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Abstract

This paper presents a general methodology for estimating and incorporating uncertainty in the

controller and forward models for noisy nonlinear control problems. Conditional distribution modeling

in a neural network context is used to estimate uncertainty around the prediction of neural network

outputs. The developed methodology circumvents the dynamic programming problem by using the

predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear

multivariable system with different delays between the input-output pairs is used to demonstrate the

successful application of the developed control algorithm. The proposed method is suitable for redundant

control systems and allows us to model strongly non Gaussiandistributions of control signal as well as

processes with hysteresis.

I. INTRODUCTION

Uncertainty in process control can be related to different sources. Consider the following

deterministic transformation problema(k+ 1) = g(a(k); b(k)) (1)

This equation implies that the output of the model is known exactly before and after the

occurrence of the transformation, which may result from applying a new input value. However,

in real world problems the plants are usually subject to different sources of variation which can

be due to:� The incomplete knowledge we may have about the process itself.� The transformation relationship between the input and the output variables may itself be a

nondeterministic relationship. This can be related to several disturbances that can affect the

input-output relationship.� The lack of knowledge for determining the right cost function, which provides the basic

ground to optimize the model which provides the prediction output.� Since in most of the cases the description model is a parameterized function of the input,

the parameters of the model itself can be uncertain.

In such situations, the choice of certain input valuesb may lead to non unique transformations.

This means that the choice of one input valueb may lead to a set of possible output valuesa.

To illustrate the variations in real world problems, consider the problem of predicting the

value of the force in the pole balancing problem. The force issupposed to avoid failure, where
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failure in this problem is defined as the event of pole failingpast a certain angle or the cart

running into the bounds of its track.

To analyze this problem in some detail given the angle of pole, the angular velocity of pole,

the horizontal position of the carts centre, the velocity ofthe cart, the velocity of the wind, the

force of friction, and other information, we need to find the mathematical model to predict the

amount of force needed to be applied to avoid possible failure by balancing the pole. Finding

a suitable mathematical model will require combining all the experimental, physical, theoretical

and computational programs to provide an estimation for themodel parameters. Estimating the

model parameters will require defining a cost function, which in turn should affect the accuracy

of the estimation problem.

Even if all this is achieved and providing that a suitable mathematical model can be estimated,

an exact prediction can still never be obtained. The first thing we will observe is that small

changes in the initial conditions can result in significant changes in the predicted force value.

This means that we are examining a highly unstable process.

Looking for an exact prediction can be considered to be very difficult and requires a very

precise tool. Since exact solutions are then unattainable,approximate solutions are the only way.

In these situations if we wish to obtain a better prediction for the desired output, additional in-

formation in terms of the uncertainty knowledge should be included. There are many approaches

and mathematical models for providing an estimate of the uncertainty. The best general way of

estimating uncertainty can be described in terms of modeling the probability distribution for the

desired prediction.

In this work the problem of decision making in control problems under uncertainty is intro-

duced in the context of neural networks. In contrast to classical control approaches, suppose

that the control vectors are generated from a probability distributionp(u(k)), and the output

variables evolve with time according toy(k + 1) = g(y(k); u(k); v̄(k)):
The objective in control problems is then to find the optimal control variables from the probability

distributionp(u(k)) such that when applied to the system, the output of the systemshould be

equal to a predetermined desired valueyref(k + 1). This means that we are looking for an
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idealized optimal control vectoru(k), obtained from the distributionp(u(k)) such thatprob[jy(k+ 1) - yref(k + 1)j > 0℄ = 0 (2)

However this cannot be applied directly to real world problems, because the effect of each

control variable from the distributionp(u(k)) needs to be observed on the real world system.

Since only one decision input to the real system can be applied, which is supposed to be optimal,

the real output valuey(k+ 1) needs to be replaced by an estimateŷ(k+ 1). Consequently this

implies that the solution provided in eq. (2) never occurs inpractice because it requires that the

estimatorŷ(k + 1) for y(k + 1) contains no error. Moreover to satisfy this condition the true

probability distributionp(u(k)) needs to be known, where in practice only an estimatep̂(u(k))
for the true distributionp(u(k)) can be obtained. In this current paper we will not consider this

level of uncertainty, but assume that the estimated distributions are accurate.

To provide an estimate for the required distributions in this work a neural network is used. The

principle feature of neural network estimation problems isthat it assumes the availability of a set

of m output variablesy = (y1; y2; :::; ym), and a set ofn control variablesu = (u1; u2; :::; un).
The estimation problem is then to provide an estimate of the probability density function of the

output variablesy(k+ 1) conditioned on the input variablesy(k); u(k),q̂[y(k+ 1)jy(k); u(k);W℄ (3)

whereW is the vector of model parameters. The control problem however is the inverse of this

forward problem. The controller function needs to provide an estimation of the control variableu(k) conditioned on the variablesyref(k + 1); y(k),p̂[u(k)jyref(k + 1); y(k);W℄ (4)

In certain situations, particularly when dealing with inverse problems, mathematical constraints

restrict estimating problems to well behaved functionsg, andg-1. Thusg, andg-1 are usually

required to have continuous first derivatives and to have one-one mappings. These restrictions

however have little effect on the statistical scope of the estimation problem.

Therefore any statisticp[y(k+1)jy(k); u(k);W℄ or p[u(k)jyref(k+1); y(k);W℄ should ideally

provide an adequate description of the data.

Thus providing that a valid estimation for the true distribution p(u(k)) and the estimator of

the forward model can be obtained, the statistical control optimization problem can be stated as
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follows. Given: a setU, consisting of all possible decisionsu 2 U obtained from the probability

density functionp̂[u(k)jyref(k+ 1); y(k);W℄, and a performance criterionJ which provides an

evaluation of a given decision variables, two kinds of criteria can be taken:(1) a reward function,

in which case it should be maximized, and (2) cost function inwhich case it should be minimized,

and a setY, the space of the output variablesy, consisting of all possible outputsy 2 Y that may

result from different decision variables, find the optimal control law that minimizes or maximizes

the performance criterionJ at each instant of time.

In this optimization method an estimation model of the real world system has been assumed,

because the control decisions available from the estimateddistribution of the controller need

to be evaluated. However observing any other aspects of the system which provide information

about different control decisions can be sufficient.

II. FORWARD AND INVERSE MODELS OF THE PLANT

In the neuro control field some of the control architectures are based on a forward model of

the plant. On the other hand, inverse models are used as controllers. Forward models determine

the forward relationship from the input to the plant output.For example the forward model

in the pole balancing problem predicts the next state (angleof pole, angular velocity of pole,

horizontal position of cart’s centre and velocity of cart) given the current state and the force.

Forward models have been used in indirect adaptive control,and in the adaptive critic methods.

Inverse models however, invert the forward models by providing an estimate for the control,

eg. the force applied to the cart in the pole balancing problem, given the desired pole angle

and the current state. Since inverse models are responsiblefor providing control signals that are

supposed to make the output of the system equal to the desiredoutput value, they are suitable

for use as controllers.

The forward models and the inverse models should then be adapted to provide a good

representation for the output and the input of the system respectively. Adaptation procedures

for the forward model can be seen to be straight forward. Thisis because forward models can

be learned by supervised learning, comparing the predictedoutput of the forward model to the

actual output. Learning inverse models on the other hand, can be seen to be more difficult. One

of the simplest methods to learn inverse models is direct inverse control [1], [2], [9], [19]. In the

direct inverse approach the correct control value responsible to make the output of the system
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equal to a desired output value is assumed to be known. The correct control value is then used

as the training signal for the inverse controller. However the direct inverse approach has several

drawbacks:� The learning procedure is not goal directed, since in directinverse control the error between

the plant inputu(k) and the network output̂u(k), e = ju(k) - û(k)j is minimized, while

the goal in control problems is usually to make the system output y(k + d) follow a

prespecified desired outputyref(k + d). Using the direct inverse control architecture to

make the plant follow the desired response will work only if the desired response happens

to be sufficiently close to the system outputs that were used during the training process. The

successful application of this method depends largely on the ability of the neural network

to generalize and interpolate in regions where the control signal is required for inputs that

have not been in the training set. This in turn requires the training signal to be sampled

over a wide range of system inputs to cover the possible operational range of the system.� Obtaining the inverse of the system may not be possible in problems where the mapping

is not one-one.

To overcome these problems, Psaltis [19] has suggested the use of a specialized learning

architecture. In this approach both the forward and inversemodel of the plant are used. The

controller in this approach has the advantage that it is trained to span the desired operational

output space. This means that the input to the inverse controller in this control architecture

is the reference or command signal. The inverse model is thentrained to minimize the error

between the desired response and the system response,e = jy(k+d)-yref(k+d)j. The actual

system output is replaced by the forward model outputŷ(k+d) to allow calculating the required

derivatives. The forward model is usually assumed to be a good representation of the plant and its

parameters are not adapted with the inverse model parameters. Another method which has been

suggested in [13] is called feedback error learning. Using these control architectures is supposed

to overcome both of the above problems in direct inverse control. However, if the conventional

neural networks are unable to cope with redundant systems, they need to be adapted each instant

of time before they produce the appropriate control command. This in turn, typically produces

large transient errors for training the feedforward controller.

In this work, modeling conditional distributions of control signals is suggested to overcome
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the uncertainty problems of the inverse controller.

III. CONDITIONAL DISTRIBUTIONS OFFORWARD AND INVERSE MODELS

As mentioned in the previous section, forward models are responsible for providing an es-

timation for the predicted output of the system given the previous and current outputs of the

system and the previous inputs to the systemŷ(k + d) = f(y(k); y(k- 1); :::; y(k- q + 1); u(k); u(k- 1); :::u(k- p+ 1)) (5)

whered is the relative degree of the plant,q is the maximum delay in the output andp is the

maximum delay in the input.

The aim of the control is to provide an estimation for the control value which can achieve

the desired output valueû(k) = g(yref(k+ d); y(k); ::::; y(k- q+ 1); u(k- 1); ::::; u(k- p+ 1): (6)

In this section, modeling conditional distributions for forward and inverse models is described.

For this purpose the estimation problem for the conditionaldistribution of the following general

neural network function will be describedt̂(k) = N(sss(k); 
(k);W) (7)

whereW is the model parameter vector,sss(k) = [y(k); y(k - 1); ::::; y(k - q + 1); u(k -1); ::::; u(k- p+ 1)℄ is an input vector for both the forward and inverse models ,
(k) = u(k)
for the forward model,
(k) = yref(k + d) for the inverse model, and wheret(k) = y(k + d)
for the forward model, andt(k) = u(k) for the inverse model.

The basic goal is to model the statistical properties oft(k), expressed in terms of the

conditional distribution functionp(t(k)jsss(k); 
(k);W).
In certain situations, particularly when dealing with inverse problems, the estimation problem

is restricted to the case of one-to-one mapping functions. In this case and only in this case the

inverse of the function denoted byg can be introduced. Therefore a feed-forward neural network

trained using the sum of the square error function can be usedto obtain the inverse and the

forward models of the plant. For this case the distribution of the target data can be described by

a Gaussian function with an input-dependent mean (given by the outputs of the trained network),

and an input-dependent variance (given by the residual error value).
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However, if the inverse of the functionf can not be defined uniquely, then the direct inverse

mapping found by minimizing the sum of the square error function, can not be used to obtain

the inverse of the function. Therefore, assuming a Gaussiandistribution can lead to a very

poor representation of the control signal. In this case a more general framework for modeling

conditional probability distributions is required. This general framework is based on the use of

the mixture density network.

In the following sections the problem of Gaussian distribution modeling as well as the mixture

density network is presented.

A. Gaussian Distribution Modeling.

If a neural network has been used to predict the target valuesgiven by eq (7)t̂(k) = N(sss(k); 
(k);W) (8)

then the conditional distribution of the target data can be estimated by modeling the conditional

uncertainty involved in its own prediction. Estimating theuncertainty around the predicted

output of the neural network can be obtained simply by measuring the errors between the

predicted value from the neural networkt̂(k) and the actual valuet(k), e(k) =k t̂(k)- t(k) k2.
This approach is based on the important result that for a network trained on minimum square

error the optimum network output approximates the conditional mean of the target data, orNopt(sss(k); 
(k);W) =< t(k) j sss(k); 
(k) >, and that the local variance of the target data can

be calculated as�2(sss(k); 
(k)) = kt(k) -Nopt(sss(k); 
(k);W)k2. The assumption then, is that

the distribution of the target data can be modeled by a Gaussian distribution with mean equal

to the conditional average of the target data, and variance equal to the estimated residual errorsp(t(k) j sss(k); 
(k);W) = 1(2��2(sss(k); 
(k); W̃))1=2exp�(t(k) -Nopt(sss(k); 
(k);W))22�2(sss(k); 
(k); W̃) 
:
(9)

To provide an estimation for the predicted variance two neural networks are suggested to be

used [20]. The first network is trained so as to predict the conditional mean of the target data.

After training the first network, the residual errors can be calculated and can then be used as the

target values for the second network, with the inputs being the same as the inputs in the first

network. This method is called the predictive error bar method [15], [20].
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Other methods for estimating the uncertainty around the predicted output of the neural network

can be found in [3], [22]. In this work the predictive error bar method will be used.

B. Mixture Density Network.

Unlike the direct inverse approach, specialized learning control architectures [9], [13], [19] as

well as the feedback error learning [13] are able to acquire an accurate inverse model even for

multivalued functions (redundant systems). Other approaches for solving the control problems

for redundant systems are based on the use of multiple models[3], [5], [10]–[12], [21].

In this work the use of the mixture density network is proposed to acquire the inverse model

for multivalued control problems. In its original formulation [4], [17], the mixture density

network was specified in terms of a static system for solving regression problems. Recently,

the formulation of the mixture density network has been extended to the dynamic case and used

in the control context [8]. Furthermore, the multicomponent distribution has been used to search

for the optimal control law locally, rather than taking a single estimated value corresponding to

the most probable value as in the standard mixture density network [8].

Introducing the maximum likelihood and replacing the Gaussian distribution in (9) with a

mixture model, which can model general distribution functions, the probability distribution of

the target data can then be defined asp(t(k) j sss(k); 
(k)) = MXj=1 �j(sss(k); 
(k))�j(t(k) j sss(k); 
(k)) (10)

where�j(sss(k); 
(k)) represents the mixing coefficients, and can be regarded as prior probabil-

ities,�j(t(k) j sss(k); 
(k)) are the kernel distributions of the mixture model, andM is the number

of kernels in the mixture model. Note that the mixing coefficients and the kernel functions are

taken to be functions of the input vector[sss(k); 
(k)℄. Various choices are available for the kernel

functions, but in this paper the choice will be restricted tospherical Gaussians of the form�j(t(k) j sss(k); 
(k)) = 1(2�)d=2�dj (sss(k); 
(k)) exp

�-k t(k) - �j(sss(k); 
(k)) k22�2j (sss(k); 
(k)) �
(11)

whered is the dimensionality of the target datat(k), �j(sss(k); 
(k)) represents the centre

of the jth kernel, with components�jk. The spherical Gaussian assumption in (11) can be

relaxed in a very straightforward way, by using a full covariance matrix for each Gaussian
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kernel. However using full covariance Gaussians is not necessary, because in principle a Gaussian

mixture model with sufficiently many kernels of the type given by (11) can approximate any given

density function arbitrarily accurately providing that the mixing coefficients and the Gaussian

parameters are correctly chosen [3]. It follows then that for any given input vector[sss(k); 
(k)℄, the

mixture model (10) provides a general formalism for modeling the conditional density functionp(t(k) j sss(k); 
(k)).
The parameters of the mixture model, namely the mixing coefficients�j(sss(k); 
(k)), the means�j(sss(k); 
(k)) and the variance�2j (sss(k); 
(k)) are taken to be general continuous functions of[sss(k); 
(k)℄. Since they are continuous functions of the input vector, they can be modeled by a

feed-forward neural network that takes[sss(k); 
(k)℄ as its input. In this work the neural network

element of the MDN is implemented with a standard multi layerperceptron network. This

combined structure of a feedforward network and a mixture model is shown in Figure 1.

m1(z)

s1(z)

z
a

1
(z)

m2(z)

s2(z)

a2(z)

p(t | s,c)

s1(z)

m1(z)

Fig. 1. The architecture of the mixture density network. Here Z = [sss(k); 
(k)℄.
The outputs of the MLP approximate the parameters that definethe Gaussian mixture model.

The notationzj will be used to denote the output variables. As compared withthe usuald
May 27, 2003 DRAFT
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outputs for a MLP network used with a sum-of squares error function, the total number of

network outputs in the mixture model (10) ofM components sum to(d+2)�M. To satisfy the

constraints of the mixture model, the parameters of the MDN (the outputs of the MLP network)

undergo some transformations . The mixing coefficients�j must satisfy the following constraintMXj=1 �j(sss(k); 
(k)) = 1 (12)0 � �j(sss(k); 
(k)) � 1: (13)

The first constraint ensures that the distribution is correctly normalized, so that
R p(t(k) jsss(k); 
(k))dt(k) = 1. These constraints can be satisfied by choosing�j(sss(k); 
(k)) to be related

to the network’s outputs by a ‘softmax’ function�j(sss(k); 
(k)) = exp(z�j )PMl=1 exp(z�l ) : (14)

The variances of the kernel represent scale parameters and always take positive values. To

achieve positive values for the variances of the kernel functions, the variances are taken to be

exponentials of the corresponding outputs of the MLP network, z�j�2j = exp(z�j ): (15)

The centres�j of the Gaussians represent a location in the target space andcan take any value

within that space. Therefore they are taken directly from the corresponding outputs of the MLP

network,z�jk �jk = z�jk: (16)

In order to optimize the parameters in a MDN a likelihood function needs to be constructed [3].

The negative logarithm of the likelihood function can then be used to define the error function.

Training the mixture density network can then be proceeded by minimizing the error function (see

Appendix for definition of the likelihood function and errorfunction minimization procedure).

Once the network has been trained it can predict the conditional density function of the

target data for any given value of the input vector. This conditional density represents a com-

plete description of the generator of the data. More specificquantities can be calculated from

this density function which may be of interest in different applications. One of the simplest

statistics is the mean, corresponding to the conditional average of the target data. This is
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equivalent to the mean computed by a standard network trained by least squares. However,

in control applications where unique solutions cannot be found, and where the distribution

of the target data will consist of different numbers of distinct branches, one specific branch

from the estimated conditional density of the MDN needs to beselected. Two examples of

how to select a specific branch are the most likely, and the most probable output values. To

a very good approximation the most likely output value in an MDN is given by the centre�j of the component with largest central value. The component of the largest central value

is given bymaxj f�j(sss(k); 
(k))=�dj (sss(k); 
(k))g. Alternatively, the most probable output value

corresponding to the most probable branch can be calculated, since each component of the

mixture model is normalized,
R�j(t(k) j sss(k); 
(k))dt(k) = 1. Therefore, the most probable

branch is given by

arg maxj f�j(sss(k); 
(k))g: (17)

The required value oft(k) is then given by the corresponding centre�j. In this work theMDN
with the most probable output value will be used to model the conditional density function to

allow for the possibility of a multi-valued function.

IV. PROBLEM FORMULATION AND SOLUTION DEVELOPMENT

Dynamic programming is a powerful tool in stochastic control problems [14], [16]. However,

it performs poorly when the order of the system increases. The algorithm proposed here is based

on incorporating the uncertainty knowledge from the neuralnetwork to avoid the computational

requirements for the dynamic programming solution of stochastic control problems, see [7].

In direct inverse control the optimal control law is obtained by minimizing the following cost

function e =k u(k) - û(k) k2 (18)

whereu(k) is the actual input to the system, andû(k) is the inverse model output. The probability

distribution of the inverse model can then be estimated as described in Section III.

Modeling the probability distribution of the inverse modelprovides information about the

uncertainty in the predicted output. The main objective in this work is to use this estimate for

the uncertainty around predicted outputs of the inverse model so as to make the error between

the actual output of the system and the desired output equal zero
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13(y(k+ d) - yref(k + d))2 = 0: (19)

Equation (19) defines the objective functional. The output of the inverse model has already

been trained to provide the control value which should bringthe output of the process to follow

the desired value. Accepting the fact that the predicted output can never be exact and using

knowledge of uncertainty around its prediction, we can thentry and maintain the condition

given in eq. (19).

Since a probability distribution for the inverse model can be estimated, we search for an

algorithmic approach yielding numerical solutions to the minimization problem. The proposed

method is equivalent to sampling values from the distribution of the control signal̂p(u(k)) and

using the function value alone to determine a reasonable minimization of the objective functional.

Using the gradient information of the objective functional, although it would be more efficient,

is not exploitable here due to the random sampling nature of the algorithm and the potential

stochastic nature of the plant. Because the inverse controller has been optimized over the entire

range of possible output values the functional given in eq. (19) could be maintained locally, at

each instant of time.

Maintaining the condition of eq. (19) will be subject to the possible control values resulting

from the distribution of the inverse model for a specific input valueJ(k) = Minu2U [(y(k+ d) - yref(k + d))2℄ (20)

whereU = [u1; u2; ::::; uk℄ is the set of samples from the estimated distribution of the controller.

Equation (20) requires applying the sampled values from thecontrol signal distribution to

the actual process to see their effect. This however is not allowed in real world applications.

Only one control value which is supposed to be optimal can be forwarded to the actual process.

Nevertheless, it is common to build a stochastic model for the system output by simply writingg(u(k); sss(k);W) = ĝ(u(k); sss(k);W)+ �(u(k); sss(k); W̃) (21)

where ĝ(u(k); sss(k);W) is the forward model of the plant,�(u(k); sss(k); W̃) is the uncertainty

around the predicted output of the forward model, and wheresss(k) = [y(k); y(k- 1); :::; y(k-q+ 1); u(k- 1); ::::; u(k- p+ 1)℄.
May 27, 2003 DRAFT
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Ignoring the uncertainty of the forward model and replacingthe actual output of the system

by the output of the forward model̂g(u(k); sss(k);W), yieldsJ(k) = Minu2U [(ĝ(u(k); sss(k);W)- yref(k+ d))2℄: (22)

In stochastic control problems the forward relationship from the input to the output can also

be driven by a stochastic componenty(k+ d) = g(sss(k); u(k); v̄(k)): (23)

If this is the case then the criterion function given by eq. (20) needs to be modified. The following

new criterion function can now be introducedJ(k) = Minu2U Ēv [(ĝ(u(k); sss(k); v̄(k);W)- yref(k+ d))2℄: (24)

The minimum is now taken over all admissible control values from the control signal distri-

bution and the expected value over the stochastic componentv̄. Assuming that the probability

distributionp(v̄), of the stochastic component is knownJ(k) = Minu2U Ēv [(ĝ(u(k); sss(k); v̄(k);W)- yref(k + d))2℄= Minu2U � Z [(ĝ(u(k); sss(k); v̄(k);W)- yref(k+ d))2℄p(v̄)dv̄� (25)

an approximation method can be used to evaluate the quantityinside the brackets in eq. (25).

Since the true distribution of the stochastic component is assumed to be known, the integral can

be approximated by the following finite sumZ [(ĝ(u(k); sss(k); v̄(k);W)-yref(k+d))2℄p(v̄)dv̄ � 1L LXi=1 [(ĝ(u(k); sss(k); v̄i(k);W)-yref(k+d))2℄:
(26)

Equation (26) implies that if the probability distributionfor the output of the forward model is

given, the expected value of the criterion function could beminimized.

A. Uncertainty in the forward model

In contrast to the uncertainty in the inverse model, uncertainty in the forward model can be

considered by changing the performance index to be optimized. Defining the performance index

as before J(k) = Minu2U M2(k) = Minu2U [(g(u(k); sss(k);W)- yref(k+ d))2℄ (27)
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whereM(k) = (g(u(k); sss(k);W)- yref(k+ d)) is the utility function, and whereg(u(k); sss(k);W) = ĝ(u(k); sss(k);W)+ �(u(k); sss(k); W̃) (28)

where�(u(k); sss(k); W̃) is assumed to be random noise with zero mean and variance�2�. The

uncertainty�(u(k); sss(k); W̃) in the forward model can be modeled as described in Section III

assuming a Gaussian distribution in the error.

Substituting (28) into (27) yieldsJ(k) = Minu2U [(ĝ(u(k); sss(k);W)+ �(u(k); sss(k); W̃) - yref(k + d))2℄ (29)

Since the system output is a random variable now, an optimal control law is a control law

which minimizes the expected value of the performance indexJ(k), < J(k) >. The expected

value of the performance index is given by< J(k) >� =< (ĝ(u(k); sss(k);W)+ �(u(k); sss(k); W̃) - yref(k + d))2 >�= (ĝ(u(k); sss(k);W)- yref(k+ d))2 + �2� (30)

since < M(k) j g(u(k); sss(k);W)>= ĝ(u(k); sss(k);W)- yref(k + d) (31)

and var(M(k) j g(u(k); sss(k);W)) = �2� (32)

It is clear from (30) that the conditional probability density p(M(k) j ĝ(u(k); sss(k);W)) is

given by that of�(u(k); sss(k); W̃) with �(u(k); sss(k); W̃) = M(k)- ĝ(u(k); sss(k);W)+yref(k+d). From (30), the optimal control law is given byu(k) = arg Minu2U [(ĝ(u(k); sss(k);W)- yref(k + d))2 + �2�℄ (33)

Therefore, instead of minimizing the gap between the average of the forward model and

the desired trajectory as in (24), the uncertainty in the forward model is included and the

expected value of the performance measure evaluated over the uncertainty in the forward model

is minimized.
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B. Optimal control law

Once properly trained, the inverse model can be used to control the plant since it can create the

necessary control signals to create the desired system output. Despite the fact that neural networks

have been accepted as suitable models for capturing the behavior of nonlinear dynamical systems,

it is also accepted that such models should not be consideredexact. The algorithm proposed

here circumvents the dynamic programming scaling problem whilst simultaneously allowing for

the model uncertainty by using the predicted neural networkerror bars to limit the possible

control solutions to consider. Accepting the inaccuracy ofneural networks, the distribution of

the output of the inverse control network can be approximated by a Gaussian distribution, or

more generally by a multi-component distribution as discussed previously.

Using just the mean estimate of the control in the Gaussian case and the most probable value of

the control in the multi-component distribution case is typically suboptimal in nonlinear systems.

Modeling the conditional distribution of the control signals, permits the idea of implementing im-

portance sampling of the control signal distribution, which defines the set of allowable decisions

at each stage to obtain a better estimate of the control law than the mean or the most probable

value. The calculated quantities from these distributions, namely the mean, the most probable

value, and the variance are nonlinear functions of previousstates, thus allowing for good models

of forward and inverse plant behavior. Based on estimates ofthe distribution of control signal

values, the following algorithm can be constructed for incorporating the uncertainty directly. The

architecture of this algorithm is shown in figure 2.

1) Estimate the conditional distribution of the forward model. The assumption here is that

the distribution of the forward model is a Gaussian function, and is given byp(y(k+ d) j sss(k); u(k)) = 1(2��2y(k+d))12 exp(-(y(k+ d) - ŷ(k + d))22�2y(k+d) ) (34)

2) Estimate the conditional distribution of the inverse model, as a Gaussian function given

by p(u(k) j sss(k); y(k+ d)) = 1(2��2u(k))12 exp(-(u(k) - û(k))22�2u(k) ) (35)

or a mixture of Gaussians given byp(u(k) j sss(k); y(k+ d)) = MXj=1 �j(sss(k); y(k+ d))�j(t(k) j sss(k); y(k+ d)) (36)
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3) At each instant of time k,

a) Calculate the desired output from the reference model.

b) Bring the control network online and calculate the control signal in addition to the

variance of the control signal.

c) Generate a vector of samples from the control signal distribution. This can be

obtained as follows

i) For the Gaussian function:

A random number generator need to be constructed and used directly to produce

a sample from the Gaussian distribution.

ii) For the mixture density network:

Since Gaussian kernel functions are used, the samples can begenerated from

each kernel function randomly. This can be done by retrieving the components�jk of the kernel centres�j, and the kernel widths�j of each kernel function.

The number of samples from each component is determined randomly with more

samples generated from the component with larger prior.

The vector of samples is considered as the set of admissible control values at each

instant of time.

d) Based on the effect of each sample on the output of the model, the most likely control

value is taken. The most likely value is assumed to be the value that minimizes the

following cost function.J(k) = Minu2U Ev [(ŷ(k+ d) - yref(k+ d))2 + �2�℄ (37)

whereU is a vector containing the sampled values from the control signal distribution,E is the expected value of the cost function over the random noise variablev, and�2� is the variance of the uncertainty in the forward model. Because we are using

a neural network to model the system, and because the neural network predicts the

mean value for the output of the model averaged over the noiseon the data, the

above function can be optimized directly.

The stability analysis for the updating rule of the control law has been proved in [6].
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Fig. 2. The architecture of the proposed optimization method. The input and the output of the plant are passed through a shift

register (SR) so as to generate the required past input and output values.

V. SIMULATION 1: GAUSSIAN DISTRIBUTION

A. Introduction

In order to illustrate the validity of the theoretical developments, we consider the third order

system with two inputs and two outputs described by the following state equation :x1(k + 1) = 0:9x1(k) sin[x2(k)℄ + �2+ 1:5 x1(k)u1(k)1+ x21(k)u21(k)�u1(k) + �x1(k) + 2x1(k)1+ x21(k)�u2(k)x2(k + 1) = x3(k)f1+ sin[4x3(k)℄g + x3(k)1+ x23(k)x3(k + 1) = f3+ sin[2x1(k)℄gu2(k)y1(k) = x1(k)y2(k) = x2(k) (38)

wherex(k) = [x1(k); x2(k); x3(k)℄ is the state,uuu(k) = [u1(k); u2(k)℄ is the control variable,

andyyy(k) = [y1(k); y2(k)℄ is the output. This model has been used in [18] to illustrate theoretical

developments for the indirect adaptive controller. In thissystem the delay from the inputsu1,
and u2 to y1 is unity, and the delay toy2 is three fromu1, while it is two from u2. The

plant is considered to be described by equation (38), thoughassumed unknown to us. Although

one neural network could be sufficient to identify the outputs of the plant, two neural networks
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have been used in this work following the procedure used in Narendra’s one model for each

output [18]. An input-output model described by the following two equations was chosen.ŷ1(k + 1) = Nf1(yyy(k);yyy(k- 1);yyy(k- 2);uuu(k);uuu(k - 1);uuu(k- 2))ŷ2(k + 2) = Nf2(yyy(k);yyy(k- 1);yyy(k- 2);uuu(k);uuu(k - 1);uuu(k- 2))
WhereNf1, andNf2 are multi-layer neural networks. This neural network modelwas trained

using the scaled conjugate gradient optimization algorithm, based on input-output data measure-

ments taken from the plant with sampling time of 1s. The inputsu1 andu2 to the plant and the

model were generated uniformly over the intervals[-1:5; 1:5℄ and [-0:5; 0:5℄ respectively. The

single optimal structure for the neural networks found by applying the cross validation method

consisted of21 hidden units for the first model and17 hidden units for the second model. In the

cross validation method both of the forward models were tested on new data that has not been

seen in the training stage. The error function between the actual output and the model output,e =k yi(k + d) - ŷi(k + d) k2, was calculated for different model structures with different

numbers of neurons in the hidden layer. The best optimal structure is then taken to be the model

with the minimum error value in the validation stage. Similarly, an input-output model described

by ûuu(k) = N
(yyy(k);yyy(k- 1);yyy(k- 2);uuu(k- 1);uuu(k- 2); [y1(k+ 1); y2(k+ 2)℄)
was chosen to find the inverse model of the plant, whereN
 is a multilayer neural network. The

training data was the same as in the forward model. A neural network with 7 hidden units was

found to be the best model by cross validation. Here the same data used to validate the forward

models is used to validate the inverse model. In the validation stage the model with the minimum

error between the actual control value and the inverse modelvalue, e =k uuu(k) - ûuu(k) k2 is

taken to be the best model.

B. Classical Inverse Control Approach

After training the inverse controller off line, the controlnetwork is brought on line and the

control signal is calculated at each instant of time from thecontrol neural network and by

setting the two outputsy1(k + 1), y2(k + 2) equal to the desired valuesyref1(k + 1) = r1(k),
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andyref2(k+ 2) = r2(k) respectively. wherer1(k) = 0:65 sin

�2�k50 �+ 0:65 sin

�2�k10 �r2(k) = 0:65 sin

�2�k30 �+ 0:65 sin

�2�k20 �:
The predicted mean value from the neural network was forwarded to the plant. The control result

is shown in Fig. 3. The performance of the classic controllerwas seen to be poor with large

overshoots around the desired response in the second outputy2(k).
C. Proposed Control Approach: Ignoring uncertainty in the forward model

In our new approach, both the mean and the variance of the control signal were estimated.

Following the procedure presented earlier, the best control signal was found and forwarded to

the plant, ignoring the uncertainty in the forward model. This means that the performance index

of (24) is minimized. Firstly,30 samples were generated from the Gaussian distribution of each

control signal. However the number of samples used to searchfor an optimal control law was312, including the mean value from each distribution. The overall performance of the plant under

the proposed method is shown in Fig. 4. The performance of theproposed controller is seen

to be significantly better than the classic controller. However, because the model of the second

output was found to be more inaccurate than for the first output, larger errors in the second

output can be seen.

D. Proposed Control Approach: Including uncertainty in theforward model

Here, the optimal control value is taken to be the control value that minimizes (30). Similarly

the number of samples from the control signal distribution is taken to be312. The performance

of the proposed sampling method including the uncertainty in the forward model is found to

be slightly better than that where the uncertainty in the forward model is ignored. The average

tracking error of the proposed sampling method without including the uncertainty in the forward

model is found to be0:0836. However, the tracking error of the sampling method by accounting

for the uncertainty in the forward model is found to be0:0738.
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VI. SIMULATION 2: MIXTURE DENSITY NETWORKS

A. Introduction

In this section, the MIMO dynamical system of Section V described by equation (38) is

reworked using the idea of mixture density networks to modelthe conditional distributions of

control signals.

The conditional distribution of control signals for this example is calculated using input output

data as followsp(u(k) j sss(k);yyy(k+ d)) = MXj=1 �j(sss(k);yyy(k+ d))�j(u(k)jsss(k);yyy(k+ d))
wheresss(k) = [yyy(k);yyy(k - 1);yyy(k - 2);uuu(k - 1);uuu(k - 2)℄ is the same input vector as in

Section V. The same training data as for the Gaussian case of Section V is also used for training

the mixture density network.

Similarly to test the validity of the mixture density network model, the different model

structures have been tested in the validation stage, using the same validation data. The error

between the actual control value and the mixture density network, e =k u(k) - û(k) k2, has

been used in this example to find the best model. It was found that the best optimal structure

for the inverse model is a mixture density network with2 components and7 hidden units in the

the multilayer perceptron network.

However, the forward models for the first and the second outputs of the plant remain as before,

modeled with a standard multilayer perceptron network.

B. Standard Mixture Density Network

Once the mixture density network is trained off line, its output can be used on line to calculate

the control signals that are required to make the output of the system follow the desired output.

The same reference signals,r1(k) andr2(k), that are used in Section V are used here.

The control signal,u(k), from the MDN is taken to be the mean,�j[sss(k);yyyref(k+d)℄, of the

kernel function with the highest prior value,�j(sss(k)). The result of using the mixture density

network as a controller in the MIMO system was found to be slightly better than using a standard

network, this is shown in Fig 5. The average tracking error ofthe standard inverse control is

found to be0:5711, while that of the standard mixture density network is foundto be0:5353.
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C. Proposed Control Approach of MDN: Ignoring uncertainty in the forward model

In this section the sampling method from a mixture density network for the MIMO control

system is presented. Here the means of the kernel functions in addition to the variances are

retrieved and used in the sampling method. Since each kernelis a Gaussian function, the random

number generator in Matlab is used to sample each kernel withmore samples taken from the

kernel with the highest prior value.

The control result from sampling the mixture density network is shown in Fig 6. The number

of samples used to search for the optimal control signal is taken to be900. Again the performance

of the controller by sampling the mixture density network isfound to be slightly better than that

of sampling the Gaussian function.

D. Proposed control method of MDN: Including uncertainty inthe forward model

For the mixture density network, taking the optimal controlvalue of the sampling method

to be the one that minimizes (30) is again found to be slightlybetter than taking it to be the

one that minimizes (24). The tracking error of the proposed sampling method without including

the uncertainty in the forward model is found to be0:0722. However, the tracking error of the

sampling method by accounting for the uncertainty in the forward model is found to be0:0693.

The number of samples in both cases was900.

VII. CONCLUSIONS

General inverse control can be considered to be a good control strategy if the model of the

plant happens to be invertible and accurate. We are assumingthat the neural network approach

allows us to construct accurate models so that we can rely on their outputs as representing the

correct conditional mean expectations. If this is not the case then the approach discussed in this

paper can fail. Assuming accuracy of the model though, the intrinsic uncertainty around the

control signal can be estimated by estimating the conditional distribution of the control signal.

The main contribution of this paper is that it provides a systematic procedure to use this

uncertainty measure in order to improve the generalizationand robustness property of the con-

troller. Simulation experiments demonstrated the successful application of the proposed strategy

to improve the controller performance for a class of nonlinear control dynamic and static systems.

Since we are sampling our control signal from the estimated distribution and choosing one which
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better fits the model, the predicted value of the control signal in the next time step should be

more accurate. By feeding back a better value of the control signal, another benefit is that there

should be no need to change the controller parameters as longas we are dealing with stationary

processes.

The examples given in this paper demonstrate the simplest representative of the conditional

density distribution (Gaussian distribution function) inaddition to a whole class of density-

estimating neural networks (the mixture density network) and also points out a fruitful direction

for control research: that of sampling control signals fromestimated distribution functions which

can incorporate even more information on the full distribution such as higher order moments

beyond just the first two, representing the control law and the uncertainty around the control

law. This more general approach is not constrained by assumptions of invertibility and it shows

the ability to deal with multi-valued processes as well.

APPENDIX I

L IKELIHOOD FUNCTION OF MDN AND ERROR FUNCTION M INIMIZATION

For the training data set,fsss(k); 
(k); t(k)g the likelihood function can be written asL = Yn p(sssn(k); 
n(k); tn(k)) (39)= Yn p(tn(k) j sssn(k); 
n(k))p(sssn(k); 
n(k))
where in the above equation the likelihood is taken to be a product of probabilities, based on

the assumption that each data point has been drawn independently from the same distribution.

The negative log likelihood can then be used to define the error function,EE = - lnL = -Xn lnp(tn(k)jsssn(k); 
n(k)) -Xn p(sssn(k); 
n(k)): (40)

The second term in (40) is constant because it is independentof the network parameters, so it

can be removed from the error function. The error function becomesE = - lnL = -Xn lnp(tn(k)jsssn(k); 
(k)): (41)

Next the error function (the negative log likelihood) for the MDN can be obtained by substitut-

ing (10) into (41)E = -Xn ln

� MXj=1 �j(sssn(k); 
(k))�j(tn(k) j sssn(k); 
(k))
: (42)
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In order to minimize the error function, the derivatives of the errorE with respect to the weights

in the neural network must be calculated. Providing that thederivatives can be computed with

respect to the outputs of the network, the errors at the network inputs may be calculated using

the back-propagation procedure [3]. Since the error function (41) is composed of a sum of terms,

one for each training pattern, the error derivative can be considered with respect to each training

pattern,n. The total errorE is then defined as a sum of the errors for each training pattern. A

nonlinear optimization method can then be used to find the minimum of the error functionE.

In this work the scaled conjugate gradient method is used.

Since the error function of the mixture density network (42)is defined as the sum of the product

of the conditional density functions�j and a prior probability�j, the posterior probability of

the jth kernel can be defined using Bayes’ theorem as�j(sss(K); 
(k); t(k)) = �j�jPMl=1 �l�l : (43)

This simplifies the analysis of the error derivatives with respect to the network outputs. From (43)

one can note that the posterior probabilities sum to unityMXj=1 �j = 1: (44)

Each of the derivatives ofEn are considered with respect to the outputs of the networks and

their respective labels for the mixing coefficients,z�j , variance parameters,z�j and centres or

position parametersz�jk. The derivatives are as follows�En�z�j = �j - �j (45)�En�z�j = -�j2 �k tn(k) - �j k2�2j - d
 (46)�En�z�jk = �j��jk - tk(k)�2j 
: (47)
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Fig. 3. Performance of the classical control approach: (a) the first output of the plant. (b) the second output of the plant.
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Fig. 4. Performance of the proposed control approach of a standard neural network for dynamical MIMO system: (a) the first

output of the plant. (b) the second output of the plant.
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Fig. 5. Performance of the mixture density network as a controller: (a) the first output of the plant. (b) the second outputof

the plant.
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Fig. 6. Performance of the proposed control approach of mixture density network for the dynamical MIMO system: (a) the

first output of the plant. (b) the second output of the plant.
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