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Abstract— Data visualization algorithms and feature selection
techniques are both widely used in bioinformatics but as distinct
analytical approaches. Until now there has been no method of de-
ciding feature saliency while training a data visualization model.
We derive a generative topographic mapping (GTM) based
data visualization approach which estimates feature saliency
simultaneously with the training of the visualization model. The
approach not only provides a better projection by modeling irrel-
evant features with a separate noise model but also gives feature
saliency values which help the user assess the significance of
each feature. We compare the quality of the projection obtained
using the new approach with the projections from traditional
GTM and self-organizing maps (SOM) algorithms. The results
obtained on a synthetic and a real-life chemoinformatics dataset
demonstrate that the proposed approach successfully identifies
feature significance and provides coherent (compact) projections.

Index Terms— Data visualization, feature selection, generative
topographic mapping, unsupervised learning, chemoinformatics.

I. I NTRODUCTION

Data visualization is an important means of extracting useful
information from large quantities of raw data. It is difficult
for people to visualize data in more than three dimensions,
so high-dimensional data is projected onto lower-dimensional
space. Here, we use the termvisualizationto mean any method
of projecting data into a lower-dimensional space in such a
way that the projected data keeps most of the topographic
properties (i.e. ‘structure’) and makes it easier for the users to
interpret the data to gain useful information from it.

Data visualization is extensively used in the bioinformatics
and drug discovery communities. It is useful to understand
“natural” grouping in a large multivariate dataset using data
visualization. In a recent review on “Statistical Challenges in
Functional Genomics”, Sebastiani et. al. [1], stated “The newly
born functional genomic community is in great need of tools
for data analysis and visual display of the results”. Dimension-
ality reduction methods such as principal component analysis
(PCA) [2] and factor analysis [3] have been used for data
visualization with moderate success for complex datasets. This
is because methods based on variance, such as PCA, need not
provide good clustering, as features with large variance can be
independent of the intrinsic grouping of the data. Advanced
projection methods such as Sammon’s mapping [4], multidi-
mensional scaling (MDS) [5], self-organizing maps (SOM) [6]
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and generative topographic mapping (GTM) [7], which try
to preserve topographic structure of the input space in the
projection space, have been widely used in bioinformatics and
drug discovery domains with more success [8] [9] [10] [11].

In many real-life problems in bioinformatics we are required
to work with large multivariate datasets [12] [13]. In principle,
the more information we have about each pattern, the better
a visualization algorithm is expected to perform. This seems
to suggest that we should use as many features as possible
to represent the patterns. However, this is not the case in
practice. Some features can be just “noise”. For a large
multivariate dataset, feature selection is important for several
reasons, the fundamental one being that noisy features can
degrade the performance of most learning algorithms. Feature
selection has been widely studied in the context of supervised
learning and applied to many supervised learning problems in
bioinformatics [14] [15] [16]. Feature selection algorithms for
supervised learning problems can be broadly divided into two
categories:filters andwrappers. The filter approaches evaluate
the relevance of each feature (subset) using the data set
alone, regardless of the subsequent learning algorithm [14]. On
the other hand, wrapper approaches [17] invoke the learning
algorithm to evaluate the quality of each feature.

Feature selection for unsupervised problems is more difficult
and has received comparatively very little attention because,
unlike in supervised learning, there are no class labels for the
data and, thus, no obvious criteria to guide the search [18] [19].
Recently Law et. al. [20] proposed a solution to the feature se-
lection problem in unsupervised learning using mixture models
by casting it as an estimation problem, thus avoiding any
combinatorial search. Instead of selecting a subset of features,
they estimate a set of real-valued (in[0, 1]) quantities (one for
each feature) which are called as thefeature saliencies. They
adopt a minimum message length (MML) [21] penalty for
model selection. This approach can be classified as a wrapper
approach.

GTM is a principled probabilistic mixture-based data visu-
alization algorithm where each data point is modeled as having
been generated by one of a set of probabilistic models. Since
GTM is a mixture-based projection method, it is possible to
modify the feature selection approach proposed in [20] and
apply it to the training of the mixture model in GTM. We
propose a GTM-based data visualization with simultaneous
feature selection (GTM-FS) approach which not only provides
a better visualization by modeling irrelevant features (“noise”)
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using a separate shared distribution but also gives a saliency
value for each feature which helps the user to assess their sig-
nificance. Such notion of feature saliency is more appropriate
than a “hard” feature selection (a feature is either selected or
not) for many real-life datasets [22]. Model selection is a less
critical issue for density models, particularly when they are
used for visualization [7].

The remainder of this paper is organized as follows: The
proposed approach, GTM with feature saliency (GTM-FS),
is introduced and mathematically derived in Section II. The
projection evaluation methods we employed are explained in
Section III. The experimental results on both synthetic and
real-life chemoinformatics datasets are reported in Section IV.
In Section V, we discuss computational costs for the projection
algorithms. The results are discussed in detail in Section VI.
Finally, we draw the main conclusions in Section VII.

II. GTM WITH FEATURE SALIENCY (GTM-FS)

The generative topographic mapping (GTM) is a probability
density model which describes the distribution of data in a
space of several dimensions in terms of a smaller number of
latent (or hidden) variables [7]. The mapf : H ⇒ D between
the latent space,H, and the data space,D, is non-linear, which
implies that the image of the (flat) latent space is a curved
and stretched manifold in the data space. We use a mixture of
Gaussians as a latent grid to model the data in the data space.
Given a pointzm ∈ H in the latent space, its image under the
mapf is

f(zm,W) = Φ(zm)W, (1)

where Φ(zm) = (φ1(zm), ..., φK(zm))T is a set of fixed
non-linear basis functions,W is aK × D matrix of weight
parameters andf(zm,W) forms the center of the Gaussian
component,m, in the data space.

In GTM, this mixture of Gaussians are made up with spher-
ical Gaussians. To calculate feature saliency, we assume that
the features are conditionally independent given the mixture
component label. In the particular case of Gaussian mixtures,
the conditional independence assumption is equivalent to
adopting diagonal covariance matrices. So instead of having a
mixture of spherical Gaussians, as in GTM, we use a mixture
of diagonal Gaussians. Then the probability density function
is given by,

p(xn|α, θ) =
M∑
m=1

αm

D∏
d=1

p(xnd|θmd), (2)

whereM is the total number of components in the mixture
(equal to the number of grid points in latent space), and as
in GTM, we take the mixing coefficient,αm, to be constant
and equal to1

M . D is the total number of features in the input
space,xn is a D dimensional vector representing the input
point n, andp(· |θmd) is the pdf of thedth feature for themth
component, with parametersθmd = {f(zm,W), σ2

d}. σ2
d is

common (same) across all the components for each featured.
The dth feature is irrelevant if its distribution is indepen-

dent of the component labels, i.e., if it follows a common

density, denoted byq(xnd|λd) which is taken to be a diagonal
Gaussian, andλd is the set of parameters of that Gaussian. Let
Ψ = (ψ1, ..., ψD) be an ordered set of binary parameters, such
that ψd = 1 if feature d is relevant andψd = 0, otherwise.
Now the mixture density is,

p(xn|∆) =
M∑
m=1

αm

D∏
d=1

[p(xnd|θmd)]ψd [q(xnd|λd)](1−ψd).

(3)
where∆ = {{αm}, {θmd}, {ψd}}.

The notion of feature saliency is summarized in 2 steps:
1) ψds are treated as “missing variables” in the EM algo-
rithm [23] sense and 2) the feature saliency is defined as
ρd = P (ψd = 1), the probability that thedth feature is
relevant. Now the resulting model can be written as

p(xn|Θ) =
M∑
m=1

αm

D∏
d=1

(ρdp(xnd|θmd) + (1− ρd)q(xnd|λd)),

(4)
whereΘ = {{αm}, {θmd}, {λd}, {ρd}} is the set of all the
parameters of the model. An intuitive way to see how ( 3)
is obtained is to notice that[p(xnd|θmd)]ψd [q(xnd|λd)](1−ψd)

can be written asψdp(xnd|θmd)+(1−ψd)q(xnd|λd), because
ψd is binary.

Figure 1 illustrates the notion of data visualization with
simultaneous feature selection in a GTM-FS model for a three
dimensional data with feature 1 (d1) and feature 2 (d2) as
salient features and feature 3 (d3) as an irrelevant feature
(“noise”). Then the fitting of the mixture with four components
(given by (2), represented as a two dimensional manifold,
shown as ‘Latent Space’ in Figure 1) can be illustrated
schematically as four oblate spheroids (flat disks) on the
manifold having larger width (variance) in the directions of
featuresd1 andd2 and near-zero width in the direction of the
d3 in the data space. The separate shared pdf,q(·|λ), which
models the irrelevant features,d3, is displayed as a prolate
spheroid in the middle of the manifold in the data space.

Fig. 1. Schematic representation of the GTM-FS model.d1 and d2 have
high saliency andd3 has low saliency.

The complete-data log-likelihood is then given by

L(xn,Θ) = ln
N∏
n=1

p(xn|Θ), (5)

whereN is the total number of input points.
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Algorithm 1 : Summary of the GTM-FS algorithm
Input : Training dataset.
Output : Trained GTM-FS visualization model with estimated feature saliency values for all the features.

begin
Generate the grid of latent points{zm} ∈ H,m = 1, 2, . . . ,M ;
Generate the grid of basis functions,Φ(zm), centers{νk}, k = 1, . . . ,K;
Select the basis functions,Φ(zm), width;
Compute the matrix of basis function activations,Φ (like in GTM [2]);
Initialize W, randomly or using PCA;
Initialize width of the diagonal Gaussians in the grid (mixture);
Initialize feature weight,ρd, for each featured, to 0.5;
Initialize the mixing coefficient,αm, for each component,m, in the grid to1/M ;
Set the mean and the variance of the shared distribution,q(·|λ), as the mean and covariance of the training set;
repeat

ComputeR, U andV using (6), (7) and (8) respectively, using current parameters,Θ;
for d← 1 to D do

Reestimate the weight vector,wd, usingŵd = (ΦTGdΦ)−1ΦTUdxd, derived from (9);
end
Obtain the center,µm, of each component,m, of the mixture in the data space, using (11);
Reestimate the width of the diagonal Gaussians,σd, using (12), for all the features;
Reestimate the mean and the variance of the shared distribution using (13) and (14) respectively;
Reestimate the feature weight,ρd, using (15), for all the features;

until convergence;
end

The parameters are estimated using a variant of the EM
algorithm as follows.

A. An EM Algorithm for GTM-FS

We can exploit the latent-variable structure of the model
as for GTM and use the expectation maximization (EM) algo-
rithm to estimate the parameters in the model. For each feature
d = {1, . . . , D}, we flip a biased coin whose probability of a
head isρd; if we get a head, we use the mixture component
p(· |θmd) to generate thedth feature; otherwise, the common
componentq(· |λd)) is used.

We treaty (the hidden class labels) as the missing variables.
In the E-step we use the current parameter setΘ to evaluate
the posterior probabilities (responsibilities),Rnm = P (yn =
m|xn), of each Gaussian componentm for every data point
xn using Bayes’ theorem in the form

Rnm =
αm

∏D
d=1(ρdp(xnd|θmd) + (1− ρd)q(xnd|λd))∑M

m=1 αm
∏D
d=1(ρdp(xnd|θmd) + (1− ρd)q(xnd|λd))

.

(6)

Using the responsibilities matrixR, we can calculate
unmd = P (ψd = 1, yn = m|xn), which measures how
important thenth pattern is to themth component, when the
dth feature is used, andvnmd = P (ψd = 0, yn = m|xn) as
follows

unmd =
ρdp(xnd|θmd)

ρdp(xnd|θmd) + (1− ρd)q(xnd|λd)
Rnm, (7)

vnmd = Rnm − unmd. (8)

Then in the M-step we use the posterior probabilities to
re-estimate the weight matrixW by solving the following

system of linear equations for each feature (see [24] for a
detail derivation of this matrix form)

ΦTGdΦŵd = ΦTUdxd, (9)

whereΦ is aM ×K matrix, ŵd is aK × 1 weight vector ,
Ud is aM×N matrix calculated using (7),xd is aN×1 data
vector, andGd is anM ×M diagonal matrix with elements

gmmd =
N∑
n

unmd. (10)

Then using this re-estimated̂W, it is straight forward to
obtain the centers of the mixture components in data space,
using (1), as follows:

̂Meanθm = µm = Φ(zm)Ŵ, (11)

whereµm is 1×D vector.
Using the updated center locations of the components of

the mixture in the data space, width of the diagonal Gaussians
in each direction, corresponding to one feature each, is re-
estimated as below

σd =
∑
m

∑
n unmd(xnd − µmd)2∑
m

∑
n unmd

. (12)

Note that the width, is common across all the components
in the mixture.

Parameters of the common density,λd, are updated as
follows:
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M̂eanλd =
∑
n(

∑
m vnmd)xnd∑
nm vnmd

, (13)

V̂ar λd =
∑
n(

∑
m vnmd)xnd∑
nm vnmd

. (14)

It is natural that the estimates of the mean and the variance
in, λd, are weighted sums with weightvnmd.

The feature saliency variable,ρd, is updated as follows:

ρ̂d =
max(

∑
nm unmd −

ML
2 , 0)

max(
∑
nm unmd −

ML
2 , 0) + max(

∑
nm vnmd −

S
2 , 0)

,

(15)
whereL andS are the number of parameters inθmd andλd,
respectively. The term

∑
nm unmd can be interpreted as how

likely it is that ψd equals one, explaining why the estimate of
ρd is proportional to

∑
nm unmd.

Summary of the GTM-FS algorithm is presented in Algo-
rithm 1. Readers interested in a detailed derivation of the EM
algorithm for GTM-FS are directed to [24].

III. E VALUATION METHODS

Though visually we can observe the effectiveness of a
projection, it is hard to compare projections obtained using
different methods. We employed the following three evaluation
methods to compare different aspects of the projections.

A. Kullback-Leibler (KL) divergence

It is useful to get an analytical measurement of the sep-
aration between different data classes in the projections. To
obtain such a measurement, first we fit a Gaussian mixture
model (GMM) [2] to each class in the projection space and
then we calculate the Kullback-Leibler (KL) divergence [25]
between the fitted GMMs:

DKL(pa ‖ pb) =
∑
x

pa(x) log
pa(x)
pb(x)

, (16)

wherepa andpb are the GMMs for classesa andb respectively.
The greater the value of KL divergence, the greater the
separation between classes.

B. Magnification Factors (MF) sum

One of the main advantages of using GTM–based models
is that it is possible to analytically calculate the Magnification
Factors (MF) of the projection manifold. MFs of a GTM–based
projection manifold,Ω, are calculated as the determinant of
the Jacobian of the visualization mapf [26]. MF plots are
helpful to observe the amount of stretching in a manifold at
different parts of the latent space, which helps in understanding
the data space, outlier detection, and cluster separation. Small
MF values correspond to less stretch in the manifold and hence
a more coherent (compact) mapping in the data space.

The magnification factor is represented by color shading in
the projection manifold (e.g., see Figure 2(a)). The lighter the
color, the more stretch in the projection manifold.

C. Nearest-Neighbor (NN) classification error

Though data visualization is an unsupervised learning prob-
lem, it can be useful to objectively evaluate the quality of
a classifier based on the visualization output. We calculate
Nearest-Neighbor (NN) classification error for which we clas-
sify each data point according to the class of its nearest
neighbor in the two dimensional latent space obtained by the
visualization algorithms.

IV. EXPERIMENTS

We tested GTM-FS on a synthetic dataset and a real life
chemoinformatics dataset used in [11]. Projection results using
GTM-FS are compared with the results from traditional GTM
and SOM algorithms. The experiments were carried out for 5
times with different random seeds in the training algorithm to
calculate standard deviations for the estimated feature saliency
values. Label information was used for better presentation of
the distribution of data points from different classes in the
projections. Label information was also used to calculate KL
divergence and NN classification error.

A. Synthetic dataset

The synthetic dataset consists of 800 data points from a mix-
ture of four equiprobable GaussiansN (mi, I), i = 1, 2, 3, 4,
where m1 = ( 0

3 ) ,m2 = ( 1
9 ) ,m3 = ( 6

4 ) ,m4 = ( 7
10 ).

Eight independent “noisy” features (sampled from aN (0, 1)
density) are then appended to this data, yielding a set of 800
10-dimensional patterns.

The projections obtained using GTM, GTM-FS and SOM
algorithms are presented in Figure 2. Background color shad-
ing in Figure 2(a) and Figure 2(b) displays the corresponding
magnification factors for those projection manifolds. A com-
parative evaluation of these projections is presented in Ta-
ble III.

The estimated saliencies of all the 10 features, together with
standard deviations (error bars), are shown in Figure 2(d).

The results are further discussed in Section VI.

B. Chemoinformatics dataset

The chemoinformatics dataset we used is composed of
11,799 compounds; biological activity is measured for five
different biological targets and there are 11 whole-molecule
physicochemical properties. Thus, the dataset has, in total,
16 variables (dimensions) in the data space and we want to
visualize it effectively on a 2-dimensional manifold.

Out of these five biological targets, two are peptidergic G-
Protein coupled receptor (GPCR) targets, two are aminergic
GPCR targets, and one is a kinase target. The four GPCR
targets are of related receptor types whilst the kinase is a
completely unrelated enzyme target class. Table I lists the label
information and distribution of compounds in different labels.

In addition to the biological activity values, 11 whole–
molecule physiochemical properties were included for each
compound in the dataset (Table II).

Since different input variables in the dataset have different
ranges, before the development of visualization models we
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(a) GTM projection. (b) GTM-FS projection.

(c) SOM projection. (d) Feature saliencies.

Fig. 2. GTM, GTM-FS and SOM projections for the synthetic dataset. Background in the GTM and GTM-FS plot is their corresponding magnification
factors on alog10 scale.

TABLE I

CHEMOINFORMATICS DATASET: LABEL INFORMATION AND

DISTRIBUTION.

Label Description Marker Compounds

Not active in any screen • 10769
Active for peptidergic type1 + 118
Active for peptidergic type2 ∗ 181
Active for aminergic type1 � 50
Active for aminergic type2 4 409
Active for kinase ♦ 206
Active for more than 1 screen ◦ 66

TABLE II

CHEMOINFORMATICS DATASET: MOLECULAR PHYSICOCHEMICAL

PROPERTIES.

AlogP
Molecular solubility
Number of atoms
Number of bonds
Number of Hydrogens
Number of ring bonds
Number of rotatable ring bonds
Number of Hydrogen acceptors
Number of Hydrogen donors
Molecular polar surface area
Molecular weight
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(a) GTM projection. (b) GTM-FS projection.

(c) SOM projection. (d) Feature saliencies.

Fig. 3. GTM, GTM-FS and SOM projections for the chemoinformatics dataset. Background in the GTM and GTM-FS plot is their corresponding magnification
factors on alog10 scale. Please refer to Table I for legend.

TABLE III

EVALUATION OF VISUALIZATION MODELS .

Method Dataset GTM GTM-FS SOM

KL divergence
Synthetic 15.31 19.43 12.34
chemoinformatics 128.17 167.56 56.37

MF sum
Synthetic 111.63 82.32 -
chemoinformatics 125.92 71.18 -

NN error (%)
Synthetic 0.75 0.75 0.62
chemoinformatics 38.32 41.24 92.40

normalized the data by apply a linear transformation (Z-score
transformation) to have similar ranges for all variables.

The projections obtained using GTM, GTM-FS and SOM

are presented in Figure 3. Background color shading in Fig-
ure 3(a) and Figure 3(b) displays the corresponding magnifi-
cation factors for those projection manifolds. It is useful to
see the plots in color.

Comparative evaluation of these projections is presented
in Table III. As can be seen from the distribution presented in
Table I, the non-active compounds are dominant. A biologist
or chemist is interested in increased accuracy of prediction
for active compounds, and thus the NN classification error for
active compounds is reported in Table III for the chemoinfor-
matics dataset instead of overall NN classification error.

The estimated saliencies of all the 16 features, together with
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their standard deviations (error bars), are shown in Figure 3(d).
The results are further discussed in Section VI.

V. COMPUTATIONAL COST

The distance calculation between data points and mix-
ture components of reference vectors (used in calculation
of p(xn|Θ)), respectively, is identical in GTM, GTM-FS
and SOM training algorithms. Updating the parameters in
SOM training depends on the neighborhood function. In the
experiments presented here it was continuous on the latent
space so the parameter updating scales asO(M2ND+M2),
whereM is the number of grid points in the SOM map andD
is the dimension of the data space. When updating parameters,
the GTM and GTM-FS require a matrix inversion of anK×K
matrix, whereK is the number of basis functions, followed
by a set of matrix multiplications. The matrix inversion
scales asO(K3), while the matrix multiplications scales as
O(MND)1, whereM is the number of grid points in the
latent space. GTM-FS requires an extra loop over the number
of features,D, to reestimate the weight vector,ŵd, in the EM
algorithm.

Table IV shows the time taken to train different projection
models on the chemoinformatics dataset using an Intel Pen-
tium 4 - 2.4GHz machine with 2GB of RAM. An implemen-
tation of the algorithms in C/C++ instead of MATLAB would
further improve the speed.

TABLE IV

TRAINING TIME FOR DIFFERENT PROJECTION MODELS FOR THE TRAINING

SET (N = 11800, D = 16, 20 ITERATIONS).

The model Time (seconds) Architecture

GTM 33 M = 64, K = 36
GTM-FS 34 M = 64, K = 36
SOM 26 M = 64

Once the models are trained, the computational cost to
project data for the subsequent test set scales in the number
of data points (N ) in the test set.

VI. D ISCUSSION

As expected, all three projection algorithms gave four
well separated cluster for the synthetic dataset. GTM-based
algorithms create a uniform distribution so they spread the
data more than SOM projection. This is also revealed from
their higher KL divergence sum value compared to SOM. MF
sum of the GTM-FS manifold is smaller than MF sum of the
GTM manifold which indicates that the GTM-FS manifold is
comparatively less stretched. Close observation of Figure 2(a)
and Figure 2(b) also reveals that the GTM-FS manifold is
more coherent (compact). This is because in GTM-FS the
irrelevant features (“noise”) are modeled using the separate
shared distribution,q(·|λ), and thus the actual manifold is less
stretched. From the estimated feature saliency values using
the GTM-FS model (Figure 2(d)) we can conclude that, in

1To be exact, the matrix multiplications scales asO(MKD + MND),
but normally the number of data points,N , exceeds the number of basis
functions,K.

this case, the GTM-FS algorithm not only provided a good
projection but also correctly estimated the feature saliencies.

The projection in Figure 3(c), obtained using SOM, is like
a blob and does not help us to understand the ‘structure’ of
data in data space. The GTM-based models projections, in
Figure 3(a) and Figure 3(b), show clear clusters for the com-
pounds active for different biological targets. We get better KL
divergence and MF sum values for GTM-FS which indicates
the manifold obtained using GTM-FS is more coherent. GTM
and GTM-FS provided much better NN classification error
rate for active compounds than SOM where the projection
itself is random. The estimated feature saliency values for the
chemoinformatics dataset, presented in Figure 3(d), confirms
with the general consensus in the pharmaceutical domain
that physicochemical properties such as, molecular solubility,
number of atoms, molecular weight, etc., are responsible for
compounds grouping in the chemical space [27]. Chemists at
Pfizer2 also confirmed that they would have expected higher
feature saliency values for these physicochemical properties.

Recently, we introduced a flexible visual data mining tool
which combines advanced projection algorithms developed in
the machine learning domain and visual techniques developed
in the information visualization domain [28]. Although the
rapid development of high-performance computing has to
some extent altered our perception of computational com-
plexity, this issue cannot be ignored in a visual data mining
framework where user interaction is important. Computational
complexity of GTM-FS algorithm is similar to GTM, thus
it can be directly used in such an interactive data mining
framework.

VII. C ONCLUSIONS

Deriving useful information from a real-life large mul-
tivariate dataset is difficult due to the inherent noise and
the sheer amount of data. Data visualization and feature
selection are both individually important topics in bioinformat-
ics/chemoinformatics domain. Addressing both these problems
jointly is not only logical but also synergistic as each endeavor
could benefit from advances in the other when they are
addressed jointly.

We successfully modified a feature selection for unsuper-
vised learning solution and applied it to the training of a prob-
abilistic mixture-based data visualization algorithm. The new
algorithm, GTM-FS, not only provided a better projection by
modeling irrelevant features (“noise”) using a separate shared
distribution but also estimated the feature saliency values
correctly which helps the user assess the significance of each
feature. The usefulness of the algorithm was demonstrated on
both synthetic and real-life chemoinformatics datasets.

Since the estimation of feature saliencies is conveniently
integrated with the training of a probabilistic mixer-based
data visualization model using a variant of EM algorithm,
the computational complexity of the new algorithm remains
tractable.

2Pfizer Central Research, Sandwich, UK
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One of the avenues for future work is to extend the approach
for a probabilistic mixture-based hierarchical visualization
algorithm, such as hierarchical GTM [29].
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