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We study a variation of the graph coloring problem on random graphs of finite average connectiv-
ity. Given the number of colors, we aim to maximize the number of different colors at neighboring
vertices (i.e. one edge distance) of any vertex. Two efficient algorithms, belief propagation and
Walksat are adapted to carry out this task. We present experimental results based on two types
of random graphs for different system sizes and identify the critical value of the connectivity for
the algorithms to find a perfect solution. The problem and the suggested algorithms have practical
relevance since various applications, such as distributed storage, can be mapped onto this problem.

PACS numbers: 89.75.-k, 02.60.Pn, 75.10.Nr

I. INTRODUCTION

The graph coloring problem [1, 2] has received a signif-
icant level of attention. Much of this interest stems from
the fact many real-world optimization problems can be
represented as coloring problems. In the original formu-
lation, given q colors, one aims at finding a coloring solu-
tion such that any two connected vertices have different
colors. In the current work, the aim is to maximize the
number of colors at one edge distance of any vertex.

One application can be found in the field of logistics,
where each vertex represents a storage unit. The prob-
lem is then to find how to distribute the different types of
goods such that, at each site, any type can be retrieved
either from the given unit or from directly adjacent stor-
age units. The problem that got us interested in this
problem is that of distributed data storage where files
are divided to a number of segments, which are then dis-
tributed over the graph representing the network. Nodes
requesting a particular file collect the required number of
file segments from neighboring nodes to retrieve the origi-
nal information. Distributed storage is used in many real
world applications such as OceanStore [3].

It should be emphasized that typical properties of the
main problem we are interested in should be taken into
account when a color assignment algorithm is considered:
1) The problem is characterized by a finite number (of the
order of the graph connectivity) of different file segments.
2) An adaptive assignment of colors may be required as
the topology continuously changes due to the emergence
and disappearance of nodes. 3) The networks considered
are of moderate size, 102-103 nodes.

Although this problem has not yet been shown to be
NP-complete, it seems nonetheless intractable for a large
system size. Since no research has been carried out on
this specific problem, no dedicated tools exist either[4].
However, as we report in this paper, existing optimiza-
tion algorithms can be adapted quite easily to solve this
and similar problems. In particular, we investigate two
well established techniques: belief propagation (BP) and
a variant Walksat (WSAT) for this purpose.

In this paper, we show how BP and Walksat can be
used to solve this particular problem. For a given number

of colors q we identify the transition points in terms of
the critical connectivity λq

c above which the algorithms
typically find a perfect coloring. We also calculate the
average minimum measure of unsatisfaction Eq(λ) as a
function of the connectivity λ. The latter is defined as
Eq(λ) =

∑n
i=1 Eq

i (λ) where for each vertex i with local
connectivity λi

Eq
i (λ) = min(q, λi + 1) − qi (1)

is the difference between the number of actually avail-
able colors at that node qi, and the maximal number
of available colors (at the vertex and its nearest neigh-
bors min(q, λi + 1)). In this paper, we only consider
graphs with local connectivities λi ≥ q − 1, such that
Eq

i (λ) = q − qi just counts the number of missing colors.
One should note that, contrary to the original graph col-
oring problem, the problem of finding a coloring for our
problem actually becomes easier with increasing connec-
tivity.

The main goal of this paper is to introduce the prob-
lem, and investigate the performance of the two algo-
rithms on realistic system sizes. The full analysis of the
model in the infinite system size is a separate issue that
is currently being investigated.

II. THE ALGORITHMS

Belief propagation: BP, also called the sum-product
algorithm, relies on iterative message passing to pro-
vide near optimal performance at low computational
cost [6, 7]. It is based on conditional probabilistic mes-
sages passed from the immediate neighborhood to find
the most probable assignment of states to variables given
constraints. In our problem, the constraints correspond
to the retrieval of min(q, λi + 1) colors per vertex, from
the vertex itself and its first order neighbors.

These constraints can be represented by clusters of ver-
tices on a graph as in Fig. 1a, where ‘A’, ‘B1’, ‘B2’,
‘C11’ and ‘C12’ correspond to the vertices, while ‘ZA’
and ‘ZB1 ’ are check variables corresponding to the con-
straints. Checks variables relate to the unsatisfaction of
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FIG. 1: (a) A graph representing the successive local con-
straints. (b) A bi-partite graph representation.

given color assignments for the corresponding node and
its direct neighbors. For instance, for the node A with
qA available colors (β = 20 for computational reasons)

P (ZA|A, {Bi}) = e−β(q−qA) . (2)

The graph can be transformed into a bipartite graph,
shown in Fig. 1b, which separates the vertices from the
checks. The following update rules can be easily obtained
by naively adapting the original BP rules [6, 7]. Thus,
the messages from a check to a vertex are given by

P (ZA|A) =
∑

{Bi}
P (ZA|A, {Bi})P ({Bi}|{ZBi}, {ZCi·}) ,

�
∑

{Bi}
P (ZA|A, {Bi})

∏

i

P (Bi|ZBi , {ZCi·}) ,(3)

while the message from a vertex to a check is given by

P (A|{ZBi}) = αA

∏

{ZBi
}
P (ZBi |A) , (4)

Finally, the node pseudo-posterior is given by

P (A|ZA, {ZBi}) = αP (ZA|A)
∏

{ZBi
}
P (ZBi |A) , (5)

where αA and α are normalization coefficients. Note that
the factorization in (3) is a relatively crude approxima-
tion even in the large system limit, as the {Bi} nodes are
correlated. To deal with this properly, a more advanced
analysis using a cluster expansion [8] is currently been
undertaken. Nevertheless, as we will see these approxi-
mations work remarkably well.

If convergence of the BP algorithm is reached, the col-
ors of vertices whose (pseudo) posterior is greater than
a pre-defined threshold set at 0.9 in our experiments can
be fixed. If no such high posterior exists then the vertex
with the highest posterior value has its color fixed. Then,
the update rules are re-iterated and the decimation pro-
cess repeated until a global coloring is reached.

A major drawback of the BP algorithm is that con-
vergence is not guaranteed for graphs with loops due to
fragmentation of the solution space. Random initializa-
tion results in the emergence of competing local solutions
and conflicting messages, leading to non convergence.

Time averaging [9] is a way of getting around the prob-
lem by carrying out the decimation and color fixing pro-
cess according to the average posterior (over time i.e. a
number of iterations) instead of instantaneous posterior.
In the case of non-convergence, this method decimates
the vertex with the strongest average coloring probabil-
ity over all competing solutions and thus reduce the fluc-
tuations due to the competition. After several trials, a
time window of 30 iterations was chosen for all numeri-
cal data presented here. We have opted for BP combined
with time averaging due to its improved performance and
robustness (e.g., in the distributed storage application
nodes may suddenly switch off and on).

Walksat: Walksat is a local search algorithm, originally
designed to maximize the number of satisfiable clauses
in problems that assume a conjunctive normal form [10].
Although Walksat may seem to be suboptimal at first
sight, studies have shown it to be a powerful tool [11].
Many variants of the original algorithm exist [10, 12, 13].
In this study, we have adapted the variant referred to as
SKC; it uses the notion of variable breakcount, defined
as the number of clauses that are currently satisfied, but
would become unsatisfied if the variable assignment were
to be changed. The SKC variable selection is as follows:

1. If there are variables with breakcount equal to 0,
randomly select one such variable.

2. Otherwise
• with probability p randomly select a variable.

• with probability 1 − p randomly select a vari-
able with minimal breakcount.

3. Flip the selected variable.
4. Repeat until all clauses are satisfied or until the

max-iterations is reached.

In our problem, the breakcount of a variable is given by
the number of vertices for which the change of assignment
would decrease qi. Henceforth, the breakcount depends
on the replacement color. In step (1) of the SKC pro-
cedure, the selected replacement color is the one which
leads to a breakcount equal to 0 (if more than one, choose
randomly). In the step (3), a replacement color is selected
at random. In our first few attempts, this adaptation of
the Walksat algorithm showed mixed results, which were
up to 50% worse than those obtained with BP. We there-
fore adapted another local search algorithm [14] related
to Walksat. This algorithm is also iterative and based
on a mixture of gradient and “noisy” descent. At each
iteration, one of these two descents is chosen at random,
with some probability. Similarly to the Walksat algo-
rithm, this step is repeated until all checks are satisfied,
or the maximal number of iterations is reached.

The gradient descent is operated by the GSAT algo-
rithm [15], which changes at each an iteration the vari-
able assignment that leads to the greatest decrease in the
number of unsatisfied clauses. In our problem, changes
will correspond to the greatest decrease in unsatisfaction
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FIG. 2: Walksat performance on linear and Poissonian graphs
(n=100) for nbit from 125K to 120M iterations and connec-
tivity λ. (a) Unsatisfaction measure - linear. (b) Percentage
of perfect coloring - linear.(c) Unsatisfaction measure - Pois-
sonian. (d) Percentage of perfect coloring - Poissonian.

as defined in (1). “Noisy” moves in the original algo-
rithm [14] are replaced here by the SKC heuristic. The
resulting algorithm is a mixture between SKC and GSAT,
which is parameterized by a probability pm, set to 0.5.
Our experiments show that the combined algorithm per-
forms significantly better than SKC with no added cost.

If not all checks are satisfied at the maximal number
of iterations (the choice of which is discussed in the next
section) the GSAT algorithm is iterated until a local min-
imum is reached. The combined algorithm, referred to
here as Walksat, shows similar results to those obtained
using BP both in terms of unsatisfaction Eq(λ) and the
number of perfect coloring solutions found.

III. SIMULATIONS

Experiments were carried out for q = 4 colors for two
system sizes (n) of 100 and 1000 vertices. The two types
of graphs studied have an average connectivity λ:

• (cut-) Poissonian: where vertices have local con-
nectivities λi given by

λi = λmin + zλ−λmin = q − 1 + zλ−q+1 , (6)

where zλ−q+1 is randomly drawn from a Poisson
distribution with parameter λ − q + 1.

• Linear: where vertices have local connectivities

λi = �λ� + zλ−�λ� (7)

where �λ� is the largest integer smaller or equal to
λ, and zλ−�λ� = 1 with probability λ−�λ� and 0
otherwise.

We study the most interesting range of average connec-
tivities from λ = 3 to λ = 5 with a step of 0.1. For each
λ, 1000 graphs of each type were randomly generated and
then colored by both the BP and Walksat algorithms.

Graph characteristics: Both graphs and constraints
are born from the original problem we have set to solve,
namely distributed storage. We point out two observa-
tions that may help in getting insight into the characteris-
tics of the problem and solutions found by the algorithms:
1) The number of checks is always equal to the number
of vertices as each vertex is associated with a check, that
connects it to all vertices at one edge distance. This
check is obeyed when the vertex can retrieve all possi-
ble colors from vertices at one edge distance. 2) Edges
are undirected: if vertex ‘B’ is connected to the check
of ‘A’, then vertex ‘A’ is also connected to the check of
‘B’. Hence, there are always nλ

2 short loops, which corre-
spond to the number of edges, in the belief network even
in the large system limit. When the connectivity value
λ increases, the number of loops increases as well, but it
also becomes easier to get a lower value for the average
unsatisfaction. Therefore, it is unclear whether the influ-
ence of the presence of loops on the performance of the
(current) BP algorithm will increase or decrease with λ.

Walksat performance: In the Walksat algorithm, the
maximal number of iterations nbit is an important pa-
rameter. A greater value increases performance, but also
computational cost. Unfortunately, the relation between
performance and cost is not linear and it is therefore dif-
ficult to estimate the optimal number of iterations. In
order to understand this relation, we carried out several
simulations with different values of nbit for the two sys-
tems sizes and all connectivity values.

Figure 2 show the results obtained for a system size
n=100 and a range of limits on the number of iterations.
One notices that improvements in terms of unsatisfaction
and perfect coloring are negligible for λ≤3.8 and λ≤4.1
in linear and Poissonian graphs, respectively. In these
regions, no perfect solutions are found and the Walksat
algorithm stops when the maximum number of iterations
is reached and returns a suboptimal solution, even for
larger nbit values. Perfect coloring solutions exist and
are found for λ � 3.8 and λ � 4.1 in linear and Poisso-
nian graphs, respectively. However, a larger number of
vertices will also require an exponentially larger number
of iterations to achieve the same performance.

To compare the performance of the Walksat and BP
algorithms, we take the results achieved by Walksat for
roughly the same computational time to the one used
by BP. This means nbit = 500K and nbit = 12M itera-
tions for systems sizes of 100 and 1000 vertices, respec-
tively. We also modify the Walksat algorithm described
in Sec. II such that the unsatisfaction returned is the low-
est value over all examined color assignments and not the
one corresponding to the nearest local minimum.

BP vs. Walksat - a comparison: Figure 3 shows that
for small graphs (100 nodes), and far away from the crit-
ical connectivity, BP is generally outperformed by the
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FIG. 3: Comparison of BP and Walksat algorithms for lin-
ear and Poissonian graphs. (a) Unsatisfaction measure - lin-
ear.(b) Percentage of perfect coloring- linear. (c) Unsatisfac-
tion measure - Poissonian. (d) Percentage of perfect coloring
- Poissonian.

Walksat algorithm. We believe this is partially due to
the presence of small loops, as discussed earlier, and the
use of generalized BP [16] is currently being investigated
to improve performance; nevertheless one should note
that even the approximative BP algorithm works sur-
prisingly well considering the crude approximation made
in (3). In addition, while Walksat clearly outperforms
BP for 100 nodes systems, this is definitely not the case
for 1000 nodes systems close to the critical connectivity,
where results obtained by BP are better both in terms of
the percentage of perfectly colored cases and in terms of
the minimal average unsatisfaction, both for linear and
Poissonian graphs. For increasing system sizes and given

computing resources BP is likely to outperform Walksat
in the relevant regions.

IV. DISCUSSION

We study a variation of graph coloring on random
graphs with finite average connectivity, aimed at maxi-
mizing the number of colors accessible by a vertex within
one edge distance. The problem is of practical relevance,
especially in the area of distributed storage. The BP and
Walksat algorithms were adapted to perform the task.

We present experimental results for two types of ran-
dom graphs and system sizes, and identify critical con-
nectivity values above which the algorithms find a per-
fect solution. For q =4 colors, the critical connectivities
found are around 4 and 4.4 for linear and graphs and
Poissonian graphs, respectively. In principle, the meth-
ods presented are applicable for random graphs of any
connectivity profile and number of colors.

We have found that both algorithms give qualita-
tively very similar results with similar computing costs.
The relative efficiency of both algorithms, in terms of
the quality of obtained solutions and computing time,
does however depend on the combination of parameters
(λ, q, n) and graph characteristics. A more detailed
analysis of this will be the subject of a separate study, as
will be the thermodynamic phase diagram for this model.
Further research will focus on improving the message
passing approach by using the exact cluster expansion in
the large system limit (i.e. focusing on stars and edges
as our fundamental clusters instead of stars and nodes),
combined with generalised BP, which will also provide us
with a phase diagram for the model. It is assumed that
this approach will remove the influence of short loops
and therefore improve the performance of the algorithm,
especially at low connectivity values.
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