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Summary

Manufacturing firms are driven by competitive pressures to continually improve the
effectiveness and efficiency of their organisations. For this reason, manufacturing
engineers often implement changes to existing processes, or design new production
facilities, with the expectation of making further gains in manufacturing system
performance. This thesis relates to how the likely outcome of this type of decision
should be predicted prior to its implementation.

The thesis argues that since manufacturing systems must also interact with many other
parts of an organisation, the expected performance improvements can often be
significantly hampered by constraints that arise elsewhere in the business. As a result,
decision-makers should attempt to predict just how well a proposed design will
perform when these other factors, or ‘support departments’, are taken into
consideration. However, the thesis also demonstrates that, in practice, where
quantitative analysis is used to evaluate design decisions, the analysis model invariably
ignores the potential impact of support functions on a system’s overall performance. A
more comprehensive modelling approach is therefore required.

A study of how various business functions interact establishes that to properly
represent the kind of delays that give rise to support department constraints, a model
should actually portray the dynamic and stochastic behaviour of entities in both the
manufacturing and non-manufacturing aspects of a business. This implies that
computer simulation be used to model design decisions but current simulation software
does not provide a sufficient range of functionality to enable the behaviour of all of
these entities to be represented in this way. The main objective of the research has
therefore been the development of a new simulator that will overcome limitations of
existing software and so enable decision-makers to conduct a more holistic evaluation
of design decisions.

It is argued that the application of object-oriented techniques offers a potentially better
way of fulfilling both the functional and ease-of-use issues relating to development of
the new simulator. An object-oriented analysis and design of the system, called
WBS/Office, are therefore presented that extends to modelling a firm’s administrative
and other support activities in the context of the manufacturing system design process.
A particularly novel feature of the design is the ability for decision-makers to model
how a firm’s specific information and document processing requirements might
hamper shop-floor performance. The simulator is primarily intended for modelling
make-to-order batch manufacturing systems and the thesis presents example models
created using a working version of WBS/Office that demonstrate the feasibility of
using the system to analyse manufacturing system designs in this way.

Keywords: Manufacturing System Design, Simulation, Administration, Object-
Oriented, Office Modelling
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1. Introduction

The work described in this thesis relates to the development of a computer simulation
tool that will help manufacturing system designers to evaluate how administrative and
other activities might constrain the performance of a production system. This chapter
will first comment on some important aspects of the terminology used within the thesis
and will then introduce the wider context within which the research has been carried
out. In addition, the general format of the thesis and of subsequent chapters will be

outlined.

1.1 The Thesis

The thesis examines the provision of a computer simulation tool to assist in the design
and analysis of production systems. Manufacturing firms are driven by competitive
pressures to continually improve the effectiveness and efficiency of their organisations
(Hill, 1993; Bennett & Forrester, 1993). For this reason, manufacturing engineers
often implement changes to existing processes, or design new production facilities,
with the expectation of making further gains in manufacturing system performance.
However, since these systems must also interact with many other parts of an
organisation, the expected performance improvements can often be hampered by
constraints that arise elsewhere in the business. As a result, engineers need to be able
to predict just how well a proposed design will perform when these other factors are

taken into consideration.

While simulation tools are already used by designers to evaluate alternative
manufacturing system configurations, this type of analysis invariably ignores the
potential impact of support functions on a system’s overall performance. Furthermore,
current simulation software does not provide a sufficient range of functionality to be
able to assess these effects properly. A working object-oriented simulator has
therefore been constructed that will overcome this limitation of existing software in

order to improve the manufacturing system design process.

1.2 A Note on Terminology

The vocabulary used to describe different aspects of a manufacturing organisation is

11



likely to vary significantly, depending on a particular author’s objective and
perspective on this type of business. When discussing manufacturing issues, it is
therefore important to understand the context within which an author refers to different

aspects of an organisation.

Since this thesis is presented from a manufacturing system design perspective, the
terms manufacturing function and shop-floor will be used inter-changeably, referring
explicitly to those elements of a business most directly involved in the production of
goods.  These elements are likely to be physically located within a firm’s
manufacturing facility and will include, for example, parts, machines, people, material-
handling devices and so on. In addition, the terms support function, support
department and non-manufacturing function will also be used inter-changeably but will
refer to all those other elements not physically located in the manufacturing facility and
therefore not directly involved in the production of goods. For example, these
elements might include functions such as stores, purchasing, finance, sales order

processing and so on. More specific examples will be introduced later.

Importantly, however, the terminology is not intended to imply that the relative
significance of manufacturing or ‘direct’ functions is perceived differently to that of
‘indirect’ functions. It is simply a convenient way of grouping together those elements

of business that the author will deal with in a similar way.

1.3 Background To Thesis

The research described in the thesis has been conducted within the context of a broader
research agenda proposed by Love et al. (1992). The proposal has formed the basis of
work carried out by the Integrated Design and Manufacture Research Group within the
Aston Business School. The group’s objective is to develop a software tool that
satisfies the requirements for a Whole Business Simulator (WBS). For a fuller account
of WBS the reader is referred to Barton et al. (1992) and Love & Barton (1993); the
following discussion refers only to those aspects of the system that relate directly to

this thesis.

In their paper, Love et al. (1992) demonstrate that product design and manufacturing

system design decisions will have a significant impact on the financial performance of
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any business. For this reason, WBS is proposed as a novel modelling tool that will
predict how the business is likely to perform financially if a particular engineering
decision or design were to be implemented. The tool will allow decision-makers to
test the likely consequences of alternative proposals without disturbing the real
business. The most appropriate design or operational change can then be implemented
in the real business with a better understanding of the likely financial performance that

the company might achieve as a consequence.

WBS overcomes at least two deficiencies of other modelling tools. Firstly, the scope
of models created using other tools tends to be limited to manufacturing functions,
with indirect functions usually being ignored. Secondly, where other tools do extend
to modelling non-manufacturing functions, many aspects of the business tend to be
représented in a very abstract or simplistic way. The consequences of evaluating
engineering decisions using these restricted modelling tools will be discussed in more
detail in a later chapter. WBS will, however, include both the manufacturing and non-

manufacturing elements of a business within the same simulation model:

“The scope of WBS would extend to a least design, process planning,
production control, manufacturing operations, sales, purchasing and

accounts.”

Love et al. (1992)

Some aspects of WBS have already been developed. Ball (1994), for example, has
developed the Advanced Factory Simulator. This application enables the physical
aspects of a manufacturing system to be modelled. Boughton (1995) has developed
WBS/Control which enables alternative manufacturing planning and control systems to
be modelled. WBS/Control can be combined with the Advanced Factory Simulator to
produce a single model of a manufacturing system that includes its planning and
control system. This allows a more comprehensive prediction of the effects of
engineering decisions on manufacturing functions than would otherwise be possible if

the physical manufacturing system alone were modelled.

Nevertheless, the Advanced Factory Simulator and WBS/Control are still both limited
to modelling only manufacturing functions, support functions are ignored. The

original WBS concept, proposed by Love et al. (1992), suggests that support functions
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might simply be represented using real company software systems normally associated
with that type of activity. For example, an accounts department might be represented
in WBS by an actual financial accounting system, or a production engineering
department represented by an actual computer-aided-process-planning (CAPP) system.
However, demonstrating the feasibility of a necessary and more comprehensive
approach to modelling non-manufacturing or support functions will form the subject of

this thesis.

1.4 Structure of the Thesis

It will be demonstrated that such is the nature and frequency of interactions between a
manufacturing system and its supporting functions, that simply representing each
support activity using a corresponding software package is too simplistic. Predicting
the wider business implications of manufacturing system design decisions requires a
more comprehensive understanding of the delays and constraints that will be imposed
on shop-floor facility by support functions. These functions will also be shown to
account for a significant proportion of total business costs. The concept of using a
simulation approach to model support functions will therefore be introduced; that is,
modelling support departments in the same way as manufacturing functions are
presently modelled. Establishing this novel but necessary application of simulation

represents the first part of the thesis.

The problem then becomes the provision of appropriate simulation elements to model
the support functions within a business and to integrate those elements with models of
the manufacturing functions. It will be demonstrated that none of the many tools
currently available provide the necessary range of functionality to cater for this
application of simulation. Existing tools either lack the scope to model support
departments at all, or do so in such a simplistic way that the interactions between
different elements of the business cannot be modelled properly. The purpose of the
second part of this thesis is therefore to present the design of a new simulation tool,
WBS/Office.  The implementation of this new design will then be shown to
demonstrate the feasibility of simulating support departments in the context of the
manufacturing system design process. A more detailed account of subsequent chapters

follows.

14



Chapter 2 will begin the first part of the thesis by examining the role of support
activities within a manufacturing business. The discussion will commence by
developing the brief comments made earlier in this chapter to provide a more definitive
statement of what is meant by the term ‘support function’. The influence that these
functions have on the performance of a manufacturing system, and ultimately on
overall business performance, will then be demonstrated. This happens as a result of
the many interactions that are required to operate and control a typical production

system.

Chapter 3 considers the implications that these effects should have on the
manufacturing system design process, by examining what factors related to the design
process might cause support departments to become overloaded. Chapter 4 then
investigates how effectively actual manufacturing system design methodologies are
geared towards incorporating these factors into the decision-making process. It will be
shown that, in practice, these formal methods make little or no attempt to assess how
changes in support department workload might affect the outcome of design decisions.
The lack of a suitable modelling tool for carrying out this kind of quantitative analysis

will be shown to be a contributor to this shortcoming.

Chapters 5 and 6 therefore assess a variety of modelling techniques, with a view to
establishing a more appropriate method for evaluating manufacturing system design
decisions. Chapter 5 identifies specific modelling requirements, from both a functional
and a practical point of view and then judges a range of techniques, such as spreadsheet
analysis, queuing network theory and process modelling against this set of criteria. All
of the techniques fail in some way to provide a comprehensive, and at the same time,
easy to use method of analysing manufacturing system designs properly. Chapter 6
then establishes simulation as a more appropriate modelling technique but again, a
review of commercial simulators concludes that current systems cannot be easily
configured to model this class of problem. In other words, the need for a new type of

simulator is identified.

Chapter 7 then looks at the most appropriate way of developing a new simulator, and
concludes that the principles of object-orientation are best suited to creating this type
of application. This chapter also briefly explains the different stages within a typical

object-oriented development process, namely object-oriented analysis, design and
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programming. These form the basis for a structured development of WBS/Office.

The object-oriented analysis of support functions will then be presented in two parts.
Chapter 8 introduces the first part of the analysis which involves a general overview of
different types of support activity as well as more specific analysis of administrative-
type work. Chapter 9 completes the analysis phase by addressing issues such as the
representation of people, the working environment, and other non-administrative

aspects of support department activities.

The actual object-oriented design of WBS/Office then builds on the output of the
analysis phase, and incorporates the object model that resulted from this phase into an
existing library of simulation classes, namely the Advanced Factory Simulator and
WBS/Control. Chapter 10 provides an overview of the design and how it fits into this

existing library as well as discussing more detailed design issues.

Chapter 11 describes the factors involved in implementing this design to provide a
usable simulator. This includes a discussion of the system’s user-interface, which
represents an extremely important part of any simulator. This chapter also presents
some example models whereby WBS/Office is used to simulate the dynamic and
variable behaviour of entities in both the shop-floor and support functions within a
business, and to also mimic the kinds of interactions that would typically take place
between these entities in a real organisation. In other words, the models demonstrate
the feasibility of modelling manufacturing system design decisions this way and so
WBS/Office thereby fulfils the objective of providing a more appropriate simulation

tool for use in this particular design process.

Finally, chapter 12 will present the main conclusions from the research project and
identify opportunities for further work. This will include possibilities for extending the
simulator’s modelling functionality even further, most specifically to meet the
objectives of the Whole Business Simulator, as well as opportunities to apply
WBS/Office to model other types of business problem. The need to incorporate
WBS/Office into a new manufacturing system design methodology will also be

discussed.
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2. The Role of Interactions Between Support Functions and a Manufacturing
System

This chapter examines the role of support functions in a manufacturing organisation.
More specifically, the discussion will emphasise the influence that these functions have
on the performance of a manufacturing system and ultimately on the performance of an
entire business. To begin the discussion, a more definitive statement will be provided

of what is implied by the term ‘support function’.

2.1 What is Implied by the Term ‘Support Function’?

The vocabulary used to describe and categorise different elements of a manufacturing
business will vary, depending on an individual author’s particular objective and
perspective on an organisation. Since the term support function will be used
throughout this thesis, it seems appropriate at this point to clarify which particular

elements of a manufacturing business are implied when using this terminology.

Cost accountants have developed ways of categorising the different elements of
manufacturing organisations; for example, the terms ‘direct’ and ‘indirect’ cost are
often used (Drury, 1992). While cost-accounting is not the concern of this thesis, this
cost-type classification serves as a useful starting point for differentiating between the

manufacturing and support aspects of a business.

Within the context of cost-accounting, direct costs refer to expenditure on materials
and labour that can be specifically attributed to a particular product. For example,
direct material cost refers to expenditure on material that eventually becomes part of
finished goods. Similarly, direct labour cost refers to the expense of employing people

to physically transform direct material into finished goods.

All other expenses incurred by a business, in standard cost terms at least, are
categorised as indirect or overhead costs. Within this category, cost accountants
normally make two further distinctions; manufacturing overhead and non-
manufacturing overhead (Drury, 1992). Precisely how this split is implemented will
vary but the manufacturing overhead category typically applies to the cost of any

activity that relates to the production of goods in general rather than to any specific
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item. For example, material handling or maintenance costs will normally be treated as
manufacturing overhead since these activities contribute to a firm’s manufacturing
operations but not to specific products. Non-manufacturing overhead, on the other
hand, typically refers to the cost of activities that do not relate directly to production,
such as administrative tasks or research and development. Non-manufacturing activity
will normally be performed in office areas rather than on the shop-floor. Table 2-1
illustrates how a standard costing approach might classify different aspects of a
manufacturing business in terms of those that contribute to manufacturing overhead

and non-manufacturing overhead costs respectively.

Manufacturing Overhead Non-Manufacturing Overhead
Goods Inwards & Stores Fihancial Administration
Maintenance Engineering Human Resource Management
Material Handling Information Technology
Packing & Despatch Manufacturing Engineering
Production Flanning and Control Marketing and Sales
Production Supervision Product Design & Development
Quality Purchasing and Logistics
Training

Table 2-1 Contributors to Overhead Costs in a Manufacturing Business

It should be noted that Table 2-1 is not intended to represent actual costs, it only
illustrates the activities or departments for which costs are incurred. For example,
Goods Inwards & Stores identifies a function that will incur costs in terms of wages,
consumable items, depreciation on equipment and so on. This illustration is also
intended only as a rough guide since descriptions of functional areas will vary from

business to business.

From a cost-accounting perspective, this classification is used as the basis for
allocating different overhead expenses to the cost of specific products (Drury, 1992).

However, the same classification also neatly groups together different aspects of an
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organisation from a manufacturing engineering perspective. For example, it will be
demonstrated later in the thesis that a manufacturing system design exercise will
primarily address aspects such as the number of machines and machine operators;
these factors all relate to the actual transformation of materials into finished goods. In
contrast, the same exercise will generally consider all other aspects of the firm to be
indirect or support activities since they do not contribute directly to the transformation

of materials into products.

It follows that while the manufacturing system design process may address some
aspects of support activity, such as material handling, quality and plant maintenance,
attention is mainly focused on factors that contribute to the more ‘direct’ costs of
production, namely materials, machines and labour. Consequently, the following
definition of a support function is appropriate in the context of the manufacturing

system design process:

The term ‘support function’ refers to any department or similar
collection of resources that performs activities which enable a firm to
continue manufacturing and selling products to customers but which
does not involve the actual physical transformation of material or

sub-components into finished goods.

In other words activities that, from a standard costing point of view, contribute to
manufacturing overhead and non-manufacturing overhead costs, can also be
categorised as support functions from the view point of the manufacturing system
design process. As a result, when the term support function (or support department or
non-manufacturing function) is used within this thesis it refers to any function that
corresponds to those described in Table 2-1. Again, however, it must be emphasised
that the groupings presented in Table 2-1 are only representative of functions typically
found in a manufacturing organisation and are intended to serve only as a point of

reference for the discussions that follow.

2.2 Relationships Between Support Functions and a Manufacturing System

In terms of supporting the activities of a manufacturing system, a firm’s indirect

functions constantly interact with each other and the manufacturing system by passing
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information and materials between each other. The relationships between a
manufacturing system and its supporting functions are characterised by these

interactions and will be now be discussed in more detail.

2.2.1 An Illustration of the Kinds of Interaction that Can Occur

There are notably few published studies of the kinds of interaction that typically occur
between a manufacturing system and its support functions. In one such example,
however, Tobias (1991) does attempt to illustrate some general flows of goods and
information that might take place but does not suggest how these interactions have
been identified or provide any references to endorse his illustration. Nevertheless, his
work is still particularly relevant to this thesis since it is intended to represent the types

of interaction that might take place from a manufacturing system design perspective.

Tobias’s observations are also relevant since they closely match the conclusions of a
small study conducted as part of the research described in this thesis (Boughton &
Jackson, 1994). The aim of this study was to provide an indication of the range and
number of different types of interaction that might typically occur in the course of
operating a manufacturing business. Conclusions were drawn from a combination of
experience and interviews with manufacturing system design consultants from Lucas
Engineering & Systems and representatives of a UK-based manufacturing site. The
results of the investigation are illustrated in Figure 2-1, with Table 2-2 providing a key

to the various information and material flows depicted in the diagram.

The conventional boundary of a manufacturing system is clearly defined in Figure 2-1.
The remaining functional areas, with the exception of suppliers and customers, are
intended to represent different types of support function. While neither suppliers nor
customers are considered to be physically part of a manufacturing organisation, the
significance of their relationships with the manufacturing system and some of the
support functions justified their inclusion in the illustration. It should also be noted
that this particular representation of support functions, information flows and material
flows is intended only as a general guide rather than as a definitive statement of the
types of interaction that will always occur. Indeed, it was even evident during the
course of this small study that both the types of support function and the kinds of

interaction that one would expect to take place can vary.
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Figure 2-1 Typical Interactions Between a Manufacturing System and Support
Functions (after Boughton & Jackson, 1994)
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Table 2-2 Key for Figure 2-1
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shown in Figure 2-1. Invariably material will also be moved within a manufacturing
system and other kinds of interaction will also take place between individuals within
the same support function. Nevertheless, the illustration emphasises the elaborate
system of inter-dependencies and interactions that are typically involved in running a

manufacturing organisation, and in particular, the high degree of contact between

support functions and a manufacturing system.

Importantly, the notion of information or documents flowing through an organisation
is not intended to imply only physical pieces of paper. While documents are presented
in Figure 2-1 as physical ‘carriers’ of information, in practice, some interactions will

involve electronic transfers of information rather than physical transfers of documents

22
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by internal or external mailing systems. For example, in some cases information may
be transferred internally via electronic mail or a work-flow system. In other cases
information may be transferred to external suppliers or customers by fax or electronic-
data-interchange (EDI). In addition, less formal exchanges of information, such as
impromptu conversations between personnel from different functional areas, are
excluded from the diagram. In practice, people either from different departments or
from within the same department will confer with each other and thereby pass on
information. Nevertheless, given the amount of information that will need to be
processed and transferred between departments to operate a manufacturing business, it
can be assumed that any crucial operational information relating to the manufacturing

system will always be documented rather than being passed only by word-of-mouth.

2.2.2 The Implication of Interactions Between Different Functional Areas

Overall, the results of the study carried out by Boughton & Jackson (1994) emphasise
the inherent complexity of a manufacturing organisation, given the variety of
interactions that can take place. In practice, any interaction that occurs between two
functions represents a potential delay, both in terms of the time taken to process the
material or information and also to then transfer what has been processed to another
destination. Figure 2-1 also shows that interactions invariably involve two-way flows
of material or information. As a result, recipients will often introduce further delays
while they prepare or process more information before returning documents back to
their originators. This implies that substantial delays are likely as functions interact to
exchange information or production materials, regardless of whether documents exist

electronically or as physical pieces of paper.

Boughton & Jackson’s study also emphasises that support functions often interact
directly with each other as well as the manufacturing system. Nevertheless, many of
these exchanges of information between support functions are still very relevant to the
manufacturing system since they will invariably form part of a wider business process
that will include the actual production of finished goods. For example, the diagram
depicts a stores and material handling function sending requests for consumable items
to the procurement function. The consumables are delivered from suppliers to the

stores and material handling function via the goods inwards department. The
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manufacturing system is obviously affected by this sequence of events since it will be
the ultimate user of the procured items. As a result, the shop floor will still eventually

be affected by any accumulation of delays that occurs even between support functions.

Altogether, Boughton & Jackson’s study identified almost 60 different types of
interaction. That implies around 60 different potential sources of delay that will
ultimately affect a manufacturing system. The next two sections will present specific
examples of how this system of interactions and delays affects the performance of a

manufacturing system and potentially affects overall business performance.

2.3 The Impact of Support Functions on Manufacturing System Performance

The particular sequence in which interactions and delays will occur very much depends
on the nature of the organisation. Andersen (1994), for example, presents a basic
model of the different stages that contribute to the overall lead time for delivery of a
product in a make-to-order business. An adapted version of this model is shown in
Figure 2-2. This simple example represents a hypothetical case involving just a single
customer order but will be used to demonstrate the principles of how support functions

can constrain the performance of a manufacturing system.

Aston University
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Figure 2-2 Model of Lead Time in a Make-To-Order Business (after Anderson, 1994)

The diagram shows customer lead time to be made up of order processing, supplier,
manufacturing and delivery lead times. The manufacturing component represents the

manufacturing system actually transforming raw materials and components into
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finished products. The other components of customer lead time involve tasks
performed by support functions. These tasks will involve interactions such as those
illustrated earlier. For example, order processing might involve interactions between
the sales, production planning and procurement functions. The outcome of these
information flows might be a production schedule or works order being sent to the

shop-floor, and purchase orders being sent to suppliers for raw materials and tooling.

In this hypothetical case it will also be assumed that customer lead time is based on a
confirmed date for delivery of the finished goods and cannot be changed, otherwise
custom will be lost. Consequently, should any aspect of the business exceed its
allotted lead time, the impact will be felt by downstream activities since they will be
forced to reduce their own lead times to ensure that the customer’s delivery deadline is
still achieved. In this case, for instance, the manufacturing system is very much
dependant on support functions such as production planning and procurement for the
timely provision of works orders, raw materials and tooling to enable them to produce
the finished goods within their allotted time. If either of these support functions fail to
complete their respective tasks on time then the shop-floor will be forced to reduce its
manufacturing lead time. In effect, the support department will prevent the

manufacturing system from operating as planned.

In practice, manufacturing lead time might be reduced by temporarily running
overtime on critical production processes. Alternatively, and as a longer term solution,
a firm may decide to maintain inventories of common raw materials, sub-components
and consumable items of tooling. However, if the firm operates as a job-shop there
may only be a very limited number of common items that could be held as stock. As a
result the firm may simply have to manage with longer term overtime arrangements or
consider investing in additional plant or personnel for critical processes. This would
increase the output of these processes and potentially improve the response time of the
manufacturing system although it may simply contribute to a more complex and

unpredictable system.

Any of these actions will at the very least increase the direct and indirect costs of
operating the manufacturing system. There is also likely to be a degree of overlap

between the start and end points of each stage in the overall make-to-order process
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which is likely to make the activity even more difficult to control properly. Therefore,
even in this simple case support functions can be shown to affect the performance of a

manufacturing system in terms of its operating costs.

In practice businesses will be handling many orders simultaneously that relate to a
range of products and different customer delivery deadlines. The manufacturing
system is much more likely to be delayed where support functions have to
simultaneously process many different customer orders. Since manufacturing process
times will also vary from product to product, the potential pressures placed on a
manufacturing system to maintain delivery dates are likely to be even greater than the
hypothetical case suggests. For example, jobs assigned to key manufacturing resources
may suddenly have to be rescheduled to allow other jobs to be completed. These other
jobs may not have been started earlier because the order had not yet been released to
the shop-floor or raw materials and tooling were not yet available. Attempting to
reschedule any one particular job may set off a cascade effect whereby a series of other
jobs also need to be rescheduled. Management of the manufacturing system will get
progressively more complicated as it becomes harder to predict when particular jobs

will start and finish.

As suggested in the hypothetical case, a firm faced with these circumstances may be
forced to implement overtime or even sub-contract some jobs to ensure delivery
deadlines are still honoured. Again, the costs of these actions are an unnecessary
burden imposed on the shop-floor as a consequence of tardy support department
performance. Spencer & Wathen (1994) describe the actual experiences of a make-to-
order furniture manufacturer where behaviour similar to that just described did occur.
In this case the order entry process became a constraint on the manufacturing system
following modifications that were made to the shop-floor. The authors describe an
‘end-of-month’ syndrome which typically occurred as a consequence of orders being
released late to the shop-floor by the production planning function. Overtime had to be
introduced during the last week of each accounting period to ensure that shipping
targets were met. Furthermore, shop-floor workers were often laid-off during the first
week of the new accounting period because there was no inventory left to complete

other shipments.
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In another example (Collins, 1992), a make-to-order firm supplying industrial
fastenings found itself in the position where some of its support functions were
constraining the manufacturing system’s ability to meet new customer delivery
schedules. Unfortunately, the author does not discuss exactly how the shop-floor was
affected but the impact on business performance must have been significant because

the firm was forced to redesign the offending support departments.

This type of behaviour is not restricted to make-to-order firms; similar effects will also
occur in other manufacturing environments. Traditional make-to-stock firms hold
inventories of raw materials, work-in-progress and finished goods to ensure customers
can be supplied immediately despite unforeseen delays in the manufacturing process.
Further delays imposed on a manufacturing system by support functions may
encourage firms to maintain larger inventories. For example, levels of raw material
safety-stocks may be deliberately increased to cater for possible procurement delays.
Similarly, firms may also decide to maintain buffer stocks of intermediate and finished

goods to cushion other production delays imposed by support functions.

In addition, manufacturing performance is often measured in terms of resource
utilisation. Consequently, where a manufacturing process is required to wait for a
support function to complete a task, shop-floor managers may be tempted to keep their
operators and machines busy by producing other items ahead of schedule. This will
also cause levels of work-in-progress and finished goods to increase. While corrective
action, such as increasing inventory levels, may apparently produce favourable
performance figures in the short term, the longer term business implications are likely

to be more detrimental.

2.4 The Business Significance of Support Functions

The examples described above illustrate firms that elected to change operating policies
in their manufacturing systems to overcome constraints imposed by support functions
and so maintain an acceptable level of performance. Changes included decisions to
increase inventory levels even though the cost implications of holding unnecessary
stock are well documented (see, for example, Bernard (1989), Toelle & Tersine

(1989)). In addition, maintaining larger inventories and producing goods ahead of
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schedule is only likely to introduce additional problems for the business. For example,
the process of tracking and monitoring larger inventories will be more complex and
may, ironically, place additional burdens on already overloaded support functions.
Throughput times for all products are likely to increase and fewer goods are actually
likely to be available on time for release to the customer (Goldratt, 1989). Given that
responsiveness to customer demands will continue to become an increasingly
important order-winning criteria (Chase & Garvin, 1989; Doll & Vonderembse, 1991),
the failure of a manufacturing system to meet the delivery expectations of customers

will invariably affect overall business performance.

An alternative to changing the operating policies for a manufacturing system would be
to improve the performance of support functions, by increasing the number of
personnel in crucial areas. In fact, if the expense of employing additional resources in
support areas were small relative to the costs of operating a manufacturing system,
then support functions could even be over-resourced to ensure that they are never
likely to become overloaded. However, overhead costs are becoming an increasingly
larger proportion of total costs incurred by manufacturing organisations, a fact that has

been widely publicised.

Some of the most convincing evidence comes from surveys of UK manufacturing
firms which, amongst other things, have sought to discover how the different
components of business costs are changing. Murphy & Braund (1990), for example,
analysed over 250 replies from questionnaires sent to CIMA (Chartered Institute of
Management Accountants) members working in a “broad cross-section of industry
where new technology is used”. Another survey, published in 1988 by CAM-I
(Computer Aided Manufacturing International), is referred to by Hill (1993) in a
discussion of cost structures in manufacturing organisations. The CAM-I survey was
conducted by interviewing representatives of around 40 UK companies. Table 2-3
shows the results from these two surveys, with the different elements of cost shown as

percentages of the total.

The main observation from these results is that cost structures have changed over
recent years to the point where overhead now accounts for approximately one third of

total costs. This figure matches the findings of another, slightly more recent, survey
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that is also referred to by Hill: a study of UK manufacturing firms carried out by Price
Waterhouse during 1990/91 claims overheads represent between 25 and 50 per cent of
total costs. Other authors such as Sutton (1991), Tatikonda & Tatikonda (1991) and
Brimson (1993) also acknowledge that overhead costs are become increasingly more
significant in relation to other costs, although the do not provide any empirical

evidence of how cost structures have changed.

CIMA Members CAM-I
(Murphy & Braund, 1990) (Hill, 1993)
1984 1969 1960 1966
Direct Materials A7 % 50% 56% 53%
Direct Labour 18% 16% 22% 15%
Overhead 506% 4% 22% 52%

Table 2-3 The Elements of Cost in UK Manufacturing Firms

Overall, this evidence suggests that support functions now contribute to a significant
proportion of total business costs. It follows that attempting to counteract poor support
department response times by employing additional staff in these areas is likely to be
expensive and so affect the financial performance of the business. A more effective
solution would be to consider how a manufacturing system might be affected by these
kinds of activities during the actual design of the system and then, if necessary, tailor
the system to operate within any support department constraints. It follows that a pre-
requisite to implementing this type of approach would be the availability of appropriate

tools and techniques for analysing manufacturing system designs in this way.

2.5 Summary

This chapter has illustrated how support functions can limit the potential performance
of a manufacturing system. This happens as a result of the many interactions with
support functions that are required to operate and control a manufacturing system;
every interaction invariably represents a potential delay which ultimately affects a
manufacturing system’s ability to respond to customer demands. In fact, examples of

companies have been described where the performance of support functions has
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eventually placed constraints on shop-floor performance.

While changing policies or manning levels in either the manufacturing system or
support areas might overcome these constraints in the short-term, the longer term
effects on business performance are likely to be more detrimental. A more effective
solution would be to consider how a manufacturing system might be affected by these
kinds of activities during the design process. The next chapter therefore examines
what factors related to the design process are likely to cause support departments to

become constraints on manufacturing system performance.
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3. Support Department Performance and the Manufacturing System Design
Process

The previous chapter demonstrated that delays incurred by support functions can have
a significant impact on the performance of a manufacturing system and ultimately on
the performance of an entire business. This chapter will identify the implications that
these effects have in terms of the manufacturing system design process by examining

what design factors cause support departments to become constraints.

3.1 Understanding Why Support Functions Become Overloaded

Since any manufacturing system will only have a limited number of operators and
machines available at any one time, managing the loading of these resources is a
fundamental requirement for managing a manufacturing business. Support functions
are no different to a manufacturing system in that they too will only have a limited
number of resources available. Consequently, there will always be a limit to the

volume of work that a support function will be able to process in any given period.

In practice, however, the capacity of individual support functions tends not to be
compared with the volumes of work that they will be expected to process to anywhere
near the same extent that loading of a manufacturing system is controlled. For this
reason, not only would it be relatively easy for a support department to be overloaded
but the impact that this would have on the performance of other aspects of the business
is more likely to go unnoticed. This is evident from views expressed by several
different authors who emphasise the lack of attention that firms pay to monitoring the

workload placed on support functions.

Altogether the different views expressed span a significant period of time but are all
still very relevant to this discussion since they are very similar in their assessment of
how support department loading changes. Dixon (1953), for example, described how
new tasks can all too often be allocated to support functions with little or no analysis of
how the loading of resources in these areas will be affected. He described the effects

of this behaviour as ‘creep’ and suggests that:

“[Support] activities tend in some cases to edge into the operations

of a business firm where no special thought has been given to their
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short-run or long-run effects upon costs and efficiency

The author also argued that creep will eventually affect not just support functions, but

the whole business:

“[Creep] is not a short run problem. It consists of the more or less
gradual, unrecognised, cluttering up of business activity,
accompanied by a parallel deterioration of company efficiency, a

building up of fixed costs, and the undermining of profit potential

Dixon blamed the costing methods used by firms at that time to predict the financial
implications of business decisions as the main reason for the occurrence of creep. He
argued that the treatment of many indirect expenses as fixed costs led to the
assumption that changes within the business will have no effect on the performance of

support functions.

The notion of ‘creep’ is still relevant today since similar concerns have been put
forward more recently by proponents of activity-based costing. For example, Cooper
& Kaplan (1988a) also challenge the traditional ‘fixed” versus ’variable’ cost
classification and argue that it often obscures the true complexity of support
department behaviour. They suggest that support functions are usually constrained to
increasing their resources only when budgeted to do so, rather than when demand for
the service which they provide changes. As a result, a support department will often
have to operate for a period of time without the necessary resources to process its
current workload. Consequently, the performance of that department will suffer and
inevitably other aspects of the business that depend on the service provided by that

support function will also be affected.

Miller & Vollman (1985) also emphasise the lack of attention paid to support
department loading. They have coined the term ‘hidden factory’ to describes the mass
of off-line transactions that will take place in a manufacturing business; in other words,
the document and information flows described in the previous chapter. This term
seems very appropriate since it suggests a similarity between the concept of work in
manufacturing and support functions, yet emphasises the different attitudes to

managing these aspects of the business. In other words, it suggests that while
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processing documents is analogous to processing raw materials, considerably less
attention is paid to monitoring the loading of support departments than is paid to the
loading of the factory-floor. The significance of changes in support activities also

tends to go unnoticed.

Miller & Vollman argue that some firms do manage support department loading by
simply over-resourcing these areas to ensure that over-loading never happens. In other
words, some businesses purposely deploy more resources in support functions than is
actually necessary to ensure that they will be able to cope with additional workloads in
the future. It is suggested that this approach originates from a time when the cost of
support department resources was relatively low in comparison to expenditure on shop-

floor resources.

However, it was demonstrated in the previous chapter that the cost structure of
manufacturing organisations has now changed, in that support functions now account
for a much higher proportion of the total costs incurred by a manufacturing business
than ever before. Consequently, over-resourcing support departments is now a very
costly way of ensuring that these functions can cope with additional workloads in the
future. In addition, the concept of ‘creep’ put forward by Dixon emphasises that
changing circumstances elsewhere in a firm invariably change the loading on support
departments. This implies that while a support function may be over-resourced given
its current workload, if that workload is not monitored properly then it may still
eventually reach a level sometime in the future where the function could be
overloaded. In other words, there is no guarantee that simply by over-resourcing
support functions they will not become a constraint on other aspects of the business at

some point in the future.

In summary, changing the way a manufacturing business is organised or operated can
have potential knock-on effects in terms of altering the demands placed on support
functions. Even if the amount of indirect work is not altered, the current workload on
indirect areas may be enough to prevent the intended impact of changes from being
fully realised. Furthermore, since the capacity of individual support functions tends
not to be compared with the volumes of work that they will be expected to process, the

onus must be on decision-makers to anticipate how support departments will be
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affected by their changes. Clearly this conclusion has implications for the
manufacturing system design process. The next section will attempt to demonstrate
how decisions relating to the design of manufacturing systems can be responsible for

this overloading.

3.2 The Impact of Design Decisions on the Performance of Support Functions

A firm may decide to design or re-design a manufacturing system for a number of
reasons; new product introductions, variations in the product mix, technological
developments in manufacturing processes, or as an ongoing programme of
improvements aimed at enhancing the firm’s competitive position (Dales & Johnson
[sic.], 1986). Nevertheless, on whatever basis a manufacturing system design or re-
design exercise is instigated, decisions taken as part of this process can potentially

affect support functions in number of ways.

This is evident from the results of the study cited earlier (Boughton & Jackson, 1994)
that provided an indication of the range and number of different types of interaction
that typically occur in a manufacturing business. In particular, the study emphasised
that these interactions invariably involve two-way flows of documents or material.
This means that the activities of a manufacturing system must be responsible for
initiating flows in at least one direction and, therefore, will be partly responsible for the
overall volume of interactions that occur. Consequently, decisions taken during the
manufacturing system design system process must be partly responsible for the
workload placed on support functions. What follows is a more detailed discussion of

the design factors that might typically affect support department loading.

3.2.1 The Significance of Process Choice

A fundamental aspect any manufacturing system design is the notion of ‘process
choice’ (Hill, 1993). This concept is also sometimes referred to as ‘process
technology’ (Hayes & Wheelwright, 1984) and relates to a collection of five generally

accepted styles of manufacturing system. These are briefly described below:

o Project-based implies production of large custom or tailor-made
products in very low volumes, often just single items. Manufacturing

tasks vary from project to project, therefore standard procedures or
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routings seldom apply. Examples include shipbuilding and civil

engineering projects.

e Job-shop usually refers to firms that manufacture low volumes of a very
high variety of products, most of which require a different sequence of
processing steps. Jobs-shops produce more and usually smaller goods
than project-based firms but the degree of repetition will still be
relatively low. Examples include specialist toolmakers or printing

firms.

o Batch-manufacturing firms typically produce a wide range of a
relatively similar line of products. Most jobs will be repeated
periodically. ~ Examples include the manufacture of automotive

components and metal castings.

e Flow-line or mass-production implies high volume production of a
relatively small range of products. Typically workstations are arranged
in sequence and the product passes through a series of steps at a
controlled rate. Examples include motor vehicle manufacture and the

production of household electrical goods.

e Continuous-processing is similar to mass-production but goods are not
made from discrete parts. An even lower variety and higher volume of
goods will be manufactured. Examples include chemical

manufacturing.

From these definitions it is clear that process choice closely relates to both the range
and volumes of products that a firms intends to manufacture. This will determine
many of the physical aspects of a manufacturing system, such as the level of
automation and the placing of machines in functional, cellular or dedicated flow-line
arrangements. In addition, however, evidence suggests that the choice of process
technology also has significant implications in term of the demands placed on support

functions.

Hill (1993), for example, uses the term ‘infrastructure’ to describe the collection of
systems and procedures needed to support the physical activities of a manufacturing

system and argues that process choice will affect fundamental aspects of this
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infrastructure. He suggests, for instance, that in order to provide adequate support to
manufacturing, the complexity of a manufacturing facility will need to be reflected in

the system of indirect functions.

Hayes & Wheelwright (1984) adopt a similar view but in addition to process choice
they also identify that the size of the organisation will affect the type of supporting
infrastructure required. Since both Hill (1993) and Hayes & Wheelwright (1984)
present their case from manufacturing strategy perspective; they provide little in the
way of specific examples of how process choice will affect support functions.
Nevertheless, the arguments proposed in each case imply that the process of designing
a manufacturing system design should also take into account many non-manufacturing

aspects of the business.

Ward et al. (1992) go somewhat further and attempt to identify empirical relationships
between process technology and aspects of a firm’s support functions, or
‘infrastructure’. They analyse US Department of Labor survey data on employment by
occupation, from a sample of more than 110 thousand US manufacturing
establishments. From this data they establish mean numbers of non-production
workers per 100 production workers for different choices of process technology.

These relationships are depicted inTable 3-1.

The results suggest that the levels of some types of support staff, such as material
movers and plant maintenance workers, appear to be generally more significant in
mass production and continuous processing firms than in other types of business.
However, this may simply reflect the higher levels of automation and therefore fewer
numbers of direct operators in these industries rather than any actual variation in the
levels of this type of support. There does not appear to be any similar trend in the
relative levels of staff employed in other support areas such as clerks, administrative
specialists and engineers. Nevertheless, the study emphasises that staffing levels in
some areas will vary considerably depending on the choice of process technology,
presumably because of the different demands that process choices place on of support
functions. In fact, the lack of any obvious trend in many cases actually suggests that

predicting the manning levels in other areas is likely to be more complicated.
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Table 3-1 Employment of Indirect Workers per 100 Production
Workers by Process Technology (adapted from Ward et al., 1992)
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Interestingly, the data did not produce statistically significant relationships between
manufacturing planning and control workers and process technology. This is
surprising given that this function is arguably more closely related to a manufacturing
system than other aspects of the organisation, and one might therefore expect a close
correlation between process choice and control system. Nevertheless, this conclusion
does not imply that the numbers of production control staff are insignificant, it simply
establishes that the volume of work in this area of business is typically dependant on
factors other than process technology. Indeed, the effects of different manufacturing
planning and control systems on support departments will be discussed in more detail

later in the thesis.

It should also be noted that the analysis conducted by Ward et al. (1992) does not
suggest how effectively or efficiently support functions will be able to serve a
manufacturing system by maintaining these staffing levels. It can only be assumed that
these numbers do provide a general indicator of the staffing need to ensure an
acceptable level of service. Consequently, these figures also provide further evidence
of the significance of support functions. For example, the study shows that around 50

clerical staff are required per 100 production workers.

Overall, this empirical evidence demonstrates that decisions relating to process
technology can affect the level of support required by a manufacturing system.
Consequently, it can be implied from this aspect of the manufacturing system design
process alone that decision-makers should attempt to anticipate any changes in the
number and frequency of interactions that a process technology decision is likely to
demand of support functions. In addition, decision-makers should attempt to anticipate
how effectively the resources that will be available in these areas will be able to

respond to this new level of demand.

3.2.2 Other Decisions Relating to the Manufacturing System Design Process

While different styles of manufacturing system clearly place different demands on
support functions, other aspects of the design process can also affect the loading on
indirect areas. For example, a manufacturing system redesign exercise might involve a

make-or-buy analysis. The outcome of this type of decision will determine the number
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of different items to be purchased. In turn, this will affect the volume of interactions
between a purchasing department, suppliers and a goods-inwards function, and will
therefore affect the loading on these aspects of the business. Other decisions such as
those relating to operating policies like batch sizes will also affect the number of

interactions between a manufacturing system and production control functions.

However, since the loading on support functions is generally not monitored to the same
degree that shop-floor capacity is controlled, it is quite feasible that a manufacturing
system design decision will increase a support department’s workload to the point
where it cannot process all the work on time. Furthermore, the impact of this overload
is unlikely to be realised until the support function becomes an obvious constraint on

the performance of the manufacturing system.

Santosus (1993) describes the actual experiences of a window manufacturer where
behaviour similar to that just described did occur. The organisation had mass-
produced standard products for many years and the company’s support departments
were able to cope with the levels of off-line administration that this entailed. Problems
arose when the firm decided to redesign its manufacturing system to also produce
goods for make-to-order and custom markets. Various support functions simply could
not cope with the additional workload that this change implied. For example, the
author describes how difficulties in order scheduling, inventory management, product-
labelling and shipment verification eventually reached such a level that relationships
with customers deteriorated. The firm eventually managed to resolve the situation by
redesigning the offending support departments. Customer relationships may not have
suffered at all if the firm had been able to predict the effects that changes to their

manufacturing system would also have had on their support departments.

In other cases, manufacturing engineers have found that they have improved the
productivity of a manufacturing system to the point where the constraining factor
moves off the production line into clerical support areas. Underwood (1994), for
instance, presents the case of a computer manufacturer that implemented computer-
integrated-manufacturing and Kanban control on the shop-floor. The performance of
the manufacturing system and the business did improve as a result of these actions but

the potential performance gains were not fully achieved because the more responsive
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manufacturing system was now constrained by the off-line order processing function.

In another example, Billesbach & Schniederjans (1989) describe the application of
just-in-time techniques to administrative functions in manufacturing organisations.
The authors justify the approach on the basis that inefficiencies in support functions
can offset productivity gains in manufacturing, and suggest that effort should also be
applied to improving the performance of these functional areas. They present two case
examples of manufacturing firms where their approach did help to overcome support

department constraints.

3.3 Summary

This chapter has established that implementing changes in a manufacturing business
can have potential knock-on effects in terms of altering the demands placed on support
functions, particularly since the capacity of support functions tends not to be compared
with the volumes of work that they will be expected to process. It has also been
established that the extent to which support department delays affect shop-floor
performance can be influenced significantly by decisions taken during the
manufacturing system design process. Given this evidence, one might expect that
decision-makers would endeavour to understand how their manufacturing system
designs will affect support areas. The next chapter will therefore investigate just how
effectively manufacturing system design methodologies are geared toward

incorporating these factors into the decision-making process.
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4. The Limitations of Current Approaches to Manufacturing System Design

Preceding chapters have identified the significance of support functions in terms of
their ability to restrict the performance of a manufacturing system. Given the
significance of these problems one would expect manufacturing system designers to
consider how a new or re-designed manufacturing facility is likely to be affected by
support areas. This chapter will examine the extent to which decisions-makers do try
to anticipate the potential impact of support functions during the process of designing a

manufacturing system.

The discussion will review both the manufacturing system design process in general as
well as other more specific, but closely related, decision processes; namely the
selection or design of production planning and control systems, and make-versus-buy
analysis. Decisions taken in these situations are notoriously difficult, not only because
of the many factors involved, but also because the implications of making the wrong
decision are potentially so severe. Consequently, a range of methodologies and
techniques have been developed specifically to guide engineers toward making the
right decisions in these different areas. These serve as useful points of reference from

which to evaluate the quality of decision-making in these areas.

4.1 The Concept of a Manufacturing System

The approach to changing the way production is carried varies enormously between
companies. Consequently, there are many different approaches to the design or
redesign of a manufacturing system (Fritz et al., 1993). This happens both as a result
of the different markets within which firms must operate and because of the different
perceptions of what a manufacturing system actually involves. Pamaby (1979)
suggests that there is no single concept of a manufacturing system, but does identify
certain factors that should be taken into account, regardless of the type of industry that

a company is operating within. These factors are shown below:

e A manufacturing system should be an integrated whole, composed of

different subsystems, each of which interacts with the whole system.

e The manufacturing system should be created by selecting appropriate

subsystems to physically or chemically process raw materials, linking
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these together and controlling the resulting system and its interaction

with its environment.

e To be able to operate successfully, a manufacturing system also requires

an administration and information flow system.

All of these characteristics emphasise that a manufacturing system involves
considerably more than a collection of machines, transport devices and operators on a
factory floor. A manufacturing system must also include a supporting infrastructure to
manage all planning and control aspects of the system on a day-to-day basis. In other
words, Parnaby acknowledges that the design of a manufacturing system must also

take into account many non-manufacturing elements of the business.

On this basis, Parnaby suggests that the design of a manufacturing system should adopt
a systems engineering approach (Parnaby, 1986), whereby technical, organisational and
human factors are all considered. Specific aspects of the manufacturing system design
approach proposed by Parnaby will be introduced in more detail in the next section.
As a more general point, however, he asserts that the process of designing a
manufacturing system must form part of a wider business strategy that will also

incorporate marketing, product engineering and the design of information systems.

Other commentators on manufacturing strategy adopt a similar view of manufacturing
system design. For example, the notion of an infrastructure (Hill, 1993, Hayes &
Wheelwright, 1984) that supports manufacturing activities was introduced in the
previous chapter. Given that, from a strategic point of view, a manufacturing system
should be an integrated system of material flow and information processing functions,
one would expect that formal methods relating to the design of manufacturing systems
would incorporate both aspects. The next section will examine the extent to which
formal manufacturing system design methodologies do consider these aspects and, in

particular, the role of support functions in the overall design solution.

4.2 The Application of Formal Methods to the Design of Manufacturing Systems

Fritz et al. (1993) present the results of a survey which attempted to establish why so

many manufacturing organisations encountered difficulties when designing production
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systems. In particular, the survey looked at the extent to which UK firms used
structured approaches to manufacturing system design. The response suggests that
only 30 per cent of firms do use a structured approach. Furthermore, of this 30 per
cent, the majority (around 66 per cent) claimed their methodology had been developed
in-house. The remainder of firms adopting a formal approach used methods provided

by consultants or techniques that were described in published literature.

These figures are similar to results obtained from another survey of UK firms that was
conducted by Devereux et al. (1994). In this case the response suggested that some 50
per cent of firms used a formal approach to the design of manufacturing systems.
Consistent with the other survey, the majority of these firms (around 60 per cent)
adopted an in-house methodology. Again, the remainder of firms adopting a structured

approach used methods that originated from consultants or the public domain.

Given the relatively low uptake of published methodologies, any assessment as to how
firms approach manufacturing system design that is based on an evaluation of these
approaches is unlikely to be representative of current practice. However, it can only be
assumed that published methodologies represent current ‘best’ practice, and are likely
to have been tested in a much broader range of organisations than techniques
developed in-house. For this reason, two structured approaches to planning production
systems will be examined; the Lucas Engineering & Systems Manufacturing System
Design Methodology and the Design Rules for Analysing Manufacturing Activities
(DRAMA II). Both of these methodologies are based on experiences and analyses of
UK manufacturing firms and literature relating to each technique is readily available in

the public domain.

4.2.1 The Lucas Engineering & Systems Manufacturing System Design
Methodology

Lucas Engineering & Systems have developed an approach that has been extensively
applied to the design and redesign of manufacturing systems. The technique 1is
generally referred to as the ‘five-step’ design methodology (Parnaby, 1986; Lucas
Engineering & Systems, 1989). The five different stages are illustrated in Figure 4-1.
The illustration shows how the Lucas methodology adopts a ‘systems engineering’

approach by incorporating the different subsystems of a business into the design of a
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manufacturing system. The methodology also attempts to satisfy the strategic
requirements of a manufacturing system described earlier; process choice and

infrastructure.

Aston University
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Figure 4-1 The Lucas Five-Step Manufacturing System Design Methodology (after
Parnaby, 1986 and Lucas Engineering & Systems, 1989)

Stage 1, for example, identifies the choice of process technology by evaluating the
volume and variety of parts to be manufactured. Stages 2 and 3 develop the concept of
process choice further and produce a detailed design of the shop-floor aspects of the
system. The likely performance of the shop-floor facility will also be tested at this
stage. For example, during the dynamic-design phase simulation techniques may be
used to evaluate the shop-floor aspects of the design. In other words, a simulation
model of the proposed shop-floor configuration will be used to assess how the real
system would behave under conditions that differed from the average conditions

assumed during the steady-state design phase. Such factors might include the
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breakdown of machines, fluctuations in the demand for different products and
variations in the performance of operators. Simulation would also provide a better

insight into how the elements of the real shop-floor system would interact.

Stages 4 and 5 of the design process relate to the infrastructure needed to support the
shop-floor system and which therefore represent a very important aspect of the broader
manufacturing system. These stages may include a redesign of existing paper-flow or
information-flow systems to reflect proposed changes to the shop-floor. In addition,
decisions may be taken to replace manual paper-flow systems with automated
information-flow systems in an attempt to make these aspects of the business more

efficient.

The scope of the Lucas methodology is therefore such that it does at least attempt to
cover all aspects of a manufacturing system. Indeed, the methodology has resulted in
some successful system designs or redesigns (Wood, 1986; Kellock, 1992; Turner,
1994). However, the approach does place significantly more emphasis on the shop-
floor functions and, in particular, on the physical configuration of people, machines
and other equipment directly involved in manufacture. The emphasis is therefore on

material rather than information flows.

In addition, the design of the physical aspects of the manufacturing system will have
effectively been finalised by the time the processes needed to support the shop-floor
facility are considered. For example, the dynamic-design phase normally includes a
rigorous evaluation of how the different elements of the shop-floor interact. Indeed,
this stage of the process is intended as a final test of that aspect of the system, in terms
of its robustness to cope with variations in the behaviour of different shop-floor
elements. However, the methodology makes no provision for assessing the interaction
between manufacturing functions and support functions in the latter part of the design
process. As a result, designers will not take the opportunity to test the robustness of
the existing or proposed support functions to cope with demands placed on them by the

shop-floor or other aspects of the business.

Consequently, the manufacturing system that results from this design process may not

perform effectively as an ‘integrated whole‘, even though the earlier discussion on
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manufacturing strategy emphasised this to be essential for overall business success.
For example, in a series of studies Lewis (1994) describes cases where the Lucas
methodology has resulted in the implementation of manufacturing systems that have
failed to achieve the expected improvements in manufacturing or business
performance. These cases include an example of where failure to properly consider
support functions was one of the factors that caused a manufacturing system
implementation to fail; Lewis describes the experiences of one particular company
where the effect of a new manufacturing system implementation was to increase the
workload on the goods inwards function. This resulted in parts being delivered late to
the shop-floor, hindering its ability to adhere to production schedules. Problems of this
kind could have been avoided if the methodology had made provision for testing how

support functions would be affected before implementing the new facility.

As a more general point, the time taken to design and test the shop-floor aspects of a
manufacturing system will affect the time that can be afforded to the design or
evaluation of support functions. For this reason, any technique for testing the
interaction between manufacturing and support functions should be relatively quick
and easy to use. This is an important aspect of the solution that will be presented later
in the thesis for overcoming the limitations of the manufacturing system design process

that have just been described.

4.2.2 DRAMA 11 : Decisions Rules for Analysing Manufacturing Activities

DRAMA 11 is an alternative methodology proposed by Bennett & Forrester (1993) that
relates to both the design and implementation of manufacturing systems. It is intended
to be a generic approach, applicable to the design of all types of manufacturing system,
although it originates from an earlier technique specifically developed to support the
design of electronics assembly systems. The design methodology comprises ten

components that are intended to be carried out sequentially, as follows:

e Market and Environment involves analysis of a firm’s external

environment to determine corporate objectives and marketing strategy.

o Manufacturing Strategy will attempt to set more local manufacturing

targets in line with the overall business strategy.
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e Organisation includes the definition of the organisational structure and

lines of communication.

e Justification will attempt to prepare the case for a new or modified
manufacturing system, based on the financial or other more qualitative

gains that would be achieved as a result.

e Project Management addresses the planning and control of the
manufacturing system design and implementation. It takes into account

time and monetary constraints.

e Physical System Design relates to the physical arrangement of facilities

on the shop-floor.

o Control and Integration involves the selection or design of a
manufacturing planning and control system that best matches the design

of the physical aspects of the manufacturing system.

e Work Design addresses the human aspects of the proposed system, for

instance, the flexibility of operators and their responsibility for quality.

e Implementation is concerned with translating the proposed design into a

real working manufacturing system.

e FEvaluation concentrates on an ongoing evaluation of the new or

modified system’s operational performance.

Each of these components is associated with a set of guiding principles to assist the
manufacturing system designer. This guidance is presented in the form of key
parameters and design option guides. Key parameters comprise a collection of
different objectives for each of the ten design stages, one of which should be identified
as the primary objective for each stage. For example, key parameters relating to the
physical system design phase include, amongst other things, output maximisation,
inventory minimisation and volume or variety flexibility. The decision-maker will
need to identify which of these parameters is most important in relation to that aspect

of their manufacturing system design.
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Design Option Guides (DOGs) then present a selection of alternative solutions to each
design problem and indicate how each option is likely to affect the key objective of
each design stage. For instance, one of the DOGs relating to physical system design
presents the following alternative solutions to the problem of layout configuration :
modular, flow-line, functional or a group technology arrangement. For each of these
alternatives, the guide suggests which of the key parameters that a particular
configuration would be most likely to achieve. In this case, for example, a flow-line
arrangement would maximise output, minimise inventory but would not provide

volume or variety flexibility.

By using the combination of key parameters and design option guides, DRAMA II
does provide a comprehensive range of guiding principles to assist the manufacturing
system designer. In addition, the scope of assistance extends to include strategic and
operational aspects of the decision-making process, and also post-implementation
issues. However, the guidance only goes as far as to recommend general solutions to
particular design problems. As a result, the evaluation of design proposals is
essentially presented as a qualitative assessment of cause-and-effect relationships
between alternative design proposals. The methodology makes no provision for

measuring or evaluating the effects of alternative solutions in quantitative terms.

This limitation is particularly interesting, given the apparent interactive nature of the
design process. The methodology suggests that no aspect of the proposed
manufacturing system is actually finalised until all ten design components have been
addressed. In other words,’ it is expected that some aspects of earlier design solutions
may have to be redefined as a result of problems that might not be discovered until
much later in some of the other design phases. Since the methodology makes no
mention of evaluating, in quantitative terms, how the different aspects of the system
will perform together, it is difficult to see how the designer can ensure that the

individual components of their system will perform effectively as an integrated whole.

For this reason, it is questionable if the most effective changes can really be made to
earlier aspects of the design. From the viewpoint of this thesis in particular, the
methodology does not consider how shop-floor aspects of the design will affect the

loading on support functions. For example, the trade-offs between high volume and
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high variety manufacture will have a significant affect on the workload placed on non-
manufacturing areas but the guidance offered in DRAMA 1I would not be able to

quantify these effects.

To summarise, the Lucas ‘Five-Step’ Approach and DRAMA II are, in many ways,
complimentary methodologies. The former emphasises more detailed design and
evaluation of certain aspects of a proposed manufacturing system. The latter approach
presents an even broader view of the overall design process but less provision is made
for detailed design issues. Most significantly, however, neither approach attempts any
real evaluation of how non-manufacturing functions will affect the success of a new or
redesigned manufacturing system.  Therefore, on the basis that these two
methodologies are representative of current best practice in manufacturing system
design, there is a need for such techniques to extend the testing of manufacturing
system designs to include support departments. It also suggests that a suitable tool is

required to perform this kind of analysis.

4.3 The Design or Selection of a Production Planning and Control System

The concept of a production planning and control system has already been mentioned
briefly in the context of manufacturing system design but will now be examined in
more detail. While the design of a production system should also include the
specification of a production planning and control system, this aspect of a
manufacturing facility represents a major area of decision-making in its own right. As
in the review of manufacturing system design methodologies, the discussion that
follows will relate to what factors influence the decision-making process and to what
extent the effect on support functions is taken into account when designing or selecting

control systems.

4.3.1 Features of Production Planning and Control Systems

As the term ‘production planning and control’ suggests, this aspect of a manufacturing
organisation is generally taken to imply a set of policies and procedures that are
concerned with the day-to-day running of a production system. The term is often used
inter-changeably with other terms such as ‘manufacturing control’, ‘material control’,

or simply ‘production control’. Burbidge (1979) defines production control as follows:

49



“Production control is the function of management which plans,
directs and controls the material supply and processing activities of
an enterprise, so that specified products are produced by specified
methods to meet an approved sales programme; these activities being
carried out in such a manner that labour, plant and capital available

are used to the best advantage.”

This definition emphasises the scope of the production planning and control task; that
is, the management of different shop-floor constraints such as production equipment,
direct labour and materials. The process is essentially a support activity, many aspects
of which are carried out by support functions. Ironically, however, given that the task
aims to effectively manage a limited set of resources, little consideration is given to
how the resources in the production planning and control function itself actually
perform. This is evident from a closer examination of different types of control system

and the methodologies relating to their design and implementation.

There are a number of well established production control techniques including
Material Requirements Planning (MRP), Manufacturing Resource Planning (MRPII),
Kanban and Optimised Production Technology (OPT). A full discussion of the
relative merits of each of these and other approaches is beyond the scope of this thesis
but details can be found in most production management texts (see, for example, Wild,

1989; Slack et al., 1995).

Manufacturing organisations will generally select a standard version of one of these
established control methods or design a variation on one of these themes that provides
a better match with their particular manufacturing environment. The type of control
system that is eventually implemented will depend on a variety of factors. These will
include the nature of the market within which a firm operates and also the choice of
process technology adopted by a manufacturing system. In practice, manufacturing
firms can often employ more than one production control technique or a hybrid of
established techniques to manage different aspects of their operations (Turner &

Saunders, 1994).

The type or types of control system employed by a firm will determine the volume of
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data that will need to be processed to properly support the shop-floor. The timeliness
and accuracy of data needed to successfully operate a control system will also vary.
Larsen & Alting (1993), for example, differentiate between the information and data
processing requirements of some well established production control techniques. A

summary is shown inTable 4-1.

Production Control Philosophy Information and Data Processing
Requirements

Material Requirements Flanning Detailed
Kanban (i.e. Just-in-Time) Few
Optimised Production Techhology Very Detailed

Table 4-1 Information Requirements for Different Production Control Philosophies
(adapted from Larsen & Alting, 1993)

By implication, the volume of data to be processed will affect the workload placed on
support functions, influencing the extent to which both information technology and
support staff are employed in these areas. For example, Dale & Russell (1983)
describe how the implementation of a new production control system in one particular
company enabled the number of production control personnel to be reduced. Had a
more data intensive control system been adopted then this number is likely to have
increased, or else the control system would have been unable to properly support

production.

On a similar theme, Hunter (1993) advocates that many firms should thoroughly
investigate ways of eliminating production control transactions in order to alleviate the
workload on support functions. He suggests, for example, that firms should reduce the
number of operations that are tracked per order by making changes to the bill-of-
materials structure in an MRP system to include more ‘phantom’ parts. While these
actions may reduce the burden on support functions, Hunter’s approach is really just
overcoming the kind of constraints that should be investigated prior to implementing

any control system.

In summary, given that control systems are so closely related to shop-floor

performance and that they also depend on adequate levels of support staff to operate
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them, one would expect that any decision to adopt a particular system will have
considered its affect on existing support functions. In particular, one would expect that
a decision-maker in this situation would have attempted to estimate the change in
workload that a control system will impose on these functional areas. The next section
will examine to what extent methods for designing and selecting control systems do

consider these effects.

4.3.2 Formal Methods for Designing or Selecting Control Systems

There are notably fewer well established methodologies that relate to the design or
selection of a production control system than exist for manufacturing system design.
However, those that are available in the public domain can be assumed to be typical of
current practice since they are likely to have been developed from studies of control

systems in a variety of manufacturing organisations.

Kochhar et al. (1992) present one such methodology in the form of a structured
framework for selecting manufacturing control systems. This takes the form of three
different knowledge-bases to aid the choice of an appropriate system and to assess
issues governing the implementation of that system. One of these knowledge-bases
does consider the volume of transactions to be processed (see Kochhar & McGarrie,
1991) but only in terms of the extent to which computerisation will be needed to
process all the data required. In other words, the framework makes no provision for
assessing if the existing personnel will be able to cope with the volumes of work
generated by a new control system. This may lead to operational problems given that a
manufacturing system is so dependant on its control system for timely production of

information and provision of material and labour for manufacture.

Maull et al. (1990) present an alternative methodology that integrates the design and
implementation of a production control system with a firm’s manufacturing strategy.
The nature of this methodology is such that it is directed toward a computerised
solution to the manufacturing control problem but does also propose to give

consideration to other aspects of the business:

“The overall performance of the [control] system may be enhanced
by changes to the infrastructure that support the softwaré
Maull & Childe (1993)
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Indeed, this approach does emphasise infrastructure in terms of ‘policies, procedures
and practices’ as being a fundamental aspect of any successful control system solution.
Despite this claim, the methodology provides very little in the way of guidance or
techniques for analysing how effectively personnel in non-manufacturing functions

would be able to carry out any new policies, procedures or practices.

Another methodology, presented by Banerjee et al. (1994) focuses on both strategic
and more detailed design aspects of production control systems. The approach can be
viewed in terms of four stages that cover both the analysis and design of a control

system. These four stages are depicted inFigure 4-2.
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Figure 4-2 Production Control System Design Methodology (Banerjee et al., 1994)

The concept design stage is of most relevance to this discussion since it attempts to
establish the information flows that will form part of the system and also the frequency
in which they will occur. However, despite these aspects of the proposed system, the
methodology makes no provision for actually quantifying these features of the design
in terms of the workload that will be placed on production control functions within a
firm. Consequently, decision-makers adopting this approach will not take the
opportunity to test how those functional areas will be able to operate a proposed

manufacturing control system.
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In summary, it is clear that the concept of a ‘control system’ in manufacturing
organisations relates to systems for effectively managing manufacturing resources but
does not extend to managing the loading on non-manufacturing functions. In addition,
a sample of methodologies, that have been developed to formalise the design or
selection of production control systems, have been examined. This sample suggests
that while some consideration is given to the infrastructure that will support a control
system, little attention is paid to the detail of whether or not existing support functions
will be able to manage the changes in workload that a new control system would
introduce. Again, it also suggests that an appropriate method or tool is needed for

carrying out this type of quantitative analysis.

4.4 Make-or-Buy Analysis

Decisions as to whether parts should be made or bought are some of the most
problematic faced by manufacturing companies. These decisions can arise in a number
of different circumstances that are relevant to the research described in this thesis. For
example, they may occur as part of a strategic re-design of a manufacturing system or
as a result of an ongoing programme of continuous improvement to manufacturing

operations.

4.4.1 Conventional Approaches to Make-or-Buy Decisions

At an operational level, many businesses approach make or buy decisions from a
purely cost-driven point of view, selecting which components to out-source by
comparing the internal cost of manufacture with supplier’s prices. Manufacturing
capacity may be another factor. For example, sub-contracting may be deemed
necessary to fulfil excess demands for items normally manufactured in-house, where

the volumes concerned are not sufficient to justify additional capital investment.

Invariably, analysis based on cost or capacity issues will involve evaluating the
financial gains or losses that would be incurred by making or buying a particular item.
For example, most financial and operations management texts describe techniques for
evaluating make-or-buy decisions in purely cost terms (see for example, Drury (1992);
Slack et al. (1995)). To simplify the analysis, only marginal costs are considered. In

other words, only those costs that are expected to change as a result of the decision will
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be included in the analysis. Typically, when evaluating different options in this way,
support department costs are assumed to remain fixed and therefore the effect of a

make-or-buy decision on non-manufacturing functions tends to be ignored.

However, the nature of a make-or-buy analysis is such that the outcome of a decision
will certainly affect the workload of some support functions. For example, retaining
production in-house will increase the burden on activities such as production control
and stores management needed to oversee the manufacture of these items.
Alternatively, buying an item will place additional burdens on all of the functions
involved in the procurement process such as purchasing, expediting, goods inwards
and accounts payable. It was explained in a previous chapter that changes in the
volume of transactions or other forms of loading will affect support functions in one of
two ways. They will either be forced to invest in additional resources to maintain a
satisfactory level of service to the shop-floor or, the level of support they are able to
offer will deteriorate. The methods advocated in many texts for evaluating make-or-
buy decisions are therefore inappropriate because they ignore some very significant

effects that an outcome might have on support functions.

Elaborate costing models have been employed in an attempt to overcome these
limitations. The activity-based costing approach (Cooper & Kaplan, 1988b) is one
such example, but there are also many others (see, for instance, Yoon & Naadimuthu
(1994); Darlington (1995)). However, these models all focus purely on costs and are,
in fact, unable to predict how the service level provided by support functions will

affect the performance of a manufacturing system.

This general criticism of costing methods concurs with work carried out by Dale &
Cunningham (1983) specifically in relation to make-or-buy decisions. Using case
studies, they confirm that decisions-makers are not satisfied with simplified costing
approaches for make-or-buy analysis, mainly due to a lack of confidence that these
methods can generate the true cost for each alternative. In particular, they suggest that
decision-makers do recognise that overhead costs will be affected but realise that their
costing systems are inappropriate. To overcome these limitations, Dale &
Cunningham can only suggest that other qualitative factors are taken into consideration

and that these decisions should be resolved jointly by members of all the affected
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functions. They do not suggest how the impact of a make-or-buy decision on indirect
areas might be quantified, either in terms of cost or in the level of support that these

functions will still be able to maintain.

Bergen (1977) and Buchowitz (1991) introduce decision frameworks for make-or-buy
analysis. Their purpose is to ensure that the same questions are answered in the same
sequence by all functions involved in a make-or-buy exercfse. Bergen, for example,
suggests that such a framework will encourage actions to be taken that are more likely
to benefit the whole organisation rather than just optimise one particular aspect of the
business. This kind of approach may at least encourage the impact of decisions on
overhead functions to be considered but does not provide any mechanism for actually

quantifying, in financial or other performance terms, what these effects might be.

4.4.2 Make-or-Buy Analysis in the Context of Manufacturing Strategy

The significance of make-or-buy analysis is also well recognised in the context of
manufacturing strategy formulation. This introduces new concepts in addition to the
popular ‘lowest cost’ option described earlier. Venkatesan (1992), for instance, links
the concept of strategic sourcing to make-or-buy. Buying-in is advocated where a
supplier’s experience of a critical manufacturing process and hence quality of goods
they produce may be superior to one’s own. In the same way, it is suggested that a
company should restrict the range of goods actually produced in-house to those that are

sources of competitive advantage.

While a full discussion of strategic-sourcing is beyond the scope of this thesis, any
proposed action should still be evaluated in terms of how resources involved in the
material acquisition process will be affected in the light of a new sourcing strategy.

Venkatesan makes no mention of this aspect of make-or-buy analysis.

In contrast, Probert et al. (1993) comment on the lack of an overall methodology for
the make-or-buy decision. For this reason the authors present their own four-stage
process that incorporates both the strategic and financial aspects described so far. The

methodology is represented inFigure 4-3.
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Figure 4-3 Make-or-Buy Methodology (after Probert et al., 1993)

This methodology does at least emphasise the need to weigh up the best combination

of options on a quantitative basis. A spreadsheet-based or similar type of cost model is

suggested as an appropriate tool for carrying out this evaluation. In terms of support

functions, the methodology also emphasises that overhead costs, in particular material

acquisition costs, should be carefully evaluated.

This represents a significant improvement on some of the more factory-focused

approaches described earlier. However, given that the service level provided by

support functions to the manufacturing system is often a constraining factor, the

evaluation process should also consider that aspect as well as overhead costs. In

addition, the ability of a spreadsheet-based model to properly predict the loading on

support functions is questionable; this point will be illustrated later. Overall, the four-

stage methodology proposed by Probert et al. would provide a comprehensive analysis

of a make-or-buy situation if a more rigorous method for evaluating the impact on

support functions were employed.
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4.5 Summary

This chapter has looked in detail as some typical decisions that will be taken in the
course of designing a manufacturing system. Methodologies aimed specifically at
these types of decision have been reviewed. The purpose has not been to lay criticism
at any one methodology in particular, those that have been examined merely serve as
an indicator of current best practice in these different areas. A common theme running
through the different techniques that have been reviewed is that they emphasise the
importance of making any decision in the context of how it will affect the whole
business rather than just a single functional area. It is therefore surprising that the
same methodologies make little or no attempt to rigorously test how the changes in
workload that a particular action might impose on support functions will affect the

success of these decisions.

Arguably, since the effects on manufacturing areas tend to be analysed in some detail,
the lack of a suitable tool or technique for quantifying the effects on support functions
is one reason why these aspects of the business tend to be ignored. The application of
this tool or technique would ultimately need to form part of a new or revised set of
methodologies relating to different types of manufacturing system-related decision.
The next chapter will therefore investigate the kind of evaluation technique or
modelling tool that decision-makers would need to properly anticipate how
manufacturing systems will perform given the potential constraints that support

activities might impose.
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5. Modelling and Analysis of Manufacturing Systems

Preceding chapters have identified limitations in the way manufacturing systems are
designed, and particularly in the way these designs are tested prior to implementation
given the impact that support departments can have on a system’s ultimate
performance. This chapter therefore examines a range of modelling techniques for
analysing manufacturing systems with a view to establishing a more appropriate way

of evaluating design decisions.

5.1 What is Modelling?

Models of various types are used to investigate solutions to many kinds of business
problem (Szymankiewicz et al., 1988). A model will be created to represent those
aspects of the business that are seen as relevant or likely to be affected by a proposed
course of action. The model can then be used by decision-makers to experiment with
new ideas and solutions more economically, quickly and safely than would be the case
if those same aspects of the real business had to be disturbed (Pidd, 1992a). The
process of creating a model also helps decision-makers to understand the system being
studied (Seila, 1995; Elder, 1995b) and provides insight into aspects of the business
that might otherwise be ignored or taken for granted. Consequently, modelling should

form an important part of any decision-making process.

Models can take a variety of forms even within the manufacturing system design
process. A physical or scale model of a manufacturing facility will enable any physical
constraints that a proposed change might introduce to be identified. For example, a
scale model would enable decision-makers to investigate how easily operators and
material handlers would be able to move between a new arrangement of machines on

the shop-floor.

In contrast, decision-makers need to adopt an altogether different kind of modelling
approach in order to investigate the behaviour of a manufacturing system in terms of
the interactions between its different elements and how the performance of the whole
system might change over time. Decision-makers tend to employ mathematical or
logical models rather than scale models for this type of application (Pidd, 1992a).

These types of model consist of mathematical equations or logical relationships to
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represent the behaviour of objects in the real world. Since this thesis is concerned with
the relationships between manufacturing and support functions, the discussion will
relate mainly to mathematical and logical modelling techniques rather than other types

of models.

Another important and closely related factor is the scope and level of detail to be
included in a model, given that it is intended only to be a simplified representation of a
real system. Both scope and level of detail will depend on the type of problems that a
model will be used to study but a model must also be realistic, and therefore any
assumptions or approximations need to be carefully considered. In view of this,

several concepts are often used to classify modelling approaches:

e Static vs. Dynamic Models : This concept relates to how closely a model
describes the time varying behaviour of a real system. Coyle (1977)
suggests that all commercial and social organisations show dynamic
behaviour. In other words, the variables by which the condition of a
system is measured (such as inventory, sales or profits) fluctuate as time
passes. Dynamic models attempt to capture this time varying behaviour

but static models approximate these characteristics (Shannon, 1975).

e Deterministic vs. Stochastic Models : This concept relates to how
sources of uncertainty that may exist in real systems are captured in
models of those systems. A deterministic system is one whose
behaviour is entirely predictable; in other words, the timing of every
event can be predicted with absolute. certainty. In a stochastic system,
however, a statement can only be made about how likely certain events
are to occur or how long they will take to complete (Pidd, 1992a).
Uncertainty is closely related to the dynamic behaviour of a system

since variability contributes to this type of behaviour.

e Continuous vs. Discrete Models : This refers to how time is represented
in dynamic models and therefore how the elements in a system change
state (Seila, 1995). Each change of state in a discrete system, such as a
machine changing from running to idle or a document changing from

completed to signed-off, is clearly identifiable. In continuous systems
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state changes are more gradual; for example, the temperature of a
furnace will change continuously from a low to a higher temperature.
Continuous models are sometimes used to approximate discrete systems
but the nature of any real system and the type of problem being
addressed will determine how realistically it can be modelled by either

of these approaches.

The next section will examine how these modelling concepts relate to the type of

model that should be used to analysis manufacturing system design decisions.

5.2 The Requirements of a Modelling Tool for Evaluating Manufacturing System
Design Decisions

The thesis has so far established that the interactions between support functions and a
manufacturing system should be modelled to identify any constraints that support
departments might impose on the shop-floor. Some important characteristics of these
different functional areas and the interactions between them will now be examined
from a modelling point of view. Practical considerations for a modelling tool to be

used by manufacturing system engineers will also be discussed.

5.2.1 Features of the Environment to be Modelled

By implication, the majority of delays incurred by manufacturing and support
functions interacting with each other will be due to information flows, such as a
production control department issuing works orders to the shop-floor, or the shop-floor
sending raw material requisitions to stores. Some types of interactions may also
involve a combination of material and information flows. For example, delays will be
incurred as material moves from a supplier, through goods inwards to a machine-shop,
and there may also be other administrative delays incurred in completing any

paperwork involved in this process.

Since decision-makers will ultimately be interested in how these delays are going to
affect manufacturing system performance they need a model that will be able to
represent the complex sets of interactions within and between different functional areas

that contribute to these delays. For example, within support departments documents
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may pass through several administrative areas before reaching the shop-floor. During
this time a document is likely to go through a series of transitions such as being
processed, duplicated, filed or moved to other departments within a firm. At each
stage, administrative personnel will be dependant on upstream processing activities
having completed their work on a document and then transferring it to the next
processing stage. The limited availability of supervisors or managers for signing-off or
authorising some types of document may also affect its progress through the
organisation. Support department personnel might also be interrupted from the task of
processing a document by meetings or having to interact with another department or

company to obtain a piece of information.

This all suggests that the behaviour of the different elements making-up support
functions is likely to be complex and the time for a document to pass through the
system will vary, due to events or interruptions that occur randomly. In modelling
terms, these factors emphasis that support departments are characterised by dynamic
and stochastic behaviour. A modelling tool should therefore be able to represent
dynamic and stochastic aspects of document processing activities in order to properly

evaluate their impact on manufacturing system performance.

The operation of a manufacturing system itself is also complex and characterised by
dynamic behaviour and uncertainty (Coyle, 1977; Parnaby, 1986). For example,
sources of uncertainty will include production losses due to machine breakdowns, the
inter-arrival time of parts and variability in processing times (Law et al., 1994).
Variability in the performance of operators will be another factor. For this reason, a
modelling tool should also be able to model the dynamic and stochastic behaviour of
shop-floor entities, and indeed, model how this might be influenced by equivalent
behaviour in support functions. In other words, these different parts of a business

should be represented in the same model.

Another feature of manufacturing and non-manufacturing environments is that they
can both be described in terms of discrete elements, such as people, parts, documents,
machines, desks, computers and so on. In modelling terms, therefore, not only is a
manufacturing business characterised by complex and dynamic behaviour, but distinct

or discrete changes in the states of the different elements that make up the organisation
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can also be identified. For example, people in a manufacturing system will process
discrete batches of parts while their counterparts in an administration system might
process discrete batches of documents. Interactions between these different functional
areas will also involve distinct exchanges of information or material; for example, a
production-control clerk, by issuing a works order to the shop-floor, will be instructing
an operator to begin manufacturing a batch of the particular product requested on that

document.

These different characteristics suggest that to be able to properly represent delays a
model should portray the dynamic and stochastic behaviour of the discrete elements
that make up a manufacturing business. While these factors represent important
functional requirements, the next section will look at some other practical

considerations.

5.2.2 Practical Considerations for a Modelling Tool

As well as providing a way of evaluating and comparing alternative design options,
modelling is also a very useful method of communicating new ideas to those people
that will be affected when a new manufacturing facility is eventually implemented
(Gogg & Mott, 1992; Seila, 1995). For this reason, the individuals most involved in
making the decision and those who will operate the new system should be involved in
the model development process. This introduces two practical considerations; both the
time that these people will have available to build a model and also their understanding
of different modelling techniques are likely to be limited. ~Consequently, if a
modelling tool is to be used in practice to evaluate manufacturing system design
alternatives then it should allow people with only a limited knowledge of modelling
techniques to quickly build models (Brewer, 1995). The extent to which these people
can be distanced from the mathematics or logic of a model contributes significantly to

the ease and speed of the model development process.

This suggests that much of the logic that describes the behaviour of a manufacturing
business ought to be pre-defined in the modelling tool itself, allowing a model-builder
to simply configure these elements together to create a model of their particular

organisation. However, such a tool should also be flexible enough to model the
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features of both manufacturing and support activities within a range of firms. In
addition, the model development process should be carried out, as far as possible,
using terminology and concepts that the model-builder understands rather than using
specialist modelling jargon. This implies that models should be configured from
entities and systems typically found in a real manufacturing organisation such as

operators, machines, documents, procedures and so on.

In summary, both a manufacturing system and its supporting functions are
characterised by dynamic and variable behaviour. A modelling tool that captures these
features is needed to properly evaluate the performance of a new manufacturing
system. This also implies that the manufacturing and non-manufacturing elements of a
business should be modelled as an integrated whole rather than in isolation. For
practical reasons model building should be relatively quick to complete and carried out
by people involved in the decision-making process rather than by modelling experts.
This means that either the modelling approach should be easy to understand or the
approach packaged within an easy-to-use modelling tool in such a way that model-

builders are presented with concepts that are familiar to them.

5.3 A Review of Techniques for Modelling Manufacturing Systems

Having now established some functional and practical requirements of a modelling
tool for assessing manufacturing system design decisions, this section will look at
some of the different techniques that are available and determine which is the most
appropriate for investigating this type of problem. The discussion will relate to

modelling approaches rather than specific commercial modelling tools.

5.3.1 Opinion Models and Rules-of-Thumb

Gogg & Mott (1992) coin the term opinion model to describe approaches that are based
more on ‘rules-of-thumb’ than on any formal analysis. In other words, this type of
approach relates to situations where decision-makers decide which course of action to
take based solely on their own personal experience, or on the practices of other
apparently similar firms, rather than attempting to actually quantify the consequences
of alternative actions. By their very nature, opinion model solutions derive from

qualitative evaluations of engineering or business problems. For that reason, opinion
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modelling is not a modelling technique in the sense of a mathematical or logic-based
approach, but it still warrants discussion here since solutions to some aspects of a

manufacturing system design are formulated in this way.

For example, a methodology for selecting production planning and control systems
using knowledge-bases was presented in the previous chapter (Kochhar et al., 1992).
This can be described as an opinion modelling tool since it can be used by decision-
makers to provide general solutions to the production control aspects of a
manufacturing system. Thomas & Davies (1996) present a similar type of model that
effectively imposes a supporting infrastructure onto a manufacturing system design. In
practice, however, the dynamic behaviour and inherent variability within different
functional areas contributes to making each particular manufacturing system unique in
some way. For this reason, generic solutions derived from opinion models can be
misleading even when restricted, for example, to production control system problems
(Boughton, 1995). In other words, the successful production control solution for one
manufacturing company may not necessarily be the most appropriate system for an
apparently similar organisation (Ptak, 1991) and so general solutions to this type of

problem are often inappropriate.

Specifically, the rule-of-thumb approach lacks any quantitative assessment of
alternative design solutions. This means that decision-makers cannot even anticipate
how shop-floor performance might be constrained by average support department
workloads. Lewis (1994), for example, presents the case of a firm that developed
some general rules-of-thumb for a major make-or-buy exercise but which ignored the
impact on support department areas. The company adopted a policy whereby any item
having either less than 20 minutes processing time, or that could not be produced in
any of its existing manufacturing cells, should be out-sourced. The decision-makers
assumed that this approach would reduce shop-floor complexity but they did not
attempt to quantify how effective their policy would actually be in achieving this
objective. In addition, they did not investigate how the complexity of support
activities, such as procurement, might be affected. As a result, arrears and inventories
of bought-in items increased to the point where shop-floor performance actually

deteriorated.
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For the individuals concerned this bad experience should mean that ‘better’ rules-of-
thumb can be applied in future projects. Indeed, opinion models and rules-of-thumb
can provide an informal and relatively quick means of producing generic solutions to
some manufacturing system design problems. However, since no quantitative
evaluation is performed these types of model cannot provide any insight into how
delays in either manufacturing or support areas might affect business performance. In

other words, a more sophisticated and quantitative modelling approach is required.

5.3.2 Static Mathematical or Spreadsheet Models

A static mathematical model uses linear equations and average values for process
times, costs and so on to describe the behaviour of a real world system. This type of
modelling is probably the most basic of the approaches that do attempt to quantify the
consequences of decisions. Spreadsheets are widely used for evaluating decisions in
this way and are particularly popular because they allow end-users to create models

without the help of modelling experts (Floyd et al., 1995).

In terms of the manufacturing system design process, spreadsheets models are often
used to assess capacity or cost-related issues. For example, a survey of UK businesses
conducted by Berry & McLintock (1991) identifies the widespread use of spreadsheet
tools for building financial models, including models for evaluating manufacturing
decisions. The study also suggests, however, that spreadsheet models are typically
deterministic and quite basic in their representation of the relationships between the

different aspects of a business:

“Typically the understanding of cost behaviour in a model is based
on the traditional fixed variable split, where variability implies a

simple proportional relationship.”

More recently, Clarke & Tobias (1995) reviewed the application of spreadsheets for
corporate modelling which is relevant here since, by implication, a ‘corporate’
approach should consolidate both manufacturing and non-manufacturing aspects of a
business into the same model. Speed and ease of model creation are again identified as
the main advantages of this approach but the authors claim that since spreadsheets
inhibit ‘richness’ in modelling the behaviour of organisations, they are not appropriate

for evaluating the effects of operational or engineering decisions:
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“Corporate models are mostly used for strategic financial analysis
and are becoming, in general, less concerned with physical logistics

and the detail associated with the lower corporate structural levels!

Again, the criticism derives from the fact that spreadsheets and other static
mathematical modelling techniques use average rather than variable values to represent
the behaviour of elements in a real system. It can actually be demonstrated from first
principles that assuming constant values for process times that actually vary can distort
even short-term predictions of the performance of an individual person or machine
(Law & Kelton, 1991). Consequently, since an administrative or manufacturing
system is made up of many different but inter-dependant people and machines, the
predicted performance of such a system is certainly likely to be distorted if variability

is not included in a model of that system.

Another limitation of spreadsheet models is that while they are relatively easy to use,
they contain only written descriptions of the relationships between the elements of a
real system. Berry & McLintock (1991) suggest that this type of presentation does not
convey any assumptions made about a real system as clearly as a graphical
representation and, consequently, the authors raise serious concerns about how easily
the validity of spreadsheet models can be tested. This aspect of spreadsheet models
also implies that they are unlikely to be suitable for communicating proposed changes

to affected personnel within a firm.

In can be concluded that spreadsheets or other static mathematical modelling
approaches provide a relatively quick and easy way for decision-makers to build
models. However, these types of model lack the necessary richness in terms of being
able to predict how dynamic behaviour and uncertainty will affect the various sources

of delay that can constrain manufacturing performance.

5.3.3 Analytical Modelling and Queuing Theory

While spreadsheets use linear equations to describe static behaviour, an alternative
mathematical approach involving probability equations is sometimes used to model the
time-varying or dynamic behaviour of a system. The term analytical modelling is

often used to describe this type of approach and models based on queuing theory are
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often used to analyse real systems in this way (Suri & Diehl, 1987). Queuing theory
uses the concepts of customer, server and gueue to describe the system being modelled

(Hall, 1991):

e A customer represents something that is waiting to be served and might
include, for instance, an operator waiting to use a machine or a

document waiting to be processed.

e A server provides the service; for example, an accounts clerk that
processes invoices or a machine that manufactures sub-components both

represent different types of server found within manufacturing firms.

o A gueue is a group of customers waiting to be served; for example, this

might include a batch of purchase requisitions waiting to be signed-off.

Models are created by identifying customers and servers within a real system and then
describing relationships between them; probability distributions are used to represent
arrival times of customers to the queue and also the time taken for each customer to be
served. However, many simplifying assumptions embedded in basic queuing theory
mean that, in practice, it is of little use in predicting the performance of even simple

systems (Byrd, 1978).

Limitations include the assumption that the arrival of each customer is not related to
the arrival of previous customers (Hall, 1991). This restricts queuing theory’s ability
to accurately model systems where several customers progress through a number of
processing stages, such as a typical scenario where Customer2 only progresses through
Serverl to arrive at Server2 after Customerl has done the same. In this example, the
arrival time of Customer2 at Server2 should be dependant on the earlier arrival time of

Customerl at Server2 but would not be represented in a queuing theory model.

Clearly, this kind of inter-dependency between the arrivals of customers is prevalent in
both manufacturing and administrative systems. For example, works orders might be
represented as ‘customers’ in a queuing model of an administrative system and each
have to progress through a series of ‘servers’ in the form of an MRP system, a

production planner, a cell-supervisor and finally a machine operator. This limitation
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means that basic queuing theory is inappropriate for evaluating manufacturing system

design decisions.

Queuing-network theory overcomes many of the limitations of basic queuing theory
and can model a collection of servers acting together to serve customers (Hall, 1991).
In addition, while the mathematical concepts involved in queuing-network theory
might not be familiar to people involved in the manufacturing system design process,
software packages are now available for creating these types of model but using
terminology that model builders will more readily understand (Snowdon & Ammons,
1988; Suri et al., 1995). As a result, this type of analytical modelling has become
popular in recent years as a means of testing the dynamic and stochastic behaviour of
manufacturing systems (Heuttner & Steudel, 1992; Papadopoulos et al., 1993; Askin &
Standridge, 1993).

Ultimately, however, certain characteristics of manufacturing organisations are not
easily represented by mathematical equations and so even queuing-network models
still incorporate some major unrealistic assumptions (Chaharbaghi, 1990; Jackman &

Johnson, 1993). These assumptions include, for example, that :

e the system being modelled is operating in steady-state

e service times vary according to exponential distributions

The assumption of steady-state operation ignores the effects of transient behaviour. It
was argued earlier in this chapter that tasks in administrative functions might, for
instance, involve personnel in one department having to interact with personnel in
another department, or even in a different organisation. Interruptions of this kind will
affect the time taken to complete administrative tasks. Similarly, manufacturing
activities will be interrupted by machine breakdowns or the rescheduling of jobs.
These different examples illustrate sources of transience in both manufacturing and
non-manufacturing aspects of an organisation and demonstrate why steady-state
performance is difficult to achieve or maintain for any length of time in a real system
(Jackman & Johnson, 1993). In addition, these types of interruption are likely to have
a complex effect on service times for both manufacturing and support activities, to the
extent that modelling these times using only statistical distributions, rather than

incorporating entity-interactions into the model, is unlikely to capture the true
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behaviour of a real system. Consequently, these assumptions represent another

limitation of this type of modelling approach.

Both queuing theory and queuing-network theory also assume that the participants of a
real system can be modelled as a customer, server or queue. However, given the scope
of model that it has been proposed necessary for evaluating manufacturing systems,
some entities may need to be modelled as both a customer and a server. For example,
clerks in a buying department might queue to use a computer terminal or to get
purchase orders signed-off by their supervisor. In this scenario, the clerks represent
‘customers’ waiting to be served. However, the same model might also have to
represent purchase requisitions progressing through different processing stages,
including the buying department. In this situation, buying clerks would represent

‘servers’, providing a service to purchase requisitions.

Overall, while analytical models can represent some aspects of the variability and
dynamic behaviour found in manufacturing organisations, they also make some basic
assumptions that limit their ability to predict how support functions might constrain the

performance of a new or re-designed manufacturing system.

5.3.4 Process Modelling

Process modelling offers decision-makers a systematic way of representing the
structure of a firm’s manufacturing activities (Busby & Williams, 1993). Creating a
process model generally involves documenting or describing the various interactions
and flows of material or information that occur between different aspects of an
organisation. While several methods are available for describing a business in terms of
a process model, the discussion that follows will concentrate on two methods that
might typically be used to represent an administrative or a manufacturing system;

RAD:s (Role Activity Diagrams) and the IDEF methodology (ICAM Definition).

5.3.4.1 Role Activity Diagrams

Creating models using Role Activity Diagrams (RAD) involves conceptualising the
different elements of an organisation into roles, activities, goals (a state to be reached)

and interactions (Huckvale & Ould, 1994). Figure 5-1 shows a simple engineering
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design process that has been modelled using RADs and provides an overview of the

main features of this approach.
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Figure 5-1 An Engineering Design Process : Modelled Using Role Activity
Diagrams (after Ould, 1995)

This example is relevant here since in a jobbing-shop, for instance, the completion of
this support activity will determine how long a manufacturing system has to actually
manufacture goods. The diagram shows a sequence of activities that are performed by
an individual or group of designers and project managers, and also shows some of the
interactions that take place between these different sets of participants. The model is

effectively a template for multiple instances of the design process that may occur
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simultaneously. For example, separate design projects may be carried out in parallel
for Customer A and Customer B, each one following the same sequence of events as

depicted in the model.

While this type of model can provide a very graphical representation of the interactions
that take place between a manufacturing system and its support functions, it provides
very little in the way of quantitative data to help a decision-maker understand how
existing personnel would cope if the number of instances of any process increased. For
example, the model could not predict how the current design team would cope if an
additional design project had to be started before the existing jobs for Customer A and
Customer B could be finished. Indeed, the RAD notation allows the concept of a role
(in this case a designer or project manager) to represent either a single person or a
group of individuals which means that models convey no indication of the level of
resourcing available to carry out each process. As a result, a RAD model could not
even be used to model changes in the static loading of support functions that resulted

from manufacturing system design decisions.

Huckvale & Ould (1994) promote the technique as being appropriate primarily for
modelling business process designs as part of a re-engineering exercise but it is also
relevant in the context of the manufacturing system design process. They emphasise
that models allow decision-makers to clearly describe and communicate the ‘as-is” and
‘to-be’ business process designs for an organisation but Huckvale & Ould offer very
little in the way of advice to decision-makers as to how they might then use the model

to analyse alternative design proposals, except:

“Some simple metrics of the efficiency of the process may be derived
by counting the numbers of actions and interactions. A process (or
role) with fewer interactions or a lower ratio of interactions is likely

to be better.”

This statement, merely represents a common-sense strategy for improving a set of
related activities within a firm rather than, as the authors suggest, a method for
performing quantitative analysis. In a slightly more recent publication, Ould (1995)
does acknowledge that a quantitative model requires data that is strictly outside the sort

of model provided by RADs. As a result, he suggests using the approach of system
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dynamics to perform quantitative analysis on a RAD process model.

System dynamics is a simulation approach that represents a system as a series of
‘flows’ of material between ‘stocks’. It is a continuous modelling approach, typically
applied to predict the stochastic and dynamic behaviour of discrete systems, such as
organisations or even whole nations. It will be demonstrated in the next chapter that
systems dynamics makes assumptions about the behaviour of systems that makes it
inappropriate for evaluating manufacturing systems or support functions. Nonetheless,
the suggestion that system dynamics be used to evaluate these models emphasises that
RADs are perceived only as a technique for representing the interactions between
administrative and manufacturing systems in purely qualitative terms. As such, Role
Activity Diagrams might help decisions-makers understand, and communicate to
others, how manufacturing system design decisions might affect support functions but
would be unsuited to actually evaluating where support departments might constrain or

limit shop-floor performance.

5.3.4.2 The IDEF Methodology

IDEF (ICAM Definition) was originally developed by the US Air Force as part of their
Integrated Computer Aided Manufacture Programme to support its aircraft
manufacturing activities, but has now become a collection of structured graphical tools
for describing the architecture of more general manufacturing systems (Bennett &
Forrester, 1993). Table 5-1 summarises some of the different IDEF techniques that are

available.

Method Name

IDEFO Functional Modelling

IDEF1 Information Requirements Modelling
IDEF1X Database Design

IDEF2 Simulation or Dynamic Modelling
IDEFS Process Description Capture

Table 5-1 IDEF Techniques (adapted from Plaia & Carrie, 1995)

While this complete set of modelling techniques is intended to allow decision-makers

to describe and analyse different aspects of organisations, the majority of documented
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attempts to apply these methods within manufacturing companies have been limited to
IDEF0 (Colquhoun et al., 1993; Wu, 1994; Booth, 1995). IDEFO is used to create
functional models of an organisation. In other words, these types of model consist of a
network or hierarchy of diagrams representing both the manufacturing and support
activities of a firm, in order to illustrate how each functional area can affect others in

the business.

Figure 5-2, for example, uses the IDEF0 notation to model a simple make-to-order
process that includes interactions between shop-floor and support functions. The
notation uses the concepts of inputs, outputs, controls and mechanisms to describe the
relationships between different activities. In this case, the model illustrates the inter-
dependency between three different functions or activities, namely production
scheduling, manufacture and delivery. For instance, the output of the production
scheduling activity controls the manufacture of finished goods. In turn, finished goods

represent an input to the delivery aspect of the process.
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Figure 5-2 IDEF0 Model of a Make-to-Order Process
(adapted from Plaia & Carrie, 1995)

While the notation of an IDEF0 model is somewhat different to the Role Activity
Diagram notation described earlier, both methods essentially produce the same type of

model; that is, a wholly qualitative and graphical representation of information and
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material flows within an organisation. Like a Role Activity Diagram, an IDEF0 model
is also just a template for multiple instances of the make-to-order process that may take
place in parallel, but the lack of any quantitative data again implies that the model
cannot be used for analysis or experimentation. In other words, since the models make
no reference to numbers of resources such as people or machines that will perform
these activities, decision-makers cannot predict how effectively or quickly instances of

a make-to-order process will be performed.

In addition to the lack of quantitative data, Busby & Williams (1993) also suggest that
IDEF0 models represent processes in a deterministic way. In Figure 5-2, for example,
a decision-maker would find it difficult to represent how the manufacture stage would
be affected by machine breakdowns. Similarly, while the methodology would support
each activity being modelled at lower levels of detail to those shown, the notation
could not easily describe a set of different routings for parts flowing through a

manufacturing system.

While IDEFO can describe the activities performed by different functional areas, an
IDEF] or IDEF1X model will describe an organisation’s information requirements
(Bravoco & Yadav, 1985; Wang et al., 1993). This could form the basis for specifying
the information systems needed to support a manufacturing system. Again, however,
these types of model provide only a graphical and qualitative representation of this
particular aspect of a manufacturing organisation. This means that decision-makers
could not use these information models to evaluate, for instance, how manual or

automated information systems might affect the performance of shop-floor activities.

In contrast, IDEF2 is often presented as being able to analyse the dynamic behaviour of
a real system (Wu, 1994; Plaia & Carrie, 1995). For example, Bravoco & Yadav
(1985) suggest that IDEF2 models allows decision-makers to describe the time-varying
behaviour of manufacturing systems in such a way that the descriptions can be
analysed to generate measures of a system’s performance. However, Bravoco &
Yadav also imply that the analysis stage must actually be performed using an
additional third-party modelling tool, typically a simulator. A similar conclusion can
also be drawn from the description of IDEF2 offered by Wang et al. (1993). In other

words, an IDEF2 model really only provides a description of those characteristics of a
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system which contribute to its dynamic behaviour, such as specific logic or timing
aspects that can be associated with different activities. This is not the same as a model
for evaluating dynamic behaviour, although an IDEF2 representation may provide the

necessary data to build such a model using another modelling technique.

The IDEF3 methodology compliments the IDEF2 approach by providing additional

information to describe a system’s dynamic behaviour:

“[IDEF3] captures precedence and causality relations between

situation and events in a form that is natural to domain experts.

Plaia & Carrie (1993)

Again, it is implied that this technique provides a way of documenting how an
organisation works in order to build another type of model for actually performing
quantitative analysis. ~Simulation is the modelling technique typically used for
performing this type of analysis and will be discussed in more detail in the next
chapter. However, the accepted role of simulation emphasises that neither the IDEF2
nor IDEF3 modelling approach are themselves enough to provide manufacturing

system engineers with a means of evaluating alternative system designs.

Overall, process modelling offers a structured way for decision-makers to describe how
the various functions within a manufacturing organisation interact and to represent the
relationships between the different activities which these functions perform. In the
context of the manufacturing system design process, this helps decision-makers to
understand how a new manufacturing facility will interact with support functions. In
addition, the graphical nature of process models means that they can be used for
communicating new ideas to those people that will be affected by changes. However,
process models provide only descriptions of those characteristics that contribute to
dynamic behaviour. In other words, process models are not actually able to assess the
effects that a particular proposal might have on other functional areas. It can therefore
be concluded that process models themselves cannot be used to analyse a

manufacturing system.
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5.4 Summary

This chapter has reviewed a variety of modelling techniques with respect to their
ability to properly analyse manufacturing system design decisions. The review has
compared each technique in terms of its ability to model important characteristics of
both the manufacturing system itself and also support functions, namely dynamic
behaviour and uncertainty. Any suitable technique must also be practical for
manufacturing system engineers to use in terms of the level of understanding and also

time required to create models.

Techniques based on rules-of-thumb, spreadsheet analysis, queuing theory and process
modelling have been assessed but each fails in some way to represent important
features of either shop-floor or indirect activities that could affect the outcome of a
manufacturing system design exercise. Consequently, another type of modelling
approach is required for investigating this class of problem. The next chapter will
therefore look at the advantages that simulation offers over the methods described in

this chapter.
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6. The Limitations of Current Simulation Tools

Each of the modelling approaches described so far fails in some way to provide an
easy-to-use model that can assess the impact of delays between a manufacturing
system and its support functions. Simulation is another type of modelling approach
and has been extensively used to predict the consequences of a range of business
decisions (Pidd, 1992a; Szymankiewicz et al., 1988). This chapter will demonstrate
the potential advantages of adopting a discrete-event simulation approach for analysing
the combined behaviour of a firm’s manufacturing and support activities but will also
identify limitations of the various simulation tools that are currently available for

modelling this type of problem.

6.1 Adopting a Discrete-Event Simulation Approach

Simulation is one of the most frequently used systems analysis techniques since it is
more suited to studying complex and dynamic systems than any other method (Seila,
1995). The term ‘simulation’ is actually often used in quite a general sense to describe
any technique that allows experimentation to be performed using models of a real
system. In some disciplines, for example, the use of spreadsheets or queuing theory
models is described as simulation (Mould, 1990). However, in the context of the
manufacturing system design process the term is generally restricted to describing a
more specific set of computer-based modelling techniques, ranging from continuous to

discrete-event simulation (Carrie, 1988).

The concept of continuous and discrete systems was introduced in the previous
chapter; the terms refer to how time affects the dynamic behaviour of a real system
and therefore how the elements in that system will appear to change state. Continuous
simulation and discrete-event simulation systems attempt to model the characteristics
of continuous and discrete systems respectively. A discrete-event model represents the
behaviour of the different entities in the real system using procedural logic statements.
For example, discrete-event logic might describe the conditions or events that cause a
person to progress from a state of being idle, to walking, to operating a machine and
eventually becoming idle again. By attributing times and sources of uncertainty to

each of these events a simulator can model the dynamic behaviour of individual
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entities in a system and thereby also model the overall dynamic behaviour of a large

system such as a manufacturing organisation.

In contrast, a continuous simulation model will only approximate this type of
behaviour using mathematical equations. System dynamics (Forrester, 1958), for
example, is an established continuous simulation technique (Pidd, 1992a). This
particular approach uses differential equations to describe a system in terms of
information flows, material flows and a network of feedback loops. System dynamics
has been applied to model different aspects of manufacturing system performance
(Love, 1980; Tucci et al, 1991). In practice, however, a manufacturing business is a
discrete system in the sense that it is made up of distinct entities such as people,
departments, documents, batches and so on that interact with each other but can also
exist and change state independently of each other. For this reason, a discrete-event
simulation model will be a more natural representation of a manufacturing business
than a continuous model since it will more closely represent the same discrete elements

that make up the real system.

In addition, the procedural logic that makes up a discrete-event model will more
closely describe how entities in a real manufacturing business interact. This aspect of
discrete-event simulation is particularly relevant since manufacturing system engineers
need to assess how interactions between a shop-floor facility and its support functions
will affect manufacturing system performance. Furthermore, while all models make
assumptions about how a real system behaves, the entities in a discrete-event model
correspond to objects found in the real system. For this reason discrete-event
simulation is potentially easier for model-builders with limited simulation experiengce

to understand.

The benefits of employing discrete-event simulation techniques for evaluating
manufacturing system performance are already well established (van der Walde, 1991;
Robinson, 1993) although these models are generally used to investigate only shop-
floor aspects of these systems such as material flows, inventory levels and resource
utilisation (Blundell, 1994). In contrast, the application of discrete-event simulation to
evaluate the performance of support functions in manufacturing organisations is less

well established. Davies (1994), for example, comments generally on the surprisingly

79



few examples of where the technique has been used to model office processes given
that other methods, even dynamic mathematical models, cannot represent the
complexities of inter-dependency and external delays that are characteristic of office
processes.  Davies successfully applies discrete-event simulation to evaluate
administrative processes in a financial services firm. In a similar case study, Ketcham
(1991) also uses the technique to model office procedures in a financial services
company. Ketcham justifies the use of simulation on the basis that the impact of
administrative bottlenecks can only be assessed properly using a technique that models

at this level of detail.

These different examples demonstrate that discrete-event simulation is generally
considered to be the most appropriate technique for modelling both manufacturing and
office activities. Ironically, however, there do not appear to be any reported attempts
to combine manufacturing and support activities within the same discrete-event model.
The remainder of this chapter will therefore evaluate some different types of discrete-
event simulation tool as well as some specific simulation applications in terms of their
suitability for building such a model for use in the manufacturing system design

process.

6.2 The Case for Using Data-Driven Simulators

Simulation models can be constructed in a variety of different ways. Models can be
created using anything from general-purpose programming languages to visually-
interactive modelling systems (Pidd, 1992b). Choosing how a model will be created is

essentially a trade-off between ease-of-use and flexibility.

Ease-of-use in this context relates to how quickly a model can be set up as well as the
level of skill required in terms of programming and simulation expertise. Flexibility
relates to how adaptable any approach is in terms of being able to model a range of
different types of problem. Figure 6-1 illustrates these trade-offs by way of four
different categories that cover the range of methods available for building simulation
models; general-purpose programming languages, simulation languages, generic

simulators and domain-specific simulators.
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Programming
Languages
Simulation
Languages
Generic
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Simulators

—_—

Ease-of-use

Figure 6-1 Trade-off between Ease-of-use and Flexibility in Approaches to
Constructing Simulation Models

Since general-purpose programming languages such as C, C++ and Pascal are
intended for developing practically any type of software they do not contain any
simulation-related routines or constructs. Consequently they impose virtually no
constraints on how a simulation model should be constructed. For instance, the model
creator will be able to define even the most fundamental aspects of the model such a
time-advance mechanisms, random-number generators, results generators and so on.
In addition, the model-builder will have complete responsibility for deciding how
elements of the real system should be represented in the model. For this reason,
creating simulation models essentially from scratch using general-purpose
programming languages provides almost unlimited flexibility in terms of the type of
model that could be created. Theoretically, at least, one could therefore use this
approach to build the type of model that is proposed for evaluating manufacturing

system design decisions.

In practice, however, the feasibility of constructing a model of the scope and level of
detail required for testing manufacturing system designs using a general-purpose
programming language is questionable. Even if a design team could call upon the
necessary programming and simulation skills for this type of project, building an
adequate model is likely to take a considerable amount of time. McConnell (1993), for
example, claims that in terms of commercial software development the industry-

average productivity rate for programmers is only about 8 to 20 lines of code per
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person per day. He explains by emphasising that although physically typing this
amount of code is only likely to take a few minutes, a very significant proportion
(McConnell suggests up to 50 per cent) of a programmers time is spent debugging
code. Clearly at a rate of 8 to 20 lines per man day a simulation model will take a very

Jlong time to create unless only trivial models are built.

Simulation languages such as SIMULA and SIMSCRIPT evolved to reduce the
amount of time and effort required to construct a model as compared to more general-
purpose languages (Banks et al., 1991). The syntax of a simulation language also
allows a model-builder to express the behaviour of a real system more naturally in the

model of that system than would be possible using a general-purpose language (Seila,

1995).

Simulation languages do place some minor constraints on how models can be
constructed by pre-defining some basic modelling functionality such as time-advance
mechanisms and random-number generators. Nevertheless, these languages are still
extremely flexible in terms of the scope of model that can be created. For example,
Wood (1993), Hoefer et al. (1994) and Levine (1994) present models of administrative
systems developed using simulation languages while Saunders & Novels (1994) have

applied the technique to build models of a manufacturing system.

In terms of speeding up the model-building process, Pidd (1992a) suggests that a single
line of code written in one of these languages can represent the equivalent of dozens of
lines written in a more general-purpose language. Despite this level of improvement,
however, simulation languages still place great demands on decision-makers in terms
of the time and level of skill required to construct models. This is significant given
that the previous chapter emphasised that if a modelling tool is to be used in practice to
evaluate manufacturing system design alternatives then it should allow people with

only a limited knowledge of modelling techniques to build models quickly.

Wood (1993), for example, claims that his model took a simulation consultant ten days
to build using SIMAN/CINEMA yet the scope of his model extends to representing
only one department within a financial services firm. If it takes a simulation expert

this length of time to create a model of just one aspect of an organisation, then it would
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certainly not be feasible for even a team of manufacturing system engineers to
construct a model of a manufacturing business that includes many different

departments.

A more realistic approach would be to use a simulation tool that relieved decision-
makers of the programming aspects of model-building altogether. This would greatly
improve the ease and speed of the model development process and provide a more
practical way for decisions-makers to construct large simulation models. To this end,
simulators have emerged as an alternative to both general-purpose and simulation
languages. Simulators enable a parameter or data-driven approach to modelling. In
other words, no programming is required to construct models; the user just configures
a model from pre-defined logic elements that will already have been programmed in a
lower level language by a simulation expert (Banks et al., 1991). A data-driven
approach also implies that model-builders will be re-using tested code and verified
model logic. This means that not only will the inevitably long debugging process be
avoided, but model builders can also be confident that the model logic is more likely to

properly describe the behaviour of entities in a real system.

Invariably, however, these benefits come at a price. For instance, the logic embedded
in a simulator is unlikely to be able to represent characteristics of every type of system
that one might wish to model. For this reason, a data-driven simulator will be less
flexible in terms of the range of different types of model that can be created. This is
especially true of domain-specific simulators which, as the name suggests, are
designed to model a very limited range of problems such as those relating to
manufacturing systems or transport systems. This is potentially significant in terms of
identifying a data-driven simulator that will model both the material processing aspects
of a manufacturing system as well as the document processing aspects of its support

functions.

While generic simulators can model a broader range of systems, they tend to demand
more on behalf of the model-builder in terms of having to abstract features of the
environment being modelled into generic simulation terms and concepts. Ideally,
therefore, manufacturing system engineers require a domain-specific simulator where

that domain extends to simulating both the material and information processing aspects
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of a manufacturing business. The remainder of this chapter will review specific data-
driven simulation packages, both generic and domain-specific, with a view to

modelling these different aspects of a manufacturing business.

6.3 The Disadvantages of Manufacturing Simulators

By implication, a manufacturing simulator will be domain-specific since it is intended
to model a particular type of environment. In fact, the majority of domain-specific
simulators have been developed for manufacturing applications (Law & Haider, 1989).
For example, simulators like ATOMS (Bridge, 1990), SIMFACTORY (CACI, 1992)
and ProModel (Harrell & Tumay, 1991) allow decision-makers to build models using
concepts and terminology that relates to manufacturing such as machines, conveyors,
operators, parts, routings and so on. As a consequence, however, the scope of these
simulators also tends to be limited to modelling only material-flows and other shop-
floor activities. This is presumably because the performance of manufacturing
facilities has traditionally been evaluated in isolation. Nevertheless, it implies that the
logic embedded in data-driven manufacturing simulators is not designed to model

document or information processing activities.

Some manufacturing simulators do incorporate production ‘information’ into models
but rather than representing document flows, this is limited to either production control
data (Boughton, 1995) or machine control data for Computer Integrated Manufacturing
applications (Young et al, 1988). WITNESS, on the other hand, is described as a more
general-purpose simulator (Pidd, 1992b; Thompson, 1994) as well as a manufacturing
simulator (Banks, 1995; Hlupic & Paul, 1995). This is because it allows models to be
created using either manufacturing or more generic terminology. One might expect
that this type of simulator would therefore be more suited to modelling manufacturing
and support activities. In fact, Dwyer & Korwin (1990) describe the application of
WITNESS to simulate different parts of an organisation ranging from the factory-floor
to a drawing-office. It should be noted, however, that these models were constructed
as part of completely unrelated simulation projects. In other words no attempt was
made to integrate these two models into a single model of the whole business.
Nevertheless, this example is still very relevant because the way that Dwyer & Korwin

were forced to construct their drawing-office model emphasises some potential
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limitations imposed even by general-purpose simulators such as¥ITNESS.

The purpose of the drawing-office model was to help identify the optimum number of
CAD stations required by a product design team but the authors emphasise basic

limitations of WITNESS'’s generic model-building style:

“The situation [being modelled] was adapted to entities which the

software package could understand.”

In other words, as a consequence of being developed for generic use, even some of the
basic simulation logic embedded in WITNESS did not actually correspond very well to
anything in the real system being modelled. In practice, using this type of simulator
will place additional burdens on model-builders, in terms of skill and time for them to
abstract aspects of the real system into concepts that can be included in the model. In
this case, for example, the authors were forced to treat the drawing-office as if it were a

manufacturing facility:

“The design jobs were modelled as parts to be processed, the CAD
stations were modelled as machines required to process the parts,
and the engineers are modelled as the available labour to handle and

run the machines.”

This also implies that if the model had been integrated with a shop-floor model then
processing of parts and of documents would be represented in exactly the same way.
The limitations of representing manufacturing and support activities this way will be

discussed later.

As an alternative to persisting with inappropriate model logic, some manufacturing
simulators allow users to extend the functionality and scope of the package by writing
code or defining new logic constructs. Taylor II, for example, was developed for
modelling manufacturing and logistics systems (Nordgren, 1994). With this system
models are created from four basic building blocks; elements, jobs, products and
routings. However, for all but the simplest of applications Taylor II requires that the
user defines model behaviour using a macro-language, the Taylor Language Interface.

For example the statement,

gselect 1 from 3, 4, 5 - utilisation(L]
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defines that one product will be sent to either machine 3, 4, or 5 with priority being
given to the machine with the lowest utilisation (Nordgren, 1994). While this syntax is
intended to be easier to use than more general-purpose language constructs, it is still
well removed from the kind of terminology that will be familiar to model-builders
without simulation experience. More importantly, if programming is required simply
to model manufacturing activities, then it is likely that a very significant amount of

additional code will be necessary to model support functions as well.

In summary, this section has reviewed some specific data-driven simulation packages
that are currently available. In particular, the review has assessed those packages that
tend to be referred to most frequently in simulation and manufacturing system design
literature, and are therefore potentially the most well known and well researched. As
such, the study is not a complete review of every commercially available simulator;
Elder (1995a), for example, suggests that there are around two dozen discrete-event
simulation packages currently on the market. Nevertheless, it can be assumed that the
systems that have been reviewed are at least representative of the best systems
currently available and the study therefore provides an indication of the kind of model

one might expect to be able to build using the latest simulation technology.

On this basis it can be concluded that none of the existing range of commercial
simulators aimed at manufacturing system modelling can properly model support
functions. This is perhaps understandable given that the traditional manufacturing
system design process tends to ignore the impact of support areas on the performance
of a manufacturing system. The remainder of this chapter will review other types of
data-driven simulator, including some that have been developed specifically to model
document processing activities, with a view to identifying an appropriate technique for

evaluating manufacturing decisions.

6.4 The Limitations of Other Simulation Tools

6.4.1 Business Process Analysis

Business Process Re-engineering (BPR) is a concept that has gained a large amount of
publicity over recent years, although different interpretations have been put forward as

to what the concept actually involves (Patching, 1994). For example, Davenport &
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Short (1990) describe BPR as:

“The analysis and design of work flows and processes within and

between organisations.”

Davenport & Short also suggest that their interpretation of BPR could be combined
with developments in information technology to create a ‘new type of industrial
engineering’. In other words, they view BPR as an analytical activity intended to
improve overall business productivity in the same way as industrial engineering has
traditionally been applied to improve manufacturing performance. This suggests that
techniques such as simulation which are used to evaluate shop-floor performance
should also apply to BPR. In addition, given that the redesign of support functions is
invariably the main focus of attention within BPR projects (Hall et al. 1993; Hall &
Stewart, 1994; Peppard & Rowland, 1995) the analysis tools used for this type of

exercise are particularly relevant to this thesis.

6.4.1.1 Business Process Analysis Tools

A variety of different modelling tools are available for analysing business processes,
ranging from flow-diagramming tools based on techniques such as IDEF, to simulation
modelling tools (Spurr et al., 1994, Gladwin & Tumay, 1994). Nevertheless, using a
data-driven simulation approach to evaluate business processes is justifiable on the
same basis that simulation is also the most appropriate method for evaluating
manufacturing system designs. In other words, simulation provides the necessary
dynamic analysis (Tumay, 1995) and the model-building process can also foster a

better understanding of the problem domain (Bridgeland & Becker, 1994).

However, given the broad scope of the business process re-engineering concept,
modelling tools developed for this type of application are typically less domain-
specific than their counterparts used for evaluating manufacturing systems. This
means that while BPR modelling tools are better than manufacturing simulators in
terms of flexibility, they are not likely to be able to model specific aspects of a

business quite as well as a simulator designed especially with that aspect in mind.

SIMPROCESS III (Jones, 1995) is a case in point and represents a typical data-driven

business process analysis tool. Models are constructed from three basic types of
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building-block; resources, tokens and processes. Resources are used to represent
things like people or machines while tokens represent objects that flow through the
business. The notion of ‘tokens’ is intended to cover anything from physical objects
such as parts to information-type objects such as documents (Jones, 1995). Therefore,
in terms of a model of a manufacturing system and its support functions, a modelling
tool such as SIMPROCESS I1I would essentially treat parts and documents in the same

way.

Some conceptual differences, in modelling terms, between shop-floor activities and
administrative activities will be demonstrated later in the thesis. This will include
fundamental differences in the way documents and parts are processed. In addition, it
will be demonstrated that the information that a support department processes actually
affects actions taken on the factory-floor. This means that in order to properly evaluate
how support departments will affect manufacturing system performance, the context of

the information contained on each document should be included in the model.

These important characteristics imply that document processing cannot be modelled
simply as series of stages whereby a resource takes a document from a queue, delays
while processing the document, and then places new or amended documents into
another queue. In other words, a modelling system that treats parts and documents in
the same way, and in terms of ‘tokens’, will not properly capture the characteristics of
support functions that will influence manufacturing system performance. While
attributes such as ‘cost’ can be associated with tokens in a SIMPROCESS III model,
this is not the same as modelling the type or context of production data that will be

carried on these documents.

In terms of their applicability to the manufacturing system design process, the same
criticism applies to most other business process simulation tools. For example, static
process models based on the IDEF methodology can be imported into data-driven
simulation tools such as ServiceModel (Shapiro 1994; Gladwin & Tumay 1994) and
WITNESS (Lingineni et al. 1995; Thompson 1995). While this provides dynamic
analysis the model is limited in detail in the sense that parts and documents are again

treated in the same way, in terms of tokens.

88



6.4.1.2 Workflow Applications

Workflow technology relates to a type of software application that automates the
movements of documents between staff within an organisation and can also be used to
automate routine or administrative tasks (Norfolk, 1995). Workflow is synonymous
with the principles of business-process re-engineering since information technology

often forms an integral part of any re-designed process (Peppard & Rowland, 1995).

Since workflow essentially mimics activities that are normally performed by people, it
follows that this technology does in the real business what a simulation model of that
same business will also try to do. For this reason, while workflow itself is not another
type of simulation technique, modelling and analysis capabilities are often integrated
into workflow applications. For example, Miller et al. (1995), Norfolk (1995) and
Howlett (1996) present different workflow packages that incorporate simulation

features for analysing business processes.

Given that some workflow systems can actually process documents as well as simply
moving them from one part of an organisation to another, the context of the
information contained on each document must form an important aspect of this type of
system. In other words, the fact that a purchase order might instruct a buyer to place a
demand for 250’ of ‘PartXYZ’ with a given supplier should actually mean something
to the workflow system. It follows that the simulation capabilities of a workflow
package should be potentially better than the business process modelling tools
described in the previous section which tend to model documents simply as ‘tokens’.
For example, a workflow system could potentially simulate the interactions, and by
implication the delays, associated with just performing a single operation on a
document in a way that would not be possible with other business process analysis

tools.

However, despite being potentially able to model support functions, workflow systems
are not able to model material processing activities to the same extent as a
conventional factory simulator. Consequently a workflow application alone could not
be used to predict how support departments will affect manufacturing performance.
For this reason, workflow systems are not appropriate for evaluating manufacturing

system design decisions. In fact, overall, while BPR or workflow simulation tools can
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model a greater range of business activities than conventional manufacturing
simulators, they are limited in many aspects of the detail that can be included in a
model. Some BPR tools can include manufacturing and non-manufacturing elements
in the same model, but the modelling of interactions between these elements is t0o

aggregate to evaluate the effects of manufacturing decisions properly.

6.4.2 Hybrid Modelling Systems

The discussion has so far identified different types of simulator that can model material
processing or document processing activities in isolation; none of the systems
reviewed can model both sets of activities within a single model. One potential way of
overcoming this major limitation would be to construct a hybrid model. In other
words, two separate models could be created using different modelling systems to
represent these different aspects of the business, and the models then combined
together using some kind of bridging program. So, a manufacturing simulator might
represent the firm’s shop-floor activities while something like a workflow system
would simulate its support functions. The bridging software would attempt to

represent the interactions between entities in each model.

In practice, however, it is unlikely that two collaborating simulation models would be
able to represent entity interactions properly. In particular, the timing of information
being received by the shop-floor contributes to the complex dynamics of the real
manufacturing system and so must be accurately represented in the model. A hybrid
model is unlikely to be able to update the different models simultaneously and so the
impact of timing will be distorted. This is evident from hybrid systems such as cost
models that have been linked to manufacturing simulators but which actually generate
costs after the factory simulation has been completed (Christy & Kleindorfer, 1990;
Wu, 1990; Burhanuddin & Randhawa, 1992).

A hybrid model also implies that real-word entities will be constrained to one or other
of the two models; either the factory or the support department model. This means that
some important functions cannot be modelled properly. Material handling, for
example, involves moving of materials as well as processing of goods inwards
documentation or stores requisitions. Material handling personnel would therefore

need to be represented in both models simultaneously.
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A hybrid model also means that end-users would be confronted with three different
modelling applications; a manufacturing simulator, a support department simulator and
another application that attempts to link these both together. This is likely to make the
model-building process significantly more complex than if a single modelling system
were used. Overall then, it can be concluded that a hybrid model is not appropriate for
the manufacturing system design process. Engineers requires a single data-driven
simulation system that can combine both shop-floor and support activities within the

same model.

6.5 Summary

This chapter has established discrete-event simulation as being the most appropriate
technique for evaluating manufacturing system design decisions. This approach offers
detailed modelling of dynamic behaviour and uncertainty, and also provides a closer
match between entities in the model and objects in the real world. However, discrete-
event simulation is also potentially demanding in terms of the time and level of
simulation expertise required to build even simple models. This means that, in
practice, engineers will need a completely data-driven simulator to build models of the
size and scope proposed for the manufacturing system design process. This will

greatly ease the model-building process but, potentially, at the cost of flexibility.

A range of commercial simulators have therefore been reviewed in terms of their
ability to easily represent manufacturing and support functions in the same model. It
was concluded that these applications either lack the scope to model support functions
at all or do so in such a simplistic way that the interactions between these areas and a
manufacturing system cannot be modelled properly. Consequently, a new type of
domain-specific simulator is required if decision-makers are to be able to properly test
their manufacturing system designs prior to implementation. This new simulator
would have the ability to model shop-floor areas in the same level of detail that
manufacturing simulators already model these activities, but it would also be able to
model an equivalent amount of detail in relation to support departments, and
incorporate both aspects into the same model. The next chapter proposes the

development of a new simulator to satisfy these requirements.
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7. The Potential of Object-Oriented Techniques

The previous chapter demonstrated the advantages of using data-driven simulation for
evaluating the impact of support departments on the performance of a manufacturing
facility. However, a review of the data-driven simulation tools that are presently
available also revealed that none can properly model the interactions between these
different parts of a manufacturing business. As a result, a new kind of simulator is
required to perform this type of analysis. This chapter and those that follow will
therefore describe the design and development of a new simulation system that fulfils
these requirements. In particular, this chapter will demonstrate that object-oriented
techniques are the most appropriate for developing a software application with the
necessary scope to model this type of problem. The discussion will begin with an

overview of more general software development issues.

7.1 Managing Software Complexity

The problems that software applications have been developed to address are inherently
complex, such as the management of a firm’s financial information or the preparation
of production schedules and supplier orders. In addition, successive generations of
most types of software seem to evolve to be even more complex in terms of the range
of functionality they offer. For example, modern word processors are clearly very
advanced in terms of the range of functionality they offer as compared to early text
editors. A data-driven simulator that will be able to model both the shop-floor and
support functions in a manufacturing organisation is another example of a more
complex software application that is expected to provide an even greater range of

functionality than ever before.

The role of software design is to bring a degree of order to this complexity so that the
task of developing and maintaining an application is simplified. ~Overcoming
complexity in this way generally means reducing a large complex system in smaller,
more manageable parts (Booch, 1994). Software design has traditionally employed
structured design methods in order to make software development more manageable.
Structured design implies a top-down decomposition of complex systems into more

orderly sub-systems (McConnell, 1993). This approach is also referred to as functional

92



decomposition and involves reducing the solution to a complex problem into
successfully smaller units of functionality to the point where each unit can be easily
defined by relatively small segments of code (Taylor, 1995). Figure 7-1 illustrates
how functional or top-down decomposition reduces a business problem to more basic

software constructs.

Aston University

lllustration has been removed for copyright
restrictions

Figure 7-1 Top-Down Decomposition of a Complex Business
Problem (after Taylor, 1995)

By adopting a structured approach, software development is reduced to providing data
structures and separate functions or algorithms for manipulating that data. However,
this type of design also means that the data and algorithms become separated and
dispersed throughout an application; consequently, different aspects of the system’s
functionality become embedded in every part of the software, with the result that
modifying or updating the system is very difficult without restructuring the whole
design (Taylor, 1995). While this may be acceptable for small applications, the
overhead imposed by restructuring often prohibits the modification or extension of

large software systems (Booch, 1994).

Object-oriented methods for constructing software applications have evolved in

response to the limitations imposed by structured design methods. Object-oriented
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development is based on the premise that the more closely an application reflects the

problem it represents, the better the application will be (McConnell, 1993).

The approach involves a bottom-up composition of a software application rather than
the top-down decomposition approach imposed by structured design methods. In other
words, the complexity of a problem is reduced by describing the problem domain in
terms of objects. An object can correspond to something that physically exists in the
real-world, such as a person or type of document. Alternatively, an object might
describe a more abstract concept such as a telephone conversation or a master record
held in a database. A software application can then be created from a library of objects

that represent each aspect of the business problem.

An important feature of the approach is that objects contain both data and the
algorithms (referred to in object-oriented notation as methods) required to manipulate
that data and describe the object’s behaviour. In other words, the object-oriented
approach ensures that each aspect of a system’s functionality is incorporated into a
completely self-contained unit rather than being dispersed throughout an application.
This means that modification to object-oriented applications is simplified because
individual objects can be changed with minimal knock-on effects elsewhere in the

software.

Object-oriented techniques clearly represent a fundamental shift in the way complex
software is constructed and maintained, which is very relevant from the point of view
of developing a new simulation package. The next section will therefore present some

other important aspects of the concept in more detail.

7.2 Object-Oriented Concepts

Object-oriented software development is still a relatively recent philosophy but the
essential features of the approach are already well documented. Brief descriptions of
the major concepts relating to object-oriented software construction will follow. The
descriptions are drawn from definitions provided by several authors who also provide
more comprehensive discussions of object-oriented principles (Rumbaugh et al., 1991;

Booch, 1994; Graham, 1994).
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The notion of abstraction relates to the type and level of detail captured in an object-
oriented representation of a real-world entity. In an object-oriented capacity planning
application, for instance, machines might simply be represented in terms of parts
produced per hour and changeover times. In contrast, the same machines are likely to
be modelled very differently in a computer-aided engineering application. In this case,
objects might describe machine behaviour in terms of vibration, cutting forces and tool
wear. These two abstractions of the same real-world entity are quite different but are,

nonetheless, both valid representations given the different types of application to which

they apply.

Encapsulation is closely related to the principle of abstraction. It refers to the idea of
compartmentalising all data and algorithms required to describe some aspect of a
problem into a single object. This means that access to that data by other objects can
be more strictly controlled. As a result, software applications tend to be both easier to
understand and to maintain since changes to a particular object should have minimal
knock-on effects elsewhere. The concept also corresponds to how objects in the real
world interact. For example, an ‘accounts clerk’ will only be able to access the data
stored in an ‘information system’ via the controlled user-interface of a computer

terminal.

The concept of inheritance allows similarities and differences between objects to be
represented in terms of a hierarchy. Inheritance also relates closely to the notion of
abstraction since it enables objects to be described at different levels of detail. For
example, two quite different abstractions of a machine were described earlier; a
capacity planning model and a computer-aided engineering model. A object-oriented
hierarchy would allow both these representations to inherit a more general model of a
shop-floor machine that encapsulated the data and functions that each of them shared.
For instance, all shop-floor machines are likely to be referred to by a name and be

located in a particular department.

Finally, while the term object has been used so far, the notion of a class is normally
used in practice to represent real-world entities. Objects generally refer only to
instances of a particular class. For example, the concept of a department defines a

class of entity found in a manufacturing organisation. All departments will contain
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resources in terms of people, computers, machines and so on. Instances of this class
might include a Purchasing Department or a Goods Inwards Function. In other words,

these objects represent instances of the classdepartment.

This section has briefly introduced the main concepts of the object-oriented approach.
Although object-oriented techniques represent a major shift generally in the way many
types of software ought to be constructed, simulation is perhaps one of the most natural
applications of this type of approach (Pavicic, 1991). In fact, modem object-oriented
principles originate from the development of SIMULA, an object-based simulation
language (Dahl & Nygaard, 1966). The next section will therefore discuss the
advantages of adopting these same principles to develop a new simulator for modelling

manufacturing systems and their support functions.

7.3 The Application of Object-Oriented Methods to Simulation

A simulation model is intended to represent some aspect of the real-world and people
view the real-world in terms of objects (Adiga, 1989). A manufacturing system and its
support functions, for example, can be described in terms of objects such as
departments, people, machines, parts, documents and so on. Consequently, an object-
based simulation model will provide a more natural mapping between objects in a real
system and objects in a model of that system. This presents advantages to both

developers and users of simulations software.

For developers in particular, object-orientation helps to bring a more natural sense of
order to inherently complex problems. For example, the logic that describes the
behaviour of real-world entities can be more easily encapsulated within corresponding
simulation objects. In effect, a library of simulation objects can be created to represent
each of the different types of entity that exist in the system being modelled. The
interactions between these different types of entity can then be represented as

interactions between objects in the simulation model.

The principle of inheritance also means that tried and tested logic can be re-used by
several objects. In a manufacturing firm, for example, materials and documents are

similar in the sense that they both progress intermittently through their respective parts
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of the organisation, stopping temporarily at each stage to be processed. In simulation
terms, this implies that a base object might describe the path of each of these entities
through the business, while descendant objects for documents and parts respectively
will differ in terms of how each processing stage is defined. This concept will be

described in more detail later in the thesis.

Taken together, the concepts of encapsulation and inheritance mean that an object-
oriented simulator will be potentially more robust and easier to enhance or modify than
a system developed using a more traditional approach (Ball, 1994; Pidd, 1996). This is
important given that data-driven simulators are notoriously limited in the range of real-
world objects that they can model. A developer might be asked, for example, to extend
the range of documents that can be simulated. Assuming that the object hierarchy has
been well designed, the developer should be able to slot a new class into this hierarchy

with minimal knock-on effects elsewhere in the software.

Clearly object-oriented concepts offer many benefits from the point of view of
developing simulation software but end-users can also benefit without even being
aware of the technique (Pidd, 1995). This is evident from the popularity of operating
systems such as Microsoft Windows 95, many users of which will be totally unaware of
its underlying object-oriented architecture. In relation to the manufacturing system
design process, the model-building features of an object-oriented simulator should map
more naturally to end-user’s perception of the elements in the system they wish to

model and the system should therefore be easier to use.

Given the wide ranging advantages and opportunities offered by object-oriented
simulation, it is proposed to develop a new tool for modelling manufacturing systems
and support functions as an object-oriented simulator. Booch (1994) suggests that, in
practice, the process of developing software this way should be addressed in three
stages; object-oriented analysis, object-oriented design and object-oriented
programming. The next section will discuss how these stages might relate to the

development of a new simulation tool.
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7.4 Object-Oriented Analysis, Design and Programming

While the concepts of object-orientation offer the potential to create better software
applications, success depends very much on sound planning as well as good code
implementation. In other words, analysis of the problem and design of an appropriate
solution is at least as important as actual programming. For this reason, the overall
development cycle depicted in Figure 7-2 is typical of accepted good practice in terms

of object-oriented software construction.

Analysis \v Time :
k Design \v

‘& Programming ﬁ

Development is very much /

an iterative process
Modification

Figure 7-2 Object-Oriented Software Development Cycle
(adapted from Booch, 1994; McConnell, 1993)

The illustration emphasises that while the main stages (analysis, design and
programming) generally take place in sequence, the overall process invariably tends to
be quite iterative. For example, coding problems encountered at the programming
stage may force a review of some aspects of the software design. In practice this
means that the boundaries between each development stage are sometimes unclear

(Booch, 1994).

Object-oriented analysis (OOA) normally represents the first stage of the software
development process and identifies the requirements of an application in terms of
objects or classes found in the real world (Booch, 1994). The kinds of abstraction that
are identified will vary depending on the problem domain, but will typically
correspond to tangible items, interactions, events and so on that exist in the real-world.
Relationships and collaborations between classes will also be identified. The main
purpose of OOA is to provide a better understanding of the problem being addressed.
Coding and implementation issues should not be considered at this stage (Rumbaugh et

al., 1991). The output of OOA is an object model that describes the classes that should
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be included in the application.

The object-oriented design (OOD) phase extends this object model to produce a
schematic representation of how the various classes will later be implemented in a
programming language. OOD differs fundamentally from more traditional structured
design processes in that both the data relating to a real-world object and the logic that
manipulates that data will be encapsulated within a class description. As a result, this
stage also identifies how objects (instances of classes) will be created and destroyed
within an application. Inheritance relationships between the different elements of the
object model will also be defined as part of the OOD process in the form of a class

hierarchy.

Object-oriented programming (OOP) involves actually implementing the design in a
particular software development language. Ideally an object-oriented language should
be used since the constructs of such a language will be very similar to the constructs of
an object-oriented design (Rumbaugh et al., 1991). In other words, an object-oriented
language will support concepts such as objects, classes and inheritance which should
ease the process of translating the design into program code. An object-oriented

language will also help to ensure that the design is implemented as intended.

Nevertheless, circumstances may dictate that some or all of an application be
implemented in a non-object-oriented programming environment. Even so, in these
circumstances the final application will still benefit from object-oriented analysis and
object-oriented design (Rumbaugh et al., 1991). This is relevant in the context of the
language used to implement the user-interface for the new simulator but will be
discussed in more detail later in the thesis. Also important, however, is that the OOA
and OOD development phases should be independent of whatever programming
language is ultimately used to implement the software. This policy has been applied in

the construction of the new simulator.

Of course, one of the proclaimed benefits of an object-oriented approach is the
principle of re-use. In other words, classes that describe some aspects of the problem
being addressed may have already been implemented by another developer in the form

of a class library. Re-using these classes not only means that duplicated development
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effort is avoided, but existing code can be incorporated into a new application with the
assurance that the logic it describes has already been tested and verified. This means
that the length of the debugging process, which McConnell (1993) suggests can

account for up to 50% of development time, can be reduced by re-using existing code.

In simulation terms, a developer can only re-use a class-library if he or she shares the
same perception of the system being modelled as the individual who constructed the
class-library. Object-oriented simulation has already been applied to model the
manufacturing activities of a firm in isolation (Mize & Pratt, 1991; Shewchuk &
Chang, 1991; Ball et al., 1994) which means that an opportunity exists to re-use one of
these class libraries to model that aspect of a manufacturing organisation.
Development of the new simulator could then concentrate on the construction of new
classes that will model support activities but which integrate with the existing
manufacturing classes. The next section briefly introduces the features of one
particular object-oriented simulator that fulfilled the author’s requirements for
modelling manufacturing activities but was also capable of being extended to model

the support functions in a manufacturing business.

7.5 The Advanced Factory Simulator and WBS/Control

Research at Aston University has already exploited object-oriented techniques to
produce a manufacturing simulator, known as the Advanced Factory Simulator (Ball,
1994). This application enables the physical aspects of a manufacturing system to be
modelled. For example, the system allows decision-makers to describe their
manufacturing system in terms of machines, machine-operators, part-routings, material
handling devices and so on. This also means that the model-building features of the
Advanced Factory Simulator (AFS) relate closely to an end-user’s perception of a

manufacturing facility.

AFS is also completely data-driven and so model-builders are relieved of the need to
program or describe any aspect of a manufacturing system’s behaviour in terms of
logic statements. This means that AFS can be used by people who are not simulation
experts to build models quickly. Invariably, however, this also means that what logic

is embedded within AFS is unlikely to be able to represent characteristics of every type
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of manufacturing system that one might wish to model. For this reason, AFS has been
implemented as an extendible simulator in the sense that its object-oriented class
architecture has been designed specifically to allow developers to more easily enhance

the functionality of the system by adding new simulation classes.

It should be noted that the concept of ‘extending’ the simulator’s functionality refers
explicitly to the idea of a simulation software developer creating new classes that
encapsulate the behaviour of any additional feature to be included in the model. In
other words, it is not intended that end-users of the system, such as manufacturing
system engineers, should be able to extend the scope of the tool as is required by some
commercial simulators. This ensures that only tested and verified logic is included in

the simulator.

Boughton (1995), for example, has extended the AFS architecture to create
WBS/Control which enables alternative manufacturing planning and control systems to
be modelled. WBS/Control objects can be combined with other AFS objects to
produce a single model of a manufacturing system that includes its planning and
control system. This allows a more comprehensive prediction of manufacturing
system performance than would otherwise be possible if the physical aspects of the
system were modelled in isolation. WBS/Control is also completely data-driven and

so continues the theme of an easy-to-use simulation tool.

However, both AFS and WBS/Control are very limited in the extent to which they can
simulate document or information processing delays. Certainly, none of the classes in
either of these libraries could be used to predict the impact of these delays on the
performance of a manufacturing system to anywhere near the extent proposed within
this thesis. Similarly, AFS cannot model any of the more general delays generated by
support functions such as a purchasing department or goods inwards function.
Nevertheless, AFS’s object-oriented architecture has been designed specifically with
the addition of new functionality in mind, and can already model the physical aspects
of a manufacturing system and its planning and control system. Consequently, this
library of simulation classes represents a particularly suitable base for implementing
the new simulator since development can concentrate on the construction of new

classes that will model support activities but which integrate with the existing
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manufacturing and production control classes.

Another factor that influenced the decision to incorporate existing AFS and
WBS/Control classes into the new simulator was access to the source code for both
systems as well as the opportunity for regular contact with their respective authors.
This was likely to be particularly useful in gaining a better understanding of the overall
structure of each system. In addition, both AFS and WBS/Control were essentially
prototype software applications during the period that the new simulator was being
developed. In practice, this was likely to mean that some minor modifications to
existing classes might be necessary to fully exploit the potential of the object-oriented

architecture.

The remainder of the thesis will describe the design and implementation of this new
simulator. Specific features of AFS and WBC/Control will be introduced as necessary

during this discussion.

7.6 Summary

This chapter has introduced the concepts of object-oriented software which is
potentially an easier and safer way to develop any large software application but is
particularly appropriate for developing simulation software. A simulator based on
these principles will also be easier for manufacturing system engineers to understand

since people naturally tend to view the real-world in terms of objects.

To create an object-oriented simulation application properly will involve three stages
of development; analysis of the problem domain, design of the classes and class
hierarchy and finally implementation of the design in a high-level programming
language. The next part of the thesis will describe the actual development of a new
data-driven simulator that will be capable of modelling both a manufacturing facility
and its support functions. The development will re-use and enhance the functionality
of an existing set of simulation classes developed at Aston University known as the
Advanced Factory Simulator and WBS/Control. Aspects of these current class

libraries will be introduced as necessary during this discussion.
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8. Object-Oriented Analysis I : Modelling Administrative Activities

This chapter presents the first part of an object-oriented analysis of the support
functions typically found in manufacturing organisations with a view to constructing a
novel set of simulation classes that will eventually integrate with the Advanced Factory
Simulator and WBS/Control. This will provide a simulation tool that allows a more
complete evaluation of manufacturing system design decisions. Importantly, however,
the relationship of the proposed support department objects with these existing
simulation classes is intentionally avoided at this stage since the analysis phase should
not be influenced by coding issues (Rumbaugh et al., 1991). The study will be limited
to providing a more general understanding of how support department objects interact
with shop-floor objects in the real-world. This part of the analysis will provide a
general overview of support department activities, and will also include a more specific

object-oriented analysis of the administrative aspects of these activities.

8.1 The Nature of Support Department Work

The term ‘support function’ was defined earlier as representing those functions within
a firm that perform activities which do not involve the physical transformation of
materials or sub-components into finished goods. In effect, this means that the
activities performed by support functions may include a variety of different tasks that
are carried out away from the main manufacturing facility; this will involve
administrative as well as more physical types of work that cannot be attributed to

specific products.

This section will establish the most important features of administrative-type work as
well as the other kinds of support activity that a simulator should be able to model in
order to evaluate manufacturing system design decisions. The discussion begins with

an overview of administrative and office tasks.

8.1.1 Administrative-Type Work

For many years work measurement techniques have been an indispensable tool for

managing shop-floor activities and these methods are well documented in production
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and operations management texts (see, for example, Wild, 1995). Variations on these
techniques, such a Predetermined Motion Time Systems (PMTS), have also been
tailored specifically for measuring clerical work. For instance, Karger & Hancock
(1982) describe MTM-C, a Methods Time Measurement (MTM) system designed for
setting clerical work standards. Nevertheless, the application of work measurement in
office areas is considerably less well established in comparison to applications in shop-

floor environments.

One reason for this is the comparatively low visibility of office work (Revell, 1986).
Large quantities of work-in-progress on a factory floor have a very obvious presence
whereas equivalent quantities of uncompleted paperwork tend to be less conspicuous.
As a result, less attention is generally paid to monitoring the work content of office
tasks or ‘paper-work inventories’ as compared to the effort devoted to reducing work-
in-progress and increasing productivity levels in manufacturing areas. This happens
despite the potentially adverse effects of tardy support department performance on

shop-floor activities described in preceding chapters.

Revell (1986) argues that this tendency not to apply work measurement methods in
office areas arises from resistance by office personnel to having their jobs assessed in
this way rather than from any significant limitations in the measurement techniques
that are available. He identifies several mistaken but commonly held beliefs about
office tasks to explain this resistance. For example, Revell acknowledges that creative
or ‘brain’ work is considerably more difficult to measure than repetitive work since the
time taken to perform apparently similar creative tasks varies greatly. He also argues,
however, that the amount of creative work involved in performing office tasks as
compared to shop-floor tasks is often exaggerated with the result that office work is
often perceived as being too difficult or impractical to measure. In fact, Revell
suggests that the majority of office work is actually quite repetitive and relatively easy
to measure, which also means that these types of activity are suited to quantitative

analysis using simulation.

Revell’s analysis concurs with a previous study conducted by Hamill & Steele (1973)
in order to identify different categories of office work. They identify three basic types

of activity that occur in these areas: routine work, inherently variable work and
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creative work. Hamill & Steel also indicate the relative proportions of each of these
types as a percentage of the total work carried out in office environments. A summary

is provided in Table §8-1.

Type of Work | Description per cent
of total
Routine This relates to the most basic and repetitive office 30

work that is often carried out at lower levels of an
organisation. In work measurement terms, routine
work is analogous to shop-floor production work and is
easy to measure.

Inherently This category relates to those office tasks for which ©0
Variable completion times are difficult to predict because
interaction with other departments or companies is
required. These interactions introduce a degree of
uncertainty in terms of how long the person carrying
out a task must wait for all the necessary pieces of
information to be available.

Creative Describes tasks where the element of thinking or 10
originating information becomes significant. Creative
work is typical of the tasks performed by managers,
designers and drawing office staff.

Table 8-1 Categories of Office Work

Clearly information technology has had a very significant impact on the way office
work is now performed since Hamill & Steele conducted their analysis. Nevertheless,
advances in information technology have tended mainly to automate existing
administrative procedures rather than change the fundamental nature of office work in
terms of the different types of task that are carried out (Hammer, 1990; Davenport &
Short, 1990; Peppard & Rowland, 1995). For this reason, the categories of office task
proposed by Hamill & Steele can still be assumed to be representative of the type of
activities performed today and thereby serve as a useful basis for describing office

systems in terms of objects.

For instance, the majority of tasks (60 per cent) appear to be inherently variable in the
sense that fixed cycle times are often difficult to associate with some activities since
they generally cascade into a set of further tasks performed by third parties. In other

words, the person or persons responsible for the completion of an activity might
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depend on another individual, a department or even another company having supplied
a crucial piece of information in order that a job can be finished. As a result, the
overall cycle time for a single office task might be subject to many different sources of
variability or uncertainty. This contributes to the dynamic behaviour of administrative
functions. In modelling terms this suggests that objects should be identified that
represent the different elements and tasks involved in these interactions. This would
include both physical and information related aspects which, when configured together
in a simulation model, will be able to replicate the subtleties and delays associated with

different types of interaction.

In some ways the notion of an office task that involves the collation of different items
of information is similar to the concept of a shop-floor assembly operation. Using this
analogy, the interactions associated with inherently variable activities correspond to the
ordering of components from suppliers, except that in an office environment, the
‘components’ relate to items of information rather than physical parts. Uncertainty, in
the form of supplier lead times is therefore a factor in both manufacturing and support
activities. This analogy to assembly work will be developed further in a later part of

the chapter.

Another significant proportion of office work (30 per cent) is more repetitive or routine
in the sense that it involves shorter and more deterministic cycle times since
interactions with third parties are avoided. As a result, this type of work is even more
analogous to shop-floor activities implying that some office work should be modelled
in the same way as simulators currently model production processes. Fortunately
creative work, which i1s the most difficult of office activities to measure, and
consequently the most difficult to model properly, actually represents only a small
proportion (10 percent) of office work. Nevertheless, modelling delays associated with

this type of activity also need to be addressed in a support department simulator.

8.1.2 Other Types of Indirect Work

Clearly some support department activities will involve more than just office-type
work. Functions such as goods inwards or stores, for example, will involve a
combination of administrative work and material handling. Similarly, a maintenance
department will respond to requests to fix shop-floor machines. While, strictly
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speaking, these represent indirect tasks, their obvious closeness to more direct
activities means that some aspects of material handling or plant maintenance are
already considered in the manufacturing system design process. In modelling terms
this means that these types of support activity are effectively a combination of
manufacturing and administrative functions. Consequently, these activities can be
represented in a new simulator by combining existing simulation classes intended for
modelling the physical aspects of a manufacturing system with new classes that

describe office-type work.

In conclusion, this general overview has identified the most important features of
office work and other support activities that a simulator ought to model in order to
evaluate manufacturing system design decisions. The next section will discuss how

the characteristics of office work, in particular, can be in described in terms of objects.

8.2 An Object Model of Administrative Systems

8.2.1 Document-Related Classes

The previous section introduced the concepts of inherently variable work and routine
work and suggested that paper-flow systems are analogous to shop-floor assembly
processes, in that documents and supporting information arrive at ‘work centres’ to be
‘assembled’ into new documents. In other words, administrative ‘operations’ convert

‘components’ of information into finished documents.

Clearly a business will employ a range of different types of document, each with their
own information and processing requirements. One approach to implementing this
functionality using objects would be to define a range of classes that described the
different types of document typically found in a manufacturing business. These classes
would differ in the type of information that each document contained. For example, a
document class such as PurchaseOrder might contain information like part number,
order quantity and due date. Another document class such as /nvoice might contain
these same information types together with other data items like balance due and
settlement discount. In other words, the principle of inheritance could be used to

define a hierarchy of document classes.
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A limitation of this approach, however, is that since manufacturing organisations
invariably differ in the types of document and information that they process, it is
unlikely that a range of document classes could be designed to match all those used in
even a small sample of companies. For instance, the information contained on a
purchase requisition or purchase order in one firm may be quite different in another

firm; some organisations may even combine both these documents into a single form.

This restriction is particularly significant given that the majority of office work is
inherently variable and so most document processing times are affected by variable
completion times for other tasks or responses to requests for information that relate to a
document. This implies that the uncertain delays associated with obtaining these
pieces of information should form a critical part of any support department model. It
follows that model builders must be able to accurately represent the different types of
data and document found in the business being studied in order to properly assess the
impact of these various sources of uncertainty on manufacturing system performance.
This would not be possible if the model builder was restricted to constructing models

from a set of document classes provided by the developer of a simulation application.

As a result, the concept of a DocumentTemplate class enables simulation models to
more closely represent the actual documents found in the company being studied. An
object of this class will be created by the model-builder to represent each type of
document that will be included in the simulation experiment; for example,
DocumentTemplate objects might be created to represent a GoodsReceivedNote, an
Invoice, a Cheque and so on. For each DocumentTemplate object, the model-builder
will configure the types of data that will be contained on that particular style of

document.

These document data types therefore represent the basic elements from which
documents are constructed and will include items such as dates, quantities, prices,
sign-offs, part numbers and so on. In object-oriented terms, the different types of

information used by manufacturing organisations can be categorised as follows:

e Date information; nearly all business documents make some reference

to dates or times, even if only to record when the document itself was
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actually issued. Date information might also represent part of an

instruction, such as a deadline for the completion of a particular task.

e Names identify entities in a business to which documents relate. For
example, a stores requisition will refer to the part number of the item
being requested and the name of the department or workcentre to where

those items should be delivered.

e Numeric data conveys quantitative information and is closely related to
the names of other entities that appear on documents. In the example
described above, for instance, a stores requisition will also include a
quantity to identify how many items of a particular part number are
required. Financial information such as unit costs or sales revenue is

another example of numeric data.

e Authorisation information controls the progress through an organisation
of documents or of entities to which the document relates. For example,
a purchase order will typically be ‘signed-off” by a senior buyer prior to
its release to a supplier. A purchase order will therefore carry
authorisation details in addition to other types of information. In the
same way, company policy may dictate that all bought-in items be
inspected before release to the shop-floor. Goods received
documentation would therefore need to carry information about whether

or not the items to which they relate have been inspected.

Based on this analysis of document data types, a library of DataObject classes can be
defined to represent the different types of information likely to be contained on
documents within manufacturing organisations. Figure 8-1 depicts some typical data

types from a library of DataObject classes.

The reason for identifying specific information types such as Q#fyToOrder and
PartPricePerUnit, rather than a more general type such as NumericValue, is to embed
some knowledge of what an item of information represents into the object model. This
is necessary since the values contained on documents are intended to affect how the

model progresses. Consequently other entities in the model, such as people, must be
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able to interpret different types of document that will only be configured by a user at
model-build time. By creating DocumentTemplate objects from specific data types,
the developer can more easily embed the know-how to handle different kinds of

information into classes that represent these other entities.

DataObject_NamesOfOtherObjects
DataObject_DateValues ...

'r' .\‘ B 'a’ PartNUmbGr ." ‘.
1 (' Due Date
" lssue Date ) .\ Employee :

.
SR P T A I
................

LeadTime_Days _ =
'.\ ) PartPricePerUnit “,‘ :_‘ ’”5P55t5d Signed-Oﬁ: :'
QtyToOrder e
QtyCompleted ) :

DataObject._NumericValues "+, K DataObject_AuthorisationValues

"""""" e.g. Yes/No, Passed/Failed

Figure 8-1 Sample Document Data Object Class Library

Clearly, the notion of a DocumentTemplate represents an abstract concept in the sense
that it has no real-world equivalence. Nevertheless, it represents a convenient and very
flexible way of enabling model-builders to more closely describe the types of
information and documentation that get processed in a particular organisation. The
term also relates closely to concepts such as documents and information that do have a
real-world equivalence and should therefore be easy for model-builders to understand.
A potential limitation of this approach, however, is that the range of DataObject
classes identified by the developer will not be enough to represent every type of
document found in a manufacturing business. Nevertheless, the impact of this
limitation can be minimised by careful object design and will be discussed later in the

thesis.

In addition to a DocumentTemplate class an object model must also include a

Document class. Instances of this class will represent the actual or physical documents

110



that flow around the business. In other words, while a simulation model will contain
one DocumentTemplate object for each style of document to be modelled, many
instances of the Document class will be created and destroyed during a simulation as

examples of each type of document.

The structure of a Document object, in terms of the types of information it will contain,
will be defined by its respective DocumentTemplate object. In other words, one of the
user-defined DocumentTemplate objects will be associated with each Document object
and will specify which types of DataObject will be contained on that Document. Each
of these DataObjects will correspond to a particular value or item of information that
would be held on the document in a real business. Figure 8-2 illustrates the
relationships between DocumentTemplate, Document and DataObject classes in a

simulation model using a simple purchasing example.

Document : PO-0O001

( DocumentTemplate : Purchase Order]
DocumentTemplate : Purchase OrN (PartNumbcr : SubAssyl ]

(o
DataObjcct PartNumbcr) (QtyToOrdcr : 1000
[DataObjcct QtyToOrder J \ (DueDatc : 22-07-96 j /

(DataOchct DueDate )

Document : FO-0002

Key: ( DocumentTemplate : Purchase Order ]
ﬂainClasa:]nstance \ (PartNumbcr : SubAssy?2 J
Attributes of Main Class: (QtyToOrd er : 2500
Ezirst/\ttrib : Value j

\;/ \ ﬁ)ucDato 1 29-07-96 ) /

Figure 8-2 The Relationship Between Document Template, Document and Data
Object Classes

The illustration shows an instance of the DocumentTemplate class named
PurchaseOrder. In this case the model-builder has defined a purchase order to contain
three types of information; PartNumber, QtyToOrder and DueDate. These represent

the part number of the items to be supplied, the number of items required and the date
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by which the items should be delivered. Two instances of the Document class are also
shown in the diagram and referred to as PO-000] and PO-0002. These are dynamic
objects in the sense that they are created as part of the simulation rather than by the
model-builder, and represent the actual purchase orders that progress through the

organisation.

Both of these Document objects carry the same types of DataObject or information as
the PurchaseOrder template. For example, the purchase order referred to as PO-0001
contains a PartNumber, QtyToOrder and DueDate as does its template. However,
unlike the PurchaseOrder template, since PO-0001 represents an actual document that
passes through the firm, its DataObjects actually contain values that represent the
information that would be carried by this document in the real business. In this case,
for example, the values held by the DataObjects mean that PO-0001 corresponds to a
request for /000 units of a part referred to as SubAssyl. These items are required by 22
July 1996.

The other purchase order, PO-0002, holds the same types of information as PO-0001
but the actual values are different. Consequently, the receivers of PO-0001 and PO-
0002 will respond differently to each document, as would happen in the real business.
In simulation terms this means that the speed at which PO-0001 is processed and
passed to a supplier may affect whether or not the 7000 units of SubAssyl can be
delivered to the shop-floor by their due-date. In turn, this will affect how quickly these
parts can be processed into finished goods and shipped to the customer. In other
words, by modelling documents in this way, engineers can simulate the consequences
of support department delays on manufacturing system performance in a way that
would not be possible if documents were modelled simply as ‘tokens’, as the previous

chapter illustrated was the case with existing commercial simulators.

In practice, some firms may use workflow systems or electronic-data-interchange
(EDI) in administrative areas, and so certain types of document may exist in electronic
form rather than as physical pieces of paper. In modelling terms, however, these two
information mediums differ only in how a document moves from one part of the
business to another. Consequently the Document class can represent documents that
exist in both these formats while separate logic will describe exactly how these

documents move through a business, and therefore represent the different kinds of
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delay incurred in each case. This additional logic will be described in the second part

of the analysis, in relation to modelling the transportation of documents.

8.2.2 Business Process Classes

Having identified a way of allowing model-builders to represent a wide range of
business documents in terms of objects, a mechanism is required for describing how
these documents, and the information they carry, will flow through an organisation and
thereby support a firm’s manufacturing activities. Again the analysis will attempt to
describe this aspect of real manufacturing firms in terms of an object model. The
section has been entitled ‘business process classes’ since the concept of a business
process is often used to describe a set of related activities and/or information flows
within a manufacturing firm. It should be noted, however, that this term is used more
as a reference point for the discussion that follows and does not actually form part of

the final object model.

8.2.2.1 A ‘Paper-Factory’ Analogy

Firms holding ISO9000 or BS5750 accreditation, or firms that have carried out any
kind of business process re-engineering analysis, will usually formally record
information flows in terms of procedures or business processes. Nevertheless, even
companies that do not formally record office procedures will still associate certain
styles of document with particular business activities. For instance, a simple make-to-
order process will typically involve the creation of quotations, sales orders, purchase

orders, works orders, inspection reports and despatch notes for finished goods.

In this example, each type of document will relate to a particular stage in the make-to-
order process, in the same way as different shop-floor components and sub-assemblies
relate to specific operations in a production routing. In this respect, office procedures
are analogous to shop-floor routings and so support functions can be perceived as a

kind of ‘paper-factory’ or an ‘information-factory’.

In terms of objects, the concept of a DocumentRouting class therefore aptly describes a
collection of individual document processing stages, or DocumentOperations, where
new documents are prepared from information components. A process time attributed

to each DocumentOperation will reflect the delay imposed by that activity. Both of
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these classes are closely related to the DocumentTemplate and Document classes
described earlier since particular types of document will be associated with specific
processing stages. As a result, a DocumentRouting object can be viewed as an attribute
of a DocumentTemplate or Document object since it defines the movements of each
different style of document between processing stages. The relationships between

these classes are depicted inFigure 8-3.

ﬁ)cumcnﬂemplaw Claa}

Class Attributes:

DataObjects

[Documentﬁouting )

/ Document Class
Class Attributes: Documcnt Routing C|366\
[DocumentTemplate Class Attributes:
DataObJ30t5 E?ocumentOpcratmnssj
[DocumcntRoutmg

Figure 8-3 The Relationship Between Document Routing and Document
Template Classes

The diagram shows that the original structures of the DocumentTemplate and
Document classes that were introduced earlier have now each been extended to include
a DocumentRouting object. So model-builders will actually define a particular style of
document in terms of both the types of information it contains and also the different
processing steps that this type of document will take through the organisation. When
Document objects are created during a simulation, they will adopt both the types of

DataObject and DocumentRouting attributed to their respective template.

It should be noted that in a shop-floor environment part routings relate only to the
manufacture of a part. When that part is subsequently being used as a component in
the manufacture of another item, its movements are defined by the routing for that
other item. In other words, the overall procedure for manufacturing any finished

product is likely to involve several different routings. This analysis is also applicable
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in the context of routings and operations that relate to office work. In other words, a
DocumentRouting should only include those DocumentOperations involved in the
preparation of a particular type of Document. This may involve just one operation to
add the basic information values to a document or may include several operations if,
for instance, a series of authorisations are required before a document can be
considered ‘complete’. When that document is subsequently used as a ‘component’ in
another operation, say, to create another document, its movements will be defined by

the routing for that other document.

8.2.2.2 Extending the Paper-Factory Approach

Thus far, modelling office processes in terms of objects has been likened to a
production routing and the notion of a ‘paper-factory’ introduced. There are, however,
some significant differences between manufacturing and support department activities
that affect how closely administrative procedures match the conventional factory-

oriented perception of operations and routings.

One important difference is that while in a manufacturing process all components
described by a particular part number are inter-changeable, the ‘information
components’ used in administrative processes cannot be exchanged in the same way.
For example, while an accounts clerk may check invoices against goods received notes
before issuing payments to suppliers, the clerk cannot check just any goods received
note against any invoice. Instead, the checking process depends on corresponding

documents being available at the checking station.

Another factor is that in shop-floor operations, component parts are always physically
consumed to make finished goods and no longer exist in their original form after the
finished goods have been manufactured. In contrast, ‘component documents’ will not
be physically consumed or transformed to create new documents. Instead, the
information on the component document will be duplicated onto the new document.
The component document will still physically exist after the new one has been created
and may even be re-used in other operations. For example, the information contained
on an invoice might be used to prepare a cheque for payment of a supplier. The
invoice will still physically exist in its original form after the cheque has been

prepared. This represents a major conceptual difference between manufacturing and
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support department activities and means that not only must any ‘component
documents’ required for a DocumentOperation be incorporated into a model of that
activity, but their destination after the operation is complete must also be included. In
a real business this will typically involve sending the ‘used’ document to either another
department or to some form of document archive and should therefore be represented

this way in the model.

Closely related to the idea of being able to re-use information is the notion of duplicate
copies of certain types of document existing simultaneously in different parts of a
business. These copies will be produced either for action or for information only. In
practice, formal administrative systems, such as purchasing, typically prepare certain
types of document using pre-printed forms that create several copies simultaneously
(Bailey, 1991). Copies are often printed on different coloured paper or uniquely
identified in some other way to facilitate sorting. In modelling terms, copies of a
particular type of document need to be simulated if they are to be actioned by different
entities or at different processing stages within the simulation. As a result, another
feature of a Document object will be an attribute that uniquely identifies it in some way

from other ‘copies’ of the same object.

Another conceptual difference between manufacturing and administrative routings
relates to the inherently variably nature of office work; while documents may take only
a few minutes to create or to process once all supporting information has arrived,
delays for this information might range from a few hours to several weeks. For
example, a buyer may have to agree the cost of requisitioned items with suppliers
before a purchase order can be issued. While the purchase order will probably take the
buyer just a few minutes to fill out, written confirmation of prices could take several
days to arrive by post. In practice, rather than idly waiting to receive this information,
a buyer would place the document in a pending file and begin another task. When all
the necessary information has arrived the processing of that document would be
restarted. In effect, many documents will simultaneously exist in semi-processed

states throughout a firm’s various support functions and will be processed in parallel.

While semi-processed jobs or work-in-progress is also a feature of shop-floor

operations, the tasks performed in office areas are not supported by a control system in
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the same way that manufacturing activities rely on material planning systems to ensure
materials are available when required. Arguably, the way that information needed for
office tasks is demanded as and when required is comparable to an informal version of
a ‘pull-type’ production control system more typically used in manufacturing areas. In
other words, information is supplied on demand rather than being held as ‘inventory’
prior to use. Nevertheless, the way that ‘materials’ are supplied to administrative

functions is fundamentally different to their counterparts in manufacturing areas.

Overall, these different characteristics imply that document processing cannot be
modelled simply as series of stages whereby a clerk takes a document from ‘stock’
held in an input tray, delays while processing the document, and then places new or
amended documents into an output tray. This would correspond to a purely
manufacturing-oriented interpretation of administrative-type work. Instead, the
DocumentRouting and DocumentOperation classes must be able to encapsulate
additional behaviour in terms of the ability to track and identify matching sets of
documents or information. Between them, these classes must also be able to represent
semi-processed documents and describe the events that will eventually allow
processing of these documents to be completed. Each DocumentOperation will also
need to describe the types of information to be added at a particular processing stage as

well as the source for each of these data components.

As a result, each DocumentOperation will need to encapsulate features of an office
task that are significantly more complex than an equivalent shop-floor assembly
operation. In effect, a DocumentOperation should be more analogous to a British
Standard BS5750 procedure, defining explicitly how a particular task should be carried
out. In fact, Figure 8-4 illustrates how the concept of a DocumentTemplate has been
extended to describe the different processing steps or DocumentOperations that a

Document of this type will go through.

The illustration depicts a PurchaseOrder that has been defined as containing five
different types of information; PartNumber, QtyToOrder, Supplier, PartPricePerUnit
and Signed-Off. Another attribute of this PurchaseOrder is a DocumentRouting object
that describes how the values of each of these five DataObjects will be attributed to

Document objects during the simulation. The illustration shows that two processing
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stages or DocumentOperations are involved in this case to prepare the PurchaseOrder,
namely Create Order and Sign-Off Order. The structure of the first of these

DocumentOperationobjects is also shown.
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Figure 8-4 Example of Document Template and Document Routing Definition

The DocumentOperation appears as a quite explicit set of instructions or mini-tasks,
analogous to a formal working procedure that might typically be found in a real
business. In this particular example, the first DocumentOperation is associated with
adding four of the five DataObject values to a PurchaseOrder, and also identifies how
each of these values should be obtained. In this case, the values of PartNumber and
OtyToOrder are taken from a PurchaseRequisition document, while the total cost of

these parts will be provided by aSupplier object.

Describing administrative tasks in this way is important for several reasons. Firstly,
entities in the simulation model, such as people, must be able to generate these data
values since they will affect the progress of the model. In other words, documents are

represented in this type of model as more than just ‘tokens’, something that tends not
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to be the case with other commercial simulators. In addition, model-builders need to
represent the different kinds of delay that are likely to occur while this information is
being made available in order to properly evaluate the impact of these delays on the
performance of a manufacturing system. This means that the consequences of using
different kinds of information source should be included in the model. Finally, the
notion of a DocumentOperation as an explicit set of instructions closely matches the

concept of working procedures used in real administrative systems.

In the example just described, other Document objects represent one source of
information for a DocumentOperation. Clearly a task will not be able to be completed
until that source document has progressed through its own processing stages to
eventually arrive at the appropriate desk or department. Similarly, other entities in the
model represent another source of information. In effect three potential sources of

information for office tasks can be identified:

e Transcribed Data represents information that is copied or transcribed from one
document to another. For example, a cheque might be created as payment
against a supplier invoice. The name of the payee on the cheque would be taken
from the name of the supplier on the invoice. In this case, any delay will depend
on the time taken for the invoice to be prepared and moved to the current

location.

e Requested data represents information that must be formally requested from
another company or another function within the same business. A ‘request
document” will be sent and the receiving object will return another type of
document that contains the required information. In this case, any delay will
depend on how quickly the receiving object acquires the request document and

replies to it.

e Looked-up data refers to information that administrators will obtain from a data-
base, log-book or similar look-up device. In this case, delays will be affected by

the availability of the look-up device.

In modelling terms, these different sources of information can therefore be represented

in terms of three OperationConfiguration classes. These classes will define the logic
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of each task within a DocumentOperation in terms of how each piece of information
required for that stage will be obtained. When a full set of matching information
components is available the operator will finish preparing the document and pass it on
to the next process stage in the routing. For modelling purposes, another attribute of a
DocumentOperation is therefore a process time, indicating how long an activity is
likely to take to complete once all the necessary information is available. This
particular DocumentOperation class structure means that complex administrative
delays and dynamic behaviour can be simulated, even though model-builders will
construct models of these activities from quite basic elements that relate to real office

systems.

8.3 Summary

This completes the first part of the object-oriented analysis of support functions
typically found in a manufacturing organisation. The chapter has provided a general
analysis of support department activities, and has also identified more specific features
of administrative or document processing systems. These features, which have been
defined in terms of a set of simulation classes, contribute to the complex delays and
dynamic behaviour exhibited by this type of support activity that can ultimately affect
manufacturing system performance. The second part of the analysis will establish
characteristics of different types of resources actually involved in carrying out
administrative-type work, as well as describing other types of support activity in terms

of objects.

120



9. Object-Oriented Analysis II : Modelling People and the WorkPlace

This chapter presents the second part of an object-oriented analysis of support
functions. The discussion will focus mainly on describing people, the work-place and

the non-administrative aspects of support department work in terms of objects.

9.1 Modelling People

Since people represent a major aspect of any manufacturing system or support
department, they should also form an important aspect of any model of that system.
This section describes a set of simulation classes that will represent the personnel and
skills within manufacturing organisations, and in particular, within their support

functions.

9.1.1 Representing Administrative Skills

In modelling terms, all people are essentially identical in terms of their physical
attributes, perhaps differing only in relation to the speed at which they can perform a
given task. People do differ more significantly, however, in terms of the types of job
they are expected to carry out. In a manufacturing environment, for example, a person
may be trained to operate a particular machine, to transport materials from stores, or to
supervise a production cell. Similarly, in an office environment employees will be
trained and authorised to perform certain types of support activity. A clerk employed
in an accounts department, for example, is likely to be responsible for processing

invoices.

In terms of an object model, this implies that Person objects can be differentiated by
the Skills they possess. In this context a Skill represents the know-how and authority to
perform a certain task, such as repairing a machine or raising a purchase order. In
practice, since the types of document used by firms will vary, the know-how to process
these documents will also differ between firms. More importantly, because the object
model described so far implies that document styles will be defined by users at model-
build time, the developer cannot embed specific know-how or Skil/ classes into the

simulator that define how these various types of documents should be processed.
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Fortunately, however, the concept of a DocumentOperation was introduced earlier as
being an explicit set of instructions describing how each particular style of document
used in an organisation should be prepared. In other words, the know-how for
processing different types of document, or DocumentTemplate objects, will actually be
defined by the model-builder as a set of DocumentOperations for each template. In
modelling terms this means that the people (or Person objects) in a support function
can be differentiated according to which DocumentOperations they are responsible for
carrying out. It follows that a more generic OfficeSkill class can be established that
allows a range of tasks or DocumentOperations to be attributed to a Person object in

the model.

Figure 9-1, for example, depicts a set of objects that represent different staff in a
support department using the Person and OfficeSkill classes. The skills represent each
person’s ability to complete one of the sample administrative tasks described in the

previous chapter.
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OfficeSkill
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\

Administrative Responsibilities...

OfficeSkill DocumentOperation :
¢/ PurchaseQrder. Slgn -Off Order
Other Skills

—

Other DocumcntOperatians

Figure 9-1 Example of Person and Office Skill Objécts

The diagram describes two people, a Purchasing Clerk and a Senior Buyer, that work
in a particular purchasing department. Both of these Person objects have been
attributed a range of skills, including their own particular OfficeSkill. For each of these
OfficeSkills the model-builder has described which tasks each person will perform in

the model by attributing DocumentOperations to their respective skill object. The
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Purchasing Clerk, for example, has been configured by the model-builder to have the
knowledge and authority to create purchase orders, while the Senior Buyer is deemed
responsible for signing-off these orders. This means that during the simulation, when
the clerk has finished creating an order, the order must be passed to the senior buyer

for final approval.

Using this set of objects, the model-builder could easily re-configure this model to
assess how differently the purchasing department might perform if, for example, the
clerk were able to sign-off his or her own purchase order documents. Overall then, the
notion of a generic OfficeSkill class provides a flexible way for model-builders to
accurately reflect, in the simulation model, the different administrative responsibilities

of personnel within their own particular organisation.

9.1.2 Representing Other Human Aspects of Support Departments

The analysis of the human aspects of support departments has so far established how
the ability of office staff to prepare different types of document can be represented in
terms of OfficeSkill objects. In fact, all of the object-oriented analysis described so far
in this chapter relates to the repetitive and inherently variable categories of office work
defined in the previous chapter. However, creative or managerial-type work was
mentioned earlier as another contributor to support department workloads and should
also therefore be included in a support department model. It was also established that
this type of work is generally harder to measure, and consequently more difficult to
model properly in comparison to the other kinds of office task. Fortunately, however,
creative work typically accounts for only a relatively small proportion (10 per cent) of
an office system’s workload which means that the possibility, and indeed significance,

of invalidating a model by misrepresenting this type of activity is greatly reduced.

For these reasons it seems more practical that manufacturing system engineers should
model this type of activity in much less detail than the other work categories described
so far. In other words, attention should focus on how the incidences of people taking
part in creative work, such attending meetings or doing management-related tasks, will
affect their availability to complete other administrative duties. The actual information

generated by this type of work will therefore be less significant from a manufacturing
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system design or simulation point of view.

In modelling terms this means that a person’s ability to participate in this kind of work
should be represented as a special kind of office skill, or in effect, a ‘creative’ skill.
Given that information processing in this context does not actually need to be
modelled, the main objective of this skill will be to affect a ‘creative’ person’s
availability to complete other administrative duties that are likely to have a more
significant impact on manufacturing system performance. In other words, model-
builders can use this skill to define a pattern of behaviour such as a number of hours
per day or per week when that person is involved in creative work or otherwise busy,
and is therefore unable to process the types of Documeni or DocumeniOperation
described earlier. In practice, this is likely to be particularly useful for modelling the
availability of managers or team-leaders to sign-off orders or other similar documents.
It is very important that this behaviour can be defined in terms of a probability
distribution to reflect the variability and uncertainty likely to be involved in relation to

exactly when and for how long a person will be ‘unavailable’.

Tn practice, the notion of regular or irregular patierns of behaviour is likely fo he
applicable to other aspects of a support department model. In a real manufacturing
system or support function, for example, people might participate in quality circles or
training programmes on a regular basis that would effectively mean them being
temporarily relieved of their normal duties. Affecting resource levels in this way is
likely to contribute to complex and dynamic variations in the output of the departments
to which these people belong, and should therefore be included in a support department
model. Given the general applicability of this class, the term MiscellaneousSkill is

therefore a more appropriate and generic description of the functionality it represents.

Finally, since most documents are ultimately intended to generate some course of
action, a way of describing how other peaple in a manufacturing business will act on
the contents of a document also needs to be established. In other words, some kind of
skill that enables people to ‘action’ particular types of document is required. As with
the OfficeSkill class, however, the main problem from a development point of view is
to provide a generic solution since document types will only be defined by users af

model-build time. As such, the solution to this aspect of the new simulator ia
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essentially more of a design issue than an analysis problem and will therefore be

discussed in more detail as part of the object-oriented design phase.

9.2 Modelling the Work-Place

The term ‘work-place’ is used here to describe any location where some type of
business activity takes place. For several reasons a simulation model needs to be able
to represent the kinds of work-place where administrative tasks are carried out. For
example, where information or documents are physically moved between different
work-places, such as departments or companies, delays will be incurred that may affect
shop-floor performance. Consequently, these delays must be included in the
simulation model. In addition, it was established earlier that people view a real
business in terms of objects that also includes work-places like desks, machines,
departments, other companies and so on. Including these entities in a model will

therefore add more realism to the simulation process.

In the context of the manufacturing system design process, a business can be readily
described in terms of objects that represent the work-place at different levels of
aggregation. It should also be noted, that in an object-oriented approach, the concept
of aggregation is normally developed in a bottom-up fashion (Taylor, 1995). At the
lowest level, therefore, a manufacturing firm can be viewed as different assortments of
resource objects, grouped together to perform related business tasks, such as
processing invoices or transforming raw materials into sellable products. In an office
environment, in particular, these resources will include entities such as people (or
Person objects) and Desk objects. In other words, a Desk represents the lowest-level or

most basic type of work-place object in a support department model.

At the next level of aggregation, these different assortments of resources can be viewed
in terms of Department objects, typically including purchasing, production control,
manufacturing, finance and so on. In terms of an object model of suppart functions, a
Department therefore represents a collection of Person and Desk objecis. A madel-
builder can use this generic notation to more closely describe the actual departments
found in a manufacturing firm. This would not be possible if the model builder was

restricted to constructing models from a pre-defined set of department classes, such as
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purchasing department or finance department, that were included in the simulator by a

developer.

Finally, at the highest level of aggregation an entire business can be viewed as a work-
place, or Company object, that comprises an assortment of different Department
objects. By implication, the firm carrying out a manufacturing system design study
must include itself as a work-place in the simulation model, in the form of a Company
object and different Department objects. In practice, the real firm is also likely to
interact with other Company objects, typically suppliers and customers. In terms of
shop-floor performance, customers will affect the timing of orders being placed for the
firm’s goods, while suppliers will affect the arrival time of materials needed to produce
those goods. Consequently, these other companies should also be included in the
model to assess how their interaction with support functions will affect manufacturing

system performance.

It is unlikely, however, that a manufacturing system engineer will need fo, or even be
able to, model the internal activities of suppliers or customers in detail. For thia
reason, it is more appropriate that these entities should be represented as aggregale
work-places. They will still need to be able to process the same types of Document
object and materials as the main company being modelled, but in a less detailed way.
In modelling terms these entities can therefore be represented as specific types of the
Company class, namely as Supplier and Customer classes, that encapsulate a limited

version of the OfficeSkill logic described earlier.

Figure 9-2 uses a very simple example, to illustrate how the physical work-place can
be represented using the different classes that have just been described. For clarity, the
other physical entities described so far, such as Document and Person objects, are not
included in this diagram. Nevertheless, the illustration emphasises how these different
aspects of a business environment can be represented in terms of interacting work-

place objects that relate closely to the real-world.

Another aspect of any business environment will be a mailing aystem that enables
documents to be maved, physically or electronically, around a company as well ag

between that company and its suppliers and customers. In modelling ferms &
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conventional internal mailing system handling paper documents will involve Person
objects with specific know-how or Mailing skills to collect and distribute those
documents around the business. In terms of inter-company transfer of paper
documents, it is more appropriate that aspects of this same skill be modelled as an
aggregate PostalSystem class rather than modelling the internal activities of such a
system in detail. In both cases, however, delays will be incurred as items are

physically mailed between locations.
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Figure 9-2 Examples of Company, Department and Desk Objects

In addition, the concept of an ElectronicMailSystem class aptly describes how
documents are transferred electronically within and between organisations. Again, this
class is similar to an aggregate version of the Mailing skill, although it can be assumed
that no significant transfer delays will be incurred if documents are sent electronically.
Tn other words, while a model-builder should be able to use these mailing classes to
construct models of document-handling systems that closely match real-world syatems,
the underlying modelling logic within each class will be essentially the same. The next
chapter will discuss the document-transfer aspect of adminiatrative activities in more

detail,



To conclude, a set of work-place classes and mailing system classes have been
established to describe the wider context in which administrative activities are carried
out. This section essentially completes the object-oriented analysis of office-type work
in manufacturing organisations; the remainder of the chapter will discuss other types of

support activity in more detail.

9.3 Modelling Other Types of Support Function

It was established earlier that some support activities involve more than just office-type
work. For example, functions such as goods inwards and despatch will invalve a
combination of administrative work and material handling. In terms of evaluating
manufacturing system performance, model-builders need to understand how delays
incurred in these storage areas will affect the shop-floor. Given the generic nature of
the document-related classes described so far, the administrative aspecis of parts
storage can be easily modelled using these document classes. Additional classes only
need fo be established to represent the entities that contribuie to material handling

delays.

Aside from administrative duties, a real goods inwards or despatch area is essentially a
collection of people, material handling devices and physical storage areas for holding
part inventories. Given the context of the modelling problem described in this thesis, it
is not actually necessary to represent physical storage areas, such as shelving or
racking systems, in any detail. In other words, this aspect of a stores function can be
represented as an aggregate Storage class that simply holds quantities of different
parts. In contrast, the time taken to add or to remove parts from a Storage object will
influence manufacturing system performance and should therefore be modelled in
more detail. Delays will mainly be affected by the availability of people and material
handling devices. As a result, the interactions of these entities with Storage objects
need to be included in an object model of this type of support function. Figure 9-3
illustrates people and material-handling devices as well as other entities needed 1o

represent the non-administrative aspects of stores functions in terms of ohjects.

In fact, the illustration introduces several new simulation classes and also describes

material-handling activities in the context of the manufacturing sysiem maodel, as well
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as the wider business model, by reference to some of the work-place classes described
earlier. It should be noted, however, that Figure 9-3 only depicts those activities that
introduce materials into a manufacturing organisation and to shop-floor areas, as well
as those activities that pass finished goods onto customers. In other words, any
material-handling that occurs within the boundaries of a manufacturing system is

ignored since it does not constitute a support activity in the context of the thesis.
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In terms of introducing material into a firm, the concept of a Distributor class
represents the means by which raw material is transferred from Supplier objects to the
Company being modelled. Another instance of this class enables finished goods to be
transported from the organisation to Customer objects. The Distributor concept
presented here is intentionally quite simple in the sense that it represents only the basic
functionality and logic needed to move materials between two manufaciuring
organisations, or Company objects. Nevertheless, this class helps to ensure that the
model relates closely to how this particular task is performed in real manufacturing

firms.

Within the actual company being modelled, the concept of a generic Depariment class
that was introduced earlier has been re-used to represent the Goods Inwards and
Despaich functions. However, rather than containing just Person and Desk objects,
these work-places now also contain Paller objects as well as Marerial-Handling
Devices in the form of HandTruck and ForkLifi objects. These entities interact with
Storage objects to provide material-handling support {o the manufacturing system. For
example, Pallet objects are infended to represent containers of production items
waiting to be added to or removed from a Srorage area. A combination of a Person
and either a HandTruck or ForkLift will move Pallets between stores and the
manufacturing system. In modelling terms these two types of material handling device
differ in terms of their carrying capacity and speed of moving materials but both need
to be operated by a Person object. In other words, one aspect of the delay imposed by
stores functions on the shop-floor can be modelled in terms of the speed and

availability of different types of material handling device employed in these areas.

Another aspect of material-handling delays relates to the time required by a Person to
actually decant or place items in physical storage. In modelling terms this type of
delay can be represented as an attribute of a Storage object since the delay will depend
on how each type of part is physically stored. In other words, the time required fo add
or remove a certain quantity of particular part can be defined by a model-builder as an
attribute of a Siorage area. It should also be noted that while Figure 9-3 shows only a
single Storage object, in practice a model might need to contain several instances of
this class to represent alternative storage locations where perhaps different categories

of part are maintained. Consequently another atiribute of this class should be a lisf thai
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defines which particular items it can store.

The maintenance and repair of production equipment was also mentioned eatlier as a
another example of a support activity that involves more than just office-type work. In
terms of the manufacturing system design process, this kind of activity is already
associated more closely with shop-floor performance than the other indirect activities
describes so far. Indeed, by its very nature machine maintenance tends to be carried
out in-situ, and so its impact on manufacturing system performance is invariably more

visible to decision-makers concerned with design or operational issues.

~

For this reason, many aspects of machine maintenance are already addressed in
manufacturing system design methodologies and factory simulators. For example,
Lucas Engineering & Systems (1989) identify the importance of preventative
maintenance and tool management strategies in the context of an overall
‘manufacturing systems’ approach. TFurthermore, the Advanced Factory Simulaior is
already able to model the impact of machine breakdowns and repair times on
manufacturing system performance, although it cannot model any adminisirative
delays associated with this type of activity. Nevertheless, it means that combining the
new support department classes described in this chapter with existing shop-floor
classes will be sufficient to model a maintenance function in terms of objects.
Consequently, no additional classes need to be developed to describe this aspect of a

manufacturing firm’s activities.

9.4 Summary

This chapter completes the object-oriented analysis of the support functions typically
found in a manufacturing organisation. Overall, the analysis has identified a range of
objects for describing administrative systems, including the people and the working
environment where this type of activity normally takes place. The analysis has also
addressed other types of support activity related to manufacturing system performance,
such as goods-inwards, stores and maintenance. The author is unaware of any other

simulation tool that represents different types of support activity in this way.

Any discussion of the Advanced Factory Simulator or WBS/Control has heen
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intentionally avoided or been very limited at this stage to avoid biasing the output of
the analysis toward the existing architecture of those systems. In effect, the analysis
has identified an ideal set of objects that reflect the kind of support activities
contributing most to manufacturing system performance. Nevertheless, the object-
oriented design that develops from this analysis will ultimately be implemented using
the existing simulation classes that represent the shop-floor and production control
aspects of a manufacturing business. The next chapter therefore describes the progress
from this object-oriented analysis to an object-oriented design, and places this ideal set
of support department objects more in the context of the Advanced Factory Simulator

and WBS/Control.



10. The Design of WBS/Office

This chapter describes the object-oriented design of the new simulator that has been
proposed in preceding chapters. The design builds on the output of the object-oriented
analysis phase and incorporates that object model into an existing library of simulation
classes, namely the Advanced Factory Simulator (AFS) and WBS/Control. The new
simulator, which has been called WBS/Office, extends the scope of this existing class

library in order to simulate the support activities in a manufacturing business,

10.1 Tntroducing WBS/Office

Tt was explained in the introductory chapter that the research described in this thesis
has been completed within the context of a broader research agenda propaosed by Love
et al. (1992). This proposal relates to the development of a novel modelling tool,
referred to as the Whole Business Simulator (WBS), that will be able to predict the

financial consequences of different types of decision in manufaciuring organisations.

It follows that a dynamic mode! of the office functions and other support departmenta
within a manufacturing firm will represent a very important part of WBS. As a result,
while the context of this thesis is the manufacturing system design process, and
therefore the simulator described here is aimed primarily at improving that process,
certain aspects of the simulator have also been influenced by the needs of the broader
research agenda. Most obviously, the name WBS/Office has been selected to reflect the
WBS influence, but some aspects of the design have also been developed with future
WBS requirements in mind. These specific features will be introduced as necessary

during the discussions that follow.

10.2 Overview of the AFS and WBS/Control Class Librarics

Since this chapter will describe the design of WBS/Office in the context of the existing
AFS and WBS/Control class libraries, it is necessary to provide an overview of both
these systems. A short summary will therefore follow of the most relevant aspects of
each system from a development point of view, although the reader ia referred fo Rall

(1994) and Boughton (1995) for more compleie descriptions of their respective ayalem
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architectures. It should be noted that while AFS represents a standalone application in
its own right, it is now also effectively a sub-set of WBS/Control in the sense that
WBS/Control is an enhanced version of the core AFS architecture. For this reason, the

description of AFS that follows also relates to the core of WBS/Control.

10.2.1 The Macro Architecture of AFS

To end-users, AFS appears as a single software application even though the system
actually comprises three separate applications; a Core Simulator, a Graphical Display
and a User-Interface. These different parts interact with each other to produce the

overall system.

As its name suggest, the Core Simulator represents the essence of the AFS system. [i
contains all the classes that are fundamental to any discrete-event simulator such as a
simulation executive, a random number generator and a results collator. Tn other
words, it includes those classes needed to mimic the progress of real time or dynamic
behaviour in a model, to introduce variability and uncertainty into models of siochastic

systems, and finally to present simulation results in an appropriate format.

Clearly these are simulation-specific classes in the sense that they have no real-world
equivalence. Nevertheless, this part of AFS also contains the classes that do
correspond to real objects in a manufacturing organisation. More specifically, this core
part of the system includes classes that describe the logic and behaviour of elements
that make-up the shop-floor aspects of a manufacturing system such as machines,
operators, parts, material handling devices and so on. Consequently, by also including
the new classes that will correspond to support functions into the core simulator,
WBS/Office will be able to re-use both the simulation-specific classes as well as those
that describe shop-floor activities. In other words, the core simulation logic that
currently enables shop-floor objects to exhibit dynamic and stochastic behaviour can

be re-used by any new support department objects.

The Graphical Display allows users to visualise what is happening during a simulation
experiment. This part of the system responds to instructions from the core simulator,
such as a machine changing state from running to idle, and displaya the appropriaie
image on the user's computer screen. Fortunately, the core simulator has been
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designed in such a way that its own functionality can be extended without changes to
the graphical display. Consequently, this part of AFS will not need to be modified to
accommodate WBS/Office.

The User-Interface controls user access to the core simulator and graphics display
parts of AFS. In other words, the interface allows model-builders to create objects
from the library of classes in the core simulator that correspond fo entities in a
manufacturing system.  Unlike the core simulator and graphical display, the
implementation language for the user-interface is not object-oriented. Nevertheless,
this part of AFS has still been developed in a object-oriented style such that model-
builders are presented with individual menus and dialogues that correspond fo
particular classes in the core simulator. While a user-interface represents an extremely
important element of any data-driven simulator, the structure of this part of the system
actually depends very much on the underlying class designs. For this reason,
examination of WBS/Office’s user-interface will e very limited in the context of the
objeci-oriented design presented here. The next chapier, however, describes the
implementation of WBS/Office and will therefore describe, in maore detail, new

features of the user-interface needed to model support funciions.

10.2.2 Architecture of the Core Simulator

10.2.2.1 Overview of Class Hierarchy

The entire Core Simulator, including those classes within it that represent machines,
parts, operators and so on, has been implemented in the form of a single class
hierarchy. This hierarchy has been specifically designed to ease the task of exiending
the scope of the core simulator to model other domains, and is based around four main
classes; tRootAFS, tSimulation, tPhysical and tActivity. These classes are related (o
each other through the principle of inheritance as illusirated in Figure 10-1. For
example, the 1Physical class will have its own particular attributes but will also inherit

all the attributes of thetRootAFS and 1Simulation classes.

These four are all abstract classes in the sense that they have no equivalence in a real
manufacturing business.  In modelling terms, however, they each encapsulate

particular features that describe aspects of many different types of entity that do exisf
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in a real business. Other classes representing these real-world entities will therefore
appear in the main hierarchy, descending ultimately from whichever of the four main

classes best encapsulates their particular characteristics.

[ tRootAFS ]
—
{ tSimulation !
/— Note: Arrows indicate
| inheritance; for example,
t tPhysical l tPhysical inherite tSimulation
!

l tActivity ’

—
R

Figure 10-1 The Core Simulator Class Hierarchy in AFS

For example, the commonest and most basic attributes that uniquely identify different
entities in a model, such as a name, are encapsulated in 1RoofAFS. This represents the
base class, all other classes in the AFS architecture are ultimately descendants of
1RootAFS. The 1Simulation class encapsulates additional propeities that enable ohjects
to exist in different states such as idle, waiting, processing and so on, and also allows
these objects to change their state as the simulation progresses. Clearly many of the
resources in a real business, such as people and machines, will need to be modelled by

inheriting these properties as well as the other more basic attributes.

The 1Physical class lets objects that have a physical presence in the real-world to also
physically exist in the simulation world. In other words, objects descendant from this
class will be attributed a position and size, as well as an icon so that they can appear in
the graphical display. The tAcrivity class provides the capability to send and receive
‘messages’. Messaging is a mechanism included in AFS that allows objects in a model
to be loosely coupled in the sense that they possess minimal knowledge of one anather
and yet at the same time are able to interact. This means that new classes can be added

to the library with minimal knock-on effect elsewhere in the system.

Tmportantly, end-users of AFS are not aware of the existence of any of these abairact

classes, and will deal only with ‘end’” classes such as tMachine, 1Operaior and
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tPartNumber that correspond to real-world objects. In addition, since the properties
encapsulated in these four main classes are quite generic they can be applied to model
entities from both shop-floor and support areas, and are therefore very relevant to the

development of WBS/Office.

10.2.2.2 The Role of Class Managers

Another important feature of the core simulator architecture is the concept of class
mangers; for every class in the main hierarchy, such as rPariNumber and 1Operator,
there is a corresponding class manager, in this case fPartNumberManager and
tOperatorManager. These class managers are used only for managing the model-
building process; they are not intended to have any real-world equivalence nor will
they take any active part in a simulation run. In fact, class manager objects represent
the link between the user-interface and the core simulator, although model-builders
will be unaware that these additional objects even exist. Each class manager is
responsible for creating, editing and destroying objects of the appropriate class, as well

as collating simulation results for these objects.

Within the simulator, the library of class managers has been implemenied as an ohject
hierarchy that effectively mirrors the main simulation class hierarchy. In terms of
extending the scope of AFS to model support functions, these class managers represent
an unavoidable development overhead; designing them provides nothing in the way of
novel or new functionality for the simulator. As a result, the class managers that have
had to be developed to support the new simulation classes in WBS/Office will not be
described in the main body of the thesis. Descriptions are provided, however, in
Appendices 1 & 2 and the reader should therefore be aware of the additional worl that
creating these manager classes involved, even though it has not been necessary to

discuss this aspect of WBS/Office in detail.

10.2.3 Features of WBS/Control

The significance of a production control system in determining shop-floor performance
was emphasised earlier in the thesis, and so the design or choice of this sysiem
represents a very important part of the manufacturing system design process,

WRS/Control encompasses a library of simulation clagses for modelling different types
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of production planning and control system. This includes not only conventional
control systems such as material requirements planning (MRP) or Kanban, but also
hybrid systems and potentially even completely novel production control techniques
(Boughton, 1995). This means that WBS/Control can be used to model the control

systems in a wide range of different manufacturing organisations.

Since a control system also represents a specialist type of support activity it should also
be included in a model of a firm’s support functions. In fact, the classes that make up

WBS/Control will form a very important part of WBS/Office for several reasons.

Firstly, a control system model will be able to generate production information, such as
suggested works orders or purchase orders, that more closely matches the information
produced by a real manufacturing business. This is crucial since in WBS/Office the
information values carried by documents are intended to affect how the model
progresses. The new classes represented by WBS/Office will add more realism to this
part of the model by simulating the delays involved in producing and transferring

production control information to the shop-floor and other parts of the business.

Another reason for incorporating WBS/Control into WBS/Office is that a real control
system will generate many of the transactions to be handled by real support
departments. The workload placed on a purchasing department, for example, will be
affected by the frequency and number of purchase requisitions raised by a control
system. Since the capacity of any support function will be limited, the level of demand
for their services will affect how quickly this information can be processed, which in
turn will affect the performance of any manufacturing system that depends on this

service. The model must also be able to replicate this type of behaviour.

WRBS/Control classes have been designed around the AFS class hierarchy, specific
examples will be described later. This means that WBS/Office classes can be more
casily designed to fit into the same hierarchy and thereby model the types of delay

incurred between a production control system and the shop-floor more realiatically.

This completes the overview of AFS and WRS/Control which has described the core

abject-oriented architecture shared by these systems. The remainder of this chapter
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describes how the object-oriented analysis of support functions that was described in
preceding chapters has been translated into a set of simulation classes that integrates
into this existing architecture. More specific aspects of AFS and WBS/Control will be
introduced as necessary. It should also be noted that to improve the readability of the
text, the names attributed to some of the AFS classes that will be introduced may differ
slightly from the actual names used to implement the software. Similarly, the prefix
‘¢’, as in tPerson, will be used to indicate a class name or type as opposed to the more

general class descriptions used so far.

Furthermore, while the concept of uncertainty and variability will not normally be
mentioned explicitly in relation to any particular class, this characteristic forms a
inherent part of nearly all aspects of the design of WBS/Office. In other words, where
class atiributes such as speed, time or efficiency are introduced, it is generally implied
that these parameters will actually be defined at model-build time in terms of
probability distributions rather than as fixed or deterministic values. Specific examples

will be illustrated in the next chapter.

10,3 Modelling the Business Environment

10.3.1 Work-Place Classes

The previous chapter introduced the notion of a ‘work-place’ to describe any location
where some type of business activity is performed. This same concept has been
implemented in AFS in the form of a set of OperationStage classes. These classes
have also been designed io support the principle of modelling a business or work-place
at different levels of aggregation. In fact, AFS defines three levels of aggregation;

workstation, workcentre and department.

A workstation vefers to objects such as machines or inspection benches and therefore
represents the lowest-level or most basic type of work-place in a factory model. A
workcentre groups together workstations that perform similar tasks. In a model of a
machine shop, for example, lathes and milling machines might be grouped together
into different workcentres. Finally, a depariment groups together related workcentres,
in the above example, the machine-shop represents a department object. Figure 10-2

illugtrates how these concepts have been implemented in terms of an object hierarchy
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and also shows how new WBS/Office classes specifically introduced to model support

functions have been incorporated into this structure.

to tActivity

.................

AFS Classes ( WBs/Office Cla ) Pesmerrre ey ‘

Figure 10-2 Modelling the Work-Place in WBS/Oifice

It should be noted that, in modelling terms, the concept of aggregation describes pari-
of relationships between different types of object; for example, a workstation is viewed
as being part-of a workcentre. In contrast, Figure 10-2 shows that the OperationStage
classes have been implemented in AFS using fype-of inheritance relationships. The
1Bench class, for instance, is presented as a type-of tAbstractWorkstation which in turn
describes a type-of tAbstractOperationStage. In other words, the actual classes that the
original developer of AFS included in this architecture to represent workstations,
workcentres and departments are actually only related in the sense that they are all
types of the same parent class. Aggregation is not the primary relationship between

these classes in the hierarchy.

This apparent contrast between a model-builder’s view and a developer’s view of
aggregation is due to limitations of the programming language used to develop ATFS
which only supports type-of relationships. In practice, this has meant that developera
of these OperationStage classes have had to represent their ‘pari-of” relationships in

some other way. Consequently, an attribute of each aggregate object is a lif,
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configured by the model-builder, that contains those work-place objects that are part of
the aggregate object. For example, model-builders will construct models of the various

departments in their business by defining a list of workcentres in each department.

This same principle has been adopted for the new WBS/Office OperationSiage classes.
In other words, the new classes have been incorporated into this existing structure
according to type-of relationships while aggregation relationships are represenied as
additional attributes of each class. For example, in view of the object-oriented
analysis, the concept of Company objects has been introduced. In fact, three company
classes have been designed; tFactory, iSupplier and iCusiomer. The iFaciory class
enhances the existing AFS concept of a manufacturing system by describing the
overall business to which the system relates as an objeci. In terms of aggregation, a
iFactory object represents a collection of tDepariment objecis such as purchasing,
production control, manufacturing and so on. This new class therefore provides a more
complete description of the whole business and also means that the impact of
interactions with other firms that support the manufacturing process can be included in

the model.

In fact, the tSupplier and (Customer classes are intended to represent specific types of
business that will provide either information or materials needed by the manufacturing
system. These are also aggregate classes but in the sense that they represent these
other companies in a less detailed way than the firm to which the manufacturing
system relates is modelled. In other words, while model-builders will describe their
own business, or 7Factory, in terms of departments, workstations, people and so on,
tSupplier and Customer objects will encapsulate a much more limited representation

of these same entities.

A 1Supplier object, for example, will only be able to process purchasing-related
information and provide a range of parts to the (Faciory object. In contrast, a
1Cusiomer object will only be able to generate sales or demand-related information and
accept goods produced by the tFactory object. To madel suppliers and customers in
this way, their respective classes encapsulate limited versions of the same logic used
by person objects to process documents and information. The design of classes that

represent people and their skills will be described in more detail later in the chapter.
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WBS/Office also re-uses the existing tdbstractWorkstation, tWorkcentre and
tDepartment classes to represent different views of support functions in the same way
as AFS describes a manufacturing system. Re-using these classes encourages a more
consistent interpretation of the manufacturing and non-manufacturing working

environments within a business.

A new tDesk class has also been designed as an additional type of workstation 1o
provide a location in the model where administrative activities will be carried out.
This class has intentionally been designed to be much simpler than iis shop-floor
equivalent. Unlike a rManualMachine, for example, a Desk object represenis a
‘passive’ entity in the sense that it cannot be ‘idle’, ‘running’ or ‘broken’-down’; it
merely provides a location for person objects to process documents and so apily
attributed to each rDesk object; an nTray, OuiTray and PendingTray. In fact storage

areas are aftribuied to all office-related work-place objecis. During a simulation these

L

will contain documents in varying states of completion and will provide inierfaces (o
work-place objects whereby documents can be moved between different locations

within an organisation.

10.3.2 Transport System Classes

In modelling terms, therefore, another important aspect of any business environment
will be different kinds of transport or conveyance system that move either materials or
documents between work-place objects. In fact, the object-oriented analysis
established a range of classes for representing this aspect of an organisation in terms of
objects. Again, for consistency, the new WBS/Office classes have been designed to
integrate with AFS’s own range of transport classes that are specifically intended for
modelling the material-handling activities within a shop-floor environment. Both

existing and new classes are illustrated inFfigure 10-3.

The illustration includes a new (ForkLifi class; since the analysis of stores areas
established the need to model fork-lifis and hand-trucks as alternative material
handling devices, this new class has been designed io compliment AFS’s existing

range of transport devices. This enhances the system’a ahility to evaluaie the impact of
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alternative handling devices on the performance of a goods inwards or despaich

function, and consequently their effect on manufacturing system performance.
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Figure 10-3 Material and Document Transport Classes

This new 1ForkLifi class and the existing transport device classes represent ‘passive’
entities in as much as they are designed only to be used in conjunction with a more
‘active’ or intelligent person object. In this respect, the other WBS/Office transport
classes shown in Figure 10-3 are fundamentally different since they represent more
aggregate transport ‘systems’ rather than transport devices, and encapsulate enough

know-how or intelligence to move material independently of person objects.

The tDistributor and 1PostalSystem classes in particular represent aggregate objects in

the sense that they transfer materials and paper documents respectively, between the
company being modelled and its suppliers and customers. The iElecironicMailSysiem
provides essentially the same functionality except, as ils name suggests, it transfers
models of electronic documents between different companies, as well as between

work-places within the same organisation.



All three of these classes correspond to objects identified in the analysis phase and are
intentionally quite simple, providing only basic functionality;and logic for moving
materials or documents between different types of workplace. Nevertheless, they all
contribute to providing a simulator that can model the same kinds of delay incurred by
the real systems that these classes represent. For example, the tElectronicMailSystem
mimics instant transfers of documents between work-place objects while the
tDisiributor and tPostalSystem classes simulate finite transfer delays that are
configured by the model-builder. The style and naming of these transport classes also
helps to ensure that users can construct models using concepts that relate closely to

their perception of a real manufacturing business.

Importantly, none of the transport classes described sa far can represent the movement
of physical or paper documents within a business. In fact, the analysis and design of
this aspect of WBS/Office is conceptually quite different from the other transport
classes. More specifically, the logic needed to simulate this aspect of an administrative
system has been designed as a new mailing skill that can be attributed to people objects
in the model and which is intended to be used independently of any other transport
devices or sysiems. Consequently, it has noi been included in Figure 10-3.
Importantly, however, from a design point of view much of the basic transport logic in
WBS/Office is shared by this new skill and the other transport classes discussed here.
This logic will be described in more detail later in the context of people-related classes

and the new mailing skill.

10.4 Document-Related Classes

The object-oriented analysis also identified a range of objects that describe the
administrative aspects of support department work. More specifically, it established a
very flexible way of representing the different types of information and documents

processed in manufacturing organisations in terms of objects.

10.4.1 Modelling Information

The analysis emphasised that information processing requirements vary and so ihe
classes that represent this aspect of business activity must be flexible enough fo

ool

describe the actual types of information used in a range of firma. Specific information
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types, or DataObject classes, therefore need to be included in WBS/Office to represent
the range of information used in real manufacturing companies and to also embed
some knowledge of what different items of information in the model actually represent.
The analysis established four general categories of information; dates, names, numeric

data and authorisations.

To implement the DataObject concept in an absolutely object-oriented fashion would
involve developing an extensive hierarchy of classes, based on these four categories.
Figure 10-4, for example, illustrates how this type of hierarchy might be designed and
includes a sample DataObject to demonstrate the basic structure of an instance of one

of these classes.

Descends from main
AFS hierarchy
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/ \\
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/
etc. (t/\beDataObject_Nam@) k [tAb5DataObject_Authoriaation)
ete.

/ \ A
ete. etc.
(tDataObject_SupplierName ) (tDataObject_PereonNang
[

tDataObject_DeptNamej

ﬁa 56! tDataObjec'ﬁ_ﬁuppHerNama Example of
' data object

L Data Value : Aston Steels Ltd.

The illustration shows that from an t4bstractDataObjeci class might descend four
more abstract classes that represent the four information categories. In turn these
general classes would be inherited by an assortment of more specific information

. o

classes. For clarity, Figure 10-4 includes only a few of these apecific classss
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representing the names of suppliers, departments and people. Invariably, however, this
approach would actually require a very large and complex sub-hierarchy within the
main AFS class hierarchy. It would also mean that each information object would be
quite large and complex since it will encompass several layers of abstract data object
classes. This complexity would also have to be repeated in the class manager
hierarchy that was briefly mentioned earlier. In practice, however, since many
instances of these DataObject classes will be created as part of any support department
model, each object should be as simple and as compact as possible. A more practical

design is therefore illustrated inFigure 10-5.

/ Data Type Look-up Table N

[ tDataObject_Date types :
DueDate, IssucDate, etc.

tDataObject_Name types :
OperatorName, SupplierName, MachineNarme, ete.

to tRootAFS tDataObject_Number types :
i\ QtyToOrder, GtyCormpleted, LeadTime_DPays, etc.

I - tDataObject_Authorisation types : /
(tAbbwaUtDataObJ&Jt \ Completed, Signed-Off, Checked, etc. 7

=

( tDataObject_Authorisation J

(tDataObjcct_Datcj (tDaitaObject_Number)

[ tDataObject_Name J Exarmple of

data object
( Class: tDataObject_Name \

Data Type : SupplierName

Data Value : Aston Steels Ltd.

Figure 10-5 A More Practical Approach to Implementing Information Types

This design restricts the number of DataObject classes to just those that represent the

¢

-

%

four main information categories. Instances of these more general classes ar

b

differentiaied by specific data-types attributed to each class. These types are
maintained in a single look-up table that is referenced by all of the information classes,
An example data object is also included in Figure 10-5 to demonsirate this aliernative
class structure. While this design requires each object to maintain an additional daia-

d complexity of each ohject will actually be greatly

type attribute, the overall size a
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reduced since the overhead imposed by several layers of abstract parent classes is

avoided.

A potential limitation of this design is that any range of data-types identified by the
developer will not be enough to represent every type of document found in a
manufacturing business. This is particularly significant, for example, in the context of
the Whole Business Simulator that was mentioned earlier since this system will need to

model financial information which has not yet been included in the new simulator.

WBS/Office has, however, also been designed to minimise the impact of the developer
not having included not enough different DaraObject types. More specifically, since
the four DataObject classes included in the design cover the full range of information
categories, developers can implement a new data-type simply by declaring it in the
plobal look-up table. Referring to the table in Figure 10-5, for example, a new data-
type such as PariName could simply be added to the list of iDaiaObjeci_Name types
to extend ihe range of information supporied by WBS/Office. A developer may also

need to add some simple logic to other WBS/Office classes to interpret this new type
of information, but this process has also be simplified by careful design and will be

described later.

Overall, this particular design provides a practical but flexible way of incorporating
different types of information into models of administrative activities. It should be
noted that the examples presented in this section represent only a small selection of the
full range of DataObject types actually included in the design of WBS/Office. A
complete listing is therefore provided in Appendix 3. The next section will describe
the context in which this document-based information will be generated and moved

around a model of a real business.

10.4.2 Modelling the Flow of Information

The concept of DocumeniTemplaie and Document objects was established earlier 1o
describe the medium by which information is carried through a manufacturing
organisation. In addition, the notion of DocumentRouting and DocumeniOperafian
objects was introduced to explain exactly how this daia is processed and ihen
transferred as a Document between different functional areas. The analysia also drew

147



parallels between administrative and shop-floor processes. As a result, the document-
related classes in WBS/Office have been designed to match as closely as possible the
way part-related classes are already implemented in AFS, while still providing other
features specifically needed to model administrative tasks. This encourages a more
consistent interpretation of the way manufacturing and support activities are
represented in WBS/Office, which is beneficial from both a development and model-

building point of view.

Figure 10-6, for example, illustrates how some of these new documeni-related classes
have been integrated into the existing AFS architecture and also shows the
corresponding pari-related classes. As with other WBS/Office classes, the hierarchy
can only represent type-of relationships and so other part-of relationships have had to

be defined within each class by the developer.
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Figure 10-6 Document-Related Classes in WBS/Office

To model a manufacturing facility, for example, model-builders define the different
types of part involved in terms of tPariNumber objects. This class describes the

attributes of each type of part in the same way as a tDocumeniTemplate object

et

describes the struciure of each type of document. During a simulation, the sysiem wil

generate {GroupOfParis objects as physical examples of these parts in the same way a



tDocument objects are created as examples of their respective template object.
Consequently, both of these classes must also inherit the properties of the abstract

tPhysical class in order to have a physical presence or location in the model.

An important conceptual difference between tPart and tDocument classes is that the
latter is intended to represent documents that exist in either electronic form or as
physical pieces of paper. Clearly there is no equivalent in terms of shop-floor parts,
but in terms of modelling administrative activities these two information mediums
differ only in how a document moves from one part of the business to another. In
other words, whether a purchase order exists in paper or electrotiic form, it will still
carry specific types of information that will need to be acquired and processed in order
for a manufacturing system to be able to operate.  The design of the
tDocumentTemplate and 1Document classes is therefore such that they can be used io

model both forms of document.

Another aspect of the design relates to three document-type classes already included in
the original AFS architecture, namely tOrder, iWorksOrder and 1RawMail Reguisition,
ihat carry specific production-related information needed by entities in the faciory
model. These represent examples of the kind of document that would be produced by
support departments in a real business and should therefore be modelled as if they were
produced this way. For example, the tOrder class essentially represents customer
orders that determine what the factory model will produce. Within AFS, however,
instances of this class have to be created by the user at model-build time rather than
being generated as part of the simulation. As a result, the kind of delays that would be
involved in producing this kind of information in a real business and then passing it to

the shop-floor cannot be simulated in a conventional AFS model.

Ideally these AFS classes should not appear at all in WBS/Office since they effectively
hard-code specific types of business document into models of support functions.
Nevertheless, they have had to remain part of the new simulator because oiher shop-
floor related entities in the original AFS architecture expect them io exisi. All three
original classes have, however, been completely re-designed and converted o the new

WBS/Office document structure.  In other words, by inheriting ihe new

iAbsiraciDocumeni class their compaosition, in terms of data iypes, is now de
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three corresponding tDocumentTemplate objects rather than being hard-coded into
each document class. In fact, WBS/Office has been designed to automatically generate
three default tDocumentTemplate objects that contain exactly the same types of

information that were attributed to the three original AFS document classes.

This now means that delays incurred while creating and processing these specific types
of document can be modelled in the same way as other types of business document
will be modelled in WBS/Office. These classes also provide a strong link between the
manufacturing and support department models because the progress of an AFS factory
model is already affected by the information contained on these documents.
Interestingly, the conversion from AFS to WBS/Office-style documents was actually
quite easy to complete given the range of DataObjects available. The conversion
process therefore demonstrates the flexibility of the approach to modelling documents

that has been adopted in WBS/Oftice.

Figure 10-7 illustrates some of the other important WBS/Office classes needed to
model the flow of information. More specifically, it includes the tDocumeniRouting
and tDocumentOperation classes that represent how different types of document are

actually processed and consequently the kinds of delays that might be incurred.

The diagram also emphasises the similarities between the design of these classes and
their shop-floor equivalent. As well as encouraging a more consistent interpretation of
manufacturing and support activities, this similarity means that some of the existing
logic for modelling shop-floor areas can be re-used for modelling office systems. In
addition, however, the object-oriented analysis described earlier also established many
conceptual differences between administrative and shop-floor work, and so the
structures of these new classes have also been designed to fulfil other requirements. In
effect, a tDocumentRouting describes a collection of tDocumentOperation objects,
each of which in turn represents an explicit set of instructions for processing a
particular type of document, or (DocumentTemplate. In other words, each
tDocumentOperation  object  will  comprise a list of sub-tasks  or
OperationConfiguration objects that define how each piece of information required for

that stage will be obtained.
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Figure 10-7 Information-Flow Classes in WBS/Office

The object-oriented analysis established three likely sources of information needed to
" process documents were identified earlier; transcribed, requested and look-up data.
They have been implemented in WBS/Office as three OperationConfiguration classes;
tTranscribedDataConfign, tRequestDataConfign and tLookedUpDataConfign. More
specific examples of how these classes differ from a modelling point of view will be

described later in relation to the implementation of WBS/Office.

10.5 People and Skills

In order to actually simulate the processing of documents and to properly represent real
support departments, people need to be introduced into models of these systems. The
object-oriented analysis established that, in modelling terms at least, people differ only
in relation to the kinds of jobs they are able or expected to carry out. This applies to
people working throughout a manufacturing organisation, whether they are shop-floor

or support department employees.
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10.5.1 Document-Related Skills

AFS already models people involved in shop-floor activities as instances of a tPerson
class, and allows model-builders to attribute a range of different manufacturing skills
to these tPerson objects. These skills have themselves been implemented as objects,
such as tOperateSingleMachine, tRepairMachine, tInpsection and so on. As a result,
this same tPerson class can be re-used in WBS/Office, in conjunction with new skill
classes designed specifically to reflect a person’s ability to process and move

documents around a business.

During the object-oriented analysis, in fact, the concept of a generic OfficeSkill was
introduced that enables tPerson objects to interpret specific tDocumentOperation
instructions. This same idea has been incorporated in WBS/Office, in the form of a
new tOfficeSkill class. Importantly, however, the functionality of this new skill has
actually been split into three sub-classes, namely (OfficeSkillConfiguration,
tOfficeSkillLogic and tOfficeSkillProcess. In other words, these three skill elements
collectively form part-of an rOfficeSkill object. The relationships between these
classes are illustrated in Figure 10-8. It should be noted that this aspect of a tPerson
object will still appear to model-builders as a single office skill object, even though the

object is managed internally by separate sub-classes.

tPerson object f tOfficeSkill object \

( tOfﬁceSk:’HConfiguration

Which operations
can | perform?

Skills
=] tOfficeSkillLogic

N\

Which job should |

\ ( tOfficeSkillProcess \] perform next?

L Howdolint t
other skills interpret 4
document operation?

Figure 10-8 The Structure of Office Skill Component Classes

The reason for sub-dividing the new 1OfficeSkill class in this way is to enable the same

skill components to be re-used by other entities in WBS/Office. More specifically, the

oncept of aggregate company objects such as suppliers and customers was infroduced

b

earlier. These classes need to encapsulate limited versions of the same logic used by

—
h
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tPerson objects to process documents and information in order to interact with support
departments. Consequently, these office skill components have also been re-used in
the design of the tSupplier and tCustomer classes, although model-builders will be

unaware that these component classes even exist.

While a 1OfficeSkill object provides tPerson objects with the responsibility for
processing documents, the notion of a ‘mailing’ skill that was introduced earlier to
allow rPerson objects to perform the task of moving iDocument objects between
different areas within a model. This functionality is included in WBS/Office as a new
tDocumentTransporiSkill class that has been designed to simulate a person taking a
particular route through the business, at set times of each day, collecting processed
documents and delivering them to their respective destinations. An example of how

this new skill might be used is illustrated inFigure 10-9.
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Figure 10-9 Example of Document Transport Skill

divided into component skills in the form of (DemiTransporiConfiguration,
tDemtTransporiLogic and (Demi TranporiHandling classes, as illustrated in Figure 10-

10. Again the design is such that model-builders need not even be unaware that these
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lower-level classes even exist, but by breaking down this functionality into smaller
objects other WBS/Office classes can re-use aspects of the same logic and
functionality. For example, the aggregate tPostalSystem and tElectronicMailSystem
classes that were described earlier also encapsulate limited versions of this

functionality.

tPerson object (Dooumsnt?’ranéportﬁkill objca y— Which workplaces do

| cover in my mail

/ round?
( tDcmtTransportConﬁguration'j
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\ . How do | know where
\ to deliver documents?

other skills...

Figure 10-10 Structure of the Document Transport Skill

Finally, the notion of a ‘creative’ or tMiscellaneousSkill has also been designed. This
can be attributed to tPerson objects in addition to other skills to simulate regular or
irregular patterns of behaviour, whereby a person is temporarily busy or otherwise
unavailable to complete their administrative duties. In practice this skill is likely to be
particularly useful for modelling the availability of managers or team-leaders to sign-
off orders or similar documents. The structure of the class is intentionally quite
simple. Using parameters defined by a model-builder, this class can force a tPerson
object to enter an ‘unavailable’ state for variable periods of time during a simulation.
The user can define stochastic behaviour patterns in terms of a number of minutes per

day or per week when that person is unavailable.

In summary, the generic 1OfficeSkill and tDocumentTransporiSkill classes, and the
iMiscellaneousSkill class, combine to provide a way for model-builders to represent
the different personnel involved in carrying out a firm’s administrative duties. In other
words, these new classes reflect a person’s ability to process and move documentis
around a business. The next section describes the design of other WBS/Office skill

classes.



10.5.2 Document Action Skills

One of the main purposes of this thesis is to develop a way of modelling the
interactions between a manufacturing system and its support functions. Closely related
to this principle is the notion that documents produced in office areas are ultimately
intended to trigger some kind of action on the shop-floor or in other non-administrative
areas, actions that will invariably affect manufacturing system performance. In fact,
the object-oriented analysis has already emphasised that a way of generating actions
from completed tDocument objects must be included in the WBS/Office system.

Again, however, the main problem from a development point of view is to provide a
generic solution since document types will only be defined by users at model-build
time. Nevertheless, the range of data-types or DataObjects from which model-builders
can configure document types (or tDocumentTemplare objects) will always be limited
to those included in WBS/Office by the developer at design time. Consequently, the
ability to establish what action a user-defined document might imply during a

simulation can be linked at design-time tc what sets or types of data are likely to be

-ontained on tDocument objecis. In addition, the coniext or envirommer

i in which

r\

ifferent types of data might be used can help in determining the kind of action that

[

any document in a real business containing this information is likely to represent.

For example, if a tDocument that contains a PartNumber and QtyToOrder is received
by a tPerson object in a manufacturing cell, it suggests that the document is an
instruction to manufacture that quantity of the given part. In other words, the
document represents some kind of works order. On the other hand, if a 1Document
carrying the same types of information were received by a rSupplier object it is more
likely o represent a purchase order, or in effect, an instruction to supply that number of
the given part. Similarly, it can be assumed that a tPerson in a stores function
receiving this same information would most likely interpret it as having to issue that
number of parts from stores to the shop-floor.

Designing a flexible way of attributing this kind of ‘intelligence’ to existing AFS
classes and to new WBS/Office classes will pr-avids:: a natural link between ihe

manufacturing and non-manufacturing elements of a model. AFS already represenis




the different types of people that would be expected to act upon these documents in a
real business by attributing specific shop-floor skills to tPerson objects. Consequently,
extending the functionality of these existing skill classes would enable them to
interpret the contents of a rDocument object during a simulation, and trigger an
appropriate action that a person with that particular skill might typically perform in a
real business. For this reason, a range of DocumentAction classes have been designed
that can be re-used and attributed to existing skill objects and, indeed, to other
aggregate classes such as /Cusiomer and iSupplier that also need to be able interpret

WBS/Office’s generic document style.

These new classes have been designed as ‘skill componerits” to be used by other skill
classes rather than being attributed to /Person objects direcily. This means that users
will not be aware that these additional classes even exist, thereby simplifying the
model-building process. Essentially each action skill component encapsulaies a form
of ‘intelligence’ or logic that can determine what a person or other entity should do as
result of receiving a completed document containing particular types of information.
An example of how a DocumentAction component skill might be used to enhance the

tFPerson object K tCellManagement Skill \

The original skill logic defines the
Skills manufacturing related responsibilities of
a cell-leader while an additional ‘action’
skill has been attribute to this class...

\ other skills... /
% [tDamtActionSkH/ Makel’ar‘tﬁ}

functionality of an existing AFS skill is illusirated inFigure 10-11.

“If | receive a document that contalng a
PartNumber and a QtyToOrder then
instruct cell to make those iteme”

Figure 10-11 Example of a Document Action Skill

The reason for designing this aspect of WBS/Office in terms of ‘mini-action skilla® ia
two-fold. Firstly, by categorising different aspects of the logic or ‘intelligence’ inia

self-contained classes, the same functionality can be re-used in the design of various




skills and other parts of the simulator. Secondly, the idea of constructing this aspect of
WBS/Office from a pool of mini-action classes provides more opportunity for

extending the functionality of the simulator at some point in the future.

For example, it was mentioned earlier that a potential limitation of WBS/Office is that
the range of DataObject types identified by a developer may not be enough to
represent every type of document found in a manufacturing business, and so this aspect
of the simulator has been designed such that it can be easily extended to include new
DataObject types. The generic nature of the tOfficeSkill class is such that it will not
need to be modified to cater for new information types. Other classes, however, that
will be expected to generate some kind of action as a result of receiving a document
that contains this information will need o be modified accordingly. Consequenily,
having already implemented similar functionality in the form of a pool of specific
DocumentAction classes, further action classes can simply be creaied by a developer to

interpret documents containing any new types of information oDaraObjecis.

10.6 Linking to WBS/Confrol

It was emphasised earlier that since a production planning and control system
represents a specialist type of support activity it should also be included in a model of a
firm’s support functions, and in fact, WBS/Control already provides a library of
simulation classes for modelling different types of control system. Consequently,
another important aspect of the object-oriented design described here relates to how

these control system classes will be incorporated into WBS/Office.

In modelling terms, many aspects of WBS/Control are conceptually quite different to
the features of AFS and WBS/Office that have been described so far. For example, the
classes that make-up WBS/Control essentially correspond to ‘components’ of
knowledge or information systems that represent the different aspects of real conirol
systems, such as bills-of-materials, master production schedules and so on. Madel-
builders can configure these components together fo represent a variety of different
production control scenarios. This is quite different to AFS and WRS/ Office which
both represent the rather more ‘material” aspects of a manufacturing organisation, the

term ‘material’ in this context referring to entities such as parts and documenis that
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have a physical presence in a real business.

From a WBS/Office point of view, WBS/Control classes can therefore be used to
simulate different production control configurations, to show how the different types of
production control information generated by these systems can affect manufacturing
performance. Other classes within WBS/Office can then be used to enhance this
feature of the simulator by modelling the delays incurred while processing and
transferring this information to and from shop-floor areas. This can be achieved by
replacing WBS/Control’s own document-type classes with the more generic

WRBS/Office type classes, as illustrated inFigure 10-12.
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Figure 10-12 WBS/Control Information Classes

Ideally the WBS/Control classes shown in Figure 10-12 should not appear at all in
WBS/Office since they effectively hard-code specific types of document into models
of support functions. Nevertheless, they have had to remain part of the new simulator
because other classes in the original WBS/Control architecture expect them to exist.
All three original classes have, however, been completely re-designed and converted 1o

the new WBS/Office document structure.

Finally, the object-oriented analysis of support funciions also established a need {o
model resources in goods inwards or despatch areas, in order to evaluate their impact
on manufacturing system performance. Designs for mosi of the new classes needed (o
provide this functionality in WBS/Office have already been described; in ather words,
the 1Person, iDistributor, iForkLifi classes and so on. However, a new skill class also

158




needs to be defined to provide tPerson objects with the know-how and authority to

work in this type of environment.

It was established earlier that this type of work will involve a combination of material-
handling and administrative duties. =~ WBS/Control already includes its own
1StorePerson skill that enables rPerson objects to update the inventory records that will
be used during the production planning cycle.  Any other adminisirative
responsibilities associated with a store person can therefore be modelled by atiributing
a 1OfficeSkill object to that tPerson object and relating it to whatever document-
processing tasks are performed in a particular stores function. To also model the

material-handling aspects of this type of work, however, the original iSiorePersos

—_

class has had to be modified 1o also include elements of the functionality already
included in AFS for simulating material-handling tasks within a manufacturing facility.
As a result, a model-builder can atiribute instances of both this new iSrorePerson class

and the configurablerOfficeSkill class to represent personnel employed in stores areas.

This section completes the design of the WBS/Office class archilecture thai exiends ihe
funciionality of the existing core simulator. Notably, discussion of a user-inferface that
would allow model-builders to interact with this extended class library has be very
limited so far. Nevertheless, the next chapter describes the implementation of
WBS/Office and will therefore describe, in more detail, features of the user-interface

needed to model support functions.

10.7 Summary

This chapter has described the design of WBS/Office, an object-oriented simulator that
fulfils previously established requirements for a system that can model both the
manufacturing and support activities within an organisation. The design has involved
the creation of a range of new classes that extend the functionality of an existing
library of simulation classes, namely the Advanced Factory Simulator (AFS) and
WBS/Control. Indeed, the design has intentionally re-used as many features of the
existing AFS and WBS/Control system architectures as possible {o encourage a maore
consistent interpretation of the way manufacturing and support activities are

represented in WRS/Office. This is beneficial from boih a development and madel-
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building point of view.

The next chapter will describe how this overall design has been implemented in a
software development language. In a particular, the discussion will explain features of
WBS/Office’s user-interface that allow model-builders to easily construct simulation

models using this extended class library.
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11. The Implementation and Application of WBS/Office

Preceding chapters have described the object-oriented design of WBS/Office in terms
of a library of new simulation classes. This chapter will describe the issues involved in
implementing the design to provide a usable data-driven simulator. The discussion
will relate to the choice of programming languages used to implement WBS/Office, as
well as features of the system’s user-interface from the point of view of how a user
would construct a simulation model. Example models that have been created using the
new system will also be presented to demonstrate the feasibility of including both

shop-floor and support activities in a discrete-event simulation model.

11.1 The Software Development Environment

The choice of programming language and, in particular, limitations imposed by the
target operating system have had implications for the way WBS/Office has been

implemented. What follows is an overview of these aspects of the new simulator.

11.1.1 The Choice of Programming Languages

It was mentioned earlier that AFS has been implemented as three separate applications
or ‘programs’ that interact with each other to produce the overall system; these
elements are referred to as the core simulator, the graphical display and the wuser-
interface. Some developers provide ‘hooks’ into their programs to allow third-party
developers to add extra functionality to an application without modifying or having
access to the original source code. The graphical display, for example, has been
designed such that its features can be accessed from within the core simulator and so
the graphical part of AFS has not had to be modified to accommodate WBS/Office. In
contrast, both the core simulator and user-interface in AFS have been designed in such
as way that adding new functionality actually involves replacing the original programs
with re-compiled versions of the same source code that has been modified to include

any new classes.

In practice, this approach allows future developers to have more control over how their

new classes will fit into the existing architecture of both programs, and also males it




easier for any new classes to themselves be further developed at a later point in time.
It also means, however, that any new functionality such as that provided by
WBS/Office must be implemented using the same programming languages originally
used to construct these applications. For this reason, WBS/Office has been
implemented using Borland’s Object Pascal and Microsoft’s Visual Basic by virtue of
the fact that the core simulator and user-interface were originally implemented in AFS
using these particular languages (full references for all commercial software used in the

development of WBS/Office are provided in Appendix 5).

In fact, the original implementation of AFS was completed in 1994 (Ball, 1994). At
that time the IBM-compatible personal computer (PC) was already established as the

)

standard desktop computer, and Microsofi Windows 3.1 (referred to hereafter a:

’3

Windows) was recognised as the standard operating systeim that would be used on this

type of PC. For this reason Object Pascal was chosen at that time as an appropriate
programming language for implementing AFS as an object-oriented application that
would run under Windows, while Visual Basic enabled the application to also include

the now familiar Windows-style graphical user interface.

11.1.2 Overview of the Core Simulator

Both AFS and WBS/Office have been designed as object-oriented simulators. Ideally
an object-oriented programming language should be used to implement an object-
oriented design since the constructs of the language will be very similar to the
constructs of the original design (Rumbaugh et al., 1991). In this respect, Borland’s
Object Pascal supports object-oriented concepts such as abstraction, encapsulation and
inheritance that were used extensively in the development of the WBS/Office class
hierarchy. As a result, the language has provided a way of producing a core simulator
that very closely matches the design described in preceding chapters; a summary of all
the source code is provided in Appendix 1. In fact, the main difficulty encountered
during the coding of WBS/Office arose from limitations imposed by Windows, the
target operating system for the simulator, rather than from the translation of the objeci-

oriented design into an object-orienied application.

Windows is a 16-bit operaiing system that uses a ‘segmented memory architecture’ io




manage access to a computer’s memory. This means that the system divides memory
into 64 kilobyte (or 64K) segments and restricts each application to including all its
global variables and stack within a single segment. Consequently, the notion of a
single memory segment, or common data segment, places a finite limit on the size and
amount of data that can be handled by any application running on that operating
system, regardless of how much physical memory is actually available on an individual

computer (Richter, 1994).

As an expandable simulator, both the scope and size of the original AFS class library
will potentially grow to be quite large. For this reason, many of the original data-types
and data-structures used to construct AFS were specifically designed to make efficient
use of the limited amount of memory made available to the application by Windows.
Otherwise, if memory constraints prevented the construction of large models or
expansion of the system’s functionality, the simulator might not be appropriate for
solving real manufacturing system design problems. This design consideration has

meant, for example, that WBS/Conirol (Boughton, 1995), which represents an

as

extended version of AFS’s original functionality, has been successfully implemented
to operate within this common data segment limit and can still therefore be run as a

Windows application.

The purpose of WBS/Office is to expand this functionality even further which
invariably increases the application’s overall size and places additional data into its
allocated common data segment. Consequently, the risk of the simulator exceeding the
memory limitations imposed by Windows will be increased in WBS/Office’s case,
particularly if large models are to be constructed. In fact, this problem was frequently
encountered during the coding and testing of WBS/Office. As a result, several
modifications were made to data-structures in some of the original AFS architecture in
an attempt to include the full range of new classes in the simulator within the
constraints imposed by the operating system. Nevertheless, while these modifications
did enable a significant proportion of the object-oriented design described earlier o be
implemented, it appears that the amount of additional functionality that WBS/Office
proposes to offer is such that the simulator cannot be fully implemented as 4 16-bit

application.




Since the original implementation of AFS, 32-bit operating systems have become
available to PC-users in the form of Microsoft Windows 95 and Microsoft Windows
NT. These use a non-segmented or ‘flat memory architecture’ that overcomes the
common data segment limitation of the older Windows operating system (Richter,
1994), and therefore present an opportunity to implement the entire WBS/Office
design to still run on a standard PC operating system. However, this improved
memory model is only available to applications that have been specifically re-
programmed to take advantage of the new 32-bit architecture. In practice, this means
that a full implementation of WBS/Office would involve converting all of the existing
Object Pascal source code to a 32-bit programming language to be re-compiled into a

32-bit application.

While updated compilers are now available for porting 16-bit Object Pascal source
code to take advantage of the new 32-bit memory model, it has not been feasible to
complete the conversion of the entire AFS and WBS/Control class library within the
time frame imposed by this research project. Nevertheless, it has still been possible to
implement a substantial proportion of the object-oriented design described earlier,
albeit as a 16-bit Windows application. This provides an opportunity to demonstrate
the feasibility of using discrete-event simulation to model both the material and

information processing aspects of a manufacturing system design.

Specifically, the current implementation of WBS/Office does not incorporate the
existing WBS/Control class library for modelling production control systems, or the
range of classes designed to represent the non-administrative aspects of support
department work, such as goods inwards handling. As a result, the conversion to a 32-
bit application presents an opportunity for further research and development of
WBS/Office to include this additional functionality. Further work will be discussed

again later.

11.1.3 Overview of the Graphical User-interface

The user-interface represents an extremely important part of any data-driven simulator.
In the case of WBS/Office, in particular, it must allow model-builders to easily interact

with the core simulator to create instances of the classes maintained by that part of the
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application. The relationships between the model-builder, the user-interface and the

core simulator are illustrated inFigure 11-1.

The illustration emphasises that WBS/Office appears to end-users as a single
application, even though it actually comprises several smaller programs. The user-
interface, core simulator and graphical display programs communicate using DDE
(Dynamic Data Exchange), a client/server protocol through which programs can
exchange data and control other applications (Pfaffenberger & Wall, 1995). While
hidden from the end-user, it is this generic data-transfer mechanism that enables
model-builders to create, for example, an instance of a tDesk or tSupplier object in the

core simulator.

WBS/Office

Graphical

Display Core Simulator

tRootAFS

Model-
builder

Interface allows model /

builder to interact with
core simulator

tSupplier
\_ L;LJ/
[
Core simulator

maintains simulation
class hierarhcy

Figure 11-1 Relationships between the Model-builder, User-interface and
the Core Simulator in WBS/Office

While Object Pascal provides a very suitable platform for implementing the
WBS/Office core simulator as an object-oriented application, it is quite limited in
terms of providing developers with an easy way of creating a graphical user-interface.
Consequently, this aspect of the simulator has been implemented using another

programming language, namely Microsoft’sVisual Basic.

Although the particular version of Visual Basic originally used to code this aspect of
AFS (and therefore WBS/Office) is not actually an object-oriented language, this part
of the system has still been developed in an object-oriented style such that model-

builders are presented with individual menus and dialogs that correspond to particular
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classes in the core simulator. In fact, a variety of new dialogs or menus have been
added to the original AFS interface to allow users to edit the attributes of new
WBS/Office objects. Specific examples of these new dialogs will be illustrated later
but in terms of their general design, a very important consideration was that end-users

be presented with support department concepts that they readily understand.

Another consideration was that as much as possible of the interface be designed in
such as way that it can be re-used by any new classes added to the system at some
point in future without the need to change the interface. In other words, the different
elements of the user-interface have been treated very much as objects in the same way
as aspects of the core simulator are also defined as objects. For example, each user-
interface dialog has been designed to have only minimal knowledge about the
particular simulation class that it represents. This means, for instance, that new
document data-types or even new data object classes can be added to WBS/Office’s

core simulator without having to modify the user-interface.

This completes the general overview of the new core simulator and user-interface that
make-up WBS/Office. The remainder of this chapter will describe specific features of
the user-interface in more detail from the point of view of how a manufacturing system
engineer might use the system to construct a simulation model of the support activities

in a manufacturing business. Example models will also be presented.

11.2 Creating Models in WBS/Office

This section will present the main features of WBS/Office’s graphical user-interface
that are involved in the creation of models to represent support functions in
manufacturing organisations. In practice, models will also need to represent shop-floor
and production control activities but the reader is referred to Ball (1994) and Boughton
(1995) for descriptions of how the shop-floor and control system elements of a model

are constructed.

It should also be noted that since WBS/Office is intended to allow these different
aspects of a manufacturing organisation to be combined into a single model, the system
does not distinguish between the shop-floor, control system and support department
functionality. The user-interface only categorises the simulation objects that make up a

model according to their class; in fact, to avoid presenting model-builders with
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simulation or programming jargon, the interface actually uses the terms functionality
and entity in place of class and object respectively. For example, the main model-
building dialog which is illustrated in Figure 11-2 lists some of the main classes (or
functionality) typically used in the construction of a WBS/Office model. The list
includes classes representing manufacturing activities, such as batches and machines,
as well as those representing non-manufacturing activities such as documents and

desks.

WRBS { Office
Results Tools Help
2| 3 BN
| %
Model building
Functionality Name of Entity Description of Entity
AssyManual MachBank |Purchase[] rder i |PurchaerlderTempIate

AutoTruck MachM anual

Batch Operator Order ’
BatchStore Order PurchaseOrder

Bench OrderSystm PurchaseReqgn
I CellLeader PartNumber RawM aterialReqn
Customer Routing WorksOrder

DcmtArchve  Shifts

DcmtBoutn Stores
DemtTemplt NN

Department WIiPTracker

Desk WorkCentie
DocmtStore  WorksOrder
Document

HandTruck

MachAuto

%;

For defining types of document e.g. PurchaseOrder

Figure 11-2 Main Model-Building Dialog

During the model-building process, a user will first select from this list a class of
simulation object to be created or edited; the system will then list all instances of that
class in the current model. In this case, for example, the user has selected the
DocumentTemplate class and is presented with a list of all the document template
objects (or entities) that are currently included in the model such as an order, a
purchase order and so on. By selecting the PurchaseOrder template and then on
clicking the ‘Edit’ or ‘Add’ button the user will be presented with another dialog that
relates specifically to the DocumentTemplate class. Examples of these class-specific

dialogs will now follow.
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11.2.1 Defining Documents Types and Document Flows

The concept of conﬁgurable document templates and data objects has already been
emphasised as a key feature of the way WBS/Office enables administrative activities to
be modelled. Figure 11-3 illustrates how a user can configure a document template
object. Using this dialog the user defines a document’s characteristics by selecting
from the range of available data-types (a complete listing of the document data-types
included in WBS/Office is provided in Appendix 3). Since data-types are themselves
objects, the user is also able to rename specific instances of these objects to more
closely match the terminology used on that type of document in the firm being
modelled. For example, an instance of the generic Authorisation 1 data type might be
renamed ProdnSupervisorSignOff if applied to a stores requisition document. This
should not only simplify the model-building and simulation process, but also help to
provide a more meaningful way of communicating new ideas to those people that will
be affected when a new facility is implemented; in other words, people will be able to

relate more directly to terminology used in the model.

Document Template

Figure 11-3 Configuring a Document Template

The object-oriented design also established the notion of tDocumentRouting and
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tDocumentOperation classes for describing how different types of document will
progress through a business. A routing represents a collection of operation objects,
each of which in turn correspond to an explicit set of instructions for processing a
particular type of document. In other words, each operation will comprise a list of sub-
tasks that define exactly how each piece of information required for that processing
stage will be obtained. The user will define data to be either transcribed, requested or
looked-up. Figure 11-4, for instance, shows the first operation for a purchase order
where the user has defined that prices for ordered parts will be formally requested from

supplier objects.

Document Operation : Edit

PurchaseOrder

§ QntyToOrder
PartPricePexrVUnit

TERNSCRIBE
TEANSCRIBE PurchazgeReqn

Figure 11-4 Configuring a Document Operation in WBS/Office

This means that during a simulation, a PartPricePerUnitRequest document will be
generated by a person object, such as a buyer, and then passed to a supplier object in
the same model. In this way the system can be used to simulate any delays associated
with the supplier generating this information and returning it to the buyer. In turn this
may affect how quickly bought-in items are delivered to the shop-floor and will

therefore impact on manufacturing system performance.
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11.2.2 Describing People and their Administrative Skills

In order to carry out the processing of documents and to properly represent real support
departments, people need to be introduced into models of these systems. The object-
oriented analysis and design phases established that, in modelling terms at least, people
differ only in relation to the kinds of jobs they are able or expected to carry out.
Consequently, a new tOfficeSkill class was designed to differentiate between models of
people working in administrative areas, and to enable each person object to process

certain types of document.

Each instance of this generic skill is configured by the model-builder to indicate which
persons are responsible for carrying out a range of document operations. For example,
Figure 11-5 illustrates a person object (a buyer in this case) who has been attributed the
responsibility of carrying out PurchaseOrderl0, the first operation defined for a
PurchaseOrder document in this particular model. This means that during the
simulation the buyer object will interpret the specific instructions defined as part of

that document operation in order to add information to the purchase order.
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Figure 11-5 Associating a Person with an Office Skill

Notably, the object-oriented design of the 1OfficeSkill described in preceding chapters
actually sub-divided the class’s functionality into three sub-classes, namely

10fficeSkillConfiguration, tOfficeSkillLogic and tOfficeSkillProcess. ~ During the

170




implementation of WBS/Office this design feature has enabled other classes such as
tSupplier to re-use aspects of this same document processing functionality. As Figure
11-5 demonstrates, however, from a model-builders point of view the office skill is
presented as a single object, even though it is represented internally by three separate
sub-classes. In other words this aspect of the design is hidden from the end user to

simplify the modelling process.

In conclusion, this section has introduced some of the model-building features of
WBS/Office, and emphasised the entirely data-driven approach to model construction
that it offers to manufacturing system engineers. A complete listing of user-interface

dialogs developed to support WBS/Office functionality is provided in Appendix 4.

11.3 Application of WBS/Office

This section presents an application of WBS/Office to demonstrate that the system
fulfils the requirements that were established earlier for a modelling tool to improve
the manufacturing system design process. The demonstration involves the creation of
two simulation models; the first, a factory model, evaluates only the shop-floor aspects
of the manufacturing system while the second, a combined model, also includes
support activities, specifically the processing of works order and purchase order related
documentation. For clarity both models are intentionally quite simple and do not
include real company data. Full details of each model, in terms of the various types of
object that each contains and the different results generated in each case, are provided
in Appendix 6; a screen shot of the combined model’s graphical display is shown in
Figure 11-6, and emphasises the inclusion of a machine shop and support department

within a single model.

In both models, works orders generate a demand for shop-floor resources. In the
factory model, however, works order objects must be created by the user at model-
build time and are then actioned by relevant shop-floor entities within the model as
soon as the simulation begins. In other words, the factory model is typical of the kind
of manufacturing system model described in earlier chapters, where the impact of any
delays that might arise as each order is prepared cannot be evaluated properly in the

context of manufacturing system performance.
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Figure 11-6 Sample Simulation Model Created using WBS/Office

In contrast, the combined model actually simulates the creation of these documents, as
well as purchase order documents, by other objects that represent the personnel in
production control and buying departments. Once the support functions have prepared
these documents, the works orders are transferred to the manufacturing facility while

purchase orders are passed on to supplier objects.

A detailed representation of a goods inwards function is not yet possible given the
memory limitations imposed by Windows 3.1 that were described earlier.
Nevertheless, the scope of the combined model extends to simulating the delivery of
bought-in items from suppliers to a central stores area. Deliveries are made against
purchase orders generated by the buying department during the simulation, and
progress of the manufacturing facility is then constrained by the availability of these
bought in items. Works orders and purchase orders are generated in this model on a
simple lot-for-lot basis, again because the current implementation is as yet unable to.
include the more sophisticated production control functionality provided by
WBS/Control. Nevertheless, the combined model demonstrates the feasibility of using
WBS/Office to simulate a variety of support department delays, and their impact on
manufacturing system performance, as well as the ability to configure a model to

reflect the information processing needs of different manufacturing organisations.
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Figure 11-7, for example, shows a purchase order document, referred to in the model
as PORD/00001, that has been generated during the simulation by a buyer, or person
object. In other words, the order represents an instance of a document that would exist
physically or electronically in a real business and would therefore be used to pass
information between different functional areas. This particular document contains
information that will eventually be received by a supplier object and then actioned
appropriately by that object. In this case the supplier is being instructed to deliver a
quantity of 300 of RawMatll to the factory. This type of representation means that
both the process of generating and then responding to information affects the progress
of the simulation in a way that would not be possible if documents were modelled

simply as ‘tokens’.

Overall, the two different types of models described here demonstrate WBS/Office’s
ability to simulate the dynamic and variable behaviour of entities in both shop-floor
and support functions, and to also mimic the kinds of interactions that typically take
place between these different aspects of a manufacturing organisation. These features
were identified in preceding chapters as important requirements for evaluating
manufacturing system design decisions and the system therefore fulfils the

requirements of the object-oriented analysis and design stages.
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Figure 11-7 Sample Documents Objects Generated During a WBS/Office Simulation
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Also, for clarity both models are intentionally quite simple and do not include real
company data. Nevertheless, they serve as important examples of very contrasting
evaluation methods; on the one hand, there is a conventional manufacturing model that
includes only shop-floor activities, while a more comprehensive model also integrates
support activities into the same representation of the manufacturing facility.
Furthermore, the combined model was able to simulate delays arising in support

functions that affected the performance of the manufacturing system.

The main objective of the thesis has been the provision of a better simulation tool for
use in the manufacturing system design process. In this respect, these two, albeit
relatively simple models succeed in demonstrating the feasibility of evaluating
manufacturing system designs using WBS/Office in a way that the research has
demonstrated not to be possible using other simulation tools. This application of
WBS/Office therefore emphasises the significance of the work that has been conducted

as part of the research project.

11.4 Summary

This chapter has described the issues involved in implementing the object-oriented
design of WBS/Office that was presented earlier into a usable data-driven simulator.
The amount of additional functionality that the system proposes to offer is such that it
has not been possible to implement the design fully due to limitations imposed by the
target operating system. A complete implementation is possible, however, by porting
the existing source code to a 32-bit programming environment, although it has not
been feasible to complete this conversion within the time frame imposed by the

research project.

Nevertheless, the current implementation of WBS/Office enables model-builders to
construct simulation models of a manufacturing system and most of its supporting
functions without the need to resort to programming or to defining simulation logic. In
other words, the system is completely data-driven. Furthermore, example models have
been constructed using the system to simulate the interactions between a machine
shop, a buying department and a production control function, and which demonstrate

the feasibility of using WBS/Office to analyse manufacturing system designs in this
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way. As such, WBS/Office fulfils the main objective of the thesis, and its
development thereby represents a significant contribution to the issue of predicting the

likely performance of a proposed manufacturing system prior to implementation.

This chapter completes the main body of the thesis. The next and final chapter
presents the conclusions that can been drawn from this research project and identifies

opportunities for further work.
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12. Conclusions and Opportunities for Further Work

The thesis has examined the provision of a new simulator to assist in the design and
analysis of production systems. This chapter presents the main conclusions that can

been drawn from this research and identifies opportunities for further work.

12.1 Summary of the Manufacturing System Design Problem

The thesis has established limitations in the current manufacturing system design
process. In order to continually improve the competitiveness of their organisations
manufacturing engineers often design or re-design a firm’s production facilities, with
the expectation of making further gains in manufacturing system performance. The
research has addressed specific aspects of this decision-making process such as the re-
configuration of shop-floor plant and labour, the selection or design of a production

control system, make-or-buy decisions and so on.

Since the manufacturing systems that result from these decisions must also interact
with many other parts of an organisation, the expected performance improvements can
often be hampered by constraints that arise elsewhere in the business. As a result,
engineers should attempt to predict just how well a proposed design will perform when
these other factors are taken into consideration. Nevertheless, the research has also
established that where quantitative analysis is used to evaluate alternative
manufacturing system design configurations, the analysis model invariably ignores the
potential impact of support functions on a system’s overall performance. A more

comprehensive modelling approach is therefore required.

A study of how various business functions interact has demonstrated that to properly
represent the kind of delays that give rise to support department constraints, a model
should actually portray the dynamic and stochastic behaviour of entities in both the
manufacturing and non-manufacturing aspects of a business. This implies that
computer simulation be used to model manufacturing system design decisions but
current simulation software does not provide a sufficient range of functionality to
enable the behaviour of these entities to be assessed properly. The main objective of

the research has therefore been the development of a new simulator that will overcome
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limitations of existing software by including manufacturing and non-manufacturing
activities in a single model and thereby providing a better way of evaluating

manufacturing system design decisions.

12.2 The Development of a Simulation Solution

As well as being able to represent specific support department features, the new
simulator has also been required to fulfil other practical considerations which have had

important implications for the way the system has been designed.

12.2.1 A Data-Driven Modelling Solution

A review of different simulation methods has established discrete-event simulation as
the most appropriate technique for evaluating manufacturing system designs. This
approach offers detailed modelling of dynamic behaviour and uncertainty, and also
provides a closer match between entities in the model and objects in the real world,

which is beneficial from both a development and a model-building point of view.

However, if a modelling tool is to be used in practice to evaluate the consequences of
this type of decision, then it should also allow people with only a limited knowledge of
modelling techniques to quickly build models. Since a discrete-event model is likely
to include a high level of detail, the approach is potentially demanding in terms of the
time and level of simulation expertise required to construct models. Consequently,
another important requirement of the new system is that discrete-event logic describing
the behaviour of entities in a manufacturing business be pre-defined in the simulator,
allowing a model-builder to simply configure these elements together to create a model -
of their particular organisation. In other words, an important system requirement is
that it be a completely data-driven simulator in order to be practical for building

models of the size and scope needed for a manufacturing system design exercise.

12.2.2 Development of an Object-Oriented Simulator

The research has reviewed the implications for developing the new simulator (named
WBS/Office) as an object-oriented application. This type of approach potentially
offers a more logical and safer way to construct any large software application but is

particularly appropriate for developing simulation software since people naturally tend
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to view the real-world in terms of objects. This means that the simulator’s data
constructs, or classes, can be more easily designed to represent real-world objects. In
turn, this also means that the end-users are more likely to be presented with concepts
and terminology that relates to the system being modelled, which will invariably
simplify the model-building process. In other words, object-oriented principles offer a
potentially better way of fulfilling both the functional and ease-of-use issues relating to

the new simulator.

In addition, by designing WBS/Office as an object-oriented application, it has also
been possible to re-use much of the functionality provided by two existing simulation
class libraries, namely the Advanced Factory Simulator (AFS) and WBS/Control.
These libraries already provide the ability to simulate the material processing and
production control activities within a business. As a result, the development of
WBS/Office has mainly involved the design of new simulation classes for representing
administrative and other types of support department activity, such as stores-handling.
These classes have been integrated with the existing shop-floor and control system
classes to provide an unusually comprehensive discrete-event simulation tool for

modelling manufacturing organisations.

A particularly novel feature of the design is the ability for users to model a firm’s
specific information processing requirements in order to investigate how delays
incurred in these areas might hamper shop-floor performance. In fact, example models
have been constructed using WBS/Office to demonstrate the significance and
feasibility of including support department activities in a manufacturing system
evaluation model. The system therefore fulfils the main objective of providing a new

simulator to assist in the design and analysis of production systems.

12.2.3 Observations Relating to the Object-Oriented Development Process

The scope and size of WBS/Office is sufficiently large to have exposed the author,
from both a theoretical and practical point of view, to a range of object-oriented
software development issues during the system’s design and implementation. In
particular, some general observations made during the software development process,
specifically in relation to object-oriented simulation, are worthy of brief discussion

here.
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Firstly, in general terms simulation involves the abstraction of the relevant features of a
real system into a model that represents or approximates to that system for the
purposes of experimentation. To this end, the purpose of WBS/Office is to allow
manufacturing system engineers to easily abstract the various types of entity found in a
real manufacturing business into a simulation model. As mentioned earlier, people
naturally tend to view these entities in terms of objects and certainly throughout the
analysis and design of WBS/Office, object-oriented modelling proved to be a
particularly suitable way of logically breaking up a complex simulation problem into
more manageable parts. As a result, the approach has enabled specific characteristics
of support functions to be represented in the program code in the same way as they are
normally viewed in the real-world, which is reflected in the types of entity that a
model-builder can use to model support activities. In other words, the expected
benefits of adopting an object-oriented approach were realised during the design and

implementation of WBS/Office.

In practice, development of the system was also very much an interactive process with
the original object model having to be continually refined during later stages of
software construction. It was also observed that adopting an object-oriented
development policy encourages system designers to encapsulate or ‘hide’ information
in self-contained units or classes in a way that is more difficult to enforce if object-
oriented methods are not applied. This is particularly important from the point of view
of group development since individual developers should be encouraged to implement
their own aspects of the system as encapsulated units or classes that can be accessed
safely by other developers without causing knock-on effects elsewhere in the system.
In the case of WBS/Office, for example, development of the system has involved re-
use and expansion of many aspects of the existing AFS architecture. Since this
architecture was constructed originally in a strictly object-oriented way, new support
department classes could be added to the architecture with minimal knock-on effects in

other parts of the simulator.

In addition, the ability to inherit functionality from existing classes has also ensured
greater consistency between the shop-floor and support department aspects of the
simulator. Nevertheless, against the many positive opportunities presented by the

application of object-oriented concepts, the approach can also introduce some potential
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problems. Specifically, concepts such as polymorphism (Rumbaugh et al., 1991;
Booch, 1994) mean that existing code can sometimes be difficult to understand since
the sequence in which particular blocks of code will be executed may not be
determined by the simulator until run time. This problem is especially relevant in
relation to functionality such as the state transition logic typically required by a data-
driven simulator. While the overall system can be neatly designed and implemented in
terms of objects, the fundamental logic that controls when and how entities interact or

change state can get very complicated.

Indeed, by the very nature of the real-world problems being addressed, the internal
logic of any data-driven simulator is likely to be very complicated, even when
developed using object-oriented techniques. In practice, this means that powerful
development and debugging tools need to be used to properly test and debug this type
of application. Nevertheless, object-orientation has proved overall to be an invaluable
and fundamental part of the development of WBS/Office which should be reflected in
the quality of the completed system that will be made available to manufacturing

system engineers.

12.3 Practical Implications and Limitationsof WBS/Office

While the current design and implementation of WBS/Office does provide
manufacturing system designers with a range of important and novel model-building
capabilities, the system does have some potential limitations that users ought to be
aware of before attempting to use the system for analysing alternative design

proposals.

For example, decision-makers ought to be aware of the types of organisation that the
system can and cannot model. WBS/Office re-uses an existing library of simulation
classes, namely those provided by the Advanced Factory Simulator (AFS), to represent
shop-floor activities. AFS enables model-builders to represent real-world entities such
as manually operated machines and material-handling devices, workstations and
workcentres, as well as specialised system configurations such as Nagare flow. In
other words, this aspect of the simulator is appropriate for modelling entities typically

found in a batch manufacturing environment but does not include classes such as
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conveyors or automated-guided-vehicles (AGVs) that are more characteristic of flow-

line or continuous production systems.

Furthermore, the additional information or document-related simulation classes that
WBS/Office provides are appropriate for modelling organisations where purchasing
and sales-order processing activity is likely to be quite intensive. This also implies
batch-manufacturing environments, and in particular, make-to-order scenarios
characterised by medium volumes of a wide variety of products. As a result,
WBS/Office ought to be considered primarily as a simulator for modelling firms in the
make-to-order batch-manufacturing sector as opposed to other types of manufacturing

organisation.

The current WBS/Office architecture also assumes that other entities will always be
available to generate the ‘data’ to be processed by support department entities in the
model. For example, the current design assumes that production control information
will be generated by WBS/Control classes and that financial or cost information will

be introduced into a model by, say, a commercial accounting system.

In practice, it may not be appropriate or feasible to create a detailed model of these
aspects of an organisation but at present WBS/Office cannot model production control
or other information systems in an aggregate or less detailed way. In this context, for
example, aggregate modelling might involve a model-builder defining simple
algorithms for generating information values during a simulation rather than using real

systems or detailed models of those systems to generate that data.

If this capability were available it would broaden the application of the simulator as
well as reducing the model-building effort. Indeed, the effort needed to build
simulation models of the scope proposed in this thesis is another factor that decision-
makers ought to appreciate. In practice, a lot of data is likely to be required but the
current system provides no facility for importing or uploading any of this data from
existing information systems or databases. Instead, the system requires that all data
needed to define the manufacturing and support functions within an organisation be
manually collated, inputted and then checked by the user. As a result, even though

WBS/Office allows decision-makers to construct models without the need to resort to
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programming, this process may involve a significant amount of time and the reliance
on manual data-entry, in particular, will potentially increase the likelihood of errors

being introduced into models.

In addition, although each WBS/Office class encapsulates logic that the object-oriented
analysis phase identified as appropriate for modelling support department activities,
the system cannot prevent invalid models from being created. For example, the system
does not control or guide the model-building process to ensure that all aspects of the
model are constructed properly and in the correct sequence. In practice, therefore,
those people that are most knowledgeable about the real or proposed system being
modelled ought to be encouraged to use the graphical display that WBS/Office

provides in order to help identify errorsin the model

A related but more general criticism of the current system is that it provides only
limited support for interpreting the results of a simulation experiment. In other words,
while the simulator might identify that support department activities are constraining
shop-floor performance, the system is limited in its ability to help decision-makers
identify which particular aspects or features of the support activity are contributing to
this behaviour. The ability to perform this type of analysis would help to focus a
decision-maker’s attention on which aspects of their current proposal ought to be

modified.

Finally, while each aspect of WBS/Office has been designed to be both adaptable and
extendible for modelling a range of different manufacturing organisations, one

particular aspect of the design is still arguably quite weak in this respect.

The concept of DocumentAction classes have been designed as a convenient link
between the manufacturing and non-manufacturing aspects of the system. This feature
attempts to encapsulate a form of ‘intelligence’ or logic that enables shop-floor entities
in the model, such as Person objects, to take appropriate actions as a result of receiving
completed documents from non-manufacturing entities, even though the structure of
these documents is potentially quite unique for each model. In that sense, this feature
attempts to reduce the model building effort but, in practice, it does so at the expense

of limiting the scope of WBS/Office and also increases the likelihood of model
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invalidation since the model-builder does not have access to the logic associated with

this aspect of the model.

In hindsight, therefore, a more robust design of this aspect of the system would be to
allow model-builders to associate shop-floor related ‘skills’ with specific document
types (or DocumentTemplate objects) during the model-building process. By adopting
this approach, the system would not have to try and automatically decipher what action
ought to be performed as a result of a manufacturing entity receiving a Document
object. Instead, model-builders would have more control of how entities in their model

interact but would still be relieved of the need to explicitly define any model logic.

This section has described some of the practical implications and limitations of the
current version of WBS/Office. Nevertheless, rather than identifying faults with the
existing system architecture, the criticisms relate mainly to functionality that has not
yet been added to this design and therefore represent opportunities for further work.

The next section will discuss additional opportunities in more detail.

12.4 Opportunities for Further Work

Examples of WBS/Office having been applied to simulate the interactions between a
production system and its support functions were presented earlier to demonstrate the
feasibility of using such a system to improve the manufacturing system design process.
By providing decision-makers with this more appropriate simulation tool for predicting
the wider effects of design decisions, the main objective of the research has been
fulfilled. Nevertheless, there are opportunities to develop the work described in the

thesis even further; these opportunities will now be discussed in more detail.

12.4.1 Extending the Functionality of WBS/Office

The range of modelling features offered by WBS/Office is presently constrained by its
target operating system, namely Microsoft Windows 3.1. As a 16-bit operating system,
Windows limits the size and amount of data that can be handled by any application. In
practice this has meant that the full range of simulation classes needed to represent
support functions, and which have been presented in the form of an object-oriented

design for WBS/Office, cannot be fully implemented as a 16-bit application.
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Specifically, the current implementation of WBS/Office does not include the
WBS/Control class library for modelling production control systems, or the range of
classes designed to represent the non-administrative aspects of support department

work, such as goods inwards handling.

Since the original implementation of WBS/Office, 32-bit operating systems have
become available in the form of Microsoft Windows 95 and Microsoft Windows NT.
Both of these operating systems overcome the restrictions imposed by the older
Microsoft Windows 3.1 system, and so the conversion of WBS/Office to a 32-bit
application presents an important opportunity for further research and development of
the simulator that would enable a full implementation of the system’s proposed

functionality.

Furthermore, while Borland’s Object Pascal has provided a very suitable object-
oriented language for coding the core functionality of WBS/Office, it is quite limited in
terms of providing developers with an easy way of creating a Windows-style graphical
user-interface. For this reason, the system’s user-interface has not been implemented
as an object-oriented application. However, updated versions of Borland’s Object
Pascal have since become available in the form of Borland Delphi that would enable
the existing core simulator to be re-compiled as a 32-bit application and would also
provide developers with an easy way of creating both an object-oriented and Windows-
style graphical user-interface. An object-oriented interface would make this aspect of
the simulator easier to extend, which is relevant in the context of other potential

applications of WBS/Office which will now be discussed.

12.4.2 Development of a New Manufacturing System Design Methodology

The main inspiration for developing WBS/Office has clearly been to overcome
limitations of the current approach to manufacturing system design. In fact, the
research has included a review of formal methodologies relating to manufacturing
system design, production control system design and make-versus-buy analysis. The
Jack of adequate quantitative analysis tools has been identified as a shortcoming of all

these formal methods.
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WBS/Office therefore successfully addresses the main issue of providing decision-
makers with a more appropriate simulation tool for performing quantitative analysis.
Nevertheless, the potential of this new simulator is only likely to be fully realised if a
new or revised methodology is produced to reflect the need for decision-makers to use
the tool for predicting how manufacturing system design and related decisions might
be hampered by constraints that arise elsewhere in the business. In other words, a new
methodology is needed to emphasise the advantages of carrying out the kind of
evaluation offered by WBS/Office as part of the design process. Such a methodology
would also need to address specific limitations of current methodologies that were

identified during the review presented earlier.

The development of a new methodology could also involve industrial applications of
WBS/Office. In other words, WBS/Office and an associated methodology could be
used to support the design and implementation of real manufacturing systems. This

type of industrial application would serve at least two purposes.

Firstly, industrial applications of the simulator could actually form part of the
development process for the new methodology. For example, real case studies might
be used to identify the relative significance of different support department activities in
terms of their impact on manufacturing system performance. The results of this type of
analysis might then be presented as a set of alternative solutions or guiding principles
for different aspects of the production system design problem. This might be similar to
the concept of ‘Design Option Guides’ used in the DRAMA II methodology (Bennett
& Forrester, 1993) that was reviewed earlier, but would also need to emphasise the
importance of properly assessing any ‘guided’ solution in the context of overall

business performance.

Secondly, since the final development of any software application is invariably an
iterative testing and debugging process, using WBS/Office in an industrial context also
presents an opportunity to further test the general robustness of the system’s design
and implementation. It also provides a way of gaining feedback from potential end-
users of the software that can then be used to modify or extend the system’s

functionality to reflect specific modelling needs.
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12.4.3 Development of the Whole Business Simulator

It was explained in the introductory chapter that the research described in this thesis
has been completed within the context of a broader research agenda proposed by Love
et al. (1992). The overall objective of this research agenda is to develop a modelling
tool that satisfies the requirements for a Whole Business Simulator (WBS). In their
paper, Love et al. (1992) demonstrate that product design and manufacturing system
design decisions are likely to have a significant impact on the financial performance of
any business. For this reason, WBS is proposed as a novel modelling tool that will
predict how a business is likely to perform financially if a particular engineering

decision or design were to be implemented.

The current implementation of WBS/Office represents an important aspect of the WBS
concept since it allows detailed modelling of a firm’s support functions, which will
invariably impact on business performance. In addition, however, specific features of
WBS/Office’s overall design present opportunities for incorporating other important
WBS concepts into models of support functions. For example, in order to predict how
a business is likely to perform financially, WBS will need to generate and process
financial information. The ‘document data-object’ concept in WBS/Office has been
implemented in such a way that additional data-types, such as those representing

financial information, can be added to the simulator relatively easily.

Also, the notion of ‘document operations’ in WBS/Office allows model-builders to
configure how different types of information are to be generated during a simulation.
This aspect of the simulator could therefore be extended to provide ‘hooks’ into real
company software applications, such as financial accounting systems or computerised
inventory systems to provide a closer match between the information used in the real
business and the information used in the model of that business. WBS/Office could
also then be used to simulate the processing of financial information and presentation
of financial results which is ultimately the main objective of the Whole Business

Simulator.

The generic design of the document-related classes in WBS/Office also presents other

opportunities in relation to WBS. Since the system allows document data-objects to
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represent not just numeric data but also references to other simulation objects, such as
part numbers or suppliers, the system could actually be used to model the
manufacturing system design or new product introduction processes themselves. For
example, an ‘engineering design’ might be modelled as a document that contains a
‘drawing’ object, a ‘bill of materials’ object, and a set of approval signatures. If these
additional data-types were added to WBS/Office, the system could then be used to
predict the kind of delays involved in completing these aspects of the engineering
design process, and their impact on manufacturing system performance and ultimately

on the firm’s financial performance.

12.4.4 Other Applications of WBS/Office

The research has so far related to the provision of a modelling tool for predicting how
support departments might constrain manufacturing system performance. In other
words, the expected outcome of the modelling process would be modifications to the
manufacturing system that take account of support department constraints.
Nevertheless, the same modelling functionality could also be used to improve the

effectiveness and productivity of support departments themselves.

For example, a review of business process re-engineering (BPR) modelling tools was
presented earlier. The main limitation of these systems from a manufacturing system
design point of view was that they tend to represent documents simply as tokens. In
other words, the context of the information that would be contained on these
documents in a real business cannot be used to affect the progress of the simulation. In
contrast, a novel feature of WBS/Office is the ability to include these information
values as part of the simulation. As a result, WBS/Office could also be used as a BPR
modelling tool, but to provide a more detailed model of areas likely to be affected by
new business processes than modelling tools developed specifically for this purpose.
Decision-makers would then be able to predict the potential gains in business
performance that would be realised if alternative process designs were implemented.
Alternatively, firm’s proposing to implement 1ISO9000 or BS5750-type procedures
could also use the functionality provided by WBS/Office. In this case, the simulator
might be used to predict how effectively existing support department personnel would
be able to cope with any additional administrative workloads that new quality

procedures might introduce.
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In summary, an important opportunity exists to incorporate WBS/Office into a new
manufacturing system design methodology that reflects the need to predict how design
decisions might be hampered by constraints that arise elsewhere in the business.
Furthermore, while WBS/Office has been designed primarily to improve the
manufacturing system design process, specific features of the design, including its
development as an object-oriented application, mean that the system can potentially be
extended for use in other areas of business decision-making. Consequently,
opportunities exist to further the research described in the thesis to model other types

of business problem.

12.5 Concluding Remarks

The effective design and re-design of production systems represents a very important
part of a manufacturing organisation’s activities. Computer simulation is intended to
allow manufacturing system engineer’s to test the effectiveness of their designs
without disturbing the real system. However, current modelling tools restrict analysis
to those aspects of a business most directly related to shop-floor activities, and by
doing so, ignore the potentially significant impact of other factors that can ultimately
hamper the effectiveness of any proposed design. The work described in this thesis has
therefore related to the development of a new computer simulation tool that enables a
more holistic evaluation of manufacturing system design decisions. An important
aspect of the work has been the application of object-oriented principles to provide a

simulator that relates closely to the problems it is intended to address.
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Appendix 1: Summary Documentation of WBS/Office Classes

This section contains summary documentation for each WBS/Office class.

Class : tAbstractCompany

This class represent an abstract class used to represent whole business objects at
an aggregate level. This class will never be instantiated itself but will be inherited by
other more specific company classes such as tSupplier and tCustomer that will be
instantiated.

Class : tAbstractCompanyManager

This class manages the functions associated with all objects of the
tAbstractCompany class.

Class : tAbstractDataObject

Document data objects represent the ‘components’ of information contained on
document template and document objects in WBS/Office. Each data object represent
a value such as a name or dates. This abstract data object class contains methods
common to all document data object classes. This class will never be instantiated
itself but will be inherited by other more specific data object classes that will be
instantiated.

Class : tAbstractDataObjectManager
This classe manages the functions associated with all objects of the
tAbstractDataObject class.

Class : tAbstractDocument

This class includes all the necessary functionality to let documents physically exist in
the simulation., and therefore enables AFS’s existing ‘document’ classes to be
processed in the same way as the more generic WBS/Office style document. This
class will never be instantiated itself but will be inherited by other more specific
document classes that will be instantiated.

Class : tAbstractDocumentManager

This class manages the functions associated with all objects of the
tAbstractDocument class.
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Class : tAbstractDocumentOperation

This class is holds information and methods common to 'normal’ and 'aggregate’
document operations classes which inherit this clase. This class hasn't got ite own
manager - management functions (setting & getting data etc.) are performed by the
tDocumentRoutingManager.

Class : tAbstractDocumentOpnDataConfiguration

Document operations represents explicit sets of instruction in the form of
configuration objects that define how the value for each item of data on a document
will be generated during a simulation. The configuration details for each data object
will iteelf be stored as an object. The tAbstractDocumentOpnDataConfiguration
class is an abstract class that holds attributes and methods shared by the actual
configuration classes. This class will hever be instantiated but will be inherited by
other configuration classes.

Class : tAbstractOfficeSkillAction

Document action classes provide links between models of administrative processes
and other parts of the model by enabling other entities to take some course of action
as a result of a receiving a certain type of document. This aspect of WBS/Office
offers the most potential for future expansion to reflect specific modelling needs but
model-builder will not even be aware that this class exists. This abstract ‘action’ class
contains attributes and methods shared by other action classes. This class will never
be instantiated.

Class : tAbstractTransportHandling

Transportation functionality is represented in WBS/Office as a set of sub-classes or
transportation classes. These provide the basic mechanisms required for modelling
any type of transport, whether it be documents or production materials, and can be
incorporated into skill classes or other ‘intelligent’ classes. The ‘transport handling’
classes enable a person to physically add and remove items from a storage area or
transport device.

This abstract version of the ‘transport handling’ mechanism contains attributes and
methods shared by other transport handling clasees. This class will never be
instantiated.

Class : tAbstractTransportlogic

Transportation functionality is represented in WBS/Office as a set of sub-classes or
transportation classes. These provide the basic mechaniems required for modelling
any type of transport, whether it be documents or production materials, and can be
incorporated into skill classes or other ‘intelligent’ classes. The “transport logic’
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classes represent the ‘intelligent’ part of the transport mechanism skill and enables
the person or object using this functionality to determine what to do next in terms of
where to go and what to transport.

This abstract version of the “transport logic’ mechanism contains attributes and
methods shared by other transport logic classes. This class will never be
instantiated.

Class : tAbstractTransportokill

This class contains functionality that is share by skill needed to transport document
and materials within the model

Class : tAbstractTransportSkillManager

This class manages the functions associated with all objects of the
tAbstractTransportSkill class.

Class : tAbstractWBSObjectDataObject

This is an abstract data object class. This class will never be instantiated but will be
inherited by other data object classes that represent data values which correspond
to other objects taking part in the simulation.

Class : tAggregateDocumentOperation

The tAggregateDocumentOperation class represents a special type of document
operations that allows less detailed modelling of document processing activities such
as those performed by tSupplier or tCustomer objects - in practice it may not be
appropriate or even possible to model document processing in other firm's to the
same level of detail that they are represented in the main company being modelled

Class : tAuthorisationDataObject

This class represents’Authorisation’ data objects. These corresponds to information
contained on documents that controls the progress of those document through an
organisation. For example this type of data object might be used to represent an
authorisation or approval for a purchase requisition.

Class : tAuthorisationDataObjectManager

This class manages the functions associated with all objects of the

tAuthorisationDataObject class.

Class : tCommentDataObject
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This class represents 'text’ document data objects. These represent text-based
information contained on documents such as miscellaneous comments. Required to
enable conversion of original AFS document classes to more generic WBS/Office-style
documentes.

Class : tCommentDataObjectManager

This class manages the functions associated with all objects of the
tCommentDataObject class.

Class : tCustomer

This class is used to represent customers of the main company being modelled.
Instances of this class can 'purchase’ a defined range of finished goods produced by
the company and generate sales order related documentation for these goods.

Class : tCustomerManager

This class manages the functions associated with all objects of the tCustomer class.

Class : tDateDataObject

This class represents ‘Date’ document data objects. These represent date
information contained on documents such as DueDate or LaunchDate etc.

Class : tDateDataObjectManager

This class manages the functions associated with all objects of the tDateDataObject
class.

Class : tDocumentOperation

The tDocumentOperation class holds information about document operations. These
are analogous to administrative procedures and define how and where a document
should be procc%cd.

Class : tDocumentOpnlLookedUpDataConfiguration
This class refers to information that administrators will obtain from a database, log-
book or similar look-up device.

Class : tDocumentOpnRequestedDataConfiguration

The tDocumentOpnRequestedDataConfiguration class represents information that
must be formally requested from another company or another function within the
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same business,

Class : tDocumentOpnTranscribedDataConfiguration

The tDocumentOpnTranscribedDataConfiguration class represents information that
is copied or transcribed from one document to another.

Class : tDocumentRouting

The document routing class stores the list of document operations that are carried
out to produce a document. The class allows operations to be added (at any point)
and deleted. The routing will be able to be modified at will - no special pre-cautions will
be made - therefore users of the routing will have to make a copy. Copies can be made
on request but will not be placed on the master list to avoid confusion.

Class : tDocumentRoutingManager

This class manages the functions associated with all objects of the
tDocumentRouting and tDocumentOperation classes.

Class : tDesk

This tDesk class represents a physical location where office task such as processing
documents would be performed. Document storage areas (InTrays, OutTrays and
PendingTrays) will be associated with each desk object.

Class : tDeskManager

This class manages the functions associated with all objects of the tDesk class.

Class : tDocument

This class represents actual document object that will be created during the course
of a simulation. Each instance of this class will have a document template associated
with it to define all its data componente.

Class : tDocumentArchive

Document Archive class. This class provide a means of storing old documents that
have served their purpose in the simulation but which may need to be retrieved at
some later date (perhaps as part of results analysis).

Class : tDocumentArchiveManager

This class manages the functions associated with all objects of the
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tDocumentArchive class.

Class : tDocumentManager

This class manages the functions associated with all objects of the tDocument i.e.
the actual documents that will carry information during a simulation

Class : tDocumentStore

This is a office storage class. It is epecifically designed to hold documents.
Documents can be added / removed / queried.

Class : tDocumentStoreManager

This class manages the functions associated with all objects of the tDocumentStore
class.

Class : tDocumentTemplate

The tDocumentTemplate class is a key feature of WBS/Office. This class allows
model-builders to represent exactly the documents (such as purchase orders) used in
a particular organisation in a model of that organisation.

Class : tDocumentTemplateManager

This class manages the functions associated with all objects of the
tDocumentTemplate. class

Class : tDocumentTransportHandling

Transportation functionality is represented in WBS/Office as a set of sub-classes or
transportation classes. These provide the basic mechanisms required for modelling
any type of transport, whether it be documents or production materials, and can be
incorporated into skill classes or other ‘intelligent’ classes. This document transport
handling class enable a person to physically add and remove documents from a
storage area, and carry them to their destination.

Class : tDocumentTransportlogic

Transportation functionality is represented in WBS/Office as a set of sub-classes or
transportation classes. These provide the basic mechanisms required for modelling
any type of transport, whether it be documents or production materials, and can be
incorporated into skill classes or other ‘intelligent’ classes. This version document-
specific ‘transport logic’ classes enables the person or object using this functionality
to determine what to do next in terms of where to go and which documents to
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tran5port.

Class : tDocumcntTranaportSkiH

The tDocumentTransportkill class enables person objects to transport or move
documents within the model. This class inherits and adds to the functionality of the
abstract transport skill class. This class is a skill type class and therefore object of
this clase can be placed on an operator’s skill list.

Class : tDocumentTransportSkillManager

This class manages the functions associated with all objects of the
tDocumentTransportokill class.

Class : tNumericDataObject

This class represents 'numeric’ document data objects. These represent numeric
information contained on documents such as QntyToOrder.

Class : tNumericDataObjectManager

This class manages the functions associated with all objects of the
tNumericDataObject class.

Class : tOfficeSkill

The tOfficeSkill class is a generic class that can be attributed to any tPerson object
and enables that person to process documents (i.e. to perform document operations
on documents). The model-builder will configure each instance of this class to reflect
which particular office tasks the person is responsible for carrying out.

Class : tOfficeSkillAction_MakeParts

Document action classes provide links between models of administrative processes
and other parts of the model by enabling other entities to take some course of action
as a result of a receiving a certain type of document. This aspect of WBS/Office
offers the most potential for future expansion to reflect specific modelling needs but
model-builder will not even be aware that this class exists. The
tOfficeSkillAction_MakeParts class enables tPerson or other ‘intelligent’ objects such
as tSupplier object to generate parts as a result of receiving a document with certain
types of information on it.

Class : tOfficeSkillConfiguration
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The tOfficeSkillConfiguration class represents one part of the logic used by the
generic tOfficeSkill class. This part of the logic maintains information about which
document operation a tPerson object is responsible for carrying out.

Class : tOfficeSkillLogic

The tOfficeSkillLogic class represents one part of the logic used by the generic
tOfficeSkill class. This part of the logic represents the ‘intelligent’ part of the skill and
enables the person to interpret document operations.

Class : tOfficeSkillManager

This class manages the functions associated with all objects of the tOfficeSkill clase.

Class : tOfficeSkillProcess

The tOfficeSkillProcess class represents one part of the logic used by the generic
tOfficeSkill class. This part of the logic provides the functionality for actually carrying
out whatever processing tasks have been identified by the other office skill component
objects. classes.

Class : tTransportConfiguration (developed by P.D.Ball)

Transportation functionality is represented in WBS/Office as a set of sub-classes or
transportation classes. These provide the basic mechanisms required for modelling
any type of transport, whether it be documents or production materials, and can be
incorporated into skill classes or other ‘intelligent’ classes. The transport
configuration class defines where and when a person will go to find items to be
transported.

Class : tStartTime tStartTimelist

The tStartTime class allows a series of times to be defined which may be used by a
variety of other classes for starting tasks. For example people/skills may use a time
series to set times during each day when a particular task must be carried out.

Class : tStartTimelistManager
This class manages the functions associated with all objects of the tStartTime &
tStartTimelist classes.

Class : tSupplier

This class is used to represent suppliers of the main company being modelled.
Ihstances of this class can ’sell’ a defined range of raw materials or component items
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required by the company and can also respond to purchase order related
documentation for these items.
Class : tSupplierManager

This class manages the functions associated with all objects of the tSupplier clase.

Class : tWBSObjectNameDataObject

This class inherits the tAbstractWBSObjectDataObject class and represents 'name’
data objects. In other words, data object of this type will represent the names of
other objects taking part in the simulation such as tPartNumber or tSupplier.
Class : tWBSObjectNameDataObjectManager

This class manages the functions associated with all objects of the
tWBSObjectNameDataObject class.

Unit : OfficeGlobalTypeDefinitions

This unit provides user-defined types for global use.

Unit : OfficeModel

Object initialisation unit for WBS/Office. This unit loads up new office objects when
the user creates a new model. For example, the system generates default document
template objects that model-builders can then edit or remove to reflect the actual
documents used in the particular firm being modelled.

Unit : OfficeStringResourceloader

This unit provides look-up table for document data object types. It is also used to
dynamically loads strings relating to 'Office’ classes from a string resource file to
minimise the effects of Windows 3.1 64K common data segment memory limitation.
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Appendix 2 : WBS/Office Class Hierarchy

The preceding section provided a summary for each of the new simulation classes that
together form WBS/Office. This section will illustrate how these classes have been
implemented in the form an object hierarchy. The illustration emphasises the

inheritance relationships between the various classes in the simulator.

The illustration also includes classes that originate from the original AFS class
hierarchy. Some of these classes (marked *) have been include for clarity, while others
(marked #) have been included because their original structure (as defined by AFS)

has had to be modified in some way to accommodate new WBS/Office functionality.

Simulation Classes :

tRootAFS *
tAbstractDataObject
tAbstractWBSO0bjectDatalObject
tWBSObjectNameDataObject
tAuthorisationDataObject
tCommentDataObject
tDateDataObject
tNumericDataObject
tAbstractOfficeSkillAction
tOfficeSkillAction_MakeParts
tAbstractSkill *
tOfficeSkill
tAbstractTranportSkill
tDocumentTransportSkill
tMaterialTransportSkill #
tAbstractTransportHandling
tBatchTransportHandling #
tDocumentTransportHandling
tAbstractTransportlogic
tDocumentTransportlogic
tMaterialTransportlLogic #
tDocumentTemplate
tAbstractDocumentOpnDataConfiguration
tDocumentOpnLookedUpDataConfiguration
tDocumentOpnRequestedDataConfiguration
tDocumentOpnTranscribedDataConfiguration
tOfficeSkillLogic
tOfficeSkillProcess
tOperationBasic *
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tOperationNumber *
tAbstractDocumentOperation
tAggregateDocumentOperation
tDocumentOperation
tRoutingBasic *
tDocumentRouting
tSimulation *
tAbstractWorkingPattern *

tStartTimelist
tPhysical *
tAbstractDocument
tDocument
tOrder #
tRawMaterialRequisition #
tWorksOrder #
tAbstractStore *
tStorage ™
tDocumentArchive
tDocumentStore
tActivity *
tOperationStage *
tAbstractCompany
tCustomer
tSupplier
tWorkStation *
tDesk

Simulation Class Manager Classes :

tRootAFS *

tRootManager *
tAbstractDataObjectManager
tAuthorisationDataObjectManager
tCommentDataObjectManager
tDateDataObjectManager
tNumericDataObjectManager
tWBSObjectDataObjectManager
tAbstractSkill Manager *
tOfficeSkillManager
tAbstractTranportSkillManager
tDocumentTransportSkillManager
tMaterialTransportSkillManager #
tDocumentTemplateManager
tRoutingBasicManager *
tDocumentRoutingManager
tSimulationManager *
tPhysicalManager
tAbstractDocumentManager
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tDocumentManager
tAbstractStore ™
tDocumentArchiveManager
tDocumentStorelManager
tActivityManager *
tOperationStageManager ™
tAbstractCompanyManager
tCustomerManager
tSupplierManager
tWorkStationManager *
tDeskManager
tStartTimelistManager
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Appendix 3: Document Data Types

A particularly novel feature of WBS/Office’s design is the ability for users to model a
firm’s specific information and document processing requirements. This is achieved
through the application of the Document Data Object concept whereby users construct
representations of the particular documents used in the company being modelled from
a range of available data types. A full listing of all data—typesb currently available in
WBS/Office is provided below. It is expected that this aspect of the simulator offers

potential for expansion to fulfil other specific modelling requirements.

tDateDataObject types :
doDueDate
dolssueDate
doLaunchDate
doCompletionDate

tCommentDataObject types:

doComment

tNumericDataObject types :
doQntyToOrder
doQntyCompleted
doQntyOutstanding
doLeadTimeDays
doPartPricePerUnit

doAmountDue

tAuthorisationDataObject types :
doAuthorisation_1
doAuthorisation 2
doAuthorisation 3

dolnspected
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doChecked

tWBSObjectNameDataObject types :
doPartNumber
doSupplier
doRawMatlPartNumber
doLocationStore
doDestinationStore
doReferenceDemt 1
doOrder

doPartRouting
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Appendix 4 :  Ilustrated User-Interface Dialogs

This section illustrates the user-interface dialogs developed specifically to support the

new WBS/Office classes.

o — %&ﬁg&&é‘ 2

The user can describe the different types of document used in the firm being modelled

as document templates (shown above).

Document Routing

PuichaseOrder

Putchasellide

The processing requirements for each document are defined in terms of a document

routing.
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A document routing is a collection of document operations. Each operation describes
how a particular item of information is obtained, which ultimately affects how long
that document will take to process during the simulation. Potential sources of

information are categorised as either being transcribed, requested or looked-up:

Transeribed Date  Edit Source
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Document ; Edit

2 TR

o

S
- =~ -
{ PurchaseOrder §
- L L

RORDB/00004 IssueDate 01/01/96
|PORD/00004 DueDate 81/01/96
§ PORD /00004 _Suppliexr RestonSteels
PORI/00004_PartNumber Rawiatld
PORD/00004_QntyToOrder 100

PORD/00004 PaxrtPricelerUn ©.00

Document objects will then be created during a simulation according to their routing to
convey information between different parts of the model. Model-builders can also

modify the contents of a document ‘on-the-fly’ to affect progress of the simulation.
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Representations of people are used to process and move documents around the model

of a business. This is achieved by attributing different ‘skills’ to person objects:

_ Oﬂlce skill : Edlt

Purchaselirderi0
PartPricePerlnitRequest10

The Office Skill (shown above) enables individual person objects to process certain

types of documents.
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The Document Transport skill enables person objects to move documents around the
business. In this way, the model-builder can define set times of the day when a ‘mail-
person’ will collect ‘post’ from various departments and take each item to its

appropriate destination:

People attributed the office skill will process documents at desks,

Desk: Edit

No items on desk -

2i L B RN <Rz

and keep completed or part-completed documents in storage areas, typically ‘in-trays’,

or document archives.
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Suppliers or other ‘intelligent’ objects can also process documents, and take some
appropriate action as a consequence of receiving certain types of document, such as

delivering parts to stores:

WBS/Office re-uses an existing graphical simulation library that forms part of the
Advanced Factory Simulator (AFS). A modeler can therefore follow the progression
of a simulation experiment by watching the interactions of the different entities in the

model:

Displayl
Magnification Refresh Print
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By re-using the functionality of AFS, WBS/Office also includes many other dialogs for
defining the material processing aspects of a manufacturing system. Furthermore,
when a full implementation of the system’s design is completed, WBS/Office will also
include production control system dialogs derived from WBS/Control. The reader is
referred to Ball (1994) and Boughton (1995) for details of this aspects of the user-

interface.
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Appendix 5: Hardware and Software Requirements

AS5.1  Requirements for the Development of WBS/Office

The following table details the commercial software used to implement the object-

oriented design of WBS/Office:

Application Development Software

WBS/Office core simulator | Borland Pascal with Objects, version 7.0

WBS/Office user-interface | Microsoft Visual Basic, version 3.0,
professional edition

An important feature of WBS/Office’s object-oriented design is the potential for
developers to expand the system at some point in the future to reflect other specific
modelling needs. In addition to the commercial development software described
above, the following hardware specification is recommended as the minimum need for

further development of the WBS/Office class library:

Hardware Type IBM-Compatible Personal Computer (PC)
Processor Intel 486D X2 66Mhz
Memory 8 Mb RAM

Available Hard Disk Space | 30 Mb

Operating System Microsoft Windows, version 3.1 or

Microsoft Windows 95

A5.1 Requirements for Using WBS/Office

The following table details all of the main programs and locations needed to run
WBS/Office. The listing assumes that the simulator is being installed on Drive C of a

user’s computer:
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File Name Description File Location
afscore.exe core simulator c:\wbsoffc\system
afsgraph.exe graphical display c:\wbsoffc\system
afsintf.exe user-interface c:\wbsoffc\system
icondll.dll dynamic-link library used by c:\wbsoffc\system
graphical display

config.txt object message configuration file| c:\wbsoffc\system
afshelp.hlp user help system c:\wbsoffc\help

The following table details all of additional software components and programs also

need to run WBS/Office.

This files must be located in the computer’s ‘windows’

directory, typically ‘c:\windows\system”’ or ‘c:\win95\system’:

Related to

Description

Required Files

Graphics Server,
version 2.2

required for graphical display

gsw.exe, gswdll.dll,
graph.vbx

Microsoft Visual
Basic, version 3.0,
professional edition

basic interpreter and additional
visual component for user
interface

vbrun300.11,
cmdialog.vbx,
mmmasked.vbx,
spin.vbx, grid.vbx,
gauge.vbx

Borland Pascal with
Objects, version 7.0

dynamic-link library used by the
DDE client-server mechanism
that enables the 3 main parts of
WBS/Office to interact

ddeml.dll

The minimum hardware requirements for constructing and experimenting with

WBS/Office simulation models is as follows:
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Hardware Type IBM-Compatible Personal Computer (PC)

Processor Intel 486DX2 66Mhz

Memory 8 Mb RAM

Available Hard Disk Space | 10 Mb

Operating System Microsoft Windows, version 3.1 or

Microsoft Windows 95
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Appendix 6 :  Simulation Models Constructed Using WBS/Office

This section describes an example application of WBS/Office. The demonstration
involves the creation of two simulation models; the first, a factory model, evaluates
only the shop-floor aspects of the manufacturing system while the second, a combined
model, also includes support activities. Specifically, the support activity model will be
used to simulate the processing of works order and purchase order related
documentation. For clarity both models have intentionally been kept quite simple and
include synthetic rather than real company data. Nevertheless, they serve as interesting
and very important examples of contrasting approaches to manufacturing system
analysis. The discussion that follows will relate mainly to features of the combined

model. Results will then be presented for comparison.

The list below summarises the different types of object included in the two models
before simulating. In other words, the list only includes static objects or entities
created by the model-builder; other objects were dynamically generated by
WBS/Office during the simulation but will be discussed later. The static objects
marked “*’ in the list are unique to the combined model and represent the additional
functionality provided by WBS/Office for modelling administrative activities. All
other objects shown are common to both models and represent the entities involved in

simulating material processing activities.

WBS/Office : Model data. Date: 27/09/96. Time: 22:00.

Model Name : Demonstration Model

Model Description : Model created using synthetic data to demonstrate
the functionality of WBS/Office. The model includes a machine shop,
a production control department

{object/entity name} {object/entity description}
ShopFloor manufacturing system
ProductionControl * support function

Class: WorkCentre

MachineShop manufactures components
AssemblyShop manufactures sub assemblies
FinalAssyShop manufactures finished goods
Buying * generates purchase orders
OrderProcessing * generates works orders

AstonSteels * supplier for all raw materials
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Class: MachManual

MachManuall Manually Operated Machine No.l
MachManual? Manually Operated Machine No.2

AssyManuall Manual Assembly Machine No.1l
AssyManual?2 Manual Assembly Machine No.?2
AssyManual3 Manual Assembly Machine No.3

Desk2 * location for administrative work
Deskl * location for administrative work

HandTruck HandTruck for moving shop-floor items

Class: Stores

CentralStores central storage area for all
production items

Class: BatchStore

MachineShop InStore local part storage
MachineShop OutStore local part storage
AssemblyShop InStore local part storage
AssemblyShop OutStore local part storage
FinalAssyShop InStore local part storage
FinalAssyShop OutStore local part storage
Buying InStore local part storage
Buying OutStore local part storage
OrderProcessing InStore local part storage
OrderProcessing OutStore local part storage
MachManuall In local part storage
MachManuall Out local part storage
MachManualZ In local part storage
MachManualZ Out local part storage
AssyManuall In local part storage
AssyManuall Out local part storage
AssyManual2 In local part storage
AssyManualZ Out local part storage
AssyManual3 In local part storage
AssyManual3 Out local part storage
AstonSteels InBatches local part storage
AstonSteels OutBatches local part storage

Class: DocmtStore

ShopFloor InTray * local document storage
ShopFloor OutTray * local document storage
ShopFloor PendingTray * local document storage
ProductionControl InTray * local document storage
ProductionControl OutTray * local document storage
ProductionControl Pending * local document storage
AssemblyShop DcmtIn * local document storage
FinalAssyShop DcmtIn * local document storage
Buying DcmtIn * local document storage
Buying DcmtOut * local document storage
OrderProcessing DcmtIn * local document storage
OrderProcessing DcmtOut * local document storage
Deskl InTray * local document storage
Deskl OutTray * local document storage
Deskl PendingTray * local document storage



Desk2 InTray * local document storage

Desk2 OutTray * local document storage
Desk2 PendingTray * local document storage
AstonSteels InDcmts * local document storage
AstonSteels OutDcmts * local document storage
AstonSteels PendingDcmts * local document storage

Class: DcmtArchve

DocumentArchive * Maintains archive of ‘used’ documents

Class: Operator

MachOperatorl Manual Machine Operator No.l
MachOperator?2 Manual Machine Operator No.2
AssyOperatorl Assembly Machine Operator No.l
AssyOperator?2 Assembly Machine Operator No.2
AssyOperator3 Assembly Machine Operator No.3
MatlHandler Material Handler

Buyerl * processes purchase orders
ProdnController * processes works orders
MailPerson * moves documents within model

Class: CellLeader

CellLeader manages shop-floor activities

Class: Shifts

Shift default operator shift : 5 days/wk

Class: PartNumber

RawMatll Raw Material for Partl - purchased
RawMatl1l2 Raw Material for Part2 - purchased
RawMatl3 Raw Material for Part3 - purchased
RawMatl4 Raw Material for Part4 - purchased
Partl Component - made in house

Part?2 Component - made in house

Part3 Component - made in house

Part4 Component - made in house

SubAssyl assembled in house

SubAssy?2 assembled in house

FinalAssy finished product - assembled in house

Class: DcmtTemplt

PurchaseReqgn * request for bought in items
PurchaseOrder * order for bought in items
RawMaterialReqgn * request items from stores
WorksOrder * order to manufacture items
Order * Order

SalesOrder * customer orders
PartPricePerUnitRequest * formal request sent to supplier

Class: DcmtRoutng

PurchaseReqn * processing details for document
PurchaseOrder * processing details for document
RawMaterialReqgn * processing details for document
WorksOrder * processing details for document
Order * processing details for document
SalesOrder * processing details for document
PartPricePerUnitRequest * processing details for document

Class: Document

PREQ/00001 * instance of purchase requisition
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PREQ/00002 * instance of purchase requisition
PREQ/00003 * instance of purchase requisition
PREQ/00004 * instance of purchase requisition
Sa/0000001 * instance of customer order
Sa/0000002 * instance of customer order
Sa/0000003 * instance of customer order
Sa/0000004 * instance of customer order
Sa/0000005 * instance of customer order
Sa/0000006 * instance of customer order
Sa/0000007 * instance of customer order

Class: OrderSystm
OrderSystem monitors works order status
Class: WIPTracker

WIPTracker monitors WIP batches

Since WBS/Office does not yet include production control system functionality,
documents that might normally be generated by this type of entity have had to be
created manually as part of the model-building process for the combined model,
Consequently, the object listing include several instances of the ‘document’ class.
Specifically, the document objects correspond to customer orders and purchase
requisitions, and thereby represent the initial workload placed on support functions in
this model. Table A6.1 illustrates the procedures, or ‘document routings’, defined as
part of the model for generating purchase orders during the simulation. These
purchase order objects are ultimately required to obtain raw materials from the supplier

object.

The illustration shows that in this particular model, a buyer is triggered to create a
purchase order on receiving a purchase requisition. In fact, the purchase requisition
provides most of the information that the buyer needs to generate the order (this
information is ‘transcribed’ onto the order) but the buyer must make a formal request

to the supplier to get the relevant price per unit for the ordered parts.

Figure A6.1 graphically ‘walks-through’ this aspect of the model, and demonstrates the
various interactions and delays involved. A similar type of procedure is also included
in the model that enables the ProdnController object to generate shop-floor works

orders based on customer order objects.

During the simulation, the combination of delays that these different interactions
represent affects the availability of production orders and parts in the manufacturing

system, and therefore impacts on the performance of this aspect of the combined
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model. Figures A6.2 and A6.3, for example, illustrate selected results produced by
simulating the factory model and the combined model respectively for a period of one

week.

PurchaseRequisition, created by model-builder in this case

Data Object Data Source Performed By
lssueDate not applicable, user generated model-builder
Supplier not applicable, user generated model-builder
PartNumber not applicable, user generated model-builder
QntyToOrder not applicable, user generated model-builder

PurchaseOrder, Demt Opn 10, Process Time = 60 minutes

Data Object Data Source Performed By
lssueDate TRANSCRIBED from PurchaseRequisition Buyer
Supplier TRANSCRIBED from PurchaseRequisition Buyer
PartNumber TRANSCRIBED from PurchaseRequisition Buyer
QntyToOrder TRANSCRIBED from PurchaseRequisition Buyer
PartPricePerUnit REQUESTED from Supplier Buyer

PartPricePerUnitRequest, Demt Opn 10, Process Time = 30 minutes

Data Object Data Source Performed By
PartNumber TRANSCRIBED from PurchaseRequisition Buyer
QntyToOrder TRANSCRIBED from PurchaseRequisition Buyer

PartPricePerUnitRequest, Domt Opn 20, Process Time = 60 minutes

PartPricePerUnit LOOKED-UP Supplier

Table A6.1 Document Routings Involved in the Purchase Order Process

In both cases, the simulation begins on ‘1/1/96°, and clearly in the first model this
implies that production orders were issued or ‘created’ immediately for the shop-floor
(that is, on ‘1/1/96”) which could then begin production. In contrast, the combined
model actually simulated the creation of these works orders from customer order
information, and so the works order documents which were not actually prepared until
part way through the simulation period. This constrained the start of production. The
modelling of delays involved in the purchase order process (that is, the ordering raw
materials from the supplier) also contributed to the shop-floor model not being able to

commence production until ‘5/1/96’.
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In effect, support department constraints included in the combined model were able to

hamper the final yield of the manufacturing system over the course of the simulation

period. The results of the combined model therefore demonstrate the feasibility of

evaluating manufacturing system designs in WBS/Office in a way that the research has

established not to be possible using other simulation methods.
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Figure A6.1 "Walk-through' of Purchase Order Process in

Combined Model (not drawn to scale)
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Work in Progress Tracking

I~ Part selection Time Batches

@@l O Part ( O gunent O Historic @ Both [ O Individual @ Grouped
Part name Create date & time Finish date & time Lead tm Start Total Scrap Rework
Partl 81/91/96 ©08:061:15 81701796 ©09:31:52 1.51 100 100 0 o
Partl 61/01/96 08:81:15 081/61/96 10:12:53 2.19 50 50 0 0
Paxrt2 81/01/96¢ ©08:081:15 81/01/96 11:34:21 3.55% 100 100 [ 1]
Part2 21/01/96 08:61:15 01/81/96 12:03:51 4.04 35 35 [ [

Figure A6.2 Selected Results from the Factory Model (based on 1 week simulation)

Work in Progress Tracking

" Past selection Time Batches

@:ﬁ;‘:_\jl‘& O Pait l> O Current O Historic ® Both }» O Individual ® Grouped
Part name Create date & time Finigh date & time Lead tm Start Total Sorap Ravork
Partl 05/01/9¢6 15:02:05 05/01/96 15:53:01 0.85 58 50 0 1]
Paxrt2 05/01/96 15:02:05 08/01/96¢ 08:30:11 65.41 35 35 1} 1]
RPart2 05/01/96 15:02:85 08/01/96 09:49:33 €6.19 106 100 o -]

Figure A6.3 Selected Results from the Combined Model (based on 1 week simulation)
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