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Abstract.

The technique of Satellite Laser Ranging is today a mature, important tool with
applications in many areas of geodynamics, geodesy and satellite dynamics. A global
network of some 40 stations regularly obtains vange observations with sub-cm precision
to more than twelve orbiting spacecraft. Al such levels of precision it is important {0
minimise potential sources of range bias in the observations, and part of the thesis is a
study of subtle effects caused by the extended nature of the arrays of retro-reflectors on the
satellites. We develop models that give a precise correction of the range measurements fo
the centres of mass of the geodetic satellites Lageos and Etalon, appropriate to a variety
of different ranging systems, and use the Etalon values, which were not determined during
pre-launch tests, in an extended orbital analysis. We have fitted continuons 2.5 year arhifs
(o range observations of the Etalons from the global network of stations, and analysed
the results by mapping the range residuals from these orbits into ecuiivalent. corrections
to orbital elements over short time intervals. From these residuals we have detected
and studied large un-modelled along-track accelerations associated with periods during
which the satellites are undergoing eclipse by the Earth’s shadow. We also find that
the eccentricity residuals are significantly different for the two satellites, with Etalon-2
undergoing a year-long eccentricity anomaly similar in character to that experienced at
intervals by Lageos-1. The nodal residuals show that the satellites define a very stable
reference frame for Earth rotation determination, with very little drift-off during the 2.5
year period. We show that an analysis of more than about eight years of tracking data
would be required to derive a significant value for Jy. The reference frame defined by the
station coordinates derived from the analyses shows very good agreement with that of
ITRF93.

Key Words: Space Geodesy; Satellite Signatures; Non-Gravitational
Forces
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SES

Chapter 1

Introduction and Outline of

Research

1.1 Introduction

Satellite Laser Ranging (SLR) began as a concept in 1962 when Flotkin [1] af the Goe-
dard Space Flight Centre (GSFC) in Maryland, USA first proposed the development of
accurate laser ranging to retro-reflectors on orbiting spacecraft in order to improve geode-
tic information. At that time optical and radar tracking of satellites was yielding station
coordinates at the 100-metre level of accuracy. The interesting geophysical processes
that are deforming the solid Earth, such as Earth tides and plate tectonic motions, were
understood to be altering station coordinates at the level of only a few ¢cm over timescales
varying from sub-daily to several years. It was clear that only if the measurement tech-
niques could reach the level of accuracy of a few cm, and carry out observations over
many years, would they be able to challenge the theoretical work.

The first SLR observations, of the Beacon Explorer-B spacecraft in 1964 achieved
metre-level precision in range, and showed that the technique was viahle and potentially
capable of reaching the required centimetric precision. These experiments promphed
NASA to place retro-reflectors on the GEOS T and IT spacecralt and on the Moaon, and fo
start to develop more SLR stations. In 1975 France launched the first geadetic satellite
STARLETTE into a relatively low 950 km orbit, and this was followed in 1976 when

NASA launched its Laser Geodynamic Satellite LAGEQS into a near-cireular, near polar
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orbit at a height of nearly 6000 km. Both these satellites are inert, dense spheres,
encrusted with a number of retro-reflecting corner-cubes specifically designed to reflect
laser light back to the emitting tracking station. STARLETTE has a diameter of 24 cm,
LAGEOS a diameter of 60 cm.

In 1979 NASA created the Crustal Dynamics Project (CDP) with the aim of ‘devel-
oping Laser Ranging and Very Long Baseline Interferometry (VLBI) systems to obtain
relative positions with & 2 cm accuracy to define directions with respect to the inertial
reference with a 0.001 arcsec accuracy: to monitor relative rates of motion of different
parts of the Earth’s crust well enough to infer irregularities in plate tectonic motions, and
to monitor the wobbles and rotational variations to infer their excitations and dampings,
as well as to determine accurately the orbits of the distant satellites (higher than 6000
km altitude)’ [2].

This project formalised and consolidated the cooperative efforts between seientista
and engineers which were already underway in several connitries, and other independent
groups worldwide began to design and huild their own SLR systems.

During the 1970s, the accuracy of the best systems was at the decimetre level, limited
mainly by the relatively long laser pulse-lengths that were in routine use at the time.
For a typical pulse-length of some 30 cm, a large uncertainty exists in the measurement
hecause it is impossible to relate the detected photons to their position within the pulse.
However, advances in both laser and electronic technology continued such that within ten
years the best systems were obtaining single-shot precisions of better than 5 cm. During
ihe late 1970s the Royal Greenwich Observatory at Herstmonceux, in collaboration with
the University of Hull, began to develop a UK SLR Facility, with the initial objective
of making range measurements to LAGEOS during the daytime as well as at night to a
single-shot precision of 5 cm. The first returns were obtained, from STARLETTE, on
the night of 1983 March 31, followed a few hours later hy ohservations of LAGEOS. Since
those initial experiments, the station has become one of the most prolific and accurate
systems in the world, regularly tracking more than 200 satellite passes each month, with
a single-shot precision of about 8 mm.

In the following sections of this Chapter we discuss in more detail the technigue of

satellite laser ranging with particular emphasis on the UK system, and outline the current
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research which focuses both on a deeper understanding of the measurement process, and

on an analysis of SLR observations of two high-altitude Russian geodetic satellites.

1.2 Satellite Laser Ranging

The technique of SLR is, in principle, very simple. A short pulse of laser light is emitted
from a telescope that is following the predicted position of an orbiting satellite, the time
of emission is accurately recorded and an interval counter is started. The pulse of light
reaches the corner-cube retro-reflectors on the satellite, and is directed back towards the
telescope. Upon receipt of the reflected laser light, a high-speed detector generates an
electronic signal, and the signal stops the interval counter. The round-trip time of flight
is then calculated. Half this time of flight multiplied by the speed of light gives the range
of the satellite at the emission time of the laser pulse, also known as the epoch of the

observation. This process is shown schematically in Figure 1.1,
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Figure 1.1: The Satellite Laser Ranging Technique

Given the objective of making range measurements to a precigion of a few mm, we

can estimate the precision with which the epoch of an observation must he racorded.



The speed of a typical geodetic satellite in its path around the Earth is about 5 km s,

or 5 x10% mm s~'. Thus the epoch should be recorded to a precision of better that a
micro-second. These days most stations record observational epochs with respect to the
timescale broadcast by the Global Positioning System (GPS), which is precisely related
to and closely aligned with Universal Time (UTC). The range measurement itself, of
course, must be made to the required precision of a few mm, which in terms of two-way
measured time of flight is equivalent to a precision of better than about 20 pico-seconds
(20 ps = 20.0 x107'* s).
In order to convert this measurement precision into measurement accuracy, range
calibration measurements are frequently carried out to a nearby reflective target-hoard,
whose accurate distance from the invariant point of the ranging telescope has heen in-
dependently surveyed. The calibration measurements are used to determine the sum af
the internal electronic and optical-path delays in the ranging system, which is remaved

during a pre-processing stage from each vaw range observation.

1.2.1 Tracking Stations

There are currently more than 40 active SLR systems in the worldwide network, regularly
contributing observations to the data centres, from where they are rapidly available to
the analysis community. Many of these instruments achieve a range precision of better
than 1 cm rms. Many of the systems are associated with geodetic and astronomical
stations, which also operate other geodetic systems such as permanent GPS receivers,
PRARE (Precise Range and Range-Rate Experiment) ground stations, DORIS (Doppler
Orbitography and Radiopositioning Integrated by Satellite) beacons, VLBL antennae and
gravimeters. The UK station at Herstmonceux has a ROGUIE GPS receiver which rou-
tinely contributes observations to the International GPS Service (1GS), has operated for
a few months during 1995 a PRARE receiver helonging to the UK’s Proudman Oceano-
graphic Laboratory, and has recently had a first-epoch visit by an absolute gravimeter
also belonging to POL.

Among the network of SLR stations there are essentially two different types, depend-
ing upon the original design specifications. Some are designed to work al a1 miulti-phaton

level of return, whereby each returning pulse of reflected laser light is typically al ihe

16



level of at least 10 photons, and is often measured at several hundreds of photons. The
detectors used in such systems are Micro-Channel Plate (MCP) detectors, which are very
fast, physically small, multiple photomultipliers. The discriminating electronics associ-
ated with the MCP detectors are usually configured such that the detector is triggered
by the leading edge of the returning laser pulse, leading to a very precise range measure-
ment, affected little by the particular waveform of that pulse. All of the NASA systems
fall into this category.

The second type of system, which includes the Herstmoncenx station, works at or
close to a single-photon level of return. The philosophy behind the design of such a
system is that the ability to detect such low return levels improves the chances of making
observations when atmospheric conditions are poor. For stations at or near sea level
and in rapidly changing climates, such as many of the European stations, this ability
maintains their competitiveness with systems working in dry conditions at high-altitude
locations. The detectors usually used by the single photon systems are Single Photon
Avalanche Diodes (SPADs), which are solid state devices with sensitive areas of the
order of 100 microns in size. The SPAD is armed a short time before the returning
lager pulse reaches the telescope. Either internal noise or an external photon, which may
be background noise from the sky or from the satellite, will then trigger the avalanche
within a few microseconds. Once an avalanche of photo-electrons has been triggered, the
SPAD is unable to detect further photons until it is again armed during the next ranging
cycle. In this way photons originating from anywhere within the returning pulse have
the potential to be detected, provided they can be distinguished from the noise. If the
returning pulse is at the level of single photons, then over the course of many hundreds
of such detections during a satellite pass, the waveform of the whole return pulse will be
sampled.

This essential difference between the multi and single-photon systems is explored in
detail as part of this research. We investigate the determination of accurate corrections
to refer range measurements made to the retro-reflectors on the surface of the satellites
to the centres of mass of the satellites. The pre-launch tests to measure such coyrections
were carried out almost exclusively at multi-photon levels, and we find that the valies

appropriate to the single-photon mode of operation are significantly different from fhe
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laboratory results. We also investigate the effects in terms of the potential bias introduced
into the range measurements of departure from the single-photon return level. With
ranging precision at the level of a few mm, it is essential that we understand such subtle
effects if we are not to produce biased data which could appear to be or mask some small

geophysical signal.

1.2.2 Satellites

A number of satellites is routinely tracked by the worldwide network of tracking sta-
tions, and for a variety of scientific applications. The satellites fall into two main classes;
geodetic and applications. The geodetic satellites are small, spherical and inert, con-
taining a high-density core and a surface uniformly covered with corner-cube reflectors
(retro-reflectors). Figure 1.2 shows Etalon-1, which has a diameter of 129 cm, and carries

2146 retro-reflectors distributed over its surface. The satellites are designed to have a

Figure 1.2: The Etalon-1 Geodetic Satellite.

small area to mass ratio to minimise accelerations due to non-gravitational forces such
as from solar radiation pressure. Those geodetic satellites that are regularly tracked are
listed in Table 1.1, which gives the satellites’ diameters (cm) and dates of launch, in order
of their heights in Km above the surface of the Earth. All are in near-circular orbits, and
have diameters ranging from 20 c¢m to over 2 m. The principal applications addressed by
observations of these satellites depend mainly upon their heights above the Earth. The
low satellites GFZ-1, Starlette, Stella and Ajisai are particularly suited to determination

of high-frequency terms in the expansion of the Earth’s gravitational potential, studying
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Satellite Height | Diam | Launch
Km cm Year
GFZ-1 390 20 1995
STARLETTE 960 24 1975
STELLA 810 24 1993
AJISAI 1500 215 1986
LAGEOS-I 6000 60 1976
LAGEOS-II 6000 60 1992
ETALON-I, IT | 19000 | 129 1989

Table 1.1: Geodetic satellites tracked by SLR

ocean tides and modelling variations in atmospheric density. The Lageos satellites are
extensively used for global terrestrial reference frame determination for studying crustal
motions, Earth rotation and for determination of and monitoring changes in low fre-
quency terms in the gravity field. The extent to which the Etalon satellites could also
contribute to the Lageos applications is a major objective of this current research.

The applications satellites are large, irregularly shaped and carry a large number
of remote-sensing devices as well as solar arrays for generating power. The principal
active satellites in this class are ERS-2, the European Remote Sensing satellite orbiting
at an altitude of 780 Km, and Topex/Poseidon, the joint French-USA altimetry satellite
at an altitude of 1336 Km. These satellites require precise tracking to calibrate their
altimetry observations to the surface of the oceans and ice sheets. ERS-2 carries the
experimental space-borne micro-wave tracking system PRARE and a small array of laser
retro-reflectors. Topex/Poseidon carries a GPS receiver, the French DORIS ground-
based tracking system, and a large circular array of retro-reflectors. In addition, two of
the constellation of GPS satellites at altitudes of 20000 Km carry retro-reflector arrays
in order that comparisons may be made between the orbits determined using the GPS
technique and those based on laser range measurements.

Because of the different heights of these satellites, their times of visibility during

which range observations from a given tracking station can be attempted varies from five
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minutes for the low GFZ-1, to 40 minutes for Lageos, to five hours for the high-altitude
Etalon satellites. Tracking-station schedules are usually based upon the times of passes
of the ‘primary’ satellites such as Lageos, but modern systems can rapidly switch from

tracking one satellite to tracking another to maximize their operational efficiency.

1.3 The Etalon Satellites

Figure 1.3: The Orbits of the Etalon Satellites.

We now consider in more detail the characteristics of the satellites whose laser range

observations are a subject of this study. The two Etalon geodetic satellites were launched
on 1989 January 10 and 1989 May 31 into near circular (e ~ 0.001) orbits at heighis of
19000 km with orbital periods of 675 minutes. Each satellite was launched along with
two vehicles of the Soviet Glonass Navigation system, these active satellites being rapisdly
moved away in orbital longitude from the inert Etalons. The orbits are inclined 1o the

Earth’s equator by approximately 65 degrees, and the orbital planes are sepas
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120 degrees in longitude. The orbital configuration is shown to scale in Figure 1.3

The Etalon mission objectives and details of the satellites were announced to the SLR
community by the then Astronomical Council of the USSR Academy of Sciences in the
report ‘The Programme of the Use of Passive Spacecraft for the Solution of Fundamental
and Applied Problems in Geodesy, Geodynamics and Geophysics’ [3]. The broad mission
objectives were stated to be the construction of a high precision global geocentric coor-
dinate system and corresponding evaluation of Earth rotation parameters, measurement

of trans-continental baselines from pseudo-simultaneous tracking, determination of and

detection of possible variation in low order terms in the Earth’s gravity field, and the
determination of a precise value of the product of the gravitational constant with the

mass of the Moon. To encourage the international community to track these satellites in

a systematic way, an international tracking campaign was announced at the 1992 May

meeting of the SLR Subcommission of the International Coordination of Space Technigues
for Geodesy and Geodynamics (CSTG), held during the Eighth International Workshiop

on Laser Ranging Instrumentation in Annapolis, Maryland. The aim ol the campaigi
was to provide a robust data set for analysis groups to begin work using both dynamical
and geometric techniques, by providing the widest possible sampling of the Etalon orbits
and supporting rapid data availability. The campaign began on 1992 June 1, and about
half of the global network of stations began routine tracking.

We have carried out analyses of Etalon data obtained during a 2.5 year period from
the start of that campaign with the specific goal of testing the value of such data against

the stated objectives of the mission.

1.4 Outline of Research

In this section, we give a very brief overview of the content of each chapter of the thesis,
in order to describe the overall development of the work.

1.4.1 Chapter 2

In Chapter 2 we discuss the work carried out to allow routine, rapid extraction of Tully-

calibrated range normal points from the raw ohservations obiained ab a tr



We fit a computed orbit to the observations obtained during a satellite pass, and use this
orbit as a smoothing function from which to calculate the set of normal points. We apply
a statistical test to the residuals from this function to test for the presence of systematic

trends in the residuals.

1.4.2 Chapter 3

In Chapter 3 we consider in more detail the process of laser ranging at a single-photon level
of return, with particular emphasis on a study of the influence of the shape of the satellite
on the measurement of its range. We develop a model to represent the observations by
convolution of the responses of the various components in the system, and use this model
to derive centre-of-mass corrections appropriate to systems with different measureinent

precision and for different levels of return.

1.4.3 Chapter 4

In Chapter 4 we discuss the computer package developed partly by the author Lo analyse
SLR observations. During the course of the current study, we have carried out modifica-

tions and improvements to the package, and these are discussed in detail.

1.4.4 Chapter 5

In Chapter 5 we begin our analysis of SLR observations of the high-altitude Etalon
geodetic satellites. Following a preliminary study of a few month’s observations, we
decide to carry out a fit of a 2.5 year continuous orbit to range data from the global
network of stations, to study the long-term stability of the reference frame defined by the
deduced coordinates of the tracking stations. We use the range residuals from the long-are

solutions to infer corrections to the mean orbital elements over short time intervals, with

a view to identifying deficiencies in the force model, and to compute series of resid

along-track accelerations.

]
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1.4.5 Chapter 6

In Chapter 6 we use the residual along-track acceleration and eccentricity series in a
detailed study of thermal force perturbations on the satellites, and compare the results
with those from Lageos. We particularly investigate the effects of the cooling of the

satellites during eclipse periods.

A i 2l -
1.4.6 Chapter 7
In Chapter 7 we use the Etalon observations to derive corrections to Earth rotation
parameters and station coordinates, and attempt to solve for corrections to selectad
terms in the expansion of the gravity field. We discuss whether we are able to detect

ternporal changes in the gravity field, and whether the analysis leads to a significant
with the universal gravitational constant.
""" Chapter 8

In Chapter 8 we summarize the main results of the work, and point out areas that should

lead to some interesting future work.



Chapter 2

Pre-processing of Laser Ranging

Observations.

2.1 Introduction

The ohservations ohtained by a laser ranging station must be processed to extract the
satellite distance measurements from noise events and to apply a calibration correction
to refer those measurements to the system datum point. The observations are then com-
municated to the laser ranging community. Until September 1990 the procedures for
data transmission were that a ‘quicklook’ sample of some 50 range measurements from

cach pass were rapidly communicated by telex and later by e-mail to the agencies re-

observations were accumulated for a calendar month and then sent on magnetic tape
to NASA’s Crustal Dynamics Data Information System (CDDIS), where data from the
world—wide network of stations were merged and sorted into time order for later distri-
bution on magnetic tape to the analysis community. This process resulted in a delay of
some seven months from the time that the observations were obtained until the time that
they were available to the analysis community.

In preparation for the launch in 1991 of the European Space Agency's applications
satellite ERS-1, it became more urgent to make the observations available to the analy-
sis community in support of the altimeter data obtained hy the satellite. The prineipal

precise tracking system that was planned for ERS-1 was SLR, and in fact the exper-
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imental tracking system named PRARE (Precise Range and Range Rate Experiment )
failed shortly after launch. Further, the then anticipated US/French altimetry satel-
lite TOPEX/POSEIDON would also require intensive SLR tracking, to complement and
help calibrate the on-board GPS and DORIS tracking equipment. These were some of
the factors that provided the impetus for the stations to work towards computing on
site normal points for transmission rapidly either to NASA’s Crustal Dynamics Dafa
Information System (CDDIS) in Washington or to the Eurapean Data Centre (EDC) in
Munich, from which centres high quality data would be available to analysts within a
day of the observations being carried out.

Normal points are designed to compact the large number of individual range measure-
ments made during a satellite pass into a few ‘average’ ranges, which contain the same
information as the original raw data. The normal points have higher precision than ifie
raw data through reduction of the random scatter inherent in the chservations. At fhe
Fiftl Tnternational Laser Ranging Instrumentation Workshop held at Herstmonceux in
1984 an algorithm [4] to compute normal points was agreed hy the laser ranging comimii-
nity, and it was proposed that laser range normal points should be formed by the stations
shortly after each satellite pass and transmitted as quicklook data. This proposal was
not immediately implemented however, and it was not until after the final version of the
quicklook normal point format was agreed by the SLR Subcommission of the CSTG and
published in the April 1990 Satellite Laser Ranging Newsletter (5] that normal points
came into routine use for rapid transmission of observations to the data centres

In order to pre-process the raw observations and form normal points, we have to carry
out two stages; (a) fitting a smoothing function to the observational range differences from
a predicted orbit and subtracting the function i order to form a flat, track of residuals,
and (b) rejecting noise and outliers and forming the mean values of the accepted residuals
in bins spread through the pass. The values of the smoothing function and the predicted
orbit at the epoch of an actual observation nearest the mean epoch of the bin are then
added to the mean value of the residuals in the bin. The resulting normal points are then
virtually independent of both the smoothing function and of the predicted orhit.

In this chapter we discuss the computation of the smoothing function, and apply a

statistical test to check that the post-solution set of range residuals is free of systematic



trends.

2.2 Development of the Smoothing Function.

During the observation of a satellite pass, differences from the predicted range are com-
b

puted for all events detected within the range gate and displayed in realtime; true satellite
returns appearing as a continuous track of points among the randomly distributed noise
points. Because of the appearance of this set of correlated range residuals, we use the

r~

term ’track’ in this context throughout this document. An example of such a plot is
given in Figure 2.1, which shows a pass of Lageos-1. Several parallel tracks are seen in

the plot; these result from an experimental situation whereby a ’train’ of laser pulses

is transmitted each time the laser fires. The separation in time of the individual pulses

from one another gives rise to the multiple tracks, since the range residuals are caleulated
with respect to the first pulse in the train. The rejection of gross noise events is carried
out visually using the plot, and the subsequent set of satellite range measurements and

some noise events are passed to the next stage of processing.

There are two ways to form the smoothing function. The first and simplest method is
to compute and fit a high-order (> 10**) polynomial to the range residuals. The second is
to fit an orbital arc to the observed range measurements. The advantage of the polynomial
method is that it does not require any orbital information, but the disadvantages are that
the fit of the polynomial can become corrupted in the presence of noise, and also that
the results of the fitting process give no information on the accuracy of the original
prediction of the position of the satellite. The disadvantage of the orbital fit methad is
that it requires a file of predicted coordinates of the satellite in order to compare with the
observations. However, the main advantage is that the results of the fitting process ca
be used to improve subsequent predictions, which is an important consideration. Thus
the alternative of an arbitrary polynomial for the smoothing function was not adopted.

To carry out the fit of the predicted orbit to the range observations, we express
orbital corrections as along-track, across-track and radial displacements to the predicted
position. Such corrections are then readily applied to the geocentric orbit during the

solution iteration process, and the derived along-track correction can be expressed a8 an
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Figure 2.1: Observations of Lageos - comparison of measured and predicted ranges

orbital time-bias for improving subsequent predictions. During the prediction process
an orbit in the form of geocentric rectangular satellite coordinates and velocities af 1-
minute intervals of time and in units of Mm and Mm/day, is computed by numerical
integration of the equations of motion, using so-called Inter-Range Vectors for the initial
conditions [6]. For each observational epoch, we use 8th order Lagrangean interpolation
to compute the instantaneous position r and velocity v of the satellite. Let ¢ = (x,y,2),
and v = (Z,9, ), and let the magnitudes of these vectors be + and v respectively. The
reference frame used is the true equator and mean equinox at Ohrs UT of the epoch of
the IRVs, [6]. At the observational epoch, we compute the coordinates of the observing

station in the same reference frame. Let the station coordinates be 8 = (z

the predicted topocentric coordinates of the satellite are

TP =T = Le Yr =Y Us = Z%

and the predicted range is the magnitude of this topocentric vecior.



difference of the observed from the predicted range, and in order to solve for corrections
to the predicted orbit we set up the following observation equation for solution by the

method of least-squares.

oR oR OR .
AT Ar =1 0bs Leale v, 2.
AT Tt GagnY t Gyt = M~ Mlae 1Y (

[
—t
N

where AT is the time-bias, AQ is the across-track displacement and Ar is the radial
displacement. v is the least squares residual that we wish to minimise by adjusting our
initial estimates of the three displacements.
To form the observation equation (2.1), we require partial derivatives of range with
espect to the along-track, across-track and radial components of the displacement of the

predicted orbit.

2.2.1 Partial Derivatives.
For an along-track displacement corresponding to a time-bias of AT, the displaced
R is given by

R® = (z + aAT — z,)° + (y + AT — y)* + (2 + AT — 2)°

Then
OR . , . A
AT = iz + 2AT — z,) + 9y + AT — y,) + 2(z + 2AT — 2,),
or approximately
oR . : .
saT = (Ger +gyr + )/ R

For an across-track displacement of A @, we have that the across-track direction is

r X v

= (I, m,n) , say.
rv

L= (yz —zy)/rv

m o= (zi — xz)/rv

n = (xy — yi)/rv

So the displaced range [ is given by

,4

R = (z +1AQ —z,)" + (y + mAQ ~ ys)? + (2 4+ nAQ — z4)°



So
OR .
R—— = l(z + IAQ — z,) + m(y + mAQ — y,) + n(z + nAQ — z)),
OAQ
or approximately
OR
0AR

For a radial displacement of Ar, the displaced coordinates of the satellite are = +

=(lzp+myr+mnzp)/R

A7 /7, ete. So the displaced range R is given by

5 . xAr T yAr R 2AT 9
R = (z+ T r) + (y+ i‘,‘” —ys) Tt z)"

Then as before we calculate the approximate partial derivative

OR
a‘;r (I T + ?” (/] + z Zr )/(}R>

2.2.2 Least-squares Adjustment.

For each observation obtained during the pass, we now form the observation equation

(21) If there are n observations, and we are solving for corrections to say k paramet

we may write this system of equations in matrix form as

Ax=b+v, (2.2)
where
A n x k) matrix of obs. equation coefficients (partial derivatives)

(
x : (kx1) vector of corrections to initial estimates of the parameters
b (nx 1) vector of Reps — Rewe values
v (nx1) vector of residuals
If we wish to weight the ohservation equations, we multiply each one by the square
root of the required weight w.

The weights are defined to be the reciprocal of the observational standard errar

squared. That is the (n x n) weight matrix W is

1 i
;]g 0 U 0
0 =
W = E
0 ~7}:f
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So equation (2.2) becomes
1 1 1 ,
W2Ax = W?b+ Wav (2.3)
In the present situation, all the observations are of equal weight since only one ob-
serving station is involved, and we may take the weight matrix W to be the unit matrix.
2.2.3 Solutions

The normal equations are formed from the observation equations, and the system solved
by Choleski triangular decomposition of the normal matrix. We initially carried out solu-

tions for the parameters AT, AQ, and Ar. In practice it was found that the across-

correction was always highly correlated with the radial correction, with correlation co-
efficient > 0.99, and in many cases the solution was indeterminate. Hence both could

not be solved-for, and so it was decided to suppress the solution for across-ir

solve for a radial correction only, which would thus also absorb any across-track error. 1t
was also found that simple constant along-track and radial corrections to the predicted

orbit did not in general absorb all the error in the orbits, and that the set of parameters
to be determined for a particular pass should be selected from along-track and radial
displacements and their time rates of change and accelerations. We denote these pa-
rameters 7,1, T, R, R, R. The partial derivatives of range with respect to the rates of
change and accelerations of these parameters were formed from those of the constant
terms by multiplication by £ and t?, where time ¢ is the epoch of cach observation relative
to the mid-time of the pass. Such a definition for the origin of ¢ is optimum in reducing
correlations between the unknowns.

We found that it was necessary to solve for only three or four of the possible six

parameters, but they were not always the same three or four parameters, and so a irial and

error approach using all six was needed. Initially a scheme was devised to automat dly
check for very high (>0.999) correlations among the four unlknowns 7,7, K, i, and to
suppress any one or two of them in order to obtain a determinate sohition, consisient with

obtaining a flat track of residuals. However experience showed that the values determined

for these four parameters were always quite small, of the order of 0.1 ms/minute for T and

1.0 cm/minute for 2, and of similar magnitude for the accelerations. We thus impossd -

Lo
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priori standard errors of these magnitudes upon the 4 parameters as follows, and allowed

the program to solve for all six unknowns.

2.2.4 Application of a-priori standard errors

Suppose we know a-prior: that the value of a particular parameter x; from the set o

parameters x 1s, within the standard error o,
Tj=ckao

Then we have an additional observation equation

or

where N is the (nxn) normal matrix. Then the contribution of the additional observation

equation 1s

and

d: =d; + —c
j i

There are no contributions to any other elements of N or d

2.9.5 Tteration of the solution.

With the imposition of the a-priori standard errors on the four parameters 7,7, i, K,
we find that the solution is always determinate. In order to iterate the solution, af each
stage we replace the predicted coordinates of the satellite by the displaced coordinates

as determined from the previous solution. So for example

v =a+ AT + IAQ +alr /7

(o
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and similarly for y and z. It was found that 4 or 5 iterations were usually sufficient,
where outliers of magnitude greater than 3 x rms were removed at each stage.

The scheme was found to be determinate for a wide variety of satellites and pass
durations and quality of predictions, and has been adopted at Herstmonceux. A version
of the software coded in FORTRAN 77 and named ‘SOLVE’ is also in use at several
European SLR stations. The deduced values of time bias are used to good effect for
improving subsequent predictions, and as described by Wood and Gibbs [7], the software
is used each day to generate time bias values from the quicklook observations from Her-
stmonceux and other SLR stations. The values over several days are represented by a
low-order polynomial, and these are widely distributed to SLR stations to improve the

quality of the predictions.
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Figure 2.2: Observations of Lageos - post-solution range residuals.
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all trends and noise events have been removed and thus these residuals are readily used
to form normal points using the Herstmonceux algorithm [4]. We also use the residuals
to estimate the single-shot range precision, by calculating the root-mean square of the
residuals in each pass. This parameter is a good indicator of the general behaviour of the
system, since any decrease in precision suggesis that one or more of the components of
the ranging system may be becoming defective or mal-adjusted. We also wish to examine
the probability distribution of the residuals, represented by the histogram, to investigate
potential satellite—dependent signatures. For these reasons, it is necessary that all trends
have been removed from the residuals. Any trends left in the residuals will artificially
increase the value of the rms calculated from the residuals and distort the probability

distribution as defined by the histogram.

2.2.6 Statistical test for ‘flat’ track of residuals.

As a final check that the track of residuals is indeed statistically flat, and as an aid to
automating the process without the need for somewhat subjective examination of the
residuals scatter plot, we have introduced an Analysis Of Variance (ANOVA, [8]) test
on the residuals. This statistical test is widely used in quality-control work in order to
test whether a given change in procedures has had a significant effect on some series
of measured parameters, such as the mean yicld of a particular product, or whether the
observed differences in the parameters can be wholly attributed to statistical fluctuations.
We have applied this technique to check for significant differences between the means of
residuals grouped into normal point bins; any differences indicate that not all trends
have been removed from the residuals, and a warning is given that normal points should
not be formed until the cause of the problem is traced. Another cause of signatures
remaining in the residuals could be system calibration changes during a pass, and the
technique helps to locate such problems. We use a Type-1, single factor ANGVA test fo
check whether, given the overall pass rms, we can consider that all the mean values are

U

There are 7 treatments, with index ¢, and each bin contains m; ohserval

n observations in the data set (pass), so n = Sl_,m,. Each observation in the dats &8l




can be written as

Tip = H+ Qq + €it, (2.4)

rt =1, -m;. Here p is the overall mean value of the residuals, «; the

with 2 = 1, ,
mean value of the residuals in bin 7 and the ¢; is the random deviation from the 2’th
bin-mean of the #’th residual in bin 7. The assumption is that the €; have independent,
normal distributions with mean zero and common variance o3, estimated through the
square of the pass rms.

If for the moment we assume that the number of observations in each bin is the same,
and equal to m, then the sum of the squared deviations of all n (=rm) observations from
the overall mean Z can be written as m times the sum of the squared deviations of the
7 bin means from the overall mean plus the sum of the squared deviations of individual

observations from their respective bin means, that 1s

mn T m

ZZ — ) _IT?Z(J,Z—“'L) 505 (- )7 (2

=1 t=1 1=1 =1 {=1

N
o
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We make the null hypothesis that the bin means are all zero, which is what we want to
test; i.e. that the a; in equation (2.4) are all zero. If this null hypothesis is true, we
have three unbiased estimates s? of the common variance o of the r bins, obtained by
dividing the sums of squares in equation (2.5) by their respective degrees of freedom.

The estimates are

T
2 RN
§? = Tyl (2.6)
- =1 {=1]
2 I - . 12 3 7
59 = Z (3(1 - ) (2.7)
r—13
T T
2 A \ PP
S3 = , LZ (i — ) (2.8)
1=1 =1

These three estimates of the common variance (I” are referred to as the ‘total’;, ‘among

bins’ and ‘within bins’ estimates respectively. The respective sums of squares in the above



three expressions are rearranged in more convenient forms for computation as follows.
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Then for the more usual situation of unequal numbers of observations within each

bin, say m,; observations in bin 7, equation 2.7 becomes

- ToresT . \2 Y
2 1 —éw (E; Jlil',) {}_Ji,fv Tt ) (r, [J)
Sy — ) - 3 =2
T or—-1= T i

1
If the null hypothesis of equal bin means is true, then the two quantities s3 and s should
be about equal, with a ratio near one, since they represent independent estimates of ay.

The standard test for ratios of variances is the F' test (for example in Crow, Davis and

Maxfield, [8]). For a given test level of significance, ¢, and for the two sets of degrees of
reedom 7 — 1 and 7 — 7, we extract from published tables the value of F,(r — 1,7 — 7).
If the quotient s3/s3 exceeds the tabular value , then we reject the null hypothesis at
significance level «, that is we cannot assume that the track of residuals is flat. We have

chosen a level of significance, «, of 5%, that is we only expect incorrectly to make such

a decision 5% of the time.

2.3 Conclusion

We have described our method of preprocessing laser range observations to remove noise
events and to form normal points., including a test that all trends have been removed
from the range residuals. In the next Chapter we discuss potential sources of bias during
laser ranging operations which may lead to a track of residuals showing systematic trends,
and thus failing such a test. We consider return-level effects upon the measurements and

effects due to the extended nature of the retro-reflector arrays of the satellifes.



Chapter 3

Systematic Effects in Laser Range

Measurements

3.1 Introduction.

With the continuing drive to improve the precision of laser ranging systems, it is impor-
tant to understand the potential for systematic bias within any of the system parameters,
as we do not wish to generate highly precise data which are not of comparable accuracy.
In this chapter we discuss the work that has been carried out to understand such effects
over a variety of system parameters such as return energy level and for a variety of range
targets including the flat calibration board and the geodetic satellites Lageos and Etalon.
We develop numerical models of expected range distributions, and compare them to the
observations, and in particular we derive for the Lageos and Etalon satellites values of
the centre of mass corrections appropriate for both single-photon and multi-photon rang-
ing systems. For Lageos, the values are compared to the published ground-test results
which were derived using only the multi-photon ranging techniques. For the Etalon satel-
lites, no such ground-tests were carried out, so this work is required in order to derive
appropriate centre of mass corrections.

We first give a general outline of the factors that need to be considered. The principle

components that affect the precision of a ranging system are

& the laser pulse width;

il
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the detection of the outgoing laser pulse, using a photo-diode detector (the start

diode);

the characteristics of the reflection at the satellite;

the detection of the returning photon or pulse of photons;

the instrument used to measure the time interval.

All of these have characteristics which cause a random variation or jitter of the mea-
sured range about its actual value. These components all have their own intrinsic dis-
tributions, e.g., the distribution of energy within the laser pulse and the distribution
of retro-reflectors on a satellite, and the final distribution of measured ranges is a con-
volution of the contributing distributions. These distributions are described by their
full-width-half-maximum values (FWHM) or by their RMS variation from a mean, or in
the case of a Gaussian distribution by the standard deviation o. For a Gaussian distribu-
tion, FWHM equals 2.35 x o, and RMS is sufficiently close to o that we do not distinguish
them.

For ranging to a calibration target board all of these factors except the satellite will
affect the data distribution, and we refer to this combined effect as the ranging system
response function. The RMS of this distribution is the system precision.

The units used are either nanoseconds (ns) or picoseconds (ps) for two-way time of

flight, or mm for one-way range. The conversion is
Ins = 1000ps = 150mm

Laser pulse width is usually measured in time units (the time taken for it to pass a given
point) rather than in length units, as it is a two-way factor; its effect on range is half the
pulse width.

What is finally seen in the data distribution depends strongly on the type of detector
used. For the MCP systems, the return level is typically of about 10 photons, the detector
triggering on the leading edge of the return pulse, which means that information on the
shape of the distribution is mainly lost. The shape of the resulting data distribution
will therefore depend mainly on the consistency of hardware settings of trigger levels.

However, an avalanche photo-diode, for example a SPAD detector, triggers on the first
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photon that it successfully detects. So the data distribution shape will depend on the
return level; if only single photons are returning in each pulse, then after a large number
of such pulses are detected the shape of the data distribution will represent the average
pulse-shape. We then have to make a choice in software about which point within the
distribution we consider as the reference point. The advantage of the single-photon system
is therefore a greater control over the measurement process, but a deep understanding of

these various subtle effects is needed.

3.2 Satellite Observations

The range residuals from the fitted smoothing function, generated as described in Chapter
9, are free from orbital errors which might lead to systematic trends. The residuals thus
contain purely quantitative information about the precision of the process of making
range measurements, namely the jitter imposed by the time-interval counter and the
start diode, by the finite pulsewidth of the laser, by the SPAD detector and potentially
by the extended nature of the laser retro array of the particular satellite concerned. The
range residuals from each pass are used to form histograms with respect to range residual,
expressed in cm. As a final stage in eliminating outliers, and in order to estimate the pass-
mean and rms value, a Gaussian distribution is fitted by least-squares to the histogram
by adjustment of initial estimates of the mean p and standard deviation o.

Figure 3.1 shows a series of plots in histogram form of range residuals from the target
board and from most of the spherical laser satellites, and including Topex/Poseidon,
in increasing order of satellite size. The curves in each plot are the fitted Gaussian
distributions. There is a clear broadening of the distributions with increasing satellite
size, such that the single-shot precision decreases from about 10mm for target board and
ERS-1 ranging, through 17mm for Lageos, to 46mm for Etalon. Decreasing precision
is accompanied by poorer fits to the Gaussian distributions, with the Etalon data being
particularly badly approximated.

It is useful to compare these results with some observations taken from a NASA
ranging system, working at multi-photon levels and using an MCP detector. In figure

3.9 we show a histogram of range residuals of Etalon-I obtained by the MOBLAS-4

o
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Figure 3.1: Distribution of Range Residuals from Herstmonceux

system at Monument Peak, California on 1992 Dec 17.

The distribution is clearly different from those of the Herstmonceux system, showing
little of the broadening present in that data. Consequently the range precision from the
Monument Peak system is nearly the same for all satellites, and significantly better than
that obtained at Herstmonceux. Clearly this effect requires investigation, particularly
as it appears possible that the centre of mass corrections for these satellites might be
ranging system dependent. At the start of the current investigation, some doubt was
cast by the ranging community on the reality of the effects shown in Figure 3.1, the
belief being expressed that the effects may be due to poor alignment within the single-

photon ranging systems. We set out here the development of the argument to contradict
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Figure 3.2: Distribution of Range Residuals of Etalon-I from Monument Peak

this explanation by first modelling the ranging system response and then the expected
effects of the satellite. An early version of these results was presented at the Iighth
International Workshop on Laser Ranging Instrumentation held at Annapolis, MD in

May 1992 [9].

3.3 Ranging—System Response

A ranging system response is represented by the observed distribution of range measure-
ments to a flat target—board, provided that a single-photon return level is maintained. A
typical set of results from the Herstmonceux system is shown in histogram form in Figure
3.3(a), where a large number of observations was obtained during a ranging session of
some 20 minutes. The range measurements have been converted to one-way range in
mm, and expressed with respect to an arbitrary origin. The derived single—shot precision
is 11mm, and the distribution is seen to be significantly skewed towards long ranges, with
significant numbers of observations at distances up to 150mm from the distribution peak.

In order to examine this distribution, we develop a model of the system signature

represented by these observations by estimating the probability distributions for the
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Figure 3.3: Distribution of Calibration Range Residuals and Models.

components of the system, that is distribution functions that describe statistically the
Gitter’ contributed to a given measurement by a given component. To represent the
response of the SPAD we digitised the response curve of the RGO SPAD provided by
the supplier (Prochazka [10]). To represent the density distribution of the laser pulse
which closely approximates a Gaussian function of estimated FWHM 120ps, we digitized
and scaled a streak camera image of a mode-locked Yag laser pulse [11]. We assume
Gaussian responses of FWHM 47ps and 64ps for the Stanford interval timer and start
diode respectively. (these figures have been measured for the Herstmonceux system). We
expect the observed distribution of target board ranges to be closely approximated by a
response function derived by convolution of these four elements, which is carried out as

follows. If we represent a particular response curve by a set of values y(i),7 = 0,...,n
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and convolve it with a second distribution represented by 2(z),% = 0,...,n, then the

resulting convolved distribution ¢(k),k =0,...,n is obtained from

m

(k) = 3 2(i)y(k - ), (3.1)

1=0

where in generating a given element of the vector ¢ the summation limit m is large enough
that all non-zero elements of the vectors y and z are considered.

Using this equation we numerically convolve the distributions to form a model of the
expected whole-system single-photon response, which may be directly compared to the
observed distribution. This model is plotted as the full line in figure 3.3(a), shown as
an envelope about the observed distribution of target-board ranges. We have applied a
scaling factor to the model function values to achieve the best fit to the data, since the
response curves have arbitrary amplitudes.

The model represents the data well, including the long tail, except that it clearly
over—estimates the amplitude of the tail of the distribution. To address this point, and
since the amplitude of the tail in the distribution is a result of that in our model of
the SPAD response, we modified the original distribution of the SPAD response and
repeated the convolution, again comparing the result to the observed distribution. We
iterrated this process until reasonable agreement was found between the model and the
observations. The resulting model is also shown in Figure 3.3(a), as a dotted line envelope,
where the agreement with the data is now satisfactory. For the subsequent computation
of satellite signature models, we use this system response curve, as represented by the
dotted line. We show in Figure 3.3(b) as a full line the original SPAD response measured

by Prochazka [10], and as a dotted line the modified response as implied by our data.

3.4 Satellite Signatures

3.4.1 Preliminary investigation

In order to model the observed distribution of the satellite range residuals, we must
convolve our system response model with a distribution function which represents the
response of the satellite retro-reflector array. We shall refer to this as the satellite response

function. Other terms sometimes used are impulse function or optical transfer function.
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When a transmitted laser pulse illuminates a satellite, all the cube corners within some
angle of the direction of motion of the pulse reflect energy back towards the transmitter.
Because the individual cube corners are on the surface of a sphere, they are all at different
distances from the transmitter, and the pulses reflected back to the transmitter will be

displaced in time. The situation is shown in Figure 3.4, taken from NASA Technical

Aston University

Content has been removed for copyright reasons

Figure 3.4: Schematic of pulse spreading by satellite retro-array

Paper 1062, ‘Prelaunch Testing of the Laser Geodynamic Satellite (LAGEOS) [12].

If the return pulse, the sum of these displaced individual pulses, is then sampled at
the single photon level by the detector, then on average over a large number of such
observations, we would expect to obtain a range residual distribution formed by the
convolution of the system response function with the satellite response function. It is
pointed out in the NASA Technical Paper that in those cases where the reflected pulses
overlap in time, the resultant waveform is dependent on the relative phases of the optical
fields of the respective pulses, that is coherent interference may take place and distort the
simple summation argument. However, for average pulse-spreading considerations, we
assume that these coherent effects may be neglected and that the average reflected pulse
shape can be obtained by summing of the displaced individual pulses. A preliminary

experiment to use such a simple model for the satellite response was carried out using a
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table of reflectivity cross sections of Lageos given as a function of distance from the centre
of mass of the satellite in the NASA TP 1062 [12]. The cross section values were treated
as the satellite response function, and convolved with our system response function. The
resulting distribution was scaled and compared to the observed distribution of a set of
range residuals. A plot of the results is shown in figure 3.5, where the agreement is fairly
good. The rms of a single observation is 17mm. The estimated FWHM of the response
function is 38mm, which for a Gaussian approximation converts to a standard deviation

of 16mm.

80 1

}Illl!\!l!lllillillll!lli“*

/

70

l|}H
a|H>

60

ll!l
[)ll

vl
e
= —
kS
.40
L f— —
=
E B .
= — -
= -
30
- { B
20 }— ( —
; | A
- | i
10 — —
L S ~
i I -]
[e) Jod ) [ FINN VOO SO S I I8 S S I G T | 1!‘“’P\‘1_l“‘ 1 ‘ do b d .
15 10 S O 5} 10 15
Residual (cm)

Figure 3.5: Histogram of Range Residuals of Lageos with Modelled Distribution.

Results on a similar investigation into the distribution of range residuals from the
Japanese satellite Ajisai, using an empirical response function derived by Sasaki and
Hashimoto [13], were presented along with the Lageos results at the Annapolis Work-
shop [9]. Results on the detection of satellite signatures at the Graz, Austria single-

photon SLR station were also presented at that Workshop by Kirchner and Koidl [14].
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3.4.2 Use of Analytical Response Functions.

Along with the observational evidence for detection of satellite signatures by the single—
photon systems, and approximate modelling of the satellite response functions, analytical
models have been developed which can be applied readily to any spherical satellite. Deg-
nan [15] and Neubert [16] develop the response function by regarding the satellite’s sphere
to be quasi-continuously covered by small cube corner reflectors. We follow the work of
Neubert [16], and consider Figure 3.6, which shows the basic relationships from which we
calculate the distance from the centre of the satellite of the equivalent reflection plane

for a given retroreflector receiving laser light at an angle of incidence of ®.

Reflection

plane
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Figure 3.6: Schematic of spherical satellite and a single corner cube

In Figure 3.6, R, is the radius of the satellite, a is the distance from the front face
of the corner cube to the plane perpendicular to the incident laser beam, and containing
the centre of the satellite, and the plane of reflection is represented by the dotted vertical
line.

Now a = R, cos(®). The equivalent reflection point for a solid corner cube is given

by [12]
AR = L\/n? — sin @, (3.2)

where AR is measured from the front face of the cube to the reflection point, L is the

distance from the vertex to the front—face of the cube, and n is the refractive index of
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the quartz. So the distance z(®) of the reflection plane from the centre of the satellite is
2(®) = a— AR = Rycos(®) — Ly/n? — sin? ® (3.3)

Neubert then considers the intensity Is of the reflected energy that comes from a zone

of equal angle @, and obtains

1y (®) = S (sin(B)n(®), (3.4)

where A is a normalising factor, and

0
A= / sin(®)n(®) db, (3.5)

o,

where sin(®) d® is the surface element on the unit sphere, and n(®) is a function describ-
ing the angular dependence of the effective reflectivity of an individual cube corner. This
function has been approximated by Degnan [15] as

n(®) = (1 - g)z (3.6)

where the angle @, is the cutoff angle of incidence; for values of ® greater than this, no
significant reflection occurs.

Neubert then expresses as a function of distance z from the centre of the satellite the
fraction I,(®) of the reflected intensity that is contained in the small interval {z, z+dz},

by dividing Iy by da(®)

do
I4(®) 1(2))
[1: (I) - fd A 37
( ) T/((I)) R5+ L;OS%_(DQQ(D ( )

If now we compute from equation 3.7 I,(®) for ¢ running from zero to ®,., and plot
the results against z(®) from equation 3.3, we have the impulse function of the satellite
as a function of distance from the centre of the satellite.

We have computed these satellite response functions for Lageos and Etalon and plot-
ted the results in Figure 3.7, where here the x-axis gives increasing distance in mm from
the front surface of the satellite, obtained by subtracting z(®) from the satellites’ radius

R,. The y axis is an arbitrary amplitude. The corner cube cutoff angles ®, were taken
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Figure 3.7: Lageos and Etalon Impulse Functions, from Neubert

as 0.75 radians for the uncoated quartz glass of Lageos [17] and 1.00 radiaus for the alu-
minium back-coated cubes of Etalon [18], and from the same references R, = 298.0mm
for Lageos and R, = 641.5mm for Etalon.

We now use our system response model and these satellite response functions to gen-
erate theoretical probability distributions of range measurements of Lageos and Etalon.
For this comparison with real observations, we choose to take the mean value of the
system response as the zero—point of our system, and convolved the system about the
satellite impulses with respect to that origin. (Other reference points are possible, such
as the peak, and we will discuss their use later in the chapter.) We compare in Figure 3.8
the resulting theoretical distributions with those of sets of range residuals from passes of
Lageos and Etalon, where the x—axis represents true distance from the satellite surface,
for mean—value data processing. The observations are given in histogram form and the
model is represented by the continuous line. The model distributions have been fitted
to the observations in a least—squares sense by adjusting only the vertical scale of the
model, and shifting the range residuals from their original mean value of near-zero. The
models are seen to represent the data very closely, and emphasize in particular the long
tail in the distribution of ranges from Etalon, which might have appeared to be system
noise. It is interesting to note that this long tail relative to that of Lageos is due mainly

to the back coating of the Etalon reflectors, whereas the Lageos reflectors are uncoated;
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back coating for Etalon increases the return signal from these distant satellites, but at

the expense of degrading the satellite response function.
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Figure 3.8: Lageos and Etalon Observational and Modelled Distributions

3.4.3 Centre of Mass Corrections.

We now use our models of the single-photon signatures of Lageos and Etalon to derive
appropriate centres—of-mass (CoM) corrections for 3 different methods of range estima-
tion, and for laser systems with different levels of precision. We take our system response
curve, of assumed 12 mm single-shot precision, and use the smoothing algorithm derived
by Sinclair [19] to estimate the peak, the mean and the leading-edge, half-maximum
(LEHM) of the distribution. For each of these thre(-e estimates of the origin of the sys-
tem response, we convolve it with the satellite response functions to form models of the

expected distributions of satellite range observations. We again use the smoothing algo-
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rithm to estimate for Lageos and Etalon the CoM corrections for mean, peak and LEHM
detection.

The whole process is repeated for hypothetical systems with single-shot calibration
precision 6 mm and 20 mm respectively, by altering the width of our model of the laser
pulse. Shown in Tables 3.1 and 3.2 are the deduced CoM corrections for Lageos and
for Etalon for each of the three systems, including the Herstmonceux results (12mm

precision), for each of the processing methods.

System Processing
Precision | Peak | Mean | LEHM
(mm) mm | mm min
6 250 | 248 252
12 246 | 240 250
20 241 236 247

Table 3.1: Lageos CoM corrections.

System Processing
Precision | Peak | Mean | LEHM
(mm) mm | mm mm
6 605 581 610
12 299 | 582 607
20 594 | 584 595

Table 3.2: Etalon CoM corrections.

The standard procedures currently in operation at Herstmonceux to derive a reference
point from the distributions of data from both the calibration ranges and of the residuals
within each normal point bin, in fact determine the peaks of the distributions by fitting
Gaussian distributions as shown in figure 3.1. Therefore from Table 3.1 the appropri-
ate CoM correction for Lageos is 246mm for our system. This is to be compared with

the 251mm currently recommended for all systems in IERS Standards 1992 [20]. Other
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systems operating at the single photon level typically use the mean as a reference point,
and for those systems the appropriate CoM correction is about 240mm, depending on
system precision. For the multi-photon systems, employing leading—edge, half~maximum
detection and with precision values of about 6mm, our CoM value is 252, very close
to the recommended value, which was obtained by the ground-tests of Lageos [12] and
Lageos-11 [21]. For Etalon, from Table 3.2, the appropriate CoM value for the Herst-
monceux system is 599mm, and for the multiphoton systems is 610mm. These values
are significantly different from the 558mm given in IERS Standards 1992 (McCarthy,
1992), and from the 576mm deduced by Mironov [18]. No ground-based measurements
of the Etalon satellites were carried out, and we suggest that the CoM values deduced
here should be used for analyses of observations of these satellites. In the subsequent
analyses reported in this current work, we use the values in Table 3.2, taking account of

each system’s detection method (single or multi-photon) and precision, if known.

3.5 Multi-Photon Return Levels.

3.5.1 Introduction.

In this section we consider the effects for a system using a detector that detects the
first photon of using a return level higher than a single photon. From the models and
observations discussed in the previous Sections, is is clear that working at the single
photon level of return implies that there is a limit to the precision achievable, which for
a given ranging system, is set by the contribution to the error budget of the signature of
the satellite. Experience at Herstmonceux shows that in fact return levels significantly
higher than the single photon level are available, and that neutral density filters in the
return optical path are frequently employed to maintain the single-photon regime. Now
if we were to depart from this level, and not attenuate the return pulse, then photons
in the leading edge of the pulse would have a greater probability of being detected,
and the contribution to the error budget of the pulse-distribution would be diminished.
The single-shot range precision would improve by approximately \/n, where n is the
number of photons in the pulse. In the following, we describe experiments carried out

at Herstmonceux to explore the possibility of this approach, and in particular to test



whether any significant bias will be introduced into the range observations as a result of

departing from the intended single-photon level.

3.5.2 Target—Board Ranging.

It is difficult to measure the numbers of photons entering a detector without interfering
with the precise measurement of arrival time, and so we deduce this from the average
proportion of shots fired on which a return is obtained. We compute the return rate
during ranging sessions by counting the number of laser shots in a given time interval,
say 15 seconds. For each of these shots we check whether a noise event is detected, each
of which reduces by one the effective number of laser shots. Given the number of true
returns within the interval, we compute the true return rate as a percentage of the effective
number of laser shots. This information is displayed to the observer in near realtime.
From the observed return rate we compute the average number of photons entering the
detector on each shot. Any detector has a certain probability of detecting a given event,
referred to as its quantum efficiency. For a detector with quantum efficiency ¢, where
(0 < g < 1), we can relate the return rate to the average number n of photons reaching
the detector from the following consideration. The average number of photoelectrons at
the detector is ¢n, and for a detection to be made we must have gn > 1. So from Poisson

statistics, the probability of detecting a return may be expressed as

P(gn>1) =1~ P(gn =0),

e~ (gn)°
0!

Now expressed as a percentage return rate, we have

P(q77 > 1) =1 — =1— 6—({""),

rate = (1 — e~ ™)) x 100

For standard calibration ranging this rate is maintained at about 10-15% by attenuation
of the outgoing laser beam, and by selection from a set of neutral density (ND) filters
in the receive path. For the SPAD detector at Herstmonceux, ¢=0.2, and so a return
rate of 10 - 15% implies that on average 0.6 photons are entering the detector - (or 6

photons in 10 shots). For the duration of the ranging experiments the outgoing beam



was attenuated such that the highest value ND filter was required to maintain single-
photon returns. A series of calibration ranges was performed at different receive levels
by selection of different ND filters, such that some 12 return levels of between 1 and
1000 photons were obtained. We note that for n above about 15, the observed return
rate is close to 100%, so for rates > 100%, n is estimated from the known relationships
between the densities of the filters. The observations at each return level were used to
form iterated mean calibration values and single-shot rms precision, with rejection of

outliers at 3 X rms.
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Figure 3.9: Observations and model calibration values as functions of return levels

The observed calibration and rms precision values are shown in Figure 3.9 as functions
of return level, where we plot data both from the full dynamic range of the experiment

as a function of Log(n), and as a function of return rate (0-100 %). The observed data




are plotted as discrete points. The solid and dashed lines are theoretical modelled values,
explained in the next section. For a change of return rate of from zero to 100%, it is
seen that the calibration value changes by about 15 mm. The range precision changes
little, with mean value about 9 mm, but with a temporary decrease to 13 mm at around
20%. This precision decrease has been noted consistently in the Herstmonceux data, and
is also seen by Prochazka [10] in laboratory tests of the SPAD. For the results over the
full range of the experiment, we see that the calibration value changes by some 40 mm,
and the single-shot precision increases to about 6mm.

This observational work was carried out at Herstmonceux in collaboration with P.
Gibbs, and the results were presented by the author at the Ninth International Laser
Ranging Workshop in Canberra in 1994 November, and a paper by Appleby and Gibbs

appeared in the proceedings of that workshop [22].

3.5.3 Model of Target-Board Ranging at High Return Levels.

There are two effects to be considered when modelling the range values and the distri-
bution of data to be expected from ranging to a target at high return levels, but using a

detector that detects the first returning photon. These are

1. The photon that is detected will tend to have come from the front of the returning

pulse shape, rather than statistically sampling the whole of it.

9. The detector may respond differently to a pulse of several photons entering it rather
than a single photon. In general the effect is to give a more rapid rise of the output
pulse, leading to an earlier time being recorded for the detection of the event, and
hence to a shorter measured value of the range. This is referred to as a ‘timewalk’

of the detector.

We first consider the effect of the detection point moving towards the front of the
returning pulse. Our model of the system response closely represents the observed distri-
bution of single-photon returns from the target hoard, as described in Section 3.3. We
now consider this model as representing an average probability distribution of photons in
a return pulse. To model the effect of n photons reaching the detector, we use a random

number generator to pick one ‘photon’ from our distribution, then record its time-location



within the distribution, and repeat the process n times. We then sort this sequence of
n relative event times into chronological order of arrival at the detector. We model the
20% efficiency of the detector by stepping through the n events in time order, at each
step generating an integer random number in the range 1-5. If the random number is
1, the event is accepted (detected). If the random number is not 1, the next event is
‘tested’. This whole procedure is repeated a large number of times (usually 500), and in
this way we generate a large number of event times each resulting from the selection of
a single photon from a series of returns containing an average of n photons, and finally
compute the mean time. We have plotted in Figure 3.9 these mean values as the dotted
line over the full zero-1000 photon return level. We see from comparing our model to the
observations that the model under-estimates by some 25 mm the total change in calibra-
tion value, and that the model tends to ‘flatten out’ at high return level as ‘photons’ are
sampled from close to the leading edge of the modelled distribution.

We now add to these model values an estimate of the return-level dependent timewalk
intrinsic to the SPAD detector, by using the results of Prochazka [10] who measured
the timewalk over an input level of between zero and 100 photons. The results of this
complete model are shown as the full lines in Figure 3.9. We now find much better
agreement between the observations and the model where for instance for return rates
of from zero to 100% the model agrees with the observed change at the 1-2 mm level.
However, at the higher levels of return up to 100 photons, the model over-estimates the
total effect by some 4 mm, and does not fully model the observed increase in single-shot
precision. Clearly, we have over-estimated the timewalk intrinsic to the SPAD, or our
estimate of the laser pulse-width is too large. However, on the assumption that we have
correctly estimated the pulse-width, the results from this experiment suggest that the
timewalk for our device is some 15 mm, or 100 ps, over a return level of from zero to 100

photons.

3.5.4 Satellite Ranging at High Return Level.

We might expect that the bias effects measured from target-board ranging would also
be present during satellite ranging if we depart from the single-photon regime. For this

experiment, we observed nighttime passes of the satellites ERS-1, Meteor-3, Starlette,



Stella, Lageos and Topex/Poseidon. For the Etalon satellites, their large distances make

it unlikely that return levels significantly in excess of single photons can be achieved. At

intervals throughout each pass the return levels were changed rapidly between single and

multi-photons by removing or inserting ND filters in the receive path. For each pass

the single-photon observations were reduced in the standard way, and then the deduced

smoothing functions removed from the multi-photon data. Normal points were formed

from the raw range measurements, with care taken to ensure that each normal point bin

included only low rate or high rate data.
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Figure 3.10: Mean values of range residuals - low and high level of return energy

The residuals of the normal points from the smoothing function are displayed in

Figure 3.10 where ‘steps’ of between 10 and 40 mm are clearly evident. From the known

densities of the ND filters required to maintain single-photon levels, we have estimated

the numbers n of photons reaching the detector during the high-level return phases.

In the plots, the ‘upper’ points are those obtained at a single-photon return level,

and the ‘Jower’ points (reduced range) are those at higher return levels. Formal error



bars are plotted, but these are only distinguishable at the low return level, where fewer
observations contribute to the normal points.

Analogous to our model of the target-board results, we have modelled the satellite
‘steps’ as a function of the numbers of photons reaching the detector. For Lageos we used
the model discussed in Section 3.4, and generated response functions for Starlette and the
identical Stella from the same analytical treatment of Neubert [16]. We digitized the re-
sponses for ERS-1 from the curves derived by Degnan [15], and used the Topex/Poseidon
responses of Varghese [23]. We do not currently have a model of the response function of
the small Meteor—3 retro-reflector array. We convolved these responses with our system
response and sampled from the resulting probability distributions in order to predict the
range ‘steps’. To these ‘step’ values we then added the intrinsic timewalk due to the
SPAD, as deduced in the target board experiments. The results of the pass-averaged
high and low—energy residual peak values and precision estimates, and the observed and
predicted steps are shown in Table 3.3, along with the mean numbers of photons n,. In
most cases as expected the multi-photon data has the greater single-shot precision, and
the predicted ‘steps’ are in reasonable agreement with the observations, given the quoted
observational precision values.

These experimental satellite observations were also carried out at Herstmonceux in
collaboration with P. Gibbs, and results presented at and published in the proceedings

of the Annual Eurolas Meeting in Munich in 1995 March [24].

3.5.5 Lageos CoM values

We have used the simulations in Section 3.5.4 to model the changes to the Lageos centre
of mass (CoM) correction appropriate to a range of return energy levels. A system which
detects the first photon will sample shot-by-shot during a pass the average distribution
of all of these pulses of returning photons. Then when processing the data it is necessary
to adopt some feature of this data distribution as the reference point. Possibilities are
the mean, peak or leading edge half maximum (LEHM). For the mean it is necessary
to reject outliers, and usually a rejection at 3 x RMS from the mean is used, with
the mean being re-determined at each stage of an iterative process. The final range

measurement, is the difference of the satellite measure and the calibration board measure,



Sat Single-Photon |  Multi-Photon Step
Name Peak | rms || Peak | rms | n, | Obs. | Model
mi mm mim | mm min minl
ERS-1 +24 11 0 9| 80| -24 -35
Meteor +18 14 O] 11} 20 -18 -
Star + 9 19 -10| 14 6| -15 -11
Stella 0 12 2000 13| 12 -20 -20
Lag-2 0 16 -12 15 o -12 -10
Topex/P || +35 25 0| 10100 | -35 -55

Table 3.3: Observed and modelled energy-dependent range bias.

and the same reference point must be used for both. If the data distributions from the
satellite and calibration board were identical then it would not matter which reference
point was used. But satellite signatures can cause the distributions to be different, and
so the choice of reference point will affect the final range measurement, and this can be
expressed as a variation of the value of the appropriate CoM correction. Systems that
use MCP detectors respond in some way to the whole of the returning pulse rather than
just the first photon, and for these the choice of reference pomt 1s made by the setting of
a hardware device, rather than subsequently in software. The results are given in Table
3.4 as peak, mean and LEHM. The CoM values have been calculated from the Lageos
response model, followed by subtraction of the equivalent change of calibration value at
each particular return energy level.

We note that this correction implies that calibration and satellite ranging should
always be carried out at the same return level: if this is not true, much larger corrections
to CoM may be appropriate, depending on the differences in return level. We see that
the CoM correction for LEHM processing is little affected by return energy level, as may
be anticipated from that statistic’s lack of influence from the tail of the distribution. The

peak value of CoM is less affected than that of the mean.




Return Processing
Level Peak | Mean | LEHM

(photons) | mm | mm mm
1 246 240 250

2 249 241 249

3 252 241 249

4 251 242 250

) 252 243 250

6 254 243 248

7 254 | 243 247

8 255 242 248

9 255 243 248

10 257 244 248
50 250 249 250

Table 3.4: Lageos CoM corrections with changing return levels.

3.5.6 Conclusion.

We have shown that for the Herstmonceux SPAD-based system, departure from the
regime of single-photon return levels will result in range bias. We have experimentally
examined the degree of bias as a function of return level, over a range of from single
to 1000 photons. Simple statistical modelling of the system adequately explains the
observational results, and implies that finite pulse-length accounts for about half the bias,
and a plausible degree of energy-dependent time-walk within the SPAD system accounts
for the remainder. For satellite ranging we find similar energy-dependent biases, which
again are adequately explained by our models which include the effect of each satellite’s
response function. Some of this effect will cancel in practice, provided that the calibration
correction applied to the satellite ranging is determined by ranging to a calibration target

at the same return level as the satellite ranging. There will be a residual effect due to



the reflection point of the detected photon moving on average towards the nearest point
of the satellite, which can be corrected if the return level is known. The problem is that
it is difficult to determine the return level when it is higher than single photons, and
so it is difficult to make this correction to the reflection point, and also to ensure that
satellite and calibration ranging are at the same return levels. Hence we conclude that
provided calibration ranging and satellite ranging continue to be carried out at a strictly
single-photon level, our normal practice, then range bias is minimal, at the expense of
some loss of single-shot precision. A further effect is the choice of reference point from
the data distribution from satellite and calibration ranging. At Herstmonceux the peak is
adopted, and we have shown that in this case the appropriate CoM correction for Lageos

is within a few mm of the recommended standard value.




Chapter 4

Orbit Determination Package for

SLR Data Analysis

4.1 Introduction

The Royal Greenwich Observatory SLR analysis package ‘SATAN’ consists of two ma-
jor components. Program ORBIT numerically integrates the equations of motion of the
satellite and the variational equations to compute a set of satellite positions and veloc-
ities and partial derivatives with respect to a chosen set of parameters. The program
computes a sum of forces on the satellite at each step of the integration, based on the
IERS(1992) Standards [20], which includes the Earth’s irregular gravity field, third-body
attractions and non-conservative forces. The second major program RGODYN uses the
predicted position of the satellite as computed by ORBIT and for each observation from
a given tracking station computes the predicted range to the satellite, and forms the
difference of the measured range from this prediction. The program computes the partial
derivatives of range with respect to a set of parameters which includes the initial state
vector of the satellite, coefficients of the empirical models of the non-conservative forces,
the coordinates of the tracking stations and Earth rotation parameters. The program
forms and solves the normal equations and computes corrections and their errors to the
initial estimates of these parameters. The solution is then iterated by recomputing the
orbit based upon the new values of the parameters of interest.

Program ORBIT was written at RGO by Dr A.T. Sinclair, and program RGODYN
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by this author. The programs were designed to be developed according to the needs
of particular investigations, and have been implemented and modified by several UK
research groups. For instance, at RGO, Sinclair has included in the package his short
arc method for the computation of station coordinates and baselines by attempting to
remove the inevitable residual orbit error due to incomplete knowledge of the force model.
The method uses simultaneous observations of a short arc of the satellite orbit from at
least two different stations in a solution for the station coordinates and for corrections
to the computed orbit in the radial, across-track and along-track directions. Many such
short arcs are combined to form a final set of corrected station coordinates. The method
was used in a study of the inter-site baselines between six SLR stations in Europe using
initially seven [25] then ten [26] years of Lageos tracking data.

During the present study modifications to both these computer programs have been
carried out, including expansion of the parameter set, accommodation of the latest gravity
field models etc. In this Chapter we give an overview of programs ORBIT and RGODYN,

and describe the additions that were carried out as part of the current research.

4.2 Program ORBIT

4.2.1 Introduction

We begin our description of the main functions of ORBIT with a brief introduction to
satellite motion. The motion of an artificial satellite around the Earth is initially treated
as a classical two-body problem and described by the following second-order differential
equations

—G(my +me)

'I'- — /"3 T, (41)

where T is the vector from the centre of mass of the Earth to the centre of mass of the
satellite, G is the universal constant of gravitation and m, and m, are the masses of the

Earth and the satellite. Since we can ignore my, we have

—-Gm,

r3

T =

(4.2)

Now the satellite undergoes perturbations by the non-uniform gravity field, by third-body

attractions and tidal forces and by non-conservative forces acting on its surface. Thus
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we add to (4.2) the sum of the instantaneous accelerations r, due to these perturbative
forces and also change the notation for Gm, to GM, giving

. —GMr

P=—73 +1, =F, say (4.3)

For precise work such as for computing orbits for geodetic purposes, numerical inte-
gration has superceded analytical solutions because of the much greater ease of inclusion
into the equations of motion the large number of forces that significantly affect the mo-
tion of the satellite. If we now integrate numerically these three second-order differential
equations, we can obtain the predicted position of the satellite at each Integration step.
The six constants of integration required are the initial state vector of the satellite, xq

and Xo, or equivalently the initial Keplerian elements eq.

4.2.2 Numerical integration

The numerical integration scheme used is the Gauss-Jackson 8th order process, a multi-
step process. The use of a higher-order process would have meant that a larger integra-
tion step size could have been used to reach a given accuracy, but for the integration
of the equations of motion of an Earth-satellite we need a fairly short step size in order
not to under-sample the accelerations due to the high-order terms in the gravity field.
The multi-step method is an iterative process of Integration using a predictor-corrector
scheme whereby formulae are used to progress from an initial position, sg, to a new ap-
proximation, (sg41). When an nth order multi-step method is used, the predicted (k+1)th
position, say (Sg41); is obtained by a predictor formula making use of the previous (n+1)
values. This value is now used along with the previous n positions to compute using a
corrector formula an improved position, say (sp4;),. If the difference between this lat-
est position and the previous estimate exceeds a certain limit, the corrector formula is
re-applied using the most recent value of (s4.;). It is clear that in order to start this
process of integration, the first (n + 1) positions must already be available, and so must
be computed by a single-step process.

The main advantage of using a multi-step as opposed to a single-step method of
integration is that to reach a given accuracy the step-size for a single-step method has to

be much smaller than for a multi-step, leading to greater computational effort. This was
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confirmed for an integration applied to Lageos by Agrotis [27]. However, a disadvantage
is that it is difficult to change the step length during an integration run if that error
becomes large or small with respect to some specified criterion. The need for there to
be available (n + 1) values at intervals of h in order to calculate a new value makes such
changes of h inconvenient to program, whereas with a single-step method there would
be little problem. If the error is found to be too large for example, we must re-run the
whole integration again with a smaller step size.

Along with the integration of the equation of motion of the satellite, we also wish to
compute partial derivatives of the satellite coordinates with respect to some parameters
of the force model. In order to solve for corrections to initial estimates of a parameter p,

we need to compute %Q;i, for i = 1,2, 3 at each step of the integration. Now

2 _ ) 3 ) .
d <6m1> _ OF, N OF; O0z; (4.4)

2 \op) Op ‘50z Op’
where the first term is the explicit partial derivative of the satellite acceleration with
respect to the parameter p. This system of second order differential equations is called the
system of variational equations, and is integrated along with the 3 differential equations
of motion of the satellite.

The explicit partial derivative is zero when p is one of the components of xy or X, since
% does not depend explicitly upon the initial position and velocity of the satellite. For
other parameters in the force model, such as the coefficient of solar radiation, the explicit
partial derivative is computed by differentiation during the evaluation of the acceleration
due to that particular force, as outlined in Section 4.3.3. The program currently computes
explicit partial derivatives, and hence forms and integrates the variational equations for
initial state vector, empirical drag accelerations including once-per-revolution terms, solar
radiation coefficients, the product GM of the Gravitational Constant G with the mass

M of the Earth, GMso0n and selected terms in the expansion of the gravity field.

4.2.3 Force model

In order to integrate the equations of motion, we must of course evaluate the force model
at each integration step. Here we outline the principal forces that are evaluated in

ORBIT, which essentially conform to the IERS Standards [20]. We point out additions

63



to the models that have been implemented during this investigation.

The Earth’s Gravitational Potential

The external disturbing potential U of the Earth’s gravity field is usually written in
terms of an infinite sum of spherical harmonic coefficients C,, ,, and S, (for example,

Heiskanen and Moritz [28]). We have

n

1'1 + Z Z {%} P, (cos ©)(Cp o cosmA + Sy, sinmA) | (4.5)

n=2m=0

_GM

r

U

where a, is the equatorial radius of the Earth, r, © and A the geocentric distance, co-
latitude and longitude of the satellite. P, ,, is the associated Legendre function of degree

n and order m given by

Py = sin™ @{ d

m+n
g Sl 0520 — 1),
(2")n! a’,P} (c0520 —1)

The Legendre functions are known as zonal harmonics when m = 0, tesseral harmonics
when m < n, and sectorial harmonics when m = n, and can be computed by recurrence

relationships, for example for the zonals as
1
Poo==[(2n—=1)cosOP,_19— (n—1)P._20],
n

with
P(),() - 1

and

Py = cos ©.

The perturbing acceleration R experienced by the satellite is given by the gradient of

the potential field at the satellite. That is
R = VU (4.6)

For example the component of acceleration Z, along the x-axis in an Earth-fixed reference

frame and due to the n, m harmonic is given by

o aUnm aUnm 87 6UTLTFL a@ aUnm a/\
Ty, = = +

9= Bz, _ or 0z, 80 0z,  0A Oz, (4.7)
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where, from (4.5)

aUnm, ’n .
o = -GM ai2 (n 4+ 1) Pum(cos ©)(Chm cos MA + Sy sin mA) (4.8)
~ T'Il
W _ a1 %P1 (0050) sin O(C A+ Sy sinmA 4.9
50 el (€08 O) sin O(C,y,, cos MA + Sy Sin M) (4.9)
8Zjn,m (1,2 .
T -GM -y, M Py (cos ©)(=Chm sinmA + Sy, cOs MA) (4.10)

Here P (cos®) represents the derivative of the associated Legendre function with re-
spect to the argument cos ©. The partial derivatives of range r, co-latitude © and lon-
gitude A with respect to the Earth-fixed x-axis z, of the satellite are given by partial
differentiation of the following simple relationships.

1

r=(z, +yl+2)3,
-1 2 2\ 3
© = tan [(1‘9 +y9)2} ,

A= tan™' {&] :
Zg

The total component of acceleration along the x-axis is then the sum of such terms up
to the degree and order of the particular gravity field that is being used. The accelerations
Yy and Z, along the y and z-axes are treated similarly. Then the resultant acceleration
vector R in the Earth-fixed coordinate system 1s given by

R = i,i+ 4, + zk

At this point, we can consider the effect of the ocean tides on the external gravity
field. The oceans respond dynamically to the tidal forces exerted by the Sun and Moon.
The tides raised have a direct effect on the gravity field, and also cause periodic loading
of the solid Earth. This loading causes deformation, which further affects the gravity
field. The ocean tidal potential is usually considered as a time-varying component of
the solid-Earth potential, and added to the Legendre coefficients prior to evaluating the
accelerations R on the satellite.

Now, in order to compute the acceleration in the inertial frame realised by the J2000
system, R is transformed from the body-fixed frame to J2000 at each step of the inte-

gration. In practice this means that at every step of the integration the position of the



satellite is first transformed to the terrestrial reference frame, in which frame the accel-
eration due to the gravity field is evaluated. Then the acceleration is transformed back
into the J2000 inertial fame where the integration step 1s carried out. If X is a position

vector in the J2000 frame, and X, is the position vector in the Earth-fixed frame, then
X,=SNPXy,

where S is the sidereal time and polar motion transformation matrix, N the Nutation
transformation and P the precession transformation matrices. Here we note that we apply
to the conventional IAU precession and nutation the offsets 5¥ and Je in longitude and
in obliquity as given at five-day intervals in the IERS Bulletin-B series. These corrections

are of the order of a few tens of milli-arcseconds (mas).

The JGM Gravity Field Models

There are in current use several expansions of the geopotential which have been derived by
analyses of satellite tracking data, altimetry data and terrestrial gravity measurements.
These ‘gravity fields’ consist of the spherical harmonic coefficients Cp m and S, usually
given in their normalized forms, denoted 6,”,,, and ?n,m. The relationship between a

coefficient and its normalized form 1is

Cn,m =N, n,mcn,nn

where 1

(n —m)(2n + 1)(2 — bom) | *

N, -
o (n+m)!

3

and where &g, is the Kronecker delta defined by

1 form=20

0 form #0.

om —

The gravity field used in the analysis, JGM-3, is the most recent in the series of Joint
Gravity Models computed by GSFC and the University of Texas [29]. The models are
derived from analysis of SLR, TRANET Doppler, DORIS Doppler and optical tracking
data of a large number of satellites, altimeter data from GEOS 3, Seasat and Geosat,
and surface gravity data, and is complete to degree and order 70. All the coefficients of

the model are normalised. Associated with the gravity field is an extensive ocean tidal
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model, being an expanded version of the GEM-T3 tide model, and contains terms for
12 major tidal frequencies. In order to implement correctly the JGM models in ORBIT,
several additions to the original model were required. The changes and additions to the
force model that we have implemented in order to retain compatibility with the gravity
field model are as follows [29]:

GM value of 398600.4415 km®s™2, based on Lageos analyses with a Lageos CoM
correction of 251min [30].

Mean equatorial radius of the Earth of a, = 6.3781363Mm

The gravity field model has an associated epoch of 1986, and rates of change of Coa
and Sy, which must be evaluated. The C’-Z,, and SQ,I terms model the secular motion
of the pole due to post-glacial rebound. Also modelled is the secular change J, in the
principal zonal coefficient, as identified by Yoder et al [31] and Eanes [32] from analysis
of the apparent acceleration of the node of Lageos.

Relativistic effects have been applied when generating the JGM models, since at the
cm level of accuracy the equations of motion of the satellite should be modified to include
the effects of General Relativity. The relativistic effects used in the model are discussed
by Huang et al [33], from which reference we have extracted the equations to apply to
our force model to maintain compatibility with the geopotential model. The relativistic
effects include correction to the equations of motion and to the measurement model, which
includes a correction to the calculated light time. (We discuss the light-time correction
when considering the analysis program RGODYN, below). The two coordinate systems
normally used for satellite orbit determination are the solar system barycentric coordinate
system and the geocentric system. The barycentric system is usually used for lunar laser
ranging, VLBI and the dynamics of the solar system, while the geocentric system can
be expressed as one of two different systems, inertial or non-inertial. The relativistic
equations of motion are different depending on whether the barycentric or geocentric
reference systems are used, but lead to geodetic solutions which are equivalent at least
at the few cm level [34]. The introduction of a non-inertial geocentric reference system
satisfies the convention that the amount of geodesic precession of the Earth predicted by
General Relativity is included in general precession [35]. This reference system retains

the merits of the inertial geocentric system, namely that the scales of time and length
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are to high precision unchanged, but because it is non-inertial, the effect of geodesic
precession must be included in the equations of motion of the satellite. This effect is
due to precession of the inertial geocentric reference system with angular velocity £ with
respect to the barycentric reference system; it can also be called the relativistic Coriolis
acceleration. The effect on the satellite orbit is an average precession of the node of 17.6
mas yr~}, as well as effects on the argument of perigee and on inclination which depend
upon the particular orientation of the node [33]. Because the Sun is the only significant

contributor to geodesic precession, Huang et al [33] found a simple expression for Y

3 {—GMSXES} (4 11)

Q%—Q(VE—VS)X Y
where V and Vg are the barycentric velocities of the Earth and Sun, Xgg is the Earth-
Sun vector in the same frame, and Rps is its magnitude. Then the geodesic precession
acceleration is given by 2(2 x v), where v is the velocity of the satellite. The other two
offects of General Relativity which have been modelled are the Schwarzschild solution
(SS) and the relativistic effects caused by the Barth’s rotation, the Lense-Thirring (LT)

perturbation. Huang et al [33] give the following expressions for these accelerations,

ags = %A—{ Hélgﬁ—/l — '1)2} r+ 4(v.r)v} (4.12)
cr T
GM [3
ar =22 L_,z[r «v|[ed] + [V x J]} (4.13)

In the expression for apr, the Lense-Thirring acceleration, J is the Earth’s angular mo-
mentum per unit mass, with magnitude approximately 9.8 x 108m2s~!. In the units used

by program ORBIT, this value converts to 84.7 Mm? day ™.

Again the effect of this
perturbation is a motion of the longitude of the node of the orbit of the satellite.

The expressions above for the relativistic accelerations require barycentric coordinates
and velocities of the Earth and the Sun. To supply these quantities to ORBIT, we mod-
ified the programs that take the positions and velocities of the Sun, Earth/Moon system
and the planets from the JPL ephemerides. These programs compute daily polynomial
coefficients for rapid evaluation in order to calculate the third body accelerations.

For short and medium-arc studies of up to a month or so, the omission of these

relativistic effects when using the JGM gravitational models will not be serious, and the

errors introduced into the force model will be absorbed by solution for initial state vector.
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However, for long-arc studies, the subject of the present work, the use of the gravitational
model without the relativistic corrections will produce a spurious motion of the node, as
well as effects on the inclination and argument of perigee. We consider that such an effect
may possibly be the cause of the problem noted by Harwood and Swinerd [36] when using
the current SATAN package to analyse a year-long set of Lageos observations to test their
theory for long-term orbital variations due to direct solar radiation pressure. They found
significant discrepancies in inclination between the theoretical variations and those from
their data analysis using the package. The maximum discrepancy in the inclination was
approximately 25 mas over the one year interval, which is at the level of the relativistic

effects discussed above.

Solid Earth Tides

The potential at any point A on the surface of the Earth due to either the Moon or the

Sun is

GM; o
Uy = p’, (4.14)

where M, is the mass of the Moon or Sun and p is the distance between point A and the

centre of mass of the perturbing body. We have

2 _ 2 .2 PO,
pr=7r"+r] = 2rrjcosz,

where 7 and r; are the geocentric distances of point A and the centre of mass of the
Moon or Sun respectively. Angle » is approximately the zenith distance at point A of
the perturbing body. Equation (4.14) is then re-written

GM,

(rz + 7; — 27708 23

Ug =

o2

This can be expressed as an infinite series in terms of Legendre functions, as

_ GM; & [r\"_ | . .
Uy = ..-’ (_,) P, (cos z). (4.15)

J

We then obtain the tide-raising potential Ur by evaluating (4.15) for n > 2. However,

the only significant effect is that of the second harmonic, n = 2, so we have
GM;r?

Ur = —g““‘f)-;;(x,u., z). (4.15)

T2
J

~
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The Earth responds to this tidal potential by deforming, causing an additional po-

tential at a distance r from the geocentre of the form

Qe

U=— (—)N Py(cos z), (4.17)

A T

where H is a constant. On the Earth’s surface r = a., so

H .
Ug = — Py(cos z). (4.18)

Qe

Now the potential on the Earth’s surface due to the deformed Earth is also given by

equation (4.16) as

GM, N
Ug = ky Jaelg( 52), (4.19)
TJ
where k, is the Love number with nominal value 0.3. Now equating (4.18) and (4.19) we
have
‘M,a?
H = k,zgiffi,
s

and by substitution into (4.17) we have the potential of the tidal bulge at any point given

by
G M, al

U = ky——22¢
73r3

—— T Py(cos z). (4.20)

The Legendre function, P(cos z), is given by

3 . 1
Py(cosz) = —cos*z — =
with
r.r;
cosz = —2,
7Ij

and r; is the geocentric vector to the Moon or Sun. Then the potential at the satellite

of the tidal bulge becomes

3.3 2.4
21 7 7 j
Then the acceleration R experienced by the satellite is grad U. 50
) (vt (rry) o, 1 s
= Ko—">— -15—; ,) I U( J)i‘j + 41| . (4.21)
7 I; TTj

This expression is evaluated for both the Moon and the Sun. The Love number ks 18

a measure of the response of the Earth to the tidal potent tial Uy,



1t varies depending upon the frequency of the tide being considered. The effects of the
frequency dependence of ky are best included as corrections to the spherical harmonic
coefficients of the geopotential expansion. A two-step procedure is therefore used to
compute the Earth tidal accelerations on the satellite; in the first step a nominal value
of ky = 0.3 is used along with equation (4.21). Then corrections to Chm and to Sy, ., are
computed according to the formulation of Eanes et al [37] which allow for corrections to

ko dependent on the frequency of the tide being considered.

Third-body Attractions

The Sun, Moon and planets exert a gravitational attraction on both the satellite and on
the Earth, and the resultant acceleration on the satellite, in the direction of the third
body, must be modelled. The acceleration of the Earth arising from the attraction of the
third body is given by the gradient of the potential due to that body, and can be written

i

. Gmy ;o i e
rp=——"—5(rg —1j), (4.22)

(re — 1))
where m; is the mass of the third body, rj; and r; are the geocentric position vectors
in an inertial reference frame (J2000) of the Earth and of the j* body. Similarly, the

acceleration of the satellite relative to the third body is given by

1
Gm;

3
T T]

i, = — (r—r,), (4.23)

Now the origin of the coordinate system is the geocentre, so rg is the zero vector.
The acceleration vector ¥y, of the satellite relative to the Earth is the difference of these

two accelerations, and is given by ¥, = ry, — ¥, or
ry = —Gm, {u + &} (4.24)
We currently include third body attractions from the Sun, Venus, Moon, Mars, Jupiter
and Saturn, with masses taken from IERS Standards [20].
Indirect Oblateness

We have added to the third-body force model the indirect oblateness acceleration due

el on

to the effect of principally the Earth’s J, coe




the Moon is matched by an equal and opposite force by the Moon on the Earth, causing
an additional acceleration which should be applied to the model of accelerations on the
satellite to better refer these accelerations to the centre of the Earth [38]. The indirect
oblateness acceleration I, is given by Merson and Odell [39] and Sinclair and Taylor [40]

as follows.
]\417100”

= Vr, 4.25
' a Mbmih ' ( O)

where

Vr = Ar,, + Bk, (4.26)

with r,, the geocentric position vector of the Moon, k the unit vector in the z-direction,

and

A= GMJQ :  pr, <z>
f ?

m T'm

g _GM ‘P ('Z)
T

m rm

and as before P’(s) is the derivative of the Legendre polynomial in s.
We find from the above that the geocentric components of the acceleration on the

satellite are

15 3
= —?:E.'Lrn - ’2_] T,
.16 3
Y = —ib’ym - ] Y
2
15 5
Z = —Q—E,Zm QFZHL)
where
) GM 0oL 2
E= (%Jwﬁf%)
and

Tests on the implementation in ORBIT of the indirect oblateness effect showed that
its magnitude is about 1.4 x 107""ms =2 which is an order of magnitude greater than
typical drag-like accelerations on high-orbiting geodetic satellites. The effect is satellite-
independent, and the computed magnitude agrees very well with that estimated by Mi-

lani, Nobili and Farinella [41].
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Direct solar radiation pressure and the shadow problem

The acceleration ¥ on a spherical satellite due to direct solar radiation pressure is given

by (for example Smith et al [38]),

. A .
'r — —vCp {M] Psrm (427)

where v is the eclipse factor allowing for shadowing of the satellite by the Earth or Moon,
Chr is the satellite radiation pressure coefficient, A is the effective cross-sectional area of
the satellite of mass M, P, is the direct solar radiation pressure at the satellite and r, is
the geocentric vector pointing towards the Sun. The quantity P is specified by its mean
value at a distance from the Sun of 1AU, and scaled to the instantaneous distance of the
satellite from the Sun through a term ('rs/rlAU)Q. Now P, = s/c, where s is the mean
output energy of the Sun, approximately 1.38 %x10'0 erg m™2s7! [11]. The parameter
Cgr = 1+ ps, where p is the specular reflectivity of the satellite surface, and where Cr is a
solve-for quantity in the orbit-determination process, and we find Cr ~ 1.2 for the Etalon
satellites. For these satellites, with [4/M] ~ 9.3 x 107*m?® Kg™', the acceleration due to
direct solar radiation pressure is approximately g = 5 X 107%m s™2. The eclipse factor
v is represented in ORBIT as a sinusoidal function running from a value of 1 with the
satellite in full sunlight to zero when the satellite has fully passed through the penumbra
into the umbra of the shadow.

Whilst carrying out our preliminary analysis of observations of the Etalon satellites,
we discovered that it is necessary to use an integration step Jength short enough that a
few steps are computed within this modelled penumbral region of the shadow. Initially
an integration step length of 5 minutes was used, and an orbital fit to over 60 days
of SLR data yielded a residual rms of 12 cm. However, upon the onset of a season of
eclipses of the satellite, the rms immediately rose to 25 cm. This change was traced to the
introduction of errors into the computed orbit when the modelled solar radiation force

was in effect instantaneously switched on or off; a more gradual change in the force at the

shadow boundary not only more closely represents the reality of the situation, but wauld

vent numerical instability in the integration ot

the equations of motion. Heducing

=
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both into the way that ORBIT models the eclipse effect, and also into the phenomenon
itself.

It was decided initially to compare the computed circumstances of an eclipse with
that observed photometrically. The SLR system at Herstmonceux has been used to
make photometric observations of such satellites as rocket bodies, and the author has
shown [42] that the observations are useful for deriving rotation period and direction of
spin axis. Modifications by the SLR team to the operational software have further made
it possible to obtain photometric observations of satellites whilst ranging is being carried
out, and several such observations of the geodetic satellites have been made including
some instances of the satellites entering or emerging from the Earth’s shadow. We have
as yet been unable to obtain an observation of an Etalon satellite undergoing a shadow
passage, mainly because the satellites appear very faint. A typical example of a shadow
passage is shown by the dotted curve in Fig 4.1, which is of Lageos-2 emerging from the
shadow during a pass on 1994 March 11. The graph shows as a function of time a measure
of the observed intensity of sunlight reflected from the satellite, expressed as the number
of events recorded by the photomultiplier every 200 milli-seconds. The number of counts
obtained before the satellite emerges from the shadow represents the sky background. We
see from the observations that the emergence from the shadow is a gradual phenomenon,
lasting some 20 seconds.

From these observations of Lageos-2 we have derived the observed time and duration
of shadow boundary passage. We take as the time of start of the eclipse an estimate of
the half-light time during the penumbral passage, that is at a time of about 2626 seconds
read from the graph.

We now wish to use ORBIT to investigate the computed eclipse time and duration,
by looking at the calculated eclipse factor v. It was found initially that within ORBIT the
penumbral region had been artificially magnified five times to ensure that at least a few
integration steps did occur within the modelled penumbra, so that a smooth sinusoidal
increase or decrease of the solar radiation force could be applied to the force model. This
magnification meant that the computed duration of penumbral passage was of course
much larger than that observed. It was also considered likely that ‘extra’ eclipses would

be predicted to occur within such a large shadow region. Thus the five times magnification
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Figure 4.1: Photometric Observations of Lageos-2 during Emergence from the Earth’s

Shadow.

factor was removed, and the penumbral passage time and duration again computed.

We have plotted these predicted times of shadow passage as given by program ORBIT
for the Lageos-2 pass in Figure 4.1, where we have scaled the computed values of v from
their initial range of from zero to one, to run from 140 to 170, the range of the observed
photomultiplier counts. The points are plotted as filled triangles, and are joined by
dashed lines.

We immediately see that the predicted time of emergence from the shadow is some 18
seconds later than observed, but that the duration of penumbral passage is predicted fairly
accurately. The implications are that the radius of the shadow used in the computations
is bigger than the true radius. We find that during this eclipse passage the satellite is
moving at 4.6 km s™! relative to the shadow boundary, and that therefore the observations

imply a correction to the assumed shadow radius of about 82 km.



The shadow radius used by ORBIT is 6.356752*1.02 Mm, the factor 1.02 presumably
being used to model the Earth’s atmosphere, giving a radius of 6.483887 Mm. However
the IERS recommended value is 6.402000 Mm [20], some 80 km smaller. Using this IERS
value in the computations changed the computed time of shadow passage by nearly 18
seconds, so that the computed times now agree to within a few seconds of the observations.
The results of these modifications for the pass of Lageos-2 are shown by the continuous
line in Figure 4.1.

We now return to the question of the choice of integration step-length required to
ensure the smooth transition of the modelled solar radiation force from full sunlight to
shadow conditions. The angular extent of the penumbra equals the apparent diameter
of the Sun, about 0.5 degrees. Thus we calculate the time taken for the satellites to
move through this angle along their orbits, and choose some fraction of this time as the
optimum step-length. Such a value for the duration of shadow passage will of course be
a minimum for the given satellite, as we are assuming that the impact angle of entry into
the penumbra is a right angle. For smaller impact angles, the duration will be longer than
calculated here. The calculations were carried out for a variety of satellites, as shown in
Table 4.1. To calculate the step length, we required that 3 integration steps are carried

out within the penumbral region.

Satellite | Penumbra | Step | Step
s S s
ERS-1 8 3 30
Topex 9 3 30
Lageos 20 6 60
Etalon 56 18 | 180

Table 4.1: Computed Penumbral Passage Times and Recommended Integration Step-

Lengths.

For precise work during eclipse seasons a short integration step-length should ideally
I 5 J B A\

be used, and use of the values in Table 4.1 should ensure that no such problems arise.




consuming and lead to a large accumulation of rounding errors. Further, the multi-step
integration process is not easy to modify to allow a change of step-length during an orbit
computation. So we reverted to the original scheme of enlarging the modelled penumbra
region by now a factor of ten, and to remove the occurrence of ‘false eclipses’ we first
identified the true start and end dates and times of the eclipse seasons, and then only
‘allowed’ eclipses that fell within these seasons. The revised step-lengths based upon the
enlarged penumbra region are also given in Table 4.1. It may prove beneficial to review
this process in the future. It is also believed that the photometric observations reported
here are the first such recorded for satellites whose orbits are so precisely known, and we
suspect that they may prove useful in other shadow boundary problems. In particular,
we expect such observations to contain information about the cross-section shape of the
shadow cone, which in ORBIT is modelled as a cylinder, but in reality must closely
follow the oblate shape of the Earth. Theoretical models of the eclipse problem for

artificial satellites are now beginning to take into account the non-cylindrical nature

of the shadow [43] and our observations may contribute to such work. We have now
implemented in program ORBIT the IERS value for the shadow radius, and the enlarged
penumbral region. With these modifications we find that we can safely use the integration
step size of 180 seconds given in Table 4.1 for the preliminary analysis of Etalon data,

with no loss of precision during shadow passages.

Earth-reflected radiation

The model of Earth reflected radiation used in ORBIT is thal developed by McCarthy
and Martin [44]. However our implementation of the model is valid only up to a satellite
height of 2000 km, and simple extrapolation created values that were in error by several
orders of magnitude, when checked using estimated values. An approximate calculation
suggests that at the height of the Etalon satellites, the pressure due to Earth reflected

radiation is about 100 times less than the direct solar radiation pressure, giving rise o

an acceleration of about 5 x 107 "'m s7% [45]. This is a significant accele

consider it important to extend McCarthy and Martin’s model to ma

at the height of the Etalon satellites. We first summarize their developme

explain the extension.
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The albedo v of the Earth is defined as the fraction of the total incident radiation
which is reflected back into space. If the incident solar flux is F§ and the optical re-emitted
flux is Fpp, then

Fop = vF; (428)

The total power incident on the Earth must equal the total power re-emitted in order to

maintain thermal equilibrium, so
Fy = Fop + Fig, (4.29)
where F'g is the infra-red re-emitted flux. Therefore

F]R = (1 - A/)F';

(4.30)

The average value of the albedo is approximately 0.3 [46]. This implies that Fpp =~ 0.3F}
and Fyp ~ 0.7F,. The optical emission of the Earth can be sub-divided into specular
and diffuse reflection. The specular component is however much smaller than the diffuse
component, because only calm water and smooth ice surfaces reflect specularly.

The optical flux is emitted only by the daylight side of the Earth, and will depend
upon the local incidence angle of the Sun to each element of the Earth’s surface. The
acceleration on the satellite will have components in radial, along-track and across-track
directions, the radial component heing maximurm when the satellite is above the centre of
the daytime hemisphere, and the across-track component is maximum when the satellite
is above the terminator. The IR component of the reflected radiation is not solar-angle
dependent, depending only on the mean temperature of the Earth’s surface, which varies
only slowly with the seasons. The IR flux therefore has little effect on the along-track
acceleration of the satellite.

The force on the satellite can in principle be calculated by integrating the force from
each element of surface area visible to the satellite. Each element of surface area da has

incident upon 1t solar energy F; given by

F, = F,cos 0,6a,

where O, is the angle between the surface normal and the Sun. If the distance {vom
B

the satellite to the surface element is 7 and with the satellite cross-seciiona

A, the



satellite subtends a solid angle 6Q when viewed from the surface element, and

50 = 2

r2

Then the power received by the satellite from the surface element da is

1 )
§Fy = —vy(a)F; cos adfl (4.31)
v
or
. 1 . X
0by = —f)l((],.)Fi CoOs x—; (431)
Vs 7

where a is the angle between the surface normal and the satellite and v(a) is the albedo
of the surface element. If we divide 6F, by A and by the speed of light, we have an

expression for the radiation pressure 6P, on the satellite from one surface element da.

() F cos Oy cos e
SP, = (@) Fs — da. (4.33)
cmrt )

So the total pressure 1s

F, 1 v(a)cosO;cos o N
P, = _'/ yla)cosOscosa ) (4.34)
e Jw

Q2
where w is the part of the Earth’s surface visible to the satellite.

Then by multiplication of P, by [)\A?] , we have the acceleration ¥, on the satellite due
to reflected radiation, which can be compared to the effect of the direct solar radiation
acceleration rp.

The calculation of the albedo pressure and from it the acceleration to add to the
force model could be calculated by evaluating the integrals in equation (4.34 ). However,
the procedure would be time-consuming and difficult to carry out if any of the true
variation of albedo across the surface of the Earth is to be represented by the variable .
The approach adopted by McCarthy and Martin [44], and implemented in ORBIT, is as
follows. At each position in the orbit at which the albedo pressure is ta he computed, a

set of 7 locations on the visible Earth is calculated. Associated with each location is an

element of surface area da;. For each location, the interpolated al hedo and the incident
solar radiation are determined, and the vector of the pressure on the satellite due 1o that

clement is computed. The program uses 13 area elements at present. The first step in the

evaluation is to calculate the viewing angle of the satellite, which determines the amouni




of the Farth’s surface visible to the satellite. For a given satellite height A, the maximum

area visible to the satellite is enclosed in a cone of half-angle ©,,, where

a
00 = s [ 2]
arcsin o h (4.35)

The elements of area, at which the albedo values are calculated, are located at the
mtersections of the Earth’s surface and a set. of rays emanating from the spacecraft. The
set of rays includes the radius vector of the satellite, and two rings of rays whose angles
from the radius vector are fixed fractions of ©,,,. Each ray is a vector along which the
albedo pressure is applied to the satellite. After the location of the surface element has
been determined, the albedo and incident radiation at this spot are computed and then
the magnitude of the albedo pressure §P(i), on the satellite due to the i** surface element
is calculated, as in equation (4.33). The total pressure vector on the satellite is then

n

P, =Y 6P(i).t (4.36)

i=1
where currently n = 13 and #; is the unit vector of the % ray.

To enable the calculation of the pressure for satellites above the original 2000 km,
we derived polynomial functions with argument satellite height which preserved the re-
lationship between the angle ©,, and the angles between the radius vector and the two
rings of rays. The modified program accepts satellite heights up to the geostationary
distance. We carried out a test to check the computed albedo accelerations on an Etalon
satellite. At each integration step we output the magnitude of the acceleration due to
Earth-reflected IR and optical flux, and have plotted against time the separate values, as
well as their sum, in Figure 4.2. We see that the acceleration due to the IR flux (dotted
line) varies as expected very little throughout the day, but that the acceleration due to
the optical flux (dashed line) is periodic with a minimum of zero and maximum of 120
pms™2, with a period of about 700 minutes. This is the expected behaviour, as during
each orbit the satellite will be above alternately a fully-lit and a completely dark Earth.
The average value of the optical acceleration is about 60 pms~2, in reasonable agreement

with the estimate of Lucchesi [45].
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Figure 4.2: Computed Albedo acceleration on Etalon-2; dotted line is due to IR, dashed

line due to optical; full line the sum.
Empirical Drag

Acceleration on the satellite due to a drag force is modelled in ORBIT in two ways;
one by evaluation of the density of the atmosphere using a model of the variation of
density with height, solar activity and position of the Sun; two by treating the drag as an
empirical acceleration acting in the opposite direction to the motion of the satellite. The
first method, in which an atmospheric model such as Jachia72 [47] is used to estimate the
drag, is appropriate for satellite heights of up to about 1000km. Above this other effects
such as thermal drag dominate, and an empirical treatment is initially more appropriate.
In this work, we use only the second method, and will not consider further the atmospheric
density models. If the empirical acceleration on the satellite has magnitude £, then in
vector form the acceleration can be written

—T

Py=E

(4.37)
The explicit partial derivative of the acceleration with respect to the drag £ is then
simply equal to =*. Piecewise continuous values of the empirical acceleration are applied

at intervals throughout the integration under the control of a series of epochs and values

read in at the start of the integration run. We have added to this scheme the computa
of once-per-revolution empirical drag terrus, of the form a; sin (M + w) +as cos (M + w).

Explicit partial derivatives are formed as for the drag terms, and a series of accelerations
f I

a, and as are read in by the program.




4.3 Program RGODYN

4.3.1 Introduction

For each range observation R, being processed, RGODYN uses the position of the
satellite calculated by ORBIT to compute the expected range R, at the time of the
observation. The program forms the difference Rps — Reae, and forms an observational

equation of the form

JrA—

7

T (gR Apz> = I{O(,S — Rca,éc =+ v, (438)

1=1

where v is the least squares residual which we will seek to minimise. The p; are the
parameters to which we will obtain corrections during the process. In this Section, we
will discuss the computation of the range, the partial derivatives, and the corrections to

the parameters.

4.3.2 Computed Range

The observations consist of an epoch (UTC) and a measured 2-way time-of-flight 7 ex-
pressed in pico-seconds, as well as supplementary meteorological data and an observing
station code. The position of the satellite calculated by ORBIT for the observational in-
stant is expressed as geocentric position x in mega-meters and velocity X in mega-meters
day~! with respect to the J2000 reference frame. The initial station coordinates and hor-
izontal velocities are taken from the ITRF 1993, for epoch 1993.0 and are expressed as
geocentric rectangular coordinates. The coordinates frequently refer to a marker near the
laser ranging system, and information from local surveys is used to give the 3-dimensional
offset of the marker from the invariant point of the tracking system. Sets of these offsets,
or eccentricity vectors, are stored in NASA’s data centre CDDIS along with the dates
during which a particular set applies. At each observational instant we compute from
the station velocity its horizontal displacement due to plate motion and apply it and the
eccentricity to the station coordinates.

If the Barth-fixed rectangular coordinates of the station are given by x,, then we must

rotate them to the J2000 frame in order to compute the topocentric range. Then

xg = NTPTSTx, + %ia, (4.39)

Qo
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where S the sidereal angle and polar position rotation matrix refers the station coordi-
nates first to the instantaneous axis of rotation of the Earth via the polar motion series,
and then to the true equator and equinox of date via the sidereal angle. In more de-
tail, since we shall need matrix S when computing partial derivatives with respect, to
the Earth rotation parameters, we form matrix S as the product of three rotation ma-
trices. First, we rotate about the y-axis by —p, then about the x-axis by —y,, where
the z,,7, are the instantaneous values of the polar coordinates with respect to the IERS
reference pole. We then rotate about the z-axis by the Greenwich Apparent Sidereal
Time (GAST) to refer coordinates to the true equinox of date. GAST is defined as
GAST = GMST + equation of the equinoxes, where Greenwich Mean Sidereal Time is
given as a function of UT1 by the standard expression of Aoki et al. [48]. Then, by

multiplying these three rotation matrices, we find

COS L COS © — SNz, sin Y, siIn©  — cosy,sin© —sinz, cos © — cos ,, sin y, sin O
ST =] cosz,sin® +sinz,siny, cos®  cos Ypcos©  —sinxy,sin © + cosx, siny,cosO |,

SIn I, COS Yy, —siny, COS T, COS ¥y

where © = GAST expressed in radians. NP, the nutation-precession matrix, then refers
the station coordinates to the mean equator and equinox of J2000. x,;, is the displacement
of the station due to the solid tide effects of the Sun and Moon, as detailed in IERS
Standards 1992 [20]. Then, for the moment ignoring the motion of both the satellite
and the station during the light-time to the satellite, the predicted one-way range to the

satellite at the observational instant is just
)|
) 2 L9 213 PR
R = {(1 —Zy) (Y= yu) + (2 — 2zy) } ’ (4.40)

In practice, we iterate the time-of flight calculation in two stages. First we compute
; g > i

from (4.39) the position of the station at the observational instant, and for the same
instant the position of the satellite. Then equation (4.40) gives the caleulated one-way

range, and hence an estimate of the time at which the laser pulse reaches the satellif

the one-way calculated range. A similar process is carried out for the return of the plilse

(4.39) the position of the station at that time. We then have from (4.40) the one-way

ol
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return range. The sum of the two parts of the range constitutes the calculated two-way
time-of-flight to the satellite. This quantity is then corrected for the large tropospheric
delay that the measurement will be subject to, using the model of Marini and Murray [49]
and the local meteorological measurements. We also apply a small relativistic correction,
which arises through space-time curvature near a massive body. For near-Earth satellites
when we work in the geocentric reference frame, the only body that need be considered
is the Earth [34]. The correction in seconds is given in IERS Standards 1992 [20] as AT,
where

AT

QGM'h (Rl + Ry +R)
= I
R +Ry—R)’

and Ry, R, are the distances from the centre of the Earth to the beginning and end of

c3

the light path respectively. We find for Etalon, A7 =~ 4 x 107!!s, equivalent to about 1
cm in range.

We then form the difference Rps — Reqie, and need to compute range partial derivatives
in order to form the equation of condition (4.38). For the calculation of approximate
partial derivatives, we now take the ‘range’ R to be the one-way distance to the satellite
at the observational instant, equal to half the computed time-of-flight multiplied by the

speed of light.

4.3.3 Partial Derivatives

The partial derivatives fall into two categories. Those that depend upon parameters of
the force model are computed by numerical integration of the variational equations, as
outlined in section (4.2.2). Parameters in this category include the initial state vector of
the satellite xo, %o, empirical drag and solar radiation coefficients, G Mpspon, and gravity
field coefficients. Those range partial derivatives that do not depend on parameters
m the force model are computed analytically within RGODYN. These include station
coordinates and Earth rotation parameters (ERPs). In principle the ERPs do affect the
force model, since a correction to these parameters changes the orientation of the gravity
field, and hence the acceleration on the satellite. However in practice the corrections are

so small that the orientation change has negligible effect on the satellite.



Partial derivatives of range with respect to parameters of the force model

We outline the calculation of the range partial derivatives with respect to one of the
elements of the initial state vector of the satellite, as an example of the calculation of all
partials with respect to parameters of the force model. The partial derivative of range

with respect to element zy of the state vector is

OR  0rx OR Oy OR 0z OR

— =g+t =+ .= 4.41
Org Oxzg Ov Oxzy Oy Oxy Oz ( )
Now from the integration of the variational equations, program ORBIT computes the
partial derivatives of each element of the satellite rectangular coordinates with respect to

each element of the initial state vector xg, Xo. Thus we need only compute in RGODYN

the partial derivatives %. From the basic range equation (4.40) by differentiation, we
have for example

OR  (z—x4)

or R
and analogous values for %g and %Zzi We can therefore evaluate (4.41), and similar equa-

tions for all parameters of interest.

Partial derivatives of range with respect to non-force-model parameters

In this section, we outline the calculation of the range partial derivatives with respect to

the tracking station coordinates and Earth rotation parameters.

Station Coordinates

The coordinates of the stations are expressed as longitude A, geodetic latitude ® and
height H with respect to an ellipsoid with a, = 6378137.0m and 1/f = 298.2570. These
coordinates are input to the program, and converted to geocentric rectangular coordinates
X4, with magnitude . In order to correct these initial values of the geodetic coordinates,

we require the partial derivatives of range with respect to those coordinates. Now

oR _ OR Oz, N oR dy, N aR Oz, (4.42)
gx Oz, OA Oy, O Dz, OA o
and similarly for 53 and 77
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Now ignoring the distinction between geodetic and geocentric latitude in the approx-

imate calculation of the partials, we have

Ty, = rcosPcosA
Yy = rcosPsinA
2z, = rsind
Hence
Bz, T
=2 = —rcosPsin A
R
a g
gyf = +rcosPcosA
=9 —
mn = 0
and
oz .
29— 008
s = -—rcosAsin®d
Ay, . .
Wy g b
e 7sin A sin ¢
Ozq B
— = ¢
50 +7r cos®
and since
Ix, _ 0%,
OH or’
9z _ 3y
OH T
g — W
OH r
Oz _ 2z
o T
We then require gf We refer to equation (4.39), and for the calculation of partial
g

derivatives ignore the small contribution from x;;4. Then
xy = N"PTSTx,, (4.43)
or, abbreviated by replacing matrices N7, P7 and S” by their product matrix A,

(4.44)

we find by substitution from (4.44) for x,; and by partial differentiation,

ol (AL, D) (2 — z5) — A2, D) (Y — yae) — A 1)(2 = za)]



A(1,2) (2 — zg) — A(2,2)(y — yst) — A(3,2)(z — 241)]

and
OR 1

0z, :E

Then we have all the partial derivatives required to evaluate (4.42), and the equivalent

(A1, 3) (v — zs) — A(2,3)(y = ys) — A(3,3)(z — 2a0)],

expressions for the partial derivatives with respect to geodetic latitude ® and height H.

Measurement Bias

As we have seen, SLR observations consist of the measured two-way time of flight of
the laser pulse, and an epoch of emission of the pulse. We considered in Chapter 3 the
small system and energy dependent bias in the measured range that can occur if proper
provision is not taken to avoid it. In addition to these small effects, there is always the
potential for introduction of systematic bias due to some oversight, or failure to apply all
known corrections to the raw data, or due to some undetected problem with a component
of the ranging system. We thus wish to to be able to solve for range and epoch bias for
a given set of data from a given station, and require partial derivatives of range with
respect to these two parameters. For a range bias [y, we have simply

ok 1.0

oR, '

For a time bias, T, we use the predicted range iteration scheme outlined in section 4.3.2

to numerically estimate the change of satellite range with change of time of emission of
oR

the laser pulse at the station. This is a good estimate of the partial derivative 7.

Earth Rotation Parameters

We wish to calculate the partial derivatives of range with respect to the polar motion
values z,, y, and UT1. From equation (4.39) we take the matrix S, and since the polar
motion values are always small (z,, y, < 0.5 arcsec), we make the approximations that

cosz, = 1 and sinz, = z,. Then S becomes

cos® — z,y,sin©® —sin® —x,c0s0 — 1,sin O
T . , i
ST =1 sin® + 2,y 080 cos©  —xz,sin O 4y, cos ©

Lp ~Yp 1



Then from equation (4.43) we have again X, to place into the range equation (4.40),

which may now be differentiated to form STR’ —gf and gg. Since © is a function of UT1,
P Yp

we shall use the partial derivative of range with respect to © to solve for corrections to

the initial series of values of UT1-UTC.

4.4 Conclusion

We have outlined the computation of the predicted orbit of the satellite, and the predicted
range from the observing stations, which may be directly compared to the measured
range. We have formed the partial derivatives of range with respect to both force-model
and ‘geodetic’ parameters, and can thus form the observational equations (4.38). The
parameters of interest can be chosen at run time from the full set for which partial
derivatives have been computed. From the final set of observational equations we form
the normal equations, and hence parameter corrections and their standard errors. The
solution is iterated until convergence is obtained, as measured by no further significant
change to any of the parameters.

In the next Chapter we describe our use of the package to carry out first a preliminary

analysis of SLR observations of the two Etalon satellites, followed by long-arc solutions.
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Chapter 5

Orbit Determination of the Etalon
Satellites.

5.1 Introduction.

In previous Chapters we have considered in detail the technique of Satellite Laser Rang-
ing, with particular emphasis on the single-photon system at Herstmonceux. We have
used experimental results and models to derive centre-of-mass corrections for Lageos and
Etalon appropriate to the single-photon level of return, and we have also considered po-
tential return-level-dependent bias in the range measurements. We have discussed the
SLR analysis package developed at the Royal Greenwich Observatory, which is used to
fit orbits to the range observations from the stations in the international network.

In this and subsequent Chapters, we carry out an extended analysis of such obser-
vations of the two Etalon geodetic satellites. Our goal is to determine their usefulness
in a variety of potential applications, including long-term maintenance of the terrestrial
reference frame, evaluation of and comparison with Lageos of non-gravitational pertur-
bations and possible corrections to selected terms in the expansion of the Earth’s gravity
field. We begin this work with a preliminary analysis of a few month’s observations, and

move on to determine long-arc orbits by fitting to 2.5 years of range measurements.
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5.2 Preliminary Analysis.

As a starting point for this work we undertook to assess the potential use of the data, in
particular to compute station coordinates and Earth rotation parameters and to compare
the results from the two satellites. We used Etalon quicklook normal points for the
period 1992 June 1 to November 30. The initial station coordinates and velocities were
taken from ITRF93 and were used to form a set of station coordinates for epoch 1993.0.
The Earth rotation parameters were taken from the IERS Bulletin B 5-day series. The
average number of normal points obtained each month was about 600, compared to
about 6000 which are regularly obtained from the Lageos satellites. Hence longer orbital
arcs were used to improve the stability of the solutions. The strategy adopted was to
use two independent arcs of duration 90 days. Within each orbital arc we estimate
the initial state vector of the satellite, a single coefficient of solar radiation pressure,
an empirical along-track acceleration, corrections to the station coordinates at epoch
1993.0, and corrections at 10-day intervals to the IERS Earth rotation parameters. In
such a solution where we solve for station coordinates and ERPs there are 3 unconstrained
degrees of freedom, namely rotations about the Earth-fixed x, y and z-axes. The arbitrary
origin of station longitudes is responsible for the degree of freedom about the z-axis, since
a small change to all the longitudes of the tracking stations or a constant correction to
the series of UT1-UTC values would in the dynamical adjustment be accommodated by
an opposite rotation of the orbital plane of the satellite. Similarly, constant changes to
the components of the polar motion series, equivalent to rotations about the y and x
axes, would be accommodated by changes to the latitude and longitude of the stations.
To constrain an otherwise singular solution, we adopted the method of Smith et al [38],
namely to fix at their a-priori values the longitude and latitude of one station and the
latitude of a second station separated in longitude from the first by about 90°. We chose
to fix in this way the coordinates of Herstmonceux, UK (station 7840) and Greenbelt,
USA (7105).

The rms of the post-fit residuals for the 90-day arcs for each satellite varied between
10-15 cm. At the final iteration of each solution the normal matrix was saved, and the
individual arcs were comnbined using the Helmert-Wolf technique [50] in a solution for

the station coordinates. This was done separately for each satellite. In this way, two sets
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of station coordinates for epoch 1993.0 were formed. There were 11 stations in common

to both the Etalon data.

5.2.1 Station Coordinate Solutions.

We compared the two sets of geocentric rectangular station coordinates to detect possible
satellite-dependent systematic biases, and also compared them to the a-priori ITRF93
set. In each comparison, we used pairs of station coordinates to solve for the coefficients
of a rigid- body mapping of one set onto the other. The parameters solved-for in the
adjustment were three orthogonal translations, three orthogonal rotations and a scale
factor. We found that in all cases the parameters describing the rotations of one set
of coordinates onto the other and the scale factor were insignificant. Displacements in
the X and Y directions are also small. The largest displacement, that in the z direction
between the results from the two Etalons, Az = 4.52 + 4.05 cm, is fairly large, but also

poorly determined.

5.2.2 Solutions for UT1-UTC.

Analysis of SLR data does not give an absolute value of UT1-UTC since there is no
precise link between the dynamical reference frame defined by the satellite orbit and the
nertial stellar reference frame. However in our analysis the first two values in the series
of UT1-UTC are held fixed at the IERS Bulletin B values, and continuity between the
two orbital arcs is ensured by fixing the first value of UT1-UTC of the second arc to
that derived from the first arc. Additionally we may expect to sce a secular departure
of our series from that deduced with reference to an inertial stellar reference frame due
to unmodelled forces acting on the node of the satellite’s orbit, in particular errors in
the zonal terms of the gravity field and the effect of J, [31], although in the recent JGM
gravity field models, a model for this effect has been included. We also expect, that the
Etalon satellites would be affected less than Lageos by such gravity-field effects, because
of their greater height. The two series of corrections to the IERS UT1-UTC values
deduced from the Etalon analyses are presented in Figure 5.1.

The results show a clear systematic feature of semi-amplitude about 1 ms. This

: ; is much clearer and less noisy in the reailic framm Tialon T +han fomoe Tealoe 1T
signature 1s much clearer and less noisy in the results from Etalon-1 than from Etalon-11.
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Figure 5.1: Differences between UT1-UTC derived from Etalon analyses and IERS values.

However, there is little evidence in the results from either satellite of any secular run-off
of values over the 6-month period with respect to the IERS results, which suggests that
the Etalon data may be useful in defining a stable reference frame for Earth rotation

studies.

5.2.3 Conclusions

The results of this short preliminary investigation into the Etalon data may be sum-
marised as follows. The differences between the two sets of station coordinates are rather
large, particularly in the z-component, possibly because only a limited number of sta-
tions routinely track the satellites. The derived values of UT1-UTC show significant
systematic signatures, which are clearer in the Etalon-I results. However there is little
evidence of secular run-off of the values with respect to the IERS results. The conclusion
is that a longer period of data should be analysed, with the specific aim of determining &
stronger terrestrial reference frame, and making a better determination of the signatures
in the deduced series of UT1-UTC, with a view to explaining the systematic behaviour.

We also wish to use the long-arc solution to solve for the coordinates of some stations
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which only occasionally track the satellites.

Since the systematic variation in the values of UT1-UTC appears to have a period
of several months, we decided that analysis of at least 2 years of tracking data for each
satellite would be required for a good determination. In fact we took 900 days of data from
1992 June 1 to 1994 December 31. In order partly to overcome the potential problems
for continuity of reference frame of sparsity of tracking data if the analyses were carried
out over short (few months) orbital arcs, we further decided to fit the entire 2.5 year sets
of data with single orbits. We also wish to use the data to solve for corrections to some
of the coefficients of the gravity field and to check whether we can determine a significant

correction to the IERS(92) value of GM ps0m-

5.3 Orbital Characteristics of the Etalon Satellites.

As a preliminary stage to the long—arc analysis, we consider some of the objectives for
the use of the Etalon tracking data defined by Dunaev and Tatevian [3] in particular for
the determination of low order terms in the Barth’s gravity field, and for improvement
of the value of GMpsp0n-

The orbital periods of the satellites are 11.25 hours, close to half the rotational period
of the BEarth (23.97 hours). We may therefore expect there to be some conditions of
resonance of the orbital period with low degree and order terms in the gravity field,
analysis of which might indicate which terms principally effect the motions of the satellites
and thus would be most readily recoverable from the tracking data. This analysis has
recently been carried out by Lucchesi and Nobili [51], who used the approach of Kaula [52]
to show that the main resonant terms are Jyo, Joo, Jaa, Js2, and Js4, where the J; 4
are the magnitudes of the harmonic coefficients Cj,,, and Sj,, in the expansion of the
geopotential. (see Chapter 4)

We now look at the effects of luni-solar perturbations on the long-term dynamical
evolution of the node and inclination of the 2 satellites, using the work by Sinelair [53
on the motions of the satellites of Mars. This work on the behaviour of the Etalons was
summarised in Appleby [54].

We used SLR observations of the Etalons to compute a precise continucus orbit for



each satellite by fitting to 180 days of data for the period 1992 June 1 to 1992 November
30. The initial conditions at epoch 1992 June 1 were taken from the 90-day orbits
used in the preliminary analysis discussed in section 5.2 above. As before we solved for
corrections to the initial state vector, and for a single along—track empirical acceleration
and solar radiation coefficient. The station coordinates were held fixed at the [TRFS3
values, and we used Earth rotation parameters taken from the IERS Bulletin B series.
Post fit residual rms values were near 50 cm for each satellite. To extend the orbits
to beyond a year, essential for an investigation into luni-solar perturbations, we simply
ran the integrations ahead by a further 200 days, without a further fit to observations.
Geocentric rectangular coordinates and velocities were output at 120 minute intervals
in the J2000 reference frame. The coordinates were converted to instantancous orbital
elements using the procedure outlined in Appendix A.

5.3.1 Evolution of / and {1

Using this procedure, we converted our 400-day series of geocentric vectors to osculating
orbital elements. The resulting values of I and 2 are plotted in Figure 5.2. To obtain a
reasonable scale for plotting the Q values, we have subtracted from the values of 2 for
each satellite the linear terms 3.305 x 10~ 2day ™'

Several periodic features are evident in the plots. The very fine structure is a periodic
variation of the elements with half the orbital period (340 minutes), which is caused by
the oblateness of the Barth. The 14-day and 6-month periods are the well-known luni-
solar perturbations. The interesting feature of the plots is the different overall slopes
between the values of the Etalon-I and Etalon-11 elements. These slopes are due fo the
so-called secular perturbations of the orbits by the oblateness, the Moon and the Sun,
as investigated for the satellites of Mars by Sinclair [53]. The secular perturbations due

to the Rarth’s oblateness cause the orbital plane to precess around the equator, while

remaining at a constant mean inclination to the equator. However, the secular effects of

the Moon and Sun cause the satellite orbital plane to precess arcund the plane definsd

by the instantanecus mean of the lunar and solar orbital planes, and retain a constant

inclination to this mean plane. The combined effect is that the inclination of the satellite

orbital plane to the equator will not be constant and the nodal precession rate will vary,
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Figure 5.2: Etalon Orbital Elements evolution

the variations being of a size depending upon the relative sizes of the lunar and solar
effects to that of the Earth’s oblateness. The effects would be expected to be different for
the two satellites, which are in different orbital planes, and thus in different configurations
with respect to the orbital planes of the Sun and Moon.

Such a prominent signature in the orbits of the satellites due to the Lunar perturba-
tions lends strength to the proposal that long-term tracking of these satellites could lead

to a good determination of the lunar gravitational constant.

5.4 Long—Arc Orbit Determination.

Using the initial state vector zg, o derived from the 180 day fits discussed in Sections
5.2, we attempted to fit continuous orbits to the 2.5 year data sets by gradually increasing

the time span over which the fits were carried out. Initially we again solved for a limited
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parameter set; initial state vector, empirical along-track acceleration and single solar
radiation coefficient. Station coordinates and velocities were taken as before from ITRF93
and the Earth rotation parameters from IERS Bulletin B. Convergence with post fit
residual rms of size about 50cm was achieved for arc lengths of up to about 250 days.
Upon increasing this time span to 300 days, fairly large corrections of several meters
and m sec™' to the initial conditions were indicated by the analysis program RGODYN,
but the predicted post-fit rms remained small. These corrections were applied and the
integration repeated, but the fit of the data to the orbit was found to be worse than for
the previous iteration. Large systematic variations in the sizes of the post-fit residuals
were seen.

Such behaviour indicated that there existed either an error or important omission in
the force model or in the computation of the partial derivatives, such that the indicated
corrections to thev parameters were erroneous. It was considered unlikely that any large
error should exist in the force model, since a very acceptable fit to the observations
had been achieved up to the 250 days, and any deficiency, for example the lack of a
complete non-gravitational force model, would tend to be absorbed into the empirical
along-track acceleration parameter. Thus a series of experiments was undertaken to
check the accuracy of the partial derivatives. We first replaced the partial derivatives
with those computed by a finite difference scheme, and repeated the 300-day fits, as

follows.

5.4.1 Accuracy of Partial Derivatives

The instantaneous position of the satellite, z,y, z, may be considered to be a non-linear
function of the initial state vector xg,%o and of a series of force model parameters p.

Expressed in full for the x component, we can write

Tr = j(:‘["()) 7o, 20, ‘7:"07 ?JD» 2G5 p)
If we apply a small increment A to one of the arguments of f, then by Taylor series

expansion,




f(:EO + h/a y()vZO»'TanO)zO)p) = f(~730,1/0>30,$0)y0,30;p) + - . + ...+ =X A + ..

So to first order,

0z — f(ﬂ)o + 1, Yo, ) - f(il:(),y(), )
e 7

Thus in order to compute by finite differences the matrix of partial derivatives 81)31’_‘(””
for the eight parameters Xo, Xo, empirical along-track acceleration and solar radiation
coefficients, we must run the integration procedure an additional 8 times for each iteration
step, where we increment in turn each of the initial conditions. Some care was taken with
the choice of the values of the increment for each parameter, it being found that the ideal
situation for maximum stability in the subsequent solutions was for the increments to be
such that their effect on x was similar for all the parameters. By experiment we chose
increments of 1m to Xp, 1 m sec™! to Xg, 1.0 x 107 m sec™" to the empirical acceleration
and 0.05 to the coefficient of solar radiation.

A scheme was developed whereby an initial integration was carried out using the
current best set of initial conditions, followed automatically by a series of 8 additional

incremented integrations. A final step computed the 24 partial derivatives 2, 2%
()Xo’ ()Xo’

aaac)zel and Bsfl)v("a, - from the finite difference formula and placed their values in their correct
locations in the initial ephemeris file.

In this way a 300-day arc for Etalon-1 was computed and compared to the range
data. The solution was found to converge after 3 iterations with a post-fit rms of 65
cm. This clearly demonstrated that the previous lack of convergence had been due to a
problem with the partial derivatives computed from the variational equations. However,
despite the automation developed to carry out the iferation procedure, the scheme was
time consuming and laborious, and would have become impossibly so with the intended
expansion of the parameter set. Thus having identified the cause of the ecarlier lack of
convergence, we decided to investigate the apparent problem with the partial derivative
computation.

During the process of replacing the integrated partial derivatives with the finite dif-

ference ones, we also computed and saved their differences. A plot showing values of




9z computed from both methods, and the difference between them, is shown for a time

80

span of 300-days in figure 5.3. The figure shows in the top plot the values of the partial
derivatives computed by the finite-difference scheme (FD), in the centre plot the par-
tials computed by integrating the variational equations, and the bottom plot gives the
difference between them, equivalent to the error in the integrated values.

The agreement between the two sets of partial derivatives is good for the first 50 days,
but there is a subsequent rapid increase in the differences. On the assumption that the
finite difference values are correct, after 120 days the integrated partials are in error by
a factor of 2, and after the 300 days by a factor of 5. Similar errors were seen in all the

partial derivatives.
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Figure 5.3: Partial Derivatives from integration and finite-diffs.

We carried out an investigation to determine the source of error in the computation
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of the partial derivatives within the ORBIT program. To recap on the description of
the partial derivatives given in Chapter 4, we look more closely at the computations. In
order to solve for corrections to initial estimates of a parameter p, we need to compute

92: for i =1,2,3 at each step of the integration. Now
d2 8:7- F 3 0F 8 i
S = Z ~ (5.1)
dt? \ Op Oxz; 0

where the first term is the explicit partial derivative of the satellite acceleration with

respect to the parameter p. The explicit partial derivative is zero when p is one of the
components of Xg or Xg, since X does not depend explicitly upon the initial position and
velocity of the satellite. This system of second order differential equations is called the
system of variational equations, and is integrated along with the 3 differential equations
of motion of the satellite. However, we need not evaluate the variational equations to
high accuracy, since we are linearizing a non-linear systemn and assuming that the initial
estimates of the parameters are close to the true values, such that convergence is fairly
rapid. It is common therefore in the interests of speed of computation to restrict the
force model used in the variational equations to just the major terms, and inspection of
the coding showed that the part of the force model used for the variational equations
contained the central force and a restricted set of zonal and tesseral terms of the gravity

field. That is

X = —G’Mi3 + gravity field terms (5.2)
-

This approximation has proved entirely adequate for arcs of up to 30 days, the usual
length of Lageos arcs for example, and appears from the above comparisons to be a good
approximation for up to about 50 days, but is clearly causing problems in the current
long-arc work. The major forces that have been left out of the model are 3rd-body
(Sun and Moon) gravitational attractions, and the non—gravitational forces of along-track
acceleration and solar radiation pressure.

To test the relative sensitivity of these forces on the calculation of the partial deriva-
tives, we suppressed each in turn from the force model used in the integration of the
equations of motion. We again computed partial derivatives by finite differences, and

compared them to the integrated values. Suppression in the force model of the non-
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Figure 5.4: Partial Derivatives with restricted force model.

gravitational forces had little effect on the integrated partial derivatives; they were still
very different from the ‘correct’ finite difference values. However by removing the Luni-
Solar 3rd body attractions from the force model, the integrated partials agreed almost
exactly with their equivalent finite difference values, over the entire 300-day span. A plot

of the comparisons for 1 particular partial derivative a5 18 shown in Figure 5.4, where

the plot of the errors is now given on a greatly expanded scale.
5.4.2 Improvement of Force Model for Partial Derivatives

We now wish to add the luni—solar third body attractions to the variational equations to
improve the accuracy of the partial derivatives. We look at the implementation of the

equations as they currently appear in program ORBIT. Expanding equation (5.1) for a
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coordinate z; where X is the central force term given by equation (5.2), and considering

the parameter p to be one of xy or X, so that the explicit partial %’;ﬁ is zero, we have

81, 5.0 <~G1\4:1;i> 0z,
dt2 — Oz, T3 op’

J

So for all ¢,

d2 8:51» GM 3 311)1.’13] - (9’1,]
@(3]«))— = 2. ~ %)

2
=1 "

where

1 fori=y
0 fori#jy

This is the form in which the variational equations are programmed. We are now in

13 —

a position to add the Luni-Solar perturbations to the truncated force model of equation
(5.2). From the explanation in Chapter 4 of the 3rd body attractions, equation (5.2)

then becomes

. —G]\45LZ — Xyg i — Iy Lim
Xi———‘“"73——GA4@< A} +'[‘) GM( A; +13>7

5 m m

(5.3)

where X, = (215, Tag, Z35) and X, = (Z1m, Zom, Tam) are the geocentric vectors of the Sun
and Moon, with moduli r; and r,,, and A, and A,, are the moduli of the vectors x — x;
and X — X,,,. |

The coding was tested as before by computing partial derivatives by the finite differ-
ence method, and comparing them to the integrated values, over the time span of 300
days.

A plot showing the two sets of values of = and their differences is given in figure 5.5,
where now of course we are using the full force model in the integration of the equations of
motion. The agreement is now very good, confirming the source of the initial discrepancy
and its correct resolution.

We are now in a position to generate 2.5 year orbits and compare them to observations.
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Figure 5.5: Partial Derivatives with full force model.
5.5 Long—Arc Solutions.

We fitted initial long arc orbits to 900 days of observations for each satellite, starting
from the values of the state vectors determined from the 200-day fits, that is beginning
on 1992 June 1. System dependent values for the centre-of-mass corrections were used
as discussed in Chapter 3. For SPAD systems we use CoM = 582 mm and for MCP and
PMT systems we use CoM = 612 mm. Table 5.1 lists the stations involved in tracking
the satellites during the 900 days and includes the detector types and the number of
normal points used for each satellite. For some of the stations we do not have reliable
coordinates, and for a few stations the data appeared to contain range biases. At this
stage 1n the analysis, the observations from these problem stations were not used. These

stations are marked with a x in the detector column of the Table.
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One of the aims of the analysis is to determine a consistent set of tracking station
coordinates for all the stations, and we will at that stage attempt to include these stations,
and investigate the range biases.

Initially we adjust only the satellite state vector, a coefficient of empirical along—track
acceleration and a solar radiation coefficient. This is in order not to over-parameterise
the solution until we are able to quantify possible model errors and seek to improve them.
The post—fit residual rms values for each satellite are shown in Table 5.2.

It is interesting to note that the orbital fit is much better for Etalon-II than for
Etalon-I, and that there is a significant difference between the solar radiation coefficients
for the two nominally—identical satellites. For a spherical satellite, the solar radiation
coefficient Cg is related to the diffuse albedo vp by

4
Cr=1+57p

The values of Cp in Table 5.2 imply that for Etalon-1 vp = 0.56 and for Etalon-2
vp = 0.65, a difference of nearly 15% in the reflective properties of the two satellites.
The post—fit range residuals for each satellite show systematic departures from the
best—fit orbit of up to 5 meters, and carry information on the deficiencies in the force
model, such as possible errors in and variations of the coeflicients of the gravity field,
unmodelled non-gravitational forces, tracking station coordinate and systematic errors,

and errors in the a-priori Earth rotation parameters.

5.5.1 Solutions for corrections to long-arc orbit

As a guide to identifying the force-model errors, we wish to use the residuals from the long
arc solution to solve for corrections to the instantaneous orbital elements of that long—
arc. We will solve for such corrections over intervals of a few days, and thus effectively
form corrections to the mean elements over that interval, with a subsequent loss of short—
period information. We set up the following equation of condition to solve for corrections
to the mean values of those elements within each interval.

OR

~a~e~Ae =AR+¢ (5.4)

where R is the topocentric range to the satellite at the observational instant, AR
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Station | Name Det Numb | Numb Longitude Latitude Height
Et-1 | Et-II Degs Degs m

1863 | Maidan-I pmt * 64 60 | 66.9431809 | 38.6857557 | 2713.782
1864 | Maidan-IT | pmt * 220 204 | 66.9431790 | 38.6848939 | 2713.655
1869 | Balkhash pmt * 23 0| 66.9431715 | 38.6857267 | 2713.243
1873 | Simeiz pmt 13 0| 33.9910412 | 44.4131863 | 364.659
1884 | Riga pmt * 7 0| 24.0591628 | 56.9485492 31.099
1893 | Katzively | pmt 40 91 | 33.9702131 | 44.3931729 68.431
7080 | Mcdonald | mcp 271 208 | 255.9848968 | 30.6802669 | 2004.320
7090 | Yarragad mep 2701 | 2719 | 115.3468381 | -29.0464997 | 241.245
7105 | Greenbelt | mcp 417 481 | 283.1723998 | 39.0206047 19.252
7109 | Quincy mep 770 339 | 239.0553953 | 39.9750010 | 1106.443
7110 | Mon. P. ncp 1673 | 1347 | 243.5774242 | 32.8917373 | 1839.073
7210 | Haleakala | mcp 515 555 | 203.7441818 | 20.7072172 | 3067.583
7237 | Changchun | pmt * 191 166 | 125.4435458 | 43.7905091 | 275.019
7403 | Arequipa mep 2 5 | 288.5071349 | -16.4657174 | 2488.859
7502 | Sutherland | pmt * 72 29 | 20.8030761 | -32.3784666 | 1728.628
7805 | Metsahovi | pmt 11 10 | 24.3946407 | 60.2173074 78.228
7835 | Grasse pmt, 26 2 6.9212158 | 43.7546933 | 1322.980
7837 | Shanghai pmt 64 57 1 121.1918325 | 31.0975420 27.957
7839 | Graz spa 604 540 | 15.4934521 | 47.0671348 | 539.455
7840 | Herstmon. | spa 640 590 0.3362139 | 50.8673799 75.441
7843 | Orroral mep 471 509 | 148.9394033 | -35.6362538 | 1349.865
8834 | Wettzell spa * 734 606 | 12.8781050 | 49.1444151 | 664.891
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Satellite | Number | rms Drag Solrad

m pm s~?
Etalon-I 8205 2.80 | 0.138 £0.002 | 1.252 £0.001

Etalon-I1 7466 1.18 | 0.102 £0.002 | 1.289 £0.001

Table 5.2: Statistics of long—arc solutions.

is the residual of the SLR range observation from the long-arc solution, € is the least—
squares residual that we wish to minimise, and e is the vector of orbital elements, e =
(a,e,I, M +w,w, ). We choose the linear combination M + w because for small e, M
is ill-defined. Values of e are computed at each observational instant by the procedure
detailed in Appendix A.

Now,
de  Ory de Oy Oe Oz Oe

And R =| xt |, where x1 = x — x;, where x; is the geocentric vector to the observing

station, and as before x is the satellite geocentric vector. So in full

N

R= ((331 - 39.91)2 + (22 — 51532)2 + (z3 — fL'ss)2)

So
OR _ (1 —zy) _ 71
8.’1}1 R R

and similarly for IR 4nd 28
. dxo Ox3

Now the instantaneous coordinates of the satellite x are related to the orbital elements

by

X =rA,
where
r=a(l —ecos E),
and
cosucosfl — coslsinwusin{)
A =1 cosusinQ) + cosIsinucos$) |,
sin I sin u



where E is the eccentric anomaly and u, the argument of latitude is close to M + w for
small e

So for example,
7y ~ a(1 — ecos E)(cos (M + w) cos 2 — cos I'sin (M + w) sin ) (5.5)

So, again for example,

0
Fl} ~ a(1 — ecos E)[sin I sin (M + w) sin Q]
or,
Ox
% ~ sin§) X z3
And
0
% ~ a(1 — ecos E)[— cos (M + w) sin 2 — cos I sin (M + w) cos Q]
or,
Ox
o0 — 7’
To calculate WI%%T)’ we have to take into account that E is related to M through

Kepler’s equation £ = M +esin E. So extracting from equation (5.5) r = a(l —ecos E),

then
or tesin B oFE
——— = 4qesin F———
BM+w) (M +w)’
and by differentiating Kepler’s equation
oE oE
— —ecos F———— =1
M +w)  CPTaM Fw)
Therefore
oE B 1
M +w) (1—ecosE)
and

or +aesin B
(M +w) (1L—-ecosE) (5.6)

So by differentiating (5.5) and using (5.6), we have

9] —aesin K
O(A/Ia:lr ) = 1 _ae::(l E) [—cos(M + w) cos Q + cos I sin (M + w) sin (]

+ a(l — ecos E) [—sin(M + w) cos ) — cos I cos (M + w) sin Q]
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5.5.2 Solutions for orbital elements.

By experimentation we found that about 25 days is the shortest interval of time that will
‘support’ the solutions, this being dependent on the numbers of observations within the
intervals throughout the 2.5 year orbital solution. We thus partition the range residuals
into intervals of 25 days and for each observational instant we convert the satellite geo-
centric coordinates and velocities x, x to osculating elements as described in Appendix

A. We then set up the equation of condition (5.4), and carry out the solutions.
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Figure 5.6: Along-track residuals at 25-day intervals.

Within each 25-day interval we found that the post—solution predicted residual rms
reduced to an average 15 cm, with some intervals reaching 6cm rms. The resulting time
series of corrections Ae were found to be dominated by the series of A(M + w), which
represents along-track departures of the satellites relative to the long-arc orbits, which
were not absorbed by the single empirical drag coefficient. The values of A(M + w) were

initially expressed in angular measure (radians) and were converted to meters, to zero
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order in the eccentricity, by multiplying by the orbital semi-major axes, 25.5x10°. The
A(M + w) series are shown in Figure 5.6, where the error bars are 1 o values determined

during the least squares solutions.

5.5.3 Along—track errors

To investigate these series further, and to compare the values with the empirical long-arc
mean drag accelerations of each satellite and with published results from the Lageos satel-
lites, we note that the series represent the integrated effects of variable drag accelerations.
Thus those accelerations may be deduced by computing the second time-derivatives of

the values of A(M + w). To carry out the differentiation of the series, we use a method
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Figure 5.7: Along-track accelerations at 25-day intervals.

developed by Savitzky and Golay [55] for smoothing and differentiating data by simplified
least squares. The method smooths subsets of the data by convolving with a weighting

function which generates a smoothed point at the centre of the range of data. To generate
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derivatives of the original data set, the weighting function has been differentiated before
application. The procedure is presented by Savitzky and Golay as a series of coefficients
to carry out smoothing or differentiation, and by experimentation we chose a 7-point
quadratic weighting function to generate 2nd derivatives of the series. The procedure
is applied to the first seven points of the series by multiplying by the equivalent seven
weighting coefficients of the convolute and dividing by a given normalising value to com-
pute a new central value which represents the best fit 2nd derivative at that point. We
then step through the data by one point, and generate the next value in the new series.
We lose 3 original data points from each end of the A(M +w) series. The resulting sets of
accelerations are converted to pico-m s2, and are shown for each satellite in Figure 5.7.
The plots show that the accelerations are of the order of & 2 pico-m s72, and that strong
periodicities exist. The mean values of each series are as expected insignificantly different

from zero (-1.1x1072 and 3.8x107% pico-m s™2

respectively), since 900-day mean values
were determined during the long—arc solutions.

A periodogramme analysis was carried out on the acceleration series, using a program
which allows interactive selection and identification of significant peaks in the spectrum.
The resulting spectra are shown in Figure 5.8, where the labels next to the selected peaks
in the spectra give the identified periods in days. The strong, broad peaks in the spectra
are at or near semi-annual frequencies. The presence of these periods in the acceleration
series strongly suggest that the perturbing forces are solar related, non-gravitational
thermal thrust forces similar to those acting on Lageos. A great deal of research has
been carried out on these forces using the Lageos results. We will review some of that
work, and carry out an investigation into the Etalon results, in Chapter 6.

Thus in summary, we find that the along-track accelerations of the satellites have

long-term averages of some 0.1 pico-m s

, upon which are superimposed semi-annual
terms with amplitudes of up to 2 pico-m s™2. There exist interesting signatures in the

residual series of other orbital elements, which we investigate in Chapter 7.
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Chapter 6

Modelling of Thermal Forces on the
Etalon Satellites.

6.1 Introduction

In the previous Chapter we described our method of fitting single continuous orbital arcs
of 2.5 years duration to SLR observations of the two Etalon satellites. We solved for
a minimal parameter set comprising initial state vector, a single empirical along-track
drag term and a single coefficient of solar radiation. We obtained post-solution residual
rms values of 2.80 and 1.18 m for Etalon-1 and Etalon-2 respectively. From the range
residuals we then solved for a series of equivalent corrections to mean orbital elements
over 25-day intervals in order to investigate potential deficiencies in our force models.
We found that the series of corrections to orbital elements was dominated by that of the
argument of latitude (M + w), and we double-differentiated this series to derive a set of
along-track acceleration residuals. In this chapter we set out our analysis of both these
un-modelled along-track accelerations and of the 2.5-year average along-track acceleration
determined from the empirical drag term. We first review the current theories that have
been developed to explain similar effects observed with the Lageos satellite, and then
move on to modify and test these theories in our model of the behaviour of the Etalon

satellites.
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6.2 Thermal Force Theory

As an introduction to our study of the measured along-track accelerations experienced
by the satellites and determined from the residuals from the long-arc orbits, we consider
the results and theoretical models regarding similar phenomena for Lageos. The Etalon
satellites are the only other satellites that are likely to be suitable to provide a test of the
models established for Lageos. For lower satellites other drag effects dominate, and for
higher satellites (e.g. GPS and Glonass) the forces on their large solar panels dominate.
We wish to test whether the theories can explain both the small average along-track
accelerations and the rapid fluctuations seen throughout the 2.5 year period.

Soon after launch in 1976, orbital fits to laser range observations of Lageos indicated
that the satellite was experiencing an along-track acceleration of mean value about -
3.3 pico-meters s™2 (pm s72) [56], which is equivalent to an orbital decay of some 1.2
mm per day. Superimposed on this mean acceleration were found both smooth periodic
fluctuations and spikes which could reach a similar magnitude. Several mechanisms have
since been proposed to explain both the mean acceleration and the fluctuations and spikes,
and we review the current models, considering at first the mean acceleration. Initially a
combination of charged and neutral particle drag was thought to be responsible, with the
neutral particles accounting for only about 10% of the effect [57, 58, 59]. A more recent
analysis by Rubincam [60], indicates that neutral and charged particle drag on Lageos
are of similar magnitude, but together account for only about 30% of the observed along-
track acceleration. Rubincam [61, 62] proposed that the Yarkovsky effect [63, 64, 57],
which is the asymmetric thermal response of Lageos to Earth-emitted infra-red radiation
(IR), could account for about 70% of the observed mean along-track acceleration, by the
following mechanism. For simplicity at first it is assumed that Lageos’ spin axis lies in the
plane of the orbit. IR radiation is absorbed, and since Lageos is spinning rapidly, with
a rotation period of about 20s in 1988 according to the model of Bertotti and less [65],
the heat distribution is uniform longitudinally, but not latitudinally. This creates a
temperature imbalance between Lageos’ northern and southern hemispheres, generating
a thrust along the spin axis when the heat is re-radiated. The thrust is away from the
hotter pole, and therefore the satellite is accelerated along the direction of the cooler

axis. Now if the satellite had no thermal inertia, then a hemisphere would be hottest
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when the Earth is directly over its pole. In this case the net along-track component of
the force is zero because of cancellation when averaging over one orbit, since during the
orbit alternate hemispheres face the Earth. However, since the satellite, and in particular
the retro-reflectors, do possess thermal inertia, there is a delay in re-radiation relative
to the time of maximum temperature, during which the satellite moves along its orbit.
Subsequent re-radiation will then have a component opposite to the along-track direction,

and act as a drag force. The situation is shown in Figure 6.1.

Foree due to
re-radiation
of IR received

at A EARTH

Force due 1o
re-radiation of

1R received at B

Figure 6.1: Yarkovsky drag on a satellite due to thermal heating from the Earth. The
satellite spin axis is in the plane of the orbit, and the thermal lag angle is taken to be 90

degrees for illustration only.

To model this effect, Rubincam [62] develops a model for the thermal inertia of the
satellite which includes the radiative heat transfer between the retro-reflectors, their
mounting rings and the aluminium cavities in which the reflectors are housed. By using
energy balance arguments and engineering data, Rubincam computes the temperatures
of the retro-reflectors, of the mounting rings and of the aluminium shell, subject to
solar and Earth-reflected heating. In the earlier work, Rubincam [61] showed that the
effect of the retro-reflectors dominated the model for the satellite acceleration, so now
Rubincam [62] uses his improved model of their temperatures and thermal inertia to

compute the average thermal acceleration, or drag, on the satellite. He finds that an
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acceleration of -2.33pm s™2 can be explained by this mechanism.
Following and extending this development, Scharroo et al [66], deduce that the Yarkovsky

effect can cause an acceleration of -3.08pm s

, again if the spin axis of Lageos lies in the
orbital plane. The increase in the acceleration accounted for in the model of Scharroo
et al is said to be due to their use of engineering data for the thermal model, rather than
the theoretical energy balance work of Rubincam [62].

Now if the spin axis is tilted with respect to the orbital plane, the thermal drag
decreases as the tilt increases, and finally vanishes when the axis is normal to the plane,
provided that the satellite has a reasonably fast spin rate. In such an orientation, there is
no temperature imbalance between the northern and southern hemispheres, as the Earth
is over Lageos’ equator. If the inclination of the spin axis to the orbital plane is denoted
by 3, (where § = 0 if the spin axis lies in the orbital plane), then the temperature gradient
on the satellite decreases as [ increases, and in addition the along-track component of the
acceleration will decrease with increasing angle 3. Each effect introduces a dependence
on cos 3, and so the actual along track acceleration s will be related to the maximum

possible value s,,,, by

S = Smaz OS2 0. (6.1)

On the assumption that the spin axis is fixed in inertial space, precession of the orbital
node along the Earth’s equator will cause a periodic variation of the angle 8, and thus
a slow variation in the amplitude of the along-track acceleration. In this way the model
predicts periodic variations about the mean with frequencies of once and twice per nodal
revolution of the Lageos orbit, that is with periods of 1050 and 525 days, which are
indeed seen in the observed accelerations. Scharroo et al [66] further speculate that the
gradual decrease in the observed amplitudes of the periodic variations in the acceleration
series may be caused by a slow alignment of the spin axis of Lageos with the Earth’s axis,
from its initial offset of 22 degrees which was set during the launch in 1976. Such an
alignment is considered likely under the interaction between the Earth’s magnetic field
and charged-particle-induced eddy currents in the satellite.

Scharroo et al [66] propose that the angle between the spin axes of the satellite and
of the Earth is decreasing exponentially, and find that their model of Yarkovsky thermal

drag fits the observed mean acceleration and long-period variation well, but does not
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explain the rapid spikes in the data. To address this behaviour, Scharroo et al combine
two further thermal thrust effects, namely the Yarkovsky-Schach effect and anisotropic
reflection of sunlight caused by an hypothesised hemispheric albedo difference.

The Yarkovsky-Schach effect is caused by direct solar heating, as opposed to heating
from the Earth. If the satellite spin axis has only a small motion in inertial space during
one orbital period, then again a hemispheric temperature gradient will be set up, and an
acceleration along the cooler spin axis away from the hotter pole will result. The effect
will be a maximum if one of the poles faces the Sun, and will vanish if the Sun is over the
satellite equator. The acceleration along the spin axis will of course have components in
the along-track, across-track and radial directions. If we consider the along-track effect, it
is clear that during one orbital period there will be no net acceleration because the thrust
will alternately be in the direction of satellite motion, and half an orbital revolution later,
opposing the motion, as for the Yarkovsky effect. However, the effect will give rise to
once-per-revolution accelerations.

Now if the satellite undergoes eclipse by the Earth (or Moon), the solar radiation will
be cut off, and the thrust will vanish for the duration of the eclipse. In this situation,
the along-track acceleration will not average to zero during one revolution, and a net
acceleration will occur. Whether this acceleration acts with or against the direction of
motion depends upon the Sun-orbit geometry and upon the direction of the satellite spin
axis. Thermal inertia again is an important contributor to the effect, as the temperature
gradient and hence the thrust does not instantaneously vanish at the onset of an eclipse,
nor is it instantaneously restored at the end of an eclipse. Thus the magnitude of the effect
depends upon the duration of a given eclipse; for a short eclipse the satellite may not have
time to cool to an equilibrium temperature before moving back into sunlight, and the net
acceleration will be small. For an eclipse long with respect to the thermal inertia, the
equilibrium temperature may be maintained for some time before solar heating gradually
restores the temperature gradient, and a large net acceleration will result. During an
entire eclipse season of some weeks, both short eclipses at the onset and end of the
season, and long-duration eclipses mid-season will occur.

This is the Yarkovsky-Schach (Y-S) effect which was successfully applied by Scharroo

et al [66], to explain some of the spikes in the observations of Lageos’ along-track acceler-



ation. They found that the Y-S effect did not explain all the acceleration spikes however,
and they invoked a further effect, namely anisotropic reflection of sunlight caused by
a possible hemispheric difference in reflectivity. They find that an albedo difference of
only 5% between the two hemispheres would, when taken in addition to the Y-S effect,
adequately explain the observed pattern of acceleration spikes. However, Smith et al [38],
point out that the prediction capability of the models does appear to degrade after 1989.
All authors point out the crucial importance to the models of a knowledge of the direction
of the satellite spin axis.

We now apply the above thermal models to our along-track acceleration residuals

from the long-arc solutions of the two Etalon Satellites.

6.3 Application to Etalon results

6.3.1 Average along-track acceleration

To evaluate fully the thermal drag on the Etalons due to Earth emitted IR radiation,
we need detailed engineering data on the structure of the satellites, and a knowledge
of the direction of their spin axes. The engineering data available is restricted to basic
information on satellite size and mass, and size and number of retro-reflectors [3]. The
spin axes directions are not known [67]. However, despite these problems, we can make
reasonable estimates of the forces on the satellites by analogy to the results for Lageos, by
substituting such information that is available for the Etalons. We shall assume initially
that the spin axes of the satellites lie in their orbital planes, and hopefully modify this if
required by the observations.

We know that every surface with a non-zero temperature 7' radiates energy in the
form of photons, and since these photons carry away momentum, the emitting surface
will recoil. If the surface has an area AA and emissivity ¢, and emits radiation diffusely

according to Lambert’s cosine law, then the surface will be subject to a force
AF = (2c0T"/3c)AA (6.2)

acting along the normal to the surface, where o is the Stefan-Boltzmann constant and c is

the speed of light. Scharroo et al [66] integrate this expression for AF over the surface of
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the spherical satellite, noting that all components of the force perpendicular to the spin
axis cancel. Then by dividing by the mass M of the satellite, they obtain the following

expression for s, the acceleration along the spin axis.

—4(eA)oTy
;= %0 O, 6.3
oMo ATycos© (6.3)

Here Ty is the mean surface temperature and ATy is the maximum temperature difference
that could occur across the satellite if one pole faces directly towards the radiation source.
O, is the angle between the satellite spin axis and the direction to the source of radiation,
in this case the surface of the Earth, and (eA) is the effective emitting surface area of
the satellite. Now both Rubincam [62] and Scharroo et al [66] argue that the aluminium
surface of a satellite plays no significant role in the thermal effects, based on the following
arguments. The high conductivity of the aluminium surface will rapidly tend to reduce
any asymmetry in the temperature distribution across the satellite. By contrast the retro-
reflectors, which in the case of Lageos at least, are insulated from the satellite surface and
hence from each other will allow a temperature asymmetry to build up. In addition the
emissivity of aluminium is only one third that of silica, which further reduces the effect
of the satellite surface. Thus we can take A in the above expression as just the total
surface area of the reflectors. We take from Mironov et al [18] the information shown in

“able 6.1

Satellite Retro-reflectors
Diameter | Mass | Width | Depth | Number Number
(mm) (Kg) | (mm) | (mm) | (silica) | (germanium)
1294 1415 | 27.0 19.1 2140 6

Table 6.1: Etalon Characteristics.

From this data, we compute the front-face area a; of each hexagonal retro-reflector as
a; = 631mm?. For the 2146 retro-reflectors, this leads to a total area A of 1.355x 10°mm?,
compared to a total surface area of the satellite of 47r? = 5.26 x 10°mm?, that is the
retro-reflectors cover some 26% of the satellite surface. We take emissivity e = 0.9 for

silica from Rubincam [62].
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We must estimate ATy, given that for Lageos the quoted value is 8.°1K from NASA
engineering data [66]. Now the radiance of IR from the sub-Earth point is given by [68]

Fir = 232(a./a)® Wm™2,

with a. the radius of the Earth and a the orbital semi-major axis. So for Lageos, with
a = 12400 km, F;g = 66.5Wm =2 and for Etalon, with a = 25500 km, F;p = 14.5Wm™2.
We now scale the temperature difference AT, for Etalon relative to the value of 8.°1K
for Lageos in proportion to the ratio of these radiance values, and estimate ATy = 1.99K
for Etalon.

Now due to thermal inertia in the retro-reflectors, we must replace ©, by ©, — @,
where @ is the phase lag, which is a function of the mean orbital motion n of Etalon and

the thermal response time 7 of the retro-reflectors. From Scharroo et al [66] we have

. mC,,
=
deasoly

where m is the mass of a retro-reflector, and C, is the specific heat of silica. Ty is the
mean temperature of a retro-reflector, which we take from the estimate of Lucchesi [45)
who has Ty = 316°K. Again we do not have a value for the retro-reflector mass m, so must
estimate it from the available data. From scale drawings shown in Mironov et al [18],
we estimate the volume of the retro-reflector to be 7.21 x 107% m?, and given the density
of silica, 2200 kg m~3 [61] we have that . = 1.6 x 107 kg. The equivalent value for a

Lageos retro-reflector is 3.9 x107% kg, [62]. Then finally we have
T = 2567 s

We convert this response time to orbital phase lag ® by multiplication by the satellites’

mean motion, n = 2.13 revs day~'. This gives
® = 0.40 radians = 22.°7

Then for the case when the spin axis lies in the orbital plane, Scharroo et ol [66] finally
give the maximum along-track acceleration by averaging over one revolution, when of
course ©, averages to zero. They obtain

—cAoT?
moe = —————AT' sin 2 .
Sma e sin 29 (6.4)
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The dependence of s,,4, on sin2® shows the absolute dependence of this effect on
the thermal inertia of the satellite; if there were no inertia, the effect would disappear.

Then substituting the values that we have for the Etalon satellites, we obtain Sy, =

—0.46 pm s~

2

3

This value is some six times smaller than the equivalent value for Lageos of —3.08pms™
both by virtue of the reduced IR flux at the altitude of Etalon, and due to the smaller
phase lag ®.

Now, as we have seen, if the spin axis does not lie in the orbital plane the thermal lag
will vary as cos? 3, where 3 is the inclination of the spin axis to this plane. For instance,
if the satellite’s axis is aligned with the Earth’s axis, then 8 = 90 — ¢, where 1 is the
inclination of the orbital plane to the Earth’s equator, and 7 = 65°. So in this orientation
we expect § = Syqp 05> 25 = —0.38pm s72.

In addition, even if the spin axis does remain fixed in space, the angle § will vary
due to the precession of the orbital plane under the influence of, principally, J,. From

Kaula [52], we have

: —3nJya?
Q=—"""°"cosi,
2(1 — e?)?%a?
which for Etalon with e ~ 0, leads to a value of = —3.92 x 10~%day ™", and a precession

period of > 30 years. Thus we cannot expect to observe any periodic effects due to thermal
Yarkovsky thrust during the relatively short 2.5 year interval of our investigation. This
is in contrast to the results for Lageos [66] where the relatively short precession period
of 2.9 years leads to variations of s with the same period. These periodic variations in
the Lageos results are both seen in the data and accurately predicted by the model.
Thus, in conclusion, Yarkovsky thermal drag on the Etalon satellites predicts a secular
along-track acceleration of between -0.46 and -0.38 pm s™2, depending on whether the
spin axis lies in the orbital plane or is aligned with the Earth’s axis, and we expect no

significant periodic variations over the 2.5 year span of our analysis.

Comparison with Observations.

From our analyses summarised in Table 5.2, we have observed drag values of +0.138 and

+0.102 pm s2 for the two satellites, which are equivalent to along-track accelerations

2

of minus those quantities. Thus the modelled acceleration of -0.46 pm s™° is an over-
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estimate of that observed, and suggests that on average over the 2.5 year span the spin
axes are not aligned with the orbital plane nor with the Earth’s axis, but are rotated
further out of the orbital plane. Of course, if the axes were perpendicular to the plane,
the Yarkovsky effect would disappear. The observed accelerations imply that on average
over the 2.5 years the spin axis of Etalon 1 was inclined at 56 degrees to the orbital plane,

and that of Etalon 2 at 62 degrees.

6.3.2 Acceleration Spikes
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Figure 6.2: Along-track accelerations and eclipse seasons

The Yarkovsky effect considered above, as we have seen, cannot, account for the ‘spikes’ in
the acceleration residuals, which are seen in the plots in Figure 6.2. The figure shows the
same results as those plotted in Figure 5.7 in Chapter 5, but we now also show within the
pairs of vertical dotted lines the time zones during which the satellites enter the Earth’s
shadow during each orbit.

Several features are apparent when we compare the results for the two satellites.

The Etalon-1 results in the upper plot show acceleration spikes with considerably higher
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amplitude than the Etalon-2 spikes, which immediately explains the poorer fit of the
Etalon-1 long-arc solution to the observations (see Table 5.2). We also see that most of
the spikes, particularly for Etalon-1, occur during the eclipse seasons, and reach their
maximum amplitude at mid-season. Not all eclipse seasons do produce spikes, however,
and there are some spikes that are not associated with eclipses. However, the frequent
occurrence of the spikes during the eclipse seasons is similar to that found for the Lageos
results [66] and suggests that the Yarkovsky-Schach (Y-S) mechanism may be a con-
tributing factor, which requires further investigation. As an initial step, we introduce the
Y-S effect into our force model by reference to equation (6.3), where now ©, is the angle
between the satellite spin axis and the direction of the Sun as seen from the satellite.

That is the acceleration along the spin axis is

S = Syax COS 61”’ (65)
where from (6.3)
—4eAcTy
ez — AT, 6.6
Smaz IMec 0 (6.6)

where now ATy is the temperature difference between a retro-reflector directly facing the
Sun and one facing in the opposite direction. Thus now s,,,; represents the maximum
acceleration along the spin axis if that axis points directly towards the Sun. Scharroo

et al [66] have used the time series of Lageos along-track accelerations to estimate $y,44,

and find 8,4, = —89pms~2. Lucchesi [45] has estimated the acceleration for the Etalons
by a theoretical determination of ATy, and finds s, = —65pm s72. We initially take

Lucchesi’s value for $,,,,. Without prejudicing our aim to use the observations of the
acceleration spikes to deduce the behaviour of the directions of the satellites” spin axes,
we find at this stage that it is helpful for the explanation and development if we assume
that the spin axes sp are inclined to the orbital planes by angles /f such that the axes
are aligned with the Earth’s axis. Approximately then, § = 90 — 1 ~ 25°.

Then at each integration step we compute s from (6.5), where cos ©, = x,.5p, where
X, is the vector from the satellite to the Sun.

We note here that if the spin axis s aligned with that of the Earth, then angle ©, is
given by ©, = 90 — §,, where ¢, is the geocentric declination of the Sun. We also find

that the eclipse seasons for Etalon-1 take place near the summer and winter solstices,
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when the absolute values of the Sun’s declination are high (~ 20 deg), whereas the eclipse
seasons for Etalon-2 occur near the equinoxes, with the Sun’s declination reaching only a
few degrees. These circumstances would explain the larger amplitudes of the spikes in the
Etalon-1 acceleration series, since the temperature anomaly on the satellite and hence
the magnitude of the Y-S acceleration depends directly upon cos ©,. That the eclipse
seasons remain close to these relationships with the Terrestrial seasons during the period
of the analysis is again attributable to the very small nodal precession rates of the Etalon
orbital planes.

Now in the absence of eclipses, s will average to zero during one revolution of the
satellite. Figure 6.3 shows this effect for the Y-S accelerations on Etalon-1 during one
day, where we have resolved the acceleration, computed in the direction of the spin axis,
into along-track and radial components. For an acceleration s along the spin axis, the
component in the along-track direction is just ¥, and in the radial direction =%, where

x and v are the geocentric position and velocity vectors of the satellite.

Yarkovsky -Schach Aceel (pm 57)

80+

100 | P U N |
o

Figure 6.3: Daily Yarkovsky-Schach acceleration in absence of eclipses. Full line 1s along-

track component; dotted line is radial component

The accelerations are seen to be quite large, with semi-amplitude more than 50
pm s~2. It is usual in precise orbit determination to solve for empirical once-per-revolution
acceleration terms to absorb miscellaneous imperfections in the force model. The thermal
force discussed here is seen to be an important contributor to these effects.

During the eclipse seasons we must model the cooling down of the satellite which
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begins upon passage through the penumbral region of the shadow, which occurs in a few
tens of seconds (see Chapter 4), and the heating up and consequent restoration of the
thermal thrust upon emergence from the shadow. We have already computed in Section
6.2.2 the thermal lag angle ®, and we use it again in this instance. We follow Scharroo
et al [66], and compute a function f(u) where u is the argument of latitude of the satellite
(M + w,) and where f(u) = 1.0 outside the eclipse zone, and f(u) tends exponentially to
zero after the satellite enters the shadow, and tends to 1 again after the satellite emerges

into full sunlight. Scharroo et al [66] give

flw) = exp (-2, (6.7)

for u; <wu < uy, and

. . e Uy — Uy N _ U — Uy
flu)y=1+ [1 exp (——-——(I) >] exp ( 3 ) , (6.8)

for uy < u < wy + 27. Here u; and uy are the values of (M + w) at shadow entry and exit
respectively. We included this function in our computation of s, from (6.5), which now
becomes

S = Spmazf(u) cos O, (6.9)
and again generated the resulting along-track and radial accelerations on Etalon-1, for a
day during the first eclipse season shown in Figure 6.2.

100 v

B0 |-

Yarkovsky-Schach Accel (pm 57)
c
/
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4 670
Time (Days)

Figure 6.4: Yarkovsky-Schach acceleration during one day of eclipse season. Full line is

along-track component; dotted line is radial component.
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The plots are shown in Figure 6.4, where now the acceleration is not symmetrical and

can be seen not to average to zero during one orbit.
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Figure 6.5: Mean Yarkovsky-Schach acceleration during first eclipse season of Etalon-1.

We have numerically averaged over intervals of 0 < u < 27 the computed along-track
accelerations for the whole 35 days of the first eclipse season and plot the results in Figure
6.5. We find a negative acceleration spike that reaches its minimum value of some -1.1
pm s™! a little before mid-eclipse season. This behaviour is as expected from the general
explanation of the Y-S effect given in Section 6.2.1, but the lack of symmetry in the spike
is due to the change in declination of the Sun during the eclipse season, with the resulting
change in angle O,.

We now carry out this averaging process for the whole span of the analysis, for both
satellites. The results are plotted as the full lines along with the observed acceleration
series in Figure 6.6.

It is useful to check that the computed spikes have intuitively the correct charac-
teristics, given the circumstances during a particular eclipse season, as we wish to use
the agreement or otherwise of the modelled accelerations with the observations to infer
modifications to our assumptions about the direction of the satellites’ spin axes. For the
first two eclipse seasons of the analysis of the Etalon-1 observations, which are centred
upon MJD 48825 (1992 July 22) and MJD 49015 (1993 January 28), we have looked
in some detail at the circumstances. During the first season the satellite enters eclipse

near the descending node of its orbit on the Earth’s equator. With our assumption of
g q P
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Figure 6.6: Along-track accelerations and Y-S model

a spin axis aligned with the Earth’s, we find that the Sun is some 20 degrees north of
Etalon’s equator, thus the northern hemisphere is hotter than the south, and there 1s an
acceleration in the direction of the southern pole of the satellite, and thus a component
of that acceleration in the direction of motion of the satellite.

The situation is shown schematically in Figure 6.7, where the left-hand drawing refers
to the July 22 eclipse season, at a moment prior to the satellite entering the eclipse zone,
represented by the vertical lines. The Sun is north of the satellite equator, and as a
result the thermal thrust acceleration is in the direction of the southern pole, shown
by the arrow. Upon entry to the shadow, the thermal thrust tends to zero, and the
positive along-track acceleration disappears, so during one orbital period in which an
eclipse occurs, there is a net negative along-track acceleration.

The right-hand drawing in Figure 6.7 shows the situation six months later, during the
second eclipse season. The satellite is near the ascending node of the orbit, and the Sun is
south of the satellite’s equator. There is then a thrust towards the northern hemisphere,
and again a component in the along-track direction. As before, upon entry into shadow,

the acceleration effectively becomes a negative along-track acceleration.
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Figure 6.7: Schematic of Yarkovski-Schach effect on Etalon-1 during two eclipse seasons.

Again due to the long nodal precession period, this situation is repeated almost un-
changed for the whole of our analysis period, and the series of negative spikes results.
The lack of symmetry in the computed spikes for the Etalon-2 eclipse seasons can be
traced to the fact that the direction of the Sun relative to the satellite’s equator changes
by several degrees during each season for these near-equinox eclipses, and thus both the
magnitude and direction of the thermal thrust will change significantly during the period.

We now return to the comparison of model with observations, shown in Figure 6.6.
We see that for Etalon-1 the computed acceleration spikes do not agree at all with the
results during the first two eclipse seasons, but there is reasonable agreement for the
remaining three seasons, with the model underestimating the amplitude of the final spike
of the series.

For Etalon-2 the modelled spikes have smaller amplitudes, in agreement with the ob-
servations, but the overall agreement is equally poor throughout the period. At this point
we can quickly discount an additional thrust effect due to an hypothesised asymmetric
albedo between the satellite hemispheres as used by Scharroo et al [66] to compliment
the Y-S effect, and explain most of the Lageos acceleration spikes. If the spin axis re-
mained fixed in space, then an asymmetric albedo would generate a series of alternating
negative and positive spikes during the eclipse seasons. A combination of such a series
with the Y-S effect thus cannot explain the observations shown in Figure 6.6, and we are

led to hypothesize that the spin axis direction may have changed during the period of
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the investigation.

To test this hypothesis we carried out the numerical averaging process as described
above, but varied in a systematic search pattern the components of the unit spin vector,
and visually compared the resulting spikes with those of the observations. We begin with
the Etalon-1 results, and note that for the first eclipse season, the lack of a significant
acceleration spike suggests that at that time the direction of the spin axis was close to
perpendicular to the plane of the orbit, in which configuration an acceleration in the
direction of the spin axis would not have an along-track component. For an instant near
the middle of the first eclipse season, we compute a unit vector p perpendicular to the

plane of the orbit from

and find that p = (0.64,0.64,0.42).

For the second eclipse season, the search found that the unit vector (0.94, 0.00, 0.34)
for the spin axis generated an acceleration spike in reasonable agreement with the ob-
servations. For the next two eclipse seasons, we found little improvement to the initial
hypothesis that the spin axis was aligned with that of the Earth, namely that the unit
spin axis vector is (0.00, 0.00, 1.00). However, for the final eclipse season, we find that
we can better approximate the larger acceleration spike by allowing the spin axis to move
some 20 degrees away from alignment with the Earth’s axis.

The results of computing the Y-S acceleration for Etalon-1 using these spin vectors
at the appropriate times is shown in Figure 6.8.
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Figure 6.8: Etalon-1 Y-S model with variable spin axis direction.

We see that the model now fits the observations reasonably well, except that it under-

estimates the magnitudes of the second and last acceleration spikes. Hence these results

127




suggest that the spin axis direction may have changed dramatically during the analysis
period, and that a major change appears to have come about between the first and second

eclipse seasons, with a subsequent settling down into alignment with the Barth’s axis.

MJD Sy Sy S, O | «

48841 | 0.64 | 0.64 | 0.42 | 25 | 45
49019 | 0.94 | 0.00 | 0.34 | 20
49198 | 0.00 | 0.00 | 1.00 | 90
49374 | 0.00 | 0.00 | 1.00 { 90
49551 | -0.34 | 0.00 | 0.94 | 70

o o o O

Table 6.2: Spin axis evolution for Etalon-1.

The results for the evolution of the axis are shown in Table 6.2, where we give the
direction of the spin axis both in vector form with components s,, sy, s,, and in terms
of a geocentric celestial coordinate system given by solution for § and a of the following

transformation, where § and « are the declination and right ascension of the spin axis.

S = COSOCOS«
Sy = C€OS0sina
s, = sind

The dates (MJD) are those at the mid-time of each eclipse season for which the spin
axis values apply. The values of § and « in Table 6.2 show that the spin axis direction
has undergone a large change during the analysis period.

We carry out the same procedures for the Etalon-2 data, where the absence of any
clear peaks during the first, second and last eclipse seasons implies that the spin axis is
perpendicular to the plane of the orbit at those times. For the other two eclipse seasons,
we find little improvement in our initial hypothesis that the spin axis is parallel to the
Earth’s axis. The results of computing the Y-S acceleration with this series of spin axis
vectors is shown in Figure 6.9

This series of accelerations is much less well fitted by the model than the Etalon-1

results, despite the smaller magnitude of the effect in the Etalon-2 data. Again it appears
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Figure 6.9: Etalon-2 Y-S model with variable spin axis direction.

likely that the spin axis is moving fairly rapidly. The results for the Etalon-2 spin axis

solution are shown in Table 6.3

MJD Sy Sy S, ) o

48901 | 0.22 | -0.88 | 0.42 | 65 | 284
49072 | 0.22 | -0.88 | 0.42 | 65 | 284
49250 | 0.00 | 0.00 | 1.00 | O | 360
49421 | 0.00 | 0.00 | 1.00 | O | 360
49599 | -0.21 | -0.89 | 0.41 | 66 | 77

Table 6.3: Spin axis evolution for Etalon-2.

6.3.3 Discussion

The results using the Y-S theory suggest that the spin axes appear to be undergoing
change, which is most dramatic during the first year of the Etalon-1 analysis period.
In the six months between the second and third eclipse seasons, the angle between the
Earth’s axis and that of Etalon-1 appears to have changed by 70 degrees. The spin axis of
Etalon-2 appears to move such that at times it is in alignment with the Farth’s axis, and
at other times apparently perpendicular to the plane of its orbit. Of course through this
analysis we are in a position to estimate the directions of the spin axes only during the
respective eclipse periods of the two satellites, and can only speculate on possible causes

for this apparent behaviour. For the apparently large change in Etalon-1, we might
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conjecture that impact by a small body such as a micro-meteorite may have occurred.
This may be followed by a damping of the chaotic motion and alignment with the Earth’s
axis by interaction between the Earth’s magnetic field and the induction-charged body
of the satellite, as proposed for Lageos by Bertotti and less [65]. The Etalon satellites
also appear not to be axially symmetric, due to the presence of two small exterior probes
used to attach two Glonass spacecraft during the initial phase of the launch of each of
the satellites. (The probes are clearly seen near the lower edge of one of the satellites
shown in the picture in Figure 1.2 in Chapter 1.) This mass asymmetry may lead to
instability and chaotic motion especially as the spin rate decreases due to eddy-current
braking, again as proposed for Lageos by Bertotti and Iess [65]. This model is less certain
for Lageos however, as there is little evidence for mass asymmetry.

Clearly further work should be done to better understand and model the evolution
of the spin axes of these satellites, which would help model the thermal thrust effects
and thus test whether or not all the along track acceleration residuals are due to the Y-S

effect.

6.3.4 Removal of along-track acceleration residuals

We finally carry out a solution in which we model the evolution of the spin axes by
adopting in the force model the values of the spin axis vector as shown in Tables 6.2 and
6.3. We compute the Y-S acceleration in the direction of the spin axis using (6.9) and
an initial estimate of s, of 65 pm s72. In the solution we solve for initial state vector,
an empirical along-track acceleration, a coefficient of solar radiation and a correction to
our initial s,,.,. However, at this point we encountered a problem which we believe is
due to the apparently rapid change in spin axes directions. It was found to be impossible
to remove the acceleration spikes from the along-track residuals. The solutions implied
only small corrections to the initial value of s,,,,, but did not remove the thermal thrust
effects.

In order to remove much more of the thermal thrust acceleration signatures, we must
therefore include in our model a series of empirical along-track acceleration terms. Thus
we carried out a solution for the along-track accelerations at 30-day intervals through-

out the 2.5 year periods, and solved simultaneously for initial state vector and the solar
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radiation coefficient, where the overall mean empirical along-track acceleration is accom-
modated in the coefficients of our piecewise-continuous series. In this way we remove
most of the effects of the thermal thrust accelerations that our incomplete model could
not account for. However, we discovered that a better removal of the systematic effects
could be achieved by solving for a series of scale corrections to the model of Earth albedo

accelerations, again at 30-day intervals.
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Figure 6.10: Earth Albedo Scaling Factors at 30-day Intervals.

Such a scaling factor will inevitably not only absorb real deficiencies in the albedo
model, such as the neglect of specular reflections of sunlight from ocean surfaces, an effect
considered important in Lageos analyses [69], but also remove the radial component of
the thermal thrust effects that we have been considering. In this way our incomplete
knowledge of the spin axes directions is circumvented. The post-solution residual rms

values are 15 c¢cm for Etalon-1 and 44 ¢m for Etalon-2 compared with values of 2.80 and
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1.18 m respectively if the thermal effect is not solved for. The series of albedo scaling
factors for each of the satellites is shown in Figure 6.10.

We find that the albedo scaling factors derived from the Etalon-1 solution are on
average about 2.5, with a clear reduction to near unity midway between the eclipse
seasons. This behaviour suggests that our albedo model underestimates the force for
small Sun-Earth-satellite phase angles, when during the eclipse seasons the satellite passes
in front of the Earth in full phase, some six hours after entering eclipse. A similar
explanation has been proposed for anomalous behaviour of GPS satellites during the
eclipse seasons. Fliegal and Gallini [70] point out that the Earth back-scatters strongly,
and show that as a result at the height of the GPS (and Etalon) satellites the ratio of the
acceleration due to Earth radiation pressure to that of direct solar radiation is some ten
times that at phase angles of 90 degrees. We checked our albedo model to see whether it
broadly agreed with this result of Fliegal and Gallini [70]. We output the magnitude of
the albedo acceleration at the time that the satellite crossed the equator for each orbit,
over a period of some 100 days near the end of which the satellite was undergoing shadow
passages at the ascending node, and experiencing the acceleration from a full-phase Farth
at the descending node. During the period of this experiment the phase angle ran from
90 degrees at the start to zero at mid-eclipse season, and the albedo acceleration ranged
from about 10 to 100 pm s~!. The acceleration due to solar radiation pressure is about
5312 pm s~ !, so we have that from our model the ratio of the albedo acceleration to
that of the Sun is 2% at small phase angles, and 0.2% near 90 degrees. This agrees with
Fliegal and Gallini [70] and shows that our albedo model [44] does represent the expected
effect, but our observations suggest that the true effect at the height of the Etalons (and
GPS) satellites is some 2.5 times greater still.

The results for Etalon-2 are far less regular. Again the scaling factors reach more
‘normal’” values during the times midway between the eclipse periods, but particularly
during the first 18 months of the analysis very large scale factors ranging from -10 to
+7 are seen. It appears probable that this behaviour is due to absorption of radial
components of the unmodelled Y-S effect, with any true albedo variations being masked.
The rapid variation in these results is an indication of the difficulty in modelling these

effects for Etalon-2 relative to Etalon-1, and reflects the much poorer final fit to the
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observations.

We now use the post solution range residuals to solve again for corrections to in-

stantaneous orbital elements, to check the removal of the along-track acceleration spikes.

Shown in Figure 6.11 is the residual along-track acceleration series, formed as described

in Chapter 5 by double differentiation of the residual (M + w) values, over intervals of

25 days. As we see, nearly all the systematic effects have been removed from the series,

and we have a near flat track of restdual accelerations.
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Figure 6.11: Post-solution Along-track Acceleration Residuals.

However the much poorer fit of the Etalon-2 orbit prompts further study, and we

consider the residual series in eccentricity for each satellite, since eccentricity residuals

can arise from not only gravity field effects but also from mis -modelling of thermal thrust

effects.
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Eccentricity Residuals

Figure 6.12 shows the eccentricity residuals for the two satellites, plotted with 1-sigma
error bars. The plots for each satellite are clearly different; the Etalon-1 results show a
smooth periodic variation with amplitude Ae of about £1.0 x 108, which corresponds to
a maxiumum radial orbital error of Ar = daAe = £25 cm. However the results from in
particular the first 350 days of Etalon-2 show a large oscillation of Ae = +3 to -5 x 107,
equivalent to radial errors of up to 1.3 m, after which the residuals return to levels similar
to those of Etalon-1. This behaviour explains the poorer fit of the orbit of Etalon-2 with

a post-solution range residual rms of 44 cm compared to Etalon-1 (15 cm).
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Figure 6.12: Post-solution Eccentricity Residuals.

Besides un-modelled thermal effects, eccentricity residuals are the result of errors in
the odd zonal harmonics of the gravity field, both constant errors and variability due

to un-modelled ocean tides and meteorological effects. Such gravity field errors should
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give rise to the same signatures in the eccentricity residuals of both satellites, so we
must conclude that the large excursion in the residuals for the first year of the Etalon-2
results is most likely due to thermal effects on that particular satellite not removed by
our empirical acceleration model. Periods of a year or more of anomalous behaviour
in the eccentricity residuals from long-arc analyses of Lageos data are well-documented.
During 1989 the amplitude of the eccentricity residuals rose to some three times that of
the previous 12 years [71] and caused Gegout and Cazenave [72] to exclude that year from
their solutions for variability of J;. A further large eccentricity anomaly is also apparent
in the Lageos results beginning in mid-1991 [32, 71], which is considered much too large
to be explained by odd-degree ocean tide or atmospheric tidal errors. Nerem [73] suggests
that this anomalous behaviour may be related to the peak in the 11-year solar activity
cycle. However, our current results tend to suggest that the behaviour is satellite-specific,

and may cast doubt upon such conclusions.

Eccentricity vector excitations

We can obtain more information on the characteristics of the residual eccentricity series
and particularly on the anomalous results during the first year of Etalon-2 by following
the approach of Tapley et al [71] and Martin and Rubincam [74] by computing eccentricity
vector excitations. This approach also allows us to compare more readily our results with
those of Lageos. The method involves examining the functions esinw and ecosw since
for nearly circular orbits this change of variables is better-determined, and defining the

eccentricity vector excitation as

¥, = a [ecosw —iesinw],
where 7 is v/—1. Then
U, = coswgg—esinwd—ui} -—i{sinw—c-lfqtecoswd—w (6.10)
dt dt dt dt
Instantaneous values of the time derivatives % and % are computed from the residual

series of e shown in Figure 6.12 and from that of w, by numerical differentiation using
the method outlined in Chapter 5. Values of e and w are arithmetic mean values during
each 25-day interval, calculated from the rectangular coordinates and velocities of the

satellites. Then for each time interval, we calculate the real and imaginary part of the
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eccentricity vector excitations for each satellite from (6.10), and plot the results in Figures
6.13 and 6.14. In the Figures, the scale of the Etalon-2 results is twice that of the Etalon-1

results.
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Figure 6.13: Real part of eccentricity excitation vector.

We see that for Etalon-1 both the real and imaginary parts of the excitation vector
show a smooth periodic variation with amplitude about 10 mas y~'. A periodogramme
analysis suggests that annual and semi-annual terms dominate these variations. However
for Etalon-2 the real part of the excitation shows a large oscillation during the first 350
days, reaching an amplitude of about 80 mas y~ !, followed by a smooth variation with
an amplitude of about 20 mas y~'. The imaginary part of the Etalon-2 excitation shows
little of the large variation of the real part, although the amplitude of the oscillations
reach levels of about twice those of the equivalent Etalon-1 series. Tapley et al [71] point

out that errors in the odd degree diurnal and semi-diurnal ocean tide coefficients cause
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Figure 6.14: Imaginary part of eccentricity excitation vector.

variability in both the real and imaginary parts of ¥,, whilst variability in the odd zonal
harmonics cause variations with the same spectrum in the real part of W,,. Their results
for the real part of the Lageos eccentricity excitation vector shows an annual periodicity,
and for the imaginary part a periodicity of 560 days, or the period of rotation of the
Lageos’ node with respect to the Sun. As we have seen, the equivalent period for the
Etalon satellites is close to one year (353 days). We also see that the amplitude of the

! or ten times that of our Etalon-1 results. This

Lageos excitations is about 100 mas y~
factor of ten may be expected from scaling as (a./a)® for say variations in gravity field or
tidal terms of degree 3, with apggeos = 12400km and agigon = 25400km giving a factor
of about 9. Thus we consider that the forcing mechanism that we are observing in the

Etalon results is the same as that in the results of Lageos, and the similarity in the periods

of the real and imaginary series of Etalon-1 suggests that they are caused by errors in
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the odd degree diurnal and semi-diurnal ocean tide coefficients. However, as Tapley et
al [71] point out the implied corrections to the degree 3 tidal terms are un-realistically
high, and do not agree with results from Starlette.

For the Etalon-2 analysis, we noted in the previous sub-section the similarity between
the first 350 days when the large oscillation in the eccentricity series occurs (Figure 6.13),
and the period of anomalous behaviour of the Lageos eccentricity residuals. In their study
of that effect, Tapley et al [71] show that almost all the variability appears in the real
part of the eccentricity excitation, which is exactly the result we have for Etalon-2. The
amplitude of the anomaly in the real part of the excitation (Figure 6.13) reaches 450 and
-80 mas y~ !, compared to about +250 and -300 for Lageos, a factor of only three, which
would tend to support our contention that the anomalous behaviour is satellite-specific
and not a force obeying an (a./a) power law.

In recently published work Martin and Rubincam [74] have used a four-year series of
satellite-based measurements of reflected light from the surface of the Earth to deduce
the effect of albedo radiation on the orbit of Lageos. In their discussion of the effect on
the eccentricity excitation vector, they find that albedo radiation could account for more
than 50% of the observed fluctuations in the real part of the eccentricity excitations,
and nearly all the observed effects in the imaginary part, provided that the sign of the
computed excitations is changed. They conclude that some albedo modeling error in
previous analyses has forced a corruption of some of the terms in the current ocean tidal
models. However, they also show that the measured albedo effect cannot explain the
anomalous Lageos excitation during 1987, which supports our claim for Etalon-2 that
the anomalous excitation is related to that particular satellite and not to an external
force that should also cause similar changes in Etalon-1.

In order to remove these effects from the Etalon-2 eccentricity residuals, we have
added to our force model a set of piecewise continuous once-per-revolution empirical
radial accelerations. The accelerations were solved for over intervals of time broken by
the onset and ending of eclipse seasons. Thus the five eclipse seasons encountered by
Etalon-2 during the period of the analysis lead to 11 intervals during which a single
once-per-revolution acceleration was solved for. The post solution range residual rms fell

from 44 cm to 22 cm after this solution was carried out. Again the range residuals were
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mapped into orbital element residuals, and we show in Figure 6.15 the eccentricity series,

where the results from Etalon-1 are of course unchanged from those shown in Figure 6.12.
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Figure 6.15: Post-solution Eccentricity Residuals - empirical 1-per-rev radial terms re-

moved from Etalon-2.

Most of the anomalous behaviour in the Etalon-2 results has been removed, but

unfortunately the small-amplitude periodicity has also been absorbed, when compared

to the results in Figure 6.12, and compared to the Etalon-1 data.

6.3.5 Conclusion

In this chapter we have investigated the along-track accelerations on the Etalon satellites,

as determined both from the single empirical drag coefficients and from the range residuals

from the long-arc solutions mapped into along-track accelerations. We find that the

average accelerations of some -0.1 pm s~2 may be adequately explained by the Yarkovsky
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effect, or heating by IR from the Earth, which could account for an acceleration of up to
-0.46 pm s~2, dependent upon the directions of the satellites’ spin axes. There is thus no
need to propose any charged or neutral-particle drag.

We find that the large acceleration ‘spikes’ of some 2 pm s™2 associated with eclipse
seasons may be modelled using the Yarkovsky-Schach effect, whereby a net acceleration
is generated by the cooling and subsequent re-heating of the retro-reflectors during each
shadow passage. This effect is sensitive to the direction of the satellites’ spin axis, and
we propose that both appear to be undergoing change during the period of the analysis,
and in particular we speculate that Etalon-1 may be undergoing a dramatic change in the
direction of its spin axis. However we find that uncertainty in the evolution of the spin
axes directions means that we are unable to remove residual accelerations in the results
using the Y-S model alone in the orbit determination process, and we resort to solution
of empirical along-track accelerations. We further find that the results imply corrections
to our Earth albedo model at small phase angles, although some of these corrections
are perhaps absorbing radial force model errors due to the Y-S effect. The final post-
solution residual rms values are 15¢m for Etalon-1 and 44cm for Etalon-2. Thermal effects
on the satellites can also cause un-modelled changes in orbital eccentricity, and we have
investigated this effect using the residual eccentricity series from the long-arc solution, and
by computing eccentricity excitation vectors from the eccentricity and perigee residual
series. The real parts and imaginary parts of the Etalon-1 eccentricity excitations show
regular fluctuations at annual and semi-annual periods, and amplitude equivalent to
about 25 ¢cm. This appears to be the same effect that is observed in discussions of the
Lageos excitations, taking into account the greater height of Etalon-1, but is considered
too large to be caused by an error in tidal terms [71]. However, the recent work by Martin
and Rubincam [74] does suggest that there may indeed be some corruption of terms in
the current ocean tide models due to previous albedo modelling error.

However the Etalon-2 eccentricity residual series shows a large anomalous departure
during the first year, equivalent to an orbital error of more than 1.3 m. The real part of
the eccentricity excitation shows this anomalous behaviour clearly, but the imaginary part
does not. This is exactly the same behaviour as was observed by Tapley et al {71] during

the anomalous stages of the Lageos orbital solutions of 1987 and 1991. That only Etalon-
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2 and not Etalon-1 shows this behaviour strongly suggests that the cause is related to the
satellite itself, such as some further thermal effect, and not to an un-modelled external
force, which should affect both satellites.

Having tried to account for the effects of the thermal thrust accelerations, we move on
in the next Chapter to consider systematic signatures in the node residuals, and expand
our parameter set to include possible solution for selected near-resonant terms in the

gravity field expansion, station coordinates and Earth rotation parameters.
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Chapter 7

Geodetic Results from Analysis of

Long-arc Orbits

7.1 Introduction

We now take our long-arc orbital solutions from which the effects of non-gravitational
along-track accelerations have been removed as described in Chapter 6, and again map
the range residuals into corrections to orbital elements. We continue the theme of analysis
of these orbital element residuals by extending the analysis to the residual series in the
node and inclination and then solve simultaneously for corrections to selected terms in the
gravity field model, to Earth rotation parameters and to the IERS [20] value for GM g0
The final stage in the analysis is to solve for corrections to the station coordinates and
also to systematic measurement errors for those stations left out of the initial solutions

because of apparent observational biases.

7.2 Nodal residuals and UT1.

7.2.1 Introduction.

We wish to evaluate the use of orbit determination of the Etalon satellites for studying
changes in the orientation of the Earth, and in particular for determination of UT1. To
do this we must examine un-modelled effects on the orientation of the orbit planes that

would contaminate any such determination. From analyses of tracking data to Lageos it
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has been shown that secular and periodic changes in the zonal harmonics of the gravity
field cause perturbations of the orbit and corresponding accelerations in the longitude of
the node. These accelerations are indistinguishable from unpredictable changes in UT1,
and thus limit the use of Lageos for long-term determination of this quantity. Indeed
the effects on the orbit plane have been used in conjunction with an independent UT1
series derived from VLBI to obtain precise estimates of J, [31, 32] consistent with that
expected from secular changes in the Earth’s polar moment of inertia due to viscous
rebound following the last deglaciation, as well as seasonal variations in J, apparently
driven by seasonal atmospheric mass re-distribution [75, 72]. In this section we estimate
the theoretical sensitivity of the Etalon satellites to temporal changes in the gravity field,
and use our our nodal residual series to decide whether they contain information on
the variations that are not so far modelled in our orbit determination process. We also
decide whether or not we would expect significant corruption to values of UT1 derived

from Etalon analyses.

7.2.2 Perturbations due to variations in even zonal harmonics

A satellite’s node 0, argument of perigee w and mean anomaly M are particularly sensi-
tive to variations in the even zonal harmonic coefficients. The node may also be affected
by un-modelled variations in inclination /. Using the linear perturbation theory devel-
oped by Kaula [52], and the Lagrange planetary equations we can express the acceleration
in €2 caused by rates of change .jg, .j4, Je and I by summing the contributions of each of

these changing quantities [31].

. =3n/a.\? cosl . . - , _
1= 5 <_a_> a—eap (JQ + Jifs + Jofe — I tan ].]2) : (7.1)

where the functions f4 and fg are

3.2
(1+ ;2(/ )

5 fa\
f4 = g(z) (781Il I - 4)m (72)
/ 35<“°’>4(8 36 sin® 1 + 33sint 1) LT £ ) (7.3)
= —|— — 365si sin :
5~ 6a\a i (1 — )t
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For the Etalon satellites, we have J ~ 65°, ¢ ~ 0, so fy = 0.069 and fs = 0.002, which
are sufficiently small that they can be ignored. Thus the principal effects on the node

are the J, and I terms of (7.1), which we can now re-write

v —_— 2 - .
O~ ;Sn (93> cos I(Jy — I tan 1Jy) (7.4)
a

4

Thus the acceleration of the node caused by a linear change in J is

Q) ~ —0.536 * 365.25(J, — 2.32 x 107 I)rads yr™ (7.5)
We can estimate the value of un-modelled linear changes I from our series of inclination
residuals. Figure 7.1 shows the series of inclination residuals for the two satellites. The
residuals are shown with 1-sigma error bars, and the full lines are fitted linear func-
tions. The linear terms defining each of the straight lines are +0.55 £ 1.03 mas yr~! and
—1.92 + 2.11 mas yr~! for Etalon-1 and Etalon-2 respectively. The rates of change of [
are thus statistically insignificant and may be assumed to be zero, so we conclude that

the acceleration of the node €2 is not corrupted by un-modelled inclination variations. So

equation (7.5) may be written
Q ~-195.8 J, rads yr~? (7.6)

The value of J, modelled during the computation of the JGM gravity field models is
Jy = —2.6 x 107" 'yr =1 [73] this being a ‘lumped’ value since it cannot be separated from
possible variations in higher order zonal coefficients. This effect can be appreciated if
we evaluate the inclination functions (7.2 and 7.3) using the parameters of Lageos’ orbit,
when we find f; = 0.37 and fs = 0.08. Thus the JGM value of J, is inseparable at the
approximately 40% level from possible J, and Jg variations [76, 31]. Now for the Etalon
analyses we use the JGM value of J, in (7.6) and obtain &~ +1.04mas yr=2 which is the
secular acceleration effect of JQ on the node of the Etalon satellites. We note that the
corresponding acceleration of the node of Lageos’ orbit is approximately —14mas yr=2.
We now use our series of nodal residuals to determine whether we might expect to be

able to use the analyses to improve upon this estimate of Jy.
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Figure 7.1: Etalon Inclination Residuals

7.2.3 Nodal Residuals

In Figure 7.2 are shown the series of nodal residuals for the two satellites, expressed
in milli-arc-seconds (mas). Both sets of residuals have a negative slope, the values on
average changing by about 10 mas over the 2.5 year period of the analysis. This small
slope shows that the Etalon orbital planes very closely approximate an inertial reference
system, and that the force model represents very well the gravitational accelerations on
the satellite. We have carried out many test solutions while modelling the thermal forces
on the satellite, and found that the nodal residuals changed very little, particularly the
slope, which remained small.

We carried out a weighted least squares fit of a quadratic curve to the nodal residuals
of each satellite that are shown in Figure 7.2. We obtained the following results, where
¢ is expressed in years from the mid-epoch of the analyses and the coefficients and their

standard errors are expressed in mas. Such a definition of the origin of time t reduces




L Etalon—1 Node Residuals (mas) } E

~20

i I i i i 13 1 t

0 100 200 300 400 500 600 700 800 900

20

L Etolon—2 Node Residucls {(mas) .

~20

1 ] : i : L 1 i
0 100 200 300 400 500 600 700 800 900

Dote (Doys from 1992 June 1)

Figure 7.2: Etalon Nodal Residuals

the correlations that exist between the linear and quadratic terms.

Ay = +1.93 4+ 0.90 + (—3.43 + 0.88)t + (—2.34 + 1.41)#?
Ay = —2.55 £ 0.98 4+ (—4.57 & 0.96)t + (40.30 4 1.55)*

The fit to the Etalon-2 residuals was repeated after omitting the first 400 days of
values, to avoid the period of most scatter. However this measure had only minimal
effect on the coefficients of the fitted curve.

We can emphasise the sensitivity of the nodal residuals to the quality of the gravity
field model by experimentally changing it. A convenient test is to ‘switch off” the rela-
tivistic terms that we discussed in Chapter 4, since they directly affect the precession of
the orbital planes. We know that these effects were modelled when the gravity field was
generated [29] and we argued in Chapter 4 that our force model must also include the

effects in order that we calculate accelerations on the satellite that are compatible with
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the coefficients of the field. We now omit the relativistic terms from the force model, and
used the Etalon-1 data to fully converge the solution as before, solving for initial state
vector and the series of empirical along-track accelerations and albedo scaling factors.
The post solution range residual rms was 17.5 cm, compared to 15.0 cm when relativ-
ity was modelled. Again we mapped the range residuals into orbital element residuals

as before. The nodal residuals from this solution are shown in Figure 7.3, from which
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Figure 7.3: Etalon Nodal Residuals - Relativistic terms omitted

we see that there is now a much larger slope in the results. A straight line fit to these
residuals has slope +17.50 & 1.04 mas y~!. If we compare this slope to the slope of
—4.93+1.03 obtained when we include the relativity terms, we see that the effect on the
nodal residuals of leaving out the terms is to impart a slope of +22.5 mas y~!. Huang et
al [33] find that geodesic precession is the largest of the relativistic precessional terms,
and causes a precession of a satellite’s node of 19.2 cose mas y~', where ¢ is the obliquity
of the ecliptic (=~ 23.5 degrees). So the geodesic precession effect is approximately 17.6
mas y~ !, which agrees reasonably well with our change in the slope of the nodal residuals
of 22.5 mas y~!. The point is that the relativistic effects are not absorbed by adjustment
of the initial state vector and along-track accelerations on the satellite. Of course, had we
solved for corrections to some of the zonal coefficients of the gravity field we could have
removed the slope in the nodal residuals, but our intention here is simply to show that
the JGM-3 field and corresponding force model represents very well the accelerations on

the satellite, as demonstrated by the small size of the nodal residuals shown in Figure 7.2
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This experiment is of course not a test of the theory of the effect of General Relativity
on an Earth orbiting satellite. It merely confirms that we have implemented correctly the
effects derived by Huang et al [33] and which were implemented in the JGM gravity field
models. To carry out a true test of the relativistic effects that would be independent of
the gravity field model in use, we would need to analyse tracking data from two satellites
in supplementary orbits; that is such that g4 + Isup = 180° For such a system,
signatures in the nodal residuals due to errors in the coeflicients of the gravity field would
be equal and of opposite sign for the two satellites, leading to a separation of the true
relativistic effects. The Lageos-III mission was proposed for this purpose [77] and may be
launched sometime in the future as a collaboration between NASA and the Italian Space
Agency ASI. The results here that demonstrate the stability of the orbital planes of the
Etalon satellites suggest that satellites at these heights would be particularly useful for
relativity experiments. A third Etalon satellite at an orbital inclination of approximately
115 degrees would be required.

We now return to our Etalon-1 and -2 nodal residuals as shown in Figure 7.2, and
the fits of quadratic curves to them. We discuss whether we might be able to obtain
a correction to the value of Jy that is implicit in the JGM gravity field models, and
which was determined from Lageos analyses. Any error in the assumed value of J, would
impose a quadratic term onto the nodal residuals. As we have seen, for the Etalons
the contribution to such a nodal acceleration of possible secular change in J,; and higher
degree terms is less than 7% of the contribution of J,, since from (7.2) the inclination
function f4 ~ 0.07.

The presence of the significant linear terms in the fitted curves suggests that the zonal
harmonic coefficients in the gravity field may require revision, which we investigate in a
following section. However, the inconsistency and large standard errors associated with
the quadratic terms of each curve implies that we do not have the sensitivity to derive a
meaningful correction to the adopted value of Jo. As we have seen, this lumped value of

J», would cause an acceleration of the node of the satellites of about +1.0 mas y =2

, and to
be of use in contributing to a determination of the value of J, separated from higher-order
effects, we would need to determine this acceleration to a precision of about 0.1 mas y~2.

We see that our standard errors are at least an order of magnitude greater than this. Of
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course, the error will reduce and solution stability will improve as we extend the data set,
and with quadratic improvement with time should reach a level of about 0.2 x 10~ yr=1,
were we to analyse an eight-year data set. For the present analyses however, we cannot
obtain a useful check on the important question of the value of J.

However, this insensitivity of the plane of the orbits to gravity field variations is an

advantage to our investigation into the use of the data for the determination of UTI.

7.2.4 Solution for UT1-UTC
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Figure 7.4: Corrections (ms) to IERS values of UT1-UTC

We now carry out a solution for corrections to the IERS series of UT1-UTC, using the
partial derivatives in RGODYN as described in Chapter 4. We solve for the corrections
at five-day intervals, simultaneously with the other parameters of the force model. The
results are shown in Figure 7.4, where each point is shown with error bars of length 1-o.

These corrections to the IERS values of UT1-UTC are seen to be fairly scattered about
a mean which is close to zero. Most of the scatter is contained within a band of about & 1

ms. Again the first year of results from Etalon-2 exhibit much greater scatter, with larger
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error bars emphasizing this. It is of course impossible to separate short-term errors in the
satellite force model, giving rise to systematic nodal residuals, from true fluctuations in
UT1-UTC. However, the quoted uncertainties in the IERS values of UT1-UTC are better
than 0.1 ms, and we must therefore assume that most of the occasional large discrepancies
are probably due to lack of tracking data during the periods concerned. It is clear however,
that as predicted from the small slope in the nodal residuals, the systematic drift-off of the
Etalon series of UT1 values from the IERS series is very small. As we have already noted,
the long-term stability of the IERS series depends upon VLBI results, as uncertainties
in the force model for the Lageos satellites, in particular the sensitivity of their orbital
planes to unpredictable atmospheric mass changes, means that in practice the Lageos
node exhibits unmodelled drifts of 0.5 ms/month, and UT1 estimates using them have

useful accuracy only for periods shorter than about 60 days [78]. We can emphasize the
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Figure 7.5: Smoothed Corrections (ms) to IERS values of UT1-UTC

stability of the Etalon series of UT1 over the 2.5 year period by smoothing the results
shown in Figure 7.4. We carried out a Gaussian smoothing of the two UT1 series whereby
we form a moving average by weighting neighbouring points by the ordinate values of a

Gaussian of FWHM 40 days. The value of the FWHM was chosen such that the random




scatter is reduced, but any systematic features are retained. The results are shown in
Figure 7.5.

The results show clearly that most departures of the values of UT1 from the IERS
values are less than 0.5 ms, and that any long-term slope in the values giving rise to a
drift-off is at the level of less than 0.1 ms yr—!.

We conclude that the Etalon satellites are much better for long-term determination

of UT1-UTC than the Lageos satellites.

7.3 Solution for coefficients of the gravity field

We now use our long-arc analyses to investigate the possibility of solving for selected terms
in the gravity field JGM-3. We noted in the previous Section the presence of significant
linear terms in the nodal residuals of both satellites which might imply that some even
zonal harmonic terms may need revision. We may expect also to find significant changes
to some odd zonal harmonic terms since Nerem et al [29] point out that the gravity field
coefficients were estimated together with once-per-revolution empirical drag terms for
some low satellites, in order to accommodate non-gravitational forces. This procedure
tends to absorb errors in the odd zonal coefficients, and we have not estimated once-per-
revolution terms in this analysis. We also quoted in Chapter 5 the findings of Lucchesi
and Nobili [51] that the Etalon satellites are in close resonance with some of the tesseral
terms of the gravity field, namely the Cy,, S22, Cy2, S5, and Cy4, Sq4 terms. Thus we
carried out a solution for corrections to the zonal harmonic terms Jy, Js and Jy, along
with the above tesseral terms.

However, the results proved to be unsatisfactory, and call into question our strategy
of solving for just a few selected terms. Using the two satellites we obtained corrections
to several of the coefficients that were significantly different, and we also found that
some corrections were un-realistically large when compared to the standard errors of the
coefficients of the JGM-3 model quoted by Nerem et al [29]; in some cases our corrections
were more than an order of magnitude greater that the standard errors. We consider
it likely that the coefficients were acting as ‘soak-up’ parameters, helping to remove

remaining force model errors. Thus we do not present any results here, but note that a




better strategy, beyond the scope of the current work, would be to compute the normal
equations matrix for a full solution of gravity field coefficients to say degree and order ten,
and add it to the JGM-3 covarience matrix. Subsequent inversion would then properly

accomodate into the solution the contribution of the Etalon data.

7.4 Solution for GM /.0n

One of the mission objectives of the Etalon satellites 1s a good determination of the
product of the gravitational constant with the mass of the Moon, GMpeen [3]. We
showed in Chapter 5 that there exist secular perturbations of the mean inclination and
node of the Etalon orbits, and that the effects are different for the two satellites. This
behaviour is attributed to the combined effects of the luni-solar perturbations and the
Earth’s oblateness, and is different for each satellite because of the different configuration
of the orbital planes with respect to those of the Moon and Sun. We argued that such
a dependence of the orbits on the Lunar perturbations should lead to an estimate of the
value of GM ps40n, which could be compared to the IERS standard value [20].

During the course of the investigation, we carried out many test solutions for cor-
rections to the IERS value of GM 40, Where other parameters in the solution were
alternately held fixed or solved for simultaneously. In this way we found that the cor-
relation between Jo, and GM .., was as expected very high, since both perturbations
cause a precession of the orbital planes of the satellites. During the course of our 2.5-
year analysis, the Lunar orbit itself precesses by only (2.5/18.6) x 360 = 48degrees, thus
providing only a small variation in the Lunar perturbation and very little separation of
the two effects.

We also found that whether or not we applied the IERS-determined corrections oW
and de to the nutation values had a large effect on the derived correction to GM psy0,. For
example from the Etalon-1 analysis we have a correction A GM pjpon= +0.354 %108 £
0.247 x 10" m3 s72 when using un-corrected nutation values, and A GM pjpon= -0.481
%107 £ 0.251 x 107 m? s72, an order of magnitude smaller, when correcting the nutation
series. Using the latter correction, we have for the Earth-Moon mass ratio a value of

0.012300022 £ 0.000000008. This ratio is to be compared to the IERS [20] value of the



ratio of 0.012300034, or the TAU(1976) value of 0.01230002, and suggests that the Etalon-
1 results are consistent with the currently adopted value of GMpsop,. The results from
Etalon-2 are somewhat larger than those from Etalon-1, but again are only marginally
statistically significant.

We conclude that our analysis does not contradict the IERS value of GMs,,,, but
that a more statistically significant result will be forthcoming only after many years of
tracking the satellites. Ideally a span of 18.6 years is required to separate the effects of

the lunar perturbation from that of the Earth’s gravitational field.

7.5 Station Coordinates and Observational Bias

7.5.1 Introduction

In this Section, we use our long-arc solutions to solve for corrections to the coordinates of
the tracking stations, and to deduce corrections to observations that are clearly erroneous,
most of which were removed from the analyses at an early stage. We remarked in Chapter
5 that there are only very few occasions when more than one station is tracking the
satellites at the same time, so we are unable to use a short-arc technique such as that of
Sinclair [81] to improve the initial estimates of the coordinates of the tracking stations.
Thus we confine our station coordinate study to a comparison between the reference frame

defined by the coordinates deduced from the present analyses and that of the ITRF.

7.5.2 Station Coordinates

We have approached the solution of the station coordinates in two ways, neither of which
attempts to correct the station velocities which have been determined from long series of
laser range and VLBI observations. First we carried out a solution for corrections to the
initial set of ITRF-93 station coordinates by solving for corrections to all the coordinates
in a simultaneous solution with Earth rotation parameters, using the entire 2.5 year orbits.
We found that including station coordinates as parameters in the solutions improved
slightly the post-solution residual rms, to 13 cm and 30 cm respectively for Etalon-1 and
2. Second, we carried out the same solutions over consecutive 50-day sections of the data

sets, where we found that in most cases the residual rms improved to 5 cim or better. The




results for the corrections to the IERS values of UT1-UTC were reported in the previous
Section. Also we found only minor, somewhat noisy corrections to the IERS series of
z, and y,, and do not discuss them further here. For the station coordinate solutions,
we have characterised the results by a comparison of the reference frames defined by
those coordinates with that implied by the ITRF93, by solving for the coefficients of a
seven-parameter mapping of our station coordinates onto those of the ITRF-93 set. The
parameters are three orthogonal translations (A X, Y, Z), three rotations, about the X,
Y, Z axes and a scale factor. The results for the long-arc solutions are shown in Table
7.1, where it is clear that there are no significant differences between the reference frames
defined by our Etalon analyses and that of the ITRF. This is a useful result, providing
an independent check at the level of a few cm on the ITRF reference frame which is
determined through a combination of analyses of LAGEOS data and results from VLBI

and GPS.

Etalon-1 Etalon-2
Parameter s.e s.e
A X (em) 2.5 4.1 1.2 6.7
A'Y (cm) 4.8 4.1 3.1 6.6
A Z (cm) 2.2 3.8 6.6 6.2
X Rot (mas) -1.57 1.57 0.46 2.563
Y Rot (mas) 1.53 1.66 -0.88 2.70
Z Rot (mas) -0.54 1.45 -0.74 2.34
Scale 0.563D-08 | 0.601D-08 | 0.994E-08 | 0.966D-08

Table 7.1: 7-parameter fit of station coordinates onto I'TRF93

The results from the 50-day solutions again show no significant scale or rotation
relative to the ITRF frame but, unlike the long-arc solutions, do show a significant,
varying translation in the Z-direction. This series of ‘Z-shift’ values is shown in Figure
7.6, where we see that most of the values from the Etalon-1 analysis are within = 15 c¢m
of zero, but that some of the Etalon-2 values are much larger, particularly during the

first 400 days of results.
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Figure 7.6: Z-shift between 50-day solutions and [TRF93

The Z-shift values are at the level of proposed seasonal variations in the centre of
mass of the Earth, as determined by GPS analyses relative to the mean reference frame
of ITRF93 [82]. However a periodogramme analysis of the results shown in Figure 7.6 does
not identify any strong periodicities. A possible alternative cause of the Z-shift variations
could be an uneven distribution of tracking stations, with often only one or two stations
in the southern hemisphere contributing to the observations. A similar conclusion was
reached by Vigue et al [83], to explain similar variations in the Z-component of the

geocentre determined from an international GPS campaign.

7.5.3 Observational Bias

We now return to the stations whose observations were initially excluded from the solu-
tion. We remarked in Chapter 5 that the range observations from some stations appeared

to be biased with respect to the orbit fitted to the majority of the data, and that such

155




observations were making it difficult to obtain a converged solution, particularly during
periods of sparse data coverage. This is a particularly important problem for the SLR
technique, as biased data is very difficult to detect during, for example, orbit determi-
nation of a low satellite such as ERS-1, when data spans of just a few days duration are
frequently considered and erroneous data can easily corrupt the solution. Having now
achieved a converged solution over 2.5 years for both satellites, we are in an ideal position
to compare these observations with an accurate orbit, and solve for possible biases in the
original measurements, which may be range bias or epoch error, or both. Such varying
bias can result from temporary software or hardware faults at the observing station, or a
systematic error in, for example, the assumed distance to the calibration target. Initially
we calculate the difference between the observed and computed range for every observa-
tion for the stations involved. Plots of these differences in range can be a valuable aid
to the diagnostic process, particularly if they show that the bias does vary with time.

As an initial stage, we show in Figure 7.7 the final residuals from the fitted orbit of all
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Figure 7.7: Range Residuals from Converged Solutions.

the range observations used in the analysis. The Etalon-1 results have a post solution

residual rms of 15 cm and show very little evidence of remaining systematic trends. The




Etalon-2 results are, as expected, seen to contain some systematic behaviour, particu-
larly during the anomalous first 400 days. These plots, particularly that of the Etalon-1
residuals show that the fitted orbits should readily reveal biased data from those stations

suspected of having systematic measurement error.

7.5.4 Results.

From those stations marked with a x in Table 5.1, we find that the following stations made
sufficient observations that reliable bias estimates could be determined: 1863 and 1864,
Maidanak I and II, Ukraine; 7237 Changchun, China; 7502 Sutherland, South Africa;
8834 Wettzell, Germany. Figure 7.8 shows the 2.5 year history of the measurement
biases of stations 8834 and 7237 with respect to the converged orbits of both satellites.
The results from Wettzell clearly show that there are at least two different bias values
present during the 2.5 year period, and that broadly the results from the two satellites
agree with one another. By examining these plots and two similar ones for stations 1864
and 7502, we are able to partition the observations from each station into sets for which
it is evident that the bias values remained constant. We then used RGODYN to solve
for range and epoch bias for each of the sets of data, formed mean values over the two-
satellite results, and we show these mean values along with their standard errors in Table
7.2. Included in the Table are the dates of applicability (MJD) of each set of corrections.
We see that for instance station 8834 Wettzell regularly experiences a range bias of more
than 35 cm, and occasional periods of larger error along with a significant epoch error.
To further test this procedure, we applied it to the data for three stations that we did
not expect to have significant measurement problems. We carried out the bias solution
for the observations of stations 7109 Quincy, 7939 Graz and 7840 Herstmonceux. For
the Herstmonceux station in particular we have independent evidence that the monthly-
averaged range bias values determined from analysis of observations of Lageos are below
1 cm in size [84]. The results, valid for the whole 2.5 year time-span, are given in
Table 7.3. The corrections to the epochs are fairly large, and we consider them to
be unrealistically so. Observations of these distant satellites tend to be made when the
satellites are at fairly high altitude above the station, to improve the chances of obtaining

returns. In this configuration, the satellite range is particularly insensitive to changes in
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Figure 7.8: Range Residuals showing observational bias.

observational epoch, so solutions for epoch error using range measurements are liable to
produce spurious results. We note that the corrections to epochs given in Table 7.2 are
mostly significantly larger than those of our ‘control’ stations, and thus probably indicate
the presence of real epoch errors. The size of the range bias values in Table 7.3, which
should be fairly well-defined, show that the method is unlikely to detect range errors
of less than about 5 ¢cm, despite the very small internal standard errors associated with

those quantities.
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Station | Start End | AEpoch | s.e. | ARange | s.e.
MJD MJD 1S S m m
1863 | 48774.0 | 49673.0 | -3657.00 | 103.1 - -
1864 | 48774.0 | 49673.0 - - 0.021 0.013
7237 | 48774.0 | 49403.0 - - 0.669 | 0.021
7237 | 49404.0 | 49674.0 | -138.98 | 45.1 1.471 0.115
8834 | 48774.0 | 49044.0 - - -0.593 | 0.034
8834 | 49000.0 | 49018.0 | 1486.00 | 37.8 | -4.247 | 0.103
8834 | 49134.0 | 49234.0 | 499.00 | 76.7 | -0.385 | 0.080
8834 | 49234.0 | 49674.0 - - -0.382 | 0.035

Table 7.2: Mean corrections to observation epoch and range.

Station | AEpoch | s.e. | ARange | s.e.
1S 1S m m
7109 30.1 10.3 | -0.044 | 0.006
7939 -104.0 | 20.1 | -0.010 | 0.006
7840 -233.0 |20.7 | -0.029 | 0.006
Table 7.3: Mean corrections to observation epoch and range.

7.6 Conclusion

We have analysed the nodal residuals from the long-arc solutions from each satellite in
an attempt to determine a value of J essentially free of corruption from variations in
higher order terms of the gravity field. However, we find that our results do not have
the sensitivity to allow such a determination, and conclude that a longer time-span of
perhaps eight years is required to obtain a significant result. We find that the stability
of the orbital planes of the satellites does allow a determination of a series of values of

UT1-UTC, which departs from an inertial series by only about 0.1 ms yr™

, Which 1s
a much better performance than possible from analysis of Lageos data, which requires

frequent re-alignment with an independent source of UT1.
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We find that our solutions are consistent with the currently adopted value of GM ps40n,
the 2.5 year orbital analyses being of insufficient length to allow a separation of possible
gravity field errors from a possible error in that parameter.

The station coordinate frame determined from the long-arc solutions agree well at
the 2-4 cm level with the frame defined by the ITRF-93 station coordinates. The frames
determined from station coordinate solutions at 50-day intervals show a significant varia-
tion of + 15 cm in the z-direction with respect to ITRF-93. Possible causes are seasonal
variation of the centre of mass of the Earth, or poor and variable geographic distribu-
tion of tracking stations. The long-arc orbits are also found to be of use in determining

observational bias at the level of more than a few ¢m or a few hundred micro-seconds.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

8.1.1 Introduction

In this Chapter we list and discuss the main conclusions of the work carried out during
the course of this research. The conclusions are itemized according to their subjects,
and are therefore listed in Chapter order. The final Sections discuss possible future work

leading on from some of the topics discussed during this study.

8.1.2 Data Pre-Processing

We have developed a method of preprocessing laser range observations to remove noise
events and to form normal points by fitting an orbit to the range observations obtained
during a single pass. The method has been shown to work for a variety of different
satellites, and we have adapted a statistical test to the problem of checking that all
trends have been removed from the range residuals. The computer program is in routine

use at several laser ranging systems worldwide.

8.1.3 Satellite Signatures and range bias

We have shown that the laser range measurements made at Herstmonceux are affected by
the particular satellite being observed. We find that if the range measurements are made

at a single-photon level of return, then during the course of a satellite pass the whole
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return waveform is sampled, and the distribution of range residuals from a smoothing
function can be accurately represented by a convolution of the laser pulse profile with
the satellite impulse function and with the response function of the ranging system. We
use our model to determine corrections to refer the range measurements to the centre
of mass of the satellites, and show that such corrections are significantly different from
pre-launch measurements which were carried out at high return levels. In particular we
calculate centre-of-mass corrections for the Etalon satellites, for use later in this study.

We have also shown that for the Herstmonceux system, departure from the regime of
single-photon return levels will result in range bias. We have experimentally examined
the degree of bias as a function of return level from the local calibration target, over a
range of from single to 1000 photons. Our model again adequately explains the observa-
tional results, and implies that finite pulse-length accounts for about half the bias, and
a plausible degree of energy-dependent time-walk within the detector accounts for the
remainder. For satellite ranging we find similar energy-dependent biases, which again are
adequately explained by our model.

We conclude that provided calibration ranging and satellite ranging continue to be
carried out at a strictly single-photon level, our normal practice, then range bias is

minimal, at the expense of some loss of single-shot precision.

8.1.4 The SATAN SLR Analysis Package

We have outlined the principle components of the RGO SATAN analysis package, and
highlighted the modifications carried out by the author as part of the present study. The
main programs of the package are ORBIT and RGODYN. Program ORBIT carries out
a numerical integration of the three second-order differential equations of motion of the
satellite in the J2000 reference frame, and of a large number of variational equations from
which partial derivatives of the satellite position with respect to a set of parameters of
the force model may be computed. At each step of the integration the program forms
the sum of the current components of the forces acting upon the satellite, which include
the gravitational attractions of the irregular field of the Earth, the indirect attractions of
the Sun, Moon and planets, and the non-conservative forces of direct and Earth-reflected

solar radiation and atmospheric drag.
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We have modified the force model to maintain compatibility with a new family of
Earth gravity-field models which were generated using a force model which included the
effects of relativity on the motion of the satellites. Such subtle effects become important
when long orbital arcs are computed and compared with observations, which is a major
objective of this study.

We have also carried out a study of the effect on the integration process of the satel-
lite entering the Earth’s shadow. We obtained from Herstmonceux some photometric
observations of shadow passages of Lageos, in order to compare both the duration of the
penumbral passage and the time of onset of the eclipse with those computed by ORBIT.
Using this information we modified the program to more closely represent the time of
shadow passage, but continue artificially to expand the model of the penumbral region
in order that the modelled solar radiation force is only gradually removed from the force
model. This work also leads to conclusions on optimum integration step sizes for the
different laser satellites.

We discussed the Earth-reflected albedo model implemented in ORBIT, and modified
it so that it is applicable to the high altitude geodetic satellites that are the main subject
of the present study.

Program RGODYN takes laser range observations from the worldwide network of
tracking stations and computes predicted range values based on the orbit computed by
ORBIT. The differences between the predicted and observed ranges are used in a least-
squares adjustment of a selection of a large number of force-model and geodetic parame-
ters. These include initial state-vector of the satellite, selected terms in the expansion of
the gravity field, empirical radial and along-track accelerations, station coordinates and

Earth rotation parameters.

8.1.5 Orbit Determination of the Etalon Satellites

We carried out a preliminary orbital determination over a 6-month orbital arc of each of
the two Etalon satellites, solving for initial state vectors, station coordinates and Earth
rotation parameters. We compared the two sets of station coordinates with one another
by solving for a seven parameter mapping of one set onto another. The parameters are

three orthogonal translations, three rotations and a scale difference. We find that all
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the parameters are statistically insignificant, the translation in the z-direction being the
largest at 4.52 +4.05 cm, and thus concluded that these satellites are of potential value
for station coordinate determination. The solutions for UT1-UTC contain significant
systematic variations with amplitude of about + 1 ms, which suggest that un-modelled
nodal perturbations exist, or that there are possible systematic effects due to periods of
limited tracking data.

Following this preliminary study, we decided to investigate the stability of the Etalon
orbits more fully, and we carried out long-arc solutions by fitting 2.5 years of tracking
data to continuous orbits. These solutions had the specific aim of determining a stronger
terrestrial reference frame, and making a better determination of the signatures in the
deduced series of UT1-UTC, with a view to explaining the systematic behaviour. A
further objective was to attempt to use the data to solve for corrections to some of
the coefficients of the gravity field and to determine a correction to the IERS value of
GM rroom-

We found that for this long-arc work the force model used in the integration of the
variational equations was insufficiently accurate to compute correctly the partial deriva-
tives of the satellite coordinates with respect to the initial state vector. We added the
luni-solar perturbations to this force model, and subsequently obtained converged solu-
tions with post-fit range residual rms of about 2 m.

We then mapped the range residuals from the long-arc orbits into equivalent sets
of residual orbital elements, for further analysis. We found that the along-track accel-
erations of the satellites have long-term averages of some 0.1 pico-m s™2, upon which
are superimposed annual and semi-annual terms with amplitudes of up to 2 pico-m s72.
There were also significant signatures in the residual series of other orbital elements, in

particular the eccentricity residuals.

8.1.6 Thermal Effects on the Etalon Satellites

We investigated the along-track accelerations on the Etalon satellites, as determined both
from the single empirical drag coefficients and from the range residuals from the long-arc
solutions mapped into along-track accelerations. We found that the average accelerations

2

of some -0.1 pm s~ may be adequately explained by the Yarkovsky effect, (i.e. re-
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radiation of heating by IR from the BEarth), which could account for an acceleration of up
to -0.46 pm s~2, dependent upon the directions of the satellites’ spin axes. There is no
need to propose any charged or neutral-particle drag to explain the observed accelerations.

We found that the large acceleration ‘spikes’ of some 2 pm s™2 associated with eclipse
seasons may be modelled using the Yarkovsky-Schach effect, whereby a net acceleration
is generated by the cooling and subsequent re-heating of the retro-reflectors during each
shadow passage. This effect is sensitive to the direction of the satellites’ spin axis, and the
results can be interpreted to suggest that both are undergoing change. We were, however,
unable to remove all the residual accelerations in the results using the Y-S model alone
in the orbit determination process, and we resorted to the determination of a series of
empirical along-track accelerations and to corrections to our Earth albedo model at small
phase angles. We obtained for the 2.5 year orbits post-solution residual rms values of
15cm for Etalon-1 and 44cm for Etalon-2.

We carried out an analysis of the residual eccentricity series from the long-arc solution,
by computing eccentricity excitation vectors from the eccentricity and perigee residual
series. The real and imaginary parts of the Etalon-1 eccentricity excitations show regular
fluctuations at annual and semi-annual periods, with amplitude equivalent to about 25
cm. This appears to be the same effect that is observed in discussions of the Lageos
excitations, taking into account the greater height of the Etalon satellites, but has been
considered too large to be caused by an error in ocean tidal terms. However, recently
published work using space-borne measurements of Earth-reflected radiation does suggest
that there could have been some corruption of terms in the current ocean tide models
due to previous albedo modelling error.

By contrast, the Etalon-2 eccentricity residual series showed a large anomalous de-
parture during the first year, equivalent to an orbital error of more than 1.3 m. The
real part of the eccentricity excitation showed this anomalous behaviour clearly, but the
imaginary part did not. This is exactly the same behaviour as was found by analysts
of Lageos data during the anomalous stages of the Lageos orbital solutions of 1987 and
1991. That only Etalon-2 and not Etalon-1 showed this behaviour strongly suggests that
the cause is related to the satellite itself, such as some further thermal effect, and not to

an un-modelled external force, which should affect both satellites.




8.1.7 Geodetic Results from the Etalon Solutions

We analysed the nodal residuals from the long-arc solutions from each satellite in an
attempt to determine a value of Js essentially free of corruption from variations in higher
order terms of the gravity field. However, we found that our results did not have the sen-
sitivity to allow such a determination, and concluded that a longer time-span of perhaps
eight years would be required to obtain a significant result. We found that the stability
of the orbital planes of the satellites did allow a determination of a series of values of
UT1-UTC, which departed from an inertial series by only about 0.1 ms yr~!, which is
a much better performance than possible from analysis of Lageos data, which requires
frequent re-alignment with an independent, source of UT1.

We attempted to solve for corrections to selected coefficients of the JGM-3 gravity
field, but found that about half of the corrections were significantly different in the results
for the two satellites. Also many of the corrections were un-realistically large, and we
conclude that the corrections are absorbing small errors in the force model, along with
possible errors in the coefficients not selected for solution.

We found that our solutions were consistent with the currently adopted value of
GM pro0n, the 2.5 year orbital analyses being of insufficient length to allow a separation
of possible gravity field errors and a possible error in that parameter.

The station coordinate frames determined from the long-arc solutions agreed well at
the 2-4 cm level with the frame defined by the ITRF-93 station coordinates. The frames
determined from station coordinate solutions at 50-day sub-sets showed a significant
variation of &+ 15 ¢m in the z-direction with respect to ITRF-93. Possible causes are
seasonal variation of the centre of mass of the Earth, or poor and variable geographic
distribution of tracking stations. The long-arc orbits were also found to be of use in
determining observational bias at the level of more than a few c¢cm in range and a few

hundred micro-seconds in epoch.

8.1.8 Overall conclusion

This analysis of the Etalon observations has provided some interesting comparisons with
the results from Lageos analyses, despite the relatively sparse data sets. We hope that

the long-term stability of the orbits with regard to determination of UT1, for poten-
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tial determination of Jo and of GMaseen, May act as an incentive to the laser ranging

community to continue to make observations of these interesting satellites.

8.2 Future Work

8.2.1 Thermal effects

The main problem with accurately modelling the thermal accelerations on the satellites is
a lack of knowledge of the directions of their spin axes. It is possible that the distribution
of the range residuals may contain information on these directions, since the satellites are
not fully uniformly covered with retro-reflectors. This work would build on the signature
work discussed in Chapter 3, and be of use in the modelling work discussed in Chapter
6.

It would be of interest to analyse a longer data set using the methods developed
during this study. In particular it would be useful to check whether the acceleration
spikes associated with the eclipse seasons continue to imply rapid variations in spin axis
direction, and whether the year-long ‘eccentricity anomaly’ found for Etalon-2 repeats at
a later date, and perhaps also affects Etalon-1. The periodic variations in the Etalon-
1 eccentricity excitations should also be analysed further, as they may indicate that a
significant error exists in some of the low frequency terms of the current ocean tidal

models.

8.2.2 Reference frame

The demonstrated value of the Etalon satellites for determination of UT1 could be best
exploited if the observations from both satellites were analysed in a simultaneous solution
with both Lageos satellites. The greater tracking density of Lageos would allow for
parameter determination at short time intervals, whilst the Etalon data would provide

the long-term stability.
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8.2.3 Gravity Field

The Etalon data should be used to solve for possible corrections to the JGM-3 gravity
field coefficients to degree and order ten, by addition of the Etalon normal matrices to

the JGM-3 covariance matrix.

8.2.4 Shadow passages

A significant number of photometric observations of satellite shadow passages were ob-
tained at Herstmonceux during the course of this work. A full analysis may prove inter-
esting for shadow boundary studies, with possible seasonal variation in shadow diameter
and in density of the penumbral region. The availability of precise laser data for orbit

determination of the satellites further adds to the uniqueness of this data set.
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Appendix A

Computation of orbital elements

from rectangular coordinates.

For given instantaneous values z,y, z and Z, ¥, z of the geocentric rectangular coordinates

and velocities of a satellite, we have

r? =12 + y2 + 22
v? =22+ y? 4 22

Now from, for example, Kaula [52] we have that

2 =GM (-2- — l)

rooa
from which we obtain a, the semi-major axis. Then from Kepler’s Third Law,
nta® = GM,

we compute 7, the mean motion.
Now

r=a(l —ecos E), (A.1)

where E 1s the eccentric anomaly and e the eccentricity. So we can compute e cos . Now

from Kepler’s equation

M=F —esink,
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we have

M=n=FE— ecosEE,

or
. n
E =
1—ecosE
So from equation (A.1), we have
. na
E=—
T
Now, by differentiating (5.1) we obtain
7 = aesin EE,
S0,
2
na‘e .
7= sin F/
r
So by using Kepler’s Third Law again to substitute for n, we have
, (GM )é 2
r = _ —esin I,
al T
or,
1
_ GMa)?r |
T = (—————)e sin

,
Thus we have esin F, and with ecos E from above, we can compute e and L.
Now the angular momentum vector h is by definition perpendicular to the orbital

plane and expressed as h = x x x. In component form this is
h = (hy, ho, hy) = (yz — 2y, 2% — 22,29 — yi) (A.2)

The situation is shown in Figure A.1.

From figure A.1, hy = cos /. We now denote by = the unit vector from 0 towards the
Right Ascension of the orbital ascending node on the Barth’s equator. This vector has
components (cos €2, sin €2, 0)

From the figure,

zxh=mnsin/ (A.3)

Now, z = (0,0,1), so z x h = (—hy, hy,0)
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Equinox

Figure A.1: The Orbital Elements 7,2, w

So from equation A.3, hy = —sin [ cos 2 and hy = sin I sin {2
Then
h = (sin I sin 2, — sin / cos €2, cos I ) (A.4)

Then by equating the two expressions for the components of h, equations A.2 and

A .4, we can obtain [ and .
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