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Abstract

It is well known that even slight changes in nonuniform illumination lead to a large image variabil-
ity and are crucial for many visual tasks. This paper presents a new ICA related probabilistic model
where the number of sources exceeds the number of sensors to perform an image segmentation
and illumination removal, simultaneously. We model illumination and reflectance in log space by
a generalized autoregressive process and Hidden Gaussian Markov random field, respectively.

The model ability to deal with segmentation of illuminated images is compared with a Canny
edge detector and homomorphic filtering. We apply the model to two problems: synthetic image
segmentation and sea surface pollution detection from intensity images.
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1. Introduction

It is well known that even slight changes in nonuniform illumination lead to large image variability
and are crucial for many visual tasks. Due to the impossibility of controlling illumination conditions
in real-world applications, image recognition, retrieval, segmentation and tracking, which are all
invariant to illumination, emerge as challenging problems.

There are three main approaches to handling visual tasks under illumination: (i) feature-based,
(ii) appearance based and (iii) illumination removal. The first approach is based on selecting local
features that are insensitive or at least robust to illumination. The method works by finding dis-
continuities in the image intensity with the subsequent searching of intensity related features along
the edges. When images are colored, the RGB space is transformed to HSI color space (Gonzalez
and Wintz, 1993) and intensity is replaced by the hue (chromaticity) value that is less sensitive to
illumination (Ohba et al., 2000, Tauber et al., 2000). Though the feature-based methods have been
successfully applied to object recognition, segmentation and retrieval, it is clear that local features
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do not contain all of the required information and it is easy to imagine scenarios when this approach
fails.1

The second approach is a generative appearance-based method, that exploits the fact that images
of an object under all possible illumination variations can be represented as a linear combination
of a small set of basis images (Belhumeur and Kreigman, 1998). This approach has been used to
address object and face recognition problems. Recognition is based on the smallest projection error
onto the specific object representation manifold. Being a generative model approach, it requires the
availability of the images taken under different viewpoints and several illumination conditions.

The idea of the third approach is to recover illumination and reflectance from the images (Bar-
row and Tenenbaum, 1978, Marr, 1982, Horn, 1986, Adelson and Pentland, 1996). It has been
suggested that the early steps of visual processing are driven by the goal of recovering “intrinsic”
images such as orientation, depth, reflectance and illumination (Barrow and Tenenbaum, 1978).
The latter consequently can be used to address high-level visual tasks such as segmentation, classi-
fication, recognition, etc. Though it is obvious that recovery of the intrinsic images is an ill-posed
problem, it has been contended that this is possible if constraints derived from assumptions about
the nature of the scene and the physics of imaging process are taken into account.

However, the exact physics is extremely difficult since it involves many unknown factors such
as description of the lighting in the scene, geometry of the real world, optical material properties
and camera parameters; secondly, the generative image model is governed by a combination of the
Fredholm integral equation (rendering equation) and camera model (Laszlo, 2000). Even a direct
rendering problem to provide the illusion of watching real objects on the computer screen is far
from being trivial see Laszlo (2000), Schroder (1994) for review.

Currently, reasonable simplifications of the real physics are required. The simplest one used in
practice by engineers is to fit an image by a linear surface. This simplification sometimes leads to a
certain improvement in visual task performance, but is, obviously, heuristic. Instead another more
realistic simplified model that explains an image f (x,y) as:

f (x,y) = i(x,y)r(x,y)cosα(x,y), (1)

is usually considered (Barrow and Tenenbaum, 1978). In Equation (1), i(x,y) and r(x,y) stand for
the illumination and reflectance components, respectively, and α is an angle between the incident
illumination flux and surface normal at the point (x,y). In image processing, this is simplified further
to get: f (x,y) = i(x,y)r(x,y), which is valid up to an unimportant normalization constant for almost
planar scenes (Gonzalez and Wintz, 1993, see pages 29-31) or, in log space:

ln f (x,y) = ln i(x,y)+ ln r(x,y) (2)

Due to the fact that the logarithm of the image intensity is the sum of the logarithms of the
illumination and reflectance components, a high-pass filter of the log of the image intensity can
be applied to restore the reflectance component; this processing is called homomorphic filtering
(Gonzalez and Wintz, 1993).

Looking more closely at Equation (2), we notice that on the logarithmic scale an image is a
linear mixture of the two independent components and finding the reflectance is, in fact, an ICA
(Independent Component Analysis) related problem (Everson and Roberts, 2001b). We, therefore,

1. For example, see how a Canny edge detector fails under illumination (Figure 2:c2)
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formulate the problem of illumination removal as an ICA problem,2 where the number of inde-
pendent sources is larger than the number of sensors. This is clearly an ill-posed problem3 and an
additional prior should be imposed to make the problem well behaved. This prior should express
our beliefs about the nature of the illumination and reflectance sources and additionally the problem
at hand.

In particular, we are interested in segmentation and tracking problems and assume that illumi-
nation is a smooth function while reflectance may be well modeled by a GHMRF (Gaussian Hidden
Markov Random Field) model (Zhang et al., 2000). The latter means that the reflectance component
as an image consists of the homogeneous objects and background. This is quite a moderate assump-
tion, in that the GMM (Gaussian Mixture Model), which is the degenerative form of the GHMRF,
has been successfully used to tackle segmentation and tracking (Carson et al., 1999, Stauffer and
Grimson, 1999).4

The GHMRF is widely used in image processing in the context of image segmentation (Besag,
1986, Chellappa and Jain, 1993, Celeux et al., 2003). It imposes an important continuity constraint
at the segmentation level and additionally controls the image scene structure (as reflectance) rather
than just constraining the image intensity distribution to a Gaussian mixture.

The smoothness of the illumination component seems to be a natural assumption for convex
objects and remote light source and is an implicit basis of homomorphic filtering.

In summary, we assume that (i) illumination is a smooth function; (ii) reflectance is almost ho-
mogeneous within segmentation areas; and (iii) these two processes are independent; and use these
assumptions to built a new ICA related model for simultaneous image segmentation and illumina-
tion removal, which we refer to as the Illumination/Segmentation Model (ISM).

In recent years, ICA has been widely used to address many problems arising in signal and image
processing such as data segmentation, analysis and data decomposition, in particular. According to
the ICA approach, the observed data are generated from a mixture of unknown (latent) independent
sources. In the context of illumination removal, the number of sources exceeds the number of
sensors. This motivates us to consider a generative probabilistic ICA approach. This approach has
the advantage that priors regarding the mixing process (the number of sources and the structure of
the mixing matrix), the nature of the sources and the noise may be handled in a more principled way
under the Bayesian framework.

For example, positivity constraints coupled with the building of hierarchical models have been
previously used to perform data partitioning and decomposition (Roberts and Choudrey, 2003). Im-
posing sparseness constraints as a Laplacian source prior has been employed to learn overcomplete
representations of signals (M.S.Lewicki and Sejnowski, 2000). In another version of ICA known as
the Independent Factor Analysis (IFA) model, the probability density functions of the sources are
modeled by a mixture of Gaussians (Attias, 1999).

In these approaches, the ICA model parameters are estimated using the maximum likelihood
principle, with the observed data being assumed independently and identically distributed. In our
case the observational data is a single non-stationary 2D image with intensities of the neighboring

2. There is no need for a mixing matrix in our formulation, though it may be introduced as scaling coefficients for
normalized illumination and reflectance components.

3. For example, if there are two independent light sources, there are at least three explanations to decompose an image
as a sum of two independent sources.

4. Stauffer and Grimson (1999) also update the means and variances of GMM by a Kalman filter that tries to cope with
varying illumination between video frames. We, however, are more concerned about the varying illumination, when
the intensity of the same object or background changes significantly within the scene.

1501



STAINVAS AND LOWE

pixels being highly correlated. This fact invalidates an application of the above mentioned methods
for our problem.

An alternative image representation, as a collection of small patches, may also be considered
but leads to a non-trivial problem of identifying basis functions as representing illumination. Ad-
ditionally, a model selection problem should be properly addressed in this case, as the number of
sources is unknown and may be quite large due to the 2D image being non-stationary. In addition,
the positivity constraint is not very well justified for the illumination removal problem since the
ICA approach for the image decomposition problem has to be formulated in the logarithmic do-
main. So, for the illumination removal domain considered in this paper, alternative non-stationary
ICA probabilistic models should be considered.

Diverse methods incorporating dynamical dependency have been proposed to generalize ICA
for non-stationary time series, (Pearlmutter and Parra., 1997, Attias, 2000, Penny et al., 2000, Ev-
erson and Roberts, 2001a). For instance Attias (2000) captures temporal statistical properties of
the observed data by describing each source as a hidden Markov Model (HMM) where the source
emission probabilities are assumed to be Gaussian. Alternatively Penny et al. (2000) use an HMM
to switch between independent components which themselves are modeled as generalized autore-
gressive processes. Another non-stationary ICA generative model assumes the data to be an instant
mixture of independent components with the mixing matrix dynamically evolving in time; and it
is additionally contaminated by normally distributed noise (Everson and Roberts, 2001a). The dy-
namics of the mixing matrix is modeled by a first order Markov process and the source densities are
modeled with generalized exponents.

Since an image is a mapping from the 2D spatial domain to the intensity domain, the above
mentioned non-stationary ICA methods can not be used for illumination removal. However, they
provide us with many ideas that may be adopted to generalize a non-stationary ICA in the context
of our problem (see the next section). Below we also briefly review some papers that are relevant to
our model.

We note that ICA has been used previously to separate mirror like reflections from images when
objects are photographed behind glass (Farid and Adelson, 1999). In this case, the problem is
formulated as a standard ICA problem with the number of photographed images (sensors) equal to
the number of independent sources5 and is written for image intensities and not on the log-scale as
in Equation (2).

Another model has been proposed by Wells et al. (1996) for adaptive segmentation of MR
images. Similar to this paper, a log transform is used to eliminate a slowly varying intensity bias
field. However, the Wells et al. model is different from our ISM in that: (i) reflectance in the
ISM is modeled as a HGMRF rather than a GMM, (ii) the illumination smoothness constraints are
expressed differently; (iii) the ISM parameters are fully estimated in the generalized EM algorithm
with the variational E-step, while the GMM means, variances and illumination parameters in the
Wells et al. model are assumed to be known or heuristically estimated. It has also been proposed
to separate illumination and reflectance from a sequence of images using the fact that illumination
images give rise to sparse filter outputs (Weiss, 2001) and assuming reflectance to be practically
stationary. This leads to a simple procedure for reflectance recovered as a pixel-wise median through
time in the space of the filtered images. However, this method is constrained to its underlying

5. The latter is a picture and a number of objects before the glass.
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assumptions: the availability of several images of the same scene and a different temporal scale of
changes in illumination and reflectance.

Our illumination/segmentation model (ISM) is introduced in the next section. Section 3 presents
a framework for model parameter estimation via the generalized expectation maximization algo-
rithm (GEM). Technical details for the GEM application to the ISM are given in the Appendix. The
feasibility of the ISM is studied in Section 4. Two problems with two types of data: (i) a synthetic
problem with artificially simulated illumination and (ii) real data of sea-surface images with natural
varying illumination across the scene are considered. The paper’s results and findings are finally
summarized in Section 5.

2. Illumination/Segmentation Model (ISM)

We consider the problem of recovering illumination and reflectance components as an inference of
hidden independent sources in a specially introduced generative probabilistic model (see Figure 1).
Similar to Attias, (Everson and Roberts, 2001b, pages 95-113), observable data are modeled as a
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Figure 1: Illumination/Segmentation Model: An observed image xL is a sum of the illumination
sL

1 and reflectance sL
2 on the log-scale. The graph is a mixed directed/undirected graph;

directed edges (arrows) stand for causal probabilistic dependencies; undirected edges
show pixel neighborhood. Only one representative clique per pixel is shown, similar
graphs pierce through the observation and source image lattices. The upper segmentation
level qL explains the reflectance as consisting of the homogeneous areas.
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components, respectively, in logarithmic space and the upper segmentation level qL explains re-
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flectance as consisting of homogeneous regions; G(µ,σ2) is a normal distribution with a mean µ
and variance σ2 and L is a two-dimensional lattice on which images are defined.

Note that a Gaussian noise model in logarithmic space corresponds to a multiplicative, or so
called speckle, noise in the original domain see Chapter 8.13 of Jain (1989), and is a result of the
sensitivity variations between the sensors in the CCD cameras.

As has already been discussed in the Introduction, strong constraints on the nature of the sources
need to be imposed to solve the ICA problem in the ill-posed case. We assume the illumination to
be a smooth and predictable process defined on the lattice L that is expressed by the generalized
autoregressive model (GAR):

p(sL
1) ≈

|L|

∏
l=1

p(sl
1|N (sl

1)), (4)

p(sl
1|N (sl

1)) = G(el,R,β) =
Rβ1/R

2Γ(1/R)
exp(−β|el|R),

el = sl
1 − ŝl

1 ŝl
1 = h(vl)+ ∑

k∈N (sl
1)

ck(s
k
1 −h(vk)). (5)

In Equation (5) h(vl) is a trend of the illumination component in the pixel l ∈ L with spatial coor-
dinates vl ∈ R 2, that is modeled by an RBF network introduced by Broomhead and Lowe (1988).
For a textbook reference see Bishop (1995), chapter 5. We use either Thin-Plate Spline (TPS) or
Gaussian RBF kernels. In the latter case the Gaussian kernel centers are fixed and located sym-
metrically outside the lattice L on which the image is defined; kernel variances are also fixed so
that only Gaussian kernel basis function tails cover the image lattice.6 The role of the RBF is to
describe a mean of illumination. Modeling illumination by the RBF leads to a very simple and
intuitive interpretation that lighting is generated by a set of light sources arranged around the image
lattice and with the energy decaying (due to the energy dissipation process) with distance. RBF
kernel centers and variances control how far the sources are located from the scene and the choice
of the kernel corresponds to the energy dissipation process modeling. The RBF weights correspond
to the maximal power of the sources; the weights, however, are not constrained to be non-negative.
In Equation (5) N (sl

1) are neighbors of the lth-pixel, participating in its intensity prediction and
ck are autoregressive coefficients. Parameter 1/β controls the width of the exponential distribution
for prediction errors el and R controls the weight of the distribution tails, see Everson and Roberts
(2001b), pages 280–299.

The GAR model with R = 2 corresponds to a standard autoregressive (AR) model with Gaussian
noise in the error-prediction model. The latter is clearly far from being a true model and, moreover,
is known to be very sensitive to outliers (Penny and Roberts, 2002). Therefore, a GAR model
that is more flexible than the standard AR model with an arbitrary degree R is considered by us.
Intuitively, it is clear that smoothness grows with R, as even moderate errors (> 1) will be amplified.
Alternatively, small values of R relax the smoothness constraints. Though it may be beneficial to
use the smoothness priors on the GAR model parameters c, R, they are currently assumed to have a
uniform, non-informative, prior. We also note that though the RHS of Equation (4) is not properly
normalized, this is a widely used approximation in the Markov random field area; see Li (1995),
chapter 6, pages 146-148.

6. This is done to satisfy our smoothness prior for illumination surface.
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The second reflectance source sl
2 is modeled by a GHMRF model (Zhang et al., 2000):

p(sL
2 ,q

L) = p(sL
2 |qL)p(qL), p(sL

2 |qL) =
|L|

∏
l=1

p(sl
2|ql),

where ql ∈ {1 . . .K} is a discrete hidden variable standing for a segmentation label (a certain object
or background) and the emission probability p(sl

2|ql = k) is Gaussian G(µk,σ2
k). The random field

for a segmentation level qL, p(qL) is given by the Potts model Morris et al. (1996):

p(qL) =
1

Z(γ)
exp(γ

|L|

∑
l=1

∑
m∈N (ql)

δ(ql −qm),) (6)

where δ(ql − qm) = 1, when the segmentation latent variables ql , qm are in the same state and is
zero otherwise. The Potts model imposes contextual constraints on the reflectance; it encourages a
representation where neighboring pixels tend to belong to the same segmentation area.

The γ parameter controls the size of the segmentation regions, that are also referred to as blobs,
and is assumed to be known. We have also considered a simplified, degenerative case of the Potts
model with p(qL) = ∏|L|

l=1 p(ql) and p(ql = k) being independent of the pixel l, but it leads to worse
results and is not discussed here.

3. Learning the ISM

It is typically impossible to conduct an exact Bayesian analysis of model hidden variables and pa-
rameters. Below, we briefly review the main results of using variational methods for a maximum
likelihood (ML) to approximate an inference of the hidden variables and a parameter point estima-
tion (Section 3.1). We then show how to apply this technique for our learning model (Appendix:
Section A).

3.1 Background on the EM Algorithm in Graphical Models

A generalized expectation maximization (GEM) algorithm is used for the ISM parameter estima-
tion and hidden source inference (Jordan, 1999, Opper and Saad, 2001). GEM exploits the graphical
structure of the joint probability (probability of the complete data) and is based on variational princi-
ples. Let the joint probability of the hidden xh and observable xv variables be denoted fΘ(xv,xh) and
let it be factorized into f (xv,xh) = ∏Ψi,Θi(xi), where xi is a set of hidden and observable variables
in the i-clique ({xv,xh} =

⋃
i xi) and Θi is a part of the Θ model parameters on which the i-clique

potential Ψi depends. Then GEM consists of two iterative E (Expectation) and M (Maximization)
steps. The M-step is given by:

θs = argmax
θs

∑
i∈C(s)

〈ln Ψi,Θi(xi)〉Q(xi) (7)

where C(s) contains all the cliques with potentials dependent on a θs parameter and Q(xi) is a
marginal distribution of a distribution Q(xh) that approximates the true posterior distribution p(xh|xv).
The generalized E-step is an approximate inference step; an approximate distribution is sought in
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the form Q(xh) = ∏r Q(xr), where r splits the hidden variables into disjoint groups of “meta” inde-
pendent variables {xh}=

⊔
r xr (note that splitting into cliques and independent “meta” variable sets

are not the same, in general). The main variational mean-field result is given by:

Q(xr) ∝ exp ∑
i∈D(r)

〈ln Ψi,Θi(xi) | xr〉Q(xi\xr), (8)

where D(r) contains all the cliques including at least one of the components of xr and xi \ xr is a
Markov blanket of xr in the i-clique (i.e. all hidden variables in the i-clique that do not contain the
variable xr or its components). Equation (8) should be iterated over r until consistency in Q(xh) is
reached and Θ is the set of current parameters found in the M-step. Maximization and inference
steps Equations (7) and (8) should be iterated until convergence in Q(xh) and Θ.

Therefore, to apply GEM one should explore the graphical structure of the joint distribution,
consider the log of the potentials and decide on the form of factorization for an approximate poste-
rior distribution Q(xh); the rest is a technical issue. In our model, cliques are naturally defined and
shown graphically in Figures 1 and 6. For the inference step, hidden variables are split into disjoint
sets of independent variables according to: {sL

1 ,s
L
2 ,q

L}=
⊔|L|

l=1(s
l
1
⊔{sl

2,q
l}); in other words, illumi-

nation and reflectance are assumed to be approximately pixel-wise independent given the observed
image. We write down EM in terms of functions Fi, i = 1 . . .3 corresponding to the log of the
probabilities in Equation (3). Technical details are given in the Appendix.

4. Experiments

This section presents two problems with two types of data: (i) a synthetic problem with artificially
simulated illumination and (ii) real data of sea-surface images with natural varying illumination
across the scene.

4.1 Artificial Illumination

Variable illumination across an image scene is simulated by creating an image according to a three
step procedure described below (see Figure 2:a1-a3). First, reflectance in log space is generated by
contaminating a binary image with Gaussian noise. A clean binary image with two levels of intensity
(µ1 = 0.1 and µ2 = 0.9) and Gaussian noise with variable standard deviations per regions σ1 =
0.01, σ2 = 0.02 are chosen. Secondly, illumination on the log-scale is generated as a polynomial
function of degree P with random coefficients: z = ∑P

p=0 ∑p
j=0 ap

j,p− jv
i
1vp− j

2 , where ap
j,p− j ∼ G(0,1).

Illumination z is subsequently normalized according to: Kz/max(|z|), where K is a normalization
constant.7 Finally, sources are added and contaminated with a global Gaussian noise of zero-mean
and σ = 0.05.

It is easy to see that due to the global noise being Gaussian, the estimation of variances σ2
1, σ2

2, σ2

is an ill-posed problem, as any consistent shift σ2
1 +a, σ2

2 +a, σ2 −a with any parameter a leaving
noise variances positive, leads to the same data generation. The same is true regarding means µ1,µ2

and a global constant shift of the illumination surface. As our main goal is to remove illumination

7. We have run experiments with P ≤ 3; a typical example given in the section below corresponds to P = 3 and K = 5.
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a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

Figure 2: Artificial illumination: a1. clean binary image with different Gaussian noise per regions; a2.

artificial illumination; a3. artificially illuminated image; The ISM segmentation for experiments
(A): a4. γ = 0.01; a5. γ = 1; Experiments (B), nh = 32: b1. posterior mean of the reflectance
(γ = 0.01); b2. the RBF trend (γ = 0.01); b3. the ISM segmentation (γ = 0.01); b4. the ISM
segmentation (γ = 0.2); b5. segmentation by the GMM for the difference between the observed
image and the estimated RBF trend (γ = 0.01); c1. segmentation by the GMM for the raw data;
c2. Canny edge detector; c3. the GMM of the output of the BHPF with d0 = 4 and gl = 0.2;
Experiments (C): c4. the ISM segmentation (γ = 0.01); c5. the GAR coefficients as a filter. See
also text for an explanation.

and to reveal an image for which (hopefully) segmentation is better than for the raw data, we do not
care too much about this type of degeneracy.8

4.1.1 RESULTS

Several experiments with different learning and model complexity parameters have been run. The
maximal number of iterations per E and M steps have been set to 50, but mean-field usually con-
verges after 10 steps on average (excluding the first two EM steps). The algorithm converges after
5− 7 EM steps dependent on other parameters. The EM algorithm is initialized from the M-step
with an observation posterior mean being the observed image; other parameters are randomly initial-
ized. To separate an effect of the RBF trend in the GAR model, experiments are divided into three

8. One can impose constraints on the global variance and illumination surface mean to get a unique solution. In fact,
the sensor noise variance is considered to be known and it is taken so that it does not exceed σ2 +min(σ2

1,σ
2
2,)−δ,

i.e. a certain part of the image noise is explained by the sensor noise.
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groups: (A) without the RBF trend; (B) with the RBF trend and zero autoregressive coefficients;
(C) full model with all parameters being free.

It turns out that the ISM without the RBF trend (experimental group A) behaves as an edge
detector for small γ < 0.1 (Figure 2:a4). Indeed, with the omitted RBF trend, the GAR model tries
to find the best possible coefficients explaining the given illuminated image itself. Therefore, the
GAR model (being responsible for predictability) leads to large errors where sudden (unpredictable)
events occur and this obviously happens along the image edges. This error information is then
propagated to the posterior reflectance, that also gets unexpected values9 along the edges and, further
on, the GHMRF model is able to detect where sudden (unpredictable) events occur. The Potts model
additionally links the found edges with the degree dependent on the blobness parameter γ. The Potts
model parameter should be properly set for the segmentation to be successful; the ISM with too large
γ > 0.5 leads to bizarre and artificial segmentation (Figure 2:a5). So far the predictability alone with
a non-informative prior on the GAR coefficients has not been sufficient to reveal illumination and
reflectance.

Experiments in group (B) have been run with a different number of kernels: nh ∈ {16,32,64}
and with a varying γ parameter. The best perceptual segmentation result is obtained for nh = 32. The
Potts model parameter γ is set empirically; it was found that for γ ∈ [0.005 0.5] segmentation results
are quite good (Figure 2:b3); for values larger than γ = 0.5 regions start to merge (Figure 2:b4) and
segmentation becomes worse. The reflectance source (as a posterior mean of the reflectance) is pre-
sented in Figure 2:b1; it has more contrast and is more homogeneous than the original image under
illumination (Figure 2:a3); the RBF trend (Figure 2:b2) is very similar to the artificial illumination
(Figure 2:a2). We have also considered a heuristic segmentation based on the GMM for a difference
between the observed image and the RBF trend (Figure 2:b5) and found it to be superior to other
segmentation results.

The ISM with the RBF trend and non-zero autoregressive (experimental group C.) coefficients
acts as an edge-detector similar to experiments in group (A) (see Figure 2:c4). The RBF trend is
not coherent with the illumination in this case; this may be a consequence of the existence of many-
local minima in the many-parameter models, i.e. only one possible explanation and not the best
one is found. To assess an effect of the GAR coefficients, the errors (el evaluated with h(vl) = 0
according to Equation (5)), i.e. the difference between the image and its convolution with the filter
dependent on the GAR coefficients c is presented in Figure 2:c5 for the “Lena” image. This image
has been chosen due to its rich edge structure; the presence of many edges of different orientation
and intensity enables us to perceive the result of the GAR coefficients visually. Perceptually, this
operation is equivalent to band-pass filtering.

In the experiments reported here, the neighborhood system for the GAR model N (sl
1) has been

defined as the first nearest vertical and horizontal neighbor pixels with respect to the pixel l; and for
the Potts model, all the eight nearest pixels around the pixel l.

The ISM’s ability to deal with illumination is compared with two other base-line approaches: (i)
feature-based with object localization based on edge-detection and (ii) homomorphic filtering with
the Butterworth high-pass filter (BHPF) (Gonzalez and Wintz, 1993): h(ω) = gl +

gh−gl

1+[d0/
√

ω2
1+ω2

2]
2n

,

9. If the last two terms under the exponent of the expression for Q(sl
1) Equation (20) are assumed to be the most

significant and the RBF trend is omitted, then 〈sl
1/ xL〉 may be shifted to either very large or very small values. This

consequently will lead to s̄l2 in Equation (18) being either very large or small and consequently, to unexpected al
k in

Equation (19) and, finally, to unexpected 〈sl
2/ xL〉 values.
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where ω is a complex frequency variable, d0 is a cutoff frequency; gh and gl are maximal and min-
imal amplitudes of the BHPF corresponding to very high and low (zero) frequencies, respectively.
The BHPF parameters are selected based on the best perceptual segmentation. Segmentation results
with the Canny edge detector (Canny, 1986) and the BHPF filter are presented in Figures 2:c2-c3,
respectively. The best segmentation results are obtained for the ISM with γ = 0.01, nh = 32 and
with segmentation based on the GMM for the difference between the observation and RBF trend.

4.2 Illumination Removal and Segmentation of Sea-surface Images

It is well known that water-borne pollutants, including both natural, such as algal bloom, bacteria
and fish oil and leakage from the sea bed, and artificial, such as caused intentionally by ships,
generate oily spills (slicks) on the water surface. Monitoring and tracking of slick regions is an
an important environmental problem. Many government authorities are interested in automatic
pollution detection and general assessment of water quality.

As has been demonstrated by Stainvas and Lowe (2001), near-shore slick regions may be ef-
ficiently detected from remotely sensed low-platform mounted visible band camera images. This
becomes possible due to different light reflectance of the slick and surrounding water surfaces and
due to different turbulent water motion characteristics of slick and non-slick regions (slicks have a
damping effect on the turbulent water motion). As a result, slick regions generally appear brighter
in images than normal wave regions, as they reflect the sky intensity more coherently.

This finding has led to a successful segmentation of sea-surface images based on the Gaus-
sian mixture model (GMM) applied to the tonal (intensity) information (Stainvas and Lowe, 2001).
However, this method is very sensitive to illumination varying across the scene when objects with
elongated shapes or the background appear inhomogeneous. In vision problems with uncontrolled
environments, such as water pollution detection, removal of illumination variations emerges as an
essential problem.

As an example, let us consider a typical sea surface image under illumination (Figure 3a). This
image has been automatically cropped from the larger image to eliminate sky and clouds and to
concentrate on the sea surface region alone. The final cropped image has attributes 313×534 pixels
and is longer in the direction parallel to the shore than in the direction from the shore to the horizon.
The slicks are the bright regions in the top left part of the image, but also exist in the foreground. The
slicks perceptually seem to appear brighter, but the average vertical and horizontal profiles of the
image intensity (Figure 3b) clearly reveal the inhomogeneity of the illumination across the scene.
It is easy to see (Figure 3a), that the information required for segmentation is rather located in the
vertical direction than in the horizontal one. At the same time the vertical intensity profile is badly
affected by varying illumination (thin red line in Figure 3b). The varying illumination affects the
performance of the GMM considerably and leads to unsatisfactory segmentation (see Figure 3c). In
this example, the number of mixture components has been set to k = 3; segmentation with k = 2
leads to similar or worse results and is not considered here.

In order to separate illumination from the image, the ISM with the RBF trend and zero autore-
gressive coefficients has been applied. We have used an RBF with Gaussian kernels and the number
of kernels set to nh = 32. The neighborhood system is the same as in the experiments with artifi-
cial data and the blobness parameter γ has been set to 0.01. The illumination source given by the
RBF trend recovered by the ISM as an image and surface are shown in Figures 5a-b, respectively.
Obviously, illumination is a nonlinear surface, so that a conventional engineering approach to fit
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Figure 3: Sea Surface under Illumination: a. A typical image under illumination on the log-scale; b.
The intensity profiles for the image in Figure 3a; blue and red colors (thick and thin lines
in white/black printing, respectively) correspond to averaging over vertical and horizontal
directions, respectively. c. Segmentation of the image in Figure 3a by the GMM with
three mixture components. The images (a,c) of Figure 3 have attributes 313×534 pixels,
but are scaled to appear square in size.
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Figure 4: a. Difference between the observed image and the RBF trend; b. Intensity profile for
the image in Figure 4a; blue and red colors (thick and thin lines in white/black printing)
correspond to averaging over vertical and horizontal directions, respectively. c. Segmen-
tation of the image in Figure 4a by the GMM with three mixture components. The images
(a,c) of Figure 4 have attributes 313×534 pixels, but are scaled to appear square in size.

the image with a linear surface will fail. The recovered reflectance as the difference between the
observed image and the RBF trend s̄l2 is presented in Figure 4a. The obtained “reflectance” image
is composed of more uniform regions than the original illuminated image (Figure 3a). The intensity
profiles of the “reflectance” image are shown in Figure 4b. This figure clearly demonstrates that the
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illumination component has been removed from the image. These profiles approximately follow the
average locations of the slick regions across the vertical and horizontal directions as corresponding
to larger values of the log-intensity. Segmentation by the GMM with three mixture components
(Figure 4c) of the “reflectance” image is undoubtedly better than for the original raw image and is
coherent with our perceptual expectations.

a b

Figure 5: Illumination on the log scale: a. the RBF trend; b. the RBF trend as a surface.

5. Summary and Conclusion

We have introduced a new Illumination/Segmentation Model (ISM) as a probabilistic ICA model
for the illumination and reflectance separation. The ISM can be recognized as an ICA model with
spatial context and with the number of sources exceeding the number of observations. The ISM
works in two regimes: (i) it detects edges for non-zero autoregressive coefficients and (ii) performs
segmentation for the zero-autoregressive coefficients, revealing the illumination as the RBF trend.
It has been shown that in the regime (ii) the ISM is superior to the Canny edge detector and homo-
morphic filtering; conventional methods used to deal with illumination.

The ISM has been trained using the GEM with the approximate E and M steps; the quality of this
approximation in conjunction with the pseudo-likelihood for the GAR model is an open question.
The Potts model parameter γ has been set by trial and error. Unfortunately, it is impossible to
calculate the partition function for the Potts model analytically. This makes the estimation of the γ
parameter problematic; though it still may be approximately estimated in the M-step if the partition
function Z(γ) in Equation (6) is ignored. The ISM inference (M-step) can also be performed based
on Monte-Carlo methods (Jordan, 1999), but in our opinion, it is preferable to have a tractable
analytical expressions instead as the Monte-Carlo methods are slow and the assessment of their
convergence is difficult.

It may be worth replacing the GAR model with a Gaussian process (GP). Using GPs solves the
problem of working with pseudo-likelihood and does not require approximation in the mean-field
and M-steps, so that all analytical expressions are simpler in this case. Moreover, it is interesting
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to find out how the choice of the GP kernels affects the ISM, since GP kernels implicitly impose
different smoothness constraints on the stochastic process.10

To control the smoothness of the RBF trend, the Gaussian kernel centers were located outside an
image lattice so that only the smooth basis function tails (without “bumps”) cover the image plane.
It may be interesting to constrain the RBF weights to be positive as it may lead to sparseness, i.e.
most of the weights are expected to be zero, giving the most simple explanation of lighting. Another
possibility is to use RBF networks with all parameters being flexible, but to regularize the network
curvature (Bishop, 1993).

In summary, to be able to reveal illumination: firstly, we assume a prior on the smoothness;
secondly, the blobness of the world should be taken into account. As has been shown, predictability
enables us only to find contours between the world blobs (segmentation areas). Unfortunately,
predictability and smoothness joined together in the ISM do not cooperate; in fact one of them
dominates the other. It is an interesting aspect how these two mechanisms cooperate in the human
visual processing system.

We are currently working on two alternative approaches to the illumination removal problem
based on: (i) using a regularized mixture density network (MDN) (Bishop, 1994, Hjorth and Nab-
ney, 1999); regularization is required as the MDN should work in the switching regime for mixing
coefficients, while the means ought to be smooth enough. (ii) using the wavelet best-basis approach
(Coifman and Wickerhauser, 1992, Saito, 2001). The idea of the last approach is to find the least
dependent bases and then to separate the linear combination of basis functions into two components
corresponding to illumination and reflectance sources, where it is known that illumination is smooth
and reflectance is good for clustering. The same approach may also be applied to the ICA algorithms
proposed by M.S.Lewicki and Sejnowski (2000), Everson and Roberts (2001b), chapter 7.
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Appendix A. Technical Details on the ISM Learning

There are four types of clique per pixel in our model (see Figure 6) with the log potentials (Φ = lnΨ)
given by:

Φl;σ
1 (xl,sl

1,s
l
2) = − 1

2σ2 (xl − (sl
1 + sl

2))
2 − lnσ (9)

Φl;β,R,c,w
2 (sl

1,N (sl
1)) = −β|el|R + ln

Rβ1/R

2Γ(1/R)
(10)

Φl;σk,µk
3 (sl

2,q
l) = −1

2
[
(sl

2 −µql )2

σ2
ql

+2lnσql ] (11)

Φl;γ
4 (ql,N (ql)) = γ ∑

m∈N (ql)

δ(ql −qm), (12)

10. Computationally, however, it will be required to find the inverse of the very large kernel dependent covariance matrix,
with the size equal to the number of pixels in the image; the inversion operation may be replaced by a quadratic
optimization problem (Gibbs and MacKay, 1997).
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where w stands for the standard parameters of the RBF network (Bishop, 1995) and all irrele-
vant terms such as constants and Z(γ) are dropped; the log-potentials Φl

1,Φ
l
2,Φ

l
3,Φ

l
4, correspond

to ln p(xl|sl
1,s

l
2), ln p(sl

1|N (sl
1)), ln p(sl

2|ql) and lth-potential of the ln p(qL), respectively. The sum

of the log-potentials F = ∑4
k=1 ∑|L|

l=1 Ψl
k corresponds to the log-likelihood of the complete data and

four additional functions: Fk = ∑|L|
l=1 Φl

k, k = 1, . . .4, are introduced for convenience.

A.0.1 M-STEP

The model parameters are found in the M-step by maximizing the expectation of the complete log-
likelihood F over the approximate posterior distribution Q(sL

1 ,s
L
2 ,q

L) and ultimately, according to
Equation (7).

It turns out that the sensor noise σ and reflectance model parameters µk,σk may be found ana-
lytically as critical points of 〈F1/ xL〉 and 〈F3/ xL〉 respectively and are given by:

σ2 =
1
|L|

|L|

∑
l=1

(xl −〈sl
1 + sl

2/ xL〉)2 +Var(sl
1/ xL)+Var(sl

2/ xL)

µk =
∑|L|

l=1 Q(ql = k)〈sl
2/ ql = k,xL〉

∑|L|
l=1 Q(ql = k)

σ2
k =

1

∑|L|
l=1 Q(ql = k)

|L|

∑
l=1

Q(ql = k) ·

[(µk −〈s2/ ql = k,xL〉)2 +Var(sl
2/ ql = k,xL)]

where 〈·/ U〉, Var(·/U) are the conditional mean and variance given the event U and expectations
are taken over approximate posterior distributions of the hidden variables.

Illumination model parameters β,R,c,w are found by gradient like algorithms using the Netlab
toolbox (Nabney, 2001). The required derivatives of 〈F2/ xL〉 are given by:

∂〈F2/ xL〉
∂β

=
|L|
R

β−1 −
|L|

∑
l=1

〈|el|R / xL〉 (13)

∂〈F2/ xL〉
∂R

=
|L|
R

[1+
1
R

(φ[
1
R

]+ lnβ)]−β
|L|

∑
l=1

〈|el|R ln |el| / xL〉 (14)

∂〈F2/ xL〉
∂ck

= −βR
|L|

∑
l=1

〈|el|R−1sign(el)
∂el

∂ck
/ xL〉 (15)

∂〈F2/ xL〉
∂wr

= −βR
|L|

∑
l=1

〈|el|R−1sign(el)
∂el

∂wr
/ xL〉, (16)

where sign stands for the sign function and derivatives of el are given according to:

∂el

∂ck
= −(sk

1 −h(vk)),

∂el

∂wr
= −∂h(vl)

∂wr
− ∑

k∈N (sl
1)

ck(s
k
1 −

∂h(vk)

∂wr
).
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The derivatives ∂h(vk)
∂wr

of the standard RBF network can be found in Bishop (1995, for example) and
they are already implemented in the Netlab software (Nabney, 2001). Since β and R parameters
should be non-negative the constrained optimization is replaced with the unconstrained one on the
parameters β̃, R̃, such that β = exp β̃, R = exp R̃. The φ(·) in Equation (14) is the digamma func-
tion (Press et al., 2002). In spite of the fact that a critical β value can be found analytically, see
Equation (13), we prefer to use gradient like algorithms on all illumination model parameters at
once.

The Equations (13-16) require the expectations to be taken over the approximate posterior
distribution found in the E-step. Though this integration can be performed numerically, it is as-
sumed that the posterior of the errors el is highly peaked around its mean and an approximation
〈 f (sL)/ xL〉 ≈ f (〈sL/ xL〉) is used instead, so that only the first and second order statistics of the
approximate posterior distribution are required for the next M-step. Intuitively, this approximation
should be sufficient since el (Equation (5)) is the weighted sum of the neighboring sk

1 variables that
are assumed to be a posterior independent and thus, tends to a highly peaked distribution as the
neighborhood grows. Though the formulae look complicated due to the ∑k∈N (sl

1)
ckyk terms, the

latter are easy to calculate using convolutions.

a b
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Figure 6: The ISM Cliques: The cliques participating in the inference (mean field step) are shown
by dashed polygons. Shaded nodes stand for “meta” independent variables, the black
node stands for the observable variable xl . Non-filled nodes show the Markov blanket for
the variable for which approximate posterior is updated. Note that to improve visualiza-
tion performance not all upper potentials and corresponding blanket variables are shown.
The hexagons mark variables on which functions Φ4 depend, they are not the maximal
complete subsets of the graph.

A.0.2 E-STEP: MEAN FIELD SOLUTION

As has already been discussed, approximate posterior distributions given by the mean field theory
satisfy Equation (8) written for sl

1 and clipped {sl
2,q

l} variables.

“Meta” variable {sl
2,q

l} : To implement Equation (8) the cliques dependent on sl
2 and ql should

be identified. These cliques are graphically shown in Figure 6a, so that it is easy to write down:

Q(sl
2,q

l = k) ∝ exp〈[Φl
1 +Φl

3 +Φl
4 + ∑

m∈N (ql)

Φm
4 ]/ sl

2,q
l = k〉, (17)
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where expectation is taken over the {sl
2,q

l} blanket that consists of the sl
1 and qp variables, where

index p sweeps over the neighbors of the l-pixel and neighbors of their neighbors; i.e. neighbors of
the second order. Since both potentials Φl

1, Φl
3 are quadratic forms on the sl

2, and ql is a discrete
variable, it is easy to see that the approximate posterior distribution Q(sl

2) is a mixture of Gaussians
(MoG). This is one of the advantages of the graphical model formulation, since it allows us to
control and anticipate the final results by looking at the graphical structure of the distribution and
the form of the log-potentials.

Substitution of Equations (9-12) into Equation (17) leads to:

Q(sl
2,q

l = k) ∝ exp{− 1
2σ2 [(sl

2)
2 −2sl

2 s̄l2]−
1
2
[
(sl

2 −µk)
2

σ2
k

+2logσk]+

2γ ∑
m∈N (ql)

Q(qm = k)}, s̄l2 = xl −〈sl
1/ xL〉. (18)

As can be easily seen, Equation (18) can be rewritten in the form Q(sl
2,q

l = k) ∝ bl
kG(al

k,Σ
l
k)

leading to the following posterior distributions:

Q(sl
2,q

l = k) = Q(ql = k)Q(sl
2| ql = k)

Q(ql = k) =
bl

k

∑K
k=1 bl

k

, Q(sl
2| ql = k) = G(al

k,Σ
l
k)

where parameters bl
k,a

l
k,Σ

l
k are defined according to:

Σl
k ≡ Σk = 1/(1/σ2 +1/σ2

k), al
k = Σk(

s̄l2
σ2 +

µk

σ2
k

)

bl
k =

√
Σk

σk
exp−1

2
{ µ2

k

σ2
k

− (al
k)

2

Σk
−2γ ∑

m∈N (ql)

Q(qm = k)}. (19)

In summary, sl
2|xL is a MoG with pixel-dependent means and with the same variances for all pixels.

The terms ∑m∈N (ql) Q(qm = k) in Equation (19) are calculated using a convolution operation.
In the M-step, the required first and second order statistics of sl

2 are found using the following
expressions:

〈sl
2/ xL〉 =

K

∑
k=1

Q(ql = k)al
k,

Var(sl
2|xL) = 〈(sl

2)
2/ xL〉−〈sl

2/ xL〉2

〈(sl
2)

2/ xL〉 =
K

∑
k=1

Q(ql = k)〈(sl
2)

2/ ql = k,xL〉,

〈(sl
2)

2/ ql = k,xL〉 = Σk +(al
k)

2,

or finally:

Var(sl
2|xL) =

K

∑
k=1

Q(ql = k)(Σk +(al
k)

2)− (
K

∑
k=1

Q(ql = k)al
k)

2.
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Segmentation: It is well known (Bishop, 1995), that when misclassification loss functions are
the same for all classes the best classifier minimizing the misclassification error is the Bayesian
classifier that assigns class labels according to a maximal posterior distribution p(qL|xL). The pos-
terior distribution can not be calculated exactly and instead its approximation is used so that the
approximate segmentation is performed pixel-wise according to a maximal approximate posterior
k? = argmaxk Q(ql = k).

Illumination variable sl
1: Cliques dependent on the sl

1 variable are shown in Figure 6b. Similar to
the Potts model, the Markov blanket of sl

1 consists of sl
2 and the neighbors of the second order for

sl
1. Equation (8) for the variable sl

1 is given by:

Q(sl
1) ∝ exp〈[Φl

1 +Φl
2 + ∑

m∈N (sl
1)

Φm
2 ]/ sl

1,x
L〉

Once again an approximation is used to calculate these expectations and the final result has the
following form:

Q(sl
1) ∝ exp{− 1

2σ2 (sl
1 − s̄l1)

2 −β|ẽl|R −β ∑
m∈N (sl

1)

|ẽm|R}, (20)

s̄l1 = xl −〈sl
2/ xL〉,

where ẽl is calculated the same as in Equation 4, but with

ŝl
1 = h(vl)+ ∑

k∈N (sl
1)

ck(〈sk
1/ xL〉−h(vk))

and ẽm = 〈sm
1 / xL〉− ŝm

1 , where

ŝl
1 = h(vl)+ clm(sl

1 −〈sl
1/ xL〉)+ ∑

k∈N (sm
1 )

ck(〈sk
1/ xL〉−h(vk))

and clm is one of the GAR coefficients c which corresponds to the sl
1 term in the potential Φm. The

expressions including summation over the neighborhood are calculated using convolution and shift
operations. In summary, the approximate posterior of the illumination variable is a Gibbs distribu-
tion that is expected to be sharply peaked near s̄l1.11 An adaptive Simpson quadrature numerical
algorithm12 (Press et al., 2002) is used to calculate the first and second order statistics of the sl

1 with
the integration interval defined as [ s̄l1 −∆ s̄l1 +∆], where ∆ is taken sufficiently large.13
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