4:{014 G166 ajqeaunaduwj
%SCLE %S€ 0" %Ly ¥S %4189 | %EB'LE | LLT8) 6S¥ClL 8189 dlqeaunad
10 %56
je Adeunooy eddey| uoissiwwoD| uoisSIWQ| 108u0D| |ejo]| sjqeswadwy| sjgeswlsd
“(dINId) 19YIsse]D u03K[0d 10§ XIIJBJA UOISNJUOD) 9°L JqEL
%8¥ €Y %90'L2 %01°8¢ %00°9S | %¥P2'S9 | LyL6Y 9262 L0661 jejol
%98'62 %81'6C %¥0'6C %0469 | %0€0¢ | 8980¢€ 5174 25€6 ajqeaunadw|
%01 LS %E6'8C %9118 %6CCY | %lLLLS|6/28]) 0Ll 6501 d|qesunad
10 %56
je Adeindoy eddey)| uoissiwWOY| uoIssSIWQO| 108109 |Blol | sjgeswadw)| s|geswllad

199









7.4 Conclusion

This chapter has illustrated the differences between the two methods used. It has
shown that the use of ATM imagery in conjunction with the Polygon classifier is a
practical alternative to the use of videography in conjunction with a Maximum
Likelihood classification. It does not, however, provide a direct comparison between
the ATM and the Videography, or a comparison between the polygon classifier and
the Maximum Likelithood classifier. It is the suitability of the two methodologies that it

compares.

As such, it indicates that there is a much higher degree of accuracy achieved with the
ATM/polygon classifier method. The rigorous nature of the accuracy assessment
method does not flatter this method, however, and indicates that there are
considerable errors. The major source of error is likely to be caused by the geo-
rectification procedure used. In addition, there may be errors in the manually classified

map

This comparison has also highlighted the effectiveness of the Kappa statistic as a

method for classification accuracy.
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Chapter 8: Conclusion
The purpose of this project has been to investigate what improvements the introduction of
context to the classification procedure can provide. In particular, the focus has been on the

classification of urban ATM imagery for providing input into an urban drainage model.

Initially four conventional classification procedures (supervised Maximum  Likelihood,
SMAP, ECHO and unsupervised Maximum Likelihood) were performed, in order to find
out the suitability of each for this task. This highlighted the inadequacies of per-pixel
classification. From a qualitative viewpoint the Maximum Likelihood classifiers produced
the best classification in terms of discrimination of the classes, although the appearance of
the classified map was lacking in homogeneity. In order for the quality of the classification
to be qualified, there arose a need to determine an accuracy assessment method that would
provide comprchensive detail about the classification procedure, while remaining unbiased

so that a fair compatison between classifiers could be made.

This aspect was developed and consequently produced the reccommendation that the usc of
the Kappa value combined with the single random pixel method, providing the sample size
was adequate, would provide this comparison. The confidence level, while being an
important measure of the sample size, does not encapsulate information about the errors of
omission and commission of a classification. The region correlation sampling method was
found to inherently introducc bias from a variety of sources, and as such is of little scientific
use. The development of the assessment method allows an unbiased and comprehensive
comparison between the existing classification methods and the new onc developed in this

PI‘O]CCt.

From this research a platform was provided from which a new classifier, based on a per-
polygon approach, could be developed. As the review in Chapter 2 indicated, the edges of
objects in imagery contain much important information about the objects themselves. The
polygons contained within the edges have mostly homogeneous properties that can be used
by the classifier. These polygons provide continuity throughout the image and allow the

features in the image, such as roads and roofs, to be casily extracted.
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The new classifier is based on a per-polygon classification, which incorporates contextual
information through the extraction of polygons produced by the Marr Hildreth zero-
crossing edge detector. This edge detector, while not optimal in the mathematical sense,
locates intensity contours in the imagery, which represent the features that a photo-
interpreter looks for when classifying an image. The best results for this edge detection were
achieved when using a false colour composite image, which combined band 3 (green), band
5 (red) and band 7 (near infrared). This imagery highlights vegetation and man made
features in the imagery and enables the production of an edge map that richly describes

these features.

This edge map is used to incorporate contextual information into the classification
procedure. The classification of each individual pixel is dependent on the class to which the
polygon it is contained in is assigned. Fach polygon is subjected to a test of homogeneity -
if it is found to fail this test it is further refined undl it becomes homogencous. This test of
homogeneity is tuned towards the urban drainage model requirements, which are that roads
and roofs contain the most important information. Consequently the thermal band, which 1s

the most disctriminating band for these features, is used for this task.

The new per-pixel classification procedure was then subjected to the rigorous accuracy
assessment approach developed in Chapter 4, and found to producc a classified image of
improved accuracy and appearance. Fase of implementation indicates that this 1s a practical

approach to land-use classification

Subsequently some potential improvements to the classifier were examined. Attempts to
further improve the appearance of the classified image through the use of a Hough
transform and the Muff transform were found to be unsuccessful, duc to the complex
nature of urban imagety. The presence of many closely packed edges in the imagery resulted

in many sputious edges being extracted by these techniques.

Dawn thermal imagery could potentially be used to enhance the dataset. In this imagery,
roads and roofs have a high contrast relative to other features in the imagery. As such it 1s
likely that these features could be extracted with relative ease (perhaps through thresholding

the imagery.) However, problems encountered with geometric cotrection of the ATM data
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mean that it is currently impossible to combine both data scts. The problem of ATM image

geo-rectification is part of ongoing research at Aston University.

A comparison of the method developed and that used in a previous study was then made.
This found that the developed method was considerably more cffective than the use of per-

pixel classification combined with videography.

From this research it is recommended that the supervised Polygon classifier i1s used with

ATM imagery to classify land-use information for urban drainage modelling.
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Appendix 1 - C Listing for the Polygon Classifier

This appendix contains the code for the various computer programs used in this project.
The code was written in C and compiled in the Grass4.1 environment. The code will require

minor modifications to run outside of this environment.

The code presented in this appendix is discussed in section 5.5. It was written for ease of
implementation, rather than efficiency, and as a result has not been optimised. However, the
reason for this is due to the memory allocation for cach polygon that s cxtracted. Most of
the polygons in the polygon map image are spatially small, although a few (such as a road
network) have a large spatial extent. The cutrent program uses a static array for each
extracted polygon, rather than a dynamically allocated one, the size of which 1s enough to
hold the entire image. Consequently, each polygon takes the same amount of time to
process. Implementing dynamic memoty allocation will vastly improve the performance of

the classifier.

List of Files :

Polygon.c - Main program.

Polygon.h - Header file.

Gmakefile - Makefile for compilation in a Grass4.1 environment.

Gmakefile

OBJ= seed2.0
EXTRA_CFLAGS=$(VECT_INCLUDE)
r.seed2:$(0OBJ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ S$(OBJ) $(GISLIB) $(VECTLIB) -I$(INCLUDE DIR) -
I/usr/include $(EXTRA CFLAGS) $(VECTLIBFLAGS) $(XDRLIB) $(MATHLIB)

$(GISLIB) :#in case library changes
seed2.h:
$ (VECTLIB) :
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Polygon.h

/* Header file for r.polygon */

#include <stdio.h>
#include <gis.h>

f#define MATRIX SIZE 512
#define A image([row-1] [col-1]

#define image [row-1] [col]
#define C image[row-1][col+1]

os]

#define D image[row] [col-1]
#define E image[row] [col]
#define F image([row] [col+1]

#define G image[row+1] [col-1]
#define H image[row+1] [col]
#define I image[row+1l] [col+1]

#define Abl bufl[row-1][col-1]
#define Bbl bufl(row-1][col]
#define Cbl bufl[row-1][col+1]

#define Dbl bufl[row] [col-1]
#define Ebl bufl[row] [col]
#define Fbl bufl[row] [col+1]

#define Gbl bufl[row+1l] [col-1]
#define Hbl bufl[row+1l] [col]
#define Ibl bufl[row+l] [col+1]

int nrows;
int ncols;
int filel d;
int file2 d;
int file3 d;

int filed new;

CELL *celll;
CELL *cell2;
CELL *cell3;

CELL image[MATRIX SIZE][MATRIX SIZE];

CELL bufl[MATRIX SIZE
CELL buf2[MATRIX SIZE
CELL buf3[MATRIX SIZE] [MATRIX SIZE];
CELL buf4 [MATRIX SIZE] [MATRIX SIZE];
CELL maxlik[MATRIX SIZE] [MATRIX SIZE];

MATRIX SIZE];
MATRIX SIZE];

—_ — — —
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int row;
int col;

Polygon.c

/* r.polygon 15.1.97 By Alastair Buchanan

This program classifies an image. A polygon map of the areas generated
by the zero-crossing edge detection program is used as a mask. An area
is selected and extracted. A seed is then planted and grown from the
edge of the area, the criteria for growth being that the neighbouring
pixels fall within a threshold of homogeneity. Once a sub-region has
been grown, the underlying classification statistics determined by a
Maximum Likelihood classifier is examined. The mode value for the sub-
region 1s taken as the true class for that region. The next seed in the
extracted area 1s then grown and further sub areas are extracted and
classified. */

#include "polygon.h"
#include <time.h>

#define CLASS 500

#define ITERATIONS 400
#define THRESHOLD 10

#define number of classes 20
#define HOWMANY 100000

struct Option* inputl;
struct Option* input2;
struct Option* input3;
struct Option* output;
struct Flag* quiet;
int x;

int SEEDROW;

int SEEDCOL;

int seedl;

long int n;

int find mode();

int findseed();

int grow();

int condition () ;

int flag=0;

int grow_region();

int i;

int mode=0;

long int timel,time2;
int endflag=0;

int area count=0;

int a;

main(argc,argv)
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int argc;
char *argvl[];

{

char filel([507;

char file2([50]};

char file3{50];

char filter new({50};
char *mapset;

G _gisinit(argv[0]);
timel=clock () ;

/***************Call Parser and set lt up *********‘k*************/

inputl=G define option();
input2=G define option();
input3=G define_ option();

output=G_define option();
quiet=G define flag();

inputl->key="inputl"”;
inputl->description="input thermal image";
inputl->required=YES;

inputl->type=TYPE STRING;
inputl->gisprompt=("old, cell, raster");

input2->key="input2";
input2->description="input statistics map";
input2->required=YES;

input2->type=TYPE STRING;
input2->gisprompt=("old,cell,raster");

input3->key="input3";
input3->description="input polyon map";
input3->required=YES;

input3->type=TYPE STRING;
input3->gisprompt=("old,cell, raster");

output->key="output";
output->description="output filefilter";
output->required=YES;

output->type=TYPE STRING;

quiet->key="'q';
quiet->description="suppress verbosity?";

if (G parser (argc,argvy))

_fatal error("parser choked”);

-~ ) ~
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/*****************The rest Of the program*********************/

if (!quiet->answer) {fprintf (stderr,"r.seed - december 1996 \n");}

filel[0Q]="'\O";
G strcat(filel, inputl->answer);

if((filel d=G open cell old(inputl->answer,G mapset ()))<0)
{
G fatal error("cannot read filel");
}

file2[0]="\0";

G_strcat(file2, input2->answer);

if((file2 d=G_open_cell old(input2->answer,G mapset ())}<0)
{
G fatal error("cannot read file2");
}

file3([0]="\0";

G strcat (file3, input3->answer);

if((file3 d=G _open cell old(input3->answer,G_mapset (}))<0)

(
{
G _fatal error("cannot read file3");
}

filter new{0]='\0";
G_strcat(filter_new,output—>answer);

nrows=G window_rows();
ncols=G window cols();

printf ("rows=%d cols=%d\n",nrows,ncols);

filed new=G open cell new (filter new);

/* Open matrix for buffer */

celll=G allocate cell buf();

for (row=0; row<(nrows); row++)
{
G _get map row(filel d, celll,row);
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for(col=0; col<(ncols); col++)

{
image{row] {col]l=celll[col];
}
cell2=G allocate cell buf();
for (row=0; row<(nrows); row++)

{
G get map row(file2 d, cell2, row);

for (col=0; col<(ncols); col++)

{

maxlik{row] [col]l=cell2[col];

}

}

cell3=G allocate_cell buf();
for (row=0; row<(nrows); rowt+)

{
G get map row(file3 d, cell3, row);

for (col=0; col<(ncols); col++)

{

bufd [row]} [col]=cell3{col]:;

!
!

/* find areas to work on */
/* How many areas are there? */

for (row=0; row<nrows; rowtt)

{

for (col=0; col<ncols; col++)
{

if (buf4[row] [col]>area count)

{

area count=buf4{row] [col];

}
}

printf ("\nNumber of Areas=%d", area_ count);
/* create buffer containing bandll values */

for (a=1; a<=area_count;a++)
{

for (row=0; row<nrows; row++)

{

for (col=0; col<ncols; col++)
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{
bufl[row} [col]=0;
}

}

for (row=0; row<nrows; row+t+)
{
for (col=0; col<ncols; col++)
{
if (bufd[row] [col]==a)
{
bufl[row] [col]=image[row] [col];
}
}
}

printf ("\nProcessing area %d ",a);
endflag=0;

/* find a starting point */

for (n=1;n<HOWMANY;n++)
{

if (findseed()==1)
{

row=SEEDROW;
col=SEEDCOL;

/*printf ("at %d %d filel: Seed value = %d\n",row,col,E);*/
seedl = E;

Ebl = CLASS;

grow_region();
/*perform region growing on the polygon.*/

for (i=1; i<ITERATIONS; i++)
{
flag=0;
/*A Dynamically allocated array can be used here
efficiency*/
for (row=0;row<=nrows;rowt+)
{
for(col=0; col<(ncols); col++)

{
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if (Ebl==CLASS)
{
seedl=E;

grow_region();

}

if (flag==0)
{
i=(ITERATIONS-1);
/*printf ("Bailout\n");*/
}

/* assign maximum likelihood values to extracted region */

for (row=0; row<nrows; row++)

{
for(col=0; col<ncols; col++)
{
if (bufl[row] [col]==CLASS)
{
buf2{row] [col]=maxlik[row] [col];
}
}
}
/* find mode value */
mode=find mode () ;

/* assign mode value to extracted region */

for (row=0; row<nrows; rowt+)

{

for(col=0; col<ncols; col++)
{
if (bufl[row] [col]==CLASS)
{
buf3{row] [col]=mode;

}

/* produce leftover image for next loop and clean buffers*/
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for (row=0; row<nrows; rowt+)

{

for(col=0; col<ncols; col++)

{
if (bufl[row] [col]==CLASS)
{
bufl{row] [col]=0;
}

buf2(row] {col]=0;

}

else

{
time2=clock();

printf ("\n%i seconds", (time2-timel)/CLOCKS PER_SEC);

endflag=1;
}
if (endflag==1)
{
break;
}
}

}

/* Write new image to new matrix for output */

for (row=0; row<nrows; rowt+)

{

for (col=0; col<ncols; col++)

{

celll{col]=buf3(row] {col];

}

G put map row(filed new,celll);
}

/* Close files .... finished*/

if (!quiet->answer) {fprintf(stderr,"......

G close cell(filel d);
G _close cell(file2 d);
G close_cell(file3 d);
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G close cell(filed new);
timeZ2=clock{();

printf ("\n%d Areas
timel) /CLOCKS PER SEC);
exit (1):

grow region()

{

processed in

Q

S seconds",a, (time2-

if ((Abl>=(seedl-THRESHOLD) ) && (Abl<=(seedl1+THRESHOLD) ))

{if (A!=CLASS) {A=CLASS;flag=1;}}

if ((Bbl>=(seedl-THRESHOLD))&& (Bbl<=(seedl+THRESHOLD)))

{if (Bbl!=CLASS) {Bbl=CLASS; flag=1;}}

if ((Cbl>=(seedl-THRESHOLD) ) && (Cbl<=(seedl+THRESHOLD) ))

{if (Cbl!=CLASS) {Cbl=CLASS; flag=1;}}

if ((Dbl>=(seedl-THRESHOLD) ) && (Dbl<={(seedl+THRESHOLD) ))

{if (Dbl!=CLASS) {Dbl=CLASS; flag=1;}}

if ((Fbl>=(seedl-THRESHOLD) ) && (Fbl<=(seedl+THRESHOLD) ) )

{if (Fbl!=CLASS) {Fbl=CLASS;flag=1;}}

if ((Gbl>=(seedl-THRESHOLD) ) && (Gbl<=(seedl+THRESHOLD) })

{if (Gbl!=CLASS) {Gbl=CLASS; flag=1;1}}

if ((Hbl>=(seedl-THRESHOLD) ) && (Hbl<=(seedl+THRESHOLD) )}

{if (Hbl!=CLASS) {Hb1l=CLASS;flag=1;}}

if {(Ibl>=(seedl-THRESHOLD) ) && (Ibl<={(seedl+THRESHOLD)))

if (flag==1l) {return 1;}
else {return 0;}

}

findseed ()
{

for (row=0;row<=nrows;row++)

{

for (col=0; col<=ncols;

{
if (Ebl!=0)

{
SEEDROW=row;
SEEDCOL=col;
return 1;

}

{if (Ibl!=CLASS) {Ibl1=CLASS;flag=1l;}}
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find mode ()
{

int area[number of classes];
int index=1, count=0;

int class=0;

int biggest=0;

for (index=1; index<number of classes; indext+)

{

for (row=0; row<nrows;rowt+)

{

for (col=0;col<ncols;col++)
{
if (buf2[row] [col]==index)
{

count++;

}
}

area[index]=count;

/*printf ("area %d = 2d\n", index, area(index]); */
count=0;

}
biggest=0;

for (index=1; index<number of classes; index++)

{

if (area[index]>biggest)
{
biggest=area[index];
class=index;
}

}

/*printf ("biggest= class %d with %d pixels\n",class,biggest);*/
return (class);
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Appendix 2 — Class accuracies for the 11 class imagery

This appendix contains the confusion matrices for the assessment of the 11 class classified
imagery region correlation method. The results for each of the 4 classifiers examined in
Chapters 3 and 4 are presented along with the results for the newly developed Polygon
classifier from Chapter 5.
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Appendix 3 - Common Methods for Measuring Texture

A3.1. Grey Level Co-Occurrence Matrix (Haralick, 1979).
Each point in a picture is characterised by some statistics calculated from a set of grey levels
of its neighbouring points, so that the results arc insensitive to notse and texture or, rather,

these methods discriminate points according to textural properties.

A3.2. Grey Level Run Length (Galloway, 1975)

A consecutive set of co-linear pixels having the same grey-level value is called a grey level
run, the number of pixels in the run being the length of the run. A grey level run length
matrix can be calculated in four different directions for a given image. The grey run length
approach characterises coarse textures as having as many pixels in a constant grey tone run,
and fine textures as having few pixels in a grey tonc run. This method is computationally

efficient and an accuracy of 83% has been achieved for six land classes using digitised aerial

photography.

A3.3. Auto-regression model (Oldfield, 1988).

This is a way to usc linear estimates of a pixel grey tone given the grey tones in a
neighbourhood contaming it in order to characterise texture. [‘or coarse textures, the
coefficients will be similar. For fine textures, the coefficients will have wide vatiations. The
strength of this approach is that it is easy to use the estimates in a mode which synthesises
textures from an initially given linear estimator. In this sense, the auto-regressive approach is
sufficient to capture everything about a texture. Its weakness is that the textures it can

characterise are likely to consist mostly of micro textures.

A3.4. Auto-Correlation (Oldfield, 1988).
The purpose of the auto-correlation function is to measure the size of the texels contained
in an image. It is best described with the following analogy. Two identical image

transparencies are placed on top of one another and, using a uniform source of light, the
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average light transmutted through the double transparency is measured. One transpatency is
then rotated relative to the other and transmitted light, as a function of the rotation, is
measured. The two dimensional auto-correlation of the transparencies is the graph of these
measurements. The auto-correlation and the power spectral density are  Fourer
transformations of one another. The auto-correlation will drop off slowly with distance if
the tonal primitives are relatively large. If the tonal primitive are small the auto-correlation

will drop off quickly.
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Appendix 4 - An Overview of Contextual Algorithms

One method of representing context involves other pixels or groups of pixels in the
classification of the image by using the necighbourhood dependency of class labels. The
contextual algorithms described below use the spatial information provided by the
surrounding pixels. Basic methods include mode filters and median filters, which can be

used as contextual post classificrs, as simple smoothing filters removing isolated stray pixels.

A4.1. Minimal Area Replacement Filter (Davis and Peet, 1977).
A smoothing technique based on the size of the classified objects in the image. All

connected regions are identified - any region smaller than a certain size is declassified.

AA4.2. Unclassified Boundaries (Oldfield, 1988).
Related to the above idea is the theory that the largest errors of the classification occur at
the edges or boundaries of the objects. A simple contextual rule is used to label all boundary

areas as unclassified.

A4.3. Modified Minimum Area Replacement Filter (Oldfield, 1988).
A varnation on the Minimal Area Replacement Filter is to identify noise and boundary pixels

on original imagery. This 1s done by :

1) First passing a suitable edge detector over the image (i.c. Roberts/Sobel/I.aplacian high

pass).
if) Thresholding this to separate the image into edges/non-edges.
11) Declassifying the pixels identified as edges.

iv) Applying a reclassification algorithm to the declassified image (such as one of those

already mentioned).
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A4.4. Relaxation Labelling (Booth, 1989).

The image is reclassified according to the probabilitics of a pixel and its neighbours
belonging to cach class. Probabilistic relaxation - an extension of the maximum likelihood
classification algorithm to cover a neighbourhood rather than single pixels. However this is
slow over large neighbourhoods - so iterative implementation must be done over small

neighbourhoods.

A4.5. Non-probabilistic methods (Booth, 1989).
Modifying the minimum distance classifier in a similar manner to the above, but classifying

according to the distance to means rather than probabilities.

Another alternative is to use ranked classes for each pixel, since rank order of classes can be
calculated faster than the probabilities using an equation derived from the maximum

likelihood probability estimate.

A more sophisticated two pass algorithm for the contextual classification of images has been
developed (Haralick & Joo, 1985). The algorithm takes the form of a recursive
neighbourhood operator first applied in a top down scan of the image and then in a bottom
up scan of the image. This assigns a class to cach pixel, based on the following properties.
Associated with each pixel 1s a best path which passes through the pixel and generally flows
from top to bottom (or left to right). The one dimensional context parameters for such
paths are those estimated from the ground truth averages along the four types of paths, the
horizontal, vertical, and the two diagonal directions. When applied to a l.andsat image, the
context classificr shows better classification accuracy compared to a non-contextual Bayes

classifier with correct 4 priori values (80.0% compared to 68.8%).
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