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SUMMARY

The compaction behaviour of powders with soft and har
particular interest to the paint processing industry. Unfortus
time, very little is known about the internal mechanisms with
therefore suitable tests are required to help in the interpretati

The TRUBAL, Distinct Element Method (D.E.M) program
investigation used in this study. Steel (hard) and rubber (soft) |
the randomly-generated, binary assemblies because they provi
in physical properties. For reasons of simplicity, isotropic
dimensional assemblies was also initially considered. The ¢
subject to quasi-static compaction, in order to define tf
equilibrium conditions. The stress-strain behaviour of the a
conditions was found to be adequately described by a sec
expansion. The structural evolution of the simulation assemb
to that observed for real powder systems. Further simulati
oul to investigate the effects of particle size on the compacl
two-dimensional, binary assemblies. Later work focused
compaction behaviour of three-dimensional assemblies, bec:
more realistic particle systems.

The compaction behaviour of the assemblies during the si
was considered in terms of percolation theory concepts, as v
macroscopic and microstructural parameters. Percolation theor
ideas from statistical physics, has been found to be useful ir
the mechanical behaviour of simple, elastic lattices. However,
this study, percolation theory is also able to offer a us
compaction behaviour of more realistic particle assemblies.
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1.1 Object and scope of the investigation

The pharmaceutical, foodstuffs, ceramic, polymer and metals industries use
compaction techniques like extrusion or die pressing during the processing of
granular media. If the ceramics industry is taken as an example, then die pressing
of an originally loose, ceramic powder is used to produce a green compact before
further processing by sintering. Die pressing means that, the compaction of a
powder is accomplished by placing it in a die and applying pressure via a punch
to achieve the desired degree of compaction. Isotropic compression, where a
particle system is uniformly compacted in all three co-ordinate directions, is
another popular compaction technique and is used in processes such as Hot
Isotropic Pressing (H.I.P.) to produce 'near net shapes' for powder products. The
advantage of such 'near net shape forming' is thatit eliminates the need for post-
processing operations like milling to produce the desired final product shape and
size. A large number of the experimental investigations of such compaction
processes only consider single-component powder systems. However, the majority
of useful particulate materials have more than one constituent, since even
apparently pure, single component powders still contain impurities. Other areas of
materials science and technology, like polymeric composites, indicate that the
mechanical behaviour of binary mixtures is completely different to that
encountered with single component systems. Binary mixtures of 'hard' and 'soft’
spheres include such industrially important materials as paint powders. Therefore, a
more realistic view of the mechanical behaviour of these granular systems during

isotropic compaction is highly desirable on both a theoretical and practical level.

It 1s now widely recognised that the mechanical properties of granular media
depend inherently upon the microstructure of the material. This feature is also
observed for the majority of engineering, solid materials such as steel. To date, no
entirely satisfactory constitutive model for even single-component particulate
material, such as sand, exists. This is mainly due to the complex macroscopic
behaviour of granular material; which is the result of its internal discrete nature.
Resolution of the difficulties associated with prediction of the behaviour of
different  granular  materials appears to require joint  micro-mechanical,

macromechanical and continuum mechanical studies.



Traditional laboratory tests on granular material do not provide sufficient
information regarding the internal deformation processes. Elementary parameters like
the components of stress, for example, must be predicted from boundary
measurements. New experimental techniques, however, are being developed that can
detect internal deformation patterns within a particulate medium. Examples include
high resolution X-ray Computerized Tomography (CT), Lee and Dass, 1993,
Positron Emission Particle Tracking (PEPT), which utilises positron  emitting
radionuclide tracers, Beynon er al, 1993, and infra-red thermography, Luong, 1993.
None of these techniques though, is capable of describing the microscopic particle
interactions in granular media, which generally occur in the submicron range of
resolution. It is this problem of experimental measurement that has resulted in the
investigation of much simpler systems of particles. The use of such idealised,
granular material allows the microscopic particle forces and displacements to be
either calculated or measured. Experimentation into idealised particle assemblies can
be undertaken by the employment of computer simulation techniques. Cundall and
Strack (1979a) have developed such a technique, known as the Distinct Element
Method (DEM), which is incorporated in the TRUBAL computer program.
Numerical simulation using a modified version of the TRUBAL program has been
adopted as the method of investigation in this project. More information about the
TRUBAL program and the DEM approach used at Aston is provided in chapter 4
of this text. The TRUBAL program is a very powerful research tool since, by
using simple assumptions regarding interparticle contacts, computer algorithms can
be created and these algorithms will then allow the program to model the
extremely complex behaviour of compacted, granular assemblies. Computer
experimentation using such a system allows the use of hypothetical laws. Tests
can also be repeated from initial or earlier points in the test with an artificial
change in parameters such as the density or coefficient of friction values for the
particles.

The primary objective of this project was the investigation of the bulk, mechanical
properties of binary, particulate materials during compaction. The work involved
the use of computer simulation experiments, for the reasons described earlier. In a
similar approach to that adopted by workers such as Cundall er @, 1989, and
Jenkins ef al , 1989, the interpretation of macroscopic and microstructural
parameters was used in the development of a constitutive model of the isotropic
compaction. Theoretical concepts from the statistical physics field of percolation
theory were however, also used to aid the interpretation of the macroscopic

behaviour of such assemblies.
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The different aspects of this interpretative process required modifications to be
made to the TRUBAL program which are described in more detail in chapter 4
of the text. Percolation theory can be used as an investigative tool because some
of the concepts from this area were found to be useful in the practical
investigation of systems of elastic, particle assemblies reviewed in chapter 3. The
use of such percolation theory concepts therefore, allows the macroscopic
compaction behaviour of the simulation assemblies to be viewed in an alternative

manner to the usual micromechanical approach.

The first practical objective for the simulation work was the completion and
interpretation of isotropic compression experiments, which considered two-
dimensional (2D), binary assemblies of ‘'hard' and 'soft spheres. Although
particulate materials are three-dimensional (3D) in nature, it is far easier to initially
visualise the complicated behaviour of binary, granular mixtures in two
dimensions. However, interpretation of the compaction behaviour of three-
dimensional assemblies is more useful practically and was, therefore, also
undertaken in this study. Further details about the two- and three-dimensional

simulation experiments which were performed are provided in section 1.3.

1.2 Terminology used

The conventions of solid mechanics were used in all the calculations performed in
the version of TRUBAL program used in this project. However, all the results
shown in this text use the normal conventions of soil mechanics. Therefore,
compressive stresses or strains are considered to be positive and tensile stresses
or strains are considered to be negative in the work presented in this thesis. The
use of the terms compaction and compression in an interchangeable manner will
also be considered here, since both terms have similar meanings to other workers
in this field. The majority of the symbols and terms in this thesis are common to
a lot of current particle technology research and so are unambiguous. However, to
prevent misinterpretation by other investigators, clarification of any possibly
ambiguous terms and definitions of the symbols used will be provided at the

relevant points in the text.



One area of potential concern is the definition of the assembly volume V, which
is used in the calculation of the mean stress Omean and volumetric strain ¢, for
the two-dimensional assembly. In this case, the volume used is a slice, with a
thickness of one mean particle diameter and other dimensions determined by the
x- and y- dimensions of the periodic simulation cell specified in the TRUBAL
program. Another area of concern involves the use of terms from the statistical
physics-based field of percolation theory in the interpretation of the mechanical
particle assembly behaviour. The meaning and use of such symbols and terms

will however, be examined in more detail in chapter 3.

1.3 Order of presentation

The study which has been undertaken, is presented in the following chapters of
the main text. This work can be classified under four general headings. A review
of the present work undertaken in the field is provided in chapter 2. The
theoretical background and methodology used in the percolation theory and
computer simulation models are presented in chapters 3 and 4. Details of the
computer simulated experiments and interpretation of the results, which were
obtained, are provided in chapters 5, 6, 7 and 8. Finally, concluding remarks and
aspects of this study which are worthy of further investigation are presented in

chapter 9. A more detailed breakdown of these chapters is given below.

The literature review presented in chapter 2, initially examines previous
experimental die compaction studies on single component systems. This work
includes the practically important, empirical relationships of Kawakita (1956) and
Heckel (1961a). The present knowledge of powder compaction mechanisms is also
reviewed. Experimental studies of binary powder systems are examined so that
some clues to the observations obtained from the simulation experiments in this
study can be provided. The results from photoelastic disc experiments will be
reviewed because such disc models are widely used for the modelling of
particulate assembly behaviour. The results from other simulation experiments,
using both the TRUBAL program employed in this work and different computer

models, will also be studied.
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An outline of the most important concepts in percolation theory is provided in
chapter 3. The use of these concepts in the qualitative description of the
mechanical behaviour of elastic particle lattices and the relevance of such concepts
to the behaviour of real particle systems will also be discussed in this section.
Chapter 4 gives details of the DEM and the TRUBAL program used to perform
the simulation experiments. This section, therefore, presents information about the
logic framework for the computer program and the force-displacement laws used
at the particle contacts during a simulated experiment. Control of other
experimental aspects such as numerical stability, energy dissipation and deformation
of the periodic cell will also be reviewed. Modifications which were made fo the
original version of the TRUBAL program, to allow more detailed examination of

binary systems, are outlined in this chapter.

In chapter 5, the behaviour of both two- and three-dimensional assemblies at the
proposed ground state for measurement of results from the simulation experiments
i.e. the elastic percolation threshold p, will be examined. This behaviour will be
interpreted in terms of macroscopic, microstructural and percolation-theory based
characteristics. The relevance of using p, as a ground state will also be discussed
in this chapter. Chapter 6 presents the results obtained from quasi-static simulation
experiments performed on two-dimensional assemblies, which are again interpreted
in terms of macroscopic, microstructural and percolation parameters. The effects of
mixtures of different particle sizes, in the two-dimensional assemblies, on the
quasi-static compaction behaviour are studied in chapter 7. In chapter 8, the quasi-
static compaction behaviour of monodisperse, three-dimensional assemblies is
examined. This examination shows that the simple theoretical model developed for
the two-dimensional systems in chapter 6 is also relevant for the more practically

important, three-dimensional assemblies.
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Chapter 2

Literature review
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2.1 Experimental die compaction studies

Knowledge of previous work on powder compaction is important for placing the
work presented in this thesis in context. Research into the mechanism of powder
compaction using die compaction techniques has produced empirical relationships
which have nevertheless served the process industries reasonably well over the
years. Die compaction generally involves uniaxial compaction of a powder loaded
into a metal die. The compaction of powders using such a process is taken as an
initial step in many powder processing operations, since it offers simplicity, speed
and economy of manufacture. A vast amount of literature has been produced on
die compaction studies, since isostatic compaction (see section 2.2.2) was until
recently of less practical importance. This review will therefore, concentrate on
only the most significant work that has been published. The relationship between
the packing or compression of particles and their fundamental physical properties
is an example of an important physical relationship that has generated empirical
formulae. A number of pressure-density and pressure-volume relationships have
been proposed over the years for specific powders and on hypothetical grounds.
The majority of these formulae however, are not universally applicable, most
giving an acceptable relationship only over a limited range of pressures. In this
review of the studies carried out on powder die compaction, the experimental
relationships will be established first and the theoretical picture of the mechanisms

of compaction will be explored in the review's latter stages.

The first serious attempts made at studying the relationship between the applied
pressure and powder deformation were produced by workers in the 1920's such
as Walker (1923) and Shaxby (1923). Walker analysed the compression of powders
by static loading of ammonium nitrate and sodium chloride in a die at pressures
around 390 MPa. The load-volume curves for the two materials were found to be
different. Walker related the difference in these load-volume curves to the
compression process within the material. Compression of ammonium nitrate took
place by deformation of the particles, whilst compression of sodium chloride
involved disintegration of the particles. Shaxby (1923) analysed the variation of
vertical pressure p, ,in the range 13 MPa to 30 MPa, with depth z in columns of
sand. He found an exponential increase of p, with z i.e. the general form of the

pressure-depth curve agreed well with the equation :
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P, = P[] - Cexp(-kz)] 2.1)

The maximum pressure being p,, and C and k are constants. Athy (1930) looked
at the related problem of depth of burial and the density, porosity and
compaction of different types of sedimentary rocks. From his results, Athy

developed a porosity-depth relationship,
n = poexp(-bz) (2.2)

where n is the porosity, ng is the average porosity of surface clays, » is a
constant and z is the depth of burial. The first proposition of an equation relating
applied pressure to the volume change of a compact was made by Balshin
(1938). The object of Balshin's work was to give a physical picture of the
processes which take place during pressing and to formulate the basic
mathematical laws of pressing. The work involved investigation of the pressure-
volume diagrams of steel and copper powders placed in a die compaction
apparatus. Balshin found from his results that an increase in the pressure p of the
powder compact was related to a decrease in the volume and height of the

compact by the relationship,

Inp=C-M,V. (2.3)

where M, and C are constants which depend on the type of powders and
conditions of pressing and V, is the relative volume of the compact. The indicated
formula was found to be applicable in the pressure range 100 MPa to 500 MPa
for 1deal cases. In practice the formula was found by Balshin to deviate slightly
from linearity, depending on the nature of the powder and the conditions of
pressing. The coefficient M, which was called the Modulus of Pressing, described
the deformation capacity of the powder and was therefore, found to be useful in
decoding the properties of the experimental powders. The deviation from linearity
of (2.3), for a wide variety of reasons, indicates that Balshin's relationship may
not be a fundamental one. The distribution of density in the pressed specimens
was also investigated and was found to decrease approximately linearly with

distance from the die plunger.
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A more satisfactory approach to the general problem of powder compaction was
obtained by Shapiro and Kolthoff (1946) who analysed the packing of the particles
in silver bromide powders. They argued that as an external pressure is applied to
a powder mass in a die, the apparent density of the powder will increase and
approach the true density of the solid as a limit. The ease of this density increase
was thought to depend upon the material being compressed i.e. its plasticity and
surface development. Shapiro and Koltoff suggested that as the powder is
compressed, the porosity n of the powder at any pressure p will be related to the

porosity np at zero pressure by the relationship,

n= ——-‘——*—-——'(pg; pa) = gpo X f(p) (24)

where p, is the apparent density of the powder mass, ps is the true density of
the solid material and f(p) can be determined experimentally. Shapiro and Kolthoff
also found experimentally that the change in porosity with pressure of the

powders could be expressed as:

d
2 - kn (2.5)
dp
where k was called the coefficient of powder compressibility and its value was
dependent upon the physical characteristics of the powder. Integration of (2.5) gave

the following relationship:

n= noexp(-kp) (2.6)

This equation is similar to (2.2), which was obtained by Athy (1930). The
relationship represented by (2.6) was also a good approximation of the
experimental results obtained by Shapiro and Kolthoff in the pressure range 20 to
140 MPa. The behaviour of the silver bromide powders in the pressure range
below 20 MPa, which is the region of interest for the simulation work presented
in chapters 5 to 9 of this text, was found to deviate significantly from linearity.
Shapiro and Kolthoff however, performed little analysis of their data in this
region and so they developed no clear picture of low pressure, elastic compaction
behaviour. The relationship between degree of compaction and applied compaction
pressure i.e. (2.5) developed by Shapiro and Kolthoff is similar to that obtained
by Konopicky (1948) and Heckel (1961a), who used different assumptions in their
analysis. Konopicky proposed that a proportionality exists between the relative
density D of a metal powder compact and the applied pressure p:
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The relationship represented by (2.7) was found to be valid in the pressure range
175 to 900 MPa from Konopicky's experimental work on copper powders (size
220 pm). The constitutive equation developed by Heckel has proved very useful in
quantitatively describing the compaction process, although it is an empirical
relationship. The Heckel equation and a rival one put forward by Kawakita (1956)
have become generally accepted and are widely used in the powder metallurgy
and pharmaceutical industries. A more detailed analysis of these practically
important equations will be provided in sections 2.1.1 (for Heckel) and 2.1.2 (for
Kawakita).

The compaction behaviour of pharmaceutical powders has been analysed by a
number of workers e.g. Leuenberger (1982); Leuenberger et al. (1983); Leuenberger
and Jetzer (1984). The term compressibility in terms of pharmaceutical powders
was defined by Leuenberger and Jetzer (1984) as the ability of a powder to
decrease in volume under pressure and the term compactability was defined by
these same workers as the ability of the powdered material to be compressed into
a tablet of sufficient strength. The compressibility behaviour of pharmaceutical
powders is believed to follow the Kawakita relationship, developed by Kawakita
(1956), in the majority of the papers reviewed in this area. Roberts and Rowe
(1986) however, used the Heckel relationship (1961a) in order to determine the
yield pressure for pharmaceutical powders (size 4 to 60 um) e.g. sucrose, calcium
carbonate. The aim of this work was to obtain a predictive capability for the
compaction behaviour of pharmaceutical powder systems. The correlation used by
Roberts and Rowe to obtain the powder yield strength i.e. (2.15) has some
doubts associated with its use (see section 2.1.1) and this therefore, casts some

doubt on the validity of their results.

It is the compactability behaviour e.g. Amidon er al. (1981), or deformation
hardness, rather than the compressibility characteristics of pharmaceutical powders
which is of most interest to the pharmaceutical research community. Pharmaceutical
powders are generally produced as tablets and so knowledge of the deformation
hardness behaviour is therefore, of more practical importance than development of

pressure-density or pressure-volume relationships.
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2.1.1 The Heckel pressure-density relationship

The method of obtaining pressure-density relationships used by Heckel (1961a)
was designed to eliminate the shortcomings of other techniques, which are
reviewed in Heckel (1961b), whilst maintaining equivalent accuracy and precision.
The general principle employed was that, the linear movement of the piston during
die compaction could be used to calculate the change in volume of the powder as
a function of the pressure, if the cross-sectional area of the die was known. The
density-pressure relationship could then be calculated from a knowledge of the
weight of the powder and the volume-pressure relationship (where the 'density’
was the average density of the compact). It is only the change in the volume of
the powder that can be obtained as a function of pressure and so the data must
be referred to a known powder compact volume. Heckel (1961a) used the zero die
volume, which corresponded to the readings taken of the volume of the
compacted specimen after completion of the compaction operation. The linear
movement of the punches during the compaction process was the algebraic sum
of the change of height of the compact and of the elastic compressive strains in
the punches. The latter changes were measured by Heckel (1961a) experimentally,
using a blank pressing operation, in order to separate the two effects. This punch
elasticity data was used in the reduction in the value of the linear punch-
movement data, to allow calculation of compact density at the applied pressure
(known as the ar pressure density). The densities measured as the compacts were
removed from the die were known as the zero-pressure densities. Heckel (1961a)
found experimentally that, there was little difference between the at pressure and
zero pressure densities for his metal powders, because of their relatively high
elastic moduli. The transformation of any experimental data into a form suitable to
produce pressure-density curves therefore, required a number of items of
information to be obtained, Heckel (1961a). These items included the powder
weight in the die, the cross-sectional area of the die cavity, the elastic changes
within the die itself as a function of the applied pressure and either the punch-
movement data at zero die movement without an applied pressure or the thickness
of the powder compact when removed from the die. The accuracy of the analysis
was found by Heckel to be unaffected by his assumption that the cross-sectional
areas of the die cavity and the compact on removal from the cavity, were equal.
This assumption was reasonable since there was only an extremely small

difference in the two cross-sectional areas.
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Heckel (1961a and 1961b) believed that the compaction of powders could be
considered to be analogous to a first-order chemical reaction, the pores in the
powder being the reactant and the kinetics of the process being the densification
of the bulk of the mass. The kinetics of the process was assumed by Heckel to
be described by a proportionality between the change in powder density and the

pore fraction,

D« (1-) (2.8)
dp
or
ab _ K(1-D) (2.9)
P

where p is the pressure, (/-D) is the pore fraction in the powder, K is a
proportionality constant and D is the relative density of the compact. The relative
density is defined as the ratio of the density of the compact p to that of the
metal without porosity. The above expression can be reduced to a more usable

expression by rearrangement:

dD
— =Kd 2.10
(1-D) P (2.10)
and integrating:
D dD P
=Krd (2.11)
l-)J-O(].'D) '(J)- P

where Do is the relative density of the loose powder at zero pressure. Thus

In(1-Do)-In{1-D)=Kp (2.12)
or
(1 _ ( 1)
1n\1_D) Kp+n| ) (2.13)

The validity of Heckel's analysis was justified by Heckel (1961a) by plotting In
(1/1-D) against p curves for copper, iron, nickel and tungsten powders (in the

pressure range O to 896 MPa). An example of these results is presented in figure

2.1.
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Figure 2.1 Heckel plot for Iron (Fe) - 200 um, Nickel (Ni) - 250 um;

Copper (Cu) - 150 um, Tungsten (W) - 15 um size powders.
(After Heckel, 1961a).

Linearity was found by Heckel (1961a) to extend over 65 to 80 percent of the
pressure range studied and he believed that extrapolation of these values to even
higher pressures could be justified. However, uncertainty about the nature of the
compaction mechanisms in even the most frequently studied lower pressure ranges
(see section 2.1.3) means that the use of such an extrapolation is in some doubt.
Heckel also suggested that the non linearity in the early stages of compaction was
probably due to the effect of particle rearrangement processes in the powder, in a
manner similar to that proposed by Seelig and Wulff (1946). The general behaviour
of the powders in these early stages was also thought (using Seelig and Wulff's
theory) to reflect individual particle rather than coherent mass interactions. Similar
views on the mechanism of the compaction process are expressed in section
2.1.3.
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The curvature expressed in figure 2.1 means that (2.13) will not accurately
represent the compaction process in a quantitative sense at low pressures i.e.
below 200 MPa. Heckel (1961a) replaced the term In (1/1-Dg) in (2.13) with a

constant A, to give the following expression:

(1 _
1n\1_D) —Kp+A (2.14)

The expression (2.14) was found by Heckel (1961a) to be quantitatively valid for
his experimental powders, except at pressures below 100 MPa, where Heckel urged
caution in the use of his relationship. This caution is only partially justified
because very little experimental data was obtained from this low pressure region
by Heckel. Heckel (1961b) also analysed the microstructure of the compact particles
using microscopy, in an attempt to produce an association between the
macroscopic mechanical behaviour and the micromechanical processes occurring
within the powder systems. Heckel (1961a) concluded from this analysis that the
curved region present in figure 2.1 was associated with densification which took
place by a mechanism of individual particle movement. Heckel (1961a) also found
from his experimental results, that the transition from curved to linear behaviour
visible in figure 2.1 corresponded closely with the minimum pressure necessary
to form a coherent compact. Heckel (1961b) suggested that the linear region of
figure 2.1 was associated with plastic deformation of the compact, since this is
the region of proportionality between the degree of densification and the void
fraction (given by (2.9)) but offered no experimental evidence to support his ideas.
Heckel (1961b) also viewed K in (2.14), as a material constant and believed that K
represented a measure of the ability of the compact to deform. This belief may be
a reasonable and valid one, but Heckel's assertion in Heckel (1961b) that a

correlation can be produced between K and the yield strength of a material o,

l.e.

1
K=
3 oy

(2.15)

i1s not, for a number of reasons. The correlation relationship in (2.15) was
produced from limited experimental data in Heckel (1961b), and was only at best,
a reasonable curve fit to the data. The justification for a plastically deforming
mechanism in this linear region of the Heckel pressure-density curve has also still

not been experimentally confirmed.
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Donachie and Burr (1963) doubted that a simple correlation such as(2.15) between
Oy and K could be obtained. They argued that the yield strength is a defined
parameter and the values observed vary with the definition and sensitivity of the
experimental technique used to observe the yield behaviour. The values of K,A
and D were also observed by Heckel (1961b) to vary according to the conditions
of compaction, and that this created difficulties in the development of quantitative

relationships involving these parameters.

2.1.2 The Kawakita pressure-density relationship

The Kawakita equation was developed from an observed relationship between
pressure and volume during powder compression and is widely used in the
fields of powder metallurgy and pharmaceutics. The equation was introduced by
Kawakita (1956) and not, as is often wrongly stated in the literature, to have been
developed by Kawakita and Tsutsumi (1966). Kawakita (1956) studied the behaviour
of copper and iron powders (size 100 to 300 um) subject to die compaction up to
150 MPa and assumed that, the degree of volume reduction of the compact C was
proportional to the applied compaction pressure p. Kawakita in the same paper,
also suggested the following empirical equation, which provided a good fit to his

experimental data,

_Vo—-V  abp

C =
Vo 1+bp

(2.16)

where V,, is the initial apparent volume of the powder mass (assumed to be the
volume of the die before compaction begins), V is the volume of the compact
under the applied pressure p (calculated from the cross-sectional area of the die
and the length of travel of the die piston) and a, » are constants, characteristic of

the powder . Rearrangement of (2.16) gives the more useful relationship,

_L.e (2.17)
ab a

(oYl

The linear relationship between p/C and p allows the values of the constants «, b
to be evaluated graphically. This linear relationship was found to hold for soft
and medical powders in Kawakita (1963), but particular attention had to be paid to

the experimental measurement of the initial volume of the powder V, in (2.16).

39



It was necessary to measure Vg in order to apply (2.16) and deviations from this
relationship were found to be related to fluctuations in the measured value of Vo
(Kawakita, 1966). The constant a was thought by Kawakita (1966), to correspond
to the limiting value of the relative reduction of the volume by the compaction
process. The value of a was therefore, considered to be equal to the initial

porosity of the powder mass ng and a relationship was developed,

gz Yoo Vo (2.18)
Vo

where V, was the net volume of the powder (the volume difference between the

initial powder volume and the volume reduction, at any stage, due to the

compaction process). Examination of (2.18) indicates that a cannot be n,, which is

described by the relationship,

Nno = —— (2.19)

where V), is the initial volume of pores within the powder. Thus the statements
made by Kawakita (1966) about the nature of a are incorrect. Kawakita and Ludde
(1970) believed that, there was some correlation between the constant @ and the
physical properties of the powders i.e. a was the reciprocal of the gradient of the
p/C Vs p curves and was found to alter in value with different powder materals.
However, these workers were unable to find a clear relationship between the
constants ¢ and b and the physical properties of a powder. James (1972) suggested
that these findings undermine the development of relationships between a, b and

powder material properties such as yield stress by Kawakita.

Kawakita's equation for die compaction (2.17) has also been developed for tapping
compaction and vertical vibrating compaction by Kawakita and Ludde (1970). The
compaction pressure p in these cases was replaced by the tapping number N and
the vibrating time ¢ (for vibrating compaction). Kawakita's equation for die
compaction is represented graphically in figure 2.2 from results obtained by
Sheinberg (1967). Sheinberg reported that he obtained linearity using the Kawakita
relationship in the die compression of stainless steel (100 pm) and copper oxide

(150 um) powders up to a pressure of 220 MPa.
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Figure 2.2 Kawakita plot for stainless steel powder (100 um).
(After Sheinberg, 1967).

Figure 2.2 however, does indicate that Sheinberg's assertion of linearity is
subjective and definitely does not apply in the early stages of compaction, when
the applied pressure is below 60 MPa. Kawakita's equation (2.17) has proved
useful in quantitatively describing the compaction process and allowing
comparative experiments to be carried out. However;-Sarumi~and—Al-Hassmi-(1991)
found—that-the—equatien—was_only—useful over—the limited pressure—range—between
40 -and—250 MPa—and—for_strain—rates_between—02-s"and—10~s~. Kawakita's
relationship was also derived from curve fitting in Kawakita (1956), rather than
considerations about the underlying physical principles of compaction and it has
been suggested by Bockstiegel (1966b) that this model does not provide a

satisfactory description of the "reality of powder die compaction".
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James (1972) suggested that an improvement on Kawakita's equation would have
to involve the process of pore closure within the compact. The stress distribution
around pores is complex but it is a reasonable assumption that pore closure will
be influenced by the stress required for particle deformation which will in turn be

determined by the external compaction pressure (see section 2.1.3.).

2.1.3 Mechanisms of powder compaction

A review of the present theoretical knowledge of the mechanisms of compaction,
as related to general powder systems will be presented in this section. An
appreciation of the stages undergone during powder compression is important
since this should lead to a better understanding of the individual mechanisms of
compaction experienced by the powder particles which in turn should enable better
correlations to be made between the mechanical behaviour and the porosity and

structure of powders.

Many authors have suggested that the die pressing of metal, ceramic and
pharmaceutical powders should be regarded as a multi-stage process e.g. Seelig
and Wulff (1946); Cooper and Eaton (1962); Leuenberger (1982). The development
of these concepts for compaction of metallic powders has been reviewed by
James (1972) and Bockstiegel and Hewing (1965). They suggest that the first stage
would involve slippage of the particles without excessive deformation. This stage
was also referred to as transitional restacking by James. The effect in this early
stage of compaction would be that, the bulk material would become denser with
the particles sliding and re-arranging themselves according to the force exerted on
them and no reduction of the particles' size would occur, though some
fragmentation may be involved during the re-arrangement process. The
densification associated with this stage was found to be a few per cent from
experimental work on ductile powders of relatively smooth shape, performed by
Donachie and Burr (1963), Bockstiegel (1966a). The restacking effect was found to
be larger for irregularly shaped particles and for powders which were difficult to
deform in Kostelnik er al. (1968). If the compaction pressure is increased then
the next stage in James' model is believed to be the elastic compression of the
particle-particle contact points. The simulation work presented later in this thesis is

restricted to considerations of particle rearrangement and elastic compression.
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However, if the compaction pressure is increased above this point, then it is
believed that plastic deformation at these contact points would proceed
simultaneously with a diminishing amount of sliding (or non-radial particle
motion). James suggested that further compression would result in growth of
these contact areas via plastic deformation and breakage. Fragmentation of particles
was assumed to occur at the stage of plastic deformation by Bockstiegel and
Hewing (1965). It was also suggested by these workers that, the external
compressive forces would eventually reach values sufficient to cause massive
deformation of the particles. Friction, plastic deformation and cold welding (at the
particle contacts) would therefore, lock the particles into pseudo-rigid arrangements,
to form what may be described as a particulate solid or powder compact. These
final stages in pressing could be regarded as a form of bulk compression, where
plastic compression of the mass tending towards final elimination of pores and
ultimate densification, terminates with the subsequent elastic (recoverable)
compression of the compact. Little experimental evidence concerning the stages
involving plastic deformation has been presented and the work that has been
performed is inconclusive, James (1972); Hewitt (1974). However, particle sliding is
often invoked to explain observed peculiarities of pressure-density relationships,
James (1977); Donachie and Burr (1963);Heckel (1961b).

The development of particle contact areas during compaction is an important field
of study, since it is the geometrical arrangement of particle contact surfaces that
has been found by some workers e.g. Fischmeister er al (1978), Oda (1972a,b),
James (1977) and Nystrom and Karehill (1986), to affect the bulk compaction
behaviour of powder systems. Fischmeister er al (1978) used quantitative
metallographic techniques and scanning electron microscopy in an attempt to
reliably analyse contact facet development between spherical bronze powders
(particle size 100 pm) compacted up to 1 GPa. The results of this experimental
work convinced Fischmeister er al to suggest that, for the experimental powders
studied, non-radial particle motion (sliding) proceeded well into the expected,
although not reliably confirmed, 'plastic' stage of densification. Fischmeister er al
also found that the stage of transitional restacking present in the model of James
(1972), appeared to be very limited in extent for a real system. These workers
therefore, proposed that deformation and sliding of particles may occur right from
the beginning of compaction. However, Fischmeister er a/ admitted they had made

no attempt to test the generality of their observations for different types of

powder.
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Ceramics differ fundamentally from metals largely by their atomic bond
characteristics, which in turn account for the basic brittleness and tendency to
fragmentation of ceramics compared to the ductility and cold working
characteristics of metals. Ceramic systems therefore exhibit different behavioural

patterns to metallic systems when under pressure.

The die compaction behaviour of ceramic systems has been investigated by
Cooper and Eaton (1962) and their view of the compaction mechanism for ceramic
powders has been widely accepted in the ceramics processing industry. They also
regarded compaction as a multi-stage process, involving two distributed processes.
The first was the filling of voids within the powder system of the same order of
size as the original particles (before compaction). The process was said to occur
primarily by particles sliding past one another, which may require plastic
deformation or even slight fracturing or plastic flow of the particles. This step
was said to be distinguished by the voids being filled by particles from the
original size distribution with only slight modification by fracture or by plastic
deformation. This first stage can be said to resemble the features of the
transitional restacking stage present in metallic compaction, which was discussed
earlier. The second process in ceramic powder compaction was then believed to
be associated with the filling of voids that are substantially smaller than the
original particles. These can be filled only by plastic flow or by fragmentation.
Plastic flow is more efficient than fragmentation because material is always forced
into the voids. This model of the later stages of compaction is comparable with
the idea of the elimination of pores proposed by James (1972) and Bockstiegel
and Hewing (1965) in their work. Cooper and Eaton (1962) performed experimental
work on the compaction behaviour of four ceramic powders of different hardness
values but of essentially the same particle-size fraction (44 to 62 wm). Fractional
volume compaction-pressure curves produced from these experiments revealed the
inadequacy of using a single mechanism to account for the compaction behaviour.
Cooper and Eaton used their theory of compaction and considered the two
processes mentioned above i.e. the filling of large holes and the filling of small
pores, to act as largely independent probabilistic processes. Using this approach
they developed an expression for the fractional volume compaction V*,in terms

of the applied pressure p,

k,
V¥=aexp |,

2

+a,exp| (2.20)
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where @; and @, are dimensionless coefficients that indicate the fraction of
theoretical compaction that would be achieved at infinite pressure by each
particular process. The total (a; + a) equals unity when compaction can be
completely described in terms of two separate processes. If (¢; + @) is less than
unity, it is an indication that other processes must become operative before
complete compaction is achieved. Cooper and Eaton (1962) suggest that, the
coefficients k; and k> (units of pressure) represent the magnitude of the
compaction pressure where the particular process has the greatest probability
density. The whole compaction process at compaction pressures below 172 MPa
was assumed to be attributed to the filling of large voids. Cooper and Eaton
believed that, the compaction behaviour of their experimental powder systems
could be accurately described by the combined action of the two processes
described earlier, at higher pressures. They also suggested that their relationship
produced a good fit with the results obtained from their experimental powders. A
number of approximations however, were used in the development of the
compaction relationship. The value of the coefficients @; and a, for example, were
determined by extrapolating the data to infinite pressure. The domination of a
single compaction process (filling of large voids) at low pressures (below 100
MPa) could also not be assured since Cooper and Eaton did not accurately study

this pressure region.

The work performed by Van der Zwan and Siskens (1982) suggests that the
compaction of agglomerated, ceramic powders is much more complex than that
shown for the powders containing discrete particles examined by Cooper and
Eaton (1962). An agglomerate in ceramics technology is defined by Onoda and
Hench (1978), as a small mass of particles, which are bonded together by surface
forces and/or solid bridges, having a network of interconnective pores. Van der
Zwan and Siskens studied ferrite agglomerates (diameter 100 to 320 um) subject to
uniaxial compaction up to 80 MPa and proposed an extension of Cooper and
Eaton's two stage compaction process to a four stage process for agglomerated
materials. Although such work is useful in the study of powder agglomerate
compaction behaviour, it is much less relevant in the study of the simpler, discrete

powder systems reported in this thesis.
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Torre (1948) initially proposed the idea that, the compaction of powders composed
of discrete particles could be considered in terms of a hollow sphere subjected to
a uniform external hydrostatic pressure. This theoretical concept was used to
model the pore behaviour during the compaction process. The concept was used
to give theoretical support to the formula proposed by Konopicky (1948) i.e. (2.7).

Torre derived a theoretical formula as a result of his ideas:

3
p=-§oyLn(5:) (2.21)
where 0y is the yield stress in tension and 7;, 7, are the inner and outer radii of
the hollow sphere respectively. Heckel (1961a) tried to give experimental evidence
for Torre's correlation. However, a critical analysis performed by Bockstiegel
(1966a), revealed that Torre's formula could not be the correct yielding criterion
for a hollow metal sphere because of mistakes in Torre's calculations, which
involved unsound assumptions about the theory of elasticity. Torre's basic idea of
the relation of the compaction behaviour of a porous body to the shrinkage
behaviour of individual pores under a surrounding stress field was however,
considered to be worthy of further attention. Bockstiegel therefore, recalculated this
hollow sphere model in a manner more strictly related to principles known from
the theory of elasticity in Bockstiegel (1966a). Bockstiegel found from this analysis
that a hollow metal sphere cannot yield unless the external pressure exceeds a
certain threshold, pp;,, which is larger, the smaller the volume of the hole
becomes in relation to the volume of the solid metal. A formula was therefore

developed:

3 3
ra - ri

3
| o

Oo (2.22)

pmin=

Wi

where 0p is the upper yield stress of the metal in tension, r, is the outer radius
and r; the inner radius of the hollow sphere. The above yielding criterion can be
used to explain quantitatively why, on average, larger pores disappear at lower
pressures than smaller ones. However, (2.22) should strictly be viewed under
conditions of elastic behaviour and as measurable deformation continues into the
plastic region modification of this equation is necessary, due to the fact that
Hooke's law on which it is based, no longer applies. Bockstiegel (1966a) provided
experimental evidence for his assertion that large pores shrink first, from die

compaction studies of iron powders (size 100 um) compacted up to 150 MPa.
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Stanley-Wood and Johansson (1980) provided further experimental evidence that, a
reasonable qualitative picture was provided by Bockstiegel's model. These workers
studied the variation of inter- and intra-particle porosity of dicalcium phosphate
and magnesium trisilicate powders (size 15 pum)die compacted up to a pressure of
250 MPa, by means of mercury intrusion and nitrogen adsorption techniques and
also found that large pores shrunk first followed sequentially by smaller pores as
the compaction pressure increased. Palmer and Rowe (1974) used similar
experimental techniques oa polyvinyl chloride polymer powders (size 75 to 90 um)
subject to die compaction up to pressures of 220 MPa. They found that the pore
structure of a polymer compact was also dependent upon the initial morphology

of the particles and the mechanism of compaction.

Sundstrom and Fischmeister (1973) argued that the models of Bockstiegel and
Hewing (1965) and Bockstiegel (1966b) did not take into account the actual shapes
of the pores in the powder compact (the pores were usually assumed to be
spherical) or the interaction between adjacent pores. These workers performed die
compaction experiments on two-dimensional lead plate models (particle size 10
mm) up to a pressure of ! GPa. The pore shapes specified in these models were
either tetracuspid or ‘'diamond', in an attempt to represent the pore shape
encountered in a regular array of equally-sized spheres. Sundstrom and
Fischmeister found that the pore shape remained rather unchanged during
compaction, in a manner similar to the model of Torre (1948). The deformation of
the 'diamond' pore model was calculated using finite element analysis and the
results of this analysis indicated that, the nearly hydrostatic character of the stress
field around the pores was responsible for the limited pore shape-change during
compaction. Stress-strain data from these compaction experiments persuaded
Sundstrom and Fischmeister that the stress required for densification was
influenced less by work hardening of the material (in the plastic region) and more
by the change in the particle geometry. A two stage mechanism for compaction
was presented by these workers as a description of the compaction process. The
early stages of compaction were suggested, from the evidence of the finite element
analysis, to involve pore closure and the latter stages were said to be controlled
by plastic deformation of the bulk powder mass, although no experimental

evidence was presented for this latter statement.
Most models of the densification behaviour of powders subject to pressure obtain

the degree of particle shrinkage from the linear densification between two

spherical particles in a regular packing e.g. Sundstrom and Fischmeister (1973).

a7



Artz (1982) however, developed a model that considered the densification of
spherical powders in three-dimensional cold compaction, to be described in terms
of the shrinkage of the Voronoi cells associated with the initial packing of the
powder particles. The Voronoi cell or polyhedron of a particle in a packing is the
set of all points in space which are closer to the particle's centre than to any
other particle centre. Densification of the packing within Arzt's model is modelled
as concentric growth of the particle (see figure 2.3), beyond the stationary walls
of its cell (new radius R'). The excess volume outside the polyhedron (the shaded
‘area in figure 2.3b)is redistributed evenly over the free surface of the sphere (in
the case of cold compaction) to produce the truncated sphere visible in figure
2.3c. Artz believed that the advantage of this approach lay in its ability to
quantitatively explain the increase in particle co-ordination during compaction
(increase in new neighbours). The precise prediction of particle geometry during

densification via cold compaction using Arzt's method however, depends upon the

assumption of plastic flow as the dominant densification mechanism.

Figure 2.3 A: Average Voronoi cell (particle radius R =1)
B: Concentric growth of particle beyond cell walls
(new particle radius R =R"). C: Redistribution of excess
particle volume as truncated sphere of radius R".
Excess particle volume - shaded] (After Arzt, 1982)
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The mechanisms of die compaction can only be truly understood if the
knowledge of the transmission of forces through the compacting mass is clarified.
Analysis of the nature of the force transmission through a powder mass in a die
during compaction has been studied by a number of workers. Train (1956 and
1957) used a system of manganin resistance gauges embedded in a magnesium
carbonate powder mass to record the pressure response of the mass during
compaction (up to 181 MPa). A complex stress pattern was found to develop in
the mass during the compaction process. When the compaction pressure was low
(below 3 MPa), a resisting pressure built up in the powder, especially in the zone
where the face of the moving punch met the die wall, and there was a pressure
gradient from the top corners towards the top centre and towards the bottom of

the pressing.
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Figure 2.4 Vertical pressure distribution in magnesium carbonate compact at
3 MPa - [Contour levels in MPa].  (After Train, 1957)

The internal pressure distribution pattern changed as the applied pressure was
increased, until at pressures > 55 MPa, a relatively constant pattern was obtained.
The pressure distribution at this stage now exhibited wedge-shaped high pressure
zones in the top comners, joined by ridges of slightly lower intensity to another
high pressure region in the mid-lower centre position of the compact. Low
pressure zones were found to occur in a zone close to the centre of the upper

punch and also in the regions near the bottom corners of the die (see figure 2.5).
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A detailed explanation of these observed pressure patterns is presented in Train
(1957). Train, in the same paper, found that the most efficient bonding of the
particles in the powder mass and highest powder strength resulted from subjection
of the particles to shear as well as to compressive forces. Train (1957) also
discovered a good correlation, over the range of pressures observed (from 3 MPa
to 1 GPa), between the local pressure developed in a compact and the apparent
density produced at the same point. Train believed that this correlation, from the
evidence of his experimental results, was observed in all sections of the compact.
The pressure distribution patterns obtained by Train were in accord with those
published by Kamm e a/ (1947) who analysed compaction of a copper powder
up to 466 MPa. Unckel (1945) who worked with iron powders compacted up to
588 MPa, detected the low intensity zone in the compact centre, under the top

punch, but did not demonstrate the presence of a high intensity area beneath this

zone.
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Figure 2.5 Vertical pressure distribution in magnesium carbonate compact at
65 MPa - [Contour levels in MPa]. (After Train, 1957)

Macleod and Marshall (1977) also obtained similar density distribution results to
those of Train in their die compaction studies (up to 500 MPa) of uranium
dioxide powders (size 600-900 um). These workers used the technique of
autoradiography, where the sample material contains a radioisotope which allows
the concentration of material at a point to be accurately determined. The
occurrence of the density patterns were explained by these workers in terms of
die wall frictional effects, which were found to be the largest single contributors

to the density distribution and relative volume changes within the compact.
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Kunin and Yurchenko (1968) developed a formula taking account of the effect of
die-wall friction on the calculation of the net compaction pressure. These workers
carried out work on tin, copper and aluminium powders (size 200 um) subject to
die compaction in the pressure range O to 150 MPa. These workers believed that
the overall compaction pressure p was balanced by the pressure required for
powder densification p, and the friction of the powder against the die walls, Pf

l.e.:

P=P,+P (2.23)

Theoretical analysis by Kunin and Yurchenko allowed the development of a

formula for the calculation of the net pressure for compaction oy:

16muK
On = (1 -—ﬂ‘—)o (2.24)
x d’y

where m is the compact weight (kg), u is the coefficient of wall friction, K the
coefficient of lateral pressure, d the die-opening diameter, y the density and o the
applied compaction pressure. Van Groenou (1981) also analysed the effect of die-
wall friction on die compaction of iron oxide samples (size 200 um) up to 100
MPa and found that the friction coefficient was some unique function of the ratio
of particle size to wall roughness. However, Van Groenou admits that this
functional relationship was a simplification of a more complex situation and further

analysis was required.

A significant percentage of the powders used in the ceramic, polymeric and food
processing industries are composed of agglomerated powders. Therefore, the effects
of die wall friction on the internal mechanisms of compaction during the
compression of such powders are industrially important. Isherwood (1987)
developed simple models of the frictional effects in agglomerated powders during
uniaxial compaction and compared the predictions from theses models with
experimental results from uniaxial compaction of polymers (polypropylene
agglomerates) up to 25 MPa. This comparison indicated that a power law
relationship provided a good fit to the compaction data:

[(—A—H—\] =Bp," (2.25)
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where n is the exponent for the relationship, AH = Hy - H is the change in

compact height, Hy is the compact height before compaction and H is the
compact height during compaction, 8y is the initial porosity, the subscript ¢

denotes friction, p4 is the applied pressure and the constant B is given by:

1-g"

nina

B = -

C (2.26)

where a=py/ps, pr is the pressure transmitted through the powder compact and
Pa 1s the external pressure applied to the powder during uniaxial compaction. A
power law representation like (2.25) may have been quantitatively useful in the
relatively, low pressure range studied by Isherwood, but little evidence of its
qualitative significance was presented. Therefore, such a relationship does not help
in the understanding of the physical processes responsible for the compaction
behaviour of agglomerated powders. Briscoe and Evans (1991) looked at uniaxial
die compaction (up to 160 MPa) of zirconia and alumina, ceramic powders which
were agglomerated with water-soluble polymer binders to form granules in the
size range 250 to 280 um. This paper extended and drew upon reported studies
by Briscoe er al(1987) on the action of frictional effects during the extrusion of
food (maize) powders and showed a means of modelling wall friction on a
discrete particle-wall interaction basis. The friction at the die wall during
compaction experiments in Briscoe and Evans' work was deduced and these
values compared with data obtained from a number of other compaction
experiments. This comparison was made by assuming a model of friction which
was an extension of the adhesion model of friction proposed by Briscoe (1981).
Therefore, in the model proposed by Briscoe and Evans (1991), it was assumed
that frictional work was dissipated at the walls in the binder material and friction
arose from interface shear at real areas of contact in the ceramic powder. These
workers found that if the data obtained from the various experiments was
compared in terms of their model, then reasonably self-consistent behaviour was
observed. Briscoe er al (1994) incorporated die wall friction effects in their die
compaction study (0 to 700 MPa) of alumina powders (mean size 1.3 um). They
found that a simple empirical equation could represent the relationship between

compact density and compaction pressure (range 35 to 700 MPa) produced from

their experimental work:

p=A+BInf0) (2.27)
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where p is the percentile relative green density with respect to the theoretical
density of alumina (3980 kg/m> ), o is the compaction pressure and A, B are
experimental parameters. Although (2.27) was quantitatively useful, no qualitative
arguments were put forward by these workers to explain its significance. Adams
and McKeown (1995) did however, develop a micromechanical model of uniaxial
powder compaction for beds of agglomerates called the lumped-parameter
relationship. This model apparently provided a good fit to the bed compaction data
for a number of different agglomerates e.g. sand, lead, up to a pressure of 20
MPa. However, the lumped-parameter relationship assumed the agglomerates were
subject to plastic deformation and it is therefore, not qualitatively useful for the
simulation work presented in this thesis. Adams and McKeown also tried to
validate their model by claiming that it lead to an explicit form of the Kawakita
relationship presented in (2.17). However, the problems with the qualitative
interpretation provided by Kawakita's model, which were reviewed in more detail

in section 2.1.2, mean that this validation is not certain.

2.2 Experimental studies of binary systems

The pressure-density relationships reviewed in section 2.1 were only proposed for
single component powder systems covering a relatively narrow range of particle
sizes. A number of compaction studies however have been performed on binary
systems, mostly using the Hot Isostatic Pressing (HIP) technique. A selection of
the more important work published on compaction of binary mixtures of powders

will be considered in this section.

2.2.1 Uniaxial compaction studies

Kurup and Pilpel (1978) analysed the pressure-density relationships of mixtures of
the type normally employed in pharmaceutical tablets, Esezebo and Pilpel (1976)
e.g. starch and polyvinylpyrrolidone (particle size 4 to 10 um). The experimental
work involved die compaction at pressures up to 300 MPa. The results were then
analysed in terms of the equation of Heckel (2.14). The Heckel equation was

rewritten in this situation as:



} =Kup+An (2.28)

where pp is the packing fraction of the pharmaceutical tablet, p is the applied
pressure and Ky, Ay are constants, determined from the slope and intercept
respectively of the extrapolated linear portion of the plot of In{1/(1-pr)] against p.
Kurup and Pilpel claimed that the Heckel plots for the mixtures examined were
characterised by an initial curved section up to a pressure limit of 200 MPa
followed by a linear section. Figure 2.6 however, indicates that such a statement is
very subjective. The possible mechanisms responsible for the observed mechanical
behaviour are discussed in section 2.1.3. Kurup and Pilpel suggested that
Heckel's relationship was sensitive enough to distinguish between the various
stages of the compaction process for the composite materials investigated. The
results indicated that the value of K increased and the value of Ay decreased as
the amount of the softer (minor) component e.g. starch, in the binary powders was
increased. Kurup and Pilpel used the unproved assertion of Heckel (1961b), that
K 1s the reciprocal of a material's mean yield stress in the analysis of their
results. However, it is possible that Ky is a material constant since the results
showed that the softer, more ductile binary systems had higher Ky values than
the harder powders. It can be concluded from the work of Kurup and Pilpel that
correlations can be established between the composition of the formulated powder

mixtures and the values of the Heckel parameters.
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Figure 2.6 Heckel plots for binary mixture samples of starch and
polyvinylpyrrolidone. (After Kurup and Pilpel, 1978)



Lange er al (1991) performed uniaxial die compaction experiments (at room
temperature) for aluminium and tin powders (size 0.2 mm and 1 mm respectively)
containing various amounts of spherical (size 1.2 mm) steel inclusions. The
aluminium and tin powders were regarded by Lange et al as the 'soft' component
and the steel inclusions as the 'hard’ component, of the binary mixtures. The
compaction studies were carried out in the applied pressure range 0 to 450 MPa
and the results illustrated that the 'hard' inclusion phase offered little constraint to
matrix deformation at volume fractions < 0.20, but produced a rapidly increasing
constraint at larger volume fractions. Microstructural observations (using SEM)
showed that in order to achieve full density, the matrix particles in contact with
the steel inclusions had to deform more than those particles located away from
the inclusions. The increased amount of deformation was due to the excluded
volume associated with the packing of particles and inclusions of different sizes.

The use of SEM techniques by Lange er al. revealed that the hard inclusions
were able to form a continuous touching network from observation of the
deformation flattening of the steel spheres during compaction. These SEM
observations however, did not provide conclusive evidence for their proposal that
the inclusion network supported a substantial portion of the applied pressure,

particularly at low inclusion volume fractions.

Lange er al. (1991) also performed computer simulations to model site percolation
(see section 3.1) via random filling of sites on a face-centred cubic lattice and to
determine the extent of site percolation across the model. This computer modelling
suggested that the continuous inclusion network was expected to span the
composite system at the percolation threshold, corresponding to an inclusion solid
fraction ¢ ~ 0.16 and that >95% of the inclusions would be part of the same
network when ¢;> 0.20. The percolating network of hard inclusions was believed
to support a portion of the applied stress and thus, partially 'shield' the
deformable phase e.g. the aluminium or lead powders, from the total applied
compaction pressure. Lange er al also evaluated this stress protection role by
comparing the applied stress required to achieve a prescribed 'corrected' matrix
density within the composite (0.*) to the stress required to achieve the same
density in the matrix material alone (0,). The stress supported by the inclusion

network 0y was then estimated by:

On=0:%-0¢ (2.29)



The constraint (of densification) ratio due to the presence of the inclusion network
was estimated by the ratio 0,*/ 0, according to these workers. A major criticism
of this work is that Lange et a/ did not have a clear idea of how to separate
the various contributions to the retardation in densification, as measured by the
constraint ratio. Thus analytical estimates of the magnitude of the network stress
and the other stress values provided by (2.29) need to be examined in more
detail. Lange et al also suggested that the inclusion network released its elastic
strain in a non-linear manner because of the Hertzian contact phenomenon
(Johnson, 1985). The suggestion was said to be justified by the theoretical work
of Walton (1987), which predicted that the stress-strain behaviour of a powder
compact composed of spherical particles could be described by o = Ae /2, where
A was a function of the elastic constants of the particles and the relative density
of the compact. The recovery strain for the inclusion network could therefore be

quite significant due this non-linear elastic behaviour.

Lange er al also believed that soft matrix material would exhibit linear stress-
strain behaviour but provides no justification of this statement from analysis of
particle-particle contact behaviour. Experimental evidence provided by these workers
did however, indicate that compacts with a large percentage of inclusions
spontaneously broke apart on removal. This may provide some justification for the
presence of differential strain recovery phenomenon (due to linear and non-linear
contact behaviour in the two components) and the associated residual stresses

described above, but it is not conclusive evidence.

2.2.2 Hot Isostatic Pressing (HIP) studies

Isostatic pressing involves the application of equal pressure in all directions
during the compaction of a powder. The aim of this process is to attempt to
ensure the uniformity of powder density during compaction (up to 200 MPa) and
limit post-compaction processing of the product. The isostatic pressing is hot
because complete densification of the ceramic and metallic systems processed
using HIP requires elevated temperatures (> 1800 K). These high temperatures are
due to the material properties of the powder systems. Cold Isostatic Pressing
(CIP) would be of more relevance to the work presented in this thesis but no
papers have been published, according to the author's knowledge, on CIP of

binary powder systems.



Fischmeister er al/ (1978) did however study CIP (up to 250 MPa) of bronze
powders (size 100 pm) and suggested that the process involved less sliding and
more deformation of the particles (from SEM evidence and co-ordination number

data) than occurred in uniaxial compaction.

Modelling and experimental work on the HIP process has often involved the
assumption or use of a monodisperse, spherical powder. Funkenbusch and Li
(1991) however, investigated the effects of binary powder mixes on initial powder
packing and subsequent HIP behaviour. The experimental studies involved
compaction of stainless steel powders (using particle sizes in the range 40 to 250
um and compositions ranging from O to 100% of the larger particles) at 840 °C,
up to a pressure of 443 MPa. Funkenbusch and Li suggested, from their
experimental results, that the behaviour of the bimodal powders (size ratio 2:1, 4:1)
was similar to that seen in the monodisperse mix and that the role of particle
rearrangement during densification of the bimodal powders was of no greater
significance than in the case of a monodisperse system which was studied. The
bimodal powder mixes were also found to densify more slowly than the
monosized system. The nature of the compaction mechanisms within the
experimental system was however, prone to potential misunderstanding due to the
lack of continuous data monitoring and also a lack of detailed microstructural
analysis of such mechanisms. Funkebusch and Li also attempted to model the
HIP process, based on the assumption of uniform contraction of particles during
the compaction process. The modelling work undertaken by these workers was
found to produce results for the stainless steel systems that were comparable with
their experimental work. Funkebusch and Li however, do mention in their paper
that the modelling work assumed a uniform distribution of contact deformation
between all the particles. Modifications to this model would therefore, be required
for hard/soft particle system analysis, since the hard components should offer a

greater resistance to compaction than the soft components of the system.

Lafer et al (1991) looked at the role of hard inclusions (150 um alumina particles)
in the compaction process of powder composite systems (18 and 35% volume
fraction of inclusions). These systems also had a nickel base superalloy as the
matrix powder (particle size 150 um)and were subject to HIP up to a pressure of
200 MPa, at a temperature of 1000°C. These workers suggested that their
macroscopic and microscopic results agreed with the work of Lange er al (1991),

even though the nature of the compaction processes was very different.



Lange ef al's idea of the formation of a continuous network of hard inclusions,
supporting part of the applied pressure was suggested by Lafer et al as the
explanation for the retardation of densification for the 35% inclusion system. The
experimental evidence presented for this case, broken alumina particles visible in
all samples of this system using SEM, is however inconclusive, since thermal

stresses may be responsible for such behaviour.

Bordia and Raj (1988) attempted to prove that HIP of ceramic/ceramic composites
could be performed at pressures> 10 MPa to produce dense and reliable products.
The experimental systems (3,9 and 15% alumina) of Bordia and Raj consisted of
hard alumina inclusions (size 20 to 37 wm) present in a titania matrix (size 20 to
37 um) subject to a temperature of 1273 K. The experiments however, were
conducted under uniaxial rather than isostatic compression and therefore, cannot be
strictly classified as HIP experiments. The thermal effects e.g. creep associated
with the high temperatures used in HIP studies will also affect the compaction

behaviour of the powder particles in these experiments.

2.3 Photoelastic disc experiments

Common laboratory tests do not give sufficient information on the mechanical
behaviour of granular material because elementary parameters of the granular
assembly, such as the components of internal stress and strain, cannot easily be
measured during complex loading. Therefore, models such as those of Heckel and
Kawakita (see section 2.1) have limited applicability to general powder systems, as
indicated earlier. If photoelastic material however, is used to model the powder,
direct measurement of internal contact stresses and strains can be achieved via a

variety of photoelasic techniques.

Schneebeli (1956) first developed a two-dimensional analogue of a granular matenal
using an assembly of 100 metal rods (radius 0.25 mm, length 40 mm). In
Schneebeli's test set-up only the displacements of the rods could be observed and
the internal stress distribution within the assembly was not analysed. Tests
executed with the Schneebeli model, in terms of general assembly mechanical
behaviour, have been reported by De Josselin de Jong (1959) and Drescher et al
(1967). De Josselin de Jong (1959) performed tests in simple shear on a

Schneebeli model of Plexiglas rods (length 5 cm, radius 1.5 mm).



Drescher et al (1967) looked at the plane motion of both a Schneebeli model of
Plexiglas cylinders (10 cm long, radius 1.2 to 1.9mm)and a sand system (particle
size 0.5 to 2 mm) subject to the indentation of a rigid wedge. The experimental
results were found to be in reasonably good agreement with Drescher et al's
theoretical prediction of the indentation force based on the theory of perfect
plasticity. The interpretation of tests results using the Schneebeli model however, is
not totally satisfactory, because the force distribution in the interior of the model
has to be inferred from the boundary conditions. Dantu (1957) therefore, suggested
the use of optically-sensitive material for the rods or discs in a Schneebeli-like
model in order that the forces in the discs could be determined. Dantu's study
aimed to produce a very basic understanding of the mechanism of stress
transmission within a granular medium subject to uniaxial compaction (up to 70
MPa). The granular medium used was a two-dimensional cohesionless ensemble
formed from Plexiglas cylinders (length 2 cm, radius 1 to 3 mm). Stress
transmission lines inside the assembly were clearly obtained by Dantu but no

quantitative analysis of the stress distribution pattern was performed.

Wakabayshi (1957) used Plexiglas photoelastic discs (radius 0.5 mm) in two-
dimensional stress distribution studies of uniaxial compaction (up to 50 MPa).
Wakabayshi was able to observe parallel lines in the direction of the principal
stresses within the assembly ('isochromatic principal stress lines’) due to the
optical properties of the discs. Wakabayshi (1959) performed further uniaxial
compaction studies and experiments involving indentation by a rigid wedge on the
same granular system. The constructive use of photoelastic techniques by
Wakabayshi allowed him to measure the forces in the interior of the disc
assembly, which was not performed by Dantu (1957), without using the
unsatisfactory procedure of determining the stress state from the boundaries.
However, attempts by Wakabayshi (1959) to evaluate the magnitude of the
principal stresses did not yield satisfactory results. Wakabayshi (1957,1959) also
did not attempt to analyse the interactions of the individual system components
and only considered the general stress distribution within the granular system. The
application of the techniques of Dantu and Wakabayshi has however, been used
by several investigators to investigate the fundamental behaviour of granular

material at the grain scale.

Drescher and de Josselin de Jong (1972) used the optically-sensitive particle
approach developed by Dantu (1957) and Wakabayshi (1957), to study the flow

rules for two-dimensional granular assemblies subject to shear testing.



The experimental assembly used by these workers consisted of 1200 discs of
CR-39 co-polymer (radius 4 to 10 mm) enclosed in a wedge-shaped area of 1755
em? between 6 mm thick glass plates that prevented the stack from buckling
sideways. The assembly was subject to shearing and viewed in circularly polarised
light, which allowed evaluation of the forces acting between discs. The
experimental approach and assembly was based on that adopted by de Josselin de
Jong and Verruijt (1969). Drescher and de Josselin de Jong calculated the
ensemble average stress tensor by averaging the contact forces over a region in
the interior of the assembly. Photographs of successive stages during a
deformation cycle allowed these workers to determine the relative displacements of
the individual discs. An average velocity-gradient tensor was then deduced for the
same assembly region for which the average stress tensor was determined. The
most important results produced by Drescher and de Josselin de Jong in terms of
the experimental work presented in chapters 5 to 9, involved qualitative analysis
of the contact force distribution network within their experimental assembly. A
discrete distribution of contact forces was observed in the test assembly (see
figure 2.7). Drescher and de Josselin de Jong believed that the forces transmitted
through the disc contact areas depended on the geometrical distribution of the
contacts between adjacent particles. Chains of aligned contact points were also
thought to form rigid columns of particles, which attracted large forces because of
their relative rigidity with respect to the surrounding particle groups. Drescher and
de Josselin de Jong put forward the reasonable suggestion that since the columns
of discs were created in a random fashion and the probability of producing a
chain of aligned particles was small, a discrete contact force distribution (as

observed in figure 2.7) was likely.

Figure 2.7 A network of contact forces [Thickness of lines proportional to
the magnitude of the transmitted forces]. (After Drescher and
de Josselin de Jong, 1972)
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The idea of an arrangement of discrete particle forces in an assembly is however,
very different to the more familiar concept of a continuous distribution of forces

inherent in the continuum concept of stress.

Oda and Konishi (1974) also performed work on two-dimensional, random
assemblies of photoelastic, epoxy resin cylinders (length 1.9 cm, radius 0.3 to 0.5
mm) subject to simple shear. Oda and Konishi reported in this paper that their
two-dimensional model tended to show the same macroscopic deformation and
strength characteristics as that obtained In tests on sand by Oda (1972a,b). The
number of sliding contacts during shearing in their cylinder assembly was found
to be small and confined to some preferred contact orientations. Oda and Konishi
(1974a) suggested that this limited number of sliding contacts was probably due
to the nature of the assembly deformation mechanism. They also thought that,
deformation of the assembly involved relative motion between instantaneously rigid
groups of particles and this suggested little particle sliding. This 'rigid groups of
particles' idea seems to be akin to the particle ‘columns’ suggestion of Drescher
and de Josselin de Jong (1972) as a qualitative microscopic model of particle
behaviour. Konishi et al (1982) employed the techniqueb of Oda and Konishi
(1974a) and used similar tests, but with oval shaped particles, to investigate the

effects of inherent assembly anisotropy due particle deposition.

Drescher (1976) and Allersma (1982) conducted shear experiments on optically
sensitive crushed glass (particle size 1 to 3 mm), since they believed that such
material resembled a real granular material more closely than assemblies of rods
and discs, as spherical particles are quite rare in nature. A system of crushed
glass particles is entirely opaque, because of the reflection and diffraction at the
particle faces. However, both Drescher and Allersma ensured that the particle pores
were fully saturated with a liquid having the same refractive index as the
particles, so that light traversing the masses was not deflected and their systems
became transparent to light. If external loads were applied to the assembly, the
interaction between particles in contact produced a stress state within each particle.
The stress state resulted in an optical effect visible in polarised light, because of
the birefringent property of the glass. This optical effect was also produced in the
photoelastic rod and disc assemblies which were mentioned earlier in this section.
The subjective nature of the analysis of these birefringence patterns casts some
doubt on the assembly principal stress directions determined in the tests
performed by Wakabayshi (1957,1959), Drescher and de Josselin de Jong (1972)
and Oda and Konishi (1974a), who all followed Wakabayshi's (1957) simple

analytical approach.
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The investigation of Drescher (1976) which aimed to compare the principal
directions of the stress and strain-increment tensors during shear testing also
required knowledge of the stress trajectories in the crushed glass assembly and
again used Wakabayshi's analytical approach. Drescher's results were found to be
quantitatively similar to those obtained by Drescher and de Josselin de Jong
(1972). Allersma (1982) developed a technique to optically measure the local stress
tensor within a specimen during his shear tests. He found from using such
crushed glass material that it was not possible to determine the microscopic
quantities associated with individual particles or particle contacts. This drawback
was due to the invisible nature of the actual particles and hence it was not
possible to make any reference to structure or the microscopic mechanisms of

deformation.

Properties of granular media have been found to depend not only on their
geometrical structure and intrinsic properties of the constitutive grains, but also,
often crucially, on the nature of the contacts between grains (Travers et al
(1986)). In an experimental photoelastic assembly, transmission of forces takes
place only through contacts and therefore, the nature of the contacts is important
in influencing the macroscopic mechanical behaviour of the assembly. Travers et d
(1987, 1989) studied uniaxial compaction of two-dimensional ordered packings of
parallel horizontal Plexiglas cylinders (length 2.5 cm, radius 2 mm). The system
was composed of 2136 cylinders i.e. 48 layers of (alternatively) 44 and 45
cylinders. It was assumed by Travers et al that all the geometrical defects in the
cylinders e.g. deformation along their axis, could be described as diameter
fluctuations and therefore, the diameter of the cylinders was chosen to be 4 = 0.1
mm. These geometrical defects were believed to responsible for the heterogeneity
of the stress network in the assembly. The macroscopic stress-strain law for the

assembly was found to be strongly non-linear and was written as:

—F— = (Al-l-\ (2.30)
Fo \ho/

where F is the macroscopic force, hp the initial height of the packing and Ah its
decrement when force F is applied, Fy is a prefactor and m is the experimental
macroscopic exponent. The value of m was found to be m =39 = 0.3 from
Travers et als' (1987,1989) results. The discrepancy between this macroscopic
value of m and the microscopic value of m =3/2 from Hertz's law (see Johnson,
1985) was thought by Travers er al to be attributed to geometrical heterogeneities

of the cylinders in the assembly.
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This idea may be acceptable, since Travers ef al (1989) performed further
experiments on their Plexiglas cylinder assembly and found that a better surface
state on a second assembly of Plexiglas cylinders gave a value of m =3.5 = 0.4,
closer to the Hertz exponent value.In an assembly of rubber cylinders, where the
deformation of the cylinders was much larger than the scale of the
inhomogeneities, the measured exponent /m = 1.4 = 0.1 was compatible with the
Hertz exponent. The work of Drescher and de Josselin de Jong (1972) indicated
that the strongest stresses in the assembly formed links which are more or less
connected. Travers ef al aimed to show in their work that the macroscopic stress-
strain law represented by (2.30) was very sensitive to the strongest-stressed

network visualised in previous photoelastic work.

Travers et al (1987) found that they could create lattice vacancies, by random
removal of cylinders under compression, and the neighbouring cylinders would
still remain in equilibrium. These workers believed that such behaviour was
observed because the assembly was almost ordered and the inter-grain friction was
not negligible. Therefore, they created successively three kinds of vacancies in their
assembly to show the geometrical sensitivity of the macroscopic stress-strain law.
The mechanical behaviour of these systems is shown in figure 2.8. The first
vacancy type were bright vacancies i.e. the cylinders removed were the nodes of

the strongest-stressed network as seen in photoelastic analysis.
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(After Travers el al , 1987)
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The second type were dark vacancies i.e. the cylinders removed were not part of
the strongest-stressed network. The final type were pseudo-random vacancies,
where the site of the vacancy was determined from a random number program,
irrespective of the contact force. However, direct visual observation by Travers et
al of systems generated with any of these three types of vacancy indicated little
difference between the systems.In the assembly with bright vacancies m shows a
strong variation with vacancy concentration, which indicates that the strongest-
stressed network is mechanically important. Travers e als' work also showed the
importance of the heterogeneity of the spatial distribution of stresses between the
erains. These workers suggested that the lack of influence of dark vacancies in
the stress-strain law (see figure (2.8)) strengthens the concept of mechanical
porosity as opposed to geometrical porosity (ratio of the assembly void volume to
the total volume)in determination of the mechanical behaviour. Mechanical porosity
was considered by Travers er al to take account of the volume of cylinders not
involved in the assembly stress network i.e. those cylinders not transmitting
stresses. Travers er al (1989) also found that besides this contact disorder,
orientational order affected the mechanical behaviour of their experimental systems.
The use of such studies on regularly packed, homogeneously elastic experimental
assemblies in describing the mechanical behaviour of real, heterogeneous, randomly

packed real particle systems must however be treated with caution.

The concepts of percolation theory (reviewed in chapter 3) have been used by a
number of workers in the analysis of the heterogeneity of contacts I1n two-
dimensional experimental assemblies of elastic discs and cylinders. Geometrical
heterogeneities in elastic assemblies were investigated by Travers el al (1987,
1989) in terms of the concepts of normal macroscopic mechanical analysis. Travers
et al (1986) however, looked at the effect of compositional heterogeneities arising
from two-dimensional Schneebeli models consisting of binary mixtures of hard
and soft cylinders, in terms of percolation concepts. The mixtures studied were
composed of Plexiglas (proportion p) and rubber (proportion /-p) cylinders (diameter
4 + 0.1 mm, length 2.5 cm). The ratio between the bulk Young moduli was -~
2000, the rubber selected being hard enough to avoid initial strains under gravity
and the Plexiglas being selected for its photoelastic properties. The assembly
packing structure and size was the same as that used in Travers et al (1987,
1989). The experiments involved low speed uniaxial compaction (g =45 x 107%).
A vertical displacement Ah was imposed on the assembly and the corresponding
compressive force F (0 to 2000 N) was measured. Several pressure cycles were

performed until reproducible results were obtained.
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The force-displacement relationship for the compression of the assemblies, when
reproducibility of results was attained, was found by Travers er al (1986) to be
that expressed by (2.30). The values of m and £y in (2.30) were found to be m ~
1.4+«0.1 and Fy~4x 10* N for an assembly where p =0 (pure rubber) and m ~
3.9+ 0.3 and Fy~ 10" N for a pure Plexiglas assembly (p =1). The externally
applied cylinder deformation was much larger than the scale of the geometrical
inhomogencitics for the rubber cylinders and Travers ez al (1986) believed that
this geometrical inhomogeneity was responsible for the valuc of m closc to the
Hertzian exponent when p = 0. The force-displacement rclationships for these

assemblies are presented in figure 2.9.
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Figure 2.9 Force-displacement (log-log scale) for packings of 48 x 44
Plexiglas or rubber cylinders.  (After Travers el al, 1986)

Travers ef al (1986) observed a power law dependence represented by (2.30) for

all the mixtures studied (0 =< p = 1). The variation of the two quantities m and Fp
p=i q

with composition p were also examined and are presented in figures 2.10 and

2.11 respectively.



1 ¥ v T |

0.0 0.2 0.4 0.6 0.8 1.0

p - Fraction of Plexiglas cylinders
in Assembly

Figure 2.10 Relationship between the exponent /m and the proportion of
hard cylinders in the assembly. (After Travers ef al , 1986)

1.0
0.8 L]

S -t

logl0 (Fo) ¢
[}
B E- ]

0.4 8
0.2 M T * T v T ¥ Y

0.0 0.2 0.4 0.6 0.8 1.0

p - Fraction of Plexiglas cylinders
in Assembly

Figure 2.11 Relationship between the prefactor F, (log)o values) and the
proportion of hard cylinders in the assembly.
(After Travers er al, 1986)

66



The values of m and logig(Fp ) used were average values obtained from
measurements on at least three separate samples. Figure 2.10 shows a break in
the slope at p=0.7 whilst figure 2.11 shows a weak break at p=0.5 and a
stronger one at p=0.7. It should be noted that, the interpretation of a change in
the slope of both figures 2.10 and 2.11 at particular value of p by Travers ef al
is very subjective. Troadec et al (1991) and Oger ef al (1991) however, claim
similar results in virtual copies of Travers et als'(1987) experiment. Travers ef al
(1986) suggest that this apparent difference in mechanical behaviour above and
below p~0.7 can be explained by a percolation-type transition (see chapter 3).
This value of p is said to correspond to a rigidity threshold p, where the
assembly is stable against the macroscopic external force. Travers ef al claimed
that the value of p, is comparable with the central-force elastic percolation
threshold peen = 0.65 = 0.005 obtained by Lemieux et al (1985)on a triangular
elastic lattice (see section 3.5),as a justification for the location of this transition
point. Troadec et al (1991) claimed that the weak break in the slope of figure 2.11
at p=0.5 corresponded to the geometric percolation threshold (see chapter 3). This
threshold is a comnectivity threshold and would represent the point where an
infinite cluster of cylinders carrying stresses first spans the dimensions of the
assembly. Further experimental results are required however, before the location of
such connectivity and rigidity transition points can be quantitatively and
qualitatively confirmed. Travers e/ al (1986) and Troadec et al (1991) believed that
the strongest-stressed network of particles suggested by Drescher and de Josselin
de Jong (1972) was represented by an 'infinite’ percolating cluster of purely hard
cylinders from photoelastic analysis of various assemblies and that this cluster
supports the externally applied force. However, it was not possible to analyse the
stress network in the soft cylinders using photoelastic techniques, which suggests

that Troadec et al and Travers et al's conclusion may be incorrect.

Roux (1991) performed a theoretical analysis of the work of Travers el al (1986),
Troadec et al (1991) and Oger et al (1991) in terms of percolation theory. He
suggested that, since the structure of the contact networks at the supposed critical
points was denser than a single path (observed from the photoelastic analysis
undertaken by these workers), then the distribution of contact deformation would
be expected to be multifractal (see section 3.4). This suggestion however, has not
been tested numerically or experimentally. He also believed that in three
dimensions, random close packing would be the most probable packing structure,
if no long range interactions affected the construction of the stress-carrying

network.
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Roux believed that the same qualitative behaviour i.e.a critical point but with
different critical exponents (see section 3.2), would be observed if a three-
dimensional version of Travers er als' (1986) two-dimensional assembly was

tested. No experimental evidence however, was offered to justify such a belief.

The use of percolation concepts in analysing the heterogeneity of contacts has
also been employed in the study of the electrical conductivity of conducting
grains. Packings of such conducting grains may be poorly conducting (or
insulating) because of an insufficient number or quality of contacts. Percolation
theory can provide an approximate criterion of continuity and by using random
binary mixtures of conducting and insulating spheres workers such as Clerc ef al
(1980), Oger et al (1986) and Ammi er al (1988) have investigated this criterion
more precisely. These workers discovered that there was a non-linear macroscopic
response for the dependence of conductivity with pressure. The response was
believed to correspond to a continuous increase in the average number of 'good'
electrical contacts as the pressure applied to the granular system was increased.
The definition of 'active' contacts in this case however, may be different from the
mechanical one since a finite pressure may be required to break the insulating
layers between grains before conduction can occur. The interpretation of
mechanical (or electrical) experiments using relatively small assemblies of cylinders
or spheres, in terms of the behaviour of real granular systems containing millions
of particles, must be viewed with some caution. Finite size effects and wall effects
may be present at the same time e.g. Ammi ef al (1988). The relative importance
of such effects will however depend on the global configuration of the cylinder

or disc packing.

2.4 Computer simulation

Computer simulation techniques involving numerical models of assemblies of discs
and spheres are now widely used in the analysis of the internal stresses and
strains in granular media. Numerical modelling is more flexible than analytical
modelling and has the advantage over physical modelling (described in section
2.3)in that any data is accessible at any stage of a test. The flexibility of
numerical modelling extends to different loading configurations, particle sizes, size

distributions and physical properties of the particles.
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Bouvard and Lange (1991) used a computer model based on the work of Auvinet
(1972) to study the affect of inclusion connectivity on the densification behaviour
of a matrix powder in three dimensions. Differentiation between matrix and
inclusion particles was achieved via a size difference. A minimum size ratio of
1:3 (matnix particle: inclusion) was selected to achieve a significant number of large
particles at small volume fractions of large particles. This work was stimulated by
the experimental studies of Lange er a/ (1991) and Lafer et al (1991) on the
affects of hard inclusions on the densification behaviour of real particle systems
(see section 2.2). Bouvard and Lange found from their simulation experiments that
the critical volume fraction of inclusions required to form the first percolative

cluster strongly depended on the inclusion to matrix size ratio (see figure 2.12).
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Figure 2.12 Relationship between the fraction of inclusions in a percolating
cluster and the volume fraction of inclusions in the assembly
(After Bouvard and Lange, 1991)

The parameter R in figure 2.12 is the ratio of the matrix particle radius r,, to the

inclusion particle radius r; 1.e. R=ry, /7.
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Bouvard and Lange, using the suggestions of Lange er al and Lafer er al, stated
that it was the inclusion percolative network that supported an increasing fraction
of the applied pressure as the volume fraction of inclusions in the assembly was
increased. Bouvard and Lange however, performed simulation studies on particle
systems without the contrast in matrix/inclusion particle material properties used
by these experimental workers and they offered no conclusive evidence, from their
computer simulation studies, te justify such a statement. Bouvard and Lange found
a more useful way of representing their data in terms of composite processing by
plotting P, the fraction of inclusions within a percolative cluster (obtained from
the computer model)as a function of inclusion connectivity expressed as Z;;, the
average co-ordination number for inclusions touching one another (also obtained
from the model). A plot of P, against Z;; reduces all the data to one master curve
independent of size ratio R, and this curve is shown in figure 2.13. The figure
indicates that a percolation-type threshold corresponds to Z;; = 2 and Z;; = 4
characterises the complete connectivity of all inclusions (P. = 1). The position of
the percolation threshold supports Bouvard and Lange's theoretical argument that,
when one of a number of clusters first spans the simulation volume, Z;; is
expected to have an average value of 2. However, these workers used numerically
simulated samples of limited size and therefore, found 1t difficult to identify the

position of the percolation threshold with any precision.

1.0

@
£ 0.8
=
] ]

w
232
2° 0.6 4
3 o R=1
o35
Ea R=05
58 0.4 R=033
=z & R=2
3 R=3
>3
k-
™
= 0.2
o
=

0.0 - T
1 2 3 4

Zii - Inclusion-Inclusion Co-ordinadon
Nuamber

Figure 2.13 The relationship between the fraction of inclusions in the
percolating cluster and the inclusion-inclusion co-ordination
number. (After Bouvard and Lange, 1991)



Bouvard and Lange (1991) claimed that their computer model was designed to
simulate the random packing of spherical particles, with any given size
distribution, inside a cube. A number of conditions however, were imposed on the
particle generation routine e.g. each generated particle had to have three particle
contacts with previously packed particles before it was considered to be stable.
The use of such conditions suggests that the use of the term random generation
is incorrect. The model used by Bouvard and Lange also incorporated the use of
walls and therefore, wall effects would affect the simulation results. The use of a
peniodic solution-space (see section 4.1) in the numerical experiments presented in
this thesis eliminates such wall effect problems. Bouvard and Lange also
mentioned that the restricted range in size ratio (0.33 < R < 3) used in their study
(due to computer capability) may limit the practical application of their work. Their
work 1s however, useful in providing an initial qualitative and quantitative

approach to the percolation-based study of binary powder systems.

Sintered bodies often consist of a composite of sintering particles and non
sintering Aard inclusions. Although sintering is a thermally-based deformation
process it is still useful to study the application of percolation-based techniques in
computer simulation studies of this area. This is because the transition-like
mechanical behaviour observed in a binary particle assembly as the composition is
altered during uniform sintering e.g. Jagota and Scherer (1993) may, to a certain
extent, be qualitatively akin to the behaviour of a binary system subject to
deformation during isotropic compaction. Jagota and Scherer (1993) looked at the
effective sintering rates and viscosities of two-dimensional granular composites
using discrete computational models. The composites studied consisted of randomly
mixed Aard and soft spheres on a triangular lattice. Conceptually, the computational
models consisted of replacing the packing of particles by a network of links
(interparticle contacts) and nodes (particles). The deformation of the particle packing
was computed by imposing requirements of quasi-static equilibrium on the
particles. Two distinct models were employed: the russ model in which only force
equilibrium was enforced for each particle and the beam model in which force
and moment equilibrium are enforced for each particle. The composites are
obtained by starting with a triangular lattice fully occupied by soft spheres. These
spheres were then replaced randomly by hard spheres and the effective uniaxial
viscosities and sintering rates s of the composite were computed as a site
fraction vy of the hard spheres. The effective uniaxial viscosities were determined

in the computational model by simulating compression of the packing along the z

axis and setting s =0 for all spheres.
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Two types of hard-hard particle interactions were studied: bonded and sliding. The
bonded case was intended to correspond to sintering inclusions and the sliding
case to non-sintering inclusions. In both cases hard-hard contacts were specified in
the computer models of Jagota and Scherer to be far more resistant to
deformation along the contact normal compared to soft-soft contacts and the ratio
of the contact viscosities was set as:

hh

Ky
S8

Ha

= 1x10'" (2.31)

N

where thh and u,’° are the contact viscosities between hard-hard and soft-soft

spheres respectively in the normal direction. The following relationship was also

developed by Jagota and Scherer to determine w,’’:
u,” =3naR*Ja (2.32)

where 7 is the viscosity of the soft particles themselves, a is the normalised
contact area a =r.°/R?, r. is the contact radius and R is the particle radius. Jagota

and Scherer also used the following relationship in their computer model:

SS ILLI'ISS
we = 3

(2.33)

 is the tangential viscosity between soft-soft contacts. In the bonded

h

where u,’°
case the tangential viscosity between hard-hard contacts y;h was large i.e. larger
than @ by a factor of 10'2 This high value of /" allowed the hard-hard

contacts to resist sliding and rotational deformation. However, in the sliding case

hhand p** was low i.e.a value of 1.0,to allow such sliding

this ratio between u;
deformation to occur. Jagota and Scherer (1993) stated that contacts between hard
and soft spheres were assigned viscosities by the computer model which were a
series combination of the hard-hard and soft-soft viscosities, but did not provide

any values in their paper.

Simulations were conducted for different sized packings i.e. from (20x20 particles)
to (80x80 particles). These simulations were used to compute the effect of
increasing fractions of hard inclusions. Jagota and Scherer found that the effective
properties of their two-dimensional composite packings were characterised chiefly

by the occurrence of a rigidity threshold.
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The effective viscosities were found to scale with the viscosity of the soft
particles for fractions of hard particles less than the threshold (see figure 2.14).
The viscosities shown in figures 2.14 and 2.15 were normalised to the uniaxial

viscosity of the packing with zero fraction of hard spheres.
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Figure 2.14 The relationship between the effective umaxial viscosity and
the site fraction of hard spheres below the rigidity thresholds
for the different assembly models.

(After Jagota and Scherer, 1991)

When the hard-hard contacts were bonded, the rigidity threshold was found to
correspond with the site percolation threshold on a triangular lattice i.e.a site
fraction of 0.5 (see Stauffer, 1992). In this bonded case, before the hard spheres
have percolated, the hard spheres exist in clusters completely surrounded by soft
spheres and therefore, the effective properties of the composite are controlled by
the soft phase. After the hard spheres have percolated, there exists a continuous
cluster of hard spheres that transmits the load and at this point, the effective
properties of the particle assembly are governed by the hard phase. Therefore, site
percolation (see section 3.1)is necessary for rigidity and it would be expected that

the two thresholds are close.
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However, in the experimental work of Lange er al (1991), where the relatively
rigid steel particles were presumably not bonded, the rigidity threshold was not

found to occur at the site percolation threshold.
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Figure 2.15 The relationship between the effective uniaxial viscosity and
the site fraction of hard spheres above the rigidity thresholds
for the different assembly models.

(After Jagota and Scherer, 1993)

When the hard-hard contacts were sliding, the rigidity threshold was found to
occur at a high volume fraction i.e. the site fraction value was now = 0.7, which
closely matched the value obtained in the photoelastic work of Troadec er al
(1991). It can be argued that rigidity would only precede the geometrical event in
finite lattices, because of the extra constraints provided by the edges of the
lattices. However, because rigidity came after the associated percolation event, in

the case of sliding contacts, the correlation between the two thresholds may not

be exact.
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Jagota (1993) developed the two-dimensional model of Jagota and Scherer (1993) to
study the sintering behaviour of three-dimensional monosized binary assemblies of
hard and soft spheres. Jagota used a computer-generated random packing of 1146
spheres and adopted the simulation procedure used in the two-dimensional
situation outlined in Jagota and Scherer (1993). In all this three-dimensional,
simulation work, Jagota found soft-to-hard transitions In behaviour qualitatively
similar to his two-dimensional studies presented earlier. The quantitative nature of
the transitions however varied from the two-dimensional case, due largely to the
change in dimensioni.e.in the bonded case the threshold value of v, was now =
032 and in the sliding case the transition was much higher (vy= 1). The values
of v/ indicate when the generated assembly first becomes mechanically stable. The
value of v close to unity, obtained in the sliding case, indicates a probable break
down in the computer model used by Jagota. This unity value for vy would
suggest that the randomly generated packing was unstable and that the indication
of rigidity was only detected because of the physical constraints provided by the

vertical faces of the assembly on the assembly particles.

Jagota and Scherer suggest that their results, in both two and three-dimensions,
apply equally well to a composite of elastic spheres with linear springs
representing the contacts, because of the mathematical analogy between linear
viscous and linear elastic deformations. They also suggest that similar problems
have been solved for the effective elastic properties of percolating clusters e.g.
Feng and Sen (1984) although the emphasis there is usually on bond (or link)
percolation (see section 3.5).They therefore, believe that their results can be applied
to the study of elastic percolating networks. Jagota and Scherer however, admit
that the quantitative nature of the thresholds obtained for their work are different

from those obtained by bond percolation studies.

A number of other numerical models have been developed to describe granular
systems e€.¢g. Auvinet (1972), Powell (1980), Suzuki and Oshima (1983), Pflueger
(1988), but it is the distinct element method (DEM) originated by Cundall (1971)
that is now widely used in numerical simulation studies. Cundall (1971) initially
developed the distinct element method to analyse rock mechanics problems i.e. the
progressive failure of rock slopes by simulating a discrete system of two-
dimensional rigid blocks. The DEM computer algorithms used by Cundall were
then developed further, Cundall and Strack (1979a), to allow modelling of a two-

dimensional system of discs using the BALL program.

75




The validation of BALL was provided in Cundall and Strack (1979b), where the
force vector diagrams determined numerically, closely resembled those obtained
photoelastically by de Josselin de Jong and Verruijt (1969). The aim behind the
BALL program was to allow observation of the microfeatures of idealised
granular assemblies, in order to aid development of a general constitutive model
e.g. Cundall er al (1982), Cundall and Strack (1983). Modified versions of BALL
were used for the same purpose by Thornton and Barnes (1986), Thornton (1987)
and Bathurst and Rothenburg (1989) amongst others. The BALL program formed
the basis of the TRUBAL program developed by Cundall and Strack (1979a).
TRUBAL was designed to model the mechanical behaviour of three-dimensional
(3D) assemblies of spheres. The present nature of the TRUBAL program will be
examined in chapter 4 and it should be noted that a two-dimensional (2D) mode
of operation is available for use in simulation work. Validation of the TRUBAL
code was reported by Cundall (1988) and Zhang and Cundall (1989). Cundall
(1988) for example, performed several three-dimensional numerical triaxial
compression experiments on glass particle assemblies (54 spheres) consisting of
two sizes (0.1825 mm and 0.1075 mm). In general Cundall found that his
numerical results qualitatively agreed with physical results obtained by Chen er d
(1988), who performed physical experiments using similar assemblies and

conditions.

Gherbi er al (1993) used an apparently unmodified version of Cundall's 1979
TRUBAL code to perform 2D numerical experiments on a Schneebeli assembly of
1000 P.V.C. cylinders (radius 1 to 2 mm) subject to isotropic compression (up to
41 kPa). The aim of this work was to reproduce the distribution of average
contact force per particle observed by experiment, using a similar Schneebeli
assembly and conditions. Gherbi er al claimed that their numerical and
experimental results agreed both with each other and with a gamma distribution
(see Burr, 1974) to a reasonable extent. No detailed statistical analysis of the
contact force distributions was, however, presented by these workers. Modified
versions of TRUBAL in 2D have also been utilised in the work of Trent (1988),
Cundall (1989a) and Ng and Dobry (1992).

A modified version of the TRUBAL code (see chapter 4) has been used at Aston
for simulation work on a variety of particle system problems. The areas of
investigation have included the identification of fracture and fragmentation
processes during the computer simulated impact of agglomerates, Kafui and
Thornton (1993), and a study of the elastic-plastic impact of fine particles with a
surface, by Ning and Thomnton (1993).

76




Studies using the Aston version of TRUBAL also included, the modelling of wet
particle systems in agglomerate collisions, Lian ef al (1993) and three-dimensional
computer simulated axisymmetric compression of 3620 sphere systems composed
of five different sizes, by Thornton and Sun (1993). A modified version of
Thornton and Suns' particle assembly,to represent a binary system of hard and
soft spheres, was used in the simulation work described in chapter 9. After initial
generation, this assembly was subjected to isotropic compression (¢ =10% and a
servo-control (se,;caﬁsction 4.8.2) was periodically introduced to maintain a desired
stress level of juntil the solid fraction and co-ordination number had attained
constant values and a quasi-equilibrium state had been achieved. Shear tests on
both dense (initial solid fraction 0.660) and loose systems (initial solid fraction
0.618) were then performed by Thornton and Sun at a stress level of o= 100
kPa and compared with real experiments. These workers found that the stress-
strain relationship obtained from the equilibrium states, produced using the servo-
control, was a power law with an exponent of 3/2. The value of this exponent
was also the same as that predicted by the theoretical Hertzian normal force-

displacement law at the contacts (see Johnson, 1985).
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Chapter 3

Percolation concepts
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3.1 Introduction

Percolation theory is a development from the field of statistical physics and is
used in the representation of simple models of disordered systems. The work is
therefore of use in the qualitative analysis of the disordered systems represented
by random packings of granular materials. The initial idea of percolation was
presented by Broadbent and Hammersley (1957), who considered the general
situation of random spreading of a 'fluid' through a 'medium'. The interpretation
of the terms 'fluid' and 'medium' are dependent on the context of the situation.
The randomness of the spreading was of two types. The first type involved
familiar diffusion processes where the randomness evolved from the random
walks of the 'fluid' particles. The other type involves randomness frozen into the
'medium’' itself e.g. the geometrical structure of a random particle packing and
this was termed a percolating process by Hammersley. A diffusing particle may
eventually reach any position in the 'medium'. Percolation processes differ from
diffusion processes because the process is confined to a finite region before a

threshold concentration is reached (the percolation threshold or  critical
concentration) .

The percolation problem can be most readily illustrated using two-dimensional
percolation on a square lattice. All the sites on the lattice can be occupied
randomly with a probability p or can be empty with a probability /-p. The
occupied and empty sites may stand for very different physical properties. A
simple physical assumption could be that the occupied sites are conductors, the
empty sites are insulators and that electrical current can flow only between nearest
neighbour conduction sites. If the value of p is low, the conductor sites are
isolated or form small clusters of nearest neighbour sites (see figure 3.la). Two
conductors belong to the same cluster if they are connected by a path of nearest
neighbour conductor sites and a current can flow between the two sites. At low p
values the mixture is an insulator, since a conducting path connecting opposite
edges of the lattice does not exist. At large p values however there are many
conduction paths between opposite edges of the lattice existing where electrical
current can flow and the mixture is thus a conductor. At a concentration in
between these values a threshold concentration p. may therefore exist, where for
the first time electrical current can percolate from one lattice edge to the other (see

figure 3.1b). Above p. we have an conductor, below p. we have an insulator.
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This threshold concentration can be considered to be the percolation threshold for
the system.
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Figure 3.1 A two-dimensional square lattice showing occupation of lattice
sites by conductors (black dots): A) View of lattice at value of p
below p. B) View of lattice at value of p above p.

The example presented above relates to site percolation where the sites of a lattice
have been randomly occupied. Bond percolation refers to the situation when the
bonds between the sites are randomly occupied (see Stauffer, 1992).The definitions
of site and bond percolation on a square lattice have been generalised to any
lattice in d-dimensions. Two occupied bonds belong to the same cluster if they
are connected by a path of occupied bonds. The critical concentration of bonds
separates a phase of finite clusters of bonds from a phase with an infinite cluster
(see figure 3.2). An example of hond percolation in a physical system is a
random resistor network, where the metallic wires in a regular network are cut
randomly with a probability g = /-p. The threshold probability ¢g. separates a

conductive phase at low g from an insulating phase at large g.
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Figure 3.2 Random resistor network on a two-dimensional lattice.

Continuum percolation is probably the most natural example of percolation. In this
case the positions of the two components of a random mixture are not limited to
the discrete sites of a regular lattice. A simple example, continuing the electrical
analogy, is a sheet of conductive material which contains circular holes punched
randomly into it. The relevant quantity is now the fraction p of remaining
conductive material. This model of continuous percolation is called the Swiss
cheese model (see Halperin ef al. 1985), due to its similanty to a Swiss cheese
(see figure 3.3). Models to describe sandstone and other porous materials, where
the size of the spheres can also vary, use a similar approach (see Elam er al,
1984).
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Figure 3.3 Swiss Cheese model of continuum percolation
(black regions represent holes).

The concepts of percolation theory can be applied to a wide range of physical
systems. An example from biology is the spreading of an infectious disease. In its
most simple form, the disease starts with one individual, who can infect his
nearest neighbours with probability p in one time step.In the next time step the
infected neighbours can infect in tumn their (previously) uninfected neighbours, and
the process will continue. The critical concentration in this example separatés a
phase at low p where the disease will not spread after a finite number of time
steps from a phase where the di<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>