Data Visualization with Simultaneous Feature
Selection

Dharmesh M. Maniyar and lan T. Nabney
Neural Computing Research Group
Aston University, Birmingham. B4 7ET, United Kingdom
Email: {maniyard,nabney}t@aston.ac.uk

Abstract— Data visualization algorithms and feature selection and generative topographic mapping (GTM) [7], which try
techniques are both widely_ used in bioinformatics but as distinct tg preserve topographic structure of the input space in the
analytical approaches. Until now there has been no method of de- projection space, have been widely used in bioinformatics and

ciding feature saliency while training a data visualization model. . . .
We derive a generative topographic mapping (GTM) based drug discovery domains with more success [8] [9] [10] [11].

data visualization approach which estimates feature saliency [N many real-life problems in bioinformatics we are required
simultaneously with the training of the visualization model. The to work with large multivariate datasets [12] [13]. In principle,

approach not only provides a better projection by modeling irrel-  the more information we have about each pattern, the better
evant features with a separate noise model but also gives featureF visualization algorithm is expected to perform. This seems
(0]

saliency values which help the user assess the significance o t that hould feat ibl
each feature. We compare the quality of the projection obtained suggest that we should use as many teatureés as possible

using the new approach with the projections from traditional t0 represent the patterns. However, this is not the case in
GTM and self-organizing maps (SOM) algorithms. The results practice. Some features can be just “noise”. For a large
obtained on a synthetic and a real-life chemoinformatics dataset multivariate dataset, feature selection is important for several
demonstrate that the proposed approach successfully identifies (o 550ns the fundamental one being that noisy features can
feature significance and provides coherent (compact) projections. degrade the performance of most learning algorithms. Feature
Index Terms— Data visualization, feature selection, generative selection has been widely studied in the context of supervised
topographic mapping, unsupervised learning, chemoinformatics. learning and applied to many supervised learning problems in
bioinformatics [14] [15] [16]. Feature selection algorithms for
| INTRODUCTION supervi;ed_learning problems can pe broadly divided into two
’ categoriesfilters andwrappers The filter approaches evaluate
Data visualization is an important means of extracting usefie relevance of each feature (subset) using the data set
information from large quantities of raw data. It is difficultyone, regardless of the subsequent learning algorithm [14]. On
for people to visualize data in more than three dimensionge other hand, wrapper approaches [17] invoke the learning
so high-dimensional data is projected onto lower-dimensionghorithm to evaluate the quality of each feature.
space. Here, we use the tewisualizationto mean any method  Feature selection for unsupervised problems is more difficult
of projecting data into a lower-dimensional space in suchgg has received comparatively very little attention because,
way that the projected data keeps most of the topographifiike in supervised learning, there are no class labels for the
properties (i.e. ‘structure’) and makes it easier for the usersdgta and, thus, no obvious criteria to guide the search [18] [19].
interpret the data to gain useful information from it. _Recently Law et. al. [20] proposed a solution to the feature se-
Data visualization is extensively used in the bioinformatiqgction problem in unsupervised learning using mixture models
and drug discovery communities. It is useful to understang, casting it as an estimation problem, thus avoiding any
“natural” grouping in a large multivariate dataset using dak&mbinatorial search. Instead of selecting a subset of features,
visualization. In a recent review on “Statistical Challenges ihey estimate a set of real-valued (in1]) quantities (one for
Functional Genomics”, Sebastiani et. al. [1], stated “The newlych feature) which are called as fleature salienciesThey
born functional genomic community is in great need of t00lggopt a minimum message length (MML) [21] penalty for
for data analysis and visual display of the results”. Dimensiogyodel selection. This approach can be classified as a wrapper
ality reduction methods such as principal component analygigproach.
(PCA) [2] and factor analysis [3] have been used for data GTM is a principled probabilistic mixture-based data visu-
ylsuallzatlon with moderate success for complex datasets. Thiation algorithm where each data point is modeled as having
is because methods based on variance, such as PCA, neeg,8gh generated by one of a set of probabilistic models. Since
provide good clustering, as features with large variance can 8¢\ is a mixture-based projection method, it is possible to
independent of the intrinsic grouping of the data. Advancerqodify the feature selection approach proposed in [20] and
projection methods such as Sammon’s mapping [4], multidipply it to the training of the mixture model in GTM. We
mensional scaling (MDS) [5], self-organizing maps (SOM) [6}ropose a GTM-based data visualization with simultaneous
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using a separate shared distribution but also gives a saliedensity, denoted by(z,,4|\s) which is taken to be a diagonal
value for each feature which helps the user to assess their sigussian, and, is the set of parameters of that Gaussian. Let
nificance. Such notion of feature saliency is more appropriate= (¢4, ...,¢p) be an ordered set of binary parameters, such
than a “hard” feature selection (a feature is either selectedtbat ), = 1 if feature d is relevant and), = 0, otherwise.
not) for many real-life datasets [22]. Model selection is a led$éow the mixture density is,
critical issue for density models, particularly when they are
used for visualization [7]. M D

The remainder of this paper is organized as follows: They(x,|A) = Z Qm H[p(xn(”@md)]wd [q(Zna|Ag)] E%).
proposed approach, GTM with feature saliency (GTM-FS), m=1  de1
is introduced and mathematically derived in Section Il. The (3)
projection evaluation methods we employed are explainedWhere A = {{an}, {0mal}, {tba}}.
Section IlIl. The experimental results on both synthetic and The notion of feature saliency is summarized in 2 steps:
real-life chemoinformatics datasets are reported in Section I4). ¥4S are treated as “missing variables” in the EM algo-
In Section V, we discuss computational costs for the projectiéithm [23] sense and 2) the feature saliency is defined as
algorithms. The results are discussed in detail in Section Vla = P(¢a = 1), the probability that thedth feature is

Finally, we draw the main conclusions in Section VII. relevant. Now the resulting model can be written as
M D
[I. GTM WITH FEATURE SALIENCY (GTM-FS) p(xn|®) = Z Qm, H(pdp(:cnd|9md) + (1= pa)g(znala)),
The generative topographic mapping (GTM) is a probability m=1d=1 (4)

density model which describes the distribution of data in\@nere @ — ({amY, {Bma}, {Na}, {pa}} is the set of all the
space of several dimensions in terms of a smaller number pfi3meters of the model. An intuitive way to see how ( 3)
latent (or hidden) variables [7]. The mgp: H = D between s gptained is to notice thdb (2 a|Oma)] ¥ [q(TnalXa)] T4

the latent spacéei(, and the data spac®, is non-linear, which -5 pe written a%ap(Lnd|Oma) + (1 — ¥a)q(znal\a), because
implies that the image of the (flat) latent space is a curv% is binary.

and stretched manifold in the data space. We use a mixture Ofjg e 1 jllustrates the notion of data visualization with

Gaussians as a latent grid to model the data in the data spageyitaneous feature selection in a GTM-FS model for a three
Given a pointz,, € H in the latent space, its image under thg; ensional data with feature 4,0 and feature 2d,) as

map f is salient features and feature d;) as an irrelevant feature
(“noise”). Then the fitting of the mixture with four components
f(2m, W) = ®(2,, )W, 1) (given by (2), represented as a two dimensional manifold,
where ®(z,,) = (61(zm), ..., o (zm))T is a set of fixed shown as ‘Latent Space’ in Figureil) can b_e illustrated
non-linear basis functiondW is a K x D matrix of weight schgmatlcally as four oplate sphermds. (flat d|§ks)_ on the
parameters ang (z,,, W) forms the center of the Gaussiarimanifold having larger width (varl'ance.) in thg d|r§ct|ons of
componentyn, in the data space. feafturesdl andd, and near-zero width in the direction Qf the
In GTM, this mixture of Gaussians are made up with sphef in the data space. The separate shared ¢df)), which
ical Gaussians. To calculate feature saliency, we assume els the irrelevant featureds, is displayed as a prolate
the features are conditionally independent given the mixtuf@neroid in the middle of the manifold in the data space.
component label. In the particular case of Gaussian mixtures
the conditional independence assumption is equivalent d KG(X_“W
adopting diagonal covariance matrices. So instead of having f(=zW) '

mixture of spherical Gaussians, as in GTM, we use a mixtu . . = \\__7
of diagonal Gaussians. Then the probability density functic z ~ = i

is given by, . .
M D Z
p(xnla,0) = >~ [] p(@nalOma), @ ‘ <.
n P m J;[l nd|Vm Latent space Data space B

where M is the total number of components in the mixture

(equal to the number of grid points in latent space), and as

in GTM, we take the mixing coefficienty.,, to be constant Fig. 1. Schematic representation of the GTM-FS modgl.and d2 have
’ 1 . e . . high saliency andis has low saliency.

and equal toy;. D is the total number of features in the input

space,x,, is a D dimensional vector representing the input

Th lete-data log-likelihood is th i b
pointn, andp(- |0,,4) is the pdf of thedth feature for thenth € compiete-data fog-likelinood 1S then given by

component, with parameteés,; = {f(z,,, W),024}. 024 is N
common (same) across all the components for each fedture L(xn, ©) =In [] p(x40©), 5)
The dth feature is irrelevant if its distribution is indepen- n=1

dent of the component labels, i.e., if it follows a commomwhere N is the total number of input points.



Algorithm 1: Summary of the GTM-FS algorithm
Input: Training dataset.
Output: Trained GTM-FS visualization model with estimated feature saliency values for all the features.

begin
Generate the grid of latent poin{g,,,} € H,m =1,2,..., M,
Generate the grid of basis functionB(z,, ), centers{v;},k=1,..., K;
Select the basis function@(z., ), width;
Compute the matrix of basis function activatiods,(like in GTM [2]);
Initialize W, randomly or using PCA;
Initialize width of the diagonal Gaussians in the grid (mixture);
Initialize feature weightp,, for each featurel, to 0.5;
Initialize the mixing coefficienty,,, for each componentn, in the grid to1/M;
Set the mean and the variance of the shared distribuiieh)), as the mean and covariance of the training set;
repeat
IOComputeR, U andV using (6), (7) and (8) respectively, using current parameters,
for d < 1to D do
| Reestimate the weight vectox;;, usingw, = (®7G,®) 1®TU,x,, derived from (9);
end
Obtain the centen,,, of each componentn, of the mixture in the data space, using (11);
Reestimate the width of the diagonal Gaussiats,using (12), for all the features;
Reestimate the mean and the variance of the shared distribution using (13) and (14) respectively;

Reestimate the feature weight;, using (15), for all the features;
until convergence

end

The parameters are estimated using a variant of the Eystem of linear equations for each feature (see [24] for a
algorithm as follows. detail derivation of this matrix form)

A. An EM Algorithm for GTM-FS PTG PwWy = 2T Ugxq, 9)

We can exploit the latent-variable structure of the mod(\?\llhereq) is a M x K matrix, w, is a K x 1 weight vector ,

as for GTM and use the expectation maximization (EM) algq-. . i .
rithm to estimate the parameters in the model. For each featcltjjré is a M N matrix calculated using (7 is aN x 1 data

d={1,...,D}, we flip a biased coin whose probability of avector, andG, is an M x M diagonal matrix with elements
head ispy; if we get a head, we use the mixture component N
p(-|0ma) to generate theth feature; otherwise, the common Grmmd = Zunmd~ (10)
componenty(-|Az)) is used. n

We treaty (the hidden class labels) as the missing variables. X
In the E-step we use the current parameter@eb evaluate  Then using this re-estimateW, it is straight forward to
the posterior probabilities (responsibilitied},,,, = P(y, = obtain the centers of the mixture components in data space,
m|x,), of each Gaussian component for every data point using (1), as follows:
X, using Bayes’ theorem in the form

R = QOm HdDzl(Pdp(xndwmd) + (1 = pa)g(xnalra)) Meanb,, = pm = ®(2,)W, (11)
2%21 m H(?:l(pdp(l'ndWmd) +(1— Pd)(J(fEndP\él))

whereu.,, is 1 x D vector.
_ o _ Using the updated center locations of the components of
Using the responsibilites matri®, we can calculate the mixture in the data space, width of the diagonal Gaussians

Unmd = P(a = 1Lyn = m|x,), which measures how i, each direction, corresponding to one feature each, is re-
important thenth pattern is to thenth component, when the gstimated as below

dth feature is used, and,,,q = P(¢¥q4 = 0,y, = m|x,,) as

follows . Zm Zn unmd(ajnd - /f"'md)2
Oq = . (12)
- PaP(Tnd|Oma) > 2om Unmd
Unmd = ( |0 ) n (1 _ ) ( |>\ )Rnrm (7)
Pdp\Fnd|Tmd Pd)q\End|Ad Note that the width, is common across all the components
Unmd = an — Unmd- (8)

in the mixture.
Then in the M-step we use the posterior probabilities to Parameters of the common density,, are updated as
re-estimate the weight matri¥v by solving the following follows:



C. Nearest-Neighbor (NN) classification error
_ Y on (O Vnmd) Tnd Though data visualization is an unsupervised learning prob-

Mean g = S Upmd ’ (13) lem, it can be useful to objectively evaluate the quality of
o (3, Vnmd)Tnd a classifier based on the visualization output. We calculate
Var \g = =n5m TR (14) Nearest-Neighbor (NN) classification error for which we clas-

nm Unmd

sify each data point according to the class of its nearest
It is natural that the estimates of the mean and the varianogighbor in the two dimensional latent space obtained by the
in, \g, are weighted sums with weight,,,, . visualization algorithms.
The feature saliency variablp,, is updated as follows:

~ maX(an Unmd — %7 0) . .
Pd = max(>" tnmd — ML 0) + max(>" . vnma — 2,0)’ We tested GTM-FS on a synthetic dataset and a real life
nm R 27 nm e 200 ¢y chemoinformatics dataset used in [11]. Projection results using
where L and S are the number of parametersép,q and Ay, GTM-FS are co_mpared with the _results from tradi_tional GTM
respectively. The termn)" w4 can be interpreted as howand SOM algorithms. The experiments were carried out for 5

likely it is that <, equals one, explaining why the estimate oiimes with different random seeds in the training algorithm to
pa is proportional t03>,  ma. calculate standard deviations for the estimated feature saliency

Summary of the GTM-FS algorithm is presented in A|go\_/alues. Label information was used for better presentation of

fithm 1. Readers interested in a detailed derivation of the Efié distribution of data points from different classes in the
algorithm for GTM-FS are directed to [24]. projections. Label information was also used to calculate KL

divergence and NN classification error.

IV. EXPERIMENTS

I1l. EVALUATION METHODS .
A. Synthetic dataset

T_hoggh \_/|s_ually we can observe _the_ effectlve_ness OT 4The synthetic dataset consists of 800 data points from a mix-
projection, it is hard to compare projections obtained using .o of four equiorobable Gaussiand(m;, T),i — 1,2, 3,4
different methods. We employed the following three evaluatiqn quip T T

. < © Wherem; = (§),my = (§),m3 = (§),my = ()
methods to compare different aspects of the projections. Eight independent “noisy” features (sampled from40, 1)

density) are then appended to this data, yielding a set of 800
A. Kullback-Leibler (KL) divergence 10-dimensional patterns.
It is useful to get an analytical measurement of the seg_l—-rhe projections obtained using GTM, GTM-FS and SOM

aration between different data classes in the projections. ingoi;:tgnz;rz gf;ﬁgtﬁ? Lnre':g(lér)e dlzs E:;C:?r:zu:grrcezlogﬁgi?‘d'
obtain such a measurement, first we fit a Gaussian mixtdre " 194 9 dispiay . P 9
. o agnification factors for those projection manifolds. A com-
model (GMM) [2] to each class in the projection space an L ative evaluation of these proiections is presented in Ta-
then we calculate the Kullback-Leibler (KL) divergence [ZSE ve evaluat project IS P '

. ) le III.
between the fitted GMMs: @) The estimated saliencies of all the 10 features, together with
o DalT standard deviations (error bars), are shown in Figure 2(d).
D o = x)lo , 16 - . .
(P || o) ;pa( Jlog () (16) The results are further discussed in Section VI.

wherep, andp, are the GMMs for classesandb respectively. ) )
The greater the value of KL divergence, the greater tfe Chemoinformatics dataset
separation between classes. The chemoinformatics dataset we used is composed of
11,799 compounds; biological activity is measured for five
different biological targets and there are 11 whole-molecule
physicochemical properties. Thus, the dataset has, in total,
One of the main advantages of using GTM—based modd§ variables (dimensions) in the data space and we want to
is that it is possible to analytically calculate the Magnificatiomisualize it effectively on a 2-dimensional manifold.
Factors (MF) of the projection manifold. MFs of a GTM-based Out of these five biological targets, two are peptidergic G-
projection manifold,(2, are calculated as the determinant oProtein coupled receptor (GPCR) targets, two are aminergic
the Jacobian of the visualization mgp[26]. MF plots are GPCR targets, and one is a kinase target. The four GPCR
helpful to observe the amount of stretching in a manifold &irgets are of related receptor types whilst the kinase is a
different parts of the latent space, which helps in understandiogmpletely unrelated enzyme target class. Table | lists the label
the data space, outlier detection, and cluster separation. Srimirmation and distribution of compounds in different labels.
MF values correspond to less stretch in the manifold and hencdn addition to the biological activity values, 11 whole—
a more coherent (compact) mapping in the data space. = molecule physiochemical properties were included for each
The magnification factor is represented by color shading @mpound in the dataset (Table II).
the projection manifold (e.g., see Figure 2(a)). The lighter the Since different input variables in the dataset have different
color, the more stretch in the projection manifold. ranges, before the development of visualization models we

B. Magnification Factors (MF) sum
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(a) GTM projection. (b) GTM-FS projection.
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Fig. 2. GTM, GTM-FS and SOM projections for the synthetic dataset. Background in the GTM and GTM-FS plot is their corresponding magnification
factors on aog,, scale.

TABLE Il
TABLE | CHEMOINFORMATICS DATASET. MOLECULAR PHYSICOCHEMICAL
CHEMOINFORMATICS DATASET. LABEL INFORMATION AND PROPERTIES
DISTRIBUTION.
— AlogP
| Label Description | Marker | Compounds] Molecular solubility
Not active in any screen ° 10769 Number of atoms
Active for peptidergic typel + 118 Number of bonds
Active for peptidergic type2 181 Number of Hydrogens
Active for aminergic typel O 50 Number of ring bonds
Active for aminergic type2 A 409 Number of rotatable ring bonds
Active for kinase O 206 Number of Hydrogen acceptors
Active for more than 1 screen o 66 Number of Hydrogen donors
Molecular polar surface area
Molecular weight




(a) GTM projection.
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(c) SOM projection.
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Fig. 3. GTM, GTM-FS and SOM projections for the chemoinformatics dataset. Background in the GTM and GTM-FS plot is their corresponding magnification

factors on dog;, scale. Please refer to Table | for legend.

TABLE Il
EVALUATION OF VISUALIZATION MODELS .

Method Dataset GTM GTM-FS | SOM
I Synthetic 15.31 19.43 12.34
KL divergence chemoinformatics| 128.17 167.56 56.37

Synthetic 111.63 82.32 -

MF sum chemoinformatics| 125.92 71.18 -
Synthetic 0.75 0.75 0.62
NN error (%) - |—Remoinformatics] 38.32 | 41.24 | 92.40

normalized the data by apply a linear transformatigrs¢ore
transformation) to have similar ranges for all variables.

are presented in Figure 3. Background color shading in Fig-
ure 3(a) and Figure 3(b) displays the corresponding magnifi-
cation factors for those projection manifolds. It is useful to
see the plots in color.

Comparative evaluation of these projections is presented
in Table Ill. As can be seen from the distribution presented in
Table |, the non-active compounds are dominant. A biologist
or chemist is interested in increased accuracy of prediction
for active compounds, and thus the NN classification error for
active compounds is reported in Table Il for the chemoinfor-
matics dataset instead of overall NN classification error.

The projections obtained using GTM, GTM-FS and SOM The estimated saliencies of all the 16 features, together with



their standard deviations (error bars), are shown in Figure 3(t)is case, the GTM-FS algorithm not only provided a good

The results are further discussed in Section VI. projection but also correctly estimated the feature saliencies.
The projection in Figure 3(c), obtained using SOM, is like
V. COMPUTATIONAL COST a blob and does not help us to understand the ‘structure’ of

The distance calculation between data points and mi@@t@ in data space. The GTM-based models projections, in
ture components of reference vectors (used in calculatibture 3(@) and Figure 3(b), show clear clusters for the com-
of p(x,|@)), respectively, is identical in GTM, GTM-FS ppunds active for different biological targets. We get t?ett.er KL
and SOM training algorithms. Updating the parameters fiivergence and MF sum values for GTM-FS which indicates
SOM training depends on the neighborhood function. In tiB€ manifold obtained using GTM-FS is more coherent. GTM
experiments presented here it was continuous on the latBAfl GTM-FS provided much better NN classification error
space so the parameter updating scale® @&/2N D + M?), rate for active compouqu than SOM where the projection
where M is the number of grid points in the SOM map ahd itself is random_. The estimated feature_ sal_lency values for_ the
is the dimension of the data space. When updating parametEf€moinformatics dataset, presented in Figure 3(d), confirms
the GTM and GTM-FS require a matrix inversion of A< K with the _general _consensus in the pharmaceutical dom_am
matrix, whereX is the number of basis functions, followedthat physicochemical properties such as, molecular solubility,
by a set of matrix multiplications. The matrix inversior'umber of atoms, molecular weight, etc., are responsible for
scales ag)(k?), while the matrix multiplications scales asCOMPoUnds grouping in the chemical space [27]. Chemists at
O(MND)!, where M is the number of grid points in the PfizeP alsq confirmed that they WouId. have e>§pected hlg_her
latent space. GTM-FS requires an extra loop over the numpegture saliency values for these physicochemical properties.
of features,D, to reestimate the weight vectat,, in the EM Recently, we introduced a flexible visual data mining tool
algorithm. which combines advanced projection algorithms developed in

Table IV shows the time taken to train different projectiot® machine learning domain and visual techniques developed
models on the chemoinformatics dataset using an Intel Pdh-the information visualization domain [28]. Although the
tium 4 - 2.4GHz machine with 2GB of RAM. An implemen-fapid development of high-performance computing has to
tation of the algorithms in C/C++ instead of AiLAB would SOmMe extent altered our perception of computational com-

further improve the speed. plexity, this issue cannot be ignored in a visual data mining
framework where user interaction is important. Computational
TABLE IV complexity of GTM-FS algorithm is similar to GTM, thus
TRAINING TIME FOR DIFFERENT PROJECTION MODELS FOR THE TRAINING it can be directly used in such an interactive data mining
SET(N = 11800, D = 16, 20ITERATIONS). framework.
[ The model ] Time (seconds)| Architecture |

GTM 33 M =64, K = 36

GTM-FS 34 | M=64,K = 36 VII. CONCLUSIONS

SOM 26 | M =64

Deriving useful information from a real-life large mul-

. . tivariate dataset is difficult due to the inherent noise and
Once the models are trained, the computational cost {0

: . e sheer amount of data. Data visualization and feature
g;oé:; S)?)tiitlolr\f;hiﬁ fhueb?‘ggtus;tt test set scales in the numtsbcﬁfaction are both individually important topics in bioinformat-

ics/chemoinformatics domain. Addressing both these problems
jointly is not only logical but also synergistic as each endeavor
VI. Discussion could benefit from advances in the other when they are
As expected, all three projection algorithms gave fouwrddressed jointly.
well separated cluster for the synthetic dataset. GTM-based\e successfully modified a feature selection for unsuper-
algorithms create a uniform distribution so they spread thésed learning solution and applied it to the training of a prob-
data more than SOM projection. This is also revealed frogpilistic mixture-based data visualization algorithm. The new
their higher KL divergence sum value compared to SOM. M&igorithm, GTM-FS, not only provided a better projection by
sum of the GTM-FS manifold is smaller than MF sum of thenodeling irrelevant features (“noise”) using a separate shared
GTM manifold which indicates that the GTM-FS manifold isdistribution but also estimated the feature saliency values
comparatively less stretched. Close observation of Figure 2¢@yrectly which helps the user assess the significance of each
and Figure 2(b) also reveals that the GTM-FS manifold fgature. The usefulness of the algorithm was demonstrated on
more coherent (compact). This is because in GTM-FS theth synthetic and real-life chemoinformatics datasets.
irrelevant features (“noise”) are modeled using the separatesince the estimation of feature saliencies is conveniently
shared distributiong(-|), and thus the actual manifold is lessntegrated with the training of a probabilistic mixer-based
stretched. From the estimated feature saliency values usiila visualization model using a variant of EM algorithm,
the GTM-FS model (Figure 2(d)) we can conclude that, ithe computational complexity of the new algorithm remains

1 ) o tractable.
To be exact, the matrix multiplications scales@$M KD + MND),
but normally the number of data pointd], exceeds the number of basis

functions, K. 2pfizer Central Research, Sandwich, UK



One of the avenues for future work is to extend the approaga] D. M. Maniyar and 1. T. Nabney,

for

algorithm, such as hierarchical GTM [29].

a probabilistic mixture-based hierarchical visualization
[25]
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