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Abstract

This paper presents a general methodology for estimatingi@corporating uncertainty in the
controller and forward models for noisy nonlinear controdtgems. Conditional distribution modeling
in a neural network context is used to estimate uncertairyrad the prediction of neural network
outputs. The developed methodology circumvents the dymarogramming problem by using the
predicted neural network uncertainty to localize the gasstontrol solutions to consider. A nonlinear
multivariable system with different delays between theuirputput pairs is used to demonstrate the
successful application of the developed control algoritiihe proposed method is suitable for redundant

control systems and allows us to model strongly non Gaushgributions of control signal as well as

processes with hysteresis.

. INTRODUCTION

Uncertainty in process control can be related to differemirees. Consider the following

deterministic transformation problem
a(k+1) = g(a(k), b(k)) 1)

This equation implies that the output of the model is knowmaaotly before and after the
occurrence of the transformation, which may result fromlygpg a new input value. However,
in real world problems the plants are usually subject toedgfhit sources of variation which can
be due to:
« The incomplete knowledge we may have about the process itsel
« The transformation relationship between the input and thtpud variables may itself be a
nondeterministic relationship. This can be related to isd\disturbances that can affect the
input-output relationship.
« The lack of knowledge for determining the right cost funetiovhich provides the basic
ground to optimize the model which provides the predictiotpat.
« Since in most of the cases the description model is a paramedefunction of the input,
the parameters of the model itself can be uncertain.
In such situations, the choice of certain input valberay lead to non unique transformations.
This means that the choice of one input valuenay lead to a set of possible output values
To illustrate the variations in real world problems, comsidhe problem of predicting the

value of the force in the pole balancing problem. The forcsuigposed to avoid failure, where
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failure in this problem is defined as the event of pole failpast a certain angle or the cart
running into the bounds of its track.

To analyze this problem in some detail given the angle of ,pble angular velocity of pole,
the horizontal position of the carts centre, the velocityra cart, the velocity of the wind, the
force of friction, and other information, we need to find thathematical model to predict the
amount of force needed to be applied to avoid possible faihyr balancing the pole. Finding
a suitable mathematical model will require combining aét #txperimental, physical, theoretical
and computational programs to provide an estimation fomtioglel parameters. Estimating the
model parameters will require defining a cost function, \Wwhit turn should affect the accuracy
of the estimation problem.

Even if all this is achieved and providing that a suitablelmeatatical model can be estimated,
an exact prediction can still never be obtained. The firstighive will observe is that small
changes in the initial conditions can result in significanémges in the predicted force value.
This means that we are examining a highly unstable process.

Looking for an exact prediction can be considered to be véificalt and requires a very
precise tool. Since exact solutions are then unattainapleroximate solutions are the only way.

In these situations if we wish to obtain a better predictionthe desired output, additional in-
formation in terms of the uncertainty knowledge should uded. There are many approaches
and mathematical models for providing an estimate of theeramty. The best general way of
estimating uncertainty can be described in terms of modehe probability distribution for the
desired prediction.

In this work the problem of decision making in control prabke under uncertainty is intro-
duced in the context of neural networks. In contrast to a@assontrol approaches, suppose
that the control vectors are generated from a probabiliggrithution p(w(k)), and the output

variables evolve with time according to

y(k+1) = gly(k),ulk),v(k)).

The objective in control problems is then to find the optin@itcol variables from the probability
distributionp(u(k)) such that when applied to the system, the output of the systeuld be

equal to a predetermined desired valyg¢(k + 1). This means that we are looking for an
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idealized optimal control vectar(k), obtained from the distributiop(u(k)) such that
problly(k+1) = Yrer(k + 1)/ > 01 =0 (2)

However this cannot be applied directly to real world proide because the effect of each
control variable from the distributiop(u(k)) needs to be observed on the real world system.
Since only one decision input to the real system can be applibich is supposed to be optimal,
the real output valug(k + 1) needs to be replaced by an estimgt& + 1). Consequently this
implies that the solution provided in eq. (2) never occurpriactice because it requires that the
estimator{j(k + 1) for y(k + 1) contains no error. Moreover to satisfy this condition theetr
probability distributionp (w(k)) needs to be known, where in practice only an estinpate k))

for the true distributiorp(u(k)) can be obtained. In this current paper we will not consider th
level of uncertainty, but assume that the estimated digidhs are accurate.

To provide an estimate for the required distributions iis thork a neural network is used. The
principle feature of neural network estimation problemthe it assumes the availability of a set
of m output variablesy = (y1,y2, ..., ym), and a set ofr control variablear = (uy, u,, ..., w,).
The estimation problem is then to provide an estimate of tbability density function of the

output variablegy(k + 1) conditioned on the input variablegk), w(k),
aly(k+ Ty(k),u(k), W] 3)

whereW is the vector of model parameters. The control problem hewethe inverse of this
forward problem. The controller function needs to provigeeatimation of the control variable

u(k) conditioned on the variableg..;(k + 1), y(k),

Plulk)yrer(k + 1), y(k), Wi 4)

In certain situations, particularly when dealing with irse problems, mathematical constraints
restrict estimating problems to well behaved functionsndg'. Thusg, andg ™' are usually
required to have continuous first derivatives and to haveam@emappings. These restrictions
however have little effect on the statistical scope of thiaregtion problem.

Therefore any statistig[y (k+1)[y(k), w(k), W] orp[u(k)y.er(k+1),y(k), W] should ideally
provide an adequate description of the data.

Thus providing that a valid estimation for the true disttibo p(w(k)) and the estimator of

the forward model can be obtained, the statistical contptingzation problem can be stated as

May 27, 2003 DRAFT



follows. Given: a setl, consisting of all possible decisionse U obtained from the probability
density functionp[u(k)y..s(k+ 1),y(k), W], and a performance criterignwhich provides an
evaluation of a given decision variables, two kinds of ci@ean be taken:(1) a reward function,
in which case it should be maximized, and (2) cost functiowkich case it should be minimized,
and a selt’, the space of the output variablgsconsisting of all possible outputse Y that may
result from different decision variables, find the optimahtol law that minimizes or maximizes
the performance criterioh at each instant of time.

In this optimization method an estimation model of the reafld/ system has been assumed,
because the control decisions available from the estimdigtdbution of the controller need
to be evaluated. However observing any other aspects ofygtera which provide information

about different control decisions can be sufficient.

[I. FORWARD AND INVERSE MODELS OF THE PLANT

In the neuro control field some of the control architectunesk@ased on a forward model of
the plant. On the other hand, inverse models are used altersr Forward models determine
the forward relationship from the input to the plant outplabr example the forward model
in the pole balancing problem predicts the next state (anfleole, angular velocity of pole,
horizontal position of cart’s centre and velocity of cartyemn the current state and the force.
Forward models have been used in indirect adaptive coranal,in the adaptive critic methods.
Inverse models however, invert the forward models by progdn estimate for the control,
eg. the force applied to the cart in the pole balancing prablgiven the desired pole angle
and the current state. Since inverse models are respofisigieoviding control signals that are
supposed to make the output of the system equal to the demitpdt value, they are suitable
for use as controllers.

The forward models and the inverse models should then betedldap provide a good
representation for the output and the input of the systerpeaisely. Adaptation procedures
for the forward model can be seen to be straight forward. ®hilsecause forward models can
be learned by supervised learning, comparing the predmigjolut of the forward model to the
actual output. Learning inverse models on the other handpeaseen to be more difficult. One
of the simplest methods to learn inverse models is dire@rs®/control [1], [2], [9], [19]. In the

direct inverse approach the correct control value respta$o make the output of the system
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equal to a desired output value is assumed to be known. Thectaontrol value is then used
as the training signal for the inverse controller. However dlirect inverse approach has several

drawbacks:

. The learning procedure is not goal directed, since in direrse control the error between
the plant inputu(k) and the network output(k), e = |u(k) — {i(k)| is minimized, while
the goal in control problems is usually to make the systenpuug(k + d) follow a
prespecified desired output.¢(k + d). Using the direct inverse control architecture to
make the plant follow the desired response will work onlyhié tdesired response happens
to be sufficiently close to the system outputs that were usedglthe training process. The
successful application of this method depends largely enathility of the neural network
to generalize and interpolate in regions where the contgolas is required for inputs that
have not been in the training set. This in turn requires thaitng signal to be sampled
over a wide range of system inputs to cover the possible tipeed range of the system.

. Obtaining the inverse of the system may not be possible iblenas where the mapping

iS not one-one.

To overcome these problems, Psaltis [19] has suggestedstheofua specialized learning
architecture. In this approach both the forward and invenselel of the plant are used. The
controller in this approach has the advantage that it i:@aito span the desired operational
output space. This means that the input to the inverse dtartio this control architecture
is the reference or command signal. The inverse model is tifz@med to minimize the error
between the desired response and the system respoase,(k + d) — y..¢(k+ d)|. The actual
system output is replaced by the forward model oufpit+ d) to allow calculating the required
derivatives. The forward model is usually assumed to be @ gepresentation of the plant and its
parameters are not adapted with the inverse model paranéteother method which has been
suggested in [13] is called feedback error learning. Usinggé control architectures is supposed
to overcome both of the above problems in direct inverserobritowever, if the conventional
neural networks are unable to cope with redundant systdreg,need to be adapted each instant
of time before they produce the appropriate control commaihds in turn, typically produces
large transient errors for training the feedforward coligro

In this work, modeling conditional distributions of contrgignals is suggested to overcome
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the uncertainty problems of the inverse controller.

[1l. CONDITIONAL DISTRIBUTIONS OFFORWARD AND INVERSE MODELS

As mentioned in the previous section, forward models arparsible for providing an es-
timation for the predicted output of the system given thevioes and current outputs of the

system and the previous inputs to the system
gk +d) =f(y(k),y(k—=1),...,y(k—aq+1),u(k),u(k—1), .uk—p+1)) (5

whered is the relative degree of the plant,is the maximum delay in the output ampdis the
maximum delay in the input.
The aim of the control is to provide an estimation for the coinvalue which can achieve

the desired output value
(k) = g(Yrer(k + d),y(k), ..., y(k—aq + 1), ulk = 1), ..., ulk —=p + 1). (6)

In this section, modeling conditional distributions foni@rd and inverse models is described.
For this purpose the estimation problem for the conditiahsiribution of the following general

neural network function will be described
t(k) = N(s(k),c(k), W) (7)

where W is the model parameter vectar(k) = [y(k),y(k —1),....,y(lk—q + 1), u(k —
1),....,u(k—p+1)] is an input vector for both the forward and inverse modeaigk,) = u(k)
for the forward modelc(k) = yre¢(k + d) for the inverse model, and wheték) = y(k + d)
for the forward model, and(k) = u(k) for the inverse model.

The basic goal is to model the statistical propertiestd), expressed in terms of the
conditional distribution functiomp (t(k)/s(k), c(k), W).

In certain situations, particularly when dealing with irse problems, the estimation problem
is restricted to the case of one-to-one mapping functiamshis case and only in this case the
inverse of the function denoted lgycan be introduced. Therefore a feed-forward neural network
trained using the sum of the square error function can be tsabtain the inverse and the
forward models of the plant. For this case the distributibthe target data can be described by
a Gaussian function with an input-dependent mean (giveméytitputs of the trained network),

and an input-dependent variance (given by the residuat galoe).
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However, if the inverse of the functiohcan not be defined uniquely, then the direct inverse
mapping found by minimizing the sum of the square error fiamgtcan not be used to obtain
the inverse of the function. Therefore, assuming a Gausdisinibution can lead to a very
poor representation of the control signal. In this case aeng@neral framework for modeling
conditional probability distributions is required. Thisrgeral framework is based on the use of
the mixture density network.

In the following sections the problem of Gaussian distifuimodeling as well as the mixture

density network is presented.

A. Gaussian Distribution Modeling.

If a neural network has been used to predict the target vaives by eq (7)
(k) = N(s(k), c(k), W) (8)

then the conditional distribution of the target data can &t@reated by modeling the conditional
uncertainty involved in its own prediction. Estimating thecertainty around the predicted
output of the neural network can be obtained simply by meaguthe errors between the
predicted value from the neural netwdik) and the actual value(k), e(k) =|| T(k) —t(k) ||%.
This approach is based on the important result that for aor&tivained on minimum square
error the optimum network output approximates the cond#tiomean of the target data, or
Nope(s(k), c(k), W) =< t(k) | s(k),c(k) >, and that the local variance of the target data can
be calculated as?(s(k), c(k)) = ||t(k) — Nopt(s(k),c(k),W)Hz. The assumption then, is that
the distribution of the target data can be modeled by a Gawstistribution with mean equal

to the conditional average of the target data, and variagoaldo the estimated residual errors

B ] (t(k) — Nom(s(kJ,c(k),wnZ}
pltli Tsie, elk), W) = (znch(s(k),c(kJ,v”vnvze"p{ 27(s(k), (), W)

To provide an estimation for the predicted variance two akenetworks are suggested to be
used [20]. The first network is trained so as to predict thedit@mnal mean of the target data.
After training the first network, the residual errors can bh&glated and can then be used as the
target values for the second network, with the inputs beigdame as the inputs in the first

network. This method is called the predictive error bar radtfl5], [20].
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Other methods for estimating the uncertainty around thdigied output of the neural network

can be found in [3], [22]. In this work the predictive errorrbaethod will be used.

B. Mixture Density Network.

Unlike the direct inverse approach, specialized learnmgfrol architectures [9], [13], [19] as
well as the feedback error learning [13] are able to acquir@accurate inverse model even for
multivalued functions (redundant systems). Other apgresdor solving the control problems
for redundant systems are based on the use of multiple m{&lel&], [10]-[12], [21].

In this work the use of the mixture density network is progb&®eacquire the inverse model
for multivalued control problems. In its original formulan [4], [17], the mixture density
network was specified in terms of a static system for solviegression problems. Recently,
the formulation of the mixture density network has beenméel to the dynamic case and used
in the control context [8]. Furthermore, the multicomponaistribution has been used to search
for the optimal control law locally, rather than taking aglm estimated value corresponding to
the most probable value as in the standard mixture densityonk [8].

Introducing the maximum likelihood and replacing the Gasgslistribution in (9) with a
mixture model, which can model general distribution fuoes, the probability distribution of

the target data can then be defined as
M

p(t(k) [s(k),c(k) =) oy(s(k),c(k))d;(t(k) | s(k),c(k)) (10)
j=1

whereo;(s(k), c(k)) represents the mixing coefficients, and can be regardedasppobabil-
ities, §; (t(k) | s(k), c(k)) are the kernel distributions of the mixture model, avids the number
of kernels in the mixture model. Note that the mixing coeffits and the kernel functions are
taken to be functions of the input vectsrfk), c(k)]. Various choices are available for the kernel

functions, but in this paper the choice will be restrictedspherical Gaussians of the form

d;(t(k) [ s(k),c(k)) =

| | t(K) — w(s(K), cl)) |2
(szd/Zcrs(s(k),c(knexp(‘ 207(s(K), c(k) ) av

where d is the dimensionality of the target daték), u;(s(k),c(k)) represents the centre
of the jth kernel, with componentsy. The spherical Gaussian assumption in (11) can be

relaxed in a very straightforward way, by using a full cosage matrix for each Gaussian
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kernel. However using full covariance Gaussians is notssag, because in principle a Gaussian
mixture model with sufficiently many kernels of the type givgy (11) can approximate any given
density function arbitrarily accurately providing thatetimixing coefficients and the Gaussian
parameters are correctly chosen [3]. It follows then thaafty given input vectols (k), c(k)], the
mixture model (10) provides a general formalism for modgline conditional density function
p(t(k) [ s(k),c(k)).

The parameters of the mixture model, namely the mixing agefftse;(s(k), c(k)), the means
ui(s(k),c(k)) and the variancerjz(s(k), c(k)) are taken to be general continuous functions of
[s(k),c(k)]. Since they are continuous functions of the input vectaytban be modeled by a
feed-forward neural network that takesk), c(k)] as its input. In this work the neural network
element of the MDN is implemented with a standard multi laperceptron network. This

combined structure of a feedforward network and a mixturgehdas shown in Figure 1.

p(t]s,c)

f

ﬂl(z)

Fig. 1. The architecture of the mixture density network. é4&r= [s(k), c(k)].

The outputs of the MLP approximate the parameters that dédimé&aussian mixture model.

The notationz; will be used to denote the output variables. As compared with usuald
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11

outputs for a MLP network used with a sum-of squares erroctfan, the total number of
network outputs in the mixture model (10) M components sum td +2) x M. To satisfy the
constraints of the mixture model, the parameters of the M putputs of the MLP network)

undergo some transformations . The mixing coefficientsnust satisfy the following constraint
M
> a(s(k),c(k)) =1 (12)
j=1

0 < ay(s(k),c(k)) < 1. (13)

The first constraint ensures that the distribution is cdlyenormalized, so that/ p(t(k) |
s(k), c(k))dt(k) = 1. These constraints can be satisfied by choosijig(k), c(k)) to be related
to the network’s outputs by a ‘softmax’ function

_ exp(z)

N Zl]\il exp(z)

The variances of the kernel represent scale parameters laagsatake positive values. To

o (s(k), (k) (14)

achieve positive values for the variances of the kerneltfans, the variances are taken to be

exponentials of the corresponding outputs of the MLP nektwaff
o7 = exp(z{). (15)

The centregy; of the Gaussians represent a location in the target spaceaanthke any value
within that space. Therefore they are taken directly from ¢brresponding outputs of the MLP
network, zj,

e = 2. (16)

In order to optimize the parameters in a MDN a likelihood fiime needs to be constructed [3].
The negative logarithm of the likelihood function can thenused to define the error function.
Training the mixture density network can then be proceegeudibimizing the error function (see
Appendix for definition of the likelihood function and errfunction minimization procedure).
Once the network has been trained it can predict the comditidensity function of the
target data for any given value of the input vector. This ¢towoll density represents a com-
plete description of the generator of the data. More speqif@ntities can be calculated from
this density function which may be of interest in differempécations. One of the simplest

statistics is the mean, corresponding to the conditionaraye of the target data. This is
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equivalent to the mean computed by a standard network ttdyeleast squares. However,
in control applications where unique solutions cannot benéh and where the distribution
of the target data will consist of different numbers of disti branches, one specific branch
from the estimated conditional density of the MDN needs tosbkcted. Two examples of
how to select a specific branch are the most likely, and thet miadbable output values. To
a very good approximation the most likely output value in aDWlis given by the centre

w; of the component with largest central value. The componérthe largest central value

is given bqux{ocj(s(k),c(k))/af(s(k), c(k))}. Alternatively, the most probable output value
correspondiné] to the most probable branch can be calcuylatede each component of the
mixture model is normalized| ¢;(t(k) | s(k),c(k))dt(k) = 1. Therefore, the most probable
branch is given by

arg rr}a)ﬁocj (s(k),c(k))}. a7

The required value of(k) is then given by the corresponding cengre In this work theM DN
with the most probable output value will be used to model thed@ional density function to

allow for the possibility of a multi-valued function.

IV. PROBLEM FORMULATION AND SOLUTION DEVELOPMENT

Dynamic programming is a powerful tool in stochastic conpimblems [14], [16]. However,
it performs poorly when the order of the system increases.aljorithm proposed here is based
on incorporating the uncertainty knowledge from the neuoedivork to avoid the computational
requirements for the dynamic programming solution of sastic control problems, see [7].
In direct inverse control the optimal control law is obtalri® minimizing the following cost
function
e = u(k) — (k) |? (18)

whereu(k) is the actual input to the system, afatk) is the inverse model output. The probability
distribution of the inverse model can then be estimated asrited in Section lll.

Modeling the probability distribution of the inverse modwmlovides information about the
uncertainty in the predicted output. The main objectivehis twork is to use this estimate for
the uncertainty around predicted outputs of the inverseahsd as to make the error between

the actual output of the system and the desired output egual z
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(y(k+ d) = yrer(k + d))* = 0. (19)

Equation (19) defines the objective functional. The outduthe inverse model has already
been trained to provide the control value which should bthegoutput of the process to follow
the desired value. Accepting the fact that the predicteghudutan never be exact and using
knowledge of uncertainty around its prediction, we can tlgnand maintain the condition
given in eq. (19).

Since a probability distribution for the inverse model cam dstimated, we search for an
algorithmic approach yielding numerical solutions to thmimization problem. The proposed
method is equivalent to sampling values from the distrdoutf the control signap(u(k)) and
using the function value alone to determine a reasonablemization of the objective functional.
Using the gradient information of the objective functigrathough it would be more efficient,
is not exploitable here due to the random sampling naturdh@falgorithm and the potential
stochastic nature of the plant. Because the inverse ctartitds been optimized over the entire
range of possible output values the functional given in @§) could be maintained locally, at
each instant of time.

Maintaining the condition of eq. (19) will be subject to thespible control values resulting

from the distribution of the inverse model for a specific ingalue

J(k) = Min[(y(k + d) — yres(k + d))*] (20)

uel
wherelU = [uy, u,, ...., u;] is the set of samples from the estimated distribution of thrroller.
Equation (20) requires applying the sampled values fromcibr@rol signal distribution to
the actual process to see their effect. This however is rotvall in real world applications.
Only one control value which is supposed to be optimal canob&drded to the actual process.

Nevertheless, it is common to build a stochastic model fergystem output by simply writing
g(u(k),s(k), W) = g(u(k), s(k), W) + &(u(k),s(k), W) (21)

whereg(u(k), s(k), W) is the forward model of the pIanE(u(k),s(k),V\/) is the uncertainty
around the predicted output of the forward model, and wikéke = [y(k),y(k—1),...,y(k—
g+ 1),uk—1),...,uk—p+1).
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Ignoring the uncertainty of the forward model and replading actual output of the system
by the output of the forward modél(u(k),s(k), W), yields

J(k) = Min [(§(u(k),s(k), W) = Yrer(k + d))?]. (22)

uel
In stochastic control problems the forward relationshgorfrthe input to the output can also

be driven by a stochastic component

y(k+d) = g(s(k]), u(k]), v(k)). (23)

If this is the case then the criterion function given by e®)(2eeds to be modified. The following

new criterion function can now be introduced

J(k) = Min E [(§(u(k),s(k),v(k), W) —yret(k + d))?]. (24)

uel v
The minimum is now taken over all admissible control valuesf the control signal distri-
bution and the expected value over the stochastic companekssuming that the probability

distributionp(v), of the stochastic component is known

J(k) = Min E [(g(u(k),s(k),v(k), W) —yres(k + d))?]

ueld v

=iz ( [[(600(0), (K9, 701, W) — sl + @) 2p(7167) (25)
an approximation method can be used to evaluate the quamsiye the brackets in eq. (25).
Since the true distribution of the stochastic componenssumed to be known, the integral can

be approximated by the following finite sum

J[(@(u(k),S(k),V(k),W)yref(ker))zJp(;)dV% [(G((k), s(k), vi(k), W) —yrer(k+d))].
(26)

Equation (26) implies that if the probability distributidor the output of the forward model is

M~

1
L

i=1

given, the expected value of the criterion function couldntiaimized.

A. Uncertainty in the forward model

In contrast to the uncertainty in the inverse model, unaestan the forward model can be
considered by changing the performance index to be optani2efining the performance index
as before

J(k) = Min M?(k) = Min [(g(u(k),s(k), W) — yrer(k + d))?] (27)

uel uel

May 27, 2003 DRAFT



15

whereM(k) = (g(u(k),s(k), W) — yret(k + d)) is the utility function, and where
g(u(k),s(k), W) = g(u(k),s(k), W) + &(u(k), s(k), W) (28)

where £(u(k), s(k), W) is assumed to be random noise with zero mean and varia@c@he
uncertainty&(u(k),s(k),W) in the forward model can be modeled as described in Sectlon I
assuming a Gaussian distribution in the error.

Substituting (28) into (27) yields

J(k) = Min [(g(u(k),s(k), W)+ E(u(k),s(k), W) = Yree(k + d))7] (29)

uel
Since the system output is a random variable now, an optimatral law is a control law
which minimizes the expected value of the performance ind&x, < J(k) >. The expected

value of the performance index is given by

<J(k) >¢ =< (6(w(k),s(k), W) + E(u(k),8(k), W) = Yrer(k+ d))* >¢

= (g(u(k),s(k), W) — yres(k + d))* + 0% (30)
since
<M(k) | glufk),s(k), W) >=g(u(k),s(k), W) = Yres(k + d) (31)
and
var(M(k) | g(u(k),s(k), W)) = of (32)

It is clear from (30) that the conditional probability delysp(M (k) | §(w(k),s(k), W)) is

given by that of¢,(u(k), s(k), W) with &(u(k),s(k), W) = M(k) —g(u(k),s(k), W)+ Urer(k+

d). From (30), the optimal control law is given by
u(k) = arg Min [(g(u(k), s(k), W) — yrer(k + d))? + o3 (33)

Therefore, instead of minimizing the gap between the aeemigthe forward model and
the desired trajectory as in (24), the uncertainty in thevésd model is included and the
expected value of the performance measure evaluated avemttertainty in the forward model

iS minimized.
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B. Optimal control law

Once properly trained, the inverse model can be used toaldh#& plant since it can create the
necessary control signals to create the desired systeratogspite the fact that neural networks
have been accepted as suitable models for capturing theibeb&nonlinear dynamical systems,
it is also accepted that such models should not be considet@ct. The algorithm proposed
here circumvents the dynamic programming scaling probldmnistvsimultaneously allowing for
the model uncertainty by using the predicted neural netwesrkr bars to limit the possible
control solutions to consider. Accepting the inaccuracynefiral networks, the distribution of
the output of the inverse control network can be approxichég a Gaussian distribution, or
more generally by a multi-component distribution as disedspreviously.

Using just the mean estimate of the control in the Gaussis@ aad the most probable value of
the control in the multi-component distribution case isd¢glly suboptimal in nonlinear systems.
Modeling the conditional distribution of the control sigmgoermits the idea of implementing im-
portance sampling of the control signal distribution, whaefines the set of allowable decisions
at each stage to obtain a better estimate of the control law the mean or the most probable
value. The calculated quantities from these distributior@nely the mean, the most probable
value, and the variance are nonlinear functions of prevatates, thus allowing for good models
of forward and inverse plant behavior. Based on estimatateotistribution of control signal
values, the following algorithm can be constructed for npowating the uncertainty directly. The
architecture of this algorithm is shown in figure 2.

1) Estimate the conditional distribution of the forward mad€&he assumption here is that

the distribution of the forward model is a Gaussian functiand is given by
exp UK+ ) Gk + )

20; y(k+d)

p(ylk+d)|s(k),ulk)) = ) (34)

N|—

(2”6 (i)

2) Estimate the conditional distribution of the inverse moa@s a Gaussian function given

by
_ 1 (u(k) —1(k))?
plu(k) [s(k),y(k+d)) = m exp(— zai(k) ) (35)
or a mixture of Gaussians given by
p(u(k) | s(k),y(k+ d)) Zoc] y(k+ d))ds(t(k) [ s(k),y(k+d)  (36)
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3) At each instant of time k,

a) Calculate the desired output from the reference model.

b)

c)

d)

Bring the control network online and calculate the contrral in addition to the
variance of the control signal.
Generate a vector of samples from the control signal digtidn. This can be

obtained as follows

i) For the Gaussian function:
A random number generator need to be constructed and usedtlgito produce
a sample from the Gaussian distribution.

i) For the mixture density network:
Since Gaussian kernel functions are used, the samples cagyeterated from
each kernel function randomly. This can be done by retrggethne components
ujc of the kernel centresy;, and the kernel widths; of each kernel function.
The number of samples from each component is determine@mapdvith more

samples generated from the component with larger prior.

The vector of samples is considered as the set of admissibkeot values at each
instant of time.

Based on the effect of each sample on the output of the mbdehast likely control
value is taken. The most likely value is assumed to be thes thht minimizes the

following cost function.

J(k) = MinE[(§(k + d) — Yres(k + d))* + of] (37)

uell v
wherell is a vector containing the sampled values from the contgmiali distribution,
E is the expected value of the cost function over the randorsenaariablev, and
cé is the variance of the uncertainty in the forward model. Bssawe are using
a neural network to model the system, and because the neerabrk predicts the
mean value for the output of the model averaged over the ramsthe data, the

above function can be optimized directly.

The stability analysis for the updating rule of the conteilhas been proved in [6].
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Fig. 2. The architecture of the proposed optimization metfithe input and the output of the plant are passed througfifta sh

register (SR) so as to generate the required past input apdtoalues.

V. SIMULATION 1: GAUSSIAN DISTRIBUTION
A. Introduction

In order to illustrate the validity of the theoretical dem@ients, we consider the third order

system with two inputs and two outputs described by the Wohg state equation :

_ - x1(k)uq (k) 2x; (k)
x1(k+ 1) = 0.9% (k) sinx, (k)] + |2+ 15] n X%(k)u%(k)]lh (k) + |:X1 (k) + w u (k)
X2k + 1) = x3 (K1 + sinldxs (K]} + %
x3(k+ 1) = {3 + sin[2x; (k)] Juz(k)
yi(k) = x1(k)
Ya(k) = x2(k) (38)

wherex(k) = [x1(k), x2(k), x3(k)] is the statex(k) = [u;(k), u>(k)] is the control variable,
andy(k) = [y;(k),y2(k)] is the output. This model has been used in [18] to illustia¢®tetical
developments for the indirect adaptive controller. In thystem the delay from the inputs,
and u, to y; is unity, and the delay tq, is three fromu,, while it is two from u,. The
plant is considered to be described by equation (38), th@sghhmed unknown to us. Although

one neural network could be sufficient to identify the ouspoit the plant, two neural networks
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have been used in this work following the procedure used irehdra’s one model for each

output [18]. An input-output model described by the follagitwo equations was chosen.
G1(k+1) = Na(y(k),y(k —1),y(k — 2),u(k),ulk — 1),u(k — 2))
02(k+2) = Npa(y(k),y(k — 1),y(k — 2),u(k),u(k — 1), u(k — 2))

Where Ny, and N, are multi-layer neural networks. This neural network modak trained
using the scaled conjugate gradient optimization algorjthased on input-output data measure-
ments taken from the plant with sampling time of 1s. The ispytandw, to the plant and the
model were generated uniformly over the interviald .5, 1.5] and [—0.5, 0.5] respectively. The
single optimal structure for the neural networks found bplgipg the cross validation method
consisted o221 hidden units for the first model anld hidden units for the second model. In the
cross validation method both of the forward models wereetesin new data that has not been
seen in the training stage. The error function between theaboutput and the model output,
e =[] yi(k+ d) — 0i(k + d) ||*, was calculated for different model structures with difetr
numbers of neurons in the hidden layer. The best optimattstre is then taken to be the model
with the minimum error value in the validation stage. Simyjlaan input-output model described
by

(k) = Ne(y(k),y(k —1),y(k — 2),u(k — 1), u(k — 2), [ys(k + 1), y2(k + 2)])

was chosen to find the inverse model of the plant, wiNereés a multilayer neural network. The
training data was the same as in the forward model. A neutalark with 7 hidden units was
found to be the best model by cross validation. Here the sateeubed to validate the forward
models is used to validate the inverse model. In the vabdattage the model with the minimum
error between the actual control value and the inverse mealek, e =|| u(k) — (k) || is

taken to be the best model.

B. Classical Inverse Control Approach

After training the inverse controller off line, the contmoétwork is brought on line and the
control signal is calculated at each instant of time from ¢doatrol neural network and by

setting the two outputg;(k + 1), y2(k + 2) equal to the desired valueg.s (k+ 1) = r1(k),
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andyrer2(k + 2) = r2(k) respectively. where

.27k . |27k
r1(k) = 0.65 sin {ﬁ} + 0.65sin [W}

.| 2mk . |27k
T'Z(k) = 0.65sin |:3—O:| + 0.65sin [%:| .

The predicted mean value from the neural network was foredatd the plant. The control result
is shown in Fig. 3. The performance of the classic controNas seen to be poor with large

overshoots around the desired response in the second autkut

C. Proposed Control Approach: Ignoring uncertainty in tloeviard model

In our new approach, both the mean and the variance of theat@ignal were estimated.
Following the procedure presented earlier, the best cbsigmal was found and forwarded to
the plant, ignoring the uncertainty in the forward modelisTimeans that the performance index
of (24) is minimized. Firstly30 samples were generated from the Gaussian distributionatf ea
control signal. However the number of samples used to sdarcan optimal control law was
312, including the mean value from each distribution. The oW@exformance of the plant under
the proposed method is shown in Fig. 4. The performance opthposed controller is seen
to be significantly better than the classic controller. Hegvebecause the model of the second
output was found to be more inaccurate than for the first duipager errors in the second

output can be seen.

D. Proposed Control Approach: Including uncertainty in tfoeeward model

Here, the optimal control value is taken to be the controligahat minimizes (30). Similarly
the number of samples from the control signal distributionaken to be&12. The performance
of the proposed sampling method including the uncertaintyhe forward model is found to
be slightly better than that where the uncertainty in thevésd model is ignored. The average
tracking error of the proposed sampling method withoutudeig the uncertainty in the forward
model is found to b&.0836. However, the tracking error of the sampling method by antag

for the uncertainty in the forward model is found to ©@738.
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VI. SIMULATION 2: MIXTURE DENSITY NETWORKS
A. Introduction

In this section, the MIMO dynamical system of Section V ddsmxut by equation (38) is
reworked using the idea of mixture density networks to mdbelconditional distributions of
control signals.

The conditional distribution of control signals for thiseawple is calculated using input output

data as follows
M
p(u(k) [s(k),y(k+d)) = Z o;(s(k),y(k + d))d;(u(k)ls(k),y(k + d))
j=1

wheres(k) = [y(k),y(k — 1),y(k — 2),u(k — 1),u(k — 2)] is the same input vector as in
Section V. The same training data as for the Gaussian casectibB V is also used for training
the mixture density network.

Similarly to test the validity of the mixture density netwomodel, the different model
structures have been tested in the validation stage, uemgdme validation data. The error
between the actual control value and the mixture densitwordt e =|| w(k) — {i(k) ||?, has
been used in this example to find the best model. It was fouatttie best optimal structure
for the inverse model is a mixture density network watikomponents and hidden units in the
the multilayer perceptron network.

However, the forward models for the first and the second dstpiuthe plant remain as before,

modeled with a standard multilayer perceptron network.

B. Standard Mixture Density Network

Once the mixture density network is trained off line, itspuitcan be used on line to calculate
the control signals that are required to make the output@fsistem follow the desired output.
The same reference signats(k) andr,(k), that are used in Section V are used here.

The control signali(k), from the MDN is taken to be the meam,[s(k),y,.¢(k+ d)], of the
kernel function with the highest prior value;(s(k)). The result of using the mixture density
network as a controller in the MIMO system was found to behgljgbetter than using a standard
network, this is shown in Fig 5. The average tracking errothef standard inverse control is

found to be0.5711, while that of the standard mixture density network is fouade 0.5353.
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C. Proposed Control Approach of MDN: Ignoring uncertaintythe forward model

In this section the sampling method from a mixture densitiyoek for the MIMO control
system is presented. Here the means of the kernel functiomsldition to the variances are
retrieved and used in the sampling method. Since each kisragbaussian function, the random
number generator in Matlab is used to sample each kernel witte samples taken from the
kernel with the highest prior value.

The control result from sampling the mixture density netmsrshown in Fig 6. The number
of samples used to search for the optimal control signakisritao be?00. Again the performance
of the controller by sampling the mixture density networkaand to be slightly better than that

of sampling the Gaussian function.

D. Proposed control method of MDN: Including uncertaintytiive forward model

For the mixture density network, taking the optimal contvalue of the sampling method
to be the one that minimizes (30) is again found to be sligh#jter than taking it to be the
one that minimizes (24). The tracking error of the propossad®ing method without including
the uncertainty in the forward model is found to ®€722. However, the tracking error of the
sampling method by accounting for the uncertainty in thevéod model is found to b8.0693.

The number of samples in both cases Wwés8.

VII. CONCLUSIONS

General inverse control can be considered to be a good tattadegy if the model of the
plant happens to be invertible and accurate. We are assutmanghe neural network approach
allows us to construct accurate models so that we can rely@n dutputs as representing the
correct conditional mean expectations. If this is not theecdnen the approach discussed in this
paper can fail. Assuming accuracy of the model though, thensic uncertainty around the
control signal can be estimated by estimating the conditidistribution of the control signal.

The main contribution of this paper is that it provides a sgsitic procedure to use this
uncertainty measure in order to improve the generalizaimh robustness property of the con-
troller. Simulation experiments demonstrated the sudgkapplication of the proposed strategy
to improve the controller performance for a class of nordimsntrol dynamic and static systems.

Since we are sampling our control signal from the estimaitsiilbution and choosing one which
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better fits the model, the predicted value of the control &ign the next time step should be
more accurate. By feeding back a better value of the conigabf another benefit is that there
should be no need to change the controller parameters asaong are dealing with stationary
processes.

The examples given in this paper demonstrate the simplpstsentative of the conditional
density distribution (Gaussian distribution function) addition to a whole class of density-
estimating neural networks (the mixture density network] also points out a fruitful direction
for control research: that of sampling control signals frestimated distribution functions which
can incorporate even more information on the full distridtsuch as higher order moments
beyond just the first two, representing the control law arel ahcertainty around the control
law. This more general approach is not constrained by assomspof invertibility and it shows

the ability to deal with multi-valued processes as well.

APPENDIX |

LIKELIHOOD FUNCTION OF MDN AND ERROR FUNCTION MINIMIZATION

For the training data sefs(k), c(k), t(k)} the likelihood function can be written as

Hp(sn(k), cn(k), ta(k)) (39)

Hp k) | 8n(k), cn(k))p(sn(k), cn(k))

where in the above equatlon the likelihood is taken to be aymbof probabilities, based on
the assumption that each data point has been drawn indegnttem the same distribution.

The negative log likelihood can then be used to define the éuraction, E
E=—InL=— Zlnp k)lsn(k Z‘p $n(k), cn(K)). (40)

The second term in (40) is constant because it is mdepemjdhe network parameters, so it

can be removed from the error function. The error functiooobees
E:—lnﬁ=—Zlnp(tn(k)\sn(kJ,c(k)J. (41)

Next the error function (the negative log likelihood) foetMDN can be obtained by substitut-
ing (10) into (41)

M
—Z'n{Z 1)) (ta (K )sn(k),C(k))}. (42)
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In order to minimize the error function, the derivatives loé terrort with respect to the weights
in the neural network must be calculated. Providing thatdéevatives can be computed with
respect to the outputs of the network, the errors at the n&twputs may be calculated using
the back-propagation procedure [3]. Since the error fongi1) is composed of a sum of terms,
one for each training pattern, the error derivative can besiciered with respect to each training
pattern,n. The total errort is then defined as a sum of the errors for each training patéern
nonlinear optimization method can then be used to find theanmim of the error functiort.
In this work the scaled conjugate gradient method is used.

Since the error function of the mixture density network (é2)efined as the sum of the product
of the conditional density function$; and a prior probabilityx;, the posterior probability of

the jth kernel can be defined using Bayes’ theorem as
m(s(K), e(k), t(k)) = —7——. (43)

This simplifies the analysis of the error derivatives withpect to the network outputs. From (43)

one can note that the posterior probabilities sum to unity

M
Y m=1. (44)
j=1

Each of the derivatives di™ are considered with respect to the outputs of the networlls an
their respective labels for the mixing coefficients, variance parametergy and centres or

position parametersji. The derivatives are as follows

OE™

—— 45
028 X — TG (45)
OE™ 7 [ ta(k) — |17

S —d 46
0z 2{ oF (46)
OE™ { i — ti(k) }
O _ gl xOL (47)
azﬁ< ) sz
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Fig. 3. Performance of the classical control approach: Ha)first output of the plant. (b) the second output of the plant
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Fig. 4. Performance of the proposed control approach ofradatd neural network for dynamical MIMO system: (a) the first

output of the plant. (b) the second output of the plant.
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Fig. 5. Performance of the mixture density network as a odletr (a) the first output of the plant. (b) the second outpiut

the plant.
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Fig. 6. Performance of the proposed control approach ofurgxtiensity network for the dynamical MIMO system: (a) the

first output of the plant. (b) the second output of the plant.

May 27, 2003 DRAFT



